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Preface

This book and its sister volume collect refereed papers presented at the 7th Interna-
tional Symposium on Neural Networks (ISNN 2010), held in Shanghai, China, June 
6-9, 2010. Building on the success of the previous six successive ISNN symposiums, 
ISNN has become a well-established series of popular and high-quality conferences 
on neural computation and its applications. ISNN aims at providing a platform for 
scientists, researchers, engineers, as well as students to gather together to present and 
discuss the latest progresses in neural networks, and applications in diverse areas. 
Nowadays, the field of neural networks has been fostered far beyond the traditional 
artificial neural networks. 

This year, ISNN 2010 received 591 submissions from more than 40 countries and 
regions. Based on rigorous reviews, 170 papers were selected for publication in the 
proceedings. The papers collected in the proceedings cover a broad spectrum of fields, 
ranging from neurophysiological experiments, neural modeling to extensions and 
applications of neural networks. We have organized the papers into two volumes 
based on their topics. The first volume, entitled “Advances in Neural Networks- 
ISNN 2010, Part 1,” covers the following topics: neurophysiological foundation, 
theory and models, learning and inference, neurodynamics. The second volume enti-
tled “Advance in Neural Networks ISNN 2010, Part 2” covers the following five 
topics: SVM and kernel methods, vision and image, data mining and text analysis, 
BCI and brain imaging, and applications.  

In addition to the contributed papers, four distinguished scholars (Andrzej 
Cichocki, Chin-Teng Lin, DeLiang Wang, Gary G. Yen) were invited to give plenary 
talks, providing us with the recent hot topics, latest developments and novel applica-
tions of neural networks.  

ISNN 2010 was organized by Shanghai Jiao Tong University, Shanghai, China, 
The Chinese University of Hong Kong, China and Sponsorship was obtained from 
Shanghai Jiao Tong University and The Chinese University of Hong Kong. The sym-
posium was also co-sponsored by the National Natural Science Foundation of China.  
We would like to acknowledge technical supports from the IEEE Shanghai Section, 
International Neural Network Society, IEEE Computational Intelligence Society, 
Asia Pacific Neural Network Assembly, International Association for Mathematics 
and Computers in Simulation, and European Neural Network Society.  

We would like to express our sincere gratitude to the members of the Advisory 
Committee, Organizing Committee and Program Committee, in particular to Jun 
Wang and Zhigang Zeng, to the reviewers and the organizers of special sessions for 
their contributions during the preparation of this conference. We would like to also 
acknowledge the invited speakers for their valuable plenary talks in the conference.  
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Acknowledgement is also given to Springer for the continuous support and fruitful 
collaboration from the first ISNN to this seventh one.  

March 2010 Liqing Zhang 
James Kwok 

Bao-Liang Lu 
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Stimulus-Dependent Noise Facilitates
Tracking Performances of Neuronal Networks

Longwen Huang1 and Si Wu2

1 Yuanpei Program and Center for Theoretical Biology,

Peking University, Beijing, China
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Chinese Academy of Sciences, Shanghai, China

Abstract. Understanding why neural systems can process information

extremely fast is a fundamental question in theoretical neuroscience. The

present study investigates the effect of noise on speeding up neural com-

putation. We consider a computational task in which a neuronal network

tracks a time-varying stimulus. Two network models with varying recur-

rent structures are explored, namely, neurons have weak sparse connec-

tions and have strong balanced interactions. It turns out that when the

input noise is Poissonian, i.e., the noise strength is proportional to the

mean of the input, the network have the best tracking performances. This

is due to two good properties in the transient dynamics of the network

associated with the Poissonian noise, which are: 1) the instant firing rate

of the network is proportional to the mean of the external input when

the network is at a stationary state; and 2) the stationary state of the

network is insensitive to the stimulus change. These two properties en-

able the network to track the stimulus change rapidly. Simulation results

confirm our theoretical analysis.

Keywords: Neural Computation, Stochastic Noise, Transient Dynam-

ics, Tracking Speed, Balanced Network and Fokker-Planck equation.

1 Introduction

Neural systems can process information extremely fast. Taking the visual sys-
tem of primates as an example, event-related potential study has revealed that
human subjects are able to carry out some complex scenes analysis in less than
150 ms [1]. Neurophysiological recording showed that the latency of neural re-
sponse can be as short as 40 ms in V1 [2], and 80 − 110 ms in the temporal
cortex [3]. Understanding why neural systems can perform computation in such
a rapid speed is of critical importance in our understanding the computational
mechanisms of brain functions.

Recent studies on the dynamics of neuronal populations have suggested that
stochastic noise, which is observed ubiquitously in biological systems and is often
thought to degrade information processing, may actually play a critical role in
speeding up neural computation [4,5]. The idea is intuitively understandable. In

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 1–8, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a noiseless environment, the speed of neural computation is limited by the mem-
brane time constant of single neurons (in the order of 10− 20 ms). On the other
hand, when inputs to a neural ensemble contain noises, noises can randomize the
state of the network measured by the distribution of membrane potentials of all
neurons. As a result, those neurons whose potentials are close to the threshold
will fire rapidly after the onset of a stimulus, and conveys the stimulus informa-
tion quickly to higher cortical areas. Although this computational picture has
been widely recognized in the literature, there are some details concerning the
performances of noises accelerating neural computation have not been well ad-
dressed, which particularly include: 1) the impact of noise structure, and 2) the
impact of network topology, on the accelerating performance. The goal of this
study is to investigate these two issues.

To demonstrate the computational speed of a network, we consider a tracking
task in which the network tries to read-out a time-varying stimulus in time.
We measure the discrepancy between the true stimulus values and the decoding
results of the network. Two different noise forms, namely, the additive and the
stimulus-dependent Gaussian white noises are compared.

2 The Models

The dynamics of a single neuron is modeled as an integrate-and-fire process, i.e.,

τ
dvi

dt
= −vi + Ii(t), (1)

where vi represents the membrane potential of the ith neuron, τ the membrane
time constant and Ii(t) the synaptic current. A spike will be generated when the
membrane potential of a neuron reaches a threshold θ, and immediately after
firing, the membrane potential of the neuron is reset to be v = 0.

The synaptic current to a neuron is given by

Ii(t) = Irec
i (t) + Iext

i (t), (2)

which consists of the recurrent input Irec
i and the external input Iext

i .
The recurrent input is given by

Irec
i (t) =

∑
j

wij

∑
m

e−(t−tm
j )/τs , tmj ≤ t, (3)

where wij is the connection weight from the jth neuron to the ith one, and τs

the time constant of the synaptic current. tmj is the moment of the mth spike
generated by the jth neuron. The form of wij is determined by the network
topology.

The external input, which mimics the input current from other cortical or
subcortical regions, is written as,

Iext
i (t) = μ + σξi(t), (4)
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where μ is the mean of the current and σ the noise strength. ξi(t) is Gaussian
white noise of zero mean and unit variance. The fluctuations of external inputs of
different neurons are independent to each other, i.e., < ξi(t1)ξj(t2) >= δijδ(t1−
t2), where the symbol < · > denotes averaging over many trials.

We are interested in two noise forms, namely, the additive and the stimulus-
dependent noises. For the additive one, the noise strength σ2 is a constant and
independent of μ. For the stimulus-dependent one, σ2 = αμ. Note that when
α = 1, the noise is Poisson. We call the general case of α �= 1 the Poissonian
noise.

We consider two different network models.

Model 1: Weak sparse recurrent interaction. The network consists of only
excitatory neurons. Denote N the number of neurons, N � 1. In order to keep
neurons fire irregularly and at low firing rates (to be biologically plausible),
neuronal connections need to be sparse and random. We choose two neurons have
a probability p to be connected, and p is small, e.g., we may choose p = 0.1,
however, Np � 1 still holds. We set the weight wij = 1/(Np) if there is a
connection between neuron i and j, and wij = 0 otherwise. Thus, the total
recurrent input to a neuron is in the order of one, and its fluctuations is in the
order of 1/

√
Np and can be neglected.

Model 2: Strong balanced recurrent interaction. In a balanced network,
neuronal connections are also sparse and random, however, the neuronal con-
nection strength is much larger than that in Model 1. We set wij ∼ 1/

√
NP .

The total excitatory current to a neuron is then in the order of
√
NP , which

needs to be balanced by inhibitory inputs, so that the overall recurrent input
to a neuron is in the order of one. In the balanced network, the fluctuation of
the overall recurrent input is in the order of one, which plays a critical role in
driving the network dynamics.

3 Mean-Field Analysis

We apply mean-field approximation to analyze the population dynamics of two
network models. For the convenience of analysis, we first consider there is no
recurrent interaction between neurons and ignore the leakage term in the single
neuron dynamics.

Denote p(v, t) the distribution of membrane potentials of the neural ensemble.
The Fokker-Planck equation for p(v, t) is written as [6,7]

τ
∂p(v, t)

∂t
= −μ

∂p(v, t)
∂v

+
σ2

2τ
∂2p(v, t)

∂t2
. (5)

The stationary distribution p(v) of the network is calculated to be

p(v) =

⎧⎨⎩
1
θ (1 − e−2τθ/β)e2τv/β v < 0
1
θ (1 − e−2τ(v−θ)/β) 0 ≤ v ≤ θ
0 v > θ

(6)
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where
β = σ2/μ (7)

is only the parameter determining the shape of p(v).
The firing rate of the network is calculated to be

r =
σ2

2τ2

∂p(v)
∂v

|θ =
μ

θτ
. (8)

From the above results, we observe two interesting properties: 1) the mean of
the external input μ is linearly encoded by the firing rate r of the network in the
stationary state. This property is independent of the noise structure. 2) When
the noise is Poissonian, i.e., σ2 = αμ, the parameter β = α, is a constant and
independent of the input strength μ. This is critical for fast computation. It
implies that the stationary distribution of membrane potentials of the network
is invariant with respect to the change of external inputs.

3.1 Population Dynamics of Model 1

Denote r the firing rate of each neuron. With the mean-field approximation, we
calculate the mean and the variance of recurrent input to a neuron, which are

<
∑

j

wij

∑
m

e−(t−tm
j )/τs > ≈ Np

1
Np

<

∫ t

−∞
e−(t−t′)/τsdW >

= rτs, (9)

D(
∑

j

wij

∑
m

e−(t−tm
j /τs) =

Np

(Np)2
D(

∫ t

−∞
e−(t−t′)/τsdW )

≈ 0, (10)

where dW denotes a diffusion approximation of the Poisson process and the
symbol D(x) the variance of x.

Combining with the external input, the dynamics of a single neuron is written
as,

τ
dvi

dt
= −vi + (μ + rτs) + σξi. (11)

Thus, under the mean-field approximation, the effect of the recurrent interaction
is equivalent to changing the mean of the synaptic input to a neuron from μ to
μ + rτs. Based on the above calculation, the stationary distribution of mem-
brane potentials of the network is given by Eq.(6), and the corresponding shape
parameter β and the network firing rate rn are calculated to be

β =
σ2

μ + rτs
, (12)

rn =
σ2

2τ2

∂p(v)
∂v

|θ =
μ + rτs

θτ
. (13)
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In the stationary state, the network firing rate rn (averaged over the neural
population) equals to the firing rate r of individual neurons (averaged over time).
From Eq.(13), it gives

r =
μ

θτ − τs
, (14)

and hence

β =
(θτ − τs)σ2

θτμ
. (15)

Again, we observe two good properties: 1) the mean of the externa input is
linearly encoded by the firing rate of the network in the stationary state; and 2)
when the noise is Poissonian, β = α(θτ −τs)/(θτ), the distribution of membrane
potentials of the network is independent of the input strength μ.

3.2 Population Dynamics of Model 2

Denote NE and NI the numbers of excitatory and inhibitory neurons in the
network, respectively, and KE = pNE and KI = pNI the average numbers
of excitatory and inhibitory connections a neuron may receive. We set wEE

ij =
JE/

√
KE, and wIE

kl = JE/
√
KE , with a probability p and zero otherwise, and

set wII
ij = −JI/

√
KI , and wEI

kl = −JI/
√
KI if two neurons have a connection

(with a probability p) and zero otherwise. rE and rI represent the firing rates of
excitatory and inhibitory neurons.

With the mean-field approximation, the mean and the variance of a neuron’s
recurrent inputs are calculated to be,

<
∑

j

wab
ij

∑
m

e−(t−tm
j,b)/τb,s > =

√
KbJbrbτb,s, (16)

D(
∑

j

wab
ij

∑
m

e−(t−tm
j,b)/τb,s) =

(Jb)2rbτb,s

2
, (17)

where the variables a and b represent E or I.
Combining with the external inputs, we have

τE
dvi,E

dt
= −vi + (μ +

√
KEJErEτE,s +

√
KIJIrIτI,s)

+

√
σ2 +

(JE)2rEτE,s

2
+

(JI)2rIτI,s

2
ξi, (18)

τI
dvi,I

dt
= −vi + (

√
KEJErEτE,s +

√
KIJIrIτI,s)

+

√
(JE)2rEτE,s

2
+

(JI)2rIτI,s

2
ξi. (19)

Thus, under the mean-field approximation, the effect of recurrent interactions
in the balanced network is equivalent to changing the mean and the variance of
the synaptic input properly. Following the same calculations as in Model 1, the
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stationary distributions of membrane potentials of the excitatory and inhibitory
neuron pools satisfy the same distribution as in Eq.(6), except that the shape
parameters βE and βI are changed accordingly, which are,

βE =
σ2 + 0.5(JE)2rEτE,s + 0.5(JI)2rIτI,s

μ +
√
KEJErEτE,s +

√
KIJIrIτI,s

, (20)

βI =
(JE)2rEτE,s + (JI)2rIτI,s

2
√
KEJErEτE,s + 2

√
KIJIrIτI,s

. (21)

The firing rate of each neuron pool, which equals to the firing rate of individual
neurons in the stationary state, is calculated to be:

rE =
μ +

√
KEJErEτE,s +

√
KIJIrIτI,s

θτE
, (22)

rI =
√
KEJErEτE,s +

√
KIJIrIτI,s

θτI
(23)

By the self-consistent condition, we have

rE =
θτI − JI

√
KIτI,s

θ2τEτI − θτEJI

√
KIτI,s − θτIJE

√
KEτE,s

μ (24)

rI =
JE

√
KEτE,s

θ2τEτI − θτEJI

√
KIτI,s − θτIJE

√
KEτE,s

μ (25)

Thus, in the balanced network, the mean of the external input is linearly encoded
by the firing rate of the network.

When the noise is Poissonian, we get

βE =
(JE)2θτE,sτI − (JE)2JIτE,sτI,s

√
KI + (JI)2JEτE,sτI,s

√
KE

2θ2τEτI − 2θJI

√
KIτI,sτE

+
α(θτEτI − JE

√
KEτE,sτI − JI

√
KIτI,sτE)

θτEτI − JI

√
KIτI,sτE

, (26)

βI =
JEθτE,sτI − JEJIτE,sτI,s

√
KI + (JI)2τE,sτI,s

√
KE

2
√
KEτIτE,sθ

. (27)

Both βE and βI are independent of the mean of the external input.

4 Tracking a Time-Varying Stimulus

In a noise environment, since individual neurons fire irregularly, it is the statis-
tical properties of network response that encodes external stimuli. Furthermore,
for fast computation, it is the transient dynamics of the network that conveys
the stimulus information. The transient dynamics of a network is affected by
the noise form and the initial state of the network. In order to achieve fast and
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Table 1. The fitted parameters

Model 1 Model 2

Poissonian Noise a = 0.83, φ = −0.04 a = 0.94, φ = −0.09

Additive Noise a = 0.67, φ = −0.42 a = 0.90, φ = −0.20
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Fig. 1. Tracking performances of two network models. T = 5τ .(A) Model 1 with the

Poissonian noise; (B) Model 1 with the additive noise; (C) Model 2 with the Poissonian

noise; and (D) Model 2 with the additive noise.

reliable computation, it is important that the statistical properties of the tran-
sient dynamics of a network is insensitive to input changes. So, what kind of
noise structure is most suitable for fast neural computation, in particular, for
the tracking task we consider?

In the above analysis, for two network models, we have found that when the
input noise is Poissonian, the network transient dynamics has two important
properties, which are: 1) the mean of external input is linearly encoded by the
instant firing rate of the network when the network is at a stationary state;
and 2) the stationary state of the network is insensitive to the change of the
stimulus value (the mean of external input). These two good properties ensure
that the Poissonian noise is ideal for fast tracking. In the fast tracking process,
the stimulus value changes rapidly. The fact that the stationary state of the
network is insensitive to the stimulus value implies that the network is always in
a good state to catch up with the change; otherwise, the network has to evolve
its state to a stationary one which is time-consuming.

We carry out simulation to confirm our theoretical analysis. We consider the
mean of the external input changes with time, i.e, μ = 1 − cos(2πt/T ). The
parameter T controls the change speed of the stimulus. We measure firing rates of
the network at different time, and fit them with a function r = 1−acos(2πt/T +
φ). The phase φ, which typically has a negative value, reflects the amount of
delay in tracking. The deviation of a from the value one reflects the discrepancy
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between the network decoding and the true stimulus. Apparently, the closer the
value of φ to zero and the value of a to one, the better the tracking performance is.

Fig. 1 illustrates the tracking performances of two network models with T =
5τ and varied noise forms. The additive noise strength is set to be σ2 = 1.
The fitted parameters are summarized in Table 1. We see that for two network
models, the tracking performances in the case of the Poissonian noise are better
than that in the case of the additive noise.

5 Conclusions

The present study investigates the ideal noisy environment for fast neural com-
putation. We observe that the stimulus-dependent Poissonian noise, rather than
stimulus-independent ones, has the best effect of accelerating neural information
processing. This property is also intuitively understandable. For the strong diffu-
sive noise, in a short time-window, it is fluctuations, rather than the mean drift,
that dominates the value of external inputs (that is, W (t) ≈ μt+ση

√
t ≈ ση

√
t,

for t � 1, where η is a Gaussian random number of zero mean and unit variance).
The signal-noise correlation is the key that enables the stimulus information to
be adequately propagated to the neural system quickly.
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Abstract. This paper deals with the single neuron model involving

delay-dependent parameters proposed by Xu et al. [Phys. Lett. A, 354,

126-136, 2006]. The dynamics of this model are still largely undeter-

mined, and in this paper, we perform some bifurcation analysis to the

model. Unlike the article [Phys. Lett. A, 354, 126-136, 2006], where the

delay is used as the bifurcation parameter, here we will use range pa-

rameter as bifurcation parameter. Based on the linear stability approach

and bifurcation theory, sufficient conditions for the bifurcated periodic

solution are derived, and critical values of Hopf bifurcation are assessed.

The amplitude of oscillations always increases as the range parameter in-

creases; the robustness of period against change in the range parameter

occurs.

Keywords: Bifurcation, Oscillations, Delay-dependent parameters.

1 Introduction

For single neuron dynamics, Gopalsamy and Leung [1] proposed the following
model of differential equation:

ẋ(t) = −x(t) + a tanh[x(t)] − ab tanh[x(t− τ)]. (1)

Here, x(t) denotes the neuron response, and a and b are the range of the contin-
uous variable x(t) and measure of the inhibitory influence from the past history,
respectively. Recently, Pakdaman and Malta [2], Ruan et al. [3] and Liao et al.
[4] studied the stability, bifurcation and chaos of (1). But, the aforementioned
studies on (1) suppose that the parameters in this model are constant inde-
pendent of time delay. However, memory performance of the biological neuron
usually depends on time history, and its memory intensity is usually lower and
lower as time is gradually far away from the current time. It is natural to con-
ceive that these neural networks may involve some delay-dependent parameters.
Therefore, Xu et al. [5,6] considered (1) with parameter b depending on time
delay τ described by

ẋ(t) = −μx(t) + a tanh[x(t)] − ab(τ) tanh[x(t − τ)], (2)

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 9–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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where μ > 0, a > 0, τ ≥ 0 is the time delay and b(τ) > 0, which is called memory
function, is a strictly decreasing function of τ . The presence of such dependence
often greatly complicates the task of an analytical study of such model. Most ex-
isting methods for studying bifurcation fail when applied to such a class of delay
models. Compared with the intensive studies on the neural networks with delay-
independent parameters, little progress has been achieved for the systems that
have delay-dependent parameters. Although a detailed analysis on the stability
switches, Hopf bifurcation and chaos of (2) with delay-dependent parameters is
given in [5,6], the dynamics analysis of (2) is far from complete. The purpose of
this paper is to perform a thorough bifurcation analysis on (2). Unlike in Xu et
al. [5,6], where the delay τ is used as the bifurcation parameter, here we will use
the range parameter a as bifurcation parameter. Based on the linear stability ap-
proach and bifurcation theory, critical values of Hopf bifurcation are assessed, and
sufficient conditions for the bifurcated periodic solution are derived. Moreover, the
amplitude of oscillations always increases as the range parameter increases; the ro-
bustness of period against change in the range parameter occurs.

2 Bifurcation from Range Parameter a

The linearization of (2) at x = 0 is

ẋ(t) = (−μ + a)x(t) − ab(τ)x(t − τ), (3)

whose characteristic equation is

λ = −μ + a− ab(τ)e−λτ . (4)

In what follows, we regard range parameter a as the bifurcation parameter to
investigate the distribution of the roots to (4).

Lemma 1. For each fixed τ > 0, if 0 < a ≤ μ/(1 + b(τ)), then all the roots of
(4) have negative real parts.

Proof. When a = 0, λ = −μ < 0. For a > 0, clear λ = 0 is not a root of (4) since
a(1−b(τ)) < a(1+b(τ)) ≤ μ. Let iω(ω > 0) be a root of (4), it is straightforward
to obtain that

ab(τ) cos(ωτ) = a− μ, ab(τ) sin(ωτ) = ω, (5)

yielding ω2 = [ab(τ)]2−(a−μ)2. If a ≤ μ/[1+b(τ)] holds, we have ab(τ) ≤ |μ−a|.
Thus, (4) has no imaginary root. In other words, (4) has no root appearing on
the imaginary axis for a ∈ (0, μ/(1 + b(τ))]. Recalling that the root of (4) with
a = 0 has negative real part, the conclusion follows.

Lemma 2. For each fixed τ > 0, there exists a sequence of a, denoted as aj , j =
1, 2, . . ., such that (4) has a pair of purely imaginary roots ±iωj when a = aj;
where

aj =
ωj

b(τ) sin(ωjτ)
, (6)
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ωj is the root of the equation

ω cot(ωτ) + μ =
ω

b(τ) sin(ωτ)
. (7)

Proof. If λ = iω is a pure imaginary solution of (4), it must satisfy (5). Then,
(7) can be directly from (5). Solutions of this equation are the horizontal co-
ordinates of the intersecting points between the curve y = ω cot(ωτ) and y =
ω/[b(τ) sin(ωτ)] − μ. There are infinite number of intersecting points for these
two curves that are graphically illustrated in Fig. 1. Denote ωj as the solution
of (7), and define aj as in (6) , then (ωj , aj) is a solution of (5). Clearly, (4) has
a pair of purely imaginary roots ±iωj when a = aj. This completes the proof.
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Fig. 1. Illustration for intersecting points between curve y = ω cot(ωτ ) + μ and y =

ω/[b(τ ) sin(ωτ )]

The last condition for the occurrence of a Hopf bifurcation at a = aj is

d
da

[Reλ]a=aj �= 0. (8)

Substituting λ(a) into (4) and differentiating the resulting equation with respect
to a, we get

dλ
da

=
λ + μ

a[1 + τ(λ + μ− a)]
,

and hence,

dλ
da

∣∣∣∣
a=aj

=
μ[1 + τ(μ− aj)] + τω2

j + (1 − τaj)ωj i
aj [(1 + τ(μ − aj))2 + τ2ω2

j ]
.
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Thus, we have

d
da

[Reλ]a=aj =
μ[1 + τ(μ − aj)] + τω2

j

aj [(1 + τ(μ− aj))2 + τ2ω2
j ]
.

Theorem 1. Suppose that d
da [Reλ]a=aj �= 0. Then, for the system (2), there

exists a Hopf bifurcation emerging from its trivial equilibrium x = 0, when the
range parameter, a, passes through the critical value, a = aj , j = 1, 2, . . ., where
aj is defined by (6)-(7).

Proof. The transversality condition (8) for Hopf bifurcation is satisfied. Applying
Lemma 2 and Hopf bifurcation theorems for functional differential equations in
[7], we obtain that Hopf bifurcation occurs at a = aj for the system (2). This
completes the proof.

Without loss of generality, we only consider the intersecting points with pos-
itive horizontal coordinates ωj , j = 1, 2, . . ., in Fig.1. It is clear that ω1 < ω2 <
ω3 < · · ·, and ωj → ∞ monotonically when j → ∞. For these ωj, form (6) and
Fig.1, we obtain the following ordering

· · · < a6 < a4 < a2 < 0 < a1 < a3 < a5 < · · · .
Thus, there exists a minimum positive number a1 such that (4) has a pair of
purely imaginary roots ±iω1 at a = a1. From Lemmas 1 and 2, we easily ob-
tain the following results about the stability of the trivial equilibrium x = 0 of
system (2).

Theorem 2. Suppose that d
da [Reλ]a=a1 > 0. Then, for each fixed τ > 0, the

trivial equilibrium x = 0 of system (2) is asymptotically stable when a ∈ (0, a1),
and unstable when a > a1.
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Fig. 2. Waveform plot and phase portrait of system (2) with a = 0.68
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Proof. It is well known that the solution is locally asymptotically stable if all
the roots of the characteristic equation have negative real parts and unstable if
at least one root has positive real part. Therefore, conclusions is straightforward
from Lemmas 1 and 2. This completes the proof.

3 Numerical Simulations

To verify the results obtained in the previous section, some examples are given
as following. For comparison, the similar model (2), used in [5], is discussed.
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Fig. 3. Phase portrait of system (2) with a = 0.77
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Fig. 4. Phase portrait of system (2) with a = 5
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Fig. 5. Phase portrait of system (2) with a = 15

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x(t−1) 

x(t) 

Fig. 6. Phase portrait of system (2) with a = 50

Table 1. Period and amplitude of the oscillations at different values of a

Range parameter a 0.77 5 15 50

Period 5.8 6.1 6.38 6.8

Amplitude 0.9 16.4 50 166

In our simulations of (2) with memory function b(τ) = be−ατ (b > 0, α > 0),
μ = 2, τ = 2, b = 3 and α = 0.12. We can apply (6)-(7) in Lemma 2 to ob-
tain a1 = 0.7351. From Theorem 2, we know that the trivial equilibrium x = 0
of system (2) is asymptotically stable when a ∈ (0, 0.7351). This is illustrated
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by the numerical simulation shown in Fig. 2 in which a = 0.68. Further, from
Theorem 1, when a is increased to the critical value 0.7351, the trivial equilib-
rium x = 0 losses its stability and Hopf bifurcation occurs. The bifurcation is
supercritical and the bifurcating periodic solution is asymptotically stable (see
Figs. 3-6).

Table 1 shows the effect of the range parameter a on the oscillation period and
amplitude. The amplitudes increase clearly with the range parameter a, which
means that the amplitudes of the oscillations can be controlled by regulating
range parameter a. The amplitude is always sensitive to the change of the range
parameter a. In addition to amplitude, the period of oscillation remains around
6.5 when the range parameter a varies. The change of period is not sensitive to a.
The robustness of period against change in the range paramete occurs. Figs. 3-6
show the sustained oscillations generated by (2) with different a.

4 Concluding Remarks

This paper deals with the dynamics of a neuron model with delay-dependent
parameters, which is far from complete. Unlike in Xu et al. [5], where the delay is
used as the bifurcation parameter, here we choose range parameter as bifurcation
parameter. A series of critical range parameters are determined and a simple
stable criterion is given according to the range parameter. Through the analysis
for the bifurcation, it is shown that the trivial equilibrium may lose stability via
a Hopf bifurcation. The amplitudes of oscillations always increase clearly as the
range parameter increases. In addition, the robustness of period against change
in range parameter occurs.

The range parameter play an important role in dynamical behaviors of neu-
ral network model (2) with delayed dependent parameters. We can control the
dynamical behaviors of the model (2) by modulating the range parameter. The
method proposed in this paper is important for understanding the regulatory
mechanisms of neural network. Moreover, the method provides a control mech-
anism to ensure a transition from an equilibrium to a periodic oscillation with
a desired and robust amplitude and period.
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Abstract. Recognition of polyadenylation [poly(A)] sites for messenger RNA 
is important in genome annotation and gene expression regulation analysis. In 
the paper, poly(A) sites of Chlamydomonas reinhardtii were identified using an 
updated version of poly(A) site recognition software PASS_VAR based on 
generalized hidden Markov model. First, we analyzed the characteristics of the 
poly(A) sites and their surrounding sequence patterns, and used an entropy-
based feature selection method to select important poly(A) signal patterns in 
conservative signal states. Then we improved the existing poly(A) sites recogni-
tion software PASS that was initially designed only for Arabidopsis to make it 
suitable for different species. Next, Chlamydomonas sequences were grouped 
according to their signal patterns and used to train the model parameters 
through mathematical statistics methods. Finally, poly(A) sites were identified 
using PASS_VAR. The efficacy of our model is showed up to 93% confidence 
with strong signals. 

Keywords: Alga, Polyadenylation, GHMM, Site recognition, Entropy. 

1   Introduction 

The messenger RNA (mRNA) post-transcriptional processing includes three steps: the 
formation of 5' cap structure, the splicing of introns and the 3'-end polyadenylation at 
the untranslated region (UTR) [1]. The 3'-end polyadenylation is essential to the regu-
lation of mRNA stability, mRNA intracellular transport and translation, as well as 
relating with a number of other mechanisms for cellular functions and disease re-
sponses [2, 3]. Accurate identification of the positions of polyadenylation [Poly(A) 
site] contributes to the determination of a gene’s end and structures [4].  

To predict poly(A) sites, at present there are methods such as Erpin [5] and 
Polyadq [6] which are applied to human genomes, and others such as PASS [7] and a 
classification-based prediction model [8] applied to Arabidopsis. However, cur-
rently available tools or methods are species specific, and in particular when introns 
(similar nucleotide distributions as 3’-UTR) interference is considered, the prediction 
results may not reflect the authentic poly(A) sites. In animals, the characteristic  
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sequences around poly(A) sites are highly conservative, especially in mammals, the 
proportion of hexamer AATAAA is up to 80% [9], thus the accuracy of poly(A) sites 
identification of animal is relatively high [10]. (Here, to simplify sequence statement, 
we use T instead of U as in RNA sequence because we are dealing with DNA se-
quences.) In contrast, due to the fact that plant cis-element sequences are much less 
conserved (only about 10% genes having AATAAA) and with great variability [11], 
as well as the limit knowledge and lack of information about the cis-elements, the 
plant poly(A) sites identification is much more difficult.  

Chlamydomonas reinhardtii is a green algal species that is widely used as a single 
eukaryotic cell model to study photosynthesis and cellular movements’ mechanisms 
[12, 13]. More importantly, studies of this and other algae may lead to effective use of 
them for renewal energy production, e.g. biomass and diesel fuel [14]. In this paper, 
the poly(A) site recognition tool PASS [7], which was designed based on poly(A) 
signal profiles from Arabidopsis, was improved to be flexible for different species by 
setting different parameters. Then the characteristics of Chlamydomonas poly(A) 
signals and the surrounding cis-elements were analyzed to build recognition model 
based on Generalized Hidden Markov Model (GHMM) [15]. Next, the sequences 
were grouped according to the signal patterns and the model parameters of each group 
was trained. Especially for the NUE (near upstream element) signal state which is 
most conservative, the entropy based feature selection method was used for filtering 
optimal NUE patterns. Finally the model was used to predict Chlamydomonas 
ploy(A) sites and the experimental results showed its efficiency. 

2   Data Sets 

A dataset of 16,952 sequences with authentic poly(A) sites (referred to as 17k dataset) 
[16] were used. The length of each sequence was 400 nucleotides (or nt), and  
the known poly(A) site was in position 300. We also adopt several control data sets 
from JGI (Chlamydomonasdomonas reinhardtii Assembly v.4.0; Joint Genome Insti-
tute of the US Department of Energy, http://genome.jgi-psf.org). Sequences of  
400nt to 1000nt were obtained, including 1658 5'-UTR, 17032 introns, 11471 CDS. 
And then 100 non-TGTAA containing sequences were randomly selected for  
testing. In addition, another control set of randomly Markov 1-order sequences was 
generated. 

3   Poly(A) Site Recognition Model 

3.1   Topology of the Recognition Model 

The Generalized Hidden Markov Model (GHMM) [15] is used to identify poly(A) 
sites. The topology of the recognition model is shown in Fig. 1, where each state has 
different nucleotide output probabilities, and the state transition probability between 
each state is 1.  
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Fig. 1. Topology of the recognition model. Each node represents a state, S denotes the signal 
state, BG denotes the background state between two signal states. 

3.2   Recognition Model and Forward-Backward Algorithm 

The parameters of the recognition model are shown in Table 1. Given a nucleotide 

sequence 1 2... To o o o= , each nucleotide of the sequence will correspond to a score 

using the identification model λ . The score is the possibility of the location being a 

poly(A) site, that is, the probability of generating the observation sequence ( | )p o λ  

which can be calculated by the forward-backward algorithm. 

Table 1. Parameters of the recognition model 

Parameter Description 

},,,{ 21 NSSSS =
 

Set of states. N is the number of the states. 

V={ 1v , 2v ,…, Mv } Observation symbols. M is the number of observation symbols. 

A={ ija } The state transition matrix from state iS  to jS  

B={ ( )jb k } Output probability of each observation symbol in state jS  

π ={ iπ } The initial state probability 

 
First, define the partial probability 1 2( ) ( ... , )t t t ii p o o o q Sα λ= = ｜  in the for-

ward algorithm as the probability of observation sequence at all times before and at t 

1 2... to o o  being at time t and in state iS . Calculating steps of ( )t iα  are as follows: 

1) Initiation: 

1( ) ( )    1 i Nt i ii b oα π= ≤ ≤   (1)
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2) Recursion:  

1 1
1

( ) ( ) ( )    1 t T 1  1 j N
N

t t ij j t
i

j i a b oα α+ +
=

⎡ ⎤= ≤ ≤ − ≤ ≤⎢ ⎥⎣ ⎦
∑ ，  (2)

3) Termination:   

1

( | ) ( )
N

T
i

p o iλ α
=

=∑
 

(3)

Then, define the partial probability 1 2( ) ( ... , )t t t T t ii p o o o q Sβ λ+ += =｜  in the 

backward algorithm as the probability of observation sequence at all times after t+1 to 

T  being at time t and in state iS . Calculating steps of ( )t iβ  are similar to those of 

( )t iα . 

Finally, assume the poly(A) site is in state n, then the probability of the sequence o 

in position t in the state n (that is, poly(A) site) is 1( , | ) ( ) ( 1)t t tp n o n nλ α β−= + . 

3.3   Improved Poly(A) Sites Recognition Software – PASS_VAR 

A poly(A) site recognition software called Poly(A) Site Sleuth (PASS) [7] was devel-
oped based on GHMM. PASS is mainly suitable for the identification the poly(A) 
sites of Arabidopsis, but also has been used for rice whose nucleotide distribution is 
very similar to that of Arabidopsis [17]. However, the poly(A) signals and nucleotide 
distribution of Chlamydomonas is very different from Arabidopsis and rice [16]. Most 
significantly, the dominant pattern of NUE signal state of Chlamydomonas is pen-
tomer TGTAA in about 52% of genes, while in rice and Arabidopsis is the hexamer 
AATAAA in only about 10% of genes. It also seems that there is weak FUE (far up-
stream element) signals with a distinct high G content in Chlamydomonas ([16] and 
Fig.2). The poly(A) site pattern of Arabidopsis and rice is YA (Y=C or T) oriented, 
while that of Chlamydomonas is only one nucleotide A. Therefore, PASS can not be 
applied directly to Chlamydomonas.  

In this paper, based on PASS, an updated version of PASS called PASS_VAR is 
developed, which does not change the original mode of operation, but can be applied 
to different species through parameter file to set the parameters. PASS_VAR allows 
user to set his own target states and number states. The length of each state, state type, 
probability calculation methods can also be customized. Moreover, PASS_VAR Of-
fers more probability calculation methods to calculate the state output probability, 
such as heterogeneous first-order Markov sub-model and weights of signal patterns.  

4   Poly(A) Sites Recognition of Chlamydomonas 

4.1   Determine the Signal States 

Based on the nucleotide distribution and other research results [16], the signal loca-
tion of Chlamydomonas were obtained (Fig. 2). 
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Fig. 2. Nucleotide distribution and signal state location around Chlamydomonas poly(A) sites 

4.2   Group Sequences by Sequence Patterns 

In plant poly(A) signals, NUE signals are the most conservative. TGTAA is espe-
cially conservative in the NUE region of Chlamydomonas, the proportion of which is 
up to 52%. Here, 17k sequences were grouped by NUE patterns to set the parameters 
of each group separately, as shown in Table 2. 

Table 2. Five groups of NUE 

Group Dominant 5-grams on NUE Number of sequences 
group1 TGTAA 8622 
group2 GTAAC, CTGTA 492 
group3 GTGTA,ATGTA,TTGTA,GTAAA,GTAAG,GTAAT 1106 
group4 AGTAC,TGCAA,CGTAT,AGTAT,GGTAT 981 
group5 None of above 3998 

4.3   Parameter Settings of Signal States 

Since the signal states FUE and CE are of little conservation, we merged the se-
quences of group 2 and group 5 defined in Table 2 into a larger group to improve the 
computational efficiency. Count the top 100 patterns of FUE and CE to obtain their 
output probability of each base, as shown in Table 3. 

Table 3. Signal states of FUE and CE and their output probability of each nucleotide 

 Group1 group2 to 5 
Signal  A T C G A T C G 

FUE 0.08307 0.17949 0.21733 0.52011 0.09063 0.19384 0.20574 0.50979 
CEL 0.2556 0.22833 0.25234 0.26374 0.18707 0.20537 0.29689 0.31067 
CER 0.06381 0.2169 0.41362 0.30567 0.06039 0.17572 0.45892 0.30497 
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For the higher conservative signal states NUE and CS, the parameters were calcu-
lated from Group 1 to Group 5 separately, and build a heterogeneous first-order 
Markov model to characterize the characteristics of these two signals. First, a set of 
signal patterns is required for the sub-model. The CS state is of length 1, so all pat-
terns can be directly used to build sub-models. While the NUE signal patterns are of 
length 5, the parameters may be mixed with random background noise if total 1024 
(45) 5-grams are used. In this paper, an entropy [18] based feature extraction method 
was used to select effective 5-grams. 

Given a sequence of length L and a window x(l) of length l, define the duplicate 
level of x(l) in L as:   

( ( )) ( ( )) / ( )L L LF x l T x l W l=  (4)

Where ( ( ))LT x l  is the occurrence of x(l) appearing in the L; ( )LW l  is the total 

number of the windows of length l in L. In the following entropy analysis, the se-
quence patterns were characterized using duplicate level.  

The process of selecting 5-grams in NUE state is as follows 

1) Initiation: number of samples N1=N2, total number of samples N0=N1+N2, 
class U=(U1,U2), number of class m=2, number of fragments N. 

2) For each 5-gram, repeat the following steps. 
2.1) Traverse all samples to obtain duplicate level of each sample f. 
a) From upstream 10nt to 30nt of the poly(A) site, slide a scanning window, count 

number of the occurrences of f in all sample sequences as ( )LT f . 

b) Count the total number of slide windows ( )LW f . 

c) Calculate duplicate level ( ) / ( )L LT f W f . 

2.2) Count the number of sample f belonging to class Ui and in the range of r(k) as 
N(k,i), (k = 1,2, ..., N, i = 1,2). 

2.3) Count the number f in the range r(k) in all samples as N(k). 
2.4) Calculate the probability of sample f belonging to r(k) in class Ui as p(k,i). 
2.5) Calculate the probability of a sample belonging to r(k): p(k)=N(k)/N0. 
2.6) Calculate entropy: 

2
1 1

( ) ( ) ( , ) log ( , )
N m

k i

H f P k P k i p k i
= =

= −∑ ∑
 

(5)

3) Output the entropy of all 5-grams in ascending order and obtain the 5-grams 
with entropy less than 1 to calculate the frequency of transfer matrix. 

4.4   Parameter Settings of Background States 

Within the coverage of each background state, calculate the output probability of  
each nucleotide of group 1 and the integrated group (group 2 to 5), as shown in  
Table 4. 
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Table 4. Background states and their output probability of each nucleotide 

 group1 group2 to 5 
BG A T C G A T C G 

BG1 0.19639 0.22554 0.23073 0.34734 0.19952 0.22434 0.22523 0.35091 
BG2 0.20441 0.21094 0.24821 0.33644 0.20357 0.21533 0.24783 0.33326 
BG3 0.26835 0.23135 0.24865 0.25165 0.23635 0.2367 0.26783 0.25912 
BG4 0.23335 0.24815 0.25555 0.26295 0.2328 0.2352 0.28285 0.24915 
BG5 0.18346 0.24335 0.30862 0.26457 0.17903 0.23765 0.31715 0.26617 
BG6 0.19713 0.21242 0.28997 0.30048 0.20126 0.21277 0.29821 0.28777 

5   Results 

5.1   Performance Indicators 

At the nucleotide level, the most common two performance indicators are sensitivity 
(Sn) and specificity (Sp).  

Sn=TP/(TP+FN); Sp=TN/(TN+FP) (6)

Here, TP means true positive, FN is false negative, TN is true negative and FP stands 
for false positive. 

5.2   Sn and Sp 

For Sn and Sp calculations, 100 sequences were randomly selected from group 1 to 
group 5 to calculate Sn, using the corresponding parameters of each group. Another 
100 sequences were randomly selected from the control sets for Sp calculation, using 
parameters of group 5. Moreover, 1000 sequences randomly selected from group 1 to 
group 5 according to their proportion in the 17k dataset (570,40,70,60,260 sequences, 
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Fig. 3. Sn and Sp of each group. MC: random sequences generated by Markov Chain model.  
CDS: coding sequences. Group definition is given on Table 2.  
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respectively) are used to calculate Sn (group1~5_sn). As shown in Fig. 3, Sn and Sp 
results are similar among the groups containing NUE patterns (group 1 to group 4), 
while that of the group without NUE pattern (group 5) was significantly lower.  

The higher the Sn and Sp is, the better the prediction is. However, the sn and sp 
can not be increased at the same time, so we define a cross value which is the Y value 
of the intersect point of Sn and Sp curves to better evaluate our prediction results. The 
cross values of each group and the integrated group are shown in Table 5, which also 
indicate that the recognition results of group containing NUE pattern are significantly 
better than results of non-NUE pattern group. This demonstrates that the NUE pattern 
plays an important role in poly(A) sites recognition. And although the proportion of 
the dominant NUE pattern TGTAA is up to 52%, other NUE patterns are also very 
influential to poly(A) sites identification. Since there is no dominant NUE pattern in 
group 5, the recognition results of which are relatively poor. However, over 74% of 
the sequences can be predicted with high accuracy. 

Table 5. Cross values of Sn and Sp of each group 

Cross value group1 group2 group3 group4 group5 group1~5 
5UTR 0.93 0.91 0.93 0.91 0.84 0.87 
MC 0.91 0.9 0.9 0.89 0.78 0.83 

Intron 0.88 0.8 0.8 0.78 0.72 0.74 
CDS 0.85 0.72 0.72 0.7 0.63 0.65 

5.3   Average Score 

By using PASS_VAR, for each nucleotide sequence, each location corresponds to a 
score indicating the possibility being a poly(A) site. The average score of the se-
quences of each group is calculated, as shown in Fig. 4, the control sequences are 
more evenly that there is no particularly prominent score, which is consistent with the 
fact that the control sequence does not contain poly(A) sites. In contrast, the scores of  
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the poly(A) sites (location=-1) are all significantly higher than the scores of other 
locations, even if in the group 5 which has the worst identification result. This result 
also indicates the effectiveness of our identification model. 

6   Conclusions 

In this paper, poly(A) sites of Chlamydomonas were identified using GHMM-based 
recognition model combining the entropy based feature selection method. The ex-
perimental results show the effectiveness of the model as well as the parameter statis-
tics method of grouping sequences by NUE patterns. Most of the poly(A) sites can be 
identified using the present method, the most important ones of which can be verified 
through biological experiments to reduce workload, thus our model is of high practi-
cal value in biological experiments and genomic analysis. 

In addition, due to that the plant and alga poly(A) signals are weak and of large 
variation, the positioning of poly(A) sites is a very difficult task. Besides, the poly(A) 
signals and nucleotide distribution of Chlamydomonas are very different from those 
of Arabidopsis and rice. Our improved poly(A) sites identification system is of strong 
operational and broad applicability, which has been applied on Chlamydomonas in 
this paper, Arabidopsis [15] and rice [17] and allows adjusting the parameters accord-
ing to the characteristics of the surrounding sequences of target species to adapt to 
their own poly(A) sites identification. 
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Abstract. According to the Hebb’s cell assemble theory about memory, multi- 
neurons, encoding and expressing information (stimulus) by coorperating firing, 
assemble to the functional neuronal ensemble. Traditional neurons coding is the 
average frequency coding, but this method loss most dynamic information be-
cause the window is too large. The purpose of this thesis is to raise and perform 
ISI coding on the small time scale, to make up the limitation of the average fre-
quency coding. The results may help to support the study of neuronal computing 
for the neuronal ensemble coding.  

Keywords: Neuronal ensemble, Spatiotemporal sequences, Neuronal popula-
tion, ISI coding, Average frequency coding, Stimulus. 

1   Introduction 

To realize the nervous system function, the brain is an effective information processing 
and transmission. Neurons in the brain is the basic functional units of a large number of 
clusters consisting of neurons in complex neural networks involved in sensation, cog-
nition and memory and other advanced features of the brain. Research information 
between neurons is how to pass and the code is hot Neuroscience. 

Neurons in electrical signals and chemical signals used for transmission of infor-
mation between cells, neurons with a cross-membrane voltage difference, that is, 
resting potential. When neurons were normal resting above threshold depolarizing 
stimulus, the transmembrane voltage difference into a rapid action potential, it can, 
through an axon from the cell site to another part of the expansion, and rapid to make 
long-distance transmission, occurred in the neurons of the action potential, its ampli-
tude and time is fixed. Neuronal action potential is the primary means of transmission 
of information, one is usually between neurons through a number of action potential 
discharge sequences composed of information and communication. 

From the informatics point of view, the neuron per unit time or the frequency of 
issuance of the release of the time contains a wealth of information, how to analyze and 
code the information room in recent years the development of neural science and in-
formation science one of the hot crossover study. 

The average frequency coding is the classic method of neuron ensemble coding, 
which is defined as a certain period of time in neurons the average discharge frequency  
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Fig. 1. The two groups with different distri-bution of the same frequence. Two groups of neurons 
in the release of 100ms window are 10 times, but the distribution of different: (a) in the 100ms 
window for the uniform payment, (b) within the 100ms window for the nonlinear discharge. The 
average frequency of two groups the results were consistent coding, all of 10, but the distribution 
is clearly different, in other words, the average frequency of encoding information to cover up the 
details. 

strings neurons determines the information contained in string. The advantage is sim-
ple, fast, intuitive. 

As a result of a longer window length, neurons release the details of information can 
be lost. As the examples, the same window (100ms) were paid 10 times the number, but 
their distribution in the window is significantly different, Fig.1 (a) for the uniform 
distribution of window, (b) concentrated in the middle of the frequency coding used by 
the statistics of each group the number of the release window is the same, are 10 times, 
that is to say, all neurons in the details of the level of release of information is covered. 

To make up for less than the average frequency of coding, we consider another ap-
proach to the characterization of coding neurons release the details of information,  
as well as clusters of neurons among the neurons relevant information, which is ISI 
(InterSpikeInterval, neurons string action Fengfeng potential interval) encoding. 

2   Methods 

Abeles developed the Time Code in 1982, the main difference between the time coding 
and the frequency coding is the time coding consider the relevance of time.Time coding 
theory suggests that neurons of the time series model contains a wealth of dynamic 
information. One important type of time coding is the ISI coding, which is based on 
neuron action potentials in spike trains of the variation interval Fengfeng basic infor-
mation for the coding. We focus on the details of neuronal release of information, so 
here we select the small window-related methods. Concrete steps are as follows. 

(1) To calculate the ISIs of the spatiotemporal sequences of neuronal firing. 
(2) Neurons in the value of ISIs Ordinate, abscissa point in time for neurons to map out 

the dispersion diagram of the ISI. 
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(3) Fitting for each neurons’ ISI values to the curve.  
(4) On the fitted curve to 1ms sampling frequency for re-sampling. 
(5) The highest frequency as the reference group, other groups for the window  

width to 20ms, 20ms retrieve the data, that is, 20 points, and reference data for  
the related group, to be related to values, and take the absolute value of the  
related. 

(6)10ms for the step to move the window, repeat the step until all the data statistics. 
(7)Normalize all related value and then to plot the dynamics topographic map. 

3   Results 

The following are sixteen of the ISIs before and after the effective stimulus coded 
topographic map (Fig.2). The abscissa is time, and the red triangle is the points of 
stimulation. Longitudinal coordinates for the number of neurons, a total of 120 neurons. 
The average associated value before and after the stimulating is 0.21±0.06, and the 
average associated value during the stimulating is 0.65±0.07. 

 

 

Fig. 2. ISI coding dynamic topographic maps. The red triangle is the stimulated moment, trans-
verse axis is time (ms), vertical axis for the number of neurons. (a) to (p) were the first to the 
sixteen of the ISI coding stimulate dynamic topographic maps. 
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Fig. 2. (Continuted) 

From the sixteen-coded ISI topographic maps, we can see the color turned from blue 
to red during the stimulating, this means these neurons in the discharge frequency 
increased after stimulation that excitatory neurons increased the level of activity to 
increase, that is, these neurons in the stimulated cells formed ensemble, a common 
response to this stimulus. 

4   Discussion 

4.1   The Advantages and Disadvantages of Both Methods 

The average frequency of the advantages of coding is simple, intuitive, easy to im-
plement, the disadvantage of a larger window width can not compare the level of in-
formation detail. ISI coding is able to distinguish between the merits of the information 
level of detail, and can reflect the cell clusters of neurons within the various interrela-
tionships between them. 

4.2   ISI Coding Order Curve Fitting of the Selected 

Order polynomial fitting the needs of the neurons according to data flexibly select 
different circumstances, when used in the actual end of our constituency to the dozens 
of bands from several bands ranging from, if necessary, can be taken in sub-fitting 
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method to achieve in order to ensure the best fitting results. Would also like to note that 
if the neurons in a small amount of data, for example, only 2-3 data points, which needs 
to be rounded down to the nearest, it is because if too few points, with its fitted curve is 
wrong meaningless. 

 

 

 

Fig. 3. The comparison of average frequency coding and ISI coding.(a) is the average frequency 
of the dynamic topographic map encoding, (b) is encoded ISI dynamic topographic maps. ISI 
coding can be seen change more evident than the average frequency coding, it can better reflect 
the neurons to stimulate the process of issuing the details of the dynamic characteristics of the 
changes. 

5   Conclusion 

This paper studied the neuron ensemble ISI and average frequency coding ,and com-
parison of the effective stimulation of electrical activity of neurons encoding cluster 
studies, this paper's main findings are as follows: 

(1) The ISI coding method of neuronal ensemble can effectively encode the acticities 
of the neuronal under the stimulation, and have good robustness: 

The average associated value before and after the stimulating is 0.21±0.06,and the 
average associated value during the stimulating is 0.65±0.07. 

The ISI dynamic topography mapping (Fig.2) can be intuitive to see: the color turned 
from blue to red during the stimulating.This means these neurons in the discharge 
frequency increased after stimulation that excitatory neurons increased the level of 
activity to increase, that is, these neurons in the stimulated cells formed ensemble, a 
common response to this stimulus. The 16 results showed that stimulation of neurons 
encoding the same or less, indicating that the method is robust. 
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(2) The ISI coding method of neuronal ensemble can be used to express instaneous 
patterns of neuronal ensemble dynamic encoding on the small time scale(<20ms)�to 
make up the limitation of the average frequency coding. 

The average frequency of coding is a classic, easy way, but because its window is 
too large, the majority of the loss of dynamic information, is not an effective charac-
terization of electrical activity of neurons in the details of cluster information. In this 
paper, the ISI and the encoding time due to the small-scale (<20ms), they are able to 
effectively compensate for the average frequency of coding this shortcoming.ISI code 
will be drawn by the dynamic topographic map and the average frequency of the dy-
namic code map topographic map (Fig.3) can be seen compared, ISI encoded resolution 
than the average high-frequency coding, the process can better reflect the stimulation 
neurons release the details of the dynamic characteristics of the changes. 
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Abstract. We investigate the use of Spike Time Dependent Plasticity (STDP) 
in a network of Nonlinear Dynamic State (NDS) Neurons. We find out that 
NDS Neurons can implement a form of STDP; a biological phenomenon that 
neocortical neurons own, and would preserve their temporal asymmetric win-
dows of firing activity, while stabilizing to Unstable Periodic Orbits, called 
UPOs, considered as their neural states. Such correlation and ease of integration 
by using STDP within NDS neurons show that those NDS neurons can truly 
implement biological realism through their dynamics as it was early speculated 
in their invention in 2005. 

Keywords: NDS neuron, Chaotic neuron, Chaos control, UPOs, Chaotic neural 
networks, Chaotic spiking neural networks, Chaotic spiking neurons, STDP. 

1   Introduction 

Since a stabilized UPO can be depicted to a memory address domain as in neuromor-
phic engineering [1], or can take other important relevance due to its theoretical evi-
dence [2], and since "Chaos may be the chief property that makes the brain different 
from an artificial-intelligent machine" as hypothesized by Freeman [3], then it is en-
visaged that UPOs; presented by windows of temporal spike patterns, can be desig-
nated as neural states  and communicated between chaotic neurons called Nonlinear 
Dynamic State – NDS – Neurons [4]. We have to note that NDS neuron self stabiliza-
tion property inherits the latest advancements of Delay Feedback Control – DFC – 
theory which was invented by Pyragas in 2003 [2]; a breaking through theory in chaos 
control.  

NDS neurons are able to stabilize their internal dynamics using feedback control 
through connection time delays [4], this occurs by implementing unstable degrees of 
freedom with bounded parameters on their feedback loops [2]. UPOs considered as 
neural states and presented by periodic spike patterns (sequences of binary bits of  
0s and 1s), could be used to enhance neural information processing within artificial 
neurons [4], this is since their dynamical reservoir is mathematically proven to be 
infinite [2].  

In section 2, we review the NDS Neuron model and we present a Hopfield like net-
work architecture, which we’ll study; consisting of three NDS Neurons recurrently 
connected. In Section 3, the STDP learning rule is described and implemented within 
the network. The purpose of this implementation is to make the neurons synchronize 
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and stabilize their internal dynamics in accordance to their synaptic input. Experimen-
tal results and time series are presented in section 4. In the last section (Section 5), we 
discuss further evidence of such modeling; of NDS neurons neural states, to be inter-
preted as “memory binding”. Memory binding is achieved through temporal coding 
and synaptic plasticity, taking advantage of the rich chaotic reservoir of NDS neu-
ronal states and their synchronization.  

2   The NDS Neuron Model and Network Architecture 

The Nonlinear Dynamic State Neuron - NDS Neuron – was invented by Nigel Crook 
et al. and presented in the European Synposium on Artificial Neural Networks in 
April 2005 [4]. The NDS Neuron model is different than classical Neuron models like 
threshold gates and perceptrons which have binary states and finite memory capacity; 
instead its memory capacity consists of the number of Unstable Periodic Orbits – 
UPOs – that can be stabilized within its internal dynamics. A Referential memory or - 
generally speaking - a dynamic state of the NDS neuron corresponds to a stabilized 
UPO, consisting of “a temporal periodic output pattern of spikes” [5]. This means, 
and as hypothesized in [5], that “the NDS neuron has at its disposal a very rich range 
of internal states together with a vocabulary for communicating these states to other 
neurons” [5]. With slight modification in the interpretation of the NDS neuron, we’ll 
review the NDS neuron [4] system of dynamical equations next. 

The dynamical state of the NDS neuron at time t is governed by three ODEs, de-
scribed as it follows: 

)()()( tItutu ipreii +=  

))1()1(()1()( −−−−+−= tutybtxtx iiii  

))1()1(()1()( −+−+−= taytxctyty iiii  

(1)

With initial conditions:  
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=
=
=

  

Where, 

0n  is a random number between -1 and 0. 

