

Lecture Notes in Computer Science 6058
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Boaz Patt-Shamir Tınaz Ekim (Eds.)

Structural Information
and Communication
Complexity

17th International Colloquium, SIROCCO 2010
Şirince, Turkey, June 7-11, 2010
Proceedings

13

Volume Editors

Boaz Patt-Shamir
School of Electrical Engineering, Tel Aviv University
Tel Aviv, 69978, Israel
E-mail: boaz@eng.tau.ac.il

Tınaz Ekim
Department of Industrial Engineering, Boğaziçi University
34342, Bebek-Istanbul, Turkey
E-mail: tinaz.ekim@boun.edu.tr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.2, C.2, G.2, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13283-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13283-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The Colloquium on Structure, Information, Communication, and Complexity
(SIROCCO) is devoted to the study of communication and knowledge in multi-
processor systems from both the qualitative and quantitative viewpoints. Special
emphasis is given to innovative approaches and fundamental understanding, in
addition to efforts to optimize current designs.

SIROCCO has a tradition of interesting and productive scientific meetings in
a relaxed and pleasant atmosphere, attracting leading researchers in a variety of
fields in which communication and knowledge play a significant role. Consistent
with this tradition, the 17th SIROCCO meeting was held in Turkey, in the
picturesque Nesin Mathematics Village, Şirince, İzmir, during June 7–11 2010.

Thirty-seven papers were submitted to SIROCCO 2010. All papers under-
went a thorough peer-review process, where each submission was reviewed by
three to six reviewers. The reviews were the basis of the Program Committee
deliberations, which resulted in selecting 19 contributions for presentation at the
colloquium and publication in this volume.

The presentations in this volume also include the abstract of an invited talk
on communication complexity, given by Eyal Kushilevitz.

We thank the authors of all the submitted papers, the Program Committee
members, and the external reviewers. Without their dedication, we could not
have prepared a program of such quality.

We would also like to thank the SIROCCO Steering Committee Chair, Pierre
Fraigniaud, for his energy and leadership in making this conference happen.

Last but not least, we would like to thank the local arrangements people from
Nesin Mathematics Village, notably Aslı Can Korkmaz and the many students
who volunteered on the organization team, for their invaluable help.

Boaz Patt-Shamir
Tınaz Ekim

2010 Prize for Innovation in Distributed
Computing

The Prize for Innovation in Distributed Computing for 2010 was awarded to
Jean-Claude Bermond (CNRS, INRIA Sophia-Antipolis, and Université Nice
Sophia Antipolis). The prize was given in recognition of Bermond’s contribution
to the study of the impact of structure of networks on the efficiency of parallel
or distributed algorithms, as illustrated by several papers that have appeared in
the proceedings of past SIROCCO meetings. These papers tackled a wide variety
of problems including routing, broadcasting, gossip protocols, traffic grooming,
fault-tolerant network design, monopolies, and other topics.

2010 Prize Committee

Pierre Fraigniaud CNRS & Université Paris Diderot, France
Shay Kutten Technion, Israel
Nicola Santoro Carleton University, Canada
Alexander A. Shvartsman University of Connecticut, USA
Shmuel Zaks Technion, Israel

Conference Organization

Program Committee

Amotz Bar-Noy City University of New York, USA
Joffroy Beauquier Université Paris-Sud 11 & LRI, France
Andrea Clementi Università degli Studi di Roma “Tor Vergata”,

Italy
Tınaz Ekim Boğaziçi University, Turkey
Robert Elsässer Universität Paderborn, Germany
Pinar Heggernes Universitetet i Bergen, Norway
Alex Kesselman Google Inc., USA
Elias Koutsoupias Univerity of Athens, Greece
Dariusz Kowalski University of Liverpool, UK
Thomas Moscibroda Microsoft Research, USA
Boaz Patt-Shamir (Chair) Tel Aviv University, Israel
Thomas Sauerwald Simon Fraser University & PIMS, Canada
Maria Serna Universitat Politecnica de Catalunya, Spain
Peter Widmayer Eidgenössische Technische Hochschule Zürich,

Switzerland

Steering Committee

Pascal Felber Université de Neuchâtel, Switzerland
Paola Flocchini University of Ottawa, Canada
Pierre Fraigniaud (Chair) CNRS & Université Paris Diderot, France
Lefteris Kirousis University of Patras, Greece
Rastislav Kralovic Comenius University, Slovakia
Evangelos Kranakis Carleton University, Canada
Danny Krizanc Wesleyan University, USA
Shay Kutten Technion, Israel
Bernard Mans Macquarie University, Australia
David Peleg Weizmann Institute, Israel
Giuseppe Prencipe Università di Pisa, Italy
Nicola Santoro Carleton University, Canada
Alex Shvartsman University of Connecticut, USA
Pavlos Spirakis CTI & University of Patras, Greece
Shmuel Zaks Technion, Israel
Janez Z̆erovnik University of Ljubljana, Slovenia

Local Organization

Tınaz Ekim (Chair) Boğaziçi University, Turkey
Arman Boyacı Boğaziçi University, Turkey

X Conference Organization

External Reviewers

Yuichi Asahiro
Davide Bilò
Turker Biyikoglu
Maria Blesa
Arman Boyacı
André Brinkmann
Hajo Broersma
Tiziana Calamoneri
Jurek Czyzowicz
Shantanu Das
Bastian Degener
Miriam Di Ianni
Yann Disser
Stefan Dobrev
Frederic Dorn
Michael Elkin
Cesim Erten
Tomas Feder
Irene Finocchi
Tobias Friedrich
Takuro Fukunaga
Martin Gairing
Seth Gilbert
Luciano Gualà
Emanuele Guido Fusco
Dag Haugland
David Ilcinkas
Taisuke Izumi
Matt Johnson
George Karakostas
Ralf Klasing
Krzysztof Krzywdzinski
Michael Lampis
Johannes Langguth

Sophie Laplante
Fredrik Manne
Annalisa Massini
Brendan McKay
Daniel Meister
Stephane Messika
Lars Nagel
Nicolas Nisse
Adrian Ogierman
Can Ozturan
Aris Pagourtzis
Mostofa Patwary
Paolo Penna
Christophe Picouleau
Giuseppe Prencipe
Tomasz Radzik
Peter Robinson
Mariusz Rokicki
Laurent Rosaz
Kamil Sarac
Sanem Sariel Talay
Florian Schoppmann
Alper Sen
Riccardo Silvestri
Arun Somani
Mudhakar Srivatsa
Grzegorz Stachowiak
Dirk Sudholt
Christopher Thraves
Qin Xin
Rico Zenklusen
Huaming Zhang
Lisa Zhang
Michele Zito

Table of Contents

Communication Complexity: From Two-Party to Multiparty
(Invited Talk) . 1

Eyal Kushilevitz

On the Impact of Local Taxes in a Set Cover Game 2
Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot

Towards Network Games with Social Preferences . 14
Petr Kuznetsov and Stefan Schmid

Distributed Weighted Stable Marriage Problem . 29
Nir Amira, Ran Giladi, and Zvi Lotker

Traffic Grooming in Star Networks via Matching Techniques 41
Ignasi Sau, Mordechai Shalom, and Shmuel Zaks

Event Extent Estimation . 57
Marcin Bienkowski, Leszek G ↪asieniec, Marek Klonowski,
Miroslaw Korzeniowski, and Stefan Schmid

Asynchronous Deterministic Rendezvous in Bounded Terrains 72
Jurek Czyzowicz, David Ilcinkas, Arnaud Labourel, and Andrzej Pelc

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 86
Daisuke Baba, Tomoko Izumi, Fukuhito Ooshita,
Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Mobile Robots Gathering Algorithm with Local Weak Multiplicity in
Rings . 101

Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and Fukuhito Ooshita

Average Long-Lived Memoryless Consensus: The Three-Value Case 114
Ivan Rapaport and Eric Rémila

Algorithms for Extracting Timeliness Graphs . 127
Carole Delporte-Gallet, Stéphane Devismes,
Hugues Fauconnier, and Mikel Larrea

Distributed Tree Comparison with Nodes of Limited Memory 142
Emanuele Guido Fusco and Andrzej Pelc

Periodic Data Retrieval Problem in Rings Containing a Malicious
Host (Extended Abstract) . 157

Rastislav Královič and Stanislav Mikĺık

XII Table of Contents

A Continuous, Local Strategy for Constructing a Short Chain of Mobile
Robots . 168

Bastian Degener, Barbara Kempkes, Peter Kling, and
Friedhelm Meyer auf der Heide

Optimal Deterministic Ring Exploration with Oblivious Asynchronous
Robots . 183

Anissa Lamani, Maria Gradinariu Potop-Butucaru, and
Sébastien Tixeuil

Maximum Interference of Random Sensors on a Line 197
Evangelos Kranakis, Danny Krizanc, Lata Narayanan, and
Ladislav Stacho

Multipath Spanners . 211
Cyril Gavoille, Quentin Godfroy, and Laurent Viennot

Strong Orientations of Planar Graphs with Bounded Stretch Factor 224
Evangelos Kranakis, Oscar Morales Ponce, and Ladislav Stacho

A Linear Time Algorithm for the Minimum Spanning Caterpillar
Problem for Bounded Treewidth Graphs . 237

Michael J. Dinneen and Masoud Khosravani

Fast Algorithms for min independent dominating set 247
Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos

Author Index . 263

Communication Complexity:
From Two-Party to Multiparty

Eyal Kushilevitz�

Abstract. We consider the multiparty communication complexity model, where
k players holding inputs x1, . . . , xk communicate to compute the value
f(x1, . . . , xk) of a function f known to all of them.

Yao’s classic two-party communication complexity model [3] is the special
case k = 2 (see also [2]). In the first part of the talk, we survey some basic results
regarding the two-party model, emphasizing methods for proving lower-bounds.

In the second part of the talk, we consider the case where there are at least
three parties (k ≥ 3). The main lower bound technique for the communication
complexity of such multiparty problems is that of partition arguments: partition
the k players into two disjoint sets of players and find a lower bound for the
induced two-party communication complexity problem. We discuss the power of
partition arguments for both deterministic and randomized protocols. (This part
is based on a joint work with Jan Draisma and Enav Weinreb [1].)

References

[1] Draisma, J., Kushilevitz, E., Weinreb, E.: Partition Arguments in Multiparty Communication
Complexity. In: ICALP, pp. 390–402 (2009)

[2] Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press,
Cambridge (1997)

[3] Yao, A.C.: Some complexity questions related to distributed computing. In: STOC, pp. 209–
213 (1979)

� Computer Science Department, Technion – Israel Institute of Technology, Haifa.
eyalk@cs.technion.ac.il. Research supported by grant 1310/06 from the Israel Sci-
ence Foundation (ISF).

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Impact of Local Taxes
in a Set Cover Game�

Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot

LAMSADE, CNRS FRE 3234, Université de Paris-Dauphine, 75775 Paris, France
{escoffier,laurent.gourves,monnot}@lamsade.dauphine.fr

Abstract. Given a collection C of weighted subsets of a ground set E ,
the set cover problem is to find a minimum weight subset of C which
covers all elements of E . We study a strategic game defined upon this
classical optimization problem. Every element of E is a player which
chooses one set of C where it appears. Following a public tax function,
every player is charged a fraction of the weight of the set that it has
selected. Our motivation is to design a tax function having the following
features: it can be implemented in a distributed manner, existence of
an equilibrium is guaranteed and the social cost for these equilibria is
minimized.

1 Introduction

We study a strategic game where each player should choose a facility from a set
of facilities available to him. Each facility has a cost and each player must pay a
tax for the facility that he has selected. This tax is a fraction of the facility’s cost,
and it decreases when the number of players who select the facility increases.
This game is a model for many applications: facilities are services and every
player is a client who selects the cheapest service.

The social cost is defined as the total cost of the facilities selected by at least
one player, no matter how much the players pay. As a motivation, the cost of a
facility can be an environmental cost and taxes can be a right to pollute. Then
the environmental impact of the players’ choice is much more important than
the amount of money they pay.

In the game, no central authority can control the player’s choice and minimize
the social cost. Instead the players are self-interested, they all choose the facility
that induces the lowest tax. We deal with the case where taxes are locally defined
on the facilities (independently on the players’ choices for other facilities) so it
can be implemented in a completely distributed manner. Local tax functions
induce a game among the players. The question posed in this article is “Which
local tax function minimizes the social cost?”. Assuming that the game’s outcome
is an equilibrium, we study the price of anarchy (PoA in short) which is the
worst case ratio between the social cost of a equilibrium, and the optimal social
� This work is supported by French National Agency (ANR), project COCA ANR-09-

JCJC-0066-01.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 2–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Impact of Local Taxes in a Set Cover Game 3

cost [1]. In particular we consider pure strategy Nash equilibria and its robust
refinements to strong equilibria and k−strong equilibria.

We first study a tax function where the cost of a facility is evenly shared by
the players who select it. It is fair (the users of the a facility are treated equally)
and budget balanced (the taxes cover the total cost). Next we investigate local
tax functions which are fair, non-negative and monotone non-increasing in the
number of players who select it. Any local tax function of this kind encourages
the sharing of the facilities and it guarantees the existence of a pure strategy
strong equilibrium.

2 Definitions, Related Work and Summary of Results

Set Cover. The situation described in introduction is usually modeled as a
set cover problem. Given a set E = {e1, . . . , en} of n elements, a collection
S = {S1, . . . , Sm} of m subsets of E such that

⋃m
j=1 Sj = E and a weight function

w : S → R+, the problem is to find X ⊆ S such that every element in E belongs
to at least one member of X and

∑
Sj∈X w(Sj) is minimum. In the following we

sometimes write wj (resp. sj) to denote w(Sj) (resp. |Sj |).
We study a set cover game defined upon the set cover problem. A facility

j is associated with each set Sj ∈ S. Each element ei ∈ E is controlled by a player
i who wants ei to be covered by a set of S. The set of facilities {1, . . . , m} and
the set of players {1, . . . , n} are respectively denoted by M and N . Each player
i ∈ N has a strategy set Σi defined as {j ∈ M : ei ∈ Sj}. We denote by
Σ = Σ1×· · ·×Σn the set of all states (or strategy profiles). The i-th coordinate
of a ∈ Σ, denoted by ai, is the action of i (actions are singletons). The congestion
(or load) of a facility j is the number of players who want their element to be
covered by Sj . It is denoted by �j(a) and defined as |{i ∈ N : ai = j}|.

In the general tailored model, there is one function C which depends on locally
available values: sj , wj and �j(a) for a given state a. This function C is unique,
public and used locally by every facility. C(sj , wj , �j(a)) is the tax that every
player who has selected j must pay. We assume that C exhibits economies of
scale, i.e. C is a monotone non increasing function of �j(a). In addition, C is non
negative (players are not paid to select a facility). The goal in this model is to
find a function that minimizes the social cost. If the taxes paid by the agents do
not cover the cost of all selected facilities then we interpret it as the introduction
of subsidies.

In the Fair balanced model, the cost of a facility is evenly shared by the
players that chose this facility: C(sj , wj , �j) = wj/�j. This function is a natural
particular case of the tailored model. It corresponds to situations where we want
a fair and budget balanced cost (the value of a state equals the sum payments of
the agents, while this property does not necessary holds for other tax functions
in the tailored model).

Finally, the tax that player i must pay under the state a is C(sai , wai , �ai(a))
but we often write ci(a) instead.

4 B. Escoffier, L. Gourvès, and J. Monnot

Solutions, existence and ratios. Much of the research in computational game
theory has focused on the Nash equilibrium (NE in short). It is a state in which
no single player can deviate and benefit. A strong equilibrium (SE in short) is a
state in which no coalition of players can deviate and benefit [2]. This refinement
of the NE is then more robust. Given a ∈ Σ, i′ ∈ N and j′ ∈ Σi′ , (a |i′ j′)
denotes the strategy profile where every player i ∈ N \ {i′} plays ai whereas
i′ plays j′. A pure strategy Nash equilibrium is a state a ∈ Σ where ∀i ∈ N ,
∀j ∈ Σi, ci(a) ≤ ci(a |i j). Pure means that every player chooses a strategy
deterministically and since we only consider pure strategies, we often omit the
adjective ’pure’.

Given N ′ ⊆ N and a, b ∈ Σ, (a |N ′ b) is the strategy profile where i plays
ai (resp. i plays bi) if i ∈ N \ N ′ (resp. if i′ ∈ N ′). A strong equilibrium
is a state a ∈ Σ where there is no coalition N ′ ⊆ N and b ∈ Σ such that
∀i ∈ N ′, ci(a |N ′ b) < ci(a). A k-strong equilibrium is defined similarly for
coalitions involving at most k players.

The set of Nash equilibria (resp. strong equilibria, k-strong equilibria) of a
game Γ (the set cover game in our case) is denoted by NE(Γ) (resp. SE(Γ),
kSE(Γ)). In particular SE(Γ) ⊆ kSE(Γ) ⊆ NE(Γ) ⊆ Σ.

A state is said optimal if it minimizes the social cost. The minimal social
cost is denoted by OPT . We denote by NASH (resp. STRONG, kSTRONG)
the social cost of a given a Nash equilibrium (resp. strong equilibrium, k-strong
equilibrium).

The price of anarchy (PoA) is a widely accepted performance measure of
decentralized systems which relies on Nash equilibria [1]. It was generalized to
k−strong equilibria and named the k-strong price of anarchy (k−SPoA in short)
[3]. The k-SPoA is the worst case ratio between the weight of a pure k-strong
equilibrium (assuming one exists) and the optimum, over all instances of a game.
The PoA and the strong price of anarchy (SPoA in short) correspond to the cases
k = 1 and k = n respectively.

Related work. The set cover game is a congestion game where strategies
are singletons. Rosenthal [4] showed that every congestion game possesses a pure
strategy NE. The existence of SE in congestion games was first studied by Holz-
man and Law-Yone [5] who focused on situations where congestion has a negative
effect on the players’ utility (monotone-decreasing congestion games). After that,
Rozenfeld and Tennenholtz [6] completed the study for monotone-increasing con-
gestion games where congestion has a positive effect on the players’ utility. In
particular they prove that monotone-increasing congestion games where strate-
gies are singletons always has a pure strategy strong equilibrium. In addition,
this SE can be computed efficiently. The set cover game under the tailored
model is a monotone-increasing congestion game so it always possesses a SE.

In [7], Anshelevich et al. study a connection game consisting of a network (an
edge-weighted graph) and a pair (si, ti) of nodes for each player i. A player’s
strategy is a set of edges that form an si-ti path. In the unweighted case (all
players have the same importance), the cost of each selected edge is shared
equally by its users, i.e. if k agents use an edge of cost w in their strategy then

On the Impact of Local Taxes in a Set Cover Game 5

each of these agents pays a share of w/k. The set cover game under the fair
balanced model is a particular case of Anshelevich et al.’s connection game if
the network is as follows: we are given a supersource x, a node yj and an edge
(x, yj) of cost wj for each set Sj , a node zi for each element ei and an edge
(yj , zi) of cost 0 iff ei ∈ Sj . Each player i wants to connect x to zi. The PoA
of Anshelevich et al.’s connection game is n (the number of players) and the
price of stability (the ratio of the best Nash equilibrium relative to the social
optimum) is H(n) = O(log n) [7] where H(n) = 1 + 1/2 + · · ·+ 1/n.

The connection game is also studied by Epstein et al. [8] who give topologic
conditions for the existence of a strong equilibrium and bounds on the k-SPoA.
In particular, when all players have the same source but not necessarily the
same sink (single source), there is a strong equilibrium if the network is a series
parallel graph [8]. This result applies for the “network” representation of the set

cover game given above. For the k-strong price of anarchy of the connection
game Epstein et al. prove that max{n

k , H(n)} ≤ k-SPoA ≤ n
k H(k). Therefore

the PoA is n and the SPoA is H(n).
In this paper we consider the fair balanced model like in [7,8] but we also

investigate general local taxes (tailored model). The goal is to find one that
induces the best system’s efficiency. In other words, we aim at mitigating the
system’s deterioration due to selfish and uncoordinated behavior. In this line,
Christodoulou et al. introduced the notion of coordination mechanism [9]. Re-
cently coordination mechanisms received a lot of attention, in particular for
scheduling games.

Finally the set cover game under consideration in this paper is close to
the model studied by Buchbinder et al. [10]. A central authority encourages
the purchase of resources by offering subsidies that reduce their price: every
player who has selected resource j pays (wj − σj)/�j where σj is the subsidy
associated with j. Hence the fair balanced model corresponds to the case where
σj = 0 for all j. The main differences with our model are that the players are
introduced sequentially by an adversarial scheduler and the total amount of
subsidies offered is bounded by the amount of non refundable taxes collected
when a player purchases a new set.

Summary of results. We study in Section 3 the k-SPoA of the set cover

game in the fair balanced model. We prove that k-SPoA= H(k)− 1 + Δ
k where

Δ is the maximum size of a set. We deduce that PoA= Δ and SPoA= H(Δ).
We also deduce that k-SPoA= H(k)− 1 + n

k , PoA= n and SPoA= H(n) where
n is the number of players. These bounds are tight. When k = 1 and k = n,
they meet the previous results given in [7,8]. However, when 1 < k < n, we get
a more accurate value of the k-SPoA, i.e. H(k) − 1 + n

k instead of the n
k H(k)

given by Epstein et al. [8].
In Section 4, we study the tailored model. We first show that the PoA can

reduce by more than 1/3 using a function that encourages players to choose big
sets. On the other hand, we also show in this section strong lower bounds valid
for any tax function. Bounds on the PoA obtained in the tailored model are of
the same order as those obtained with the fair balanced model (see Table 1 for

6 B. Escoffier, L. Gourvès, and J. Monnot

Table 1. Upper and lower bounds on the k-SPoA as a function of (left part) n and
(right part) Δ in the tailored model

n Δ

PoA SPoA k-SPoA PoA SPoA k-SPoAa

UB 0.66n H(n) H(k) − 1 + n
k

Δ H(Δ) H(k) − 1 + Δ
k

LB 0.5n ln(n)
2

+ O(1) max
(

ln(n)
2

+ O(1), n
2k

)
Δ H(Δ) H(k) − 1 + Δ

k

a when k ≤ Δ. When k > Δ, the k-SPoA is H(Δ).

a summary of the results given in this article). Then local taxes cannot (in the
model dealt with here) considerably reduce the social cost (compared to a fair
and balanced division of the cost).

Finally the case of uniform weights is studied. We mainly prove a lower bound
of n/4 and an almost matching upper bound of n/4 + 1/2 + 1/4n for the PoA.
These bounds hold in the tailored model whereas PoA= n in the fair balanced
model.

Due to space limitations, some proofs are omitted.

3 Fair Balanced Model

We give in Theorem 1 the k−SPoA of the set cover game. Note that w.l.o.g., we
can assume that k ≤ Δ since any coalition N ′ can be decomposed into coalitions
N ′

1, . . .N
′
p where each player of N ′

i will play the same set Sji for i = 1, . . . , p.
The coalition N ′ strictly decreases the cost of each player in N ′ iff for every
i ∈ {1, . . . , p}, the coalition N ′

i strictly decrease the cost of each player in N ′
i .

Now, since |N ′
i | ≤ |Sji | ≤ Δ, the result follows.

Theorem 1. For any k ∈ {1, . . . , Δ}, the k−SPoA of the set cover game is
H(k)− 1 + Δ

k .

Proof. Suppose that the players have reached a k-strong equilibrium a, i.e., there
is no coalition N ′ ⊆ N (|N ′| ≤ k) and b ∈ Σ such that ci(a |N ′ b) < ci(a) for all
i ∈ N ′.

Given j ∈ [1..m] and x ∈ [1..|Sj |], h(x, j) designates the player in Sj with the
x−th largest cost. Hence ch(1,j) ≥ ch(2,j) ≥ . . . ≥ ch(|Sj |,j) holds. Ties are broken
arbitrarily. Let us show that

ch(x,j) ≤
wj

min{x, k} (1)

holds for all j ∈ [1..m] and x ∈ [1..|Sj|]. By contradiction, assume that there are
j0 ∈ [1..m] and x0 ∈ [1..|S0|] such that ch(x0,j0) >

w(Sj0)
min{x0,k} . By assumption we

get:

∀x ∈ {1, . . . , min{x0, k}}, ch(x,j0) >
w(Sj0)

min{x0, k}
(2)

On the Impact of Local Taxes in a Set Cover Game 7

since ch(x,j0) ≥ ch(min{x0,k},j0) ≥ ch(x0,j0). Now, let us consider the coalition
N ′ = {h(x, j0) : x = 1, . . . , min{x0, k}} ∩ {i ∈ N : ai 	= j0} (where a is the
k-strong equilibrium). Obviously, |N ′| ≤ k and we get N ′ 	= ∅ since otherwise
{h(x, j0) : x = 1, . . . , min{x0, k}} ⊆ Sj0 and then, the cost of each player in
{h(x, j0) : x = 1, . . . , min{x0, k}} will be at most w(Sj0)

min{x0,k} , contradiction with
inequality (2). If all the players in N ′ change their mind, form a coalition and
simultaneously decide to be covered by Sj0 then their individual cost would be
at most w(Sj0)

min{x0,k} . We deduce that the solution is not a k-strong equilibrium,
contradiction.

Using (1) and the harmonic function H(p) :=
∑p

i=1 1/i, we deduce that

∑
i∈Sj

ci ≤
(∑min{|Sj|,k}

i=1
1
i + |Sj|−min{|Sj|,k}

min{|Sj |,k}
)

wj

=
(
H(min{|Sj |, k})− 1 + |Sj |

min{|Sj|,k}
)

wj

≤
(
H(min{Δ, k})− 1 + Δ

min{Δ,k}
)

wj

(3)

holds for all j ∈ {1, . . . , m} since |Sj | ≤ Δ. Let X ⊆ S be an optimal solution
to the underlying set cover problem with value OPT =

∑
Sj∈X wj . Summing

up inequalities (3) for the sets in X , we obtain:

∑
Sj∈X

∑
i∈Sj

ci ≤
∑

Sj∈X

(
H(min{Δ, k})− 1 +

Δ

min{Δ, k}

)
wj

On the one hand kSTRONG =
∑

i∈N ci ≤
∑

Sj∈X

∑
i∈Sj

ci holds because X
is feasible, i.e. each element e ∈ E is covered by at least one set in X . On the other
hand, we get:

∑
Sj∈X

(
H(min{Δ, k})− 1 + Δ

min{Δ,k}
)

wj =
(
H(min{Δ, k})−1+

Δ
min{Δ,k}

)
OPT . A tight example (omitted for space reason) exists. ��

From Theorem 1, we deduce that the PoA of the set cover game is Δ (set
k = 1) and the SPoA of the set cover game is H(Δ) (set k = Δ).

As a corollary, since Δ ≤ n, we get that the k-SPoA is at most H(k)− 1 + n
k ,

and hence that the PoA is at most n and the SPoA at most H(n). These bounds
are actually tight because Δ = n in the example showing the lower bound in the
proof of Theorem 1 (omitted for space reason).

Corollary 1. For any k ∈ {1, . . . , n}, the k-SPoA of the set cover game is
H(k)− 1 + n

k .

4 Tailored Model: Finding the Right Taxes

The goal is to find a function C which minimizes the social cost. C is a non
negative function monotone non increasing with �j(a). Equilibria are defined
with respect to the taxes paid by players but the social cost remains the total
weight of the selected sets. In contrast with the fair balanced model, we do not
impose that the taxes cover the whole cost.

8 B. Escoffier, L. Gourvès, and J. Monnot

4.1 Improvement on the PoA

We use a function where the players are encouraged to select large sets (function
decreasing in sj = |Sj |) with a lot of other players (function decreasing in �j(a)).
We first show a lemma satisfied by these functions, and then study a particular
class of functions that leads to interesting bounds (Lemma 2 and Theorem 2).

Fix a cost function and suppose that we have a NE strategy profile a (for this
cost function). After a possible relabeling, we denote by Y = {S1, S2, · · · , St}
the set of sets chosen by at least one player with s1 ≥ s2 ≥ · · · ≥ st. For the
sake of clarity, suppose that ai = i for i ≤ t (i.e. player i chooses Si).

Lemma 1. Let c be a cost function which is decreasing in �j(a). Then, for any
i ∈ {1, 2, · · · , t}, si ≤ n + 1− i.

Proof. Suppose that there exists i such that si ≥ n + 2− i. Since sk are sorted
in non increasing order, for any k ≤ i sk ≥ n + 2 − i. Then fix some j ≤ i. Let
N ′ = {1, · · · , i} \ {j}. Since sj ≥ n + 2 − i, sj + |N ′| ≥ n + 1 and consequently
there exists a player k ∈ N ′ with ek ∈ Sj . Then, since the profile is a NE,
ck(a) ≤ ck(a|kj). Since c is decreasing in �j(a), ck(a) < cj(a).

In the strategy profile a, for any j ≤ i there exists a k ≤ i such that ck(a) <
cj(a). This is obviously impossible. ��

We now study a particular class of local tax functions wai

g(sai
)+εg(�ai

(a)) where
g is a positive and increasing function and ε > 0. Fix an optimal Set Cover
{S∗

1 , S∗
2 , · · · , S∗

t∗}, and let s∗j = |S∗
j |.

Lemma 2. Let the tax function be wai

g(sai
)+εg(�ai

(a)) where g is a positive and
increasing function. Then:

NASH ≤ (1 + ε)
t∗∑

j=1

(
w(S∗

j)
∑s∗

j

i=1 g(n + 1− i)
g(s∗j)

)

Proof. As previously, suppose that player i chooses Si (i ≤ t) and let λ(j) (for
j ≤ t∗) be the set of players among {1, 2, · · · , t} which belong to S∗

j (λ(j) is
possibly empty).

Since g is increasing, the cost ci(a) associated to player i verifies:

ci(a) =
w(Si)

g(si) + εg(�i(a))
≥ w(Si)

(1 + ε)g(si)
(4)

On the other hand, since the profile a is a Nash equilibrium (and since g is
non negative), if ei belongs to the set S∗

j :

ci(a) ≤ ci(a|ij) ≤
w(S∗

j)
g(s∗j)

(5)

On the Impact of Local Taxes in a Set Cover Game 9

From Equations (4) and (5) we get:

w(Si) ≤ (1 + ε)w(S∗
j)

g(si)
g(s∗j)

where j is such that ei ∈ S∗
j . Summing up this inequality for all players i ∈ λ(j),

we get:

∀j ∈ {1, 2, · · · , t∗},
∑

i∈λ(j)

w(Si) ≤ (1 + ε)w(S∗
j)

∑
i∈λ(j) g(si)

g(s∗j)
(6)

Since si ≤ n+1− i (thanks to Lemma 1), and since g(si) is non negative and
increasing, we get:

∑
i∈λ(j)

g(si) ≤
|λ(j)|∑
i=1

g(n + 1− i) ≤
s∗

j∑
i=1

g(n + 1− i) (7)

Since the sets S∗
j cover all the elements, each player i belongs to at least one

λ(j). Then, summing Inequality (6) for j ∈ {1, 2, · · · , t∗}, we get using (7):

t∑
i=1

w(Si) ≤
t∗∑

j=1

∑
i∈λ(j)

w(Si) ≤ (1 + ε)
t∗∑

j=1

(
w(S∗

j)
∑s∗

j

i=1 g(n + 1− i)
g(s∗j)

)
��

We are now able to find the PoA associated to the cost function under consid-
eration.

Theorem 2. Let the tax function be ci(a) = wai

g(sai
)+εg(�ai

(a)) where g is a positive
and increasing function. Then

f(n)
1 + ε

≤ PoA ≤ (1 + ε)f(n)

where f(n) = maxi=1,2···,n
{∑ i

k=1 g(n+1−k)
g(i)

}
.

Proof. The upper bound is a straightforward consequence of Lemma 2.
For the lower bound, consider the following instance with n players and p +

2 resources where Si = {i, i + 1, · · · , n} for i = {1, 2, · · · , p + 1} and S0 =
{1, 2, · · · , p}. We set wp+1 = 0 and fix the weights in such a way that the strategy
where player i ≤ p chooses Si (and player i > p chooses Sp+1) is a NE. We fix
for i = 1, 2, · · · , p:

w(Si) = g(si) + εg(1) = g(n + 1− i) + εg(1)

which ensures that w(Si)
g(si)+εg(2) ≥

w(Si+1)
g(si+1)+εg(1) for i = 1, 2, · · · , p−1. In particular,

the cost associated to player i is 1 if i ≤ p and 0 if i ≥ p + 1. We set w(S0) =
g(p) + εg(1), ensuring that players have no incentive to deviate.

10 B. Escoffier, L. Gourvès, and J. Monnot

Then we have a NE of value
∑p

i=1(g(n + 1 − i) + εg(1)) while the solution
consisting of taking only S0 and Sp+1 is a Set Cover of value g(p) + εg(1). Then
the PoA is such that:

PoA ≥ pεg(1) +
∑p

i=1 g(n + 1− i)
εg(1) + g(p)

≥
∑p

i=1 g(n + 1− i)
g(p)(1 + ε)

where the last inequality holds since g is increasing. ��

Note that the lower bound would hold for any cost function wj

g(sj)+h(�j)
where g

and h are increasing functions.

Now we derive from Theorem 2 a PoA smaller than n by choosing interesting
functions g. Since g is non decreasing, we have:

∫ n

k=n−i

g(x)dx ≤
i∑

k=1

g(n + 1− k) ≤
∫ n+1

k=n+1−i

g(x)dx

If we choose g(i) = iα for some α > 0, we get:

nα+1 − (n− i)α+1

α + 1
≤

i∑
k=1

g(n + 1− k) ≤ (n + 1)α+1 − (n + 1− i)α+1

α + 1

Studying this expression, if we choose α = 1/2, then we get a PoA equivalent
to βn (up to a factor 1 + ε) where β = 3−√

3√
231/4 < 0.69. The best choice for α is

actually α 0.643 which gives a PoA equivalent to γn (up to a factor 1 + ε)
where γ 0.660.

4.2 Lower Bounds

We first deal with lower bounds which depend on Δ (and k for k-SPoA). As
shown in Section 3, with the fair division of the cost we get a PoA of H(k)−1+ Δ

k
(k ≤ Δ). Here, we show that despite the quite important relaxation we consider
(choosing the tax function), the social cost cannot be lowered down since no cost
function can lead to a better k-SPoA.

Before giving lower bounds, we state a preliminary lemma (proof omitted).

Lemma 3. Suppose that there exist d ≥ 1, k ≥ s ≥ 1 and w > 0 such that
C(d, 0, d) > C(s, w, s). Then the k−SPoA of the set cover game is unbounded.

It follows that every non-increasing tax function inducing a bounded k−SPoA
satisfies C(d, 0, d) ≤ C(s, w, �) where 1 ≤ � ≤ s and w > 0. Now we are ready to
prove lower bounds.

Proposition 1. Under the tailored model, and for any k ∈ {1, · · · , Δ}, the k−
SPoA of the set cover game is at least H(k)− 1 + Δ

k .

On the Impact of Local Taxes in a Set Cover Game 11

Proof. Let k ∈ {1, · · · , Δ}. We consider an array of (Δ+1)× (Δ!) elements that
we arrange in Δ + 1 lines and Δ! columns. For q = 1, · · · , Δ!, a set Sq contains
the elements of column q from line 1 to line Δ. These sets are called vertical. For
l = 1, · · · , k − 1, line l is partitioned into (Δ!)/l sets of size l. For l = k, · · · , Δ,
line l is partitioned into (Δ!)/k sets of size k. Line Δ + 1 is partitioned into
(Δ!)/Δ sets of size Δ. These sets are called horizontal. Actually, we complete
each such horizontal set by adding (at random) elements from line Δ+1 in such
a way that each horizontal set has size Δ. Hence, for sets from line l < k we
add Δ− l elements, and for sets from line l, k ≤ l ≤ Δ, we add Δ− k elements.
Vertical sets have weight one, and horizontal sets of line between 1 and Δ have
weight one, horizontal sets of line Δ + 1 have weight 0.

Let us consider the state where every element of line Δ + 1 decides to be
covered by the horizontal set where it appears (of weight 0), while in the other
lines every element decides to be covered by the (unique) horizontal set where it
appears. Hence the cost incurred by an element of line l is C(Δ, 1, l) for l < k,
C(Δ, 1, k) for k ≤ l ≤ Δ, and C(Δ, 0, Δ) for l = Δ + 1. As a consequence of
Lemma 3, we can assume that the elements of a set of weight 0 choose this set. If
r ≤ k elements move to the same vertical set then at least one of them does not
benefit since the new cost is C(Δ, 1, r) while the lowest previous cost, thanks to
the fact that C is non increasing with �j(a), was at most C(Δ, 1, r). Then the
state is a k-strong equilibrium. The optimum solution (made of all vertical sets
plus the sets of weight 0) has weight Δ!, while the k-strong equilibrium we found
has weight

(∑k−1
l=1

Δ!
l

)
+ Δ!

k (Δ + 1− k) = Δ!
(
H(k)− 1 + Δ

k

)
. ��

For k = Δ (and more generally for k ≥ Δ) this gives H(Δ). For k = 1, it shows
that the PoA is at least Δ.

Let us consider now lower bounds in terms of n (and k for k−SPoA). The
instance given in Proposition 1 does not give a good lower bound since n is very
big (the lower bound is H(k) for k ≤ Δ but H(Δ) for k ≥ Δ, which is not good
since Δ is very small with respect to n). In the following proposition, we show
an almost tight lower bound of max

(
ln(n)

2 + O(1),
⌊

n+k
2k

⌋)
. Remember that the

upper bound is H(k) − 1 + n
k , which is of order of ln(n) if k ≥ n/ ln(n) (as the

lower bound) and of order of n/k if k ≤ n/ ln(n) (as the lower bound)1.
For k = 1, the lower bound is

⌊
n+1

2

⌋
≥ n

2 , which is quite close to the PoA of
0.66n obtained in Section 4.1.

Proposition 2. Under the tailored model, and for any k ∈ {1, · · · , Δ}, the k−
SPoA of the set cover game is at least max

{
ln(n)

2 + O(1),
⌊

n+k
2k

⌋}
.

Proof. Fix some n. To get the first lower bound, we adapt the instance given in
Proposition 1 by trying to reduce the number of elements. Let t be the largest
integer such that t2 ≤ n. We consider a square of t times t elements, and n− t2

extra elements. We consider t vertical sets (the columns of the square) of weight
1, and in line i

⌊
t
i

⌋
disjoint sets of size i. We add to these sets t− i elements (at

1 The largest ratio between these bounds is 4, when k is of order of n/ ln(n).

12 B. Escoffier, L. Gourvès, and J. Monnot

random) from line t. We group all the elements not covered by these horizontal
sets (including the n− t2 extra ones) in one set S of weight 0. All other sets have
weight 1. Note that all the sets (except possibly S) have size t.

We consider the solution where each player in set S chooses S, players in line
t choose the set which contains this line, and players in line from 1 to t−1 choose
the unique horizontal set to which they belong. By a similar reasoning, this is
a strong equilibrium, of value

∑t
i=1

⌊
t
i

⌋
. However

∑t
i=1

⌊
t
i

⌋
≥

∑t
i=1

(
t
i − 1

)
≥

t(H(t)− 1). The solution consisting of set S plus the vertical sets has weight t,
hence the ratio is at least H(t)− 1 = ln(n)

2 + O(1) (since
√

n ≥ t ≥
√

n− 1).
Now, we deal with the second lower bound. Fix n and k. Let λ =

⌊
n+k
2k

⌋
and p = λk. We consider the following instance, consisting of n players and
λ + 2 sets: S0 = {1, 2, · · · , p}, Sλ+1 = {p + 1, p + 2, · · · , n} and for i = 1, 2, · · · , λ
Si = {k(i−1)+1, k(i−1)+2, · · · , ik}∪{p+1, p+2, · · · , 2p−k}. Sλ+1 has weight
0 while all other sets have weight 1. Note that this construction is possible since
2p− k ≤ n. Indeed, p = λk ≤ n+k

2 .
Then the strategy profile where player (i − 1)k + j chooses Si for i ≤ λ and

j ≤ k, and player i chooses Sλ+1 for i ≥ p + 1 is a k-strong equilibrium. Indeed
since Sλ+1 has weight 0 players in Sλ+1 have no interest to change (as we said
in Lemma 3), and a coalition of r ≤ k players (between 1 and p) changing their
mind and choosing set S0 would pay the same amount C(p, 1, r) while their
current cost is C(p, 1, k) ≤ C(p, 1, r) since the cost is non increasing with �j(a).
The weight of this k-strong equilibrium is λ while the Set Cover consisting of
taking S0 and Sp+1 has weight 1. ��

4.3 Uniform Weights

In Section 4.2, the lower bounds are obtained with a set of weight 0. Then,
one can wonder whether these lower bounds still hold when the weight of any
set is fixed (for instance weight one). We show almost similar lower bounds for
this case (Propositions 3, 4 and 5). As a final result, the PoA drops to n/4 in
the uniform case (PoA= 0.66n in the tailored model and PoA= n in the fair
balanced model).

Proposition 3. Under the tailored model, and for any k ∈ [1..Δ], the k−SPoA
of the set cover game is at least H(k)−1+ Δ

k −
1
k + 1

Δ if weights are uniform.

For k = Δ (and more generally for k ≥ Δ) this gives H(Δ). For k = 1, the
bound is Δ− 1 + 1

Δ but the next Proposition gives a better bound of Δ.

Proposition 4. Under the tailored model, the PoA of the set cover game is
at least Δ if weights are uniform.

Finally, dealing with n, we can also get strong lower bounds for uniform weights.

Proposition 5. Under the tailored model, and for any k ∈ [1..Δ], the k-SPoA
of the set cover game is at least n

4k if weights are uniform.

On the Impact of Local Taxes in a Set Cover Game 13

It is also possible to get a lower bound of ln(n)/2 + O(1) for the SPoA when
weights are uniform.

Proposition 5 shows that the PoA is at least n/4 if weights are uniform. Here,
we prove that a cost function similar to the one studied in Subsection 4.1 reaches
this bound.

Proposition 6. When the local tax function is defined as 1
s2

ai
+�ai

(a) , and weights

are uniform, the PoA of the set cover game is at most n
4 + 1

2 + 1
4n .

5 Concluding Remarks

The goal was to reduce the price of anarchy with particular local tax functions.
However we did not consider converge issues. As a future work, we believe that
our results should be completed with a study of the converge time to an equi-
librium, depending on the tax function under consideration.

The model of local tax functions is fairly natural and captures several concrete
situations where a coordination mechanism is introduced in order to reduce the
social cost. Hence it should be fruitfully applied to other games (can it be applied
to Anshelevich et al.’s connection game?). On a theoretical viewpoint, this work
can also be seen as a way to understand to what extend relaxations of some
conditions of the model (budget balance here) may improve the global efficiency.
Hence the impact of other relaxations might also be investigated.

References

1. Koutsoupias, E., Papadimitriou, C.: Worst case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

2. Aumann, R.J.: Acceptable points in games of perfect information. Pacific Journal
of Mathematics 10, 381–417 (1960)

3. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games and
Economic Behavior 65, 289–317 (2009)

4. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Inter-
national Journal of Game Theory 2, 65–67 (1973)

5. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games and
Economic Behavior 21, 85–101 (1997)

6. Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in mono-
tone congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C.
(eds.) WINE 2006. LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)

7. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-
garden, T.: The price of stability for network design with fair cost allocation. In:
Proc. of FOCS 2004, pp. 295–304 (2004)

8. Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connec-
tion games. In: ACM Conference on Electronic Commerce, pp. 84–92 (2007)

9. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

10. Buchbinder, N., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative cost sharing
games via subsidies. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS,
vol. 4997, pp. 337–349. Springer, Heidelberg (2008)

Towards Network Games
with Social Preferences

Petr Kuznetsov and Stefan Schmid

TU Berlin / Deutsche Telekom Laboratories, D-10587 Berlin, Germany

Abstract. Many distributed systems can be modeled as network games:
a collection of selfish players that communicate in order to maximize
their individual utilities. The performance of such games can be evalu-
ated through the costs of the system equilibria: the system states in which
no player can increase her utility by unilaterally changing her behavior.
However, assuming that all players are selfish and in particular that all
players have the same utility function may not always be appropriate.
Hence, several extensions to incorporate also altruistic and malicious be-
havior in addition to selfishness have been proposed over the last years.
In this paper, we seek to go one step further and study arbitrary rela-
tionships between participants. In particular, we introduce the notion of
the social range matrix and explore the effects of the social range matrix
on the equilibria in a network game. In order to derive concrete results,
we propose a simplistic network creation game that captures the effect
of social relationships among players.

1 Introduction

Many distributed systems have an open clientele and can only be understood
when taking into account socio-economic aspects. A classic approach to gain
insights into these systems is to assume that all players are selfish and seek to
maximize their utility. Often, the simplifying assumption is made that all players
have the same utility function. However, distributed systems are often “socially
heterogeneous” whose participants run different clients and protocols, some of
which may be selfish while others may even try to harm the system. Moreover, in
a social network setting where members are not anonymous, some players may
be friends and dislike certain other players. Thus, the state and evolution of the
system depends on a plethora of different utility functions. Clearly, the more
complex and heterogeneous the behavior of the different network participants,
the more difficult it becomes to understand (or even predict) certain outcomes.

In this paper, we propose a more general approach to model the players’
utilities and introduce a social range matrix. This matrix specifies the perceived
costs that are taken into account by the players when choosing a strategy. For
example, a player who maliciously seeks to hamper the system performance has
a perceived cost that consists of the negative costs of the other players. On the
other hand, an altruistic player takes into account the costs of all other players

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 14–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Network Games with Social Preferences 15

and strives for a socially optimal outcome. There are many more player types
in-between that care about some players but dislike others.

In order to gain insights into the implications of different social ranges, we
consider a novel network creation game that captures the willingness of a group of
people to connect to each other. In this game, players do not incur infinite costs if
they are not connected to some players. Rather, the utility of a player is given by
the number of other players in her R-neighborhood, for some parameter R. For
instance, in a game with R = 1, players can only collaborate with and benefit
from their direct neighbors. Or imagine a peer-to-peer network like Gnutella
where files are searched by flooding up to a certain radius (e.g., a time-to-live of
R = TTL = 5), then a player is mainly interested in the data shared in her 5-
hop neighborhood. Our motivation in using this model stems from its simplicity
which allows to exemplify and quantify the effects of different social matrices.

1.1 Related Work

Over the last years, several models for distributed systems have been proposed
that go beyond purely selfish settings. For instance, security and robustness re-
lated issues of distributed systems have been an active field of research, and
malicious faults are studied intensively (e.g., [5,14]). To the best of our knowl-
edge, the first paper to study equilibria with a malicious player is by Karakostas
and Viglas [13] who consider a routing application where a single malicious player
uses his flow through the network in an effort to cause the maximum possible
damage. In order to evaluate the impact of such malicious behavior, a coordi-
nation ratio is introduced which compares the social costs of the worst Wardrop
equilibrium to the social costs of the best minimax saddle-point. In [9], imple-
mentation problems are investigated with k faulty players in the population, but
neither their number nor their identity is known. A planner’s objective then is
to design an equilibrium where the non-faulty players act according to her rules.
Or in [1], the authors describe an asynchronous state machine replication pro-
tocol which tolerates Byzantine, Altruistic, and Rational behavior. Moscibroda
et al. [17] discovered the existence of a so-called fear factor in the virus inocula-
tion game where the presence of malicious players can improve the social welfare
under certain circumstances. This windfall of malice has subsequently also been
studied in the interesting work by Babaioff et al. [4] on congestion games.

There exists other work on game theoretic systems in which not every partici-
pating agent acts in a rational or malicious way. In the Stackelberg theory [19], for
instance, the model consists of selfish players and players that are controlled by
a global leader. The leader’s goal is to devise a strategy that induces an optimal
or near optimal so-called Stackelberg equilibrium. Researchers have recently also
been interested in the effects of altruism that co-exists with selfishness [12,15].
For example, Meier et al. [15] have shown (for a specific game played on a so-
cial network) that friendship among players is always beneficial compared to
purely selfish environments, but that the gain from social ties does not grow
monotonically in the degree of friendship.

16 P. Kuznetsov and S. Schmid

In contrast to the literature discussed above, we go one step further and ini-
tiate the study of games where players can be embedded in arbitrary social con-
texts and be selfish towards certain players, be friends with some other players,
and even have enemies.

In particular, we apply our framework to a novel network creation game (for
similar games, see the connection games described in Chapter 19.2 of [18]). Net-
work creation has been a “hot topic” for several years. The seminal work by
Fabrikant et al. [10] in 2003 seeks to shed light on the Internet’s architecture as
built by economic agents, e.g., by Internet providers or autonomous systems. Re-
cent subsequent work on network creation in various settings includes [2,3,6,7,8].
Moscibroda et al. [16] considered network creation games for peer-to-peer sys-
tems. The game proposed in our paper here can be motivated by peer-to-peer
systems as well. However, in contrast to [16] where peers incur an infinite cost
if they are not all connected to each other, we believe that our model is more
appropriate for unstructured peer-to-peer systems.

The notion of interpersonal influence matrix, similar to our social range matri-
ces, is used in sociology for understanding the dynamics of interpersonal agree-
ment in a group of individuals (see, e.g., [11]).

1.2 Our Contributions

The main contribution of this paper is the introduction and initial study of the
social range matrix which allows us to describe arbitrary social relationships
between players. For instance, social range matrices can capture classic anarchy
scenarios where each player is selfish, monarchy scenarios where players only care
about one network entity, or coalitions that seek to support players within the
same coalition but act selfishly or maliciously towards other coalitions. Despite
this generality, we are able to derive interesting properties of such social matrices.
For instance, we show that there are matrix transformations that do not affect
the equilibria points (and the convergence behavior) of a game.

In addition, as a case study, we analyze a simplistic social network creation
game where players can decide to which other players they want to connect.
While a new connection comes at a certain cost, a player can also benefit from
her neighborhood. That is, we assume that the players’ utility is given by the
number of other players they are connected to up to a certain horizon, minus the
cost of the links they have to pay for. For example, this game can be motivated by
unstructured peer-to-peer systems where data is usually searched locally (in the
peers’ neighborhood) and overall connectivity is not necessarily needed. We focus
on this game due to its simplicity that allows us to study the main properties of
the social matrix and exemplify the concepts. For example, in a social context
where players can choose their neighbors, it is likely that players will connect to
those players who they are friends with. We will show that this intuition is correct
and that social relationships are indeed often reflected in the resulting network.
As another example, we show that the social welfare of monarchic societies can
be higher than that of anarchic societies if the price of establishing a connection
is relatively low; otherwise, the welfare is lower.

Towards Network Games with Social Preferences 17

Our new model and the network creation game open a large number of re-
search directions. We understand our work as a first step in exploring the effect
of social ranges on the performance of network games and use this paper to
report on our first insights.

1.3 Paper Organization

The rest of the paper is organized as follows. We describe our model and formally
introduce the social range matrix in Section 2. Section 3 presents our first insights
on the properties of a social range matrix. We then report on our case study
on social network formation (Section 4). The paper is concluded with a brief
discussion and an outlook on future research directions in Section 5.

2 Social Range Matrices and Perceived Equilibria

In this section, we introduce the concept of a game theory where players are
embedded in a social context; in particular, we define the social range matrix F
describing for each player i how much she cares about every other player j.

We consider a set Π of n players (or nodes), Π = {0, . . . , n − 1}. Let Xi be
the set of possible strategies player i can pursue in a given game G. A strategy
profile s ∈ X0 × . . . × Xn−1 specifies a configuration, i.e., s is the vector of the
strategies of all players.

The cost that actually arises at a player i in a given strategy profile s is de-
scribed by its actual cost function ca(i, s). However, depending on the social con-
text a player is situated in, it may experience a different perceived cost cp(i, s):
While a purely selfish player may be happy with a certain situation, another
player that cares about the actual costs of her friends may have a higher per-
ceived cost and may want to change her strategy to a socially better one. (Note,
however, that the distinction between “purely selfish players” and players that
take into account the utility or cost of other players is artificial: Players whose
action depends on other players’ utilities can be considered “purely selfish” as
well, and simply have a different cost function.)

Formally, we model the perceived costs of a given player as a linear combi-
nation of the actual costs of all other players in the game. The social range of
player i is a vector fi = (fi0, ..., fi(n−1)) ∈ Rn. Intuitively, fij quantifies how
much player i cares about player j, in both a positive (if fij > 0) and a negative
way (fij < 0). fij = 0 means that i does not care about j. The social ranges of
all the players constitute the social range matrix F = {fij} of the game. We will
later see (Lemma 1) that it is sufficient to focus on normalized matrices where
∀i, j : −1 ≤ fij ≤ 1 (rather than fij ∈ R).

The perceived cost of player i in a strategy profile s is thus calculated as:

cp(i, s) =
∑

j

fijca(j, s).

In other words, the perceived cost of player i increases with the aggregate costs
of i’s friends (players j with fij > 0) and decreases with the aggregate costs of

18 P. Kuznetsov and S. Schmid

i’s enemies (players j with fij < 0). Note that we allow a player i to value other
players’ costs more than her own cost, i.e., fii can be smaller than some |fij |,
i 	= j. This captures the effect of sacrificing one’s own interests for the sake (or
for the harm) of others.

Henceforth, a social matrix F with all 1’s (resp., all −1’s, except for fii)
is called altruistic (resp., malicious). Generally, a social matrix with a lot of
zero or negligibly small elements describes a system with weak social ties. Some
interesting social range matrices F are:

1. If F is the identity matrix, we are in the realm of classic game theory where
each player is selfish.

2. A completely altruistic scenario is described by a social matrix F consisting
of 1s only, i.e., fij = 1 (∀i, j). Alternatively, we can also define an altruistic
player that considers her own costs only to a small extent (fii = ε, for some
arbitrarily small ε > 0).

3. In a situation where ∃k such that ∀i, j: fij = 0 except for fik = 1, the
players only care about a single individual. We will refer to this situation as
a monarchy scenario. (Sometimes it makes sense to assume that players are
at least a bit self-interested and ∀i: fii = ε for an arbitrarily small positive
ε.)

4. If ∃k such that ∀i, j: fij = 0 except for fkj = 1 (and maybe fkk = ε), there
is one benevolent player that seeks to maximize the utility of all players.

5. If ∃k such that for all players i: fii = 1 and otherwise 0, and fki = −1, we
have a selfish scenario with one malicious player k that seeks to minimize
the utility of all the players. (Alternatively, we can also postulate that for a
malicious player k, fkk = 1.)

6. If ∃j, k such that ∀i: fji = fki, then we say that players j and k collude:
their incentives to deviate from a given strategy profile are identical. (We
will show in Lemma 1 that j and k collude even if ∃λ > 0: ∀i, fji = λfki.)

There are special player types to consider, e.g.:

Definition 1 (Ignorant and Ignored Players). A player i is called ignorant
if fij = 0 ∀j; the perceived cost of an ignorant player i does not depend on the
actual costs. Now suppose that F contains a zero column: fji = 0, ∀j. In this
case, no player cares about i’s actual cost, and we call i ignored.

In game theory, (pure) Nash equilibria are an important solution concept to
evaluate the outcomes of games. A Nash equilibrium is defined as a situation
where no player can unilaterally reduce her cost by choosing another strategy
given the other players’ strategies. In our setting, where the happiness of a given
player depends on her perceived costs, the equilibrium concept also needs to
be expressed in terms of perceived costs. We formally define the perceived Nash
equilibrium (PNE) as follows.

Definition 2 (Perceived Nash Equilibrium). A strategy profile s is a per-
ceived Nash equilibrium if for every s′ that differs from s in exactly one position
i, we have cp(i, s′) ≥ cp(i, s).

Towards Network Games with Social Preferences 19

In order to evaluate the system performance, we study the social cost of an
equilibrium. Note that the social cost is defined with respect to actual costs: the
social cost of a strategy profile s is defined as Cost(s) =

∑
j ca(j, s). A strategy

profile s is a social optimum if ∀s′: Cost(s′) ≥ Cost(s).
For a given game G and a social matrix F , consider the ratio between the

actual cost of the worst perceived Nash equilibrium and the cost of the social
optimum. Comparing this ratio with the price of anarchy (the ratio computed
with respect to actual Nash equilibria), we obtain the “effect of socialization”
that captures the benefits or disadvantages that social relations contribute to
the outcome of the game. Below we fix a game G, and give some basic properties
following immediately from the definitions.

3 Basic Properties of Social Range Matrices

We start our analysis by examining properties of the social range matrix. First,
observe that F is invariant to row scaling.

Lemma 1. Let F be a social matrix, and let λ > 0 be an arbitrary factor. Let
F ′ be a social matrix obtained from F by multiplying a row of F by λ. Then
s is a perceived Nash equilibrium w.r.t. F if and only if s is a perceived Nash
equilibrium with F ′.

Proof. Let i be the player whose row is scaled. Since player i’s actual costs are
not affected by multiplying fi· by λ, the perceived costs of all other players j 	= i
remain the same and hence, they still play their equilibrium strategy under F ′.
However, also player i will stick to her strategy in F ′:

cp(i, s) =
∑

j

λfijca(j, s) ≤ cp(i, s′) =
∑

j

λfijca(j, s′)

since we know that in F , cp(i, s) =
∑

j fijca(j, s) ≤ cp(i, s′) =
∑

j fijca(j, s′) for
all s′ that differ from s in i’s strategy. ��

In particular, Lemma 1 implies that we can normalize a social matrix F by f ′
ij =

fij/ max�,k |f�k|.1 Therefore, in the following, we assume normalized matrices F
for which fij ∈ [−1, 1], ∀i, j ∈ {0, . . . , n− 1}.

Lemma 2. If fij = 1 ∀i, j, then every social optimum is a perceived Nash
equilibrium. If fij = −1 ∀i, j, then every social minimum is a perceived Nash
equilibrium.

Proof. The proof is simple. By the definition of a social optimum s,
∑

i ca(i, s) is
minimal, i.e., �s′ with

∑
i ca(i, s′) <

∑
i ca(i, s). Thus, s is also an equilibrium if

fij = 1 ∀i, j, as �s′ for a given player j with cp(j, s′) =
∑

i ca(i, s′) < cp(j, s) =∑
i ca(i, s).

1 Here we assume max�,k |f�k| > 0; otherwise, every strategy is a perceived Nash
equilibrium and the price of socialization is the worst possible.

20 P. Kuznetsov and S. Schmid

Similarly for the minimum maximizing
∑

i ca(i, s) (�s′ with
∑

i ca(i, s′) >∑
i ca(i, s)). Profile s is also a perceived equilibrium for fij = −1 ∀i, j, as �s′

for a given player j with cp(j, s′) =
∑

i ca(i, s′) > cp(j, s) =
∑

i ca(i, s). ��

Note however that the opposite direction is not true: there may be games with
equilibria which are not optimal, even if all players are altruistic, namely if the
game exhibits local optima.

Another special case that allows for general statements are ignorant and ig-
nored players (see Definition 1). Note that neither ignorant nor ignored players
can benefit from their unilateral actions: their perceived cost functions do not
depend on their strategies. Moreover, no player’s perceived cost depends on the
actions of an ignored player. If s is a perceived equilibrium, then any strategy
s′ that differs from s only in position i, where i is an ignored player, is also
a perceived equilibrium. In other words, it is sufficient to determine the set of
equilibria PNE′ with respect to the strategies of non-ignored players Π ′.

Existing literature also provides interesting results on the properties and im-
plications of certain types of social matrices. For instance, from the work by
Babaioff et al. [4]—and even earlier, from the work by Karakostas and Vi-
glas [13]!—we know that there are games where the presence of players who
draw utility from the disutility of others, can lead to an increase of the social
welfare; this however only holds for certain game classes that are characterized
by some form of a generalized Braess paradox. Or from the work by Meier et
al. [15], it follows that in a virus inoculation game where the social range matrix
depends on the adjacency metrics of the social network, a society can only ben-
efit from friendship (positive entries in the social range matrix), although not
always in a monotonic manner.

Thus, in specific game classes, some “corner case” phenomena may be ob-
served for certain types of social matrices. In order to focus on the principal
properties of the social range, in the following we concentrate on our network
creation game. It turns out that in games where choosing the neighbors can be
a part of a player’s strategy, there is a strong correlation between the social ties
and the resulting network topology.

4 Case Study: Network Creation

In this section, we give a formal definition of our network creation game and
investigate the implications of different social ranges on the formed topologies.

4.1 A Network Creation Game

As a use-case for employing our game-theoretic framework, we propose a novel
simple network creation game where a node (or player) i can decide to which
other nodes j she wants to connect in an undirected graph. Establishing a con-
nection {i, j} (or edge) entails a certain cost; we will assume that connections
are undirected, and that one end has to pay for it. On the other hand, a player
benefits from positive network externalities if it is connected to other players

Towards Network Games with Social Preferences 21

(possibly in a multi-hop fashion). We assume that the gain or cost of a player
depends on the number of players in her R-hop neighborhood, for some pa-
rameter R ≥ 0. For instance, a network creation game with R = 1 describes a
situation where players can only benefit from (or collaborate with) their direct
neighbors. As motivation for larger radii, imagine an unstructured peer-to-peer
network where searching is done by flooding up to radius R, and where the num-
ber of files that can be found increases monotonically in the number of players
reached inside this radius.

Formally, the actual cost of player i is given by:

ca(i, s) = α · si − g(
R∑

j=1

|Γ j(i, s)|)

where parameter α ≥ 0 denotes the cost per connection, si is the number of
connections player i pays for, and |Γ j(i, s)| specifies to how many nodes node i
is connected with shortest hop-distance j in a graph incurred by strategy profile
s. Moreover, g : Nn → R is a function that specifies the utility of being in
a connected group of a given size (here Nn = {0, . . . , n − 1}). For example,
g(x) = x denotes that the utility grows linearly with the number of nodes within
the given radius; a super-linear utility such as g(x) = x2 may be meaningful
in situations where the networking effects grow faster, and a sub-linear utility
g(x) =

√
x means that marginal utility of additional players declines with the

size. By convention, we assume that g(0) = 0.
Finally, note that multiple strategy profiles (and hence perceived Nash equi-

libria) can describe the same network topology where the links are payed by
different endpoints. Henceforth, for simplicity, we will sometimes say that a
given topology constitutes (or is) a social optimum or an equilibrium if the cor-
responding profiles are irrelevant for the statement, are clear from the context,
or if it holds for any strategy describing this network.

Given two network topologies of the same perceived costs but where one
topology has some additional edges that need to be paid by a given player, this
player is likely to prefer the other topology. That is, it often makes sense to
assume that a player does not completely ignore the own actual cost, that is,
∀i : fii = ε for an arbitrarily small ε > 0.

4.2 Social Optimum and Anarchy

First we describe the properties of the general network creation game in which
players behave in a selfish manner. Social optima are characterized in the fol-
lowing lemma. It turns out that cliques and trees are the most efficient networks
in our game.

Lemma 3. Consider the network creation game where ∀x ∈ Nn−1, g(x + 1) −
g(x) > α/2. Then in the case R = 1, the only social optimum is the clique, and in
the case R > 1, every social optimum is a tree of diameter at most min(R, n−1).

Proof. Let s be any strategy profile. We say that an edge in s is redundant if in
the strategy profile s′ derived from s by dropping this edge, the R-neighborhood

22 P. Kuznetsov and S. Schmid

of all nodes remains the same. Every non-redundant edge connecting a player
with degree x to a player with degree y decreases the social cost by at least
g(x + 1) − g(x) + g(y + 1) − g(y) − α > 0. Naturally, every social optimum
s will not have redundant edges. In the case R = 1, the clique has the most
non-redundant edges, and thus is the only topology resulting from the social
optimum.

In the case R > 1, suppose that the network described by s is not connected
and does not contain redundant edges. Then every edge connecting the compo-
nents of the graph decreases the social cost by a positive value. Hence, we can
assume that the socially optimal topology is connected.

Now suppose that the network has diameter R′ > R. Consider two nodes i
and j such that j is at distance R′ from i. Then adding an edge connecting i and
j increases the R-neighborhood of each player by at least 1 and thus decreases
the social cost. Therefore, the diameter of the social optimum topology is at
most min(R, n− 1).

Finally, since over all connected graphs, trees have the least number of edges
and hence the cost is minimized, every social optimum results in a tree. ��

In a selfish setting, players are less likely to connect to each other. Indeed, even
for relatively small α, nodes remain isolated, resulting in a poor welfare.

Lemma 4. In the network creation game, the set of isolated nodes is a Nash
equilibrium if and only if ∀x ∈ Nn, g(x) ≤ xα.

Proof. Consider the strategy profile with no edges: ∀j : sj = 0. If ∀x ∈ Nn,
g(x) ≤ xα, then unilaterally adding x edges may only increase the individual
(actual) cost by at least αx − g(x), so no node has an incentive to deviate. On
the other hand, if ∃x ∈ Nn, g(x) > xα, then every player has an incentive to add
at least x edges, and thus the “isolated” strategy cannot be an equilibrium. ��

Lemmas 3 and 4 imply that in the case 1 < α < 2, the cost of the social optimum
in the linear network creation game (when g(x) = x) is n(n − 1)(α/2 − 1) for
R = 1 and (n−1)(α−2) for R > 1, while the cost of the worst Nash equilibrium
is 0, i.e., selfishness may bring the system to a highly suboptimal state.

Below we describe the conditions under which certain topologies, like cliques
and trees of bounded diameter, constitute Nash equilibria of the network creation
game.

Lemma 5. In the network creation game where R = 1, ∀x ∈ N�n/2�, such that
∀y ∈ Nn−x: g(2x) − g(x + y) ≥ α(x − y), every 2x-regular graph constitutes a
Nash equilibrium.

Proof. Consider the strategy in which every player establishes x outgoing links
so that the resulting topology is 2x-regular. Unilaterally establishing y (non-
redundant) links instead of x (for any y ∈ Nn−x), a player pays the cost αy −
g(x + y) ≥ αx − g(2x), so no player has an incentive to deviate. ��

In the linear case with R = 1 and α < 1, Lemma 5 implies that the clique is the
only regular graph that results from an equilibrium: the only x that satisfies the

Towards Network Games with Social Preferences 23

condition is �n/2�. But in general, the resulting network may consist of up to
�n/2x� disconnected cliques of 2x players each.

Lemma 6. In the network creation game with R > 1, where g is a monotonically
increasing function on Nn such that α < g(n−1), every tree of diameter at most
min(R, n− 1) corresponds to a Nash equilibrium.

Proof. Consider the strategy in which every node but one maintains one edge so
that the resulting graph is a tree of diameter at least min(R, n− 1). Therefore,
n− 1 players have the cost α− g(n− 1) and one player has the cost −g(n− 1).
Every extra edge would be redundant, and dropping edges increases the cost by
at least g(n− 1)− g(n). Thus, no player has an incentive to deviate. ��
Having described the classic setting with selfish players, we are ready to tackle
social contexts.

4.3 Social Equilibria

We now turn our attention to more general matrices F , where player pairs i
and j are embedded in a social context. For simplicity, we focus on values fij ∈
{−1, 0, ε, 1} where fij = −1 signifies that player i does not get along well with
player j, fij = 0 signifies a neutral relation, and fij = 1 signifies friendship. We
will sometimes assume that players care at least a little bit about their own cost,
i.e., ∀i : fii = ε for some arbitrarily small positive ε. (This also implies that a
player will not pay for a link which is already paid for by some other player.) We
make two additional simplifications: we have investigated the network creation
game where players can only profit from their direct neighbors (i.e., R = 1) in
more detail, and assume a linear scenario where the utility of being connected
to other players grows linearly in the number of contacts, that is, the marginal
utility of connecting to an additional player is constant: we assume that g(x) = x.

Clearly, in this scenario, the cost cp(i, s) (and also ca(i, s)) of a player i in a
strategy profile s is independent of connections that are not incident to i. In this
case, it holds that any social matrix F has a (pure) perceived equilibrium.

Lemma 7. In the linear network creation game with R = 1, any social range
matrix F has at least one pure perceived Nash equilibrium, for any α.

Proof. Recall that in the R = 1 case, a player i can only benefit from her
neighbors, that is, from a connection {i, j} that either i or the corresponding
neighbor j paid for. Player i will pay for the connection to player j if and
only if the gain from this link is larger than the link cost α. We have that by
establishing a new connection from player i to player j, the cost changes by
Δ cp(i) = fii · (α− 1)−fij ·1. If this cost is not larger than zero, it is worthwhile
for player i to connect; otherwise it is not. On the other hand, player j will
pay for a connection to player i iff Δ cp(j) = fjj · (α− 1) − fji · 1 ≥ 0. As
the decision of whether to connect to a given player or not does not depend
on other connections, and as links cannot be canceled unilaterally, the resulting
equilibrium network is unique assuming that the players will not change to a
strategy of equal cost. ��

24 P. Kuznetsov and S. Schmid

Observe that the equilibrium topology found in Lemma 7 is only unique if the
cost inequalities Δ cp are strict. Moreover, a given equilibrium topology can
result from different strategy profiles, namely if there are connections where
both players have an incentive to pay for the connection to each other.

Intuitively, we would expect that the network formed by the players reflects
the social context the players are embedded in. This can be exemplified in several
ways. The following lemma shows that for the case of binary social matrices, there
are situations where the social matrix translates directly into an equilibrium
adjacency matrix.

Lemma 8. In the linear network creation game with R = 1, assume a binary
social matrix F where ∀i, j : fij ∈ {0, 1} and where each player is aware of her
own cost, i.e., ∀i : fii > 0. Then, for 1 < α < 2, there is an equilibrium topology
that can be described by the adjacency matrix F ′ derived from F in the following
manner: (1) ∀i : f ′

ii = 0 and (2) if fij = 1 for some i, j, then f ′
ij = 1 and

f ′
ji = 1.

Proof. The claim follows from the simple observation that for 1 < α < 2, a
player i is willing to pay for a connection to a player j if and only if fij = 1, as
the cost difference is given by Δ cp(i) = α − fii − fij : If fij = 0, player i only
connects if α ≤ 1, and if fij = 1, it is worthwhile to pay for the connection as
long as α ≤ 2. Therefore, as long as 1 < α < 2, one endpoint will pay for the
link {i, j} (and thus: f ′

ij = 1 and f ′
ij = 1) if fij = 1 or fji = 1. Clearly, it also

holds that there are no loops (∀i : f ′
ii = 0). ��

Note that the condition that each player cares about her own cost is necessary
for Lemma 8 to hold; otherwise, if fii = 0, a player could trivially connect to
all players as this does not entail any connection costs. In this case, the social
matrix still describes a valid equilibrium adjacency matrix, however, there are
many other equilibria with additional edges.

4.4 Use Case: Anarchy vs. Monarchy

A natural question to investigate in the context of social ranges is the relationship
between a completely selfish society (in game theory also known as an anarchy)
and a society with an outstanding individual that unilaterally determines the
cost of the players (henceforth referred to as a monarchy); as already mentioned,
we assume that the players always care a little bit about their own actual costs,
and hence in the monarchy, let ∀i : fii = ε for some arbitrarily small ε > 0, and
let ∀i : fij = 1 where player j is the monarch (we assume fji = 0 for all i 	= j).

Interestingly, while there are situations where a monarchy yields a higher
social welfare, the opposite is also true as there are settings that are better for
anarchies. The following result characterizes social optima, and Nash equilibria
for anarchy and monarchy settings.

Lemma 9. In the linear network creation game with R = 1, the social optimum
cost is (α/2 − 1)n(n− 1) if α < 2 and 0 otherwise, and the anarchy has social
cost (α/2− 1)n(n− 1) if α ≤ 1 and 0 otherwise. For the monarchy, there can be

Towards Network Games with Social Preferences 25

multiple equilibria (of the same cost): for any α, there is always an equilibrium
with cost (α − 2)(n − 1); moreover, if α ≤ 1 there is an additional equilibrium
with the same cost.

Proof. We consider the social optimum, the anarchy and the monarchy in turn.
Social optimum: If α ≤ 2, then Lemma 3 implies that any social optimum implies
the clique, with the cost (α/2− 1)n(n− 1). If α > 2, then every non-redundant
link increases the social cost by α− 2 and thus the set of isolated nodes has the
minimal cost, 0.

Observe that the social cost is given by the total number of edges k in the
network: k edges yield a connection cost of k · α, and the players are connected
to 2k other players, thus Cost(s) = k · α − 2k. Using Lemma 3, for the social
optimum we have:

min
s

Cost(s) = min
k

k ·α−2k =

{
(α/2− 1)n(n− 1) , if α ≤ 2 (clique)
0 , otherwise (disconnected).

Anarchy: In a purely selfish setting, a player connects to another player if and
only if α ≤ 1. By Lemmas 3 and 4, if α ≤ 1, then the resulting equilibrium
topology is the clique and the cost is thus (α/2− 1)n(n− 1), and if α < 1, then
the resulting topology is the set of isolated nodes and the cost is 0.

Cost(Nash equilibrium) =

{
(α/2− 1)n(n− 1) , if α ≤ 1 (clique)
0 , otherwise (disconnected).

Monarchy: Let j denote the monarch and let i 	= j denote any other player. Since
the marginal utility of an additional neighbor of j is one while the connection
cost is arbitrarily small (αε), a player i will always connect (i.e., pay for the
connection) to the monarch. On the other hand, the monarch will connect to a
player if and only if α ≤ 1. The social cost of the network equilibrium is therefore
always (α− 2)(n− 1) (up to the arbitrarily small ε components in the cost), for
any α. ��

Using Lemma 9, we can compare the efficiency of the different social settings. For
relatively low connection costs, a setting with a monarch gives stronger incentives
for nodes to connect, and thus socially more preferable outcomes emerge. On the
other hand, for high connection costs, due to the selfless behavior of the players
ignoring their own connection prices, an anarchy is preferable. As a concrete
example, according to Lemma 9, for α = 3/2, the equilibrium network of the
monarchic society is a star of utility (n− 1)/2 while in the anarchy nobody will
connect, yielding a utility of zero. On the other hand, for α = 3, the anarchy
again has zero utility, while in the monarchy, players still connect which results
in a negative overall utility of −(n− 1). Thus, the following lemma holds.

Lemma 10. There are situations where the social welfare of anarchy is higher
than the welfare in a monarchy, and vice versa.

26 P. Kuznetsov and S. Schmid

4.5 Windfall of Friendship and Price of Ill-Will

An interesting property of our network creation game is that more friendship
relations cannot worsen an equilibrium.

Lemma 11. Consider a social range matrix F where ∀i, j : fij ∈ {0, 1} and
fii = 1. Let F ′ be a social range matrix derived from F where a non-empty
set N of 0-entries in F are flipped to 1. Then, for any equilibrium strategy
sF with respect to a social matrix F , there is an equilibrium strategy sF ′

with
Cost(sF ′

) ≤ Cost(sF).

Proof. We prove the claim by showing that for any equilibrium strategy sF for F ,
there is an equilibrium strategy sF ′

for F ′ that has at least as many connections
as sF . Moreover, it holds that an equilibrium with more connections always
implies a higher social welfare.

First, recall from Lemma 7 that an equilibrium sF always exists. Now fix such
an equilibrium sF from which we will construct the equilibrium sF ′

. If i and j
are connected in sF , then they are still connected in sF ′

: as R = 1, whether or
not a connection {i, j} between two players i and j is established depends on
the actual costs ca(i, ·) and ca(j, ·) only. If two players i and j are not connected
in sF , they have an incentive to connect in sF ′

if f ′
ij = 1 and α ≤ 2. Thus, sF ′

contains a superset of the connections in sF . Now let k be the number of edges in
a given profile s. The social cost is then given by Cost(s) = kα− 2k. For α ≤ 2,
this function is monotonically decreasing, which implies the claim. On the other
hand, for α > 2, the set of isolated nodes constitutes the only equilibrium. ��

Lemma 11 implies that the best equilibrium with respect to F ′ cannot be worse
than the best equilibrium with respect to F . On the other hand, it is easy
to see that a similar claim also holds for the worst equilibrium: Consider the
equilibrium sF ′

with the fewest connections k′. Then, there is an equilibrium sF

with k ≤ k′ edges: either sF = sF ′
, or some edges can be removed. We have the

following claim.

Corollary 1. Consider a social range matrix F where ∀i, j : fij ∈ {0, 1} and
fii = 1. Let F ′ be a social range matrix that is derived from F by flipping one
or several 0 entries to 1. Let sF

w and sF
b be the worst and the best equilibrium

profile w.r.t. F , and let sF ′
w and sF ′

b be the worst and best equilibrium profile
w.r.t. F ′ (maybe sF

w = sF
b and/or sF ′

w = sF ′
b). It holds that Cost(sF

w) ≥ Cost(sF ′
w)

and Cost(sF
b) ≥ Cost(sF ′

b).

A analogous result can be obtained for settings where players dislike each other.

Lemma 12. Consider a social range matrix F where ∀i, j : fij ∈ {−1, 0} and
fii = 1. Let F ′ be a social range matrix derived from F where a non-empty set N
of 0-entries in F are flipped to −1s., where |N | ≥ 1. Then, for any equilibrium
strategy sF with respect to a social matrix F , there is an equilibrium strategy sF ′

with Cost(sF) ≤ Cost(sF ′
).

Towards Network Games with Social Preferences 27

Proof. First recall from the proof of Lemma 11 that the social welfare increases
with the total number of connections given that ∀i : fii = 1, and that it follows
from Lemma 7 that an equilibrium sF always exists. Fix an equilibrium sF to
construct the equilibrium sF ′

. Similarly to the arguments used in the proof of
Lemma 11, if i and j are not connected in sF , then they are disconnected in sF ′

as well. On the other hand, if player i pays for the connection to player j in sF ,
she has an incentive to disconnect in sF ′

if f ′
ij = −1 and for any non-negative

α. Thus, sF contains a superset of the connections in sF ′
. ��

5 Conclusions and Open Questions

We understand our work as a further step in the endeavor to shed light onto the
socio-economic phenomena of today’s distributed systems which typically consist
of a highly heterogeneous population. In particular, this paper has initiated the
study of economic games with more complex forms of social relationships. We
introduced the concept of social range matrices and studied their properties.
Moreover, we have proved the intuition right (under certain circumstances) that
in our novel network creation game, the social relationships are reflected in the
network topology.

This paper reported only on a small subset of the large number of questions
opened by our model, and we believe that there remain many exciting directions
for future research. For instance, it is interesting to study which conditions are
necessary and sufficient for counter-intuitive phenomena such as the fear factor
and the windfall of malice [4,17], or the non-monotonous relationship between
welfare and friendship in social networks [15]. Another open question is the
characterization of all topologies that correspond to a Nash equilibrium.

References

1. Aiyer, A., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: BAR Fault
Tolerance for Cooperative Services. In: Proc. 20th ACM Symposium on Operating
Systems Principles (SOSP), pp. 45–58 (2005)

2. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash Equilib-
ria for a Network Creation Game. In: Proc. 17th ACM Symposium on Discrete
Algorithms, SODA (2006)

3. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The Price of Stability for Network Design with Fair Cost Allocation. In: Proc.
45th Symposium on Foundations of Computer Science (FOCS), pp. 295–304 (2004)

4. Babaioff, M., Kleinberg, R., Papadimitriou, C.: Congestion Games with Malicious
Players. In: Proc. ACM Conference on Electronic Commerce (EC), San Diego, CA,
USA (2007)

5. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: Proc. 3rd Sym-
posium on Operating Systems Design and Implementation (OSDI), pp. 173–186
(1999)

6. Chen, H.-L., Roughgarden, T.: Network Design with Weighted Players. In: Proc.
18th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 29–
38 (2006)

28 P. Kuznetsov and S. Schmid

7. Corbo, J., Parkes, D.C.: The Price of Selfish Behavior in Bilateral Network For-
mation. In: Proc. 24th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 99–107 (2005)

8. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Zadimoghaddam, M.: The Price
of Anarchy in Network Creation Games. In: Proc. 26th Annual Symposium on
Principles of Distributed Computing (PODC) (2007)

9. Eliaz, K.: Fault Tolerant Implementation. Review of Economic Studies 69, 589–610
(2002)

10. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a Net-
work Creation Game. In: Proc. 22nd ACM Symposium on Principles of Distributed
Computing (PODC), pp. 347–351 (2003)

11. Friedkin, N.E., Johnsen, E.C.: Social Influence Networks and Opinion Change.
Advances in Group Processes 16 (1999)

12. Hoefer, M., Skopalik, A.: Altruism in Atomic Congestion Games. In: Proc. Euro-
pean Symposium on Algorithms (ESA) (2009)

13. Karakostas, G., Viglas, A.: Equilibria for Networks with Malicious Users. Mathe-
matical Programming A 110(3), 591–613 (2007)

14. Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robinson, L., Alvisi, L., Dahlin,
M.: FlightPath: Obedience vs Choice in Cooperative Services. In: Proc. Symposium
on Operating Systems Design and Implementation, OSDI (2008)

15. Meier, D., Oswald, Y.A., Schmid, S., Wattenhofer, R.: On the Windfall of Friend-
ship: Inoculation Strategies on Social Networks. In: Proc. 9th ACM Conference on
Electronic Commerce (EC) (2008)

16. Moscibroda, T., Schmid, S., Wattenhofer, R.: On the Topologies Formed by Selfish
Peers. In: Proc. 25th Annual Symposium on Principles of Distributed Computing,
PODC (2006)

17. Moscibroda, T., Schmid, S., Wattenhofer, R.: When Selfish Meets Evil: Byzan-
tine Players in a Virus Inoculation Game. In: Proc. 25th Annual Symposium on
Principles of Distributed Computing (PODC) (2006)

18. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

19. Roughgarden, T.: Stackelberg Scheduling Strategies. In: Proc. 33rd ACM Sympo-
sium on Theory of Computing (STOC), pp. 104–113 (2001)

Distributed Weighted Stable Marriage Problem

Nir Amira, Ran Giladi, and Zvi Lotker

Department of Communication Systems Engineering
Ben-Gurion University Beer-Sheva 84105 Israel

{niramir,ran,zvilo}@bgu.ac.il

Abstract. The Stable Matching problem was introduced by Gale and
Shapley in 1962. The input for the stable matching problem is a complete
bipartite Kn,n graph together with a ranking for each node. Its output
is a matching that does not contain a blocking pair, where a blocking
pair is a pair of elements that are not matched together but rank each
other higher than they rank their current mates. In this work we study
the Distributed Weighted Stable Matching problem. The input to the
Weighted Stable Matching problem is a complete bipartite Kn,n graph
and a weight function W . The ranking of each node is determined by W ,
i.e. node v prefers node u1 over node u2 if W ((v, u1)) > W ((v, u2)). Using
this ranking we can solve the original Stable Matching problem. We con-
sider two different communication models: the billboard model and the
full distributed model. In the billboard model, we assume that there is a
public billboard and each participant can write one message on it in each
time step. In the distributed model, we assume that each node can send
O(log n) bits on each edge of the Kn,n. In the billboard model we prove
a somewhat surprising tight bound: any algorithm that solves the Stable
Matching problem requires at least n − 1 rounds. We provide an algo-
rithm that meets this bound. In the distributed communication model we
provide an algorithm named intermediation agencies algorithm, in short
(IAA), that solves the Distributed Weighted Stable Marriage problem
in O(

√
n) rounds. This is the first sub-linear distributed algorithm that

solves some subcase of the general Stable Marriage problem.