))1())1()(1(()1()( −+−−−++−= tkutxtuvdtutu iiiiprei  (2)

a, b, c, d, v and k are constant parameters (a=0.002, b=0.03, c=0.03, d=0.8, 
v=0.002, k=-0.057)  

)(tui  
is the action potential of the NDS Neuron i at time t,  

)( prei tu is the internal voltage during potentiating process )( pret ,  
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)(tIi  is the total potential input; that the neuron is receiving, integrating and con-

ducting at its synapse - is maintaining at its synapse at accordant points in time as: 

∑ =
−= n

j ijjiji ttwtI
1

)()()( τγ  (3)

Where, n is the number of connections that the ith neuron has, )(twij  denotes the 

weight from neuron j to neuron i, ijτ  is the connection time delay (which works as 

feedback control) from neuron j to neuron i and )( ijj t τγ −  being the spike output of 

neuron j at time step ijt τ− . 

=∈∀ Nr ( Number of Neurons in the network),  

⎩
⎨
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=
θ
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γ
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tu

tu
t

r

r
r  (4)

θ  is the threshold and equal to zero. 

When the NDS neuron i fires (i.e: when θ>)(tui ) then 0)( ntui = where 0n  is 

called the after-spike reset value of )(tui . 

The state of an NDS Neuron, when it is in isolation, is chaotic (Fig. 1). 
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Fig. 1. Phase space plot (a) and time series data (b) 

We present a network of three NDS Neurons recurrently connected (Fig. 2). All 
connection delays between NDS Neurons are equally set to constant time delay dif-

ferent than zero ( ji ,τ <> 0 Nji ∈∀ , ; N = 3 which is the number of neurons in the 

network), except for 0,0τ , 1,1τ , 2,2τ  which are not present and set to zero (i.e: In this 

architecture, NDS neurons only have recurrent connections between themselves and 
don’t have self feedback connections).  



36 M.A. Aoun 

N1 N2

N0

0,1 0,2

2,01,0

2,1

1,2

0,1w

1,0w 2,0w
0,2w

2,1w

1,2w

 
Fig. 2. Network Architecture 

3   Synaptic Equations 

Recent studies in neuroscience [6] suggest that the exact firing time between neurons 
has much more influence on information processing rather than the firing rates of 
these neurons; as it was previously thought ([7], [8]). Additionally, the concurrency of 
firing times that occurs between neurons is a major feature for information binding, 
memory retrieval and temporal coding inside the brain [9]. If multiple neurons fire 
synchronously then their pulses or spikes arrive at a target neuron with the same firing 
time, thus causing the last to fire with a greater probability than being pulsed with 
multiple spikes randomly or at different times [9].  

In this research and for our concern in the construction of the synaptic learning 
process that we implement at the synapse between NDS Neurons, we will consider 
Spike-Timing-Dependent Plasticity (STDP) learning rule [10], a recent biological 
discovery in Hebbian Learning theory and Synaptic Plasticity which is based on the 
time of the firing of a neuron and not on the rate of the firing of a neuron as it  
was previously considered. We mention this rule in its simplest form, which can be 
stated as:  

 
“synapses that are activated slightly before the cell fires are strengthened whereas 

those that are activated slightly after are weakened” [11] 
 

In biological neural information processing, this can be analyzed as the pulse; tempo-
rally embedded in the information being processed on the target neuron, is received 
instantly when or before this target neuron fires i.e: at expected times of firings of this 
neuron (this may be considered like the pulse is available in the reservoir of temporal 
spikes’ window which constitutes the response properties of this neuron). This pulse 
is considered to confirm that the information being processed at this instant in time is 
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relevant to the adequate firing patterns of the target neuron and the last should take an 
action by changing its state to another state having more correlations with the pre-
sented input. 

In the model of synaptic learning presented herewith, we removed inhibitory con-
nections (negative weights), considering the fact that the learning rule “should 
strengths causal interactions in the network” [9]. Furthermore, high frequency pre-
synaptic activity could lead to long term potentiation (LTP) at the synapse; a major 
direction in our implementation and this is a fundamental mechanism behind neurons’ 
assembly inside the hippocampus of the mammalian brain, forming what is so called 
cerebral plasticity and commonly known as long term memory. Also, it was proven in 
[12] that if high and repetitive pre-excitation; from pre synaptic neurons in the hippo-
campus and cortical neurons, called excitatory post synaptic potentials (EPSPs), occur 
slightly before a neuron fires, they cause an increase in the synaptic activity and an 
increase in the action potential of the neuron, forming LTP [12]. But if EPSPs occur 
after the action potential then it forms Long Term Depression (LTD). 

Accordingly, this can be interpreted and implemented, in our model, like the  
following, 

At time t=0, the weight which presents the synapse strength is: 

)0(ijw  = Random number between 0.05 and 0.3 

At t>0, and when an impulse is received to the target neuron, the target neuron will 
change the weight of the synapse according to the following: 

)()1()( preijijij twtwtw Δ+−= , where 0)( ≥Δ preij tw  (5)

We have to note that ijw  is never weakened. This doesn’t mean that the NDS neuron 

won’t have a form of long term depression because the dynamical equation of u(t), 
considered as  internal voltage of the neuron, is not affected by pre-synaptic input  
of voltage spikes only, but with other dynamical variables like x(t), which works  
on regulating (i.e: also inhibiting and controlling) the action potential of the NDS 
Neuron.  

We consider a leaky integrator at the synapse elicited with the following synaptic 
plasticity equation: 

)())(),(())()(()( ijijpreipreipreipreipreij ttItuPtItutw τγ −−−=Δ  (6)

Where, 

)( prei tu− , being the membrane voltage, taken as the inverse of the internal  

    voltage )( prei tu . 

)( prei tI ,  being the total input voltage from other neurons, presented through the 

synapses, showing pre-synaptic  activity while occurring during pre synaptic potential 
phase (i.e: in the potentiating process; while the neuron is firing or very near to its 
peak action potential to fire):  

∑ =
−−= n

j ijjijprei ttwtI
1

)()1()( τγ  (7)
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))(),(( preiprei tItuP , being interpreted as activation/desactivation variable in the 

simplest form of a STDP learning rule, excluding weight decay or any exclusive inhi-
bition effect from the input: 

If θ<)( prei tu  and θ>+ )()( preiprei tItu  then P =   0 L.1

If θ<)( prei tu  and θ<+ )()( preiprei tItu  then P =   1 L.2

If θ>)( prei tu  and θ>+ )()( preiprei tItu  then P =  -1 L.3

If θ>)( prei tu  and θ<+ )()( preiprei tItu  then P =   0 L.4

Note that the threshold is equal to zero )0( =θ , the learning rules (L.1, L.2, L.3 and 

L.4) described above would imply: 

L.1 implies: Spike is not expected; the neuron may fire but won’t update its  
synapse. 

L.2 implies: Spike is received in phase time, (expected); the neuron won’t fire but 
updates its synapse. 

L.3 implies: Spike is received at exact time (as expected); the neuron will fire and 
updates its synapse. 

L.4 implies: Inhibitory Spike (does not occur); the neuron won’t fire, and won’t 
update its synapse. 

)( ijj t τγ − , which is the spike output of neuron j at time ijt τ− , is interpreted as the 

maximum conductance of this firing channel, acting at a specific moment in the tem-

poral spikes window ijτ  of neuron j. 

Note that )( prei tI  is being catalyzed due to the presence of an impulsive current 

and have to remain in equilibrium with internal potential changes and should main-
tain conductance equilibrium at the synapse at transduced specific firing moments 
available in the post synaptic neurons’ set of temporal windows (UPOs), thus and 
after synaptic changes (i.e: weight updates) , the following reaction takes place: 

∑ =
−Δ+−= n

j ijjpreijiji ttwtwtI
1

))())()1((()( τγ  (8)

Since, 

)()1()( preijijij twtwtw Δ+−=  (9)

Then and finally, the result of all synaptic changes; that affects the internal voltage of 
the neuron, after being catalyzed at pre-synaptic activity, would be: 

∑ =
−= n

j ijjiji ttwtI
1

))())((()( τγ  (10)

Here above, we have implemented the variables of the synaptic equation which  
governs the connections dynamics between NDS neurons, while preserving the rich 
dynamical reservoir of states of the NDS neuron. 
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4   Experimental Results 

We consider a network of three NDS Neurons recurrently connected (Fig. 2). The 
goal of each neuron is to synchronize temporal patterns with other neurons and to 
increase its sensitivity to synchronizing neurons. Such sensitivity and plasticity is 
increased through synaptic weights which are intensified at exact and expected spikes 
times and governed by STDP. The network will run 10000 time steps (t = 0 to t = 
10000). It was experimented that 10000 time steps are more than enough to ensure 
synchronization and stabilization of NDS Neurons states. In this example, the DFC - 

ji ,τ  - used is equal to 100 for all active connection delays. 

Initially, the after spike reset value ( 0n ) of every neuron is set to a random number 

between -1 and 0: 

0n of Ni = Random number between -1 and 0 

This means: 

0n of N0 = Random number between -1 and 0 

0n of N1 = Random number between -1 and 0 

0n of N2 = Random number between -1 and 0 

At t =0 all NDS neurons will start with:  

0)0(

0)0(
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i
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=
=
=

 

With random connection weights: 

ijw  = Random number between 0.05 and 0.3 

With Delay Feedback Control = 100 

ji ,τ  = 100 Nji ∈∀ , , i<>j 

ji ,τ  = 0 Nji ∈∀ , , i=j 

In this architecture (Fig. 2), 0,0w , 1,1w  and 2,2w  are not considered because their 

connections’ time delay are removed and set to zero. NDS neurons can have self re-
curring connections, but to emphasize stabilization between NDS Neurons by using 
STDP, self recurring connection weights, and time delays, are not considered in this 
architecture. 

The network will run for 2000 time steps. In this phase (0 <= t <= 2000), NDS 
Neurons are left in isolation (i.e: not connected) and their output is purely chaotic 
(Fig. 3). 
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Fig. 3.  Phase plots (a), (b), (c) of Neurons N0, N1, N2 in isolation and their time series (d), (e), 
(f) respectively, showing the chaotic behavior of NDS Neurons when STDP is Off 

At t = 2000, connections between NDS neurons are turned on, it was experimented 
that 3000 thousands steps are enough to insure stabilization. The synaptic weights  
for nonzero connection delays are updated using STDP at run time, other weights 
(self recurring) are neither used nor updated – not considered (i.e: set to zero). Synap-
tic changes will drive NDS neurons to stabilize their internal dynamics into UPOs 
(Fig. 4). 
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Fig. 4. UPOs (a), (b), (c) of Neurons N0, N1, N2 and their time series (d), (e), (f) respectively, 
showing synchronizing and periodic output when STDP is used 
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Synaptic weights of every connection are governed by STDP and are shown in  
Fig. 5.  
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Fig. 5. Weight updates when STDP is turned ON (i.e: starting at time step t = 2000) showing 
very fast stabilization 

5   Discussion 

We implemented STDP learning rule in a recurrent network of NDS Neurons. We 
showed that when STDP governs the synaptic weights of these neurons, then NDS 
Neurons are able to synchronize and stabilize their internal dynamics to periodic spike 
output patterns.  

We note that the range of the number of UPOs in the chaotic reservoir of a NDS 
Neuron was experimentally proven to be extremely large [5] and theoretically proven 
to be infinite [2]. Our analysis, regarding the interesting phenomenon of NDS Neuron 
states stabilization using STDP, is adequate to Crook speculation [5] of NDS Neurons 
states communication and vocabulary, as also very relevant in accordance to Izhike-
vich hypothesis [13] which refers to [14] and states: “Neurons or cortical columns 
need rhythmic activity to communicate selectively.” Also and in [13], we quote: “the 
frequency of a periodically spiking neuron does not carry any information other than 
identifying a channel of communication… Information (i.e: neural code) carried 
through modulations of inter spike intervals.” As we consider, very meaningful in 
analyzing the behavior of NDS neurons state assembly and the communication chan-
nels they build using STDP.  

We support the network model and the STDP learning rule that we implemented to 
be based on the laws on cognitive computations by Izhikevich in [9]. On Synchroni-
zation, “it should be so rare and difficult to occur by chance that when it happens, 
even transiently in a small subset of the network, it would signify something impor-
tant, something meaningful, e.g., a stimulus is recognized, two or more features are 
bound, attention is paid” [9]. 
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Since we have insured stabilization of NDS Neuron states, our next goal is to ex-
tend this research to get advantage of the enormous number of states these neurons 
can settle onto, and to use it for pattern mapping (e.g: memory binding) and recall. 
This is based on our vision that NDS Neurons behavior have significance in bio-
logical neural information processing [5], and while using STDP, NDS Neurons can  
embed polychronous groups [9]. This would be considered for future research. Ad-
ditionally, we quote from [15]: “As to the binding mechanism based on temporal 
signal correlations, its great advantage - being undemanding in terms of structural 
requirements and consequently ubiquitously available and extremely flexible - is 
offset by its quantitative limitations due to the limited bandwidth of neural signals.” 
But by implementing UPOs as neural states, then this limitation is bypassed, since 
and when NDS Neurons are communicating UPOs via their synapses with STDP 
and (if also) they are programmed to polychronize [9], then the bandwidth of neural 
signals becomes unlimited, thus the binding mechanism based on temporal  
signal correlations would implement “memory binding” within the chaotic spiking 
neural network of NDS Neurons. This will be the aim, to attain and expand in the 
next step. 
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Abstract. Synchronized firing is an efficient way for retinal ganglion cells 
(RGCs) to encode visual stimuli. In the present study, we studied synchronized 
activities among RGCs in response to natural movie and pseudo-random 
checker-board flickering. The results showed that nearby RGCs tended to fire 
synchronously much more frequently than expected by chance, in response to 
both stimuli. Under our experimental conditions, synchronous groups could 
contain three or more cells in response to natural movie; but activities were 
more often observed between pair-wise cells in response to checker-board 
flickering. The correlation index calculated between neuron pairs did not have 
any significant tendency of increase or decrease when natural movie stimulation 
was lasted; however, it tended to increase when pseudo-random checker-board 
flickering stimulation was lasted. 

Keywords: Synchronized activities; correlation index; dynamical; retinal  
ganglion cells. 

1   Introduction 

In vertebrates, the optic nerve is a severe bottleneck presented in the visual pathway; 
dynamic concerted firings are therefore critically required for conveying information 
effectively [1, 2]. Many lines of evidence from multi-electrode studies of retina have 
confirmed that adjacent RGCs of similar functional subtype tend to fire in synchrony 
in response to external stimuli [3-5]. Correlation index, the ratio between the observed 
concerted firings and that expected by chance, was proposed to quantify the strength 
of correlation within neuron groups [6].  

Over the years, synchronized activities elicited by artificial laboratory stimuli have 
been studied [4, 6-7], and it was reported that RGCs tend to fire in synchrony more 
frequently than expected by chance in response to various laboratory stimuli, such as 
uniform illumination, pseudo-random checker-board stimuli, etc.[6, 8]. However, natu-
ral stimuli are usually more complex than artificial stimuli. In order to understand 
visual function under natural conditions, it is better to study neural responses to natural 
stimuli directly [9, 10].  
                                                           
* Corresponding author. 
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In the present study, we adopted information-theoretic algorithm [8] to study the dy-
namically synchronized activities among RGCs in response to natural movie and 
pseudo-random checker-board flickering stimulation. Correlation index was computed 
to estimate the strength of synchronous patterns in response to both stimuli. It was 
found that nearby RGCs tended to fire synchronously more frequently than expected 
by chance in response to both stimuli. During natural movie, many synchronous groups 
contained more than three cells; but in response to checker-board flickering; most of 
groups only contained two cells. For synchronous neuron pairs, correlation index did 
not show any significant change along with time during natural movie stimulation; but 
it tended to increase with time in response to pseudo-random checker-board flickering. 

2   Materials and Methods 

2.1   Electrophysiology Recordings and Visual Stimulation 

Detailed extracellular-recording procedure can be found in our previous report [11]. 
Spikes from RGCs were recorded from retinas of newly-hatched chicks (about 1-3 
weeks post-hatching) using multi-electrode array (MEA, 8×8) (MEA60, MCS GmbH, 
Germany) via a commercial multiplexed data acquisition system with a sampling rate 
of 20 kHz. Recorded data were stored in PC for off-line analyses. 

 

     

                        (A)                                     (B)                                         (C) 

Fig. 1. Example frames and geometric position of eletrodes. (A) Natural movie; (B) Checker-
board flickering; (C) Geometric position of 16 adjacent electrodes by which a group of RGCs 
were recorded from one example retina. 

The following stimulation protocols were applied: (1) Full-field white light flashes 
with light-ON duration of 1 sec and light-OFF intervals of 9 sec were applied (lasted 
for 30 sec) to test the functional condition of the neurons being recorded; (2) Digi-
tized grayscale video recording of natural movies (downloaded from the website of 
van Hateren’s lab, http://hlab.phys.rug.nl/vidlib/index.html. [12]) were presented with 
a refresh rate of 10 Hz and lasted for 192 sec; (3) Pseudo-random binary checker-
board flickering (16×16 grid) were applied at a refresh rate of 9.05 Hz and lasted for 
221 sec [13]. Example frames of natural movie and checker-board flickering are 
shown in Fig. 1A and B. These images were of the same size when being presented 
on the screen and projected onto the retinal piece via an optical lens system. 
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2.2   Information-Theoretic Algorithm 

In order to test whether the interactions among ganglion cells are limited to pair-wise 
neurons or extended to neuron groups containing more cells, information-theoretic 
algorithm based on entropy analysis was adopted [8]. Detailed procedures are as  
follows: 

Firstly, the spike trains are symbolized into “0” and “1” with time bin of 2 ms, 
where “1” represents that there is a spike in the time bin and “0” represents that there 
is no spike in the time bin. Given two neurons A and B, a new symbolic neuron AB 
can be defined such that: 

( ) ( )

1, if the neuron  and neuron  fired in time bin 

0, otherwise

AB A B
j j jr r r

A B j

=

⎧
= ⎨
⎩

 (1)

Secondly, to see whether the neurons A and B are concertedly activated, the entropy is 
computed: 

2 2( log (1 ) log (1 ))i i i i iH P P P P= − + − −  (2)

where iP is the probability that symbolic neuron i has a spike in the time bin 

( ( )

1

1 N i
i ji

P r
N =

= ∑ , N is the number of time bins in the data set). As for each individual 

neuron, usually only a small fraction of spikes are fired in synchrony with others, the 
net reduction in entropy can be calculated as: 

2log ( / )
AB A B AB

AB AB A B

H H H H

P P P P

Δ = + −
≈

 (3)

The identification of concerted neuron groups starts with computing HΔ  for all the 
cell pairs. If the largest HΔ  value is greater than a predetermined threshold (see 
below), we regard these two cells as a concerted group. We then further search for 
other synchronous neuron pairs or synchronous groups containing more cells. The 
process is repeated until the largest HΔ  falls below the predetermined threshold. To 
define the threshold, all the spike trains are shifted by randomly chosen time delays, 
and the largest HΔ  in the shuffled data set is defined as the threshold. 

2.3   Correlation Index 

Correlation index is the ratio between the observed frequency of synchronized activi-
ties and that expected by chance [6], which is used to estimate the strength of the 
synchronized firings. The correlation index is measured as follows: 

The observed frequency of synchronized firings among M cells is: 

( )
1...

1 1

1 MN
i

M j
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P r
N = =

= ∑∏  (4)
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The frequency of synchronized firings expected by chance can be calculated as: 

( )
1

11

1
...

M N
i

M j
ji

P P r
N ==

= ∑∏  (5)

Then we can compute the correlation index as: 

1... 1...
1

/
M

M M i
i

C P P
=

= ∏  (6)

3   Results 

Most RGCs recorded in our experiments are of On-Off subtype [4], therefore in the 
present study, analyses were focused on this type of cells. Experiments were per-
formed on 3 retinas. The locations of electrodes by which the neurons’ activities were 
recorded are presented as an approximate indication of the locations of neurons. In the 
example given in Fig. 1C, the spike trains recorded from 16 adjacent electrodes were 
analyzed. To reveal dynamically changed population activities among RGCs in re-
sponse to natural movie and pseudo-random checker-board stimuli, the analyses were 
performed on the 120-s data sets, and the synchronous groups and strength of the 
correlation in groups were calculated for each 500-ms period. 
 

  

Fig. 2. Spatial arrangement of RGCs engaged in synchronized firing in one example retina 
(recorded by electrodes presented in Fig. 1C) in response to natural movie (NM) and checker-
board (CB) stimuli. A, B. The relationship between number of synchronous groups and inter-
neuronal distances, during natural movie (NM) and pseudo-random checker-board (CB)  
stimulations, with group sizes being 2 and 3, respectively.  

3.1   Synchronous Groups 

Previous studies have shown that synchronized activities are frequently recorded  
from adjacent cells [6, 8]. We defined the inter-neuronal distance of a synchronous 
group using the summation of distances between each neuron and their gravity center. 

A B

(100 )mμ (100 )mμ  
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Fig. 2A (Pairs) and B (Triplet) illustrate the relationship between the inter-neuronal 
distance and the number of synchronous groups of neurons recorded by electrodes 
illustrated in Fig. 1C, in response to natural movie and pseudo-random checker-board 
stimuli from one example retina. It is clear that the number of groups was decreased 
with distance during both stimuli. 

In order to investigate the firing patterns during both stimuli, data collected from 
three different retinas were analyzed. Table 1 shows the statistic of the group size 
under various conditions. It is notable that during natural movie, groups could contain 
three or more neurons; however, most of groups only contain two neurons during 
pseudo-random checker-board stimuli. 

Table 1. Statistic of the number of cells per group 

 Stimuli Pair  Triplet Quaternion 
NM 145 104 22 

Retina 1 
CB 242 63 3 
NM 179 152 16 

Retina 2 
CB 236 90 5 
NM 151 145 18 

Retina 3 
CB 278 80 3 

3.2   Correlation Index 

Correlation index represents how frequently a synchronous pattern is observed as 
compared to that expected by chance [8]. The probability distributions of correlation 
index for synchronous pairs and synchronous triplets from one example retina (same 
as presented in Fig. 2) are shown in Fig. 3A and Fig. 3B, for the cells’ responses elic-
ited by natural movie and pseudo-random checker-board stimuli. The distributions of 
synchronous groups in response to both stimuli were similar to each other. Consistent 
results were observed from the other two retinas. 

 

   

Fig. 3. Distribution of correlation index values from one example retina (the same as presented 
in Fig. 2) during NM and CB stimuli. A. For synchronous neuron pairs. B. For synchronous 
neuron triplets. 

A B
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The results above were obtained by overall analyses perform on 120-s data sets. 
Actually synchronized activities among RGCs varied dynamically during both stim-
uli. In order to investigate the time-varying characteristics of correlation index, we 
analyzed the correlation index of pair-wise neurons by least-squares linear regression 
fitting. Fig. 4 gives an example pair (#17 and #27 in Fig. 1C). Although the correla-
tion index was fluctuating, it did not have any significant tendency of increase or 
decrease, during natural movie stimuli (Fig. 4A); but it tended to increase in response 
to pseudo-random checker-board flicking stimuli (Fig. 4B). The results were observed 
in almost all the synchronous groups in the three retinas under investigation. 

 

  

A B

 

Fig. 4. An example of time-dependent changes of correlation index. The synchronous neurons 
were recorded by electrodes #17 and #27 in Fig. 1C during both stimuli. A. Duing natural 
movie stimuli. B. During pseudo-random checker-board stimuli. 

4   Discussion 

In the present study, we adopt information-theoretic algorithm [8] and correlation 
index [6] to investigate the concerted activities of neurons recorded by adjacent elec-
trodes in response to natural movie and pseudo-random checker-board stimuli respec-
tively. The results revealed that synchronized activities frequently occurred among 
adjacent RGCs (Fig. 2). Synchronous patterns elicited by natural movie stimuli were 
different from that elicited by pseudo-random checker-board stimuli, neurons tended 
to fire synchronously in larger groups during natural movie stimuli. The distributions 
of synchronous groups with different correlation index values were almost similar 
during both stimuli, but the time-varying characteristics of correlation index were 
very different. For synchronous neuron pairs, the correlation index did not show any 
significant change along with time in response to natural movie stimuli; however it 
tended to increase with time in response to pseudo-random checker-board flicking 
stimuli. 

Natural stimuli are fundamentally different from pseudo-random checker-board 
flicking stimuli in a sense that natural stimuli contain intensive correlations [14, 15] 
and are spherically asymmetric [15]. It is more frequently that nearby neurons tend to 
fire synchronously in larger groups during natural movie stimuli. During pseudo-
random checker-board stimuli, neurons adapt to the stimuli quickly, which make the  
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observed frequency of synchronized activities much higher than expected by chance. 
All of these may suggest that activity patterns among RGCs are different between 
natural movie and pseudo-random checker-board flicking stimuli and dynamically 
synchronized activities among RGCs are stronger in response to natural movie. 
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Abstract. Sleep stages are mainly classified via electroencephalogram (EEG) 
which involves some prominent characters not only in amplitude but also in 
frequency. What is more, researchers are using computer assisted analysis to 
acquire the panoramic view of long duration sleep EEG. However, unlike the 
empirical judgment, it is fairly difficult to decide the specific values of sleep 
rules for computer based analysis due to the fact that those values vary with in-
dividuals and different distance from reference to signal source on scalps. This 
paper will introduce a novel method using power spectral density to discrimi-
nate awaking, light sleep and deep sleep EEG just according to the features ex-
tracted from EEG. 

Keywords: PSD, EEG, Awaking, Light sleep, Deep sleep. 

1   Introduction 

Since the middle of last century, there are great amounts of scientists doing research 
on sleep, no matter in pathological field, psychological field or physiological field. 
And the sleep analysis has been applied into several practical projects such as the 
diagnosis of epilepsy.  

And as a world-wide standard rule, the ‘R-K rules’ is always being ameliorated 
since its birth in Washington, 1968. According to this rule, an epoch-by-epoch ap-
proach is strongly recommended in all scoring procedures [1]. In the beginning, this 
rule was just for doctors and researchers to judge the stages by experience; however, 
the computer assisted skills started to develop since 1980s together with the develop-
ment of IT industry. While the problem came that for this technology just for manual 
judgment, the exact value as the standard for analysis was not so clear that the vague 
borders between stages made it not easy to complete the discrimination correctly, 
resulting in the time-consuming process of determining the specific parameters. As 
three sorts of typical sleep stages, the aim of this paper is to distinguish the states  
of awaking status, light sleep and deep sleep using power spectral density. We have 
got to know that the background activity of human body includes black noise (i.e. 
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background noise mainly in low frequency), brown noise (i.e. background noise 
mainly in low and middle frequency) and pink noise (i.e. background noise mainly in 
relatively higher frequency). The background activity of cerebral cortex in states of 
rest and slow wave sleep resembles broadband noise. The power spectral density 
(PSD) then may often conform to a power-law distribution: a straight line in coordi-
nates of log power vs. log frequency [2]. For human race, in slow wave sleep (SWS) 
PSD decreases at 1/fα, α~3,with loss of beta–gamma spectral peaks and diminished or 
absent oscillations and spatiotemporal phase structure. In the awaking state, the power 
spectral density (PSD) showed power-law decrease in log power with log frequency 
at 1/fα, α~2, but with peaks in the standard empirical ranges [3]. In short we are able 
to conclude that for the state of rest, it resembles the brown noise with its slope ap-
proximately close to -2, and for deep sleep, it decreases to the range from -3 to -4 
which resembles the black noise, while for light sleep, it locates at the intermediate 
site of the former two, and these persuasive background activities are caused by mu-
tual excitation among cortical neurons [4]. The following contents will introduce the 
method to extract the distinction with PSD. 

2   Methods 

We choose ten blocks of one-channel EEG signal with each block consists of five-
minute waking EEG, five-minute light sleep EEG (mainly in stage II for stage I is 
only a transient state and is not representative enough) and five-minute deep sleep 
EEG. These segments of EEG signal are from the dataset which was built for sleep 
quality analysis. It was digitized at 250Hz and with low pass filter from 0-40Hz. The 
data has been preliminarily judged by the method combined with Hilbert Huang 
Transform (HHT) and ‘R-K rules’ where the HHT algorithm acts as an effective way 
to acquire the frequency spectrum and R-K rules as the criterion for judgment, first 
the frequency spectrum is calculated by HHT, then these results combined with the 
amplitudes of both EEG and EOG are applied into the R-K rules which would deter-
mine the specific sleeping stage of each segment [5]. According to ‘R-K rules’, the 
most prominent character of awaking status is that the EEG contains alpha activity 
and/or low voltage, mixed frequency activity. The light sleep contains fewer alpha 
activities and is characterized as the spindle waves and K-complex waves; for  
deep sleep it elaborates that it contains great amounts of high amplitude, slow wave 
activity [1]. 

For each block, we just divided the three five-minute signals into 300 segments 
separately with each segments 1 second (for the sampling frequency is 250Hz, signal 
for each second consist of 250 points). Then we calculated the frequency spectrum of 
each segment in use of FFT; hence the log frequency vs. log power figure comes out. 
Meanwhile, we use first order fitting to build a linear function in form of y=b*x+c 
where the parameter ‘b’ represents the slope of the fitting curve and c for the inter-
cept. (Fig.1) 

In Fig.1(a), Fig.1(b), Fig.1(c) it is obvious that for deep sleep stage, the power in 
low frequency bands like delta is overwhelmingly stronger than that of the waking 
stage (one order stronger), while for the relatively higher frequency bands like alpha 
and beta, the waking stage contains more power than sleep stage, that is why the sleep  
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                    (a)                                          (b)                                          (c) 

Fig. 1. The PSD of one second EEG signal (the blue curve) and the straight fitted to PSD(the 
red curve), this PSD is from a random one second of different status. (a) awake, (b) deep sleep 
and (c) light sleep. 

signal approximates to black noise which is characterized by the slope below -3 and 
the waking signal approximates to brown noise with its slope around -2. In contrast, 
the light sleep has relatively strong power in lower frequency compared to that of 
awaking status and stronger in power of 10-16Hz than that of deep sleep, determining 
the slope of this stage around -2.5. This is due to the K-complex activity which is in 
lower band (i.e. less than 2Hz) and the spindle waves which has a higher frequency 
band (i.e. 10-16Hz)  All those above are coherent to the description in R-K rules that 
in waking stage, it is mainly occupied with alpha activity for more than 50% of the 
whole epoch in temporal domain; in deep sleep, the delta wave with peak to peak 
amplitude more than 75uv dominates more than half of the EEG signal in temporal 
domain; in light sleep, there is less alpha activity than awaking status and dominated 
by spindle waves and K-complex waves. This is also the cause of the steeper slope in 
the PDS of deep sleep. 

With the acquirement of these PSD graphs, it is now possible to extract some fea-
tures; thus we decide to utilize several parameters to express the characters of each 
segment of EEG signal. Other than the slope and intercept is the parameter named SI, 
which is defined as 
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Here log10pe is the simulated value in the fitting curve. It expressed the percentage of 
the total variance in the designated frequency range, the smaller this index is, the 
more intense the frequency ranges, and the more active the state of brain is. In addi-
tion, to express the activity of alpha band which involves the prominent character of 
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waking state, we use the SIα, which is the value of SI specifically in the alpha band 
(8-13 Hz).  
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Also, to avoid the relatively small number of discrete point in PSD figures (totally 
only 40 points in log frequency vs. log power coordinate) which may not agree with 
law of large numbers and would create some uncertainty in calculation, it is necessary 
to interpolate additional points into the PSD curves. We just use spline as the way to 
realize the interpolation, more than 1600 points for each function are interpolated into 
the PSD and the fitting curve with the step as 0.001. 

3   Results 

The 300 segments vided in each five-minute EEG signal make it necessary to do 
some statistical works especially for the slope which represents the typical distinction 
among deep sleep, awaking status and light sleep. (Fig.2) 

 

 

   (a)                                         (b)                                         (c) 

Fig. 2. Hisrograms of the slopes of PSD from human EEG (a) awake, (b) deep sleep, and (c) 
light sleep 

The histogram in Fig.2 (a) indicates the slope near -2 and resembles brown noise. 
In addition, there is the tail downside towards the slope of -5. These sporadic devia-
tions show the tendency from brown noise to black noise and the unsteady state of the 
waking stage. That means in this block, the waking stage goes unstable compared to 
deep sleep. The distribution of Fig.2 (b) appears similar to symmetry distribution, 
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with the average slope between -3 and -4, which resembles the black noise. In Fig.2 
(c), the average value of slopes is around -2.5 which goes in the middle of the waking 
stage and deep sleep stage with a tail towards lower value, this is because of the ran-
dom occurrence of K- complex waves which has peak to peak amplitude more than 
100uv, and together with the fluctuation of spindle waves in 10-16 Hz, it appears to 

be lower in SI and SI α. 
In sum, the results are detailed in Table 1 Table 2 and Table 3, those assert that the 

slope of waking stage is around -2 and for deep sleep, it descends to below -3 with 
higher value for intercept, the slope of light sleep is in medial. Meanwhile, it also 
states that no matter for SI or for SIα, EEG in awake and rest is a little bit smaller  
than that of deep sleep for around two percentiles which means the waking EEG fluc-
tuates more actively than sleep EEG, both in the alpha band or in the overall fre-
quency. While for light sleep these two parameters are often lower maybe due to the 
fluctuation in both lower and higher frequency bands. 

Table 1. The specific details for waking EEG 

 Deep sleep (average±SD) 
Index 

No SI (%) SIα (%) Slope Intercept 
1 86.96±5.00 89.15±4.24 -3.26±0.59 7.23±0.83 
2 87.25±3.65 90.04±3.23 -3.55±0.44 7.35±0.58 
3 87.28±4.60 89.98±3.90 -3.32±0.60 7.58±0.82 
4 88.40±4.26 90.35±3.64 -3.43±0.50 7.65±0.71 
5 88.26±4.03 89.90±3.79 -3.53±0.50 7.69±0.72 
6 89.30±3.15 90.93±2.90 -3.47±0.47 7.58±0.64 
7 88.59±3.41 90.20±2.92 -3.42±0.48 7.64±0.65 
8 89.08±3.05 90.77±3.66 -3.26±0.49 7.39±0.67 
9 87.30±3.86 90.15±3.43 -3.67±0.51 7.85±0.70 
10 87.94±3.96 90.08±3.45 -3.29±0.40 7.06±0.53 

Table 2. The specific details for sleep EEG 

 Wake (average±SD) 
Index 

No SI (%) SIα (%) Slope Intercept 
1 85.69±7.02 87.46±6.46 -1.64±0.78 5.35±1.12 

2 86.82±5.92 89.05±5.17 -1.87±0.89 5.47±1.42 
3 86.74±5.87 89.02±4.90 -1.82±0.84 5.82±1.12 
4 86.38±7.03 89.02±6.06 -1.51±1.34 5.60±2.03 
5 86.78±5.05 89.02±4.90 -1.61±0.63 5.55±0.96 
6 86.71±5.83 87.82±5.43 -2.17±0.76 6.19±0.99 
7 86.71±5.64 88.77±4.70 -2.05±0.86 6.11±1.14 
8 86.20±6.81 88.90±5.23 -2.19±0.85 6.15±1.19 
9 87.82±4.30 89.50±3.78 -2.25±0.50 6.11±0.69 
10 86.38±8.16 88.54±8.05 -1.83±1.67 5.77±2.64 
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Table 3. The specific details for sleep EEG 

 Light sleep (average±SD) 
Index 

No SI (%) SIα (%) Slope Intercept 
1 82.91±8.98 86.85±6.45 -3.15±1.22 7.21±1.78 
2 84.67±6.15 88.96±4.69 -3.12±0.75 7.01±1.08 
3 82.48±10.45 86.14±8.20 -3.08±1.40 7.50±2.05 
4 83.02±10.80 85.79±8.64 -3.09±1.42 7.46±2.07 
5 84.83±8.65 87.70±6.62 -3.02±1.17 7.25±1.69 
6 86.76±5.06 89.28±4.12 -2.58±0.65 6.61±0.92 
7 85.67±6.93 88.88±4.36 -2.86±0.81 6.90±1.13 
8 86.46±5.87 88.89±3.47 -2.63±0.71 6.48±1.02 
9 82.72±7.32 88.10±4.79 -3.40±0.90 7.50±1.30 
10 87.02±5.47 89.75±4.28 -2.44±0.59 6.38±6.38 

 
 
We also notice that the standard deviation in deep sleep is usually much smaller 

than those in the waking status with rare exceptions. We induce that it could also 
demonstrate that in deep sleep, the brain activity is more stable than waking periods. 
Another reason why the slope of waking status deviates a bit from the theoretical 
value -2 is due to the muscle activity (i.e. EMG) mingled into the waking EEG and 
forced the slopes closer to pink noise which involves higher frequency bands. 

3   Discussion 

Based on the power spectral density, we may find the regular patterns that for waking 
EEG, it is similar as brown noise, and for deep sleep EEG it is closer to black noise 
whose slope is much steeper, but for light sleep it is in the medial of those two; and 
the difference in SI and histograms shows the relatively unstable nature of waking 
EEG and light sleep with more fluctuations and sporadic deviations. The lower value 
of SIα in waking stage and light sleep just corresponds to the R-K rules that the alpha 
activity usually occurs in Stage W and spindle occurs in light sleep.   

Hence we can conclude the radical methods in PSD based sleep stage classifica-
tion, from higher to lower in absolute value, it is deep sleep, light sleep and awaking 
status for the value of slope; deep sleep, awaking status and light sleep for the value 
of SI and SIα; deep sleep, light sleep and awaking status for value of intercept. Com-
pared to the traditional computer based time-frequency analysis, the method of PSD 
has its distinctive advantages. Unlike the time-frequency analysis, this method would 
no longer be restricted by the specific details of R-K rules, which means the distinc-
tive difference between slopes, intercepts and SI would help to overcome the fuzzy 
boundary between sleep stages. Additionally, this method could be utilized for differ-
ent individuals without changing the parameter of the algorithm for it is adaptive to 
different subjects where the comparison would occur only in the same platforms; 
unlike neural networks, there is no need to do any training works in advance to adjust 
the specific parameters and inner configurations. Accordingly, the method of PSD is 
also the allusion of the mechanism of human’s brain, not only for its general condition 
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of stability but also for transition of background noise. It is probable to say that this 
approach is another perspective to express the brain activity described in R-K rules 
and an effective way to realize sleep stage classification. 
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Abstract. A new algorithm for pattern recognition for current perception 
threshold measurement is proposed. Because of risk-sensitiveness of medical 
diagnosis, the current perception threshold requires the prediction to be quali-
fied with confidence. Using confidence support vector machine, the current 
perception threshold measurement via single channel electroencephalogram is 
confident and credible. Experimental results demonstrate the proposed algo-
rithm is effective. 

Keywords: Current Perception Threshold (CPT), Transductive Confidence 
Machine (TCM), Support Vector Machine (SVM), Electroencephalogram 
(EEG), Quantitative Sensory Testing (QST). 

1   Introduction 

Current perception threshold measurement is a threshold detection of quantitative 
sensory testing (QST) which have been developed to assess and quantify neural sen-
sory function in patients at risk of developing neurologic disease or with neurologic 
symptoms [1]. In recent years, there has been an increasing interest in study of the 
relationship between EEG patterns and QST detection, which help us understand the 
mechanism of neural information processing and provides methods for neural sensory 
function estimation and brain-computer interface (BCI) applications [2]. Utilizing 
event related potentials (ERPs), we develop an objective and non-intrusive neural 
sensory function measurement method, which can identify current perception thresh-
old via single channel EEG. Because medical diagnosis such as CPT measurement is 
risk-sensitive, the algorithm for pattern recognition requires be qualified with confi-
dence and credibility. Transductive confidence machine (TCM) allows us to make 
predictions with confidence, which can provide a calibrated and controlled classifica-
tion environment [3]. We implement TCM on support vector machines (SVM) for 
EEG pattern recognition in our research. 
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2   Methods 

The procedure to EEG pattern recognition evoked by current stimuli is illustrated in 
Fig.1. Because principal energy of ERPs evoked by current stimuli is dominant in the 
frequency band of 0-3Hz, the single channel EEG was firstly filtered with a low pass 
filter of 0-3Hz, then segment properly. Secondly, we calculated the Euclidean dis-
tances between the segmented EEG and the EEG templets with and without stimuli. 
The Euclidean distances form a 2-dimension feature vector indicated as X1 and  
X2 respectively. Applied TCM-SVM algorithm, current perception threshold can be 
obtained. 

 

Fig. 1. The procedure to EEG pattern recognition utilizing TCM-SVM 

2.1   Experiments 

Three male students were selected from right-handed volunteers, who were free of 
neurological or psychiatric disorders. The subjects seated on a comfortable chair, eyes 
closed and arms rested on the table during the experiments. When the electrical cur-
rent was applied on the index finger’s end joint of the subject’s left hand with a stimu-
lating electrode, monopolar EEG data were acquired at a sampling frequency of 
500Hz using NuAmps Digital Amplifier (Model 7181) purchased from the Neuroscan 
Compumedics Limited, Texas, USA, according to the international 10-20 system. At 
the same time a synchronous signal was sent to the amplifier by the electrical current 
generator. In practical applications, fewer EEG recording channels are preferred, at 
the same time it happens in different parts of the scalp corresponding to the different 
stimulus. In our experiment there’s tiny difference between single channel EEG and 
multi channels EEG. According to ERPs evoked by electrical stimulus are the most 
obvious in somatosensory part. The CPz channel EEG selected for exploration was 
recorded, which referenced to linked mastoids with a forehead ground, and all imped-
ances were kept below 5 Kohm during recording.  

The ERPs appeared at the time of about 600ms after current stimulus, however 
when the current is low there were not ERPs. According to the ERPs analysis, we 
extracted 128 samples around the peak of the ERPs from single channel EEG signal, 
and calculated the Euclidean distances to stimulating and non-stimulating EEG tem-
plets respectively [2]. A 2-dimensional feature vector was obtained. Two-class SVM 
classification used for current perception threshold was illustrated in Fig.3. [4] 
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Fig. 2. Average EEG signal with electrical current of different amplitude 

 

Fig. 3. This figure shows the percentage of classifications. The recognition percentage repre-
sents the patterns classified as current perception ERPs.  
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Fig. 3 represents the relationship between EEG patterns and the amplitude of elec-
trical current. The subjects’ ERPs were detected less when electrical current is weak, 
whereas ERPs can be detected more if strong current. Although the SVM classifica-
tion algorithm can only give bare predictions, current perception threshold can be 
obtained statistically, 0.240mA, 0.383mA and 0.340mA respectively for all theses 
subjects. This method has certain disadvantages, such as: The algorithm for pattern 
recognition gives “bare” predictions only, lacking reliability and confidence for every 
prediction made. Experiments need too many stimuli for statistical analysis, so the 
perception of subject’s neural sensor gets weak for excessive stimuli. So we must 
propose a new method which provides confidence and credibility for predictions and 
is practical in an efficient manner. 

2.2   Transductive Confidence Machines 

Transductive confidence machines are supervised machine learning algorithms, which 
make a prediction regarding a new object based on a training set based on the so 
called algorithmic theory of randomness. Our algorithm follows the transductive ap-
proach, as for the classification of every new example it uses the whole training set to 
infer a rule for that particular example only. The only assumption is that data sets are 
produced independently by the same stochastic mechanism (independent and identi-
cally distributed assumption, iid assumption). The iid assumption is a very natural one 
for most applications of pattern recognition [5]. In confidence machines, the problem 
of prediction with confidence is formalized as that of computing “predictive regions” 
rather than bare predictions. We set a confidence level. For each new example, we 
predict the set of labels. In current perception threshold measurement, a sequence of 
training examples of objects Xi with labels Yi, where Xi are two-dimensional vectors 
 

 

Fig. 4. TCM-SVM algorithm for current perception threshold measurement. Left figures shows 
prediction made by TCM-SVM, 0 represents label of non-perception and 1 represents label of 
perception. Confidence of classification is in right figures. 
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and Yi are classification taking only finite number of values such as {non-perception, 
perception}, for i = 1 to n – 1, is given, then a prediction for a new unlabelled object 
Xn is made. In the TCM, p-values are calculated for each possible label prediction Yn 
= Y, based on “strangeness values” ai that are calculated for each example and indi-
cate how “strange”, or how typical. For the implementations of TCM on SVM, we use 
the Lagrangians ai obtained in the dual setting of SVM as strangeness values. 

2.3   Results 

TCM-SVM was applied to the current perception threshold measurement, which can 
be obtained, 0.225mA, 0.375mA and 0.325mA respectively for all theses subjects 
illustrated in Fig. 3.  

TCM makes predictions within predefined confidence levels, 85%, thus providing 
a calibrated and controlled classification environment.  

3   Conclusions 

An EEG-based current perception threshold measurement using a two-class SVM 
with transductive confidence machine algorithm has been presented. Efficient algo-
rithm of TCM-SVM can reduce the experiment stimulating count, and makes  
prediction within predefined confidence levels. Current perception threshold has been 
obtained objectively. 
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Abstract. Electroantennogram and spiking trains were obtained from honey-
bees’ antennae for detection using an apparatus described in this paper. Differ-
ent odor stimuli were applied on the antennae and got different EAG responses. 
The spikes of neurons were observed with this system too. 
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1   Introduction 

Gas detecting technology has a variety of application, the researches main focus on the 
gas sensors. But most of them are not sensitive enough, and it may take a long time to be 
as sensitive as a dog or an insect. Insects’ antennae are very sensitive, can diagnose the 
tiny odors within a complex chemical background. For example, Honeybees had already 
been used in the airport as detectors to search the explosive. So the scientists begin to 
extract the signals from the antennae of the honeybees with the electrodes [1][2].  

The sum of the responses of thousands of olfactory receptor neurons on insect an-
tennae comprise the whole antennal response to odor is named as the electroanten-
nogram (EAG). Ever since it was invented by Schneider in 1957, EAG recording has 
become one important techniques in insect olfaction and pheromone bioassay re-
search [3]. After olfactory training, the electrophysiological data reveal that training 
to different odors induced different effects on the antenna sensitivity. These effects 
were found only in the learners' group [4]. 

The goal in this study was to build up an EAG detecting system to detect the dif-
ferent response of the honeybees to different stimulus for further odor discrimination 
or recognition. 

2   Experiment 

2.1   Experimental Animals 

A Chinese honeybees (Apis cerana) hive is kept in the institute, and feed with honey 
in the winter. The adult drones were collected from the top of the hive or outside of 
the hive, and kept in Pasteur pipettes. 
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2.2   Set-Ups and Operation 

The set-ups consists of 4 parts as shown in Fig.1: micro-manipulators, a differential 
pre-amplifier (ADA400A, Tektronix Inc., USA), a stimulus application system and an 
oscilloscope (TDS5054B, Tektronix Inc., USA). The diagram of the differential pre-
amplifier is shown in Fig.2. Artifacts caused by background signals in the immobi-
lized bees were greatly reduced by thoroughly designed faraday cage. The antennae 
were cut off from drone together with its head using micro-scissors, to keep the an-
tennae to be alive for longer time. Clip off a few segment from the tip of the antennas. 
On the micro-manipulators, antennae were connected to one Ag/AgCl recording elec-
trode by the electrically conductive gel and the head was connected to another 
Ag/AgCl electrode as the reference. If the resistance between the two electrodes was 
below 2 MOhm, the contact of the electrodes was sufficient. The surface of the ma-
nipulator is covered by the gold film to increase the connection. We used multiple 
antennae in parallel to improve signal-to-noise ratio in EAG responses [5]. There 
were two tubes in the stimulus set-up; each was connected with one conical flask, and 
two tubes join together to be a mix-odor tube. The mix-odor tube is directly face to 
the antenna, the distance between them is about 1cm. A flow meter was adapted to 
measure and control the flow. The flow was usually adjusted about 0.6L/min. Use a 
switch pedal to apply test puff. The sample rate of the oscillator was set as 5K sam-
ple/s to continue recording 40s by one channel, while the other channel was used to 
mark the starting and the end time of the stimulus synchronously. Up to now, two 
kinds of the gas were used to stimulate the antenna in the experiments. One is satu-
rated honey vapor in the top of the conical flask, and the other is water vapor. The gas 
kind can be easily extended by adding the conical flasks. 

 

Fig. 1. Experimental apparatus 
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Fig. 2. Diagram of the Differential Preamplifier 

3   Results and Discussion 

Typical EAGs corresponding to water and honey vapors are shown in Fig.3. The blue 
line marks the duration of the stimulus, while the yellow line (above) is the response 
of the antenna to the different stimuli. Without any training on the honeybee, the EAG 
responses were not guaranteed when a stimulus applied. The rate of obtaining EAG is 
49.5% for honey vapor, and 94.1% for the water vapor. 

Besides the EAG waveforms, the spiking trains of the antenna as shown in Fig.4. 
They may provide more information for odor discrimination for further study. 

 

                                (a)                                                                                (b) 

Fig. 3.  (a)The EAG of the honey vapor (b) The EAG of the water vapor. The blue lines (be-
low) mark the start and the end of the stimulus, the yellow lines (above) are the response of the 
antennae to different stimuli. 
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Fig. 4. The spiking train of an antenna 

4   Summary and Discussions 

In order to utilize insect antenna as an ultra-sensitive sensor for odor discrimination, 
an EAG measurement system was built up. Based on the set-up, the EAG signals of 
the honeybees’ antennae corresponding to different odor stimuli were recorded. Based 
on the EAG datasets collected, the experiments for odor discrimination will be carried 
out. 

The spiking trains of the honeybee antenna were obtained by carefully adjusting ap-
propriate parameters of the system. There should be more detailed odor information 
hidden within them in comparison with EAG. Hopefully, the spiking trains correspond-
ing to different odor stimuli will provide efficient information for odor recognition. 
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Abstract. We have developed a network model of cerebellar cortex, in which 
granular cells’ activities represent a passage of time from the onset of a condi-
tioned stimulus (CS). Long-term depression of parallel fiber synapses at Purkinje 
cells (PCs) encodes an interstimulus interval between onsets of a CS and an un-
conditioned stimulus (US) as cessation of PC firing, resulting in the emission of 
a conditioned response (CR) from cerebellar nucleus neurons. In this study, we 
show that a change in the strength of a CS extends or compresses spike trains of 
granule cells in the time dimension, suggesting controllability of CR timings 
flexibly after conditioning. Because PCs alone are insufficient to read out a 
modified interstimulus interval, we add stellate cells (SCs) inhibiting PCs. 
Thereby, after conditioning, PCs are shown to stop firing earlier or later than the 
US timing for a CS stronger or weaker than the CS during conditioning.  

Keywords: Cerebellum, Spiking network model, Passage of time, Eyeblink 
conditioning, Adaptive timing. 

1   Introduction 

The cerebellum is widely accepted to control the performance of motor actions pre-
cisely [1]. Achievement of temporally coordinated motor actions requires precise 
timing of each action. Very recently, we have proposed that neural dynamics of the 
granular layer in the cerebellar cortex represents the passage of time (POT) from the 
onset of a sustained conditioned stimulus (CS) conveyed by mossy fibers (MFs) as a 
temporal sequence of active granule cell (GRC) populations [2]. Combining with 
long-term depression (LTD) at synaptic junctions of parallel fibers (PFs) from GRCs 
to PCs, which is induced by repetitive pairings with a CS and an unconditioned stimu-
lus (US) conveyed by the climbing fibers, PCs stop firing at the timing of the US 
presented during conditioning. The cessation of the PC firing releases tonic inhibition 
to cerebellar nucleus neurons that receive direct MF signals, and elicits a conditioned 
response (CR) as the nucleus neurons’ activation.  

When we apply these computational mechanisms to the conditioning of motor 
reflex, it can be accounted for the temporal topography of a CR to a CS presentation. 
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A typical example of such conditioning is Pavlovian delay eyeblink conditioning (for 
review, e.g., [3], [4], [5], [6]). Particularly, in this conditioning, a subject is exposed 
to paired presentation of a sustained tone as a CS and an airpuff as a US that induces 
eyeblink reflex. After the repeated conditioning by CS-US presentation with a fixed 
interstimulus interval (ISI) between the CS and US onsets, the CS presentation alone 
let the subject close the eye as a CR slightly prior to the US onset timing.  

In our simulations of a conditioned cerebellar network, we found that spike trains 
elicited by GRCs were extended or compressed for a CS stronger or weaker than the 
CS during the conditioning, which indicates that a stronger CS let a POT shorter 
whereas a weaker CS let it longer. This possibility is suggested by a recent experi-
ment, in which a CR was elicited earlier when the strength of a tonal stimulus (CS) 
was increased. However, in the simulations, when we changed the strength of a CS, a 
model PC did not stop firing clearly. This suggests that the PC’s read-out mechanism 
of a POT represented by GRCs is not sufficient. In the present study, we incorporate a 
stellate cell (SC) that inhibits the PC. We assumed that the model SC receives climb-
ing fiber inputs and CS-US conjunctive stimulation induces long-term potentiation 
(LTP). Simulations showed that the model PC successfully stop firing earlier or later 
than the timing of a CR elicited by the CS presented during conditioning. It is sug-
gested that SCs work to assist and enhance the PC’s read-out mechanism of a POT. 

2   Methods 

We build our model based on the GENESIS script of the granular layer model, which 
was written by Maex and De Schutter [7]. Briefly, we extend the original one-
dimensional network structure to two-dimensional one and set random connections from 
model Golgi cells (GOCs) to GRCs (Fig. 1). We also extend their single-compartment 
GOC model to a multi-compartment model composed of a soma and a dendrite, on 
which voltage-gated N-methyl-D-aspartate (NMDA) channels are distributed. We change 
values of some model parameters so that the network behaves stably.  

2.1   Network Structure 

In the present model, 32×32 model GOCs are arranged in two-dimensional grids (Fig. 1), 
in which the model GOCs are evenly positioned at 35 µm intervals within the square 
sheet of 1,085×1,085 µm2. It was estimated that there were 1000 times more GRCs than 
GOCs [8]. Numerous GRCs were connected with a glomerulus [9]. However, simulation 
with more than 1 million model neurons is beyond the power of our computers. In Ya-
mazaki and Tanaka [10], 100 nearby GRCs that were assumed to be connected with a 
glomerulus exhibited similar firing patterns despite each of the GRCs received noisy 
signals through MFs independently. Such redundant activity patterns of GRCs suggest 
that many GRCs behave as a single cluster when they receive inputs from a nearest GOC 
through a single glomerulus. In the present model, for the sake of the economy of com-
puter power, we assume that a single model GRC represents a GRC cluster composed of 
about 1,000 neurons (Fig. 1).  

We assume that a GOC receives 9×32 PF inputs from model GRCs with its 
dendritic arborization whose diameter is set at 315 µm, and the connection probability 
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of a PF at the GOC is set at 0.1. The model GOC, in turn, sends inhibitory inputs to 
model GRCs located within the extent of axonal arborization, which is set at 315 µm, 
so that a model GRC receives inhibitory inputs from 69 nearby model GOCs (Fig. 1). 
The connection probability from a GOCs to a model GRCs is set at 0.1.  

The model network contains 1 PC and 1 SC (Fig. 2). The model PC and SC receive 
PF inputs from GRCs and climbing fiber inputs that convey US signals. The SC sends 
an inhibitory connection to the PC.  

 

Fig. 1. A schematic of the cerebellar network model. GOCs receive excitatory inputs from 
GRCs and recurrently inhibit GRCs. Thus, GRCs and GOCs construct a recurrent inhibitory 
network. Grcs receive CS signals and, in turn, excite a PC and an SC. Paring of US signals fed 
to a PC and SC with CS signals induce LTD and LTP at PF terminals at these cells. 

2.2   Granule and Golgi Cell Models 

We use a model GRC composed of a single-compartment Hodgkin-Huxley unit, as 
adopted by Maex and De Schutter [7]. We simulate inhibitory postsynaptic potential 
(IPSP) induced by γ-aminobutyric acid type A (GABAA) receptor/channels using a 
double-exponential function with rise and decay time constants of 5 ms and 100 ms, 
respectively.  

On the other hand, a GOC is modeled as a multi-compartment Hodgkin-Huxley 
unit composed of a soma and a dendrite, rather than a single-compartment unit as in 
Maex and De Schutter [7]. The model GOCs receive excitatory inputs from model 
GRCs through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
channels with rise and decay time constants of 0.03 ms and 0.5 ms, respectively.  

It has been found that GOCs receive excitatory input signals from PFs through not 
only AMPA but also NMDA channels [11]. However, even when we add NMDA 
channels at the somas of model GOCs, the NMDA channels do not open effectively  
to evoke sustained depolarization because after-hyperpolarization (AHP) [12][13] 
following each action potential generation rapidly decreases somatic membrane  
 



70 T. Honda et al. 

potential. On the other hand, it is known that the dendritic potential tends not to be 
affected by AHP at cell somas [12]. Moreover, it has been shown that direct dendritic 
excitation produces sustained and burst responses although somatic excitation does 
not [12]. If NMDA channels really function to induce a prolonged activation of 
GOCs, it implies that NMDA channels are located on the GOC dendrites. In this 
study, a model GOC is represented as a soma and a dendrite whose length is 300 µm 
(cf. [1]) (Fig. 2). The dendrites of model GOCs are assumed to possess AMPA and 
NMDA channels. We simulate NMDAR-mediated EPSPs with a double-exponential 
function with rise and decay time constants of 5 ms and 100 ms, respectively, accord-
ing to Misra et al. [14]. 

 

Fig. 2. Grcs’ excitation of GOCs is mediated by AMPA and NMDA channels, whereas GOCs’ 
inhibition of GRCs is mediated by GABAA channels. The strength of current into GRCs, which 
is induced by MF signal, is external stimulus strength as a control parameter in this model. A 
PC and an SC are excited by the GRCs mediated by AMPA channels. The PC is inhibited by 
the SC mediated by GABAA channels.  

2.3   Purkinje and Stellate Cell Models 

A PC and an SC are modeled as single-compartment Hodgkin-Huxley units. These 
cells are assumed to be excited by PF inputs from GRCs mediated by the activation  
of AMPA channels. The PC is assumed to be inhibited by the SC through GABAA 
channels.  

2.4   Modeling of a CS 

We model MF input signals as current injected directly to the model GRCs, instead of 
spike trains. Freeman and Muckler [15] have reported that the spontaneous firing rate 
of MFs is as low as 5 Hz, whereas the firing rate increases up to 30 Hz when stimu-
lated with a tone (e.g. CS). We assume that the current into GRCs increases with the 
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frequency of firing conveyed through MFs. In simulations, we inject a current IMF of 
10.7 pA to all model GRCs for 2 s to simulate GRCs’ activities induced by the spon-
taneous MF activity. For the succeeding 2 s, we inject a current IMF of 29.5 pA to 
evoke GRCs in response to high frequency MF firing induced by the presentation of 
the CS. Subsequently, we inject a current IMF of 10.7 pA for 2 s again to resume the 
baseline activity of GRCs induced by spontaneous MF activity. After conditioning, to 
simulate network dynamics under CSs of different strengths, we inject current of 31.0 
pA or 28.5 pA into GRCs.  

2.5   Simulation of Eyeblink Conditioning  

For eyeblink conditioning, we present US signal 650 ms after the onset of CS signal 
presentation. The US signal is sent to both PC and SC. Before conditioning, we set 
synaptic weights of all PFs at (0) 1iw =  and (0) 1iv = for the PC and the SC, respectively. 

During conditioning, conjunctive stimulation of a CS and a US is assumed to induce 
LTD and LTP at PF synapses to the PC and the SC, respectively. According to Equa-
tions (1) and (2), these synaptic weights are decreased at the PC and increased at the 
SC when the PFs are activated 50-100 ms before the onset of a US. In addition, we 
also assume that when spike activity is transmitted to the PC and the SC through PFs 
alone, PF synapses undergo LTP and LTD, respectively.  
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Here, f  is the frequency of firing of ith GRC in the interval of 50-100 ms immedi-
ately before the onset of a US. tatal

f  is the total frequency of firing during one trial of 

conditioning for 2 s. Tr  is the trial number. For simplicity, we assume that the US 
through the climbing fibers affects only learning of PF synaptic weights but not the 
neurons’ activity.  

2.6   Data Analysis 

When ith GRC ( )1 i N≤ ≤ elicits spike activity at time t in response to injected current 
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follows: 

( )
1 2

1 2

1 2
1

1 2
2 2

1 2
1 1

( ) ( )
,

( ) ( )

MF MF

MF MF

N
I I

i i
i

N N
I I

i i
i i

f t f t
SI t t

f t f t

=

= =

=
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

∑

∑ ∑
,                               (3) 

which represents correlation of a spiking GRC population at time 1t  for CS current 

1
MFI and that at time 2t  for CS current 2

MFI . ( )1 2, 1SI t t =  indcates that active GRC 

populations at 1t  and 2t  are identical, where ( )1 2, 0SI t t =  indicates that completely 

different GRCs elicit spikes at 1t  and 2t .  
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3   Results 

3.1   POT-Representation 

Figure 3A represents spike patterns of 20 model GRCs in response to the sustained 
injection of current of 3 different strengths for simulated CSs. Activation of GRCs by 
the CS presentation vigorously depolarizes randomly connected GOCs, resulting in 
the activation of voltage-gated NMDA channels on their dendrites. Because of the 
long decay time constant of NMDAR-mediated EPSPs, GOCs inhibit nearby GRCs, 
so that GRCs exhibited random alternations between burst and silent states, as re-
ported by Yamazaki and Tanaka [10]. 

 

Fig. 3. Network dynamics when current of different strengths is injected to GRCs. (A) Spike 
patterns of 20 GRCs. The abscissa and ordinate represent time and neuron index, respectively. 
(B) SIs  of spike patterns of GRCs for the same strength of current are plotted in a gray scale 
between 0.5 and 1. (C) SIs  of spike patterns of GRCs evoked between different strengths of 
current are plotted in a binary scale in which black (white) indicates 0.8SI ≤  ( 0.8SI > ).  

We show SIs  of spike patterns of GRCs calculated with Equation 3 in a gray scale 
(Fig. 3B) between 0.5 and 1. Even if the strength of injected current was different, 
larger SI  appeared along the diagonal line and gradually decreased with the separa-
tion from the diagonal line. This shows that different GRC populations were activated 
at different times, so that the population of active GRCs changed gradually with time 
from the CS onset without recurrence. Therefore, the absence of recurrent populations 
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of active GRCs indicates one-to-one correspondence between a certain population of 
active GRCs and a certain time, while the sustained current was injected as a CS sig-
nal. Thereby, the sequence of active GRC populations is able to represent POT from 
the CS onset. 

3.2   Speeding-Up and Slowing-Down of an Internal Clock 

Next, we compared a sequence of GRC populations activated by the sustained injec-
tion of current of 29.5 pA with another sequence generated by the injection of current 
of 31.0pA (28.5 pA). Figure 3C shows corresponding SI  diagrams. The white band 
representing high similarity slanted slightly above (below) the diagonal line for the 
injection of stronger (weaker) current. This indicates that when strong (weak) current 
is injected, the sequence is compressed (extended). Namely, when input current is 
stronger (weaker), active GRC populations appear earlier (later) and the speed of 
generation of active GRC populations becomes faster (slower). 

3.3   Simulation of Delay Eyeblink Conditioning 

We conducted simulations of delay eyeblink conditioning, in which current injection 
representing a CS generates a non-recurrent sequence of active GRC populations and 
a US presented after the CS onset changes synaptic weights of PFs from model GRCs 
to the model PC and the SC inhibiting the PC.  

Before conditioning, the model PC fired at high frequency during the CS presenta-
tion (injected current: 29.5 pA). In conditioning, a US signal was given 650 ms after 
the CS onset. For the model PC, LTD was induced at PF synapses connecting from 
GRCs active at the timing of the US presentation. For the SC, LTP was induced at PF 
synapses from those active GRCs.  

After 50 trials of conditioning, when we injected current of the same strength as in 
the conditioning as a CS signal, the PC began to stop firing between 516 ms and 754 
ms from the CS onset (Fig. 4A). This result indicates that the model PC was able to 
learn an ISI between CS and US onsets, as consistent with an experiment [16]. On the 
other hand, when we injected current of 31.0 pA (28.5 pA) as a strong (weak) CS 
signal, the PC began to stop firing 161ms earlier (898 ms later) than in the default 
(Fig. 4B and C). These observations indicate that after conditioning, when a stronger 
(weaker) CS signal is presented than a CS signal used in conditioning, a PC stopped 
firing earlier (later). This suggests that even after conditioning, the timing when a CR 
is elicited can be controlled by the strength of a CS signal.  

Next, we examined how the model SC is involved in this timing control after con-
ditioning, by removing the SC after conditioning. First, we injected current of 29.5 pA, 
the PC began to stop firing between 541 ms and 652 ms after the CS onset (Fig. 4D). 
Although the duration of the PC firing cessation was shorter than that in the default 
case, the qualitative features of the firing was preserved without the SC. However, 
when we injected current of 31.0 pA or 28.5 pA after conditioning, the PC kept tonic 
firing, indicating that the ISI coding was disrupted (Fig. 4E, F). This suggests that the 
SC plays an important role for adaptive timing control. Also, when we blocked the 
plasticity of PF synapses at the SC during conditioning, the PC behaved similarly to 
the case which a model SC was removed (data not shown).  
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Fig. 4. Membrane potential of the model PC after eyeblink conditioning. In conditioning, US 
signal is fed to the PC at 650 ms after the onset of sustained injection of current of 29.5 pA to 
GRCs. (A) Membrane potential in response to the current of 29.5 pA after conditioning and (D) 
membrane potential when we remove the SC. (B) Membrane potential in response to sustained 
injection of current of 31.0 pA and (E) membrane potential when we remove the SC. (C) Mem-
brane potential in response to the current of 28.5 pA and (F) membrane potential when we 
remove the SC. The abscissa represents time from the onset of current injection, and the ordi-
nate represents membrane potential. 

4   Discussion and Conclusion 

Adaptive control of timing by the strength of external stimulus seems essential for the 
generalization of motor actions. For example, in batting, we swing a bat at an 
appropriate timing to hit the ball, estimating the speed of a pitched ball visually. If the 
speed of a pitched ball is high, we start swinging the bat faster unconsciously. It is 
expected that the cerebellum learns the timing of motor actions in a supervised 
manner and controls the learned timing adaptively [17]. In the present study, using 
our spiking network model of the cerebellar cortex, we argued that a stronger or 
weaker CS signal conveyed by MFs makes the POT representation change by 
compressing or expanding the temporal sequence of active GRC populations. Learned 
timing was advanced or delayed as shown by the temporal shift of timed pause of the 
PC in the simulated Pavlovian delay eyeblink conditioning, as consistent with 
experimental findings [18]. We are particularly interested in the role of SCs in the 
adaptive control of the learned timing. We demonstrated that removing the model SC 
from the network disrupts the expression of the timing, suggesting that SCs assist the 
coding of a timing by PCs in motor control, as hypothesized by Rancillac and Crépel 
[19]. To date, little attention has been paid to the functional role of SCs, except a 
classical hypothesis as a gain controller of PCs to keep the activity level of PCs within 
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a physiological range by inhibiting them in a feed-forward manner [20] [21]. The 
present study shed light for the first time on the functional role of SCs in cerebellar 
adaptive timing control. 

The cerebellum is regarded as a universal simulator that simulates the dynamics of 
physical and mental objects by acquring the internal models through supervised 
learning [22] [23]. The present network model of the cerebellar cortex consists of the 
granular layer that generates a temporal sequence of active GRC populations as liquid 
states, and a unit composed of a PC and an SC that receives the sequence and extracts 
time-varying information from the sequence. Once we interpret the granular layer and 
a PC-SC unit respectively as a reservoir and a readout, our model turns out to be 
equivalent to a liquid state machine (LSM) [24], a type of artificial neural network 
model, which is a universal supervised learning machine [25]. In conventional LSMs, 
a readout is simply a single model neuron that recruits a simple perceptron learning 
scheme. In contrast, the readout in our model is a pair of two neurons recruiting 
plasticity of the opposite direction. By this combination, the model cerebellar cortex 
is able to generalize the timing of a CR adaptively by the strength of a CS signal. This 
suggests the enhancement of the ability of reading out information from the liquid 
state in the granular layer. Therefore, the present study may provide insight into the 
computational power of the cerebellum as a biological counterpart of a liquid state 
machine. This study also suggests that LSMs can be improved by incorporating 
inhibitory interneurons in the readout unit.  
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Abstract. In recent years, several k-winners-take-all (kWTA) neural

networks were developed based on a quadratic programming formula-

tion. In particular, a continuous-time kWTA network with a single state

variable and its discrete-time counterpart were developed recently. These

kWTA networks have proven properties of global convergence and simple

architectures. Starting with problem formulations, this paper reviews re-

lated existing kWTA networks and extends the existing kWTA networks

with piecewise linear activation functions to the ones with high-gain ac-

tivation functions. The paper then presents experimental results of the

continuous-time and discrete-time kWTA networks with infinity-gain ac-

tivation functions. The results show that the kWTA networks are para-

metrically robust and dimensionally scalable in terms of problem size

and convergence rate.
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1 Introduction

As a generalization of the winner-take-all (WTA) operation [1], the k-winners-
take-all (kWTA) operation selects the k largest inputs out of n inputs (1 ≤ k ≤
n). kWTA has been shown to be a computationally powerful operation compared
with standard neural network models of threshold logic gates [2]. In addition, it
has numerous applications in k-neighborhood classification, k-means clustering,
sorting, machine learning, and data mining; e.g., decoding [1], image processing
[3], computer vision [4],[5], feature extraction [6], and associative memories [7],
mobile robot navigation [8], etc.
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When the number of inputs is large or a selection process has to be operated in
real time, parallel algorithms and hardware implementation are desirable. In the
past twenty years, many WTA and kWTA networks have been developed; e.g., [9]-
[25]. In particular, a continuous-time kWTA network with a single state variable
and guaranteed global convergence [23] was developed based on a quadratic pro-
gramming formulation in [20]. It has the simplest architectural complexity due to
its single state variable. A discrete-time counterpart was developed recently [25].

In this paper, we will present the simulation results of these kWTA networks
to show their parametric robustness and dimension scalability in terms of con-
vergence, which will validate and supplement previous theoretical results for
designing the kWTA networks.

2 Problem Formulations

Generally, the kWTA operation can be defined or encoded as the following binary
function

xi = f(ui) =
{

1, if ui ∈ {k largest elements of u},
0, otherwise, (1)

where u = (u1, u2, . . . , un)T is the input vector and x = (x1, x2, . . . , xn)T is the
output vector.

The kWTA solution can be determined by solving the following linear integer
programming problem:

maximize
n∑

i=1
uixi or minimize −

n∑
i=1

uixi,

subject to
n∑

i=1
xi = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n.

(2)

According to its total modularity property [26], the above linear integer pro-
gramming problem is equivalent to the following linear programming problems
if the kth and (k + 1)th largest elements of u are different (i.e., the solution is
unique):

minimize −
n∑

i=1
uixi or − uTx,

subject to
n∑

i=1
xi = k,

0 ≤ xi ≤ 1, i = 1, 2, . . . , n.

(3)

It was proven in [20] that the kWTA problem is equivalent to the following
quadratic integer programming problems:

minimize a
2

n∑
i=1

x2
i −

n∑
i=1

uixi or a
2x

Tx− uTx,

subject to
n∑

i=1
xi = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n.

(4)

where a is a positive constant.
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Furthermore, according to [20], if the kth and (k + 1)th largest elements of
u (denoted as ūk and ūk+1, respectively) are different, the quadratic integer
programming problems is equivalent to the following quadratic programming
problems:

minimize a
2

n∑
i=1

x2
i −

n∑
i=1

uixi or a
2x

Tx− uTx,

subject to
n∑

i=1
xi = k,

0 ≤ xi ≤ 1, i = 1, 2, . . . , n,

(5)

where a ≤ ūk − ūk+1 represents the input resolution.

3 Model Descriptions

A kWTA neural network was tailored from the simplified dual network [20]:

state equation ε
dv

dt
= −Mv + g(Mv − v + s)− s, (6)

output equation x = Mv + s, (7)

where ε > 0 is a scaling constant, v ∈ n is the state vector, M = (In−eeT /n)/a,
s = Mu + (k/n)e, e is a column vector with all entries being ones, and g(·) is
the piecewise linear activation function defined as:

g(xi) =

⎧⎨⎩0, xi < 0i,
xi, 0 ≤ xi ≤ 1,
1, xi > 1.

(8)

A kWTA network with a single state variable was developed based on the im-
proved dual neural network [23] with the following following equations:

state equation ε
dz

dt
= −

n∑
i=1

xi + k, (9)

output equation xi = g
(
z +

vi

a

)
, i = 1, · · · , n, (10)

where z ∈  is the state variable. The exactly same model was reinvented one
year after in [24].

Recently, a discrete-time counterpart of the above kWTA network [23] was
presented [25],[24]..

state equation z(m + 1) = z(m) − β(
n∑

i=1

xi(m) − k), (11)

output equation xi(m) = g
(
z(m) +

vi

a

)
, i = 1, · · · , n, (12)
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Fig. 1. The piecewise linear activation function with a positive gain parameter ξ

where β > 0 is the step size. It was proven that the discrete-time kWTA network
is globally convergent if 0 < β < 2/n [25] or 0 < β < 2/

√
n [24].

As the output variables are supposed to be binary, the piecewise linear acti-
vation function g(·) can be extended with a positive gain parameter ξ as shown
in(13) and Figure 1, where ξ is the slope of the linear part:

g(xi) =

⎧⎨⎩
0, xi < 0i,
ξ, 0 ≤ xi ≤ 1/ξ,
1, xi > 1/ξ.

(13)

When the gain parameter approaches to positive infinity (i.e., ξ → +∞), the
activation function becomes identical with that in the one of one-layer neural
networks with hard-limiting (step) activation function in [22]. In the next section,
it will be shown that the kWTA networks with positive infinity gain parameter
ξ can still work well in kWTA operations.
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ξ and a in the continuous-time kWTA network (9)
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4 Simulation Results

In this section, the results of extensive simulations will be discussed with respect
to various parameters of the kTWA networks (e.g., ξ, a, ε, z(0), and n). In all
simulations, unless otherwise specified, the inputs are set as ui ∈ {1, 2, . . . , n}
and the parameters are set as n = 10, k = 5, a = 0.5, z(0) = 0, ε = 10−6, ξ →
+∞.

In Fig. 2, the transient behaviors of the state variable z(t) of the continuous-
time kWTA network in (9) are depicted with respect to increasing gain parame-
ter ξ from 1 to +∞ in the left subplot and various values of parameter a ranging
from 0.001 to 0.5 in the right subplot where both axes are in a logarithmic scale.
The results show that the convergence is faster when the gain parameter ξ is
larger or a is smaller. In Fig. 3, the transient behaviors of the state variable z(t)
of the continuous-time kWTA network in (9) are depicted with respect to 30
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random initial states z(0) drawn from [-100,100] under the uniform distribution
in the left subplot and decreasing scaling constant ε from 10−2 to 10−6 in the
right subplot where the horizontal axis is in a logarithmic scale. It is obvious
that the state variable z is globally stable from any initial state z(0) and its
convergence is faster when the scaling constant ε is smaller. In Fig. 4, the Monte
Carlo simulation results are shown 1000 random inputs ui ∈ {1, 2, . . . , n} with
increasing sizes (i.e., n = 4, 8, . . . , 100). It is interesting to see that the average
and standard deviation of convergence time of the state variable z decrease as the
problem size n increases, which reinforces the results in [23]. In particular, the
averaged convergence time approaches to a stable value about 15 microseconds
for large kWTA problems.

Similar to the results for the continuous-time kWTA network (9) and (10),
the simulation results for the discrete-time kWTA network (11) and (12) are
shown in Figs. 5-8. Specifically, Fig. 5 depicts the transient behaviors of the
state variable z(m) of the discrete-time kWTA network in (11) with respect
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Fig. 7. (i) Stable state variable z with respect to various different values of step size

parameter β in the discrete-time kWTA network (11). (ii) Average and deviation of

the number of iterations for convergence in the discrete-time kWTA network (11) with

1000 random inputs of increasing size n, where k = n/2.

to increasing gain parameter ξ from 1 to +∞ and 30 random initial states
z(0) drawn from [-100,100] under the uniform distribution, which show that
the convergence is faster when the gain parameter ξ is larger and global stability
of the state variable. In Fig. 6, the transient behaviors of state variable z(m)
of the discrete-time kWTA network are depicted with respect to various values
of parameter a ranging from 0.01 to 5, where the vertical axis for z is in a
logarithmic scale in the right subplot. The results show that the convergence
of the state variable z is faster when a is larger, which is contrary to that in
continuous-time kWTA network shown in Fig. 2 (right subplot). In addition,
when a is too big, the state of the discrete-time network becomes unstable.
In Fig. 7, the transient behaviors of the state variable z(m) of the discrete-
time kWTA network are depicted with respect to various values of its step size
parameter β ranging from 0.01 to 1.6. It is not surprising that the convergence is
faster when β is bigger and an oscillation occurs when β is too big. In Fig. 8, the
Monte Carlo simulation results are shown 1000 random inputs ui ∈ {1, 2, . . . , n}
with increasing sizes (i.e., n = 4, 8, . . . , 100) for the discrete-time network. It
can be observed that, as the problem size n increases, the average number of
iterations needed for the of state variable z converges to a stable value 21.50,
but its deviation decreases.

5 Concluding Remarks

In this paper, extensive simulation results are reported on the global state sta-
bility of the continuous-time and discrete-time k-winners-take-all (kWTA) net-
works with a single state variable under various parametric configurations. In
particular, it is demonstrated that these kWTA networks work faster with high-
gain activation functions. In addition, the scalability of the kWTA networks is
also shown in terms of input dimension and convergence time. The theoretical
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justifications of the high-gain activation function in the kWTA networks will be
published in a separate paper.
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Abstract. This paper studies the extension of the Generalization Com-

plexity (GC) measure to real valued input problems. The GC measure,

defined in Boolean space, was proposed as a simple tool to estimate the

generalization ability that can be obtained when a data set is learnt by

a neural network. Using two different discretization methods, the real

valued inputs are transformed into binary values, from which the gener-

alization complexity can be straightforwardly computed. The discretiza-

tion transformation is carried out both through a very simple method

based on equal width intervals (EW) and with a more sophisticated su-

pervised method (the CAIM algorithm) that use much more information

about the data. A study of the relationship between data complexity and

generalization ability obtained was done together with an analysis of the

relationship between best neural architecture size and complexity.

Keywords: Neural network, Architecture size, Real-valued function,

CAIM, Discretization algorithms.

1 Introduction

Deciding how many nodes to include in the hidden layer of a feed forward neural
network in order to classify a set of patterns or to approximate a given data
set is a controversial issue. Using a variety of mathematical methods and ap-
proximations, theoretical results that give an indication about how to solve this
problem have been obtained [1,3,4,5,6,7,8,9,10], but at the time of the implemen-
tation some of them offer not clear help or are very difficult to implement. As
a consequence, more practical approaches, with results supported by numerical
simulations have been proposed [19,17,18]. Despite all these approaches, still the
main tendency at the time of selecting a neural network architecture for a given
problem is the trial-and-error approach.

Recently, a new point of view to the architecture selection problem have been
tried by Franco and colleagues [14,13,12], who have introduced a new measure
for the estimating the complexity of Boolean functions. The measure named
Generalization Complexity (GC) tries to estimate from the set of available data
for a given problem what it will be the generalization ability expected, as several
tests have shown that a high correlation exists between the GC measure and the

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 86–94, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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prediction accuracy obtained when Boolean data is used to train a Feed-forward
Neural Network (FFNN). As mentioned, the method to select proper neural ar-
chitectures based on the GC complexity of the data has been only applied to
Boolean input data [12], as the GC measure is defined for Boolean inputs. In this
work, through the use of two different discretization (or binarization) methods
[28], we compute the GC measure of real-valued input data from a well known
benchmark data set. 20 classification problems from the standardized PROBEN1
[2] benchmark collection were used as testing data for analyzing the relationship
between the GC measure and the generalization ability obtained when the prob-
lems are learnt by FFNN, and also we have analyze the relationship between
the size of the optimal-found network and the generalization ability obtained.
We have used two very different discretization methods, a very simple and un-
supervised one, that discretize the inputs using equal width intervals (EW) [24],
and a more complex supervised discretization algorithm, named Class-Attribute
Interdependence Maximization (CAIM) based on the maximization of the inter-
dependence between class and attributes [27].

The paper is structured as follows: section 2 contains the details of the meth-
ods and data sets used, followed by the results obtained from the extensive nu-
merical simulations that are presented in section 3 to finally discuss the results
in section 4.

2 Methods and Benchmark Data Sets

2.1 The GC Measure

The GC measure was introduced by Franco and colleagues [14,13], and was de-
rived from evidence that pairs of bordering examples, those lying closely at both
sides of separating hyperplanes that classify different regions, play an important
role on the generalization ability obtained in classification problems when neural
networks are used as predictive methods [15,16] . The GC measure of a Boolean
function f , C[f ] can be simply computed by counting the number of pairs of
neighboring examples having opposite outputs located at Hamming distances 1
and 2.

C[f ] = C1[f ] + C2[f ], (1)

where Ci[f ], i = 1, 2 are the two terms of the measure taking into account pairs
of examples at a Hamming distance one and two. Explicitly, the first term can
be written as:

C1[f ] =
1

Nex * Nneigh

Nex∑
j=1

⎛⎝ ∑
{l|Hamming(ej ,el)=1}

|f(ej)− f(el)|
⎞⎠ (2)

where the first factor, 1
Nex * Nneigh

, is a normalization one, counting for the total

number of pairs considered, Nex is the total number of examples equals to 2N ,
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and Nneigh stands for the number of neighbor examples at a Hamming distance
of 1. The second term C2[f ] is constructed in an analogous way.

In order to apply the GC measure for the estimation of the size of a proper
neural network architecture, a fit of the relationship between architecture and
GC has to be obtained for a set of training functions, to then use this fit to
estimate an adequate architecture according to the GC complexity of a new data
set. This work was carried out in [12] and the results compared to other existing
approaches, finding that the GC-based method works close to the optimal.

2.2 Binarization of the Data Set: Equal Width and CAIM
Algorithms

As mentioned before, the GC measure has only be defined for binary input data,
and thus in order to transform real-valued inputs to binary values a discretization
(or binarization) algorithm should be applied.

Usually, discretization algorithms are classified in two main categories: unsu-
pervised and supervised algorithms.

– Unsupervised algorithms discretize attributes without taking into account
respective class labels. They are the simplest to use and implement. The
most representative algorithms of this category are equal-width and equal-
frequency methods. The equal-width discretization algorithm find the min-
imum and maximum values for each attribute, and then divides this range
into a number nFi of user specified equal width intervals. The equal-frequency
discretization algorithm determines the minimum and the maximum values
of the attribute, sort all values in ascending order, and divides the range into
a user-defined number of intervals so that every interval contains the same
numbers of sorted values.

– Supervised algorithms discretize attributes by taking into account the in-
terdependence between class labels and the attribute values. The represen-
tative algorithms are: maximum entropy [20], Patterson and Niblett [21],
information entropy maximization (IEM) [22], and other information-gain
or entropy-based algorithms [23], statistics-based algorithms like ChiMerge
[24], and clustering-based algorithms like K-means discretization [25].

CAIM [27](Class-Attribute Interdependence Maximization) is an algo-
rithm designed to work with supervised data. The goal of the CAIM al-
gorithm is to maximize the class-attribute interdependence and at the same
time generate a minimal number of discrete intervals. A main advantage
of the CAIM algorithm is that does not require to predefine the number
of intervals, as opposed to some other discretization algorithms, as CAIM
automatically selects the number of intervals without any user supervision.

In this work, we implemented and applied one unsupervised and one supervised
algorithms. The unsupervised algorithm used was an equal width one (EW) that
we tried with 3 and 5 intervals. Among the supervised algorithms we choose the
CAIM one, as good results have been reported from its performance [27].
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2.3 The Benchmark Data Set

In order to investigate the performance of the GC measure over real-valued
input functions, we have created several binary classification data sets from
real world problems, specifically from the PROBEN1 benchmark data set[2].
This benchmark is a collection of problems for neural network learning in the
field of pattern classification and function approximation plus a set of rules
and conventions for carrying out benchmark tests. All data sets are represented
with real-valued attributes, and they are realistic problems presented in the
same simple format. The problem representation in PROBEN1 is one of the
best improvements made in the benchmark, being a fixed representation that
improves the comparability of results, reducing drastically the work to be done
for running the benchmark. The data sets included in the present analysis are:
cancer1, card1, diabetes1, gene1, heart1, heartc1, horse1 and thyroid1.
For simplicity we have considered m-class output data as m different two-class
problems and have performed this process for every function in the benchmark
for which m was larger than 2. The final data used for the study comprise the
20 two-class classification problems shown in table 1.

The first column in Table 1 shows a problem identifier from 1 to 20, followed
by the source function name, the percentage of examples with output class 0 or
1, the number of inputs of the source problem, the number of inputs obtained
when the CAIM binarization algorithm is applied and finally the complexity
values obtained using the GC measure for the three cases considered. The last
three columns show the result of the application of the GC measure to the data
after applying the CAIM algorithm and the equal-width method for 3 and 5
intervals. The number of inputs used for the case of the equal width algorithm
can be straightforward multiplying by 3 and 5 the source number of inputs, as
the EW method creates, for every single input, a number of equivalent inputs
equal to the number of intervals considered.

3 Simulations

We carried intensive numerical simulations for the 20 2-class functions described
in table 1 analyzing the generalization ability of FFNN as the number of neu-
rons in the single hidden layer is varied between 2 and 30. All the networks were
trained with scale conjugate gradient back propagation algorithm [26], due to its
modest requirements of memory and the good performance of this algorithm for
problems with large number of weights. The maximum number of epochs allowed
for the training procedure was set to 5000 and the minimum performance gradi-
ent used was 1e−5, stopping the training if the magnitude of the gradient drops
below this value. In order to avoid the problem of overfitting that degrades the
generalization ability, we implemented the well known early stopping procedure
[11], in which the validation error is monitored during training to then choose
the synaptic weights observed at the point where the validation error took its
minimum value. A stratified 10-cross validation method was used to train the
different networks, with the aim of preserving the percentage of examples with
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Table 1. Description of the 20 functions generated from the PROBEN1 benchmark

used in the present study. The table shows in the columns a function identifier (id), the

original source problem name, the distribution of the output class in 0’s and 1’s, the

source number of inputs, the number of discretized inputs using the CAIM binarization

algorithm and in the last three columns the values of the GC measure. The three GC

values corresponds to the values obtained from the binarized version of the problem

using the CAIM algorithm and the equal width (EW) algorithm for 3 and 5 intervals.

id Source % class output (0-1) # source inputs # CAIM inputs GC-Complexity

CAIM EW-3 EW-5

f1 cancer1 65 − 35 9 18 0.0525 0.0640 0.0470

f2 card1 45 − 55 51 100 0.2033 0.2079 0.1969

f3 diabetes1 35 − 65 8 16 0.3761 0.3911 0.3351

f4 gene1 76 − 24 120 240 0.1617 0.1617 0.1617

f5 gene1 76 − 24 120 240 0.1764 0.1764 0.1764

f6 gene1 48 − 52 120 240 0.2417 0.2417 0.2417

f7 glass1 67 − 33 9 18 0.3105 0.3449 0.3676

f8 glass1 64 − 36 9 18 0.4048 0.4100 0.3562

f9 glass1 92 − 8 9 18 0.1570 0.1440 0.1452

f10 glass1 94 − 6 9 18 0.0591 0.0650 0.0339

f11 glass1 96 − 4 9 18 0.0566 0.0653 0.0651

f12 glass1 86 − 14 9 18 0.0573 0.0919 0.0425

f13 heart1 44 − 56 35 67 0.2412 0.2660 0.2252

f14 heartc1 54 − 46 35 59 0.2333 0.3048 0.2256

f15 horse1 38 − 62 58 116 0.3097 0.3505 0.3075

f16 horse1 75 − 25 58 116 0.2454 0.2582 0.2328

f17 horse1 85 − 15 58 116 0.1861 0.1799 0.1850

f18 thyroid1 97 − 3 21 42 0.0120 0.0449 0.0441

f19 thyroid1 95 − 5 21 42 0.0553 0.0996 0.0993

f20 thyroid1 7 − 93 21 42 0.0543 0.1394 0.1383

different output for each fold. Each 10-fold cross validation was set up choosing
iteratively a test fold, then a random validation fold, and the remaining eight
folds used for training. The cross validation process was repeated 5 times with
a different random seed value, and the final result for each considered network
was the mode of these 5 values and then the median of the 10-fold combination.
The simulations were run on Matlab code under the Linux operating system in
a cluster of 10 blades interconnected with infiniband, each one equipped with 2
Xeon Quadcore processors.

4 Results

In table 1 the values of the GC measure obtained with the different discretiza-
tion methods used are shown in the last three columns. As it can be appreci-
ated from the table, in almost all cases the complexity values are very similar
for the three cases considered. Some differences can be observed for the three
last cases analyzed, for which the output class distribution is highly unbalanced.



Extension of the GC Measure to Real Valued Input Data Sets 91

0 0.5
0.7

0.8

0.9

1

Complexity

G
en

er
al

iz
at

io
n

CAIM

0 0.5
0.7

0.8

0.9

1

Complexity
G

en
er

al
iz

at
io

n

EW−3

0 0.5
0.7

0.8

0.9

1

Complexity

G
en

er
al

iz
at

io
n

EW−5
residual=0.156residual=0.132residual=0.127

Fig. 1. Generalization ability vs function complexity (GC) for the 20 real valued input

functions analyzed for the case of applying the CAIM algorithm and the equal width

algorithm with 3 and 5 intervals. The solid curves shown are a linear fit of the results,

and the corresponding residual errors are indicated on top of the individual figures.

An analysis of these cases have shown that, for this kind of highly unbalanced
output functions, a simple method like the equal interval one, can overestimate
the ”true” complexity value.

Figure 1 shows the generalization ability obtained as a function of the GC
measure for the whole set of test functions using the CAIM and the equal width
algorithm with 3 and 5 intervals. A linear fit of the generalization ability as
a function of the GC complexity is indicated by a solid line and the residual
error obtained indicated on top of each individual graph. The residual error is
lower for the CAIM method, indicating a better linear fit between generalization
and GC for the case of using the CAIM algorithm. These results confirm the
previously ones obtained with true Boolean input functions [14,13,12] and are
expected as a lower generalization ability should be obtained for problems with
a higher complexity.

Regarding the different discretization methods applied (CAIM and EW with 3
and 5 intervals), we can observe a slightly better fit when the CAIM algorithm is
used, but not big differences are observed, especially considering that the CAIM
algorithm use much more information about the function than the rather simple
EW algorithm.

We have further analyzed the relationship between adequate neural architec-
tures and problem complexity, studying the generalization ability obtained when
the problems are implemented in FFNN of varying size. In Figure 2 the values
of the number of neurons in the hidden layer of the neural architectures used
vs the GC-measure of the data sets are represented. The shown values are for
the architectures that produced the best generalization ability when varying the
number of hidden neuron in the single hidden layer considered between 2 and
30. In the case of obtaining the same value for the generalization ability, the
smaller architecture was chosen following Occam’s razor principle: the simpler
the solution the better.
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Fig. 2. Best architecture size vs function complexity (GC) for the 20 real world func-

tions described in table 1. The curves are a linear fits of the results obtained when

the functions were discretized with the CAIM algorithm, and the 3 and 5 equal-width

discretization method.

For the three cases considered and shown in separate graphs in Figure 2, the
relationship between the GC measure and the best architecture size was similar,
with a slightly better fit found for the case of using the CAIM algorithm as dis-
cretization process, as shown by the residual value indicated in the figures. The
residual values are somewhat large in all three cases as the fit it is not extremely
accurate due to the variability existing in the chosen neural sizes. In particu-
lar, note that in each of the three the graphs there is a problem with low GC
complexity for which a very large preferred architecture with 22 neurons lead to
the best generalization results. This particular value is far apart from the linear
fit leading to large residual error. We have observed previously these particular
cases, that indicate that the relationship between best architecture and function
complexity holds on average but some caution is necessary in individual cases.
Nevertheless, we note that in most of these particular cases the difference on
generalization between the preferred size network and a linear predicted one is
fairly small.

5 Conclusions

Through the application of two different discretization procedures, we have been
able to compute the generalization complexity of 20 different benchmark data
sets. We have also verified that the relationship, previously obtained only for
Boolean input data, between generalization and complexity is preserved, obtain-
ing a clear linear fit (cf. Figure 1). Furthermore, on average, we also found that a
better generalization ability can be obtained if a larger number of neurons in the
neural architectures is used for more complex functions, even if large deviations
can be observed for particular cases. Regarding the two different binarization
procedures used, we have found no much difference between their results, even
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if we have compared a very simple method (equal width algorithm) to a more
complex one using extra information from the data (the CAIM algorithm). For
data sets with an unbalanced distribution of output class, some differences in GC
values were obtained, implying that in these cases the CAIM algorithm should
be the preferred method.

The overall conclusion of the present results should be that in principle the ap-
plication of the generalization complexity measure to real valued input functions
for the problem of finding an adequate size architecture is feasible. We plan to do
a more in-depth analysis of the architecture selection method that can be derived
from this work, in order to analyze its application in a real practical case.
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12. Gómez, I., Franco, L., Jerez, J.: Neural Network Architecture Selecion. Can Func-

tion Complexity Help? Neural Processing Letters 30, 71–87 (2009)

13. Franco, L., Anthony, M.: The Influence of Oppositely Classified Examples on the

Generalization Complexity of Boolean Functions. IEEE Transactions on Neural

Networks 17, 578–590 (2006)

14. Franco, L.: Generalization Ability of Boolean Functions Implemented in FeedFor-

ward Neural Networks. Neurocomputing 70, 351–361 (2006)

15. Franco, L., Cannas, S.A.: Generalization and Selection of Examples in Feedforward

Neural Networks. N. Comp. 12(10), 2405–2426 (2000)

16. Franco, L., Cannas, S.A.: Generalization Properties of Modular Networks: Im-

plementing the Parity Function. IEEE Trans. on Neural Networks 12, 1306–1313

(2001)

17. Masters, T.: Practical Neural Network Recipes in C++. Academic Press Profes-

sional, Inc., London (1993)

18. Neuralware, Inc.: The Reference Guide (2001)

19. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann, San Francisco (2005)

20. Wong, A.K., Chiu, D.K.: Synthesizing Statistical Knowledge from Incomplete

Mixed Mode Data. IEEE Trans. Pattern Analysis and Machine Intelligence 9,

796–805 (1987)

21. Paterson, A., Nibblet, T.B.: ACLS Manual. Int. Teminals Ltd., Edinburgh (1987)

22. Fayyad, U.M., Irani, K.B.: Multi-Interval Discretization of Continuous Valued At-

tributes for Clasification Learning. In: Proceedings of the 13th International Joint

Conference Artificial Intelligence, pp. 1022–1027 (1993)

23. Dougherty, J., Hohavi, R., Sahami, R.: Supervised and Unsupervised Discretization

of Continuous Features. In: Proceedings 12th International Conference Machine

Learning, pp. 194–202 (1995)

24. Kerber, R.: Chimerge. Discretization of Numeric Attributes. In: Proceedings of

Ninth International Conference of Artificial Intelligence, pp. 123–128 (1992)

25. Liu, H., Setiono, R.: Feature Selection Via Discretization. IEEE Knowledge and

Data Eng. 9(4), 642–645 (1997)

26. Moller, M.F.: Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.

Neural Networks 6(4), 525–533 (1993)

27. Kurgan, L.A., Cios, K.J.: CAIM Discretization Algorithm. IEEE Transactions of

Knoweledge and Data Eng. 16(2), 145–153 (2004)

28. Maimon, O., Rokach, L.: Data Mining and Knoweledge Discovery Handbook.

Springer, New York (2005)



A New Two-Step Gradient-Based
Backpropagation Training Method for Neural

Networks

Xuewen Mu1 and Yaling Zhang2

1 Department of Applied Mathematics, Xidian University,

Xi’an, 710071, China
2 Department of Computer Science, Xi’an Science and Technology University,

Xi’an, 710054, China

Abstract. A new two step gradient-based backpropagation training

method is proposed for neural networks in this paper. Based on the

Barzilai and Borwein steplength update rule and the technique of Re-

silient Gradient Descent method, we give a new descent direction and

steplength update rule. The new two step learning rate improves the

speed and the success rate. Experimental results show that the proposed

method has considerably improved convergence speed, and for the cho-

sen test problems, outperforms other well-known training methods.
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1 Introduction

Artificial neural networks (ANNs) are interdisciplinary information processing
techniques rooted in biology, physics, mathematics, and many other fields of
science. Primary ANN growth was first witnessed in the early 1940s[1], and
widespread research and applications grew in the 1980s. The nonlinearity in
engineering, the explosion of data, and the fuzziness of information constitute
the basic scientific and technological background for the rapid development of
ANN theory and applications in recent years[2, 3].

Among neural networks for static mapping, the error back-propagation neu-
ral network is very effective and has widespread application. It consists of a
multilayer feed-forward network and is trained by an error back-propagation al-
gorithm. Several adaptive learning algorithms for feedforward neural network
have been discovered for solving approximation, pattern recognition, classifica-
tion and other well known problems[4− 7]. Many of these algorithms are based
on the gradient descent algorithm well known in optimization theory. They usu-
ally have a poor convergence rate and depend on parameters which have to be
specified by the user, because no theoretical basis for choosing them exists. The
values of these parameters are often crucial for the success of algorithm. One
of these algorithms is the standard backpropagation(BP)[8]. Although BP is
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the most common and widely used supervised training algorithm, nevertheless,
because of the user depended parameter, it is usually inefficient on large scale
problems.

The neural network training can be formulated as a nonlinear unconstrained
optimization problem. So the training process can be realized by minimizing the
error function E defined by[6, 7]

E =
1
2

P∑
p=1

NM∑
j=1

(oM
j,p − tj,p)2 =

P∑
p=1

Ep (1)

where(oM
j,p − tj,p)2 is the squared difference between the actual output value at

the j−th output layer neuron for pattern p and the target output value. The
scalar p is an index over input-output pairs. The general purpose of the training
is to search an optimal set of connection weights in the manner that the errors
of the network output can be minimized.

The BP algorithm uses the steepest descent search direction with a fixed step
size α in order to perform the minimization of the error function. The iterative
form of this algorithm is

wk+1 = wk − ηkg
k (2)

where w denotes a column weight vector with components w1, w2, · · · , wn which
is defined in the n− dimensional real space Rn, and g the gradient vector of the
error function E at w, that is g = ∇E(w). E represents the batch error measure
defined as the sum of squared differences error function over the entire training
set.

The inefficiency of steepest descent is due to the fact that the minimization
directions and step sizes are chosen poorly; if the first step size does not lead
directly to the minimum, steepest descent will zig-zag with many smal steps[6, 7].

There are a number of modifications and extensions of the standard algorithm
to the point of fundamental changes of the gradient descent by for example
conjugate gradient and Newton methods. Beyond this there are also a number
of alternative training methods based on general optimization techniques, such
as stochastic methods[9] or Genetic Algorithms (GA) [10].

In 1988 Barzilai and Borwein [11] proposed a gradient descent method (BB
method) that uses a different strategy for choosing the step length. This is based
on an interpretation of the quasi-Newton methods in a very simple manner.
The steplength along the negative gradient direction is computed from a two-
point approximation to the secant equation from quasi-Newton methods. In [11]
Barzilai and Borwein proved that for the two-dimensional quadratic case the BB
method is R-superlinear convergent.

A new two step gradient-based backpropagation training method is proposed
for neural networks in this paper. Based on the Barzilai and Borwein steplength
update rule and the technique of Resilient Gradient Descent method, we give
a new descent direction and steplength update rule. The new two step learning
rate improves the speed and the success rate. Experimental results show that
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the proposed method has considerably improved convergence speed, and for the
chosen test problems, outperforms other well-known training methods.

The plan of this paper is as follows. In section 2 we present some classic
training algorithms. In section 3 we present the proposed training algorithm.
Section 4 contains our numerical examples and results. The final section contains
a discussion of our results, and some concluding remarks.

2 The Barzilai and Borwein Method

The main idea of Barzilai and Borweins approach[11] is to use the information
in the previous interation to decide the step-size in the current iteration. The
iteration (2) is viewed as

wk+1 = wk + dk (3)

where dk = −Hkg
k = −Hk∇E(wk), Hk = ηkI. In order to force the matrix Hk

to have certain quasi-Newton property, it is reasonable to require either

min ||sk−1 −Hky
k−1||2 (4)

or
min ||H−1

k sk−1 − yk−1||2 (4′)

where sk−1 = wk − wk−1 and yk−1 = gk − gk−1, because the quasi-Newton
matrix Hk satisfies the condition

sk−1 = Hkyk−1 (5)

Now, from Hk = ηkI and relations (4)-(4’) we can obtain two step-sizes:

ηk =
< sk−1, yk−1 >

||yk−1||22
(6)

and

ηk =
||sk−1||22

< sk−1, yk−1 >
(6′)

respectively. For convex quadratic functions in two variables, Barzilai and Bor-
wein [11] shows that the gradient method (2) with ηk given by (6) converges
R-superlinearly and R-order is

√
2.

The step size contains second order information without estimating the Hes-
sian matrix. The results show that this choice of the step size is very efficient[11].

3 The Two Step Gradient-Based Backpropagation
Training Method

Based on the Barzilai and Borwein steplength update rules and the technique
of Resilient Gradient Descent method, we give a new descent direction and
steplength update rule to improve the speed and the success rate.
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3.1 The Basic Idea of the Proposed Method

The classic iteration form of unconstrained optimization methods is viewed as

wk+1 = wk + βkd
k (7)

In fact, Barzilai and Borwein steplength update also can be see a descent
direction with a fixed stepsize which, it is that dk = −ηkg

k, βk = 1.
Barzilai and Borwein steplength contains second order information without

estimating the Hessian matrix. Based on the relation (5), let quasi-Newton
matrix

Hk = Diag(αk) (8)

where Diag(αk) denote a diagonal matrix, whose diagonal elements are the
elements of row vector αk. Based on relation (6), we obtain a new stepsize
update rule

αk
i =

s
(k−1)
i

y
(k−1)
i

Because the direction dk is not a descent direction if the parameter αk
i < 0, so

we modify the parameter as follows

αk
i = max{θ0,min{θ1, α

k
i }} (9)

where the constant θ0 and θ1 are the lower limit and the upper limit for ηk. we
set their values θ0 = 0.001, θ1 = 5.

Due to the commonly used semi-linear transfer functions (sigmoid, hyperbolic
tangent) and their actually desired property to compress an infinite input range
into a finite output range by the fact that their slope approaches zero as the input
moves towards 1, the gradient can have a very small magnitude, even though
the weights are far away from their optimal values. Therefore, Resilient Gradient
Descent(RProp) [12] uses only the sign (plus an externally defined value) instead
of the signed magnitude of the current slope to update the weights. This way
the algorithm requires relatively few resources and is rather fast to obtain any
solution. If very good quality (low network error) is desired, its performance
usually deteriorates.

Based on the update technique of the Resilient Gradient Descent method[12],
we give a stepsize update method according to the following learning-rule:

βk =

⎧⎪⎨⎪⎩
β+, if ∂Ek−1

∂Eij
∗ ∂Ek

∂Eij
> 0

β−, if
∂Ek−1
∂Eij

∗ ∂Ek

∂Eij
< 0

1, else

(10)

where β+, β− are increasing and decreasing factors, which satisfy 0 < β− < 1 <
β+.
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Relation (8) contains more second order information than Hk = ηkI. It is
very important to choose a good stepsize. Experimental results show that the
proposed method has considerably improved convergence speed for the chosen
test problems.

3.2 The New Two Step Gradient-Based Backpropagation Method

In this section, we give a new two step gradient-based backpropagation training
method for neural network.

The New Two Step Gradient-based Backpropagation Method
(NGBM)

Step 1: Initialize by setting the number of epochs k = 0, the weights w0, the
learning rate to an arbitrary value η0 = 0.1, and the values of upper and lower
limits θ0 = 0.001, θ1 = 5, the error goal ε.

Step 2: Compute the weight vector w1 according to relation (2) and set
k = k + 1.

Step 3: Compute the new parameter αk
i using the relation (9).

Step 4: Update the weight vector wk+1 according to the relation (10).
Step 5: Check if E(wk+1) > ε, set k = k + 1 and go to Step 3; otherwise get

the final weight vector w∗, and the corresponding value of E.

4 Numerical Results

The numerical simulation has been developed to study the performance of the
new two step gradient-based backpropagation training method. The simulations
have been carried out on a Pentium 1.0GHz PC Dell computer using Visual
C++.NET 2003. The performance of the NGBM algorithm has been evaluated
and compared with the batch versions of BP, Barzilai and Borwein method (BB),
and scaled conjugate gradient method (SCG) [13].

Three problems have been tested, which include the eXclusive OR Problem,
the 3-bit Parity Problem, and the Continuous Function Approximation Problem.
We test the run time of each algorithm for the three problems.

4.1 The Exclusive-OR Problem

The first problem we have test is the eXclusive - OR (XOR) Boolean function
problem[7], which is considered as a classical problem for the FNN training. The
XOR function maps two binary inputs to a single binary output. As it is well
known this function is not linearly separable. The selected architecture of the
FNN is 2-2-1 (six weights and three biases) with logistic neurons with biases in
the layers . The error goal has been set to 0.01 and the maximum epochs to
10000. For the BP algorithms the learning rate is chosen to be 0.1. The results
of the simulations are presented in Table 1.
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Table 1. The XOR Problem

algorithms BP BB SCG NGBM

times(ms) 2906 2890 2010 859

4.2 The 3-Bit Parity Problem

In this simulation we test the 3-bit parity problem[7], which can be considered
as the 3-bit version of the XOR problem. This problem maps three binary inputs
to a single binary output. The target of the output is 1, if the number of 1 bits
in the input is odd, and 0 otherwise. The selected architecture of the FNN is
3-4-1 (sixteen weights and three biases) with logistic neurons with biases in the
layers. The error goal has been set to 0.01 and the maximum epochs to 10000.
For the BP the learning rate is chosen to be 0.1 instead of the default value 0.01
to accelerate their convergence. The results of the simulations are presented in
Table 2.

Table 2. The 3-bit Parity Problem

algorithms BP BB SCG NGBM

times(ms) 27093 14953 8593 6640

4.3 The Continuous Function Problem

The last problem is the approximation of the continuous function F (x) = 1
2

sin(1
2πx) + 1

2 . This problem maps one real input to a single real output. The
input values are 20 equally spaced points xi ∈ [0, 19/20] and the target values
are the mapping of these points from function F (x). As it is cleared, we have 20
patterns and each pattern is consisted of one input xi ∈ [0, 19/20] and one target
value F (x). The selected architecture of the FNN is 1-10-1 (twenty weights and
eleven biases) with logistic neurons with biases in the layers. The error goal has
been set to 0.1 and the maximum epochs to 10000. The results of the simulations
are presented in Table 3.

Experimental results show that the proposed method needs less time than the
other three method. So the method is fast, simple, and efficient.

Table 3. The Continuous Function Problem

algorithms BP BB SCG NGBM

times(ms) 2078 1031 296 289
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5 Conclusions

A new two step gradient-based backpropagation training method is proposed.
It is shown that this method improves the convergence speed in several classical
test problems. Our experimental results clearly show that the proposed method
outperforms the classical training algorithms (BP, BB and SCG). It runs much
faster, has improved average number of epochs, and better convergence rates.
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in ShaanXi Province of China(Program No. SJ08A10).
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Abstract. A large-update primal-dual interior-point algorithm is pre-

sented for solving second order cone programming. At each iteration,

the iterate is always following the usual wide neighborhood N−
∞(τ ), but

not necessary staying within it. However, it must stay within a wider

neighborhood N (τ, β). We show that the method has O(
√

rL) iteration

complexity bound which is the best bound of wide neighborhood algo-

rithm for second-order cone programming.

Keywords: Second-order cone programming; Smoothing method; Interior-

point method; Q-quadratic convergence; Central path.

1 Introduction

Second-order cone programming (SOCP) is to minimize or maximize a linear
function over the intersection of an affine space with the Cartesian product of a
finite number of second-order cones (SOCs). It has various applications in many
fields, such as engineering, support vector machine, combinatorial optimization
and so on [1,2,6,8]. Moreover, it turns out that interior point methods (IPMs)
can solve SOCP efficiently [4,5]. Many IPMs for SOCP can be found e.g., in
[1,9]. Most of them are concentrated on primal-dual IPMs.

The IPMs choose a target on the central path and apply the Newton method
to move closer to the target at each iteration, while confining the iterate to
stay within a certain neighborhood of the analytic central path. In the first case
the method is called a small-update method. It uses full Newton steps and the
iterates stay in a small neighborhood of the central path, known as the N2-
neighborhood. The worst case iteration bound was proved to be O(

√
rL). The

second method is that the iterates are allowed to move in a wide neighborhood
of the central path, known as N−∞. The worst case iteration bound was proved to
be O(rL). However, in practice, large-update IPMs are much more efficient than
small-update IPMs [3,7]. To the author’s knowledge, in the context of path-
following approach, none had succeeded in retaining the O(

√
rL) complexity

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 102–109, 2010.
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while allowing a large update of the target along the central path at all iterates.
Thus, there is a gap between the practical behavior of IPMs and their theoretical
performance. The main motivation of the paper is to narrow this gap between
theory and practice for large-update methods.

The paper is organized as follows. In the next section, we introduce the SOCP
problem and the new wide neighborhood. In section 3, we describe the algorithm
based on the new wide neighborhood and the key result that presents the low
computational complexity bound. Some technical results and iteration complex-
ity bound are given in section 4.

The following notations are used throughout this paper. The superscript T

denotes transpose. Rm denotes the m-dimensional Euclidean space. The set Qni

is the SOC with dimension ni ≥ 1, i = 1, . . . , r, which is defined as

Qni = {(xi
0; x̄

i) ∈ R×Rni−1 : x0
i ≥ ‖x̄i‖},

where ‖ · ‖ represents the general Euclidean norm, and x̄i = (xi
1, · · · , xi

ni−1
)T ∈

Rni−1. Let x = (x1; · · · ;xr) where xi = (xi
0; x̄

i) ∈ R×Rni−1, n1 + · · ·+ nr = n.
For x ∈ Q, we mean xi ∈ Qni ⊆ Rni , i = 1, · · · , r. For simplicity, we use “,” for
adjoining vectors or matrices in a row and “;” for adjoining them in a column.
The set of all m×n matrices with real entries is denoted by Rm×n. For symmetric
matrix A ∈ Rn×n, A � 0 means A is positive semidefinite and A � 0 means A is
positive definite. Similarly, x � 0 means x ∈ Q and x � 0 means x ∈ intQ. The
trace of a vector xi = (x0

i; x̄i) ∈ Rni is denoted by trxi = λi
1 + λi

2 = 2xi
0, where

λi
1 = xi

0 − ‖x̄i‖ and λi
2 = xi

0 + ‖x̄i‖ are the eigenvalues of xi. We also define
determinant of xi by det(xi) = λi

1λ
i
2 = (xi

0)
2 − ‖x̄i‖2. Given x = (x0; x̄), s =

(s0; s̄) ∈ R×Rn−1, we define 〈x, s〉 =tr(x◦s), where “◦”is a bilinear map defined
by x ◦ s = (x1 ◦ s1; · · · ;xr ◦ sr), where xi ◦ si = ((xi)T si;xi

0s̄
i + si

0x̄
i). From the

definition, we can easily see that 〈xi, si〉 = 2(xi)T si. The Frobenius norm of
xi ∈ Qni is defined by ‖xi‖F =

√
(λi

1)2 + (λi
2)2 =

√
tr((xi)2) =

√〈xi, xi〉 =√
2‖xi‖. For any a ∈ R, a+ denotes its nonnegative part, i.e., a+ := max{a, 0},

and a− denotes its nonpositive part, i.e., a− :=min{a, 0}. It is evident that
a+ ≥ 0, a− ≤ 0, and a = a+ + a−. For a vector xi ∈ Rni , its eigenvalue
factorization is xi := λi

1u
i
1 + λi

2u
i
2, where λi

j = xi
0 + (−1)j‖x̄i‖,

ui
j =

{ 1
2 (1; (−1)j x̄

‖x̄i‖ ), xi �= 0;
1
2 (1; (−1)jω), xi = 0,

(1)

for j = 1, 2, with any ω ∈ Rni−1 such that ‖ω‖ = 1. If x̄i �= 0, then above
decomposition is unique. We use (xi)+ and (xi)− to denote the following vectors

(xi)+ := (λi
1)

+ui
1 + (λi

2)
+ui

2, (xi)− := (λi
1)

−ui
1 + (λi

2)
−ui

2,

respectively. It is evident that (xi)+ � 0, (xi)− � 0 and xi = (xi)+ + (xi)−.

2 SOCP Problem and the New Wide Neighborhood

We consider the SOCP

min {cTx : Ax = b, x ∈ Q} (2)
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and its dual problem

max {bTy : AT y + s = c, s ∈ Q, y ∈ Rm}, (3)

where A = (A1, . . . , Ar) ∈ Rm×n, c = (c1; . . . ; cr) ∈ Rn, b ∈ Rm are given
data, Q = Qn1 × · · · × Qnr , x = (x1; . . . ;xr) and s = (s1; . . . ; sr) ∈ Q are the
primal and dual variables respectively. The vector e = (e1; · · · ; er) is the identity
element of Q, where ei = (1; 0) ∈ R×Rni−1.

For any x ∈ Rn, we have the conclusion: x � 0 ⇔ xT s ≥ 0, for all s ∈ Q.
Throughout the paper, we make the following assumptions.