Keywords: Stable Marriage, Distributed Algorithms, Matching, Bill-
board, Scheduling.

1 Introduction

The Stable Marriage (or Stable Matching) problem was first introduced by Gale
and Shapley in [1]. In general, stable marriage is a matching criterion on a
complete bipartite graph G(V = In

⋃
Out, E) = Kn,n, where In and Out are

the two sides of the bipartite graph G and E = {(i, j) : i ∈ In, j ∈ Out}. The two
sides can take the role of Boys&Girls, Hospitals&Students, Input ports&Output
ports, and more. Each node v ∈ In has a ranking for the Out nodes and each
node u ∈ Out has a ranking for the In nodes. The goal is to find a stable match
between the In and Out nodes using the preferences of all nodes. We say that a

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 29–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 N. Amira, R. Giladi, and Z. Lotker

stable match is a match that does not include blocking pairs, where a blocking
pair is a pair of elements that are not matched together but rank each other
higher than they rank their current mates. This situation leads to a possible
betrayal, where such an element in the match will have reason to change the
match. It should be noted that there could be many stable matches for a specific
problem, some prioritizing one side’s preferences over the other’s, while some are
more balanced (or ”fair”).

There is extensive research on stable marriage algorithms, covering combina-
torial as well as other methods, distributed and centralized algorithms, fairness
and performance considerations, etc. Gusfield and Irving in [2] present a large
number of variants on the original problem, and the known algorithms for them.
A fair solution using genetic algorithms for the Stable Marriage problem was
offered in [3]. Distributed Stable Matching problems with ties and incomplete
lists were suggested by Brito Meseguer [4]. An iterative parallel approach was
discussed in [5], suggesting an improved algorithm in terms of speeding up the
convergence process. Feder et al. [6] present a PRAM algorithm based on linear
programming methods that find a stable matching in O∗(

√
m) time by a poly-

nomial number of processors, where m is the total length of preference lists of
individuals. Kipnis and Patt-shamir in [7] analyzed the distributed complexity
of the Stable Marriage problem. They prove a lower bound of Ω(

√
n/B log n)

when B is the number of bits per message, and provide an algorithm that solves
the distributed stable marriage in O(D + |E|) when D is the graph diameter.
Use of Stable Marriage algorithms in network devices was suggested by Chuang
et al. [8], for a CIOQ switch with a speed-up of 2, and they proved that this
kind of implementation works like an OQ switch (which is optimal).

The motivation of the current paper is derived from [7] and [8]. In order to
reach a better understanding we study the following simpler case of the general
Stable Marriage problem. We assume that each edge e ∈ E has a weight W (e)
and that both sides want to maximize their weights. This problem variant is
suitable when both sides want to cooperate. We call this problem the Weighted
Stable Marriage Problem, or WSM . One application of this model is load bal-
ancing in a VOQ switch. A Virtual Output Queues switch (VOQ switch) is
a network element with input and output ports. Each input port maintains a
separate queue for each output port. The queues store the incoming data cells
until the cells are transferred to the output ports. The decision of which cell to
transfer in each phase is made by a scheduling algorithm. The interested reader
can see [9, 10] for more details. The In side in G is the input ports of the VOQ
switch and the Out side is the output ports. The edge weights are determined
by the number of packets in each queue in the input ports that destined to each
output port. We believe that the use of a WSM -based algorithm as a schedul-
ing algorithm can achieve better results than the current highest level schedulers
such as iSlip [9].

Our results. There is a big gap in our understanding of distributed stable
marriage. In this work we take the first step towards closing this gap. We study

Distributed Weighted Stable Marriage Problem 31

Weighted Stable Matching in two different communication models: the billboard
model and the full distributed model (Section 2).

We prove a tight bound of O(n) in the billboard model (Section 3). We show
that any algorithm that solves the Stable Matching problem requires at least
n− 1 steps. We provide an algorithm that solves the Stable Matching problem
in n − 1 steps; and any greedy algorithm solves the problem at time n. This
billboard model lower bound holds also for the original, more general problem
of stable marriage with two sides preferences.

We present the first sub-linear distributed algorithm on the full distributed
weighted stable marriage model. Our algorithm IAA (Section 4) solves the prob-
lem in O(

√
n) steps.

2 Model and Notation

In this section, first we provide basic notation for our models, and then we
formally present the models. Let [n] := {1, ..., n} be the set of all integers between
1 and n. To keep the algorithm simple we will assume that

√
n ∈ N is an integer.

Edges in all the models can be classified into three types: Matched, For-
bidden and Valid. Assume we are looking at an algorithm at time t. Matched
edges M(t) ⊂ E are the set of edges that connect two matched nodes; Forbidden
edges F (t) ⊂ E have at least one of their nodes already matched; and Valid
edges V (t) ⊆ E are edges none of whose nodes is matched, so they can still be
part of the matching. The sets are a non-overlapping partitions of E, i.e. at time
t each edge e ∈ E is in one and only one of these sets. An edge can move only
from the Valid set to the Forbidden or Matched set.

In the Stable Marriage bipartite graph one side will be called In and the other
Out. The bipartite graph will be marked as an N×N table or game board, where
rows are the In nodes, columns are the Out nodes and edges are the table slots.
The time units of any algorithm are called steps or rounds, and will be marked
by R. We will handle only the case of equal number of input and output ports
and leave for future work the unequal case.

For convenience reasons we studied the case of unique preferences lists with
no ties. The case of preferences with ties can be derived from the unique case
using a tiebreaker method. The following notation for the preferences lists is
given. Let the vector Prefv be the ordered preferences list of node v ∈ In, so
∀i ∈ [n]; Prefv(i) value is the output port that input port v prefer in position i.

A complete description of any variant model of the Stable Marriage problem
is composed of two sub-models: The Communication Model and the Preferences
Model. The Communication Model defines how nodes send messages to one
another and the Preferences Model describes which and in what order nodes
hold preferences on the nodes of the other side.

2.1 Communication and Preferences Models

Preferences Models. The default and well-known Preferences Model for the
Stable Marriage problem is the Two-Sided Model, where each node of each side

32 N. Amira, R. Giladi, and Z. Lotker

ranks all the nodes in the other side with no ties. There are many variations to
this model, such as using incomplete preferences lists or by including ties in the
preferences lists. These variants and more are covered in [2]. Another variant is
using master lists [11], such that all node preferences of one side of the graph
follow a master list that dictates their preference order.

In this paper we focus on a simple model called the Weighted Model in
which there are no private preferences lists to each side but each edge has a
unique weight, and by ordering the weights of all the edges connected to a node
v ∈ V the node can generate its own preference list in the following way. In-
put port i ∈ In prefers output port j1 ∈ Out over output port j2 ∈ Out if
W ((i, j1)) > W ((i, j2)). We use the same criterion on the output ports, i.e. we
say that output port i ∈ Out prefers input port j1 ∈ In over input port j2 ∈ In
if W ((i, j1)) > W ((i, j2)). We can justify this preference order using our VOQ
switch motivation: we are interested in minimizing the size of the queues hence
we prefer matching bigger queues (bigger weights).

Communication Models. In this paper we use two communication models.
The first communication model we use is the Distributive Model which is applied
in a growing world of parallel processors. In this model each user is an individual
processing unit with different communication channels to each of the other users.
The main advantage of distributive methodology is that it enables building safer,
more robust and efficient systems than in centralized computing.

In this Distributive Model each edge is a bidirectional communication link
that can transfer O(log n) bits in each message and each node in each step can
send a different message on each edge. In Section 4 we provide an algorithm for
the Distributive Model.

The second model we use is the Public Billboard model in which all comm-
unication among the nodes is performed through a public billboard such that
all nodes can view all messages. It is a well-studied model in recommendation
systems, see [12, 13, 14, 15]. In this model users try to recommend items. A user
can test an item, and then write his recommendations on the billboard such that
all other users can read it. The goal is to fairly reduce the user’s total work using
the billboard.

In the original billboard model, in each algorithm step each node can publish
a message of O(log n) bits constructed from a random combination of all the
data it owns. We restrict this model and let each node publish only one edge
value it owns to the billboard. When using this model it is easy to define the
problem with cards in the following way. We refer to the table slots in the game
board as cards that can face up and be shown to all, or face down (see figure
1). As in the table slots the value that cardij in row i and column j hold is of
the edge between node i and j. (if two sided preferences model is used then two
cards are needed in each slot to cover directed edges). When we say, ”publish on
a public billboard” we mean ”flip the appropriate game card”. In section 3 we
prove a tight bound for the stable marriage problem in the Billboard Model.

Distributed Weighted Stable Marriage Problem 33

(a) (b) (c)

Fig. 1. (a) A table of cards facing down. (b) Each row flipped its maximal card and
now the maximal cards are facing up. (c) All the cards are facing up.

2.2 Basic Properties of the Distributive Weighted Model

In this subsection we focus on a model composed of the weighted preferences
sub-model with the distributive communication sub-model, We name it the Dis-
tributive Weighted model. We will show some properties. The first simple lemma
shows that the maximum weighted edge is in the stable matching.

Lemma 1. If the weights are unique the maximum value edge in the bipartite
graph will always be part of the stable matching M .

Proof. Let e be the edge that has maximum weight i.e. W (e) > W (e′) for all
e′ 	= e ∈ E. By contradiction let us say that there exists a stable matching M
such that e 	∈ M . Let inmax and outmax be the nodes connected to edge e from
both sides. Since e is not in the final match, inmax and outmax are not matched
together but obviously they prefer each other more than anyone else; therefore
{inmax, outmax} is a blocking pair and there is a crossover, hence M is not stable
and we have a contradiction. ��

The next lemma follows from the previous one.

Lemma 2. In any Weighted Stable Marriage problem, if the weights are unique
there is only one stable match.

Proof. From lemma 1 it follows that any algorithm must insert the maximum
weight edge e to M , then all edges N(e), the neighborhood of e, cannot be in
the matching so we update the Forbidden set to be F = F ∪N(e), and the Valid
set accordingly, V = V \ e ∪ N(e). It follows that in V there will not be edges
connected to nodes inmax or outmax, meaning we reduced the graph to an (n-1)-
bipartite graph. Because e is unique, the bipartite graph is also unique. Applying
this procedure by continuously using lemma 1 to find the maximum node on the
next bipartite graph will result in finding a unique Stable Marriage. ��

Looking closely at the above proof we can generate a simple solution to the
problem by using the Gale and Shapley algorithm in the following way: each In
port sends a proposal to the output port of its maximal edge weight, and the

34 N. Amira, R. Giladi, and Z. Lotker

Out ports reject or accept each proposal. We repeat these two steps until all Out
ports receive a proposal. Hoepman [16] presents a similar distributed algorithm
that computes a weighted matching at most a factor 2 away from the maximum.

In section 4 we will present an improved algorithm for the Distributive
Weighted model that works in

√
n steps.

3 Public Billboard Tight Bound

In this section we prove a tight bound of n− 1 on the Public Billboard model.
First we present a lower bound optimal algorithm named Maximal Card algo-
rithm. Next we prove our lower bound: any algorithm needs at least n− 1 time
steps to solve the Stable Marriage problem in the Billboard model.

Definition 1. In the Maximal Card algorithm, in each step the card that each
node chooses to flip is its next favorite card from the Valid list.

We will prove that the worst case running time of this algorithm is n − 1. The
proof here is similar to the proof of Lemma 2, in each step we insert the maximum
value edge to the matching and decreases the game to (n − 1) × (n − 1); after
n− 1 steps we are left with a 1 × 1 game and the match is obvious. This worst
case is our n − 1 upper bound. In this algorithm each edge is inserted to the
matching set only when there is no doubt this edge belongs to the matching,
hance there is no need to use backtracking like it is used in the original Gale &
Shapley algorithm.

In addition we show that the improvement of Maximal Card algorithm over
any other algorithm can be only one step.

Lemma 3. After n steps any greedy algorithm will find a stable matching in the
Public Billboard model.

Proof. By ”greedy algorithm” we mean that all nodes submit new data at each
step, so that at each step n more cards are visible to all. The explanation for
this lemma is simple: after n steps of any greedy algorithm, all the cards are
facing up and all the nodes can see all the game board; each node can calculate
the matching locally. ��

3.1 Public Billboard Lower Bound

The next theorem says that any algorithm that uses the Public Billboard model
requires at least n − 1 time steps. In order to state the theorem we need the
following definition. Let τ(i) be the first time there is at least i matches in M,
|M(τ(i))| ≥ i, i.e.

τ(i) = min{t : |M(t)| ≥ i}
As in the case of Maximal Card algorithm we can say that any algorithm that
uses the Public Billboard model can insert edges to the matching only when there
is no doubt edges belong to the matching, hance we don’t use backtracking in
any algorithm.

Distributed Weighted Stable Marriage Problem 35

Theorem 1. For any i ∈ [n− 1], τ(i) ≥ i.

Proof. We now look at a specific input for the Public Billboard matching prob-
lem. Assume W ((i, j)) > W ((i, j + 1)) for all i ∈ [n], j ∈ [n − 1]. This means
that all the In ports prefer the output ports by order i.e. the first output port
over the second, the second over the third and so on. We claim that in order to
match an In port to the i-th output port we need to know at least n − i + 1
weights. We prove this by induction on i. Clearly for i = 1 we need to know all
the n weights of the edges from the In ports to the first output port, otherwise
if we try to take a matching decision without knowing all the n weights it is
possible that we don’t know the maximal weight hence the matching decision
will be wrong. Now assume that the claim holds for i = k, we need to prove
that the claim holds for i = k + 1. The first k output ports have priority over
the k + 1 output port, so assuming we know the matching of the first k output
ports, we can ignore the In ports that are matched to them. But the rest n− k
of the In ports must reveal their maximal value on the billboard, otherwise it
is possible that we have not revealed the maximal one. Therefore, in order to
match |M(τ(i))| pairs in the Billboard Model the number of weights we need to
reveal is at least:

|M(τ(i))|∑
i=1

(n− i + 1) =
|M(τ(i))|

2
(2n− |M(τ(i))| + 1) (1)

Note that the above equation is not true for the last round; in fact if we know
the first n− 1 matched pairs we also know the last one.

Since we have a specific preference for the input ports it follows that once an
input port is matched its weights are no longer relevant. Therefore the number
of weights that are not relevant at time τ(i) is:

|M(τ(i))|∑
i=1

(n− i) =
|M(τ(i))|

2
(2n− |M(τ(i))| − 1) (2)

In each step in the Billboard Model we can reveal n weights, hence if we have
τ(i) steps we can reveal nτ(i) weights. And so the number of relevant weights
we can reveal is:

nτ(i)− |M(τ(i))|
2

(2n− |M(τ(i))| − 1) (3)

This number should be bigger than the number of weights we need to reveal that
we computed in (1) and so we get the following inequality:

nτ(i)− |M(τ(i))|
2

(2n− |M(τ(i))| − 1) ≥ |M(τ(i))|
2

(2n− |M(τ(i))| + 1) (4)

We can write the above inequality simply as:

nτ(i) ≥ (2n− |M(τ(i))|)|M(τ(i))| (5)

36 N. Amira, R. Giladi, and Z. Lotker

We know that i ≤ n and from lemma 3 we know that it is possible to solve
the Stable Matching problem in n time steps. Therefor we can assume that
M(τ(i)) ≤ n; in this case, we can use the definition of |M(τ(i))| > i and we get
that:

nτ(i) ≥ (2n− |M(τ(i))|)|M(τ(i))| ≥ (2n− i)i (6)

Now we can use i ≤ n again and simplify the previous inequality:

nτ(i) ≥ (2n− n)i (7)

and so we get that:

τ(i) ≥ i (8)

This concludes the proof. ��

4 Algorithm for the Distributive Weighted Model

According to Lemma 2 there is just one stable matching per instance, so this al-
gorithm needs to find one stable matching and this matching will be the only one.

We will introduce the term Intermediation Agencies (IA); these are
√

n ar-
bitrary elements from the set of Out ports such that each is responsible for a
set of preferences from the In side. ∀i ∈ [

√
n], IAi is responsible for the

√
n

preferences in positions {(i− 1)
√

n + 1, ..., i
√

n} of the In ports. The algorithm
name is according to the IA, Intermediation Agencies Algorithm, or IAA. (See
an example for the IAA algorithm in figure 2)

In this section M(i) is the set of edges that are in the stable matching at
time i where i is the number of rounds from the second phase and not from the
beginning of the algorithm. Let V alv(i) ∀i ∈ [n] be the value of the edge from
node v ∈ In to node Prefv(i).

This is a synchronized algorithm, which means that all the nodes follow a
common clock. It is constructed from two phases and we will describe each of
them in detail below.

Phase 1: The objective of this phase is to move all the data (n2 values) from
the In ports to the IAs (each IA receives n

√
n values). All the In ports simul-

taneously send to IA1 their first choice, to IA2 their
√

n + 1 choice and so on.
In one step, each input port sends

√
n values. In general we can write that in

each step R ∈ [
√

n] and ∀i ∈ [
√

n] all In ports simultaneously send to IAi their
(i− 1)

√
n + R choice.

Phase 2: This phase is designed to inform all the nodes about the stable solution.
The IAs perform a local centralized calculation one after the other (using the
Maximal card algorithm or the Gale & Shapley algorithm) and find the weighted
stable matching. Each IA knows its position hence it knows when to compute
the next matched couples (minimum of

√
n couples). In step 2i − 1 from the

beginning of Phase II, IAi calculates a matching and informs all the matched
input ports who is their match; in the sequential step all the matched input

Distributed Weighted Stable Marriage Problem 37

Algorithm 1. IAA
Phase I - Move Phase

1: for R = 1,
√

n do
2: for all i ∈ [

√
n] & v ∈ IN do � simultaneously all the In ports send

3: IAi ← {Prefv((i − 1)
√

n + R), V alv((i − 1)
√

n + R)} � their preferences
4: end for � to all the IA
5: end for

Phase II - Inform Phase
6: i ← 1
7: while |M | < n do � sequentially each IA adds edges to the matching
8: IAi calculate local Matching
9: IAi informs all the matched nodes from the In set on their match

10: the matched In inform their match and all the IAs
11: each IA updates its local V (i), M(i), F (i)
12: i + +
13: end while

ports inform their matches and all the IAs that they are matched. Now each
IA update its V (t), F (t) and M(t) lists so it can know which edges can still be
matched and which are Forbidden.

Time Complexity: In order to move all the n2 values of the edges to the IAs,
the In ports send at each step one value to each IA. There are

√
n IAs, hence in

one step all the In ports send n
√

n values together, so that
√

n steps are needed
to transfer all the data to the intermediation agencies. In the second phase, the
IAs are working sequentially and for each IA two steps are required, hence we
need 2

√
n steps. In total the time complexity of this algorithm is O(

√
n).

Correctness: In order to show that at the end of this algorithm each port knows
who is its match we suggest the following lemma:

Lemma 4. After Phase I, IA1 holds at least
√

n values that belong to M .

Proof. During the first phase, each port sends one edge every time step, i.e. IA1
receive n

√
n edges. Now IA1 can perform locally the Gale & Shapley algorithm.

Since each In port sends its highest
√

n preferences to IA1 it follows that b ≥√
n Out ports will receive a proposal at the proposal phase of Gale & Shapley

algorithm, and this proposal cannot be overcome in the next steps by other IAs
since the next IA holds only lower weights. This means that b edges will be
added to M(1), the Matched set, and the rest to F (1), the Forbidden set. ��

Theorem 2. Algorithm IAA computes a stable matching.

Proof. The proof is by induction on the number of input ports in the bipartite
graph. Clearly if |In| is 1,2 or 3, IAA algorithm returns a stable matching since
there is only one IA and it holds all the game weights.

For the inductive step, assume that when the number of In ports is m IAA
returns a stable matching. We have to show that IAA returns a stable matching

38 N. Amira, R. Giladi, and Z. Lotker

(a) (b) (c)

(d) (e)
(f)

Fig. 2. An example for the IAA algorithm (a) This table represents the initial complete
bipartite graph with weights on the edges. From these weights each node builds its own
preference list, e.g. in1 preference list is: {out4, out2, out3, out1} because 9 > 7 > 6 > 1.
(b) The data each IA gets from the In ports after Phase I. The data are ordered by
weight and each slot is made of {Weight, OutPort#}. (c) In Phase II - After IA1
informs all the In ports about the matching. The bold slots (16 and 14) are the matched
slots and the gray slots represent the unsuccessful attempts of IA1 to match. (d) In
Phase II - After each node updates its local variables. The gray slots represent the
values that moved to the forbidden set. (e) In Phase II - After IA2 informs all the
In ports about the matching. This is the end of the algorithm since all the ports are
matched. (f) The output of the algorithm - a Stable Matching.

if the number of In ports is m+1. From lemma 4 we know that at the first step
of Phase II the IAA algorithm computes the stable set M(1) and that the size
of M(1) satisfies |M(1)| ≥

√
m + 1 1. In Phase II, let k be an integer such that

1 < k ≤
√

m + 1, we assume that i = k and that |M(i − 1)| ≥ (i − 1)
√

m + 1.
Now note that there are m + 1 − |M(i− 1)| unmatched In ports. We continue
by case analysis.

First assume that:

m + 1− |M(i− 1)| >
√

m + 1

1 Clearly both
√

m and
√

m + 1 cannot be an Integer if m > 1, this technical problem
can be solved by rounding up the number of edges each IA get and rounding down
the number of IAs, for sake of simplicity we ignore this case.

Distributed Weighted Stable Marriage Problem 39

From Phase I we know that each In port sent
√

m + 1 different edges to IAi, so
particulary the unmatched In ports sent. So it follows that at step i of Phase II
|M(i)| ≥ |M(i− 1)|+

√
m + 1. Moreover we can apply a similar argument as we

did in lemma 4 and obtain that the set M(i) is stable. Therefore it follows that
there exists 1 ≤ i ≤

√
m + 1 such that the number of unmatched ports satisfies

m + 1 − |M(i − 1)| ≤
√

m + 1. Now we can proceed to the second case in less
then an order of

√
n rounds.

The second case is:
m + 1−M(i− 1) ≤

√
m + 1

in this case IAi knows all the remaining edges and so it can compute all the
missing edges in the stable matching, and the algorithm is finished after a con-
stant number of steps. ��

5 Conclusions and Open Problems

Stable Marriage is a natural model that describes equilibrium. We believe that
understanding the distributed time complexity of the Stable Marriage problem
is a central question.

In this paper we concentrate on a simple version of Weighted Stable Mar-
riage. It is possible to show that this problem is equivalent to the master list
stable marriage. We study this problem in two different models. In the Billboard
Model we show a tight bound, i.e. any algorithm that solves the stable matching
problem requires at least n − 1 steps, we also provide such an algorithm. In
the Distributive Weighted model we provide an algorithm IAA that solves the
Stable Marriage problem in O(

√
n) steps. We remark that all the lower bounds

that appear in [7] can work in the case that the preferences lists are derived from
the edges weights.

There are still many open problems such as what is the time complexity of the
distributed stable marriage problem in the two sided preferences model? Is the
(n-1) Lower bound of the billboard model valid also in the case where arbitrary
data can be written at each round?

There are many different models to explore. For example: in a bipartite graph
each edge has a weight. The In ports determine their ranking according to
the maximum weights while the Out ports determine theirs according to the
minimum weights. This model captures a competitive market. On the other
hand, the problem we study in this paper captures cooperation between the In
and Out ports.

The possibility of using the Stable Marriage criteria in a VOQ switch is men-
tioned in the paper and in this field a performance analysis of the Stable Marriage
criteria as a packet scheduling is needed.

Acknowledgments

We would like to thank the anonymous reviewers for very constructive and de-
tailed comments.

40 N. Amira, R. Giladi, and Z. Lotker

References

1. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The
American Mathematical Monthly 69, 9–15 (1962)

2. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms.
MIT Press, Cambridge (1989)

3. Nakamura, M., Onaga, K., Kyan, S., Silva, M.: A genetic algorithm for sex-fair
stable marriage problem. In: ISCAS, pp. 509–512 (1995)

4. Brito, I., Meseguer, P.: Distributed stable matching problems with ties and in-
complete lists. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 675–679.
Springer, Heidelberg (2006)

5. Lu, E., Zheng, S.Q.: A parallel iterative improvement stable matching algorithm.
In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI), vol. 2913,
pp. 55–65. Springer, Heidelberg (2003)

6. Feder, T., Megiddo, N., Plotkin, S.A.: A sublinear parallel algorithm for stable
matching. In: SODA 1994: Proceedings of the fifth annual ACM-SIAM symposium
on Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied
Mathematics, pp. 632–637 (1994)

7. Kipnis, A., Patt-Shamir, B.: A note on distributed stable matching. In: ICDCS,
pp. 466–473. IEEE Computer Society, Los Alamitos (2009)

8. Chuang, S., Goel, A., McKeown, N., Prabhakar, B.: Matching output queueing
with a combined input output queued switch. Technical report, Stanford, CA,
USA (1998)

9. McKeown, N.: The islip scheduling algorithm for input-queued switches.
IEEE/ACM Trans. Netw. 7, 188–201 (1999)

10. Banovic, D., Radusinovic, I.: Scheduling algorithm for voq switches. AEU - Inter-
national Journal of Electronics and Communications 62, 455–458 (2008)

11. Irving, R.W., Manlove, D.F., Scott, S.: The stable marriage problem with master
preference lists. Discrete Applied Mathematics 156, 2959–2977 (2008)

12. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Collaboration of untrust-
ing peers with changing interests. In: Proceedings of the 5th ACM conference on
Electronic commerce, pp. 112–119. ACM, New York (2004)

13. Awerbuch, B., Hayes, T.P.: Online collaborative filtering with nearly optimal dy-
namic regret. In: Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, pp. 315–319. ACM, New York (2007)

14. Awerbuch, B., Kleinberg, R.: Competitive collaborative learning. J. Comput. Syst.
Sci. 74, 1271–1288 (2008)

15. Awerbuch, B., Azar, Y., Lotker, Z., Patt-Shamir, B., Tuttle, M.R.: Collaborate with
strangers to find own preferences. In: Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and architectures, pp. 263–269. ACM,
New York (2005)

16. henk Hoepman, J.: Simple distributed weighted matchings. In eprint
cs.DC/0410047 (2004)

Traffic Grooming in Star Networks
via Matching Techniques�

Ignasi Sau1, Mordechai Shalom2, and Shmuel Zaks1

1 Department of Computer Science, Technion, Haifa, Israel
{ignasi,zaks}@cs.technion.ac.il

2 TelHai Academic College, Upper Galilee, 12210, Israel
cmshalom@telhai.ac.il

Abstract. The problem of grooming is central in studies of optical net-
works. In graph-theoretic terms, it can be viewed as assigning colors to
given paths in a graph, so that at most g (the grooming factor) paths of
the same color can share an edge. Each path uses an ADM at each of its
endpoints, and paths of the same color can share an ADM in a common
endpoint. There are two sub-models, depending on whether or not paths
that have the same color can use more than two edges incident with the
same node (bifurcation allowed and bifurcation not allowed, resp.). The
goal is to find a coloring that minimizes the total number of ADMs. In
a previous work it was shown that the problem is NP-complete when
bifurcation is allowed, even for a star network. In this paper we study
the problem for a star network when bifurcation is not allowed. For the
case of simple requests - in which only the case of g = 2 is of interest
- we present a polynomial-time algorithm, and we study the structure
of optimal solutions. We also present results for the case of multiple re-
quests and g = 2, though the exact complexity of this case remains open.
We provide two techniques, which lead to 4

3
-approximation algorithms.

Our algorithms reduce the problem of traffic grooming in star networks
to several variants of maximum matching problems.

Keywords: Traffic grooming, optical networks, approximation algo-
rithms, maximum matching, Add-Drop Multiplexer.

1 Introduction

1.1 Optical Networks

All-optical networks have been largely investigated in recent years due to the
promise of data transmission rates several orders of magnitudes higher than
current networks [3, 5]. Major applications are in video conferencing, scientific
visualization and real-time medical imaging, high-speed supercomputing and dis-
tributed computing. The key to high speeds in all-optical networks is to maintain

� This research was partially supported by the Israel Science Foundation, grant No.
1249/08 and British Council grant UKTELHAI09.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 41–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 I. Sau, M. Shalom, and S. Zaks

the signal in optical form, thereby avoiding the prohibitive overhead of conver-
sion to and from the electrical form at the intermediate nodes. The high band-
width of the optical fiber is utilized through Wavelength-Division Multiplexing
(WDM): two signals connecting different source-destination pairs may share a
link, provided they are transmitted on carriers having different wavelengths (or
colors) of light. The optical spectrum being a scarce resource, given communi-
cation patterns in different topologies are often designed so as to minimize the
total number of used colors, also as a comparison with the trivial lower bound
provided by maximum load, that is the maximum number of requests sharing a
same physical edge (see [10] for a survey of the main related results).

Though a lot of works have been done in the path and ring topologies, much
less is known for more complex networks. The main problem in such networks
is the existence of nodes of degree more than two, where traffic can split. Tree
networks are thus the first candidates to be studied, and understanding the
complexity of the problem for a star network is therefore central step in this
direction of finding a general solution for tree networks, and then to general
topology networks.

We study the grooming problem (see Section 1.2) in star networks. Despite
its simplicity, this topology is important, as it arises in the interconnection of
LANs (local area networks) or MANs (metropolitan area networks) with a wide
area backbone.

1.2 The Problem

The focus of current studies is to consider the hardware cost. This is modeled
by considering the basic switching unit of Add-Drop-Multiplexer (ADM), and
focusing on the total number of these ADMs. The key point here is that each
lighpath uses two ADMs, one at each endpoint. If two incident lightpaths are
assigned the same wavelength, then they can share the ADM at their common
endpoint. An ADM may be shared by at most two lightpaths. Moreover, in
studying the hardware cost, the issue of traffic grooming is central. This problem
stems from the fact that the network usually supports traffic that is at rates
which are lower than the full wavelength capacity, and therefore the network
operator has to be able to put together (= groom) low-capacity requests into
the high capacity fibers. At most g requests can share one lightpath. g is termed
the grooming factor. In terms of ADMs, if g requests of the same wavelength
entering through the same edge to one node, they can all use the same ADM at
that node, thus saving g−1 ADMs. The goal is to find a coloring that minimizes
the total number of ADMs. There are two sub-models, depending on whether or
not paths that have the same color can use more than two edges touching any
node (bifurcation allowed and bifurcation not allowed, resp.).

In Fig. 1 a star network is presented, with three requests a, b and c. If g = 2
then all these requests can get the same color if traffic bifurcation is allowed,
and in this case we use a total of 3 ADMs; otherwise, three colors are needed,
because any set of two paths will imply a set of three edges touching the center

Traffic Grooming in Star Networks via Matching Techniques 43

2

1

3

0
a

b
c

Fig. 1. Star network. Requests a, b, and c can be groomed for g = 2 only if traffic
bifurcation is allowed.

of the star, and in this case we use a total of 6 ADMs. In this work we study the
case where bifurcation is not allowed.

In graph-theoretic terms, the network is modeled as a graph, each request is
viewed as a simple path in the graph, and the traffic grooming problem is viewed
as assigning colors to the paths, such that, for any color λ, at most g of the paths
colored λ can share the same edge.

For tree networks, and when bifurcation is not allowed, the problem reduces
to partitioning the set of requests (paths) into sets (subgraphs) such that in each
subgraph (a) the number of paths using any edge is at most g, and (b) the graph
induced by the edges of its paths has maximum degree 2. The cost associated
with such a subgraph is the number of distinct endpoints of its paths, and the
goal is to find a partition that minimizes the sum of the costs of the subgraphs.

1.3 Related Works

A review on traffic grooming problems can be found in [16]. In [8] the traffic
grooming problem in tree and star networks is studied. The authors extend the
approximation results for ring networks of [9] to trees and stars, obtaining an
approximation algorithm with approximation factor 2 log g+o(log g), running in
polynomial time if g is constant. The traffic grooming model studied in [8] allows
bifurcation, and in this case the problem is shown to be NP-complete even for
star networks, if g ≥ 3.

In [11] traffic grooming on path, star, and tree networks is addressed with
a deep technological background, but the cost function used to minimize the
cost of electronic equipment differs from that used in [2,4, 9, 1, 13, 12,8] among
many others. Indeed, in [11] the authors consider the model first stated in [7] (in
particular, the function referred as total amount of electronic switching), where
one unity of cost (namely, a SONET Add-Drop Multiplexer, ADM for short) is
incurred each time a wavelength conversion of a request is carried out. That is,
what is intended to minimize in this model is the total number of optical hops of
all requests from their origins to their destinations. It is assumed that each re-
quest requires some electronics at its origin and its destination nodes, regardless
of how many requests are terminated at those nodes on each wavelength.

1.4 Summary of Results

In this work we deal with the single hop problem, where a request is carried along
one wavelength, and where bifurcation is not allowed. We study a star network,

44 I. Sau, M. Shalom, and S. Zaks

with n + 1 nodes 0, 1, 2, · · · , n, and a set of edges {{0, 1} , {0, 2} , · · · , {0, n}}.
The requests are of length 1 or 2, termed short and long requests, respectively.
We first consider the case of simple requests (Section 3), that is, there are no
two requests sharing both endpoints (i.e. identical). In this case only the case
g = 2 is of interest, and we show a polynomial-time algorithm for the problem.
Actually, this result holds also for the case when multiple identical requests of
length 2 are allowed. It turns out that a basic component of each solution is a
triangle; that is, three requests – one between i and 0, one between j and 0,
and one between i and j – all colored with the same color. Indeed, we show that
in each optimal solution there is the same number of triangles. We also present
(Section 4) results for the case of multiple requests and g = 2 (though the
exact complexity of this case remains open). We present two techniques, which
lead to two 4

3 -approximation algorithms. Our algorithms reduce our problems
to the maximum matching problem and several of its variants. We start with
preliminaries in Section 2, and conclude with a summary in Section 5.

2 Preliminaries

In this section we provide some preliminaries concerning matchings and the
notation we use to denote the subgraphs involved in a partition of the request
graph. We use standard graph terminology (cf. for instance [6]). We consider
undirected graphs, which may have multiple edges and self-loops.

Matchings. Let G = (V, E) be a (multi)graph with a weight function w : E →
R, and let I be a function associating an interval of natural numbers with each
vertex in V . An I-matching is a function m : E → N such that for v ∈ V ,∑

e∈E|v∈e m(e) lies in the interval I(v). An I-factor is an I-matching such that
m : E → {0, 1}. A matching is an I-factor such that I(v) = [0, 1] for each
v ∈ V . A maximum I-matching is an I-matching m such that

∑
e∈E m(e) ·w(e)

is maximized. Maximum I-matchings can be found in polynomial time [14, 15].
An I-matching m corresponds to a sub(multi)graph M of G, such that the
multiplicity of the edges of G in M is given by the function m. With slight
abuse of notation, M will be also called an I-matching.

Notation. The request graph is denoted R, where a request between two ver-
tices i and j, denoted (i, j), corresponds to an edge of R. The grooming factor
is denoted g. A subgraph of R is called valid if (a) it respects the grooming
constraint, that is, no more than g requests share the same link, and (b) it con-
tains at most two leaves of the star (this is equivalent to forbidding bifurcation).
Therefore, the problem we consider can be stated as finding a minimum cost
partition of E(G) into valid subgraph, where the cost of a partition is given by
the total number of vertices of the subgraphs involved in the partition. When
the physical network is a star and the grooming factor is at most 2, the possible
subgraphs involved in a partition of E(R) are denoted as follows:

Traffic Grooming in Star Networks via Matching Techniques 45

• i denotes the request (i, 0).
• i + j denotes the path on three vertices made of the two requests (i, 0) and

(j, 0).
• i + (i, j) denotes the subgraph made of the long request (i, j) and the short

request (i, 0).
• [i, j] denotes the triangle that consists of the three requests (i, 0), (j, 0), and

(i, j).
• 2(i, j) (resp. 2i) denotes the subgraph made of two copies of the request (i, j)

(resp. (i, 0)).
• 2i + j denotes the subgraph made of two copies of the request (i, 0) and one

copy of the request (j, 0).
• 2i + 2j denotes the subgraph made of two copies of the request (i, 0) and

two copies of the request (j, 0).

Note that last four subgraphs corresponding to the three last items are only
possible if multiple requests are allowed.

0
i 3

[i,j]
1

i+(i,j)
1

i+j
0

(i,j)

5
2i+2j

3
2i+j

2
2(i,j)

2
2i

Fig. 2. Possible subgraphs in the star for g = 2, together with the notation used to
denote them. The number near each subgraph indicates its savings. Note that the upper
subgraphs are only possible if multiple requests are allowed.

The above subgraphs are shown in Fig. 2, together with the saving in the
number of ADMs corresponding to each subgraph. For example, the case 2i + j
corresponds to a subgraph containing two short requests (i, 0) and one short
request (j, 0). The saving of this subgraph is 3 because if every request stood by
its own, they would use a total of 6 ADMS, while by grouping them in a subgraph
of type 2i+ j they use only 3 ADMs, so the saving is of 6− 3 = 3 ADMs. If only
simple requests are given, then we only have the subgraphs depicted in the lower
row of Fig. 2, while multiple requests allow also for the subgraphs depicted in
the upper row. Note that minimizing the total cost is equivalent to maximizing
the total number of savings.

3 Simple Requests

We first provide an optimal algorithm in Section 3.1 and then we give a combi-
natorial characterization of the optimal solutions in Section 3.2.

46 I. Sau, M. Shalom, and S. Zaks

3.1 Optimal Algorithm

Theorem 1. For any g ≥ 1, there exists a polynomial time exact algorithm for
Star Traffic Grooming problem for the case of simple requests.

Proof. Let first g = 1. Each long request (i, j) uses 2 ADMs, and no saving is
possible. Therefore, only short requests of type i can be matched and save 1
ADM at the central node 0, so if the instance contains x short requests, �x

2 �
savings can be done, and such a solution is optimal.

If grooming is allowed, but no multiple requests are allowed, then note that
the case g = 2 is the only interesting case, since for arbitrary g ≥ 2, as we do not
allow bifurcations, the only possible subgraphs are those depicted in the lower
row of Fig. 2. So, we focus henceforth on the case g = 2.

We claim that the following Algorithm SimpleMatch

Algorithm SimpleMatch:
Input: A star S and a set R of simple requests between pairs of vertices in S.
Output: a partition of E(R) into a set of valid subgraphs for g = 2.

(1) Build an edge-weighted graph G = (V, E) as follows:
(1.1) For each short request (i, 0) in R, add a vertex vi to V .
(1.2) For each long request (i, j) in R, add a vertex vij to V .
(1.3) For each vertex vij ∈ V , if the vertex vi (resp. vj) is in V , add the edge {vij , vi}

(resp. {vij , vj}) to E with weight 1.
(1.4) For each pair of vertices vi, vj ∈ V , add the edge {vi, vj} to E with weight 3 if the

vertex vij is in V , and add it with weight 1 otherwise.
(2) Find a maximum weighted matching M in G.
(3) Output the set of subgraphs corresponding to the edges in M . If some request is left,

output it as a subgraph itself.

returns an optimal solution in polynomial time.
The possible subgraphs involved in the partition of the request set are the five

lower subgraphs of Fig. 2. We only need to show that all the possible subgraphs,
together with their savings, correspond to the weighted edges of the graph G
build in the description of the algorithm.

The subgraphs of type i + (i, j) are captured by the edges {vij , vi}, and their
weight does correspond to the unitary savings. Also the subgraphs of type i +
j when the request (i, j) /∈ R are captured by the edge {vi, vj} with weight
1. Finally, let us see how triangles are represented in G. The key idea is the
following.

Claim 2. If for two integers i, j the three requests (i, 0), (j, 0), and (i, j) are in
R, there exists an optimal solution not containing the subgraph i + j.

Indeed, assume that an optimal solution with cost OPT contains the subgraph
i + j. We can remove the request (i, j) from wherever it is, add it to the sub-
graph i+ j, and then the obtained solution containing the triangle [i, j] has cost
OPT ′ ≤ OPT .

Traffic Grooming in Star Networks via Matching Techniques 47

Due to Claim 2, whenever three requests (i, 0), (j, 0), and (i, j) belong to R,
we do not need to consider the subgraph i + j. In this case, the edge {vi, vj}
with weight 3 corresponds to the triangle [i, j]. Note that if the edge {vi, vj} is
in the matching M , it prevents the vertex vij to be used again, since the only
neighbors of vij in G are vi and vj .

Thus, a maximum weighted matching in G (plus possibly, some single re-
quests) corresponds to a valid solution for the instance R maximizing the total
savings, or equivalently minimizing the total number of ADMs.

In fact, when the requests are simple, for any g ≥ 3 the problem is also solved
by Algorithm SimpleMatch. This is because, as we mentioned above, due to
the model that we are assuming the set of subgraphs involved in any partition
of the set of requests is the same for any g ≥ 2. ��

3.2 Structure of an Optimal Solution

Assume that the maximal number of triangles in a given instance of the problem
is k. We show now that all optimal solutions contain k triangles. Note that even
if Algorithm SimpleMatch does not take into account this property, Lemma 1
provides structural information about the optimal solutions, which is of interest
by itself.

We are given a set of requests R = {�1, · · · , �x, s1, · · · , sy}, where �1, · · · , �x

are requests of length 2 and s1, · · · , sy are requests of length 1. The maximal
number of triangles in R is denoted by max(R).

Lemma 1. Let R be a given set of requests on a star network, and let max(R) =
k ≥ 0, let MAX = {t1 = [1, 2], t2 = [3, 4], · · · , tk = [2k − 1, 2k]} be a maximal
set of triangles in R, and let OPT be any optimal solution for R. Then OPT
contains exactly k triangles.

Proof. Assume that OPT does not contain exactly m triangles of MAX where
0 < m ≤ k (so, OPT contains k−m of the triangles in MAX) . W.l.o.g. assume
these are the triangles t1, t2, · · · , tm. We define a function f that will assign to
each triangle in t1, t2, · · · , tm a triangle or a pair of triangles in OPT −MAX .

Consider any of these triangles tj = [2j − 1, 2j], 1 ≤ j ≤ m.
Since tj 	∈ OPT , we have to consider two cases, according to whether the

request (2j − 1, 2j) is paired in OPT with one short request (Case a) or it is by
itself in OPT (Case b):

Case a: (2j− 1, 2j) is paired in OPT with (2j− 1, 0) (or, similarly, with (2j, 0)).
Consider the request (2j, 0). If (2j, 0) is paired with one short request, or with
one long request, or it is by itself in OPT , then by moving (2j, 0) to join (2j −
1, 2j) and (2j − 1, 0) we get a solution SOL with cost(SOL) < cost(OPT),
a contradiction. So we conclude that in this case (2j, 0) is in another triangle
t (which is clearly neither of the triangles t1, t2, · · · , tm). In this case we define
f(tj) = t.

Case b: (2j − 1, 2j) is a component containing only itself in OPT .

48 I. Sau, M. Shalom, and S. Zaks

Consider the request (2j − 1, 0) and (2j, 0). They cannot form together one
component of OPT , they cannot form two components with two other short
requests, and neither of them can be a component of itself in OPT ; this is
since in each of these cases we could add them to (2j − 1, 2j) and get a so-
lution SOL with cost(SOL) < cost(OPT), a contradiction. Hence, they are
matched to long requests in OPT . They cannot both be paired to long requests
alone, since then a solution SOL that will add them to (2j − 1, 2j) will satisfy
cost(SOL) < cost(OPT), a contradiction. So, at least one of them is in a tri-
angle t of OPT . In this case we define f(tj) = t. If both of them are connected
to triangles t1j and t2j then we define f(tj) = {t1j , t2j}.

At this point, the set of triangles in t1, t2, · · · , tm is partitioned into two
subsets T1 and T2 of sizes s1 and S2, respectively, where s1 + s2 = m. Each
triangle in T1 is mapped to one triangle in OPT . We claim that this mapping is
1-1. Otherwise there are two triangles tj and tj′ mapped to the same triangle of
OPT . This is because w.l.o.g. OPT contains the components 2j−1+(2j−1, 2j)
and 2j′−1+(2j′−1, 2j′) and the triangle [2j, 2j′]; these components contribute
9 ADMs to the solution. The solution OPT ′ obtained from OPT by taking
out all these components and adding tj , tj′ and (2j, 2j′) uses one less ADMs, a
contradiction. These triangles correspond to s1 triangles of OPT .

Each triangle in T2 is mapped to two triangles in OPT . These triangles in OPT
contain the short requests (2j − 1, 0) and (2j, 0). The number of vertices in these
triangles is thus at least s2 > 0, and therefore that ∪t∈T2f(t) contain at least s2
triangles. Since it must contain at most s2 triangles, it follows that the number
of these triangles is exactly s2, and thus the total number of triangles in OPT in
∪t∈T1∪T2f(t) is m. These, together with the k −m triangles in OPT that belong
to MAX , sum up to a total of k triangles in OPT . This completes the proof. ��

4 Multiple Requests

4.1 Motivation

If multiple requests are allowed, the problem becomes more complicated. Besides
the subgraphs of type 2(i, j), the greedy removal of any type of subgraph will
not lead to an optimal solution. First we show an example where the pairing of
identical short requests leads to a sub-optimal solution: Consider a star with 3
leaves a, b, and c with the request set R = {a, a, b, c, (a, b), (a, c)}. If we pair the
two short requests a in the same component, the cost will be at least 8 whereas
an optimal solution uses two triangles [a, b] and [a, c]. One could be tempted
to remove greedily all the triangles, or similarly a set of triangles of maximum
cardinality. The following is a counter example showing that this strategy is not
optimal. Consider the request set R = {a, a, b, b, (a, b)}. A solution containing
the only triangle [a, b] will have a cost of at least 6 ADMs, as opposed to the
cost of 5 ADMs in the optimal solution (a, b), 2a + 2b.

First we provide in Subsection 4.2 an approximation algorithm in the same
spirit of Section 3. Namely, we construct an auxiliary edge-weighted graph G
made of appropriate gadgets that capture the possible subgraphs involved in

Traffic Grooming in Star Networks via Matching Techniques 49

a partition of the request graph, and then we find a feasible solution to our
problem by optimally solving a maximum I-matching problem in G. We then
present another approach in Subsection 4.3, also based on I-matching. We prove
that these two apparently different algorithms constitute a 4/3-approximation to
the problem for g = 2. Before presenting the algorithms, we make an observation
to be used in the sequel.

Claim 3. The subgraphs of type 2(i, j) can be greedily removed from R without
changing the cost of an optimal solution.

Proof. Assume that R contains two copies of the request (i, j), and that in an
optimal solution OPT these copies belong to different subgraphs B1 and B2.
Since |V (B1)| ≥ 2 and |V (B2)| ≥ 2, the solution OPT ′ obtained from OPT by
replacing the subgraphs B1 and B2 with B′

1 = (B1 \ (i, j)) ∪ (B2 \ (i, j)) and
B′

2 = 2(i, j) satisfies cost(OPT ′) ≤ cost(OPT). ��

By Claim 3, we assume henceforth that the requests of type (i, j) (i.e., long
requests) are simple. For any leaf i of a star S, denote by si (resp. �i) the
number of short (resp. long) requests of node i in the request set R. We also let
SH =

∑
i si and L =

∑
i �i.

Given a solution of the problem, we say that a request i paired if its subgraph
in this solution contains another request i, i.e., i is in a subgraph of type 2i+2j,
2i + j, or 2i, and unpaired otherwise.

4.2 First Approach

Our first approach is described in Algorithm MultipleMatch1.

Algorithm MultipleMatch1:
Input: A star S and a set R of (possibly multiple) requests between pairs of vertices in S.
Output: a partition of E(R) into a set of valid subgraphs for g = 2.

(1) Build an auxiliary edge-weighted multigraph G = (V, E) as follows:
(1.1) For each leaf i in S, add a new vertex vi to V .
(1.2) For each vertex vi ∈ V , add a self-loop in vi to E with weight 2.
(1.3) For each long request (i, j) in R, add two new vertices vij , v

′
ij to V and the following edges

to E: {vi, vij} with weight 1, {vj, v
′
ij} with weight 1, {vij , v

′
ij} with weight 1, and {vij , v

′
ij}

with weight -1.
(2) Define the following function I, which associates an interval of natural numbers with each vertex

in V :
(2.1) I(vi) = [0, si] for each vi ∈ V .
(2.2) I(vij) = I(v′ij) = [2, 3] for each vij , v

′
ij ∈ V .

(3) Find a maximum I-matching M of G using the algorithm of [14].
(4) Output the following subgraphs of R according to M :

(4.1) For each self-loop of vertex vi in M , output subgraph 2i.
(4.2) For each i, j in S, if the two edges {vi, vij}, {vj, v

′
ij} and the edge {vij , v

′
ij} with weight 1 are

in M , output subgraph [i, j].
(4.3) For each i, j in S, if the edge {vi, vij} and the two copies of the edge {vij , v

′
ij} are in M ,

output subgraph i + (i, j).
(4.4) For each i, j in S, if the edge {vj , v

′
ij} and the two copies of the edge {vij , v

′
ij} are in M ,

output subgraph j + (i, j).
(4.5) If some request is left, output it as a subgraph itself.

50 I. Sau, M. Shalom, and S. Zaks

v

1

[2,3]

i

j

k

(a) (b)

R

G

[2,3]

[2,3]
[2,3]

[0,3]

[0,2]

[0,4]

1

1

1

1

1

2

2

2

-1

-1

ijvi

vj

vk

v'ij

v'ik

vik

Fig. 3. (a) A traffic instance I in a star on three vertices i, j, k, with si = 3, sj = 2, and
sk = 4. (b) Auxiliary graph G and function I built in Algorithm MultipleMatch1.
The number beside each edge indicates its weight, while the interval in brackets beside
each vertex indicates its allowed degrees.

An example of the graph G and the function I built in Algorithm Multi-

pleMatch1 is illustrated in Fig. 3 for a simple star on four vertices. We now
briefly discuss the intuition behind the algorithm. For each leaf i of S, the degree
bounds at node vi assure that no more than si short requests can be used at
vertex i. The degree bounds at vertices vij , v

′
ij make sure that the output of the

I-matching algorithm can be indeed translated to a partition of the requests in
R, and such the savings of each subgraph correspond to the sum of the weights of
the edges in M corresponding to this subgraph. As one can check from step (4)
of Algorithm MultipleMatch1, we do not use any subgraph of type 2i + 2j,
2i+ j, or i + j. The key point is that the gadgets used by the algorithm capture
simultaneously all other possible subgraphs. The fact of forgetting some sub-
graphs has of course direct consequences in the worst-case performance of the
algorithm, as stated in the following theorem.

Theorem 4. Algorithm MultipleMatch1 is a polynomial-time 4/3-
approximation algorithm for the Star Traffic Grooming problem for g = 2
when multiple requests are allowed.

Proof. First, the algorithm clearly runs in polynomial time, as the algorithm
of [14] used in step (3) does so. We now argue that the output of the algo-
rithm defines a feasible solution to Star Traffic Grooming for g = 2. From
steps (4.1)-(4.5) it follows that the number of short requests used at each vertex
i of S by the output of Algorithm MultipleMatch1 is equal to the degree
(taking into account the multiplicity of the edges, and considering that a self-
loop induces degree 2) of vi in the I-matching M of G. Since by definition of
I(v), the degree of vi in M is at most si, no more than si short requests are used
at vertex i.

Traffic Grooming in Star Networks via Matching Techniques 51

In order to analyze the approximation ratio of the algorithm, we now discuss
how the output M reflects the cost of the solution of Star Traffic Grooming

that it defines. (Recall Fig. 2 for the definition of the possible subgraphs and
their associated savings.) In case (4.1), for each vertex i in S, a subgraph of type
2i has an associated saving of 2, which corresponds to the weight of a self-loop
at vertex vi in G. Let i, j be two vertices in S such that the long request (i, j) is
in R. In case (4.2), if the two edges {vi, vij}, {vj, v

′
ij} and one copy of {vij , v

′
ij}

belong to M , then the fact that M is a maximum I-matching implies that the
copy of {vij , v

′
ij} in M is the one with positive weight. In this case, the sum of

the weights of these three edges is 3, which is equal to the saving of a triangle
[i, j]. In case (4.3), the edge {vi, vij} and the two copies of the edge {vij , v

′
ij}

are in M , so the sum of the weights of these three edges is 1, which corresponds
to the saving of the subgraph i + (i, j). Case (4.4) is symmetric to case (4.3).
If none of cases (4.2), (4.3), or (4.4) holds, then none of the edges {vi, vij} and
{vj , v

′
ij} is in M . From the degree constraints at vertices vij , v

′
ij , one can check

that the only remaining feasible possibility for an I-matching is to take both
copies of the edge {vij , v

′
ij}, therefore incurring a total weight of 0, which indeed

corresponds to not saving any ADM.
Finally, in case (4.5), a subgraph of R made of a single request has a saving

of 0.
From the above discussion, it follows that there is a bijective correspondence

between the gadgets used by the I-matching and subgraphs of type 2i, [i, j], or
i + (i, j). Therefore, our algorithm finds the best solution under the constraint
of not using the other subgraphs that incur some saving, namely those of type
2i + 2j, 2i + j, or i + j (see Fig. 2).

Given an instance R, let cost(OPT) be the cost of an optimal solution OPT ,
and let cost(ALG) be the cost of a solution ALG given by Algorithm Mul-

tipleMatch1. We construct from OPT another solution SOL as follows. For
every subgraph B of type 2i + 2j, 2i + j, or i + j in OPT , we split B into two
subgraphs Bi and Bj , where Bi (resp. Bj) contains the short requests of vertex i
(resp. j). Note that for each such subgraph B, the cost of B in OPT is 3, while the
cost of Bi plus the cost of Bj in SOL is 4. As all the other subgraphs remain un-
changed, it follows that cost(SOL) ≤ 4

3 · cost(OPT). But as no subgraph of type
2i+2j, 2i+j, or i+j is in solution SOL, the solution found by Algorithm Mul-

tipleMatch1 is equal or better than SOL, so cost(ALG) ≤ cost(SOL), which
in turn implies that cost(ALG) ≤ 4

3 · cost(OPT). ��

4.3 Second Approach

In this section we propose an algorithm that uses an oracle (called TriangleO-

racle in the algorithm) providing part of the subgraphs, namely all the triangles
[i, j] of the solution. We show that the algorithm is optimal provided that the
oracle is optimal. In this way we reduce the problem to the problem of finding
an optimal set of triangles.

52 I. Sau, M. Shalom, and S. Zaks

Algorithm MultipleMatch2:
Input: A star S and a set R of (possibly multiple) requests between pairs of vertices in S.
Output: a partition of E(R) into a set of valid subgraphs for g = 2.

(1) Build an unweighted graph G = (V, E) as follows:
(1.1) V is the set of leaves of S, that is V = {1, . . . , n}.
(1.2) {i, j} ∈ E whenever the request (i, j) belongs to R.

// Note that dG(i) = �i for each i = 1, . . . , n.
(2) Invoke the algorithm TriangleOracle(G, s), where s is the vector of the values si of the

number of short requests i. The algorithm returns a subgraph T of G.
(3) For each edge {i, j} ∈ E(T), return the triangle [i, j] as a subgraph and remove it from R.
(4) For each node i ∈ V (G) build � si−dT (i)

2 � subgraphs of type 2i and at most one subgraph of type
i (but do not remove them from R).

(5) For each subgraph of type i built in the previous step, choose arbitrarily a request (i, j) ∈ R,
build the subgraph i + (i, j) and remove it from R. If no such request exists, do nothing.

(6) Build a complete n-partite graph whose nodes are the subgraphs built at step (4) that are still in
R. There is an edge between two subgraphs if they correspond to different nodes of S. Calculate
a maximum matching of this graph. Each edge of this matching corresponds to a subgraph of
the form 2i + 2j, 2i + j or i + j, and each unmatched node of corresponds to a subgraph of type
i. Return all these subgraphs.

From the above description of the algorithm, it follows that the set of sub-
graphs of type [i, j] (i.e. triangles) returned by algorithm MultipleMatch2

corresponds to the edges E(T) of the subgraph returned by TriangleOracle.
For this reason, in the rest of this section we will use the terms edge and triangle
interchangeably. In order algorithm MultipleMatch2 to be optimal, it is a
necessary condition that TriangleOracle returns the set of triangles of an
optimal solution. We will prove that this is also a sufficient condition.

Theorem 5. If the set of triangles E(T) returned by TriangleOracle is the
set of triangles of some optimal solution, then MultipleMatch2 returns an
optimal solution.

Proof. We have to show that the decisions taken at steps (4), (5) and (6) are
correct. We start with step (4).

We claim that there is an optimal solution that does not contain two subgraphs
G1 and G2 such that both contain an unpaired request i. This implies that the
decision taken by the algorithm in step (4) is optimal.

Indeed, consider an optimal solution with the same set of triangles returned
by our algorithm, i.e. the set E(T). Assume by contradiction that it contains two
such subgraphs G1 and G2. If one of these subgraphs (without loss of generality
G1) does not contain a long request (i, j), then the request i in G2 can be moved
to the subgraph G1. In this case it does not increase the cost of G1, because
it shares the ADMs of the request i in G1, and its removal from G2 does not
increase the cost of G2. Otherwise both G1 and G2 contain long requests (i, j1)
and (i, j2) respectively. Moreover, j1 	= j2 because by Claim 3 we assume that
the long requests form a simple set of requests. Also neither one of G1 and G2 is a
triangle, because these triangles are not returned by our algorithm, and therefore
are not in this optimal solution. Therefore G1 = i + (i, j1) and G2 = i + (i, j2)
and they use 6 ADMs in total. In this case we can replace G1 and G2 with the

Traffic Grooming in Star Networks via Matching Techniques 53

three subgraphs 2i, (i, j1), and (i, j2) having a total cost of 6 ADMs, to obtain
an optimal solution with the claimed property.

We proceed with the correctness of step (5). In the rest of the proof we consider
the cost of a solution in the following way. The L long requests incur a fixed
cost of 2L ADMs. All other (i.e. short) requests sharing one of these ADMs do
not incur any cost for these ADMs. The first observation is that, if there is an
unpaired request i at the beginning of this step, a subgraph of type i + (i, j) is
an optimal subgraph for it. This is because it incurs a cost of at most 1 ADM
(at node 0) in this case, and in any other case it will incur a cost of at least
1 ADM (at node i). The second observation is that no two unpaired requests i
and j and a long request (i, j) can exist in R at this point. This is because in
this case they would incur a total cost of 1 in the triangle [i, j], and in any other
subgraph each one of them incurs a cost of 1, contradicting the optimality of the
triangles returned by TriangleOracle. In other words, no two short requests
i and j can “compete” for a long request (i, j), therefore greedily forming the
subgraphs i + (i, j) will not cause a conflict.

The correctness of step (6) is now almost straightforward. At this point we
are left with subgraphs of type i and 2i which might be merged to form bigger
subgraphs. It can be checked that all the other subgraphs can not be merged.
Moreover, these subgraphs can be merged only in pairs, namely pairs of the form
i + j, 2i + j, or 2i + 2j. Each such merging operation reduces the cost of the
solution by one ADM. Therefore the goal of the algorithm is to maximize the
number of these merging operations. This is equivalent to calculate the maximum
cardinality matching of the auxiliary graph built in step (6). ��

Following theabove result, our goal is tofindanalgorithmTriangleOracle(G, s)
that returns the setof trianglesof someoptimal solution.Having inmind the counter
examples presented at the beginning of this section,we present the following lemma
that gives a partial characterization of an optimal set of triangles.

Lemma 2. There is an optimal solution OPT with the following property: Let
T be the set of triangles of OPT and let [i, j] ∈ T . Then either si−dT (i) is even
or OPT contains a subgraph i + (i, j).

Proof. We consider the optimal solution OPT that having as set of triangles the
set T returned by the oracle. Let us also consider a triangle [i, j] ∈ T . Assume
that si − dT (i) is odd and there is no subgraph i + (i, j) in OPT . Then after
step (3) there will be an odd number of i requests left in R. Therefore there
will be one unpaired request i after step (4). This request will not participate
in a subgraph i + (i, j) at step (5) by the assumption. Therefore it will remain
unpaired in OPT . In this case we can obtain a solution OPT ′ from OPT by
removing the request i from the triangle [i, j], and moving it to the subgraph
containing this unpaired request without increasing the cost. If j has also this
property then this leads to a contradiction to the optimality of OPT , otherwise
OPT ′ is the claimed optimal solution. ��

54 I. Sau, M. Shalom, and S. Zaks

By Lemma 2 we can restrict ourselves to algorithms not returning any triangle
[i, j] in T if this causes si − dT (i) (or sj − dT (j)) to be odd. For this reason we
propose the following algorithm as a first attempt towards a TriangleOracle.

Algorithm TrianglesViaIFactor:
Input: A Graph G = (V, E), and a vector s of numbers indexed by V .
Output: A subgraph T of G.

(1) Define the function f : V → N as follows:

f(i) =
{

si, if si ≤ �i

�i − (si − �i) mod 2, otherwise

(2) Find a maximum I-factor T in G, where I(i) = [0, f(i)] for each i ∈ V .

Theorem 6. MultipleMatch2 is a 4/3-approximation for the Star Traffic

Grooming problem if it uses TrianglesViaIFactor as TriangleOracle.

Proof. Let ALG be a solution returned by the algorithm and let OPT be an
optimal solution. Let T ′ be the set of triangles of ALG \ OPT . Consider the
2 |T ′| short requests in these triangles (of ALG). Let x be the number of short
requests participating in the same subgraphs as these requests in OPT . Then
the cost of OPT satisfies

cost(OPT) ≥ 3
4
(2 |T ′|+ x) =

3
2
|T ′|+ 3

4
x

because these subgraphs are not triangles by the way T ′ is chosen, and in any
subgraph of another type a short request incurs a cost of 3/4 in average, the
best case being a subgraph of type 2i + 2j using 3 ADMs for 3 short requests.

On the other hand, the cost of ALG satisfies

cost(ALG) ≤ |T ′|+ x ≤ 3
2
|T ′|+ x

because all these x requests are either paired in S, or part of a subgraph of type
i + (i, j). In both cases each such request incurs a cost of at most 1. Comparing
the right hand sides of the above inequalities we conclude the claim. ��

However the proposed algorithm is not optimal, as the following lemma shows:

Lemma 3. There is an instance for which MultipleMatch2 using Trian-

glesViaIFactor as TriangleOracle returns a sub-optimal solution.

Proof. Consider the following instance, on a star with 4 leaves, with R = {(1, 2),
(2, 3), (3, 4), (4, 1), 1, 2, 2, 2, 2, 4, 4, 4, 4, 4}.

In this case G is a C4, � = (1, 1, 1, 1), s = (1, 4, 0, 5) the f = (1, 2, 0, 1), and
any maximum I-factor has cardinality 1. The oracle might return the singleton
T = {(1, 2)} which leads to a solution with a cost of 16 ADMs. On the other
hand, there is a solution with T ∗ = {(4, 1)} as the set of its triangles, implying
a cost 15 ADMs. ��

Traffic Grooming in Star Networks via Matching Techniques 55

5 Conclusions

We studied the traffic grooming problem in star networks when bifurcation is
not allowed. We presented a polynomial-time algorithm for the case of simple re-
quests, and gave some insight into the structure of an optimal solution. Though
the algorithm can be extended to the case of multiple long requests, the complex-
ity of the problem when multiple short requests are allowed remains unsolved.
We presented two approaches with good approximation guarantee using match-
ing techniques. We expect our techniques to lead to a polynomial-time algorithm
for the case g = 2. For instance, in the approach we presented in Section 4.2,
in order to obtain a polynomial-time algorithm for the problem it would be
enough to find the right gadgets that also capture the missing subgraphs. In
fact, the only subgraph we have not been able to capture is the quadruple given
by two pairs of short requests, so we suspect that either such a gadget may be
found, or the quadruple would probably play a distinguished role in a possible
NP-completeness proof.

While, according to our results, matching techniques prove to be very helpful
for the case g = 2, it is not clear how to use them for g > 2. It might well
be the case that more complicated techniques are needed to deal with higher
values of the grooming factor, even for this apparently simple network topology.
We believe that our study sheds light on the complexity of traffic grooming
for networks whose maximal degree is more than two. Among them, it will be
of interest to study the complexity of the problem for tree networks, bounded
degree networks, or planar networks.

References

1. Amini, O., Pérennes, S., Sau, I.: Hardness and Approximation of Traffic Grooming.
Theoretical Computer Science 410(38-40), 3751–3760 (2009)

2. Bermond, J.-C., Braud, L., Coudert, D.: Traffic grooming on the path. Theoretical
Computer Science 384(2-3), 139–151 (2007)

3. Brackett, C.A.: Dense wavelength division multiplexing networks: principles and
applications. IEEE Journal on Selected Areas in Communications 8, 948–964 (1990)

4. Chow, T., Lin, P.: The ring grooming problem. Networks 44(3), 194–202 (2004)
5. Chung, N.K., Nosu, K., Winzer, G.: Special issue on dense wdm networks. IEEE

Journal on Selected Areas in Communications 8 (1990)
6. Diestel, R.: Graph Theory, vol. 173. Springer, Heidelberg (2005)
7. Dutta, R., Rouskas, N.: Traffic grooming in WDM networks: Past and future. IEEE

Network 16(6), 46–56 (2002)
8. Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Approximating

the Traffic Grooming Problem in Tree and Star Networks. Journal of Parallel and
Distributed Computing 68(7), 939–948 (2008)

9. Flammini, M., Moscardelli, L., Shalom, M., Zaks, S.: Approximating the Traffic
Grooming Problem. Journal of Discrete Algorithms 6(3), 472–479 (2008)

56 I. Sau, M. Shalom, and S. Zaks

10. Gargano, L., Vaccaro, U.: Routing in All–Optical Networks: Algorithmic and
Graph-Theoretic Problems. In: Numbers, Information and Complexity, Kluwer
Academic, Dordrecht (2000)

11. Huang, S., Dutta, R., Rouskas, G.: Traffic Grooming in Path, Star, and Tree Net-
works: Complexity, Bounds, and Algorithms. IEEE Journal on Selected Areas in
Communications 24(4), 66–82 (2006)

12. Li, Z., Sau, I.: Graph Partitioning and Traffic Groomingwith Bounded Degree Re-
quest Graph. In: Paul, C. (ed.) WG 2009. LNCS, vol. 5911, pp. 250–261. Springer,
Heidelberg (2009)

13. Muñoz, X., Sau, I.: Traffic Grooming in Unidirectional WDM Rings with Bounded
Degree Request Graph. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma,
D. (eds.) WG 2008. LNCS, vol. 5344, pp. 300–311. Springer, Heidelberg (2008)

14. Pulleyblank, R.: Faces of Matching Polyhedra. PhD thesis, University of Waterloo
(1973)

15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

16. Zhu, K., Mukherjee, B.: A review of traffic grooming in wdm optical networks:
Architecture and challenges. Optical Networks Magazine 4(2), 55–64 (2003)

Event Extent Estimation�

Marcin Bienkowski1, Leszek Gąsieniec2, Marek Klonowski3,
Miroslaw Korzeniowski3, and Stefan Schmid4

1 Institute of Computer Science, University of Wrocław, Poland
2 Department of Computer Science, The University of Liverpool, UK

3 Wroclaw University of Technology, Poland
4 Deutsche Telekom Laboratories / TU Berlin, Germany

Abstract. This paper studies local-control strategies to estimate the
size of a certain event affecting an arbitrary connected subset of nodes
in a network. For example, our algorithms allow nodes in a peer-to-peer
system to explore the remaining connected components after a Denial-of-
Service attack, or nodes in a sensor network to assess the magnitude of
a certain environmental event. In our model, each node can keep some ex-
tra information about its neighborhood computed during the deployment
phase of the network. On the arrival of the event, the goal of the active
nodes is to learn the network topology induced by the event, without the
help of the remaining nodes. This paper studies the tradeoffs between
message and time complexity of possible distributed solutions.

1 Introduction

This paper attends to the problem of how nodes in a network can efficiently learn
about (or deal with) the effects of a certain event. We assume that before the
event takes place, e.g., during network deployment, nodes have sufficient time to
perform certain pre-computations. Then, at some unknown time point, an event
activates an arbitrary subset of nodes. We investigate distributed algorithms
that allow the activated nodes to gather necessary information about the event
in an efficient, cooperative manner — without the help of the remaining nodes.
In particular, our algorithms allow these nodes to learn the topology induced by
affected nodes.
For example, consider a peer-to-peer network which is hit by a virus spreading

along the topology, or which is under a denial-of-service attack. After the attack,
the goal of the surviving peers is to learn about the remaining functional peers
in their respective connected component, e.g., in order to trigger a best-effort
recovery of both data and topology.
Natural disaster detection is another motivation for our model. Today, many

observation systems are used to monitor a certain endangered area and to warn
about floods, fires, or earthquakes in time, to prevent larger damage. Besides

� Supported by MNiSW grant number N206 257335, 2008-2011, PBZ/MNiSW/
07/2006/46.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 57–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

58 M. Bienkowski et al.

global solutions like satellite systems, there is a trend towards distributed mon-
itoring with wireless sensor nodes that are distributed in space (see e.g. [3] for
detecting seismic events). Our algorithms can be useful in this context: they al-
low for computing the number of other nodes observing a certain phenomenon.
In our work, we assume that the nodes which are not activated by the event

are inactive (or faulty) and cannot participate in the communication nor in
the computation. This is clear in our peer-to-peer example, as the nodes at-
tacked by the virus may simply be down or crashed. In order to motivate this
assumption in a sensor network, consider the situation where nodes are in an
energy-parsimonious sleeping mode and only wake up in case of some external
physical influence, triggered by the event.

1.1 Model

This work assumes an arbitrary undirected network or graph G = (V, E) of
n = |V | nodes and m = |E| edges. We consider a synchronous model where
algorithms proceed in rounds and where the event happens at a globally unique
time t0. At this time, a subset of the nodes become active, the remaining ones
are inactive. The goal of the active nodes is to find out about other active nodes.
In our model, we assume that the nodes have sufficient time to perform ar-

bitrary preprocessing operations at times t < t0, e.g., to learn the topology.
In particular, we assume that nodes choose unique IDs from {1, ..., n} in the
preprocessing stage. Our algorithms hence work in two stages, where in the first
“offline” stage nodes do preprocessing, and in the second “event” stage, the actual
event is explored. During our analysis, we are mainly interested in the complex-
ities of the second stage. A novelty of the problem studied in this paper comes
from this division.
Henceforth, by V ′ ⊆ V we denote the subset of active nodes and by G′

subgraph of G induced by V ′. We note that G′ is not necessarily connected; we
call connected components of G′ active components. Let s = |V ′| be the number
of active nodes, and let δ denote the active diameter, i.e. the maximum diameter
of an active component.1 We aim at designing algorithms in which all active
nodes will learn about their active components; in particular, nodes will learn
the size of their components. Observe that usually, once there is at least one
node vG′ ∈ G′ with this knowledge in a component G′, vG′ can subsequently
inform all other nodes in G′ along a corresponding spanning tree. Hence, in the
following, we sometimes concentrate on this case only, given that sending this
information along the spanning tree does not change the asymptotic complexity.
We strive to optimize two criteria: First, our algorithms should have a good re-

action time (time complexity). We measure the time (i.e., the number of rounds)
until all active nodes know the IDs of the other active nodes in their active com-
ponent. In each round, the nodes can perform arbitrary local computations and
communicate with their neighbors in the network.

1 Observe that the active diameter can be much larger than the diameter. For instance,
in a

√
n ×√

n-grid, the active diameter can be linear in n.

Event Extent Estimation 59

Second, we want the algorithm to send as few messages as possible (message
complexity). We assume that in a round, each node can send a (different) message
to each neighbor. Each such message costs a unit of energy, independently of the
neighbor being active or not. We are interested in the total number of messages
sent by all active nodes and our focus is on feasibility, so — in the lines of the
LOCAL model [11] — we do not restrict the size of messages. Notice however
that at time t0 nodes do not know which of their neighbors are active and
which are not. They have to deduce this knowledge from the protocol and the
communication pattern in subsequent rounds.

1.2 Related Work

There is a considerable scientific interest in distributed monitoring and alarming
systems. For instance, there are approaches to detect the boundaries of a toxic
leach [6] or monitoring mechanisms to defend against Internet worms [7]. Our
work is also related to literature on robustness of overlay networks, where nodes
need to reorganize after an attack in an efficient manner [5].
Our paper belongs to the field of local algorithms where computations are

performed by repeated interactions of nodes with their neighbors. Our problem
formulation is reminiscent of classic problems such as leader election, and indeed,
most of our algorithms implicitly solve this problem. However, we can identify at
least two interesting and new aspects of our model. First, our algorithms adapt
themselves to the environment, in the sense that the runtime and the number of
messages is smaller for fewer active nodes. Several papers recently investigated
local solutions for global problems for which the runtime depends on the concrete
problem input [2], rather than considering the worst-case over all possible inputs:
if in a special instance of a problem the input behaves well, a solution can be
computed quickly. Second, we assume that only active nodes can participate in
the computations, while the number of active nodes is not known in advance.
Thus, preprocessing the graph appears to be of limited use, as any precomputed
coordination points or infrastructure may not be active later. This poses a higher
demand on efficient coordination primitives during runtime.
It is interesting to compare our work to the disaster disclosure problem intro-

duced by Mans et al. [9] — the closest paper to our work. In [9], it is assumed
that nodes that did not sense an event can participate in the coordinated explo-
ration of a disaster. For example, this so-called “on-duty model” is meaningful
in sensor networks where all nodes are regularly “online” in order to exchange
status updates and can start collaborating on demand. In contrast, in the model
studied in our work, we try to capture a scenario where certain nodes are not
available during the distributed computations after the event; this so-called “off-
duty model” has been stated as an open research direction in [9]. Despite the
similar nature of the on-duty and the off-duty model, the two problems exhibit
a different structure. This is due to the fact that in the on-duty model, nodes
can heavily rely on computations done during the pre-processing phase. Indeed,
the approach taken in [9] relies on a hierarchy of “leaders” elected during de-
ployment. However, in the off-duty model the use of such local coordinators is

60 M. Bienkowski et al.

out of question: they may be unavailable during the event exploration phase.
This has implications both on the design of algorithms as well as the achievable
performance.

1.3 Our Contribution

This paper initiates the study of a new model for estimating the size of an event,
where the affected nodes need to coordinate without the help of the remaining
nodes. The task is non-trivial, because nodes do not know the structure of the
active component in advance. On the other hand, we aim to make the runtime
and the number of messages dependent on the size of the affected node set and
not on the size of the network. In this work, we study the tradeoffs between the
runtime and the number of messages needed to solve the task.
We begin our investigations with a case study of one-hop networks (i.e., com-

plete graphs, see Section 2). We describe a natural and simple algorithm family
Group, where nodes organize in groups of increasing sizes. Subsequently, we
describe a randomized Las Vegas approach Rand where nodes seek to “guess”
the number of active nodes in order to coordinate. In expectation, the algorithm
requires time O(log(n/s)) and O(n) messages. In Section 3, we complement our
insights on clique algorithms with lower bounds. We show that our problem
requires an understanding of the intriguing interplay of time and message com-
plexity, and use Turán’s theorem together with the concept of primary schedules
to show that the product of time and message complexity of any deterministic
algorithm is at least Ω(n log log n). This proves that our results for clique are
optimal up to logarithmic factors.
Section 4 proceeds to examine arbitrary topologies. We first discuss general

graph searching techniques combined with waiting techniques, and then intro-
duce a preprocessing scheme, which allows each node to locally and efficiently de-
tect its active neighbors. The complexity of this scheme depends on a graph’s ar-
boricity, i.e., the forest cover size. Given this construction, we present theMinID
algorithm with time complexity O(s log s) and message complexity O(αs log s),
i.e., its performance only depends on the event size s and the graph arboricity α.
Motivated by our results for general graphs, we tackle the important case of

planar graphs (Section 5), which are known to have constant arboricity. There
the time and message complexities of our algorithm MinID are optimal up to
an O(log s) factor. We also show that the message complexity can be improved:
using the Planar Separator Theorem, we construct a graph decomposition ap-
proach resulting in an algorithm family k-Sep which yields optimal message
complexity and non-trivial time.

2 The Clique

To start our scrutinies and to get acquainted with the model, we consider the
case of one-hop networks. Note that in such networks, active nodes form only one
connected component. Clearly, here a broadcast by all active nodes is already

Event Extent Estimation 61

time-optimal, but it requires s · (n − 1) messages. We therefore study a nat-
ural class of algorithms called Group where nodes organize themselves recur-
sively into groups. Subsequently, we extend our scope to randomized algorithms
and study an efficient algorithm Rand which tries to estimate the active set
cardinality.

2.1 The Algorithm Group

The algorithm Group uses an integer parameter k ∈ {2, . . . n}. For simplicity
of description, we assume that logk n is an integer as well. We further assume
that node identifiers are written as (logk n)-digit strings, where each digit is
an integer between 0 and k−1. This implicitly creates the following hierarchical
partitioning of all nodes into clusters. The topmost cluster (on level logk n)
contains all nodes and is divided into k clusters, each consisting of n/k nodes,
where cluster i contains all the nodes whose first digit is equal to i. Each of
these clusters is also partitioned into k clusters on the basis of the second digit
of identifiers. This partitioning proceeds to leafs, which are 0th level clusters,
each containing a single node. We call a cluster active if it contains at least one
active node.
Group works in logk n phases, where in the ith phase we are dealing with

clusters on level i. We inductively require that at the beginning of the phase,
there is a leader in each ith level active cluster; the leader knows all the active
nodes within its cluster and all these nodes know the leader. Thus, at the end
of the phase logk n, all nodes constitute a single cluster and its leader knows the
set of all active nodes.
To study what happens in the ith phase, we concentrate on a single (i + 1)th

level cluster A. (The procedure is performed in all such clusters independently
in parallel.) A consists of k ith level clusters, denoted A1, A2, . . . , Ak, which
will merge in this phase. Moreover the leader of A is the node with smallest
ID amongst leaders of active clusters Ai. The merging procedure comes in two
flavors: parallel (Par) and sequential (Seq).
In the Par variant, a phase lasts two rounds. In the first round, the leaders of

clusters Aj broadcast a “hello message” to all nodes from these clusters. All the
active nodes among them answer with a message to a leader with the smallest
identifier, and this node becomes a leader of the (i + 1)th level cluster.
In the Seq variant, the phase lasts for k+1 rounds. For j ≤ k, in the jth round,

the leader of cluster Aj broadcasts a hello message to all nodes from A, provided
such a message was not sent already. The nodes which hear the message, answer
in the next round, and the leader that transmitted the broadcast becomes a
leader of the next higher level cluster, the (i + 1)th level cluster.

Theorem 1. Fix any 1 ≤ � ≤ log n. Then there exists a parameterization of
the algorithm Group which solves the problem using O(�) rounds and O(n ·
� · min{n1/�, s}) messages and there exists a parameterization, which solves it
using O(� · n1/�) rounds and O(n · �) messages.
Proof. We measure the time and message complexity of the Group algorithm
using variants Par and Seq for all levels and choosing k = n1/�, i.e. logk n = �.

62 M. Bienkowski et al.

Fig. 1. Performance comparison of different clique algorithms. Black dots represent
different algorithms and the black line indicates the trade-offs achievable with the
Group algorithm. Darker regions represent infeasibility results.

Clearly, in the Par variant, the algorithm needs 2 · logk n = O(�) rounds. As for
the message complexity, we look at a single phase i. In the first round of this
phase, each node gets a hello message from at most min{k, s} leaders and sends
a reply. Therefore, the algorithm uses at most 2 ·min{k, s} · n · logk n = O(n · � ·
min {n1/�, s}) messages. The variant Seq requires (k + 1) · logk n = O(� · n1/�)
rounds. Then, in a single phase, each node gets at most one hello message and
answers at most once. Thus, the total number of messages transmitted is at most
2 · n · logk n = O(n · �). ��

We observe that the best time×message-product is achieved for � = log n, in
which case Group solves the problem in time O(log n) using O(n log n) mes-
sages. Note that Group can be regarded as a generalization of two graph search
techniques: the extreme cases require 1 round or n messages and correspond to
parallel or sequential flooding of the graph by active nodes. These trade-offs are
depicted in Figure 1.

2.2 Randomized Cardinality Guessing

In this section, we extend our analysis to randomized approaches. The idea
behind our algorithm Rand is to approximately “guess” the number of active
nodes. For succinctness of the description, we assume that n is a power of 2.
Rand proceeds in log n + 1 phases, numbered from 0 to log n, each consisting
of two rounds. In the first round of the ith phase, each node — with probability
pi = 2i/n— broadcasts a hello message to all other nodes. In the second round
active nodes reply. After a phase with a broadcast, the algorithm terminates.
The Las Vegas algorithm Rand always solves the problem, as in phase log n
each node performs a broadcast (with probability 1).

Theorem 2. On expectation, Rand terminates in O(log(n/s)) rounds and uses
O(n) messages.

Proof. Let k = �log(n/s)�, i.e., 2k−1 < n/s ≤ 2k. Then, phase k is the first
phase in which the broadcast probability of each node reaches 1/s, i.e., pk ∈

Event Extent Estimation 63

[1/s, 2/s). It is sufficient to show that the algorithm makes its first broadcast
around phase k, and, in expectation, it makes a constant number of broadcasts.
Let Ei denote an event that Rand does not finish till phase i (inclusive),

i.e., there was no broadcast in phases 1, 2, . . . , i. Let τ be a random variable
denoting the number of phases of Rand. Then, E[τ] =

∑log n
i=1 Pr[τ ≥ i] =∑log n−1

i=0 Pr[Ei] ≤
∑k−1

i=0 1 +
∑log n−k−1

j=0 Pr[Ek+j].
To bound the last term, we first observe that the necessary condition for Ei

is that no node transmits in phase i. Hence, Pr[Ei] ≤ (1 − pi)s, and thus for
0 ≤ j ≤ log n− k − 1,

Pr[Ek+j] =
(

1− 2k+j

n

)s

≤
(

1
e

) 2k+j

n ·s
≤ e−2j

.