Assumption 1. Both (2) and (3) are strictly feasible.
Assumption 2. The row vectors of matrix A are linearly independent.

It is well known that under Assumption 1 and 2, the SOCP is equivalent to
its optimality conditions (see [2])

Ax = b, AT y + s = c, x ◦ s = 0, x, s ∈ Q, y ∈ Rm. (4)

The central path consists of points (x(μ), y(μ), s(μ)) satisfying the perturbed
optimality conditions (PCμ)

Ax = b, AT y + s = c, x ◦ s = μe, x, s ∈ Q, y ∈ Rm. (5)

It is alsowell known that under Assumptions 1 and 2 the solution (x(μ), y(μ), s(μ))
of system (5) exists and it is unique for eachμ > 0.Moreover, the limit (x∗, y∗, s∗) =
limμ↓0(x(μ), y(μ), s(μ)) exists and it is a primal-dual optimal solution, i.e., x∗ and
(y∗, s∗) are solutions of (2) and (3), respectively.

IPMs follow the solutions to (PCμ) as μ goes to zero. Note that the duality gap
of the solutions is proportional to μ, since 〈x, s〉 = tr(x◦s) = μtr(e) = 2rμ. IPMs
employ Newton’s method to target the solution of (7), where σ ∈ (0, 1), (x, y, s)
is the current iterate, and μ = xT s/r.

Suppose that the point (x, y, s) is strictly feasible, i.e., x � 0 and s � 0.
Newton’s method amounts to linearizing the system (5), thus yielding the system

AΔx = 0, ATΔy + Δs = 0, s ◦Δx + x ◦Δs = μe− x ◦ s, (6)

which gives the usual search directions of feasible primal-dual IPMs for SOCP.
Note that above system (6) might not be well defined if its Jacobian matrix

is singular. To obtain a Newton-type system that has a unique solution, people
usually use some scaling schemes.

For any x = (x0; x̄) ∈ Rn, we define the arrow-shaped matrix as follows

L(x) =
(
x0 x̄T

x̄ x0I

)
,

where I represents the (n− 1) × (n− 1) identity matrix.
It is easy to verify that x ◦ s = L(x)s = L(s)x = L(x)L(s)e for any x, s ∈ Rn.

Moreover, L(x) � 0 if and only if x � 0.
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We say two elements x and y of a Jordan algebra J operator commute if
L(x)L(y) = L(y)L(x). Moreover, for any x = (x0; x̄) ∈ Rn, the quadratic repre-
sentation associated with x is defined as

Qx = 2L(x)2 − L(x2) =
( ‖x‖2 2x0x̄

T

2x0x̄ det(x)I + 2x̄x̄T

)
= 2xxT − det(x)F,

where F = diag(1,−1, · · · ,−1) is reflection matrix.
L(x) and Qx have the following properties (see [1] and [2]).

Property 1. Let x has the spectral decomposition x = λ1u1 + λ2u2.
(1) Qx and L(x) commute and thus share a system of eigenvectors.
(2) Qx is nonsingular if and only if x is nonsingular.
(3) If x � 0, then x is nonsingular if and only if L(x) is nonsingular.

Property 2. For each x, y ∈ Rn, x nonsingular, α ∈ R, and integer t,
(1) Qxx

−1 = x and thus Q−1
x x = x−1; (2) Qx−1 = Q−1

x ;
(3) if y is also nonsingular, then (Qxy)−1 = Qx−1y−1;
(4) det(Qxy) = det2(x) det(y); (5) 〈x, s〉 = 〈Qpx,Qp−1s〉;
(6) 〈x ◦ y, z〉 = 〈x, y ◦ z〉; (7) if p � 0 and x � 0, then Qpx � 0.

Lemma 1. If J is a simple Jordan algebra, x, s ∈ J and x, s � 0, p is a scaling,
μ �= 0, then x ◦ s = μe ⇐⇒ Qpx ◦Qp−1s = μe ⇐⇒ Qp−1x−1 ◦Qps

−1 = μ−1e.

For a scaling p, (PCμ) can be equivalently written as

Ãx̃ = b, ÃT y + s̃ = c̃, x̃ ◦ s̃ = μe, x̃, s̃ ∈ Q, y ∈ Rm, (7)

where Ã = AQp−1 , x̃ = Qpx, s̃ = Qp−1s and c̃ = Qp−1c.
Using the linear transformation Qp, we scale x and s by

x̃ = Qpx, s̃ = Qp−1s = Q−1
p s. (8)

For p = x−1/2 we get the xs-method, for p = s1/2 we get the sx-method, and
for the choice of p = [Qx1/2(Qx1/2s)−1/2]−1/2 = [Qs−1/2(Qs1/2x)1/2]−1/2 we get
the Nesterov-Todd (NT) method. The scaled Newton equations are stated by

ÃΔx̃ = 0, ÃTΔy + Δs̃ = 0, s̃ ◦Δx̃ + x̃ ◦Δs̃ = σμe− x̃ ◦ s̃, (9)

where σ ∈ [0, 1] is a central parameter.

Lemma 2. Let x, s, p be all positive definite, x̃ and s̃ be defined by (8), then
(1) the vectors Qx1/2s and Qs1/2x have the same spectrum;
(2) the vectors Qx1/2s and Qx̃1/2 s̃ have the same spectrum.

Lemma 3. L(x) is a self-adjoint operator, i.e., for any x, y, z ∈ Rn, we have
〈L(x)y, z〉 = 〈y, L(x)z〉. Furthermore, Q(x) is also a self-adjoint operator.
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For the purpose of scaling, we define the transformations Qp = Qp1 ⊕ · · · ⊕
Qpr = diag(Qp1 , · · · , Qpr) with respect to pi � 0, i = 1, · · · , r.

The normal so-called wide neighborhood is defined as N−∞(τ) = {(x, y, s) ∈
F0(P )×F0(D)|λmin(w) ≥ τμ}, while our algorithm will restrict the iterates to
the new wide neighborhood

N (τ, β) = {(x, y, s) ∈ F0(P )×F0(D) | ‖(τμe− w)+‖F ≤ βτμ}, (10)

where μ = xT s/r, w = Qps, and we choose p = x1/2 throughout the paper.
Note that, if (x, y, s) ∈ N−∞(τ), then τμe− w � 0, namely ‖(τμe− w)+‖F =

0. Therefore, (x, y, s) ∈ N (τ, β). Thus, N (τ, β) ⊇ N−
∞(τ). In other words,

the neighborhood N (τ, β) is wider than N−
∞(τ), where β ∈ (0, 1/2],

τ ∈ (0, 1].
The following lemmas give the symmetry and scale-invariance of N (τ, β).

Lemma 4. The neighborhood N (τ, β) is symmetric, i.e., for any (x, s) ∈ Rn ×
Rn, we have ‖(τμe−Qx1/2s)+‖ = ‖(τμe−Qs1/2x)+‖.
Proof. The result can be easily obtained by the first statement of Lemma 2.

Lemma 5. The neighborhood N (τ, β) is scaling invariant, that is,

(x, y, s) ∈ N (τ, β) ⇐⇒ (x̃, y, s̃) ∈ N (τ, β).

Proof. By the second statement of Lemma 2, Qx1/2s has the same spectrum as
Qs1/2x. Therefore, τμe−Qx1/2s and τμe−Qs1/2x have the same spectrum.

3 Description of the Algorithm

Suppose that the current iterate is z := (x, y, s) ∈ N (τ, β), define the vector

v := [(τμe− w)+]2 − δ2[(τμe− w)−]2 + w, (11)

where

δ = −‖(τμe− w)+‖F

‖(τμe− w)−‖F
, (12)

such that 〈v, e〉 = 2rμ, w = Qps, p = x1/2, and N (τ, β) is defined by (10).

Proposition 1. If z := (x, y, s) ∈ N (τ, β), and v is defined by (11),then

(i) v � τμe; (ii) ‖δ(τμe− w)−‖2
F = ‖(τμe− w)+‖2

F ;
(iii) ‖(w)−1/2 ◦ (v − w)‖2

F ≤ (βτμ)3 when 0 < β ≤ 1
1+4r , r ≥ 1.

Proof. (i)and (ii) can be easily obtained from the definition of v, δ and N (τ, β).
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(iii) From z ∈ N (τ, β), we have w � (1 − β)τμe. Therefore, by (12) we have

‖(w)
−1/2 ◦ (v − w)‖2

F = ‖(w)
−1/2 ◦ {[(τμe − w)

+
]
2 − δ2

[(τμe − x ◦ s)−]
2} ‖2

F

≤ ‖(w)
−1/2‖2

F ‖[(τμe − w)
+
]
2 − δ2

[(τμe − x ◦ s)−]
2‖2

F

≤ 2r/[(1 − β)τμ]
{
[‖(τμe − wxs)

+
]
2‖2

F + [‖δ(τμe − w)
−

]
2‖2

F ]
}

≤ 2r/[(1 − β)τμ]
{
[‖(τμe − w)

+
]‖4

F + [‖δ(τμe − w)
−

]‖4
F ]
}

=
4r

(1 − β)τμ
‖(τμe − w)

+‖4
F ≤ 4r

(1 − β)τμ
β4τ 4μ4

=
4r

(1 − β)
β4τ 3μ3 ≤ (βτμ)

3,

where the first inequality is obtained by triangle inequality, the fact

‖(w)−1/2‖2
F = tr[(w)−1 ] =

2r∑
i=1

1
λi(wxs)

≤ 2r
(1 − β)τμ

and (τμe− w)+ ◦ (τμe− w)− = 0. The proof is completed.
In order to derive the Newton direction and state our primal-dual wide neigh-

borhood IPM, we consider the scaled Newton equations:

ÃΔx̃ = 0, ÃTΔy + Δs̃ = 0, Δx̃ + Qx1/2Δs̃ = tṽ − x̃, (13)

where Δz := (Δx,Δy,Δs) ∈ Rn × Rm × Rn is the search direction, and t ∈
[0, 1] is the unknown parameter. The new iterate point can be written as x̄ =
x + Δx, ȳ = y + Δy, s̄ = s + Δs, or z̄ = z + Δz.

We are now in the position to describe our new algorithm.
Algorithm 3.1 (A wide neighborhood IPM for SOCP.)

Step 0. Input ε > 0, 0 < τ ≤ 1, t0 ∈ [0, 1], 0 < β ≤ 1
1+4r , z0 := (x0, y0, s0) ∈

N (τ, β). Compute μ0 = 〈x0, s0〉, and set k := 0.
Step 1. If 〈xk, sk〉 ≤ ε, then stop.
Step 2. Compute v = vk by (11), and solve Δz̃(tk) = (Δx̃(tk), Δy(tk), Δs̃(tk))

from (13). Let Δz(tk) = (Qx−1/2Δx̃(tk), Δy(tk), Qx1/2Δs̃(tk)).
Step 3. Let t̄k be the smallest t such that z(tk) ∈ N (τ, β), for any t ∈ [t̄, 1].
Step 4. Choose tk = t̄. Compute zk+1 = zk + Δz(tk) and let μk+1 = tkμk.

Set k := k + 1, and go to step 1.

4 Technical Results and Iteration Complexity Bound

In order to obtain desired conclusions, we need the following important results:

Lemma 6. Suppose that the v, z, z̃ is defined as above, then it holds that

(i)x̄ ◦ s̄ = tv + Δx ◦Δs; (ii)〈Δx,Δs〉 = 0; (iii)μ̄ =
〈x̄, s̄〉
2r

= tμ (14)
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Proof. (i) By (13), a direct calculation yields

x̄ ◦ s̄ = (x + Δx) ◦ (s + Δs) = x ◦ s + x ◦Δs + Δx ◦ s + Δx ◦Δs

= x ◦ s + tv − x ◦ s + Δx ◦Δs = tv + Δx ◦Δs.

(ii) From Assumption 1 and the fact that (x, y, s) is a primal-dual feasible solu-
tion, we can easily conclude that ΔxTΔs = 0. Hence, 〈Δx,Δs〉 = 2ΔxTΔs = 0.
(iii) Using (i), (ii), we obtain

μ̄ =
〈x̄, s̄〉
2r

=
tr(tv)

2r
+

tr(Δx ◦Δs)
2r

=
ttr(v)

2r
=

t〈v, e〉
2r

=
2rtμ
2r

= tμ.

Lemma 7. Suppose that h, q ∈ Rn, 〈h, q〉 ≥ 0, h + q = d, then ‖(h ◦ q)+‖F ≤
1
4‖d‖2

F .

Proof. It follows from γ2 = (h + q)2 = h2 + q2 + 2(h ◦ q) ≥ 4(h ◦ q) that
‖(h ◦ q)+‖F ≤ 1

4‖d‖2
F .

Lemma 8. For any u, v ∈ Rn, we have 0 � (u+ v)+ � u+ + v+ and u− + v− �
(u + v)− � 0. Furthermore, it holds that ‖(u + v)+‖F ≤ ‖u+‖F + ‖v+‖F and
‖(u + v)−‖F ≤ ‖u−‖F + ‖v−‖F .

Proof. For any u, v ∈ Rn, it is evident that 0 � (u + v)+ � u+ + v+. Hence, we
have ‖(u+v)+‖F ≤ ‖u++v+‖F ≤ ‖u+‖F +‖v+‖F . Similarly, we have u−+v− �
(u+v)− � 0. Therefore we obtain ‖(u+v)−‖F ≤ ‖u−+v−‖F ≤ ‖u−‖F +‖v−‖F .

Lemma 9. Suppose that z and z̄ are denoted as mentioned above, then

‖(τμ̄e− w̄)+‖F ≤ ‖(Δx ◦Δs)−‖F . (15)

Proof. From Proposition 1, Lemma 6 and 8, we have

‖(τμ̄e− w̄)+‖F = ‖(τμ̄e− x̄ ◦ s̄)+‖F = ‖(tτμe− tv −Δx ◦Δs)+‖F

≤ ‖t(τμe− v)+ + (−Δx ◦Δs)+‖F = ‖(Δx ◦Δs)−‖F .

In the rest of the paper, we choose p = x1/2. From (13) we have Q
−1/2
p Δx +

Q
1/2
p Δs = Q

−1/2
p (tv − x). Let h = Q

−1/2
p Δx, q = Q

1/2
p Δs, d = Q

−1/2
p (tv − x),

then h + q = d and we have the following result.

Lemma 10. Suppose h, q, d are denoted as above, it holds that

(i)〈h, q〉 = 0; (ii)‖(h ◦ q)−‖F = ‖(Δx ◦Δs)−‖F ; (iii)‖(h ◦ q)−‖F ≤ 1
4
‖d‖2

F .

Proof. (i) From the above definitions of h and q, we have

〈h, q〉 = tr(h ◦ q) = tr[(Q−1/2
p Δx) ◦ (Q−1/2

p Δs)] = tr[(Δx) ◦Δs] = 〈Δx,Δs〉 = 0.

(ii) Direct calculation yields

‖(h ◦ q)−‖F = ‖[(Q−1/2
p Δx) ◦ (Q−1/2

p Δs)]−‖F = ‖(Δx ◦Δs)−‖F .

(iii) By (i) and Lemma 7, taking into account h+q = d, we can directly obtain
the desired conclusion.



A Large-Update Primal-Dual Interior-Point Method 109

Theorem 1. Suppose that the definition of v is given in (11), and (x, y, s) ∈
N (τ, β). Let 0 < β ≤ 1

1+4r , 1 − α√
r
≤ t ≤ 1, where α is the arbitrary constant

satisfying 0 < α ≤ √
βτ , then the new iterate point (x̄, ȳ, s̄) generated by the

algorithm 3.1 satisfies ‖(τμ̄e− w̄)+‖F ≤ βτμ.

Proof. It follows from Proposition 2 and Lemma 10 that

‖ (τ μ̄e − w̄)+ ‖F≤ 1
4
‖Q−1/2

w (tv − x)‖2
F ≤ 1

4
(t‖Q−1/2

p (v − x)‖F + (1 − t)‖Q−1/2
p x‖F )2

≤ 1
4
(t
√

βτμ + α√
r
〈x, s〉 1

2 )2 = 1
4
(t
√

βτμ + α
√

μ)2 ≤ 1
4
(t
√

βτμ +
√

βτμ)2 ≤ βτμ.

Theorem 2. Algorithm 3.1 terminates in at most O(
√
rL) iterations, where

L = 1
α log 〈x0,s0〉

ε , and α =
√
βτ.

Proof. By Theorem 1, we have σk ≤ 1 − α√
r
. It follows from Lemma 6 that

μk ≤ (1 − α√
r
)kμ0. (16)

Therefore, if k ≥ √
rL, by (14) and (16), 〈xk, sk〉 ≤ (1 − α√

r
)
√

rL〈x0, s0〉 ≤ ε.

The theorem follows immediately from the above inequality.
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Abstract. Nonlinear complementarity problem with P0-function is

studied. Based on a new class of one-parametric nonlinear complementar-

ity functions, the problem is approximated by a family of parameterized

smooth equations and a one-step smoothing Newton method is presented.

The proposed algorithm only need to solve one system of linear equations

and perform one line search per iteration. It is proved to be convergent

globally and superlinearly without strict complementarity. Moreover, the

algorithm has locally quadratic convergence under mild conditions.

Keywords: Nonlinear complementarity; Smoothing Newton method;

P0-function; Coerciveness; Global convergence.

1 Introduction

Consider the the following nonlinear complementarity problem with P0-function
(P0-NCP(f) for simplicity): Finding a vector x ∈ Rn such that

x ≥ 0, f(x) ≥ 0, 〈x, f(x)〉 = 0, (1)

where 〈·, ·〉 represents Euclidean inner product of vectors, f : Rn → Rn is a
continuously differentiable P0-function.

Recently, there has been strong interests in smoothing method for solving
NCPs [1,4,6,2]. One motivation is that NCPs have wide applications in many
fields [7,8]. The idea of smoothing Newton method is to use a smooth function
to reformulate the NCP as a family of parameterized smooth equations which
can be solved approximately by using Newton method. A solution of the origi-
nal problem can be found by reducing the parameter to zero. However, many of
existing methods depend on the assumption of strict complementarity or mono-
tonicity at the KKT points of the problem.

Motivated by this direction, in this paper, a new class of one-parametric non-
linear complementarity functions for NCPs are investigated. Based on these
� Corresponding author.
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smoothing functions, we reformulate the P0-NCP(f) as a system of nonlinear
equations and propose a one-step smoothing Newton method which need to
solve only one system of linear equations and perform one line search at each
iteration. The algorithm can start from an arbitrary point, and the global and
superlinear convergence of the method are proved without strict complementar-
ity. Moreover, the algorithm has locally quadratic convergence if f ′ is Lipschitz
continuous.

This paper is organized as follows. In Section 2, we recall some preliminaries,
and give a new class of one-parametric nonlinear complementarity functions and
their properties. We present a one-step smoothing Newton method for the P0-
NCP(f) and state some preliminary results in Section 3. The global convergence
and superlinear convergence of the algorithm are investigated in Section 4.

The following notations will be used throughout this paper. Rn (respec-
tively, R) denotes the space of n-dimensional real column vectors (respectively,
real numbers), Rn

+ and Rn
++ denote the nonnegative and positive orthants of

Rn, R+ (respectively, R++) denotes the nonnegative (respectively, positive) or-
thant in R. We define N = {1, 2, ..., n}. For any a ∈ R, [a]+ := max{a, 0},
[a]− :=max{−a, 0}. It is evident that [a]+ ≥ 0, [a]− ≥ 0, a = [a]+ − [a]−, and
[a]+[a]− = 0. For any vector u ∈ Rn, we denote by diag{ui : i ∈ N} the di-
agonal matrix whose ith diagonal element is ui and vec{ui : i ∈ N} the vector
u. The matrix I represents the identity matrix with suitable dimension. The
symbol ‖ · ‖ stands for the 2-norm. For any differentiable function f : Rn →Rn,
f ′(x) denotes the Jacobian of f . We denote by Θ := {x ∈ Rn : x ≥ 0, f(x) ≥
0, 〈x, f(x)〉 = 0} the solution set of P0-NCP(f). For any α, β ∈ R++, α = O(β)
(respectively, α = o(β)) means α/β is uniformly bounded (respectively, tends to
zero) as β → 0. Rn ×Rm is identified with Rn+m. For any matrix A ∈ Rn×n,
A � 0 (A � 0) means A is positive semi-definite (positive definite, respectively).

2 Preliminaries and a New Class of One-Parametric
Nonlinear Complementarity Functions

Firstly, we recall some background materials and preliminary results.

Definition 1. (1) A matrix P ∈ Rn×n is said to be a P0-matrix if all its prin-
cipal minors are nonnegative.

(2) A function f : Rn → Rn is said to be a P0-function if for all x, y ∈ Rn

with x �= y, there exists an index i0 ∈ N such that

xi0 �= yi0, (xi0 − yi0)[fi0(x) − fi0(y)] ≥ 0.

Definition 2. Suppose that f : Rn →Rn is locally Lipschitz continuous around
x ∈ Rn. f is said to be semi-smooth at x if f is directionally differentiable at x
and

lim
V ∈∂f(x+th′),h′→h,t→0+

V h′ exists for all h ∈ Rn,

where ∂f(·) denote the generalized derivative in the sense in [3].



112 L. Fang et al.

Definition 3. Let K ⊂ Rn be a cone, and f : K → Rn is a continuous mapping.
If there exists a point u ∈ K such that

lim
‖x‖→+∞

(x− u)T f(x)
‖x‖ = +∞, x ∈ K,

then the mapping f is called satisfying the coerciveness condition in K.

For any (a, b) ∈ R2, in this paper, we consider the one-parametric functions

φ(μ, a, b) := (1 + 2μ)(a + b) −
√

(a− b)2 + τab + (4 − τ)μ2, (2)

where τ ∈ [0, 4) is arbitrary but fixed parameter. It is not hard to see that

(i) when τ = 0, φ(μ, a, b) reduces to the smoothing natural residual function

φSNR(μ, a, b) := (1 + 2μ)(a + b) −
√

(a− b)2 + 4μ2;

(ii) when τ = 2, φ(μ, a, b) becomes the smoothing Fisher-Burmeister function

φSFB(μ, a, b) := (1 + 2μ)(a + b)−
√

a2 + b2 + 2μ2.

Property 1. For any (a, b) ∈ R2, and φ(μ, a, b) be defined by (2), we have

φ(0, a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (3)

Proof. If a ≥ 0, b ≥ 0, ab = 0, then φ(0, a, b) = φFB(a, b) = a + b − √
a2 + b2.

Since φFB(a, b) is a nonlinear complementarity function, hence φ(0, a, b) = 0.
On the other hand, assume φ(0, a, b) = a+b−√

(a− b)2 + τa ◦ b = 0. By taking
inner product with −[a]−, and taking into account [a]+ ◦ [a]− = 0, we have

0 = 〈−[a]−, φτ (0, a, b)〉
= 〈−[a]−, a + b−√

(a− b)2 + τa ◦ b〉
= 〈−[a]−, 4−τ

2 a + τ−2
2 a + b−√

(a− b)2 + τa ◦ b〉
= 〈−[a]−, 4−τ

2 a〉 + 〈−[a]−, τ−2
2 a + b−

√
( τ−2

2 a + b)2 + τ(4−τ)
4 a2〉

= 4−τ
2 〈−[a]−, [a]+ − [a]−〉 + 〈[a]−,

√
( τ−2

2 a + b)2 + τ(4−τ)
4 a2 − ( τ−2

2 a + b)〉

=
4 − τ

2
‖[a]−‖2 + 〈[a]−,

√
(
τ − 2

2
a + b)2 +

τ(4 − τ)
4

a2 − (
τ − 2

2
a + b)〉. (4)

It follows that
√

( τ−2
2 a + b)2 + τ(4−τ)

4 a2 − ( τ−2
2 a + b) ≥ 0. Taking into account

[a]− ≥ 0, we have 〈[a]−,
√

( τ−2
2 a + b)2 + τ(4−τ)

4 a2 − ( τ−2
2 a + b)〉 ≥ 0. Since

τ ∈ [0, 4), we obtain 4−τ
2 ‖[a]−‖2 ≥ 0. It follows from (4) that 4−τ

2 ‖[a]−‖2 = 0

and
√

( τ−2
2 a + b)2 + τ(4−τ)

4 a2 − ( τ−2
2 a + b) = 0. Hence, [a]− = 0. Thus a ≥ 0.

Similarly we obtain b ≥ 0. Next we prove ab = 0. Since a ≥ 0, b ≥ 0 and
φ(0, a, b) = 0, we have φτ (0, a, b) = a + b − √

(a− b)2 + τa ◦ b = 0. Hence√
(a− b)2 + τab = a + b ≥ 0. Thus (4 − τ)ab = 0. Since τ ∈ [0, 4), we have

ab = 0. The proof is completed.
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From (2), for any μ �= 0, a straightforward calculation yields

φ′
μ(μ, a, b) = 2(a + b) − (8 − 2τ)μ√

(a− b)2 + τab + (4 − τ)μ2
, (5)

φ′
a(μ, a, b) = 1 + 2μ− a + τ−2

2 b√
(a− b)2 + τab + (4 − τ)μ2

, (6)

φ′
b(μ, a, b) = 1 + 2μ− b + τ−2

2 a√
(a− b)2 + τab + (4 − τ)μ2

. (7)

It is evident that φ′
a ≥ 2μ, φ′

b ≥ 2μ, and φ′
μ, φ

′
a, φ′

b are continuous for any μ > 0.
For any z := (μ, x) ∈ R+ ×Rn, let

G(z) :=
(
eμ − 1
Φ(z)

)
, (8)

where Φ : R+ ×Rn →Rn is defined by

Φ(z) :=

⎛⎜⎝ φ(μ, x1, f1(x))
...

φ(μ, xn, fn(x))

⎞⎟⎠ . (9)

It is obviously that Φ is continuously differentiable at any z = (μ, x) ∈ R++×Rn.
Define merit function Ψ : R+ ×Rn →R+ by

Ψ(z) := ‖G(z)‖2 = (eμ − 1)2 + ‖Φ(z)‖2. (10)

From (3), we know that the P0-NCP(f) is equivalent to the equation G(z) = 0.

Theorem 1. Let z := (μ, x) ∈ R+ × Rn and G(z) be defined by (8) and (9),
then the following results hold.

(i) G(z) is continuously differentiable at any z ∈ R++×Rn with its Jacobian

G ′(z) =
(

eμ 0
B(z) C(z)

)
, (11)

where

B(z) := vec
{

2(xi + fi(x)) − (8−2τ)μ√
(xi−fi(x))2+τxifi(x)+(4−τ)μ2

: i ∈ N

}
,

C(z) := C1(z) + C2(z)f ′(z),

C1(z) := (1 + 2μ)I − diag
{

xi+ τ−2
2 fi(x)√

(xi−fi(x))2+τxifi(x)+(4−τ)μ2
: i ∈ N

}
,

C2(z) := (1 + 2μ)I − diag
{

fi(x)+ τ−2
2 xi√

(xi−fi(x))2+τxifi(x)+(4−τ)μ2
: i ∈ N

}
.

(ii) If f is a P0 function, G′(z) is nonsingular for any z ∈ R++ ×Rn.
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Proof. (i) Note that Φ(μ, x) is continuously differentiable at any z ∈ R++×Rn.
So G(z) defined by (8) is also continuously differentiable at any z ∈ R++ ×Rn.
For any μ > 0, a direct calculation from (8) yields (11).

Next we prove (ii). By (6) and (7), we obtain C1(z) � 0 and C2(z) � 0.
Since f is a P0-function, by Theorem 2.8 in [5], f ′(x) is a P0-matrix for all
x ∈ Rn. Taking into account the fact that C2(z) is a positive diagonal matrix, it
follows from a straightforward calculation that all principal minors of C2(z)f ′(z)
are non-negative. By Definition 1, C2(z)f ′(z) is a P0-matrix. Hence, by Theorem
3.3 in [1], C1(z)+C2(z)f ′(z) is invertible. Thus, the matrix G′(z) is non-singular.

3 Description of the Algorithm

The aim of this section is to propose the new one-step smoothing Newton method
for the P0-NCP(f) and show its well-definedness.

Algorithm 3.1 (A new one-step smoothing Newton method for P0-NCP(f)).
Step 0. Choose constants δ ∈ (0, 1), σ ∈ (0, 1), and an arbitrary initial point

z0 := (μ0, x
0) ∈ R++ × Rn. Let η =

√
Ψ(z0) + 1 and μ̄ = μ0, z̄ := (μ̄, 0) ∈

R++ ×Rn. Choose γ ∈ (0, 1) such that

γμ̄η <
1
2
. (12)

Set k := 0.
Step 1. If Ψ(zk) = 0, then stop. Else, let

βk := β(zk) = eμkγ min{1, Ψ(zk)}. (13)

Step 2. Compute Δzk := (Δμk, Δxk) ∈ R×Rn by

G(zk) + G ′(zk)Δzk = βkz̄. (14)

Step 3. Let λk = max{δl|l = 0, 1, 2, . . .} such that

Ψ(zk + δlΔzk) ≤ [
1 − σ(1 − 2γημ̄)δl

]
Ψ(zk). (15)

Step 4. Set zk+1 := zk + λkΔzk and k := k + 1. Go to step 1.
Note that if Ψ(zk) = 0, then (xk, yk) is the solution of the P0-NCP(f). So,

the stopping criterion in Step 1 is reasonable. Define the set

Ω := {z = (μ, x) ∈ R+ ×Rn|μ ≥ γ min{1, Ψ(z)}μ̄} .

Lemma 1 (Lemma 4.2, [4]). For any μ ≥ 0,

− μ ≤ 1 − eμ

eμ
≤ −μe−μ. (16)

Theorem 2. Algorithm 3.1 is well defined and generates an infinite sequence
{zk := (μk, x

k)} with μk > 0 and zk ∈ Ω for all k ≥ 0.
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Proof. If μk > 0, since f is a continuously differentiable P0-function, by Theorem
1, G ′(zk) is non-singular. Hence, Step 2 is well-defined at the kth iteration.

For any α ∈ (0, 1], from (14) we have

Δμk =
1 − eμk

eμk
+

βkμ̄

eμk
. (17)

It follows from Lemma 1 and (17) that for any α ∈ (0, 1],

μk+1 = μk + αΔμk = μk + α

(
1 − eμk

eμk
+

βkμ̄

eμk

)
≥ (1−α)μk + αγμ̄ min{1, Ψ(zk

)} > 0.

By Taylor expansion and (17), we have

eμk+αΔμk − 1 = eμk [1 + αΔμk + O(α2)]− 1
= (1 − α)(eμk − 1) + αβkμ̄ + O(α2). (18)

By β2
k = e2μkγ2(min{1, Ψ(zk)})2 ≤ e2μkγ2Ψ(zk), βk ≤ eμkγ

√
Ψ(zk). It follows

from (8) and (13) that eμk − 1 ≤ √
Ψ(zk), and eμk ≤ η. So, we have

(eμk+αΔμk − 1)
2

= (1 − α)
2
(eμk − 1)

2
+ 2α(1 − α)βk(eμk − 1)μ̄ + α2β2

kμ̄2
+ O(α2

)

≤ (1 − α)(eμk − 1)
2

+ 2αγ
√

Ψ(zk)eμk (eμk − 1)μ̄ + O(α2
)

≤ (1 − α)(eμk − 1)
2

+ 2αγηΨ(zk
)μ̄ + O(α2

). (19)

On the other hand, it follows from (14) that Φ(zk) + Φ′(zk)Δzk = 0. Hence

‖Φ(zk + αΔzk)‖2 = ‖Φ(zk) + αΦ′(zk)Δzk + o(α)‖2

= ‖(1 − α)Φ(zk) + o(α)‖2

≤ (1 − α)‖Φ(zk)‖2 + o(α). (20)

From (8), (19) and (20), we have

Ψ(zk + αΔzk) = (eμk+αΔμk − 1)2 + ‖Φ(zk + αΔzk)‖2

≤ (1 − α)(eμk − 1) + αβkμ̄ + (1 − α)‖Φ(zk)‖2 + o(α)
≤ (1 − α)(eμk − 1)2 + 2αγηΨ(zk)μ̄ + (1 − α)‖φ(zk)‖2 + o(α)
≤ (1 − α)Ψ(zk) + 2αγηΨ(zk)μ̄ + o(α)
= [1 − (1 − 2γημ̄)α]Ψ(zk) + o(α).

Since γημ̄ < 1/2, there exists ᾱ ∈ (0, 1], such that α ∈ (0, ᾱ], and Ψ(zk +Δzk) ≤
[1 − σ(1 − 2γημ̄)α]Ψ(zk). Thus, Step 3 is well defined. Therefore Algorithm 3.1
is well defined and generates an infinite sequence {zk} with μk > 0.

Next, we prove zk ∈ Ω by induction on k. Obviously, μ0 ≥ γ min{1, Ψ(zk)}μ̄.
Suppose that zk ∈ Ω, i.e., μk ≥ γ min{1, Ψ(zk)}μ̄, then by (15)-(17), we have

μk+1 = μk + αΔμk = μk + α

(
1 − eμk

eμk
+

βkμ̄

eμk

)
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≥ μk + α

(
−μk +

γeμk min{1, Ψ(zk)}μ̄
eμk

)
≥ (1 − α)μk + αγμ̄min{1, Ψ(zk)},
≥ (1 − α)γμ̄min{1, Ψ(zk)} + αγμ̄min{1, Ψ(zk)}
= γμ̄min{1, Ψ(zk)} ≥ γμ̄min{1, Ψ(zk+1)}.

4 Convergence Analysis

In this section, we analyze the convergence properties of Algorithm 3.1.

Lemma 2. Let Φ(μ, x) be defined by (9). For any μ, c > 0, define the level set

Lμ(c) := {x ∈ Rn : ‖Φ(μ, x)‖ ≤ c}. (21)

Then, for any μ2 ≥ μ1 > 0, c > 0, the set L(c) :=
⋃

μ1≤μ≤μ2
Lμ(c) is bounded.

From Lemma 2, we know that the set Lμ(c) := {x ∈ Rn : ‖Φ(μ, x)‖ ≤ c} is
bounded for any μ > 0. We can immediately get the following result.

Corollary 1. Suppose that f is a P0-function and μ > 0. Then the function
‖Φ(μ, x)‖2 is coercive, i.e., lim‖x‖→+∞ ‖Φ(μ, x)‖2 = +∞.

Lemma 3. Let Ψ(·) be defined by (8) and {zk := (μk, x
k)} be the iteration

sequence generated by Algorithm 3.1. Then the sequence {Ψ(zk)} is convergent.
If it does not converge to zero, then {zk := (μk, x

k)} is bounded.

Proof. It followed from Step 3 and Theorem 2 that {Ψ(zk)} is monotonically
decreasing and {zk} ∈ Ω. We know that {Ψ(zk)} is convergent. Then there
exists Ψ∗ such that Ψ(zk) → Ψ∗ as k → +∞. If {Ψ(zk)} does not converge to
zero, then Ψ∗ > 0. By {zk} ⊂ Ω and μk ≤ eμk − 1 ≤ f(zk) ≤ f(z0), {μk} is
bounded. Obviously, there exist μ1, μ2 > 0 such that 0 < μ1 ≤ μk ≤ μ2 for all
k ≥ 0. Let c0 := ‖Ψ(z0)‖ and L(c0) :=

⋃
μ1≤μk≤μ2

Lμk
(c0), where Lμk

(c0) is
defined by (21). By xk ∈ Lμk

(c0), we have xk ∈ L(c0). It follows from Lemma 2
that L(c0) is bounded and hence {xk} is bounded. Therefore, {zk} is bounded.

Theorem 3. (Global convergence) Suppose that f is a continuously differen-
tiable P0-function, the sequence {zk = (μk, x

k)} is generated by Algorithm 3.1,
and the solution set Θ of P0-SOCCP (1) is non-empty and bounded, then {zk}
has at least one accumulation point {z∗ = (μ∗, x∗)} with x∗ ∈ Θ, and any accu-
mulation point of {zk} is a solution of G(z) = 0.

Proof. From Corollary 1, the smoothing functions defined by (2), and G(z) de-
fined by (8) have coerciveness. So, the level set L(c) is bounded and the infinite
sequence {zk} generated by Algorithm 3.1 has at least one accumulation point.
Without loss of generality, we assume that z∗ = (μ∗, x∗) is the limit point of the
sequence {zk} as k → ∞. It follows from the continuity of G(·) that ‖G(zk)‖ con-
verges to a non-negative number ‖G(z∗)‖. From the definition of β(·), we obtain
that βk is monotonically decreasing, and converges to β∗ = eμ∗γ min{1, Ψ(z∗)}.
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Now, we prove G(z∗) = 0 by contradiction. In fact, if G(z∗) �= 0, then
‖G(z∗)‖ > 0. For μk ∈ Ω, we have 0 < β∗μ0 ≤ μ∗. By Theorem 1, there exists a
closed neighborhood N (z∗) of z such that for any z ∈ N (z∗), we have μ ∈ R++
and G′(z) is invertible. Then, for any z ∈ N (z∗), let Δz := (Δμ,Δx) ∈ R×Rn be
the unique solution of G(z)+G′(z)Δz = β(z)z̄. By following the proof of Lemma
5 in [6] we can find ᾱ ∈ (0, 1] such that Ψ(z + αΔz) ≤ [1 − σ(1 − 2γημ̄)α]Ψ(z)
for any α ∈ (0, ᾱ], z ∈ N (z∗). Therefore, for a nonnegative integer l such that
δl ∈ (0, ᾱ], we have for all sufficiently large k, lk ≤ l. Since δlk ≥ δl, it follows
from (15) that Ψ(zk+1) ≤ [1−σ(1− 2γημ̄)δlk ]Ψ(zk) ≤ [1−σ(1− 2γημ̄)δl]Ψ(zk).
This contradicts the fact that {Ψ(zk)} converges to Ψ(z∗) = ‖G(z∗)‖2 > 0.

Next we give the local convergence of Algorithm 3.1.

Theorem 4. (Local Convergence) Suppose that f is a continuously differen-
tiable P0-function and z∗ is an accumulation point of the iteration sequence
{zk} generated by Algorithm 3.1. If all V ∈ ∂G(z∗) are nonsingular, then

(i) λk ≡ 1 for all zk sufficiently close to z∗.
(ii)The whole sequence {zk} superlinearly converges to z∗, i.e., ‖zk+1−z∗‖ =

o(‖zk − z∗‖), and μk+1 = o(μk). Furthermore, if f ′ is Lipschitz continuous on
Rn, then ‖zk+1 − z∗‖ = O(‖zk − z∗‖2), and μk+1 = O(μ2

k).

Proof. The proof is similar to that of Theorem 8 in [6]. We omit it here.
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Abstract. In this paper, a novel neural network algorithm is proposed,

which solve the quadratic programming problem with linear constraints

based on Fibonacci method. Compared with the existing models for solv-

ing the quadratic programming problem with linear constraints, it is

more universal, since the objective function of the quadratic program-

ming not only can be convex function but also can be quasi convex

function. Finally, example is provided to show the applicability of the

proposed neural network algorithm.

Keywords: Quadratic programming, Fibonacci method, Neural

network, Learning algorithm.

1 Introduction

Optimization problems arise in a wide variety of scientific and engineering ap-
plications, including regression analysis, signal processing, system identification,
filter design, robot control, function approximation, etc[1-2]. Many engineering
problems can be solved by transforming the original problems into linearly con-
strained quadratic programming.

Compared with traditional numerical methods, the neural network approach
can solve the optimization problems much faster in running times. Therefore,
neural network methods for optimization problems have been received consid-
erable attention. In 1985, Hopfield and Tank first proposed a neural network
for solving Traveling Salesman Problem(TSP)[3]. Kennedy and Chua proposed
a modified model and canonical circuit models that are superior to the Hop-
field and Tank model. By using penalty parameter, they proposed a neural net-
work for solving nonlinear programming problems[4]. Lately, many researchers
successively proposed a number of models. In [5], Bouzerdoum and Pattison
presented a neural network for solving convex quadratic optimization problems
with bounded constraints. Liang &Wang and Xia &Wang presented several neu-
ral networks for solving nonlinear convex optimization with bounded constrains
and box constraints, respectively [6-9]. He D.X.[10] presented a neural network
for solving linear program based on bisection method. Nevertheless, majority of

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 118–125, 2010.
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these methods are virtue of energy function, used back propagation(BP) algo-
rithm. While BP algorithm is one order algorithm, it’s slowly and usually reach
the local solution.

In this paper, by employing Fibonacci method and the characteristic of com-
mon network topology, we present a neural network algorithm for solving the
quadratic programming with linear constraints. The objective function of the
quadratic programming is broad, which can be convex function or quasi convex
function.

The paper is organized as follows. In Section 2, we introduce the theoretical
foundation about Fibonacci method and quadratic programming. In Section 3,
we present the neural network based on Fibonacci method. The neural network
algorithm is proposed in Section 4. In Section 5, a example is discussed to eval-
uate the effectiveness of the proposed neural network algorithm. Finally, the
conclusions are made in Section 6.

2 Preliminaries

2.1 Quadratic Programming Problem

We consider the following quadratic programming problem:{
minimize f(x) = 1

2x
TAx + cTx

subject to l ≤ Dx ≤ h
(1)

where x=(x1, x2, · · · , xn)T ∈ Rn, A ∈ Rn×n, D ∈ Rn×nis a nonsingular positive
matrix, c ∈ Rn,and l, h ∈ Rn.

Remark. Clearly, when D = I, the problem (1) is quadratic programming
problem with bound constraints[9].

2.2 Description of the Fibonacci Method

The Fibonacci numbers are defined as follows:{
F0 = F1 = 1,
Fk+1 = Fk + Fk−1, k = 1, 2, . . . (2)

the formula can be showed as

Fk =
1√
5
[(

1 +
√

5
2

)k+1 − (
1 −√

5
2

)k+1], k = 0, 1, 2, . . . (3)

The basic idea for Fibonacci method to solve optimization problem is when we
know the first search interval [a1,b1] and the iteration precision ε, we can obtain
the last search interval [an,bn] after iterating n times. We can find that

bn − an ≤ ε.
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The shortening rate for the search interval is that

bk+1 − ak+1 ≤ Fn−k

Fn−k+1
(bk − ak).

Since

bn − an =
F1

F2
(bn−1 − an−1) =

F1

F2
· F2

F3
. . .

Fn−1

Fn
(b1 − a1) =

1
Fn

(b1 − a1).

Then
1
Fn

(b1 − a1) ≤ ε,

thus
Fn ≥ b1 − a1

ε
. (4)

According to (4), we can get the minimum Fn. By using (3), we can obtain n,
then the search times n can be found. By using the procedure below we can find
the optimal solution for optimization problems:

Step 1: Give the constrain condition a1 ≤ x ≤ b1 and the iteration precision
ε, according to (3)and (4)we know n, then we can get Fn, Fn−1, Fn−2, set

λ1 = a1 + (1 − Fn−1

Fn
)(b1 − a1) =

Fn−1

Fn
a1 + (1 − Fn−1

Fn
)b1 =

Fn−1

Fn
a1 +

Fn−2

Fn
b1,

μ1 = a1 +
Fn−1

Fn
(b1 − a1) = (1 − Fn−1

Fn
)a1 +

Fn−1

Fn
b1 =

Fn−2

Fn
a1 +

Fn−1

Fn
b1,

put k = 1.
Step 2: If |bk − ak| < ε, end. The optimal solution x∗ ∈ [ak, bk], let x∗ =

(ak + bk)/2, otherwise, let

λk = ak + (1 − Fn−k

Fn−k+1
)(bk − ak) =

Fn−k

Fn−k+1
ak + (1 − Fn−k

Fn−k+1
)bk

=
Fn−k

Fn−k+1
ak +

Fn−k−1

Fn−k+1
bk,

μk = ak +
Fn−k

Fn−k+1
(bk − ak) = (1 − Fn−k

Fn−k+1
)ak +

Fn−k

Fn−k+1
bk

=
Fn−k−1

Fn−k+1
ak +

Fn−k

Fn−k+1
bk,

then we can get f(λk), f(μk). If f(λk) > f(μk), turn to step 3, otherwise, turn
to step 4.

Step 3: Let ak+1 = λk, bk+1 = bk, and let

λk+1 = μk,

μk+1 = ak+1 +
Fn−k

Fn−k+1
(bk+1 − ak+1) =

Fn−k−1

Fn−k+1
ak+1 +

Fn−k

Fn−k+1
bk+1,

calculate f(μk+1).
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Step 4: Let ak+1 = ak, bk+1 = μk, and let

λk+1 = ak+1 + (1 − Fn−k

Fn−k+1
)(bk+1 − ak+1) =

Fn−k

Fn−k+1
ak+1 +

Fn−k−1

Fn−k+1
bk+1,

μk+1 = λk,

calculate f(λk+1).
Step 5: Let k = k + 1, turn to Step 2.

3 Neural Network Structure

According to Fibonacci method, we design the neural network as follow:

50 100 150 200 250 300 350 400 450 500

50

100

150

Fig. 1. Neural network structure based on Fibonacci method

We suppose that:Ni,j means the neuron j in layer i, neti,j denote as the input
value of neuron Ni,j , Oi,j means the output value of neuron Ni,j , and ω(i,j),(k,l)
means the connection weight from Ni,j to Nk,l. Biasing threshold vector is de-
fined by θ = 0.

The neural network structure in Fig.1 contains 6 layers, including input layer,
three hidden layers, one feedback layer and output layer. We arrange calculation
steps below to solve quadratic programming.

(I) Input Layer: Let [ak, bk] as the input of N0,1 and N0,2, then

net0,1 = ak = a1,

net0,2 = bk = b1,

the activation functions are defined by ϕ0,1(x) = x, ϕ0,2(y) = y, then the outputs
of N0,1 , N0,2 are

O0,1 = ϕ0,1(net0,1) = a1,

O0,2 = ϕ0,1(net0,2) = b1.

(II) Hidden Layer: For the first hidden layer,N1,1 enforces λk , N1,2 enforces
μk, the corresponding connection weights are

ω(0,1),(1,1) = ω(0,2),(1,2) =
Fn−k

Fn−k+1
,

ω(0,2),(1,1) = ω(0,1),(1,2) = 1− Fn−k

Fn−k+1
=

Fn−k−1

Fn−k+1
,
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then the output of neurons N1,1 and N1,2 are

O1,1 = ω(0,1),(1,1) ∗ ak + ω(0,2),(1,1) ∗ bk = λk,

O1,2 = ω(0,1),(1,2) ∗ ak + ω(0,2),(1,2) ∗ bk = μk.

For the second hidden layer, N2,1 and N2,2 are used to enforce the output of
λk, μk, respectively. Set ω(1,1),(2,1) = ω(1,2),(2,2) = 1, then

O2,1 = f(ω(1,1),(2,1) ∗ λk) = f(λk),
O2,2 = f(ω(1,2),(2,2) ∗ μk) = f(μk).

For the third hidden layer, the input is

net3,1 = (ω(2,1),(3,1) ∗O2,1)− (ω(2,2),(3,1) ∗O2,2),

let ω(2,1),(3,1) = ω(2,2),(3,1) = 1, setting the activation function is

ϕ(net3,1) =
{

1, if net3,1 > 0,
0, otherwise,

then the output is

O3,1 = f(λk) − f(μk).

(III) Output Layer: There are two neurons in the output layer,which are used
to calculate ak+1, bk+1, set

ω(3,1),(4,1) = ω(3,1),(4,2) = 1,

then the outputs are

O4,1 = O3,1 ∗O1,1 + (1 −O3,1) ∗O0,1 =
{
ak+1 = λk = O1,1, O3,1 = 1,
ak+1 = ak = O0,1, O3,1 = 0,

O4,2 = O3,1 ∗O0,2 + (1 −O3,1) ∗O1,2 =
{
bk+1 = bk = O0,2, O3,1 = 1,
bk+1 = μk = O1,2, O3,1 = 0.

(IV) Feedback Layer: The neurons N5,1 and N5,2 in feedback layer are used
to calculate λk+1 and μk+1,

O5,1 =
Fn−k

Fn−k+1
(1 −O3,1) ∗O4,1 +

Fn−k−1

Fn−k+1
(1 −O3,1) ∗O4,2 + O3,1 ∗O1,2

=

{
λk+1 = O1,2, O3,1 = 1,
λk+1 = Fn−k

Fn−k+1
O4,1 + Fn−k−1

Fn−k+1
O4,2, O3,1 = 0,

O5,2 =
Fn−k−1

Fn−k+1
O3,1 ∗O4,1 +

Fn−k

Fn−k+1
O3,1 ∗O4,2 + (1 −O3,1) ∗O1,1

=

{
μk+1 = Fn−k−1

Fn−k+1
O4,1 + Fn−k

Fn−k+1
O4,2, O3,1 = 1,

μk+1 = O1,1, O3,1 = 0.

(V) Iteration: Let the output neurons as the input of the feedback layer,
If f(λk) > f(μk), then ak+1 = λk, bk+1 = bk, otherwise, let ak+1 = ak, bk+1 =
μk.

Let k = 1, k = k + 1,circulation,until |bk − ak| ≤ ε.
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4 The Neural Network Algorithm Based on Fibonacci
Method

For the quadratic programming subject to linear constraints, we can present the
algorithm based on the neural network structure in Section 3.

Step 1: According to the constrains condition l ≤ Dx ≤ h, we can obtain the
upper bound and lower bound of x, denote a1, b1. Let net0,1 = a1, net0,2 = b1, give
ε ≥ 0 as iteration precision. If |b1−a1| < ε, let optimal solution x∗ = (a1 + b1)/2,
otherwise, let the initial solution is x(1) = (a1 + b1)/2, turn to Step 2.

Step 2: Calculate O1,1 = λ1, O1,2 = μ1, O2,1 = f(λ1), O2,2 = f(μ1), let
O3,1 = f(λ1) − f(μ1).

Step 3: If O3,1 > 0, let O4,1 = a2 = λ1,O4,2 = b2 = b1, otherwise, let
O4,1 = a2 = a1, O4,2 = b2 = μ1.

Step 4: When O3,1 > 0, let

O5,1 = λ2 = μ1,

O5,2 = μ2 = a2 +
Fn−2

Fn−2+1
(b2 − a2) =

Fn−2−1

Fn−2+1
a2 +

Fn−2

Fn−2+1
b2.

When O3,1 ≤ 0, let

O5,1 = λ2 = a2 + (1 − Fn−2

Fn−2+1
)(b2 − a2) =

Fn−2

Fn−2+1
a2 +

Fn−2−1

Fn−2+1
b2,

O5,2 = μ2 = λ1.

Step 5: Let k = 1, k = k+1, and let net0,1 = ak, net0,2 = bk, until |bk−ak| ≤ ε,
then we can obtain x∗ = (ak + bk)/2.

Theorem. Used the neural network algorithm based on Fibonacci method to
solve quadratic programming problem, the error of the approximate solution is
less than τk|b1 − a1|, where τ = Fn−k

Fn−k+1
. And we can conclude that

lim
k→∞

Fk−1

Fk
=

√
5 − 1
2

= 0.618. (5)

Proof. According to the neural network algorithm we proposed, we can get
[ak, bk],k = 1, 2, · · · , n, while |bk − ak| = τk|b1 − a1| → 0,(k → ∞), then when
|bk−ak| < ε, let x∗ = ak+bk

2 as the approximate optimal solution, then the error
is less then τk|b1 − a1|, where τ = Fn−k

Fn−k+1
.

According to (2), we can easily obtain (5).

5 Simulation Result

In this section, we give an illustrative example. The simulation is conducted in
MATLAB.
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Consider a quadratic programming example as⎧⎨⎩
min f(x) = x2

1 + 4x2
2 − 4x1x2 − 2x1

s. t. 1 ≤ −x1 + x2 ≤ 2
2 ≤ 2x1 + 3x2 ≤ 3.

(6)

Then

A =
(

2 −4
−4 8

)
, c =

(−2
0

)
,

and

D =
(−1 1

2 3

)
, l =

(
1
2

)
, h =

(
2
3

)
.

This problem has a unique optimal solution x∗ = (−0.2, 0.8)T and the optimal
value f∗ = 3.64 when solved by the neural network model in [9].

We used ’quadprog’ in Matlab toolbox to solve this problem, then we can
get the optimal solution x∗ = (0, 1.0)T , and the optimal value f∗ = 4. We use
the algorithm in Section 4 to solve the above problem. Let x(1) = (−0.4, 1.1)T ,
ε = 10−5, iterate 23 times, the problem is globally converge to an unique optimal
solution x∗ = (−0.200003, 0.800004)T , and the optimal value of the objective
function is f∗ = 3.6405. Compared with the results in [9], the results in this
paper has higher accuracy. Figure.2 show the transient behaviors of the decision
variable.
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Fig. 2. Transient Behaviors of the decision variable
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6 Conclusion

This paper presents a new neural network algorithm for solving quadratic pro-
gramming problems by using Fibonacci method and neural network. It has also
been substantiated that the proposed neural network algorithm is able to gener-
ate optimal solution to linear programming with bound constraints. Compared
with other neural network models, the objective function of the quadratic pro-
gramming in this algorithm is universal, which can be convex function or quasi
convex function. With the dimension increasing, the advantage of this algorithm
is more clearly. It has been shown that the proposed algorithm is easy to imple-
ment in computer.
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Abstract. Particle swarm optimization (PSO) algorithm is an intelligent search 
method based on swarm intelligence. It has been widely used in many fields 
because of its conciseness and easy implementation. But it is also easy to be 
plunged into local solution and its later convergence speed is very slow. In order 
to increase its convergence speed, nonlinear simplex method (NSM) is integrated 
into it, which not only can increase its later convergence speed but also can ef-
fectively avoid dependence on initial conditions of NSM. In order to bring  
particles jump out of local solution regions, tabu search (TS) algorithm is inte-
grated into it to assign tabu attribute to these regions, which make it with global 
search ability. Thus the hybrid PSO algorithm is an organic composition of the 
PSO, NSM and TS algorithms. Finally its basic operation process and optimiza-
tion characteristics are analyzed through some benchmark functions and its  
effectiveness is also verified. 

Keywords: hybrid algorithm, particle swarm optimization, nonlinear simplex 
method, tabu search. 

1   Introduction 

The PSO algorithm [1,2] is still in the preliminary stage since it was proposed in 1995, 
and there are still many theories of it should to be perfected. It is widely used in func-
tion optimization, neural network training, fuzzy system control and so on because of 
its conciseness, easy implementation, needing to adjust little parameters, not requiring 
gradient information and other excellent features [3]. But how to increase the conver-
gence speed and how to avoid premature convergence have always been the focus of 
most researchers and they are also the problems faced by all the other random search 
algorithms [4]. One of the main directions to improve the PSO algorithm is to establish 
the hybrid PSO algorithm. Hendtlass [5] combined different evolution with the PSO. 
Parsopoulos [6] etc initialized the PSO using NSM. Mirnada [7] etc put together the 
best features of evolution strategies with the PSO. Krink [8] etc introduced a hybrid 
approach called Life Cycle model that simultaneously applied genetic algorithms, PSO 
and stochastic hill climbing to create a generally well-performing search heuristics. Shi 
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[9] etc proposed two hybrid evolutionary algorithms based on PSO and GA in parallel 
and series forms respectively. Noel [10] etc introduced a hybrid PSO making use of 
gradient information to achieve faster convergence without getting trapped in local 
minima. Wachowiak [11] etc embedded Powell method in the PSO to improve accu-
racy. Vietoire [12] etc integrated the PSO technique with the sequential quadratic 
programming technique to solve the economic dispatch problem. 

The hybrid PSO algorithms mentioned above are mainly hybrid algorithms of global 
optimization algorithms with local optimization algorithms or other global ones. Es-
sence of these hybrid algorithms is using advantages of each algorithm, which allows 
different algorithms to perform their strengths and avoid their shortcomings, so as to 
reach equilibrium among them. However, existing hybrid PSO algorithms have hardly 
both studied the increase of convergence speed and the avoidance of premature con-
vergence at the same time. Moreover, it has also not been studied deeply enough to 
avoid premature convergence, which is not perfect for a good algorithm. Here it is 
improved from two aspects: (1) using the NSM which has a strong local search ability 
to enhance its local search ability in the later stage; (2) using the TS algorithm to deal 
with the local extremum regions so as to bring the particles within them all out, and at 
the same time to avoid the low efficiency of the TS algorithm caused by its limitation in 
dealing with plentiful individuals (particles). 

2   Backgrounds of the PSO, NSM and TS Algorithm 

2.1   Particle Swarm Optimization (PSO) 

In the PSO algorithm, particle i is expressed as Xi=(xi1, xi2,…, xiD), which represents a 
point in the D-dimensional solution space. Each particle saves the best position of itself 
so far Pi=(pi1, pi2,…, piD) and its current flying speed Vi=(vi1, vi2,…, viD). The best 
location so far found by the whole particle swarm is Pg=(pg1, pg2,…, pgD). In each it-
eration, the particle’s flying speed in the D-dimensional space is updated through Pg, Pi 
and Xi. Then its position is updated through the updated flying speed. The updating 
formulae of the PSO algorithm are as flows. 

1( 1) ( ) () ( ( ) ( ))New old old
id id id idV t w V t c rand p t x t+ = × + × × −  

2 () ( ( ) ( ))old
gd idc rand p t x t+ × × −  

(1)

( 1) ( ) ( 1)New old New
id id idx t x t V t+ = + +  (2)

min maxidv v v≤ ≤ , min maxi i ix x x≤ ≤  (3)

Where c1 and c2 are two positive constants called learning factors, which make each 
particle with the ability of self-summary and learning from the outstanding particles, so 
as to get close to the best positions of itself and the whole swarm so far; w  is the inertia 
weight factor, which can dynamically adjust the search ability of the particle swarm 
along with the time; rand()is the random number between 0 and 1, which is used to 
maintain the diversity of the particle swarm. (1) is the updating formula of the particle 
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speed, which indicates that each particle updates its speed based on its original speed 
Vid, its best location so far Pid and the best location of the whole particle swarm Pgd. (2) 
is the updating formula of the particle position and (3) is the constraints of the particle 
speed and position. 

2.2   Non-linear Simplex Method (NSM) 

The NSM was developed by Nelder and Mead [13] based on the basic simplex method. 
It is a widely used direct local search technology for non-linear unconstrained opti-
mization problems because it can complete the optimization directly according to the 
function value without its derivative information. Its basic principle is that: first con-
struct a convex polyhedron with N+1 vertices in the N-dimensional Euclidean space 
EN, calculate the function value of each vertex and determine the maximum, the second 
largest value and the minimum; then find a better solution to substitute the maximum 
through reflection, expansion, contraction and reduction; finally approach a better 
minimum through many iterations.  

2.3   Tabu Search (TS) 

The TS algorithm is firstly proposed in 1986 by Glover [14] and is a sub-heuristic 
search technique. It is a reflection of artificial intelligence and an extension of local 
search. Its most important thought is that it can mark the searched local minima and can 
avoid them as much as possible so as to ensure an effective search path. Its basic 
principle is that: determinate a number of candidates of the current solution in its given 
neighborhood; if the best candidate is better than the best solution so far, its taboo 
attribute is neglected and it is used to substitute the current solution and the best  
solution so far, and the tabu table and the tenure are modified; if the candidate men-
tioned above does not exist, choose the best one in the non-taboo candidates as the new 
current solution while ignoring its strengths and weaknesses to the current solution  
and modify the tabu table at the same time; repeat the above iteration until the end 
criteria is met. 

3   The Hybrid PSO Algorithm 

3.1   Hybrid Strategy 

The PSO algorithm is suitable for non-linear and multi-extremum optimization prob-
lems because of its conciseness, easy implementation, fast calculation, not requirement 
for the objective function’s mathematical form and its gradient information. And also it 
has better portability, robustness and can compute in parallel. The NSM can complete 
optimization directly according to the function value without its derivative information. 
So it is a widely used direct local search technology for non-linear unconstrained op-
timization problems. Because of its needless of the first derivative, Hessen matrix and 
complex matrix operations, it is particularly adapted to the optimization of complex 
functions with incomplete information. However, this method is very sensitive to the 
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initial conditions, and can not be guaranteed to converge to the global optimal solution. 
The TS algorithm has a strong “mountain climbing” ability to jump out of the local 
optimal solution in the search process so as to search in other regions. So the probability 
to get a better solution or the global optimal solution is greatly increased.  

Generally, it is difficult to realize efficient optimization only depending on search 
algorithms with a single neighborhood structure, and it is an effective means to broaden 
application scope and improve performance of an algorithm that make the algorithm 
with a hybrid neighborhood structure [15]. At present, the hybrid structure of an  
algorithm can be divided into serial, mosaic, parallel and mixed structures. Hybrid 
algorithm with a serial structure can absorb advantages of different algorithms. For 
example, it can use results of an algorithm as the starting point of another algorithm to 
optimize the problem sequentially and its purpose is to improve the optimization effi-
ciency on the premise of a certain good quality. Hybrid algorithm with a mosaic 
structure performs that an algorithm is an optimization operation of another algorithm 
or an evaluating device of the search performance. Hybrid of these algorithms is in 
view of their complementarities so as to overcome the premature convergence and (or) 
the plunge into local minimum of a single algorithm. And mosaic structure allows the 
aided algorithm to be executed repeatedly and the information between the 
sub-algorithms can exchange bidirectional. Therefore, the mosaic structure is applied 
to the hybrid of the PSO, NSM and TS algorithm. 

For global optimization problems, a good algorithm should have a strong global 
exploration ability to obtain suitable seeds in the earlier stage while a strong local 
search ability to increase the convergence speed in the later stage, and also can jump out 
of the local minimum to search in other regions when the obtained solution does not 
meet accuracy requirements. The PSO algorithm has a faster convergence speed and a 
better global exploration ability in the earlier stage but a slower convergence speed in 
the later stage. The main reason is that in the later stage most particles have congregated 
in the vicinity of the optimal particle and almost stopped moving. But the approximate 
area of the minimum has been well located which provides good initial conditions for 
the NSM. Therefore, application of the NSM at this stage can not only strengthen the 
local search ability of the PSO algorithm, but also avoid the easy plunge of the NSM 
into the local minimum because of its very dependence on initial conditions. This 
hybrid algorithm performs well on functions with few local minimums, while has a 
limited improvement on multimodal functions with lots of local minima and global 
extremums because even in the simple low-dimensional cases the computational 
complexity of these functions is quite high and is a typical NP-hard problem. Paro-
spoulos [16,17] etc used “function stretching” technology to make particles jump out of 
local minima. But transformation of the objective functions may generate pseudo local 
minima and misleading gradient information. Although the PSO algorithm does not 
directly use the gradient information, it is convinced to be used in some indirect way 
[4]. Here the TS algorithm is used to make particles jump out of the local minimum, 
that is, when the particles are plunged into it, the local minimum region is dealt with by 
the TS algorithm and thus the particles can keep away from this region to search 
globally.  
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3.2   Basic Steps of the Hybrid PSO Algorithm 

The main idea of the hybrid PSO algorithm (PSO_NSM_TS) is that: First the particle 
swarm searches globally in the whole solution space in view of its fast pre-convergence 
speed and overall exploration ability. Then the first N+ 1 excellent particles are isolated 
from the swarm in the later stage and the NSM is used to strengthen its local search 
abilities so as to find the local minimum. When the particle swarm is plunged into a 
local minimum, the TS algorithm is used to deal with the local minimum region, and 
particles in this region are re-initialized in the whole solution space. So particles can 
keep away from this region to search globally in the subsequent search process. The 
basic steps are as follows: 

(1) Initialize the particle swarm: the initial position and velocity of each particle 
are randomly initialized in the solution space for the given particle swarm with 3N+1 
particles; 

(2) Calculate fitness of each particle and sort: the fitness of each particle is cal-
culated according to the objective function and all particles are sorted from small to big 
according to the fitness; 

(3) Calculate the average particle distance [18] of the fist N+1 excellent particles

        
2

1 1

1
( ) ( )

s N

id d
i d

D t p p
SgL = =

= −∑ ∑ , where L is the maximal diagonal length of the 

search space; S is the swarm size, here taken to be N+1; N is the dimension of the 
solution space; 

(4) Judge the average particle distance: if D(t)≤[D], call the NSM and go to step 
(5); if D(t)>[D], use the PSO algorithm to update the whole particle swarm and go to 
step (8); 

(5) Call the NSM: the NSM is used among the first N+1 excellent particles to find 
the local solution; 

(6) Judge the local solution: if the local solution searched by the NSM meets ac-
curacy requirement, the whole optimization is completed and exits; if not, call the TS 
algorithm; 

(7) TS algorithm updates the tabu table: add the current local solution region to  
the tabu table and update the tenure; Because the current speed of the particles in the 
local minimum region is very slow and in order to bring them to quickly jump out of 
this region, the particles within the region are re-initialized. Meanwhile, in order to 
avoid the particle swarm to be plunged into the local minimum region again, the best 
positions of these particles are also re-initialized and the best position of the swarm is 
updated correspondingly; In order to organically combine with the PSO algorithm  
and also not increase the complexity of the hybrid algorithm, poor fitness is given to  
the particles within the tabu regions during the PSO updating process and the  
particles are kept away from the tabu regions due to the attraction of the outstanding 
particles. 

(8) Update the particle swarm: update the particle swarm according to the speed 
and location updating formula, and go to step (2). 

The basic flowchart of the hybrid PSO algorithm is shown in Fig. 1. 
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Fig. 1. Flowchart of the hybrid PSO algorithm 

4   Optimization Analysis of the Hybrid PSO Algorithm 

In order to analyze the basic operation process of the hybrid PSO algorithm, the DeJong 

function [3] is taken as an example to be optimized. Its expression is 2

1

( )
N

i
i

f x x
=

=∑ , 

100 100ix− ≤ ≤ . Its global minimum is min(f)=f(0,…,0)=0. The change process of the 

best fitness so far along with the iteration of the hybrid PSO algorithm is shown in Fig. 2. 

 
Fig. 2. Change process of the best fitness so far along with the iteration 

As can be seen from Fig. 2, in the earlier stage the hybrid PSO algorithm searches in 
the solution space according to the basic PSO algorithm. And the NSM is called when 
the first N+1 excellent particles satisfy the condition of D(t)≤[D]. When  
the solution found by the NSM within the allowed iteration does not meet accuracy 
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requirement, it is considered to be plunged into the local minimum and the TS algo-
rithm is used to bring the particles jump out of this region. 

In order to analyze the characteristics of the hybrid PSO algorithm in dealing with 
multi-minimum problems, the Rastrigin function is taken as an example. Its expression 

[3] is 2

1

( ) [ 10cos(2 ) 10]
N

i i
i

f x x xπ
=

= − +∑ , 10 10ix− ≤ ≤ . Its global minimum 

is min(f)=f(0,…,0)=0. Fig. 3 shows the two-dimensional Rastrigin function. This 
function is tested 50 times using the basic PSO algorithm, the PSO_NSM hybrid al-
gorithm, the PSO_TS hybrid algorithm and the PSO_NSM_TS hybrid algorithm re-
spectively, and the average iterations, the convergence success rate and the average 
number of calling the TS algorithm of these algorithms are shown in table 1. Fig. 4 
shows the change process of the best fitness so far along with the iteration of the basic 
PSO algorithm and the PSO_NSM hybrid algorithm under convergence and the 
PSO_NSM_TS hybrid algorithm and the PSO_TS hybrid algorithm under convergence 
when calling TS. 

 

Fig. 3. The two-dimensional Rastrigin function 

Table 1. Result of these PSO algorithms 

Type 
Average 

iterations1 
Convergence success 

rate (%) 
Average number of 

calling TS 

PSO_NSM_TS 228.76 100 0.64 

PSO_TS 358.28 100 1.18 

PSO_NSM 102.66 68 / 

PSO 128.26 38 / 

                                                           
1 The average iterations of the PSO_NSM hybrid algorithm and the basic PSO algorithm are only 

iterations under convergence. 
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Fig. 4. The best fitness so far along with the iteration of the PSO_NSM_TS, PSO_TS, PSO_ 
NSM and PSO 

As can be seen from Table 1 and Fig. 4, for the multi-minimum problems the 
PSO_NSM hybrid algorithm is the fastest, the basic PSO algorithm second, while the 
PSO_TS hybrid algorithm is the slowest which indicates that the convergence speed 
can be increased through the introduction of the NSM. The convergence success rates 
of the basic PSO algorithm and the PSO_NSM hybrid algorithm are only 38% and 
68%, while the convergence success rate can be increased to 100% through the intro-
duction of the TS algorithm. The average number of calling the TS algorithm of the 
PSO_NSM_TS hybrid algorithm is only 0.64 which is far lower than that of the 
PSO_TS hybrid algorithm. Furthermore, other benchmark functions are also used to 
test the proposed hybrid algorithm such as the generalized Rosenbrock function, 
Griewank function and so on. The result shows that the proposed hybrid algorithm in 
this paper not only can increase the convergence speed but also can avoid premature 
convergence, which is the starting point of this paper. 

In a word, the key point of the hybrid PSO algorithm (PSO_NSM_TS) is the in-
troduction of the NSM and the TS algorithm. The introduction of the TS algorithm 
prevents the re-plunge of the particles into the known local minimum regions to a great 
extent. Strength of the preventability is embodied by the tabu length in the TS algo-
rithm. When the tabu length is set to zero, that is, just initialize the first N+1 excellent 
particles in the current local minimum region and not memorize the previously 
searched regions. At the moment, the hybrid algorithm is similar to a completely ran-
dom algorithm. That is, when the particle swarm is plunged into the local minimum 
region the first N+1 excellent particles are re-initialized to search in the global solution 
space. When the tabu length is set to infinite, that is, all the preciously searched local 
minimum regions are memorized and dealt with by the TS algorithm, so the particles 
search in other un-searched regions and eventually can be able to find the global 
minimum solution. Therefore, setting of the tabu length not only can harmonize the 
global search ability and the search speed, but also can harmonize the possibility to 
treat the local minimum solution as the global minimum solution. 

5   Conclusion 

The basic PSO algorithm is improved through accelerating the convergence speed and 
avoiding premature convergence. The improved hybrid PSO algorithm (PSO_NSM_TS) 
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is an organic composition of the basic PSO, NSM and TS algorithm. In the hybrid algo-
rithm, the NSM is introduced to strengthen the local search ability of the PSO algorithm 
in the later stage, and the TS algorithm is introduced to bring particles jump out of the 
local minimum regions when the particle swarm is plunged into them. So the hybrid PSO 
algorithm can increase the convergence speed and avoid premature convergence to a 
great extent. And the benchmark functions also verify its correctness and high efficiency. 
The pseudo-minima tend to be generated when the tabu regions are dealt with poor fit-
ness. But they only survive within the tabu length. When the local minimum regions 
which generate them are released, they are automatically eliminated. So using the TS 
algorithm can solve the pseudo-minima problem to a certain extent. And it can increase 
the convergence speed and reduce the calculation work when the pseudo-minimum 
problem is effectively solved. At the same time, there are still some problems should to be 
deeply studied. For example, the hybrid algorithm only considers the region within the 
average particle distance [D]. If all regions converging to the local minimum can be 
found and treated, the re-plunge into the local minimum can be completely avoided, 
which not only increase the global convergence speed but also can improve the search 
efficiency. 
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Abstract. In this paper, Fourier series chaotic neural network model is presented 
to improve the ability to escape the local minima so that it can effectively solve 
optimization problems. 10-city traveling salesman problem was given and the 
effects of the non-monotonous degree in the model on solving 10-city traveling 
salesman problem were discussed, the figures of the reversed bifurcation and the 
maximal Lyapunov exponents of single neural unit were given. The new model is 
applied to solve several function optimizations. Seen from the simulation results, 
the new model is powerful than the common chaotic neural network. 

1   Introduction 

The Hopfield network, proposed by Hopfield and Tank [1], has been extensively ap-
plied to many fields in the past years. Several chaotic neural networks with 
non-monotonous activation functions have been proved to be more powerful than 
Chen’s chaotic neural network in solving optimization problems, especially in 
searching global minima of continuous function and traveling salesman problems [2, 
7~8]. The reference [3] has pointed out that the single neural unit can easily behave 
chaotic motion if its activation function is non-monotonous. And the reference [4] has 
presented that the effective activation function may adopt kinds of different forms, and 
should embody non-monotonous nature. The chaotic mechanism of this new model is 
introduced by the self-feedback connection weight. The activation function of the new 
chaotic neural network model is composed of Sigmoid and trigonometric function, 
therefore the activation function is non-monotonous. And because trigonometric func-
tion is a kind of basic function, the model can solve optimization problems more ef-
fectively. Finally, the new model is applied to solve both function optimizations and 
combinational optimizations and the effects of the non-monotonous degree in the 
model on solving 10-city TSP are discussed. Seen from the simulation results, the new 
model is powerful than the common chaotic neural network. 

2   Fourier Series Chaotic Neural Network (FSCNN) 

Fourier series chaotic neural network is described as follows: 

))t(()t( ii yfx =                                                   (1) 
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Where i is the index of neurons and n is the number of neurons, )(txi  the output of 

neuron i , )(tyi the internal state for neuron i , ijW the connection weight from neuron 

j  to neuron i , iI the input bias of neuron i , α the positive scaling parameter for 

inputs, k the damping factor of the nerve membrane ( 10 ≤≤ k ), )(tz i the 

self-feedback connection weight, 210 ,, εεε the steepness parameters of the activation 

function, β the simulated annealing parameter of the self-feedback connection 

weight )(tz i , 0I  a positive parameter and 21,ωω the parameters of the trigonometric 

function. 
In this model, the variable )(tz i  corresponds to the temperature in the usual sto-

chastic annealing process and the equation (3) is an exponential cooling schedule for 
the annealing. The chaotic mechanism is introduced by the self-feedback connection 
weight as the value of )(tz i  becomes small step by step. The chaotic behavior plays a 

global search role in the beginning. When the value of )(tz i decreases to a certain 

value, the network functions in a fashion similar to the Hopfield network which func-
tions in gradient descent dynamic behavior. Finally, the neurons arrive at a stable 
equilibrium state. The reference [5] shows that both the parameter β governed the 

bifurcation speed of the transient chaos and the parameter α  could affect the neuron 
dynamics; in other words, the influence of the energy function was too strong to gen-
erate transient chaos when α was too large, and the energy function could not be suf-
ficiently reflected in the neuron dynamics whenα  was too small. So in order for the 
network to have rich dynamics initially, the simulated annealing parameter β must be 

set to a small value, and α  must be set to a suitable value, too. 

In this model, the parameter 21,ωω  presents the non-monotonous degree of the ac-

tivation function. Seen from the equations (4) and (5), it is concluded that the equation 
(4) is similar to the function of Sigmoid alone in form in the circumstance of the value 

of 21,ωω  being between 0 and 1 without consideration of the monotonous nature. So 

the parameter 21,ωω  presents a local non-monotonous phenomenon of the activation 

function. In other words, if the parameter 21,ωω  borders on 1, the non-monotonous 
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phenomenon of the activation function is very apparent; otherwise, if the parameter 

21,ωω  borders on 0, the non-monotonous phenomenon of the activation function is 

very weak. 

3   Research on Single Neural Unit 

In this section, we make an analysis of the neural unit of the Fourier series chaotic 
neural networks. 

The single neural unit can be described as (7) ~ (9) together with (4) ~ (6): 

))(()( tyftx =                                                         (7) 

))()(()()1( 0Itxtztkyty −−=+                                   (8) 

)()1()1( tztz β−=+                                                     (9) 

In order to make the neuron behave transient chaotic behavior, the parameters are set as 
follows: 

0ε =0.02, 1ε =2, 2ε =2, 1ω =1/3, 2ω =1/3, )1(y =0.283, )1(z =0.4, k =1, 0I =0.65 

The state bifurcation figures and the time evolution figures of the maximal Lyapunov 
exponent are respectively shown as Fig.1~Fig.4 when β =0.004 and β =0.002. 

Seen from the above state bifurcation figures, the neuron behaves a transient chaotic 
dynamic behavior. The single neural unit first behaves the global chaotic search, and 
with the decrease of the value of )0,0(z , the reversed bifurcation gradually converges to 

a stable equilibrium state. After the chaotic dynamic behavior disappears, the dynamic 
behavior of the single neural unit is controlled by the gradient descent dynamics. When 
the behavior of the single neural unit is similar to that of Hopfield, the network tends to 
converge to a stable equilibrium point. The simulated annealing parameter β affects the 

length of the reversed bifurcation, that is, the smaller value of β prolongs the reversed 

bifurcation. 
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Fig. 1. State bifurcation figure of the neuron when β =0.004 
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Fig. 2. Time evolution figure of the maximal Lyapunov exponent of the neuron when β =0.004 
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Fig. 3. State bifurcation figure of the neuron when β =0.002 
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Fig. 4. Time evolution figure of the maximal Lyapunov exponent of the neuron when β =0.002 
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4   Application to Continuous Function Optimization Problems 

In this section, we apply the Fourier series chaotic neural network to search global 
minima of the following function. 

The function is described as follows [6]: 

]15.0)4.0[()5.0(]1.0)6.0[()7.0(),( 2
1

2
2

2
2

2
1212 ++−+++−= xxxxxxf     (10) 

The minimum value of (10) is 0 and its responding point is (0.7, 0.5). 
The parameters are set as follows: 

0ε =2.5, 1ε =20, 2ε =10, k =1, 1ω =0.1, 2ω =0.05, )1(1y = )1(2y =0.283, β =0.05,

α =0.4, )1(1z = )1(2z =0.3, 0I =0.65. 

The time evolution figure of the energy function of FSCNN in solving the function is 
shown as Fig.5. 
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Fig. 5. Time evolution figure of energy function 

The global minimum and its responding point of the simulation are respectively 
1.3236e-016 and (0.7, 0.5). 

This section indicates that FSCNN has a good performance to solve function opti-
mization problems. In order to testify the performance of FSCNN, the new model is 
applied to solve 10-city traveling salesman problems. 

5   Application to 10-City TSP 

A solution of TSP with N cities is represented by N×N-permutation matrix, where 
each entry corresponds to output of a neuron in a network with N×N lattice structure. 

Assume xiV  to be the neuron output which represents city x in visiting order i . A 

computational energy function which is to minimize the total tour length while simul-
taneously satisfying all constrains takes the follow form: 
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A and B (A=B) are the coupling parameters corresponding to the constrains and the 

cost function of the tour length, respectively. xyd is the distance between city x and 

city y . 

This paper adopts the following 10-city unitary coordinates: 
(0.4, 0.4439), (0.2439, 0.1463), (0.1707, 0.2293), (0.2293, 0.716), (0.5171, 0.9414), 
(0.8732, 0.6536), (0.6878, 0.5219), (0.8488, 0.3609),(0.6683, 0.2536), (0.6195, 

0.2634). The shortest distance of the 10-city is 2.6776. 
The reference [5] has presented that the effective activation function may adopt 

kinds of different forms, and should behave non-monotonous behavior. In this paper, 

21,ωω that represents the non-monotonous degree is analyzed in order to simply as-

certain the effect of the non-monotonous degree to FSCNN in solving 10-city TSP. 

Therefore, the models with different values of 21,ωω in solving 10-city TSP are ana-

lyzed as follows: 
The parameters of the network are set as follows: 

1ε =20, 2ε =10, 0ε =1/30, k =1,α =0.6, )1(z =0.1, 0I =0.2,A=1.4, D=1.5,△t=0.04. 

2000 different initial conditions of ijy are generated randomly in the region [0, 1] for 

different β . The results are summarized in Table1, the column ‘NL’, ‘NG’, ‘LR’ and 

‘GR’ respectively represents the number of legal route, the number of global optimal 
route, the rate of legal route, the rate of global optimal route. 

The lager value of the simulated annealing parameter β is regarded stronger if  

the network can all converge to the global minimum in 2000 different random initial 
conditions. 

Seen from table 1, the follow observations can be drawn according to numerical 
simulation test: 

First, the model with smaller 21,ωω s such as 1ω =0.01, 2ω =0.01; 

1ω =0.02, 2ω =0.01; 1ω =0.025, 2ω =0.01; 1ω =0.01, 2ω =0.025; 1ω =0.02, 2ω =0.02 

in solving 10-city TSP can all converge to the global minimum. But, it is not true that 

the smaller the parameter 21,ωω is, the more powerful the ability to solve 10-city. 

Because, for example, the parameter 1ω =0.02, 2ω =0.02 can all converge to the global 

minimum as β =0.001 while the parameter 1ω =0.01, 2ω =0.01 can almost converge to 

the global minimum as β =0.0008. 

Second, with the decrease of the value of 1ω and 2ω , the value of ‘NG’ becomes 

large gradually from 1893( 1ω =0.02, 2ω =0.02) to 1973( 1ω =0.01, 2ω =0.005) 

as β =0.01 .In other word, with the decrease of the value of 1ω and 2ω , the ability to get 

global optimal route becomes strong. 
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Table 1. Results of 2000 different initial conditions for each valueβ on 10-city TSP  

1ω , 2ω  β  NL NG LR GR 

0.01 2000 1953 100% 97.65% 
0.008 2000 1983 100% 99.15% 
0.001 2000 1994 100% 99.7% 1ω =0.001, 2ω =0.001 

0.0008 2000 1995 100% 99.75% 
0.01 2000 1972 100% 98.6% 

0.008 2000 1994 100% 99.7% 
0.001 2000 1994 100% 99.7% 1ω =0.005, 2ω =0.01 

0.0008 2000 1998 100% 99.9% 
0.01 2000 1984 100% 99.2% 

0.008 2000 1998 100% 99.9% 
0.001 2000 1998 100% 99.9% 1ω =0.01, 2ω =0.01 

0.0008 2000 2000 100% 100% 
0.01 2000 1955 100% 97.75% 

0.008 2000 1945 100% 97.25% 
0.001 2000 1996 100% 99.8% 1ω =0.02, 2ω =0.01 

0.0008 2000 2000 100% 100% 
0.01 2000 1931 100% 96.65% 

0.008 2000 1931 100% 96.55% 
0.001 2000 2000 100% 100% 1ω =0.025, 2ω =0.01 

0.0008 2000 2000 100% 100% 
0.01 2000 1973 100% 98.65% 

0.008 2000 1994 100% 99.7% 
0.001 2000 1995 100% 99.75% 1ω =0.01, 2ω =0.005 

0.0008 2000 1995 100% 99.75% 
0.01 2000 1940 100% 97% 

0.008 2000 1928 100% 96.4% 
0.001 2000 1998 100% 99.9% 1ω =0.01, 2ω =0.02 

0.0008 2000 1997 100% 99.85% 
0.01 2000 1908 100% 95.4% 

0.008 2000 1923 100% 96.15% 
0.001 2000 2000 100% 100% 1ω =0.01, 2ω =0.025 

0.0008 2000 2000 100% 100% 
0.01 2000 1893 100% 94.65% 

0.008 2000 1927 100% 96.35% 
0.001 2000 2000 100% 100% 1ω =0.02, 2ω =0.02 

0.0008 2000 2000 100% 100% 

 
Third, when the parameter 1ω =0.01, 2ω =0.025and 1ω =0.025, 2ω =0.01, the ability 

to all converge to the global minimum is more powerful, that is, the non-monotonous 
degree of the activation function has a effective on the solution of 10-city TSP. 

However, as is analyzed in second, the ability in reaching ‘NG’ when the parameter 

1ω =0.01, 2ω =0.025and 1ω =0.025, 2ω =0.01is weaker than that of 1ω =0.01, 2ω =0.01 

when β =0.01and β =0.008. So, which model is needed is connected with the concrete 

request. However, in order to get the tradeoff effect, the value of 1ω =0.01, 2ω =0.01 

may be chose.  
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6   Conclusion 

The presented chaotic neural network called FSCNN is proved to be effective in 
solving optimization problems, and in the section of application to 10-city TSP, the 

model with different 1ω , 2ω is analyzed and made a comparison. As a result, the simple 

rule of the model is disclosed. However, there are a lot of questions in the model needed 
to research. For example, whether does the model in solving 30 or 60 cities’ TSP accord 
with the same rule or so? And different networks have different parameters in solving 
TSP effectively, is there any way to weigh the different networks in the same  
parameters? 
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Abstract. Economic benefit and resource utilization rate should be considered 
when optimizing the cut-off grade and grade of crude ore in production man-
agement of metal mine. This paper introduces soft computing to the field of 
mine, to determine the combination of grades in the condition of multiple objec-
tives, and its basic idea is that, ANN is used to model the nonlinear function 
from the relative variables to metal recovery of milling and total cost, fuzzy 
comprehensive evaluation integrates multiple objection, GA searches for the 
optimal grades combination, these three techniques not only function independ-
ently but also effectively integrate together, collectively display the function of 
modeling, reasoning and optimization. Take Daye Iron mine as an example, and 
it indicated the validity of proposed method, from January to November in 
2007, the optimal cut-off grade and grade of crude ore are 16.53% and 43.14%, 
respectively, and contrasted to the present scheme, lower cut-off grade and 
higher grade of crude ore can produce more amount of the concentrate ore, get 
more profit, and enhance higher utilization rate of resource.  

Keywords: Multi-objective optimization, Soft computing technique, Cut-off 
grade, Grade of crude ore. 

1   Introduction 

In production and management of mining enterprises, we are not only in the pursuit of 
economic interests, but also take into account of the resource recovery and other rela-
tive objectives. Cut-off grade and grade of crude ore are two key indicators in produc-
tion and management of mine, the optimization is a multi-objective optimization 
problem. Tao Yong [1], Zhao Dexiao [2], Jiang Annan [3], etc. optimized the grades 
considering economic benefit with single-objective optimization. However, with the 
changes from extensive to intensive of mining enterprises and the shortage of re-
sources, we should not only consider economic benefit, but also emphasize on the 
utilization of resources in the production practice. Li Keqing [4,5], Yuan Huaiyu [6], 
YU Weijian [7], Li Keqing [8] tried to work on multi-objectives optimization, but the 
decision-making variables were not the combination of cut-off grade and grade of 
crude ore. Cut-off grade and grade of crude ore are two concepts related with income, 
cost, geological grade, loss rate and dilution rate. The mapping function between them 
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are highly-complex and highly-nonlinear, and it is difficult to directly or indirectly 
find out the mathematics expression. 

Soft Computing (SC) [9] is a novel method to create complex system, in order to 
deal with complex problems under the uncertain and imprecise environment, a variety 
of different sources of knowledge, technology and methods need to composite and 
collaborate for computation. Soft computing mainly contains three parts: artificial 
neural network (ANN) is responsible for pattern cognition and adaptive modeling by 
changing environment; fuzzy logic (FL) is for reasoning and decision-making of hu-
man knowledge; genetic algorithm (GA) leads the system to reach optimization. 
These three techniques not only function independently but also effectively integrate 
together, collectively display the function of modeling, reasoning and optimization. In 
recent years, soft computing has been successfully used in optimization, evaluation 
and forecast in the fields of engineering technology, economic management, and so 
on. In this paper, soft computing technique has been used to optimize cut-off grade 
and grade of crude ore with multiple objectives, to enhance the overall benefit of 
metal mine system. 

2   Set the Objectives 

The optimization of cut-off grade and grade of crude ore is based on the economic 
benefit and resource utilization. The objectives are net present value (NPV), resource 
utilization rate and total amount of concentrate, respectively. According to mining and 
milling production process, we set three objectives as follows: 
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Where, NPV denotes net present value, 
tR denotes revenue of the ore body in the 

t th month, ta denotes geological grade in the t th month, 
ja denotes cut-off grade, 
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ra denotes grade of crude ore, tq denotes geological reserves in the t th month, 

),,,( rjtt aaqaC denotes the function of cost including mining and milling, 

)( jaφ denotes the function of loss rate related to cut-off grade, 

),,,( rjtt aaqaε denotes the function of metal utilization rate of milling, β denotes 

the concentrate grade, J denotes the current price of the concentrate ore, i denotes 
the rate of discount. 

We can see that, tt qa denotes the amount of iron metal of ore body;
 

)(1 jaφ− de-

notes mining recovery; ))(1( jtt aqa φ−  denotes the amount of iron metal of ore 

milling outside; ),,,())(1( rjttjtt aaqaaqa εφ−  denotes the amount of iron metal in 

the concentrate powder; 
β
εφ ),,,())(1( rjttjtt aaqaaqa −

is the amount of concentrate. 

That is easy to see, tR  in Eq. (1) denotes revenue, which is the value of the amount of 

concentrate multiplied by the price of concentrate. The numerator of UTI  in Eq. (2) 
is the total of iron metal in the concentrate in t  months, the denominator of Eq. (2) is 
the amount of iron metal in natural ore body, so UTI  denotes the total metal recovery 
of mining and milling, i.e. the utilization rate of resource. Eq. (3) is the sum of the 
amount of concentrate. 

Obviously, there exist three unknown functions in the three objectives as follows:  

Function 1: Mapping relationship between cut-off grade
 ja and loss rate φ .  

Function 2: Mapping relationship between the metal utilization rate ε  and cut-off 
grade

ja , crude ore grade ra , geological grade ta , geological reserves tq .  

Function 3: Mapping relationship between the cost of mining & millingC  and cut-off 
grade

ja , crude ore grade ra , geological grade ta , geological reserves tq .  

This multi-objective optimization problem is that, given the geological reserves and 
geological grade, we search for a combination of cut-off grade and grade of crude ore, 
i.e. the pareto optimal solution, to make trade-offs of three objectives.  

3   Establish Non-linear Functions Using Neural Networks 

Artificial neural network (ANN) is a parallel non-linear adaptive system composed of 
a large number of simple processing units, and it originates the learning mechanism of 
human brain. Without a priori knowledge, ANN is widely used in construct the com-
plex nonlinear system. BP network and RBF networks are two common neural net-
works [10]. BP network is a multi-layer forward neural network proposed by David 
Rumelhart and James McClelland in Stanford University [11], and it is named by 
back-propagation algorithm [12]. The learning process contains the forward propaga-
tion of the signal and back-propagation of errors. Radical Basis Function (RBF) neu-
ral network [13] was proposed by J. Moody and C. Darken in the late of the 1980s, 
and it consists of the input layer, hidden layer and output layer. RBF network uses 
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radial basis function as the basis function of hidden layer neurons, to constitute a 
hidden layer space, and realizes the input-output mapping. To optimize cut-off grade 
and grade of crude ore, the key points are to establish the functions from cut-off 
grade, grade of crude ore to the amount of concentrate, NPV, and the resource utiliza-
tion rate, and it need to establish the following model: (1) the function of loss rate and 
cut-off grade; (2) the computing model of metal recovery of milling; (3) the comput-
ing model of total cost. 

4   Fuzzy Comprehensive Evaluation Integrates Multiple 
Objectives 

Optimization of ore grades is to enhance economic benefit and resource utilization, 
and the objectives contain profit, the amount of concentrate and resource utilization 
rate. On one hand, as a result of confliction between the objectives, the impact of 
decision-making variables on each objective is not synchronized, the impact of the 
decision-making variables on one objective is positive, may also negatively affect 
another decision-making objective [14]. For example, with the increase of cut-off 
grade, grade of crude ore may increase, it leads to enhance economic benefit, but ore 
recovery may reduce, it causes to reduce the total resource utilization rate. On the 
other hand, because of incommensurability of different objectives, they have different 
units, such as the unit of total profit is ten thousand yuan, but the unit of the total 
concentrate is 10,000 tons. Therefore, all objective value should be normalized to 
make a reasonable evaluation.  

From above, we can see that the production benefit is the amount of  
concentrate, the economic benefit is NPV, and resource utilization benefit is total 
metal recovery. For a combination of grades, calculate the above three objectives, 
then get the fuzzy comprehensive evaluation value, which is used to search the opti-
mal cut-off grade and grade of crude ore. First, define the set of scheme 

, here, each scheme is a combination of 

cut-off grade and grade of crude ore, and the set of objectives =U { amount of con-

centrate, NPV, total metal recovery} , R is fuzzy relation matrix, evaluation space 

{ }RUXW ,,= . The greater the value of three objectives, the greater the contribution 

to the comprehensive evaluation value, the definition of membership function is as 
follows: 

⎪
⎩

⎪
⎨

⎧

≥
≤≤−−

≤
=

max

maxminminmaxmin

min

1

)/()(

0

)(

xx

xxxxxxx

xx

xiμ                 (4) 

We first preset the minimum and maximum of amount of concentrate, NPV and re-
source utilization rate, respectively, then calculate the membership value of each 
objective for every scheme by Eq.(4), given the weight value of each objec-

tive )3,2,1( =iiλ , finally compute the evaluation value by Eq.(5).  

 }2, , 1 { schemeNX = scheme Scheme
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ii μλ∑
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=                                                   (5)  

5   Grade Combination Optimization by GA 

Genetic algorithm originates biological genetics, and simulates the mechanism of 
natural selection, evolution and mutation. It aims to improve each individual's fitness, 
and ultimately find out the optimal individual, which is the best solution. The advan-
tage of GA is fast convergence, global optimization, and it is used widely in optimiza-
tion of complex nonlinear systems [15]. For a scheme (combination of cut-off grade 
and grade of crude ore), we calculate the weighted value of the objectives as the indi-
vidual's fitness, to evaluate the cut-off grade and grade of crude ore. The steps of the 
algorithm are as follows: 

Step1: Initialize the population, and then set the size of population and encoding type. 
Step2: Give operators of selection, crossover, mutation and relative parameters. 
Step3: For each chromosome, implement Step3.1, Step3.2, Step3.3, Step3.4 and 
Step3.5. 

   Step3.1 Decode individuals to the real values of cut-off grade and grade of crude 
ore. 

Step3.2 Calculate NPV of the corresponding grade combination by Eq. (1). 
    Step3.3 Calculate the corresponding resource utilization rate by Eq. (2). 

Step3.4 Calculate the amount of concentrate by Eq. (3). 
Step3.5 Compute the fuzzy comprehensive evaluation value of this individual, as 

its fitness value according to Eq. (5). 
Step4: Implement the GA operations of selection, crossover and mutation, and gener-
ate new population. 
Step5: Check whether reaches the maximum of iterative step or population converges, 
if not, then switch to Step3. 
Step6: Output the best grade combination, and calculate the amount of concentrate, 
NPV and resource utilization rate according to the best grade combination. 

6   Case Study 

According to geology, production and cost report forms from Jan.2005 to Nov.2007, 
we acquire the relative data which are omitted in this paper. 

The correlation coefficient of loss rate and cut-off grade is 0.97419, so there is a 
significant linear relationship, and the function of loss rate and cut-off grade can be 
expressed as 127.1 −= jaφ . The sample simulation diagram is shown in Fig.1. We 

establish the BP network and RBF networks mapping relationship from cut-off grade, 
grade of crude ore, geological reserves, geological grade

 
to the metal recovery rate  

of milling and the total cost. The sample simulation diagram is shown in Fig.2 and 
Fig.3. It shows that the constructed BP and RBF networks have prefect simulation 
performance. 
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Fig. 1. Regression fit diagram 
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Fig. 2. Metal recovery simulation 

Given the geological data and relative grade information, we calculate the loss 
rate, metal recovery of milling and the total cost, and then calculate NPV, resource 
utilization rate and the total amount of concentrate, respectively. We normalize these 
objective values to [0,1], and calculate the weighted value by the weight factors as the 
fitness value of a certain combination of cut-off grade and grade of crude ore. 

Set the price of concentrate ore being 8.08 yuan per ton, the grade of concentrate 
being 64%, discount rate being 0.005. We determine the weight of decision-making 
objectives by Delphi, with NPV of 0.4, resource utilization rate of 0.4, the amount of 
concentrate of 0.2. The population structure of genetic algorithm is that, using binary 
encoding, with the number of chromosome being 80, the range of cut-off grade being 
15-21%, the range of crude ore grade being 40-47%, crossover probability being 0.7, 
and mutation probability being 0.008. 
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Fig. 3. Total cost simulation 

According to geological reserves and grade form January 2007 to November 2007 
in Daye iron mine, we optimize the cut-off grade and grade of crude. The results and 
comparison with the current scheme are as shown in Table1, scheme 1 is the opti-
mized scheme, scheme 2 is the current scheme. Form Table1, we can see that, lower 
cut-off grade and higher grade of crude ore can produce more amount of the concen-
trate ore, get more profit, and enhance higher utilization rate of resource. If the cut-off 
grade is 16.53%, grade of crude ore is 43.14%, from January to November of 2007, 
the total profit is 113.282 million yuan, the amount of concentrate is 843.3 thousand 
tons, and the total metal utilization rate is 67.12%. Compared with the current scheme 
(cut-off grade is 18%, grade of crude ore is 41-42%), the optimized scheme can in-
crease the total profit by 5415 thousand yuan, increase the total concentrate by 
110,830 tons, and raise the utilization rate of resource by 5.52 percent. 

Table 1. Optimization result and comparison 

Scheme 
Cut-off 
grade 
(%) 

Grade of 
crude ore 

(%) 

Amount of 
concentrate 

(104ton) 

NPV 
(107yuan) 

Resource 
utilization 
rate (%) 

1* 16.53 43.14 84.33 11.3282 67.12 

2 18 41-42 73.247 10.7867 61.6 

7   Conclusions 

In this paper, we take into account of economic benefit and resource utilization bene-
fit, establish multi-objective model of optimizing cut-off grade and grade of crude 
ore, and use soft computing method to solve it. The result of this research has been 
applied to Daye iron mine, and significantly improves the benefit. The proposed 
method of optimizing grades provides a brand-new idea to the metal mine system, 



 Multi-objective Optimization of Grades Based on Soft Computing 151 

given the input of geological grade, recoverable reserves, metallurgical grade stan-
dard, concentrate price, the system automatically outputs the optimal cut-off grade 
and grade of crude ore, to guide the production of mining and milling. It changes the 
extensive statement of relying on experience of first-line worker and experiment data, 
and has broad application value. 
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Abstract. Consider mobile agents’ power limitation and mobility resulting in 
communication delay, network connectivity may be not maintained only by 
power control or mobility control in mobile decentralized network, so we provide 
integrated power and mobility control law design methods for preserved con-
nectivity in this paper. Those integrated connectivity control methods are 
achieved by constructing decentralized navigation functions respective to rela-
tive position constrain conditions. We extend previous works of power control 
and mobility control for connectivity, and design power control methods, inte-
grated power and mobility control methods for position or velocity. Furthermore, 
considering power control may have the same effect with mobility control on 
connected distance control, we present some decision algorithms for decentral-
ized networks connectivity using neural networks. Numerical simulations are 
discussed in the end. The results could be applied to location management, data 
consensus and decision making in decentralized networks. 

Keywords: preserved connectivity, integrated control, time delay, navigation 
functions, decision algorithm. 

1   Introduction 

Mobile ad hoc networks (MANET) are mobile and wireless sensor networks. Not only 
can the networks collect information, just like neural networks, but also the mobile 
nodes in the networks,just as neuron, can communication each other. The integrated 
study on networks and control is a very challenging and promising research area [1,2]. 
Since mobile sensor nodes or mobile agents in decentralized networks may spread in an 
arbitrary manner, one of the fundamental issues for location management, communi-
cation and data consensus in a mobile decentralized network is to maintain connec-
tivity. Connectivity control may be classified as mobility control (see[3,4,5] and  
references there in) and power or topology control (see[6,7,8] and references there in). 
Increasing power only for communication may shorten the lifetime of networks;  
mobility control only may enlarger the communication delay.  
                                                           
* Corresponding author. 
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To mobility control for connectivity, Michael M. Zavlanos and George J. Pappas [3] 
consider graph connectivity or mobility control as a primary objective, and propose a 
distributed feedback control framework based on novel control decomposition. 
Communication time delays in the networks as well as collision avoidance among the 
agents can also be handled. In paper [4], a feedback control strategy that achieves 
convergence of a multi-agent system to desired formation connectivity is proposed for 
both the cases of agents with single integrator and nonholonomic unicycle-type kine-
matics. The stability of distance-based formation control is discussed in [5]. In  
particular, the authors proposed formation control law that is based on the negative 
gradient of a potential function between each of the pairs of agents that form an edge in 
the formation graph.  

To power control for connectivity, Jie Wu, and Fei Dai [4] showed some issues in 
existing topology control, and propose a mobility-sensitive topology control method 
that extends many existing mobility-insensitive protocols. Two mechanisms are in-
troduced: consistent local views that avoid inconsistent information and delay, and 
mobility management that tolerate outdated information. The effectiveness of the 
proposed approach is confirmed through an extensive simulation study. Javier Gomez, 
and T. Andrew [7] showed that there is an optimum setting for the transmission range, 
not necessarily the minimum, which maximizes the capacity available to nodes in the 
presence of node mobility. The results presented in this paper highlight the need to 
design future MAC and routing protocols for wireless ad hoc and sensor networks 
based, not on common-range which is prevalent today, but on variable-range power 
control. P. Siripongwutikorn, B. Thipakorn [8] proposed two topology control algo-
rithms – ABsolute Distance-based (ABD) and Predictive Distance-based (PRD), which 
adjust the transmission range of individual nodes in a MANET to achieve good net-
work throughput, particularly under correlated node movements as in a vehicular en-
vironment. Both algorithms attempt to maintain the number of logical neighbours 
between two predefined thresholds. To best to our knowledge, we can not find out any 
results for integrated power and mobility control law design for connectivity.  

It is now well recognized that the dynamical behaviors of many communication 
processes contains inherent time delays. Time delays may result from the distributed 
nature of the communication system, information transitions, or from the time required to 
measure some of the signals. It is known that processes with time delays are inherently 
difficult to analyze and control [9], in the sense that it is difficult to achieve satisfactory 
performance. Therefore, analysis and design of time-delay systems with various types of 
disturbances has been a subject of great practical importance for several decades, see 
[10-12] and the references therein. Unfortunately, so far, the integrated power and mo-
bility control methods for preserved connectivity in decentralized networks with com-
munication delay has yet to be investigated, which helps motivate our current study. 

In this paper, inspired by previous works in [4,5], we deal with the integrated power 
and mobility control methods for preserved connectivity in decentralized networks. An 
effective navigation function and Lyapunov function approach are extended and de-
veloped to solve the preserved connectivity with time delay problem. Furthermore, 
considering power control may have the same effect with mobility control on  
connected distance control, we present some decision algorithms for decentralized 
networks connectivity using neural networks. A numerical example is presented to 
show the effectiveness and efficiency of the proposed control law design scheme. 
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The remainder of the paper is arranged as follows. The definition of preserved 
connectivity is formulated and power control law design is discussed in section 2 for 
decentralized networks with no movement nodes. In section 3, Consider mobile agents’ 
power limitation and mobility, preserved connectivity may be not maintained only by 
power control in mobile decentralized network, so integrated power and mobility 
control law design is provided. In section 4, considering power control may have the 
same effect with mobility control on connected distance control, we present decision 
algorithms for connectivity using neural network. Numerical simulations are discussed 
in section 5. Finally, some concluding remarks are given in the end. 

2   Power Control Law Design for Preserved Connectivity 

The communication graph },{ EVG =  is an undirected graph consisting of a set of 

vertices },...,2,1{ NV = indexed by the mobile agents and a set of edges 

},),{( VjijiE ∈= . 2Rpi ∈  denotes the position of mobile agent i .Each i ’s objec-

tive is to converge to a particular relative position vector 2Rppc jiij ∈−= ,and 

22 )()( jyiyjxixij ppppc −+−= is relative distance of node i to node j . By the 

relative position vectors, the mobile decentralized network is connected.  

Definition 1 (Preserved Connectivity). The given relative position vector set 

},...,2,1,,0{ NjidccC ijij =<<=  in the communication graph },{ EVG =  is a 

preserved connectivity, if the G  is connected for the given position vector set 
C .Where d is the maximum sensing radius of every mobile agent. 

Mobile agent’ power is always related to its communication radius )(tri , the larger 

its communication radius is, and the bigger its power is required. So, we manage to 
design control laws for agents’ communication radius to save its energy while the 
preserved connectivity is maintained. We consider N single integrator point mobile 
agents in the plane. 

)()( tutr ii =  ( Ni ,...,2,1= )                                         (1) 

where the )(tui is control input for each mobile agent i . 

The power of each agent is equipped with a navigation function  

]))(()[(
2

1 22
iiii ctrcdH −−−=

 

where }0,{ dcCcjN ijiji <<∈= , }{max
1

ij
Nj

i cc
i≤≤

= , dtrc ii << )( , and d is the 

maximum sensing radius of every mobile agent. 

Remark 1. Where the iN stands for the neighborhoods of the mobile node i , and in 

other words, the iN  is the number of one-hop communication nodes of the node i . 
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We can see from the navigation function iH that with the )(tri  decreasing, the iH  

will be increasing. In other words, we can control the power of node i  by iH . 

So the power control law of each mobile agent i  is now defined by 

))(()( ii
i

i
i ctr

r

H
tu −−=

∂
∂

=                                               (2) 

substitute the )(tui in (1), we have 

))(()( iii ctrtr −−=                                                       (3) 

The conclusion is summarized in the following theorem 

Theorem 1. Assume that (1) is driven by (2), the radius )(tri of mobile agent i in sys-

tem (3) converges to the desired }{max
1

ij
Nj

i cc
i≤≤

= . 

Proof from the (3), we easily get  

))((
])([

ii
ii ctr

dt

ctrd
−−=

−
 

then i
t

i ctr =
+∞→

)(lim .The theorem is proved. 

3   Integrated Power and Mobility Control Law Design 

In section 2, we discuss the power control laws design for preserved connectivity. 
Consider mobile agents’ power limitation and mobility constrains, preserved connec-
tivity may be not maintained only by power or mobility for mobile decentralized 
network, so we describe integrated power and mobility control laws design. 

)()( tutr ii =  

)()( tvtp ii =                                                        (4) 

Similar section 2 to construct the power navigation function, we extend navigation 
function described in [4], and present an integrated power and mobility navigation 
function for system (4) 

22 )()(
2

1
))((

2

1
)( ∑

∈

−−+−=
iNj

ijjiiii ctptpctrtG  

and }0,{ dcCcjN ijiji <<∈= , }{max
1

ij
Nj

i cc
i≤≤

= , dtrc ii << )(  

Remark 2. We can see from the navigation function )(tGi that with the )(tri  de-

creasing, and with relative positions approaching to the preserved positions, the )(tGi  

will be increasing. In other words, we can control the power and mobility of 
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node i by )(tGi .So, for preserved connectivity set C , to maintain the desired connec-

tivity and enlarge the lifetime of decentralized networks, integrated power and mobility 
navigation function )(tGi to navigate )(tri  approaching to ic , and to navigate 

)()( tptp ji −  approaching to ijc . 

The power control law of each mobile agent i is now defined by 

)(

)(
)(

tr

tG
tu

i

i
i ∂

∂
−=                                                     (5) 

and mobility control law of each mobile agent i is defined by 

)(

)(
)(

tp

tG
tv

i

i
i ∂

∂
−=                                                       (6) 

we get closed loop power control system from (4)(5) 

))(()( iii ctrtr −−=    (3) 

and closed loop mobility control system from (4)(6) 

∑
∈

−−−=
iNj

ijjii ctptptp ])()([)(                                         (7) 

The conclusion is summarized in the following theorem 

Theorem 2. Assume the power of (4) is driven by (5), and the mobility of (4) is driven 

by (6), dtrc ii << )( , }{max
1

ij
Nj

i cc
i≤≤

= , then )(tri converges to ic ),...,2,1( Ni = , the 

relative position of mobile agent i and j , )()()( tptptp jiij −= converges to the de-

sired formation connectivity ijc ( ),...,2,1, Nji = . 

Proof. Let iii ctrtr −= )()(ˆ in (3) and T
N trtrtrtr ))(ˆ),...,(ˆ),(ˆ()(ˆ 21= , the (3) can now be 

written in stack vector form as 

)(ˆ
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Where NI is NN ×  identity matrix. Similarly, from the (7), let jiij ccc −= ,we easily 

get  
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Let TT
N

TT tptptptp ))(ˆ),...,(ˆ),(ˆ()(ˆ 21=   



 Connectivity Control Methods and Decision Algorithms 157 

the (7) can also now be written in stack vector form as 

pIP
dt

tpd
ˆ][

)(ˆ
2⊗−=                                                   (10) 

where the matrix P is defined as 
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Where iN is the number of element in set iN , the matrix P has zero row sums, is the 

Laplacian matrix of the connectivity graph subject to ijc ( ),...,2,1, Nji = , ⊗ is 

Kronecker product, and consider 2)(ˆ Rtpi ∈ , 2I is 22×  identity matrix.  

Let TTT tptrtq ))(ˆ),(ˆ()( =  

We examine the stability of the closed loop system by using the candidate Lyapunov 
function 
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Its gradient can be computed as 
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so we conclude that 0)(lim =
+∞→

tq
t

,the theorem is proved. 

4   Decision Algorithms for Connectivity Using Neural Network  

We see from the above discussions that power control and mobility control are not 
considered contemporarily, only discussed individually. We know that power control 
may have the same effect with mobility control on connected distance control. For 
example, the node A  and the node B  can not communication each other because the 
distance between two nodes is larger than the transmit radius of the node A  or the 
node B . If the two nodes want to communicate each other, there are some policies to  
be operated: (1) the node A  can move to the node B ;(2) the node A  can increase its 
power; (3) the node B  can move to the node A ; (4) the node B  can increase its power; 
(5) the node A  and the node B  can move simultaneously to decrease the distance 
between them; (6) the node A  and the node B  can increase its power simultaneously 
to get connectivity between them; (7) one node use power control, the other use mo-
bility control; etc. B. P. Vijay Kumar and P. Venkataram [14] proposed connectivity 
management technique (CMT) is to maintain the mobile user-to-user connectivity 
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throughout the transaction in centralized networks. The CMT keeps track of the in-
terrupted and hand-off mobile hosts (MHs) by maintaining the status information at the 
currently registered base station (BS). The status information contains the activities of 
all the MHs registered with the BS. The CMT uses a neural network that is trained with 
respect to the status information, both online and offline training, to learn the volatile 
nature of the mobile environment for an intelligent decision. We highlight from this 
method and consider the decentralized networks properties, we present some decision 
algorithms for decentralized networks connectivity using neural networks. We adopt 
the neural network training algorithm in [13,14], the decentralized networks connec-
tivity decision algorithm is described briefly. 

Suppose every node maintains real time its connectivity status information based on 
the messages exchanged among its neighbor nodes. The connectivity status information 
in one mobile node includes the information of the relative position of its neighbor 
nodes. If a mobile node can not transmit to the next nodes, it knows that the network is 
disconnected, and must operate mobility or power control decision policies to achieve 
the links among its neighbors. The node connectivity decision algorithm processes the 
recent connectivity status information in its cache and derives the training data set in 
the mobile node. The neural network is trained on the training data set which is derived 
from connectivity status information using back-propagation learning algorithm, and 
the decision of the mobile node on how to operate is decided. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Decision algorithms for connectivity using neural network 

5   Numerical Simulations 

We propose numerical simulations for the integrated power and mobility control law 
design with time constant delay.  

Begin 
1. Every node maintains real time its connectivity status information 

based on the messages exchanged among its neighbor nodes; 
2. Training data set is derived from its connectivity status information; 
3. Neural network is trained on the training data set using  

back-propagation learning algorithm; 
4. Once a mobile node can not transmit to the next nodes, the every node 

connectivity decision algorithm processes the recent connectivity status 
information in its cache and derives the training data set in the mobile 
node; 

then 
go to step 3; 
else 

Output the decision of the mobile node on how to operate in the next 
step;  
go to step 4. 

Stop 
End. 
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Let )0,200()0(1 =p , )300,0()0(2 =p , )550,200()0(3 =p , )550,400()0(4 =p  

and )280,575()0(5 =p be the initial position of five nodes. Consider 13100=d , 

]25,0[∈t  we have adjacent matrix A of the connectivity graph and the Laplacian 

matrix P of A  
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We get the final position of five nodes by control law in (16) )250,300()25(1 =p , 

)100,120()25(2 =p , )400,325()25(3 =p , )400,550()25(4 =p , and 

)75,400()25(5 =p . The connectivity graph of these five nodes at 25=t  is shown in 

Fig. 2. We can see the five nodes are not connected at 0=t (the connectivity graph is 
drawn with real blue line), and that the five nodes are connected at 25=t (the con-
nectivity graph is drawn with dash read line).The green circles in Fig.2 stand for the 
dynamic moving process at ]25,0[∈t with control law (16). 

 

Fig. 2. The connectivity graph of five nodes at 25=t  

6   Conclusion 

We intensively discuss the integrated power and mobility control laws design methods 
in decentralized networks. With time increases, the communication radius approach to 
the preserved value; the relative positions converge or synchronize to the preserved 
position; the velocities converge to a constant. Considering power control may have the 
same effect with mobility control on connected distance control, we present some 
decision algorithms for decentralized networks connectivity using neural networks. 
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Preserved connectivity may relate to mobile models of agents, such as random way-
point model, random walk model, and random direction model, etc. We are managing 
to deal with those challenges.  
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Abstract. In this study, a novel quantum-inspired artificial immune sys-

tem (MOQAIS) is presented for solving the multiobjective 0-1 knapsack

problem (MKP). The proposed algorithm is composed of a quantum-

inspired artificial immune algorithm (QAIS) and an artificial immune

system based on binary encoding (BAIS). On one hand, QAIS, based on

Q-bit representation, is responsible for exploration of the search space

by using clone, mutation with a chaos-based rotation gate, update oper-

ator of Q-gate. On the other hand, BAIS is applied for exploitation of

the search space with clone, a reverse mutation. Most importantly, two

diversity schemes, suppression algorithm and truncation algorithm with

similar individuals (TASI), are employed to preserve the diversity of the

population, and a new selection scheme based on TASI is proposed to cre-

ate the new population. Simulation results show that MOQAIS is better

than two quantum-inspired evolutionary algorithms and a weight-based

multiobjective artificial immune system.