Therefore, E[τ] ≤ k + O(1).
Now, we upper-bound the number of transmitted messages. Let Xi be a ran-

dom variable denoting the number of nodes transmitting in phase i. Then,
E[Xi|Ei−1] = s · pi. The expected total number of transmitted messages is then

E

[log n∑
i=0

Xi

]
=

k+1∑
i=0

E[Xi|Ei−1] · Pr[Ei−1] +
log n−k−1∑

j=1

E[Xk+j+1|Ek+j] · Pr[Ek+j]

≤
k+1∑
i=1

s · pi · 1 +
log n−k−1∑

j=1

s · pk+j+1 · e−2j

≤ 4 · s · pk + s · pk

∞∑
j=1

(
2j+1 · e−2j

)
= O(s · pk) = O(1) .

As the expected number of broadcasts is constant, the expected number of mes-
sages is O(n). ��

3 Lower Bounds

Our bounds from the previous section raise the question of what can and cannot
be achieved in distributed event size estimation. Hence, we turn our attention
to lower bounds. Clearly, in any graph, an algorithm solving the problem needs
Ω(δ) rounds, as there exists a pair of active nodes in distance δ and any node has
to communicate with both of them. Also, each active node has to send or hear
at least one message, and therefore the total communication is at least Ω(s).
Below we again concentrate on cliques. Fix any deterministic algorithm Alg,

and assume that only node i is active. Then i transmits messages in some par-
ticular order, which we call a primary schedule for i. Note that for any starting
set of active nodes, Alg uses the primary schedule for i as long as i does not
receive a message from other nodes. For succinctness, we say that Alg p-sends

64 M. Bienkowski et al.

a message in round �, meaning that the primary schedule ofAlg sends a message
in round �. We say that two nodes p-contact if one of them p-sends a message
to the other. Using an averaging argument, we may find a pair of nodes which
p-contact after transmitting many messages.

Lemma 1. For any deterministic algorithm for the clique and for any subset
of k nodes A, there exists a pair of nodes v, v′ ∈ A which p-contact only after
either of them p-sends at least k/2− 1 messages.

Proof. First, we observe that the total number of messages in all primary sched-
ules is at least

(
k
2

)
. Otherwise, there would exist a pair of nodes which never

p-contact. In effect, if the algorithm is run on an instance where only these
two nodes are active, it cannot solve the problem, as none of these nodes can
distinguish between instances where the second node is active or inactive.
For simplicity of the description, we assume that messages are p-sent sequen-

tially. The j-th message of node i receives label j. An edge between node i and i′

receives the label which is the minimum of the labels of messages sent from i
to i′ and from i′ to i. It is therefore sufficient to show that there exists an edge
with label at least k/2. Assume the contrary, i.e., all edges have labels of at most
k/2− 1. Then the label of any message would be at most k/2− 1, which would
imply that the total number of p-sent messages is k · (k

2 − 1) <
(
k
2

)
. ��

By Lemma 1, it is possible, for any given algorithm, to choose two active nodes
in a clique, so that they contact after sending Ω(n) messages. In a similar way,
we may show that the Ω(n)-message bound holds for an arbitrary number of
active nodes.

Corollary 1. The number of messages sent by any deterministic algorithm in
a clique is at least Ω(n).

Theorem 3. For any fixed s and n, there exists an n-node graph, such that for
any algorithm for this graph, there exists an instance of the problem with s active
nodes, on which the algorithm performs Ω(n) message transmissions.

Proof. Fix any s ≤ n. If s ≥ n/2, then the theorem follows immediately in any
graph by the trivial Ω(s) lower bound.
Otherwise, we assume that s < n/2 and we construct a graph, in which

a choice of s−2 active nodes is already fixed in a way which cannot help meeting
the remaining two active nodes. The graph is depicted in Figure 2. Its nodes are
partitioned into three sets: a chain S0 of s− 2 nodes, and sets S1, S2 containing
�(n− s + 2)/2� and �(n− s + 2)/2� nodes, respectively. Sets S1 and S2 form a
complete bipartite graph.
The algorithm is run on an instance where all s − 2 nodes of S0 are active,

and exactly one node vi ∈ S1 and one node vj ∈ S2 is active. We show that
there exists a pair of nodes vi, vj which contact after sending Ω(n) messages.
As vi knows that all nodes from S0 are active, its primary schedule is not

affected if it contacts or is contacted by a node from S0. This time we consider
only nodes from S1 and S2 and messages crossing the edges between these two

Event Extent Estimation 65

Fig. 2. Illustration of the lower bound for arbitrary number of active nodes

sets. The total number of such messages in all primary schedules have to be at
least |S1| · |S2|. Using the same labeling technique as in the proof of Lemma 1,
it is straightforward that there exists an edge between S1 and S2 with label
at least f = |S1|·|S2|

|S1|+|S2| , as otherwise the total number of messages would be
(|S1|+ |S2|) · (f − 1) < |S1| · |S2|. Since f ∈ Ω(n), the theorem follows. ��

The following theorem sheds light on the tradeoff between time and message
complexity.

Theorem 4. Fix any deterministic algorithm ALG that solves the problem in a
clique using Time rounds andMsg messages. Then Time·Msg = Ω(n·log log n).

Proof. We assume that log log n ≥ 4. We consider the first t rounds of the nodes’
primary schedules, where t = log(log n/ log log log n) = Ω(log log n).
First, assume that there exists a subset A of n/2 nodes, each p-sending less

than n/4 messages in the first t steps. By Lemma 1, there exists a pair of nodes
v, v′ ∈ A, which first contact after one of them sends at least |A|/2−1 = n/4−1
messages. Thus, if we start Alg on a graph where only v and v′ are active, it
takes at least n/4 messages and time t.
Hence, in the remaining part of the proof, we assume that there is a set B0 of

at least n/2 nodes, each p-sending at least n/4 messages within the first t steps.
We create a sequence of sets {Bi}t

i=0, such that Bi is a maximum subset of
Bi−1 with the property that no two nodes of Bi p-send a message to each other
in round i. By induction, no node from Bi p-sends a message to another node
from Bi within the first i steps. Let h = 1

2 · log log n. We show the following
property:

Assume that for all i ≤ t−1, the nodes of Bi p-send in total at most hn/4
messages in round i. Then for all i ≤ t, it holds that |Bi| ≥ n

2·(2h)2i−1 .

We prove the property inductively. The initial case of i = 0 holds trivially. Fix
any round i ≤ t. In round i− 1 the nodes of Bi−1 p-sent at most hn/4 messages
to themselves. Consider a graph on nodes from Bi−1, in which an edge exists
between a pair of nodes if they contact in round i−1. The average degree in this

66 M. Bienkowski et al.

graph is (h·n)/(2·|Bi−1|) and by Turán’s theorem [1], there exists an independent
set Bi of size

|Bi| ≥
|Bi−1|

1 + h·n
2·|Bi−1|

≥ |Bi−1|2
h · n ≥ n2

4 · (2h)2i−2 · h · n =
n

2 · (2h)2i−1 .

In our context, independence means that the nodes of Bi do not p-contact each
other in round i.
Finally, we show how the theorem follows by the property above. If there

exists a round i ≤ t − 1 in which nodes of Bi p-send at least hn/4 messages,
then we run Alg on a graph where only nodes of Bi are active and the theorem
follows immediately. Otherwise, Bt contains at least n/(2 · (2h)2

t−1) ≥ 2 nodes.
Then, if we run Alg on a graph where only nodes of Bt are active, they do not
contact within the first t steps and each of them sends at least n/4 messages. ��

4 Arbitrary Graphs

In this section, we construct algorithms that perform well on arbitrary graphs.
First, we note that it is possible to implement distributed depth/breadth first
search (DFS/BFS) procedures in our environment.

Lemma 2. A distributed DFS procedure initiated at a single node finishes in
time O(s) using O(n) messages. BFS uses O(δ) rounds and O(m) messages.

Proof. A BFS procedure is just a simple flooding and its time and message
complexities are straightforward.
As for DFS, we fix a starting node. We say that this node holds the “token”:

the token indicates the node that would be processed in the centralized DFS.
This token is a table of current knowledge about all the nodes: nodes are either
known to be active, known to be inactive or have unknown state. During our
procedure, the token node tries to forward the token to the neighbor which would
be next on the DFS tree. This is done as follows. First, the token node “pings”
all its neighbors with unknown state and active neighbors respond immediately.
Then like in the centralized DFS algorithm the token is passed to any unvisited
active node, and if there is none, the token is sent back to the node from which it
came. As DFS proceeds along the DFS tree spanning all active nodes in a single
component, it takes time O(s). In the process of gaining knowledge each node
changes its state just once, so the number of messages is O(n). ��

These procedures are useful if there is a predefined leader. Otherwise, we have
to start this procedure at all (active) nodes utilizing some level of parallelism.

Lemma 3. For arbitrary graphs, for any 1 ≤ k ≤ n, there exists an algorithm k-
WaitDFS, which solves the problem in O(n2/k) rounds using O(min{k, s} · n)
messages. There also exist algorithms ParDFS, solving the problem in O(s)
rounds using O(s·n) messages and ParBFS which takes time O(δ) and performs
O(m · s) message transmissions.

Event Extent Estimation 67

Fig. 3. Performance comparison of different algorithms for arbitrary graphs

Proof. In general, our problem can be solved by running s instances of DFS in
parallel. We call this algorithm ParDFS. Obviously, it runs in time O(s) and
uses O(s · n) messages.
One way to reduce the number of messages is to have a graded start of the DFS

procedures. Of course, as we do not know which nodes are active, we may need to
wait for potentially inactive nodes. Concretely, in our algorithm k-WaitDFS, we
exploit the fact that the nodes are ordered in the preprocessing stage (i.e. they
have IDs from 1 to n). We divide time into �n/k� phases of length Θ(n). This
length is chosen in such a way that for any choice of the active nodes, the
worst-case execution of a DFS initiated at any node ends within one phase.
In phase i, we define a subset of busy nodes. These are nodes with identifiers
between k · (i− 1) + 1 and k · i, which have not participated in any DFS so far.
All nodes which are active and busy start their DFS procedures, transmitting
in total at most O(min{k, s} · n) messages in one phase. In the worst-case, the
algorithm finishes after �n/k� phases, i.e., after O(n2/k) rounds.
If we only care about the time complexity, the optimal algorithm initiated by

a single node is a BFS (i.e., flooding). Again, we have to cope with an issue of
choosing the node which initiates such a search; in the algorithm ParBFS, all
nodes perform a BFS concurrently. ��

In the remaining part of this section, we first present a technique for efficient
neighborhood discovery and later use it in an algorithm MinID, whose perfor-
mance is output-sensitive and depends, besides s, only on the arboricity of the
graph.

4.1 Neighborhood Discovery

So far, the preprocessing stage was used for assigning identifiers to nodes only.
In the following, we assume that the nodes pre-compute a list of neighbors they
will contact if they get activated by the event.
We employ the concept of the arboricity of an arbitrary graph G which

is defined as the minimum number of forests α that are required to cover
all edges in G. During preprocessing of the network, we compute respective
rooted spanning forests F = {F1, F2, .., Fα}. We note that this decomposition

68 M. Bienkowski et al.

can be performed in polynomial time [4,10]). For any node v, we define a set
Nv = {w : ∃Fj ∈ F , s.t. w is a parent of v in Fj}.
In the first round of the event stage, every active node v “pings” all nodes

from Nv. At the same time it receives similar probing messages from some of
its active neighbors. Pinged active nodes reply in the second round. We observe
each active node receives a ping or a reply from each of its active neighbors, and
thus learns its active neighborhood.
The neighborhood discovery is performed in two rounds. As each active node

v sends |Nv| ≤ α test messages followed by the transmission of |Nv| receipts, the
total communication complexity is at most O(αs).

4.2 The MinID Algorithm

In the preprocessing phase of MinID, the algorithm assigns identifiers to nodes,
discovers the topology, and computes trees {Fj}α

j=1 as described above. In the
first two rounds of the event stage, using O(αs) messages, each node learns about
its active neighbors. Then a leader election is performed in the way described
below. First, we present the algorithm under the assumption that s is known;
later we show that this assumption is not critical for our analysis.
The discovery of active components is performed by leader election, where

the node with the smallest index distributes its index to everyone else in the
component. The algorithm proceeds in 2 log s phases. Initially, each active node
v defines its own cluster Cv = {v}, with v acting as the leader. In due course the
number of clusters is reduced, s.t., after at most 2 log s phases a single cluster
containing all active nodes in the component is formed. At any time two clusters
Ci and Cj are neighbors if there exists an edge (v, w) connecting two active
nodes v ∈ Ci and w ∈ Cj .
We also assume that before entering a new phase each cluster is supported

by a spanning tree rooted in the leader. Note that the Euler tour defined on
edges of the spanning tree allows to visit all nodes in the cluster in time at
most 2s, e.g., by a token released by the leader. Each cluster Ci is visited by
the token three times. During the first visit at each node v ∈ Ci, the token
distributes the index i to the entire Ci and all active neighbors of Ci in different
clusters. During the second visit, the token collects information about indices
of neighboring clusters and it picks the Cj with the smallest index j. If j < i,
during the third consecutive visit, the token distributes j to all nodes in Ci to
inform them that they are now destined for Cj .
Let GC be a digraph in which the set of nodes is formed of clusters Ci and

where there is an arc from Cj to Ci iff nodes of Ci are destined for Cj . A
node Cw with in-degree 0 in GC corresponds to a cluster that during this phase
spreads its index to all other clusters reachable from Cw according to the directed
connections in GC . Note also that since the maximum in-degree of nodes in GC

is 1, each cluster with in-degree 1 will receive a new index from exactly one
cluster. The process of reindexing is performed by a DFS procedure initiated by
the leader in each cluster Cw with in-degree 0 in GC and it is extended to the
nodes of all (not only neighbors) clusters reachable from Cw (according to the

Event Extent Estimation 69

connections in GC). The three visits along Euler tours followed by reindexing
take time O(s). The total communication complexity is O(αs), since every edge
is traversed a constant number of times.
It remains to show that during two consecutive phases the number of clusters

is reduced by half in non-trivial components (containing at least two clusters).
Two cases occur. The first case refers to “amalgamation” of clusters where any
cluster either delegates its nodes to some other cluster or is a cluster that provides
its index to some other clusters. In this case the number of clusters is reduced
by half after the execution of a single phase. The second case refers to clusters
whose indices form local minima in GC . If during the first phase such a cluster
Ci has a neighbor Cz that chooses to delegate its nodes to some other cluster
Cj we know that j < i and j is adopted as the new index of Cz. And since j < i
during the next phase Ci will fall into the first case as a cluster that delegates
its nodes to some other cluster. Thus, after at most 2 log s phases exactly one
cluster resides in each component. Hence, for a single phase, the total time is
O(s log s) and the total communication O(αs log s).
Finally, recall that the procedure presented above works under the assumption

that the value of s is known in advance. Since this is not the case we take an
exponentially increasing sequence of upper bounds 2, 4, .., 2i, .., 2�log n� on s, and
run our algorithm assuming for these consecutive powers of two, until the correct
bound on s is found. Note that when the algorithm runs with a wrong assumption
on the size of the component, the nodes eventually learn that the component
is larger than expected. The nodes in clusters that are about to expand too
much are informed by their leaders, and the nodes destined for other clusters,
if not contacted by the new leader on time, also conclude that the bound on
s is inappropriate. Thus, the process is continued until the appropriate bound
on s is found and then it is stopped. Therefore in total the time complexity in
a component of size s is bounded by

∑�log s�
i=1 O(2i · log 2i) = O(s log s). Similarly,

the total communication is O(αs log s).

Theorem 5. In a graph G with arboricity α, the deterministic algorithmMinID
finishes in O(s log s) rounds using O(αs log s) messages.

5 Planar Graphs

Some of our algorithms work much better for planar graphs. The arboricity of
a planar graph is 3 [10]. Thus, MinID runs in time O(s log s) using O(s log s)
messages.
If we run the DFS and BFS procedures (and their variants) after we perform

a neighborhood discovery presented in Section 4.1, then we may decrease the
number of used messages to O(s). These procedures are performed in a manner
that ignores the existence of non-active nodes. In particular, the number of
messages used by ParBFS is then O(s2).

70 M. Bienkowski et al.

Fig. 4. Performance comparison of different algorithms for planar graphs

Below we present an algorithm k-Sep, which is specially suited for planar
graphs. While its runtime is larger than that of MinID, its communication
cost is reduced. The performance of the aforementioned algorithms is depicted
in Figure 4.

5.1 Hierarchical Decomposition

We start our description from the preprocessing stage. Recall that the planar
separator theorem by Lipton and Tarjan [8] enables us to partition any set of
nodes V0 of a planar graph into three disjoint sets: a separator U0, s.t. |U0| ≤
c
√

n, and sets A0, B0 of sizes at most 2
3n, such that A0 and B0 are themselves

connected, but there is no edge between them. In the preprocessing stage, this
theorem is applied recursively starting from V to produce a binary decomposition
tree; if an internal node corresponds to a set V0 = U0�A0�B0, then its children
correspond to sets A0 and B0; each leaf contains a single node.
At the beginning of the event stage, the algorithm Sep performs a neighbor-

hood discovery. Then it proceeds recursively as described below. Sep starts from
the root of the tree, which corresponds to three sets V = V0 = U0 � A0 � B0.
It initiates |U0| DFS procedures sequentially, i.e., one after another, starting at
vertices of U0. These procedures are allowed to visit only nodes in V0; for the
execution of each of them we reserve O(|V0|) rounds. Moreover, a node which
already took part in any DFS, does not start its own DFS. Thus, if an active
component has a non-empty intersection with U0, say at a node v, then a DFS
in which v participates solves the task in this component. There are possibly
other active components. This is where the separating property comes into play:
such an active component is contained entirely inside A or inside B, and Sep is
run recursively in parallel for these sets.
To bound the number of messages, we observe that each active node partici-

pates in exactly one DFS, and thus O(s) messages suffice. To bound the number
of rounds, we observe that any separator set contains at most c

√
n vertices. Fur-

ther, the execution of a single DFS started within a set V0 takes time O(|V0|).
Therefore, the number of used rounds is at most O(c

√
n)·(n+ 2

3n+
(2

3

)2
n+. . .) =

O(n ·
√

n).
Using the same technique of setting the level of parallelism of DFS procedures

as in k-WaitDFS, we derive the following theorem.

Event Extent Estimation 71

Theorem 6. For any 1 ≤ k ≤ n, there exists an algorithm k-Sep, which solves
the problem in O(n ·

√
n/k) rounds, using O(min{s · k} · s) messages.

Proof. The algorithm k-Sep works essentially in the same way as the original
Sep algorithm, but within a single set V0 = U0�A0�B0 corresponding to a tree
node, it utilizes some level of parallelism in running DFS procedures. Namely,
an original Sep algorithm runs the 1-WaitDFS procedure there, whereas k-
Sep runs k-WaitDFS, where each of |U0| DFS procedures is run for O(|V0|)
steps. As in the analysis of the k-WaitDFS algorithm, this gives us at most
O(min{k, s} · s) messages and O((c ·

√
n/k) · |V0|) rounds.

In total, the algorithm also uses at most O(min{k, s} · s) messages, because
it stops after a successful DFS. The total number of rounds is then O(

√
n/k) ·

(n + 2
3n +

(2
3

)2
n + . . .) = O(n ·

√
n/k). ��

References

1. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, Chichester (1991)
2. Birk, Y., Keidar, I., Liss, L., Schuster, A., Wolff, R.: Veracity Radius: Capturing
the Locality of Distributed Computations. In: Proc. 25th ACM Symp. on Principles
of Distributed Computing (PODC), pp. 102–111 (2006)

3. Davison, A.: Laptops as Earthquake Sensors. In: MIT Technology Review (2008)
4. Gabow, H.N., Westermann, H.H.: Forests, Frames, and Games: Algorithms for
Matroid Sums and Applications. Algorithmica 7(1), 465–497 (1992)

5. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Taeubig, H.: A Polylogarithmic
Time Algorithm for Distributed Self-Stabilizing Skip Graphs. In: Proc. 28th ACM
Symposium on Principles of Distributed Computing, PODC (2009)

6. Jiang, C., Dong, G., Wang, B.: Detection and Tracking of Region-Based Evolving
Targets in Sensor Networks. In: Proc. 14th International Conference on Computer
Communications and Networks, ICCCN (2005)

7. Kim, H.-A., Karp, B.: Autograph: Toward Automated, Distributed Worm Signa-
ture Detection. In: Proc. 13th Usenix Security Symposium, Security (2004)

8. Lipton, R.J., Tarjan, R.E.: A Separator Theorem for Planar Graphs. SIAM Journal
of Applied Mathematics 36, 177–189 (1979)

9. Mans, B., Schmid, S., Wattenhofer, R.: Distributed Disaster Disclosure. In: Proc.
11th Scandinavian Workshop on Algorithm Theory, SWAT (2008)

10. Nash-Williams, C.S.J.: Edge-disjoint spanning trees of finite graphs. J. of London
Mathematical Society 36, 445–450 (1961)

11. Peleg, D.: Distributed Computing: A Locality-sensitive Approach, Philadelphia,
PA, USA. Society for Industrial and Applied Mathematics (2000)

Asynchronous Deterministic Rendezvous
in Bounded Terrains

Jurek Czyzowicz1,�, David Ilcinkas2,��,
Arnaud Labourel2,��,� � �, and Andrzej Pelc1,†

1 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada

{jurek,pelc}@uqo.ca
2 LaBRI, CNRS & Université de Bordeaux, 33405 Talence, France

david.ilcinkas@labri.fr, labourel.arnaud@gmail.com

Abstract. Two mobile agents (robots) have to meet in an a priori un-
known bounded terrain modeled as a polygon, possibly with polygonal
obstacles. Robots are modeled as points, and each of them is equipped
with a compass. Compasses of robots may be incoherent. Robots con-
struct their routes, but the actual walk of each robot is decided by the
adversary that may, e.g., speed up or slow down the robot. We consider
several scenarios, depending on three factors: (1) obstacles in the terrain
are present, or not, (2) compasses of both robots agree, or not, (3) robots
have or do not have a map of the terrain with their positions marked.
The cost of a rendezvous algorithm is the worst-case sum of lengths of
the robots’ trajectories until their meeting. For each scenario we design
a deterministic rendezvous algorithm and analyze its cost. We also prove
lower bounds on the cost of any deterministic rendezvous algorithm in
each case. For all scenarios these bounds are tight.

Keywords: mobile agent, rendezvous, deterministic, polygon, obstacle.

1 Introduction

The problem and the model. Two mobile agents (robots) modeled as points
starting at different locations of an a priori unknown bounded terrain have to
meet. The terrain is represented as a polygon possibly with a finite number of
polygonal obstacles. We assume that the boundary of the terrain is included in
it. Thus, formally, a terrain is a set P0 \ (P1 ∪ · · · ∪ Pk), where P0 is a closed
polygon and P1, . . . ,Pk are disjoint open polygons included in P0. We assume

� Partially supported by NSERC discovery grant.
�� Partially supported by the ANR project ALADDIN, the INRIA project CEPAGE

and by a France-Israel cooperation grant (Multi-Computing project).
� � � This work was done during this author’s stay at the Université du Québec en

Outaouais as a postdoctoral fellow.
† Partially supported by NSERC discovery grant and by the Research Chair in

Distributed Computing at the Université du Québec en Outaouais.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 72–85, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Asynchronous Deterministic Rendezvous in Bounded Terrains 73

that a robot knows if it is at an interior or at a boundary point, and in the
latter case it is capable of walking along the boundary in both directions (i.e., it
knows the slope(s) of the boundary at this point). However, a robot cannot sense
the terrain or the other robot at any vicinity of its current location. Meeting
(rendezvous) is defined as the equality of points representing robots at some
moment of time.

We assume that each robot has a unit of length (not necessarily the same
for the two agents) and a compass. Compasses of robots may be incoherent,
however we assume that robots have the same (clockwise) orientation of their
system of coordinates. An additional tool, which may or may not be available
to the robots, is a map of the terrain. The map available to a robot is scaled
(i.e., it accurately shows the distances), distinguishes the starting positions of
this robot and the other one, and is oriented according to the compass of the
robot. (Hence maps of different robots may have different North.)

All our considerations concern deterministic algorithms. The crucial notion is
the route of the robot which is a finite polygonal path in the terrain. The adver-
sary initially places a robot at some point in the terrain. The robot constructs
its route in steps in the following way. In every step, the robot starts at some
point v; in the first step, v is the starting point chosen by the adversary. The
robot chooses a direction α, according to its compass, and a distance x. If the
segment of length x in direction α starting in v does not intersect the boundary
of the terrain, the step ends when the robot reaches point u at distance x from
v in direction α. Otherwise, the step ends at the closest point of the boundary
in direction α. If the starting point v in a step is in a segment of the boundary
of the terrain, the robot has also an option (in this step) to follow this segment
of the boundary in any of the two directions until its end or for some given
distance along it. Steps are repeated until rendezvous, or until the route of the
robot is completed.

We consider the asynchronous version of the rendezvous problem. The asyn-
chrony of the robots’ movements is captured by the assumption that the actual
walk of each robot is decided by the adversary: the movement of the robot can
be at arbitrary speed, the robot may sometimes stop or go back and forth, as
long as the walk of the robot in each segment of its route is continuous, does not
leave it and covers all of it.1 More formally, the route in a terrain is a sequence
(S1, S2, . . . , Sk) of segments, where Si = [ai, ai+1] is the segment corresponding
to step i. In our algorithms the route is always finite. This means that the robot
stops at some point, regardless of the moves of the other robot. We now describe
the walk f of a robot on its route. Let R = (S1, S2, . . . , Sk) be the route of a
robot. Let (t1, t2, . . . , tk+1), where t1 = 0, be an increasing sequence of reals, cho-
sen by the adversary, that represent points in time. Let fi : [ti, ti+1] → [ai, ai+1]
be any continuous function, chosen by the adversary, such that fi(ti) = ai and

1 Notice that this definition of the adversary is very strong. In fact, all our positive
results (algorithms and their complexity) are valid even with this powerful adversary,
and our negative results hold even for a weaker adversary that can only speed up or
slow down the robot, without moving it back.

74 J. Czyzowicz et al.

fi(ti+1) = ai+1. For any t ∈ [ti, ti+1], we define f(t) = fi(t). The interpretation
of the walk f is as follows: at time t the robot is at the point f(t) of its route and
after time tk+1 the robot remains inert. This general definition of the walk and
the fact that it is constructed by the adversary capture the asynchronous charac-
teristics of the process. Throughout the paper, rendezvous means deterministic
asynchronous rendezvous.

Robots with routes R and R′ and with walks f and f ′ meet at time t, if points
f(t) and f ′(t) are equal. A rendezvous is guaranteed for routes R and R′, if the
robots using these routes meet at some time t, regardless of the walks chosen
by the adversary. The trajectory of a robot is the sequence of segments on its
route until rendezvous. (The last segment of the trajectory of a robot may be
either the last segment of its route or any of its segments or a portion of it, if
the other robot is met there.) The cost of a rendezvous algorithm is the worst
case sum of lengths of segments of trajectories of both robots, where the worst
case is taken over all terrains with the considered values of parameters, and all
adversarial decisions.

We consider several scenarios, depending on three factors: (1) obstacles in
the terrain are present, or not, (2) compasses of both robots agree, or not, (3)
robots have or do not have a map of the terrain. Combinations of the presence or
absence of these factors give rise to eight scenarios. For each scenario we design
a deterministic rendezvous algorithm and analyze its cost. We also prove lower
bounds on the cost of any deterministic rendezvous algorithm in each case. For
all scenarios these bounds are tight.

One final clarification has to be made. For all scenarios except those with
incoherent compasses and the presence of obstacles (regardless of the availability
of a map), robots may be anonymous, i.e., they execute identical algorithms. By
contrast, with the presence of obstacles and incoherent compasses, anonymity
would preclude feasibility of rendezvous in some situations. Consider a square
with one square obstacle positioned at its center. Consider two robots starting
at opposite (diagonal) corners of the larger square, with compasses pointing to
opposite North directions. If they execute identical algorithms and walk at the
same speed, then at each time they are in symmetric positions in the terrain
and hence rendezvous is impossible. The only way to break symmetry for a
deterministic rendezvous in this case is to equip the robots with distinct labels
(which are positive integers). Hence, this is the assumption we make for the
scenarios with the presence of obstacles and incoherent compasses (both with
and without a map). For any label μ, we denote by |μ| the length of the binary
representation of the label, i.e., |μ| = �log μ�+ 1.
Our results. The cost of our algorithms depends on some of the following
parameters (different parameters for different scenarios, see the discussion in
Section 4): D is the distance between starting positions of robots in the ter-
rain (i.e., the length of a shortest path between them included in the terrain),
P is the perimeter of the terrain, (i.e., the sum of perimeters of all polygons
P0,P1, . . . ,Pk), x is the largest perimeter of an obstacle, and l and L are the
smaller and larger labels of the two robots, respectively, for the two scenarios

Asynchronous Deterministic Rendezvous in Bounded Terrains 75

that require different labels, as remarked above., i.e., for the scenarios with the
presence of obstacles and incoherent compasses.

Our rendezvous algorithms rely on two different ideas: either meeting in a
uniquely defined point of the terrain, or meeting on a uniquely defined cycle.
It turns out that a uniquely defined point can be found in all scenarios except
those with the presence of obstacles and incoherent compasses. Apart from this
exception even anonymous robots can meet. On the other hand, with the pres-
ence of obstacles and incoherent compasses, such a uniquely defined point may
not exist, as witnessed by the above quoted example of a square with one square
obstacle positioned at its center. For these scenarios we resort to the technique
of meeting at a common cycle, breaking symmetry by different labels of robots.

We first summarize our results concerning rendezvous when each of the robots
is equipped with a map showing its own position and that of the other robot. If
compasses of the robots are coherent, then we show a rendezvous algorithm at
cost D, which is clearly optimal. Otherwise, and if the terrain does not contain
obstacles, then we show an algorithm whose cost is again D, and hence opti-
mal. Finally, with incoherent compasses in the presence of obstacles, we show a
rendezvous algorithm at cost O(D|l|); in the latter scenario we show that cost
Ω(D|l|) is necessary for some terrains.

Our results concerning rendezvous without a map are as follows. If compasses
of the robots are coherent, then we show a rendezvous algorithm at cost O(P).
We also show a matching lower bound Ω(P) in this case. If compasses of the
robots are incoherent, but the terrain does not contain obstacles, then we show
a rendezvous algorithm at cost O(P) and again a matching lower bound Ω(P).
Finally, in the hardest of all scenarios (presence of obstacles, incoherent com-
passes and no map) we have a rendezvous algorithm at cost O(P + x|L|) and a
matching lower bound Ω(P +x|L|). Table 1 summarizes our results. Due to lack
of space, some proofs are removed.

Table 1. Summary of results

Rendezvous with a map Rendezvous without a map
�������obstacles

compasses
coherent incoherent

�������obstacles
compasses

coherent incoherent

no
D

D no
Θ(P) Θ(P)

yes Θ(D|l|) yes Θ(P + x|L|)

Related work. The rendezvous problem was first described in [24]. A detailed
discussion of the large literature on rendezvous can be found in the excellent book
[4]. Most of the results in this domain can be divided into two classes: those con-
sidering the geometric scenario (rendezvous in the line, see, e.g., [16,25], or in
the plane, see, e.g., [7,8]), and those discussing rendezvous in graphs, e.g., [2,5].
Some of the authors, e.g., [2,3,6] consider the probabilistic scenario where inputs
and/or rendezvous strategies are random. Randomized rendezvous strategies use

76 J. Czyzowicz et al.

random walks in graphs, which were thoroughly investigated and applied also
to other problems, such as, e.g., graph traversing [1]. A generalization of the
rendezvous problem is that of gathering [15,18,19], when more than two robots
have to meet in one location.

If graphs are unlabeled, deterministic rendezvous requires breaking symmetry,
which can be accomplished either by allowing marking nodes or by labeling the
robots. Deterministic rendezvous with anonymous robots working in unlabeled
graphs but equipped with tokens used to mark nodes was considered e.g., in [21].
In [26] the authors studied the task of gathering many robots with unique la-
bels. In [14,20,27] deterministic rendezvous in graphs with labeled robots was
considered. However, in all the above papers, the synchronous setting was as-
sumed. Asynchronous gathering under geometric scenarios has been studied,
e.g., in [11,15,22] in different models than ours: robots could not remember past
events, but they were assumed to have at least partial visibility of the scene. The
first paper to consider deterministic asynchronous rendezvous in graphs was [12].
The authors concentrated on complexity of rendezvous in simple graphs, such
as the ring and the infinite line. They also showed feasibility of deterministic
asynchronous rendezvous in arbitrary finite connected graphs with known upper
bound on the size. Further improvements of the above results for the infinite
line were proposed in [25]. Gathering many robots in a graph, under a different
asynchronous model and assuming that the whole graph is seen by each robot,
has been studied in [18,19].

2 Rendezvous with a Map

We start by describing the following procedure that finds a unique shortest path
from the starting position of one robot to the other. The procedure works in all
scenarios in which robots have a map of the terrain with their positions indicated.

Procedure path UniquePath(point v, point w)
1 point u := v; path p := {v};
2 S = {ps | ps is a shortest path between v and w};
3 while (u 	= w) do
4 U :=all paths ps of S such that the first segment of the subpath of ps

leading from u to w is the first in clockwise order around u
starting from the direction vw;

5 p′ :=
⋂

ps∈U ps;
6 extend p with the connected part of p′ containing u;
7 u := new end of path p;
8 return p;

Lemma 1. Procedure UniquePath computes a unique shortest path from v to
w, independent of the robot computing it.

Asynchronous Deterministic Rendezvous in Bounded Terrains 77

2.1 Coherent Compasses

If robots have a map and coherent compasses, then they can easily agree on
one of their two starting positions and meet at this point at cost D, which is
optimal. This is done by the following Algorithm RVCM (rendezvous with a map
and coherent compasses).

Algorithm RV CM
Let v be the northernmost of the two starting positions of the robots. If both
robots have the same latitude, let v be the easternmost of them. Let w be
the other starting position. The robot starting at v remains inert. The robot
starting at w computes the path p = UniquePath(w, v) and moves along p
until v.

Theorem 1. Algorithm RV CM guarantees rendezvous at cost D, for any two
robots with a map and coherent compasses, in any terrain.

2.2 Incoherent Compasses

Terrains without obstacles
In an empty polygon there is a unique shortest path between starting positions
of the robots [9], and robots with a map can meet in the middle of this path at
cost D, which is optimal. This is done by Algorithm RVM (rendezvous with a
map, without obstacles).

Algorithm RV M
The robot computes the (unique) shortest path between the starting positions
of the two robots. Then, it moves along this shortest path until the middle of
it.

Theorem 2. Algorithm RV M guarantees rendezvous at cost D for any two
robots with a map, in any terrain without obstacles.

Terrains with obstacles
This is the first of the two scenarios where robots cannot always predetermine
a meeting point. Therefore they compute a common embedding of a ring on
which they are initially situated, and then each robot executes the rendezvous
procedure from [12] for this ring. For the sake of completeness, this procedure
is briefly described below. It consists of two parts: Label Transformation and
Label Execution. The Label Transformation part takes the label μ of an agent
and produces the label μ∗ in the following way. First produce label μ′ consisting
of a string of |μ| zeros, followed by a 1 and then followed by the string μ. The
label μ∗, called the transformed label of the agent, is obtained by replacing in μ′

each 0 by 01 and each 1 by 10. The Label Execution part is divided into phases
numbered 1,2,... For a given agent, we define the execution of bit 0 (resp. 1) in

78 J. Czyzowicz et al.

phase a as performing 3a steps left (resp. right), according to the agent’s local
orientation. For an agent with label μ, phase a consists of consecutive executions
of all bits of μ∗ from left to right.

Using the above procedure, rendezvous with a map, with obstacles is per-
formed by the following Algorithm RVMO. Recall that in this scenario robots
have distinct labels, hence the procedure from [12] can be applied. Rendezvous
is guaranteed to occur on the ring, but the meeting point depends on the walks
of the robots determined by the adversary.

Algorithm RV MO
Phase 1: computation of the embedding1 R of a ring of size 4.
Let v be the starting position of the robot and let w be the starting position of
the other robot. The robot computes the embedding R of a ring, composed of
four nodes v, a, w and b, where a is the midpoint of UniquePath(v, w), b is the
midpoint of UniquePath(w, v), and the four edges are the respective halves of
these paths.
Phase 2: rendezvous on R.
This phase consists in applying the above described rendezvous procedure
from [12] for ring R, whose size (four) is known to the robots.

a This embedding is not necessarily homeomorphic with a circle, it may be degenerate.

Theorem 3. Algorithm RV MO guarantees rendezvous at cost O(D|l|) for ar-
bitrary two robots with a map, in any terrain.

The following lower bound shows that the cost of Algorithm RVMO cannot be
improved for some terrains. Indeed, it implies that for all D > 0, there exists a
polygon with a single obstacle, for which the cost of any rendezvous algorithm
for two robots, starting at distance D, is Ω(D|l|).

Theorem 4. For any rendezvous algorithm A, for any D > 0, and for any
integers k2 ≥ k1 > 0, there exist two labels l1 and l2 of lengths at most k1 and at
most k2, respectively, and a polygon with a single obstacle of perimeter 2D, such
that algorithm A executed by robots with labels l1 and l2 starting at distance D,
requires cost Ω(Dk1). This holds even if the two robots have a map.

3 Rendezvous without a Map

3.1 Coherent Compasses

It turns out that robots can recognize the outer boundary of the terrain even
without a map. Hence, if their compasses are coherent, they can identify a
uniquely defined point on this boundary and meet in this point. This is done by
Algorithm RVC (rendezvous with coherent compasses) at cost O(P).

Asynchronous Deterministic Rendezvous in Bounded Terrains 79

Algorithm RV C
From its starting position v, the robot follows the half-line α pointing to the
North, as far as possible. When it hits the boundary of a polygon P (i.e.,
either the external boundary of the terrain or the boundary of an obstacle), it
traverses the entire boundary of P . Then, it computes the point u which is the
farthest point from v in P ∩ α. It goes around P until reaching u again and
progresses on α, if possible. If this is impossible, the robot recognizes that it
went around the boundary of P0. It then computes the northernmost points in
P0. Finally, it traverses the boundary of P0 until reaching the easternmost of
these points.

Theorem 5. Algorithm RV C guarantees rendezvous at cost O(P) for any two
robots with coherent compasses, in any terrain.

The following lower bound shows that the cost of Algorithm RVC is asymptoti-
cally optimal, for some polygons even without obstacles. This lower bound Ω(P)
holds even if the distance D between starting positions of robots is bounded and
if their compasses are coherent.

Theorem 6. There exists a polygon of an arbitrarily large perimeter P , for
which the cost of any rendezvous algorithm for two robots with coherent com-
passes starting at any distance D > 0, is Ω(P).

Proof. Consider the polygon P ′ obtained by attaching to each side of a regular
k-gon, whose center is at distance D/8 from its boundary, a rectangle of length
3D/8 and of height equal to the side length of the k-gon. The polygon P is
the polygon obtained by gluing two copies of P ′ by the small side of one of the
rectangles, as depicted in Fig. 1. Let P be the perimeter of the polygon P . We
choose k = Θ(P/D). There are two types of rectangles in P , two passing ones
(they share one side) and the 2k − 2 normal ones.

Consider all rotations of the polygon P around its center of symmetry by an-
gles 2πi/k, for i = 0, . . . , k − 1. We will prove that any deterministic rendezvous
algorithm requires cost Ω(P) in at least one of the rotated polygons. Each robot

y

passing rectanglesrectangles
normal

3D
8

D
8

x

Fig. 1. Polygon P

80 J. Czyzowicz et al.

starts in the center of a different k-gon. We say that a robot has penetrated a rect-
angle if it has moved at distance D/8 inside the rectangle. In order to accomplish
rendezvous, at least one robot has to penetrate a passing rectangle. Each time one
robot penetrates a rectangle, the adversary chooses a rotation, so that all previ-
ously penetrated rectangles, including the current one, are normal rectangles. This
choice is coherent with the knowledge previously acquired by the robots, since nor-
mal rectangles are undistinguishable from each other and a robot needs to pen-
etrate a rectangle in order to distinguish its type. Hence, the two robots have to
penetrate a total of k− 1 rectangles before the adversary cannot rotate the figure
to prevent the penetration of a passing rectangle. It follows that at least one of
the robots has to traverse a total distance of Ω(kD) = Ω(P) before meeting. ��

3.2 Incoherent Compasses

Terrains without obstacles
In this section, we use the notion of medial axis, proposed by Blum [10], to
define a unique point of rendezvous inside the terrain. Observe that we cannot
use the centroid for the rendezvous point since, as we also consider non-convex
terrains, the centroid is not necessarily inside the terrain. The medial axis M(P)
of a polygon P is defined as the set of points inside P which have more than
one closest point on the boundary of P . Actually, M(P) is a planar tree con-
tained in P , in which nodes are linked by either straight-line segment or arcs of
parabolas [23]. We define the medial point of a polygon P as either the central
node of M(P) or the middle of the central edge of M(P), depending on whether
M(P) has a central node or a central edge. Remark that the medial point of P
is unique and is inside P . The medial axis of a polygon P can be computed as
in [13]. Algorithm RV (rendezvous without obstacles, without a map and with
possibly incoherent compasses) determines the unknown (empty) polygon and
guarantees meeting in its medial point.

Algorithm RV
At its starting position, the robot chooses an arbitrary half-line α which it
follows until it hits the boundary of the polygon P0. It traverses the entire
boundary of P0 and computes the medial point v of P0. Then, it moves to v
by a shortest path and stops.

Theorem 7. Algorithm RV guarantees rendezvous at cost O(P) for any two
robots, in any terrain without obstacles.

The lower bound from Theorem 6 shows that the cost of Algorithm RV cannot
be improved for some polygons.

Terrains with obstacles
Our last rendezvous algorithm, Algorithm RV O, works for the hardest of all
scenarios: rendezvous with obstacles, no map, and possibly incoherent compasses.
Here again it may be impossible to predetermine a meeting point. Thus robots

Asynchronous Deterministic Rendezvous in Bounded Terrains 81

identify a common cycle and meet on this cycle. The difference between the
present setting and that of Algorithm RV MO, where a map was available, is that
now robots may start outside of the common cycle and have to reach it before
attempting rendezvous on it. (Hence, in particular, the robots cannot use directly
the procedure for rendezvous in a ring from [12], as was done in Algorithm
RV MO.) Also the common cycle is different: rather than being composed of two
shortest paths between initial positions of the robots (a map seems to be needed
to find such paths), it is the boundary of a (possible) obstacle O in which the
medial point of the outer polygon is hidden. These changes have consequences for
the cost of the algorithm. The fact that the medial point of the outer polygon
has to be found and the obstacle O has to be reached is responsible for the
summand P in the cost. The only bound on the perimeter of this obstacle is x.
Finally, the fact that the adversary may delay the robot with the smaller label
and force the other robot to make its tours of obstacle O before the robot with
the smaller label even reaches the obstacle, is responsible for the summand x|L|,
rather than x|l|, in the cost.

A cycle is a polygonal path whose both extremities are the same point. A
tour of a cycle C is any sequence of all the segments of C in either clockwise or
counterclockwise order starting from a vertex of C. By extension, a partial tour
of C is a path which is a subsequence of a tour of C with the first or the last
segment of the subsequence possibly replaced by a subsegment of it.

Algorithm RV O
Phase 1: Computation of the medial point of P0
At its starting position z, the robot chooses an arbitrary half-line α which it
follows as far as possible. When it hits the boundary of a polygon P , it traverses
the entire boundary of P . Then, it computes the point w which is the farthest
point from z in P ∩α. It goes around P until reaching w again and progresses
on α, if possible. If this is impossible, the robot recognizes that it went around
the boundary of P0. The robot computes the medial point v of P0.
Phase 2: Moving to the medial point of P0
Let u be the current position of the robot. The robot follows the segment uv
as far as possible. Similarly as in the first phase of the algorithm, if the robot
hits a polygon P , it traverses the entire boundary of P . Then, it computes the
point w which is the farthest point from u in P ∩ uv. It goes around P until
reaching w again and progresses on α, if possible. If this is impossible and if the
point v has not been reached, the robot recognizes that v is inside an obstacle
O, and executes phase 3. If the robot reaches v, it does not enter phase 3 of
the algorithm and stops.
Phase 3: Rendezvous around the medial obstacle of the terrain
The robot goes around the obstacle O until it reaches a vertex s. The robot
produces the modified label μ∗ consisting of the binary representation of the
label μ of the robot followed by a 1 and then followed by |μ| zeros. This
phase consists of |μ∗| stages. In stage i, the robot completes two tours of the
boundary of O, starting and ending in s, clockwise if the i-th bit of μ∗ is 1 and
counterclockwise otherwise.

82 J. Czyzowicz et al.

Let u1u2 and u2u3 be consecutive segments in clockwise order (resp. coun-
terclockwise order) of a cycle. For a given walk f of a robot a, we say that the
robot traverses in a clockwise way (resp. in a counterclockwise way) a vertex
u2 of a cycle at time t if f(t) = u2 and there exist positive reals ε1 and ε2 and
points y and z such that y = f(t− ε1) is an internal point of u1u2, z = f(t + ε2)
is an internal point of u2u3 and the robot walks in u1u2 ∪ u2u3 during the time
period [t− ε1, t + ε2].

Before establishing the correctness and cost of Algorithm RV O, we need to
show the following two lemmas.

Lemma 2. Consider two robots on cycle C. Suppose that one robot executes a
tour of C in some sense of rotation, starting and ending in v. If during the same
period of time, the other robot either traverses v for the first time in the other
sense of rotation or does not traverse it at all, then the two robots meet.

Lemma 3. Consider two robots on a cycle C and let k ≥ 0 be an integer. If a
robot executes either a partial tour of C followed by at most k tours of C, or at
most k tours of C followed by a partial tour of C, while the second robot executes
k + 2 tours of C, then the two robots meet.

Theorem 8. Algorithm RV O guarantees rendezvous at cost O(P + x|L|) for
any two robots in any terrain for which x is the largest perimeter of an obstacle.

Proof. Let a1 and a2 be the two robots that have to meet. The first phase of
the algorithm that consists in reaching P0 and making the tour of the boundary
of P0 costs at most 3P , since the boundary of each polygon of the terrain is
traversed at most twice and the total length of parts of α inside the terrain is
at most P . For the same reason as in phase 1, the total cost of phase 2 is at
most 3P .

If the medial point of P0 is inside the terrain, then the robots meet at the
end of phase 2 at total cost of at most 12P . Otherwise, both robots eventually
enter phase 3 of the algorithm and they are on the boundary of the obstacle
O containing the medial point of P0. The cost follows from the fact that each
robot travels a distance O(x|L|) in phase 3. Indeed, each robot executes at most
2|L|+ 1 stages and each stage costs at most 2x. Hence it remains to show that
rendezvous occurs in this case as well.

Assume for contradiction that the two robots never meet. Notice that the
modified label l∗ cannot be the suffix of the modified label L∗. Indeed, if |l∗| =
|L∗| then the two labels are different since l 	= L, and otherwise the second part
of l∗, consisting of 1 followed by |l| zeros, cannot be the suffix of L∗. Hence, there
exists an index i such that the (|l∗| − i)-th bit of l∗ differs from the (|L∗| − i)-th
bit of L∗. We call important stages the (|l∗| − i)-th stage of the robot with label
l and the (|L∗| − i)-th stage of the robot with label L.

For j = 1, 2, let tj be the moment when robot aj enters its important stage
and let t′ be the first moment when both robots have finished the execution of the
algorithm. Suppose by symmetry that t1 ≤ t2, i.e., robot a1 was the first to enter
its important stage. Then a2 must have entered its important stage during the

Asynchronous Deterministic Rendezvous in Bounded Terrains 83

first tour of the important stage of a1. Otherwise, robot a2 would have completed
2i + 2 tours between t2 and t′, while robot a1 would have completed at most
2i + 1 tours. Hence, the two robots would have met in view of Lemma 3. Hence,
from the time t2, robot a2 completes one tour in some sense of rotation, starting
and ending at a vertex v, while robot a1 either traverses v for the first time in
the other sense of rotation or does not traverse it at all. Hence by Lemma 2, the
two robots meet. ��

The following result gives a lower bound matching the cost of Algorithm RVO.

Theorem 9. There exist terrains for which the cost of any rendezvous algorithm
is Ω(P + x|L|). This holds for arbitrarily small D > 0.

4 Discussion of Parameters

We presented rendezvous algorithms, analyzed their cost and proved matching
lower bounds in all considered scenarios. However, it is important to note that
the formulas describing the cost depend on the chosen parameters in each case.
All our results have the following form. For a given scenario we choose some
parameters (among D, P , x, l, L), show an algorithm whose cost in any terrain
is O(f), where f is some simple function of the chosen parameters, and then
prove that for some class of terrains any rendezvous algorithm requires cost
Ω(f), which shows that the complexity of our algorithm cannot be improved in
general, for the chosen parameters.

This yields the question which parameters should be chosen. In the case of
complexities D and Θ(P), this choice does not seem controversial, as here D
and P are very natural parameters, and the only ones in these simple cases.
However, for the two scenarios with incoherent compasses and with the presence
of obstacles, there are several other possible parameters, and their choice may
raise a doubt. As mentioned in the introduction, in these two scenarios, distinct
labels of robots are necessary to break symmetry, since rendezvous is impossible
for anonymous robots. Hence any rendezvous algorithm has to use labels l and
L as inputs, and thus the choice of these labels as parameters seems natural.
By contrast, the choice of parameter x may seem more controversial. Why do
we want to express the cost of a rendezvous algorithm in terms of the largest
perimeter of an obstacle? Are there other natural choices of parameter sets?
What are their implications?

Let us start by pondering the second question. It is not hard to give examples
of other natural choices of parameters for the two scenarios with incoherent com-
passes and with the presence of obstacles. For example, in the hardest scenario
(without a map), we could drop parameter x and try to express the cost of the
same Algorithm RVO only in terms of D, P , l, and L. Since x ≤ P , we would
get O(P |L|) instead of O(P +x|L|). Incidentally, as in our lower bound example
of terrains we have x = Θ(P), this new complexity O(P |L|) is optimal for the
same reason as the former one.

84 J. Czyzowicz et al.

Another possibility would be adding, instead of dropping a parameter. We
could, for example, add the parameter Pe which is the length of the external
perimeter of the terrain, i.e., the perimeter of polygon P0. Then it becomes
natural to modify Algorithm RVO as follows. The first two phases are the same.
In the third phase, the robot goes around obstacle O and compares its perimeter
to Pe. If the perimeter of O is smaller (or equal), then the algorithm proceeds
as before, and if it is larger, then the robot goes back to the boundary of P0
and executes Phase 3 on this boundary instead of the boundary of O. The new
algorithm has complexity O(P + min(x, Pe)|L|). Its complexity is again optimal
because in our lower bound example we can choose the parameter y = min(x, Pe)
and enlarge the largest of the two boundaries by lengthy but thin zigzags. Thus
we can preserve the lower bound Ω(P + min(x, Pe)|L|), even when x and Pe

differ significantly.
The reason why we chose parameters D, P , l, L, and x instead of just D, P , l

and L, is that complexity O(P +x|L|) shows a certain continuity of the complex-
ity of Algorithm RVO with respect to the sizes of obstacles: when the largest
obstacle decreases, this complexity approaches O(P) and it becomes O(P) if
there are no obstacles. In this case our algorithm coincides with Algorithm RV.
This is not the case with complexity O(P |L|). On the other hand, this choice
coincides with O(P + min(x, Pe)|L|) in many important cases, for example for
convex obstacles (as then we have x < Pe).

It is then natural to ask what happens if we add parameter x in the scenario
with incoherent compasses and with the presence of obstacles but with the map.
Obviously we could still use Algorithm RVO and get complexity O(P + x|L|).
However, our lower bound argument in this scenario gives in fact only Ω(D +
min(x, D)|l|). In our example we had D = Θ(x) but we only get Ω(D + x|l|)
even if D is much larger than x. On the other hand, if D is much smaller than
x, we can only get the lower bound Ω(D|l|) because it matches the complexity
of RV MO in this case. Hence it is natural to ask if there exists a rendezvous
algorithm with cost O(D + min(x, D)|l|) for arbitrary terrains in this scenario.
We leave this as an open question.

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: Proc. An-
nual Symposium on Foundations of Computer Science FOCS 1979, pp. 218–223
(1979)

2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimiza-
tion 33, 673–683 (1995)

3. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49,
256–274 (2002)

4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Kluwer Academic
Publ., Dordrecht (2002)

5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of
Applied Probability 36, 223–231 (1999)

Asynchronous Deterministic Rendezvous in Bounded Terrains 85

6. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal
of Applied Probability 28, 839–851 (1990)

7. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th
Annual ACM Symp. on Computational Geometry (1998)

8. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Res. 49,
107–118 (2001)

9. Arkin, E.M., Mitchell, J.S.B., Piatko, C.D.: Bicriteria shortest path problems in
the plane. In: Proc. 3rd Canad. Conf. Comput. Geom., pp. 153–156 (1991)

10. Blum, H.: A transformation for extracting new descriptors of shape. In: Whaten-
Dunn, W. (ed.) Proc. Symp. Models for Perception of Speech and Visual Form,
pp. 362–380. MIT Press, Cambridge (1967)

11. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gather-
ing Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

12. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355,
315–326 (2006)

13. Chin, F., Snoeyink, J., Wang, C.A.: Finding the Medial Axis of a Simple Polygon
in Linear Time. Discrete Comput. Geom., 382–391 (1995)

14. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

15. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS
2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

16. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)
17. Hershberger, J., Suri, S.: An Optimal Algorithm for Euclidean Shortest Paths in

the Plane. SIAM J. Comput. 28, 2215–2256 (1997)
18. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering

of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)

19. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoretical Computer Science 390, 27–39 (2008)

20. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical
Computer Science 399, 141–156 (2008)

21. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a
ring. In: Proc. 23rd International Conference on Distributed Computing Systems
(ICDCS 2003), pp. 592–599 (2003)

22. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoretical Computer Science 384, 222–231 (2007)

23. Preperata, F.P.: The medial axis of a simple polygon. In: Gruska, J. (ed.) MFCS
1977. LNCS, vol. 53, pp. 443–450. Springer, Heidelberg (1977)

24. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)
25. Stachowiak, G.: Asynchronous Deterministic Rendezvous on the Line. In: Nielsen,

M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.)
SOFSEM 2009. LNCS, vol. 5404, pp. 497–508. Springer, Heidelberg (2009)

26. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

27. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly
universal exploration sequences. In: Proc. 18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)

Space-Optimal Rendezvous of Mobile Agents
in Asynchronous Trees�

Daisuke Baba1, Tomoko Izumi2, Fukuhito Ooshita1,
Hirotsugu Kakugawa1, and Toshimitsu Masuzawa1

1 Graduate School of Information Science and Technology, Osaka University
{d-baba,f-oosita,kakugawa,masuzawa}@ist.osaka-u.ac.jp

2 College of Information Science and Engineering, Ritsumeikan University
izumi-t@fc.ritsumei.ac.jp

Abstract. We investigate the relation between the time complexity and
the space complexity for the rendezvous problem with k agents in asyn-
chronous tree networks. The rendezvous problem requires that all the
agents in the system have to meet at a single node within finite time.
First, we consider asymptotically time-optimal algorithms and investi-
gate the minimum memory requirement per agent for asymptotically
time-optimal algorithms. We show that there exists a tree with n nodes
in which Ω(n) bits of memory per agent is required to solve the ren-
dezvous problem in O(n) time (asymptotically time-optimal). Then, we
present an asymptotically time-optimal rendezvous algorithm. This algo-
rithm can be executed if each agent has O(n) bits of memory. From this
lower/upper bound, this algorithm is asymptotically space-optimal on
the condition that the time complexity is asymptotically optimal. Finally,
we consider asymptotically space-optimal algorithms while allowing slow-
down in time required to achieve rendezvous. We present an asymptot-
ically space-optimal algorithm that each agent uses only O(log n) bits
of memory. This algorithm terminates in O(Δn8) time where Δ is the
maximum degree of the tree.

1 Introduction

1.1 Background and Motivation

In this paper, we investigate the relation between the time and the memory
size for each mobile agent to solve the rendezvous problem. In the problem,
agents, which are initially distributed in a network, have to meet at a single
node. The rendezvous problem is one of the most fundamental problems as a
building block of many agent-based applications. For example, an application
may require rendezvous to share the information among all the agents.

Initially agents have no knowledge of the network topology or other agents.
This requires agents to move around the network and to determine the meeting
� This work is supported in part by Global COE Program of MEXT, Grant-in-Aid for

Scientific Research ((B)19300017, (B)20300012) of JSPS, and the Kayamori Foun-
dation of Informational Science Advancement.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 86–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 87

node based on the collected information. The rendezvous problem can be easily
solved if each node in a network has a unique identifier or ID: Each agent explores
the network and terminates at the node with the smallest ID. However, such
unique ID may not be available to the agents in some cases. It may be prohibited
to publish the node ID to agents for security reasons, or the agents cannot store
it because of its small memory. Hence, it is important to design algorithms which
work in anonymous networks.

In anonymous networks, agents using the same deterministic algorithm cannot
meet at a single node in some networks with cycles. The problem can be feasible
with some additional assumptions such that agents can leave marks on nodes or
the network topology is restricted. In this paper, we investigate the rendezvous
problem in acyclic networks or trees while keeping agents from leaving marks.

In the rendezvous problem, the time complexity and the space complexity of
agents are important metrics to show the efficiency of algorithms. Because agents
are moving entities in the computer network, the size of each agent, which is
the memory space of the agent, is desired to be small. In addition, meeting at a
single node is not a goal of the agent system but a means to achieve another task.
Therefore, the algorithm which achieves rendezvous in a short time is required.

1.2 Related Work

A number of researchers have studied the rendezvous problem in a variety of
models. In the settings of anonymous networks and anonymous agents, some
rendezvous algorithms allow agents to leave identical tokens on nodes. Kranakis
et al. showed that two agents in a synchronous ring network can meet by the
same deterministic algorithm using a token per agent [11]. Later, this work is
extended to consider any number of agents: If one token is available for each
agent, the rendezvous problem in a synchronous ring is solvable for any number
of agents [4,6]. The lower bound on the space complexity per agent in this model
is Ω(log k + log log n) where k is the number of agents and n is the number
of nodes, and the asymptotically space-optimal algorithm is proposed for uni-
directional ring networks by Gasieniec et al. [6]. The effect of token failure is
also considered in some papers [1,2,3].

The model described above is different from ours in terms of availability of
the memory of nodes. Fraigniaud et al. proved that two anonymous agents can
rendezvous in any synchronous tree network without using a token unless the
tree is symmetric [5]. This is the same model as we consider in this paper. The
memory size of this algorithm is O(log n) and this is asymptotically optimal
[5]. However, if the number of agents is larger than two or the agents move
asynchronously, this algorithm does not work.

Lastly, we refer to another model on which agents are oblivious or with no
memory but can take the snapshot of the whole system [8,9]. This model is
complementary to our model where agents are non-oblivious but can take only
the local view of the system.

88 D. Baba et al.

1.3 Our Contributions

The main goal of this paper is to reveal the relation between the time com-
plexity and the space complexity for the rendezvous problem with k agents in
asynchronous tree networks. To achieve the goal, we investigate the following
extremes.

1. We consider asymptotically time-optimal algorithms and investigate the min-
imum memory requirement per agent for the asymptotically time-optimal
algorithms.

We can easily show that Ω(n) time is required (in the worst case) for agents
to meet at a node in trees with n nodes. Then, we show that there exists a tree
in which Ω(n) bits of memory per agent is necessary to solve the rendezvous
problem in O(n) time. Last, we present the asymptotically space-optimal algo-
rithm on the condition that the time complexity is asymptotically optimal, i.e.
both the time complexity and the space complexity are O(n).

2. We consider asymptotically space-optimal algorithms while allowing slow-
down in time required to achieve rendezvous among agents.

We present an algorithm such that any number of agents with O(log n) bits of
memory, which is asymptotically space-optimal, can rendezvous in any asyn-
chronous tree unless the tree is symmetric. This algorithm attains a significant
improvement compared to the previous one [5] in that this algorithm is applica-
ble for any number of agents and any asynchronous non-symmetric tree.

2 Terminology and Preliminaries

2.1 The Network Model

We consider the tree network T = (V, E) with n = |V | nodes where V is the
set of anonymous nodes and E is the set of undirected edges. A tree network
is an arbitrary connected network with no cycle. Every node u has some ports,
each of which connects to an edge incident to the node. The number of ports
node u has is denoted by δ(u) or degree of u. We consider that every edge is
locally labeled using a local labeling function λu. That is, each edge e at node u
is uniquely labeled by λu(e) from the set {1, . . . , δ(u)}. We call this label port
number. This local labeling function or the port number is determined at each
node and there is no coherence between λu(e) and λv(e) for any e = {u, v} ∈ E.

There are k ≥ 2 agents with no identifiers in the tree T . Each agent has a
bounded amount of memory. No agent can use the local memory of any node
to leave information on a node. Each agent initially stays at a node called its
home node and starts the same deterministic algorithm at any time. The agents
have no priori knowledge about the network or other agents, that is, they do not
know n, k, the shape of the tree, or where other agents are. After the algorithm
is started, the agent can move in the network by the following three operations:

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 89

1) When the agent walks across an edge e into node v (resp. immediately after
the agent initiates the algorithm at node v), it memorizes λv(e) (resp. 0) and
the degree of v. 2) The agent computes internally at v, and determines the
port number it leaves next or notices that it should terminate. 3) If the agent
decides to move to a neighboring node, it leaves node v through the port which
is determined by the previous operation. These actions, such as computing or
moving, are progressed asynchronously in the sense that the processing period is
finite but there is no assumption of the upper bound on the length of the period.
The agent can recognize other agents on the same node, however, it cannot
recognize other agents on any edge: Even if two or more agents are passing
through the same edge, they cannot detect each other regardless of the direction
of each agent.

2.2 Definition of Terms and Problem

The path P (v0, vk) = (v0, v1, . . . , vk) with length k is a sequence of nodes from
v0 to vk such that {vi, vi+1} ∈ E (0 ≤ i < k) and vi 	= vj if i 	= j. Note
that, for any u, v ∈ V , P (u, v) is unique in a tree. The distance from u to v,
denoted by dist(u, v), is the length of the path from u to v. The eccentricity
r(u) of node u is the maximum distance from u to an arbitrary node, i.e., r(u) =
maxv∈V dist(u, v). The diameter D of the network is the maximum eccentricity
in the network. The radius R of the network is the minimum eccentricity in the
network. A node with eccentricity R is called a center.

A tree T is symmetric iff there exists a function g : V → V such that all the
following conditions hold:

1. For any v ∈ V , v 	= g(v) holds.
2. For any v ∈ V , δ(v) = δ(g(v)) holds
3. For any u, v ∈ V , u is adjacent to v iff g(u) is adjacent to g(v).
4. For any {u, v} ∈ E, λu({u, v}) is equal to λg(u)({g(u), g(v)}).

In the rendezvous problem, k ≥ 2 agents have to meet at a single node, which is
not predetermined. The node where all the agents meet is called the rendezvous
point. However, if the tree T is symmetric, there are some cases that agents
with the same deterministic algorithm cannot meet at a single node [5]. For this
reason, we modify the requirement of the rendezvous problem: All the agents
terminate at a common single node if T is not symmetric, otherwise all the
agents terminate at two neighboring nodes. We say an algorithm A solves the
rendezvous problem if agents executing A satisfy the above conditions for any
tree, any location of home nodes, any starting time of agents, and any execution
of agents. The efficiency of an algorithm A is measured by the time complexity
and the space complexity. The time complexity of A is defined as the maximum
number of movements for an agent because there is no assumption about the
period of each action of agents in asynchronous systems. The space complexity
of A is defined as the maximum number of bits required for an agent to store
all the local variables.

90 D. Baba et al.

2.3 Basic Properties

In this subsection, we show basic properties of tree networks. Due to space
limitation, we omit the proof of Theorem 2.

Theorem 1 ([10]). There exist one or two center nodes in a tree. If there exist
two center nodes, they are neighbors.

Theorem 2. Let v be any node in a tree and v′ be the farthest node from node
v (i.e., dist(v, v′) = r(v)). The eccentricity of node v′ is equal to the diameter
of the tree, that is, r(v′) = D.

Theorem 3 ([10]). Let the distance from node u to node v be D. The node c is
a center if and only if c is included in the path P (u, v) and r(c) = �D

2 � holds.

3 Asymptotically Time-Optimal Rendezvous

3.1 Lower Bound on the Memory Space

In this section, we discuss the lower bound on the time complexity and the lower
bound of the space complexity of asymptotically time-optimal algorithms for the
rendezvous problem. As for the time complexity, Theorem 4 clearly holds.

Theorem 4. To solve the rendezvous problem in a tree network with n nodes,
it takes at least Ω(n) time to terminate.

Next, we consider how much memory space per agent is required to solve the
rendezvous problem in O(n) time. In fact, the answer is Ω(n) and we show that
there are no algorithms that solve the rendezvous problem in O(n) time with
o(n) bits of memory per agent.

Consider an arbitrary algorithm A which solves the rendezvous problem in
O(n) time. For every algorithm A, there exists an execution where no two agents
meet until the end of the algorithm. This means that every agent executing A
has to determine the rendezvous point by itself.

In what follows, we consider the case where two agents execute the same
deterministic algorithm A and that the tree T is a line with even number of
nodes. We define vi as the i-th node in the line. Let L = (VL, EL) be the subtree
of T where VL =

⋃
1≤i≤ n

3
{vi} and EL =

⋃
1≤i< n

3
{vi, vi+1}, R = (VR, ER) be

the one where VR =
⋃

2n
3 +1≤i≤n{vi} and ER =

⋃
2n
3 +1<i≤n{vi−1, vi}, and M be

the one such that T \ (L∪R) (To understand L, M , and R, see the topology of
Figure 1). Let λL =

⋃
v∈VL

λv be the labeling for L, λM =
⋃

v∈VM
λv for M , and

λR =
⋃

v∈VV
λR for R. We consider any labeling for λL and λR, and we consider

a certain symmetric labeling α for λM (i.e. λM = α). We define T (γa, γb) as the
tree with λL = γa and λR = γb. Note that, since the topologies of L and R are
the same, we can define tree T (γa, γa) and T (γa, γa) is symmetric.

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 91

M

terminate

start

s1

s3

sc

s2

・

・

・

1 2 1 2 1 1 2 1 2 11 12 1

3

n
v

1
2
+

n
v

1
3
+

n
v

2

n
v

1
3

2
+

n
v

3

2nv
1
v

n
v

L R

Fig. 1. The numbers found near edges represent port numbers. The bold solid arrow
represents the movement of the agent and each si represents the i-th migration state
of the agent.

In the execution of the algorithm A, the agent traverses the subtree L, M ,
and R with changing its state (the set of variable value of the agent). We say
that the agent migrates from L (resp. R) to M if and only if it moves from L
(resp. R) to M and it moves from M to R (resp. L) before it moves from M
to L (resp. R). If the agent makes its i-th migration with state s, we define s
as the i-th migration state of the agent. Let S = s1s2 . . . sc be the sequence of
migration states (SMS) of the agent if the agent migrates exactly c times in the
execution of A and each si denotes the i-th migration state of the agent (See
Figure 1). We define S(γa, γb) as the SMS of the agent that executes A with
home node v1 in T (γa, γb).

In the followings, we first show that there exist distinct labelings γa and γb

such that S(γa, γa) = S(γb, γb) holds if each agent has only o(n) bits of memory,
and then we show the lower bound of memory space.

Lemma 1. There exist two distinct labelings γa and γb such that S(γa, γa) =
S(γb, γb) holds if each agent terminates in O(n) time and has only o(n) bits of
memory.

Proof. Let c′ be the maximum number of migrations the agent whose home
node is v1 makes in the execution of A. Note that c′ = O(1) holds because A
terminates in O(n) time. Let S = s1s2 . . . sc be the SMS of the agent where c
is lower than or equal to c′. Since there are Ω(n) nodes in L and in R, there
exist 2Ω(n) labelings. However, there are only 2c′·o(n) SMSs since the agent has
o(n) bits of memory and there exist 2o(n) of different states for the agent. Thus,
the number of labelings is asymptotically larger than that of SMSs, and there
must exist a pair of different labellings γa and γb such that S(γa, γa) = S(γb, γb)
holds. �

92 D. Baba et al.

Lemma 2. Let γa and γb be distinct labelings such that S(γa, γa) = S(γb, γb)
holds. Then, if algorithm A solves the rendezvous problem in T (γa, γa) and in
T (γb, γb), it cannot solve the problem in T (γa, γb).

Proof. Let T1 = T (γa, γa), T2 = T (γb, γb), and T3 = T (γa, γb) and we assume
that S(γa, γa) = S(γb, γb) = s1s2 . . . sc holds.

Consider two agents a1 and a2 executing A in T1. Let the home node of a1 be
the node v1 in L and that of a2 be the node vn in R. An important observation
is that a1 and a2 act in a symmetric fashion because T1 is symmetric. Thus, the
i-th migration state of a2 is also si for any i ≤ c. Since A solves the rendezvous
problem in T1, the two agents terminate at two symmetric and neighboring nodes
in M , which are two center nodes in M .

Next, consider two agents a1 and a2 executing A in T2. Similarly, we can show
that the two agents terminate at the two center nodes in M . We can see from
S(γa, γb) = S(γb, γb) that the terminal node of each agent ai is the same in T1
and T2.

Now, we consider the tree T3. First, we consider an agent a1 whose home node
is v1. The agent a1 in T3 behaves in the same way as a1 in L and M of T1 and
it makes the first migration with state s1 because the labeling of T3 is the same
as that of T1 for L and M . After the first migration, a1 behaves in the same
way as a1 in R and M of T2, and it makes the second migration with state s2
because the labeling of T3 is the same as that of T2 for M and R. By repeating
the argument, we can show that the terminal node of a1 in T3 is the same as T1
and T2. Similarly, we can show that the terminal node of a2 in T3 is the same
as T1 and T2. Recall that the terminal nodes of a1 and a2 are not the same but
neighboring. However, since T3 is not symmetric, two agents must terminate at
one node. This means agents executing algorithm A cannot solve the problem
in T3. �

From Lemma 1 and Lemma 2, we can state the following theorem.

Theorem 5. If an algorithm A is asymptotically time-optimal (i.e. O(n)) for
the rendezvous problem in a tree network with n nodes, it requires Ω(n) bits of
memory per agent.

3.2 The Algorithm with O(n) Memory Space

Outline of the Algorithm. In this subsection, we present the asymptotically
time-optimal algorithm Rendezvous-T, which requires O(n) memory space per
agent. In Rendezvous-T, each agent traverses the tree, finds a center, and ter-
minates at the center (i.e., the rendezvous point is the center). Note that, since
each agent does not have the number k of agents, operates asynchronously, and
does not detect other agents passing the same edge, there is an asynchronous ex-
ecution where no agent meets with another agent until it terminates. Thus, each
agent does above works (traverses the tree and finds a center) independently. In
the execution of Rendezvous-T, each agent performs seven phases below. Figure
2 shows the locations of the agent according to the execution sequence.

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 93

v’

cc

s

v”

Phase 6

v’

v”

v’

v”

c c

s

v”

v’

c

s

Phase 3 Phase 5

v’

v”

agent
c

s

Phase 1

Fig. 2. The leftmost figure shows the initial node of the agent. The other figures show
the locations of the agent at the end of Phase 1, Phase 3, Phase 5, and Phase 6.

Phase 1. The agent moves to a leaf node s (we call node s the first node).
Phase 2. The agent computes the eccentricity r(s) of the first node s.
Phase 3. The agent moves to the farthest node v′ from s (we call node v′ the

second node).
Phase 4. The agent computes r(v′) of the second node v′ (i.e., r(v′) = D from

Theorem 2).
Phase 5. The agent moves to the farthest node v′′ from v′ (we call node v′′ the

third node).
Phase 6. The agent moves to a node c such that c is included in P (v′, v′′) and

dist(v′, c) = �D
2 � holds. (The node c is one of the centers from Theorem 3.)

Phase 7. If there exist two centers (i.e., D is odd), the agent chooses the ren-
dezvous point from two centers and terminates there.

First, we introduce the basic step. The basic step is a traditional technique, which
makes each agent traverse the tree in the DFS-traversal. In the basic step, when
the agent arrives at node u through the port i, it leaves u through the port (i+1)
mod δ(u) in the next step. The agent starts its basic steps by leaving the port 1.
From the definition of our model, the basic steps can be done with O(log n) bits
of memory (the port passed through must be stored). We also define the reverse
step as the backward step of the basic step. In our algorithms, the agent starts
the reverse step only after its basic steps. When an agent starts the reverse step
at a node, it leaves the node through the port passed in the previous step.

In the followings, we describe the details of Rendezvous-T. In Phase 1, each
agent can move to a leaf using basic steps. It continues its basic steps until it
visits a leaf node. A leaf node the agent visits for the first time in Phase 1 is the
first node s. In Phases 2 to 4, each agent computes the diameter D. After that,
the agent moves to the center in Phases 5 to 6. Note that there may be one or
more nodes whose distance from the second node v′ is �D

2 �. To detect the center
among them correctly, the agent once moves to the third node v′′ whose distance
from v′ is D because the center node is on the path from v′ to v′′ (refer Theorem
3). That is, the center node c is the one which the agent, traversing the tree using
basic steps, visits for the first time after leaving v′′ such that dist(v′, c) = �D

2 �
holds. In Phase 7, the agent terminates at the rendezvous point, which is one
of the centers. The agent can also understand whether the tree is symmetric or
not in Phase 7.

94 D. Baba et al.

To realize Rendezvous-T, we introduce two functions MoveAndCompute and
Choose. By calling function MoveAndCompute(h1, h2) at node v (called ini-
tial node), the agent starts DFS-traversal of the tree using basic steps. The
agent continues the basic steps until it visits node s2 satisfying dist(v, s2) =
h2 after it visits node s1 satisfying dist(v, s1) = h1, and stops the execu-
tion of MoveAndCompute at s2. The agent keeps the maximum distance from
the initial node v to a visited node during the execution of MoveAndCom-
pute, and the maximum distance is returned as the output of MoveAndCom-
pute. Function MoveAndCompute is used in Rendezvous-T as follows: In Phase
2, the agent executes MoveAndCompute(1, 0) at a first node s. The agent stops
execution of MoveAndCompute(1, 0) when it completes a DFS-traversal. Thus,
r(s) can be found as the maximum distance from the first node during the
DFS-traversal. In Phase 3, it moves to v′ with dist(s, v′) = r(s) by calling
MoveAndCompute(0, r(s)) at s. In Phase 4, MoveAndCompute(1, 0) is executed
just like Phase 2. In Phases 5 to 6, by calling MoveAndCompute(D, �D

2 �) at the
second node v′, the agent moves to the third node, and then it moves to a center
c. Function Choose chooses a rendezvous point from two centers, and it is used
to execute Phase 7 when there exist two centers.

Implementation of MoveAndCompute. In what follows, we explain how
to implement MoveAndCompute in Rendezvous-T. In the function MoveAndCom-
pute, the agent keeps the distance from its initial node v to a current node.
To compute the distance in anonymous networks, the agent uses the following
strategy: Whenever the agent leaves a node u and moves to an adjacent node, it
checks whether the next step leads it closer to or farther from its initial node v.
The following lemma implies that the agent can decide it by checking the port
number the agent will move to. From the property of trees, the lemma clearly
holds.

Lemma 3. Let v be an initial node of MoveAndCompute. Assume that when an
agent arrived at u for the first time, it passed through the port i at u. When the
agent leaves u through the port i′, the agent gets closer to v if i = i′, and it gets
farther from v otherwise.

By Lemma 3, the agent can calculate the distance from the initial node v to
the current node u by computing whether the following condition is satisfied
or not: The port through which the agent will pass to leave u is the same as
the one through which it visited u for the first time. To compute it correctly, the
agent keeps the sequence H = h1h2 . . . called history. The i-th element hi of the
history indicates the i-th movement of the basic steps. Each movement is kept
by the fact whether the agent gets closer to the initial node v or farther from v.
In more detail, hi =’+’ if the agent gets farther from v in the i-th movement,
and hi =’−’ otherwise. Note that, since each movement is kept with one bit and
the agent moves at most 2(n − 1) times in each MoveAndCompute, the agent
requires O(n) memory space to keep the history. By using the history, when the
agent leaves a node, it calculates whether it gets closer to the initial node v or
farther from v from the following lemma.

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 95

Lemma 4. We assume that an agent visits a node u through the port i′ after l
basic steps in MoveAndCompute, and its history is H0 = h1, h2, . . . , hl. Let i be
the port through which the agent visits u for the first time in the MoveAndCom-
pute. Then, the following holds.

Case1: If hl =’+’ holds, i′ = i holds.
Case2: If hl =’−’ holds, we define H1, H2, . . . as follows: Let S0 be the minimum

suffix of H0 in which the number of ’+’ is equal to the number of ’−’. Then,
we define H1 as the prefix of H0 such that H0 = H1S0. If the last element of
H1 is ’−’, we can define H2 in a similar way. We continue above until the
last element of Ht is ’+’. Then, i = (i′ − t) mod δ(u) holds.

Case 2 in Lemma 3 holds because each suffix Si corresponds to the DFS-traversal
of the subtree with root w where w is one of the children of u. From Lemma 4,
when the agent visits u, it can locally compute the port passed when it visited
u for the first time. Thus, the agent can determine whether it gets farther from
the initial node v or closer to v in the next step locally at u.

We explain the implementation of MoveAndCompute(h1, h2) as follows. Let d
be the distance from an initial node v to a current node and dmax be the maxi-
mum number of d the agent has computed. The agent prepares an empty history
and sets two variables d and dmax to be 0 at v. In MoveAndCompute(h1, h2), it
performs the following three operations when the agent leaves u: 1) By using
the history, the agent determines whether it gets closer to the initial node v
or farther from v in the next step. 2) It moves to the neighboring node by the
basic step. 3) It updates the history and two values d and dmax. The agent can
calculate the distance from v to each node it has visited by performing the above
three operations repeatedly. If d becomes h2 after d becomes h1 once, the agent
stops the execution of MoveAndCompute and returns the value of dmax.

Implementation of Choose. Here, we explain the implementation of Choose
in Rendezvous-T. If the diameter D is even, the algorithm Rendezvous-T is ter-
minated without executing Choose because there is only one center in this case.
Thus, we assume that D is odd, i.e., there are two centers in the tree. Let the
agent exist at node c, which is one of the centers, after it has completed the exe-
cution in Phase 6. Let c′ be another center and e be the edge that connects two
centers c and c′. When the agent starts the execution of Choose, the agent knows
the value of n and D, and it recognizes e in the execution of MoveAndCompute.
These values are computed in Phase 2, Phase 5, and Phase 6, respectively. We
consider two connected components Tc and Tc′ by removing edge e from T which
include c and c′ respectively (See Figure 3).

To choose one of the centers as the rendezvous point, each agent compares
Tc with Tc′ . However, if the agent keeps naively the complete map of Tc and
Tc′ , it requires Ω(n log n) bits. Fortunately, we have a strategy to identify a tree
Tc with only O(n) bits. In this strategy, the agent keeps only the degree and
the port number of one edge for every node in Tc. The port number kept by
the agent on node c is the one connecting to e, and the port number kept by the
agent on node u(u 	= c) is the one connecting to the first edge on path P (u, c).

96 D. Baba et al.

1

1

3

1

1

2

2

1

2

3

1

1

2

1

T
c T

c’

e D
c

= 11|1|*|10|1|*|*

P
c

= 1|1|*|10|1|*|*

D
c’

= 11|1|*|10|1|*|*

P
c’

= 1|1|*|1|1|*|*

c c’

Fig. 3. An example of execution Choose

To realize the above strategy, the agent prepares two sequences Dc and Pc.
These sequences are used to keep the degree and the port number for every node
in Tc, respectively. Initially, both Dc and Pc are empty words. These sequences
are updated whenever the agent makes a movement: When the agent arrives at
a node u through an edge e′, it appends δ(u) to Dc and λu(e′) to Pc if it visits
u for the first time, and otherwise it appends a symbol ∗. In our algorithm,
the sequences Dc and Pc are kept by the agent as a string over alphabet Σ =
{0, 1, |, ∗}. Symbols 0 and 1 are used to represent a degree or a port number as
a binary value, and symbol | is inserted between numbers as a separator. For
example, sequence 31 ∗ 2 is represented by 11|1| ∗ |10. We show an example of
Dc and Pc in Figure 3.

The algorithm of Choose consists of three operations: 1) The agent explores
the whole of tree Tc using basic steps, and gets the tuple (Dc, Pc). 2) It moves
another center c′, explores the whole of tree Tc′ , and gets the tuple (Dc′ , Pc′). 3)
It compares the tuple (Dc, Pc) with (Dc′ , Pc′) lexicographically. If these tuples
are different, it terminates at the smaller node (c or c′), otherwise it terminates
at c′ because the tree is symmetric. The following lemma shows the correctness
of the algorithm.

Lemma 5. The tree T is symmetric if both Dc = Dc′ and Pc = Pc′ hold.

Proof. The lemma holds because we can restore an identical subtree from Dc

and Pc. Due to space limitation, we omit the proof of the lemma.

Efficiency of the Algorithm. From the proposed algorithm Rendezvous-T, we
can state the following theorem.

Theorem 6. The rendezvous problem in a tree network with n nodes is solved
in O(n) time with O(n) memory space on each agent.

Proof. The time complexity of Rendezvous-T is clearly O(n) because the agent
makes at most 2(n − 1) basic steps in each execution of MoveAndCompute or
Choose. Thus, we focus on the space complexity in the followings.

In MoveAndCompute, the agent keeps its history whose length is at most
2(n−1) because the number of steps the agent makes is at most 2(n−1). Other

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 97

variables the agent keeps are clearly at most O(log n) bits each. Thus, the space
complexity of MoveAndCompute is O(n).

Next, we show the space complexity of Choose. To keep all the variables except
for the sequences Dc, Pc, Dc′ and Pc′ , O(n) memory space is sufficient. Thus,
we show the number of bits to keep these sequences in the followings.