Keywords: multiobjective, knapsack problem, artificial immune system,

quantum computing.

1 Introduction

The multiobjective 0-1 knapsack problem (MKP), as a NP-hard, classic multi-
objective optimization problem (MOOP), is an extension of the single objective
version of this problem. For MKP, it always plays a important role in our real
lives and has been frequently used to examine the performance of evolutionary
multiobjective algorithms in the literature [1,2].

In this paper, MKP will continue to be studied and a novel quantum-inspired
artificial immune system (MOQAIS) based on artificial immune system (AIS)
and quantum computing is presented and has the following characteristics. First,
two algorithms with different representations are combined, QAIS uses quantum-
bit (Q-bit) representation, and BAIS adopts binary representation. Second,
different mutation is combined, where QAIS utilizes quantum-gate (Q-gate) ro-
tation, and BAIS utilizes reverse mutation. Thirdly, exploration and exploitation
are considered simultaneously, where QAIS emphasizes exploration, and BAIS
emphasizes exploitation. Finally, QAIS and BAIS both apply similarity-based se-
lection method to generate the new population, which guarantees the diversity of

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 161–168, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the population. Numerical results on several test problems show MOQAIS out-
performs the quantum-inspired multiobjective evolutionary algorithm (QMEA)
[3], a hybrid quantum genetic algorithm (HQGA) [4] and a weight-based multi-
objective artificial immune system (WBMOAIS) [5].

2 MOQAIS

In this section, a novel quantum-inspired AIS (MOQAIS) is presented. MOQAIS
is an integrated framework of two algorithms QAIS and BAIS. Before proposing
MOQAIS, assume that the population is a set of cells and each of them represents
a solution to MKP, the main procedures of QAIS and BAIS are respectively listed
in the following.

1. The main procedures of QAIS:

(1) A random initial population PQ
0 of size NQ

pop is created and set the memory
MQ = ∅. Repair population PQ

0 and set a counter t = 0.
(2) For each cell in the population, reproduce the cell NQ

clones times and mutate
each clone by a chaos-based rotation gate.

(3) Repair the offspring, and then combine the population PQ
t and the offspring

as RQ
t .

(4) Evaluate RQ
t , and perform trimming operation for RQ

t . Compute all nondom-
inated cells in RQ

t , and store them to MQ, and then delete all dominated
cells in MQ.

(5) Select new population PQ
t+1 from RQ

t by using the selection scheme based on
truncation algorithm with similar individuals (TASI).

(6) Randomly select a cell from MQ, and use it to update the new population
PQ

t+1 by a rotation gate.
(7) if t > TQ (the maximum number of generations) or another termination

condition is satisfied, then terminate the algorithm and output the nondom-
inated cells in MQ. Otherwise, let t = t + 1 and return to (2).

2. The main procedures of BAIS:

(1) Let t=0 and initialize the population PB
0 of size NB

pop together with the
population obtained by QAIS. Set the memory MB

0 = ∅ and its maximum
size = Nmem.

(2) For each cell in the population, reproduce the cell NB
clones times and mutate

each clone by a reverse mutation operator.
(3) Repair the offspring, and then combine the population PB

t , the memory MB
t

and the offspring as RB
t .

(4) Evaluate RB
t , and perform trimming operation for RB

t .
(5) Compute nondominated cells among RB

t , and copy them to the memory
MB

t+1.
(6) if t > TB (the maximum number of generations) or another termination

condition is satisfied, then terminate the algorithm and output the nondom-
inated cells in the memory. Otherwise, go on the following step.
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(6) If |MB
t+1| > Nmem, then perform TASI to reduce the size of MB

t+1 to Nmem.
(7) If |MB

t+1| > NB
pop, copy cells of MB

t+1 to a set ZB
t+1, and use TASI to reduce

the size of ZB
t+1 to NB

pop, and then let PB
t+1 = ZB

t+1. Otherwise, copy cells
of MB

t+1 to PB
t+1, and then select (NB

pop − |MB
t+1|) cells from dominated cells

among RB
t by using the selection scheme based on TASI, and add them to

PB
t+1. Let t = t + 1, and go to (2).
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Fig. 1. The main framework of MOQAIS

On the basis of QAIS and BAIS, the main framework of MOQAIS is shown in
Fig. 1. From Fig. 1, It can be seen that the quantum-inspired search and immune
search are hybridized, and the proposed algorithm is structured into two nested
levels. The inner level manages the exploitation of the search space by using
BAIS. The task of exploration of the solution space is carried out in the outer
level by using QAIS. For the trimming scheme and the selection scheme, we refer
the reader to the literature [6].
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2.1 Encoding and Decoding Technique

For QAIS, the encoding technique based on Q-bit is adopted. A cell is represented
as a string of n Q-bits in the following:[

α1 α2 · · · αn

β1 β2 · · · βn

]
where |αi|2 + |βi|2 = 1, i = 1, 2, . . . , n. For the Q-bit string, it can be obviously
seen that it can not be directly used to calculate the objective values. Thus, a
random key decoding technique is applied. According to [7], a Q-bit string is
first converted to a binary string. In particular, for the jth (j = 1, 2, · · · , n) bit
of Q-bit string, a random number η is generated at interval [0,1]. If |βj |2 > η,
then let the corresponding bit rj of the binary string be 1; otherwise let rj be 0.
In BAIS, a binary encoding is directly applied, and the objective values can be
directly obtained using (4).

2.2 Mutation Operator

In our proposed algorithm, two distinct mutation operators are applied to BAIS
and QAIS, respectively. In BAIS, a reverse mutation operator is used to perform
mutation for each cell. And for a cell, every gene is mutated with a predefined
probability pm.

For example, for a nine-item MKP, a parent cell is [0 1 0 1 1 0 0 1 1]. If
the second, sixth, and eighth genes are chosen to perform mutation, then the
children will be [0 0 0 1 1 1 0 0 1].

For QAIS, a chaos rotation Q-gate is utilized to perform mutation for each
cell. Like BAIS, every Q-bit is mutated with a predefined probability pm. Assume

that a parent cell is
[
α1 α2 · · · αn

β1 β2 · · · βn

]
, its mutation procedure is listed as follows.

(1) j = 1
(2) Generate a random number η at interval [0, 1].
(3) If η < pm, (αj ,βj) of the jth Q-bit is updated as follows.[

α
′
j

β
′
j

]
=

[
cos(Δθj) − sin(Δθj)
sin(Δθj) cos(Δθj)

] [
αj

βj

]
(1)

where Δθj is the angle parameter of rotation Q-gate, and Δθj = λxj
k. xj

k is
a chaos variable, and be calculated by the following equation:

xj
k = 8xj

k−1(1 − xj
k−1) − 1. (2)

From (2), it can be observed that Δθj is within the range [−λ, λ].
(4) j = j + 1.
(5) If j > n, then terminate the procedure. Otherwise, return to (2).
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In the above procedure, λ is an amplitude, and its value depends on the rank
of the parent cell in the population. Assume that the number of nondominated
fronts in the population is K, for a parent cell, if it is on the ith front (i =
1, 2, · · · ,K),

λ = λ0 exp((i− |K|)/|K|), (3)

where λ0 is a control parameter. From (1)-(3), we can see that for a parent cell,
the better its rank is, the smaller the chaos disturb is. And vice versa.

2.3 Rotation Gate for Q-Bit in QAIS

The rotation gate is only used in QAIS to adjust the probability amplitudes
of each Q-bit. According to the rotation gate in (1), a quantum-gate U(θi) is a
function of θi = s(αi, βi)·Δθi, where s(αi, βi) is the sign of θi that determines the
direction and Δθi is the magnitude of rotation angle. Like the literature [4,7], the
angle parameters used for the rotation gate are selected from the lookup table
(see Table 1). In Table 1, bi and ri are the ith bits of a nondominated solution
b randomly selected from the memory and a binary solution r, respectively.
Because b comes from the nondominated set in QAIS, the use of Q-gate is to
emphasize the searching direction toward b, which will be helpful for enhancing
the quality of the population.

Table 1. Lookup table of rotation angle

ri bi f(r) < f(b) Δθi
s(αi, βi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 true 0 0 0 0 0

0 0 false 0 0 0 0 0

0 1 true 0.05π +1 -1 0 ±1

0 1 false 0 0 0 0 0

1 0 true 0.01π -1 +1 ±1 0

1 0 false 0.025π +1 -1 0 ±1

1 1 true 0.005π +1 -1 0 ±1

1 1 false 0.025π +1 -1 0 ±1

2.4 Repairing Scheme

In our proposed algorithm, some unfeasible solutions will be generated at each re-
production generation, which will influence the performance of algorithm. Thus,
the following greedy repairing approach is utilized to transform the unfeasible
solutions to feasible solutions. First, compute the maximum profit/weight ratio
qj = maxm

i=1{pij/wij}, j = 1, 2, · · · , n. Second, sort qj in the decreasing order.
Finally, the selection procedure always chooses the last item for deletion until
the constrained conditions are satisfied.
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3 Experiments

3.1 Test Problem

MKP can be formulated as follows [1]:

Maximize fi(x) =
n∑

j=1

pijxj , i = 1, 2, . . . ,m (4)

subject to
n∑

j=1

wijxj � ci, for ∀i ∈ {1, 2, . . . ,m} (5)

where each fi, 1 � i � m, is an objective function, x = [x1, x2, . . . , xn]T ∈
{0, 1}n, pij is the profit of item j according to knapsack i, wij is the weight of
item j according to knapsack i, and ci is the capacity of knapsack i. If xj = 1,
the jth item is selected for the knapsack.

Test data come from the following two aspects. On one hand, uncorrelated
profits and weights are considered. wij and pij are randomly generated with an
uniform distribution at interval [10,30], and the knapsack capacities are set to
half the total weight. For this case, the knapsack problems, (2,750) and (3,250)
are considered. On the other hand, we use strongly correlated sets of data. For
the first knapsack, wij is randomly generated with a uniform distribution at
interval [1,100], and p1j = w1j + 30; for the other knapsacks, wij and pij are
randomly generated with an uniform distribution at interval [1,100]. Like the
above data, the average knapsack are used. In this case, the three knapsack
problems, (2,100), (2,250) and (3,500) are considered.

3.2 Performance Measures

(1) Diversity metric(D): In order to measure how well the solutions throughout
nondominated set (Denoted by Q) are distributed, the metric proposed by
Li et al. [8] is used to evaluate the spread of the set Q of nondominated
solutions, and can be formulated as:

D =
∑m

i=1(f
i
max − f i

min)√
1
|Q|

∑|Q|
i=1(di − d̄)2

, (6)

where di is the Euclidean distance between the ith solution and its closest
neighbor, d̄ is the mean distance, and f i

max (f i
min) denote the maximum

(minimum) value of the ith objective. The greater value of the diversity
metric, the better the diversity of nondominated solutions is.

(2) Coverage of two sets (C): In order to measure the convergence of nondom-
inated solutions, the metric suggested by Zitzler [1] is used. For two sets of
solution vectors A and B, the set coverage metric C(A,B) calculates the
proportion of solutions in B, which are weakly dominated by solutions of A:

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B| . (7)
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Table 2. Termination conditions of all algorithms

Problems (2,100) (2,250) (2,750) (3,250) (3,500)

Fitness function evaluations 115,000 225,000 450,000 150,000 150,000

Table 3. D comparision

Problems
MOQAIS HQGA QMEA WBMOAIS

MV SD MV SD MV SD MV SD

(2,100) 5.224999 1.118759 2.623325 0.871489 1.257989 0.586969 2.128839 0.588696

(2,250) 9.984834 1.922662 7.012672 2.201354 3.142502 1.041164 5.275780 1.195882

(2,750) 23.21331 3.458199 7.969381 2.391153 4.336546 1.349201 9.882045 2.900051

(3,250) 11.44253 1.624752 10.98980 2.128796 7.626542 0.608593 9.875016 0.871207

(3,500) 15.83841 3.013895 8.301092 3.895801 2.232156 1.975013 3.168448 3.789541

Table 4. C comparision

Problems MOQAIS(B) HQGA(B) QMEA(B) WBMOAIS(B)

MOQAIS(A)

(2,100) / 0.343 1 0.894

(2,250) / 0.966 1 0.960

(2,750) / 1 1 1

(3,250) / 0.815 1 0.743

(3,500) / 0.453 1 0.897

HQGA(A)

(2,100) 0.478 / 1 0.894

(2,250) 0.028 / 1 0.548

(2,750) 0 / 1 0

(3,250) 0.043 / 1 0.412

(3,500) 0.200 / 1 0.654

QMEA(A)

(2,100) 0 0 / 0

(2,250) 0 0 / 0

(2,750) 0 0 / 0

(3,250) 0 0 / 0

(3,500) 0 0 / 0

WBMOAIS(A)

(2,100) 0.048 0.035 1 /

(2,250) 0.007 0.248 1 /

(2,750) 0 0.969 1 /

(3,250) 0.232 0.689 1 /

(3,500) 0.112 0.235 1 /

The metric value C(A,B) = 1 means all members of B are weakly dominated
by A. On the other hand, C(A,B) = 0 means that no member of B is weakly
dominated by A.

3.3 Computation Results

The proposed algorithm MOQAIS is compared against two quantum-inspired
algorithms: QMEA [3] and HQGA [4]. In addition, MOQAIS is also compared
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with a multiobjective artificial immune system WBMOAIS [5] in order to verify
the quantum-inspired effect. In this case, the termination conditions are listed in
Table 2 for all four algorithms. The values of the two metrics for all algorithms
are respectively presented in Tables 3 and 4. In Table 4, MV and SD mean the
mean value and the standard deviation, respectively, and MV = the obtained
mean value/10, and SD=the obtained standard deviation/10.

By analyzing the numerical results presented in Tables 3 and 4, our obser-
vation is confirmed. We can see that for the problems which include (2,250),
(2,750), (3,250) and (3,500), MOQAIS obtains a better value than HQGA,
QMEA and WBMOAIS for each metric. For the problem (2,100), C(MOQAIS,
HQGA)=0.343 and C(HQGA, MOQAIS)=0.478, so we can see that HQGA
shows a slightly better behavior than MOQAIS for the metric C. However, for
the other three metrics, MOQAIS has the best values. Therefore, we can affirm
that MOQAIS is better than HQGA, QMEA and WBMOAIS.

4 Conclusion

In this study, we present a novel quantum-inspired multiobjective artificial im-
mune system for MKP. The experimental results for MKP with 5 different test
data support the claim that the proposed algorithm exhibits better proxim-
ity performance as well as diversity maintenance, and outperforms two other
quantum-inspired evolutionary algorithms, QMEA and HQGA, and a weight-
based multiobjective artificial immune system, WBMOAIS.
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Abstract. This paper develops a RBF neural network based on particle swarm 
optimization (PSO) algorithm. It is composed of a RBF neural network, whose 
parameters including clustering centers, variances of Radial Basis Function and 
weights are optimized by PSO algorithm. Therefore it has not only simplified 
the structure of RBF neural network, but also enhanced training speed  
and mapping accurate. The performance and effectiveness of the proposed 
method are evaluated by using function simulation and compared with RBF 
neural network. The result shows that the optimized RBF neural network has 
significant advantages inspect of fast convergence speed, good generalization 
ability and not easy to yield minimal local results. 

Keywords: RBF neural network, Particle swarm optimization algorithm,  
Optimize. 

1   Introduction 

Radial basis function (RBF), emerged as a variant of artificial neural network, have 
been successfully applied to a large diversity of applications including interpolation, 
chaotic time-series modeling, control engineering, image restoration, data fusion, 
etc[1~3]. 

In RBF network, parameters of basis functions (such as width, the position and 
number of centers) in the nonlinear hidden layer have great influence on the perform-
ance of the network[4][5]. Common RBF training algorithms cannot possibly find the 
global optima of nonlinear parameters in the hidden layer, and often have too many 
hidden units to reach certain approximation abilities, which will lead to too large a 
scale for the network and decline of generalization ability. 

Particle Swarm Optimization (PSO) algorithm is a global optimization technology 
based on the group intelligence, it carries on the intelligent search for the solution 
space through mutual effect in order to discover the optimal solution[6][7]. 

In this paper, a hybrid RBF training method combining Particle Swarm Optimiza-
tion (PSO) algorithm is proposed.  In this method, PSO algorithm is used to determine 
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the structure and parameters in RBF hidden layer, and RBF linear output weights  
as well. The experiments showed that this method improved effectively the conver-
gence speed of the algorithm and overcomes the problem of immature convergence, 
and the proposed method integrating RBF network and PSO algorithm are effective 
and feasible. 

This paper is divided into four sections. In Sect. 2, the integration of RBF network 
and PSO algorithm is described. In Sect. 3, simulation experiment through two func-
tions is done and the results are presented. The conclusions are given in Sect. 4. 

2   Integration of RBF Network and PSO Algorithm 

2.1   Radial Basis Function Neural Network 

Radial basis function (RBF) neural network was proposed by Broomhead and Lowe, 
and this neural network differs from neural networks with sigmoidal activation func-
tions in that it utilizes basic functions in the hidden layer that are locally responsive to 
input stimulus. RBF are embedded in a two-layer neural network, where each hidden 
unit implements a radial activated function. The output units implement a weighted 
sum of hidden unit outputs. While the input into a RBF network is nonlinear, the 
output is often linear. Their excellent approximation capabilities have been studied by 
Park and Sandberg. Owing to their nonlinear approximation properties, RBF networks 
are able to model complex mappings, indicating that neural networks can only model 
by means of multiple intermediary layers. 

2.2   Radial Basis Function Network Model 

The RBF network topological structure is shown in Fig.1. The network consists of 
three layers, namely the input layer, radial basic function hidden layer and output 
layer. The input part does not transform the signals but only dispatches the input vec-
tor to the radial basic layer. The function in a hidden layer node (also called nucleus 
function) responds partly to the input signals, i.e. when the input function is close to 
the center range of the nucleus function, the hidden layer will produce a larger output. 
The output layer makes output values through a linear combination of outputs from 
the hidden layer. 

 
 
 
 
 
 
 
 
 

Fig. 1. Structure of RBF neural network 
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Here input vector 
1 2
, ,...,

R
X x x x⎡ ⎤= ⎣ ⎦ ; 

ic  - the center of RBF neural network, a 

constant vector with the same dimension as X; R-the dimension of the input vector; 

M-neurons number of the hidden layer; ( )Φ ⋅ -radial basis function; 
i

X c− -

Euclidean distance between X and 
ic ; j-output node, j=1,2 ..... P; 

ijw -the weight 

value which connected the i-th hidden node with the j-th output node. 

As shown in figure l, ideal output 
j

y  (j=1,2, . . . ,P), the actual output ˆ
j

y  and the 

weight value of the output layer 
ijw  can be obtained by the RBF neural network. 
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i

i
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x c
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⎛ ⎞
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Then, the weight value 
ijw  is adjusted to satisfy the following formula, from which 

the final result of the RBF neural network can be obtained. 
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2

2

1 1

= 
1

ˆ
P P

j j j
j j

M
E ij i

i
xy y y w

= =

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟=⎝ ⎠

Φ∑ ∑ ∑  (2)

2.3   PSO Algorithm 

PS0 algorithm is initialized with a group of random solutions(called swarms). Each 
potential solutions, called particles, fly through the problem space at velocities 
following those of the current optimum particles and searches for optima by updat-
ing generations [8][9]. In every iteration, each particle is updated by following two 
“best” values. The first one is the best solution (fitness) achieved so far (fitness 

value is also stored). This value is called 
iP . Another “best” value tracked by the 

particle swarm optimizer is the best value obtained so far by any particle in the 

population. When this best value is a global best, it is called 
gP . The PSO concept 

consists of, at each time step, changing the velocity (accelerating) of each particle 

toward its 
iP  and 

gP  locations (global version of PSO). Finally the results are 

achieved [10]. 
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The particle i  updates its velocity and location according to the following  
formulae: 

( ) ( )1

1 21 2

k k k k

i ii i i g
w p pV V c cr X r X

+ = + − + −  (3)

11 k k

ii

k
i X VX λ ++ +=  (4)

where 
iX  is the position of the particle i ; 

iV  represents the velocity of the particle 

i , ( )min max
,

iV v v∈ ; 
minv  and 

maxv  are constants in the range of [0,1]; 
iP  is the best 

previous position of particle i ; w R∈  is called inertia weight and Rλ ∈  is called con-
striction factor which is used alternatively to w R∈  to limit velocity; 

1
Rc ∈  and 

2
Rc ∈  

are acceleration constants; 
1r  and 

2r  are random real numbers in the range of [0,1]. 

When the given maximum iteration frequency or fitness value meets the requirement to 
realize the given value, the calculation is terminated. 

The inertia weight is set to the following equation : 

( )( )max max min max
w iterw w w iter= − − ×  (5)

where 
maxw  is the initial value of weighting coefficient; 

minw  is the final value of 

weighting coefficient; 
maxiter  is the maximum number of iterations or generation; 

iter  is the current iteration or generation number. 

2.4   Algorithm Flow 

In this paper, PSO algorithm uses real-coded, makes 
ic , 

iσ  and 
ijw  of RBF net-

work as a particle. The whole integration step is summarized as following: 

Step 1: Initialize swarm, including swarm size, each particle’s position and veloc-
ity; Give initial value: 

maxw , 
minw , and generation=0. 

Step 2: Set the range of 
ijw is ' '

min max
,w w⎡ ⎤

⎣ ⎦
. makes 

ic , 
iσ  and 

ijw  of RBF net-

work as a particle. Thus, build the initial swarm. 

Step 3: Calculate individual fitness, decode the individuals, assign them to 
ic , 

iσ  

and 
ijw  of RBF network. Calculate the study samples’ output error. The fitness of 

particle a  is defined as: 

( ) ( )2

1 1

P n

i j

f a ijijy t
= =

= −∑∑  (6)

where 
ij

y  is the calculated output of individual network i , 
ijt  is the expected output, 

n  is the number of training set examples, and P  is the number of output nodes. 
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Step 4: Determine whether meet the conditions to terminate the algorithm. 

Step 5: If it meets the condition, it will go to step 6, else generate next swarm by 
PSO algorithm, find new 

iP  and 
gP , update 

gP  of the swarm and 
iP of each particle, 

go to step 3. 

Step 6: Decode the optimal individual searched by PSO algorithm, assign them to 

ic , 
iσ  and 

ijw  of RBF network. 

3   Simulation Experiment 

In this section, we will use two different examples to validate the new method. We 
do experiments with two different algorithms, RBF network and RBF network  
optimized by PSO algorithm. For the two algorithms, we adopt same initialization 
conditions. 

Example 1: sin(5 ) cos(3 ),  [ 1,1]y x x x= + ∈ −  

From the concrete simulation we obtain Figure 2 to Figure 4. 

 

Fig. 2. Training curve of RBF network optimized by PSO algorithm 

 

Fig. 3. Simulation result of RBF network optimized by PSO algorithm 
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Fig. 4. Training curve of RBF network 

Example 2: 
22 2( , ) 100 , [0,1], [0,1](1 ) ( )f x y x yx y x= + ∈ ∈− −  

From the concrete simulation we obtain Figure 5 to Figure 7. 

 

Fig. 5. Training curve of RBF network optimized by PSO algorithm 

 

Fig. 6. Error surface of RBF network optimized by PSO algorithm 

The two examples are utilized to validate the proposed new method. From all 
above figures, we can learn that RBF neural network system which is optimized by 
PSO algorithm has better convergence rate and higher learning precision. Meanwhile 
RBF neural network system which is optimized by PSO algorithm can obtain better 
simulation results compared with RBF neural network. The simulation shows the 
feasibility and validity of the new method. 
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Fig. 7. Training curve of RBF network 

4   Conclusions 

In this paper, PSO algorithm is introduced to improve the behavior of RBF network. 
In view of the inherent defects in the tradition learning algorithm of RBF NN, PSO 
algorithm optimizes 

ic , 
iσ  and 

ijw  of RBF network. Then the proposed method is 

applied to function simulation and compared with RBF network. The numerical re-
sults show that the RBF neural network system which is optimized by PSO algorithm 
has a better training performance, faster convergence rate than the RBF network. It is 
worth to mention that the current study is very preliminary for the RBF neural net-
works approach, and there are many works need to be carried on further. 
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Abstract. In this paper, we introduce a new architecture of GA-based Granular 
Radial Basis Function Neural Networks (GRBFNN) and discuss its comprehen-
sive design methodology. The architecture of the network is fully reflective of 
the structure encountered in the training data which are granulated with the aid of 
clustering techniques. More specifically, the output space is granulated with use 
of K-means clustering while the information granules in the multidimensional 
input space are formed by using a so-called context-based Fuzzy C-means which 
takes into account the structure being already formed in the output space. The 
GA-based design procedure being applied to each receptive fields of GRBFNN 
leads to the selection of preferred receptive fields with specific local characteris-
tics (such as the number of context, the number of clusters for each context, and 
the input variables for each context) available within the GRBFNN. 

Keywords: Granular radial basis function neural networks (GRBFNN),  
Context-based fuzzy C-means, Genetic algorithm, Machine learning data. 

1   Introduction 

The current trend in intelligent systems design and analysis or Computational Intelli-
gence research is concerned with the integration of its underlying tools (say, fuzzy 
technology [1], neural networks [2], evolutionary algorithm [3], etc.) and data proc-
essing tools (K-means clustering, fuzzy C-means clustering [4], etc.) in a hybrid 
framework for solving complex problems. In particular, radial basis function neural 
networks (RBFNN) have been widely studied and applied to many categories of prob-
lems such as those arising in pattern recognition, signal processing, time series predic-
tion, and nonlinear system modeling and system control, cf. [5].  

In this research, our main objective is to develop a design strategy of GA-based 
Granular Radial Basis Function Neural Network (GRBFNN) in which (a) an architec-
ture of the network is fully reflective of the structure encountered in the training  
data being granulated with the aid of fuzzy clustering, and (b) an optimal parameters 
design available within receptive fields (viz. the number of context, the number of 
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clusters for each context, and the input variables for each context) lead to a structur-
ally and parametrically optimized network by the genetic algorithm. 

2   General RBF Neural Network 

RBF neural network [5], [6] is a three-layer neural network, in which an n-
dimensional input vector x=[x1, x2, ..., xn]

T is transformed in a nonlinear fashion by a 
series of the receptive fields. Quite commonly, the receptive fields are described by 
the Gaussian basis functions of the form 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−=Φ

2
i

2
i

i
r2

exp)(
vx

x  (1)

The output of the network y(x) is computed as a linear combination of the individual 
activation levels, that is 

∑
=

=
K

1i
ii )(Φw)y( xx  (2)

3   The Data Processing by Granular Computing 

3.1   K-Means Clustering in the Output Space 

K-means clustering has been intensively used not only to organize and categorize 
data, but it becomes useful in data compression and model identification [7]. 

In this setting, the K-means algorithm partitions a collection of output data, that is 
{targetk}, k=1,2, .., N into P-2 clusters and determines prototypes of each cluster such 
that a certain cost function (performance index) V is minimized. 

2
i

1P

2i

N

1k
k )y(targetV −=∑∑

−

= =

 (3)

We also treat the minimal and maximal value in these output data as the two addi-
tional prototypes. This in total gives rise to P prototypes. Denote these prototypes by 
y1, y2, …, and yP, respectively. Over these prototypes we span triangular membership 
functions with the modal values positioned at yi’s. There is an ½ overlap between two 
successive fuzzy sets. We denote the membership functions obtained in this manner 
by T1, T2, …, and TP, respectively. In particular, the membership degree of the data 
{targetk} in the j-th context fuzzy set is denoted by tjk. 

3.2   Context-Based Fuzzy C-Means Clustering in the Input Space 

The context-based clustering supporting the design of information granules is com-
pleted in the space of the input data while the build of the clusters is guided by a col-
lection of some predefined fuzzy sets (so-called contexts) defined in the output space, 
cf. [6], [8]. Let us introduce a family of the partition matrices induced by the j-th 
context and denote it by U(Tj), 
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The objective function of the context-based clustering is defined as follows: 
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The minimization of V is realized under the constraints expressed by (5) so in essence 
we end up with “P” separate clustering tasks implied by the respective contexts. 
Briefly speaking we have 

P , 2, 1,j   ),(Ttosubject VMin j =U  (6)

The minimization of V as completed by the context-based FCM is realized by itera-
tively updating the values of the partition matrix and the prototypes.  

The update of the partition matrix and the prototypes (z1, z2, …, zc) are completed 
as follows 
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4   The Architecture of the Granular RBF Neural Network 

The network dwells on the concept of context-based clustering method. The fuzzy 
partitions formed for all variables gives rise to the topology as visualized Figure 1. 
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1ŷ

2ŷ
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Fig. 1. Structure of the proposed RBFNN 

Alluding to the terminology of fuzzy rule-based systems, this structure translates 
into the following collection of rules: 
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where, iŷ is i-th local model (i=1, 2, …, P×c), yp is the modal value of the p-th con-

text, xp is the selected input set of p-th context. Ri stands for the i-th rule. 
When taking all rules into account, we arrive at the expression governing the out-

put of the network 
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The performance index used in the evaluation of the network comes in the form of the 
Root Mean Square Error (RMSE). The standard Lest Square Error (LSE) is used to 
determine the coefficients of each of the local models. 

5   Optimization by Genetic Algorithms 

Genetic algorithms support robust and population-oriented search realized in complex 
search spaces [3]. Proceeding with the optimization details, the GA use the serial 
method of float type, roulette-wheel in the selection operator, one-point crossover in 
the crossover operator, and invert operator in the realization of the mutation operator. 
To reduce the stochastic diversity of roulette-wheel selection, we use elitist strategy. 
The fitness function that is an essential component of any environment of genetic 
computing is chosen so that reflects the performance of the network. In what follows, 
we consider the following form of the fitness function to be maximized: 

Fitness function = 1/PI (10)

6   Experimental Results 

The proposed architecture of the network, its development and resulting performance 
are illustrated with the aid of a series of numeric experiments. In all experiments, we 
randomly divide the data set into the training (60%) and testing (40%) part of data, 
respectively. Table 1 includes a list of parameters used in the genetic optimization of 
the network used in the numeric experiments.  

Table 1. Parameters used in the genetic optimization of the nework 

 Synthetic 3-D data Automobile MPG data 
Generation size 100 
Population size 100 
Crossover size 0.65 
Mutation rate 0.1 

Number of all input variables 3 7 
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6.1   Synthetic Three-Dimensional Data 

We consider a nonlinear three-argument (variable) function of the following form 

( ) 5x,x,x1,xxx1)x,x,f(xy 321
21.0-

3
1.5-
2

2-
1321 ≤≤+++==  (11)

Using (11), we generated 200 input-output data pairs. The experiments were carried 
out for the number of contexts varying in-between 2 and 6. Table 2 summarizes the 
lowest values of the performance index obtained through the proposed methodology.  

Table 2. Values of the performance index for the synthetic three-dimensional data 

Selected number of clusters per 
context 

Selected input variables for each 
context 

No. of 
selected 

input 
variables 

per context 
1th 2nd 3rd 4th 5th 6th 1th 2nd 3rd 4th 5th 6th 

PI EPI 

1 2 2 3 4 3 5 2 2 1 2 3 2 0.1321 0.3051 
2 5 4 2 5 5  1 3 1 3 1 2 2 3 1 2  0.1208 0.1851 
3 3 4 3 3 3 4 1, 2, 3 0.0544 0.3116 
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(a) training data                                         (b) testing data 

Fig. 2. Scatter plots of data versus the output of the network 

The best performance (quantified as PI=0.1208 and EPI=0.1851) is reported for the 
network with 5 contexts and {5, 4, 2, 5, 5} clusters per each context. In the case all 
input variables were used, the performance of the best model comes with PI being 
equal to 0.0544 and EPI given as 0.3116. Figure 2 visualizes the approximation and 
generalization capabilities of the network (here PI=0.1028, EPI=0.1851). 

Figure 3 shows the performance index (RMSE) of the optimized network obtained 
for the number of selected input variables per context. 

Table 3 summarizes the performance of the proposed network vis-à-vis the  
results produced by the linear regression model and the “standard” RBF neural  
network.  
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Fig. 3. Performance index regarded as a number of selected input variables per context 

Table 3. Comparative analysis of the performance of selected model 

Performance index Model Number of selected 
input variables PI EPI 

Linear regression  0.6385±0.0374 0.7447±0.0513 
Number of nodes =5 0.8732±0.0869 0.9964±0.1316 
Number of nodes=15 0.4693±0.0547 0.7695±0.1148 RBFNN [9] 
Number of nodes=30 0.2731±0.0210 0.5663±0.1117 

1 0.1321 0.3051 
2 0.1208 0.1851 Proposed model 
3 0.0544 0.3116 

6.2   Machine Learning Data 

We consider the well-known automobile MPG data with the output being the auto-
mobile’s fuel consumption expressed in miles per gallon. Here we consider 392 input-
output pairs. The best results are reported in Table 4.  

Table 4. Performance index of the proposed model 

Selected number of 
clusters per context 

Selected input variables for each context 
No. of 

selected 
input per 
context 1th 2nd 3rd 4th 5th 6th 1th 2nd 3rd 4th 5th 6th 

PI EPI 

1 4 4 3 5 5  5 4 3 6 4  1.1100 1.8151 
2 4 4 2 4 4 2 3 5 3 5 1 4 4 6 5 7 3 6 0.7962 1.1704 
3 5 4 4 2 4 4 4 5 7 1 2 7 1 2 3 3 6 7 1 3 4 3 4 6 0.6659 1.0976 
4 4 2 4 3 4 3 1 3 4 7 2 4 5 6 1 2 5 7 1 2 6 7 2 5 6 7 1 2 3 7 0.6065 1.2789 

5 5 4 2 2 4 2 
3 4 5 6 

7 
1 2 4 6 

7 
1 2 3 5 

7 
1 2 5 6 

7 
2 3 4 6 

7 
3 4 5 6 

7 
0.6673 1.4784 

6 3 3 3 3 3 3 
1 2 3 4 

5 7 
1 2 3 4 

5 6 
1 3 4 5 

6 7 
1 3 4 5 

6 7 
1 2 4 5 

6 7 
1 2 4 5 

6 7 
0.9486 1.3026 
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Figure 4 presents the values of the performance index.  
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Fig. 4. Performance index as increase of a number of selected input variables per contexts 

Table 5 summarizes the performance of the proposed network versus other models.  

Table 5. Comparative analysis of the performance of selected model 

Performance index Model Number of selected 
input variables PI EPI 

Linear regression  3.1609±0.0716 3.5701±0.1032 
Number of nodes =5 7.2746±0.1457 7.7341±0.2382 

Number of nodes =15 6.6949±0.1711 7.5651±0.3660 RBFNN [9] 

Number of nodes =30 5.7557±0.0722 7.7140±0.1920 
1 1.1100 1.8151 
2 0.7962 1.1704 
3 0.6659 1.0976 
4 0.6065 1.2789 
5 0.6673 1.4784 
6 0.9486 1.3026 

Proposed model 

7 0.7306 2.6903 

7   Concluding Remarks 

In this paper, the GA-based design procedure of Granular Radial Basis Function Neu-
ral Network (GRBFNN) and its design methodology were proposed to construct  
optimal model architecture for nonlinear and complex system modeling. The informa-
tion granules are developed using a certain context-driven version of the Fuzzy C-
means. This specialized clustering environment emphasizes the role of contexts – 
fuzzy sets defined in the output space in the formation of the information granules in 
the input space. And GA-based design procedure at each context of GRBFNN leads 
to the selection of these preferred parameters available within receptive field, and  
then based on these selections, we build the flexible and optimized architecture of the 
GA-based GRRBNN. 
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Abstract. Averaging over the Lie group SO(p) of special orthogonal

matrices has several applications in the neural network field. The prob-

lem of averaging over the group SO(3) has been studied in details and,

in some specific cases, it admits a closed form solution. Averaging over

a generic-dimensional group SO(p) has also been studied recently, al-

though the common formulation in terms of Riemannian mean leads to

a matrix-type non-linear problem to solve, which, in general, may be

tackled via iterative algorithms only. In the present paper, we propose a

novel formulation of the problem that gives rise to a closed form solution

for the average SO(p)-matrix.

Keywords: Averaging over curved manifolds; Closed-form solution;

Learning theory; Special Orthogonal matrices.

1 Introduction

Averaging is a rather common way to smooth out data and get rid of noise or
measurement errors. Computing the mean value or the median value of a set of
scalar, real-valued measures is an easy task. In recent engineering applications,
however, data to process do not appear as simple real scalars, but they may
appear as structured data, like vectors or matrices, whose entries should further
satisfy nonlinear constraints.

An interesting case of averaging is the one in which the data are multidi-
mensional rotations, namely, they belong to the Lie group of special orthogonal
matrices SO(p). Averaging and interpolation over the group SO(p) has several
applications.

An early application was to the study of plate tectonics [8]. In geophysics,
estimates of the relative motion of continental plates among various geological
epochs are available. For a given pair of plates, such a relative movement may
be summarized by a rotation matrix that describes the orientation of a plate
with respect to its initial position. The general problem of rotation estimation
at non-observation times may be addressed by interpolation in the group of
rotations.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 185–192, 2010.
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An interesting application is to invariant visual perception [9]. One of the most
important problems in visual perception is the one of visual invariance, namely,
how objects are perceived to be the same despite undergoing transformations
such as translations, rotations or scaling. It was shown that approaches based on
first-order Taylor series expansions of inputs may be regarded as special cases of
the SO(p)-based approach, the latter being capable of handling arbitrarily large
transformations in contrast to those based on truncated series expansions.

Another noticeable application was found in the modeling of DNA chains [6].
Since the discovery of the double helical structure of DNA chains, this molecule
has been the focus of study by numerous scientists. Mechanical models of DNA
have offered a new perspective for studying its macroscopic properties. In par-
ticular, elastic-rod models have been widely used as an approximation to DNA
actual mechanical structure. The elastic-rod model consists of a framed curve, or
centerline of the rod, that runs through the middle of the double helix. Modeling
of DNA sequences may be effected thus by three-dimensional rods, whose config-
uration may be described by SO(3)-valued functions. In fact, the configuration
of a rod may be described by a centerline and a function of directors that form
an orthogonal frame giving the orientation of the cross-section of the rod at a
given location. In the context of DNA modeling, experimental observations are
obtained with a significant amount of noise that needs to be smoothed out, e.g.,
by averaging.

A well-known application is data compression/denoising by principal compo-
nent analysis [3]. Data compression may be achieved by seeking for a change
of basis that concentrate the energy of the data in a few directions and leave a
little fraction of the data energy in the complementary directions. In the case of
data denoising, it is the noise components that make a low-dimensional data-set
appear as a high-dimensional data-set and that may be partially discarded by
projecting the data over a suitable basis. Such basis is orthogonal and may be
described by a special orthogonal matrix.

Another well-known application is to blind source separation and indepen-
dent component analysis [4]. Blind separation of signals in telecommunication,
acoustics and medical imagery analysis may be obtained, upon normalization of
data covariance matrix, by the help of a high-dimensional rotation that may be
represented by a special orthogonal matrix to be learnt.

The case of averaging over the group SO(3) has been studied in details [7] and
it is known that in some specific cases it admits a closed form solution. The more
general problem of averaging over a higher-dimensional group SO(p), with p > 3,
has also been studied recently [5], although the common formulation in terms
of Riemannian mean leads to a matrix-type non-linear problem to solve, which
may be tackled via iterative algorithms only (gradient/based or Newton-like)
(see, e.g., [2]).

In the present paper, we propose a novel formulation of the problem that gives
rise to a closed form solution for the average special orthogonal matrix. The key
point is to endow the Lie group SO(p) with an alternative group structure with
respect to the one arising by matrix multiplication/inverse.
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2 General Setting and Averaging Algorithm Design

In the following subsection, we briefly recall some properties of Lie groups and
consider the problem of averaging over a Lie group in general. For a reference of
differential geometry see, e.g., [10].

2.1 Algebraic and Geometric Setting

A Lie group is an algebraic group that also possesses the structure of a smooth
manifold, namely, which is locally diffeomorphic to an Euclidean space.

An algebraic group structure (G,m, i, e) is made of a set G endowed with a
multiplication operation m, an inverse operation i and an identity element e, such
that for every g1, g2 ∈ G, it holds m(g1, g2) ∈ G, m(g1, i(g1)) = m(i(g1), g1) =
e and m(g1, e) = m(e, g1) = g1. The group identity and inverse need to be
unique and the group multiplication needs to be associative, namely, it must
hold m(g1,m(g2, g3)) = m(m(g1, g2), g3), for every g1, g2, g3 ∈ G.

In the theory of Lie groups, the groupG is endowed with a differential manifold
structure. The tangent space of the manifold G at a point g ∈ G is denoted by
TgG. The tangent space at the identity of a Lie group plays a prominent role in

the theory of Lie groups. It is termed Lie algebra as is denoted by g
def=TeG.

Further to the above properties, it is necessary to ensure that the algebraic
and differential structures be compatible, namely, that the application (g1, g2) "→
m(g1, i(g2)) be infinitely differentiable for every g1, g2 ∈ G.

A left translation � : G × G → G may be associated to the Lie group G,
which is defined by �g(g1) = m(i(g), g1) for all g, g1 ∈ G. The inverse of operator
�g(·) : G → G is �−1

g (g1) = m(g, g1).
Exponential maps may be associated to a manifold. The exponential map

expg : TgG → G pulls down a tangent vector to the manifold and its inverse
operator is denoted by logg, which maps a point of G into a point in TgG.
Exponential and logarithmic maps at the identity of the Lie group G, namely
maps expe and loge, are simply denoted as exp and log, respectively.

2.2 Averaging over a Lie Group

In a vector space V ⊂ R
p, averages may be calculated in the arithmetic sense,

namely, if v1, . . . , vN ∈ V , then a possible average formula to compute a mean
value v ∈ V is:

v
def=

1
N

(v1 + v2 + · · ·+ vN ) . (1)

This is possible because in vector spaces that are subsets of R
p, multiplication

by scalars and addition are possible. In a Lie group, however, the term ‘mean
value’ does not carry on the usual weighted-sum meaning because – in general
– a matrix Lie group G is a curved manifold, so if g1, g2 ∈ G then g1 + g2 /∈ G,
where symbol + stands for matrix-to-matrix addition.
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In order to compute averages on a Lie group, it is possible to take advantage
of the exponential/logarithmic maps to push-up every data point from the group
G to its Lie algebra g, which is a vector space where averaging can be performed
in the arithmetic sense, and then to shift back the mean Lie-algebra vector to the
group. The following logical succession of steps leads to an equation characterizing
the mean Lie-group matrix g ∈ G of a set of points g1, . . . , gN ∈ G [5]:

1. The first step is to shift the points gn ∈ G in a neighborhood of the identity
e ∈ G by the help of a left-translation about the (unknown) mean matrix g.
The shifted points are given by �g(gn) = m(i(g), gn) ∈ G, n ∈ {1, . . . , N}.

2. As the points �g(gk) belong to a neighborhood of the identity of the group
G, they may be pushed-up to the Lie algebra g by applying the logarithmic
map operator, which gives rise to points Ln

def= log(m(i(g), gn)) ∈ g, n ∈
{1, . . . , N}.

3. In the Lie algebra g, averaging may be computed in the arithmetic sense,
namely by L

def= 1
N

∑N
n=1 Ln.

4. The arithmetic mean L ∈ g must correspond, up to pulling-down to the Lie
group and inverse left-translation, to the average point g ∈ G, so it must
hold �−1

g (exp(L)) = g.

In summary, the equation that characterizes the mean Lie-group matrix g ∈ G
may be written as:

g = m

(
g, exp

(
1
N

N∑
n=1

log(m(i(g), gn))

))
. (2)

Apparently from equation (2), the fixed point g is characterized by the fact that
exp( 1

N

∑N
n=1 log(m(i(g), gn))) = e, namely by:

N∑
n=1

log(m(i(g), gn)) = 0 ∈ g . (3)

The above equation generalizes the characteristic equation of [7] in that equation
(3) was derived regardless of the specific structure of the Lie group at hand.

It is important to underline that, according to equation (2), the computation
of a mean value depends on the algebraic structure as well as the geometric
structure that the Lie group of interest is endowed with.

3 Specific Results Tailored to the Group of
Multidimensional Rotations

In the present section, the above general-purpose results are tailored to the case
of the group of multi-dimensional rotations.
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3.1 Closed-Form Solution of the Characteristic Equation for the
Group SO(p)

We are now ready to study the problem of expressing a closed form solution for
the equation (2) for the group SO(p).

The Lie group of multidimensional rotations is defined as:

SO(p)def= {g ∈ R
p×p|gT g = e, det(g) = 1} , (4)

where symbol T denotes matrix transpose and symbol e denotes the p×p identity
matrix. The Lie algebra associated to the group SO(p) is so(p)def={s ∈ R

p×p|sT =
−s}.

In order to define a geometric structure for the space SO(p), it is necessary to
describe a metric structure. In this paper, the metric structure is assumed as the
one induced by the Euclidean manifold R

p×p, namely, the standard bi-invariant
uniform metric. It is known that, in this case, the exponential map at identity
coincides with matrix exponential.

The standard algebraic structure considered for the group SO(p) is the one
deriving from the general linear group of matrices, namely (G, ·,T , e), where
symbol · denotes standard matrix-to-matrix multiplication. In fact, it is clear
that if g1, g2 ∈ SO(p), then g1 · g2 ∈ G and g−1

1 = gT
1 . If such standard group

structure is made use of in the equation (2), then such equation cannot be solved
in closed form and should be solved for g ∈ SO(p) by an iterative algorithm.

An alternative group-structure for the space SO(p) is considered as follows.
It is based on the concept of ‘logarithmic multiplication’ recalled in [11]:

– Group multiplication: m(g1, g2)
def= exp(log g1 + log g2), with g1, g2 ∈ G.

– Group identity element : e = identity matrix in SO(p).
– Group inverse: i(g) = g−1, with g ∈ G.

It is easy to verify that the proposed instances of m, i, e satisfy the group axioms
in SO(p). Also, the logarithmic multiplication on SO(p) is locally compatible
with its structure of smooth manifold, as (g1, g2) → m(g1, i(g2)) = exp(log(g1)−
log(g2)) is a smooth map whenever the map log may be computed.

The exponential of a matrix s ∈ so(p) is defined by the series:

exp(s)def=
∞∑

k=0

sk

k!
.

It is worth recalling that, given matrices s1, s2 ∈ so(p), it holds exp(s1 + s2) �=
exp(s1) exp(s2) unless matrices s1 and s2 commute. Logarithms of a matrix
g ∈ SO(p) are solutions of the matrix equation exp(s) = g. When the matrix
g does not possess any negative eigenvalues, then there exists its unique real
logarithm, termed ‘principal logarithm’, which is denoted by log g. In general,
given matrices g1, g2 ∈ SO(p), it holds log(g1g2) �= log(g1)+ log(g2). (It is worth
noting that special orthogonal matrices have all eigenvalues (real and complex-
valued, in general) with unitary modulus, therefore, the only case for which a



190 S. Fiori

multidimensional rotation does not possess a principal logarithm is when it has
one or more eigenvalue equal to −1.)

We may now apply the above structure by plugging the group multiplication
and inverse operators as defined above into the equation (3). First, note that:

log(m(i(g), gn)) = log gn − log g .

Now, according to equation (3), the mean value g ∈ G must satisfy:

0 =
N∑

n=1

(log g − log gn) = N log g −
N∑

n=1

log gn .

Simple calculations lead thus to the closed-form solution:

g = exp

(
1
N

N∑
n=1

log gn

)
. (5)

The computability of the closed-form solution (5) depends on the way the princi-
pal matrix logarithm is actually calculated. For instance, if for any given matrix
norm ‖ · ‖ it holds ‖g − e‖ < 1, then:

log g = −
∞∑

k=1

(g − e)k

k(−1)k
.

For a recent discussion about the calculation of matrix logarithm (and a closed-
form solution that requires different existence hypotheses), readers might see,
e.g., [1].

3.2 Pushforward Map Associated to the Used Inverse
Left-Translation

For completeness, we present a short derivation of the pushforward map associ-
ated to the inverse left-translation in SO(p) relative to the algebraic structure
described in subsection 3.1. In particular, we are interested in the pushforward
map at the identity of the Lie group SO(p).

Let us first recall the concept of pushforward maps for smooth manifolds
and how they can be computed. Let M and H be two smooth manifolds and
ϕ : M → H be a smooth map between these smooth manifolds. Given a point
x ∈ M , it is defined an application ϕ	, termed pushfoward, as the linear map:

(ϕ	)x : TxM → Tϕ(x)H . (6)

It can be viewed as generalization of the total derivative of ordinary calculus
and can be used to push-forward tangent vectors on the manifold M to tangent
vectors on the manifold H . The pushforward map may be computed via differ-
entiation over smooth curves on the manifold M . Let c : [−a a] → M , with
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a > 0, be a smooth curve such that c(0) = x and ċ(0) = v ∈ TxM . Then, the
vector w ∈ Tϕ(x)H corresponding to the vector v ∈ TxM under the action of the
pushforward map (ϕ	)x may be computed as:

w =
dϕ(c(t))

dt

∣∣∣∣
t=0

. (7)

Note that the value w ∈ Tϕ(x)H depends on both values x ∈ M and v ∈
TxM , so we shall make use of the notation w = (ϕ	)x(v). The construction of a
pushforward map is independent of the chosen curve c(t).

Now, let us consider the case that M = H = SO(p) and ϕ
def= �−1

g for a g ∈
SO(p). We know that, with the group structure defined in the subsection 3.1,
for h ∈ SO(p), it holds:

�−1
g (h) = m(g, h) = exp(log g + log h) . (8)

Now, let us consider a smooth curve c(t) such that c(0) = e ∈ SO(p) and then
ċ(0) = v ∈ so(p). In this case it is easy to see that the application ϕ maps a
point from a neighborhood of the identity to a point in the neighborhood of the
point g, hence the pushforward map ϕ	 maps a point from the Lie algebra so(p)
to the tangent space TgSO(p). By definition of pushforward map we have:

(ϕ	)e(v) =
d

dt
exp(log c(t) + log g)

∣∣∣∣
t=0

= (exp	)log c(t)+log g((log	)c(t)(ċ(t)))
∣∣
t=0

= (exp	)log(g)((log	)e(v)) . (9)

Now, it is known that (log	)e(v) = v, thus, in conclusion:

(�−1
g	 )e(v) = (exp	)log(g)(v) . (10)

The value (exp	)u(v), for any u, v ∈ so(p), may be computed via the series:

(exp	)u(v) =
∞∑

k=1

1
k!

k∑
r=1

ur−1vuk−r . (11)

The pushforward map (10) may be used to push a vector from the Lie algebra
of the special orthogonal group to the tangent space of the group at any point.
This expression may be useful in the numerical simulations when it is necessary
to generate random tangent vectors at some point of the manifold and, more
generally, to translate statistical properties from the Lie algebra to any tangent
space of the manifold.

4 Conclusion

Computing averages over the Lie group of special orthogonal matrices has several
applications. The common formulation in terms of Riemannian mean leads to a
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matrix-type non-linear problem which is hard to solve and that usually may be
tackled only via iterative algorithms.

The aim of the present paper was to propose a formulation of the problem of
averaging matrices over the curved manifold-group of multidimensional rotations
that gives rise to a closed-form solution.

We first presented a quite general formulation of averaging that depends on the
algebraic as well as on the geometric structure that a Lie group is endowed with.
We then customized the above theory to the case of the Lie group SO(p) and
showed that, under an appropriate choice of an algebraic/geometric structure,
it is possible to obtain a closed-form solution for the mean-matrix.

It is important to underline that a closed form solution has the advantage of
easiness of implementation. However, if compared to a solution obtained via a
Riemannian mean theory, it has the drawback of being sub-optimal, in general.
In fact, an iterative algorithm might provide a mean value that corresponds to
a lesser variance [5].
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Abstract. A lower order discrete-time recurrent neural network is pre-

sented in this paper for solving higher quadratic programming. It bases

on the orthogonal decomposition method and solves high order quadratic

programs, especially for the case that the number of decision variables

is close to the number of its constraints. The proposed recurrent neu-

ral network is globally exponential stability and converges to the opti-

mal solutions of the higher quadratic programming. The condition for

the neural network to globally converge to the optimal solution of the

quadratic program is given. An illustrative example and the simulation

results are presented to illustrate its performance.

Keywords: Discrete recurrent neural network, Quadratic program-

ming, Orthogonal decomposition of matrix, Exponential stability.

1 Introduction

A quadratic programming problem with equality constraints is described as
follows:

minimize q(x) =
1
2
xTGx + gTx ,

subject to ATx = b . (1)

Where the objective function is quadratic and the constraints are linear, x ∈ Rn

is the decision variables, G ∈ Rn×n is the matrix of objective coefficients. We
assume the matrix G be symmetrical but not be positive definite. g ∈ Rn is the
column vector of objective coefficients. A ∈ Rn×m (m < n), each column of A is
formed by the coefficients of the corresponding constraint. We assume that the
matrix A be full rank, b ∈ R is the vector of constraint coefficients.

In recent years, neural networks have been used for solving optimization
problems widely, e.g., References[2,3,4]. Because of its abilities of parallel and
distributed computation, neural networks fit for solving real time problems.
Reference[5] had presented a continuous-time recurrent neural network devel-
oped from the orthogonal decomposition method and solved high order quadratic

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 193–198, 2010.
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programs, like (1). The recurrent neural network proposed is simple in structure,
and is more stable and more accuracy for solving higher quadratic programming
than some existed conclusions, especially for the case that the number of decision
variables is close to the number of the constraints.

However, in view of the availability of the digital hardware and the compat-
ibility to the digital computers, the discrete-time version is more desirable in
practical applications[6]. In this paper, we will propose a discrete-time network,
which is the counterpart of the continue-time network in Ref[5] and give the con-
dition for the discrete-time recurrent neural network with global convergence.

2 Network Descriptions

In this section, we will firstly review the continuous-time network introduced
in Ref[5], which is represented by a system of differential equation. Then, we
propose its discrete-time version by discretization, which is expressed by a system
of difference equations.

2.1 Continuous-Time Network

For (1), we select two matrices S ∈ Rn×m and C ∈ Rn×(n−m), such that ATS =
Im, ATC = 0 and (S : C) ∈ Rn×n is nonsingular, Im is m-dimensional unit
matrix. The column vectors c1, c2, · · · , cn−m of the matrix C is the base vector
group of the linear space g. For any feasible point N(A) = {δ ∈ Rn : ATδ = 0},
we have ATx = b. The constraint equation has a particular solution Sb , and its
general solutions have the form: x = Sb+ δ , δ ∈ N(A). So, we choose the linear
transformation:

x = Cy + Sb, y ∈ Rn−m . (2)

Replacing x in (1) by (2), we have the following lower order unconstrained op-
timization problems:

min q(x) = φ(y) =
1
2
yT(CTGC)y + (g + GSb)TCy

+
1
2
(2g + GSb)TSb . (3)

Obviously, we have the following lemma.

Lemma 1. x∗ is the global minimum point of (1) if and only if there exists a
matrix C, such that the matrix CTGC is positive definite.

By the orthogonal decomposition method, the QR decomposition of the matrix
A has the form:

A = Q

(
R
0

)
= (Q1 Q2 )

(
R
0

)
= Q1R .

Where, Q ∈ Rn×n is an orthogonal matrix, R = (rij) ∈ Rm×m is an upper
triangular matrix with rii > 0, Q1 ∈ Rn×m and Q2 ∈ Rn×(n−m). It is easy to
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verify that S = Q1R
−T; C = Q2 satisfy the properties, i.e. ATS = Im, ATC = 0

and (S : C) is nonsingular.
For (3), by setting the gradients of φ(y) to zero, the necessary condition gives

rise to the following matrix form algebraic equation:(
CTGC

)
y = −CT (g + GSb) . (4)

In order to get the real time solution of (4), it can be realized by the analogue cir-
cuits of the recurrent neural network. The dynamical equations of the recurrent
neural network is as follows:

dy
dt

= Wy + θ . (5)

Where W = −CTGC is the (n−m)-dimensional connection weight matrix, and
θ = −CT (g + GSb) is the (n−m)-dimensional biasing threshold vector.

2.2 Discrete-Time Network

By taking discretization of the dynamical equation of the continuous-time net-
work (5), we propose the dynamical equation for its discrete-time counterpart
as

y(k + 1) = y(k) + α(Wy(k) + θ) = (I + αW )y(k) + αθ . (6)

Fig. 1. Block diagram for the configuration of the discrete-time network

Fig 1 shows the block diagram for the configuration of the discrete-time net-
work.Where x(k) = Cy(k)+Sb, α is a positive fixed step size and I is an identity
matrix. Q = I + αW , ϕ = −αθ, M = GL, N = αCT and L = Sb.