First we consider the number of bits to keep the sequence Dc. Since the
number of nodes included in Tc is lower than n, both of the number of symbol |
and that of symbol ∗ included in Dc are at most n−1. Let dc be the total number
of symbol 0 and symbol 1 included in Dc. Since symbols 0 and 1 are used in Dc

to represent a degree as a binary value for every node u in Tc, the inequality
dc =

∑
v∈Tc

(�log δ(v)� + 1) ≤
∑

v∈Tc
δ(v) ≤ 2(n − 1) holds. Thus, the length

of Dc is at most 4(n − 1). Note that since Σ has four symbols, the sequence
Dc is stored using at most 8(n− 1) bits. Next, we consider the number of bits
to keep the sequence Pc. By the definition of labeling function λv, each port
number on node u is lower than or equal to δ(u) and the number of bits to keep
the sequence Pc is not larger than that of Dc. The numbers of bits required for
other sequences are shown to be O(n) in the same way and the space complexity
of Choose is also O(n). �

4 Asymptotically Space-Optimal Rendezvous

4.1 The Algorithm with O(log n) Memory Space

In this section, we present an asymptotically space-optimal rendezvous algorithm
Rendezvous-S which uses O(log n) memory space per agent. The idea of the al-
gorithm is the same as that of the previous algorithm Rendezvous-T: The agent
moves to a leaf node and then moves to a center by executing MoveAndCompute
four times. After that, the agent chooses one of the centers as the rendezvous
point by executing Choose if there are two centers. Moreover, the idea of Move-
AndCompute is almost the same: Whenever the agent moves to an adjacent node,
it computes the distance from the initial node v to the current node u. How-
ever, two points are significantly different: 1) One is how the agent determines
whether the next step makes it closer to or farther from v in MoveAndCompute,
and 2) The other is how the agent chooses one of the centers as the rendezvous
point in Choose. These operations require O(n) memory space in Rendezvous-T,
however, the agent can use only O(log n) memory space in this section. Thus,
each agent can keep none of the history, the sequence Dc, nor the sequence Pc.
We focus on only these two points in the followings.

Before we provide solutions to them, we need to explain two existing func-
tions LogExploration and MatchingEdge, which are proposed to solve the explo-
ration problem for trees [7]. The space complexity of LogExploration is proved
to be O(log n), and the time complexity to be O(Δn7)[7], where Δ is the maxi-
mum degree of nodes in the network. We use these functions as a subroutine in
MoveAndCompute. These functions are proposed in symmetric-label trees, where

98 D. Baba et al.

each edge has the same label in both sides. Thus, in the followings, we con-
sider only symmetric-label trees. Note that, however, this restriction is removed
in Section 4.2.

Function LogExploration is the one to realize the exploration in arbitrary trees:
The agent traverses all the edges and all the nodes in a tree started at its
home node v. After the execution of LogExploration, the agent returns back to
v. Moreover, the agent can recognize whether the tree is symmetric or not by
executing LogExploration. If and only if the tree is symmetric, there exists exactly
one edge called orphan edge defined by the topology of the tree. In fact, the
orphan edge corresponds to an edge connecting two centers in a symmetric tree.
Therefore, the agent can check whether the tree is symmetric or not by checking
whether there exists an orphan edge. As a subroutine in LogExploration, function
MatchingEdge is presented. Let S = e1e2 . . . e2(n−1) be a sequence of edges that
an agent passes through when the agent explores the whole tree from node v
using basic steps. Since basic steps realize DFS-traversal, each edge is included in
S exactly twice. By calling MatchingEdge(i) at v, the agent can compute j(= i)
satisfying ei = ej in S if the tree is not symmetric.

Now, we are ready to settle the first problem: How the agent determines
whether the next step makes it closer to or farther from the initial node v in
MoveAndCompute? The approach explained below is available only if the tree is
not symmetric. However, this never causes a problem: Before the agent starts
MoveAndCompute (i.e., before Phase 2 in Section 3.2.1), it executes LogExplo-
ration to check whether the tree is symmetric or not. If the tree is symmetric,
the agent moves to a node adjacent to the orphan edge and terminates there.
Thus, the agent executes the function MoveAndComute only if the tree is not
symmetric. Assume the agent visits node u on its (l − 1)-th basic step. Let
S = e1e2 . . . e2(n−1) be the sequence of edges that the agent will pass through in
its 2(n−1) basic steps from its initial node v. The behavior of the agent consists
of the following three operations: 1) The agent returns to v by using (l − 1) re-
verse steps. 2) By calling MatchingEdge(l) at v, it computes j satisfying ej = el

in S. If l < j holds, the agent passes e for the first time at the l-th step and
thus the l-th step makes the agent farther from v. Otherwise, since the agent has
passed e before the l-th step, the l-th step makes the agent closer to v. Note that,
only when the agent executes MatchingEdge(l) at v, it can compute whether it
passes through e for the first time or not by this way. 3) After the computation,
the agent gets back to u by (l − 1) basic steps and makes the l-th step.

Next, we explain the implementation of Choose to settle the second problem:
How the agent chooses one of the centers as the rendezvous point? When the
agent starts Choose, it stays at a center c with recognizing another center c′, the
edge e connecting c and c′, and the value of f = 2(n−1). Besides, the tree T is not
symmetric (Otherwise, the agent terminates before it starts MoveAndCompute).
Let tc[1..j] = p1, . . . , pj be the sequence of port numbers the agent has left
during j basic steps from c. In Choose, the agent compares tc[1..f] with tc′ [1..f]
lexicographically and terminates at a center with the smaller one.

Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees 99

The details of Choose in Rendezvous-S are described as follows. Initially, the
agent sets the variable i to be 1. The agent makes i basic steps from c and gets
the value tc[i]. Next, it returns to c by i reverse steps and moves to c′. Similarly,
it gets the value of tc′ [i]. If tc[i] is different from tc′ [i], then it terminates at the
node with the smaller one. Otherwise, the variable i is incremented by one and
compares tc[i] with tc′ [i] repeatedly. Since the tree is not symmetric, there is an
integer i such that tc[i] 	= tc′ [i].

Since the space complexity of LogExploration is O(log n) and the time com-
plexity of it is O(Δn7), we can state the following theorem.

Theorem 7. The rendezvous problem in a tree network with n nodes is solved
in O(Δn8) time with O(log n) memory space on each agent.

4.2 Extension from Symmetric-Label Trees to General Trees

In the previous subsection, we consider only symmetric-label trees. However, our
algorithm works for general trees. The method to obtain a virtual symmetric-
label tree T ′ from an original (general) tree T has been introduced [7]. In
this method, a virtual node x is put on every edge e = {u, w} such that
λu(e) 	= λw(e), and port numbers λu(e) and λw(e) are assigned to λx({x, u})
and λx({x, w}), respectively. Since virtual tree T ′ is a symmetric-label tree, the
agent can solve the rendezvous problem by executing Rendezvous-S in T ′.

We should handle two troubles caused by using the method. First, when the
rendezvous point is a virtual node, the agent moves the neighboring real node.
That is, if center c is a virtual and the only center, it leaves c through the port
1 and terminates at the arrival node. If there are two centers and one of them
is a virtual node, the agent terminates at the real one. Second, when the agent
recognizes that virtual tree T ′ is symmetric and it moves to one of nodes w and
w′ adjacent to the orphan edge on T ′, the agent should check whether the real
tree T is symmetric or not: Let vw(i) be true (resp. false) if the agent in T ′

visits a real (resp. virtual) node after i basic steps from w. If vw(j) = vw′(j)
holds for all j < i and vw(i) 	= vw′(i) for some i, the agent can terminate at
w (resp. w′) if vw(i) =true (resp. vw′(i) =true). If vw(i) = vw′(i) holds for any
integer i (1 ≤ i ≤ 2(n′ − 1), where n′ is the number of nodes in T ′ computed
in LogExploration), T is also symmetric and the agent terminates at w without
meeting there.

5 Conclusion

In this paper, we have presented two rendezvous algorithms which work with
any number of agents in any asynchronous tree. One is asymptotically time-
optimal and the other is asymptotically space-optimal. The space complexity of
the first algorithm is also asymptotically optimal on the condition that the time
complexity is asymptotically optimal.

100 D. Baba et al.

Our current study does not deal with the solvability in the case that the tree is
symmetric but the initial location of agents is asymmetric. It would be an inter-
esting problem to clarify the condition of the initial agent location that makes
the rendezvous problem solvable. Our asymptotically space-optimal algorithm
takes polynomial but long time to terminate. To construct an asymptotically
space-optimal algorithm which solves the rendezvous problem in a shorter time
would be also interesting.

References

1. Das, S.: Mobile agent rendezvous in a ring using faulty tokens. In: Rao, S., Chat-
terjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS,
vol. 4904, pp. 292–297. Springer, Heidelberg (2008)

2. Das, S., Mihalak, M., Sramek, R., Vicari, E., Widmayer, P.: Rendezvous of mo-
bile agents when tokens fail anytime. In: Proc. 12th International Conference on
Principles of Distributed Systems, pp. 463–480 (2008)

3. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.:
Mobile agents rendezvous when tokens fail. In: Kralovic, R., Sýkora, O. (eds.)
SIROCCO 2004. LNCS, vol. 3104, pp. 599–608. Springer, Heidelberg (2004)

4. Flocchini, P., Kranakis, E., Krizanc, D., Sawchuk, C., Santoro, N.: Multiple mo-
bile agents rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS,
vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

5. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidel-
berg (2008)

6. Gasieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal memory rendezvous
of anonymous mobile agents in a uni-directional ring. In: Wiedermann, J., Tel, G.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp.
282–292. Springer, Heidelberg (2006)

7. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic
memory. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007), pp. 585–594 (2007)

8. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of asynchronous oblivious robots on a ring. In: Proc. 12th International Conference
on Principles of Distributed Systems, pp. 446–462 (2006)

9. Klasing, R., Markou, E., Pelc, A.: Gathering asynchrounous oblivious mobile robots
in a ring. Theoretical Computer Science 390(1), 27–39 (2008)

10. Korach, E., Rotem, D., Santoro, N.: Distributed algorithms for finding centers
and medians in networks. ACM Transactions on Programming Langages and Sys-
tems 6(3), 380–401 (1984)

11. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a
ring. In: Proc. 23rd International Conference on Distributed Computing Systems
(ICDCS 2003), pp. 592–599 (2003)

Mobile Robots Gathering Algorithm
with Local Weak Multiplicity in Rings

Tomoko Izumi1, Taisuke Izumi2, Sayaka Kamei3, and Fukuhito Ooshita4

1 College of Information Science and Engineering, Ritsumeikan University,
Kusatsu, 525-8577 Japan

izumi-t@fc.ritsumei.ac.jp
2 Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan

t-izumi@nitech.ac.jp
3 Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan

s-kamei@se.hiroshima-u.ac.jp
4 Graduate School of Information Science and Technology, Osaka University,

Suita, 565-0871, Japan
f-oosita@ist.osaka-u.ac.jp

Abstract. The gathering problem of anonymous and oblivious mobile robots is
one of fundamental problems in the theoretical mobile robotics. We consider the
gathering problem in unoriented and anonymous rings, which requires that all
robots gather at a non-predefined node. Since the gathering problem cannot be
solved without any additional capability to robots, all the previous works assume
some capability of robots, such as accessing the memory on node. In this paper,
we focus on the multiplicity capability. This paper presents a deterministic gath-
ering algorithm with local-weak multiplicity, which provides the robot with the
information about whether its current node has more than one robot or not. This
assumption is strictly weaker than that by previous works. Moreover, we show
that our algorithm is asymptotically time-optimal one, that is, the time complex-
ity of our algorithm is O(n), where n is the number of nodes. Interestingly, in
spite of assuming the weaker assumption, it achieves significant improvement
compared to the previous algorithm, which takes O(kn) time for k robots.

1 Introduction

1.1 Background and Motivation

Mobile robots are the entities that cooperate with each other by computing, moving and
communicating in a plane or in a network. The computational power of mobile robots
with quite weak capability is attracting much attention of researchers in the field of
distributed computing. In most of the studies, it is assumed that robots are oblivious
(no memory to record past situations), anonymous (no IDs to distinguish two robots)
and uniform (all robots run the same algorithm). In addition, it is also assumed that
each robot has no direct means of communication. Typically, communication among
two robots is done in the implicit way that each robot observes the environment, which
includes the positions of other robots.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 101–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

102 T. Izumi et al.

We consider the gathering problem of mobile robots, which is one of fundamen-
tal coordination tasks in the mobile robots system. The problem requires all robots to
gather on a non-predefined location. Because of its simplicity, the gathering problem
is actively studied in various settings. While most of previous works consider the gath-
ering problem on two-dimensional Euclidean space [1,2,4,7], a number of researches
deal with it in graphs [3,5,6,8,9,11,10]. In this paper, we focus on unoriented anony-
mous rings. That is, we make all robots moving in a graph of ring topology gather on
a non-predefined node. Unfortunately, regardless of its settings (graph or 2D-plane), it
has been proved that the gathering problem is unsolvable in oblivious and anonymous
robot systems without no additional assumption. All of the possibility results depend on
some additional assumptions for capability of robots, such as distinct identifiers [10],
accessing memory on nodes [3,6,11] or memory on robots [5].

The capability of robots considered in this paper is locality of multiplicity detection.
The multiplicity detection specifies how each robot observes a node where two or more
robots stay. In most of previous works, three types of multiplicity detection are consid-
ered: No multiplicity (each robot cannot distinguish the node with a single robot from
that with multiple robots), weak multiplicity (each robot can detect whether the num-
ber of robots on a node is only one or more than one), and strong multiplicity (each
robot can know the number of robots on a node). Recently, in addition to the above
types, the notion of locality for multiplicity detection capability is introduced [7]. The
local multiplicity detection implies that each robot can detect the multiplicity only for
its current node. On the other hand, the global multiplicity allows each robot to detect
the multiplicity of any node. In the original paper about gathering on ring [9] assumes
global-weak multiplicity, and investigate the relationship between its feasibility and
initial configurations: It presents a sufficient class of gatherable initial configurations,
called rigid configurations, which is the set of configurations excluding one having a
certain kind of symmetricity. It also proposes a gathering algorithm with global-weak
multiplicity for any rigid configuration. However, the strategy of that algorithm strongly
depends on the capability of global multiplicity. Its idea is to obtain exactly one node
occupied by two or more robots and to make the others reach it. It is clear that this idea
does not work correctly if we assume local multiplicity, because any robot on a node
cannot detect the multiplicity of other nodes. In this sense, it is an interesting and non-
trivial problem to reveal the set of initial configurations for which gathering is possible
only with local multiplicity.

1.2 Our Contribution

In this paper, we investigate the feasibility of the gathering with local-weak multiplic-
ity, which is strictly weaker setting than the original works by Klasing et. al. [9]. The
contribution of this paper is that any rigid configuration is gatherable only with local-
weak multiplicity detection. We propose a deterministic gathering algorithm in rings
with k asynchronous robots (2 < k ≤ �n/2� − 1, where n is the number of nodes) that
is applicable to any rigid configuration. Our algorithm assumes that robots are oblivi-
ous, anonymous and uniform, and that they have no device to communicate with others
directly. To make the gathering problem solvable, we assume that robots have the local-
weak multiplicity.

Mobile Robots Gathering Algorithm with Local Weak Multiplicity in Rings 103

Moreover, the time complexity of our algorithm is also analyzed. In this paper. we
evaluate time complexity based on maximum number of asynchronous rounds in the
worst case, which is one of well-known model for measuring time complexity in asyn-
chronous systems. The time complexity of our gathering algorithm with local-weak
multiplicity is asymptotically optimal, that is, O(n). Interestingly, it is significant im-
provement compared to the previous algorithm, which takes O(kn) rounds [9]: in the
previous algorithm, the robots first creates a configuration in which exactly one node v
is occupied by two robots. Then, the robots which have no robot on the paths to v move
to v, and other robots stay their current nodes. Since it takes O(n) rounds to gather two
robots to v, the time complexity of the algorithm is O(kn).

1.3 Road Map

In Section 2 we present the model of autonomous mobile robots considered in this
paper, and introduce other necessary notations and definitions. The gathering algorithm
with local-weak multiplicity and its time complexity are shown in Section 3. Finally we
conclude this paper in Section 4.

2 Preliminaries

2.1 System Models

The system consists of sets of nodes V and mobile robots R. The numbers of nodes and
robots are denoted by n = |V | and k = |R| respectively. The nodes construct unoriented
and undirected anonymous ring: Neither nodes nor links of the ring have any identifiers
and labels. Some nodes of the ring are occupied by robots.

The robots are anonymous and oblivious. That is, each robot has no identifiers distin-
guishing itself and others, and cannot explicitly remember the history of its execution. In
addition, no device for direct communication is equipped on each robot, such as marks
which can be left on nodes and communication devices for sending messages. The co-
operation of robots is done in an implicit manner: Each robot observes the configuration
(i.e., the nodes occupied by other robots). Each robot executes the same deterministic
algorithm in computational cycles (or briefly cycles). At the beginning of a cycle, each
robot observes the current configuration and determines to stay idle or to move to one
of adjacent nodes based on the algorithm. Then, if the robot decides to move, it moves
to the adjacent node. We assume that the robot reaches the destination instantaneously.
That is, when a robot observes the configuration, it sees all other robots at nodes and
not on links. Cycles are performed asynchronously: The length of time for performing
each operation is finite but unbounded. Due to these delay, when a robot moves to an
adjacent node which is computed based on the last observation, some robots may stay
at different nodes from those observed by the robot.

A configuration is defined by node on which each robot stays. The number of robots
staying on a node is called the multiplicity number of the node. If the multiplicity num-
ber of node v is more than one, we say v is multiple. If v has one robot, v is said to
be single. If there is no robot on a node, the node is called free. The segment [vp, vq]
is defined by the sequence (vp, vp+1, . . . , vq) of consecutive nodes in the ring, where

104 T. Izumi et al.

nodes vp and vq are single or multiple and the others are free. The distance of segment
[vp, vq] is equal to the number of nodes in [vp, vq] minus 1. Configuration Ci in which
[v1, v2], [v2, v3] . . . , [vw, v1] are consecutive segments in a direction on the ring is defined
by a pair of sequences ((di

1, d
i
2, . . . , d

i
w), (mi

1,m
i
2, . . . ,m

i
w)), where di

h is the distance of
[vh, v(h+1) mod w] and mi

h is the multiplicity number of vh (1 ≤ h ≤ w). We get different
pairs of sequences when different segment is selected as the first segment or when the
distances are listed in the opposite direction in the ring. These sequences represent the
same configuration. In this paper, to simplify notation, we use one of the pairs of se-
quences which represent a configuration to denote the configuration. When no node is
multiple in a configuration, we use only sequence (di

1, d
i
2, . . . , d

i
w).

A configuration is changed by movements of robots. Let C0 be an initial configu-
ration and Mi be a set of movements that occur simultaneously at configuration Ci.
An execution is an alternate sequence of configurations and sets of movements E =
C0,M0,C1,M1, . . ., such that occurrence of movements Mi changes the configuration
from Ci to Ci+1.

Configurations which have no multiple node are classified into three classes in [9]:
Configuration C is called periodic if C is represented by a concatenation of at least two
copies of a subsequence. If there is an axis of symmetry of the ring in configuration C,
C is called symmetric. The last class is called rigid, in which the other configurations
are included. Figure 1 shows examples of these configurations.

A

B

A
A B

a. a configuration b. a periodic configuration c. a symmetric configuration

Fig. 1. Examples of configurations: In figure a, the configuration is represented by ((4, 3, 1, 2, 2),
(2, 1, 1, 2, 1)) which starts from node A. The periodic configuration in figure b is (2, 3, 1, 2, 3, 1),
which is two copies of (2, 3, 1). The configuration in figure c has the axis of symmetry.

By observing a configuration, a robot gets a sequence of distances of segments and
information about multiplicity number. Configuration Ci observed by a robot on node
v is represented by two sequences of distances (di

1, d
i
2, . . . , d

i
w) and (di

wdi
w−1, . . . , d

i
1)

starting from v: One is the sequence in the opposite direction of the other. Since the
ring is unoriented, each robot cannot know which is clockwise or counterclockwise
one. In this paper, each robot chooses the larger one in lexicographic order: Sequence
(ai, ai+1, . . . , a j) is larger than (bi, bi+1, . . . , b j) if there is h (i ≤ h ≤ j) such that al = bl

for i ≤ l ≤ h − 1 and ah > bh. The capacity of multiplicity detection specifies how
each robot observes multiple nodes. In this paper, we consider the local-weak multi-
plicity: Each robot can detect whether the multiplicity number of its current node is

Mobile Robots Gathering Algorithm with Local Weak Multiplicity in Rings 105

more than one. The view of a robot on node v at configuration Ci is represented by
sv(Ci) = (max{(di

1, d
i
2, . . . , d

i
w), (di

w, d
i
w−1, . . . , d

i
1)},mi), where mi is true if the multiplic-

ity number of node v is more than one and false otherwise. Note that the sequences
of distance in views of different robots may be in different direction on the ring. For
example, in Figure 1. a., the view of the robots on node A is ((4, 3, 1, 2, 2), true) and
that on B is ((3, 4, 2, 2, 1), false). In [9], it is said that a configuration without multiple
nodes is rigid if and only if the views of all the robots are different.

2.2 Gathering Problem

The goal of the gathering problem is to gather all the robots on one node that is not
predefined and to keep the configuration. For the gathering problem, some impossibility
results are shown in [9].

Theorem 1. The gathering problem is insolvable for the following cases:

1. The number of robots is two.
2. Robots have no multiplicity detection.
3. The initial configuration is any periodic configuration.
4. The initial configuration is any symmetric configuration in which axis of symmetry

goes through two antipodal links.

In this paper, we assume that initial configuration is rigid and that 2 < k ≤ �n/2�−1. That
is, in an initial configuration, there is no multiple node and each robot has different view.

The algorithms in this paper are described in some rules. Each rule consists of some
conditions and actions of the robots. The robots observe the current configuration and
execute actions of one of the rules whose condition matches the observing configura-
tion. Notice that some conditions are described nested if-then-else statements.

3 Gathering Algorithm with Local-Weak Multiplicity

In this section, we present a gathering algorithm with the local-weak multiplicity for
any rigid configuration with 2 < k ≤ �n/2� − 1 robots.

Before presenting the details of the algorithm, we introduce several definitions and
notation. The maximum segment at configuration Ci is the segment with the longest
distance in Ci. The maximum node at Ci is the non-free node on which the view of robot
is the maximum view at Ci. If only one node is the maximum one in Ci, the maximum
node is denoted by vi

1 and each non-free node is labeled in the same order as the distance
sequence in the view on vi

1. That is, for view svi
1
(Ci) = ((di

1, d
i
2, . . . , d

i
w),mi), node vi

h is

the node such that the distance of segment [vi
h, v

i
h+1] is di

h and called h-th node. In this
case, for simplicity, distance di

h implies the h-th element of the distance sequence on
the maximum node.

From the definitions, the following lemma is trivial.

Lemma 1. Let Ci be a configuration without multiple nodes. The number of the maxi-
mum nodes at configuration Ci is one if and only if Ci is rigid.

106 T. Izumi et al.

In what follows, we present our algorithm in some subsections. In Section 3.1, the gath-
ering algorithm for any rigid configuration Ci where di

1 ≥ 4 and di
2 ≥ 3 is introduced.

If a given initial configuration does not match the above conditions, the robots try to
create the configuration satisfying them: The algorithm presented in Section 3.2 creates
a desired configuration from a rigid one where di

1 ≥ 4 and di
2 < 3, and in Section 3.3, we

present the algorithm for creation of a rigid configuration where di
1 = 4 from a rigid one

where di
1 = 3. In this paper, we assume that k ≤ �n/2� − 1 and that initial configuration

C0 is rigid. That is, the distance of the maximum segment is longer than 2 at C0.

3.1 Gathering from a Rigid Configuration Where di
1
≥ 4 and di

2
≥ 3

In this subsection, we assume that the initial configuration C0 is rigid and satisfies d0
1 ≥

4 and d0
2 ≥ 3.

To gather only with the local-weak multiplicity, we must lead a configuration where
one node has k − 1 robots and the other has 1 robot when the number of non-free nodes
is 2. The reason is that when two nodes are multiple and the others are free, the robots
on the two nodes take the symmetric movements because they have the same view.
Hence, when the two nodes are neighboring, all the robots keep staying the current
nodes or passing each other. Thus, the robots cannot gather on one node. The idea of
our algorithm is that node v0

2 is kept single, and that the robots on nodes v0
1 and v0

4, . . . , v
0
w

gather to node v0
3. The key to achieve this strategy is that nodes v0

2 and v0
3 are kept as the

second and the third nodes respectively during the execution.
The details of our algorithm are as follows

– In the case that the number w of non-free nodes is more than or equal to 3,
R1: When di

w ≥ 2, robots on vi
1 move to vi

w.
R2: When w � 3, di

w = 1, di
w−1 ≥ 2,

R2-1: if the maximum segment is only [vi
1, v

i
2] then robots on vi

w move to vi
w−1,

R2-2: otherwise robots on vi
2 move to vi

3.
R3: When w � 3 and di

w = 1 and di
w−1 = 1, robots on vi

1 move to vi
w.

R4: When w = 3 and di
3 = 1, robots on vi

1 move to vi
3.

– In the case that the number w of non-free nodes is 2,
R5: robot on the single node moves to the other node occupied by robots.

First, let consider an initial configuration where the number of the maximum segments
is one. In our algorithm, the robots move so that the first element on the maximum
node is increased, the second element is not changed and the others are decreased. In
addition, the last element is kept shorter than the second element. That is, during the
execution, the number of the maximum segments is one, and node v0

2 remains the second
node not the first. Figure 2 illustrates an example of executions of the algorithm. The
robots on node vi

1 move to the neighboring node of the last node (rule R1). After that,
the robots on vi

w move to the other neighboring node of vi
w if the neighbor is free (rule

R2-1). Then, the distance of the last segment becomes 2, and rule R1 is executed again.
That is, the last element of the maximum view is kept shorter than the second element,
which is larger than or equal to 3. When d j

w−1 becomes 1, the robots on v j
1 join on v j

w

(rule R3). By repeating these actions, the configuration eventually becomes one where
w = 3 and dh

3 = 1, and then, all the robots except one on the second node gather on vh
3

Mobile Robots Gathering Algorithm with Local Weak Multiplicity in Rings 107

A

B

C

D

E

v1

v2

v3

v4

v5

d1

d2d3

d4

d5
A

B

C

D

E

v1

v2

v3

v4

v5

A

B

C

D

E

v1

v2

v3

v4

v5

A

B

C

D

E

v1

v2

v3

v4

v5 B

C

A, D, E

v3

v1

v2

BA, C, D, E

R1 R2-1

R1

R3
R4

Fig. 2. An example of executions of the gathering algorithm

(rule R4). That is, a configuration where one node is single and the other is multiple is
created. Lastly, the robot on the single node moves to the multiple node.

We consider the initial configuration C0 such that more than one the maximum seg-
ments exist. In this case, one of rules R1, R2-2 and R3 is applied. At the next con-
figuration C1 after executing one of them, the first element on the maximum node v0

1 is
extended by one. That is, the number of the maximum segments becomes one at C1, and
then the robots gather on one node by the above way. However, only when rule R2-2 is
applied, the second element of v0

1 may become less than 3. It does not satisfy the con-
ditions for execution of this algorithm. In this case, the algorithm presented in Section
3.2, in which the second element becomes 3 keeping only the first segment having the
maximum distance, is executed.

Lemma 2. For k(2 < k ≤ �n/2� − 1) robots with the local-weak multiplicity, the algo-
rithm achieves the gathering from a rigid configuration where d0

1 ≥ 4 and d0
2 ≥ 3.

Proof. If the configuration becomes one where w = 3, di
3 = 1 and the second node is

single, it is clear that rules R4 and R5 lead to gathering.
In what follows, we explain that the desired configuration is created by rules R1-R3.

The important fact to show this lemma is that the maximum node is only one and the
second node is not changed during the execution.

First, we show that in any execution E from a given initial configuration, there is a
configuration C j satisfying the following three conditions: 1) exactly one node v j

1 is the
maximum node, 2) only the first segment on v j

1 is the maximum one and 3) d j
2 ≥ 3. The

initial configuration C0 is rigid. It means that exactly one node is the maximum node
(Lemma 1). We consider each case that each rule is applied.

108 T. Izumi et al.

– When rule R2-1 is applied at C0, C0 satisfies the above conditions.
– When rule R1 or R3 is executed at C0, the robot on v0

1 moves to adjacent node u and
the others stay on their current node. Segment [u, v0

2], whose distance is d0
1 + 1, is

only the maximum one because there is no segment whose distance is longer than
d0

1 at C0. Thus, the first condition is satisfied. The distance of the other segment
including u is d0

w − 1 or 1, and it holds that d0
w ≤ d0

2 = d1
2. Thus, node u is only

the maximum node and d1
2 ≥ 3 at configuration C1, that is, C1 satisfies the three

conditions.
– When rule R2-2 is applied at C0, the robot on v0

2 moves to adjacent node and the
robot on v0

1 does not move. At the next configuration C1, since the view on v0
1 is

represented by (d0
1 + 1, d0

2 − 1, . . . , 1), the segment with d0
1 + 1 distance is only the

maximum one and v0
1 is only the maximum node. However, d1

2 may become less
than 3. In this case, the algorithm in Section 3.2 is executed at C1. Lemma 4 and 5
guarantee that the algorithm leads to a configuration C j in which d j

2 = 3 keeping
node v1

1 and segment [v1
1, v

1
2] being only the maximum one. That is, configuration

C j satisfies the above three conditions, and rule R2-2 is not executed at C j.

Next, we prove that for any configuration Ci(j ≤ i) during E, the next configuration
Ci+1 satisfies the following three conditions; 1) only the segment including [vi

1, v
i
2] has

the maximum distance, 2) vi+1
2 = vi

2 and 3) 3 ≤ di+1
2 . This implies that the maximum

node is only one, node vi
2 remains the second node, and rule R2-2 is not executed at

Ci+1. By executing one of rules R1, R2-1 and R3 at Ci, some of the robots on vi
1 or vi

w
move to adjacent node. We denote the segment including vi

1 and vi
2 at Ci+1by [u, vi

2],
where u is vi

1 or the neighboring node of vi
1. Due to the movements, the distance of

[u, vi
2] becomes di

1 + 1 or di
1, and each distance of the other segments is decreased, not

changed, or kept shorter than 3. Since di
1 is longer than 3, segment [u, vi

2] is only the
maximum one. Hence, the candidates of the maximum nodes at Ci+1 are u or vi

2. Notice
that rules R1, R2-1 and R3 do not change the distance of [vi

2, v
i
3], and that the other

segment neighboring of [u, vi
2] is shorter than 3 or becomes di

w − 1. Since di
w ≤ di

2 and
3 ≤ di

2, the view on vi
2 is smaller than one on u. Thus, node vi

2 remains the second node
and 3 ≤ di+1

2 at Ci+1.
At any configuration in the execution until the number of non-free nodes is 2, the

second node v j
2 is not changed. From the algorithm, since no robot moves to v j

2, node

v j
2 keeps single. When the last element of view on the maximum node is longer than

2, rule R1 is applied, and then, the last element eventually becomes 1. After that, rules
R2-1 and R1 are alternately applied and di

w−1 becomes 1. At this configuration, rule
R3 decrements the number w of nodes occupied by robots. Hence, the configuration
becomes eventually one where w = 3, di

3 = 1 and the second node is single. �

3.2 Algorithm for a Rigid Configuration Where di
1
≥ 4 and di

2
< 3

In this subsection, we consider the given configuration is rigid and satisfies di
1 ≥ 4 and

di
2 < 3. The goal of the algorithm presented here is to make a rigid configuration where

d j
1 ≥ 4 and d j

2 = 3 from the given configuration.
To present the algorithm, we introduce procedure SHIFT. SHIFT is executed to shift

the robots on neighboring nodes in a direction on the ring without creating multiple

Mobile Robots Gathering Algorithm with Local Weak Multiplicity in Rings 109

nodes. We assume that configuration Ci at which SHIFT is executed satisfies the fol-
lowing conditions:

1. Ci is rigid where di
1 > di

2.
2. There are nodes vi

p and vi
q such that 2 ≤ di

x < di
1(1 < x < p), di

y = 1(p ≤ y < q) and
di

q ≥ 2.

If SHIFT is called then the next rule is executed. By executing SHIFT continuously, the
robot on node vi

p can move away from vi
p−1 without creating multiple node.

SHIFT: robot on node vi
q moves to vi

q+1.

Lemma 3. Assume that Procedure SHIFT is called at a rigid configuration Ci satisfy-
ing the two conditions. The configuration Ci+1 caused by executing SHIFT is rigid, and
node vi

1 is also the maximum node at Ci+1.

Proof. The execution of SHIFT does not make any node multiple because the robot on
vi

q gets close to vi
q+1 and and di

q ≥ 2.

We show that node vi
1 is only the maximum node at Ci+1. Let u be the node to which

the robot on vi
q moves. By executing SHIFT, the (q − 1)-th element of the view on vi

1
is incremented and the q-th element is decremented by one. So, the view on vi

1 is larger
than the previous one. If a node has larger view than or equal to vi

1 at Ci+1 then the
incremented element must be h-th element of the view on the node (h ≤ q − 1). In
addition, except node u, the view which is opposite direction to one on vi

1 is smaller
than the previous one because the decremented element is preceding the incremented
element in the view. That is, the other candidates of the maximum nodes are vi

2, . . . , v
i
q−1

and u. For each node vi
2, . . . , v

i
p−1, if the view on the node is the same direction as one

on vi
1 then the conditions on which SHIFT is executed imply that its first element is

smaller than di
1. Similarly, the first element of the view on each node vi

p, . . . , v
i
q−2 is 1

and one for vi
q−1 is 2. For node u, its first element is 2 or di

q−1. From the fact that di
1 ≥ 3

and di
1 ≥ di

q, these views are smaller than one on vi
1 at Ci+1. Hence, node vi

1 is only the
maximum node at Ci+1. From Lemma 1, Ci+1 is a rigid configuration. �

Now, we explain the algorithm for making a configuration where di
2 = 3. The algorithm

is very simple: Robot on node vi
3 moves to the neighboring node in order to extend

the distance from node vi
2. If there is a robot on the neighboring node then SHIFT is

executed until the robot on vi
3 can move to the neighbor without creating multiple node.

The details of the algorithm are as follows:

– In the case that di
1 ≥ 4 and di

2 < 3 at configuration Ci,
R6: When di

3 ≥ 2, robot on node vi
3 moves away from vi

2.
R7: When di

3 = 1, robot executes SHIFT.

Lemma 4. Assume that Ci is a rigid configuration where di
1 ≥ 4 and di

2 < 3. Rules

R6 and R7 make a rigid configuration C j where d j
1 ≥ 4 and d j

2 = 3 from Ci. And the
maximum node vi

1 at Ci remains the maximum one.

110 T. Izumi et al.

Proof. We first show that the next configuration Ci+1 is rigid and the maximum node vi
1

at Ci remains the maximum one at Ci+1. If rule R7 is applied, Lemma 3 proves this fact.
If rule R6 is applied, the first element of the view on vi

1 is not changed and the second
element is incremented. That is, the view on vi

1 becomes larger than the previous one.
Let u be the node to which the robot on vi

3 moves. The other candidates of the maximum
nodes are nodes whose views contain the incremented element as the first or the second
element. In addition, the direction of the candidate’s view must be the same direction as
one on vi

1 except node u. That is, the other candidates are nodes vi
2 and u. For node vi

2,
if its view is the same direction as one on vi

1 then its first element is incremented but its
value is smaller than 4. Similarly, the first element on node u is smaller than 4 or di

3 − 1.
Since di

1 ≥ 4 and di
1 ≥ di

3, they cannot be the maximum node. Thus, node vi
1 remains

only the maximum node, and Ci+1 is rigid.
If the configuration satisfies the conditions of rule R6, the second element of vi

1 is
incremented. Otherwise, rule R7 is applied until the third element of vi

1 becomes longer
than 1, which is a configuration at which rule R6 is executed. Therefore, the second
element of vi

1 eventually becomes 3. �

From the proof of Lemma 4, some segments is incremented but its distance is smaller
than 4 during the execution of the algorithm presented in this subsection. Since the
distance of the first segment of the maximum node is longer than or equal to 4. Thus,
the following lemma is proved.

Lemma 5. Let Ci be a rigid configuration where the first segment of the view on vi
1 is

only the maximum one, di
1 ≥ 4 and di

2 < 3. During the execution of rules R6 and R7
until di

2 becomes 3, the first segment on vi
1 is kept being only the maximum one.

3.3 Algorithm for a Rigid Configuration Where di
1
= 3

In this subsection, we present the algorithm to make a rigid configuration where di
1 = 4

from the given configuration where di
1 = 3.

The details of the algorithm are as follows:

– In the case that di
1 = 3 at the rigid configuration,

R8: When di
w � 1, robot on node vi

1 moves to node vi
w.

R9: When (di
2, d

i
w) = (1, 1), robot executes SHIFT.

R10: When (di
2, d

i
w) = (2, 1),

R10-1: if configuration (4, 1, di
3, . . . , d

i
w−1, 1) is asymmetric then robot on node vi

2
moves to node vi

3,
R10-2: else if di

3 = 1 then robot executes SHIFT,
R10-3: else if configuration (3, 3, di

3 − 1, . . . , di
w−1, 1) is asymmetric then robot on

node vi
3 moves to node vi

4,
R10-4: otherwise robot on node vi

2 moves to node vi
1.

R11: When (di
2, d

i
w) = (3, 1), robot on node vi

2 moves to node vi
3.

In the algorithm, if the robots on node vi
2 or vi

w can move to the neighboring node with-
out creating a multiple node or a symmetric configuration, the distance di

1 is extended
by the movements of these robots (rule R8 or R11). If both of robots on vi

2 and vi
w cannot

Mobile Robots Gathering Algorithm with Local Weak Multiplicity in Rings 111

move, that is, nodes vi
2 and vi

w are neighbor vi
3 and vi

w−1 respectively, then SHIFT is
executed to extend distance di

2 by 2 (rule R9). The most sensitive case is that di
2 = 2

and di
w = 1 because a movement of the robot on vi

2 may lead a symmetric configuration.
In the above algorithm, to avoid symmetric configurations, the robots behave different
actions in the four cases (rules 10-1 to 10-4).

Lemma 6. The algorithm makes a rigid configuration Ci where di
1 = 4 from a rigid

configuration where di
1 = 3.

Proof. We show that when one of the rules is applied at configuration Ci where di
1 = 3,

the next configuration Ci+1 is rigid.

– When the applied rule is R8 or R11, the distance of the segment including vi
1 and

vi
2 becomes 4. Since there is no other segment whose distance is 4 at Ci+1, the can-

didates of the maximum nodes are end nodes of the maximum segment. Compared
the distances of the neighboring segments of the maximum one, one is smaller than
the other. Thus, the maximum node is one of the two end nodes, and Ci+1 is rigid.

– When rule R9 or R10-2 is applied, the next configuration is rigid from Lemma 3.
– When rule R10-1 is applied, the next configuration Ci+1 = (4, 1, di

3, . . . , d
i
w−1, 1)

is asymmetric from the condition for executing R10-1. Since the segment whose
distance is 4 is only one, the configuration is not periodic. Therefore, Ci+1 is rigid.

– When rule R10-3 is applied, it holds that di
3 ≥ 2. The next configuration Ci+1 =

(3, 3, di
3 − 1, . . . , di

w−1, 1) has no multiple node and is asymmetric. Since vi
1 is only

the maximum node at Ci, there are no other consecutive segments whose distances
are 3. That is, Ci+1 is not periodic. Thus, Ci+1 is rigid.

– The last case is that rule R10-4 is executed at Ci. Rule R10-4 is executed when the
configuration does not satisfy the conditions of rules R10-1 and R10-3. It means
that configurations (4, 1, di

3, . . . , d
i
w−1, 1) and (3, 3, di

3 − 1, . . . , di
w−1, 1) are symmet-

ric, where di
3 ≥ 2. In this case, since (3, 3, di

3 − 1, . . . , di
w−1, 1) is symmetric, di

3 = 2.
Then, since (4, 1, 2, . . . , di

w−1, 1) is symmetric, di
w−1 must be 2. By repeating this

way, we know that di
h(3 ≤ h ≤ w − 1) is 2 (see Figure 3). Therefore, configuration

Ci+1 after executing R10-4 at Ci is (2, 3, 2, . . . , 2, 1), which is a rigid configuration.

Next, we show that the first element of the maximum view becomes 4. If rule R8,
R10-1 or R11 is applied then it is clear that di+1

1 = 4. When rule R9 is applied and
SHIFT is executed repeatedly, the second element eventually becomes 2, in which one
of rules R10 is applied. In the case of rule R10-2, by executing SHIFT repeatedly, the
configuration becomes one in which R10-1 is executed, or d j

3 becomes 2 (j > i). In the
latter case, some robot moves based on one of rules R10-1, R10-3 and R10-4. When
rule R10-3 is applied, rule R11 is executed at the next configuration Ci+1, and when
rule R10-4 is applied, rule R8 is executed at Ci+1. �

From Lemmas 2, 4 and 6, we prove the following theorem.

Theorem 2. The gathering is achieved from a rigid configuration with k(2 < k ≤
�n/2� − 1) robots in the system with the local-weak multiplicity.

112 T. Izumi et al.

v1 v2 v3 v4 v5vw-1 vw

Configuration Ci

R10-1

R10-3

R10-4

Fig. 3. Each configuration after each execution of R10-1, R10-3 and R10-4

3.4 Time Complexity

We show that our algorithm for the gathering with the local-weak multiplicity is O(n)-
time algorithm in this subsection. In asynchronous systems, time complexity is usually
measured in terms of maximum number of asynchronous rounds in the worst case.
An asynchronous round is defined as the shortest fragment of an execution in which
each robot is activated, and moves to the neighboring node or stays the current node at
least once.

At procedure SHIFT, at least one robot, which is one on node vi
q, moves to the neigh-

boring node during one round. That is, it takes O(h) time to extend distance di
p from a

configuration where di
p, . . . , d

i
p+h = 1. Since the number of robots is k, value of h is at

most k. In each algorithm presented in Section 3.3 and 3.2, consecutive execution of
SHIFT occurs at most 2 times. Thus, in the algorithms, it takes O(k) time to execute
SHIFT. From the proofs of Lemma 4 and 6, the each algorithm in Section 3.3 and 3.2
leads each desired configuration by applying at most 2 rules except SHIFT. Therefore,
the algorithms in Section 3.3 and 3.2 take O(k) time.

In the gathering algorithm in Section 3.1, it takes O(k) time to make a configuration
where only one segment is maximum because SHIFT is executed due to rule R2-2. After
that, the robots on the maximum node take one node toward node vi

3 at two rounds even
if the robots is activated at the last of the rounds. Thus, the time complexity to gather all
the robots except the robot on vi

2 is O(n). Therefore, the following theorem is proved.

Theorem 3. The algorithm achieves the gathering in O(n) time.

4 Conclusions

This paper presented the deterministic gathering algorithm in asynchronous rings with
oblivious and anonymous robots using the local-weak multiplicity. The time complexity
of our algorithm is O(n), while that of the algorithms with global-weak multiplicity in
the previous works are O(kn). This result implies the our algorithm is asymptotically
time-optimal one.

Mobile Robots Gathering Algorithm with Local Weak Multiplicity in Rings 113

In this paper, we restrict the number of robots so that 2 < k ≤ �n/2� − 1. When there
are more than �n/2� − 1 robots on a ring, the distance between every consecutive robots
may be less than or equal to 2 at a initial configuration. In this case, it is hard that each
robot moves to adjacent node without creating a multiple node or a symmetric config-
uration. Our feature work is to present the algorithm or to prove the impossibility of
the gathering in this situation. Moreover, the gathering with the local-weak multiplicity
from a symmetric configuration is also one of interesting problems.

Acknowledgment. This work is supported in part by The Telecommunication Advance-
ment Foundation and Grant-in-Aid for Young Scientists ((B)19700075) of JSPS.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for automonous mobile robots.
SIAM Journal of Computing 36(1), 56–82 (2006)

2. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem.
In: Proceedings of the 30th International Colloquium on Automata, Languages and Program-
ming (ICALP 2003), pp. 1181–1196 (2003)

3. Flocchini, P., Kranakis, E., Krizanc, D., Sawchuk, C., Santoro, N.: Multiple mobile agents
rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–
608. Springer, Heidelberg (2004)

4. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchnorous robots
with limited visibility. Theoretical Computer Science 337(1-3), 147–168 (2005)

5. Fraigniaud, P., Pelec, A.: Deterministic rendezvous in trees with little memory. In: Tauben-
feld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)

6. Gasieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal memory rendezvous of anony-
mous mobile agents in a uni-directional ring. In: Wiedermann, J., Tel, G., Pokorný, J.,
Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 282–292. Springer,
Heidelberg (2006)

7. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Randomized gathering of mobile robots with
local-multiplicity detection. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873,
pp. 384–398. Springer, Heidelberg (2009)

8. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetrics: Gathering of asyn-
chronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008.
LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)

9. Klasing, R., Markou, E., Pelc, A.: Gathering asynchnorous pblivious mobile robots in a ring.
Theoretical Computer Science 390(1), 27–39 (2008)

10. Kowalski, D., Pelec, A.: Polynomial deterministic rendezvous in arbtrary graphs. In: Fleis-
cher, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidel-
berg (2004)

11. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring.
In: Proceedings of the 23th International Conference on Distributed Computing Systems
(ICDCS 2003), pp. 592–599 (2003)

Average Long-Lived Memoryless Consensus:
The Three-Value Case�

Ivan Rapaport1 and Eric Rémila2

1 DIM-CMM (UMI 2807 CNRS), Universidad de Chile,
2120 Blanco Encalada, Santiago - Chile

rapaport@dim.uchile.cl
2 Université de Lyon, LIP (UMR 5668 CNRS-ENS, Université Lyon 1),

46 allée d’Italie 69364 Lyon Cedex 7 - France
eric.remila@ens-lyon.fr

Abstract. We study strategies that minimize the instability of a fault-
tolerant consensus system. More precisely, we find the strategy than min-
imizes the number of output changes over a random walk sequence of
input vectors (where each component of the vector corresponds to a par-
ticular sensor reading). We analyze the case where each sensor can read
three possible inputs. The proof of this result appears to be much more
complex than the proof of the binary case (previous work). In the binary
case the problem can be reduced to a minimal cut in a graph. We succeed
in three dimensions by using the fact that an auxiliary graph (projected
graph) is planar. For four and higher dimensions this auxiliary graph is
not planar anymore and the problem remains open.

1 Introduction

There are situations where, for fault-tolerant purposes, a number of sensors are
placed in the same location. Ideally, in such cases, all sensor readings should be
equal. But this is not always the case; discrepancies may arise due to differences
in sensor readings or to malfunction of some sensors. Thus, the system must im-
plement some form of fault-tolerant averaging consensus function φ that returns
a representative output value of the sensor readings.

Let us consider n sensors which are sampled at synchronous rounds. In each
round an input vector x of sensor readings is produced, where xi is a value from
some finite set S produced by the i-th sensor. Assuming that at least t+1 entries
of the vector are correct, φ is required to return a value that appears in at least
t + 1 entries of x.

The sampling interval is assumed to be short enough in order to guarantee
the sequence of input vectors to be smooth: exactly one entry of a vector changes
from one round to the next one.

� Partially supported by Programs Fondecyt 1090156, Basal-CMM, Instituto Milenio
ICDB, Ecos C09E04 and IXXI (Complex System Institute, Lyon).

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 114–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Average Long-Lived Memoryless Consensus: The Three-Value Case 115

A natural function φ is the one that returns the most common value of vector
x. However, the instability of such function is high. More precisely, the out-
put value computed by such φ could change from one round to the next one
unnecessarily often.

For tackling this stability issue a worst case complexity measure was intro-
duced in two previous papers [6,8]. The input sequence considered in those papers
was assumed to be, in addition to smooth, geodesic: the i-th entry of the input
vector was allowed to change at most once over the sequence. The instability of
a consensus function was given by the largest number of output changes over
any such sequence, called a geodesic path.

In [1] we introduced, as an alternative measure, a more natural (and sub-
tle) notion called average instability. We removed the geodesic requirement and
therefore the smooth sequences of input vectors we considered were random
walks over the hypercube. If P = x0, x1, . . . is such a walk, then the average
instability of a consensus function φ is given by the fraction of time φ changes
its output over P .

We studied in [1] the case when the input is binary (S = {0, 1}). In particular,
for the memoryless case, we proved that function φ0, that outputs 1 unless it is
forced by the fault-tolerance requirement to output 0 (on vectors with t or less
1’s), is optimal.

In the present paper we analyze the 3-value case (S = {0, 1, 2}). We extend
previous result proving that the natural extension of φ0 is in fact optimal among
all the anonymous strategies (a strategy is anonymous, or symmetric, when it
only depends on the number of entries of each type, and not in the respective
places of the entries).

More precisely, let #b(x) be the number of entries of x that are equal to
b ∈ {0, 1, 2}. Let ψ be the consensus function defined as follows:

– ψ(x) = 2 if #2(x) ≥ t + 1,
– ψ(x) = 1 if #2(x) ≤ t and #1(x) ≥ t + 1,
– ψ(x) = 0 if #2(x) ≤ t and #1(x) ≤ t.

In this paper we prove that the consensus function ψ has optimal stability ac-
cording to the average criterion (among all the consensus symmetric memoryless
functions).

The proof of this result is much more complex than the proof of the binary
case. In the binary case the problem can be reduced to a minimal cut in a
graph. For higher dimensions this approach can not be used. In fact, the problem
becomes a multiterminal cut problem, which is NP-hard [5].

We succeed in 3 dimensions by using the fact that an auxiliary graph (pro-
jected graph) is planar. Unfortunately, the auxiliary graph is not planar in 4
(and higher) dimensions. We are therefore facing a hard combinatorial prob-
lem. In fact, the multiterminal cut problem is polynomial for planar graphs and
NP-complete in the general case.

We would like to point out that Davidovitch et al [6] faced the same change
in the difficulty level when they extended their binary case result to a more

116 I. Rapaport and E. Rémila

general, multi-valued result. In fact, for that extension, they had to use topolog-
ical techniques in high dimensional complexes.

As noted in [8], studying the instability of consensus functions may have
applications in various areas of distributed computing, such as self-stabilization
[7] (indeed, see [11]), Byzantine agreement [2], real-time systems [12], complexity
theory [10] (boolean functions), and VLSI energy saving [3,14,17] (minimizing
the number of transitions).

2 The Model

Let n, t, k be non-negative integers such that n ≥ kt+1. The set of input vectors
is the set V = {0, 1,, k − 1}n. The input space is the graph (V, E) where
the edges E are all the (unordered) pairs of vectors which differ in exactly one
component. Notice that |E| = n(k − 1)kn/2. In this paper we focus in the
case k = 3.

The distance d(x1, x2) between two vectors x1, x2 is the distance in the input
space, i.e., the number of entries in which x1 and x2 differ. We denote by #b(x)
the number of entries of x that are equal to b ∈ {0, 1, 2}. The corners of the
input space are the vectors 0n, 1n and 2n.

Let x0, x1, x2, . . . be a walk in the input space, i.e., a sequence (xi)i∈N of
vectors in V such that for each i ∈ N, the pair {xi, xi+1} is an element of E.

A consensus decision function φ assigns, to each xi, an output value d ∈
{0, 1, 2}. In this paper we only consider such memoryless functions (for which
the decision depends only on the current input vector xi, and not on the past
history).

Formally, φ : V → {0, 1, 2} is the consensus decision function. The fault-
tolerance requirement that φ must satisfy is the following: φ(x) = d⇒ #d(x) ≥
t + 1.

A consensus decision function φ is symmetric if φ(x) depends only on the
three values #0(x), #1(x),#2(x) (which correspond to the number of 0s, 1s and
2s of x).

An execution of the system is a sequence (x0, d0) → (x1, d1) → . . ., where
di = φ(xi).

In the sequel we will often refer to the “consensus function” instead of the
“consensus symmetric memoryless decision function”.

2.1 Stability: Geodesic Criterion

Dolev and Rajsbaum proposed in [8] a criterion for measuring the instability of
a consensus function. This criterion is based on a geodesic execution, which is an
execution where at most one transition is performed in each sensor (we say that
the transition (xi, di) → (xi+1, di+1) is performed in sensor j if j is the index of
the component on which xi and xi+1 differ). Notice that a geodesic execution is
of length at most n. The geodesic instability is the maximal number of changes
in a geodesic execution.

Average Long-Lived Memoryless Consensus: The Three-Value Case 117

In [1] we explained why this criterion is not completely satisfying. The follow-
ing result about memoryless symmetric systems with three input values gives a
new argument in the same line.

Proposition 1. Let 4t − 1 ≥ n. Then, for any (symmetric memoryless) con-
sensus function φ with three values, the geodesic instability of φ is equal to n.

The proof, which uses Sperner’s Lemma [4,16], is omitted in this conference
version.

2.2 Stability: Random Walk Criterion

In [1] we proposed a new criterion that uses random walks for determining the
instability of a consensus function. The idea is the following. The initial input
vector x0 is chosen according to some distribution λ. On the other hand, if xi is
the current input vector, then the next input vector xi+1 is chosen in a random
uniform way among the vectors at distance one from xi.

Formally, we have a Markov process (P, μ0) whose set of states is V and there
is a transition from x to x′ if {x, x′} ∈ E. The probability of such transition is
1/2n (this defines the transition matrix P). The initial distribution is μ0 = λ.
Each state xi has an associated output value di = φ(xi). Therefore the random
walk x0, x1, x2, . . . defines an execution.

We use the classical Kronecker notation δ(i, j) where δ(i, j) = 1 when i =
j, and δ(i, j) = 0 otherwise. Let cλ,l(φ) be the random variable defined by:
cλ,l(φ) = 1

l

∑l−1
k=0 δ(dk, dk+1). The average instability of a consensus function φ

is defined by:

inst(φ) = E(lim
l→∞

cλ,l(φ)).

The average instability represents the frequency of decision changes along a
random execution (and, as an easy consequence of the classical Ergodic Theorem
[15], it is well defined).

Furthermore, the stationary distribution π of the random walk x0, x1, x2, . . .
is the uniform distribution, i.e., πx = 1/3n for every x ∈ V (for notation
see [15])).

Since the instability of φ counts the number of times the function φ changes
its decision along a random walk, by the Ergodic Theorem this value tends to
the number of bicolored edges (where changes in the decision take place) divided
by |E| = n3n. In other words,

inst(φ) =

∑
{x,y}∈E δφ({x, y})

n3n
=
|Eφ|
n3n

,

where δφ({x, y}) = 1 when φ(x) 	= φ(y) and δφ({x, y}) = 0 otherwise, and Eφ

denotes the set of edges e such that δφ(e) = 1 (i.e., Eφ is the set of bicolored
edges). A detailed proof of the equality above was given for the binary case in
[1]. The proof of the 3-value case is identical.

118 I. Rapaport and E. Rémila

3 Basics for the Symmetric Case

We study here symmetric systems. For these systems it is convenient to use the
projected input space (V ′, E′, w), which is a weighted graph.

Each vertex v of the projected input space V ′ can be seen as a triple (i, j, k)
with i, j, k nonnegative, and i + j + k = n. Each of these triplets represent the
set of n!

i!j!k! input vectors containing i 0-entries, j 1-entries and k 2-entries. We
say that i, j and k are, respectively the 0-component, the 1-component and the
2-component of v.

On the other hand, two distinct vertices (i, j, k) and (i′, j′, k′) are linked by
an edge of E′ when |i − i′| ≤ 1, |j − j′| ≤ 1 and |k − k′| ≤ 1 (remark that we
necessarily have i = i′ or j = j′ or k = k′).

The weight w({v, v′}) of the edge {v, v′} is the number of edges {x, x′} of E
such that v is the projection of x and v′ is the projection of x′. For i < n and
j > 0, the weight of the edge {(i, j, k), (i + 1, j − 1, k)} is given by the equality:

w({(i, j, k), (i + 1, j − 1, k)}) =
n!

i!(j − 1)!k!
(1)

For each symmetric function φ, we define φ(v) = φ(x) where x is any input
vector such that v is the projection of x. Therefore, in the symmetric case, the
last equality of the previous section becomes:

inst(φ) =

∑
{v,v′}∈E′ w({v, v′})δφ({v, v′})

n3n
=

∑
e′∈E′

φ
w(e′)

n3n
,

where δφ({v, v′}) = 1 when φ(v) 	= φ(v′), δφ({v, v′}) = 0 otherwise, and E′
φ

denotes the set of edges e′ of E′ such that δφ(e′) = 1 (in other words, E′
φ is the

set of bicolored edges in the projected input graph). It follows that, when we
want to minimize the instability, we have to minimize the quantity

∑
e′∈E′

φ
w(e′).

The structure of the projected input space is easily understandable. It can
be seen as a part of the triangular lattice delimited by an equilateral triangle
of side length n, whose extreme points are the corners (n, 0, 0), (0, n, 0) and
(0, 0, n) (see Figure 1). In particular, this graph is planar. More precisely, we will
use the following drawing: we take three points a, b, c, of the plane R2, usually
a = (0, 0), b = (n, 0) and c = (n

2 , n
√

3
2). Each vertex (i, j, k) is identified with the

point pijk which is the barycenter of (a, i), (b, j), and (c, k). Edges are classically
represented by lines segments linking neighbor vertices. This representation is
called the canonical representation of the projected input space.

We associate vectors to edges and faces: the vector corresponding to the edge
e = {v, v′} is the average between its endpoints vectors, i.e., the vector corre-
sponding to the center of the line segment [v, v′]. Hence, the vector of the edge
e = {v, v′} is formed by two semi-integer values and one integer value. The vec-
tor of a (finite) triangular face φ is the average between its vertices, i.e., the
vector corresponding to the center of f . This vector is of the form (x, y, z), with
3x, 3y and 3z being all integers (moreover, one can check that 3x, 3y and 3z are
equal modulo 3).

Average Long-Lived Memoryless Consensus: The Three-Value Case 119

Fig. 1. Conventional notations. Left: triple (i, j, k) encoding a vertex. Center: the sets
Ex= 5

2
and Ex=4. Right: the same sets in the dual graph.

We recall that the dual graph of the projected input space (V ′, E′) is the
(multi)graph (F, E′) such that F is the set of faces induced by (V ′, E′), and a
pair {f, f ′} is an edge if there exists {v, v′} ∈ E′ such that the line segment
[v, v′] is shared by both f and f ′. As it is usually done, we refer indistinctly to
the edge {f, f ′} of the dual graph and to the same edge {v, v′} of the projected
input space. Since the canonical representation of the projected input space is
part of the triangular lattice of the plane, the canonical representation of the
dual graph is part of the hexagonal lattice, with all pending edges linked to a
particular vertex of the dual graph, which is the infinite face f∞.

Let i be an integer. We define the edge set Ex= i
2

as the set of edges whose
0-component is i

2 . In other words, Ex= i
2

is the set of edges intersecting the
closed line segment [(i

2 , n − i
2 , 0), (i

2 , 0, n − i
2)]. Notice that an edge intersects

this closed line segment if and only if the corresponding edge of the dual graph
also intersects the same line segment (with the convention that the vertices of
the dual graph are placed in the center of the triangular faces). One can define,
in a similar way, for any integer j, Ey= j

2
and, for any integer k, Ez= k

2
(using

respectively the 1-component and the 2-component).

Lemma 1. Let e be an edge of Ex= i
2

with vector (i
2 , j

2 , 2n−i−j
2).

– Let sym(e) be the edge with vector (i
2 , 2n−i−j

2 , j
2). We have w(e) =

w(sym(e)).
– For i odd, and j + 1 ≤ 2n−i

2 , let e+ denote the edge with vector (i
2 , j+1

2 ,
2n−i−j−1

2)
• If j is even, then w(e) = w(e+),
• If j is odd, then w(e) < w(e+).

– For i even (which enforces j being odd) and j + 2 ≤ 2n−i
2 , let e+ denote the

edge with vector (i
2 , j+2

2 , 2n−i−j−2
2). We have w(e) < w(e+).

Proof. This lemma is a direct consequence of equality 1. ��

The lemma above describes the evolution of weights of edges in Ex= i
2
. First, it

says that there is a weight symmetry with respect to the median axis, formed by

120 I. Rapaport and E. Rémila

points (x, y, z) such that y = z. Secondly, the lemma also says that the weight
increases as you move towards the median axis.

Each consensus function φ divides the vertices of the projected input space
(and therefore the plane since the graph is planar) into three zones, one for each
output value. Each zone contains the corresponding corner. Notice that zones
are not necessarily connected.

Consider the set Eφ of bicolored edges induced by φ or, more precisely, con-
sider the corresponding edges in the dual graph. These edges form cycles, which
surround connected components of the zones.

We call network a subset of edges. Given a network N , the weight wN
x= i

2
is

defined by wN
x= i

2
= min{w(e) | e ∈ Ex= i

2
∩ N} (we say that wN

x= i
2

= ∞ when
Ex= i

2
∩ N is empty). This weight represents the minimal necessary weight for

passing from one side of the segment [(i
2 , n− i

2 , 0), (i
2 , 0, n− i

2) to the other part
still remaining in the network N .

Fig. 2. An application of Lemma 2, with the network N0 formed by edges whose 1-
components and 2-components are both at least 3/2. The weight of the path issued
from the star is larger than the weight of the marked edges in the horizontal path issued
from the cell of vector (n − 2t − 2

3
, t + 1

3
, t + 1

3
) (notice that this path is a boundary

path induced by the consensus function ψ).

Lemma 2. Consider a simple path p (of the dual graph) linking a finite face f0
to the infinite face f∞, remaining in a network N , whose last edge belongs to
Ex=0. Let (i0, j0, k0) be the vector corresponding to f0. The sum

∑
e∈p w(e) is

denoted by w(p). We have the inequality:

w(p) ≥
∑

0≤i<2i0

wN
x= i

2

Average Long-Lived Memoryless Consensus: The Three-Value Case 121

Proof. This is obvious since, for each integer i such that 0 ≤ i < 2i0, the path
must contain an edge of Ex= i

2
and the sets Ex= i

2
are pairwise disjoint. ��

4 Our Result

The following theorem is the main result of the paper.

Theorem 1. Consider the consensus function ψ defined by:

– ψ(x) = 2 if #2(x) ≥ t + 1,
– ψ(x) = 1 if #2(x) ≤ t and #1(x) ≥ t + 1,
– ψ(x) = 0 if #2(x) ≤ t and #1(x) ≤ t.

The consensus function ψ has optimal stability according to the average criterion,
among all symmetric functions.

We decompose the proof into two lemmas from which the theorem is a direct
consequence. We first limit ourselves to the case when each of the three zones
formed from vertices with the same output value is connected in the merged
input graph.

Lemma 3. Let φ be a consensus function for which each of the three zones
induced by φ is connected. We have inst(φ) ≥ inst(ψ).

Proof. In this case, E′
φ is just formed (in the dual graph) by three edge disjoint

paths linking a face f0 = (i0, j0, k0), with i0 > t, j0 > t, and k0 > t to the infinite
face f∞. We call p0 the path linking f0 to f∞ and crossing the set Ex=0. This
path is the boundary between the 1-zone and the 2-zone.

We denote by N0 the network formed by edges whose vector (x, y, z) are such
that y > t and z > t. The path p0 remains in N0 thus, applying Lemma 2,
we get:

w(p0) ≥
∑

0≤i<2i0

wN0
x= i

2
.

In the same way we get w(p1) ≥
∑

0≤j<2j0
wN1

y= j
2

and w(p2) ≥
∑

0≤k<2k0
wN2

z= k
2
.

Adding these inequalities, we get a lower bound for w(E′
φ) = w(p0)+w(p1)+

w(p2). But this bound is not sufficient to get our result. We need a refinement
of Lemma 2 using other separating edge sets.

Up to symmetry, it can be assumed that i0 ≥ j0. We define the integer j1 as
the lowest integer such that j1 ≥ 2j0. For 2t < k < 2k0, we state ik = 2n−k− j1
in such a way that Lk = (ik/2, j1/2, k/2) and Rk = (j1/2, ik/2, k/2) have semi-
integer or integer coordinates.

The set Ef0
z=k/2 is formed by edges listed below (see Figure 3):

– the edges of Ez=k/2 whose whose 1-component is at least j1 and whose 0-
component is at least j1 (i.e. the edges which meet the line segment [Lk, Rk]).

122 I. Rapaport and E. Rémila

Fig. 3. The improvement of the argument of Lemma 2. We use some “broken lines”.
For each marked edge of E′

ψ, one can find an edge of larger weight on the path issued
from the star.

– the edges of Ex=ik/2 whose 2-component is at most k (i.e., the edges which
intersect the line segment [Lk, (ik/2, 0, n− ik/2)]).

– the edges of Ej=ik/2 whose 2-component is at most k (i.e., the edges which
intersect the line segment [Rk, (0, ik/2, n− ik/2)]).

Given a network N , the weight uN f0
z=k/2 is defined by: uN f0

z=k/2 = min{w(e′), |e′ ∈
Ef0

z=k/2 ∩ N}. This weight represents the minimal necessary weight for passing

from one side of the cut Ef0
z=k/2 to the other part still remaining in the network N .

Consider the path p2 (of the dual of the projected input graph) linking the
face f0 to the infinite face f∞ and remaining in the network N2. We have:

w(p2) ≥
∑

0≤k≤2t

wN2

z= k
2

+
∑

2t<k≤k0

uN2 f0

z=k
2

,

because the considered cut sets of edges are pairwise disjoints and p2 contains
at least an edge of each of these sets.

From Lemma 1, we have: uN2 f0

z= k
2

= wN0

x= ik
2

, since an edge of minimal weight

for the two corresponding edge sets (Ef0

z= k
2
∩ N2 and E

x= ik
2
∩ N0) is the edge

of vector (ik

2 , 2t+1
2 , 2n−ik−2t−1

2). Moreover, 2t < k < 2k0 if and only if 2n −
2k0 − j1 ≤ ik ≤ 2n − 2t − j1. From the definition of j1 this exactly means
2n − 2k0 − 2j0 ≤ ik ≤ 2n − 2t − 2j0, i.e. 2i0 ≤ ik ≤ 2n − 2t − 2j0. Therefore,∑

2t<k≤k0
uN2 f0

z=k
2

=
∑

2i0≤i≤2n−2t−2j0
wN0

x= i
2
, which gives:

Average Long-Lived Memoryless Consensus: The Three-Value Case 123

w(p2) ≥
∑

0≤k≤2t

wN2

z= k
2

+
∑

2i0≤i≤2n−2t−2j0

wN0

x= i
2

On the other hand, for 2t < j < 2j0, we have, from Lemma 1, wN1

y= j
2

=

wN0

x= 2n−2t−j
2

: an edge of minimal weight in the edge set Ey= j
2
∩ N1 is the edge

e of vector (2n−j−2t−1
2 , j

2 , 2t+1
2), an edge of minimal weight in the edge set

Ex= 2n−2t−j
2

∩N0 is the edge e′ of vector (2n−j−2t
2 , j+1

2 , 2t+1
2), and w(e) = w(e′).

Thus,
∑

2t<j<2j0
wN1

y= j
2

=
∑

2t<j<2j0
wN0

x= 2n−2t−j
2

=
∑

2n−2t−2j0<i<2n−4t wN0
x= i

2
,

which gives:

w(p1) ≥
∑

0≤j≤2t

wN1

y= j
2

+
∑

2n−2t−2j0<i<2n−4t

wN0

x= i
2
.

We recall that
w(p0) ≥

∑
0≤i<2i0

wN0

x= i
2
.

We have w(E′
φ) = w(p0) + w(p1) + w(p2), thus, adding the three previous

main inequalities, we get:

w(E′
φ) ≥

∑
0≤i<2n−4t

wN0
x= i

2
+

∑
0≤j≤2t

wN1

y= j
2

+
∑

0≤k≤2t

wN2

z= k
2
.

But
∑

0≤i<2n−4t wN0
x= i

2
is exactly the weight of the path separating the 2-zone

and the 1-zone for the function ψ,
∑

0≤j≤2t wN1

y= j
2

is exactly the weight of the

path separating the 2-zone and the 0-zone for the function ψ, and
∑

0≤k≤2t wN2

z= k
2

is exactly the weight of the path separating the 1-zone and the 0-zone for the
function ψ. Thus the second member of the equality is exactly w(E′

ψ). We have:
w(E′

φ) ≥ w(E′
ψ). ��

Lemma 4. Let φ be a consensus function. There exists a consensus function
φ′ for which each the induced zones induced by φ′ are connected, such that
inst(φ′) ≤ inst(φ).

Proof. Actually, we prove a (little bit) stronger fact: if a zone induced by φ is not
connected, then there exists a consensus function φ′ such that inst(φ′) < inst(φ).
If we apply this fact a sufficient number of times, then we will end up with
consensus function with connected zones (obtaining the lemma), since the set of
consensus functions is finite.

We call, for short, 0-domain any connected component of the 0-zone (we define
in a same way 1-domains and 2-domains). Assume that the 0-zone of φ is not
connected and let D be a 0-domain which does not contain the vertex (n, 0, 0).
Let (i1, j1, k1) be a vertex of D with j1 minimal and (i2, j2, k2) be a vertex of D
with k2 minimal.

124 I. Rapaport and E. Rémila

Fig. 4. The function φ′ used in the tricky case of Lemma 4. The marked edges are
some potential edges of Eφ′ \ Eφ. Arrows indicate the way for fetching i(e).

First assume that j1 ≥ t + 1. If there exists an edge e = {v, v′}, bicolor for φ,
with v ∈ D and φ(v′) = 2, then the function φ2, defined by φ2(v) = 2 for v ∈ D,
and φ2(v) = φ(v) otherwise, is a consensus function such that inst(φ2) < inst(φ):
we are done. Otherwise, each edge e = {v, v′}, bicolor for φ, with v ∈ D is such
that φ(v′) = 1. This enforces that, for any such edge, the 2-component of v
is at least t + 1. Thus the function φ1, defined by φ1(v) = 1 for v ∈ D, and
φ2(v) = φ(v) otherwise, is a consensus function, such that inst(φ1) < inst(φ):
we are done.

A similar argument can be used if it is assumed that k2 ≥ t + 1. It remains
to treat the tricky case when j1 ≤ t and k2 ≤ t. We state Vj1,k2 = {(i, j, k) ∈
N3 | i + j + k = n, j1 ≤ j, k2 ≤ k}. In this case, since D is connected, one can fix
a simple path p in D from (i1, j1, k1) to (i2, j2, k2). Let support(p) denote the
set of vertices appearing in p. From the Jordan curve theorem [9,13], the path p
divides Vj1,k2 \ support(p) into two parts, both connected in the projected input
graph. Let Dp be the part which contains the vertex (n − 2t, t, t) (this vertex
is not element of support(p) since it is not element of D). Notice that the 0-
component of any vertex of Dp is at least t + 1. Thus, the function φ′, defined
by φ′(v) = 0 for v ∈ Dp, and φ′(v) = φ(v) otherwise, is a consensus function
(see Figure 4).

The set E′
φ′ \E′

φ can be partitioned into two sets Ej and Ek, where e = {v, v′}
is element of Vk if v is a vertex of Dp whose 2-component is k2 and v′ is a vertex
whose 2-component is k2 − 1 such that φ(v′) = 1, and, on the symmetric way,
e = {v, v′} is element of Vj if v is a vertex of Dp whose 1-component is j1 and
v′ is a vertex whose 1-component is j1 − 1 such that φ(v′) = 2.

Average Long-Lived Memoryless Consensus: The Three-Value Case 125

Fig. 5. Injectivity of the mapping i in Lemma 4, in the tricky case when i and j both
are odd. If i(e) = i(e′), then i(e) is the common edge. Each vertex v from e to the
common edge is such that φ(v) = 1 and, by symmetry, each vertex v′ from e′ to the
common edge is such that φ(v′) = 2. Contradiction (at the vertex with question marks).

Take an edge e = {v, v′} of Vk, and let (2n−j−2k2+1
2 , j

2 , 2k2−1
2) be its vector.

Let k′ be the lowest integer such that k′ ≥ 2k2 − 1 and the edge of vector
(2n−j−k′

2 , j
2 , k′

2) is bicolor for φ. This last edge is denoted by i(e) (informally,
i(e) is the edge of Ey= j

2
which allows to go out of the connected component

containing e for φ). We have j ≥ 2t + 1, since i(e) is bicolor, thus we have
k′ ≤ 2n− 2t− 1. Thus 2k2 − 1 < k′ < 2n− 2t− 1, which gives, from Lemma 1,
w(e) < w(i(e)). Moreover, i(e) is not element of Eφ′ since, by definition, both
vertices of i(e) are elements of Dp ∪ support(p).

In a similar way, for each edge e = {v, v′} of Vj , let (2n−2j1−k+1
2 , 2j1−1

2 , k
2) be

its vector. Let j′ be the lowest integer such that j′ ≥ 2j1−1 and the edge of vector
(2n−j′−k

2 , j′
2 , k

2) is bicolor for φ. This last edge is denoted by i(e) (informally, i(e)
is the edge of Ez= k

2
which allows to go out of the connected component containing

e for φ). We have: w(e) < w(i(e)) and moreover, i(e) is not element of Eφ′ .
The other edges of Eφ′ are contained in Eφ. For these edges, we state: i(e) = e.

We claim that the mapping i is injective. To see it, we only have to check that
if e is an edge of Vk and e′ is an edge of Vj , then i(e) 	= i(e′). This can be easily
done by a case by case analysis according to the parity of integers j and k such
that e′ ∈ Ey= j

2
and e′ ∈ Ez= k

2
(see the argument in Figure 5).

In any case, we have: w(e) ≤ w(i(e)). Moreover, we have: Vk 	= ∅ since,
otherwise, we have φ(v) = 0 for any v of the type (i, j, k2), which contradicts
the fact that the connected domain D does not contains (n, 0, 0). Thus there is
at least an edge e of E′

φ′ for which w(e) < w(i(e)). Thus, by addition, we get
w(E′

φ′) < w(E′
φ), which is the result. ��

126 I. Rapaport and E. Rémila

References

1. Becker, F., Rajsbaum, S., Rapaport, I., Rémila, E.: Average Binary Long-Lived
Consensus: Quantifying the Stabilizing Role Played by Memory. In: Shvartsman,
A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 48–60. Springer,
Heidelberg (2008)

2. Berman, P., Garay, J.: Cloture votes: n/4-resilient distributed consensus in t + 1
rounds. Math. Sys. Theory 26(1), 3–19 (1993)

3. Chandrakasan, A.P., Brodersen, R.W.: Low power digital CMOS design. Kluwer
Academic Publishes, Dordrecht (1995)

4. Cohen, D.I.A.: On the Sperner lemma. J. Combin. Theory 2, 585–587 (1967)
5. Dalhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, P.:

The Complexity of Multiterminal Cuts. SIAM J. on Computing 23(4), 864–894
(1994)

6. Davidovitch, L., Dolev, S., Rajsbaum, S.: Stability of Multi-Valued Continuous
Consensus. SIAM J. on Computing 37(4), 1057–1076 (2007)

7. Dolev, S.: Self-Stabilization, March 2000. MIT Press, Cambridge (2000)
8. Dolev, S., Rajsbaum, S.: Stability of Long-lived Consensus. J. of Computer and

System Sciences 67(1), 26–45 (2003); Preliminary version in Proc. of the 19th
Annual ACM Symp. on Principles of Distributed Computing (PODC 2000),
pp. 309–318 (2000)

9. Jordan, C.: Cours d’analyse, Ecole Polytechnique, pp. 587–594 (1887)
10. Kahn, J., Kalai, G., Linial, N.: The Influence of Variables on Boolean Functions.

In: Proc. of the IEEE FOCS, pp. 68–80 (1988)
11. Kutten, S., Masuzawa, T.: Output Stability Versus Time Till Output. In: Pelc, A.

(ed.) DISC 2007. LNCS, vol. 4731, pp. 343–357. Springer, Heidelberg (2007)
12. Kopetz, H., Veŕıssimo, P.: Real Time and Dependability Concepts. In: Mullender,

S. (ed.) Distributed Systems, ch. 16, pp. 411–446. ACM Press, New York (1993)
13. Maehara, R.: The Jordan Curve Theorem via the Brouwer Fixed Point Theorem.

American Mathematical Monthly 91, 641–643 (1984)
14. Musoll, E., Lang, T., Cortadella, J.: Exploiting the locality of memory references to

reduce the address bus energy. In: Proc. of the Int. Symp. on Low Power Electronics
and Design, August 1997, pp. 202–207 (1997)

15. Norris, J.R.: Markov Chains, October 1998. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)

16. Sperner, E.: Neuer Beweis f .ur die Invarianz der Dimensionszahl und des Gebietes,
Abh. Math. Sem. Univ. Hamburg 6, 265–272 (1928)

17. Su, C.-L., Tsui, C.-Y., Despain, A.M.: Saving power in the control path of embed-
ded processors. IEEE Design & Test of Comp., 24–30 (1994)

Algorithms for Extracting Timeliness Graphs�

Carole Delporte-Gallet1, Stéphane Devismes2,
Hugues Fauconnier1, and Mikel Larrea3

1 Université Paris Diderot
LIAFA

{Carole.Delporte,Hugues.Fauconnier}@liafa.jussieu.fr
2 Université Joseph Fourier, Grenoble I

VERIMAG UMR 5104
Stephane.Devismes@imag.fr

3 University of the Basque Country, UPV/EHU
Mikel.Larrea@ehu.es

Abstract. We consider asynchronous message-passing systems in which
some links are timely and processes may crash. Each run defines a time-
liness graph among correct processes: (p, q) is an edge of the timeliness
graph if the link from p to q is timely (that is, there is a bound on
communication delays from p to q). The main goal of this paper is to ap-
proximate this timeliness graph by graphs having some properties (such
as being trees, rings, . . .). Given a family S of graphs, for runs such
that the timeliness graph contains at least one graph in S then using an
extraction algorithm, each correct process has to converge to the same
graph in S that is, in a precise sense, an approximation of the timeliness
graph of the run. For example, if the timeliness graph contains a ring,
then using an extraction algorithm, all correct processes eventually con-
verge to the same ring and in this ring all nodes will be correct processes
and all links will be timely.

We first present a general extraction algorithm and then a more spe-
cific extraction algorithm that is communication efficient (i.e., eventu-
ally all the messages of the extraction algorithm use only links of the
extracted graph).

1 Introduction

We consider partially synchronous models like in [6] or [7] in which some pro-
cesses may crash. In such systems some links are timely, meaning that the com-
munication delays are bounded [2], and some other are not. Generally, these
timeliness properties of links have been used to solve the consensus problem as
in [7] or to implement failure detectors like Ω that realizes an eventual election
of a correct process (e.g., [1,4,10,11,12]). In this paper we are more specifically
interested in detecting the timeliness of the links in order to approximate the

� This work has been supported in part by the ANR project SHAMAN, the INRIA
project GANG, and the Basque Government (grant MV-2009-1-10).

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 127–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

128 C. Delporte-Gallet et al.

timeliness relation on links in each run. If processes are able to eventually deter-
mine which links are timely, then avoiding to use non timely links could help to
improve the efficiency of the communication that can be particularly interesting
for routing algorithms.

More precisely, each run of the system eventually converges to a timeliness
graph whose nodes are the correct processes and directed edges are the timely
edges among correct processes, and an extraction algorithm is an algorithm such
that all correct processes eventually agree on an identical graph that approxi-
mates the timeliness graph.

For example, assume the system ensures that there is at least one correct
process that communicates in a timely way with all other processes, such a
process is an eventual source [2] and it could be interesting for the processes to
choose and agree on such an eventual source. This way, we not only realize an
eventual leader election but also the chosen leader is able to communicate in a
timely way with the rest of correct processes.

If we assume now that instead of an eventual source there is an eventual root
in the system, that is a correct process that may communicate with every process
by a communication path using only timely links, then choosing and agreeing
on such an eventual root realizes an eventual leader election (the root is the
eventual leader) but this also enables to ensure a routing of all messages from
the root to any other processes using only timely links.

In the same way, if the system ensures that there is always a cycle contain-
ing all correct processes in the timeliness graph of the run, then choosing and
agreeing on one such cycle enables to eventually build a ring between all correct
processes that uses only timely links. Note that in this case the processes even-
tually agree on the list of all correct processes too, as a consequence we obtain
a failure detector ♦P [5].

More precisely, consider some structural property P of graphs (like being a
star, a ring, a tree, a complete graph...). An algorithm extracting a graph G
verifying P has to ensure that (1) all the correct processes eventually agree on
G, (2) all the correct processes are nodes of G and (3) G is an “approximation”
of the timeliness relation of the run. Actually, “approximation” means that the
subgraph of G induced by the correct processes is obtained from a directed cut
(dicut) 1 of G and is a subgraph of the timeliness graph.

Contributions. In this paper, we first introduce and specify the problem of ex-
traction of graphs in some set X . We consider only systems in which a solution
may exist: in all runs there is at least one graph in X that is compatible with
the run.

We prove that this problem cannot be solved for some set of graphs and we
give a sufficient condition on the set of graphs to be extracted. This condition is
rather simple: the set of graphs has to be closed by directed cut reduction. Then,
we give an extraction algorithm for every set of graphs verifying this property.

1 A directed cut (X, Y) of directed graph G = 〈N, E〉 is a partition of N such that
there is no directed edge from Y to X.

Algorithms for Extracting Timeliness Graphs 129

Moreover, if the graphs in X are all strongly connected, the algorithm gives
an exact extraction, that is, the set of nodes of the extracted graph is exactly
the set of correct processes of the run. Reciprocally, we show that there exist
sets of graphs that admit extraction but no exact extraction.

Besides, we show that finding an approximation is even so interesting: in the
extracted graph any path between a pair of correct processes is only constituted
of timely links. Hence, the approximation can be used to timely route messages,
e.g., in the previous example with a root, the approximation will give us a tree
whose root is a correct process and with a path containing only correct processes
from the root to every correct process.

One drawback of this algorithm is the fact that forever all correct processes
have to send messages on all links. Hence if k is the number of correct processes
k(k−1) links will be used forever by the extraction algorithm. We are then inter-
ested in communication efficient [11] implementations of the extraction problem.
That is, eventually all correct processes only send messages along the edges of
the extracted graph. For example, consider the example of a system with a time-
liness ring, eventually only k − 1 links of the system are used. We propose an
efficient extraction algorithm for sets of graphs containing at least one correct
process with directed paths from this process to all correct processes.