3 Convergence Analysis

Lemma 2. The equilibrium point of the dynamical system (6) is equal to the
optimal solution of the quadratic program (1) .
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Proof. Let y∗ be the equilibrium point of the dynamical system (6) , then by
the nature of equilibrium point, we have

y∗ = (I + αW )y∗ + αθ . (7)

Equation (7) implies
Wy∗ + θ = 0 , (8)

which satisfies the optimality conditions (4). Hence the equilibrium point of the
dynamical system (6) maps to the optimal solution of the quadratic program (1).

Theorem 1. The discrete-time network (6) is asymptotically convergent to the
optimal solution of the quadratic program (1) if

α < min
1≤i≤n−m

{−2Re[ρi(W )]
|ρi(W )|2

}
. (9)

Where ρi(W ) denotes the ith eigenvalue of the matrix W , Re[ρi(W )] and |ρi(W )|
are the real part and the absolute value of ρi(W ), respectively.

Proof. The discrete-time network (6) is described by first-order difference equa-
tion. So, it is a linear system. By the linear system theory, we know that system
(8) is asymptotically stable if all eigenvalues of the matrix (I+αW ) have absolute
values less than 1, i.e.,

|ρi(I + αW )| < 1, ∀i = 1, 2, · · · , n−m . (10)

By using the properties of eigenvalue of matrices, the inequality (10) can be
written as

|ρi(I) + αρi(W )| < 1, ∀i = 1, 2, · · · , n−m . (11)

Since for all ρi(I) = 1, and let ρi(W ) = Re[ρi(W )] + jIm[ρi(W )], where j =√−1. For all i = 1, 2, · · · , n−m, inequality (11) becomes

|1 + αRe[ρi(W )] + jαIm[ρi(W )]| < 1 . (12)

So, we can get

α <
−2Re[ρi(W )]
|ρi(W )|2 , ∀i = 1, 2, · · · , n−m . (13)

The desired result of the theorem is obtained. The proof is complete.

4 Simulation Results

Considering the quadratic program (1) with

G =

⎛⎜⎝
6 0 1 −2
0 4 2 0
1 2 5 1
−2 0 1 6

⎞⎟⎠ , g =

⎛⎜⎝
−17
18
9
13

⎞⎟⎠ ,
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A =
(

1 2 3 4
2 3 4 6

)
, b =

(
16
7

)
.

The theoretical optimal solution for this quadratic program is

xT = ( 7.1615 −0.7975 −3.839 3.2375 ) .

By using the orthogonal decomposition method,and according to the equation
(4) and (5) , we have

W =
(−3.5276 0.8624

0.8624 −7.1151

)
, θ =

(
6.1155
5.7626

)
.

According to the convergence condition (9), we can obtain

α < min
1≤i≤n−m

{−2Re[ρi(W )]
|ρi(W )|2

}
= 0.2735 .

So, the discrete-time network is globally convergent to the optimal solution of
the desired quadratic program if we select α < 0.2735.

Fig 2 shows the time evolution of the decision variable generated by the
discrete-time network with different values of the fixed step size α. In subplot (a),
we select the fixed step size to be α = 0.09. It notes that the discrete-time net-
work generates the optimal solution xT = ( 7.1613 −0.7971 −3.835 3.237 )
after about 30 iterations, which equals to the theoretical optimal solution. In
subplot (b), where the fixed step size is selected to be α = 0.22, it can achieve

Fig. 2. Time evolution of the decision variable generated by the discrete-time network

with different fixed steps. Transient states of the decision variable with (a) α = 0.09;
(b) α = 0.22; (c) α = 0.27; (d) α = 0.28.
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to the theoretical optimal solution only after about 12 iterations, and the con-
vergence process of the system shows to be very steady. In subplot (c), when the
fixed step size is set as α = 0.27, which is close to the upper bound but under
it, we find the estimated optimal solution after 50 iterations can not be equal
to the theoretical optimal solution, and the convergence process of the system
shows to be unsteady. Subplot (d) shows the network is divergent when the fixed
step size α = 0.27, which is greater than its upper bound 0.2735. Therefore, if
we want to speed up the rate of convergence and get a steady network, we can
select a greater step size below its upper bound, but not too close to it.

5 Concluding Remarks

This paper presents a lower order discrete-time network for solving high order
convex quadratic programs. We have given the condition of the fixed step size
used in the discrete-time model, which guarantees the proposed discrete-time
network to be asymptotically convergent to the optimal solution of the desired
quadratic program. This discrete-time model is easier to be implemented in
practical applications because of the availability of the digital hardware. Realized
in dedicated digital hardware such as field-programmable gate arrays (FPGA)
, the discrete-time recurrent neural network is suitable for many applications
where intensive computation is essential such as robot control and filter design.
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Abstract. In this study, we propose a space search algorithm (SSA) and then  
introduce a hybrid optimization of ANFIS-based fuzzy models based on SSA 
and information granulation (IG). The overall hybrid identification of ANFIS-
based fuzzy models comes in the form of two optimization mechanisms: struc-
ture identification (such as the number of input variables to be used, a specific 
subset of input variables, the number of membership functions, and polynomial 
type) and parameter identification (viz. the apexes of membership function). 
The structure identification is developed by SSA and C-Means while the pa-
rameter estimation is realized via SSA and a standard least square method. The 
evaluation of the performance of the proposed model was carried out by using 
two representative numerical examples such as gas furnace, and Mackey-Glass 
time series. A comparative study of SSA and PSO demonstrates that SSA leads 
to improved performance both in terms of the quality of the model and the 
computing time required. The proposed model is also contrasted with the qual-
ity of some “conventional” fuzzy models already encountered in the literature. 

Keywords: Space search algorithm, Particle swarm algorithm, Information 
granulation, ANFIS-based fuzzy inference system. 

1   Introduction 

In recent years, fuzzy modeling has been utilized in many fields for engineering, 
medical engineering, and even social science [1]. As for fuzzy model construction, 
identification of fuzzy rules is one of most important parts in the design of rule-based 
fuzzy modeling.  

Many identification methods for fuzzy models have been studied over the past dec-
ades. In the early 1980s, linguistic modeling [2] was proposed as primordial identifi-
cation methods for fuzzy models. Then Tong et.al [3], C.W.Xu et.al [4] studied dif-
ferent approaches for fuzzy models. While appealing with respect to the basic topol-
ogy (a modular fuzzy model composed of a series of rules) [5] , these models still 
await formal solutions as far as the structure optimization of the model is concerned, 
say a construction of the underlying fuzzy sets – information granules being viewed 
as basic building blocks of any fuzzy model. Oh and Pedrycz [6] have proposed some 
enhancements to the model, yet the problem of finding “good” initial parameters of 
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the fuzzy set in the rules remains open. To solve this problem, several genetically 
identification methods for fuzzy models have been proposed. Liu et.al [7], Chung and 
Kim [8] and others have discussed employing genetic algorithms to fuzzy models, 
respectively. In a word, evolutionary identification methods have proven to be useful 
in optimization of such problems. 

In this study, we propose a space search algorithm (SSA) and then introduce a hy-
brid optimization of ANFIS-based fuzzy models based on SSA and information 
granulation (IG). SSA is exploited here to carry out the parameter estimation of the 
fuzzy models as well as to realize structure optimization. The identification process is 
comprised of two phases, namely a structure optimization (the number of input vari-
ables to be used, a specific subset of input variables, and the number of membership 
functions) and parametric optimization (apexes of membership function). To evalutate 
the performance of the proposed model, we exploit two kinds of well-known data set. 
A hybrid optimization of ANFIS-based fuzzy models based on PSO and IG is also 
implemented for the comparative study.  

2   IG-Based Fuzzy Model  

Granulation of information is an inherent and omnipresent activity of human beings 
carried out with intent of gaining a better insight into a problem under consideration 
and arriving at its efficient solution. In particular, granulation of information is aimed 
at transforming the problem at hand into several smaller and therefore more manage-
able tasks. The identification of the conclusion parts of the rules deals with a selection 
of their structure (type 1, type 2, type 3 and type 4) that is followed by the determina-
tion of the respective parameters of the local functions occurring there. The  
conclusion part of the rule that is extended form of a typical fuzzy rule in the TSK 
(Takagi-Sugeno-Kang) fuzzy model has the form. 

1 1 1: ( , , )j
c k kc j j j kR If x is A and and x is A then y M f x x− =  (1) 

The calculations of the numeric output of the model, based on the activation  
(matching) levels of the rules there, rely on the following expression. 

1

1 1*
1

1

1 1

( ( , , ) )
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j j

ji j k jn n
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Here, as the normalized value of wji, we use an abbreviated notation to describe an 

activation level of rule jR to be in the form  

1

ˆ ji
ji n

ji

j

w
w

w
=

=

∑
, 1 1

1 1
1

( ) ( )
ˆ

( ) ( )

j i jk ki
ji n

j i jk ki
j

A x A x
w

A x A x
=

× ×
=

× ×∑
 

(3) 



 A Experimental Study on Space Search Algorithm in ANFIS-Based Fuzzy Models 201 

 

where, jR is the j-th fuzzy rule, xk represents the input variables, Akc is a membership 
function of fuzzy sets, ajk is a constant, Vjk and Mj is a center value of the input and 
output data, respectively, n is the number of fuzzy rules, y* is the inferred output 

value, wji is the premise fitness matching jR (activation level). 
We use two performance indexes as the standard root mean squared error (RMSE) 

and mean squared error (MSE) 

* 2

1

* 2

1

1
( ) , ( )

( _ )
1

( ) . ( )

m

i i
i

m

i i
i

y y RM SE
m
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y y M SE
m

=

=

⎧
−⎪
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⎪ −⎪⎩

∑

∑

 
(4) 

where y* is the output of the fuzzy model, m is the total number of data, and i is the 
data number. 

The consequence parameters ajk can be determined by the standard least-squares 
method that leads to the expression 

-1ˆ ( )T T=a X X X Y  (5) 

3   Optimization 

3.1   Space Search Evolutionary Algorithm  

SSA is an evolutionary algorithm whose search method comes with the analysis of the 
solution space. In essence, the solution space is the set of all feasible solutions for  
the optimization problem (or mathematical programming problem), which is stated as 
the problem of determining the best solution coming from the solution space. The 
search method is based on the operator of space search, which generates two basic 
steps: generate new space and search new space. Search in the new space is realized by 
randomly generating a new solution (individual) located in this space. The role of 
space search is to create new solutions from old ones. Regarding the generation of the 
new space, we consider two cases: (a) space search based on M selected solutions 
(denoted here as Case I), and (b) space search based on one selected solution (Case II).  

The features of the SSA are highlighted as follows. 
(1) The SSA leads to better performance when finding global optimization than 

PSO, especially in the optimization problems with larger solution spaces. SSA seach 
the same size of solution space as PSO. However, SSA search the solutions based on 
the relative adequate analyzing space (search adjacent space in Case I and search long 
distance space in Case II) while PSO search the solutions without such adequate  
analyzing space.  

(2) The SSA leads to shorter computing time when being compared with the con-
ventional PSO. Each solution is updated in PSO while SSA generates only two new 
solutions each generations. That is, in one generation, individuals which correspond 
to lots of new solutions are evaluated in PSO while only two new solutions (individ-
ual) are evaluated in SSA. This operation procedure enables us to carry out the rapid 
CPU operation for hybrid identification of fuzzy systems.  
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3.2   Particle Swarm Optimization  

PSO is an example of a modern search heuristics belonging to the category of Swarm 
Intelligence methods. PSO involves two competing search strategy aspects [9]. One 
deals with a social facet of the search; according to this, individuals ignore their own 
experience and adjust their behavior according to the successful beliefs of individuals 
occurring in their neighborhood. The cognition aspect of the search underlines the 
importance of the individual experience where the element of population is focused 
on its own history of performance and makes adjustments accordingly. Unlike many 
other heuristic techniques, PSO has a flexible and well-balanced mechanism to  
enhance the global and local exploration abilities. 

3.3   Hybrid Optimization of ANFIS-Based Fuzzy Models 

The standard gradient-based optimization techniques might not be effective in the 
context of rule based systems given their nonlinear character (in particular the form of 
the membership functions) and modularity of the systems. This suggests us to explore 
other optimization techniques. Figure 1 depicts the arrangement of chromosomes 
commonly used in fuzzy modeling [6,10]. Genes for structure optimization are sepa-
rated from genes used for parameter optimization. The size of the chromosomes for 
structure identification of the IG-based fuzzy model is determined according to the 
number of all input variables of the system. The size of the chromosomes for parameter 
identification depends on structurally optimized ANFIS-based fuzzy inference system. 

Number 
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Number 
of MFs
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of MFs

Order of 
Polynomial

Input 
variable

Input 
variable

...
Input 
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Fig. 1. Arrangement of chromosomes for the optimization of fuzzy model 

The objective function (performance index) is a basic mechanism guiding the  
evolutionary search carried out in the solution space. The objective function includes 
both the training data and testing data and comes as a convex combination of the two 
components. 

( , _ ) (1 ) _f PI E PI PI E PIθ θ= × + − ×  (6) 
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4   Experimental Studies  

This section includes comprehensive numeric studies illustrating the design of the fuzzy 
model. We use two well-known data sets. PI denotes the performance index for training 
data and E_PI for testing data. The following values of the parameters are used: maxi-
mum number of generations is 150; maximal velocity, vmax, is 20% of the range of the 
corresponding variables; w=0.4 and acceleration constants c1 and c2 are set to 2.0. The 
maximal velocity was set to 0.2 for the search carried out in the range of the unit interval 
[0,1]. The algorithm terminatesafter running 1000 generations. The parameters of SSA 
are as follows. We use 150 generations and a size of 100 populations (individuals) for 
structure identification and run the method for 1,000 generations. The population size is 
60 for parameter identification. In each generation, we first search the space based on 8 
solutions generated randomly and then search the space based on the best solution. 

4.1   Gas Furnace Process 

The second well-known dataset is time series data of a gas furnace utilized by Box 
and Jenkins [2-6,10]. The time series data is comprised of 296 input-output  
pairs resulting from the gas furnace process has been intensively studied in the  
previous literature. The delayed terms of methane gas flow rate ( )u t  and carbon 

dioxide density ( )y t  are used as six input variables with vector formats such as 

[ ( 3), ( 2), ( 1), ( 3), ( 2), ( 1)].u t u t u t y t y t y t− − − − − −  ( )y t  is used as output variable. 

The first 148 pairs are used as the training data while the remaining 148 pairs are the 
testing data set for assessing the predictive performance. MSE is considered as a  
performance index. 

The results show that SSA has less identification error, less CPU time and rapid 
convergence in comparison with PSO. The identification error of the proposed model  
 

Table 1. Comparative analysis of selected models (GAS) 

Model PIt PI E_PI No. of rules 
Tong's model[3] 0.469   19 

Pedrycz's model[2] 0.776   20 
Xu's model[4] 0.328   25 

Sugeno's model[5] 0.355   6 
Simplified  0.024 0.328 4 

 0.022 0.326 4 
Oh et al.'s 
model[6] Linear 

 0.021 0.364 6 
 0.035 0.289 4 

Simplified 
 0.022 0.333 6 
 0.026 0.272 4 

HCM+GA 
[10] 

Linear 
 0.020 0.264 6 
 0.019 0.284 4 

PSO+IG 
 0.015 0.273 6 
 0.017 0.266 4 

Our model 
SSA+IG 

 0.015 0.260 6 
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is compared with the performance of some other models; refer to Table 1. It is easy to 
see that the proposed model outperforms several previous fuzzy models known in the 
literature. 

4.2   Chaotic Mackey-Glass Time Series 

A chaotic time series is generated by the chaotic Mackey–Glass differential delay 
equation [11-16] of the form: 

10

0.2 ( )
( ) 0.1 ( )

1 ( )

x t
x t x t

x t

τ
τ

• −= −
+ −

 

The prediction of future values of this series arises is a benchmark problem that has 
been used and reported by a number of researchers. From the Mackey–Glass time 
series x(t), we extracted 1000 input–output data pairs for the type from the following 
the type of vector format such as: [x(t-30), x(t-24), x(t-18), x(t-12), x(t-6), x(t); x(t 
+6)] where t = 118–1117. The first 500 pairs were used as the training data set for IG-
based FIS while the remaining 500 pairs were the testing data set for assessing the 
predictive performance. To come up with a quantitative evaluation of the fuzzy 
model, we use the standard RMSE performance index as like Eq. (4). The results 
show that SSA has better performance index, less CPU time and rapid convergence in 
comparison with PSO. Table 2 summarizes the results of comparative analysis of the 
proposed model with respect to other constructs. Here PIt denotes the performance  
 

Table 2. Comparative analysis of selected models (Mackey) 

Model PIt PI E_PI NDEI 
No. of 
rules 

Support vector regression 
model[11] 

 0.023 1.028 0.0246  

Multivariate adaptive regression 
splines [11] 

 0.019 0.316 0.0389  

Standard neural networks  0.018 0.411 0.0705 15 nodes 
RBF neural networks  0.015 0.313 0.0172 15 nodes 

0.004    7 
Wang’s model[12] 

0.013    23 
ANFIS [13]  0.0016 0.0015 0.007 16 

FNN model[14]  0.014 0.009   
Incremental type multilevel FRS 

[15] 
 0.0240 0.0253  25 

Aggregated type multilevel 
FRS[15] 

 0.0267 0.0256  36 

Hierarchical TS-FS[16]  0.0120 0.0129  28 
 0.00346 0.00323 0.0157 8 

PSO+IG 
 0.00033 0.00035 0.0057 16 
 0.00321 0.00302 0.0155 8 

Our model 
SSA+IG 

 0.00010 0.00011 0.0018 16 
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index for total process data, the non-dimensional error index (NDEI) is defined as the 
RMSE divided by the standard deviation of the target series. 

5   Concluding Remarks  

This paper contributes to the research area of the hybrid optimization of ANFIS-based 
fuzzy models in the following two important aspects: 1) we proposed a space search 
evolutionary. From the perspective of the size of the solution space, SSA exhibits 
better performance in finding global optimization and less CPU time than the ”con-
ventional” PSO. 2) we introduced the hybrid optimization of ANFIS-based fuzzy 
models based on the SSA and information granulation. It is shown that the coding 
scheme introduced here leads to chromosomes which help decrease the number of 
unfeasible solutions arising in the process of evolutionary computing. Numerical 
experiments using four well-known data set show that the model constructed with the 
aid of the SSA exhibits better performance in comparison with the PSO-constructed 
fuzzy model. 
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Abstract. In this paper, we introduce a new architecture of optimized FCM-
based Radial Basis function Neural Network by using space search algorithm 
and discuss its comprehensive design methodology. As the consequent part of 
rules of the FCM-based RBFNN model, four types of polynomials are consid-
ered. The performance of the FCM-based RBFNN model is affected by some 
parameters such as the number of cluster and the fuzzification coefficient of the 
fuzzy clustering (FCM) and the order of polynomial standing in the consequent 
part of rules, we are required to carry out parametric optimization of network. 
The space evolutionary algorithm(SEA) being applied to each receptive fields 
of FCM-based RBFNN leads to the selection of preferred receptive fields with 
specific local characteristics available within the FCM-based RBFNN. The per-
formance of the proposed model and the comparative analysis between WLSE 
and LSE are illustrated with by using two kinds of representative numerical 
dataset. 

Keywords: Radial basis function neural network, Fuzzy C-means clustering, 
Space evolutionary algorithm, Machine learning data. 

1   Introduction 

A great deal of attention in fuzzy sets has been paid to advanced techniques of system 
modeling and the design of fuzzy models. To highlight a few representative trends, it 
is essential to put the overall modeling area in some retrospect.  In the early 1980s, 
linguistic modeling and fuzzy relation equation-based approach were proposed as 
primordial identification schemes of fuzzy models. The general class of Sugeno–
Takagi models gave rise to more sophisticated yet more complex rule-based systems 
where the rules were equipped with conclusions being formed as local linear regres-
sion models. Some enhanced fuzzy models that have high-order polynomials as con-
sequent part were presented by Bikdash [1]. 

Radial basis function neural networks (RBFNN) in neural network have been 
known to be very attractive for many research fields. An important property of 
RBFNN is that form a unifying link among many different research area such as  
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function approximation, regularization, noisy interpolation and pattern recognition. In 
order to reduce the optimization effort, various learning techniques have been consid-
ered. Alexandridis et al. proposed a variable selection of RBF neural network using an 
evolutionary algorithm.  

In this paper, the FCM-based RBFNN designed with the aid of FCM and the 
WLSE method involves structural as well as parametric optimization. As far as the 
structure optimization is concerned, there are three components to consider, i.e., the 
number of the cluster (equal to consequent rules), fuzzification coefficient used in the 
FCM algorithm and the order of the polynomials in the consequent parts. These three 
components impact the performance of the FCM-based RBFNN and need to be opti-
mized. In this paper, we carried out the structural as well parametric optimization by 
means of the Space Evolutionary Algorithm (SEA). 

Section 2 describes the architecture of the FCM-based RBFNN and section 3  
presents a learning method applied to the construction of proposed model. Section 4 
deals with the SEA and the optimization of proposed model using the SEA.  
Section 5 presents the experimental results. Finally, some conclusions are drawn in 
Section 6. 

2   The Architecture of FCM-Based RBF Neural Network 

The proposed FCM-based RBFNN comes as an extended structure of the conven-
tional RBFNN and consists of the premise part and consequent part as shown in  
Fig. 1. The construction of the conventional RBFNN involves an input layer, a hidden 
layer and an output layer with feed forward architecture. The input layer denotes the 
number of n-dimensional input variables. All nodes of input layer connected to hidden 
nodes in hidden layer. The hidden layer also completely connected to output layer. 
The output layer, which contains the hidden node, achieves a linear combination on 
this new space. 

The premise part of proposed model used FCM algorithm divide input space as the 
number of cluster. The consequent part used WLSE estimate the values of the coeffi-
cients of the polynomials. 

The consequent part of rules of the FCM-based RBFNN model, four types of poly-
nomials are considered. Those are constant, linear, quadratic and modified quadratic.  

 

Fig. 1. Architecture of FCM-based RBFNN 
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3   The Learning Method of FCM-Based RBF Neural Network 

3.1   The Learning of Premise Part 

Bezdek introduced several clustering algorithms based on fuzzy set theory and exten-
sion of the least-squares error criterion. The most of fuzzy clustering methods are 
derived from Bezdeck's FCM that is a data clustering algorithm that each data point is 
associated with a cluster through a membership degree between 0 and 1. FCM cluster-
ing partitions collection of n data set into c fuzzy groups and finds a cluster center  
in each fuzzy group, such that, objective function of a dissimilarity measure is  
minimized.  

FCM clustering algorithm as follows:  
[step1] Select the number of cluster c (2≤ c ≤n) and fuzzification coefficient m (1< 
m < ∞) and initialize membership matrix U(0) using random value 0 between 1. 

Denote iteration of algorithm r(r=1, 2, 3, …). 
 

                                                             (1) 
 
 

Where, n is the number of data. 
[step2] Calculate the center point (vi | i=1, 2, ..., c) of each fuzzy cluster using (2). 
 

 

                                                                                 
(2) 

 
 
 

 

[step3] Calculate the distance between input variables and center points using (3)-(5) 
 

                                                      (3)   
 

Where, the membership element {uik} take values from the interval [0, 1] and satisfy 
(1), d(xk, vi) is any inner product norm metric of the distance between the input vector 

Xx ∈k
 and the center point of cluster vi∈R. 

 

(4) 
                                             

 
(5) 

 
 
 
 

[step4] The objective function in (6) calculate new membership matrix U(r+1) 

 
                                                                    (6) 
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3.2   The Learning Method of Consequent Part  

The learning of the consequent part is concerned with the estimation of the parameters 
of the polynomial of the local model. The main difference between the WLSE and its 
standard LSE is the weighting scheme which comes as a part of the WLSE and makes 
its focus on the corresponding local model. Because global learning is oriented to 
minimize its overall squared error between output and global model output, local 
models which are obtained by using LSE do not properly represent local input-output 
characteristics of each sub-space resulting from the division of the input space. As a 
result, the interpretability of the local models which are obtained by using LSE tends 
to be limited or non-existent. 

In the WLSE, we estimate the optimal coefficients of the model through the mini-
mization of the objective function QL. 
                             

                          (7) 
 
 

Where, wik is the normalized firing strength (activation level) of the ith rule  
The performance index JL can be re-written using matrix notation 

 
 

   (8) 
 
 

 

Where, ai is the vector of coefficient of ith consequent polynomial (local model), is Y 
the vector of output data, Wi is the diagonal matrix (weighting factor matrix) which 
represents degree of activation of the individual information granules by the input 
data. Xi is matrix which is formed with input data and centers point of cluster. In case 
the consequent polynomial is Type 2 (linear or a first-order polynomial), Xi and ai can 
be expressed as follows 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

in

i

i

i

w

w

w

00

00

00

2

1

W

         

][

1

1

1

1

10

ln1

112

111

iliii

n

l

l

i aaa

xx

xx

xx

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= aX

      

 

For the local learning algorithm, the objective function is defined as a linear combina-
tion of squared error, which is a difference between output data and the result pro-
duced each fuzzy rule when considering the weighting factor matrix. Wi This matrix 
captures the activation levels of input data with respect to the ith sub-space. In this 
sense, we can consider the weighting factor matrix as the discrete version of a fuzzy 
representation of the corresponding sub-space. The optimal coefficients of the conse-
quent polynomial of ith rule are described in a usual manner  

 

                                          (9) 

 

Notice that the coefficients of the consequent polynomial of each rule have been 
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implemented in parallel meaning that the computing overhead becomes independent 
from the number of rules.   

4   Optimization of the FCM-Based RBF Neural Network 

The SEA is an evolutionary algorithm which evolutions subspace set in each genera-
tion [9-10]. The ideas for designing the algorithm come from evolutionary computa-
tion, but differ from the conventional evolutionary algorithm whose search method 
whose search methods handle some natural phenomena. It has been demonstrated that 
SEA is better than conventional evolutionary algorithms such as GA in the robustness 
of algorithms and the accuracy of solutions. SEA is a Branch-And-Bound Method 
based on subspace set. If the amount of subspaces divided by the whole solution space 
is large enough, the global optimization can be obtained by the algorithm. However, 
the amount of subspace sets is difficult to be huge quantities due to the limited time 
and constrained dimension. If a subspace set is replaced by one solution (point), then 
we have the SEA. The new subspace set is obtained by the evolutionary the M se-
lected solutions (subspace sets). 

The space evolutionary algorithm (SEA) is applied to parametric optimization such 
as the number of cluster, the fuzzification coefficient and Polynomial type. 

5   Experimental Results 

In all experiments, we randomly divide the data set into i) the training (60%) and 
validation (40%) and ii) training(50%), validation(30%) and testing(20%) part of 
data, respectively. To come up with a quantitative evaluation of the resulting neural 
network, we use the standard performance index of the Root Mean Square Error 
(RMSE) as expressed (10). 

Table 1 includes a list of parameters used in the space evolutionary algorithm of 
the network used in the numeric experiments. Their numeric values were selected 
through a trial and error process by running a number of experiments and monitoring 
the pace of learning and assessing its convergence.  
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Table 1. Parameters used in the space evolutionary algorithm of the nework 

 MPG data Boston housing data 
Generation size 1000 
Population size 100 

M 8 
α  [-0.5 1.5] 

Number of all input variables 7 13 



212 W.-D. Kim, S.-K. Oh, and W. Huang 

 

5.1   Automobile Miles Per Gallon (MPG) 

We consider the well-known automobile MPG data (http://archive.ics.uci.edu/ml/ 
datasets/auto+mpg) with the output being the automobile’s fuel consumption ex-
pressed in miles per gallon. This dataset includes 392 input-output pairs (after remov-
ing incomplete data points). The number of input variables is 7 such as cylinder,  
displacement, horse power, weight, acceleration, model year, origin. 

In the experiments for machine learning dataset, we make 10 experiments to get 
statistical result. 
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Fig. 2. Performance index of WLSE and LSE in the 10 experiments (3 split data set-training, 
validation, testing) 

 
In Fig. 2 In case of three split dataset, the value of performance index of WLSE 

model related to both training data and testing data is much more superb than that  
of LSE model. The results show that the LSE model with optimization has much less 
over-fitting when compared with LSE model without optimization. In Comparison 
with LSE model as well as other models studied previously, WLSE model is  
preferable from the viewpoint of approximation as well as generalization capabilities. 

5.2   Boston Housing Data 

This data set concerns about real estate in the Boston area (ftp://ftp.ics.uci.edu/pub/ 
machine-learnindatabases/housing/housing.data). The median value of the house 
(MEDV) is considered as an output variable. The input variables consist of 13 vari-
ables. In the experiments for machine learning dataset, we make 10 experiments to get 
statistical result. 
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Fig. 3. Performance index of WLSE and LSE in the 10 experiments (3 split data set -training, 
validation, testing) 
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In Fig. 3(a), from the viewpoint of performance, WLSE model is much better than 
that of LSE model. In case of three split dataset, the value of performance index of 
WLSE model related to both training data and testing data is much more superb than 
that of LSE model. Table 2 shows that the LSE model with optimization has much 
less over-fitting when compared with LSE model without optimization. In Compari-
son with LSE model as well as other models studied previously, WLSE model is more 
preferable from the viewpoint of approximation as well as generalization capabilities. 

Table 2. Comparative analysis of the performance of selected model 

(AVG ± STD) 
Performance index Model Number of 

clusters PI EPI1(VPI) EPI2 

RBFNN[11] 25 6.36 ± 0.24  6.94 ± 0.31 
RBFNN with 

context-free clustering[11] 25 5.52 ± 0.25  6.91 ± 0.45 
Without 

Optimization 25 5.21 ± 0.12  6.14 ± 0.28 
One-loop 

Optimization 25 4.80 ± 0.52  5.22 ± 0.58 

Linguis-
tic 

Modeling 
[11] Multi-step 

Optimization 25 4.12 ± 0.35  5.32 ± 0.96 

S 7.325 ± 0.285  7.331 ± 0.503 

L 0.490 ± 0.160  266.5 ± 236.4 
M 0.012 ± 0.040  142.0 ± 184.2 

LSE 25 

Q 0.011 ± 0.035  58.93 ± 24.21 

S 7.518 ± 0.288  7.465 ± 0.468 
L 2.186 ± 0.148  3.935 ± 0.466 
M 0.911 ± 0.069  6.503 ± 1.239 

Without 
optimization 

(m=2) 
WLS

E 25 

Q 0.779 ± 0.039  7.647 ± 4.766 

2s 1.938 ± 0.470 4.214 ± 0.498  
LSE 

3s 1.912 ± 0.513 3.971 ± 0.317 6.378 ± 1.775 

2s 1.678 ± 0.615 3.688 ± 0.362  

Proposed 
model 

With 
optimization WLS

E 

≤
25 

3s 1.347 ± 0.547 3.649 ± 0.408 5.378 ± 1.052 

6   Concluding Remarks 

In this paper, we have proposed optimization methodology of FCM-based RBFNN. 
The proposed model is the extended architecture of conventional RBFNN.  

The performance of FCM-based RBFNN is affected by the type of polynomials as 
well as some parameters such as the number of cluster and fuzzification coefficient of 
FCM. The SEA is exploited to find the structural as well as parametric factors  
minimizing performance index of the proposed model.  
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Abstract. This paper is concerned with information granulation-based fuzzy 
radial basis function neural networks (IG-FRBFNN) and its multi-objective op-
timization by means of the nondominated sorting genetic algorithms II (NSGA-
II). By making use of the clustering results, the ordinary least square (OLS) 
learning is exploited to estimate the coefficients of polynomial. In fuzzy model-
ing, complexity and interpretability (or simplicity) as well as accuracy of model 
are essential issues. Since the performance of the IG-RBFNN model is affected 
by some parameters such as the fuzzification coefficient used in the FCM, the 
number of rules and the orders of polynomials of the consequent part of fuzzy 
rules, we require to carry out both structural as well as parametric optimization 
of the network. In this study, the NSGA-II is exploited to find the fuzzification 
coefficient, the number of fuzzy rules and the type of polynomial being used in 
each conclusion part of the fuzzy rules in order to minimize complexity and 
simplicity as well as accuracy of a model simultaneously. 

Keywords: Fuzzy c-means clustering, nondominated sorting genetic algorithm 
II, fuzzy radial basis function neural network, ordinary least squares method. 

1   Introduction 

The problem of estimating an unknown function from sample data is one of the key 
issues in the field of fuzzy system modeling. The principal objective is to learn an 
unknown functional mapping between input and output data using a set of known 
training samples. 

Fuzzy Radial Basis Function Neural Networks (FRBFNNs) are designed by inte-
grating the principles of a Radial Basis Function Neural Network (RBFNN) and the 
Fuzzy C-Means (FCM) algorithm [1].  

In this study, we considered multi-objective optimization of the IG-FRBFNN by 
means of the NSGA-II. There are some strictly different points with previous version 
of the optimization of the IG-FRBFNN [2].  

The NSGA-II is exploited to find the fuzzification coefficient, the number of fuzzy 
rule and the types of polynomial being used in each conclusion part of the fuzzy rules 
minimizing complexity and simplicity as well as accuracy of a model simultaneously. 



216 J.-N. Choi, S.-K. Oh, and H.-K. Kim 

 

Section 2 describes an architecture and learning methods of the IG-FRBFNN. Sec-
tion 3 deals with the NSGA-II and the multi-objective optimization of IG-FRBFNN 
using the NSGA-II. Section 4 presents the experimental results. Finally, some conclu-
sions are drawn in Section 5. 

2   Architecture and Learning of the IG-FRBFNN  

The proposed IG-FRBFNN is the extended structure of the conventional FRBFNN 
and consists of the premise part and consequent part as shown in Fig. 1. We consider 
four types of polynomial such as constant type, linear type, quadratic type, and modi-
fied quadratic type as a local model representing input-output relationship in a sub-
space. One of four types is selected and used by means of optimization algorithm. 
Also, the extracted information granules by using FCM are used as the prototype of 
consequent polynomials of fuzzy rules to improve interpretability of local models. 
The advantages of an IG-RBFNN are that does not suffer from curse of dimensional-
ity and provides a through the coverage of whole input space. In the sequel, we can 
construct more accurate model with a small number of fuzzy by using high-order 
polynomial. First, we recall Fuzzy C-Means Clustering to help comprehend the IG-
FRBNN in the following session. 

2.1   Fuzzy C-Means Clustering 

The FCM clustering algorithm [13] is a set-partitioning method based on Picard itera-
tion through necessary conditions for optimizing a weighted sum of squared errors 
objective function (Jm).  

Fuzzy c-partitions of X satisfy the condition  
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2.2   Architecture of IG-FRBFNN 

The IG-FRBFNN comes as an extended structure of the conventional FRBFNN and 
consists of the premise part and consequent part as shown in Fig. 1. The difference 
between the IG-FRBFNN and the conventional FRBFNN arises in consequent part. 
The extracted information granules (center values of each cluster) by using FCM are 
applied to consequent polynomials of fuzzy rules to improve interpretability of local 
models. The IG-RBFNN does not suffer from the curse of dimensionality (as all vari-
ables are considered en block). In the sequel, we construct more accurate model with 
a small number of fuzzy rule by using high-order polynomial.   
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Fig. 1. Architecture of IG-FRBFNN 

The IG-FRBFNN shown in Fig. 1 can be represented in form of “if-then” fuzzy 
rules  

),(clusterinincluedis: ikikiik
i fyTHENAIF vxxR =           (6) 

where, iR  is the ith fuzzy rule, i=1, ···, n,  n is the number of fuzzy rules( the number 
of clusters), ),( ikif vx  is the consequent polynomial of the ith fuzzy rule, i.e., it is a 

local model representing input-output characteristic of the ith sub-space (local area). 

ikw  is the degree of membership (or activating level) of ith local model, that is calcu-

lated by FCM. },,,{ 21 iliii vvv=v  is the ith prototype  
The calculation of the numeric output of the model, based on the activation levels 

of the rules, uses the following expression 

∑
=

=
n

i
iklkiikk xxfwy

1
1 ),,,(ˆ v                                        (7) 
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2.3   Learning Algorithm of IG-FRBFNN 

The premise and consequent part learning of the IG-FRBFNN is carried out sequen-
tially by using the FCM and the ordinary least squares method (OLS) method. 

OLS is to determine the coefficients of the model through the minimization of the 

objective function GJ . OLS is well known global learning algorithm that is oriented 

to minimize its overall squared error between real output and global model output.  

∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛ −−=
m

k

n

i
ikiikkG fwyJ

1

2

1

)( vx               (8) 

where ikw  is the normalized firing strength (activation level) as expressed by (4). 

The performance index GJ  can be rearranged into a simple matrix form 

( ) ( )XaYXaY −−= T
GJ                    (9) 

Where a is the vector of coefficients of consequent polynomial, Y is the output vec-
tor of real data, X  is matrix which is rearrange with input data, information gran-
ules(centers of each cluster) and activation level.  

The coefficients of the consequent polynomial of fuzzy rules can be determined in 
a usual manner that is 

YXXXa TT 1)( −=                         (10) 

3   Multiobjective Optimization of the IG-FRBFNN 

The objective of effective learning method is to create almost ideal IG-FRBFNN satis-
fying accuracy as well as simplicity and complexity. Here we consider the structural as 
well parametric optimization realized by means of the NSGA-II. We start with the 
introduction of the NSGA-II and then discuss the arrangement and interpretation of an 
individual and Multiobjective functions for the optimization of the IG-FRBFNN. 

3.1   Nondominated Sorting Genetic Algorithm - II 

Multi-objective genetic algorithms, called NSGA-II (non-dominated sorting genetic 
algorithm II) recently proposed by Deb, Pratap, Agarwal, and Meyarivan [12]. The 
general principle of NSGA-II: at each generation t, a parent population Pt of size N 
and an offspring population Qt of the same size are merged for forming a population 
Rt (Rt=Pt ∪ Qt) of size 2N. Then, the population Rt is partitioned into a number of sets 
called fronts F, which are constructed iteratively. Front F1 consists of the non-
dominated solutions from Rt . F2 consists of non-dominated solution from the set  
(Rt – F1 ) and so on. In general, Fi consists of the non-dominated solutions from the set 
(Rt –(F1 ∪ F2…∪ Fi-1)).  

Deb et al. have proposed a fast partitioned algorithm called fast non-dominated 
sorting algorithm [12]. Once all fronts are identified, a new parent population Pt+1 of 
size N is formed by adding the fronts to Pt+1  in order ( front one F1 followed by front 
two and so on) as long as the size of Rt do not exceed N individuals. If the number of 
individuals present in Pt+1 is lower than N, a crowding procedure is applied to the first 
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front Fi not included in Pt+1. The aim of this procedure is to insert the N - Pt+1 best 
individuals which miss to fill all population Rt . For each solution i in Fi a crowding 
distance di is calculated based on each objective Obk. The front Fi is sorted according 
to objective function value Obk in ascending order of magnitude. The first and the last 
individuals of the front are assigned infinity as their distance with respect to Obk. For 
all other intermediate individuals are assigned a distance value equal to the absolute 
normalized difference in the objective function values of two adjacent solutions. This 
calculation is repeated for other objective functions. The overall crowding distance 
for each solution i is calculated as the sum of individual distance values correspond-
ing to each objective function. The individuals with the highest crowding distance 
values are added to Pt+1 until Pt+1 = N. Once the individuals appertaining to the popu-
lation Pt+1 are identified, a new population Qt+1 of size N is created by selection, 
crossover and mutation using individuals of the population Pt+1. It is important to note 
that with NSGA-II, the selection procedure is based on a crowded-comparison opera-
tor defined as follows: to select an individual, two solutions are chosen randomly and 
uniformly from Pt+1 and that of smaller number of front irank is preserved. If both 
solutions belong to the same front, one separates them by calculating the crowding 
distance for each solution and the solution with the higher distance is preferred. The 
NSGAII operation will repeat the procedure until the stopping criteria is satisfied. 

3.2   Arrangement and Interpretation of Individual in the NSGA-II  

In the NSGA-II, an individual is represented as a vector involving the fuzzification 
coefficient (①), the number of fuzzy rule(②) and the type of polynomial of conse-
quent part for each fuzzy rule(③) as illustrated in Fig. 2(a). The size of ③ is the same 
with the upper boundary of search space of the number of fuzzy rule. 

Fig. 2(b) offers an interpretation of the content of the particle in case the upper 
boundary of search space of the fuzzy rule is 8. As far as interpretation is concerned, 
the number of fuzzy rules, and the orders of polynomials have to be integer number 
but these values are real number. So we round off these values to the nearest integer. 
The fuzzification coefficient is 1.1, the number of fuzzy rule is 6 and the first six 
values of part ③ are selected. So, the form of first local model is linear type and the 
forms of five local models are quadratic type. 

(a) Arrangement of an individual for the NSGA-II 

(b) Example of interpretation of an individual  

Fig. 2. Individual composition of NSGA-II and interpretation 
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3.3   Objective Functions of IG-FRBFNN 

Three objective functions are used to evaluate the accuracy, the complexity and the 
interpretability of an IG-FRBFNN. The three objective functions are the root mean 
squared error (RMSE), entropy of partition and the total number of coefficients of 
polynomials to be estimated.  

The RMSE is the accuracy criterion of the IG-RBFNN. The RMSE is given as 

∑
=

−=
m

k
kk yy

m
E

1

2)ˆ(
1

                                            (11) 

As a measure for evaluating the structure complexity of a model we consider the 
entropy of the partition [14]. The entropy of partition is a degree of overlapping  
between the fuzzy regions and it can be calculated using a degree of membership. 
Considering all samples of the training dataset, the entropy of a partition is a given by 

 ∑∑
= =

−=
n

j
ik

m

k
ik wwH

1 1

)log(               (12) 

As a simplicity criterion we consider the total number of coefficients of local models. 
In a nutshell, we find the Pareto optimal sets and Pareto front minimizing {E, H, 

N} by means of the NSGA-II. This leads to easily interpretable, simple and accurate 
fuzzy model. 

4   Experimental Study 

The IG-FRBFNN is applied to nonlinear function approximation problems. We con-
sider the following two 2-D nonlinear functions that is 

Example 1 

( ) 1,0,)7sin())6.0(12sin(35.19.1),( 211
2

221
12 ≤≤−= − xxxxeexxy xx    (13) 

Example 2 

( ) 3,0,)3sin(5.1),( 21

2

2
5.1

121 ≤≤−= xxxxxxy      (14) 
 

We considered 400 input–output data pairs that are extracted randomly for each ex-
ample. The construction of the fuzzy model is completed for 200 data points being 
regarded as a training set. The rest of the data set (i.e., 200 data points) is retained for 
testing purposes.  

The NSGA-II just provides the Pareto optimal sets, which are non-dominated solu-
tions. Selecting the optimal solution within the Pareto optimal sets is different from 
the NSGA-II. If we place more emphasis on the accuracy than the simplicity, then we 
define the individual having the best accuracy within Pareto optimal set to be the best 
solution. Table 1 summarizes the performance values of individual that has the best 
accuracy within Pareto optimal set.  
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Table 1. The summary of results of the optimized IG-FRBFNN 

Objective values for 
training data 

Objective values for 
testing data 

 No. of 
rules 

Orders of each 
polynomial * 

Fuzzification 
coefficient 

E H N E H N 
Ex 1 7 [4 3 3 3 3 4 3] 1.97 0.10 234.14 38 0.13 93.34 12 
Ex 2 7 [3 2 2 3 3 3 2] 1.71 0.458 99.49 33 1.15 110.87 33 
*) 1: Constant form, 2: Linear form, 3: Quadratic form, 4: Modified quadratic form. 

5   Conclusions 

In this study, we have introduced a new class of models, IG-FRBFNN and proposed 
the design methodology to generate the accurate, simple and easily interpretable IG-
FRBFNN by means of the NSGA-II. The IG-FRBFNN is the extended architecture of 
the conventional FRBFNN. The performance of IG-FRBFNN is affected by some 
parameters such as the values of the fuzzification coefficient of the FCM, the number 
of rules and the order of polynomial in the consequent parts of rules. The optimization 
of the IG-FRBFNN is focused on multi objective such as the complexity and the  
simplicity and the accuracy, The NSGA-II was exploited as a multi-objective optimi-
zation vehicle to carry out the structural as well as parametric optimization of the  
IG-FRBFNN. The effectiveness of the IG-FRBFNN have been investigated and  
analyzed through two examples for function approximation. 
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Practical Criss-Cross Method for Linear
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Abstract. In this paper we first generalize the concept of pivoting index,

proposed by Pan, to the standard form of linear programming problems

by considering its dual problem. Then, we develop a practical variant

of criss-cross pivot algorithm for linear programming problem. The new

criss-cross algorithm is not only finiteness, but also more efficient in

practice.

Keywords: Linear programming; Criss-cross pivot method; Pivoting

index.

1 Introduction

Simplex pivot methods always require and preserve either primal or dual feasi-
bility of the generated basic solutions. To produce a primal or dual feasible basic
solution is a nontrivial task. It require the solution of another linear program-
ming problem, the so-called phase-I problem. The criss-cross method was first
introduced by Zionts [1] in 1969 as a pivot algorithm for solving linear program-
ming requiring no feasibility of the basis. It can be initialized by an arbitrary
basic solution. The first finite criss-cross algorithm was independently proposed
by Chang, Terlaky and Wang [2,3]. The main advantage of the criss-cross method
is its simplicity. It can be started with any basic solution and solves the linear
programming in one phase, in a finite number of pivot steps. However, in spite
of their elegance and simplicity, to date criss-cross methods are not efficient in
practice. [4].

In this paper we introduce a practical variant of the finite criss-cross method.
By technique of reordering variable indices, this new criss-cross method is more
efficient in practice. The finiteness of the new criss-cross pivot variant is proven.
The rest of the paper is organized as follows. In Section 2, we generalize the
concept of pivoting index, proposed by Pan[5], to the standard form of linear
programming problems from its dual side.Then a new criss-cross method is estab-
lished with the proof of its finiteness. In Section 3 we report our computational
results with two group of linear programming problems, and Section 4 concludes
the paper.
� This work was partially supported by NSF of China (Mathematic Tian Yuan fund)

10926058.
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2 Least-Pivoting-Index Criss-Cross Method

Consider the following standard linear programming problem:

min cTx (1)

s.t. Ax = b,

x ≥ 0

and its associated dual problem

max bT y (2)

s.t. AT y + s = c, s ≥ 0,

where c, x, s ∈ Rn, b, y ∈ Rm, A ∈ Rm×n with m < n, rank(A) = m. Denote

A = [a1, . . . , an]

A basis JB is an index set with the property that JB ⊆ {1, . . . , n}, | JB |= m
and AB := [ai | i ∈ JB] is an invertible matrix. Nonbasis JN is the complement
of JB, i.e. JN := {1, . . . , n}\JB. Further, let AN denote the complement matrix,
the nonbasic part of the matrix A. Given a basis JB, we call the following matrix
a simplex tableau with respect to JB:

-z . . . sj . . .
...

...
...

...
xj . . . āij . . .
...

...
...

...

where [āij ]|JB |×|JN | = A−1
B AN , [sj |j ∈ JN ] = cT

N − cT
BA−1

B AN , [xi|i ∈ JB]T =
A−1

B b, z = cT
BA−1

B b.
To indicate the relation with the basis, in the later part of the paper we will

denote x by x(B), and s by s(B). Furthermore, we extend x(B) and s(B) to
their full dimensions, i.e., we let

x(B)i :=
{
x(B)i for i ∈ JB,
0 for i ∈ JN ,

s(B)i :=
{
s(B)i for i ∈ JN ,
0 for i ∈ JB.

The first finite criss-cross algorithm proceeds as follows:

Algorithm 1 (Least index criss-cross algorithm)
0. Get a basis JB to start with.
1. Let I = {i|x(B)i < 0} and J = {i|s(B)i < 0}. If I

⋃
J = ∅, then JB is

optimal, stop.
2. Let k = min{k|k ∈ I

⋃
J}. If k ∈ I,then go to 3; If k ∈ J , then go to 4.
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3. Let S = {j|j ∈ JN | and ākj < 0}. If S = ∅, then the primal problem
(1) has no feasible solution, stop. Otherwise, let j = min{j|j ∈ S}. Let JB :=
JB

⋃{j}\{k} and go back to 1.
4. Let T = {i|i ∈ JB | and āik > 0}. If T = ∅, then the dual problem (2) has no

feasible solution, stop. Otherwise, let i = min{i|i ∈ T }. Let JB := JB

⋃{k}\{i}
and go back to 1.

The following result was shown in [2,3].

Theorem 1. Algorithm 1 will terminate in a finite number of iterations.

In spite of their elegance and simplicity, unfortunately, just as T. Illés et al wrote
in [4]: “to date criss-cross methods are not efficient in practice.” Now a simple
fundamental question arises: Is there any practical finite criss-cross method?
Motivated by seeking a effective criss-cross method, we have the following con-
sideration.

Among a number of candidates to enter or leave the basis, an ”ideal” pivoting
rule, if exists, should be able to recognize and take an optimal basic variable to
enter and/or an optimal non-basic variable (non-basic at the optimal solution)
to leave the basis. To this end, the pivoting index was first introduced by Pan
[5] in 1990 for the linear programming problem:

max cTx (3)

s.t. aT
i x ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n,

where c = (c1, . . . , cn) and ai, i = 1, . . . ,m are nonzero column vectors.

Definition 1. The pivoting index αj of variable xj is defined by

αj = cj , j = 1, . . . , n, (4)

αj = (caj−n)/ | aj−n |, j = n + 1, . . . , n + m, (5)

where | · | denotes the 2-norm, and xn+1, . . . , xn+m are slack variables corre-
sponding to the constraints aT

i x ≥ bi, i = 1, . . . ,m, respectively.
It is noticeable that, pivoting indices have full geometric meaning. In fact, the

quantity αj/ | c |, for each j = 1, . . . , n + m, is equal to the cosine of the angle
between two gradients of the objective function and the left side function of the
“j-t” inequality constraint, i.e.,

xj ≥ 0, for j = 1, . . . , n, or (6)

aT
j−nxj ≥ bj−n, for j = j + 1, . . . , n + m, (7)

This as well gives of correspondence between αj and xj and the j-th constraint,
and hence αj is also referred to as the pivoting index of the j-th constraint.

The following result was first shown in [5] and developed in [6,7].
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Statement 1. Optimal basic variables of problem 3 tend to be characterized
by bearing higher pivoting indices, and optimal nonbasic variables by bearing
lower pivoting indices.

This crash heuristic method is very effective, it clearly can create a good initial
basis in general, and can even create an optimal basis for linear programming
on some occasions [5,6,7].

The concept of pivoting index, though defined for problem (3), can be easily
generalized to the stand form of the linear programming (1) by considering its
dual problem.

Definition 2. The pivoting index αj of variable xj is defined by

αj = (bT aj)/ | aj |, j = 1, . . . , n. (8)

By utilizing Statement 1 and the theory of complementary slackness, we obtain

Statement 2. Optimal basic variables of problem (1) tend to be characterized
by bearing lower pivoting indices, and optimal nonbasic variables by bearing
higher pivoting indices.

Now we are ready to present our new variant of finite criss-cross algorithm,
incorporating the least-pivoting-index rule instead of least index rule.

Algorithm 2 (Least pivoting index criss-cross algorithm)
0. Get a basis JB to start with.
1. Let I = {i|x(B)i < 0} and J = {i|s(B)i < 0}. If I

⋃
J = ∅, then JB is

optimal, stop.
2. Let k = Argmin{αk|k ∈ I

⋃
J}. In case of a tie, we simply break this tie

by selecting one having the smallest ordinary index. If k ∈ I,then go to 3; If
k ∈ J , then go to 4.

3. Let S = {j|j ∈ JN | and ākj < 0}. If S = ∅, then the primal problem (1)
has no feasible solution, stop. Otherwise, let j = Argmin{αj |j ∈ S}. In case
of a tie, break this tie by selecting one having the smallest ordinary index. Let
JB := JB

⋃{j}\{k} and go back to 1.
4. Let T = {i|i ∈ JB| and āik > 0}. If T = ∅, then the dual problem (2)

has no feasible solution, stop. Otherwise, let i = Argmin{αi|i ∈ T }. In case
of a tie, break this tie by selecting one having the smallest ordinary index. Let
JB := JB

⋃{k}\{i} and go back to 1.

Theorem 2. Algorithm 2 will terminate in a finite number of iterations.

Proof. Reindex the variables in problem (1) from 1 up to n, according to mono-
increase order of pivoting indices; and in case when there are several variables
with equal pivoting indices, reindex them according to their index mono-increase
order. Then, the algorithm 1 and algorithm 2 are equivalent for the problem,
implying finiteness of algorithm 2 since algorithm 1 is finite.
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3 Computational Results

Computational tests have been performed to gain an insight into the numerical
behavior of the proposed method. Algorithm 2 was tested on two groups of
linear programming problems and compare with Algorithm 1. The first group
includes 60 randomly constructed problems, with size m + n from 7 to 49. The
second group involves 5 sparse NETLIB problems that do not have BOUNDS
and RANGES sections in their MPS files, since the current version of our codes
cannot handle such problems implicitly. In our tests, the following 2 codes in
C++ 6.0 were tested, and compared with each other:

C1. Algorithm 1;
C2. Algorithm 2.

The machine precision was about 16 decimal places. For each code, tolerance
used was 10−6. We first report our test result of a small size problem in detail
solved by code C1 and code C2 respectively with the same initial basis.

Example 1

max z = 3x1 + 5x2 − x3 − x4,

x1 + x2 + x3 + x4 ≤ 40,
5x1 + x2 ≤ 12,
x3 + x4 ≥ 5,

x3 + 5x4 ≤ 50,
xi ≥ 0, i = 1, . . . , 3.

Introducing slack variable and performing Gauss-Jordan pivoting operations, it
is easy to obtain the initial tableau as follows:

Initial tableau

191.500 0.000 0.000 0.000 0.000 5.500 -0.500 4.500 0.000
-5.750 1.000 0.000 0.000 0.000 -0.250 0.250 -0.250 0.000
40.750 0.000 1.000 0.000 0.000 1.250 -0.250 1.250 0.000
-6.250 0.000 0.000 1.000 0.000 0.000 0.000 -1.250 -0.250
11.250 0.000 0.000 0.000 1.000 0.000 0.000 0.250 0.250

The interested reader can verify that from the initial basis (x1, x2, x3, x4) a
solution process by algorithm 2 require only 3 iterations, consisting of the fol-
lowing sequence of basic solutions: (x5, x2, x3, x4), (x5, x2, x7, x4), (x3, x2, x7, x4),
whereas the solution process from the same initial basis by algorithm 1 consists
of 6 iterations: (x5, x2, x3, x4), (x5, x2, x7, x4), (x5, x2, x7, x3), (x1, x2, x7, x3),
(x1, x4, x7, x3), (x2, x4, x7, x3). Both algorithms reach the same optimal solution
with the optimal value -88.

Numerical results for all problems are summarized in Table 1.
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Table 1.

Problems iteration
C1 C2

Total for Group 1 653 596
AFIRO: m=28 n=32 65 38
SC50B: m=51 n=48 61 61
SC50A: m=51 n=48 55 56

SC105: m=106 n=103 137 118
SC205: m=206 n=203 267 243

Total for Group 2 585 516

From Table 1 it is seen that C2 outperformed C1 with the iteration ratio
516/585. Also, it is seen that the algorithm C2’ superiority over C1 grows with
increase of problem sizes, overall.

4 Conclusions

The inefficiency of least-index criss-cross method arises from the fact that the
basic variables will tend to become lower-indexed, a tendency which does not
coincide with the real case in general since we can say nothing about indices
of optimal basic variables (ones which are basic at the optimal solution) of a
general problem.

Contrary to least-index criss-cross method, the new finite criss- cross method
enjoys full of geometrical meaning in selecting pivot element. The priority of
being chosen to enter the basis has been given to variables with the smaller
pivoting-index, which is favorable from the spirit of the geometric characteriza-
tion of an optimal basis. Moreover, it has the same advantage of simplicity, and
at the same time, is free of the drawback of index-dependency. Consequently, it
is more efficient. Table 1 shows that our theoretical analysis coincide with the
numerical test results. The performance of algorithm 2 appears to be better than
that of algorithm 1.

Certainly, drawing general and final conclusions require a more extensive
computational study with large-scale problems, as is only possible with some
sparsity-exploiting version of the new method. At least, however, we feel safe
to conclude that to the proposed algorithm is attractive, and deserves a further
investigation.
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Abstract. The paper present a new approach of calculating the shortest paths, 
the approach was named as SPM (the shortest paths’ matrix). Compared to the 
past approaches, SPM introduced distances into a matrix and could show activ-
ity distances directly in elements of the matrix and improved efficiency. The 
definition, operating rules of SPM and others related to SPM were described in 
this paper. At the end, the approach was applied to practical processes, the 
shortest paths were found out quickly. The approach provided a new resolution 
to the calculation of the shortest paths. 