Roadmap. In the next section, we define the model used in this paper and present
some examples of systems. In Section 3, we define the extraction problem and
give some of its properties. Our two algorithms are presented in Sections 4 and
5, respectively. Finally, we make some concluding remarks in Section 6.

Due to the lack of space, some technical proofs have been omitted. For further
details, see the online technical report [8].

2 Informal Model

Graphs. We begin with some definitions and notations concerning graphs. For
a directed graph G = 〈N, E〉, Node(G) and Edge(G) denote N and E, re-
spectively. Given a graph G and a set M ⊆ Node(G), G[M] is the subgraph
of G induced by M , i.e., G[M] is the graph 〈M, Edge(G)[M]〉 where (p, q) ∈
Edge(G)[M] if and only if p, q ∈ M and (p, q) ∈ Edge(G).

The tuple (X, Y) is a directed cut (dicut for short) of G if and only if X and
Y define a partition of Node(G) and there is no directed edge (y, x) ∈ Edge(G)
such that x ∈ X and y ∈ Y . We say that G′ is a dicut reduction from G if there
exists a dicut (X, Y) of G such that G′ = G[X]. A set S of graphs is dicut-closed
if and only if it is closed under dicut reduction, namely if G ∈ S then all the
graphs obtained by a dicut-reduction of G are in S.

Processes and Links. We consider distributed systems composed of n processes
which communicate by message-passing through directed links. We denote the
set of processes by Π = {p1, ..., pn}. We assume that the communication graph
is complete, i.e., for each pair of distinct processes (p, q), there is a directed link
from p to q.

130 C. Delporte-Gallet et al.

A process may fail by crashing, in which case it definitely stops its local
algorithm. A process that never crashes is said to be correct, faulty otherwise.

The (directed) links are reliable, i.e., every message sent through a link (p, q)
is eventually received by q if q is correct and if a message m from p is received
by q, m is received by q at most once, and only if p previously sent m to q.

The links being reliable, an implementation of the reliable broadcast [9] is
possible. A reliable broadcast is defined with two primitives: rbroadcast〈m〉
and rdeliver〈m〉. Informally, after a correct process p invokes rbroadcast〈m〉,
all correct processes eventually rdeliver〈m〉; after a faulty process p invokes
rbroadcast〈m〉, either all correct processes eventually rdeliver〈m〉 or correct
processes never rdeliver〈m〉.

Timeliness. To simplify the presentation, we assume the existence of a discrete
global clock. This is merely a fictional device: the processes do not have access
to it. We take the range T of the clock’s ticks to be the set of natural numbers.

We assume that every correct process p is timely, i.e., there is a lower and
an upper bound on the execution rate of p. Correct processes also have clocks
that are not necessarily synchronized but we assume that they can accurately
measure intervals of time.

A link (p, q) is timely if there is an unknown bound δ such that no message
sent by p to q at time t may be received by q after time t + δ.

A timeliness graph is simply a directed graph whose set of nodes are a subset
of Π . The timeliness graph represents the timeliness properties of the links.
Intuitively, for timeliness graph G, Node(G) is the set of correct processes and
(p, q) is in Edge(G) if and only if the link (p, q) is timely.

Runs. An algorithm A consists of n deterministic (infinite) automata, one for
each process; the automaton for process p is denoted A(p). The execution of
an algorithm A proceeds as a sequence of process steps. Each process performs
its steps atomically. During a step, a process may send and/or receive some
messages and changes its state.

A run r of algorithm A is a tuple r = 〈T, I, E, S〉 where T is a timeliness
graph, I is the initial state of the processes in Π , E is an infinite sequence of
steps ofA, and S is a list of increasing time values indicating when each step in E
occurred. A run must satisfy usual properties concerning sending and receiving
messages. Moreover, we assume that (1) all correct processes make an infinite
number of steps: p ∈ Node(T) if and only if p makes an infinite number of steps
in E and (2) the timeliness of links is deduced from the timeliness graph T :
(p, q) ∈ Edge(T) if and only if the link (p, q) is timely with respect to E and S.

In the following for run r = 〈T, I, E, S〉, T (r) denotes T the timeliness graph
of r, and Correct(r) is the set of correct processes for the run r, namely,
Correct(r) = Node(T (r)). Note that by definition, (p, q) is a timely link if and
only if (p, q) ∈ Edge(T).

Remark that in the definition given here a link may be timely even if no
message is sent on the link. If link (p, q) is FIFO (i.e., messages from p to q are
received in the order they are sent) and p regularly sends messages to q, then

Algorithms for Extracting Timeliness Graphs 131

the timeliness of these messages implies the timeliness of the link itself. So in
the following we always assume that links are FIFO.

2.1 Some Systems

We say that timeliness graph G is compatible with timeliness graph G′ if and
only if (1) Node(G) = Node(G′) and (2) Edge(G) ⊆ Edge(G′). By extension,
timeliness graph G is compatible with run r if G is compatible with T (r), the
timeliness graph of r. Hence, timeliness graph G is compatible with run r if
Node(G) is the set of correct processes in r and if (p, q) is an edge of G then
(p, q) is timely in r.

A system X is defined as a set of timeliness graphs. The set of runs of system
X denoted R(X) is the set of all runs r such that there exists a timeliness graph
G in X compatible with r.

Below, we define the systems considered in this paper:

– ASYNC is the set of all timeliness graphs G such that Edge(G) = ∅. In
ASYNC there is no timeliness assumption about links and R(ASYNC) is
the set of all runs in an asynchronous system.

– COMPLET E is the set of all complete graphs whose nodes are the subsets
of Π .

– ST AR is the set of all timeliness graphs with a source, i.e., G ∈ ST AR
if and only if Node(G) ⊆ Π and there exists p0 ∈ Node(G) (the center of
the star or the source) such that Edge(G) = {(p0, q)|q ∈ Node(G) \ {p0}}.
Clearly a run r is in R(ST AR) if and only if there is at least one source
in r.

– T REE is the set of all timeliness graphs G that are rooted directed trees,
i.e., |Edge(G)| = |Node(G)| − 1 and there exists p0 in Node(G) such that
∀q ∈ Node(G), there is a directed path of G from p0 to q. Clearly a run r is
in R(T REE) if and only if there is at least one timely path from a correct
process to all correct processes.

– RING is the set of all timeliness graphs G such that G is a directed cycle
(a ring). Clearly a run r is in R(RING) if and only if there is a timely
(directed) cycle over all correct processes.

– SC is the set of all timeliness graphs that are strongly connected. Clearly, a
run r is in R(SC) if and only if there exists a (directed) timely path between
each pair of distinct correct processes.

– BIC is the set of all timeliness graphs G such that for all p, q ∈ Node(G),
there exist at least two distinct paths from p to q. BIC corresponds to the
set of 2-strongly-connected graphs. Clearly, a run r is in R(BIC) if and only
if there exists at least two distinct timely paths between each pair of distinct
correct processes.

– PAIR is the set of all timeliness graphs G such that Edge(G) = {(p, q),
(q, p)} with p, q ∈ Node(G) and p 	= q. Clearly, a run r is in R(PAIR) if
and only if there exists two distinct correct processes p and q such that (p, q)
and (q, p) are timely links.

132 C. Delporte-Gallet et al.

3 Extraction Algorithms

Given a system X , the goal of an extraction algorithm is to ensure that in each
run r in R(X), all correct processes eventually agree on the same element of X
and that this element is, in some precise sense, an approximation of the timeliness
graph of run r.

For example, in RING, all processes have to eventually agree on some ring
and this ring has to be compatible with the timeliness graph of the run. In
particular this ring contains all the correct processes. However, the compatibility
relation may be too strong: In many systems, it is not possible to distinguish
between a crashed process and a correct one, so the graph G on which the
processes eventually agree may contain crashed processes and then the graph
is not exactly compatible with the run. Then we weaken the compatibility and
impose only that the subgraph of G induced by the set of correct processes of
the run is a dicut reduction of the timeliness graph of the run.

We now formally define what an extraction algorithm is. First, in such an
algorithm, every process p maintains a local variable Gp which contains a time-
liness graph. Then, we say that an algorithm extracts a timeliness graph in X
if and only if for every run r in R(X) there is a timeliness graph G (called the
extracted graph) such that:

– Convergence: for all correct processes p there is a time t after which Gp = G
– Compatibility: G[Correct(r)] is compatible with T (r)
– Closure: G[Correct(r)] is a dicut reduction of G or is equal to G
– Validity: G is in X

Remark that for all systems that contain ASYNC there is a trivial extraction
algorithm: for each run processes extract the graph G such that Node(G) = Π
and Edge(G) = ∅.

A more constrained version of the extraction problem is the following: an
algorithm A extracts exactly timeliness graphs in X if for every run r in R(X),
the extracted graph G is compatible with T (r). In this case, all correct processes
eventually know the exact set of correct processes: it is the set of nodes of the
extracted graph.

Some Results about Extraction Algorithms. First we show that an extraction
algorithm may help to route messages using only timely links:

Lemma 1. Let G be a graph extracted from run r, if (p, q) is in Edge(G) and
q is a correct process then p is correct.

Proof. By contradiction, assume that p is not correct, then (Correct(r),
Node(G)−Correct(r)) is not a dicut because (p, q) ∈ Edge(G), p ∈ Node(G)−
Correct(r) and q ∈ Correct(r), which contradicts the Closure property.

From this lemma and the Compatibility property, we deduce directly:

Proposition 1. If (p = q0, . . . , qi, . . . , q = qm) is a path in the extracted graph
and p and q are correct processes, then for every i such that 0 ≤ i < m the link
(qi, qi+1) is timely and process qi is correct.

Algorithms for Extracting Timeliness Graphs 133

From a practical point of view, this proposition shows that the extracted graph
may be used to route messages between processes using only timely links: the
route from p to q is a path in the extracted graph (if any). All intermediate nodes
are correct processes and agree on the extracted graph and then on the path.

For example with T REE , the tree extracted by the algorithm enables to route
messages from the root of the tree to any other processes and the routing uses
only timely links.

Generally, the main goal of the extraction algorithm is not only to extract a
graph G in X but also to ensure that G[Correct(r)] is in X (even if the processes
do not know the set of correct processes). In particular, this property is ensured
if X is dicut-closed: the Closure property implies that G[Correct(r)] is in X .

Among the systems we consider, only system PAIR is not dicut-closed: H =
〈{x}, ∅〉 is a dicut reduction of G = 〈{x, y, z}, {(y, z), (z, y)}〉 but is not in PAIR.
It is easy to verify that every other previously introduced system is dicut-closed.
For these systems we obtain:

Proposition 2. Consider any extraction algorithm for the system X .

– If X = ST AR, then the center of the extracted star is a correct process.
– If X = T REE, then the root of the extracted tree is a correct process.
– If X ∈ {SC, COMPLET E ,RING,BIC}, then the extraction is exact.

Proof. For ST AR and T REE , all the dicut reductions of the extracted graph
contain at least respectively the center and the root, then the restriction of the
extracted graph contains at least these nodes, proving that they are correct
processes.

There is no dicut for a strongly connected graph. Hence in SC, there is no dicut
reduction then by the Closure property the subgraph induced by the set of correct
processes of the extracted graph is the extracted graph itself. COMPLET E ,
RING, and BIC are particular cases of systems only composed of strongly
connected timeliness graphs.

An immediate consequence of Proposition 2 is that any extraction algorithm
gives an implementation of eventual leader election (failure detector Ω) for sys-
tems ST AR and T REE as well as an implementation of failure detector ♦P for
systems COMPLET E , RING, SC and BIC.

Due to the lack of space, the proofs of the two following propositions have been
omitted. In the first proposition we show that extraction is not always possible.
Actually, in the proof we exhibit some non dicut-closed systems, namely PAIR,
where no extraction algorithm can be implemented.

Proposition 3. There exist some systems X for which there is no extraction
algorithm.

In the next section we show that for all dicut-closed systems there is an extraction
algorithm. For systems like ST AR, T REE and PAIR, there exists no exact
extraction algorithm.

Proposition 4. There exist some systems X for which there is an extraction
algorithm and there is no exact extraction algorithm.

134 C. Delporte-Gallet et al.

4 An Extraction Algorithm

The aim of this section is to show that the dicut-closed property of a system is
sufficient to solve the extraction problem. To that end, we propose in Figure 1
an extraction algorithm, called A(X), for dicut-closed systems X .

The basic idea of Algorithm A(X) is to make processes select a graph that is
compatible with the timeliness graph of the run. For this, each process maintains
for each graph x in X an accusation counter Acc[x]. This counter infinitely grows
if some correct process is not in x or if some directed edge of x is not timely.
Then, Acc[x] is bounded if and only if x contains all correct processes and all
timely links between pairs of correct processes.

We implement accusation counters as follows. A process regularly blames all
the graphs in X in which it is not a node: it increments the accusation counters
of all these graphs. Note that if the process is correct this accusation is justified
and if the process is not correct, after some time, the process being dead stops
to increment the accusation counters. Moreover, each process regularly sends on
its outgoing links alive messages. Each process p maintains an estimate of the
communication delays for each incoming link (Δ[q] for the incoming link (q, p)).
If it does not receive alive messages within these estimates on some incoming
link it blames all timeliness graphs in X containing this link (i.e., increments
the accusation counters for these graphs). As the estimate of the communication
delay may be too short, each time it is exceeded the process increases it for the
link. In this way, if the link is timely, at some time the estimate will be greater
than the bound on communication delay.

The accusation counters are broadcast by reliable broadcasts. Each time a
process receives a new value of accusation counter it updates its own accusation
counter to the maximum of the received values and its current values. Hence,
if some timely graph stops to be blamed then all correct processes eventually
agree on the value of its accusation counter.

By selecting the graph G with the lowest accusation value (to break ties, we
assume a total order among the graphs of X) if any, correct processes eventually
agree on the same timeliness graph of X , moreover we can prove that this graph
contains (1) all the correct processes, and (2) all edges between correct processes
are timely links. As a consequence, the Convergence, the Compatibility and the
Validity properties of the extraction algorithm are ensured. Nevertheless, this
graph can also contain faulty processes and edges between correct and faulty
processes.

Consider now the Closure property. If G contains only correct processes then
the Closure property is trivially satisfied. Otherwise, G contains Correct(r) and
a set F of faulty processes. In this case, (Correct(r), F) is a dicut reduction of
G: Indeed if there is an edge in G from a faulty process q to a correct process
p, eventually the process p stops to receive messages from q and the accusation
counter of G grows infinitively often. Hence, in all cases, the Closure property is
satisfied.

Algorithms for Extracting Timeliness Graphs 135

Hence, if X is dicut-closed, Algorithm A(X) extracts a graph in X . More-
over from Proposition 2, if all the graphs of X are strongly connected then the
algorithm exactly extracts a graph in X .

In the algorithm, each process p uses local timers, one per process. The timer
of p dedicated to q is set (by setting settimer(q) to a positive value) to a time
interval rather than absolute time. The timer is decremented until it expires.
When the timer expires timerexpire(q) becomes true. Note that a timer can
be restarted before it expires.

In the algorithm, we denote by ≺ the total order relation on X and by ≺lex

(see Line 2) the total order relation defined as follows: ∀x, y ∈ X , ∀cx, cy ∈ N,
(cx, x) ≺lex (cy, y) ≡ [cx < cy ∨ (cx = cy ∧ x ≺ y)].

Code for each process p

1: Procedure updateExtractedGraph()
2: G ← x such that (Acc[x], x) = min≺lex

{(Acc[x′], x′) such that x′ ∈ X}

3: On initialization:
4: for all x ∈ X do Acc[x] ← 0
5: for all q ∈ Π \ {p} do
6: Δ[q] ← 1
7: settimer(q) ← Δ[q]
8: updateExtractedGraph()
9: start tasks 1 and 2

10: task 1:
11: loop forever
12: send〈alive〉 to every q ∈ Π \ {p} every K time
13: rbroadcast〈ACC,⊥,p〉 every K time /∗ to accuse graphs that do not contain p ∗/

14: task 2:
15: upon receive〈alive〉 from q do
16: settimer(q) ← Δ[q]

17: upon timerexpire(q) do
18: rbroadcast〈ACC,q, p〉 /∗ to accuse graphs that contain the link (q, p) ∗/
19: Δ[q] ← Δ[q] + 1
20: settimer(q) ← Δ[q]

21: upon rdeliver〈ACC,q,h〉 do /∗ information from h ∗/
22: for all x ∈ X do
23: if q =⊥ then
24: if h /∈ Node(x) then Acc[x] ← Acc[x] + 1
25: else
26: if (q, h) ∈ Edge(x) then Acc[x] ← Acc[x] + 1
27: updateExtractedGraph()

Fig. 1. Algorithm A(X) extracts a graph in X

A sketch of the correctness proof of A(X) is given below. In this sketch, we
consider a run r of A(X) in dicut-closed system X . We will denote by vart

p the
value of var of process p at time t.

We first notice that all variables Accp[x] are monotonically increasing:

Lemma 2. For all times t and t′ such that t ≥ t′, for all processes p, for all
graphs x in X , Acct

p[x] ≥ Acct′
p [x].

Let sup(Accp[x]) be the supremum of Acct
p[x] for all t, we say that Accp[x] is

unbounded if sup(Accp[x]) is equal to ∞ and bounded otherwise. As Accp[x] is

136 C. Delporte-Gallet et al.

also updated by reliable broadcast each time some process q modifies Accq[x]
we have:

Lemma 3. For all correct processes p and q, for all graphs x in X , sup(Accp[x])
= sup(Accq[x])

Let sup(Acc[x]) be the supremum sup(Accp[x]) over all correct processes p of
Accp[x] (by Lemma 3, sup(Acc[x]) is well-defined). If there is a least one x ∈
X such that sup(Acc[x]) is bounded, then min{sup(Acc[x′])|x′ ∈ X} is finite,
hence G the graph such that (Acc[G], G) = min≺lex

{(Acc[x′], x′)|x′ ∈ X} is well
defined. Then all correct processes converge to the same graph:

Lemma 4. If there exists x in X such that sup(Acc[x]) is bounded then there is
a time after which for every correct process p, Gp is G.

Now we prove the Compatibility property. Consider any timeliness graph x ∈ X
compatible with T (r). Then there is a time t after which all faulty processes are
dead and the estimates of communication delays are greater than the bounds of
communication delays of timely links of the run. After time t, (1) as x contains
all correct processes, no process will blame x because it is not a node of x, and
(2) as all edges of x are timely, no process will blame x for one of its edges then:

Lemma 5. If x in X is compatible with T (r), then sup(Acc[x]) is bounded.

Reciprocally, let x be a timeliness graph of X that is not compatible with the run.
If process p is correct and p is not in x, it regularly blames x then sup(Acc[x]) =
∞. If process p is not correct there is a time t after which it does not send any
alive message, and there is a time after the timers on p expire forever for all
correct processes, then if p is in x, Accp[x] is incremented infinitely often and
sup(Acc[x]) = ∞. In the same way if q is correct and (p, q) is not timely, by
the fifo property of the link, the timer for p expires infinitely often for process
q and if (p, q) is an edge of x then Accq[x] is incremented infinitely often and
sup(Acc[x]) = ∞.

Then:

Lemma 6. For every x in X , if sup(Acc[x]) is bounded then x[Correct(r)] is
compatible with T (r).

Lemma 4 and Lemma 5 prove the Convergence property. Let G be the timeli-
ness graph such that for every correct process p eventually Gp = G. Hence by
Lemma 6:

Lemma 7. G[Correct(r)] is compatible with T (r).

It remains to prove that G satisfies the Closure property: G[Correct(r)] is a
dicut reduction of G or is equal to G. As G[Correct(r)] is compatible with T (r),
we have:

Lemma 8. Correct(r) ⊆ Node(G).

Algorithms for Extracting Timeliness Graphs 137

Let F = Node(G) − Correct(r). If F is empty the Closure property is triv-
ially ensured. Consider now the case where F is not empty. F contains only
faulty processes and (Correct(r), F) is a partition of G(Node). If there is an
edge in Edge(G) from a faulty process q to a correct process p, eventually the
process p never receives a message from q and the accusation counter of G will
be unbounded, contradicting the choice of G. So, we have:

Lemma 9. If F 	= ∅ then Edge(G) ∩ (F × Correct(r)) = ∅.

Hence, (Correct(r), F) is a dicut of G.
Lemma 4 and Lemma 5 prove the Convergence property, Lemma 7 proves the

Compatibility property and Lemma 9 proves the Closure property. Moreover, G
is clearly in X proving the Validity. Proposition 2 shows that the extraction is
exact when all graphs of X are strongly connected. Hence, we can conclude with
the following theorem:

Theorem 1. Let X be a dicut-closed system. Algorithm A(X) extracts a graph
in X . Moreover if all graphs of X are strongly connected, Algorithm A(X) exactly
extracts a graph in X .

5 An Efficient Extraction Algorithm

In this section, we propose another extraction algorithm calledAF(X) (Figures 2
and 3). This algorithm is efficient meaning that the (correct) processes eventually
only send messages along the edges of the extracted graph.
AF(X) (exactly) extracts a timeliness graph from system X , where (1) X is

dicut-closed and (2) for all graphs g ∈ X there is some process p, called root,
such that there is a directed path from p to every node of g. For example, T REE
and RING systems have this property.

In the following, we refer to these systems as dicut-closed systems with a root.
For every graph g in X , the function root(g) returns a root of g.

In the algorithm, every process p stores several values concerning the graphs
x ∈ X such that root(x) = p: (1) Acc[x] is the accusation counter of x whose
goal is the same as in Algorithm 1, (2) Prop[x] is a proposition counter whose
goal will be explained later, and (3) Δ[x] gives the expected time for a message
to go from p (the root of the x) to all the nodes of x.

Every process also maintains a set variable Candidates. Each element of this
set is a 4-tuple composed of a graph x of X and the newest values of Acc[x],
Prop[x], and Δ[x] known by the process (the exact values are maintained at
root(x)). Each element in this set is called candidate and each process selects its
extracted graph among the graphs in the candidate elements.

As in Algorithm 1:

(1) Each process p sends alive messages on its outgoing links and monitors its
incoming links. However, we restrain here the alive message sendings: process
p sends alive messages on its outgoing link (p, q) only if (p, q) is in a graph
candidate.

138 C. Delporte-Gallet et al.

(2) A graph candidate is blamed if (a) a correct process is not in the graph or (b)
a process receives an out of date message through one of its incoming links.
In both cases the candidate is definitely removed from the Candidates sets
of all processes. To achieve this goal the process sends an accusation message
(ACC) using a reliable broadcast and uses an array Heard that ensures that
an identical candidate (that is, the same graph with the same accusation and
proposition values) can never be added again. Moreover, upon delivery of an
accusation message for graph x, root[x] increments Acc[x].

We now present different mechanisms used to obtain the efficiency.
For all graphs x ∈ X , only the process root(x) is allowed to propose x as a

candidate to the rest. Each process p stores its better candidate in its variable
me, that is, the least blamed graph x such that root(x) = p.

– If a process finds in Candidates a better candidate than me, it removes me
from Candidates.

– If a process finds that me is better, it adds me to Candidates and sends a
new message containing me (1) to all processes that are not in Node(me),
and (2) to immediate successors of p in me. The immediate successors in me
add me to their Candidates set and relay the new message, and so on. By
the reliability of the links, every correct process that is not in me eventually
receives this message and blames me.

These mechanisms are achieved by the procedure updateExtractedGraph(). This
procedure is called each time a graph candidate is blamed or a new candidate is
proposed. Note that the Candidates set is maintained with the set OtherCand
(the candidates of other processes), a boolean Local that is true when the process
has a candidate, and me, the graph candidate.

A process p may give up a candidate without this candidate being blamed: in
this case, p is the root of the candidate, it finds a better candidate in OtherCand,

Code for each process p

1: Procedure updateExtractedGraph()
2: Let (amin, min) = min≺lex

{(acc, c) such that (c, acc,−,−) ∈ OtherCand} ∪ {(∞,∞)}
3: if (amin, min) < (Acc[me], me) ∧ Local then /∗ Give up me ∗/
4: rbroadcast〈ACC,me,Acc[me],Prop[me],Δ[me]〉
5: Prop[me] ← Prop[me] + 1
6: Local ← false
7: Candidates ← OtherCand
8: me ← x such that (a, x) = min≺lex

{(acc, c) such that c ∈ X ∧ root(c) = p}
9: if (Acc[me], me) < (amin, min) ∧ Local = false then /∗ Propose me ∗/
10: Local ← true
11: Candidates ← Candidates ∪ {(me, Acc[me], Prop[me], Δ[me])}
12: send〈new,me,Acc[me],Prop[me],Δ[me]〉 to every process not in Node(me)
13: for all h ∈ Π \ {p} do
14: if (h,p)∈ Edge(me) then
15: Δ[h]← max(Δ[h], Δ[me])
16: settimer(h) ← Δ[h]
17: if (p,h)∈ Edge(me) and h �= root(me) then
18: send〈new,me, Acc[me], Prop[me], Δ[me]〉 to h
19: G ← x such that (a, x)min≺lex

{(a′, x′) such that (x′, a′, p′, d′) ∈ Candidates}

Fig. 2. Procedure updateExtractedGraph of Algorithm AF(X)

Algorithms for Extracting Timeliness Graphs 139

Code for each process p

20: On initialization:
21: for all x ∈ X such that root(x) = p do
22: Acc[x] ← 0; Prop[x] ← 0; Δ[x] ← n
23: for all x ∈ X such that root(x) �= p do Heard[x] ← (−1,−1)
24: for all q ∈ Π \ {p} do Δ[q] ← 1
25: OtherCand ← ∅
26: Local ← false
27: me ← min{x such that x ∈ X ∧ root(x) = p}
28: updateExtractedGraph()
29: start tasks 1 and 2

30: task 1:
31: loop forever
32: send〈alive〉 to every process q such that ∃(x,-,-,-)∈ Candidates and (p, q) ∈ Edge(x)

every K time

33: task 2:
34: upon receive〈alive〉 from q do
35: settimer(q) ← Δ[q]

36: upon timerexpire(q) do /∗ Link (q, p) is not timely, blame all candidates that contain
(q, p) ∗/

37: for all (x, a, pr, d) ∈ OtherCand such that (q, p) ∈ Edge(x) do
38: rbroadcast〈ACC,x,a,pr,d〉
39: if (q, p) ∈ Edge(me) then
40: rbroadcast〈ACC,me,Acc[me],Prop[me],Δ[me]〉
41: upon receive〈new, x, a, pr, d〉 from q do /∗ Proposition of a new candidate ∗/
42: if p /∈ Node(x) then /∗ Blame x that does not contain p ∗/
43: rbroadcast〈ACC,x,a,pr〉
44: else
45: newCand ← false
46: if (x,−,−,−) /∈ OtherCand and Heard(x) < (a, pr) then /∗ New candidate ∗/
47: newCand ← true
48: if ∃(x, ac, prc, dc) ∈ OtherCand with (ac, prc) < (a, pr) then /∗ New candidate

∗/
49: OtherCand ← OtherCand \ (c, ac, prc, dc)
50: newCand ← true
51: if newCand then
52: OtherCand ← OtherCand ∪ (x, a, pr, d)
53: updateExtractedGraph()
54: Heard[x] ← (a, pr)
55: for all h ∈ Π \ {p} do
56: if (h,p)∈ Edge(x) then
57: Δ[h]← max(Δ[h], d)
58: settimer(h)← Δ[h]
59: if (p,h)∈ Edge(x) and h �= root(x) then send〈new, x, a, pr, d〉 to h

60: upon rdeliver〈ACC,x,a,pr,d〉 do
61: if root(x) = p then
62: if x = me ∧ a = Acc[me]∧ pr = Prop[me] then /∗ Check if the accusation is up

to date ∗/
63: Acc[me] ← Acc[me] + 1; Δ[me] ← Δ[me] + 1
64: Local ← false
65: else
66: OtherCand ← OtherCand \ (x, a, pr, d)
67: if Heard[x] < (a, pr) then Heard[x] ← (a, pr)
68: updateExtractedGraph()

Fig. 3. Algorithm AF(X) that efficiently extracts a graph in X

140 C. Delporte-Gallet et al.

and removes me from Candidates. Then, p must not increment Acc[me] when it
receives accusations caused by this removing, indeed these accusations are not
due to delayed messages. That is the goal of the proposition counter (Prop):
in Prop[x], root(x) counts the number of times it proposes x as candidate and
includes this value in each of its new messages (to inform other processes of
the current value of the counter). Hence, when q wants to blame x, it now
includes its own view of Prop[x] in the accusation message. This accusation
will be considered as legitimate by root[x] (that is, will cause an increment of
Acc[x]) only when the proposition counter inside the message matches Prop[x].
Also, whenever root[x] removes x from Candidates, root[x] increments Prop[x]
and does not send the new value to the other processes. In this way accusations
due to this removing will be ignored.

For any timely candidate, the accusation counter will be bounded and its
proposition counter increased each time it is proposed. In this way the graph
with the smallest accusation and proposition values eventually remains forever
in the Candidates set of all correct processes and it is chosen as extracted graph.
(This is done in the procedure updateExtractedGraph().) Moreover, eventually
all other candidates are given up and it remains only this graph in Candidates.
In this way, only alive messages are sent and they are sent along the directed
edges of the extracted graph ensuring the efficiency.

The following theorem states the correctness of AF(X). For space considera-
tion, its proof has been omitted.

Theorem 2. Let X be a dicut-closed system with a root. Algorithm AF(X) effi-
ciently extracts a graph in X . Moreover if all graphs of X are strongly connected,
Algorithm AF(X) efficiently and exactly extracts a graph in X .

6 Conclusion

Failure detector implementations in partially synchronous models generally use
the timeliness properties of the system to approximate the set of correct (or
faulty) processes. In some way, the extraction problem is a kind of generalization:
instead of only searching the set of correct processes, here we try to extract also
information about the timeliness of links. Besides, our solutions are based on
already existing mechanisms used in failure detectors implementations as in [2,3].

Information about the timeliness of links is useful for efficiency of fault-
tolerant algorithms. In particular, in any extracted graph, any path between
a pair of correct processes is only constituted of timely links. This property is
particulary interesting to get efficient routing algorithms.

We gave an extraction algorithm for dicut-closed sets of timeliness graphs.
Moreover, we proved that the extraction is exact when all the timeliness graphs
are also strongly connected.

Given dicut-closed timeliness graphs that contain a root, we shown how to
efficiently extract a graph from it. By efficiency we mean giving a solution where
eventually messages are only sent over the links of the extracted graph.

Algorithms for Extracting Timeliness Graphs 141

It is important to note that the main purpose of the algorithms we proposed
is to show the feasability of the extraction under some conditions. So, the com-
plexity of our algorithms was not the main focus of this paper.

As a consequence, our algorithms are somehow unrealistic because of their
high complexity. Giving more practical solutions will be the purpose of our future
works.

Acknowledgments. We are grateful to members of the Graph team of the
LIAFA Lab for the helpful discussions and their interesting suggestions.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer,
Heidelberg (2001)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. In: PODC, pp. 306–314
(2003)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Chaudhuri,
S., Kutten, S. (eds.) PODC, pp. 328–337. ACM, New York (2004)

4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega in systems with weak reliability and synchrony assumptions. Distributed
Computing 21(4), 285–314 (2008)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

6. Dolev, D., Dwork, C., Stockmeyer, L.J.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34(1), 77–97 (1987)

7. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. Journal of the ACM 35(2), 288–323 (1988)

8. Delporte Gallet, C., Devismes, S., Fauconnier, H., Larrea, M.: Algorithms For
Extracting Timeliness Graphs,
http://hal.archives-ouvertes.fr/hal-00454388/en/

9. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and re-
lated problems. Tech. Rep. TR 94-1425, Department of Computer Science, Cornell
University (1994)

10. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for
implementing omega and consensus. IEEE Trans. Dependable Sec. Comput. 6(4),
269–281 (2009)

11. Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreliable
failure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC 1999.
LNCS, vol. 1693, pp. 34–48. Springer, Heidelberg (1999)

12. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: DSN, pp. 351–360. IEEE Computer Society, Los Alamitos (2003)

http://hal.archives-ouvertes.fr/hal-00454388/en/

Distributed Tree Comparison
with Nodes of Limited Memory�

Emanuele Guido Fusco1 and Andrzej Pelc2,��

1 Computer Science Department
Sapienza, University of Rome, via Salaria 113 – 00198 Rome, Italy

fusco@di.uniroma1.it
2 Département d’informatique

Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada
pelc@uqo.ca

Abstract. We consider the task of comparing two rooted trees with
port labelings. Roots of the trees are joined by an edge and the compar-
ison has to be carried out distributedly, by exchanging messages among
nodes. If the two trees are isomorphic, all nodes must finish in a state
YES, otherwise they have to finish in a state NO and break symme-
try, nodes of one tree getting label 0 and of the other – label 1. Nodes
are modeled as identical automata, and our goal is to establish trade-
offs between the memory size of such an automaton and the efficiency
of distributed tree comparison, measured either by the time or by the
number of messages used for communication between nodes. We consider
both the synchronous and the asynchronous communication and estab-
lish exact trade-offs in both scenarios. For the synchronous scenario we
are concerned with memory vs. time trade-offs. We show that if the au-
tomaton has x bits of memory, where x ≥ c log n, for a small constant c,
then the optimal time to accomplish the comparison task in the class of
trees of size at most n and of height at most h > 1 is Θ(max(h, n/x)).
For the asynchronous scenario we study memory vs. number of messages
trade-offs. We show that if the automaton has x bits of memory, where
n ≥ x ≥ c log Δ, then the optimal number of messages to accomplish the
comparison task in the class of trees of size at most n and of maximum
degree at most Δ is Θ(n2/x).

1 Introduction

We consider the task of comparing two rooted trees with port labelings. There
are two disjoint rooted trees T = (V, E) and T ′ = (V ′, E′) whose roots r and r′

are joined by an edge permitting communication between these trees. Ports at
each node v are labeled 0, . . . , d(v)− 1, where d(v) is the degree of node v, and

� This work was done during the visit of Emanuele G. Fusco at the Research Chair in
Distributed Computing of the Université du Québec en Outaouais.

�� Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 142–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Distributed Tree Comparison with Nodes of Limited Memory 143

these labelings are arbitrary, with port numbers d(r) and d(r′) corresponding
to the joining edge at roots r and r′, respectively. Trees (T, r) and (T ′, r′) are
isomorphic, if there is a bijection f : V −→ V ′, such that f(r) = r′, u is adjacent
to v, if and only if f(u) is adjacent to f(v), and the port number corresponding
to edge {u, v} at node u is equal to the port number corresponding to edge
{f(u), f(v)} at node f(u). The aim of the tree comparison task is the following:
if the two trees are isomorphic, all nodes must finish in a state YES, otherwise
they have to finish in a state NO and break symmetry: nodes of one tree get
label 0 and of the other – label 1.

Nodes of the two rooted trees to be compared are modeled as identical in-
put/output automata that communicate by sending and receiving messages. Our
goal is to establish trade-offs between the memory size of such an automaton
and the efficiency of distributed tree comparison measured either by the time or
by the number of messages used for communication between nodes. We consider
both the synchronous and the asynchronous communication and establish exact
trade-offs in both scenarios.

One of the most important applications of the tree comparison task is leader
election in trees. Consider any tree without labels of nodes, but with port la-
belings. A tree has either a central node or a central edge. Which of these cases
occurs can be easily checked in a distributed way. Starting from leaves, the tree
can be pruned by first removing all leaves, then removing all leaves in the re-
sulting tree, and so on, until a unique node or two adjacent nodes remain. In the
first case this unique node is the central node, and in the second case the two
adjacent nodes are joined by the central edge. In the first case, the central node
becomes the leader. In the second case, leader election is possible, if and only
if the subtrees rooted at both endpoints of the central edge are not isomorphic.
If they are not isomporhic, the result of tree comparison solves leader election:
the endpoint that got label 1 is the leader. Hence leader election in trees can be
reduced to tree comparison.

Our results. For the synchronous scenario we are concerned with memory vs.
time trade-offs. We show that if the automaton has x bits of memory, where
x ≥ c logn, for a small constant c, then the optimal time to accomplish the
comparison task in the class of trees of size at most n and of height at most h > 1
is Θ(max(h, n/x)). For the asynchronous scenario we study memory vs. number
of messages trade-offs. We show that if the automaton has x bits of memory,
where n ≥ x ≥ c log Δ, then the optimal number of messages to accomplish the
comparison task in the class of trees of size at most n and of maximum degree
at most Δ is Θ(n2/x).

Related work. Tree comparison is a symmetry-breaking task, closely related to
leader election. Leader election was first studied for the ring, under the assump-
tion that all labels are distinct. A synchronous algorithm, based on comparisons
of labels, and using O(n log n) messages was given in [8]. It was proved in [7]
that this complexity is optimal for comparison-based algorithms. On the other
hand, the authors showed an algorithm using a linear number of messages but

144 E.G. Fusco and A. Pelc

requiring very large running time. An asynchronous algorithm using O(n log n)
messages was given, e.g., in [15] and the optimality of this message complexity
was shown in [4]. Leader election in radio networks has been studied, e.g., in
[9,10,14] and randomized leader election in [17].

Many authors [1,2,3,6,11,12,16,18,20] studied various computing problems in
anonymous networks, whose nodes do not have labels, similarly as in our scenario.
In particular, [5,20] characterize networks in which leader election can be achieved
when nodes are anonymous. In [20] other important computing problems, such as
the spanning tree construction and topology recognition, are studied in such net-
works. In [19] the authors study the problem of leader election in general networks,
under the assumption that labels are not unique. They characterize networks in
which this can be done and give an algorithm which performs election when it is
feasible. They do not attempt to minimize the number of messages.

Tree canonization is a task related to tree comparison: the input is a rooted
tree without port labelings and such a tree should get a unique isomorphism
invariant name. The memory size needed for centralized execution of this task
has been investigated in [13]. The author shows a centralized algorithm working
in logarithmic space that decides if two rooted trees without port labelings are
isomorphic.

To the best of our knowledge, the present paper is the first to study memory vs.
time and memory vs. communication complexity trade-offs in symmetry breaking
tasks.

The model. Each node is a copy of the same input/output automaton A
which is a quadruple (S, Q, π, λ), where S is a finite set of states, Q is the
input/output alphabet, π : S × Q −→ S is the state transition function, and
λ : S −→ Q is the output function. The alphabet Q is the family of finite
sets of couples {(i1, mi1), . . . , (ik, mik

)}, where ij are non-negative integers and
mij are finite binary strings called messages. All nodes start in the same state
S0, called the initial state. Consider a node v that is in a state S. Let λ(S) =
{(i1, mi1), . . . , (ik, mik

)} be the output corresponding to state S. Node v sends
message mij on port ij , for all its ports. If there is no pair (ij , mij) in λ(S), no
message is sent on port ij , and all messages mi, where i is not a port number,
are ignored.

At any time, a node v that is currently in state S, can get a set of mes-
sages mj1 , . . . , mjs , on ports j1, . . . , js, respectively. The set q = {(j1, mj1), . . . ,
(js, mjs)} becomes an input symbol and the node transits to state S′ = π(S, q).

We consider both the synchronous and the asynchronous scenario. In the first
one, time is slotted and all actions are carried out in rounds: in a given round a
node in state S sends the appropriate messages that arrive to the corresponding
neighbors in the same round, and every node after receiving messages in a round
transits to the new state in the next round. In this scenario, the time of carrying
out a comparison task for a given instance is the number of rounds it takes for
this instance. In the asynchronous scenario, all actions can take arbitrarily long
finite time, scheduled by an adversary. In particular, messages sent by nodes can
arrive at different times to different neighbors. We only assume that a node in a

Distributed Tree Comparison with Nodes of Limited Memory 145

state S sends all messages prescribed by λ(S) before transiting to a new state,
and that whenever a node is in state S at time t and gets some messages at time
t′ ≥ t, forming an input symbol q, then the node transits to state π(S, q) before
reacting to any messages received at some time t′′ > t′.

There are three pairwise disjoint sets of states included in S: the sets Y ES,
NO0 and NO1. If the compared trees are isomorphic, each node of both trees
should eventually enter a state from the set Y ES. Otherwise, each node of one
of the trees must enter a state from the set NO0 and each node of the other
tree must enter a state from the set NO1. Once a node enters a state in one of
these sets, it remains forever in the set (although it may change states). More
formally, for any q ∈ Q and any states S′ ∈ Y ES, S′′ ∈ NO0 and S′′′ ∈ NO1,
we have π(S′, q) ∈ Y ES, π(S′′, q) ∈ NO0 and π(S′′′, q) ∈ NO1.

We say that an automaton A solves the comparison problem in the class C
of trees, if this task can be carried out for every pair of trees from C in which
copies of A are placed in every node.

The memory of an automaton is measured by the number of states, or equiva-
lently by the number of bits on which these states can be encoded. An automaton
with K states requires Θ(log K) bits of memory.

Due to lack of space, proofs of several results are omitted.

2 Preliminaries

Consider the set T0 of rooted trees where each node has label 0 at the port
leading to its parent. Such a n-node tree can be encoded by a binary string of
length 2n− 2. This is done by performing a depth first visit of the tree, driven
by increasing order of port numbers at each node, and writing a 1 every time
an edge is traversed going down, and a 0 every time an edge is traversed going
up. A tree T ∈ T0 can be reconstructed from its code as follows. Start from the
root, making it the current node. In every step of the reconstruction we have a
suffix σ of the code and a current node v. In the first step σ is the code. If the
first element of σ is a 1, attach a new child to v, label the port connecting v to
this child with the smallest port number not yet assigned at node v. Also assign
label 0 to the port connecting the child to v. The child becomes the current node
at the next step. If the first element of σ is a 0, the parent of v becomes the
current node at the next step. In both cases, the first element of σ is removed.

A string s of length 2n− 2 belongs to the set Cn of well formed codes, if and
only if it has n − 1 ones, n − 1 zeroes, and no prefix of s contains more zeroes
than ones. The coding and decoding functions described above define a bijection
between the set Cn and the set of all n-node trees in T0. This is a subset of the
trees we want to handle, as in general the port number p(v) leading to the parent
of a node v is arbitrarily chosen between 0 and d(v)− 1. Hence, we augment the
code by inserting the port numbers leading to the parent of each internal node
in the following way. The port number p(v) of an internal node v is inserted,
surrounded by | symbols, after the digit 1 corresponding to the first visit, in
the encoding process, of node v. Denote such an augmented code of a tree T by

146 E.G. Fusco and A. Pelc

B(T). From now on it is called the code of T . As symbol | has been added to
the code, resulting in a ternary alphabet, we use 2 bits to represent each symbol
in code B(T) without ambiguities.

Proposition 1. The length of the code B(T) of a n-node tree T is O(n).

3 Trade-Offs between Memory and Time

In this section we consider the synchronous scenario and establish trade-offs
between the memory size of an automaton and the time needed to accomplish
the tree comparison task. Consider the class of trees with at most n nodes
and of height at most h. Suppose that the automaton A placed at each node
of the compared trees has x bits of memory, where x ≥ c log n, for a small
constant c, whose value will be specified later. First notice that if h = 1, then
trees in the considered class are stars. Two stars can be compared in constant
time, regardless of the memory of the automaton, provided that it is at least
logarithmic in n. Hence from now on we assume that h > 1.

Let B(T) and B(T ′) be the codes of trees T and T ′. Our algorithm for com-
paring trees will make use of these codes. While comparing tree T and tree
T ′, codes of subtrees of T and T ′ are built, in a bottom-up fashion, starting
from the leaves. The comparison between B(T) and B(T ′) is done by comparing
segments of O(x) bits, coding subtrees. Already compared isomorphic subtrees
are removed from T and T ′, thus producing two new residual trees, T1 and T ′

1.
During this process, we maintain the invariant that T1 = T ′

1, if and only if
T = T ′. The process ends when two distinct segments are compared, or when
both residual trees are empty. In order to enforce the invariant, we use ranks of
nodes in a pre-order visit. We denote by ρ(v) the rank of node v. Two subtrees
are compared by exchanging messages that contain, for each of them, the code
of the subtree, the rank of the parent of the root of the subtree, and the port
number at the parent leading to the subtree. If two such messages are different,
the output of the comparison task is NO, and nodes of the tree corresponding
to the lexicographically larger message get label 1. If the process ends with both
residual trees becoming empty, the output of the comparison task is YES.

Pruning the trees by removing subtrees, instead of leaves, allows us to take
advantage of the memory available at each node for sending large segments of
data and thus speeding up the comparison.

Messages sent during the execution of the algorithm are of two different types.
The subtree messages concern a single subtree, rooted at some node v. The com-
pound messages combine information from different subtrees, rooted at consec-
utive sibling nodes. Both compound and subtree messages also contain sufficient
information to obtain the rank ρ(w) of the parent w of the roots of the coded
subtrees, together with the port numbers leading from this node to each of the
subtrees. The value of ρ(w) is computed incrementally while the message climbs
up the tree towards the root, and becomes the correct value of the rank when
the message is sent from the root of one input tree to the root of the other.

Distributed Tree Comparison with Nodes of Limited Memory 147

Each node keeps three counters, whose values are bounded by n. Each node
reserves one third of its memory for the counters. Hence, if x ≥ 9�log n�, counters
do not overflow. We thus make the assumption that x ≥ 9�logn� throughout
the section.

Sending a message from a node to its parent requires at least two rounds.
Whenever a node v wants to send a message to its parent, it sends it and keeps
sending the same message in all subsequent rounds, until its parent sends a con-
firmation message back to node v. After receiving a confirmation, node v stops
sending this message and may start executing some new task. This approach
allows us to use memory of nodes more efficiently. In order to repeat sending
the same message to its parent, node v has to keep it in its memory. However,
it is more economical to keep one message in the memory of each child than to
keep many messages coming from children in the memory of the parent, while
it waits for the remaining messages to arrive.

The detailed description of the algorithm is given below.

Algorithm. Sync Compare
Input: two rooted trees, T and T ′, whose respective roots r and r′ are connected
by an edge e. Port numbers at r and r′ corresponding to e are d(r) and d(r′),
respectively.

We first describe the fields of subtree messages. Let b be the code of a subtree
rooted at v. A subtree message contains four fields.
Field 1 will eventually contain the rank ρ(w) of the parent node w of node v,
when the message is relayed by r (respectively r′) to r′ (respectively r).
Field 2 will eventually contain the port number at node w corresponding to the
edge (v, w), when the message is relayed by the parent w of node v.
Field 3 contains the size s of the original subtree rooted at v.
Field 4 contains the code of the residual subtree rooted at v (hence, in general,
it does not contain the code of the whole subtree rooted at v at the beginning
of the execution of the algorithm).

The number of fields in messages of type compound may vary. Fields 1 to 3 of
compound messages are common to all messages of this type.
Field 1 will eventualy contain the rank ρ(v) of the parent v of all roots of the
subtrees coded in the message. As before, this information is complete when the
message is relayed by r (respectively r′) to r′ (respectively r).
Field 2 contains the port number, at node v, corresponding to the edge {v, w},
where w is the parent of v (and d(v) if v is r or r′).
Field 3 contains the position j, among all children of node v, of the root of the
first subtree coded in the message (in order of increasing port numbers at v).
Subsequent fields are pairs. The first element of each pair is the size s of the
original subtree rooted at the corresponding child of node v; the second element
of each pair contains the code of the residual subtree rooted at this child.

A further distinction among messages classifies them as small or large. A
subtree message is small, if the length of the code it contains is bounded by x/6.
A compound message is small, if the sum of the lengths of the codes it contains
(further augmented by the information on original subtree sizes) is bounded by

148 E.G. Fusco and A. Pelc

x/6. All other messages are large. The length of the code contained in a large
subtree message is bounded by x/3. Similarly, the sum of the lengths of the codes
and original subtree sizes in a large compound message is bounded by x/3.

Each internal node v keeps 3 counters: counters c(v) and s(v) are initialized
to 0; counter p(v) is initialized to −1. One third of the memory of each node is
reserved for these counters, while the remaining two thirds are used to memorize
a message or construct a new one.

Starting from round 1 each leaf sends a subtree message < −1,−1, 1, 10 > to
its parent.

In the first round when an internal node v receives a message from all its
neighbors but one, it stores the port number corresponding to the only non-
transmitting neighbor in counter p(v). This neighbor is the parent of v.

Consider an internal node v that already set its counter p(v). Let i0, i1, . . . ,
id(v)−2 be the increasing sequence of the d(v)− 1 integers different from p(v) in
[0, . . . , d(v)− 1].
At any round node v acts differently according to the following 3 possible cases:

1. messages mi0 , . . . , mid(v)−2 from all its children are small subtree messages

and the subtree message m =< −1,−1, 1 +
∑d(v)−2

j=0 s(ij), 1|p(v)|b(i0) . . .
b(id(v)−2)0 > is either small or large, where s(ij) is the size from field 3
of message mij , and b(ij) is the code from field 4 of this message;

2. messages mi0 , . . . , mid(v)−2 from all its children are small subtree messages

and the subtree message m =< −1,−1, 1 +
∑d(v)−2

j=0 s(ij), 1|p(v)|b(i0) . . .
b(id(v)−2)0 > contains a code of length larger than x/3,

3. some message from its children is either compound or large.

In case 1, node v starts sending message m to its parent and sends confirmation
messages to all its children. After receiving a confirmation from its parent, node
v has sent all the information related to its subtree and will never send any other
message to its parent; the whole subtree rooted at v is thus pruned from the tree.

In case 2, node v constructs the following compound message m.

m =< 1, p(v), c(v), (s(ic(v)), b(ic(v))), . . . , (s(ic(v)+k), b(ic(v)+k)) >,

where k is either d(v) − c(v) − 2 (meaning that all children have been already
handled), or the maximum value such that subtree codes and sizes in m do not
exceed the allowed size for large compound messages. Node v sends message m
to its parent; in the same round, it sends confirmations to children connected
through ports from ic(v) to ic(v)+k and sets counter s(v) to s(v)+

∑k
j=0 s(ic(v)+j),

and counter c(v) to c(v) + k + 1. Children that receive the confirmation have
sent all the information related to their subtrees and will never send any other
message to their parent. These nodes and the residual subtrees rooted at them
are pruned from the tree. When node v receives a confirmation from its parent,
it considers as its children only nodes corresponding to ports from ic(v) to id(v)−2
(i.e., those children that have yet to be pruned) and repeats the steps described
above for case 2. When c(v) reaches value d(v)−1, node v starts sending a subtree

Distributed Tree Comparison with Nodes of Limited Memory 149

message < −1,−1, s(v) + 1, 1|p(v)|0) > to its parent. This is the last message
that node v will send to its parent during the execution of the algorithm.

In case 3, compound and large messages are relayed by node v to its parent.
The behavior of node v is different for compound and for large subtree messages,
and for large subtree messages it is again different depending on whether the
message has been already relayed by some other node or not. Details for all
possible cases are provided below.

Let ik be the smallest port number from which v is receiving either a large or a
compound message. If c(v) is less than k and there exists a port ij , for c(v) ≤ j <
k, from which v is not receiving any message in the current round, then v waits
till the next round. Hence we can assume that all messages mic(v) , . . . , mik−1 ,
from ports ic(v) to ik−1 are small subtree messages. Let s(c(v)), . . . , s(k − 1) be
the values of fields 3 of these messages.

Let m =< ρ, p, c, (s1, b1), . . . , (sl, bl) > be a compound message received by
node v through port ik. Node v relays message m by sending message < ρ+s(v)+
1+

∑k−1
j=c(v) s(j), p, c, (s1, b1), . . . , (sl, bl) > to its parent and sending confirmation

to its child connected through port ik, without modifying any of its counters.
Let m =< ρ, p, s, b > be a large subtree message received by node v from port ik.
If ρ = −1, then message m has never been relayed by any node, and node v is

the parent of the root of the subtree coded in this message. Messages from ports
ic(v) to ik−1 are first used, similarly as in case 2, to send as many compound
messages as needed. As a result, counters of v are updated and c(v) becomes
equal to k. Hence, node v relays message m by sending message < 1, k, s, b >
to its parent. It also updates its counter s(v) by adding s to it, and its counter
c(v) by adding 1 to it. Moreover, it sends a confirmation to its child connected
through port ik. This child (and all other children connected through a port
number smaller than ik) will never send any other message to v. After receiving
a confirmation from its parent, node v considers as its children only nodes con-
nected to it through ports from ic(v) to id(v)−2, and treats subsequent messages
from these children as in cases 2 or 3, depending on whether all messages are
small subtree or not.

If ρ ≥ 1, then message m has already been relayed by some node. Node v
relays message m by sending message < ρ+s(v)+1+

∑k−1
j=c(v) s(j), p, s, b > to its

parent, without modifying any of its counters. Node v also sends a confirmation
to its child connected through port ik. If counter c(v) is still equal to 0, node
v can treat subsequent messages from its children according to cases 1, 2 or
3, depending on their type. If c(v) > 0, then subsequent messages are handled
according to cases 2 or 3 only.

Roots r and r′ behave in a similar way as all the internal nodes, with the only
difference that each root relays messages to the root of the other tree instead
of relaying to its parent. Messages relayed in round i are also kept in memory
and compared, in round i+1, with the corresponding message sent by the other
root in round i. If the messages are different, or one of them is missing, the trees
are not isomorphic and the outcome of the comparison is NO (termination mes-
sages are broadcast from each root to its respective tree; nodes in the tree whose

150 E.G. Fusco and A. Pelc

corresponding message is lexicographically larger, or is missing, get label 1, nodes
in the other tree get label 0). The outcome of the comparison is YES, if and only
if subtree messages are simultaneously generated by each root and match. �

In the proof of the correctness of the algorithm, we will use the following technical
lemmas.

Lemma 1. Let m be a message to be relayed by the root of one of the input
trees to the root of the other tree during execution of Algorithm Sync Compare.
Let u be the parent of the roots of the trees coded in m. When m is relayed to
the other root, then its field 1 contains the rank of u.

For any instance (T, T ′) of the comparison problem that gives output YES, the
sequences of messages sent by each root to the other are identical. Hence we can
define a function f : T −→ M , where T is the set of input trees and M is the
set of sequences of messages, such that f(T) is the sequence of messages sent
from r to r′ for any YES-instance (T, T ′) of the comparison problem.

Lemma 2. If f(T1) = f(T2), then T1 and T2 are isomorphic.

Lemma 3. Algorithm Sync Compare is correct.

Proof. To prove the correctness of Algorithm Sync Compare, we show that its
outcome is YES, if and only if input trees T and T ′ are isomorphic. For any
deterministic algorithm, it is impossible that the roots of two isomorphic subtrees
behave differently. Hence, it is straightforward that Algorithm Sync Compare
has outcome YES if the input trees are isomorphic. It remains to be shown that,
whenever the outcome of Algorithm Sync Compare is YES, then the input trees
are isomorphic.

Let (T, T ′) be an instance of the comparison problem with output YES. Let μT

and μT ′ be the sequences of messages sent by r to r′ and by r′ to r, respectively.
Since the outcome is Y ES, we have μT = μT ′ . By Lemma 2, trees T and T ′ are
isomorphic. ��

We now consider the completion time of Algorithm Sync Compare.

Lemma 4. Algorithm Sync Compare terminates in time O(max(h, n/x)), for
any pair of input trees (T, T ′) having at most n nodes and height bounded by h,
where x is the number of memory bits at each node.

Proof. The time needed for a node to receive at least one message from each child
is linear in the height of its subtree. Indeed, nodes that receive only small subtree
messages from their children receive a message from each of them within time
linear in the height of the tallest subtree, and each node that received a message
from all its children in round i, sends a message to its parent in round i + 1.

A node that has sent a message m to its parent in a given round keeps sending
the same message in all subsequent rounds until it gets a confirmation from the
parent.

Distributed Tree Comparison with Nodes of Limited Memory 151

Claim. A node that received a confirmation from its parent in round i, either
sends a new message to its parent in round i + 2 at the latest, or never sends a
message to its parent again.

The correctness of the claim is clear in cases 1 and 2. It is also clear for a node
v in case 3, if the message confirmed in round i has been created by node v and
not relayed; we now prove by induction on the number of times the message has
been relayed that the claim holds also if the message confirmed to v in round i
was a relayed message. Hence node v still has messages to send to its parent. If
node v was the first to relay the message m, then m has been generated by one of
its children. If m is a subtree message, node v increased its counter c(v) in round
i and, in order to send another message to its parent, it does not need to wait for
any other message from the child whose message it relayed. If m is a compound
message, then the child w that sent it to v has already updated its counter c(w),
in round i, and is sending a new message, in round i + 1, that only depends on
messages sent from ports from ic(w) to id(w)−2. Node v is thus receiving input
from all the children that have not been pruned yet from its subtree and is thus
able to send a new message within round i + 2 also in this case. This completes
the argument for the basis of the induction. By the inductive hypothesis, if the
message confirmed to a node w by its parent in round i has been relayed at
most k times, then node w sends a new message within round i + 2, provided
that it still has messages to send to its parent. Let v be a node that received a
confirmation from its parent in round i, for a message m relayed k+1 times. Let
w be the child of v that sent the message m to v. For node v to get a confirmation
in round i, it must have started sending message m in round i− 1 at the latest.
Hence, node w got a confirmation from its parent v in round i− 1 at the latest.
Message m has been relayed by node w for the k-th time, and hence, by the
inductive hypothesis, node w is transmitting a new message to v in round i + 1
at the latest (node w still has messages to send to its parent, as the last message
sent by each node is the subtree message it generates). It follows that node v is
receiving a message from each of the children not yet pruned from its subtree in
round i + 1 at the latest, and thus sends a new message in round i + 2 at the
latest, which completes the proof of the claim by induction.

Now consider the messages relayed by the root r of tree T to the root r′ of tree
T ′. Small messages relayed by r can be only compound. Indeed, subtree messages
are relayed only if they are large. A small compound message can be generated
only in case 2, after generating at least one large compound message, or in case
3, for small subtree messages preceding or following a large subtree message that
has never been relayed. Hence for each large message, at most two small com-
pound messages can be generated. As generating a large message corresponds to
the pruning of a subtree of size linear in x, at most O(n/x) large messages can
be generated during the execution of the algorithm. It follows that a total of at
most O(n/x) messages traverse edge {t, t′} during the execution of the algorithm.
The first of these messages is sent within time τ ∈ O(h) since the beginning of
the execution. In view of the claim, after time τ edge {t, t′} is traversed by a
new message at most every two rounds. Hence, after time O(h + n/x), either

152 E.G. Fusco and A. Pelc

a difference is found, or tree T is reduced to an empty tree and the algorithm
terminates, which proves the lemma. �

Lemmas 3 and 4 imply the following theorem.

Theorem 1. Let x ≥ 9�log n�. There exists an automaton with x bits of memory
that solves the tree comparison problem in the class of all trees of size at most n
and of height at most h in time O(max(h, n/x)).

We conclude this section by establishing the following matching lower bound on
the time of tree comparison with x bits of memory at nodes.

Theorem 2. If the automaton has x bits of memory, then time Ω(max(h, n/x))
is needed to solve the tree comparison problem in the class of all trees of size at
most n and of height at most h, where h > 1.

4 Trade-Offs between Memory and Number of Messages

In this section we consider the asynchronous scenario and establish trade-offs
between the memory size of an automaton and the number of messages needed
to accomplish the tree comparison task. Consider the class of trees with at most n
nodes and of maximum degree at most Δ. Suppose that the automaton A placed
at each node of the compared trees has x bits of memory, where x ≥ c logΔ, for
a small constant c, whose value will be specified later.

We now describe Algorithm Async Compare. The algorithm is asynchronous
and makes use of the codes of trees described in Section 2. Such a code can
be constructed by performing a pre-order visit of a n-node tree. As opposed to
the synchronous case, in this setting there is no need of complicating the code
to complete the comparison fast, which required additional information to be
added to the messages. Hence, we produce the code left to right by moving a
token from a node to the next one in the visit by a message exchange between
the owner of the token and the next node in the visit (either a child of the current
owner or its parent), starting from the root. The token piggybacks a segment of
the code of the input tree, of size O(x), where x is the number of memory bits
available at each node. When the code of a segment is long enough, it is sent up
to the root of the input tree for comparison with the corresponding segment of
the other input tree. The outcome of the comparison is YES, if all corresponding
segments are equal. Otherwise, symmetry is broken on the basis of the first pair
of different segments.

The detailed description of the algorithm is given below.
Algorithm. Async Compare
Input: two rooted trees, T and T ′, whose respective roots r and r′ are connected
by an edge e. Port numbers at r and r′ corresponding to e are d(r) and d(r′),
respectively.

Each node v keeps 3 counters. Counter p(v) is used to store the port number
leading to the parent of node v. Counter c(v) is used by the owner of the token to

Distributed Tree Comparison with Nodes of Limited Memory 153

store the port number leading to the next node, in the pre-order visit. Counter
o(v) is used, by each node v in the path from the root to the current owner of
the token, to store the port number leading to the child whose subtree contains
the owner of the token. All counters are initialized to −1; three quarters of the
memory of each node are reserved to the counters, while the remaining quarter
is used to store or construct a message.

At the beginning of the execution of the algorithm, roots r and r′ own the
token of the respective tree.

When an internal node v receives the token for the first time, it stores in p(v)
the port number from which it received the token. Then, v appends |p(v)|1 to
the code segment in the token content, and sends the token through the smallest
port whose number is different from p(v) (this corresponds to sending the token
to the first child of v). Node v also stores this port number in counter c(v). If
appending |p(v)|1 to the code segment would result in a segment that exceeds
�x/4� bits, node v sends the received code segment to its parent and pauses the
pre-order visit.

When a leaf v receives the token, it appends digit 0 to the code segment and
sends the token back to its parent. If doing so would result in exceeding length
�x/4� of the segment, v pauses the pre-order visit and sends the code segment
back to its parent.

An internal node v that receives the code segment from one of its children,
updates the value of counter c(v) to the port leading to the next child, or to
−1, if all children have been already visited. Then, v sends the token to its next
child, appending digit 1 to the code segment, or sends it back to its parent (if all
children have been already visited), appending digit 0. Similarly as before, the
visit is paused and the code segment is sent up unaltered, if appending would
result in a too large segment.

Code segments are sent up the tree to the root as follows. When a node v
(including roots of the input trees) gets a code segment from a port i 	= p(v), it
stores value i in counter o(v) and sends the code segment to its parent (or to the
root of the other tree in the case when v is the root of one of the input trees).

The root of an input tree can receive a code segment either from one of its
children, or from the root of the other tree. The code segment that arrives first
is stored in the memory (when code segments from the other root and a child
arrive at the same time, the one coming from the child is stored), and compared
with the corresponding one as soon as it is received.

After comparison of two corresponding code segments, if no difference is found,
roots r and r′ send a request for the next code segment, through port o(r) =
o(r′). The request is forwarded by each node v in the path connecting the root
to the current owner of the token of its tree, by sending it through port o(v).

If a difference in two corresponding segments exchanged by the roots r and r′

is found, or the token got back to one root from its last child while the other root
has still a segment to compare, the trees are not isomorphic and the outcome of
the comparison is NO. The root that sent the lexicographically larger segment
(or that received the token back first), gets labels 1, while the other root gets

154 E.G. Fusco and A. Pelc

label 0. The outcome is then broadcast to all nodes in the trees, starting from
the roots; each node in the tree gets the label assigned to the root of the tree it
belongs to.

It remains to be described how the visit is restarted by the current owner of
the token. When the current owner v of the token receives a request for the next
segment, it sends the token to the next node in the pre-order visit as follows.
If v is an internal node whose counter c(v) points to the first child, v sends the
token containing code |p(v)|1 to this child. If v is an internal node whose counter
c(v) points to a subsequent child, v sends the token containing digit 1 to this
child. If v is either a leaf or an internal node whose counter c(v) = −1, it sends
the token containing digit 0 to its parent.

The outcome of the comparison is YES, if all compared code segments co-
incide, and both roots get the token back together with corresponding code
segments. This outcome is broadcast to all nodes of the trees. �

Theorem 3. There exists an automaton with x bits of memory that solves the
tree comparison problem in the class of all tress of size at most n, using O(n2/x)
messages, for 4�log n� ≤ x ≤ n.

Proof. The algorithm uses 3 counters whose values are bounded by n. We reserve
3/4 of the memory for the counters and the rest to store or produce a message.
When the memory available at each node is at least 4�log n�, the memory re-
served to each counter is large enough to avoid overflows, and the correctness of
Algorithm Async Compare follows from the fact that two trees are isomorphic,
if and only if they have the same code.

As for the number of messages sent during the execution of the algorithm,
performing the visit requires a message for each edge traversed by the token,
thus totalling 2n − 2 messages when the token gets back to the root. Sending
each code segment to the root of the input tree and resuming the visit requires
2 messages for each traversed edge (one for sending the code segment up, and
one for sending the request for the next code segment down). As O(n/x) code
segments are produced during the execution of the algorithm and less than n
edges are traversed by each code segment, the total number of messages sent
for delivering code segments to the root and resuming the visit is O(n2/x).
O(n/x) messages are exchanged between the roots of the input trees. Finally,
broadcasting the outcome of the comparison requires at most n − 1 additional
messages for each input tree, which completes the proof. ��

We conclude by establishing the following matching lower bound on message
complexity.

Theorem 4. If the automaton has x bits of memory, then Ω(n2/x) messages
are needed to solve the tree comparison problem on the class of all trees of size
at most n.

Proof. Let k = �n/3�− 1. For simplicity assume that x divides k (modifications
in the general case are straightforward). Consider the following class C of trees

Distributed Tree Comparison with Nodes of Limited Memory 155

of size at most n. A tree of class C is rooted at node r = v1 and has a branch
(v1, . . . , vk, w1, . . . , wk+1). Ports at every node of this branch are: 0 correspond-
ing to the edge joining the node with its parent, and 1 corresponding to the edge
joining the node with its child. Moreover, each of the nodes wi, for 1 = 1, . . . , k,
may or may not have another child w′

i+1 with port number 2 at wi correspond-
ing to the joining edge. All nodes w′

i are leaves. Thus there are 2k trees in
class C.

Suppose that some automaton A with x bits of memory solves the compari-
son problem for the class C of trees. Consider the set Σ of symmetric instances
of the comparison problem for the class C, i.e., instances where trees T and T ′

are isomorphic and belong to C, and such that trees in distinct instances are
not isomorphic. There are 2k instances in Σ. For any instance σ ∈ Σ and any
i = 1, . . . , k−1, let vi(σ) and vi(σ) be the two nodes at distance i from the roots
of the compared trees. Let gi(σ) denote the sequence of messages sent by each of
these two nodes to its parent during a synchronous execution of the comparison
task with automaton A on instance σ.

Claim. For any i = 1, . . . , k−1 and any distinct instances σ, σ′ from Σ, we have
gi(σ) 	= gi(σ′).

To prove the claim, suppose that for some i = 1, . . . , k − 1 and some distinct
instances σ, σ′ from Σ, we have gi(σ) = gi(σ′). Thus in every round of a syn-
chronous execution on instance σ, the states of all nodes vj(σ) and vj(σ), for
j < i, are the same as the states of the respective nodes in a synchronous execu-
tion on instance σ′. Consider an instance τ of the comparison problem in which
one of the compared trees comes from the instance σ and the other from the
instance σ′. In each round of a synchronous execution on instance τ , the states
of all nodes vj(τ) and vj(τ), for j < i are the same as the states of the respective
nodes in a synchronous execution on instance σ. This leads to a contradiction,
as on the instance σ all nodes must enter a state from the set Y ES and on
instance τ all nodes must enter a state from the set NO0 ∪ NO1. This proves
the claim.

Let Ms denote the number of distinct sequences of at most s messages that
can be sent by a node on port 0. Since there are y = 2x possible states of a
node, we have Ms =

∑s
i=0 yi = ys+1−1

y−1 . Moreover, if sx ≤ j, then ys+1 − 1 =
2xs · 2x − 1 ≤ 2j · 2x − 1 ≤ 2j+1 · (2x − 1) = 2j+1 · (y − 1). This implies that, for
any j = 1, . . . , k − 2, if sx ≤ j, then Ms ≤ 2j+1.

For any instance σ ∈ Σ and any i = 1, . . . , k−1, let |gi(σ)| denote the number
of messages in gi(σ). The above estimate on Ms and the claim imply that, in any
set of at least 2j+2 instances from Σ, and for any i = 1, . . . , k−1, there is a sub-
set of at least 2j+1 instances σ, such that |gi(σ)| ≥ j/x. Thus we can construct a
descending sequence of sets of instances Σ ⊃ Σ1 ⊃ Σ2 ⊃ · · · ⊃ Σk−2, such that
Σi has at least 2k−i elements and, for all σ ∈ Σi, we have |gi(σ)| ≥ (k− i−1)/x.
This implies that, for any σ ∈ Σk−2, the number of messages sent in a syn-
chronous execution on instance σ is at least (1/x)(1+2+. . . (k−2)) ∈ Ω(k2/x) =
Ω(n2/x). �

156 E.G. Fusco and A. Pelc

References

1. Attiya, H., Snir, M., Warmuth, M.: Computing on an Anonymous Ring. Journal
of the ACM 35, 845–875 (1988)

2. Attiya, H., Snir, M.: Better Computing on the Anonymous Ring. Journal of Algo-
rithms 12, 204–238 (1991)

3. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proc.
18th ACM Symp. on Principles of Distributed Computing, pp. 181–188 (1999)

4. Burns, J.E.: A formal model for message passing systems, Tech. Report TR-91,
Computer Science Department, Indiana University, Bloomington (September 1980)

5. Codenotti, B., Gemmell, P., Simon, J.: Symmetry breaking in anonymous networks:
characterizations. In: Proc. 4th Israel Symposium on Theory of Computing and
Systems (ISTCS 1996), pp. 16–26 (1996)

6. Diks, K., Kranakis, E., Malinowski, A., Pelc, A.: Anonymous wireless rings. The-
oretical Computer Science 145, 95–109 (1995)

7. Fredrickson, G.N., Lynch, N.A.: Electing a leader in a synchronous ring. Journal
of the ACM 34, 98–115 (1987)

8. Hirschberg, D.S., Sinclair, J.B.: Decentralized extrema-finding in circular configu-
rations of processes. Communications of the ACM 23, 627–628 (1980)

9. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Efficient algorithms for leader elec-
tion in radio networks. In: Proc. 21st ACM Symp. on Principles of Distr. Comp.
(PODC 2002), pp. 51–57 (2002)

10. Kowalski, D., Pelc, A.: Leader election in ad hoc radio networks: a keen ear helps.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 521–533. Springer, Heidelberg (2009)

11. Kranakis, E.: Symmetry and Computability in Anonymous Networks: A Brief Sur-
vey. In: Proc. 3rd Int. Conf. on Structural Inform. and Comm. Complexity, pp.
1–16 (1997)

12. Kranakis, E., Krizanc, D., van der Berg, J.: Computing Boolean Functions on
Anonymous Networks. Information and Computation 114, 214–236 (1994)

13. Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th ACM Sym-
posium on Theory of Computing (STOC 1992), pp. 400–404 (1992)

14. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE
Trans. on Parallel Distributed Systems 13, 516–526 (2002)

15. Peterson, G.L.: An O(n log n) unidirectional distributed algorithm for the circular
extrema problem. ACM Trans. on Prog. Languages and Syst. 4, 758–762 (1982)

16. Sakamoto, N.: Comparison of Initial Conditions for Distributed Algorithms on
Anonymous Networks. In: Proc. 18th ACM Symp. on Principles of Distributed
Computing (PODC 1999), pp. 173–179 (1999)

17. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM J. on Computing 15, 468–477 (1986)

18. Yamashita, M., Kameda, T.: Computing on anonymous networks. In: Proc. 7th
ACM Symp. on Principles of Distributed Computing (PODC 1988), pp. 117–130
(1988)

19. Yamashita, M., Kameda, T.: Electing a leader when procesor identity numbers are
not distinct. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392.
Springer, Heidelberg (1989)

20. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - charac-
terizing the solvable cases. IEEE Trans. Parallel and Distributed Systems 7, 69–89
(1996)

Periodic Data Retrieval Problem in Rings
Containing a Malicious Host�

(Extended Abstract)

Rastislav Královič and Stanislav Mikĺık

Dept. of Computer Science
Comenius University
Bratislava, Slovakia

Abstract. In the problems of exploration of faulty graphs, a team of
cooperating agents is considered moving in a network containing one or
more nodes that can harm the agents. A most notable among these prob-
lems is the problem of black hole location, where the network contains
one node that destroys any incoming agent, and the task of the agents is
to determine the location of this node. The main complexity measure is
the number of agents needed to solve the problem. In this paper we be-
gin with a study of malicious hosts with more varied behavior. We study
the problem of periodic data retrieval which is equivalent to periodic ex-
ploration in fault-free networks, and to black hole location in networks
with one black hole. The main result of the paper states that, in case of
rings, it is sufficient to protect the internal state of the agent (i.e. the
malicious host cannot change or create the content of agent’s memory),
and the periodic data retrieval problem is solvable by a constant number
of agents.

Keywords: malicious host, gray hole, periodic data retrieval.

1 Introduction

Problems related to the exploration of faulty environments have received much
attention over the recent years, with motivation coming from the areas like dis-
tributed mobile computing, graph exploration, and robotics. Distributed mobile
computing is a software engineering paradigm for designing distributed systems,
in which, instead of stationary processes exchanging data over the network, the
data are located in the nodes of the network (hosts), and pieces of software
(agents) are sent over the network to perform computation. A host is capable of
receiving an agent, preparing a workspace for it, running it using the host’s re-
sources, and, upon request, serializing it and sending its complete state over the
network to another host. This way of computation has many advantages over the
classical paradigm, but also presents new problems, mainly concerning the secu-
rity of both agents and hosts [6,25,30,33]. While many standard techniques to

� This research was supported by grant APVV 0433-06.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 157–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

158 R. Královič and S. Mikĺık

protect the host from possibly harmful agents can be used (e.g. sandboxing), pro-
tecting the agent from a possibly malicious host is much harder [27,28,34,32,35],
since the host provides the whole runtime environment for the agent.

In the graph exploration problems (e.g. [7,20,23]), the resources needed to
navigate in a graph are studied. A number of computing devices (automata) are
moving in a graph, with a common task to perform (e.g. traversing every vertex
in the graph, meeting in a common vertex, visiting every vertex infinitely many
times, etc). The resources (mainly the memory requirements of the devices)
needed for the solvability of the given problem are the main focus of study.
The overall number of moves is often considered, as well. Apart from practical
applications (e.g. exploring unknown environments by mobile robots), results
in these problems have often profound theoretical consequences. Perhaps the
oldest problem from this class is the problem of graph exploration by a finite
automaton (see e.g. [5,8,19,26] and references therein) where a single agent is
modeled by a finite state machine, and the goal is to traverse the whole graph.
Numerous other problems and variants have been considered for teams of agents
(e.g. [1,2,3,4,11,18,21,22,24,29,31]).

The problems of exploration of faulty graphs may be viewed as a theoretical
tool for solving the problems arising from the mobile computing area, and at
the same time as a natural generalization of the graph exploration problems. A
team of cooperating agents moving in a graph is considered. The graph contains
(one or multiple) malicious vertices that have the ability to harm the agents in
some way. The goal of the agents is to perform some task in spite of the presence
of the faulty nodes. The most studied in this context is the black hole location
(e.g. [13,14,12,15,17]) problem where the graph contains one special node called
black hole that destroys any incoming agent without any observable trace. The
task of the agents is to determine the location of the black hole.

The main resource to be optimized is the amount of network traffic needed
to solve the task. A notable issue in this setting is that the agents are usually
not allowed to duplicate, and the complexity is then measured primarily by the
number of agents, and secondarily by the overall number of performed moves.
While this limitation is natural when thinking about applications like terrain
exploration by physical devices, in the context of software agents the duplication
is a widely used technique. To illustrate the effect of agent duplication, consider
the black hole location problem in a directed graph1. With the agent duplication,
a simple algorithm can solve the problem with the number of moves equal the
number of arcs: if an agent arrives to an already visited vertex, it dies; otherwise,
it sends its copy along all outgoing arcs. Obviously, every arc of the graph is
visited exactly once. However, as shown in [10], without multiplication Ω(2n)
moves may be needed in the worst case, where n is the number of vertices. In
this paper we provide efficient algorithms for our problem, that do not rely on
agent multiplication.

1 With the requirement that after extracting the black hole, the rest of the graph is
strongly connected.

Periodic Data Retrieval Problem in Rings Containing a Malicious Host 159

While studying the black hole location problem, much attention has been
devoted to the impact of different properties of the system to the complexity
of the solution. The properties in question are e.g. the existence of a common
homebase for the agents, mode of communication (pebbles, whiteboards, face-
to-face), synchrony etc. We adopted the widely studied model of asynchronous
agents sharing a common homebase, and communicating via shared storage (aka
whiteboards).

As already mentioned, black hole is a particular type of a malicious host
with a very simple behavior: killing every agent instantly. In reality, a host has
many ways to harm the agents: it may not only kill any agent residing in it
at any time, it may also duplicate agents, introduce fake agents, tamper the
runtime environment (e.g. changing the contents of the whiteboard), or disobey
communication protocols (e.g. do not execute agents in FIFO order). This paper
is the first attempt to study how the abilities of a malicious host affect the
solvability of exploration problems.

It is easy to see that in an asynchronous setting it is not possible to locate
the malicious host even if it is a gray hole (i.e. a host which only capability is to
kill the agent at any time, but otherwise provides reliable runtime environment
and follows the communication protocol). Indeed, consider a case when links to
a vertex v are slow, and the gray hole located in w 	= v does not kill any agent
during the first phase of the computation. Since the location problem requires
agents to decide, after finite time, on the location of the malicious host, they
must assume that the gray hole is v.

In our contribution we focus on a modification of the location problem called
periodic data retrieval. Let us suppose that in every non-faulty vertex, an infinite
sequence of data items is generated that have to be gathered in the homebase,
a scenario that is typical e.g. in sensor networks. The aim is to design an agent-
based protocol that visits every non-faulty vertex infinitely many times2, and
reports the data to the homebase. We are interested in the number of agents
sufficient to solve the problem in a network with a malicious host of a given
type. In reliable networks, one agent is sufficient to solve the problem, and the
problem reduces to the periodic exploration problem studied e.g. in [16,9] and
references therein, where the aim was to minimize the number of moves between
two consecutive visits of a vertex. If the malicious host is a black hole, then the
number of agents for the location and periodic retrieval problems is the same:
once the location of the black hole is known to the surviving agent, it starts to
periodically traverse the non-faulty nodes. On the other hand, in a solution to
the periodic data retrieval problem, the location of the black hole is known in
the homebase after the first data item from every non-faulty vertex is retrieved.

In an approach similar to the research on the black hole search problem[13],
we first analyze the case of ring networks, with the hope to develop techniques
that could be later useful in the general case.

2 Throughout the whole study we rely on a fair scheduler, so we disregard possible
liveness issues.

160 R. Královič and S. Mikĺık

It is easy to see that n− 1 agents are sufficient to solve the periodic data re-
trieval problem in any 2-connected network with n vertices and known topology,
regardless of the abilities of the malicious host: each of the agents guesses one of
the n− 1 possible locations of the malicious host, and periodically traverses the
rest of the graph. Our main result shows that, in the case of rings, it is sufficient
to protect the internal state of the agent (i.e. the malicious host cannot change or
create the content of agent’s memory), and the periodic data retrieval problem
is solvable by a constant number of agents.

The rest of the paper is organized as follows. In Section 2, we give a more
formal definition of the model. In Section 3 we prove the main result for the
special case of a gray hole. In Section 4 we discuss the solution of the general
case. Due to space constraints, the formal treatment of the general case has been
deferred to the Appendix.

2 Preliminaries

2.1 Model of the System

An agent is an independent computational process with unique ID, internal mem-
ory, and an interface to a shared memory provided by a host. A host is a device
capable of running agents, equipped with shared storage (called whiteboard), and
with labeled communication ports. The host contains an order-preserving queue
of incoming agents for each port, and a queue of sleeping agents. The network
consists of a number of hosts connected by bidirectional asynchronous FIFO
links forming an undirected graph3 G. The agents share a common homebase,
and have distinct identifiers. Every host as its unique identifier, and the complete
map (i.e. G, port labels, and host identifiers) is known to the agents.

In a proper operation, serialized agents may arrive to a host on any of its links,
they are stored in the appropriate incoming queues in the order of their arrival.
Agents may access the shared memory (called whiteboard) using a fair locking
mechanism. Agents may be waiting for some condition to become true; these are
stored in the queue of sleeping agents. An agent may decide to leave the host, in
which case it is serialized, and stored in the outgoing queue of the corresponding
link. It is important to note that all the queues are order-preserving, and that
when an agent holding the lock for the whiteboard is about to leave, it is stored in
the queue before the lock is released; i.e. it is possible for the agent to update the
whiteboard and leave in one atomic step. All our algorithms work in a serialized
fashion: the incoming agent requests the whiteboard lock4, and after succeeding
it performs all its actions until it either leaves the host(and the lock is released
by the host afterwards), or goes to sleep. When awaken from sleep (because the
condition it had been waiting for became true), it again performs all its actions
while holding the lock.

A host that deviates from the proper operation in any way is called malicious,
non-faulty hosts are called honest.
3 We shall interchangeably refer to the vertices of G as vertices, nodes or hosts.
4 The lock is presented in a FIFO manner.

Periodic Data Retrieval Problem in Rings Containing a Malicious Host 161

2.2 Problem Definition

In the periodic data retrieval problem, the aim is to deliver the data from any
honest node v to the homebase infinitely many times. During the delivery, the
data may be stored in an intermediate node, and possibly read by another agent
before finally reaching the homebase.

Definition 1. Consider an arbitrary execution of the system. A node w is said
to be reported from time t if there is a sequence of (not necessarily distinct)
agents A0, . . . , Ar, a sequence of nodes v0 = w, v1, . . . , vr for some r, such that
vr is the homebase, and an increasing sequence of times t ≤ t0 < t1 < · · · < rr

such that Ai visits vi at time ti, and vi+1 at time t′i, where ti < t′i < ti+1.
An algorithm solves the periodic data retrieval problem, if, in any execution,

for any time t, and any node v, v is reported from time t.

2.3 Malicious Host

In this work we suppose that the system is a ring of n nodes, and contains one
malicious host (denoted ω) that can behave in an arbitrary way, except that it
can not change the internal state of an agent (i.e. contents of its local variables)5,
or create an agent with a given state. Hence, the only way ω may manipulate
with the agents is to store and copy agents that have entered it. Let us now
present some generic techniques to restrict the possible behavior of ω.

Lemma 1. W.l.o.g. ω does not

1. forward an incoming agent without running it,
2. send an agent A without A’s request, or
3. forward A more than once.

Proof: Each agent A has an internal variable transfer ID for the ID of the
host it wants to be transfered to. Upon entering a node, A first check the ID
of the current host against transfer ID; if it is not equal, A dies. Before A
requests to be transfered, it sets transfer ID accordingly. Hence, forwarding an
agent without running it, or sending it over a link without request is equivalent
to killing it.

Since ω can only send A over a link it requested, the only way ω can forward A
more than once is to store it in a state in which it requests transfer, and send in
more than once over the same link. However, A can maintain an internal variable
steps counting its number of moves6. Upon entering a node, it increments steps,
and stores it in the node together with its ID. Hence, A can detect if it was
forwarded over a link more than once, and die in that case. �
5 Since the code of the agents is identical and publicly known, it is easy to prevent ω

from changing the code by killing any altered agent entering any honest node.
6 We consider this to be an unbounded integer, but it can be made bounded using

proper modulus.

162 R. Královič and S. Mikĺık

3 Solution with Reliable Whiteboards

In this section we consider, for the clarity of exposition, a simple special case
of the malicious host called gray hole. The gray hole’s only ability is to kill
any agent anytime. If the agent has acquired the whiteboard lock, the lock is
released. Apart from this, the gray hole provides reliable running environment.
Let us start with a simple lower bound:

Lemma 2. Two agents are not sufficient to solve the periodic data retrieval
problem on a ring with one malicious host ω, even if ω is a gray hole.

Proof: Assume that there is a protocol solving the periodical data retrieval
problem that with two agents, A and B. Clearly, A and B must, at the begin-
ning, leave the homebase in opposite directions: the first agent who leaves the
homebase can be killed immediately by ω, so the second one cannot wait and
has to leave in the opposite direction. Let v denote the neighbor of the homebase
to which B left, w1 the other neighbor, and w2 the neighbor of w1.

Consider an execution γ1, in which ω is located in v, and B is killed on its
first move; A must visit every honest node infinitely many times. Let us take
another execution, γ2, in which B is not killed but slow. A cannot distinguish
γ1 and γ2, and has to traverse all vertices except v. Let us suppose that in γ2, ω
is located in w1, and A is killed immediately before it left w1 to w2 for the first
time. Clearly, B has to visit w2 from the opposite direction. Finally consider an
execution γ3 in which ω is located in w2, and A is killed just after entering it
for the first time. B cannot distinguish γ2 and γ3, enters w2 from the opposite
direction, and is killed. �
For the case of a gray hole, in addition to Lemma 1, the following normal form
can be considered:

Lemma 3. W.l.o.g. ω does not

1. break the FIFO property, or
2. kill an agent in the middle of its computation.

Proof: In every node, the list of outgoing and incoming agents is stored. When
an agent A is about to leave a node (while holding the lock), it reads the list of
outgoing agents (containing all agents that left to the port before), and adds its
ID to the list. Upon arrival, it checks the list of incoming agents. If a difference
is found, A dies; otherwise, its ID is added to the end of the list. Hence, breaking
the FIFO property is equivalent to killing the agent.

Moreover, suppose an agent A is killed in the progress of its computation,
and later an agent B enters ω. Since A, as its first action put its ID on the list
of incoming agents, B starts waiting until A’s ID appears on a list of outgoing
agents. Since A has been killed, B will be waiting forever, effectively being
killed, too. �
From now on we shall consider the execution fulfilling the assertions of Lemmas 1
and 3, i.e. ω kills agents only either just after entering (in which case we shall

Periodic Data Retrieval Problem in Rings Containing a Malicious Host 163

say that it was killed on the incoming link), or just before leaving (in which case
we shall say it was killed on the outgoing link). The algorithm uses a well known
technique of cautious walk: before entering a link, an agent A marks it with a
”danger” flag with its ID. If A manages to travel there and back along the link,
it removes the flag, and moves to the neighboring vertex.

The whole algorithm works as follows: every agent uses the cautious walk to
proceed until it finds a link that is marked with a ”danger” flag. In this case
it bounces and continues (using cautious walk) in the opposite direction. If a
”danger” flag is set in the opposite direction, too, A waits until at least one link
becomes free. In order to prove its correctness, we first show that

A

B

C D

B D
u ω w

Fig. 1. At most 4 agents die on a link

Lemma 4. During the exexution of the algorithm at most 8 agents die in ω.

Proof: Consider the gray hole ω, and its neighbors u, w (Figure 1). First consider
agents making their cautious step from u to ω. Let A be first such agent that is
killed. If there is A’s flag in u at that time, no other agent performs a cautious
step from u to ω. If there is no A’s flag in u, the next agent starting its cautious
step, B, sets its flag in u. However, due to 3, B is killed, and its flag remains
in u. A symmetric reasoning for agents going from ω to u, and for the other
neighbor gives at most 8 agents killed in ω. �

Theorem 1. 9 agents are sufficient to solve the periodic data retrieval problem.

Proof: Due to Lemma 4, if the algorithm starts with 9 agents, at least one agent
survives. What remains to be shown is that every honest vertex is reported to
the homebase infinitely many times. First let us argue that every honest vertex is
visited infinitely often. Let us consider, for the sake of contradiction, a maximal
continuous areaA consisting of honest vertices that are visited only finitely many
times. Let u and v be the two vertices delimiting A. Clearly, at least one of them
is not ω (since there is at least one agent alive), so is visited infinitely often.
W.l.o.g. let this vertex be u. Consider a time t after which no vertex from A is
visited. An agent comes to u after t from outside A. Since it does not continue
to enter A, there must be a flag in u. The flag was raised by an agent B going

164 R. Královič and S. Mikĺık

into the first vertex of A. However, vertices of A are honest, so B would not die
before removing the flag. Hence, B is still in A: a contradiction.

The fact that every vertex is actually reported comes as a simple consequence
of the fact that agents bounce only when they see a flag of another agent. If the
agents write to the whiteboard the observed state of all vertices they visited,
this information can be eventually propagated to the homebase. �

4 General Solution

In the previous section we showed how to solve the periodic data retrieval prob-
lem if the malicious host provides reliable storage. Now let us consider a situation
when the malicious host can change the contents of the whiteboard at will. In
general it means that each agent entering ω is provided with a different local
view of the whiteboard. Hence, it is not possible to use the techniques from the
previous section to detect the malicious activities. In order to overcome this dif-
ficulty we replace the cautious walk with a double step: a pattern of two moves
forward, on move back, one move forward, and two moves back. An agent per-
forming a double step scans three consecutive vertices, and by storing proper
information in the vertices it is possible to detect any malicious activity (killing
an agent, breaking the FIFO, changing the whiteboard, etc) of the middle vertex
by comparing the information in all three vertices.

However, a number of new problems arise. First, even if some malicious ac-
tivity is detected, it is not clear which of the two consecutive vertices is ω. It
would be tempting to argue that when ω is located with the accuracy of two ver-
tices, two special agents are waken up in the homebase, and each of them starts
to traverse the circle with the exception of one vertex. The problem with this
approach is that it is not possible to distinguish a dead agent from a slow one,
and the checking procedure might have been started by a “false alarm” leading
to the loss of the checking agents. To overcome this problem, the agents in the
algorithm start start in an exploring mode in which they use the double steps to
explore the ring in one direction; upon finding a place with a potential ω (i.e.
a vertex with a “danger” flag set by some agent), the first two of the incoming
agents switch to a checking mode, in which they travel in the opposite direction,
and each of them evades one of the two possibly dangerous vertices. However,
in doing so, they use the double steps again (with the exception of the desti-
nation where they may enter a possibly dangerous vertex). If a checking agent
successfully checks its destination, it switches back to the exploration mode. It
switches back to exploring mode also when it realizes that the flag that caused
it to enter the checking mode was deleted.

If an exploring agent arrives to a vertex with a flag from which already two
checking agents departed, it would wait there. However, the node in which it is
waiting could be ω, and after a number of waiting agents being collected there,
all of them could be killed. To avoid this, a mechanism is devised for the agents
not to wait in the same vertex. This involves the agents’ setting a flag in the
previous vertex, and periodically checking if the original flag has been released.

Periodic Data Retrieval Problem in Rings Containing a Malicious Host 165

The role of the periodic checking is to spread the information about the deletion
of the flag.

The whole algorithm is complicated by the fact that the agents can not rely
on a value read from a single whiteboard. Hence they use a protocol for reading
and writing that always requires to access at least two vertices. In addition to
this, care must be taken to the handling of waiting agents, and agents changing
their direction.

With all the technical issues solved, we are able to proof the following theorem:

Theorem 2. The periodic data retrieval problem can be solved on a ring by 27
agents.

5 Conclusion

We studied, for the first time a generalization of the black hole search problem
to more powerful kinds of malicious hosts. We provided an algorithm to solve the
periodic data retrieval problem on rings with constant number of agents in the
case that the malicious host cannot change or create an agent’s state. A number
of questions remain open, mainly:

1. Provide a solution for general graphs.
2. Provide a solution in case of unknown topology.
3. Provide a solution in case the agent’s state can be changed by ω.
4. Develop non-trivial lower bounds.

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Dor-
drecht (2003)

2. Arkin, E., Bender, M., Fekete, S., Mitchell, J.: The freeze-tag problem: how to
wake up a swarm of robots. 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), 568–577 (2002)

3. Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by
mobile agents. In: Proc. 14th ACM Symp. on Parallel Algorithms and Architectures
(SPAA 2002), pp. 200–209 (2002)

4. Bender, M., Slonim, D.: The power of team exploration: Two robots can learn un-
labeled directed graphs. In: 35th Annual Symposium on Foundations of Computer
Science (FOCS 1994), pp. 75–85 (1994)

5. Budach, L.: On the solution of the labyrinth problem for finite automata. Elektro-
nische Informationsverarbeitung und Kybernetic 11, 661–672 (1975)

6. Chess, D.M.: Security issues in mobile code systems. In: Vigna, G. (ed.) Mobile
Agents and Security. LNCS, vol. 1419, pp. 1–14. Springer, Heidelberg (1998)

7. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Transactions on Algorithms 4(4) (2008)

8. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Transactions on Algorithms 4(4) (2008)

166 R. Královič and S. Mikĺık

9. Czyzowicz, J., Dobrev, S., Gasieniec, L., Ilcinkas, D., Jansson, J., Klasing, R., Lig-
nos, Y., Martin, R.A., Sadakane, K., Sung, W.-K.: More efficient periodic traversal
in anonymous undirected graphs. CoRR abs/0905.1737 (2009)

10. Czyzowicz, J., Dobrev, S., Královič, R., Mikĺık, S., Pardubská, D.: Black hole
search in directed graphs. In: Kutten, S. (ed.) SIROCCO 2009. LNCS, vol. 5869,
pp. 126–140. Springer, Heidelberg (2009)

11. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: IEEE (ed.)
Proceedings: 31st Annual Symposium on Foundations of Computer Science, St.
Louis, Missouri, October 22-24, vol. 1, pp. 355–361 (1990); Formerly called the
Annual Symposium on Switching and Automata Theory. IEEE catalog number
90CH29256. Computer Society order no. 2082

12. Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring an unknown graph
to locate a black hole using tokens. In: IFIP TCS. IFIP, vol. 209, pp. 131–150.
Springer, Heidelberg (2006)

13. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black
hole in an anonymous ring. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp.
166–179. Springer, Heidelberg (2001)

14. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Finding a black hole in an arbi-
trary network: optimal mobile agents protocols. In: Proc. of 21st ACM Symposium
on Principles of Distributed Computing (PODC 2002), pp. 153–162 (2002)

15. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

16. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-on-
the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS,
vol. 3499, pp. 127–139. Springer, Heidelberg (2005)

17. Dobrev, S., Santoro, N., Shi, W.: Locating a black hole in an un-oriented ring using
tokens: The case of scattered agents. In: Kermarrec, A.-M., Bougé, L., Priol, T.
(eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 608–617. Springer, Heidelberg (2007)

18. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

19. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theor. Comput. Sci. 345(2-3), 331–344 (2005)

20. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Impact of memory size on graph exploration
capability. Discrete Applied Mathematics 156(12), 2310–2319 (2008)

21. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Impact of memory size on graph exploration
capability. Discrete Applied Mathematics 156(12), 2310–2319 (2008)

22. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Com-
put. 206(11), 1276–1287 (2008)

23. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: The reduced automata tech-
nique for graph exploration space lower bounds. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 1–26.
Springer, Heidelberg (2006)

24. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic
memory. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 585–594. SIAM,
Philadelphia (2007)

25. Greenberg, M., Byington, J., Harper, D.G.: Mobile agents and security. IEEE Com-
mun. Mag. 36(7), 76–85 (1998)

26. Hoffmann, F.: One pebble does not suffice to search plane labyrinths. In: Gecseg,
F. (ed.) FCT 1981. LNCS, vol. 117, pp. 433–444. Springer, Heidelberg (1981)

Periodic Data Retrieval Problem in Rings Containing a Malicious Host 167

27. Hohl, F.: Time limited blackbox security: Protecting mobile agents from malicious
hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113.
Springer, Heidelberg (1998)

28. Hohl, F.: A framework to protect mobile agents by using reference states. In: Proc.
of the 20th Int. Conf. on Distributed Computing Systems, ICDCS 2000 (2000)

29. Marco, G.D., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A.
(eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)

30. Oppliger, R.: Security issues related to mobile code and agent-based systems. Com-
puter Communications 22(12), 1165–1170 (1999)

31. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33,
281–295 (1999)

32. Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In:
Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer,
Heidelberg (1998)

33. Schelderup, K., Ones, J.: Mobile agent security - issues and directions. In: Zuidweg,
H., Campolargo, M., Delgado, J., Mullery, A. (eds.) IS&N 1999. LNCS, vol. 1597,
pp. 155–167. Springer, Heidelberg (1999)

34. Ng, S.K., Cheung, K.: Protecting mobile agents against malicious hosts by inten-
tion spreading. In: Proc. 1999 Int. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA 1999), pp. 725–729 (1999)

35. Vitek, J., Castagna, G.: Mobile computations and hostile hosts. In: Tsichritzis, D.
(ed.) Mobile Objects, pp. 241–261. University of Geneva (1999)

A Continuous, Local Strategy for Constructing a Short
Chain of Mobile Robots�

Bastian Degener, Barbara Kempkes, Peter Kling, and Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute
Computer Science Department

University of Paderborn
{degener,barbaras,kronos,fmadh}@uni-paderborn.de

Abstract. We are given an arbitrarily shaped chain of n robots with fixed end
points in the plane. We assume that each robot can only see its two neighbors
in the chain, which have to be within its viewing range. The goal is to move the
robots to the straight line between the end points. Each robot has to base the de-
cision where to move on the relative positions of its neighbors only. Such local
strategies considered until now are based on discrete rounds, where a round con-
sists of a movement of each robot. In this paper, we initiate the study of continu-
ous local strategies: The robots may perpetually observe the relative positions of
their neighbors, and may perpetually adjust their speed and direction in response
to these observations. We assume a speed limit for the robots, that we normalize
to one, which corresponds to the viewing range. Our contribution is a continuous,
local strategy that needs time O(min{n,(OPT + d) log(n)}). Here d is the dis-
tance between the two stationary end points, and OPT is the time needed by an
optimal global strategy. Our strategy has the property that the robot which reaches
its destination last always moves with maximum speed. Thus, the same bound as
above also holds for the distance travelled.

1 Introduction

We envision a scenario in which two stationary devices (stations) with limited commu-
nication radii are placed within the plane. In order to provide communication between
them, n mobile robots are deployed which form a chain capable of forwarding com-
munication packets. As the stations, the robots have a limited communication range
too. Assuming that the robots are arranged as an arbitrarily shaped, possibly wind-
ing chain in the beginning, the goal is to design and analyze a strategy for the mobile
robots which minimizes the length of the chain. Each robot has to plan and perform its
movement based on the positions of its chain neighbors solely, which are within a con-
stant distance in the beginning— no global view, communication or long term memory
is provided.

Unlike most strategies considered for similar problems, we want to use a continuous
time model. Therefore, we are not given a classical round model, but rather all robots

� Partially supported by the EU within FP7-ICT-2007-1 under contract no. 215270 (FRONTS)
and DFG-project “Smart Teams” within the SPP 1183 “Organic Computing” and International
Graduate School Dynamic Intelligent Systems.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 168–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots 169

can perpetually and simultaneously measure and adjust their movement paths, leading
to curves as trajectories for the robots. Although this model fits to real applications [1]
and also has interesting and important theoretical aspects, surprisingly, to our knowl-
edge, it has only once been considered theoretically for a formation problem [2]. The
authors give an algorithm which gathers robots in one point in finite time, but they do
not give any further runtime bounds. One reason for not using a continuous time model
might be that completely different analysing techniques have to be applied, compared
to usual discrete models. We are optimistic that the techniques for analysis which we
develop in this paper have the potential to be applied to other continuous formation
problems, e.g. the gathering problem.

We study a natural strategy, which we call MOVE-ON-BISECTOR: A robot moves
in the direction of the bisector between its two neighbors at all times with maximum
speed 1 (which equals the viewing range), until it reaches the straight line between
them, and thenceforward stays on this straight line. We analyze this strategy and prove
that it is valid in terms of connectedness: If neighbors are originally in distance at most
1, they will remain in distance at most 1 when performing the MOVE-ON-BISECTOR-
strategy. Then we show bounds on the runtime needed until all robots are on the straight
line between the stations. Since the robots move with velocity 1 as long as they have
not reached the line between their neighbors, the finishing time is also the maximum
distance a robot can travel.

In order to measure the quality of our strategy, we consider the time needed by our
local strategy compared to the time needed by an optimal global strategy. The opti-
mal global time is clearly lower bounded by the maximum distance between the initial
robot positions and the final straight line. We will call this maximum distance height
throughout the paper.

The problem at hand has been investigated before, but only in classical discrete mod-
els, which we describe below in the section on related work.

Our contribution. We initiate the study of a continuous time model for local robot
formation problems by constructing a short communication chain. Our main result
proves that the MOVE-ON-BISECTOR-strategy needs at most time O(min{n,(OPT +
d) log(n)}), where OPT is the time needed by an optimal global strategy and d the
distance between the two stations. This result implies an asymptotically optimal worst
case time bound of O(n). In addition it shows that our continuous, local strategy is
O(log(n))-competitive compared to a global optimal strategy, if d is sufficiently small.

Organization of the paper. We begin the next section by formally introducing the model
and the MOVE-ON-BISECTOR-strategy. Section 3 is dedicated to the analysis of the
strategy. The analysis is divided into three major parts: in Section 3.1 we show that
the MOVE-ON-BISECTOR-strategy maintains a valid chain, in which the robots stay in
distance 1 to their neighbors. Then we analyze the MOVE-ON-BISECTOR-strategy on
input instances in which at least some robots are far away from their final destination.
Clearly, also a global algorithm needs long to optimize those chains. In Section 3.3 we
present this paper’s main result. We show that input instances, which are solved fast
by an optimal global algorithm, are also handled fast by MOVE-ON-BISECTOR. We
conclude with some open questions.

170 B. Degener et al.

Related work. The problem of building short communication chains locally has been
considered before in discrete settings. In [3] an intuitive strategy has been presented:
robots move synchronously to their neighbors’ old mid position. In this strategy, the
robots converge to the line between the stations in O(n2 logn) and Ω(n2) steps. This
result has been improved in [4] with a more sophisticated strategy that lets the robots
come close to the line in only a linear number of steps in the worst case. Note that an
optimal strategy might be a lot faster depending on the input instance and no bounds for
this case are given. There is also some experimental work from the engineering point of
view [1,5]. In [6] a local algorithm for a more general problem is considered: robots are
distributed in the plane and have to shorten a communication network between several
base stations. They have to base their decision on where to move in the next round on
the relative position of all robots currently within distance 1.

Related problems are the gathering problem and the convergence problem, where
robots are not required to form a line, but to gather in or to converge to some not prede-
fined point in the plane. The focus is usually to limit the capabilities of the robots as far
as possible and show that the task can be achieved in finite time, e.g. [7,8,9,10,11,12].
However, there are only few examples with provable runtime bounds such as [13],
where an O(n2) bound for a global algorithm is given. There are also some results for
gathering [14] and convergence [15] with local view, but only one giving a runtime [16].

A strategy for the gathering problem which is similar to the MOVE-ON-BISECTOR-
strategy has been considered in [2]. The authors also use the continuous time model,
interpreting it as the limit of a discrete time model with the length of the time steps
converging to 0. However, in contrast to our work it is only proven that it gathers the
robots in finite time. None of the work above compares the runtime results of a specific
instance to those of an optimal global algorithm on the same instance.

2 Problem Description

We consider a set of n+2 robots v0,v1, . . . ,vn+1 in the two dimensional euclidean plane
R2. The robots v0 and vn+1 are stationary and will be referred to as base stations or sim-
ply stations, while we can control the movement of the remaining n robots v1,v2, . . . ,vn.
At the beginning, the robots form a chain, where each robot vi is neighbor of the robots
vi−1 and vi+1. The chain may be arbitrarily winding in the beginning. The goal is to op-
timize the length of the communication chain in a distributed way. We are constrained
in that the robots have a limited viewing range, which we set to 1. Therefore, the com-
munication chain is connected if and only if, for each two neighbors in the chain, the
distance between them is less than or equal to 1. We assume that the chain is connected
at the beginning, and we say that a strategy for the robots is valid if it keeps the chain
connected.

The robots solely use information from the current point of time (they are oblivi-
ous), share no common sense of direction and communicate by observing the positions
of their two neighbors only. However, we require that the robots are capable of distin-
guishing their neighbors from the remaining robots in the communication chain (it is
not necessary to distinguish the two neighbors from each other).

A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots 171

The continuous time model. In our continuous time model, time passes in a continuous
way and is not modeled by discrete time steps. Thus, robots are able to continuously
measure their neighbors’ positions and adjust their trajectory and speed accordingly
(keeping the speed limit of 1). In the MOVE-ON-BISECTOR-strategy, the direction in
which a robot moves can change continuously. In contrast, the speed can also change
rapidly in a non-continuous way. Both direction and speed depend only on the posi-
tions of the neighboring robots. We assume that a robot can measure these positions
without delay: the direction in which a robot moves depends only on the positions of its
neighbors at the same time.

In order to measure the quality of our algorithm, we determine the time until all
robots have reached their final position. Assuming a maximum velocity of 1, this time
is equal to the distance travelled by a robot which always moves with velocity 1. We
will see that when using the MOVE-ON-BISECTOR-strategy, there is at least one robot
for which this is true.

In our model we assume accuracy of the robots’ actors and sensors in several aspects:
measurements of the relative positions of a robot’s neighbors (angle formed by a robot
and its neighbours, distances to neighbors) are exact; adjustment of speed and direction
is accurate; this adjustment is not delayed compared to the measurement. In the final
Section 4 we will discuss our strategy in the light of inaccurate sensors and actors.

The MOVE-ON-BISECTOR-Strategy. In the MOVE-ON-BISECTOR strategy, robots that
have not yet reached the straight line between their two neighbors will move along the
bisector formed by the vectors pointing towards their two neighbors with maximum
speed 1 (phase 1). Once they have reached this line, they adapt their velocity to stay on
this (moving) line keeping the ratio between the distances to their neighbors constant
(phase 2). Since the neighbors are also restricted to the maximum speed of 1, this is
always possible: a robot will not have to move faster than with speed 1 to stay on this
line and to keep the ratio. Note that one special situation may occur: if two neighboring
robots vi and v j are at the same position at the same time, they both take the other’s
neighbor as their new neighbor, respectively. Then, both robots have the same neigh-
bors and will stay together prospectively. For the sake of clarity, we will ignore such
situations in our analysis.

Since robots which have reached the second phase stay in this phase until the end,
all robots have reached the final line between the two stations as soon as all robots are
in the second phase. Thus, the last robot reaching the second phase always moves with
maximum speed.

Notions & Notation. Given a time t ≥ 0, the position of robot vi at this time is denoted
by vi(t) ∈ R2. If not stated otherwise, we will assume v0(0) = (0,0) and vn+1(0) =
(d,0), d ∈ R≥0 denoting the distance between the two base stations. The vector con-
necting two neighboring robots vi−1 and vi will be denoted by wi(t) := vi(t)− vi−1(t)
for i = 1,2, . . . ,n + 1. By αi(t) ≥ 0 we denote the smaller of the two angles formed by
the vectors −wi(t) and wi+1(t). We will furthermore denote the scalar product of two
vectors a and b simply by a ·b and the length of a vector a by ||a||. A fixed placement of
the robots (say their positions at a given time t) is called a configuration. Furthermore,
we define two properties for a given configuration:

172 B. Degener et al.

v0 = (0, 0)

v1

v2

v3 vn+1 = (d, 0)
vn

α1

α3

w1

w3

w
2

α2

v4

Fig. 1. Robots vi positioned in the euclidean plane. For clarity we omitted the time parameter t.

h(t)

h(t)
v0 vn+1d

Fig. 2. Illustration of the height h(t) of a configuration

Definition 1 (height). The height h(t) of a configuration at time t is the maximum
distance between a robot in time t and the straight line between the stations.

Definition 2 (length). The length l(t) of a configuration at a time t is defined as the
sum of the distances between neighboring robots: l(t) := ∑n+1

i=1 ||wi(t)||.

Clearly, the height h := h(0) is a lower bound for the time needed by an optimal global
algorithm, since every algorithm needs to cover this distance. The length of a configu-
ration is also a natural quantity to measure its quality: a winding chain is relatively long
compared to a straight line. Since the distance between two robots may be at most 1,
it holds that h ≤ l

2 and l ≤ n + 1. See Figure 1 and Figure 2 for an illustration of the
notions defined in this section.

3 Analysis

In this section, we will show that the MOVE-ON-BISECTOR-strategy is valid (Subsec-
tion 3.1) and analyze the time needed until all robots are positioned on the line between
the two base stations (Subsections 3.2 and 3.3). We use the length and height of a given

A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots 173

configuration to show two upper bounds of O(l) and O((h + d) log l), where d denotes
the distance between the two base stations. The first bound is tight for configurations,
in which an optimal global algorithm is slow. On other configurations this bound can
be arbitrarily bad. Therefore, we show the second bound for this kind of input instances
and combine the bounds to our main result of an upper bound of O(min{n,(OPT +
d) log(n)}).

3.1 Validity of the Strategy

Let us first consider two robots vi and v j with j > i at a time when neither vi nor v j have
reached the line between their neighbors, but any robot vk with i < k < j has. That is, the
robots vk form a straight line between vi and v j. We will show that the distance between
vi and v j decreases with non-negative speed. Given that all robots vk between vi and v j

maintain the ratio between the distances to their corresponding neighbors, this implies
that the distance between any two neighboring robots is monotonically decreasing, and
thus the chain stays connected and the MOVE-ON-BISECTOR-strategy is valid. We start
by considering the case that both, vi and v j, are mobile (not base stations).

Lemma 1. Given two robots vi and v j at an arbitrary time t0, their distance decreases

with speed cos αi(t0)
2 + cos

α j(t0)
2 ≥ 0.

Proof. We define D : R≥0 → R2,t !→ v j− vi and d : R≥0 → R≥0,t !→ ||D(t)||. That is,
D(t) is the vector from vi to v j and d(t) the distance between vi and v j at time t. We

want to show that d′(t0) = −
(

cos αi(t0)
2 + cos

α j(t0)
2

)
for an arbitrary but fixed point of

time t0. We will refer to the x- and y-component of D(t) ∈R2 in the following by Dx(t)
and Dy(t) respectively.

By translating and rotating the coordinate system, we can w.l.o.g. assume vi(t0) =
(0,0) and v j(t0) = (d(t0),0). Due to the definition of the MOVE-ON-BISECTOR strat-
egy, the velocity vectors of vi and v j at time t0 are given by:

v′i(t0) =
(
+cos αi(t0)

2 ,±sin αi(t0)
2

)
v′j(t0) =

(
−cos

α j(t0)
2 ,±sin

α j(t0)
2

)
See Figure 3 for an illustration.

Basic analysis now gives us the following equation for the first derivation of d at a
time t ∈ R≥0

1:

d′(t) =
(

Dx(t)
d(t)

Dy(t)
d(t)

)
·
(

D′x(t)
D′y(t)

)
Due to the fact that Dy(t0) = 0 and Dx(t0) = d(t0) we finally get

d′(t0) = D′x(t0) = (v j− vi)′(t0) = v′j(t0)− v′i(t0)

= −
(

cos αi(t0)
2 + cos

α j(t0)
2

)
1 Remember that we assume d(t) 	= 0 (see the description of the MOVE-ON-BISECTOR-strategy

in Subsection 2).

174 B. Degener et al.

vi

vj
D(t)

11

vi−1

vi+1
αi/2

v′i

vj+1

αj/2

v′j

vj−1

Fig. 3. Illustration of vi’s and v j’s velocity vectors v′i and v′j

Therefore, the distance between vi and v j changes at time t with speed cos(αi(t0)
2) +

cos(α j(t0)
2). Furthermore, since we have αi(t)∈ [0,π] for any t ∈R≥0 and i∈ {1, . . . ,n},

this speed is indeed positive and the distance decreases. ��

A similar result holds if either vi or v j is a base station. Since this can be proven com-
pletely analogously to Lemma 1, we will omit the proof and merely state the corre-
sponding result.

Lemma 2. Consider two robots vi and v j at an arbitrary time t0, one of them being a
base station and the other a robot not yet having reached the line between its neighbors.

Then their distance decreases with speed cos
α j(t0)

2 ≥ 0. ��

Now, we have the preliminaries to state the validity of the MOVE-ON-BISECTOR strategy.

Theorem 1. The MOVE-ON-BISECTOR strategy is valid. That is, if the robot chain
is connected at time t and all robots perform the MOVE-ON-BISECTOR strategy, the
robot chain remains connected for any time t ′ ≥ t.

Proof. As described above, the statement follows immediately from Lemmas 1 and 2
conjoint with the fact that any robot, which has already reached the line between its
neighbors, will move such that it maintains the ratio between the distances to its two
neighbors. ��

3.2 The O(l) Upper Bound

We continue by analyzing how long it will take for all robots to reach the straight
line between the two stations. We will derive a time bound of O(l), l denoting the
length of the robots’ initial configuration. Because h ≤ l/2 and l =O(n) (the distance
of neighboring robots is bounded by 1), this immediately implies a linear bound O(n)
on the time until the optimal configuration is reached. Since there are start configu-
rations with a height of Ω(n), the MOVE-ON-BISECTOR-strategy is asymptotically
optimal for worst case start configurations. The next section will show a tighter bound
for configurations, where the height is relatively small compared to the length of the
configuration. The result can then be compared to an optimal algorithm.

A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots 175

In the following, we will show that either the length l or height h of the robot chain
decreases with constant speed. Since both are furthermore monotonically decreasing
and bounded from below, this implies that the optimum configuration will be reached
in time O(h + l) =O(l). We begin with the monotonicity of the height.

Lemma 3. The height of the robot chain is monotonically decreasing and bounded
from below by 0.

Proof. The lower bound is trivial, it follows directly from the definition of the robot
chain’s height. For the monotonicity, fix a time t ∈ R≥0 and consider the height h(t) of
the configuration at time t. Let B denote the line segment connecting both base stations
and note that all robots are contained in the convex set H := {x∈R2 | dist(x,B)≤ h(t)}
of points having a distance of at most h(t) to B. Let us consider an arbitrary robot vk

and its neighbors vk−1 and vk+1. Since H is convex and all three robots lie in H, so does
the bisector along which vk moves. That is, vk can not leave H. Since this argument
applies to any robot, none of the robots can increase their distance to B beyond h(t).
This implies the monotonicity of the robot chain’s height. ��

Lemma 4. The length of the robot chain decreases with speed 2∑n
i=1 cos αi(t)

2 and is
bounded from below by d.

Proof. Since both base stations do not move, the length can obviously not fall below
their distance d. Using the function l : R≥0 →R≥0,t !→ l(t) to refer to the chain’s length

at time t, it remains to show that l′(t) =−2∑n
i=1 cos αi(t)

2 .
Fix a time t ∈ R≥0 and consider the robots vi1 ,vi2 , . . . ,vir (for an r ∈ N and is <

is+1∀s = 1, . . . ,r− 1) that have not yet reached the line between their neighbors. We
make two observations:

– For any robot v j of the remaining robots, it holds that α j(t) = π and therefore

cos
α j(t)

2 = 0.
– Any of the remaining robots either lies on the line between some vis and vis+1 or

on the line between one of the base stations and vi1 or vir . That is, setting l0(t) :=
||v0(t)− vi1(t)||, lk(t) := ||vik(t)− vik+1(t)|| (k = 1, . . . ,r−1) and lr(t) := ||vir(t)−
vn+1(t)||, the length l(t) of the chain is given by:

l(t) =
r

∑
k=0

lk(t)

Now, Lemmas 1 and 2 give us the derivations of these lk, and therefore we have:

l′(t) = l′0(t)+
r−1

∑
k=1

l′k(t)+ l′r(t)

=−cos
αi1(t)

2
+

r−1

∑
k=1

(−cos
αik (t)

2
− cos

αik+1(t)
2

)− cos
αir (t)

2

=−2
r

∑
k=1

cos
αik(t)

2
=−2

n

∑
i=1

cos
αi(t)

2
. ��

176 B. Degener et al.

Now we can prove an upper bound for the travelled distance in dependency of h and l,
implying also a worst case upper bound.

Theorem 2. When the MOVE-ON-BISECTOR strategy in the continuous model is per-

formed, the maximum distance travelled by a robot is
√

2
2 h+

√
2l, where h is the height

and l the length of the robot chain in the start configuration.

Proof. We will prove that in time
√

2
2 h +

√
2l all robots have reached their correspond-

ing end positions. Given that the robots move with a maximum velocity of 1, this proves
the theorem. To do so, we show that at any time either the height function h : R≥0→R≥0

or the length function l : R≥0 → R≥0 are strictly decreasing by a constant factor. To-
gether with Lemmas 3 and 4 (the monotonicity and non-negativity of l and h) this proves
the theorem.

So, let us consider an arbitrary time t ∈ R≥0. We distinguish two cases:

Case 1: ∃i ∈ {1, . . . ,n} : αi(t)≤ π/2
In this case, Lemma 4 states that:

l′(t) =−2
n

∑
k=1

cos
αk(t)

2
≤−2cos

αi(t)
2

≤−2cos
π
4

=−
√

2

That is, the length of the robot chain decreases with a constant speed of at least
√

2.

vk

π/4

v′k

vn+1v0

L

B

Fig. 4. If all angles αi are larger than π/2, then the velocity vector of a “highest” robot vk lies
within the gray area. It therefore moves downwards with a speed of at least cos π/4.

Case 2: ∀i ∈ {1, . . . ,n} : αi(t) > π/2
Using the terms from the proof of Lemma 3, consider a robot vk with distance h(t)
to the line segment B connecting both base stations. Align the coordinate system
such that the line L through vk(t) having distance h(t) to B corresponds to the x axis
and vk(t) to the origin. Figure 4 illustrates the situation.

We know that both neighbors of vi must lie on the same side of L as B, w.l.o.g.
let it be the lower side. Furthermore, because we have αk(t) > π/2, one neighbor
must lie to the lower left and the other to the lower right of vk. This implies that
vk’s velocity vector is directed downwards, forming an angle of less than π/4 with
the y-axis. Therefore, vk moves with a speed of more than cos π

4 downwards.

A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots 177

Since this holds for any extremal robot, we get h′(t) <−cos π
4 =− 1√

2
. That is,

the height of the robot chain decreases with a constant speed of at least
√

2
2 . ��

Since h ∈ O(l), Theorem 2 gives an upper bound of O(l) for arbitrary start configura-
tions. This result directly shows that the MOVE-ON-BISECTOR-strategy is asymptot-
ically optimal for worst-case instances (Cor. 1), the measure which is usually used in
the literature. Still, this bound can be arbitrarily worse than an optimal algorithm on
specific instances. We will investigate these instances in the next section.

Corollary 1. When the MOVE-ON-BISECTOR-strategy in the continuous model is per-
formed, the maximum distance travelled by a robot is Θ(n) for a worst-case start con-
figuration.

Proof. Obviously it holds that h ≤ l
2 ≤

n+1
2 . For the lower bound, we can use a start

configuration in which the stations share the position (0,0) and vi(0) = vn+1−i(0) =
(0, i). Thus, the robot in the middle of the chain is in distance ≈ n

2 of its end position
and MOVE-ON-BISECTOR (as well as any global algorithm) needs at least this time
until all robots have reached the line between the base stations. ��

3.3 The O((h + d) log l) Upper Bound

Assume we are given a configuration whose height is—relative to the length of the
communication chain—very small. In this case, the upper bound of O(l) for our
strategy can be arbitrarily larger than the time needed by an optimal strategy, which
can be as small as h. But intuitively, given a long chain with a small height, the chain
must be quite winding, yielding many relatively small angles αi. The result is that the
chain length does not only decrease at one robot, as we can only guarantee for arbi-
trary configurations, but there are many robots which reduce the length of the chain
(Lemma 4).

For the proof of this upper bound, we will divide the chain into parts of length Θ(h+
d) and show that each part must contain some curves. In particular, in each part, the
sum of the angles αi(t) must be by a constant smaller than in a straight line (Lemma 5).
Lemma 6 transfers this result for each part to the sum of the angles of the whole chain.
Having that the sum of the angles in the whole chain cannot be arbitrarily large, Lemma
7 yields the speed by which the length of the chain decreases. Since the number of parts
is dependent on the length of the chain, the speed is also dependent on it. Theorem 3
finally gives the upper bound of O((d + h) log l).

Lemma 5. Let B denote an arbitrary rectangular box containing the robots va−1,va,
va+1, . . . ,vb (for a,b ∈ {1, . . . ,n + 1}, a < b) at a given time t ∈ R>0 and let S be the
diagonal length of the box. Then we have:

b

∑
k=a

||wk(t)|| ≥
√

2 ·S⇒
b−1

∑
k=a

αk(t)≤ (b−a)π− π
3

178 B. Degener et al.

α1
α2 vb

v0

w1
w2

w3

2

β

(a)

w3

(b)

Fig. 5. Note that the angles βi, j are signed, e.g.: β1,1 > 0, β2,2 < 0, β1,2 = β1,2 +β2,3 > 0

Proof. For the sake of clarity, we will omit the time parameter t in the following.
That is we write αk, vk and wk instead of αk(t), vk(t) and wk(t). Furthermore, we
assume w.l.o.g. a = 1. Thus, we have to show ∑b

k=1 ||wk|| ≥
√

2 · S ⇒ ∑b−1
k=1 αk

≤ (b−1)π− π
3

Consider the function ∠ : R2×R2 →]−π ,π] that maps two vectors (wi,wj) to the
signed angle of absolute value≤ π formed by them (it is not important which direction
is used as the positive angle, as long as it is equal for all pairs of vectors (wi,wj)).
Note that we have αk = π−|∠(wk,wk+1)| for all k = 1, . . . ,b−1. Let us define βi, j :=
∑ j

k=i ∠(wk,wk+1) and observe that ∠(wi,wj)≡ βi, j mod]−π ,π]. See Figure 5 for an
illustration.

Let us now assume ∑b
k=1 ||wk(t)|| ≥

√
2 ·S and consider the following two cases:

Case 1: ∃i, j,1 ≤ i < j ≤ b : |βi, j| ≥ π
3

Intuitively, if the angle between two vectors in the chain is large, the sum of the
inner angles αk of the robots in between cannot be arbitrarily large. More formally,

b−1

∑
k=1

αk ≤ (i−1)π +
j

∑
k=i

αk +(b−1− j)π

= (b + i− j−2)π +
j

∑
k=i

(π−|∠(wk,wk+1)|) = (b−1)π−
j

∑
k=i

|∠(wk,wk+1)|

≤ (b−1)π−
∣∣∣∣∣

j

∑
k=i

∠(wk,wk+1)

∣∣∣∣∣ = (b−1)π−|βi, j| ≤ (b−1)π− π
3

Thus, the lemma holds in this case.

Case 2: ∀i, j,1 ≤ i < j ≤ b : |βi, j|< π
3

We will show that this case cannot occur by showing that the vector connecting
v0 and vb, which is equal to ∑b

k=1 wk, would have to be longer than S, which is a
contradiction to v0 and vb both lying in B.

We have ∠(wi,wj) = βi, j and |βi, j|< π
3 for all 1≤ i < j ≤ b. In the following, we

will use that the squared length of a vector is equal to its scalar product with itself.
Therefore:

A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots 179

∣∣∣∣∣
∣∣∣∣∣

b

∑
k=1

wk

∣∣∣∣∣
∣∣∣∣∣
2

=

(
b

∑
k=1

wk

)
·
(

b

∑
k=1

wk

)
= ∑

1≤i, j≤b

wi ·wj = ∑
1≤i, j≤b

||wi|| · ||wj|| · cos(βi, j)

> ∑
1≤i, j≤b

||wi|| · ||wj|| · cos(
π
3

) = cos(
π
3

) ∑
1≤i, j≤b

||wi|| · ||wj||

=
1
2

(
b

∑
k=1

||wk||
)2

≥ 1
2
· (
√

2S)2 = S2

This implies ||∑b
k=1 wk||> S, leading to the desired contradiction. ��

Dividing the chain in parts of length at least
√

2 times the diagonal of the height box,
Lemma 5 shows that each of the parts must contain some ”small” angles. The robots at
these angles therefore shorten the length of the chain. The following lemma shows that
using the technique of dividing the chain into parts yields an upper bound on the sum
of the angles αi of the chain.

Lemma 6. Let S denote the diagonal length of the robots’ height-box at a given time t.
Then we have:

n

∑
k=1

αk(t)≤ nπ− π
3

⌊
l(t)

2
√

2S

⌋

Proof. As in the proof for Lemma 5, we will omit the time parameter t in the following.
First note that we have ||wk|| ≤ S, because all robots lie inside the height-box. This

allows us to recursively define indices 1 = a0 < a1 < .. . < am ≤ n + 1 by demanding
ai ∈N to be minimal with ∑ai

k=ai−1
||wk|| ∈ [

√
2S,(

√
2+1)S[. That is, we divide the chain

at time t in m parts, where vai−1 and vai bound part i. vai is the first robot in the chain such
that the length of part i is at least

√
2S. Furthermore, since ||wai || ≤ S, the length of part i

is at most
√

2S+S≤ 2
√

2S, which implies m≥
⌊

l
2
√

2S

⌋
. Since we have ∑ai

k=ai−1
||wk|| ≥

√
2S for all i = 1, . . . ,m, by Lemma 5 we get ∑ai−1

k=ai−1
αk ≤ (ai− ai−1)π − π

3 . We now
compute:

am−1

∑
k=1

αk =
m

∑
i=1

ai−1

∑
k=ai−1

αk ≤
m

∑
i=1

(
(ai−ai−1)π−

π
3

)

= π
m

∑
i=1

(ai−ai−1)−
π
3

m = (am−a0)π−
π
3

m

= (am−1)π− π
3

m

This implies ∑n
k=1 αk ≤ nπ− π

3 m≤ nπ− π
3

⌊
l

2
√

2S

⌋
, as the lemma states. ��

Using that the sum of the angles αi is bounded, we can now give a lower bound for
the speed by which the chain length decreases, which is linear in the current number
of parts and therefore the length of the chain. Instead of the current number of parts,

180 B. Degener et al.

which cannot be determined exactly only knowing the length of the chain, we use a
lower bound for the number of parts.

Lemma 7. The length of the robot chain decreases at least with speed 2
3

⌊
l(t)

2
√

2S

⌋
.

Proof. Fix a time t ∈ R≥0. By Lemma 4, the chain length decreases with a speed of

2∑n
k=1 cos αk(t)

2 . Using that cos(x) is lower bounded by 1− 2
π x for all x ∈ [0,π/2] and

by Lemma 6 we get:

l′(t) =−2
n

∑
k=1

cos
αk(t)

2
≤−2

n

∑
k=1

(
1− αk(t)

π

)
=−2n +

2
π

n

∑
k=1

αk(t)

≤−2n +
2
π

(
nπ− π

3

⌊
l(t)

2
√

2S

⌋)
=−2

3

⌊
l(t)

2
√

2S

⌋
. ��

Now we can finally state our main result.

Theorem 3. When the MOVE-ON-BISECTOR strategy in the continuous model is per-
formed, the maximum distance travelled by a robot is O((h + d) log(l)), where h is the
height and l the length of the robot chain in the start configuration.

Proof. Set m∗ :=
⌊

l
2
√

2S

⌋
and let us define m∗ time-phases pi := [ti−1, ti] for i = 1 . . . ,m∗

by setting t0 := 0 and ti for i > 0 to the time when we have l(ti) = (m∗ − i+ 1) ·2
√

2S.
That is, during one phase pi, the chain length is reduced by exactly 2

√
2S and thus in

phase i, the chain must consist of at least m∗ parts as defined in Lemma 6. Note that
these ti are well-defined, because by Lemma 7, in phase pi the chain length decreases

with a speed of at least 2
3

⌊
l(ti)

2
√

2S

⌋
= 2

3 · (m∗ − i + 1) (which is a constant for fixed i).

Furthermore, Lemma 7 gives us an upper bound on the length of each single phase pi:

ti− ti−1 ≤
l(ti−1)− l(ti)
2
3 (m∗ − i+ 1)

≤ 2
√

2S
2
3 (m∗ − i+ 1)

This allows us to give an upper bound to the time when the last phase ends:

tm∗ =
m∗

∑
i=1

(ti− ti−1)≤ 3
√

2S
m∗

∑
i=1

1
m∗ − i+ 1

= 3
√

2S
m∗

∑
i=1

i−1 < 3
√

2S · (lnm∗+ 1)

Now consider the situation after time t ≥ tm∗ . We have l(tm∗) = (m∗ −m∗+ 1)2
√

2S =
2
√

2S. By Theorem 2, from now on it takes time at most
√

2
2 h(tm∗)+

√
2l(tm∗)≤

√
2

2 h+
4S for the robots to reach the optimal configuration. Together with the bound on tm∗ and
with S = O(h + d), this yields a maximum time (and therefore travelled distance) of
until the optimal configuration is reached.

A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots 181

3
√

2 ·S · (lnm∗+ 1)+
√

2
2

h + 4S

≤3
√

2 ·S ·
(

ln

(
l

2
√

2S

)
+ 1

)
+
√

2
2

h + 4S

=3
√

2 ·S · (ln l− ln(2
√

2S)+ 1)+
√

2
2

h + 4S

=O(S · ln l)+
√

2
2

h + 4S =O((h + d) ln l) ��

Corollary 2. MOVE-ON-BISECTOR runs in time O(min{n,(OPT + d) logn}). ��

A consequence of this result is that for d ∈ O(h) our local algorithm is by at most a
logarithmic factor slower than an optimal global algorithm.

4 Outlook

We initiated the study of the continuous time model for the robot chain problem. Fur-
thermore we introduced the idea to compare a local algorithm to an optimal global
algorithm for the same instance.

We showed the runtime of our algorithm to beO(min{n,(OPT +d) log(n)}). Future
work includes improving our upper bounds for the algorithm as well as lower bounds
for optimal global algorithms. Furthermore, we want to apply the developed techniques
for the continuous time model and the concept of comparing local algorithms to opti-
mal global ones to further formation problems, such as gathering and convergence to a
point in the plane as well as more complex tasks like building short two-dimensional
communication infrastructures like trees.

It is an interesting problem to investigate to which extend our strategy is robust under
inaccuracies of sensors and actors as described in the chapter on the continuous time
model in Section 1. How to formally model such inaccuracies? For which input in-
stances is our strategy robust? Do we have to modify the strategy? We certainly have to
assume that input instances have the property that neighboring robots have distance at
most 1−γ , where γ ∈ (0,1) is chosen dependent on parameters describing the accuracy.

References

1. Nguyen, H., Farrington, N., Pezeshkian, N., Gupta, A., Spector, J.M.: Autonomous commu-
nication relays for tactical robots. In: Proc. of the 11th International Conference on Advanced
Robotics (ICAR), pp. 35–40 (2003)

2. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with lim-
ited sensing capabilities. In: Ant Colony, Optimization and Swarm Intelligence, pp. 142–153
(2004)

3. Dynia, M., Kutyłowski, J., Lorek, P., Meyer auf der Heide, F.: Maintaining Communica-
tion Between an Explorer and a Base Station. IFIP International Federation for Information
Processing, vol. 216, pp. 137–146. Springer, Boston (2006)

182 B. Degener et al.

4. Kutyłowski, J., Meyer auf der Heide, F.: Optimal strategies for maintaining a chain of relays
between an explorer and a base camp. Theoretical Computer Science 410(36), 3391–3405
(2009)

5. Nguyen, H.G., Pezeshkian, N., Gupta, A., Farrington, N.: Maintaining communication link
for a robot operating in a hazardous environment. In: Proc. of the 10th Int. Conf. on Robotics
and Remote Systems for Hazardous Environments, American Nuclear Society (2004)

6. Meyer auf der Heide, F., Schneider, B.: Local strategies for connecting stations by small
robotic networks. In: IFIP International Federation for Information Processing, Biologically-
Inspired Collaborative Computing, September 2008, vol. 268, pp. 95–104. Springer, Boston
(2008)

7. Mataric, M.: Designing emergent behaviors: From local interactions to collective intelli-
gence. In: Proc. of the International Conference on Simulation of Adaptive Behavior: From
Animals to Animats, vol. 2, pp. 432–441 (1992)

8. Dieudonné, Y., Petit, F.: Self-stabilizing deterministic gathering. In: Algorithmic Aspects of
Wireless Sensor Networks, pp. 230–241 (2009)

9. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccu-
rate compasses. In: Principles of Distributed Systems, pp. 333–349 (2006)

10. Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with
dynamic compasses: An optimal result. In: Distributed Computing, pp. 298–312 (2007)

11. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In:
SODA 2004: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp. 1070–
1078 (2004)

12. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theo-
retical Computer Science, Principles of Distributed Systems 410(6-7), 481–499 (2009)

13. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous
robot systems. SIAM Journal on Computing 34(6), 1516–1528 (2005)

14. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Au-
tomation 15(5), 818–828 (1999)

15. Ando, H., Suzuki, Y., Yamashita, M.: Formation agreement problems for synchronous mobile
robotswith limited visibility. In: Proc. IEEE Syp. of Intelligent Control, pp. 453–460 (1995)

16. Degener, B., Kempkes, B., Meyer auf der Heide, F.: A local O(n2) gathering algorithm. In:
Symposium on Parallelism in Algorithms and Architectures (2010)

Optimal Deterministic Ring Exploration
with Oblivious Asynchronous Robots

Anissa Lamani, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil

Université Pierre et Marie Curie - Paris 6, LIP6-CNRS 7606, France

Abstract. We consider the problem of exploring an anonymous unori-
ented ring of size n by k identical, oblivious, asynchronous mobile robots,
that are unable to communicate, yet have the ability to sense their en-
vironment and take decisions based on their local view. Previous works
in this weak scenario prove that k must not divide n for a deterministic
solution to exist. Also, it is known that the minimum number of robots
(either deterministic or probabilistic) to explore a ring of size n is 4. An
upper bound of 17 robots holds in the deterministic case while 4 proba-
bilistic robots are sufficient. In this paper, we close the complexity gap
in the deterministic setting, by proving that no deterministic exploration
is feasible with less than five robots, and that five robots are sufficient
for any n that is coprime with five. Our protocol completes exploration
in O(n) robot moves, which is also optimal.

Keywords: Robots, Anonymity, Obliviousness, Exploration, Asynch-
ronous system, Ring.

1 Introduction

Recent research focused on systems of autonomous mobile entities (that are
hereafter referred to as robots) that have to collaborate in order to accomplish
collective tasks. Two universes have been studied: the continuous euclidean space
[8,14,4] where the robots entities can freely move on a plane, and the discrete
universe in which space is partitioned into a finite number of locations, conven-
tionally represented by a graph, where the nodes represent the possible locations
that a robot can take and the edges the possibility for a robot to move from one
location to the other [7,11,2,1,10,9,5,6,3]. In this paper we pursue research in
the discrete universe and focus on the exploration problem when the network
is an anonymous unoriented ring, using a team of autonomous mobile robots.
The robots we consider are unable to communicate, however they can sense
their environment and take decisions according to their local view. We assume
anonymous and uniform robots (i.e they execute the same protocol and there
is no way to distinguish between them using their appearance). In addition
they are oblivious, i.e they do not remember their past actions. In this context,
robots asynchronously operate in cycles of three phases: look, compute and move
phases. In the first phase, robots observe their environment in order to get the
position of all the other robots in the ring. In the second phase, they perform a

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 183–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

184 A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil

local computation using the previously obtained view and decide on their target
destination to which they will move in the last phase.

Related Work. In the discrete model, two main problems are investigated
assuming very weak asynchronous, identical, and oblivious robots: the gathering
and the exploration problem. In the gathering problem, robots have to gather
in one location not known in advance i.e there exists an instant t > 0 where
all robots share the same location (one node of the ring). In the exploration
problem, robots have to explore a given graph, every node of the graph must be
visited by at least one robot and the protocol eventually terminates (that is, all
robots are idle).

For the problem of gathering in the discrete robot model, the aforementioned
weak assumptions have been introduced in [10]. The authors proved that the
gathering problem is not feasible in some symmetric configurations and proposed
a protocol based on breaking the symmetry of the system. By contrast in [9], the
authors proposed a gathering protocol that exploits this symmetry for a large
number of robots (k > 18) closing the open problem of characterizing symmetric
situations on the ring which admit a gathering.

For the exploration problem, the fact that the robots have to stop after the
exploration process implies that the robots somehow have to remember which
part of the graph has been explored. Nevertheless, in this weak scenario, robots
have no memory and thus are unable to remember the various steps taken before.
In addition, they are unable to communicate explicitly, therefore the positions
of the other robots remain the only way to distinguish different stages of the
exploration process. The main complexity measure here is the minimal number
of robots necessary in order to explore a given graph. It is clear that a single
robot is not sufficient for the exploration in the case where it is not allowed to
use labels. In [6], it has been shown that Ω(n) robots are necessary in order to
explore trees of size n, however, when the maximum degree of the tree is equal
to three then the exploration can be done with a sub-linear robot complexity. In
the case where the graph is a ring, it has been shown in [5] that k (the number of
robots) must not divide n (the size of the ring) to enable a deterministic solution.
This implies that for a general n, log(n) robots are necessary. The authors also
present in [5] a deterministic protocol using 17 robots for every n that is coprime
with 17. By contrast, [3] presents a probabilistic exploration algorithm for a ring
topology of size n > 8. Four probabilistic robots are proved optimal since the
same paper shows that no protocol (probabilistic or deterministic) can explore
a ring with three robots.

Contribution. In this paper, we close the complexity gap in the deterministic
setting. In more details, we prove that there exists no deterministic protocol that
can explore an even sized ring with k ≤ 4 robots. This impossibility result is
written for the ATOM model [14] where robots execute their look, compute and
move phases in an atomic manner, and thus extend naturally in the non-atomic
CORDA model. We complement the result with a deterministic protocol using
five robots and performing in the fully asynchronous non-atomic CORDA model

Optimal Deterministic Ring Exploration 185

[13] (provided that five and n are coprime). The total number of robot moves is
upper bounded by O(n), which is trivially optimal.

2 Model and Preliminaries

We consider a distributed system of mobile robots scattered on a ring of n nodes
u0,u1,..., u(n−1) such as ui is connected to both u(i−1) and u(i+1). The ring is
assumed to be anonymous i.e there is no way to distinguish the nodes or the
edges (i.e. there is no available labeling). In addition, the ring is unoriented i.e
given two neighbors, it is impossible to determine which node is on the right or
on the left of the other. On this ring k robots collaborate to explore all the nodes
of the ring. The robots are identical i.e they cannot be distinguished using their
appearance and all of them execute the same protocol. Additionally, the robots
are oblivious i.e they have no memory of their past actions. We assume the
robots do not communicate in a explicit way. However, they have the ability to
sense their environment and see the position of the other robots. Each robot can
detect whether several robots are on the same node or not, this ability is called
multiplicity detection. Robots operate in three phase cycles: Look, Compute and
Move. During the Look phase robots take a snapshot of their environment. The
collected information (position of the other robots) are used in the compute phase
in which robots decide to move or to stay idle. In the last phase (move phase)
they may move to one of their adjacent nodes towards the target destination
computed in the previous phase.

At some time t, a subset of robots are activated by an abstract entity called
scheduler. The scheduler can be seen as an external entity which selects some
robots for the execution. In the following we assume that the scheduler is fair
i.e each robot is activated infinitely many times. Two computational models ex-
ist: The ATOM model [14], in which synchronous cycles are executed in atomic
way i.e the robots selected by the scheduler at the beginning of a cycle execute
synchronously the full cycle, and the CORDA model [13] in which the scheduler
is allowed to interleave different phases (For instance one robot can perform a
look operation while another is moving). The model considered in our case is
the CORDA model with the following constraint: the Move operation is instan-
taneous i.e when a robot takes a snapshot of its environment, it sees the other
robots on nodes and not on edges. Nevertheless, since the scheduler is allowed
to interleave the operations, a robot can move according to an outdated view
(during the computation phase, some robots have moved).

In the following we assume that initially every node of the ring contains
at most one robot. During the system execution a subset of robots are acti-
vated and move to other nodes. During the Look phase, the activated robots
take a snapshot of their environment in order to see the position of the other
robots. For a robot located at node ui at time t, the snapshot result also
called the view at node ui at time t, is defined by the two following sequences:
C+i(t) =< di(t)di+1(t)...di+n−1(t) > and C−i(t) =< di(t)di−1(t)...di−(n−1)(t) >
where dj(t) denotes the multiplicity of robots on the node uj at instant t taking

186 A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil

an arbitrarily orientation of the ring. dj ≥ 1, ∀j ∈ [1, n] if and only if uj is occu-
pied by at least one robot, dj = 0 otherwise. When dj(t) = 0, the node uj is said
to be empty at instant t, when dj(t) = 1, we say that the node uj is occupied
at instant t, otherwise we say that there is a tower on uj at instant t.

The view at ui is said to be symmetric at instant t if and only if C+i(t) =
C−i(t). Otherwise, the view of ui is said to be asymmetric. When the view at a
node ui is symmetric, both edges incident to the node ui look identical to the
robot located at that node. In this case we assume the worst scenario allowing
the adversary to take the decision on the direction to be taken.

A configuration of the system can be described as the union of the views
at each node in the system. In order to define symmetric configurations we
borrow some definitions of [5]. Let Δ+(t) = {C+i(t), ∀i = 1, n} and let Δ−(t) =
{C−i(t), ∀i = 1, n}. As advocated in [5] each one of the sets Δ+(t) and Δ−(t)
contains a maximal sequence. A configuration is said symmetric if the maximal
sequences in Δ+(t) and Δ−(t) are equal, and asymmetric otherwise.

Problem to Be Solved. The problem considered here is the exploration prob-
lem, where k robots have to collaborate and explore a ring of size n before
stopping forever. A protocol P solves the exploration problem if and only if the
following conditions are satisfied:

1. Safety. Every node is visited by at least one robot.
2. Termination. The algorithm eventually stops.

3 Impossibility Result

It has been shown [5] that no deterministic team of k robots can explore a ring
of size n when k divides n. Also, it is known [3] that no exploration protocol
(deterministic or probabilistic) is possible when 0 ≤ k < 4. We now observe that
when a single robot is activated at a time, a trivial deterministic variation of
the protocol of [3] (that uses four robots and randomization to break symmetry
in some situations) matches the lower bound. So, our leveraging of the lower
bound result of [3] to four robots considers the case when several robots can be
activated at the same time.

Lemma 1. There exists no deterministic protocol in the ATOM (and CORDA)
model for exploring a ring of an even size (n) with four robots.

Proof: The proof is by contradiction. We assume that there exists a determin-
istic protocol with four robots that can explore a ring and terminate. Then,
we start from an admissible initial configuration where no two robots are lo-
cated on the same node and derive executions that never satisfy the exploration
specification.

We consider the two similar configurations shown in figures 1 and 2. As the
configurations contain two axes of symmetry, the four robots R1, R2, R3 and
R4 have identical views, which means that if they are activated simultaneously,
they will exhibit the same behavior.

Optimal Deterministic Ring Exploration 187

Fig. 1. Instance of configuration Fig. 2. Instance of configuration

1. Suppose that every robot move towards its adjacent node in the same direction
of their neighbor robot at distance 2. Assume that all the robots are activated
at the same time by the scheduler, then two towers are created (one with R1
and R3, the other with R2 and R4). From this point onwards, we assume
that R1 and R3 are always activated simultaneously (and likewise for R2
and R4). As a result, the fours robots now behave as two robots. As it was
shown in [3], no team of two robots can explore the ring, and thus the initial
protocol does not perform a ring exploration either.

2. Suppose that every robot move towards its adjacent node in the opposite
direction of their neighbor robot at distance 2. If the robots move back to
their position, then the protocol can never stop since the robots can go back
and forth indefinitely. In the case where the robots keep moving away then
two cases are possible :
– The number of nodes between R1 and R2 is even (the same for R3 and

R4 see figure 2) in this case, by moving away from the robots that are at
an odd distance from them, the configuration reached is similar to the
one shown in figure 3 in which R1 and R2 are neighbors (the same for
R3 and R4). Since the robots cannot go back (the protocol may never
stop), the only move that they can perform is moving towards their
neighbor: R1 moves towards R2 and vice versa (the same for R3 and
R4), however, in the case where the four robots are activated at the same
time, the two robots that are neighbors simply exchange their positions,
and the configuration remains unchanged. As a result, no progress is
made towards completion of the exploration task.

– The number of nodes between R1 and R2 is odd (the same for R3 and R4,
see figure 1). In this case k divides n, and [5] proved that the exploration
problem in impossible to solve in this setting.

From the cases above, we can deduct that no deterministic exploration is possible
using four robots when the size of the ring is even. When the size of the ring is
odd, the following Lemma show that no protocol with four robots can explore
the ring in the CORDA model. Due to lack of space, the proof is presented in
the appendix.

188 A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Fig. 3. Instance of configuration

4 Ring Exploration in CORDA Model

In this section we propose the ring exploration in Corda model with only five
robots provided the size of the ring (n) and the number of robots are co-prime.
Before detailing our algorithm we introduce some definitions.

A hole is the maximal set of consecutive empty nodes. The size of a hole is
the number of nodes that compose it, the border of the hole are the two empty
nodes who are part of this hole, having one robot as a neighbor.

An inter-distance d is the minimum distance taken among distances be-
tween each pair of distinct robots (in term of the number of edges). Given a
configuration of interdistance d, a d.block is any maximal elementary path in
which there is a robot every d edges. The border of a d.block are the two ex-
tremal robots of the d.block. The size of a d.block is the number of robots in the
d.block. A robot not in a d.block is isolated.

Given a configuration of interdistance 1, a tower-chain consists of a 1.block
of size 3 followed by an empty node followed by a tower.

Our protocol consists of three distinct phases orchestrated as shown in
Algorithm 1:

– Block Module. The aim of this phase is to drag all the robots into one
single 1.block starting from any initial configuration that does not contain a
tower.

– Tower Module. Starting from a configuration that contains a single 1.block,
one tower is created such that an elected robot will benefit from an orienta-
tion of the ring allowing to explore the ring in the last phase.

– Tower-chain Module. In this phase, starting from a configuration with a
single tower, one robot is elected in order to explore the ring.

Note that once a configuration with a tower-chain is reached, the ring has been
explored and the protocol terminates. Remark also that robots are able to dis-
tinguish between the phase since each phase has different particularities. In the
first phase all the configurations are tower-less and do not contain 1.block of

Optimal Deterministic Ring Exploration 189

Algorithm 1. The orchestration of the algorithm
1: if the five robots do not form a tower-chain then
2: if the configuration contains neither a tower nor a single 1.block then
3: Execute Block Module
4: else
5: if the configuration contains a single 1.block then
6: Execute Tower Module
7: else
8: Execute Tower-chain Module
9: end if

10: end if
11: end if

size 5. In the second phase, configurations contain a single 1.block of size 5. And
finally, in the last phase, the configurations contain a single tower.

The following section details and analyzes the complexity of the previous
modules.

Block Module Description and Analysis. The aim of this phase is to reach
a configuration with no tower where there is a single 1.block that contains all
the five robots. This phase is described in Algorithm 2.

Lemma 2. If the configuration at instant t contains neither a single 1.block nor
a tower, then the configuration at instant t + 1 is tower-less.

Proof: We prove in this section that, if a robot moves, it moves always to an
empty node to avoid the creation of towers. We suppose that the configuration
at instant t is C. The configuration C doesn’t contain any tower and satisfies
one of the following cases:

– C contains at least one isolated robot: Two cases are possible according to
the number of d.blocks:

1. There is a single d.block: in this case the isolated robots that are the
closest to the d.block are allowed to move, they move to an empty node
(see line 4). As it is an isolated robot, there are at least d empty nodes
between it and the target d.block. In another hand, since d ≥ 1, by
moving, no tower is created at instant t + 1.

2. There are two d.blocks: in this case, the configuration contains a single
isolated robot (there are five robots on the ring), this robot is the only
one allowed to move (see line 9, 10), when it moves, it does to an empty
node toward one of the two blocks depending of the symmetry of the
configuration (there is no other robot between it and the target d.block
and there are at least d empty nodes between it and the d.blocks –
otherwise it would be part of them). Thus, no tower is created at instant
t + 1.

190 A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Algorithm 2. Procedure: Block Module executed by robot r

1: if the configuration contains at least one isolated robot then
2: if the configuration contains a single d.block then
3: if r is isolated robot and r is closest neighbor to the d.block then
4: Move toward the d.block taking the shortest hole
5: end if
6: else
7: if the configuration contains two d.block then
8: if the configuration is symmetric then
9: if r is isolated then

10: Move toward one of the two d.blocks
11: end if
12: else
13: if r is isolated then
14: Move toward the closest d.block
15: end if
16: end if
17: end if
18: end if
19: else
20: if the configuration contains a single d.block and d > 1 then
21: if r is at the border of the d.block then
22: Move toward the adjacent node in the direction of the d.block
23: end if
24: else
25: if the configuration contains two d.blocks then
26: if r is in the smallest d.block and r is the closest to the biggest d.block

then
27: Move toward the biggest d.block
28: end if
29: end if
30: end if
31: end if

– C contains no isolated robots in the configuration: two cases are possible
according to the number of d.blocks:

1. C contains a single d.block: in this case the robots at the border of this
d.block are the only robots allowed to move, if they do, they move to an
empty node toward the d.block they belong to. This guarantee is given
by the condition d > 1 (see line 18). Hence, no tower is created at instant
t + 1.

2. C contains two d.blocks: in this case the two d.blocks have different sizes
(since there are no isolated robots and the number of robots is odd).
Robots in the smallest d.block and closest to the biggest d.block move
toward the target d.block taking the hole that separate them from one
extremity of the biggest d.block. Since the size of the hole is at least

Optimal Deterministic Ring Exploration 191

equal to the inter-distance (otherwise robots are in the same d.block),
no tower is created at instant t + 1.

Overall no tower is created at instant t + 1.

Lemma 3. Starting from a configuration with no tower the system reaches a
configuration with a single 1.block after O(n) move operations.

Proof: Two cases are possible according to the type of the starting configuration
denoted in the following C:

1. C contains at least one isolated robot: in this case, the robots allowed to
move are always the isolated ones, and their destination is the closest d.block
(line3, 4), or one of the two d.blocks in the case of symmetry (line9, 10).
Hence three cases are possible according to the number of isolated robots:

– The configuration C contains a single isolated robot. This robot is the
only one allowed to move and its destination is the d.block. After its
move the distance between it and the target d.block decreases. Since
this robot remains the only isolated robot in the configuration (robots
in the d.blocks do not move when there is at least one isolated robot), it
is the only one that keeps moving to the same target d.block. Therefore,
after a finite time, the robot joins the d.block.

In order to compute the maximum number of moves (NBM) we con-
sider the the worst case: the number of nodes between the two robots at
the border of the d.block is odd. Consider the Figure 4.

Fig. 4. Instance of configuration

Let’s compute the number of nodes between the d.block and the iso-
lated robot. In order to do this, we will substract from the size of the
ring, the occupied nodes and the empty nodes between the robots in the
d.block.

The obtained result gives the sum of the empty nodes between the
isolated robot and the d.block at each side. Thus, we have to divide it by
two to obtain the distance between the isolated robot and the d.block.

192 A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Note that the isolated robot is going to join the d.block hence it will
advance until it reaches the same distance as the other robots in the
d.block. Thus, in order to calculate the number of moves of the isolated
robot, we have to substract from n − [k + 3 ∗ (d − 1)], the number of
nodes between any two robots in the d.block.

The NBM is hence given by the following formula:

NBM = [
n− [k + 3 ∗ (d− 1)]

2
]− (d− 1) (1)

– The configuration contains two isolated robots: in this case, at least one
of these two isolated robots is allowed to move. If there is a single robot
that is the closest to the d.block, then this robot is the only one that
moves, its destination is the single d.block (see line 3, 4). At each move,
the robot becomes even closer to the d.block, hence after a finite time,
it reaches the d.block and the configuration contains a single isolated
robot. In the other case (there are two robots allowed to move, let them
be R1 and R2), whatever the choice of the scheduler in interleaving
the different operations, at least one of these two isolated robots moves
towards the d.block and hence becoming even closer. Note that if robots
move at the same time both reduce their distance to the d.block.

Suppose the worst case: a single robot moves. Let R1 be this robot.
Two cases are possible: If the robot that does not move, R2, has an up
to date view of the configuration, then R1 becomes the closest robot to
the d.block and hence it is the only one allowed to further move. From
this point onward the proof is similar to the case 1. If R2 has an absolete
view then R2 may also move. Consequently, either it is at the same
distance as R1 from the d.block or R1 is the closest one to the d.block.
The proof goes on recursively until at least one of the two robots reaches
the d.block.

Note that the worst case happens when the two robots are at the
maximum distance from the d.block and the number of empty nodes
between these two robots is minimal (equal to d otherwise they form a
d.block). It follows that the maximum number of moves robots perform
in this case is given by the following formula:

NBM = n− (k + 4 ∗ (d− 1) + d) (2)

– The configuration contains three isolated robots. From the above cases
above it follows that after a finite time all isolated robots join the d.block.
The maximum number of moves in this case is performed when the three
robots are at a maximum distance from the d.block and the distance
between them is minimal and it is equal to d. This number is given by
the following formula:

NBM = n− (k +3∗ (d−1)+2d)+ [n− (k +3∗ (d−1))]/2− (d−1) (3)

Overall the number of isolated robots decreases until the configuration con-
tains only d.blocks.

Optimal Deterministic Ring Exploration 193

2. The configuration contains only d.blocks: Two sub-cases are possible accord-
ing to the number of d.blocks:

– The configuration contains two d.blocks. In this case the two d.blocks
have different size and the smallest d.block moves towards the biggest
one (line24, 25). Consequently, whatever the choice of the scheduler at
least one of the two robots moves towards the biggest one, when it does
the configuration changes and contains a single d.block with isolated
robots. However, it has been shown in case 1 that in this case and after
a finite time all the isolated robots join the d.block. Hence the number of
d.blocks decreases and the configuration contains a single d.block. The
maximum number of moves is defined by the following formula and it
happens when the small block is at a maximum distance from the biggest
d.block:

NBM = n− (k + 5 ∗ (d− 1)) (4)

– The configuration contains a single d.block: if d > 1 then there is at
least one single node between each robot, and in this case, depending
on the choice of the scheduler at least one of the two robots that are at
the border of the d.block moves to its adjacent node in the direction of
the d.block it belongs to (line19, 20). Thus, the inter-distance decreases
and the configuration reached contains isolated robots. However, once
the configuration with a single d.block is reached, the maximum number
of moves that are performed in order to reach another configuration
with a single (d − 1).block ∀d such as d > 1 is constant and is equal to
7. If one of the two robots at the border of the d.block moves, then one
(d−1).block is created and all the other robots move towards it starting
with the closest one, since all the robots were at the same distance, the
closest one performs one move to reach the (d−1).block, the next robots
performs two moves and the third one (the last one) performs three
moves to reach the d.block. Hence, if we sum up all these moves taking
in account the first move of the robot that creates the (d−1).block, then
the total number of displacements is the following: 1+(1+...+k−2) and
is equal to 7. In the case where the two robots at the border of the d.block
move at the same time, two (d−1).block are created. The isolated robot
that is on this axes of symmetry chooses one of them by moving towards
it, when it moves it joins the chosen (d− 1).block and the configuration
contains two (d − 1).blocks. However, in this case, only one robot is
allowed to move (the closest one (see line 24, 25), since the two robots in
the smallest (d−1).block are at different distance from the biggest one).
This robot performs two moves to join the biggest (d−1).block, the same
for the second robot. Thus if we sum up the moves that were performed
(2 + 1 + 2 + 2), the total number is equal to 7. Since d > 1 the same
process repeats the system reaches a configuration with a single 1.block.
In this case the number of moves is given by the following formula:

NBM = (d− 1) ∗ 7 (5)

194 A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil

Since d < n/5− 1 the total number of moves in order to reach a 1.block config-
uration starting from any tower-less configuration is O(n).

Tower Module Description and Analysis. This phase begins when the
configuration contains a single 1.block. It aims at creating a tower in order to
give a virtual orientation to the ring such as the elected robot accomplish the
exploration task in the last phase. This phase is described in Algorithm 3.

Algorithm 3. Procedure Tower Module executed by robot r

1: if r is on the axes of symmetry then
2: Move toward one of my neighbors
3: end if

Lemma 4. Let C be the configuration that contains a single 1.block of size 5. If
C is the configuration at instant t, then the configuration at instant t+1 contains
a single tower.

Tower-Chain Module Description and Analysis. In this phase, one robot
is elected in order to explore the ring. The exploration begins when the config-
uration contains a tower and is done when a tower-chain is created. This phase
is described in Algorithm 4.

Algorithm 4. Procedure tower-chain Module executed by robot r

1: if the configuration doesn’t contain a chain-tower then
2: if r between the tower and the 1.block then
3: Move toward my adjacent node in the opposite direction of the tower
4: end if
5: end if

Lemma 5. Starting from a configuration with a single tower, the system reaches
a configuration that contains a chain-tower after O(n) move operations and all
the nodes have been explored.

5 Conclusion

In this paper, we focused on the exploration problem in an undirected ring. We
proved that no deterministic protocol can explore such a graph using k robots
such as k ≤ 4 if the ring is of even size. On the other hand, we provided a
non-atomic completely asynchronous algorithm that uses only five robots for
completing exploration provided that n and k are coprime. Our solution is thus
optimal with respect to the number of robots. As exploration requires O(n)
robots moves, it is also optimal in time. We would like to mention two interesting
open questions raised by our work:

Optimal Deterministic Ring Exploration 195

1. The impossibility result of [5] shows that k must not divide n (for arbi-
trary values of k and n), while our impossibility result shows that k must
be coprime with n (for a specific value of k: 4). We conjecture that the im-
possibility result of [5] can be extended to any k and n that are not coprime
and such that n > k.

2. The summary of results presented below sheds new light on the respective
powers of the ATOM and CORDA models on the one hand, and on the
power of random choice on the other hand. Our impossibility result holds
for even sized rings even in the ATOM model, so going probabilistic [3] is the
only way to pass the five robots barrier. By contrast, when the size is odd,
probabilities do not help (the companion technical report [12] shows that
a determinsitic ATOM protocol can exist with four robots). Further inves-
tigating the relationships between the sheduling models (CORDA/ATOM)
and the protocol power (probabilistic/deterministic) is an intriguing path
for future research.

Reference k and n Model Deterministic Nb of robots
[5] n 	= ck CORDA Yes k ≥ 17
[3] n > 8 ATOM No k = 4
This paper n 	= ck CORDA Yes k = 5
[12] n,k are coprime ATOM Yes k = 4

n is odd

Acknowledgements

This work is supported by ANR projects SHAMAN, ALADDIN, and
R-DISCOVER.

References

1. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theoretical Computer Science 385, 34–48
(2007)

2. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355,
315–326 (2006)

3. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by asyn-
chronous oblivious robots. In: Proceedings of SIROCCO 2009 (2009)

4. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. TAAS 3(16) (2008)

5. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicat-
ing: Ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas, P.,
Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidel-
berg (2007)

6. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
Tree exploration by asynchronous oblivious robots. In: Shvartsman, A.A., Felber,
P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 33–47. Springer, Heidelberg (2008)

196 A. Lamani, M. Gradinariu Potop-Butucaru, and S. Tixeuil

7. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mo-
bile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS,
vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

8. Flocchini, P., Prencipe, P., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theoretical Computer Science 407,
412–447 (2008)

9. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering
of asynchronous oblivious robots on a ring. In: OPODIS, pp. 446–462 (2008)

10. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoretical Computer Science 390, 27–39 (2008)

11. Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs.
In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656.
Springer, Heidelberg (2004)

12. Lamani, A., Potop-Butucaru, M., Tixeuil, S.: Optimal deterministic ring explo-
ration with oblivious asynchronous robots. CoRR abs/0910.0832 (2009)

13. Prencipe, G.: CORDA: Distributed coordination of a set of autonomous mobile
robots. In: Proc. 4th European Research Seminar on Advances in Distributed Sys-
tems (ERSADS 2001), Bertinoro, Italy, May 2001, pp. 185–190 (2001)

14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

Maximum Interference of Random
Sensors on a Line

Evangelos Kranakis1, Danny Krizanc2, Lata Narayanan3, and Ladislav Stacho4

1 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada
2 Department of Mathematics and Computer Science, Wesleyan University,

Middletown CT 06459, USA
3 Department of Computer Science and Software Engineering, Concordia University,

Montreal, QC, H3G 1M8, Canada
4 Department of Mathematics, Simon Fraser University,

Burnaby, BC, V5A 1S6, Canada

Abstract. Consider n sensors whose positions are represented by n uni-
form, independent and identically distributed random variables assuming
values in the open unit interval (0, 1). A natural way to guarantee con-
nectivity in the resulting sensor network is to assign to each sensor as
range the maximum of the two possible distances to its two neighbors.
The interference at a given sensor is defined as the number of sensors
that have this sensor within their range. In this paper we prove that the
expected maximum interference is Ω(ln ln n), and that for any ε > 0, it
is O((ln n)1/2+ε).

1 Introduction

The broadcast nature of wireless communication implies that interference with
other transmissions is inevitable. Interference can be caused by sources inside or
outside the system and comes in many forms. Co-channel interference is caused
by other wireless devices transmitting on the same frequency channel. Such in-
terference can make it impossible for a receiver to decode a transmission unless
the signal power of the intended source is significantly higher than the combined
strength of the signal received from the interfering sensors. Wireless devices are
designed to admit a certain maximum level of interference. It is therefore crucial
to understand the maximum possible interference in a wireless network.

In this paper we study the expected maximum interference for n sensors placed
at random in the highway model. According to this model, n sensors are repre-
sented by n uniform, independent and identically distributed random variables
in the open unit interval (0, 1). Using standard notation (see [2]), let the corre-
sponding order statistics be X1:n < X2:n < · · · < Xn:n. The position, xi, of the
ith sensor is determined by event Xi:n = xi which is the value of the ith order
statistic Xi:n.

Since only nodes whose transmissions can reach a node can cause interference
at it, an important way to manage interference is by the use of topology control
algorithms. In particular, one can assign transmission ranges to nodes with the

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 197–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

198 E. Kranakis et al.

objective of minimizing interference. On the other hand, the assignment of trans-
mission ranges should also ensure that the network is connected. In the highway
model, a natural algorithm is to assign as transmission range to a sensor the
maximum distance between its two immediate (from left and right) neighbors
since this is the minimum range required to attain connectivity.

Definition 1. We assign as range of the ith sensor, denoted by ri, the maximum
of the two possible distances with its two neighbors, namely the random variable
defined by max{Xi:n−Xi−1:n, Xi+1:n−Xi:n}, where we use the notation X0:n = 0
and Xn+1:n = 1.

We are interested in studying the resulting interference among the n sensors.
Intuitively, the interference for each sensor i is defined as the number of sensors
that have the sensor i within their range. Formally, we consider the following
sets of sensors.

Definition 2. For each i, define the sets S+(i), S−(i) of sensors j to the right
(i.e., j > i) and left (i.e., j < i) of xi, respectively, which have the sensor i
within their range. Further, let S(i) = S+(i) ∪ S−(i).

The interference is now defined as follows.

Definition 3. Define the random variables I+(i) := |S+(i)|, I−(i) := |S−(i)|
and I(i) := I+(i) + I−(i). For each i, I(i) is the interference at sensor i.

We are also interested in the random variable that specifies the neighborhood size
(or proximity), the number of sensors that are in sensor j’s transmission range.

Definition 4. For each sensor j define the sets Γ+(j), Γ−(j) of sensors i to
the right (i.e., i > j) and left (i.e., i < j) which are (downstream) neighbors of
j. Let Γ (j) = Γ+(j) ∪ Γ−(j) be the set of neighbors of j.

Observe that

Γ (j) =
{

Γ+(j) ∪ {j − 1} if Xj+1:n −Xj:n < Xj:n −Xj−1:n
Γ−(j) ∪ {j + 1} if Xj+1:n −Xj:n > Xj:n −Xj−1:n.

Definition 5. Define the random variables N+(j) := |Γ+(j)|, N−(j) := |Γ−(j)|
which is the number of sensors i which are within j’s range to the right and
left of i, respectively. Let N(j) = N+(j) + N−(j). For each j, we call N(j) the
neighborhood size of j.

Let I be the random variable equal to maxi I(i). We are interesting in obtaining
bounds on E(I), the expected maximum interference experienced by any of
the sensors.

1.1 Related Work

Several papers study interference and network performance degradation. [7] con-
siders the throughput of wireless networks under two models of interference: one

Maximum Interference of Random Sensors on a Line 199

is a protocol model that assumes interference to be an all-or-nothing phenomenon
and the other a physical model that considers the impact of interfering trans-
missions on the signal-to-noise ratio. Motivated by this, [9] defined the concept
of conflict graph (a graph indicating which groups of nodes interfere and hence
cannot be active at the same time) and study what is the maximum through-
put that can be supported by a wireless network given a specific placement of
wireless nodes in physical space and a specific traffic workload.

[5] proposes connectivity preserving and spanner constructions which are in-
terference optimal. [11] consider the average interference problem while main-
taining connectivity and give a sharp O(ln n) upper and lower bound. Closely
related to our study is the following problem first proposed by [10].

Given n nodes in the plane. Connect the nodes by a spanning tree. For
each node v we construct a disk centering at v with radius equal to the
distance to v’s furthest neighbor in the spanning tree. The interference
of a node v is then defined as the number of disks that include node v
(not counting the disk of v itself). Find a spanning tree that minimizes
the maximum interference.

Choosing transmission radii which minimize the maximum interference while
maintaining a connected symmetric communication graph is shown by [4] to
be NP-complete. In addition, [8] gives an algorithm which yields a maximum
interference in O(

√
n). An open problem that remains is to narrow the gap

between this upper bound and the lower bound. For the case of points on a
line [14] show that if nodes are distributed as an exponential node chain, the
algorithm described in Section 1 has maximum interference Ω(n). They proceed
to give an n1/4-approximation algorithm for the problem.

[3] show that for broadcasting (one-to-all), gossiping (all-to-all), and sym-
metric gossiping (symmetric all-to-all) the problem of minimizing the maximum
interference experienced by any node in the network is hard to approximate
within better than a logarithmic factor, unless NP admits slightly superpolyno-
mial time algorithms. They also show that any approximation algorithm for the
problem of minimizing the total transmission power assigned to the nodes in or-
der to guarantee any of the above communication patterns, can be transformed,
by maintaining the same performance ratio, into an approximation algorithm for
the problem of minimizing the total interference experienced by all the nodes in
the network.

In addition, it is worth mentioning that the distribution of random sensors
in a unit interval has been investigated in the past by the probability theory
community. For example, using the main result of [6] (see also [1], [12] and [13])
concerning the extremes of the inter-arrival times of the Poisson process we
see that

lim
n→∞Pr

[
max

i
{Xi+1:n −Xi:n} ≤

x + lnn

n

]
= exp[−e−x],

for all x. Therefore we have that limn→∞ Pr
[
maxi{Xi+1:n −Xi:n} ≥ ln n

n

]
=

1 − 1/e, which implies that E[maxi Xi+1:n − Xi:n] ∈ Ω(ln n/n). Although this

200 E. Kranakis et al.

result provides information about the expected size of the maximum gap between
adjacent sensors it does not immediately imply anything about the expected
value of the maximum interference.

1.2 Results of the Paper

We study a model where sensors are represented by n uniform, independent
and identically random variables in the open unit interval (0, 1). We assign to
each sensor as range the maximum of the two possible distances with its two
neighbors (including endpoints 0, 1). In section 2 we show a number of useful
lemmas and preliminary results including showing that the expected interference
of a given sensor is in O(1) (see Theorem 1) and giving a bound on the probability
the maximum interference exceeds ln n (see Theorem 2). In section 3 we prove
upper and lower bounds on E(I). Theorem 3 shows that the expected maximum
interference is Ω(ln lnn), while in Theorem 4 we show that for any ε > 0 the
expected maximum interference is O((ln n)1/2+ε). This is in contrast to the result
of [14] that the maximum interference for n sensors distributed on a line and
connected in the same manner is Ω(n) in the worst case.

2 Preliminary Results

In this section we prove a number of lemmas that will be useful in proving our
main results as well as some preliminary bounds on the expected interference
and on the probability of the maximum interference exceeding lnn. We begin our
study by analyzing the relationship between interference and neighborhood size.

Lemma 1 ∑
j

E[N(j)] =
∑

i

E[I(i)]. (1)

Proof. For each pair i, j of sensors consider the indicator random variable Xi,j

which indicates with 1 that sensor i is within j’s range. Now observe that the
following identities are valid.

E

⎡
⎣∑

j

N(j)

⎤
⎦ = E

⎡
⎣∑

j

|{i : i is within j’s range}|

⎤
⎦ = E

⎡
⎣∑

i,j

Xi,j

⎤
⎦

= E

[∑
i

|{j : i is within j’s range}|
]

= E

[∑
i

I(i)

]
.

This proves the lemma.

Another useful fact is encapsulated in the following lemma.

Lemma 2. Consider a constant c > 0. With probability at least 1 − 1/nc, any
interval of length ≥ c lnn

n contains a sensor.

Maximum Interference of Random Sensors on a Line 201

Proof. Consider an interval Δ of length c ln n
n . Then we have that

Pr[Δ contains no sensor] = Pr[∀i(Xi 	∈ Δ)]
= (Pr[Xi 	∈ Δ])n

=
(

1− c ln n

n

)n

≤ 1
nc

,

which proves the lemma.

The assignment of ranges as above enforces a natural bound on the interference
which we clarify in the next lemma.

Lemma 3. For any sensor i we have

1. if I+(i) ≥ k then there is a sensor j > i + 1 such that

2k(xi+1 − xi) ≤ xj+1 − xj ,

2. if I−(i) ≥ k then there is a sensor j < i− 1 such that

2k(xi − xi−1) ≤ xj − xj−1.

Proof. First we prove Part 1. Assume that I+(i) = k. Suppose that j ∈ S+(i).
Since i + 1 < j and i is within j’s range we have that xj − xi ≤ xj+1 − xj . This
is easily seen to be equivalent to the inequality

2(xj − xi) ≤ xj+1 − xi.

Next suppose that we have k sensors j1, j2, . . . , jk ∈ S+(i) such that j1 < j2 <
· · · < jk. Using the previous inequality for each of these k positions we see that

2(xj1 − xi) ≤ xj1+1 − xi

2(xj2 − xi) ≤ xj2+1 − xi

...
...

...
2(xjr − xi) ≤ xjr+1 − xi

...
...

...
2(xjk

− xi) ≤ xjk+1 − xi.

(2)

Using Inequalities 2 and induction we see easily that

xjk+1 − xjk
≥ xjk

− xi

≥ xjk−1+1 − xi

≥ 2(xjk−1 − xi) (from Inequality 2)
≥ 2(xjk−2+1 − xi)
≥ 22(xjk−2 − xi) (from Inequality 2)
...

...
≥ 2k(xi+1 − xi),

which proves Part 1. The proof of Part 2 is similar.

202 E. Kranakis et al.

Definition 6. We call range the random variable Ri,j:n := Xj:n −Xi:n, which
is defined for i < j.

The probability distribution of the range (see [2][Formula 2.5.21, page 33]) is
given by the identity below

Pr[Xj:n −Xi:n = w] =
n!

(j − i− 1)!(n− j + i)!
wj−i−1(1 − w)n−j+i. (3)

Using this and elementary calculations we see that

Pr[Xj:n −Xi:n > r] =
∫ 1

r

n!
(j − i− 1)!(n− j + i)!

wj−i−1(1− w)n−j+idw.

Elementary calculations using integration by parts yields the following identity
for the range of the order statistics

Pr[Xi+k:n −Xi:n > r] =
k−1∑
s=0

(
n

s

)
rs(1− r)n−s, (4)

for any k and i such that i + k ≤ n.

Lemma 4. We have the following identities for k ≥ 1

Pr[Xi:n −Xi−1:n > Xi+k:n −Xi:n] =

(
n
k

)
(2n

k

) (if i + k ≤ n)

Pr[Xi+1:n −Xi:n > Xi:n −Xi−k:n] =

(
n
k

)
(2n

k

) (if i− k ≥ 1)

Proof. We prove only the first identity. The second is proved in exactly the same
manner. Using Identity 3 from order statistics (see [2]) with j = i + k we derive

Pr[Xi:n −Xi−1:n > Xi+k:n −Xi:n]

=
∫ 1

0
Pr[Xi:n −Xi−1:n > r | Xi+k:n −Xi:n = r] Pr[Xi+k:n −Xi:n = r]dr

=
∫ 1

0
(1− r)n n!

(k − 1)!(n− k)!
rk−1(1− r)n−kdr

= k

(
n

k

)∫ 1

0
(1− r)2n−krk−1dr.

The last integral can be computed easily using the following recursive identity
which is derived easily using integration by parts∫ 1

0
(1− r)2n−krk−1dr =

k − 1
2n− k + 1

∫ 1

0
(1− r)2n−k+1rk−2dr

which yields ∫ 1

0
(1− r)2n−krk−1dr =

1
k
(2n

k

) .

Substituting this in the previous integral proves the lemma.

Maximum Interference of Random Sensors on a Line 203

Another idea that will prove useful is to look at the ratio Ri,i+1:n
Rj,j+1:n

of ranges.

Lemma 5. For all i < j ≤ n we have that

Pr
[

Ri,i+1:n

Rj,j+1:n
> k

]
≤ 1

k
.

Proof. Observe that

Pr
[

Ri,i+1:n

Rj,j+1:n
> k

]
= Pr[Ri,i+1:n > kRj,j+1:n]

=
∫ 1/k

0
Pr[Ri,i+1:n > kRj,j+1:n | Rj,j+1:n = r] Pr[Rj,j+1:n = r]dr

= n

∫ 1/k

0
Pr[Ri,i+1:n > kRj,j+1:n | Rj,j+1:n = r](1 − r)n−1dr

= n

∫ 1/k

0
Pr[Ri,i+1:n > kr](1 − r)n−1dr

= n

∫ 1/k

0
(1− kr)n(1− r)n−1dr.

Now observe that∫ 1/k

0
(1− kr)n(1− r)n−1dr ≤

∫ 1/k

0
(1− kr)ndr =

1
k(n + 1)

,

which proves the lemma.

We are also in a position to prove the following more precise result concerning
the interference of random sensors.

Lemma 6. For c > 2, for all i and k, Pr[I(i) > k] ≤ max{2c lnn/2k, 1/nc−2}.
Proof. Without loss of generality we consider only I+(i). We prove that for any
constant c > 2 we have that

Pr[(∃i ≤ n)(∃j > i + c ln n)j ∈ S+(i)] ≤ 1
nc−2 .

Indeed, for j > i + 1 we know that

Pr[j ∈ S+(i)] =

(
n

j−i

)
(2n
j−i

) .

Consider the event E : (∃i ≤ n)(∃j > i + c ln n)j ∈ S+(i). We have that

Pr[(∃i ≤ n)(∃j > i + c lnn)j ∈ S+(i)] ≤
∑

i

∑
j>i+c ln n

Pr[j ∈ S+(i)]

≤
∑

i

∑
j>i+c ln n

(
n

j−i

)
(2n
j−i

)
≤ 1

nc−2 .

204 E. Kranakis et al.

Note that

Pr[I+(i) > k] = Pr[I+(i) > k | E] Pr[E] + Pr[I+(i) > k | E] Pr[E].

If k ≥ c ln n we have Pr[I+(i) > k | E] = 0 and it follows that Pr[I+(i) >
k] ≤ Pr[E] ≤ 1/nc−2. For k < c ln n we can use the main argument of Lemma 3
to derive

Pr[I+(i) > k | E] ≤ Pr
[
∃j > i + 1

(
2k ≤ Xj+1:n −Xj:n

Xi+1:n −Xi:n

)
| E

]

≤
∑

i+1<j<i+c ln n

Pr
[
2k ≤ Xj+1:n −Xj:n

Xi+1:n −Xi:n

]

≤ c ln n

2k
,

where the last inequality follows from Lemma 5. The lemma now follows.

2.1 Expected Interference of a Given Sensor

We are now ready to show that the expected interference of a given sensor is a
constant independent of n.

Theorem 1. E[I(i)] ∈ O(1), for all i.

Proof. First we prove a lemma that analyzes the expected neighborhood size of
a given sensor.

Lemma 7. For all j, E[N(j)] ∈ O(1).

Proof. Observe that the event N+(j) > k is equivalent to the event “j has more
than k neighbors to its right” and similarly for the event N−(j) > k. Therefore
N(j) > k if and only if j has at least k + 1 neighbors. Therefore j either has at
least �k/2� neighbors either to its left or to its right. It follows from Lemma 4 that

Pr[N(j) > k] = Pr[N+(j) > �k/2�] + Pr[N−(j) > �k/2�]

≤ 2

(
n

�k/2�
)

(2n
�k/2�

) .

In particular,

E[N(j)] =
∑
k≥1

Pr[N(j) > k]

≤ 2
∑

k

(
n

�k/2�
)

(2n
�k/2�

)
≤

∑
k

1
2�k/2� ,

which proves the lemma.

Maximum Interference of Random Sensors on a Line 205

To prove the main theorem we now argue as follows. Join the endpoints of
the unit interval to form a circle with perimeter of length 1 where the sensors
lie on the perimeter of the circle. Consider the corresponding random variables
N+

C (i), N−
C (i), NC(i), I+

C (i), I−C (i), IC(i) of neighborhood sizes and interferences
on the circle, respectively. Essentially, this is like having n random sensors thrown
on the perimeter of the circle. Moreover, similar to Identity 1 we can show that∑

i E[NC(i)] =
∑

j E[IC(j)]. Also, as in the proof of Lemma 7, we see easily
that E[NC(i)] ∈ O(1), for all i. Since the random variables I(j) are identi-
cally distributed we have that

∑
j E[IC(j)] = nE[IC(j)] ∈ O(n). Therefore,

E[IC(i)] ∈ O(1), for all i. Now observe that the circle experiment is the same
as the interval experiment: the only sensors for which the neighborhood size
and interference change is at the endpoints of the interval. Moreover, with high
probability no two sensors can be at a distance higher than Ω(ln n/n). There-
fore with high probability, for all i we have that I(i) ≤ IC(i) and consequently
E[I(i)] ≤ E[IC(i)]. Therefore we have that E[I(i)] ∈ O(1) for all i. This com-
pletes the proof of Theorem 1.

2.2 Probability Bound on Maximum Interference

Our bound on the probability of the maximum interference exceeding lnn follows
from a similar bound on the size of a sensor’s neighborhood.

Lemma 8. For any constant c > 1 we have that

Pr[max
i

N(i) > 2c lnn] ≤ 1
nc−1 .

Proof. Observe that if the event maxi N+(i) > c ln n holds then there exists
an i such that N+(i) > c ln n. In turn, this last event implies that i has c ln n
neighbors to its right, i.e., there exists a j which is i’s neighbor and j > i+c lnn.
However, it is easy to show using Lemma 4 we have that the event Xi:n−Xi−1:n >
Xi+2c ln n:n −Xi:n holds with probability less than 1/2nc. It follows that

Pr[max
i

N+(i) > 2c lnn] ≤ n

nc
=

1
2nc−1 .

A similar argument will work for

Pr[max
i

N−(i) > 2c ln n] ≤ n

nc
=

1
2nc−1 .

Therefore the lemma is proved.

We can now prove the desired result.

Theorem 2. For any constant c > 1 we have that

Pr[I = max
i

I(i) > 4c lnn] ≤ 1
nc−1 .

206 E. Kranakis et al.

Proof. Using Lemma 8 as well as the easily proved fact maxi I(i) ≤ 2 maxj N(j),
we see that

Pr[max
i

I(i) > 4c lnn] ≤ Pr[max
j

N(j) > 2c lnn] ≤ 1
nc−1 ,

which proves the theorem.

3 Expected Maximum Interference

ClearlyE(I)= Ω(1) and it is straightforward to showusingTheorem2thatE(I) =
O(ln n). We now show tighter bounds on the expected maximum interference.

Theorem 3. The expected maximum interference satisfies E[I] ∈ Ω(ln lnn).

Proof. In this proof we use the equivalent Poisson model which we briefly discuss
here. Consider a homogeneous Poisson process {N(t) : t ≥ 0} with parameter
λ > 0. Let 0 = Δ0 < Δ1 < · · ·. denote the successive arrival times of events of
the process and for j ≥ 1 let Tj = Δj−Δj−1 be the interarrival times (spacings)
of the process. It is well-known that when conditioned under N(t) = n, t > 0, the
random variables 0 ≤ T1 ≤ · · · ≤ Tn ≤ t are distributed as the order statistics of
a sample of n observations taken from the uniform distribution on [0, t]. This is
known to represent the most natural relationship between the Poisson process,
random points on a line, and the uniform distribution of random points on an
interval. (E.g., see [13] and [1]). Thus in the sequel we assume that we have a
half-open (to the right) interval and sensors arrive with Poisson distribution and
arrival rate 1/n.

The probability that the interarrival time T between two consecutive sensors
is > r is e−rn. In particular, elementary calculations show that

Pr[a < T < b] = e−an − e−bn. (5)

We will show that for each sensor the interference produced by sensors located
to its right is at least ln lnn with reasonable probability. To this effect we prove
the following lemma.

Lemma 9. Let Tj , Tj+1, . . . , Tj+k be the j, j + 1, . . . , j + k interarrival times,
respectively, of the Poisson process and consider the events

Aj,k : (∀i ≤ k)
(

ei

n
< Tj+i <

ei+1

n

)
.

Then

Pr[Aj,k] ≥ e−e2 ek

e−1

Maximum Interference of Random Sensors on a Line 207

Proof. To prove the lemma we use the independence of the interarrival times to
conclude that

Pr[Aj,k] =
k∏

i=1

Pr
[
ei

n
< Tj+i <

ei+1

n

]

=
k∏

i=1

(
e−ei

− e−ei+1
)

≥
k∏

i=1

e−ei+1

≥ e−e2 ek

e−1

which proves Lemma 9.

As a consequence of Lemma 9 we see that

Pr [Aj,k] ≥ 1√
n

, (6)

for k ≤ ln lnn + ln
(

e−1
2e2

)
. Fix k =

⌊
ln lnn + ln

(
e−1
2e2

)⌋
. We are now ready to

prove Theorem 3.
Observe that the events Aj,k and Aj′,k are independent, for |j′ − j| ≥ k. Let

Ak be the event that at least one of the events A1,k, A1+
√

n,k, A1+2
√

n,k, . . . is
valid. It is easy to see

Pr[Ak] = 1− Pr[¬Ak]

= 1− Pr

[⋂
u

¬A1+u
√

n,k

]

≥ 1−
(

1− 1√
n

)√
n

.

Hence Pr[Ak] ≥ 1− 1
e .

Now it is possible to give a lower bound on the expected value of the maximum
interference I. Indeed, since the occurrence of the event Ai,k implies that the
i-th sensor has interference at least k we see that

E[I] =
∑

u

Pr[I > u]

≥
∑
u≤k

Pr[I > u]

≥ k Pr[I > k]
≥ k Pr[Ak]

≥ k

(
1− 1

e

)

208 E. Kranakis et al.

This completes the proof of Theorem 3.

Finally we prove an upper bound on E[I] better than that implied by Theorem 2.

Theorem 4. For any ε > 0 the expected maximum interference satisfies E[I] =
O((ln n)1/2+ε).

Proof. Note that the result follows for ε ≥ 1/2 by Theorem 2. Throughout this
proof we refer to the O(n2) intervals delimited by the n sensors as “discrete
intervals”. Recall from Lemma 2 that with high probability there is no gap (dis-
crete interval containing no sensors) of size c ln n/n, where c is an appropriately
chosen constant. As a consequence, all sensors interfering with a given sensor
must be at a distance O(ln n), with high probability. Note that the expected
number of sensors in an interval Δ is equal to n|Δ|, where |Δ| is the length of Δ.

Now we proceed with proving the main assertion of the theorem. The proof is
by contradiction. Assume on the contrary that for some ε > 0, E[I] ≥ (ln n)1/2+ε.
We prove the following claim.

Claim 1. There exists a sensor and a c > 0 such that for any interval of size
at least c ln n/n centered at that sensor the sum of interferences of all sensors
in the interval is Ω((ln n)1+2ε), with probability at least 1/(24(lnn)1/2−ε).

Proof. Let 1/2 > ε > 0 be such that E[I] ≥ (ln n)1/2+ε. From Lemma 6 we get
that for all i, Pr[I(i) > 12 lnn] ≤ 24 lnn/n4. Therefore, for sufficiently large n,
Pr[I = maxi I(i) > 12 lnn] ≤ 1/n2. We see from the above that

(ln n)1/2+ε ≤ E[I]

=
∑

v

Pr[I > v]

=
∑

v≤12 ln n

Pr[I > v] + o(1)

=
∑

v<(ln n)1/2+ε/2

Pr[I > v] +
∑

(ln n)1/2+ε/2≤v≤12 ln n

Pr[I > v] + o(1)

≤ (ln n)1/2+ε/2 +
∑

(ln n)1/2+ε/2≤v≤12 ln n

Pr[I > v] + o(1).

It follows that

(ln n)1/2+ε/2 ≤
∑

(ln n)1/2+ε/2≤v≤12 ln n

Pr[I > v] + o(1).

This implies that the maximum interference satisfies I > (1/2)(lnn)1/2+ε, with
probability at least 1/(24(lnn)1/2−ε). However, if I > (1/2)(lnn)1/2+ε then there
is a sensor, say i0, with interference � > (1/2)(lnn)1/2+ε. Hence, there are sensors
with interference � − 1, � − 2, . . . , 1, respectively, and all these sensors will lie
within an interval of length c lnn/n centered at sensor i0, with high probability.

Maximum Interference of Random Sensors on a Line 209

Clearly in any interval of length c ln n/n containing this interval, the sum of
interferences of all sensors will be at least �(�− 1)/2 (which is in Ω((ln n)1+2ε))
with probability at least 1/(24(lnn)1/2−ε). This proves the claim.

The next claim is an application of Chernoff bounds.

Claim 2. There exists a c > 0 such that for any interval of length at least
c ln n/n centered at any sensor, the sum of interferences of all sensors in this
interval is O(ln n), with probability greater than 1− 1/n.

Proof. Let c be a sufficiently large constant and consider an interval Δ of length
3c lnn/n. Further, let J be the interval centered at the midpoint of Δ and of
length c ln n/n. Let the random variable Xi indicate with 1 that the i-th sensor
is in the interval J and is 0 otherwise. Using Chernoff bounds we see that

Pr

[
n∑

i=1

Xi > (1 + δ)μ

]
<

(
eδ

(1 + δ)1+δ

)μ

,

where μ = 3c ln n and δ > 0 is chosen in such a way that eδ

(1+δ)1+δ is a constant
< 1. It follows that for some constant c′ > 0 the number of interfering sensors
in the interval J will be at most c′ ln n, with probability, at least 1− 1/n2. By
Theorem 1, for each i the expected interference of a given sensor i is in O(1).
It follows that the sum of expected interferences of all sensors in the interval J
will be in O(ln n), with high probability. Moreover there are at most O(n)/ ln n
intervals of length O(ln n)/n (one interval centered at a sensor, for each sensor).
Hence, for all intervals J of length O(ln n)/n centered around sensors, the sum
of expected interferences of all sensors in the interval J will be in O(ln n), with
probability at least 1− 1/n. This proves the claim.

Now we can derive a contradiction. By Claim 2 and Boole’s inequality, the prob-
ability that there is an interval of length O(ln n)/n with sum of interferences not
in O(ln n) is strictly less than 1/n. But this contradicts Claim 1 since

1
24(ln n)1/2−ε

≥ Pr

[
∃J

(∑
i∈J

I(i) ∈ Ω((ln n)1+2ε)

)]

≥ Pr

[
∃J

(∑
i∈J

I(i) 	∈ O(ln n)

)]
≥ 1

n
.

This proves the theorem.

4 Conclusion

In this paper we have investigated the receiver interference for a set of random
sensors on a line (also known as the highway model) and proved upper and lower
on the value of the expected maximum interference. Aside from tightening the

210 E. Kranakis et al.

bounds, it would be interesting to look at probability distributions other than the
uniform for the arrangement of sensors. Finally, bounds for the two dimensional
case would be quite interesting. Unlike the one-dimensional case studied here
whereby sensors where assigned as range the maximum distance between their
two neighbors, an analysis of the two-dimensional case must be preceded by an
assignment of sensor ranges, for example the maximum length of an edge in the
minimum spanning tree.

Acknowledgments

We thank the anonymous referees for many helpful suggestions. This research
was supported in part by Natural Sciences and Engineering Research Council
of Canada (NSERC) and Mathematics of Information Technology and Complex
Systems (MITACS).

References

1. Abay, A.: Extremes of Interarrival Times of a Poisson Process under Conditioning.
Applicationes Mathematicae 23(1), 73–82 (1995)

2. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A first course in order statistics.
John Wiley & Sons, Chichester (1992)

3. Bilo, D., Proletti, G.: On the complexity of minimizing interference in ad hoc and
sensor networks. Theoretical Computer Science 402, 43–55 (2008)

4. Buchin, K.: Minimizing the maximum interference is hard, arXiv:0802.2134 (Febru-
ary 2008)

5. Burkhart, M., Wattenhofer, R., Zollinger, A.: Does topology control reduce inter-
ference? In: Proceedings of the 5th ACM International Symposium on Mobile ad
hoc Networking and Computing, pp. 9–19. ACM, New York (2004)

6. Darling, D.A.: On a class of problems related to the random division of an interval.
Ann. Math. Statist. 24, 239–253 (1953)

7. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on
Information Theory 46(2), 388–404 (2000)

8. Halldórsson, M.M., Tokuyama, T.: Minimizing interference of a wireless ad-hoc
network in a plane. Theoretical Computer Science 402(1), 29–42 (2008)

9. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of Interference on Multi-
Hop Wireless Network Performance. Wireless Networks 11(4), 471–487 (2005)

10. Locher, T., von Rickenbach, P., Wattenhofer, R.: Sensor Networks Continue to
Puzzle: Selected Open Problems. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy,
C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, p. 25. Springer, Heidelberg
(2008)

11. Moscibroda, T., Wattenhofer, R.: Minimizing interference in ad hoc and sensor
networks. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile
Computing, pp. 24–33. ACM, New York (2005)

12. Penrose, M.D.: The longest edge of the random minimal spanning tree. Annals of
Applied Probability 7, 340–361 (1997)

13. Pyke, R.: Spacings. Journal of the Royal Statistical Society. Series B (Methodolog-
ical) 27(3), 395–449 (1965)

14. von Rickenbach,P., Schmid, S.,Wattenhofer, R., Zollinger, A.: A Robust Interference
Model for Wireless Ad-Hoc Networks. In: Proc. 5th IEEE International Workshop
on Algorithms for Wireless, Mobile, Ad-Hoc and Sensor Networks, WMAN (2005)

Multipath Spanners

Cyril Gavoille1,�, Quentin Godfroy1,�, and Laurent Viennot2,��

1 University of Bordeaux, LaBRI
2 INRIA, University Paris 7, LIAFA

Abstract. This paper concerns graph spanners that approximate mul-
tipaths between pair of vertices of an undirected graphs with n vertices.
Classically, a spanner H of stretch s for a graph G is a spanning sub-
graph such that the distance in H between any two vertices is at most s
times the distance in G. We study in this paper spanners that approxi-
mate short cycles, and more generally p edge-disjoint paths with p > 1,
between any pair of vertices.

For every unweighted graph G, we construct a 2-multipath 3-spanner
of O(n3/2) edges. In other words, for any two vertices u, v of G, the
length of the shortest cycle (with no edge replication) traversing u, v
in the spanner is at most thrice the length of the shortest one in G.
This construction is shown to be optimal in term of stretch and of size.
In a second construction, we produce a 2-multipath (2, 8)-spanner of
O(n3/2) edges, i.e., the length of the shortest cycle traversing any two
vertices have length at most twice the shortest length in G plus eight.
For arbitrary p, we observe that, for each integer k � 1, every weighted
graph has a p-multipath p(2k − 1)-spanner with O(pn1+1/k) edges,
leaving open the question whether, with similar size, the stretch of the
spanner can be reduced to 2k − 1 for all p > 1.

Keywords: spanner, multipath.

1 Introduction

This paper concerns the computation of sparse spanners for the multipath graph
metric. We call graph metric a function δ that associates a metric δG with the
vertex-set of a given graph G. A graph metric δ is non-increasing when distances
can only decrease when adding edges. In other words, δ is non-increasing when
H ⊆ G implies δH � δG. (Here H ⊆ G stands for H is a subgraph1 of G, and
δH � δG stands for δH(u, v) � δG(u, v) for all2 u, v.) The graph distance d is the
most classical graph metric: given an weighted undirected graph G, dG(u, v) is
defined as the cost of a shortest path between u and v.
� Supported by the ANR-project “ALADDIN”, the équipe-projet INRIA “CÉPAGE”,

and the French-Israeli “Multi-Computing” project. The first author is Member of the
“Insitut Universitaire de France”.

�� Supported by the ANR-project “ALADDIN”, and the équipe-projet INRIA “GANG”.
1 I.e., V (H) ⊆ V (G) and E(H) ⊆ E(G).
2 For convenience, we set δH(u, v) = ∞ if u or v is not in V (H).

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 211–223, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

212 C. Gavoille, Q. Godfroy, and L. Viennot

The notion of spanner is usually defined for the graph distance but it can be
formulated for any non-increasing graph metric δ: an f -spanner (for δ) of a graph
G is a subgraph H ⊆ G such that δH(u, v) � f(δG(u, v)) for all u, v ∈ V (G)
where f is a stretch function satisfying f(d) � d for d � 0. As δ is non-increasing,
H must satisfy δG(u, v) � δH(u, v) � f(δG(u, v)) for all u, v. Intuitively, an f -
spanner H approximates the distances of G using possibly fewer edges. A rich
literature studies the trade-off between the sparsity of H and the tightness of
the stretch function f .

In this paper, we focus on the notion of spanner for the multipath graph
metric. Given an integral value p � 1, the p-multipath graph metric dp is defined
as follows: given a weighted undirected graph G, dp

G(u, v) is the minimum weight
sum of the edges of a set of p edge-disjoint paths joining u and v in G. The value
dp

G(u, v) can be determined in polynomial time by computing a minimum-cost
flow3 of value p between source u and sink v. For p = 1, we fall back on the
graph distance: d1

G(u, v) = dG(u, v). This introduces a new notion of spanner
that we call multipath spanner.

1.1 Motivation

Our interest to the multipath graph metric stems from the need for multipath
routing in networks. Using multiple paths between a pair of nodes is an obvi-
ous way to aggregate bandwidth. Additionally, a classical approach to quickly
overcome link failures consists in pre-computing fail-over paths which are link-
wise disjoint from primary paths [18,23,22]. Multipath routing can be used for
traffic load balancing and for minimizing delays [32,15]. Multipath routing has
been extensively studied in ad hoc networks for load balancing, fault-tolerance,
higher aggregate bandwidth, diversity coding, minimizing energy consumption
(see [21] for a quick overview). Heuristics have been proposed to provide disjoint
routes [22,19] in on-demand protocols. There is a wide variety of optimization
requirements when using several paths between pairs of nodes. However, using
edge-disjoint or vertex-disjoint paths is a recurrent concern in optimizing routing
in networks. Using disjoint paths is a dissertation subject in itself [17] and has
many problem variants.

Considering only a subset of links is a practical concern in link state rout-
ing in ad hoc networks [16]. This raises the problem of computing spanners for
the multipath graph metric. As node mobility results in link failures, having
an edge-disjoint multipath between two nodes reduces the probability of dis-
connection. Additionally, spanners are a key ingredient in the design of compact
routing schemes [25,30]. Designing multipath spanners is thus a first step toward
multipath compact routing.

Another reason for considering edge-disjoint paths rather than vertex-disjoint
paths is that the resulting distance is a metric. This is not the case with vertex-
disjoint paths. More specifically, if we define d∗p

G(u, v) as the minimum cost of a

3 To avoid using an edge in both directions, we apply a standard reduction to digraphs:
each undirected edge xy is replaced by the dipath x → x′ → y′ → y → x′ → y′ → x.

Multipath Spanners 213

set of p internally vertex-disjoint paths joining u and v, the triangle inequality
may be violated. For p � 2, one can easily build a graph G where d∗p

G(u, v) and
d∗p

G(v, w) are finite whereas d∗p
G(u, w) is not4. The proof that dp

G satisfies the
triangle inequality is given in Proposition 1 (see Section 2.1). Choosing the weight
sum as the cost of a set of p edge-disjoint paths follows again the same rationale.
dp

G is the most natural metric generalizing dG in the context of multipath routing.

1.2 Related Work

The concept of spanner has been mostly studied for the graph distance as in-
troduced by Peleg and Schäffer [24], and generalized to weighted graphs in [3].
There is an abundant literature on graph distance spanners which is surveyed,
e.g., by Pettie in [26]. It is well-known that, for each integer k � 1, every weighted
graph with n vertices has an f -spanner of O(n1+1/k) edges with stretch function
f(d) = (2k − 1)d. This can be proved using a greedy construction based on a
simple modification of Kruskall’s algorithm5, and this size-stretch tradeoff is con-
jectured to be tight. However, other tradeoffs exist, in particular for unweighted
graphs and for stretch functions on the form f(d) = αd + β. For α = 1, the size
is O(n3/2) with β = 2 [1], and O(n4/3) [4] with β = 6. There are also construc-
tions for α = 1 + ε and arbitrary small ε > 0. The term β = β(ε, k) depends
on ε and k, and the size is O(βn1+1/k) [11,31]. For α = O(1) and β = Õ(1),
spanners of size6 O(n) exist [26]. Other stretch functions have been considered,
e.g., f(d) = d + O(d1−1/k) [26,31]. Distributed algorithms for constructing such
spanners have been also developped in [7,8,10,12,27].

The concept of spanner has been extended to some other graph metrics. In
weighted directed graphs, the one-way distance is not a graph metric. However,
the roundtrip distance, defined as the one-way distance from u to v plus the
one way distance from v to u, is a non-increasing graph metric. Roundtrip f -
spanners of size O(n3/2) exist for f(d) = 3d [28], and the size is Õ(n1+1/k) for
f(d) = (2k−1)d and for every k > 1 [6]. It is also proved that no such size-stretch
tradeoff can exist if the usual one-way distance in directed graph is considered.
Interestingly, these solutions lead to compact routing scheme in directed graphs.

Dragan and Yan [9] study the complexity of computing spanners approximat-
ing maximum flow between any two vertices. We observe that the inverse7 of the
maximum flow is a graph metric (it is even an ultrametric), and thus is captured
by our framework.

A concept independent of spanner for a graph metric δ, is the one of
fault-tolerant spanner. An f -spanner H is t-fault-tolerant if δH\F (u, v) �
f(δG\F (u, v)) for all vertices u, v and for any set F of at most t faulty ver-
tices and/or edges. Introduced in [20] for the graph distance and for geometric
4 E.g., if v is a cut-vertex.
5 Visit all the edges of G by increasing order of their weights, and add the edge

(x, y) to the current spanner H , initialized to the empty graph, only if dH(x, y) >
(2k − 1) · dG(x, y).

6 Where Õ(g(n)) stands for g(n) · (log n)O(1).
7 The flow from u to u is considered to be ∞.

214 C. Gavoille, Q. Godfroy, and L. Viennot

graphs, namely the d-dimensional Euclidean complete graph, it has been recently
generalized to arbitrary weighted graphs in [5]. Surprisingly, size-stretch trade-
offs are similar to the classic case where no-fault (t = 0) are tolerated. Note that
t-fault-tolerant spanners preserve (t+1)-connectivity: if there exists t+1 disjoint
paths in the graph from u to v, then the spanner also contains t+1 disjoint paths
from u to v. However, the stretch guarantee is different from ours. In particular,
we can build examples where the stretch guarantee is low with respect to fault
tolerance whereas it is high when considering the multipath graph metric.

1.3 Our Contributions

Our results hold for undirected multi-edge graphs, and for the p-multipath graph
metric dp, for integer p � 1. Our contributions are the following:

1. We observe (Proposition 2) that every weighted graph has a p-multipath
f -spanner of O(pn1+1/k) edges, where f(d) = p(2k− 1)d. This is done by an
iterative construction of standard graph distance spanners.

2. The analysis of the stretch can be refined for unweighted graphs, and we show
that the previous construction for p = k = 2 actually leads to a 2-multipath
f -spanner of O(n3/2) edges, where f(d) = 3d.

3. We also show that all the lower bounds for p = 1, i.e., for the standard graph
distance, generalize to p-multipath distance for any p > 1. In particular, the
size-stretch tradeoff of our second result is optimal.

4. Using a quite different approach, we show that 2-multipath f -spanner of
size Φ · n3/2 + n edges exists for f(d) = 2d + 8W , where W is the largest
edge-weight of the graph and Φ ≈ 1.61 is the golden ratio.

It may be worth to mention that, as long as δ is a non-increasing graph met-
ric, the greedy Kruskall’s algorithm can be naively applied to produce sparse
approximate skeletons. It suffices to construct, from G, the weighted complete
graph K defined by V (K) = V (G) and the weight δG(u, v) assigned to the edge
(u, v). An f -spanner H of O(n1+1/k) edges with f(d) = (2k − 1)d can therefore
be constructed. Unfortunately, H is not a spanner of the input graph G, it is
only a subgraph of K. This general solution might be acceptable for emulator
construction [31] where the output graph H is not required to be a subgraph.

A second observation is that, in spite of similarities between roundtrip and
2-multipath distances (in both cases a subgraph realizing the distance between
any two vertices indeed consists of a shortest cycle), there is no reduction from
2-multipath to roundtrip spanners8.

In the next section we give formal definitions and prove some important basic
facts, including simple upper and lower bounds. In Section 3, we present the
optimal 2-multipath f -spanner with O(n3/2) edges with f(d) = 3d. In Section 4,
we improve the stretch function to f(d) = 2d + 8. We give some open problems
in Section 5.
8 By simply directing the edges of G and applying an efficient roundtrip spanner to

G, we may obtain a roundtrip from u to v using twice the same arc, say u → a →
b → v → a → b → u, which is not an acceptable solution for a 2-multipath spanner.

Multipath Spanners 215

2 Preliminaries

In this paper, we consider an undirected multi-edge weighted graph G with
weight function ω. The cost of any subgraph H of G is the sum of the weights of
its edges. It is denoted by ω(H) =

∑
e∈E(H) ω(e). We set ω(H) = 0 if E(H) = ∅.

2.1 Multipath Distance and Multipath Spanner

A p-path from a vertex u to a vertex v is a subgraph of G composed of p edge-
disjoint paths from u to v. We define the p-multipath distance between two
vertices u and v, denoted by dp

G(u, v), as the minimum cost of a p-path from u
to v. We set dp

G(u, v) = ∞ if there are no p edge-disjoint paths from u to v.
Indeed, dp

G is a distance. It clearly satisfies dp
G(u, v) = 0 if and only if u = v.

Symmetry follows from the fact that G is undirected, and the triangle inequality
comes from Proposition 1.

Proposition 1. Let u, v, w be any triple of vertices of a multi-edge graph G. If
A is a p-path from u to v, and B a p-path from v to w, then A ∪ B contains a
p-path from u to w. In particular, dp

G(u, w) � dp
G(u, v) + dp

G(v, w).

Proof. Let (U, W) be a minimum cut between u ∈ U and w ∈ W in the graph
induced by H = A∪B. Let t be the number of edges with an endpoint in U and
the other in W . Consider a maximum flow on H with source u and sink v with
unit capacity on each edge. From the min-cut max-flow theorem we derive that
there are t edge-disjoint paths from u to w. If t < p, we conclude that u and v
are both in U as there exists a p-path between them. The same argument can
be used to show that v, w ∈ W . This is a contradiction, U ∩W = ∅. �

The notions of p-path and p-multipath distance extend the usual notions of path
and distance which correspond to the case p = 1. We write dG a short for d1

G. We
observe that the multipath distance does not extend to a vertex-disjoint version.
Indeed, for each p > 1, the existence of p vertex-disjoint paths from u to v and
of p vertex-disjoint paths from v to w does not imply there are p vertex-disjoint
paths from u to w.

A subgraph H of G is a p-multipath s-spanner if dp
H(u, v) � s · dp

G(u, v) for
all pairs of vertices u, v. The parameter s is called the p-multipath stretch of H .
We also use the term stretch, instead of multipath stretch, when the context is
clear. For p = 1, we fall back on the regular definition of s-spanner.

2.2 Iterative Spanners

A p-iterative s-spanner of G is a subgraph H =
⋃p

i=1 Hi, where Hi is any
1-multipath s-spanner of G \

⋃
j<i Hj . We observe that the union of p such

1-multipath spanners is actually a p-multipath spanner.

Proposition 2. For all integers k, p � 1, every multi-edge weighted graph with
n vertices has a p-multipath p(2k − 1)-spanner with less than p · n1+1/k edges
that can be constructed as a p-iterative (2k − 1)-spanner.

216 C. Gavoille, Q. Godfroy, and L. Viennot

Proof. Let H =
⋃p

i=1 Hi be a p-iterative (2k − 1)-spanner of G, where Hi is a
(2k − 1)-spanner of G with less than n1+1/k edges. Each spanner Hi does exist
(cf. [3]). Hence, H has less than p · n1+1/k edges.

We now prove that H is a p-multipath p(2k − 1)-spanner. Let u, v be two
vertices of G. If there is no p-path from u to v in G, then dp

G(u, v) = ∞. In
particular, dp

H(u, v) � p(2k − 1) · dp
G(u, v). So, we assume there exists a p-path

from u to v. Let P be any minimum-cost p-path from u to v in G. We have
ω(P) = dp

G(u, v). For an edge e /∈ H , we denote by Hi(e) the simple path which
replaces the edge e of G in the i-th spanner member of H . Observe that, for each
i, ω(Hi(e)) � (2k − 1) · ω(e) because e ∈ G \Hi and Hi has stretch 2k − 1.

Given P and H , we define the subgraph F as follows:

F := (P ∩H) ∪
⋃

e∈P\H

p⋃
i=1

Hi(e) .

Clearly, F ⊆ H , since each edge e ∈ P is either in H or is replaced by Hi(e) for
some i. Moreover, we have ω(F) � p(2k − 1) · ω(P) because:

ω(F) � ω(P ∩H) +
∑

e∈P\H

p∑
i=1

ω(Hi(e))

�
∑

e∈P∩H

ω(e) +
∑

e∈P\H

p(2k − 1) · ω(e)

�
∑
e∈P

p(2k − 1) · ω(e) = p(2k − 1) · ω(P) .

Therefore, the stretch of H is at most p(2k − 1) as claimed.
We now show that F contains a p-path from u to v, and for that we shall use

the min-cut max-flow theorem. Consider a cut (X, X) with u ∈ X and v ∈ X .
Since P is a p-path from u to v, there is a subset C of the cut of at least p edges
of P which have one endpoint in X and the other in X. Two cases are possible:

1. Every edge of C belongs to F : the cut in F is already at least p.
2. One edge of C does not belong to F : p paths where added in F in replacement

for this edge, so the minimum cut is at least p.

Therefore, the minimum cut in F is at least p. By the min-cut max-flow theorem
there is p edge-disjoint paths from u to v in F . It follows that F contains a p-path
from u to v. This completes the proof. �

The rest of the paper studies how the p(2k− 1) stretch bound can be improved.

2.3 Lower Bounds

For all integers p, n and real s > 1, denote by mp(n, s) the largest integer such
that there exists a multi-edge weighted graph with n vertices for which every
p-multipath spanner of stretch < s requires mp(n, s) edges.

Multipath Spanners 217

The value of mp(n, s) provides a lower bound on the sparsity of p-multipath
spanners of stretch < s. To illustrate this, consider for instance p = 1 and s = 3.
It is known that m1(n, 3) = Ω(n2), by considering the complete bipartite graph
B = K�n/2�,�n/2�. Since all cycles of B have length at least 4, every proper
subgraph H contains two vertices x and y which are neighbors in B but at
distance at least 3 in the spanner. Thus H is an s-spanner with s � 3. In other
words, every s-spanner of B, with s < 3 contains all the edges of B that is
Ω(n2) edges.

Unfortunately, this argument does not transfer to p-multipath spanners when-
ever p > 1. Indeed, with the same graph B, we get dp

B(x, y) = 1+3(p− 1). And,
if (x, y) is removed from any candidate spanner H , we only get dp

H(x, y) = 3p.
Hence, the stretch for H so proved is only dp

H(x, y)/dp
G(x, y) = 1 + O(1/p). The

argument transfers however if multi-edges are allowed.
Proposition 3. For all integers n, p � 1 and real s > 1, mp(n, s) � m1(n, s).

In particular, under the Erdös-Simonovits [13,14] Conjecture9 which implies
m1(n, 2k+1) = Ω(n1+1/k) for every integer k � 1 and proved for k ∈ {1, 2, 3, 5},
there is a multi-edge unweighted graph with n vertices for which every p-multipath
spanner with stretch < 2k + 1 has Ω(n1+1/k) edges.

Proof. Let G be an n-vertex graph with the minimum number of edges such that
every spanner of stretch < s has m1(n, s) edges. Let ω be the weight function of
G. Clearly, G has m1(n, s) edges, since otherwise we could remove an edge of G.
Observe also that any path between two neighbors x, y of G that does not use
the edge (x, y) has length at least s, since otherwise we could remove it from G.
In other words, dG\{(x,y)}(x, y) � s · ω(x, y).

Let Gp be the graph obtained from G by adding, for each edge of G, p − 1
extra multi-edges with same weight. We have G1 = G, and Gp has p ·mp(n, s)
edges. Let H be any p-multipath spanner of Gp with < m1(n, s) edges. There
must exist two vertices x, y adjacent in Gp that are not adjacent in H . We have
dp

Gp
(x, y) = p · ω(x, y), and dp

H(x, y) � p · dG\{(x,y)}(x, y) � p · s · ω(x, y). We
conclude that the p-multipath stretch of H is at least dp

Gp
(x, y)/dp

H(x, y) � s.
In other words, every p-multipath spanner H of Gp with stretch < s has

� m1(n, s) edges, proving that mp(n, s) � m1(n, s). �
We leave open the question of determining whether the same lower bound of
2k−1 on the stretch applies if the graphs are restricted to be simple graphs only.

3 An Unweighted 2-Multipath 3-Spanner

In this section, we focus on unweighted 2-multipath 3-spanners. The lower bound
of Proposition 3 tells us that Θ(n3/2) is the required size of any 2-multipath 3-
spanner. However, the p-iterative (2k− 1)-spanner given by Proposition 2 (with
p = k = 2) provides a 2-multipath spanner of stretch 6 only. In fact a finer
analysis shows that the same construction yields a 2-multipath 3-spanner.
9 It states that there are n-vetex graphs with Ω(n1+1/k) edges without cycles of length

� 2k.

218 C. Gavoille, Q. Godfroy, and L. Viennot

Theorem 1. Every multi-edge unweighted graph with n vertices has a 2-
multipath 3-spanner with less than 2n3/2 edges that can be constructed as a
2-iterative 3-spanner.

It is obvious from the construction that a 2-iterative 3-spanner contains less than
2n3/2 edges. For the stretch, the long proof is divided in five lemmatas that are
given in the full version of the paper.

4 A 2-Multipath (2,8)-Spanner

In this section, we construct a 2-multipath spanner with O(n3/2) edges whose
stretch is below 3 for (2-multipath) distances > 8. In the remaining, (α, β)-
spanner stands for f -spanner of stretch function f(d) = αd + β.

4.1 Multipath Spanning Trees

To prove the main result of this section we extend the notion of spanning tree.
A p-multipath spanning tree of G is a subgraph T of G with a distinguished

vertex u, called the root of T , such that, for every vertex v of G, T contains a
p-path from u to v. Moreover, T is a p-shortest-path spanning tree if dp

T (u, v) =
dp

G(u, v) for every vertex v. For p = 1, we come back to the standard notions of
spanning tree and shortest-path spanning tree. Observe that T may not exist,
for instance, if G is not 2-edge-connected.

Lemma 1. Every n-vertex 2-edge-connected graph with a given vertex u has a
2-shortest-path spanning tree rooted at u with at most 2(n−1) edges constructible
in polynomial time.

Proof. We use the construction of [29] that can be extended to undirected graphs.
The algorithm of [29] constructs 2-paths, each one of minimum cost, from every
vertex to a fixed source of the graph. Roughly speaking, the construction results
of two shortest-path spanning trees computed with Dijkstra’s algorithm. The
2-paths (from every vertex v to the source) are reconstructed via a specific
procedure. This latter can be analyzed so that the number of edges used in
the 2-multipath tree is at most 2(n − 1): all vertices, but the source, have two
parents. �

The bound of 2(n − 1) is tight because of the graph K2,n−2. More generally,
the number of edges in any p-multipath spanning tree must be, in the worst-
case, at least p(n − p), for every p � n/2. Indeed, every p-multipath spanning
tree T must be p-edge-connected10, and the graph Kp,n−p is minimal for the
p-edge-connectivity. Therefore, T contains all the edges of Kp,n−p, and there are
p(n − p) edges. Obviously, there are p-multipath spanning tree with less than
p(n− p) edges. Typically a subdivision of K2,p with n vertices has p-multipath
spanning tree rooted at a degree-p vertex with a total of n + p− 2 edges.
10 By Proposition 1, there are two edge-disjoint paths between any two vertices of the

p-multipath tree, through its root.

Multipath Spanners 219

4.2 A Stretch-(2,8W) Spanner

Theorem 2. Every multi-edge weighted graph with n vertices and largest edge-
weight W has a 2-multipath (2, 8W)-spanner with less than Φn3/2 + n edges,
where Φ ≈ 1.618 is the golden ratio.

Proof. Let denote by Bp
H(u, r) = {v ∈ V (H) : dp

H(u, v) � r} the p-multipath ball
of radius r in H centrered at u, and denote by Np

H(u, r) the neighbors of u in
H that are in Bp

H(u, r). Note that for p � 2, some neighbor v of u might not be
in Bp

H(u, r) for every r <∞: for instance if u and v are not in the same 2-edge-
connected component. We denote by SPTp

H(u) a p-shortest-path tree rooted at
u spanning the 2-edge-connected component of H containing u, and having at
most 2(|E(H)| − 1) edges. According to Lemma 1, such p-shortest path tree can
be constructed.

Let G be a multi-edge weighted graph with n vertices and largest edge-weight
W . We denote by ω its edge-weight function. The 2-multipath spanner H of G
is constructed thanks to the following algorithm (see Algorithm 1).

1. For each edge e of G: if there are in G two other edges between the
endpoints of e with weight at most ω(e), then G := G \ {e}

2. H := (V (G), ∅) and W := max {ω(e) : e ∈ E(G)}
3. While there exists u ∈ V (G) such that |N2

G(u, 4W)| � (
√

5 − 1)
√

n :
(a) H := H ∪ SPT2

G(u)
(b) G := G \ N2

G(u, 4W)
(c) W := max {ω(e) : e ∈ E(G)}

4. H := H ∪ G

Algorithm 1. A 2-multipath (2, 8W)-spanner algorithm

Size: Denote by G3 and H3 respectively the graphs G and H obtained after
running the while-loop. Let b be the number of while-loops performed by the
algorithm, and let a =

√
5 − 1. Observe that a2 + 2a = 4. From Lemma 1, the

2-shortest-path tree SPT2
G(u) has at most 2(n− 1) edges. Hence, the size of H3

is at most:
|E(H3)| < 2b · n .

The number of vertices of G3 is at most n−ab
√

n, since at each loop, at least a
√

n
vertices are removed from G. Let G1

3 be the graph induced by all the edges (u, v)
of G3 such that v ∈ N2

G3
(u, 4W1), where W1 is the maximum weight of an edge

of the graph obtained after running Instruction 1. Let G2
3 be the graph induced

by the edges of G3 \G1
3. The degree of each vertex u of G1

3 is |N2
G3

(u, 4W1)| − 1
which is < �a

√
n �−1 � a

√
n because of the while-condition. Therefore, the size

of G1
3 is at most:

|E(G1
3)| �

1
2

∑
u∈V (G3)

a
√

n <
1
2
(
n− ab

√
n
)
· a
√

n <
a

2
· n3/2 − a2b

2
· n .

220 C. Gavoille, Q. Godfroy, and L. Viennot

Let S3 be the graph obtained from G2
3 where each multi-edge is replaced by a

single unweighted edge. More formally, vertices u and v are adjacent in S3 if and
only if there is at least one edge between u and v in G2

3. From Instruction 1,
there is at most two edges between two adjacent vertices, so |E(G2

3)| � 2|E(S3)|.
Let us show that S3 has no cycle of length � 4. Consider any edge (u, v) of S3.

Observe that v /∈ N2
G2

3
(u, 4W3), where W3 is the maximum weight of an edge of

G3. Assume there is a path cycle of length at most 4 in S3 going through (u, v).
Then in G2

3 there is a 2-path from u to v of cost at most 4W3. Contradiction:
v /∈ N2

G2
3
(u, 4W3) implies d2

G2
3
(u, v) > 4W3.

It has been proved in [2] that every simple η-vertex μ-edge graph without
cycle of length � 2k, must verify the Moore bound:

η � 1 + δ

k−1∑
i=0

(δ − 1)i > (δ − 1)k

where δ = 2μ/η is the average degree of the graph. This implies that μ <
1
2 (η1+1/k + η).

We observe that S3 is simple. It follows, for k = 2 and η � n − ab
√

n, that
the size of G2

3 is at most (twice the one of S3):

|E(G2
3)| �

(
n− ab

√
n
)3/2 +n−ab

√
n < (n−ab

√
n)
√

n+n = n3/2 +(1−ab) ·n .

Overall, the total number of edges of the final spanner H is bounded by:

|E(H)| � |E(H3)|+ |E(G1
3)|+ |E(G2

3)|

<
(
1 +

a

2

)
· n3/2 +

(
2b− a2b

2
+ 1− ab

)
· n

=
(
1 +

a

2

)
· n3/2 + n =

1 +
√

5
2

· n3/2 + n = Φn3/2 + n

because the term 2b− a2b/2 + 1− ab = b/2 · (4− a2 − 2a) + 1 = 1. (Recall that,
by the choice of a, a2 + 2a = 4.)

Stretch: Let G0 be the input graph G, before applying the algorithm. We first
observe that we can restrict our attention to the stretch analysis of G1 (instead
of G0), the graph obtained after applying Instruction 1.

Let H be a 2-multipath spanner for G1. Consider two vertices u, v of H ,
and let A be a minimum-cost 2-path between u and v in H . A is composed of
two edge-disjoint paths and is of minimum cost in H , so A traverses (at most)
two edges with same endpoints having the smallest weight. These (possibly) two
edges exist in G0 and in G1, therefore the 2-multipath stretch of H in G0 or in
G1 is the same.

From the above observation, it suffices to prove thatH is a 2-multipath (2, 8W1)-
spanner of G1, where W1 � W0 is the maximum weight of an edge of G1.

Let x, y be any two vertices of G1, and A be a minimum-cost 2-path between
x and y in G1. Let d = d2

G1
(x, y) = ω(A). If all the edges of A are in H , then

Multipath Spanners 221

d2
H(x, y) = d2

G1
(x, y) = d, and the stretch is (1, 0). So, assume that A 	⊂ H . Let

u be the first vertex selected in the while-loop such that N2
G(u, 4W) intersects

A, so that Instruction 3(b) removes at least one edge of A. Let G, H be the
graphs at the time u is selected, but before running Instruction 3(a) and 3(b).
Let v ∈ N2

G(u, 4W) ∩ A, and B a minimum-cost 2-path from u and v in G. By
definition of N2

G(u, 4W), d2
G(u, v) = ω(B) � 4W . Let T = SPT2

G(u).
An important observation is that u, x, y are in the same 2-edge-connected com-

ponent of G. This comes from the fact that every 2-path is a 2-edge-connected
subgraph11. So, A and B are 2-edge-connected, and A ∪ B as well, since A
intersects B (in v).

Using the triangle inequality (Proposition 1) between x and y in H , we
have d2

H(x, y) � d2
H(u, x) + d2

H(u, y). By construction of H and T , d2
H(u, x) =

d2
T (u, x) = d2

G(u, x) � ω(A ∪ B) since we have seen that u, x ∈ A ∪ B that
is 2-edge-connected. Thus, d2

H(u, x) � ω(A) + ω(B) � d + 4W1. Similarly,
d2

H(u, y) � d + 4W1. Therefore, d2
H(x, y) � 2d + 4W1. The subgraph H is a

2-multipath (2, 8W1)-spanner, completing the proof. �

x y

v

u

d − 2

d + 3 − ε d + 3 − ε

1 1

ε 4 − ε

Fig. 1. A weighted graph G with d2
G(x, y) = d showing that the stretch analysis in the

proof of Theorem 2 is tight. The 2-shortest-path tree rooted at u spans all the edges
but (x, y). We have d2

T (u, x) = d2
T (u, y) = d + 4, and d2

T (x, y) = 2d + 8 − 2ε.

5 Conclusion

We have introduced multipath spanners, some subgraphs that approximate the
cost of p edge-disjoint paths between any two vertices of a graph. The usual
notion of spanner is obtained for p = 1. This new notion leaves open several
questions. We propose some of them:

– Is it true that every weighted graph has a p-multipath (2k−1)-spanner with
O(pn1+1/k) edges?

11 This observation becomes wrong whenever p-paths with p > 2 are considered.

222 C. Gavoille, Q. Godfroy, and L. Viennot

– Let s < 2k + 1. Does the bound Ω(n1+1/k) on the size of any p-multipath
s-spanner hold for the class of n-vertex simple graphs (with no multi-edges)?

– Let ε ∈ (0, 1]. Is there a 2-multipath (2− ε, O(W))-spanner with o(n2) edges
for every graph of largest edge-weight W? and with O(n3/2) edges? or even
O(n4/3) edges? And for p > 2?

– Prove, for p > 2, that every p-edge-connected graph has a p-shortest-path
spanning tree with at most p(n− 1) edges.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. on Computing 28,
1167–1181 (1999)

2. Alon, N., Hoory, S., Linial, N.: The Moore bound for irregular graphs. Graphs and
Combinatorics 18, 53–57 (2002)

3. Althöfer, I., Das, G., Dobkin, D., Joseph, D.A., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

4. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-
spanners and purely additive spanners. In: 16th Symposium on Discrete Algorithms
(SODA), January 2005, pp. 672–681. ACM-SIAM (2005)

5. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: 41stAnnual ACM Symposium on Theory of Computing (STOC),
May 2009, pp. 435–444. ACM Press, New York (2009)

6. Cowen, L.J., Wagner, C.: Compact roundtrip routing in directed networks. In: 19th
Annual ACM Symposium on Principles of Distributed Computing (PODC), July
2000, pp. 51–59. ACM Press, New York (2000)

7. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed
sparse spanner construction. In: 27th Annual ACM Symposium on Principles of
Distributed Computing (PODC), August 2008, pp. 273–282. ACM Press, New York
(2008)

8. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: Local computation of nearly ad-
ditive spanners. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 176–190.
Springer, Heidelberg (2009)

9. Dragan, F.F., Yan, C.: Network flow spanners. In: Correa, J.R., Hevia, A., Kiwi,
M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 410–422. Springer, Heidelberg (2006)

10. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms 1,
283–323 (2005)

11. Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graphs. SIAM J.
on Computing 33, 608–631 (2004)

12. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models. Distributed Computing 18, 375–385 (2006)

13. Erdös, P.: Extremal problems in graph theory. In: Publ. House Cszechoslovak Acad.
Sci., Prague, pp. 29–36 (1964)

14. Erdös, P., Simonovits, M.: Compactness results in extremal graph theory. Combi-
natorica 2, 275–288 (1982)

15. Gallager, R.G.: A minimum delay routing algorithm using distributed computation.
IEEE Transactions on Communications (1977)

16. Jacquet, P., Viennot, L.: Remote spanners: what to know beyond neighbors.
In: 23rd IEEE International Parallel & Distributed Processing Symposium
(IPDPS), May 2009. IEEE Computer Society Press, Los Alamitos (2009)

Multipath Spanners 223

17. Kleinberg, J.: Approximation algorithms for disjoint paths problems, PhD thesis,
Massachusetts Institute of Technology (1996)

18. Kushman, N., Kandula, S., Katabi, D., Maggs, B.M.: R-bgp: Staying connected in
a connected world. In: 4th Symposium on Networked Systems Design and Imple-
mentation, NSDI (2007)

19. Lee, S., Gerla, M.: Split multipath routing with maximally disjoint paths in ad hoc
networks. In: IEEE International Conference on Communications (ICC), vol. 10,
pp. 3201–3205 (2001)

20. Levcopoulos, C., Narasimhan, G., Smid, M.: Efficient algorithms for constructing
fault-tolerant geometric spanners. In: 30th Annual ACM Symposium on Theory of
Computing (STOC), May 1998, pp. 186–195. ACM Press, New York (1998)

21. Mueller, S., Tsang, R.P., Ghosal, D.: Multipath routing in mobile ad hoc networks:
Issues and challenges. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS 2003.
LNCS, vol. 2965, pp. 209–234. Springer, Heidelberg (2004)

22. Nasipuri, A., Castañeda, R., Das, S.R.: Performance of multipath routing for on-
demand protocols in mobile ad hoc networks. Mobile Networks and Applications 6,
339–349 (2001)

23. Pan, P., Swallow, G., Atlas, A.: Fast Reroute Extensions to RSVP-TE for LSP
Tunnels. RFC 4090 (Proposed Standard) (2005)

24. Peleg, D., Schäffer, A.A.: Graph spanners. J. of Graph Theory 13, 99–116 (1989)
25. Peleg, D., Ullman, J.D.: An optimal synchornizer for the hypercube. SIAM J. on

Computing 18, 740–747 (1989)
26. Pettie, S.: Low distortion spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tar-

lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg
(2007)

27. Pettie, S.: Distributed algorithms for ultrasparse spanners and linear size skele-
tons. In: 27th Annual ACM Symposium on Principles of Distributed Computing
(PODC), August 2008, pp. 253–262. ACM Press, New York (2008)

28. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in
directed graphs. ACM Transactions on Algorithms 3, 29 (2008)

29. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint
paths. Networks 14, 325–336 (1984)

30. Thorup, M., Zwick, U.: Approximate distance oracles. J. of the ACM 52, 1–24
(2005)

31. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors.
In: 17th Symposium on Discrete Algorithms (SODA), January 2006, pp. 802–809.
ACM-SIAM (2006)

32. Vutukury, S., Garcia-Luna-Aceves, J.J.: A simple approximation to minimum-delay
routing. In: SIGCOMM, pp. 227–238 (1999)

Strong Orientations of Planar Graphs with
Bounded Stretch Factor

Evangelos Kranakis1,�, Oscar Morales Ponce1,��, and Ladislav Stacho2,� � �

1 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada
2 Department of Mathematics, Simon Fraser University, 8888 University Drive,

Burnaby, British Columbia, V5A 1S6, Canada

Abstract. We study the problem of orienting some edges of given pla-
nar graph such that the resulting subdigraph is strongly connected and
spans all vertices of the graph. We are interested in orientations with min-
imum number of arcs and such that they produce a digraph with bounded
stretch factor. Such orientations have applications into the problem of es-
tablishing strongly connected sensor network when sensors are equipped
with directional antennae.

We present three constructions for such orientations. Let G = (V, E)
be a connected planar graph without cut edges and let Φ(G) be the de-
gree of largest face in G. Our constructions are based on a face coloring,
say with λ colors. First construction gives a strong orientation with at
most

(
2 − 4λ−6

λ(λ−1)

)
|E| arcs and stretch factor at most Φ(G) − 1. The

second construction gives a strong orientation with at most |E| arcs and
stretch factor at most (Φ(G) − 1)�

λ+1
2 �. The third construction can be

applied to planar graphs which are 3-edge connected. It uses a partic-
ular 6-face coloring and for any integer k ≥ 1 produces a strong orien-
tation with at most

(
1 − k

10(k+1)

)
|E| arcs and stretch factor at most

Φ2(G)(Φ(G) − 1)2k+4. These are worst-case upper bounds. In fact the
stretch factors depend on the faces being traversed by a path.

Keywords and Phrases: Digraph, Directional Antennae, Planar, Sen-
sors, Cut Edges, Spanner, Stretch Factor, Strongly Connected.

1 Introduction

Directional antennae are widely being used in wireless networks not only for
reducing energy consumption and interference, but also for improving routing
efficiency and security. Sensors rely on the use of antennae to configure and
operate an ad hoc network. Essentially, two types of antennae are being used:
Omnidirectional antennae which transmit the signal in all directions in the plane

� Supported in part by NSERC and MITACS grants.
�� Supported in part by CONACYT and NSERC grants.

� � � Supported in part by NSERC grant.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 224–236, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Strong Orientations of Planar Graphs with Bounded Stretch Factor 225

and directional antennae which can transmit the signal towards a specific direc-
tion. Omnidirectional antennae usually incur more interference than directional
antennae thus hampering nodes from receiving data from other transmitters and
causing overall performance degradation of the sensor network. Sensor networks
using directional antennae not only can have extended life-time since the con-
sumption of energy in each antenna is proportional to the area covered by the
transmitting antennae, but also using a small antenna spread prevents unwanted
nodes from listening to the communication and therefore, improving the security
of the network. Hence, it is desirable to reduce not only the range, but also the
angle of an antenna.

There has been some recent research concerning the advantages of using direc-
tional antennae. For example, Gupta et al. [7] have shown that when n omnidi-
rectional antennae are being used in an area of one unit square, the throughput
per node is at most O(W/

√
n), where each antenna can transmit W bits per

second over the common channels, regardless of the sensor placement. This can
be contrasted with Yi et al. [13] which show that directional antennae provide
an improvement on the throughput capacity by a factor of 2π/

√
αβ, where α is

the angle of transmission and β is the angle of reception. In fact, when α and β
go to zero, the wireless network behaves like a wired network from the through-
put point of view. Similarly, Kranakis et al. [9] study the energy consumption
of networks of omnidirectional antennae and compare it to the consumption of
networks of directional antennae.

Motivated from these issues, in this paper we study the problem of directing
edges of an undirected (connected) planar graph in such a way that the resulting
digraph spans all vertices, is strongly connected, has bounded stretch factor, and
the number of arcs employed is minimized. Note that if the undirected graph is
hamiltonian then a solution is to orient edges along a Hamilton cycle. This yields
an orientation that is strongly connected and has the minimum possible arcs.
However the stretch factor of such orientation is unbounded. On the other hand,
one can orient every edge of an undirected graph in two oposite directions. This
will result in an orientation that is strongly connected with stretch factor equal
to one. However the number of arcs in such an orientation is largest possible.
Hence we are looking for tradeoffs between these two approaches.

1.1 Notation and Preliminaries

A set of sensors with omnidirectional antennae is modeled as an (undirected)
geometric graph whose vertices are points in the plane and edges are straight
line segments representing the connectivity between two sensors. This contrasts
with a set of sensors with directional antennae which is modeled as a directed
geometric graph (digraph) where the direction on an arc represents the direction
of the corresponding communication link. Geometric graphs are always associ-
ated with a planar embedding and so we will consider them as planar graphs
(digraphs) in this paper and will speak of their set of vertices V , edges E, and
faces F , respectively. Our graphs (digraphs) will not have loops and/or multiple

226 E. Kranakis, O. Morales Ponce, and L. Stacho

edges (arcs). Given two integers a < b, let [a, b] = {a, a + 1, . . . , b} denote the
integer interval. A (face) λ-coloring Λ : F → [1, λ] of a planar graph G(V, E, F)
is an assignment Λ of λ colors to faces of G such that adjacent faces, i.e. faces
sharing a common edge, are assigned distinct colors.

Let G be a graph. An orientation G of G is a digraph obtained from G by
orienting every edge of G in at least one direction. Observe that in our definition
an edge can be bidirectional. As usual, we denote with (u, v) the arc from u to
v, whereas {u, v} denotes an undirected edge between u and v. Let d(f) denote
the degree of the face f in a planar graph (digraph) G i.e. the number of edges
surrounding f . Finally let Φ(G) be the maximum degree of a face in G, i.e.
Φ(G) = maxf∈F d(f).

The stretch factor or spanning ratio of a strongly connected orientation G is
the minimum value t such that for every ordered pair of vertices u and v and
for every path from u to v in G there exists a directed path from u to v in G of
length at most t times the length of the original path.

1.2 Related Work

Caragiannis et al. [3] were the first to propose the problem of orienting the anten-
nae of a set of sensors in the plane and compared the range used to the maximum
edge length of the minimum spanning tree on the set of sensors. They proposed
a polynomial time algorithm in which the sensors use the optimal possible range
to maintain connectivity in order to construct a strongly connected graph when
the antennae spread is at least 8π/5. In addition, they studied the case when
the antennae spread α is in the interval [π, 8π/5) and gave an algorithm which
extends the antenna range to at most 2 sin(π − α/2) times the minimum range
required so as to maintain connectivity. They also showed that if the antenna
spread is at most 2π/3 the problem of constructing a strongly connected graph is
NP-hard. In fact, when the angles of the antennae are equal to 0 this last prob-
lem is equivalent to the bottleneck traveling salesman problem [11] for which an
approximation with radius 2 times the optimal is given in [11].

Bhattacharya et al. [1] extend the work in [3] and give results for more than one
antenna per sensor. A more comprehensive study is provided by Dobrev et al. [5].
They consider the previously mentioned model of Caragiannis et al. [3] in order
to study the optimal antennae range required when sensors are equipped with
more than one antenna having spread 0. They show that the required range is√

3 times the optimal for two antennae,
√

2 times the optimal for three antennae
and 2 sin(π/5) times the optimal for four antennae.The problem considered in
the present paper differs from the problems studied in [3], [1] and [5] in that we
do not alter (increase) the sensor range, rather we work with given undirected
graph (unit disk graph or its planar spanner).

Similar problem that has been addressed in the literature is one that studies
connectivity requirements an undirected graph that will guarantee highest edge
connectivity of its orientation, c.f. [6] and [10].

Strong Orientations of Planar Graphs with Bounded Stretch Factor 227

1.3 Contributions

Let G = (V, E) be a connected planar graph without cut edges and let Λ be
a face coloring, say with λ colors. We present three polynomial constructions
for orientations of G. First construction (presented in Section 2) gives a strong
orientation with at most

(
2− 4λ−6

λ(λ−1)

)
|E| arcs and the stretch factor at most

Φ(G) − 1. The second construction (presented in Section 3) gives a strong ori-
entation with at most |E| arcs and the stretch factor at most (Φ(G) − 1)�

λ+1
2 �.

The third construction (presented in Section 4) can be applied to planar graphs
which are 3-edge connected. It uses a particular 6-face coloring and for any in-
teger k ≥ 1 produces a strong orientation with at most

(
1− k

10(k+1)

)
|E| arcs

and the stretch factor at most Φ2(G)(Φ(G) − 1)2k+4.

2 Orientations with More than |E| Arcs

Let G(V, E, F) be a simple planar geometric graph. We want to orient edges
in E so that the resulting digraph is strongly connected. A trivial algorithm is
to orient each edge in E in both directions. In this case, the number of arcs is
2|E| and the stretch factor is 1. In this section we prove that it is possible to
orient less than 2|E| edges of G and still maintain bounded stretch factor. Our
approach is based on a λ-coloring of faces in F , for some integer λ. The idea of
employing face coloring was used in [14] to construct directed cycles. Intuitively
we give directions to edges depending on the color of their incident faces.

Theorem 1. Let G(V, E, F) be a planar geometric graph which is 2-edge con-
nected. Suppose G has a face λ-coloring for some integer λ. There exists a
strongly connected orientation G with at most(

2− 4λ− 6
λ(λ − 1)

)
· |E| (1)

arcs, so that its stretch factor is at most Φ(G) − 1.

Before giving the proof, we introduce some useful ideas and preliminary results
that will be required.

Consider a planar geometric graph G(V, E, F) and a face λ-coloring Λ of G
with colors {1, 2, . . . , λ}. Let G be the orientation resulting from giving two
opposite directions to each edge in E. For each arc (u, v), we define Lu,v as the
face which is incident to {u, v} on the left of (u, v), and similarly Ru,v as the face
which is incident to {u, v} on the right of (u, v). Observe that for given embedding
of G, Lu,v and Ru,v are well defined. Since G has no cut edges, Lu,v 	= R

u,v
.

This will be always assumed in the proofs below without specifically recalling
the reason again. We classify arcs according to the colors of their incident faces.
Let Ei,j be the set of arcs (u, v) in G such that Λ(Lu,v) = i and Λ(Ru,v) = j.
It is easy to see that each arc is exactly in one such set. Hence, the following
lemma is evident and can be given without proof.

228 E. Kranakis, O. Morales Ponce, and L. Stacho

Lemma 1. For any face λ-coloring of a planar geometric graph G,

λ∑
i=1

λ∑
j=1,j �=i

|Ei,j | = 2|E|.

For any of λ(λ − 1) ordered pairs of two distinct colors a and b in the coloring
Λ, we define the digraph D(G; a, b) as follows: The vertex set of the digraph D
is V and the arc set of D is ⋃

i∈[1,λ]\{b},j∈[1,λ]\{a}
Ei,j .

Along with this definition, for i 	= b, j 	= a, and i 	= j, we say that Ei,j is in
D(G; a, b). Next consider the following characteristic function

χa,b(Ei,j) =
{

1 if Ei,j is in D(G; a, b), and
0 otherwise.

We claim that every set Ei,j is in exactly λ2−3λ+3 different digraphs D(G; a, b)
for some a 	= b.

Lemma 2. For any face λ-coloring of a planar geometric graph G,

λ∑
a=1

λ∑
b=1,b�=a

χa,b(Ei,j) = λ2 − 3λ + 3.

Proof. Let i, j ∈ [1, λ], i 	= j be fixed. For any two distinct colors a and b of
the λ-coloring of G, χa,b(Ei,j) = 1 only if either i = a, or j = b, or i and j are
different from a and b. There are (λ−1)+(λ−2)+(λ−2)(λ−3) such colorings.
The lemma follows by simple counting. ��

The following lemma gives a key property of the digraph D(G; a, b).

Lemma 3. Given a face λ-coloring of a planar geometric graph G with no cut
edges, and the corresponding digraph D(G; a, b). Every face of D(G; a, b), which
has color a, constitutes a counter clockwise directed cycle, and every face which
has color b, constitutes a clockwise directed cycle. All arcs on such cycles are
unidirectional. Moreover, each arc of D(G; a, b) incident to faces having colors
different from either a or b is bidirectional.

Proof. Let G be a planar geometric graph with a face λ-coloring Λ with colors
a, b and λ − 2 other colors. Consider D(G; a, b). The sets Ea,x are in D(G; a, b)
for each color x 	= a. Let f be a face and let {u, v} be an edge of f so that
Lu,v = f . Let f ′ be the other face incident to {u, v}; hence Ru,v = f ′.

Since G has no cut edges, f 	= f ′, and since Λ(f ′) 	= a, the arc (u, v) ∈⋃
x �=a Ea,x and hence the arc (u, v) is in D(G; a, b). Since {u, v} was an arbitrary

edge of f , f will induce a counter clockwise cycle in D(G; a, b) (See Figure 1.)

Strong Orientations of Planar Graphs with Bounded Stretch Factor 229

Λ(Lu,v) = a

u

v

Λ(Ru,v) 	= a

Fig. 1. (u, v) is in D(G; a, b) if Λ(Lu,v) = a and therefore the edges in the face Lu,v

form a counter clockwise directed cycle in D(G; a, b)

Λ(Lu,v) 	= a, b Λ(Ru,v) 	= a, b

u

v

Fig. 2. A bidirectional arc is in D(G; a, b) if its incident faces have color different than
a and b

The fact that every face which has color b induces a clockwise cycle in D(G; a, b)
is similar.

Finally consider an edge {u, v} such that c = Λ(Lu,v) 	= a, b and d =
Λ(Ru,v) 	= a, b (See Figure 2.) Hence (u, v) ∈ Ec,d which is in D(G; a, b) and
similarly (v, u) ∈ Ed,c which is also in D(G; a, b). This proves the lemma. ��

We are ready to prove Theorem 1.

Proof (Theorem 1). Let G be a planar geometric graph having no cut edges. Let
Λ be a face λ-coloring of G with colors a, b, and other λ−2 colors. Suppose colors
a and b are such that the corresponding digraph D(G; a, b) has the minimum
number of arcs. Consider A the average number of arcs in all digraphs arising
from Λ. Thus,

A =
1

λ(λ − 1)

λ∑
a=1

λ∑
b=1,b�=a

|D(G; a, b)|, where

|D(G; a, b)| =
λ∑

i=1

λ∑
j=1,j �=i

χa,b(Ei,j)|Ei,j |.

230 E. Kranakis, O. Morales Ponce, and L. Stacho

By Lemma 1 and Lemma 2,

A =
1

λ(λ− 1)

λ∑
a=1

λ∑
b=1,b�=a

λ∑
i=1

λ∑
j=1,j �=i

χa,b(Ei,j)|Ei,j |

=
1

λ(λ− 1)

λ∑
i=1

λ∑
j=1,j �=i

(λ2 − 3λ + 3)|Ei,j |

=
2(λ2 − 3λ + 3)

λ(λ− 1)
|E|

=
(

2− 4λ− 6
λ(λ − 1)

)
|E|.

Hence D(G; a, b) has at most the desired number of arcs.
To prove the strong connectivity of D(G; a, b), consider any path, say u =

u0, u1, . . . , un = v, in the graph G from u to v. We prove that there exists a
directed path from u to v in D(G; a, b). It is enough to prove that for all i there
is always a directed path from ui to ui+1 for any edge {ui, ui+1} of the above
path. We distinguish several cases.

– Case 1. Λ(Lui,ui+1) = a. Then (ui, ui+1) ∈ Ea,ω where ω = Λ(Rui,ui+1).
Since Ea,ω is in D(G; a, b), the arc (ui, ui+1) is in D(G; a, b). Moreover, the
stretch factor of {ui, ui+1} is one.

– Case 2. Λ(Lui,ui+1) = b. Hence, (ui, ui+1) is not in D(G; a, b). However, by
Lemma 3, the face Lui,ui+1 = Rui+1,ui constitutes a clockwise directed cycle,
and therefore, a directed path from ui to ui+1. It is easy to see that the
stretch factor of {ui, ui+1} is not more than the size of the face Lui,ui+1

minus one, which is at most Φ(G)− 1.
– Case 3. Λ(Lui,ui+1) 	= a, b. Suppose Λ(Lui,ui+1) = c. Three cases can occur.

• Λ(Rui,ui+1) = a. Hence, (ui, ui+1) is not in D(G; a, b). However, by
Lemma 3, there exists a counter clockwise directed cycle around face
Rui,ui+1 = Lui+1,ui , and consequently a directed path from ui to ui+1.
The stretch factor is at most the size of face Rui,ui+1 minus one, which
is at most Φ(G) − 1.

• Λ(Rui,ui+1) = b. By Lemma 3, there exists a clockwise directed cycle
around face Rui,ui+1 . This cycle contains (ui, ui+1), and in addition the
stretch factor of {ui, ui+1} is one.

• Λ(Rui,ui+1) = d 	= a, b, c. By the construction, D(G; a, b) has both arcs
(ui, ui+1) and (ui+1, ui). Again, the stretch factor of {ui, ui+1} is one.

This proves the theorem. ��

As indicated in Theorem 1 the number of arcs in the orientation depends on the
number λ of colors. Thus, for specific values of λ we have the following table of
values:

Strong Orientations of Planar Graphs with Bounded Stretch Factor 231

λ 3 4 5 6 7
2− 4λ−6

λ(λ−1) 1 7
6

13
10

7
5

31
21

Regarding the complexity of the algorithm, this depends on the number λ of
colors being used. For example, computing a 4-coloring can be done in O(n2) [12].
Finding the digraph with minimum number of arcs among the twelve possible
digraphs can be done in linear time. Therefore, for λ = 4, the orientation can
be computed in O(n2). For λ = 5 a 5-coloring can be found in O(n) time. For
geometric planar subgraphs of unit disk graphs and location aware nodes there
is a local 7-coloring (see [4]). For more information on colorings the reader is
advised to look at [8]. We also have the following corollary.

Corollary 1. Let G = (V, E, F) be a geometric planar triangulation. There
exists a strongly connected orientation G with at most 7(|V | − 2)/2 arcs and
stretch factor of 2.

3 Orientations with |E| Arcs

Theorem 1 shows that every geometric planar graph G without cut edges has a
strong orientation with bounded stretch factor and at most

(
2− 4λ−6

λ(λ−1)

)
· |E|

arcs. In this section we show that one can orient every edge in exactly one
direction only and still obtain a strong orientation. However the stretch factor
will increase.

Consider a geometric planar graph G(V, E, F) having no cut edges and a
face λ-coloring Λ of G with colors [1, λ]. Let G be the orientation assigning two
opposite directions to each edge of E. Recall that Lu,v 	= Ru,v since G does
not have cut edges and Ei,j is the set of arcs (u, v) in G such that Λ(Lu,v) = i
and Λ(Ru,v) = j. Clearly, these sets are pairwise disjoint. We define the digraph
D(G; Λ) as follows: The vertex set of the digraph D(G; Λ) is V and the arc set
of D(G; Λ) is

⋃
i<j≤λ Ei,j .

It is not difficult to observe that in D(G; Λ) exactly one direction is assigned
to every edge of G.

Theorem 2. Let G(V, E, F) be a geometric planar graph which is 2-edge con-
nected. For any face λ-coloring Λ of G, the digraph D(G; Λ) is strongly connected,
has exactly |E| arcs, and its stretch factor is at most (Φ(G) − 1)�

λ+1
2 �.

Proof. We already observed above that D(G; Λ) has |E| arcs. We prove the
following two statements.

1. We first prove by induction on k that if {u, v} ∈ E so that Λ(Lu,v) = k
then if (u, v) is in D(G; Λ) then there is also a directed path from v to u in
D(G; Λ) of length at most (Φ(G) − 1)k such that every arc on this path is
incident to a face of color at most k.

2. Second we prove that for every k if {u, v} ∈ E so that Λ(Ru,v) = k then if
(v, u) is in D(G; Λ) then there is also a directed path from u to v in D(G; Λ)
of length at most (Φ(G) − 1)λ−k+1 such that every arc on this path is
incident to a face of color at least k.

232 E. Kranakis, O. Morales Ponce, and L. Stacho

The theorem follows easily. Indeed, let {u, v} ∈ E so that Λ(Lu,v) < Λ(Ru,v).
The arc (u, v) constitutes the required directed path from u to v. We exhibit
required directed path from v to u as follows. If Λ(Lu,v) ≤ �λ

2 �, then the directed
path from v to u exists by first statement. If Λ(Lu,v) > �λ

2 �, then since Lu,v =
Rv,u, Λ(Rv,u) > �λ

2 � and since (u, v) ∈ E, the required directed path from v to
u exists by the second statement above.

Next we give the proof of the statement 1 above. Base step is Λ(Lu,v) = 1.
Hence, the other face incident to {u, v} has color j > 1. Therefore, (u, v) ∈ E1,j

which is in D(G; Λ) by definition. We have the same conclusion for any other
arc of the face Lu,v and hence this face will induce a directed cycle in D(G; Λ),
which provides a desired directed path from v to u. The length of this path is
obviously at most Φ(G)− 1. Also every arc of this path is obviously incident to
a face of color 1. This proves the base case.

In the inductive step we assume the statement is true for all l ≤ k−1. We prove
it for k. Assume Λ(Lu,v) = k. If k < Λ(Ru,v) = k′, then (u, v) ∈ Ek,k′ which is in
D(G; Λ) by definition. To construct a directed path from v to u, consider the face
Lu,v and any edge {a, b} incident to this face so that La,b = Lu,v. If Λ(La,b) <
Λ(Ra,b), the arc (a, b) is in D(G; Λ), and Λ(La,b) = k ≤ k as required. Otherwise
the arc (b, a) is in D(G; Λ) and also l = Λ(Lb,a) = Λ(Ra,b) < Λ(La,b) = k (See
Figure 3.) Thus, by inductive hypothesis, there is a directed path from a to b in
D(G; Λ) of length at most (Φ(G)−1)l such that every arc of this path is incident
to a face of color at most Λ(Lb,a) = l < k. At most (Φ(G) − 1) arcs of Lu,v will
be replaced in this way, so the length of the desired path from v to u is at most
(Φ(G) − 1)k. If k > Λ(Ru,v) = k′, then (u, v) is not in D(G; Λ).

Finally we give the proof of the statement 2 above. Base step is Λ(Ru,v) = λ
which is trivially true since (v, u) is not in D(G; Λ). In the inductive step we
assume the statement is true for all l ≥ λ − k + 1. We prove it for λ − k.
Assume Λ(Ru,v) = λ − k. If λ − k > Λ(Lu,v) = k′, then (u, v) ∈ Ek′,λ−k which
is in D(G; Λ) by definition and hence (v, u) is not in D(G; λ). Hence suppose
λ − k < Λ(Lu,v) = k′. Hence (v, u) is in D(G; Λ). To construct a directed path
from u to v, consider the face Lu,v and any edge {a, b} incident to this face
so that Ra,b = Lu,v. If Λ(La,b) < Λ(Ra,b), the arc (a, b) is in D(G; Λ), and
Λ(Ra,b) = k′ ≥ λ− k as required. Otherwise the arc (b, a) is in D(G; Λ) and also

v

u

a

b Λ(Lu,v) = k

Λ(Ra,b) = l < k

Λ(Ru,v) = k′ > k

Fig. 3. The figure shows how to find a directed path from v to u when (u, v) is in
D(G; Λ). If {a, b} is any edge incident to Lu,v then by inductive hypothesis there is a
path from a to b of length at most (Φ − 1)l.

Strong Orientations of Planar Graphs with Bounded Stretch Factor 233

Λ(Ra,b) = k′. Thus, by inductive hypothesis, there is a directed path from a to
b in D(G; Λ) of length at most (Φ(G)−1)λ−k′+1 such that every arc of this path
is incident to a face of color at least Λ(Ra,b) = k′ > λ − k. At most (Φ(G) − 1)
arcs of Lu,v will be replaced in this way, so the length of the desired path from
u to v is at most (Φ(G)−1)λ−k′+1+1 ≤ (Φ(G)−1)k+1, since k′ ≥ λ−k +1. This
proves the theorem. ��

As a corollary we obtain the following result on triangulations.

Corollary 2. Let G(V, E, F) be a geometric planar triangulation, and let Λ be
its face 4-coloring. The digraph D(G; Λ) is strongly connected, has exactly |E|
arcs, and its stretch factor is at most 8.

4 Orientations with Less than |E| Arcs

By considering more sophisticated face colorings, we can decrease the number
of arcs below |E| in a strong orientation and still maintain a bounded stretch
factor. Define

D′(G; Λ) = D(G; Λ)− E� λ−1
2 �,�λ+1

2 �.

We use the following result about acyclic coloring of planar graphs. A (proper
vertex) coloring is acyclic if every subgraph induced by any two colors is acyclic.

Theorem 3. [2] Every planar graph has an acyclic coloring with 5 colors.

Lemma 4. Let T = (V, E) be a forest and k ≥ 1 an integer. There exists a set
of vertices S ⊆ V such that the subgraph of T induced by S is a forest of trees
of diameter at most 4k and has at least k

k+1 |E| arcs.

Proof. In this proof all indices will be considered modulo 2k + 2. Root every
component of T at any vertex and consider the partition of V into k sets
V0, V1, . . . , V2k+1 such that the set

V� = {x ∈ V : distance of x from the root of its component is � mod 2k + 2}.

Now consider the following k forests of trees of diameter at most 4k. For m =
0, 1, . . . , k − 1, let Gm = (V m, Em) where

V m = V0−2m ∪ V1−2m ∪ · · · ∪ V2k−2m ,

Em = {{x, y} ∈ E : x ∈ ∪2k−1−2m
i=0−2m Vi, y ∈ ∪2k−2m

i=1−2mVi}.

It is not difficult to see that every Gm is, in fact, an induced subgraph of T . If
one of the graphs Gm has at least k

k+1 |E| arcs, we are done. On the other hand,
only edges of T that are not included in Gm for given m are edges {x, y} such
that x ∈ V2k−2m and y ∈ V2k+1−2m and edges {x, y} such that x ∈ V2k+1−2m

and y ∈ V2k+2−2m, i.e. edges of stars centered at vertices in V2k+1−2m. Since

234 E. Kranakis, O. Morales Ponce, and L. Stacho

Gm has less than k
k+1 |E| edges, there is at least 1

k+1 |E| such edges. This must
be true for all m = 0, 1, . . . , k − 1, and these edge sets are pairwise disjoint for
distinct values of m. Hence the graph Gk = (V k, Ek) such that

V k = V2 ∪ V3 ∪ · · · ∪ V2k+2,

Ek = {{x, y} ∈ E : x ∈ ∪2k+1
i=2 Vi, y ∈ ∪2k+2

i=3 Vi}

is the forest of trees of diameter at most 4k, is induced in T and has at least
k

k+1 |E| edges. ��

The main theorem is as follows.

Theorem 4. Let G(V, E, F) be a geometric planar graph which is 3-edge con-
nected, and let k ≥ 1 be an integer. There exists a face 6-coloring Λ of G so that
the digraph D′(G; Λ) is strongly connected, has at most (1 − k

10(k+1))|E| arcs,
and its stretch factor is at most Φ2(G)(Φ(G) − 1)2k+4.

Proof. Let G� be the dual graph of G. Since G is 3-edge connected G� is a simple
graph and every edge of G is crossed by a unique edge of G�. Consider an acyclic
5-coloring of G� which exists by Theorem 3. Among all ten pairs of colors in the
5-coloring choose a pair so that the forest H induced by vertices colored with
these two colors has at least |E|

10 edges. By Lemma 4, in this forest we can select
a set of induced trees each of diameter at most 4k such that they will together
span at least k

k+1
|E|
10 edges of G�.

We are now ready to color faces of G and define a face 6-coloring Λ of G
as follows: We use colors 3 and 4 to color faces corresponding to vertices of
trees selected in the dual G�, and we use colors 1,2,5, and 6 to properly color
remaining faces of G.

With λ = 6, we let color α = �λ−1
2 � = 3 and β = �λ+1

2 � = 4. By our
construction, the pair {α, β} must appear at least k

k+1
|E|
10 times in the face 6-

coloring of G. This gives the required bound on the number of arcs of the graph
D′(G; Λ).

Statements 1 and 2 given in the proof of Theorem 2 imply that if {u, v} ∈ E
such that Λ(Lu,v) < Λ(Ru,v) and if either Λ(Lu,v) 	= α or Λ(Ru,v) 	= β, then
D′(G; Λ) contains directed path from u to v as well as from v to u. Indeed,
if Λ(Lu,v) ≥ α, then Λ(Ru,v) > β, and we can apply statement 2. Similarly
if Λ(Ru,v) ≤ β, then Λ(Lu,v) < α, and we can apply statement 1. Obviously
the pair of colors α and β is not incident to any arc on these paths, so these
paths exist in D′(G; Λ). Note that these paths have bounded stretch factor as in
Theorem 2, in particular (Φ(G) − 1)4.

To complete the proof we consider {u, v} ∈ E such that Λ(Lu,v) < Λ(Ru,v)
and Λ(Lu,v) = α and Λ(Ru,v) = β. Hence these edges do not occur in D′(G; Λ).
The edge {Lu,v, Ru,v} of the dual G� belongs to one of the selected trees, say
T , of diameter at most 4k. The vertices of this tree correspond to faces of G
that are colored with color 3 or 4. Since G is 3-edge connected, there is a path

Strong Orientations of Planar Graphs with Bounded Stretch Factor 235

P from u to v in G along these faces such that for each edge of P one of its
incident faces has color different from 3 and 4. Hence for each edge of P the
digraph D′(G; Λ) contains directed paths (in both directions) of length at most
(Φ(G) − 1)4. Since the maximum degree of T is Φ(G) and the diameter of T
is at most 4k, T has at most Φ(G)(Φ(G) − 1)2k vertices. Each of these vertices
corresponds to a face of degree at most Φ(G). Hence the length of P is at most
Φ2(G)(Φ(G) − 1)2k. Finally we conclude that D′(G; Λ) contains a directed path
from u to v and from v to u both of length at most Φ2(G)(Φ(G) − 1)2k+4.

It follows that D′(G; Λ) is strongly connected and has stretch factor at most
Φ2(G)(Φ(G) − 1)2k+4. ��

Note that with a more careful counting argument the bound on the stretch factor
in Theorem 4 can be improved by at least half. Using the following theorem we
can further decrease the number of arcs in a strong orientation of G and still
keep the stretch factor bounded.

Theorem 5. Let G = (V, E, F) be a 3-connected planar graph. Then G contains
a spanning 2-edge connected subgraph G′ with at most |E| − � |E|+3

3Φ(G)� edges and
Φ(G′) ≤ 2Φ(G).

Proof. Since G is 3-connected, the dual G� is a simple graph. Let T be a spanning
tree of G�. Obviously, the maximum degree of T is at most Φ(G) and T has least
|E|
3 +2 vertices. The later follows from Euler’s formula and the fact that minimum

degree of G is 3. Moreover, T has a matching of size at least � |E|+3
3Φ(G)�. Indeed, one

can obtain such a matching M by recursively adding a pendant edge (an edge
adjacent to a leaf) of remaining components of T into M and then removing all
remaining edges incident to this edge. Each such operation adds one edge into
M and removes at most Φ(G) edges (including the edge itself) from T . Since T

has |E|
3 + 1 edges at the beginning, the bound follows.

To obtain G′, we merge corresponding faces in G for every edge in M . Since
M is a matching Φ(G′) ≤ 2Φ(G) and G′ will be 2-connected. Obviously G′ has
required number of edges. ��

5 Conclusion

We presented algorithms for directing edges of a planar graph having no cut
edges such that the resulting digraph is strongly connected and has bounded
stretch factor which depends solely on the size of the faces of the original pla-
nar graph. An interesting question arises how to construct planar graphs having
no cut edges. Although it is well-known how to construct such planar spanners
starting from a set of points (e.g., Delaunay triangulation) there are no known
constructions in the literature of “local” spanners from UDGs which also guar-
antee planarity and 2-edge connectivity at the same time.

236 E. Kranakis, O. Morales Ponce, and L. Stacho

References

[1] Bhattacharya, B., Hu, Y., Kranakis, E., Krizanc, D., Shi, Q.: Sensor network
connectivity with multiple directional antennae of a given angular sum. In: IEEE
IPDPS, 23rd International Parallel and Distributed Processing Symposium, May
25-29, pp. 344–351 (2009)

[2] Borodin, O.V.: On acyclic colorings of planar graphs. Discrete Math. 25(3),
211–236 (1979)

[3] Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communi-
cation in wireless networks with directional antennas. In: SPAA 2008: Proceedings
of the twentieth annual symposium on Parallelism in algorithms and architectures,
pp. 344–351. ACM Press, New York (2008)

[4] Czyzowicz, J., Dobrev, S., Gonzalez-Aguilar, H., Kralovic, R., Kranakis, E., Opa-
trny, J., Stacho, L., Urrutia, J.: Local 7-coloring for planar subgraphs of unit disk
graphs. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 170–181. Springer, Heidelberg (2008)

[5] Dobrev, S., Kranakis, E., Krizanc, D., Morales, O., Opatrny, J., Stacho, L.: Strong
connectivity in sensor networks with given number of directional antennae of
bounded angle (2009) (to appear)

[6] Fukunaga, T.: Graph orientations with set connectivity requirements. In: Dong,
Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 265–274.
Springer, Heidelberg (2009)

[7] Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions
on Information Theory 46(2), 388–404 (2000)

[8] Jensen, T., Toft, B.: Graph coloring problems. Wiley-Interscience, New York
(1996)

[9] Kranakis, E., Krizanc, D., Williams, E.: Directional versus omnidirectional an-
tennas for energy consumption and k-connectivity of networks of sensors. In: Hi-
gashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 357–368. Springer, Heidel-
berg (2005)

[10] Nash-Williams, C.S.J.A.: On orientations, connectivity and odd vertex pairings
in finite graphs. Canad. J. Math. 12, 555–567 (1960)

[11] Parker, R., Rardin, R.: Guaranteed performance heuristics for the bottleneck trav-
eling salesman problem. Oper. Res. Lett. 2(6), 269–272 (1984)

[12] Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem.
J. Comb. Theory Ser. B 70(1), 2–44 (1997)

[13] Yi, S., Pei, Y., Kalyanaraman, S., Azimi-Sadjadi, B.: How is the capacity of ad hoc
networks improved with directional antennas? Wireless Networks 13(5), 635–648
(2007)

[14] Zhang, H., He, X.: On even triangulations of 2-connected embedded graphs. SIAM
J. Comput. 34(3), 683–696 (2005)

A Linear Time Algorithm for the Minimum
Spanning Caterpillar Problem for Bounded

Treewidth Graphs

Michael J. Dinneen and Masoud Khosravani�

Department of Computer Science
The University of Auckland

Auckland, New Zealand
{mjd,masoud}@cs.auckland.ac.nz

Abstract. We consider the Minimum Spanning Caterpillar Problem
(MSCP) in a graph where each edge has two costs, spine (path) cost
and leaf cost, depending on whether it is used as a spine or a leaf edge.
The goal is to find a spanning caterpillar in which the sum of its edge
costs is the minimum. We show that the problem has a linear time al-
gorithm when a tree decomposition of the graph is given as part of the
input. Despite the fast growing constant factor of the time complexity of
our algorithm, it is still practical and efficient for some classes of graphs,
such as outerplanar, series-parallel (K4 minor-free), and Halin graphs.
We also briefly explain how one can modify our algorithm to solve the
Minimum Spanning Ring Star and the Dual Cost Minimum Spanning
Tree Problems.

Keywords: spanning caterpillars, treewidth, networks topology, opti-
mization.

1 Introduction

By a caterpillar we mean a tree that reduces to a path by deleting all its leaves.
We refer to the remaining path as the spine of the caterpillar. The edges of a
caterpillar H can be partitioned to two sets, the spine edges, B(H), and the leaf
edges, L(H). Let G = (V, E) be a graph. Also let b : E → N and l : E → N be
two (cost) functions. For each caterpillar H as a subgraph of G we define the
cost of H by

c(H) :=
∑

e∈B(H)

b(e) +
∑

e′∈L(H)

l(e′).

In the Minimum Spanning Caterpillar Problem (MSCP) [10] one wants to find a
caterpillar with the minimum cost that contains all vertices. The MSCP is NP-
complete for general graphs [11]. In this paper we consider the problem when

� Research supported by the Computer Science Department Doctoral Scholarship,
University of Auckland.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 237–246, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

238 M.J. Dinneen and M. Khosravani

the input is restricted to bounded treewidth graphs. That is, we assume that a
tree decomposition with a fixed width of the graph is given as part of the input.

One application of this problem is to find a cost effective subnetwork within a
large network. For example, one may want to find a linearly connected backbone
to place routers with computers attached. Here each cost function represents
a different technology that is used to connect vertices on the backbone (that
consists of routers or hubs) and the leaves (i.e. computers) to the backbone.
As another application of the MSCP, Tan and Zhang [11] used it to solve some
problems concerning the Consecutive Ones Property problem.

It is well known that graph structures that are expressible by Monadic Second
Order Logic (MSOL) [4] are recognizable in linear time on bounded treewidth
graphs. The same is true for those optimization problems that can be defined
by Extended Monadic Second Order Logic (EMSOL); see the survey of Hlineny
et. al. [7]. The main disadvantage of these methods is that they are very hard to
implement, even for small values of k, where k is the treewidth of a graph. So
here we present a simple linear time algorithm for finding an optimal caterpillar
in a graph with bounded treewidth. Although the hidden constant factor in the
asymptotic notation of the algorithm grows very fast, but for some graphs that
appears in applications it is still practical, like outerplanar, series-parallel (K4
minor-free), and Halin graphs.

Also we explain briefly how one can tackle two other related NP-hard prob-
lems: the Minimum Spanning Ring Star Problem (MSRSP) [1,8] where the goal
is to find a minimum spanning subgraph (star ring) that consists of a cycle and
vertices of degree one that are connected to it, and the Dual Cost Minimum
Spanning Tree Problem (DCMSP), where the cost of an edge incident to a leaf
is different from the other edges. As far as we know it is the first time that these
problems are studied from this point of view.

In the next section we present the required definitions formally. In particular,
we introduce the k-parse data structure as an alternative to the smooth tree
decomposition. In Section 3 we give a dynamic programming algorithm that
solves the MSCP in linear time for graphs that their tree decompositions are
also given as inputs. The proof of correctness of the algorithm is presented in
Section 4. The paper ends with a conclusion and some open problems.

2 Preliminaries

In this paper we suppose that all graphs are undirected and they have no multiple
edges or loops.

A tree (path) decomposition [9] of a graph G = (V, E) is a pair ({Xi, i ∈
I}, T = (I, F)), with {Xi, i ∈ I} a collection of subsets of V , that are called
bags, and T = (I, F) a tree (path), such that

1.
⋃

i∈I Xi = V .
2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
3. For all v ∈ V , Tv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The Minimum Spanning Caterpillar Problem 239

The width of a tree (path) decomposition ({Xi, i ∈ I}, T = (I, F)) is defined as
maxi∈I |Xi|−1. The treewidth (pathwidth) of G, tw(G) (pw(G)), is the minimum
width over all tree (path) decompositions of G. A tree (path) decomposition of
width k is smooth if each bag contains k +1 vertices and adjacent bags differ by
exactly one vertex. For a survey on treewidth refer to Bodlaender [3].

In the rest of this section we introduce k-parse data structure as a linear and
detailed representation of a smooth tree decomposition. It enables us to follow
explicitly the process of adding edges that is not clearly expressed in a smooth
tree decomposition. That makes the presentation easier and the implementation
more straightforward.

A (k + 1)-boundaried graph [6] is a pair (G, ∂) of a graph G = (V, E) and an
injective function ∂ from {0, . . . , k} to V . The image of ∂ is the set of boundaried
vertices and is denoted by Im(∂). When it is clear from the context, we abuse
the notation and refer to Im(∂) as ∂.

Given a path decomposition of width k of a graph, one can represent the graph
by using strings of (unary) operators from the following operator set Σk = Vk∪Ek

(see [5]):

Vk = { 0�, . . . , k�} and Ek = { i j | 0 ≤ i < j ≤ k}.

Where Vk is the set of vertex operators and Ek is the set if edge operators.
To generate a graph from a smooth tree decomposition of width k, an addi-

tional (binary) operator ⊕, called circle plus, is added to Σk. The semantics of
these operators on (k + 1)-boundaried graphs G and H of are as follows:

G i� Add an isolated vertex to the graph G, and label it as the new
boundary vertex i.

G i j Add an edge between boundaried vertices i and j of G (ignore if
operation causes a multi-edge).

G⊕H Take the disjoint union of G and H except that equal-labeled
boundary vertices of G and H are identified.

It is syntactically incorrect to use the operator i j without being preceded by
both i�and j�, and the operator ⊕ must be applied to graphs with the same
sized boundaries. A graph described by a string (tree, if ⊕ is used) of these
operators is called a k-parse, and has an implicit labeled boundary ∂ of at most
k + 1 vertices. By convention, a k-parse begins with the axiom operator string
[0�, 1�, . . . , k�] which represents the edgeless graph of order k+1. Throughout
this paper, we refer to a k-parse and the graph it represents interchangeably.

Let G = (g0, g1, . . . , gn) be a k-parse and Z = (z0, z1, . . . , zm) be any sequence
of operators over Σk. The concatenation (·) of G and Z is defined as

G · Z = (g0, g1, . . . , gn, z0, z1, . . . , zm).

(For the treewidth case, G and Z are viewed as two connected subtree factors
of a parse tree G · Z instead of two parts of a sequence of operators.)

Bodlaender in [2] presented a linear time algorithm that makes a smooth tree
decomposition from any tree decomposition of a graph and for each smooth tree
decomposition one can easily construct a k-parse representation.

240 M.J. Dinneen and M. Khosravani

3 Finding a Minimum Spanning Caterpillar in a Bounded
Treewidth Graph

In this section we show that the problem of finding a minimum spanning cater-
pillar in a bounded treewidth graph with n vertices has an algorithm that runs in
linear time, assuming the tree decomposition is given alongside the input graph
G. Throughout this section we suppose that the treewidth of G is k and G is
represented as a k-parse G = (g0, . . . , gm).

The main idea is to use a forest of at most k + 1 different caterpillars as a
partial solution, each has at least one vertex in the boundary set ∂ = {0, . . . , k}.
To this end we code the information of each partial solution in a state vector
S = (A, B). Where A is a (k+1)-tuple (a0, . . . , ak). Each ai represents a label for
the boundary vertex i from the set {H, S, C, I, L}. The labels H, S, C, I, and L
are characteristics of the boundary vertices in a partial solution. They stand for
head, spine, center (of a star), isolated vertex, and leaf, respectively. The set B
is a partition set of ∂. If any two boundary vertices belong to the same element
of B, then they belong to the same connected component of a partial solution
that is represented by B. See Figure 1.

In accordance with our dynamic programming approach, we use a table T that
has rows indexed by state vectors and columns indexed by k-parse operators from
gk to gm. Each entry in a row (A, B) and a column gi in T is a pair (X, x). Where
X ∈ {true, false} shows if the entry represents a valid forest of caterpillars and
x is the minimum total cost among the partial solutions represented by the state
vector (A, B) at column gi.

We initialize all entries of T to the value (false ,∞). Due to our conven-
tion for the first k + 1 operators we have gi = i�, 0 ≤ i ≤ k. So at the first
step we assign the value (true, 0) to T ((A, B), gk), where A = (I, . . . , I) and
B = {{0}, {1}, . . . , {k}}. Suppose we have computed the entries of T up to the

H S H C HI
0 21 3 4 5 6

L

Fig. 1. A forest of caterpillars as a partial solution, A = (I,H, S, L, H,C, H) and
B = {{0}, {1, 2, 3, 4}, {5, 6}}

The Minimum Spanning Caterpillar Problem 241

(p−1)th column (which is indexed by gp−1 operation). Then we scan the column
p−1 to find entries that their first coordinates are true. By considering each true
entry in column p− 1, we update the entries in column p by the following rules.

Vertex operator i�: Suppose that gp is a vertex operator that introduces a new
vertex as the boundary vertex i. Then for each T ((A, B), gp−1) = (true, x) let
Bi ⊆ ∂ be the element of B that contains boundary value i. If Bi−{i} is empty
or if it contains boundary vertices that are labeled just as leaves, then the partial
solution becomes disconnected by adding the new boundary vertex. In such cases
we just ignore the entry and move to the next one. Otherwise, we update the
value (X ′, x′) of the entry T ((A′, B′), gp), where B′ = (B−{Bi})∪{{Bi−i}, {i}}
and A′ is the same as A except it has I in its i-th coordinate, by the value of
(true, min{x, x′}).

Edge operator i j : If gp is an edge operator that connects two boundary vertices
i and j, then we need to consider two stages. In the first stage we just update
the value of each entry T ((A, B), gp) by the same value as T ((A, B), gp−1). This
reflects the cases where the edge (i, j) is not used in a partial solution.

Before explaining the next stage we have to mention that only seven different
combinations of the labels, when connected together by an edge, make valid
partial solutions. These valid combinations are listed in Table 1.

Table 1. Rules for edge operation

Rule ai aj a′
i a′

j y

1 H H S S min{x + b({i, j}), x′}
2(a) H C S H min{x + b({i, j}), x′}
2(b) H C S S min{x + b({i, j}), x′}
3(a) H I H L min{x + l({i, j}), x′}
3(b) H I S H min{x + b({i, j}), x′}
4(a) C C H H min{x + b({i, j}), x′}
4(b) C C H S min{x + b({i, j}), x′}
4(c) C C S S min{x + b({i, j}), x′}
5(a) C I S H min{x + b({i, j}), x′}
5(b) C I C L min{x + l({i, j}), x′}
6 S I S L min{x + l({i, j}), x′}
7 I I C H min{x + b({i, j}), x′}

Now let T ((A, B), gp−1) = (true, x) and A = (a0, . . . , ak). We find an entry
T ((A′, B′), gp) = (X ′, x′) where A′ and B′ are as follows. The vector A′ has a
coordinate (a′

0, . . . , a
′
k) where a′

t = at if t 	= i, j with the exceptions that (i) if any
of i or j has an H label in A that belongs to a star, then we also change the C
label of the center of the star in A to an H label in A′, and (ii) if any of i or j has
a C label that is changed to an H , then the H label in the corresponding star in
A is replaced by an L label in A′. The values of a′

i, a
′
j are determined by finding a

proper match in a row of Table 1 with respect to the values of ai and aj.

242 M.J. Dinneen and M. Khosravani

Also B′ = (B \ {Bi, Bj}) ∪ {Bi ∪ Bj}, where Bi and Bj are the elements of
B that contain i and j, respectively. We update the value of T ((A′, B′), x′) by
(true, y), where y is the corresponding value given in Table 1.

Boundary Join Operator H⊕H ′: Let gp be a boundary join operator that unifies
the boundary vertices of two k-parses H = (h0, . . . , hr) and H ′ = (h′

0, . . . , h
′
s),

where H and H ′ are substrings of G. For the sake of simplicity we suppose
that they have two different tables, TH and TH′ . We save the result of the
H ⊕ H ′ operation in a new table T⊕, whose first-column entries are initialized
by (false ,∞).

Let TH((A, B), hr) = (true, x) and TH′ ((A′, B′), h′
s) = (true, x′) be two true

entries in the last columns of TH and TH′ . If there are two different boundary
values i and j that they belong to the same partition (connected components) in
both B and B′, then this operator creates a cycle which we ignore. In such cases
we move to the next possible pair of true entries. Otherwise, we find an entry
T⊕((A′′, B′′),⊕) = (X ′′, x′′), where for each coordinate i in A′′ = (a′′

0 , . . . , a′′
k)

there is a match for ai, a
′
i, and a′′

i in a row of Table 2 and

B′′ = {Bi ∪B′
i | i ∈ ∂, Bi ∈ B and B′

i ∈ B′}.

Then we update the value of the entry by (true, min{x + x′, x′′}).
We follow that procedure until we update all entries in the last column. Then

among all true entries in the last column of T that has a partition set the same
as {∂}, anyone with the smallest cost is a minimum spanning caterpillar of G.

Table 2. Rules for boundary join operation

Rule ai a′
i a′′

i

1 S {H, I,C} S

2 H {I, C} H

3 H H S

4 C {C, I} C

4 Correctness of the Algorithm

In this section we justify the correctness of our minimum spanning caterpillar
algorithm. We first show that if there is a true entry in the last column of a state
table, then the graph has a spanning caterpillar.

Lemma 1. Let G = (g0, . . . , gm) be a graph whose tw(G) = k and also let T be
the table produced by the algorithm. If T ((A, B), gm) has a true entry in the last
column of T such that B = ∂, then the graph G has a spanning caterpillar.

Proof. We show that each true entry in the column p, p ≤ m, of T relates to a
partial solution that has the following properties:

The Minimum Spanning Caterpillar Problem 243

1. the partial solution is a forest of caterpillars,
2. the partial solution covers all vertices in (g0, . . . , gp).

The conditions are satisfied for the only true entry in the first column of T . Since
in the first step we set the element T ((A, B), gk) to true, where A = (I, . . . , I)
and B = {{0}, {1}, . . . , {k}}.

Now suppose that the conditions hold for each true entry in a column p− 1,
k ≤ p−1 < m. We show that they also hold for each true entry that is produced
by the next operation, gp. The lemma is true when T ((A′, B′), gp) is the resulting
true entry from T ((A, B), gp−1) by a vertex operation. When gp is an edge
operation Property 2 trivially holds, since no new vertex is added. Also each
rule for an edge operation maintains the first property. The same argument is
applicable when gp is a boundary join operation.

Since Properties 1 and 2 hold for gm and also since B = {∂}, the partial
solution corresponds to T ((A, B), gm) is a spanning caterpillar for G. ��

Now we prove that if a graph has a spanning caterpillar, our algorithm can rec-
ognize it. We first prove this claim for the bounded pathwidth graphs, Lemma 2,
then we give a proof for the bounded treewidth in Lemma 3.

Lemma 2. Let G = (g0, . . . , gm) be a graph whose pw(G) = k. If G that has
a spanning caterpillar then the last column of the table T that results from the
algorithm has a true entry T ((A, B), gm) with B = ∂.

Proof. Without loss of generality we suppose that C is a spanning caterpillar of
G such that each leaf of it is attached to a spine vertex with the smallest index
in the k-parse representation. We prove this stronger claim by showing that such
spanning caterpillar appears as a partial solution represented by an entry true
in the last column.

We prove the statement by an inductive argument on the number of vertices
of the spine of C. If C has only one vertex on its spine then it is a star and the
vertex that appears on the center of C takes a unique boundary value in the
k-parse, otherwise it fails to attach to all vertices of G. So the center of the star
always appears on each boundary and we attach it to a vertex u when u appears
on a boundary by a vertex operation.

Now assume the lemma is valid for any k-parse that has a spanning caterpillar
with less than p vertices on its spine, p ≥ 2. Let C be a spanning caterpillar of
G that has p vertices on its spine. Suppose v is the spine vertex that is created
by gf , the vertex operation that assumes the largest index among all vertex
operators corresponding to spine vertices of C. We delete v and all its leaves in
C and if v is not a head we connect its two neighbors on the spine by adding
an edge. The resulted graph H has a caterpillar D with p − 1 vertices on its
spine. We can consider the k-parse representation of H as (g0, . . . , gf−1), when
v is a head, or (g0, . . . , gf−1).ge, where ge is the edge operation corresponds to
attaching the neighbors of v on the spine. Because of our inductive assumption,
the last column of the table of the algorithm, when applied to H , has a true
entry that its partial solution is D. Note that the table of H is the same as the

244 M.J. Dinneen and M. Khosravani

table produced by the algorithm when applied to G in the column f − 1. If v
is not a head in C we just discard the edge operation ge to allow the neighbors
of v on the spine to appear as heads in the partial solution. Now as v stays as
a boundary vertex during gf , . . . , gm, the leaves of C can be attached to v by
their appropriate edge operation. ��
Lemma 3. Let G = H ⊕ H ′, where H and H ′ are graphs with treewidths at
most k. If G has a spanning caterpillar then the column of the table T , that
results from applying the algorithm to G, has a true entry T ((A, B), H ⊕ H ′)
with B = ∂.

Proof. If C is a spanning caterpillar in G = H ⊕ H ′, then H ∩ C and H ′ ∩ C
are forests of caterpillars that span H and H ′, respectively. To connect the
(spanning) forests of caterpillars in H , we first direct the edges on the spine
of C from one head to the other. Then we walk along the path on the spine.
Once we leave H (by entering to a non boundary vertex of H ′) and return
to it (by entering to a non-boundary vertex of H), we add an edge between
the two consecutive visited boundary vertices. By the same method we connect
components of H ′∩C. Note that since we join the connected components via their
heads, the resulting graphs are spanning caterpillar of H and H ′. We consider
the new edges as extensions of the k-parses of H and H ′.

Now we apply the algorithm to the extended k-parses of H and H ′. By
Lemma 3 we know that the last column of each table has a true entry. Since
the extensions are done by adding edges, there are also true entries on the last
columns of the tables associated to k-parse representations of H and H ′. In par-
ticular, there are true entries such that their partial solutions are associated to
H ∩C and H ′ ∩C, so joining them by an ⊕ operator produces a true entry that
has C as its partial solution. ��
Theorem 1. The algorithm solves the spanning caterpillar problem in time
O(5k+1Bk+1n) for a graph of bounded pathwidth k and in O(5k+1B2

k+1n) for
a graph of bounded treewidth k; where n is the number of vertices and Bk+1 is
the (k+1)th Bell number (the number of partitions of a set with k+1 members).

Proof. Note that each k-parse G has a representation as (a) G = G′ ·H , or (b)
G = G′⊕G′′, where G′ and G′′ each has treewidth at most k and H is a sequence
of vertex and edge operators. The correctness of the algorithm follows from an
inductive argument on the number of operators as in (a) and (b). The validity
of the base case is the result of Lemmas 2 and 3. For the induction step one just
need to use the same technique as Lemma 3 to reduce a problem to the cases
with less number of operations. The optimality of the final solution follows from
an inductive argument using the fact that we always choose partial solutions
with smaller costs.

To solve the problem for a graph with pathwidth at most k, the algorithm uses
a table that has O(5k+1Bk+1n) entries. In the case when the graph has bounded
treewidth, tw(G) = k, the algorithm processes each boundary join operation by
comparing all pairs of entries in the last two columns of the joined graphs. So it
takes O(5k+1B2

k+1n) steps. ��

The Minimum Spanning Caterpillar Problem 245

5 Related Problems

In this section we briefly explain how one can apply the idea of our algorithm to
solve other related problems such as the Minimum Spanning Ring Star Problem
and the Dual Cost Minimum Spanning tree.

To solve the MSRSP when the input is a graph and its tree decomposition,
we follow almost the same procedure as our algorithm for the MSCP. The main
difference is that during an edge operation or a boundary joint operation, we
allow a cycle to appear. But afterwards, the other vertices can join the cycle just
as leaves. So as soon as a cycle appears in a partial solution we check to see if
the other connected components are isolated vertices. If so, we keep the cycle
and we follow the process. Otherwise, we ignore the cycle and move to the next
step. Of course here we need to have appropriate bookkeepings to distinguish
between state vectors that represent forests of caterpillars and state vectors that
represent cycles.

To solve the Dual Cost Minimum Spanning Tree, we ignore the role of spine
vertices and we consider forests of trees as partial solutions rather than forests
of caterpillars.

6 Conclusion and Further Work

In this paper we presented an algorithm that efficiently finds a minimum span-
ning caterpillar in some classes of graphs that have small treewidth, like outer-
planar, series-parallel and Halin graphs. Our algorithm can be easily modified
to solve other related network problems like the Minimum Ring Star Problem.
Here one just need to allow cycles to appear in the process of the algorithm and
keep the required information to see if it eventually spans the graph. We also
can use the same idea to solve the Dual Cost Minimum Spanning Tree.

Also if the input consists of a graph and its treewidth (instead of a tree
decomposition) then by using any algorithm that computes a tree decomposition,
our algorithm gives another proof that MSCP is fixed-parameter tractable [6],
rather than using an EMSOL expression.

It would be interesting if one can improve the constant factor in the running
time of our algorithm. It is also of interest if one can improve the time complexity
by reducing the size of a state table by a tradeoff with accuracy.

Acknowledgement. The authors thank Sonny Datt for implementing the al-
gorithm and spotting a couple of errors in the former presentation of Table 1.

References

1. Baldacci, R., Dell’Amico, M., Salazar González, J.: The capacitated-ring-star prob-
lem. Operations Research 55(6), 1147–1162 (2007)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

246 M.J. Dinneen and M. Khosravani

3. Bodlaender, H.L.: Treewidth: Structure and algorithms. In: Prencipe, G., Zaks, S.
(eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 11–25. Springer, Heidelberg (2007)

4. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp.
193–242. Elsevier, Amsterdam (1990)

5. Dinneen, M.J.: Practical enumeration methods for graphs of bounded pathwidth
and treewidth. Technical Report CDMTCS–055, Center for Discrete Mathematics
and Theoretical Computer Science, Auckland (1997)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

7. Hlinený, P., Oum, S.i., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2008)

8. Labbé, M., Laporte, G., Mart́ın, I.R., González, J.J.S.: The ring star problem:
Polyhedral analysis and exact algorithm. Networks 43(3), 177–189 (2004)

9. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

10. Simonetti, L., Frota, Y., de Souza, C.C.: An exact method for the minimum cater-
pillar spanning problem. In: Cafieri, S., Mucherino, A., Nannicini, G., Tarissan, F.,
Liberti, L. (eds.) CTW, pp. 48–51 (2009)

11. Tan, J., Zhang, L.: The consecutive ones submatrix problem for sparse matrices.
Algorithmica 48(3), 287–299 (2007)

Fast Algorithms for min independent
dominating set�

Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos

LAMSADE, CNRS and Université Paris-Dauphine, F-75775 Paris, France
{bourgeois,escoffier,paschos}@lamsade.dauphine.fr

Abstract. We first devise a branching algorithm that computes a min-
imum independent dominating set with running time O∗(20.424n) and
polynomial space. This improves the O∗(20.441n) result by (S. Gaspers
and M. Liedloff, A branch-and-reduce algorithm for finding a minimum
independent dominating set in graphs, Proc. WG’06). We then study ap-
proximation of the problem by moderately exponential algorithms and
show that it can be approximated within ratio 1 + ε, for any ε > 0, in
a time smaller than the one of exact computation and exponentially de-
creasing with ε. We also propose approximation algorithms with better
running times for ratios greater than 3.

1 Introduction

Given a graph G(V, E), an independent set of G is a subset S ⊆ V such that,
for any (vi, vj) ∈ S × S, (vi, vj) /∈ E. An independent dominating set is an
independent set that is maximal for inclusion. min independent dominating
set is known to be NP-hard [7]. Furthermore, it is also very hard from an
approximation point of view, since no polynomial algorithm can approximately
solve it within ratio |V |1−ε, for any ε > 0, unless P = NP [9].

For min independent dominating set, the trivial O∗(2|V |) bound has been
initially broken by [10] down to O∗(3|V |/3) = O∗(20.529|V |) (notation O∗(·) is used
to measure complexity of an algorithm ignoring polynomial factors) using a result
by [11], namely that the number of maximal (for inclusion) independent sets in
a graph is at most 3|V |/3. This result has been dominated by [8] where using a
branch & reduce technique an algorithm optimally solving min independent
dominating set with running time O∗(20.441|V |) is proposed.

In this paper, we first devise a branching algorithm that computes a minimum
independent dominating set in general graphs with running time O∗(20.424|V |)
and polynomial space. We then tackle approximation of min independent
dominating set by moderately exponential algorithms and show that there ex-
ist (1 + ε)-approximations obtained in time O∗(20.424(1−ε/168)n) for every ε � 6;
we also propose algorithms with better running times for ratios greater than 3.

� Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010.

B. Patt-Shamir and T. Ekim (Eds.): SIROCCO 2010, LNCS 6058, pp. 247–261, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

248 N. Bourgeois, B. Escoffier, and V.Th. Paschos

In what follows, given a graph G(V, E) and a vertex v ∈ V , we denote by N(v)
the neighborhood of v, by N [v] = N(v) ∪ {v} the closed neighborhood of v, by
d(v) = |N(v)| the degree of v. For a subset H ⊂ V , we denote by G[H] the
subgraph of G induced by H . For v ∈ H , for some H ⊂ V , we denote by d′H(v) the
degree of v in G[H]; when no confusion arises, we simplify notations using d′(v)
instead. For convenience, we set N [H] = {N [v] : v ∈ H}. We use δ and Δ to
denote the minimum and maximum degree of G, respectively. For simplicity,
we set n = |V | and m = |E|; T (n) stands for the maximum running time
an algorithm requires to solve min independent dominating set in a graph
containing at most n vertices.

Branch & reduce-based algorithms have been used for decades, and a classical
analysis of their running times leading to worst case complexity upper bounds is
now well-known. If one knows that computing a solution on an instance of size n
amounts to computation of a solution on a sequence of p instances of respective
sizes n− k1, . . . , n− kp, one can write

T (n) �
∑
i�p

T (n− ki) + q(n) (1)

for some polynomial q. The running time T (n) is bounded by O∗(cn), where c
is the greatest root of 1 =

∑
i�p x−ki . This root is often called the contribution

of the branching to overall complexity factor, or the branching factor. In the
sequel, we will omit for simplicity to precise the additive polynomial term q(n)
in recurrence relations. Of course, it is possible that there does not exist only one
single recurrence as in (1), but several ones, depending on the instance. In this
case, the running time is never greater than what is needed to solve an instance
where at every step we make a branching that has the highest possible branching
factor, i.e., the largest solution of (1). This is actually not true anymore when
doing multiple branchings such as “either we take a or not, and if we add a
to the solution then we know that b has degree 3 in the remaining graph and
one can make a very good branching on it . . . ”. Indeed, it might be the case
that the global worst case of the multiple branching does not correspond to
the worst cases of the single branchings it involves. In the sequel, we keep this
remark in mind in order to compute worst case running times involving multiple
branchings.

2 General Recurrence

Following an idea by [8], we partition the graph into “marked” and “free” vertices.
Marked vertices are those that have already been disqualified from belonging to
optimum, but still remain non-dominated. Indeed, we generalize the problem
at hand in the following way: “given a subset W ⊆ V (W is the set of free
vertices), find the minimum independent set in W that dominates V ”. Notice
that, without further hypothesis on W , this problem may have no solution (for
instance, when V \W contains a vertex and its whole neighborhood); in this case,

Fast Algorithms for min independent dominating set 249

we set opt(G, W) = ∞, where opt(G, W) denotes the value of the optimum for
the problem in inverted commas just mentioned.

In what follows, two vertices v and u are said to be equivalent if N [u] = N [v].
In this case, we can remove one of them from the graph (a marked one if any).

Let us first consider a very simple branching, on a vertex v of minimum degree
d(v) = δ. We can always suppose that δ � 1, since (not marked) isolated vertices
must be added to the solution. Our solution has to dominate v; hence, at least
one vertex of N [v] must belong to the solution, and this vertex must be a free
one. Furthermore, if some vertex u belongs to the optimum, its neighbors do
not so and they can be removed from the graph. Hence, we have the following
recurrence:

opt(G) = 1 + min
u∈W∩N [v]

{opt(G[V \N [u]])} (2)

By hypothesis, d(u) � δ, so we get the following inequality:

T (n) � (δ + 1− r)T (n− δ − 1)

where r is the number of marked vertices in N [v]. Remark that the order we use
to examine neighbors ui, i = 1, . . . , δ of v is important, since the branches are not
“v; u1; u2; . . . ; uδ” but “v; v̄u1; v̄ū1u2; . . . ; v̄ū1 . . . ¯uδ−1uδ” where for a vertex u, ū
means “not u”, i.e. u is marked in the corresponding branch (see Figure 1).

v

u

u

u1

2

3

(u)(v) (u) (u)1 2 3

Fig. 1. The four branches v; v̄u1; v̄ū1u2; v̄ū1ū2u3. Shaded nodes are marked.

Remark that the complexity of the branching is decreasing with δ, for δ � 2.
So, a straightforward idea is to perform a fine analysis on graphs of low minimum
degree. Formally, our algorithm works as follows: (1) if there exists a marked
vertex of degree 3 or less, or a vertex which is adjacent to only one free vertex,
make a branching according to what is described in Section 3; (2) otherwise,
pick a vertex of minimum degree, and branch as described in Section 4.

In the analysis of the running time of the algorithm above, we adopt a measure
and conquer approach (see for instance [6]). More precisely, we do not count in
the measure the marked vertices of degree at most 2 (they receive weight 0), and
we count with a weight w = 0.2202 the marked vertices of degree 3. The other
vertices count 1 (i.e., they are counted as they are). We so get recurrences on

250 N. Bourgeois, B. Escoffier, and V.Th. Paschos

the time T (p) required to solve instances of size p, where the size of an instance
is the sum of the weights of its vertices. Since initially p = n, the overall running
time is expressed as function of n. This is valid since when p = 0, there are
only marked vertices in the graph and, in this case, the problem is immediately
solved (indeed, there is no solution). Note that this way of measuring progress
is introduced in order to simplify the branching analysis (actually, we could
obtain a similar result without measure and conquer but with a more technical
analysis).

3 Branching on Marked Vertices or Vertices Which Are
Adjacent to Only One Free Vertex

Remark first that, if there exists an edge between two adjacent marked vertices,
we can remove this edge. This does not increase the complexity measure p.

We branch as follows: if there exist a marked vertex of degree at most 2 or a
(free) vertex which is adjacent to only one free vertex (Lemma 1) or, finally, a
marked vertex of degree 3 (Lemma 2) then stay in Section 3, otherwise (there
are no such vertices), go to Section 4.

Lemma 1. Assume that some vertex of degree at most 2 is marked, or that some
free vertex is adjacent to only one free vertex. Then, either the algorithm stops
(there is no solution), or we can remove at least one vertex of weight 1 without
branching, or, finally, T (p) � T (p−2)+T (p−4) (or a better branching occurs); this
branching contributes to the overall complexity with a factor λ � 1.2721 = 20.348.

Proof. The proof is based upon the study of two cases. In what follows, we call
“heavy” a vertex of weight 1 and “light” a vertex of weight w, that means a
marked vertex of degree 3.
Case 1. There is some marked vertex v of degree at most 2.
If v has no (free) neighbor, then opt(G) = ∞ (where opt(G) denotes the value of
the optimum in G). If v has exactly one free neighbor u we add u to the solution
and we reduce the current instance’s size by 1 without branching.

Suppose now that v is marked and that is adjacent to u1, u2 (which are free).
Then:

opt(G) = 1 + min {opt (G \N [u1]) , opt (G \N [u2])}
If both u1 and u2 are adjacent to at least 2 heavy vertices, then T (p) � 2T (p−3),
that is better than the result claimed. If some ui is adjacent only to marked
vertices, we must add it to the optimum, decreasing p by 1 without branching.
Otherwise, u1 is adjacent to only one free vertex t1 and u2 is adjacent to at least
one free vertex t2. We first suppose that u1 and u2 are not adjacent. Then, one
of the following situations occurs:

– If t1 = t2, the only possibility to have both u1 and v dominated is to add u1
to the solution; thus we reduce the current instance without branching.

– Otherwise we branch on v. When we add u2 to the solution, we must add t1
too, in order to dominate u1; this leads to T (p) � T (p− 2) + T (p− 4).

Fast Algorithms for min independent dominating set 251

If none of the former cases happens, then we know that each marked vertex v
of degree 2 has two neighbors u1 and u2 that are adjacent to each other with at
least one of them, say u1, which is not adjacent to any other free vertex. Then
we can remove v without branching, because we already need to take either u1
or u2 to dominate u1. Note that u1 is adjacent to only one free vertex, so we are
in the second case of the lemma.
Case 2. There is a vertex u1 adjacent to only one free vertex u2, and there is no
marked vertex of degree at most 2.
Note that we can remove any marked vertex which is adjacent to both u1 and
u2 (such a vertex will be dominated anyway).

We now distinguish the following cases:

(a) u2 is adjacent to at least two other heavy vertices. We immediately get
T (n) � T (n− 2) + T (n− 4).

(b) u2 is adjacent to (exactly) one other heavy vertex t2.
• If d(u1) = 1, then we branch on t2 and get at least T (n) � 2T (n−3) (or

even better if t2 is marked);
• If the sum of the number of light neighbors of u1 and u2 is at least 2,

we branch on u2 and get T (n) � T (n − 2 − 2w) + T (n− 3 − 2w), that
leads to λ � 1.269 (remember that a light vertex that looses a neighbor
has weight 0).

• The only remaining case is when u1 has exactly one light neighbor v
and u2 has no light neighbor. Then d(t2) � 2 (or we are in one of the
previous cases). If N(t2) = {u2, v}, then we do not need to branch, it
is never interesting to take u1 and t2 (take u2 and the third neighbor
of v instead). Otherwise, we branch on t2 and get as previously T (n) �
T (n− 2− 2w) + T (n− 3− 2w).

(c) u2 is adjacent only to light neighbors (and by symmetry u1 also, or we are
in one of the previous cases).
• If u1 is not adjacent to any other vertex, we can immediately remove it

and add u2 to the solution.
• If u1 and u2 are both adjacent to two light vertices, we get T (n) �

2T (n− 2− 4w), that leads to branching factor 1.2721 also.
• By symmetry, the only remaining case occurs when u1 is adjacent to

exactly one light vertex v, and u2 to at least one (other) light vertex.
Let x and y the two other neighbors of v. Note that if we take x or y, we
can remove u1 and add u2. Then, if x and y are both adjacent to at least
two free neighbors (see Figure 2), we branch on v, taking either x, y or u1,
and get T (n) � 2T (n−5−2w)+T (n−4−2w), that leads to a branching
factor 1.2412. Otherwise, x has only one free neighbor x′ and we branch
on x, getting T (n) � T (n−4−2w)+T (n−2−w) � T (n−4)+T (n−2).

��

Lemma 2. Assume some vertex v of degree 3 is marked. Then, at worst, T (p) �
2T (p−(3+w))+T (p−(5+w)), and the branching factor induced is λ � 1.339 =
20.421.

252 N. Bourgeois, B. Escoffier, and V.Th. Paschos

��
��
��

��
��
��

1u u

v

x y

2

Fig. 2. v is marked. x and y may or may not be adjacent.

Proof. Let {u1, u2, u3} be the three neighbors of v. One of the following situa-
tions occurs:

1. If each ui is adjacent to at least 3 free vertices, then, by taking either u1, u2
or u3, we get three branches of size at most p− (4 + w).

2. If, say, u1 is adjacent to two free vertices, then we branch on u1. In this case,
if we take u1, we reduce p by at least 3 + w. Otherwise, we do not take u1.
In this case u1 is marked and we can remove the edges between u1 and the
marked vertices. Hence, u1 and v are marked and have degree at most 2.
Then, p reduces by 1 + w. But a further branching on a marked vertex of
degree at most 2 (see Lemma 1) allows us either to reduce p by 1, or it
creates two branches of size at most 1 + w + 2 = 3 + w or 1 + w + 4 = 5 + w
(in the worst case). At worst, T (p) � 2T (p− (3 + w)) + T (p− (5 + w)). ��

4 Branching on Vertices of Minimum Degree

We now suppose that the graph does not contain any marked vertex of degree at
most 3, and that every vertex is adjacent to at least two free vertices. Then, we
branch on the vertex of minimum degree. If this minimum degree is at least 6,
then the branching given in Section 2 gives a sufficiently low running time. We
distinguish in the following lemmata the different possible values of the minimum
degree. Let us start with two preliminary remarks.

Remark 1. When branching on a vertex of minimum degree δ, we can always
assume that it is adjacent to at least one vertex of degree at least δ + 1. Notice
that the branchings performing by the algorithm never increase the degree of
a vertex. Then, the situation where the graph is δ-regular occurs at most once
(even in case of disconnection). Thus, we make only a finite number of “bad”
branchings (where every vertex of minimum degree δ is adjacent only to vertices
of degree δ). Such branchings may increase the global running time only by a
constant factor. In particular, if δ = 5, the branching given in Section 2 gives
T (p) � 5T (p− 6) + T (p− 7) leading to a branching factor 1.3384 = 20.421.

Remark 2. Suppose that we branch on a vertex v which has a neighbor u1 adja-
cent to at most three free neighbors. Let us consider the branch where we take uk

not adjacent to u1 (for 2 � k � d(v)). In this branch, u1 is marked.

Fast Algorithms for min independent dominating set 253

– If NW (u1) ⊆ NW (uk), then we cannot take uk and this branch is useless.
– If there is only one vertex t in NW (u1)\NW (uk), then in this branch we have

to take t and we remove at least d(uk) + 3 vertices (d(uk) + 1 by taking uk,
and t and u1 by taking t).

– Otherwise, u1 has two other free neighbors t1, t2 which are not in N(uk). In
this branch we create a marked vertex (u1) of degree 2 and hence we reduce p
by d(uk)+2. Thanks to Lemma 1, a further branching on the created marked
vertex of degree at most 2, gives two branches where p reduces by at least
d(uk) + 2 + 2 and d(uk) + 2 + 4, the other possible branchings of Lemma 1
always leading to better recurrences.

In all, either we have one branch with a reduction of d(uk) + 3, or two branches
with d(uk) + 4 and d(uk) + 6 (the latter will always be the worst case).

We are ready now to state the main result of the paper, expressed by the following
theorem.

Theorem 1. min independent dominating set can be solved using polyno-
mial space in time O∗(20.424n) = O∗(1.3413n).

The proof of Theorem 1 is immediate consequence of putting together Lem-
mata 3, 4 and 5 below settling the cases of minimum degree 2, 3 and 4, respec-
tively.

Lemma 3. If there exists v ∈ V such that d(v) = 2, then in the worst case we
get T (p) � T (p− 3) + T (p− 4) + T (p− 6) + T (p− 8) and the branching factor
induced is λ � 1.3384 = 20.421.

Proof. Set N(v) = {u1, u2}. One of the following situations occurs (note that,
according to Remark 1, we can assume that either u1 or u2 has degree at least 3):

1. If d(u2) � 4 and d(u1) � 3 then by taking either v, or u1, or u2, we get three
branches of size at most p− 3, p− 4 and p− 5.

2. If d(u2) � 4 and d(u2) = 2 then, when we take u2 (u1 having already
been discarded), we must also add the only remaining neighbor w of u1
to the solution. Thus, thanks to Remark 2 (first and second item), we get
T (p) � 2T (p− 3) + T (p− 7).

3. Suppose that u1 and u2 have degree 3 and they are adjacent. Let t be the
third neighbor of u1 (t is not adjacent to u2, otherwise u1 and u2 are equiv-
alent and we can remove one of them). When taking v, we can also take t
since, otherwise, it is useless to take v. Hence, we get three branches, each
of size at most p− 4 (even better on the first branch).

4. If d(u1) = 3, then u1 and u2 are not adjacent (either because the case has
been dealt before, or because d(u2) = 2 and u2 would be equivalent to v).
Then by branching on v, either we take v (size at most p− 3), or we take u1
(size at most p− 4), or we take u2 and we do not take v and u1. According
to Remark 2, this last choice reduces p either by d(u2) + 3 = 5, or gives rise
to two branches of size at most p− 6 and p− 8. ��

254 N. Bourgeois, B. Escoffier, and V.Th. Paschos

Lemma 4. If there exists v ∈ V such that d(v) = 3, then we get at worst T (p) �
T (p− 4) + 3T (p− 5) and the branching factor induced is λ � 1.3413 = 20.424.

Proof. Set N(v) = {u1, u2, u3}. If there exists such a vertex v which is marked,
then we only have to consider three branches where p reduces by at least 4;
hence, T (p) � 3T (p− 4). The same holds if one of the neighbors of v is marked.

We now consider that neither v nor ui’s, i = 1, 2, 3, are marked. If 4 � d(ui)
(for i = 1, 2, 3) by branching on v we get one branch of size p − 4 and three
branches of size at most p − 5. Assume that u1 has degree 3 and that u3 has
degree at least 4. Note that u1 cannot be adjacent to both u2 and u3, otherwise
it is equivalent to v. We consider the three following cases with respect to N(v):
either it contains two edges, or just one, or zero edges.

1. N(v) contains two edges. Then wlog., u3 is adjacent to both u1 and u2
(and u1 is not adjacent to u2). We get four branches of size at most p − 4,
p−4, p− (d(u2)+2) (since u1 becomes marked and of degree at most 2) and
p−(d(u3)+1). In the third branch thanks to Remark 2, either we remove one
more vertex, or we get two branches of size at most p− (d(u2) + 4) � p− 7
and p − (d(u2) + 6) � p − 9. We now distinguish two cases with respect
to d(u3).
(a) d(u3) � 5. Then, at worst, T (p) � 2T (p−4)+T (p−7)+T (p−9)+T (p−6).
(b) d(u3) = 4. Let t be the fourth neighbor of u3. In the branch we take v we

can take also t (indeed, if we do not take it, it is useless to take v since
taking u3 is always better). Hence, we ensure at least one more deleted
vertex when taking v getting so T (p) � T (p− 5) + T (p− 4) + 2T (p− 5).

2. N(v) contains at most one edge.
(a) Assume first that there is a triangle of vertices of degree 3, say, v, u1, u2.

Let t1 and t2 be the third neighbors of u1 and u2, respectively. If two
vertices among u3, t1 and t2 are equal (i.e., the same vertex) or adjacent,
then either two vertices in the triangle are equivalent (case of equality), or
one vertex in the triangle v, u1, u2 must belong to the solution because,
otherwise, one of them would not be dominated (case of adjacency).
Hence, T (p) � 3T (p − 4). Finally, if t1, t2 and u3 are distinct and non
adjacent, let us set Γ ′ = N(t1) ∪ N(t2) ∪ N(t3) \ {v, t1, t2, u1, u2, u3}.
Either we take one vertex of the triangle, or we have to take t1, t2
and u3, that is, T (p) � 3T (p− 4) + T (p− 6− |Γ ′|) (see Figure 3).
– If |Γ ′| � 4, then T (p) � 3T (p− 4) + T (p− 10) leading to λ � 20.417.
– If |Γ ′| = 3, then u3 has degree 4 and Γ ′ ⊂ N(u3). Then, we branch

as follows: either we take u3 and remove 9 vertices, or we take v
and remove 4 vertices, or we mark u3 and v. By removing the edge
between them, they become, respectively, of degree 3 and 2. Hence,
T (p) � T (p− 9) + T (p− 4) + T (p− (2− w)) and λ � 20.411.

(b) Otherwise, if the only edge in N(v) is (u2, u3), then we get T (p) �
T (p− 4) + T (p− 4) + T (p− 5) + T (p− 6); but in the two last branches,
thanks to Remark 2, either we remove one more vertex or we get two
branches of size reduced by 2 and 4. So, we get at worst T (p) � 2T (p−
4) + T (p− 7) + T (p− 9) + T (p− 8) + T (p− 10).

Fast Algorithms for min independent dominating set 255

2uu1

v

3u

1 tt 2

Fig. 3. Γ ′ is the rectangular box

(c) If there exists an edge (u1, u2) with d(u2) � 4 (otherwise, we are in
case 2a above) we get T (p) � T (p− 4)+ T (p− 4) + T (p− 5) + T (p− 6);
but, in the last branch, thanks again to Remark 2, we get at worst
T (p) � 2T (p− 4) + T (p− 5) + T (p− 8) + T (p− 10).

3. Assume finally that there is no edge in N(v). If u2 and u3 have degree at
least 4, then we get T (p) � T (p−4)+T (p−4)+T (p−6)+T (p−6) (indeed,
in the last two branches u1 is marked and has degree at most 2). If, say, u2
has degree 3, then we get T (p) � T (p− 4) + T (p− 4) + T (p− 5) + T (p− 6);
but, in the two last branches, thanks to Remark 2, either we remove one
more vertex, or we get two branches of size reduced by 2 and 4. So, at worst,
T (p) � 2T (p− 4) + T (p− 7) + T (p− 9) + T (p− 8) + T (p− 10). ��

Lemma 5. If there exists v ∈ V such that d(v) = 4 then, at worst T (p) �
4T (p− 5) + T (p− 9) with a contribution to the overall branching factor bounded
above by 1.3394 = 20.422.

Proof. Set N(v) = {u1, u2, u3, u4} and assume that u4 has degree at least 5. If
at least three out of four ui’s have degree at least 5, then T (p) � 2T (p− 5) +
3T (p− 6). Consider now that u1 and u2 have degree 4.

Suppose first that the ui’s of degree 4 are not adjacent. In the branch we
take u2, p reduces by 6−w (since u1 is marked and has degree at most 3). Then,
either u3 has degree at least 5 and then T (p) � 2T (p−5)+T (p−(6−w))+2T (p−
6), or u3 has degree 4 and in this case, in the branch we take u3, p reduces by
5+2(1−w). In all, T (p) � 2T (p−5)+T (p−(6−w))+T (p−(7−2w))+T (p−6)
and λ � 20.414.

Assume now that u1 and u2 are adjacent. When v, u1 and u2 are marked,
they become of degree 2. Then:

– If u1 and u2 are not adjacent to u3, T (p) � 3T (p− 5) + T (p− 7)+ T (p− 6).
– If u1 is not adjacent to u3 and u2 is not adjacent to u4, we get T (p) �

3T (p− 5) + T (p− 6) + T (p− 7).
– Otherwise, both u1 and u2 are adjacent to u3 but not to u4. If u3 has degree

at least 5, T (p) � 3T (p − 5) + T (p − 6) + T (p − 7). Otherwise, u4 is not

256 N. Bourgeois, B. Escoffier, and V.Th. Paschos

adjacent to any of the ui’s (or one of them would be equivalent to v). Then,
we get 4 branches of size p−5 and in the last branch the ui’s are marked and
have degree at most 2 hence p reduces by 9: T (p) � 4T (p−5)+T (p−9). ��

5 Approximation of min independent dominating set
by Moderately Exponential Algorithms

As we have mentioned in Section 1, for any ε > 0, min independent domi-
nating set is inapproximable within ratio n1−ε unless P = NP. On the other
hand, it is easy to see that any maximal independent set guarantees a ratio at
most Δ + 1. In this section, we devise algorithms achieving ratios “forbidden”
in polynomial time (such as constant ratios), with running times that, although
exponential, are better than the running time of exact computation for min in-
dependent dominating set. Such a problematic has already been tackled for
other optimization problems such as Maximum Independent Set, Minimum Set
Cover, Min Coloring (see for instance [2,3,5]). A first question is whether we can
provide or not a family of algorithms with approximation ratio 1 + ε (for any
ε > 0) in time O∗(γn

ε) where γε < 20.424, a kind of exponential approximation
scheme. This is quite easy for some problems such as hereditary problems ([2])
but seems harder for other problems such as min independent dominating
set. We answer to this question in Proposition 1. Then, we improve this result for
bounded degree graphs (Proposition 2). Finally, we propose another algorithm
leading to improved running times for ratios greater than 3 (Proposition 4).

The algorithms presented in this section use the following lemma by [4].

Lemma 6. ([4]) For any k � 3, it is possible to enumerate all independent
dominating sets (i.e., maximal independent sets) of size at most n/k with run-
ning time O∗(kn/k).

Our first result is given in the following Proposition 1 and claims that there exist
(1 + ε)-approximation algorithm that runs in time O∗(20.424(1−ε/168)n).

Proposition 1. For any positive ε � 6, min independent dominating set
is (1 + ε)-approximable in time O∗(20.424(1−ε/168)n).

Proof. The algorithm claimed, denoted by IDS, works as follows. It first com-
putes all the dominating independent sets of size n/7 or less, with running time
O∗(7n/7) = O∗(20.402n) (Lemma 6). If such a set exists, it returns a smallest
among them. Otherwise, opt(G) � n/7. In this case, it sets r = 0 and then,
while the graph is not empty and r � εn/168, it repeats the following steps:

1. pick a vertex v of minimum degree (say δ); if δ � 6, branch on v as discussed
previously;

2. otherwise, if
∑

u∈N(v)(d(u)− 1) � 24, branch on v;
3. otherwise, add v to the solution and remove its neighbors and increase r by 1.

Finally, when r reaches εn/168 it runs the exact algorithm on the remaining
graph denoted by G′(V ′, E′).

Fast Algorithms for min independent dominating set 257

Each time step 1 is applied, algorithm IDSmakes a branching whose recurrence
is T (n) � (δ +1)T (n− (δ +1)), with δ � 6. On the other hand, each time step 2
is applied, branching’s recurrence is T (n) � 4T (n − 5) + T (n − 16) or better.
Indeed, if d(v) = 5 then

∑
u∈N(v) d(u) � 29, and the worst case occurs when

four neighbors of v have degree 5 and one has degree 9 leading to a recurrence
T (n) � 5T (n−9)+T (n−16). Similarly, if d(v) = 4, d(v) = 3, d(v) = 2 or d(v) = 1
the worst cases give respectively the recurrences T (n) � 4T (n− 5) + T (n− 17),
T (n) � 3T (n − 4) + T (n − 22), T (n) � 2T (n − 3) + T (n − 25) and T (n) �
T (n− 2) + T (n− 26). The worst case occurs when v has degree 4, leading to a
branching factor 20.403. If the algorithm IDS stops because G is empty, then the
global running time is O∗(20.403n), that is better than the time claimed in the
proposition’s statement (since for ε � 6, 0.424(1− ε/168) > 0.403).

Assume now that r = εn/168, and let q be the number of times steps 1 or 2
have been run. Clearly, the larger the q, the faster the algorithm. Thus, the
global running time is

T (n) � 20.424(n−p) � 20.424n(1−ε/168)

Denote by S the solution computed by IDS. We prove that |S| is bounded above
by (1+ ε) opt(G). Let S∗ be an optimal solution. The algorithm builds a branch-
ing tree corresponding to branching steps 1 and 2. Note that, unfortunately, due
to step 3, when branching on a vertex v, it might be the case that no vertex
in N [v] belongs to S∗. Indeed, v might be dominated by a vertex deleted from
the graph (a neighbor of a vertex added in step 3). However, in such a tree,
consider the following path (starting from the root). At a node of the search tree
dealing with vertex v:

– if S∗ has (at least) one vertex in N [v], follow this branch (one of these
branches);

– otherwise, follow the branch where v is added in the solution.

Following this path, one reaches a particular leaf where one applies the exact
algorithm.

Now let Ω be the set of vertices we arbitrarily added to the solution during
executions of step 3 and K = N [Ω]. Denote by B the set of vertices added during
steps 1 and 2 (following the path previously described) and set B1 = B∩S∗ and
B2 = B \B1. Set S∗

1 = S∗ ∩K, S∗
2 = S∗ ∩N [B] and S∗

3 = S∗ ∩ V ′. Set, finally,
q1 = |B1| and q2 = |B2| and note that (K, N [B], V ′) is a partition of V .

Fact 1. S∗ ∩ (N [B] \B) = ∅.

Indeed, this comes from the path followed in the tree. In other words, S∗
2 = B1.

Fact 2. B2 ⊆ N(S∗
1).

For Fact 2, consider the search tree’s node where v is added in B. Since v /∈ B1,
no neighbor of v (in the current graph) is in S∗. So, there exists a neighbor of v
in S∗ deleted previously from the graph because of step 3. This vertex is in S∗

1 .

258 N. Bourgeois, B. Escoffier, and V.Th. Paschos

Thanks to Fact 1, V ′ ∩ N [S∗
2] ⊆ V ′ ∩ N [B] = ∅. This means that each ver-

tex in V ′ is either in N [S∗
3] or in N [S∗

1]. Then, there exists an independent
dominating set of G[V ′] included in S∗

3 ∪ (N [S∗
1] ∩ V ′), meaning that:

opt (G [V ′]) � |S∗
3 |+ |N [S∗

1] ∩ V ′| (3)

On the other hand, thanks to Fact 2, |N(S∗
1)\K| � q2 + |N [S∗

1]∩V ′|. Moreover:

|N (S∗
1) \K| � |N(K) \K| �

∑
v∈Ω

∑
u∈N(v)

(d(u)− 1) � 23r (4)

Combining (3) and (4), we get opt(G[V ′]) + q2 � |S∗
3 | + 23r. The solution S

computed by IDS satisfies |S| = r+q1 +q2 +opt(G[V ′]) = r+ |S∗
2 |+ |S∗

3 |+23r �
|S∗|+ 24r. Putting all this together we obtain

|S| � |S∗|
(

1 +
24εn

168 |S∗|

)
� |S∗| (1 + ε)

as claimed. ��

In what concerns the running time, the result of Proposition 1 can be improved
towards various directions. First, in the following Proposition 2 we improve run-
ning time for graphs of bounded degree.

Proposition 2. If the maximum degree of G is bounded above by some con-
stant Δ, then for any ε > 0, it is possible to compute a 1+ ε-approximation with
running time O∗(γ(1−f(ε))n), where f(ε) is solution of:

f(ε)Δ
ε

log
(

ε

Δf(ε)

)
= (1− f(ε)) log γ (5)

Proof. Fix some ε > 0 and consider the following algorithm: (1) search for any
independent dominating set of size at most f(ε)Δn/ε; if some dominating set is
computed, return it as solution (otherwise, |S∗| > f(ε)Δn/ε); (2) fix an arbitrary
vertex-subset K of size f(ε)n; (3) run an exact algorithm for min independent
dominating set in G[V \K] and let S1 be the solution computed; (4) run some
polynomial algorithm for min independent dominating set in G[V \N [S1]]
and let S2 be the solution computed; (5) output S1 ∪ S2.

According to (5) and Lemma 6, the running time of the algorithm above is at
most:

O∗

⎛
⎝(

ε

Δf(ε)

) f(ε)Δn
ε

+ γn−|K|

⎞
⎠ = O∗

(
γn(1−f(ε))

)

Set I = opt(G[V \ (K ∪N(K ∩ S∗))]); I is an independent set and there exists
a set I ′, V \ K ⊇ I ′ ⊇ I, that is dominating in G[V \ K]. Since S∗ \ K is an
independent dominating set (possibly not maximal) in G[V \ (K ∪N(K ∩S∗))],
the size of S1 is bounded above by:

|S1| � |I ′| � |I|+ |N (K ∩ S∗) \K| � |S∗ \K|+ |N (K ∩ S∗) \K|

Fast Algorithms for min independent dominating set 259

from what we get:

|S1 ∪ S2| � |S1|+ |K| � |S∗|+ |K| − |K ∩ S∗|+ |N (K ∩ S∗) \K|
� |S∗|+ |K|+ (Δ− 1) |K ∩ S∗| � |S∗| |K|Δ

Hence, in all:
|S1 ∪ S2|
|S∗| � 1 +

Δf(ε)n
Δf(ε)n/ε

� 1 + ε

as claimed. ��

Table 1 shows the tradeoffs claimed by Proposition 2 between ratio and running
time for some values of Δ and for γ = 20.424. The entries in the leftmost column
are values of ε; the other entries are the multipliers of n in the exponent of 2.
For instance, if 1 + ε = 1.5 is to be attained in a graph of maximum degree 5,
the running time of the algorithm is O∗(20.397n).

Table 1. Some results derived from Proposition 2. The polynomial case is due to [1].

ε Δ = 3 Δ = 4 Δ = 5 Δ = 6 Δ = 7 Δ = 8 Δ = 9 Δ = 10
0.1 0.415 0.418 0.419 0.420 0.421 0.421 0.422 0.422
0.2 0.406 0.411 0.414 0.415 0.417 0.418 0.419 0.419
0.5 0.376 0.389 0.397 0.400 0.405 0.407 0.409 0.411
1 P 0.349 0.366 0.376 0.384 0.389 0.393 0.397

1.5 0.304 0.332 0.349 0.361 0.370 0.376 0.381
2 0.254 0.294 0.320 0.337 0.349 0.358 0.366

Finally, improved running times can be obtained if one wishes to attain “worse”
approximation ratios. We give a very simple algorithm leading to Proposition 3,
that we slightly improve in Proposition 4.

Proposition 3. For any r � 3, it is possible to compute an r-approximation of
min independent dominating set with running time O∗(2n log2 r/r).

Proof. We run the branching algorithm of the proof of Lemma 6 to compute
every independent dominating set of size n/r or less. If it finds some independent
dominating set, it returns it; otherwise, opt(G) � n/r, where opt(G) denotes the
size of a minimum independent dominating set. In the first case, the algorithm
needs time O∗(rn/r) = O∗(2n log2 r/r) and computes an optimal solution; in the
second case, any maximal independent set is an r-approximation and such a set
is computed in polynomial time. ��

The following proposition further improves the result of Proposition 3.

Proposition 4. For any r � 3, it is possible to compute an approximation
of min independent dominating set with running time O∗(2n log2 r/r) and
approximation ratio r − ((r − 1)/r) log2 r.

260 N. Bourgeois, B. Escoffier, and V.Th. Paschos

Proof. As previously, we first compute every independent dominating set of
size n/r or less. If such sets exist, we return one of those with minimum size.
Otherwise, we partition V into l = r/ log2 r subsets V1, . . . , Vl, of size n log2 r/r,
and we initialize S with some independent dominating set. Then, for j � l, we
run the following procedure: (1) for any H ⊆ Vj , if H is an independent set, com-
pute an independent dominating set SH in G[V \N [H]]; (2) return the smallest
set among S and the sets H ∪ SH computed.

Obviously, S is an independent dominating set. The algorithm examines l ×
2n/l subsets, that concludes the running time claimed.

Fix some optimal solution S∗. Since S∗ is maximally independent, ∪i�lN(Vi∩
S∗) = V \ S∗ and we get (I.S. stands for independent set):

|S|
opt(G)

� min
j�l

min
H I.S. of Vj

{
n− |N(H)|

opt(G)

}
� min

j�l

{
n− |N (Vj ∩ S∗)|

opt(G)

}

�
n− n−opt(G)

l

opt(G)
� log2 r

r
+ r − log2 r

that completes the proof of the proposition. ��

Table 2. Tradeoffs between running times and ratios derived by Propositions 3 and 4

Ratio 2 3 4 5 10 20 50
Proposition 3 1.4423n 1.4143n 1.3798n 1.2590n 1.1616n 1.0814n

Proposition 4 1.4403n 1.3870n 1.3419n 1.3077n 1.2130n 1.1398n 1.0749n

Tradeoffs between running times and ratios are displayed in Table 2. Recall that
the exact algorithm given above runs in time O∗(1.3416n).

References

1. Alimonti, P., Calamoneri, T.: Improved Approximations of Independent Dominat-
ing Set in Bounded Degree Graphs. In: D’Amore, F., Marchetti-Spaccamela, A.,
Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 2–16. Springer, Heidelberg
(1997)

2. Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combina-
torial Problems by Moderately Exponential Algorithm. In: Proc. of WADS 2009.
LNCS, vol. 5664, pp. 507–518. Springer, Heidelberg (2009)

3. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of min coloring by mod-
erately exponential algorithms. Inf. Process. Lett. 109(16), 950–954 (2009)

4. Byskov, J.M.: Enumerating maximal independent sets with applications to graph
colouring. Oper. Res. Lett. 32(6), 547–556 (2004)

5. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Inf. Process. Lett. 109(16), 957–961 (2009)

6. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure and conquer approach for the
analysis of exact algorithms. Journal of the ACM 56(5) (2009)

Fast Algorithms for min independent dominating set 261

7. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory
of NP-completeness. W. H. Freeman, San Francisco (1979)

8. Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum
independent dominating set in graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS,
vol. 4271, pp. 78–89. Springer, Heidelberg (2006)

9. Halldórsson, M.M.: Approximating the minimum maximal independence number.
Inform. Process. Lett. 46, 169–172 (1993)

10. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inform. Process. Lett. 27, 119–123 (1988)

11. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. of Mathematics 3, 23–28
(1965)

Author Index

Amira, Nir 29

Baba, Daisuke 86
Bienkowski, Marcin 57
Bourgeois, Nicolas 247

Czyzowicz, Jurek 72

Degener, Bastian 168
Delporte-Gallet, Carole 127
Devismes, Stéphane 127
Dinneen, Michael J. 237

Escoffier, Bruno 2, 247

Fauconnier, Hugues 127
Fusco, Emanuele Guido 142

Gavoille, Cyril 211
Giladi, Ran 29
G ↪asieniec, Leszek 57
Godfroy, Quentin 211
Gourvès, Laurent 2
Gradinariu Potop-Butucaru, Maria 183

Ilcinkas, David 72
Izumi, Taisuke 101
Izumi, Tomoko 86, 101

Kakugawa, Hirotsugu 86
Kamei, Sayaka 101
Kempkes, Barbara 168
Khosravani, Masoud 237
Kling, Peter 168
Klonowski, Marek 57
Korzeniowski, Miroslaw 57
Královič, Rastislav 157

Kranakis, Evangelos 197, 224
Krizanc, Danny 197
Kushilevitz, Eyal 1
Kuznetsov, Petr 14

Labourel, Arnaud 72
Lamani, Anissa 183
Larrea, Mikel 127
Lotker, Zvi 29

Masuzawa, Toshimitsu 86
Meyer auf der Heide, Friedhelm 168
Mikĺık, Stanislav 157
Monnot, Jérôme 2
Morales Ponce, Oscar 224

Narayanan, Lata 197

Ooshita, Fukuhito 86, 101

Paschos, Vangelis Th. 247
Pelc, Andrzej 72, 142

Rapaport, Ivan 114
Rémila, Eric 114

Sau, Ignasi 41
Schmid, Stefan 14, 57
Shalom, Mordechai 41
Stacho, Ladislav 197, 224

Tixeuil, Sébastien 183

Viennot, Laurent 211

Zaks, Shmuel 41

	Title
	Preface
	Organization
	Table of Contents
	Communication Complexity: From Two-Party to Multiparty
	References

	On the Impact of Local Taxes in a Set Cover Game
	Introduction
	Definitions, Related Work and Summary of Results
	Fair Balanced Model
	Tailored Model: Finding the Right Taxes
	Improvement on the PoA
	Lower Bounds
	Uniform Weights

	Concluding Remarks
	References

	Towards Network Games with Social Preferences
	Introduction
	Related Work
	Our Contributions
	Paper Organization

	Social Range Matrices and Perceived Equilibria
	Basic Properties of Social Range Matrices
	Case Study: Network Creation
	A Network Creation Game
	Social Optimum and Anarchy
	Social Equilibria
	Use Case: Anarchy vs. Monarchy
	Windfall of Friendship and Price of Ill-Will

	Conclusions and Open Questions
	References

	Distributed Weighted Stable Marriage Problem
	Introduction
	Model and Notation
	Communication and Preferences Models
	Basic Properties of the Distributive Weighted Model

	Public Billboard Tight Bound
	Public Billboard Lower Bound

	Algorithm for the Distributive Weighted Model
	Conclusions and Open Problems
	References

	Traffic Grooming in Star Networks via Matching Techniques
	Introduction
	Optical Networks
	The Problem
	Related Works
	Summary of Results

	Preliminaries
	Simple Requests
	Optimal Algorithm
	Structure of an Optimal Solution

	Multiple Requests
	Motivation
	First Approach
	Second Approach

	Conclusions
	References

	Event Extent Estimation
	Introduction
	Model
	Related Work
	Our Contribution

	The Clique
	The Algorithm Group
	Randomized Cardinality Guessing

	Lower Bounds
	Arbitrary Graphs
	Neighborhood Discovery
	The {\SC MinID} Algorithm

	Planar Graphs
	Hierarchical Decomposition

	References

	Asynchronous Deterministic Rendezvous in Bounded Terrains
	Introduction
	Rendezvous with a Map
	Coherent Compasses
	Incoherent Compasses

	Rendezvous without a Map
	Coherent Compasses
	Incoherent Compasses

	Discussion of Parameters
	References

	Space-Optimal Rendezvous of Mobile Agents in Asynchronous Trees
	Introduction
	Background and Motivation
	Related Work
	Our Contributions

	Terminology and Preliminaries
	The Network Model
	Definition of Terms and Problem
	Basic Properties

	Asymptotically Time-Optimal Rendezvous
	Lower Bound on the Memory Space
	The Algorithm with O(n) Memory Space

	Asymptotically Space-Optimal Rendezvous
	The Algorithm with O(log n) Memory Space
	Extension from Symmetric-Label Trees to General Trees

	Conclusion
	References

	Mobile Robots Gathering Algorithm with LocalWeak Multiplicity in Rings
	Introduction
	Background and Motivation
	Our Contribution
	Road Map

	Preliminaries
	System Models
	Gathering Problem

	Gathering Algorithm with Local-Weak Multiplicity
	Gathering from a Rigid ConfigurationWhere d^{i}_{1} ≥ 4 and d^{i}_{2} ≥ 3
	Algorithm for a Rigid ConfigurationWhere d^{i}_{1} ≥ 4 and d^{i}_{2}< 3
	Algorithm for a Rigid ConfigurationWhere d^{i}_{1}= 3
	Time Complexity

	Conclusions
	References

	Average Long-Lived Memoryless Consensus: The Three-Value Case
	Introduction
	The Model
	Stability: Geodesic Criterion
	Stability: Random Walk Criterion

	Basics for the Symmetric Case
	OurResult
	References

	Algorithms for Extracting Timeliness Graphs
	Introduction
	InformalModel
	Some Systems

	Extraction Algorithms
	An Extraction Algorithm
	An Efficient Extraction Algorithm
	Conclusion
	References

	Distributed Tree Comparison with Nodes of Limited Memory
	Introduction
	Preliminaries
	Trade-Offs between Memory and Time
	Trade-Offs between Memory and Number of Messages
	References

	Periodic Data Retrieval Problem in Rings Containing a Malicious Host
	Introduction
	Preliminaries
	Model of the System
	Problem Definition
	Malicious Host

	Solution with Reliable Whiteboards
	General Solution
	Conclusion
	References

	A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots
	Introduction
	Problem Description
	Analysis
	Validity of the Strategy
	The $O(l)$ Upper Bound
	The O((h+d) logl) Upper Bound

	Outlook
	References

	Optimal Deterministic Ring Exploration with Oblivious Asynchronous Robots
	Introduction
	Model and Preliminaries
	Impossibility Result
	Ring Exploration in CORDA Model
	Conclusion
	References

	Maximum Interference of Random Sensors on a Line
	Introduction
	Related Work
	Results of the Paper

	Preliminary Results
	Expected Interference of a Given Sensor
	Probability Bound on Maximum Interference

	Expected Maximum Interference
	Conclusion
	References

	Multipath Spanners
	Introduction
	Motivation
	Related Work
	Our Contributions

	Preliminaries
	Multipath Distance and Multipath Spanner
	Iterative Spanners
	Lower Bounds

	An Unweighted 2-Multipath 3-Spanner
	A 2-Multipath (2,8)-Spanner
	Multipath Spanning Trees
	Stretch-(2,8W) Spanner

	Conclusion
	References

	Strong Orientations of Planar Graphs with Bounded Stretch Factor
	Introduction
	Notation and Preliminaries
	Related Work
	Contributions

	Orientations with More than |E| Arcs
	Orientations with |E| Arcs
	Orientations with Less than |E| Arcs
	Conclusion
	References

	A Linear Time Algorithm for the Minimum Spanning Caterpillar Problem for Bounded Treewidth Graphs
	Introduction
	Preliminaries
	Finding a Minimum Spanning Caterpillar in a Bounded Treewidth Graph
	Correctness of the Algorithm
	Related Problems
	Conclusion and Further Work
	References

	Fast Algorithms for min independent {\sc dominating} set
	Introduction
	General Recurrence
	Branching on Marked Vertices or Vertices Which Are Adjacent to Only One Free Vertex
	Branching on Vertices of Minimum Degree
	Approximation of {\sc min independent} dominating set by Moderately Exponential Algorithms
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