Keywords: BPR, Optimization, Shortest path, Reachable matrix, Activity  
distance. 

1   Introduction 

There are several traditional methods of calculating paths; they are ‘Dijkstra’, ‘Bell-
man-Ford’ and ‘Floyd’. The ‘Dijkstra’ approach is suitable for calculating the shortest 
paths (SP) in a graph which has a single source and all the edge weight of the graph 
are positive; if one edge weight is negative, the result will be wrong by the approach. 
The ‘Bellman-Ford’ approach stores the shortest paths in a vector every time. The 
similarity between the above two approaches is that they only show paths in a graph 
which has a single source, so they can’t be used widely. 

In the ‘Floyd’ approach, there is a matrix Ak which stores the shortest paths calcu-
lated k-th times, so it solves the problem that the above two only calculate the paths 
under a single source. But the matrix in this approach must be calculated n times(if 
there is n points in a graph), n2 elements must be involved every time, and n3 steps are 
needed, efficiency of the approach is low[1-3], so the approach can not be fit for the 
business process reengineering(BPR) [4-5]. 

Under the situation, a new approach-the shortest path matrix (SPM) is proposed in 
the paper. It not only can get the short distances between n points, but also improve 
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the efficiency compared to the above three approaches. The following are descriptions 
and rules relative to the SPM: 

2   SPM 

The SPM gains enlightenment from the reachable matrix. The reachable matrix is 
calculated on adjacent matrix A whose element is 0 or 1 and unit matrix I [6]. The 
elements aij and ajk on (I+A) are 1, that means there is a path from i to k through j, and 

the element a2
ik  ( 2

1

( )
n

ik ij jk

j

a a a
=

= ⊕∑ ) on the result matrix (I+A)2 is 1, and (I+A)2 

describes the reach-ability between i to k through one intermediate point ( or two 
paths) [7]. If the elements on A are replaced by distances, the elements on the result 
matrix must correspondingly show distances. Some concerned rules and matrices in 
the new concept are deferent with before and described as follows: 

2.1   The Relative Conception 

1) Network adjacent matrix A: A is gained as following equation: 

[ ]
( , ), if and is adjacent to j;

, 0, if ;

else.  

ij n n ij

W i j i j i

A a a i j×

   ≠⎧
⎪= = =⎨
⎪∞,⎩

  

     

                   

 (1)

Wij  is weight of an edge. 
2) Multiply-add operation: If 0 ,ij jka a< ∞ , there is a path from i to k through 

j and the distance between i and k is ij jka a+ . And then the minus value in all dis-
tances from i to k through different j are gained. In a similar way, the minus distances 
between all points are gained by changing i and k. 

The operation is similar to matrix multiplication (the row vector adds the corre-
sponding column one) and is called multiply-add operation (denoted by (+)× ). Matrix 
A multiply-add matrix B is matrix C, the elements on C are calculated according to 
the following equation: ij jka a+ :  

1

0
min( )

n

ik ij jk
j

c a b
−

=
= +  (2)

3) r-th degree Multiply-added matrix: If the above matrices A and B are the same, 
the matrix C is called second multiply-added matrix (denoted by A2+). It describes the 
reach-ability and show the distances between points through no more than one inter-
mediate point (or pl (path length) ≤2). In a similar way, the r-th degree multiply-added 
matrix Ar+ is gained: 

( 1)r rA A A+ − +
(+)= ×  (3)
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The element r
ika + on the matrix describes the reach-ability and shows the minus 

distance between points when pl≤ r. 
4) SPM: Through calculation as showed above, when A≠ A2+≠ A3+…≠A(r-1)+

＝

Ar+, we gain SPM (Rp):  

( 1) (4)r
pR A − +=  (4)

It shows the minus distances between all points. 

2.2   The Calculating Process 

Step.1: Fill in the vacancy of adjacent matrix A with ‘0’ and ‘1’. Put ‘1’ on aij (the 
intersection of two activities) which have information flow from activity i to j and put 
‘0’ on which have no information flow. 
Step.2: If all the elements of a column on A are zero, the activity responding to this 
column should be executed as early as possible, because it is the original point of the 
whole activity process and does not need any information of other activities. We ad-
just it on the first column and row on A. 

If all the elements of a row are zero, the activity responding to this row should be 
executed behind other activities, because it is the terminal point and provides no in-
formation to the others. We put it on the last column and row on A[8] [9-10]. 

In a similar way, we can adjust other activities on A in turn. 
Step.3: A is translated into a network adjacent matrix according to equation (1).  
Step.4: Ar+ and Rp are gained according equations (2), (3) and (4). 

2.3   Calculating SP of a Diagraph 

The matrices of Fig.1 are gained according to Section 2.2. 

 

Fig. 1. Simplified storage process 
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   5    0    2     2   4.5
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            0    2.5

                0
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⎛ ⎞
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                0
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Because A≠ A2+≠ A3+…≠A5+ and A5
＝A6+, Rp =A5+. Scanning Rp, we get the shortest 

distances between all points and the one from the original point to the terminal point 
directly (11.2). 

2.4   Calculating SP of a Graph 

A adjacent matrix A is shown as bellow: 
0    1 9   1 9 2 4 2 8               

1 9   0   2 4  2 3 1 8  2 0               

2 4   0   2 9  2 0 1 5               

1 9  2 3  2 9   0    1 6  1 7  2 5          

2 4 1 8  2 0      0    1 2 1 3            

2 8 2

A

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

=

0 1 5       0 2 7 1 5    1 9       

      1 6  1 2  2 7   0   1 1 1 5 2 3       

    1 7 1 3 1 5   0 2 6 1 8 1 3       

    2 5     1 1  2 6 0     2 6   9  2 1  2 8

           1 5 1 8  0   2 6 1 4 1 0  1 7

           1 9 2 3 1

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 3   0  2 9 2 1 1 6  1 0

               2 6 2 6  2 9 0 2 0     

                9 1 4  2 1 2 0 0 1 3    

               2 1 10  1 6  1 3 0  1 8

              2 8 1 7  1 0   1 8  0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜ ∞ ∞⎜
⎜ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
⎜

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞⎜
⎜ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
⎜⎜ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞⎝ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟  

The elements on it are time between points communication of a transport network. In 
the calculating SP of a graph, Step 2 in Section 2.2 doesn’t be needed, so the calcula-
tion is easier than that of a diagraph. The matrices responding to the example are 
gained according to the calculating process of SPM. 
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53  57  55  34  32  40  20  32   9 14   21 20 0 13 31

63  55  50  41  37  35   25  28  21 10  16  33 13 0  18

57  49  44  40  36  29  32  23 28 17 10  39  31 18  0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠  

4

0   19 43 19 24 28 35  36 44 50  47  70  53  60  57

19   0  24  23 18 20 30 31 41 45  39  67  50  55 49  

43 24   0   29 20 15 32  30 43 47  34 63 52  50  44

19  23 29   0  28 32 16 17 25  31  30 51  34 41 40

24 18  20  28   0   28 12 13  23 27 26 

A + =

49  32  37  36
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35 30 32  16  12  27  0  25 11 15 23  37  20  25 32

36 31 30 17 13 15  25 0 26 18 13  42  32  28 23

44  41  43 25  23 38 11  26 0  23 30 26   9   21 28

50  45  47  31  27  33 15 18 23 0   26 26 14 10 17

47  39  34 30  26  19 23 13  30 26  0   29 21 16  10
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3   Comparison between Approaches 

The ‘Dijkstra’ and ‘Bellman-Ford’ approaches are similar to ‘Floyd’ approach. They 
are used to calculate the shortest paths between a single source and all the others, if 
the same process is done by changing sources n times, the shortest paths between all 
points can be figured out. So this paper focuses on comparison between ‘Floyd’ and 
SPM.  

The idea of ‘Floyd’: there is a square matrix A(k), the element ( ) [ ][ ]ka i j ( )i j≠  

shows the distance from i to j , k  expresses operating times[11-12] . 
At the very start (k=-1), if there is an edge from i to j, ( 1) [ ][ ]a i j−  is the weight of 

the edge, otherwise, it is substituted by ‘∞’. So the matrix A(-1) of Fig.1 is gained as 
follows: 

( 1)

0   1          

0 2.2        

  0 3.5     

   0   2   2   

  3    0     

       0 2.5

          0

A Edge−

∞ ∞ ∞ ∞ ∞⎛ ⎞
⎜ ⎟∞ ∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞ ∞ ∞
⎜ ⎟= = ∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞ ∞ ∞
⎜ ⎟

∞ ∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞ ∞ ∞ ∞⎝ ⎠

 

Next, other points are added in the path of [ ][ ]a i j , if [ ][ ] [ ][ ] [ ][ ]a i k a k j a i j+ ≺ , 

[ ][ ]a i j  is substituted by  [ ][ ] [ ][ ]a i k a k j+ . That is, first,  Point ‘0’is added in the path 

of [0][0]a  and a new [0][0]a  is gained, and then Point ‘0’is added in the path of 

[0][1]a , [0][2]a …, through n times, the shortest paths between ‘0’and the others 

through intermediate ‘0’; in a similar way,  through n2  times the second line to Line 
(n-1) of A(0) are figured out as follows: 
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Next, Point ‘1’, ‘2’… and ‘n-1’ are introduced in turn. Through n3 times, A(1), A(2)…, 
A(n-1) (which show the paths between all points through intermediate points ‘0’～‘n-1’ 
in turn) are gained: 
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(5)
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According to the above, the ‘Floyd’ approach is complicated, n3 times calculation 
must be done for A(n-1). The large the n is, the lower the efficiency is and there are 
duplicate calculations（A(-1)= A(0), A(5)= A(6)

). 
Compared to the ‘Floyd’ approach, SPM have following advantages: 

1. It converts calculation of the elements to standard matrix operation. Through the 
first times operation, all the shortest paths between all points through one intermediate 
point (or two paths) are get. That is one times Multiply-add operation can complete 
function of inner times n2 calculation of the ‘Floyd’ approach; 

2. The example 2.3 shows that the operation of SPM terminate when Ar+
＝A(r-1)+ 

and don’t need n times; 
3. If there are no change between the values of corresponding line of A(r-1)+and Ar+, 

the line is copied as the corresponding line of A(r+1)+, so duplicate calculations are 
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reduced. (The values of Line n-2 on A2+ and Aare the same in Section 2.3, the corre-
sponding values on A3+don’t be needed to calculate.).  

According to the above, the more the points are and the less the difference of dis-
tance between points, the less the times of SPM are needed（There are  15 points, 
only 5 times calculations are needed and all the shortest paths between all the points 
are gained). 

4   Conclusions 

A new approach for the shortest paths is proposed. The approach introduce the idea of 
the reachable matrix into calculation of the shortest paths, provided a new solution. 
The respective descriptions and rules are also given in this paper. In the end, through 
compared to the ‘Floyd’ approach, the advantages of SPM are highlight. 
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Abstract. Considering the market is efficient, an obvious portfolio management 
strategy is passive where the challenge is to track a certain benchmark like a 
stock index such that equal returns and risks are achieved. An index tracking 
problem is to minimize the tracking error between a portfolio and a certain 
benchmark. In this paper, we present a heuristic approach based on particle 
swarm optimization (PSO) techniques to optimize the solution of the index 
tracking problem. Our objective is to replicate the performance of a given port-
folio under the condition that the number of stocks allowed in the portfolio is 
smaller than the number of stocks in the benchmark index. In order to evaluate 
the performance of PSO, the results in this study has been used to compare with 
those obtained by the genetic algorithms (GAs). The computational results 
show that particle swarm optimization approach is efficient and effective for 
solving index tracking optimization problems and the performance of PSO is 
better than GAs.  

Keywords: Particle swarm optimization, Index tracking, Track error, Passive 
investment management. 

1   Introduction 

With Difference from traditional evolutionary computation techniques, a new heuris-
tic approach, called particle swarm optimization (PSO) has been introduced recently 
by Kennedy and Eberhart[1]. PSO is motivated from the simulation of social behav-
ior. Many researches on applying heuristic algorithms in portfolio optimization have 
been reported in literatures, but none of them applies the PSO heuristic for solving 
index tracking problems. This paper presents a new approach to solve index tracking 
problem using PSO. 

Active and passive management are two main strategies in investment manage-
ment. Because active strategies rely heavily on skillful investors who can manage and 
control the market, it is difficult to be implemented in practice. In recent years, pas-
sive investment strategies have become very popular, especially among mutual fund 
managers and pension funds. Passive strategies are adopted by investors who believe 
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that financial markets are efficient and it is impossible to consistently beat the aggre-
gate market return. 

Index tracking is one of passive strategies, which attempts to reproduce the per-
formance of a theoretical index representing the market as closely as possible. A real-
istic formulation of the problem should include the number of assets in the portfolio, 
the restrictions on the positions on each asset, the size of transactions costs, as well as 
liquidity and exposure constraints. The effective method of handling them in the con-
text of a realistic problem size is to use heuristic algorithms that provide good ap-
proximations of the optimal solution[2]. 

Some researchers investigated the index tracking optimization, in which heuristic 
optimization technique, as a new direction of research, has been applied for the solu-
tion of the index tracking problem. For example, Threshold Accepting Heuristic 
(TA)[3], Simulated Annealing (SA), Tabu Search (TS)[4], Genetic Algorithm 
(GA)[5] and Ant Colony Optimization (ACO)[6]. The advantage of these techniques 
is that virtually no restriction has to be imposed on the shape of the objective function 
or the constraints. 

In this paper we propose another heuristic optimization algorithm, called Particle 
Swarm Optimization (PSO). PSO has been successfully applied for solving portfolio 
optimization problems[7]. Following the results obtained in our experiments in the 
paper, we demonstrate PSO is an efficient technique for the index tracking. The re-
sults of the PSO study are also compared with those of genetic algorithm (GA) and 
the PSO shows a better performance than the GA.  

The remainder of the paper is organized as follows. Section 2 presents the optimi-
zation problem of index tracking. Section 3 describes the general concept of PSO and 
how to using PSO to solve the index tracking problem. Section 4 shows and discuss 
the results in the experiment. Conclusions are drawn in Section 5. 

2   The Optimization Problem 

The optimization problem of index tracking is to find an optimal value of reproducing 
the performance of a given index. The desired solution is a portfolio which is com-
posed of a relatively small subset of the stocks in the market and  behaves similar to 
the index. This section describes the mathematical model of the problem. The most 
equations of the model are based on the work of Beasley et al.[5]. 

2.1   Objective Function 

We suppose that there are N assets in the market, from which a tracking portfolio 
should be found. Let 

itp  be the price at time t of the asset i, i = 0,…,N. Let 
tI  be the 

value of the index observed at time t. We have observed the market prices itp  and 
tI  

for periods 0t ,…, 1t  in the past. We attempt to find the composition of a portfolio, 

which would have tracked in an optimal way the index over the period [ 0t , 1t ]. In 

other words, we attempt to find quantities itw , i = 1,…,N, and an objective value 
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10 ,ttF . F will be a function of the tracking error of the tracking portfolio against the 

index value 
tI . The measure used for the tracking error in returns over the period of 

time between 0t  and 1t  is 
10 ,ttE  defined as  

10 ,ttE =
01

/1)( 1

0

tt

rr
t

tt

I
t

P
t

−

−∑ =
αα

 (1) 

Where α >0. P
tr  and I

tr  are the return on the tracking portfolio and index over the 

period [ 0t , 1t ] respectively. Especially ∑ =
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Let 
10 ,ttR  be the average of the deviations of the tracking portfolio returns from the 

index returns over the period of time [ 0t , 1t ], 
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Positive deviations from the index may be desirable. One way to account for this is to 

define the function to be minimized 
10 ,ttF  as a weighted difference of our measure of 

the tracking error 
10 ,ttE  and of the excess return 

10 ,ttR : 

101010 ,,, )1( tttttt REF λλ −−=  (3) 

Where λ ∈ [0,1]. The sensitivity of the investor to the risk increases as λ  ap-

proaches unity, while it decreases as λ  approaches zero.  

2.2   Problem Formulation 

Our problem consists in finding a new portfolio 
0t

P ={
0itw } which, if we hold it 

unchanged during the period [ 0t , 1t ], minimizes the objective function 
10 ,ttF  under 

the constraints: 

101010
0

,,, )1( tttttt
P

REFMin
t

λλ −−=  
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i itw
1
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0itw ≥ 0 
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i it Kz
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00000 ititititit zwz δε ≤≤ , i=1,…,N 

0itz ∈{0,1}  i=1,…,N. 

(6) 
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(8) 

(9) 

(10) 
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Where Eq.(7) means that no short sales are allowed. In deed, it is a common practice 
to sell assets that are not yet owned by the investor at the time, in expectation of fal-

ling prices. This can be formulated by replacing ∑ =

N

i itw
1 0

=1, 
0itw ≥ 0 with 

∑ =

N

i itw
1 0

=1. This relaxation was introduced by[8]. Eq.(8) is Cardinality constraints, 

and Eq.(9) is Size constraints, This constraints are introduced in an index tracking 

framework by[9]. Eq.(10) is asset selection constraints, if 
0itz  equal 1, the stock i will 

be selected in the portfolio, otherwise the stock i will be excluded.  
By solving Eq. (6), we can find the number of each asset i that we should have held 

during all the period [ 0t , 1t ] in the past in order to optimally reproduce the perform-

ance of the index during the same period. Assuming that the same portfolio will also 

optimally track the index during period [ 1t , 2t ] in the future, at time 1t  we use the 

weights 
1,tiw =

0,tiw  to construct a portfolio 
1t

P  in which the weight invested in asset 

i is the same as the corresponding weight in the portfolio 
0t

P . 

3   PSO for Optimization of Index Tracking 

There is no any accurate numerical solution for Eqs. (6)-(10) for the reason that it is a 
mixed quadratic and integer programming problem[10]. Hence in order to solve the 
index tracking problem, we introduce PSO heuristic approach. It is one of the evolu-
tionary optimization methods and is based on the metaphor of social interaction and 
communication behavior of biological swarms, such as bird flocking.  

PSO could be explained well using a scenario: a group of birds are flying in an area 
to look for food, the easiest way to find the food is to follow the one who is closest to 
the food. In other words, Any particle moves to find the best solution by following its 
own best experience and the swarm’s best experience. 

We can consider that there should be M particles in the swarm, each representing a 
portfolio including N assets. Each particle includes proportion variables denoted by 

piw  (p=1,…,M, where p is the portfolio in the solution space. i=1,…,N, where piw  is 

the proportion of every asset in the portfolio). The best particle is the optimal portfo-
lio we wanted. 

3.1   Fitness Function 

Each particle in the PSO swarm will be associated with a fitness value. Thus, in the 
swarm, particles’ best experience is the position where the particle has met with the 
best fitness value, and the neighbor’s best experience is the previous position where 
the neighbor has met the best fitness value. In this paper, we select the fitness function 
as follow: 

Pf = 
1010 ,, )1( tttt RE λλ −−  (11) 
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Where Pf  is the fitness value of particle p. Every particle of the swarm represents a 

candidate solution, and each particle must be feasible and satisfy Eqs. (7)-(10). In this 
paper, about the cardinality constraints, we set the K equal 15. About size constraints, 

we set the parameter as: iε =0, and iδ =1. 

3.2   PSO Updating 

In the algorithm of PSO, each solution is called a “particle”, and every particle has its 
position, velocity, and fitness value. At each iteration, every particle moves towards 
its personal best position and towards the best particle of the swarm found so far. The 
velocity changes according to Eq. (12): 

)1( +tvi = )(tvw i + )]()([11 txtprc ii − + )]()([22 txtprc ig −  (12) 

where t is the iteration sequence of the particle i. c1 and c2 are positive constant pa-
rameters called acceleration coefficients, which are responsible for controlling the 
maximum step size. r1 and r2 are random numbers between (0, 1). w is a constant.  

)1( +tvi  is particle i’s velocity at iteration t + 1. )(tvi  is particle i’s velocity at itera-

tion t. )(txi  is particle i’s position at iteration t. )(tpi  is the historical best position 

of particle i. ( )gp t  is the historical best position of the swarm.  

The new position of particle i, )1( +txi , is calculated by Eq. (13) 

)1( +txi = )(txi + )1( +tvi  (13) 

The details about PSO algorithm can be referred to the paper[11]. 

4   Computational Experiments 

In the paper, we selected portfolios consist of 15 stocks (equal K of eq. (8)) from S&P 
500 index in USA, FTSE 100 index in UK and SSE 50 index in China. the percent-
ages p1, p2, ..., p15 of our investment cash need to be computed, so that we are able 
to determine how much should be invested in each of the 15 stocks. In this section, 
we present the experimental results obtained when searching the best portfolio, which 
provides the solution of the problem using Eqs.(6)-(10). In order to evaluate the per-
formance of PSO model, we have also compared the PSO approach with another 
heuristic approach genetic algorithm (GA)[5]. The experiments data were obtained 
from website: http://finance.yahoo.com. These data correspond to weekly prices be-
tween January 2007 and December 2007 from the three indices. In the experiments, 
PSO Solver has been developed using Matlab. Genetic Algorithm has been developed 
using GeneHunter[12]. 

All the results were computed using the α =2 and λΔ =0.2 for the implementa-
tion of the algorithms. The PSO and GA algorithms used the same test data and were 
run on the same computer. The results are shown in the table 1. The table 1 shows the 
tracking error, excess return and fitness value obtained by GA and PSO heuristics 
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respectively. All the fitness values obtained by PSO heuristic are always less than 
them obtained by GA heuristic. So we can conclude that PSO heuristic is superior to 
GA heuristic in solving the index tracking problem. 

Taking the sets of optimal portfolios obtained with each heuristic, we trace out 
their Variance-Return curve shown in Fig.1. Fig.2(a)-(c) show the comparison of the 
Variance-Return curve by GA and PSO heuristics from the three Index. The solid line 
represents the curve got by PSO heuristics and the dotted line represents the curve got 
by GA. The solid lines are always above the dotted lines clearly. The fact shows that 
the PSO heuristic is superior to genetic algorithm. 

The tracking FTSE100 Index curves obtained by PSO and GA heuristics are shown 
in Figs.2 (a)-(f). We can draw two conclusions by observation. First, the tracking 
curves obtained by PSO are closer to the index than the curves obtained by GA. Sec-
ond, the value of λ  is very important to solve the optimization of the index tracking 

problem. In this case, we can get the closest tracking curve by selecting λ = 1. 

Table 1. The experimental results of PSO and GA heuristics 

Tracking error Excess return Fitness Value 
Index λ  

GA PSO GA PSO GA PSO 
1 0.814% 0.670% -0.129% -0.069% 0.814% 0.670% 

0.8 0.786% 0.689% -0.018% 0.095% 0.632% 0.532% 

0.6 1.019% 0.822% 0.271% 0.351% 0.503% 0.353% 

0.4 2.413% 2.894% 1.717% 2.247% -0.065% -0.191% 

0.2 2.564% 2.670% 1.638% 1.785% -0.798% -0.894% 

FTSE 
100 

0 2.384% 2.985% 1.408% 2.309% -1.408% -2.309% 

1 0.360% 0.342% 0.058% 0.054% 0.360% 0.342% 

0.8 0.367% 0.349% 0.112% 0.120% 0.271% 0.255% 

0.6 0.459% 0.442% 0.310% 0.299% 0.152% 0.145% 

0.4 3.964% 4.086% 3.675% 3.761% -0.619% -0.622% 

0.2 4.958% 4.845% 4.249% 4.244% -2.408% -2.426% 

S&P 
500 

0 4.700% 5.135% 4.099% 4.398% -4.099% -4.398% 

1 0.795% 0.736% -0.045% -0.054% 0.795% 0.736% 

0.8 0.827% 0.739% 0.163% 0.133% 0.629% 0.565% 

0.6 1.026% 0.925% 0.592% 0.553% 0.379% 0.333% 

0.4 11.866% 18.715% 10.016% 15.722% -1.263% -1.947% 

0.2 17.860% 20.940% 14.658% 17.065% -8.154% -9.464% 

SSE 
50 

0 18.323% 20.661% 14.959% 16.741% -14.96% -16.74% 
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         a) FTSE100 Index               (b) S&P500 Index                  (c) SSE50 Index 

Fig. 1. Variance-Return curves of the portfolio by PSO and GA heuristics 
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(a) Lamuda=1                                            (b) Lamuda=0.8 
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(e) Lamuda=0.2                                      (f) Lamuda=0 

Fig. 2. Tracking FTSE100 index curve by GA and PSO heuristics 

5   Conclusion 

We present the index tracking problem and develop a PSO heuristic approach for its 
solution in this paper. In the experiments, the results obtained by PSO heuristic and 
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another heuristic GA algorithm have been compared with. The results show that PSO 
heuristic is superior to solving the index tracking problem than GA heuristic in this 
case. The structure of PSO is simpler and computational time is shorter. So we can 
come to conclude that PSO is an effective and efficient approach to the passive port-
folio management. In order to solve the index tracking in real world, the further re-
search will be focus on how can apply more complex portfolio optimization model to 
the index tracking problem. 
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Abstract. In this paper, we introduce optimization methods of Polynomial Ra-
dial Basis Function Neural Network (pRBFNN). The connection weight of pro-
posed pRBFNN is represented as four kinds of polynomials, unlike in most 
conventional RBFNN constructed with constant as connection weight. Input 
space in partitioned with the aid of kernel functions and each kernel function is 
used Gaussian type. Least Square Estimation (LSE) is used to estimate the coef-
ficients of polynomial. Also, in order to design the optimized pRBFNN model, 
center value of each kernel function is determined based on C-Means clustering 
algorithm, the width of the RBF, the polynomial type in the each node, input 
variables are identified through Particle Swarm Optimization (PSO) algorithm. 
The performances of the NOx emission process of gas turbine power plant data 
and Automobile Miles per Gallon (MPG) data was applied to evaluate proposed 
model. We analyzed approximation and generalization of model. 

Keywords: Polynomial Radial Basis Function Neural Networks (pRBFNN),  
C-Means, Particle Swarm Optimization Algorithm, Machine Learning data. 

1   Introduction 

Dimensionality issues have emerged as an important topic in neurocomputing given 
our ultimate challenge to deal with real-world problems of high dimensionality [1], [2]. 
Given the simple topological structure and universal approximation abilities [3], radial 
basis function neural networks (RBFNNs) have been widely studied and applied to 
many categories of problems such as those arising in pattern recognition, signal proc-
essing, time-series prediction, and nonlinear system modeling and control [4],[5],[6]. 

Clustering algorithm is the process of dividing data elements into classes or clus-
ters and it widely used to extract information granule from data. C-Means clustering 
(HCM) and Fuzzy C-Means clustering (FCM) are used to get information granule 
(center of clusters) for generating spaces of fuzzy sets, Mountain clustering and sub-
tractive clustering [7], [8] are used to automatically determine the number of rules. 
There are many studies related to the identification of fuzzy model using evolutionary 
optimization such as Genetic Algorithm (GA) and PSO [9]. 

The pRBFNN designed with the aid of HCM and the least square method involves 
structural as well as parametric optimization. As far as the structure optimization is 
concerned, there are three components to consider, i.e., a collection of specific subsets 
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of the input variable, the width of the RBFs, and the order of the polynomials type of 
each node. Also the pRBFNN can have different types of polynomial one another. 
These three components impact the performance of the pRBFNN and have to be op-
timized. The PSO algorithm was exploited to maximize the accuracy of the pRBFNN. 

In this study, the polynomial type of the consequent part of fuzzy rules is deter-
mined by the proposed algorithm. We optimized such parameters as a collection of 
specific subsets of the input variable, polynomial type in the consequent part of fuzzy 
rules and the width of RBF by using the PSO. 

2   General RBF Neural Network 

A RBFNN is an artificial neural network that uses RBFs as activation functions. It is a 
linear combination of RBFs. They are used in function approximation, time series 
prediction, and control [7]. 

As the RBF, thin plate type, cubic type, and linear type are used. Here, Gaussian 
function is considered, therefore, Rj(x) denotes the premise part of fuzzy rules, and is 
given as the following form: 
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Eq. (1) can be represented as Eq. (2) and as kernel function, all RBFs in the hidden 
layer have same width as shown in the following form.  
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Where, Xk  is input variables of  k(j=1,…,l)th , vjk denotes the center value of RBF of 
the kth(k=1,…,n) input, σ is given as the width of RBF to determine activation area. 

In the hidden layer, the center value and the width of the kernel function give sig-
nificant impact on the output of the model.  

3   Proposed Polynomial RBF Neural Network 

3.1   Structure of Proposed RBFNN 

In the proposed pRBFNN, the structure of kernel function is decided by the center 
values of RBFs and the widths of RBFs. 

In this paper, the connection weight of proposed pRBFNN is represented as four 
kinds of polynomials unlike in most conventional RBFNN constructed with constant 
as connection weight.   
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Fig. 1. Structure of the proposed RBFNN 

[Case 1] First, in individual hidden nodes of RBF, the distribution constant (the width 
of RBF : σ ) corresponding to each node is different one another. 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
++

−
+

−
−

∑

=

=

n

k j

jkk

j

jkk

j

j

j

j

vX

vXvXvX

j

e

exR

1
2

2

2

2

2

2
22

2

2
11

)(

)(

2

1

)(2

)(
...

)(2

)(

)(2

)(

)(

σ

σσσ  
(3) 

[Case 2] Second, the distribution constant (σ ) corresponding to each input variable 
within individual hidden nodes (rules) is not the same. 
 

Fig.2-(a) shows standard RBF that the width of RBFs is all the same, Fig.2-(b) shows 
the width of RBF is different for each node as Case 1, and Fig.2-(c) shows the width 
of RBF is different for individual inputs per node as Case2.  
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In the Fig. 1, fj (x) is a distinguished polynomial between the related polynomials 
pŷ  

has the following form: 
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1

/  is the jth normalized output of RBF, fj is the jth polynomial 

function of connection weight. 
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  (a) Basic form of RBF             (b) Case1 RBF                  (c) Case2 RBF  

Fig. 2. Comparison of Radial Basis Function 

3.2   Optimization of Proposed RBFNN 

The pRBFNN designed with the aid of HCM and the LSE involves structural as well 
as parametric optimization. As far as the structure optimization is concerned, there are 
three components to consider, i.e. a collection of specific subsets of the input variable, 
the width of RBF and the order of polynomial. These three components to be opti-
mized give impact on the performance of the pRBFNN. The PSO algorithm for opti-
mization is exploited to improve the approximation as well as generalization capabili-
ties of the pRBFNN model. 

Fig. 3 shows the structure of particle of PSO used in the optimization of the 
pRBFNN. 
 

[CASE 1] Fig. 3-(a) shows the first case of particle structure to decide the structure of 
pRBFNN. Individual hidden nodes with different distribution constant (the width of 
RBF: σ ) are constructed one another for optimization of particle structure of PSO. 
 

[CASE 2] Fig. 3-(b) shows the second case of particle structure to decide the structure 
of pRBFNN. It is the extended form of the first case. The particle structure of PSO is 
different for each input variable within individual hidden nodes (rules) 

 

...... ...
 

(a) Case 1 

...... ... ...
 

(b) Case 2  

Fig. 3. Composition of particle structure 

3.3   Object Function of PSO 

The objective function (performance index) is a basic instrument guiding the evolu-
tionary search in the solution space. The objective function is handled by considering 
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two cases of the training and testing data (two split way) or training, validation and 
testing data (three way split). 

)-(1EPIPI function object θθ ×+×=  (6) 

Here, PI, EPI (or VPI) denote the performance index for the training, testing (valida-
tion) data, respectively. Moreover θ  is a weighting factor that allows us to strike a 
meaningful balance between the performance of the model for the training and testing 
(validation) data. Depending upon the values of the weighting factor, several specific 
cases of the objective function are worth distinguishing. 

4   Experimental Results 

The proposed architecture of the network, its development and resulting perform-
ance are illustrated with the aid of a series of numeric experiments. The first one is 
a NOx emission process data of gas turbine power plant. The second series of ex-
periments is concerned with a selected data set from Machine Learning repository 
(http://archive.ica.usi.edu/ml/). We use the standard performance index of the  
Mean Square Error (MSE) and Root Mean Square Error (RMSE) as expressed by 
(7) and (8). 
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4.1   NOx Emission Process 

NOx emission process is also modeled by using the data of gas turbine power plants. 
Till now, NOx emission processor is almost based on “standard” mathematical model 
in order to obtain regulation data from control process. 

The input variables include ambient temperature (AT) at site, compressor speed 
(CS), low pressure turbine speed (LPTS), compressor discharge pressure (CDP), and 
turbine exhaust temperature (TET). The output variable is NOx. We consider 260 
pairs of the original input-output data. The performance index is defined by (12). 

The identification error (performance index) of the proposed model is much lower 
(superb) in comparison with some other models studied previously as shown in  
Table 1. The performance of the propose model depends on the polynomial type, the 
number of clusters and inputs. Moreover, according of the change of the number of 
parameters corresponding to the change of polynomial type, balance between  
performance and network complexity leads to the effective design of network. More-
over the increase of the number of clusters does not necessarily mean the decrease of 
identification error of network as shown in Table 1. 
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Table 1. Comparison of identification error with previous models 

Model 
Polynomial type of 
individual rules 

No. of 
clusters 
/inputs 

No. of 
parameters 

PI VPI EPI 

Regression model 2 (linear) - 6 17.68 - 19.23 

1 θ =0.4 30/5 - 6.269 - 8.778 
FNN[10](Gas+complex) 

2 θ =0.4 30/5 - 3.725 - 5.291 

Multi-FNN[11] 2 θ =0.75 30/5 - 0.720 - 2.025 

3 (quadratic) 4/4 60 0.0083 - 0.0425 
3 (quadratic) 8/3 80 0.0139 - 0.0328 
3 3 2 3 4/4 50 0.0084 - 0.0265 

Case1 
pRBFNN 

2 4 2 3 3 3 4 4  8/4 88 0.0046 - 0.0280 
3 (quadratic) 6/4 90 0.0045 - 0.0294 
3 (quadratic) 8/3 80 0.0127 - 0.0294 
4 4 2 3 3 4 6/4 68 0.0057 - 0.0256 

Two 
split 
way 

Case2 
pRBFNN 

1 1 2 2 3 3 3 2 8/5 83 0.0024 - 0.0216 
4 (M-quadratic) 8/5 168 0.0041 0.0438 0.0573 
3 (quadratic) 10/4 150 0.0067 0.0863 0.1481 
3 2 2 2 3 4 3 3 8/4 86 0.0064 0.0226 0.0266 

Case1 
pRBFNN 

1 2 1 2 1 2 3 1 3 1 10/5 65 0.0121 0.0291 0.0615 
3 (quadratic) 8/4 120 0.0037 0.0770 0.1007 
3 (quadratic) 10/4 150 0.0046 0.0767 0.0969 
2 3 2 2 4 2 3 1 8/4 62 0.0060 0.0187 0.0579 

Our 
Model 

Three 
way 
split 

Case2 
pRBFNN 

1 1 2 3 2 2 3 2 2 2 10/4 62 0.0046 0.0334 0.0324 

4.2   MPG Data 

We consider the well-known automobile MPG data (http://archive.ics.uci.edu/ml/ 
datasets/Auto+MPG) with the output being the automobile’s fuel consumption  
 

Table 2. Comparison of identification error with previous models 

Model 
Polynomial type 
of individual rules 

No. of 
clusters 
/inputs 

No. of 
parame-
ters 

PI VPI EPI 

Regression model 2 (linear) - 8 10.86 - 12.09 
ANFIS[12] 2 (linear) 16/7 128 0.0851 - 541.32 

Without optimization - 36/7 - 3.78  4.22 
One-loop optimization - 36/7 - 2.90  3.17 

Linguistic 
Model[13] 

Multistep optimization - 36/7 - 2.86  3.14 
4 (M-quadratic) 4/5 64 1.8926 - 3.0188 
4 (M-quadratic) 8/4 88 1.6661 - 3.0422 
2 3 4 1 4/5 47 2.0673 - 2.6844 

Case1 
pRBFNN 

4 3 2 2 1 4 1 2 8/6 95 1.7929 - 2.5229 
3 (quadratic) 4/5 84 1.7475 - 2.6434 
3 (quadratic) 6/4 90 1.6945 - 2.9336 
2 3 1 3 4/6 64 1.9366 - 2.5234 

Two 
split 
way 

Case2 
pRBFNN 

3 2 1 1 2 3 6/7 90 1.8671 - 2.3974 
4 (M-quadratic) 4/5 64 1.9060 2.4412 3.7545 
3 (quadratic) 20/3 200 1.9944 2.5779 3.7168 
4 4 2 4 4/5 57 1.9887 2.2596 3.4351 Case1 

pRBFNN 2 2 1 1 1 2 2 2 4 1 
3 
3 3 1 1 1 3 2 4 1 

20/3 86 2.2771 2.4627 3.2462 

4 (M-quadratic) 6/4 66 1.7941 2.5041 4.6333 
3 (quadratic) 30/2 180 2.3717 2.6684 3.3579 
2 4 2 2 2 2 6/6 57 1.8977 2.0149 3.6768 

Our 
Model 

Three 
way 
split 

Case2 
pRBFNN 2 2 1 1 1 2 2 2 4   

1 3 3 3 1 1 1 3 2 4 
1 

30/2 91 2.2798 2.7048 3.3766 



252 Y.-H. Kim, H.-K. Kim, and S.-K. Oh 

expressed in miles per gallon. Here we consider 392 input-out pairs. The number of 
input variable is 7. The number of input variables is varied from 1 to 6. The perform-
ance index is defined by (13). 

The identification error (performance index) of the proposed model is also 
compared to the performance of some other models in Table 2. 

5   Concluding Remarks 

In this paper, we have proposed optimization methods and structure of polynomial 
radial basis function neural network. The pRBFNN is the extended architecture of the 
conventional RBFNN. The connection weight of proposed pRBFNN is represented as 
four kinds of polynomials, unlike in most conventional RBFNN constructed with 
constant as connection weight. Input space is partitioned with the aid of kernel func-
tions and each kernel function is used as Gaussian type. Least Square Estimation 
(LSE) is used to estimate the coefficients of polynomial. Also, in order to design the 
pRBFNN model, the center value of each kernel function is determined based on 
HCM clustering algorithm. The width of RBF, the polynomial type of the consequent 
part of fuzzy rules and input variables are identified through PSO algorithm. To effec-
tively evaluate the proposed model, the division of dataset is considered as two cases 
such as training and testing dataset or training, validation and testing dataset. 
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Convergence of the Projection-Based
Generalized Neural Network and the Application

to Nonsmooth Optimization Problems
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Abstract. This paper introduces a projection-based generalized neural

network, which can be used to solve a class of nonsmooth convex opti-

mization problems. It generalizes the existing projection neural networks

for solving the optimization problems. In addition, the existence and con-

vergence of the solution for the generalized neural networks are proved.

Moreover, we discuss the application to nonsmooth convex optimization

problems. And two illustrative examples are given to show the efficiency

of the theoretical results.

Keywords: Nonsmooth optimization, Differential inclusions, General-

ized neural network, Projection, Convergence.

1 Introduction

This paper is mainly concerned with the convergence and the application of the
following generalized neural network{ ż ∈ −z + PΩ(z)− αJ(PΩ(z))

x = PΩ(z) (1)

where α is a positive constant, z ∈ Rn, J(·) is a convex, closed-valued and locally
bounded mapping from Rn to itself, Ω is a n-dimension convex closed subset of
Rn, PΩ(·) is a projection operator, which is defined as PΩ(u) = arg min

v∈Ω
‖u−v‖,

for u ∈ Rn, and x ∈ Rn is the output solution trajectory of the generalized
neural network. Meanwhile we call z(t) the aided solution trajectory.

In recent years, many researchers have investigated the convergence and the
application of some projection-based neural networks[1,2,3,4,5,6,7]. By means of
this method, a plenty of nonlinear complementary problems, engineering prob-
lems, economical decision problems can be solved. Especially for the model
du
dt = λ(−αG(PΩ(u)) + PΩ(u) − u) in [6], Xia obtained the asymptotical sta-
bility and the exponential stability without the smooth assumption of the non-
linear mapping. The neural network generalized the existing neural networks for
� This work was jointly supported by the National Natural Science Foundation of

China under Grant 60875036, the Key Research Foundation of Science and Technol-

ogy of the Ministry of Education of China under Grant 108067, and supported by

Program for Innovative Research Team of Jiangnan University.
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solving nonlinear optimization. In [7], Gao used the neural network to solve con-
strained variational inequality problems. However, they’re merely suitable for
some optimization problems whose objective functions and constraints are con-
tinuously differentiable. For some nonsmooth optimization problems, nonlinear
mapping G(·) in [6] can be extended to be a set-valued one. In this way, a circuit
is obtained whose dynamics is no longer described by some standard differential
equations, but replaced with the differential inclusions [8].

With the need of solving such nonsmooth optimization problems, Forti et.al
[9] proposed a programming circuit which generalized the model introduced by
Kennedy and Chua in [10]. They turned to the account of a nonsmooth penalty
approach to aim at solving a large class of nonsmooth optimization problems
in real time. Since then, some generalized neural networks were proposed for
solving optimization problems [11,12,13,14,15,16]. For example, Forti et.al [11]
discussed the convergence of neural networks for programming problems via a
nonsmooth �Lojasiewicz inequality. Liu [13] proposed a one-layer recurrent neural
network with a discontinuous hard-limiting activation function for quadratic
programming. In addition, the subgradient-based neural networks were proposed
for nonsmooth convex and nonconvex optimization problems [15,16].

Motivated by the above discussions, in this paper, we introduce a projection-
based generalized neural network. Based on the stability theory of differential
inclusions, the convergence of the generalized neural network is proved. The
application to nonsmooth optimization problems is also discussed.

This paper is organized as follows: Section 2 gathers some definitions and
lemmas which will be used later in this paper. Section 3 is devoted to our main
results on the analysis of existence and convergence of the solution. Section 4 dis-
cusses the application of the generalized neural network (1). After the numerical
illustrations in Section 5, this paper concludes in Section 6.

2 Preliminaries

In this part, we will gather some toolkits which will be used in the remaining
sections, including some definitions and lemmas. They are about projection oper-
ator, nonsmooth analysis and differential inclusions, which aims at paving a way
to the analysis of convergence. And more details can be found in [16,17,18,19,20].

Lemma 1. [17] Let Ω be a nonempty closed convex set in Rn. For ∀u, v ∈ Rn,
the projection operator satisfies the following results:

(i) ‖PΩ(u)− PΩ(v)‖ � ‖u− v‖

(ii) ‖PΩ(u) − w‖2 ≤ ‖u− w‖2 − ‖PΩ(u) − u‖2, ∀w ∈ Ω

(iii) (u− PΩ(u))T (PΩ(u) − PΩ(v)) � 0

Definition 1. [18](set-valued map and u.s.c.) Suppose that E ⊂ Rn, for any
x ∈ E, x � F (x) is said to be a set-valued map from E to Rn if the nonempty
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set F (x) ⊂ Rn. A set-valued map F : E � Rn with nonempty values is said to
be upper semicontinuous at x0 ∈ E if for any open set N containing F (x0), there
exists a neighborhood U of x0 such that F (x0) ⊂ N . F is upper semicontinuous
on E iff its graph{(x, y) ∈ E × Rn : y ∈ F (x)} is closed. And we denote upper
semicontinuous as u.s.c. for short.

Definition 2. [19](Clarke’s generalized gradient of f(x)) The Clarke’s general-
ized gradient of function f : Rn → R is defined as

∂f(x) = {ξ ∈ Rn : f0(x; v) �< v, ξ >, for all v ∈ Rn},

where the generalized directional derivative f0(x; v) is

f0(x; v) = lim
y → 0
t → 0+

sup{f(y + tv) − f(y)}
t

.

Definition 3. [19](regular) A function f : Rn → R, which is locally Lipschitz
near x ∈ Rn, is said to be regular at x if f0(x; v) = f

′
(x; v), where f

′
(x; v)

is the usual one-sided directional derivative and equals to lim
t→0

f(x+tv)−f(x)
t . The

function f is said to be regular in Rn, if it is regular for any x ∈ Rn.

Remark 1. By virtue of [19], a locally Lipschitz and convex function in Rn is
regular in Rn. Moreover, if a function is continuously differentiable in Rn, then
it is regular in Rn.

Lemma 2. [19] Let f be Lipschitz near each point of an open convex subset U
of x, then f is convex on U iff the multifunction ∂f is monotone on U ; that is
iff

(x− x′)T (ξ − ξ
′
) ≥ 0, ∀x, x′ ∈ U, ξ ∈ ∂f(x), ξ

′ ∈ ∂f(x′);

f is strongly convex, iff the multifunction ∂f is strongly monotone, i.e.

(x− x′)T (ξ − ξ
′
) ≥ μ‖x− x′‖T , μ > 0, and ∀x, x′ ∈ U, ξ ∈ ∂f(x), ξ

′ ∈ ∂f(x′),

where ∂f is the Clarke’s generalized gradient of f(x).

Remark 2. Generally, the properties of monotone often play the important role
in the analysis of the convergence, connecting with the convex function. We can
see the relationship between these two aspects in Section 3.

Lemma 3. [8] If W : Rn → R is regular at x(t) and x(·) : R � Rn is
differentiable at t and locally Lipschitz continuous near t, then

d

dt
W (x(t)) =< ξ, ẋ(t) >, ∀ξ ∈ ∂W (x(t)).
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Lemma 4. [16] Let x(t) be a global solution to the generalized neural network
(1). Suppose that there exists V : Rn → R such that V (x(t)) is absolutely
continuous on [t0,+∞), and there exists ε > 0 such that for almost all t for
which x(t) ∈ {x : V (x) > 0}, we have

d

dt
V (x(t)) ≤ −ε.

Then, the trajectory x(t) hits {x : V (x) ≤ 0} in finite time and stays there
thereafter.

Definition 4. If the aided solution z∗ of model (1) satisfies that 0 ∈ −z̄ −
α∂f(PΩ(z∗)) + PΩ(z∗), then z∗ is said to be the equilibrium point of model (1),
as well as the output solution trajectory.

Next, we will pay more attention to studying the convergence of the equilibrium
point of the generalized neural network (1).

3 Convergence Analysis

Now, let’s turn to the topic of the main results of this paper. First of all, we’ll
give some assumptions for convenience.

Assumptions:

1. The set-valued map J : Rn � Rn is nonempty and u.s.c. over z ∈ Rn.
2. There exists one equilibrium point z∗ ∈ Rn.

Theorem 1. Let the generalized neural network (1) satisfy Assumptions 1 and
2. Then there exists at least one aided solution trajectory z(t) of model (1) for
any given initial point z(t0) over [t0,+∞).

Proof. Let T (z) = z + αJ(PΩ(z)). Just in light of Assumption 1 and the condi-
tions in model (1), we can obtain that T (z) is nonempty, convex, closed-valued,
u.s.c. and locally bounded over z ∈ Rn. Meanwhile, from the definition of PΩ(z)
and Lemma 1, we know that PΩ(z) is nonempty, convex, closed-valued, u.s.c.
and locally bounded over z ∈ Rn as well. Considering all of the analysis above,
there exists at least one absolutely continuous aided solution trajectory z(t) for
model (1) for any given initial point z(t0) over [t0, T ), according to [21].

Moreover, we will show that T can be extended to +∞. Indeed, considering
that there exists γ ∈ J(PΩ(z)) such that ż = −z + PΩ(z)−αγ, we have ż + z =
PΩ(z) − αγ. Hence, we can integrate it from t0 to t(> t0) and get the result:

z(t) = e−(t−t0)z(t0) + e−t
∫ t

t0
es(PΩ(z(s)) − αγ(s))ds

= e−(t−t0)z(t0) + e−t
∫ t

t0
esPΩ(z(s))ds + e−t

∫ t

t0
es(−αγ(s))ds
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Obviously, by the mean-valued integrable theorem and the properties of the
set-valued map J(PΩ(z)), we have

‖z(t)− z∗‖ = ‖e−(t−t0)z(t0) + e−t
∫ t

t0
esPΩ(z(s))ds

+e−t
∫ t

t0
es(−αγ(s))ds− z∗‖

≤ e−(t−t0)‖z(t0)‖ + e−t‖PΩ(ẑ)‖ ∫ t

t0
esds

+e−t
∫ t

t0
es(‖ − αγ(s))‖ + ‖z∗‖)ds

≤ (1 − e−(t−t0))(‖PΩ(ẑ)‖ + αM) + e−(t−t0)(‖z(t0)‖ + ‖z∗‖)
where ‖γ‖ ≤ M , by virtue of the locally boundness of J(PΩ(z)). Therefore,
‖z(t)− z∗‖ ≤ N = max{‖PΩ(ẑ)‖ + αM, ‖z(t0)‖ + ‖z∗‖}. In other words, z(t) is
bounded with the center z∗ and the radius N for any t > t0. Hence, T can be
extended to +∞. Thus the proof is completed.

Then, the next theorem will show that the output solution trajectory of the
generalized neural network (1) can be convergent within the finite time.

Theorem 2. Let the generalized neural network (1) satisfy Assumption 1, 2. If
the set-valued map J is strongly monotone with the parameter μ > 0, then the
output solution trajectory x(t) = PΩ(z) is convergent to x∗ = PΩ(z∗) within the
finite time and stays there thereafter for a.a. t.

Proof. Here, we’ll prove this theorem step by step.

1. Let V (z) = 1
2‖z − PΩ(z∗)‖2 − 1

2‖z − PΩ(z)‖2, where z∗ is the equilibrium
point of the generalized neural network (1).

Actually, in light of (ii) of Lemma 1, by choosing that w = PΩ(z∗) ∈
Ω, u = z, we can obtain that

‖PΩ(z)− PΩ(z∗)‖2 ≤ ‖z − PΩ(z∗)‖2 − ‖z − PΩ(z)‖2.

Obviously, V (z) ≥ 1
2‖PΩ(z)− PΩ(z∗)‖2 ≥ 0.

2. Calculate the derivative of V (z).
By means of that 0 ∈ −z∗ − α∂f(PΩ(z∗)) + PΩ(z∗), i.e. there exists

γ∗ ∈ J(PΩ(z∗)) such that 0 = −z∗ − αγ∗ + PΩ(z∗), then we can get that

dV
dt = [(z − PΩ(z∗)) − (z − PΩ(z))] · ż

≤ sup
J

[(PΩ(z) − PΩ(z∗))T (−z + PΩ(z)− αJ(PΩ(z)))]

= sup
J

[(PΩ(z) − PΩ(z∗))T (−z + PΩ(z)− αJ(PΩ(z)) + z∗+

α∂f(PΩ(z∗)) − PΩ(z∗))]
= sup

J
[−(PΩ(z)− PΩ(z∗))T (z − z∗) + ‖PΩ(z) − PΩ(z∗))‖2

− α(PΩ(z)− PΩ(z∗))T · (J(PΩ(z)) − J(PΩ(z∗)))]
≤ sup

J
[−‖PΩ(z)− PΩ(z∗)‖2 + ‖PΩ(z)− PΩ(z∗)‖2 − α(PΩ(z)− PΩ(z∗))T

· (J(PΩ(z))− J(PΩ(z∗)))]
≤ sup

J
[−α(PΩ(z) − PΩ(z∗))T (J(PΩ(z))− J(PΩ(z∗)))]
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3. Noting that J is strongly monotone with the parameter μ, we can get

(PΩ(z)− PΩ(z∗))T (J(PΩ(z))− J(PΩ(z∗))) ≥ μ‖PΩ(z) − PΩ(z∗)‖2,

where μ > 0. So,

dV

dt
≤ −αμ‖PΩ(z)− PΩ(z∗)‖2 ≤ 0.

As a result, it shows that V (z) is decreasing and we can easily get that the
output solution is globally asymptotically stable at the point PΩ(z∗). On
the other hand, if ‖PΩ(z) − PΩ(z∗)‖2 = 0 within some finite time t0, then
PΩ(z) − PΩ(z∗) = 0. It shows that V (z) = 0 at that time. By virtue of
inequality (2), we know the decreasing monotone of the function V (z) and
it shows that V (z) will stay at zero over [t0,+∞). Hence, dV

dt = 0 and then
‖PΩ(z) − PΩ(z∗)‖2 = 0. This tells us that the output solution converges at
the point PΩ(z∗) in finite time.

If not,we have that ‖PΩ(z)−PΩ(z∗)‖2 > ε > 0 forever. So dV
dt < −αμε < 0.

According to Lemma 4, the theorem also can be proved.

If J is monotone, we can easily get the following corollary through the proof of
Theorem 2.

Corollary 1. Let the generalized neural network (1) satisfy Assumption 1, 2
and J be monotone, then the output solution trajectory x(t) = PΩ(z) is globally
asymptotically stable at x∗ = PΩ(z∗).

4 Application

Generally, the smooth convex optimization can be dealt with by using the dif-
ferential quotient of the objective functions. However, when the object function
f(x) is nonsmooth, ∇f can not be used again. But the generalized gradient of
f(x) will do.

Next, we will Consider the following nonsmooth optimization problem:{min f(x)
s.t. x ∈ Ω

(2)

where Ω is a nonempty closed convex subset of Rn and f(x) is nonsmooth convex
and Lipschitz near each point of an open convex subset of Rn. Then we surely
can build the generalized neural network (3) by replacing the set-valued map J
with ∂f(·). { ż ∈ −z + PΩ(z)− α∂f(PΩ(z))

x = PΩ(z) (3)

Remark 3. If f is convex on U , according to Lemma 2, we can obtain that
∂f(PΩ(z)) is monotone at PΩ(z), that is (PΩ(z)−PΩ(z′))T (ξ− ξ

′
) ≥ 0, ∀z, z′ ∈

U, ξ ∈ ∂f(PΩ(z)), ξ
′ ∈ ∂f(PΩ(z′));

If f is strongly convex, we have (PΩ(z) − PΩ(z′))T (ξ − ξ
′
) ≥ μ‖PΩ(z) −

PΩ(z′)‖2, ∀z, z′ ∈ U, ξ ∈ ∂f(PΩ(z)), ξ
′ ∈ ∂f(PΩ(z′)), where μ > 0.
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Corollary 2. Let the object function of problem (2) be Lipschitz and convex,
then there exists at least one absolutely continuous aided solution trajectory z(t)
of the model (3) over [t0,+∞). Moreover, the output solution trajectory x(t) is
globally asymptotically stable at x∗(t) = PΩ(z∗) over [t0,+∞) for a.a. t.

Corollary 3. Let the object function of problem (2) be Lipschitz and strongly
convex, then the output solution trajectory x(t) of the model (3) converges to
x∗(t) = PΩ(z∗) over [t0,+∞) within the finite time for a.a. t.

5 Numerical Examples

In this section, to illustrate the effectiveness of results obtained in the previous
section, we consider the following nonsmooth optimization problems.
Example 1

min f(x) = |x1|+ |x2|+ |x3|
subject to Ω = {x ∈ R3 : x2

1 + x2
2 + x2

3 ≤ 1}
where the object function f(x) is convex. Obviously, the optimal solution is
x∗ = (0, 0, 0)T and f(x∗) = 0. We use the model (3) to solve it. In this example,
the projection operator P (·) is defined as

PΩ(xi) =
{xi, x2

1 + x2
2 + x2

3 ≤ 1
xi/

√
x2

1 + x2
2 + x2

3, x2
1 + x2

2 + x2
3 > 1.

We choose step size Δt = 0.01, α = 2. For 20 random initial points, simulation
results show the optimal solution is obtained. Fig. 1 displays the convergence
behavior of the generalized neural network (3).

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

t

x(
t)

Fig. 1. The trajectories of Example 1 with 20 random initial values

6 Conclusion

This paper mainly investigates the convergence of a class of projection-based gen-
eralized neural network and the applications to the nonsmooth convex
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optimization problems. The existence and the convergence of the solution in the
finite time are discussed via the Lyapunov method and the stability theory of
the differential inclusions. Two numerical examples are provided to show the
efficiency of the results.
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Abstract. This study attempts to develop a two-dimensional (2D) adaptive 
growing cerebellar model articulation controller network, which is constructed 
by connecting several 1D CMACs as a two-level tree structure. Without requir-
ing the knowledge of the target function in advance, the number of states for 
each 1D CMAC as well as the number of CMACs is gradually increased during 
the adaptive growing process. Then the input space can be adaptively quantized 
by the proposed adaptive growing mechanism. In addition, the linear interpola-
tion scheme is applied to calculate the network output and for simultaneously 
improving the learning performance and the generalization ability. Simulation 
results show that the proposed network not only has the adaptive quantization 
ability, but also can achieve a better learning accuracy with less memory  
requirement. Besides, the proposed network also could perform the best gener-
alization ability among all considered models and, in general, attain a faster 
convergence speed. 

Keywords: Cerebellar model articulation controller, Tree structure, Adaptive 
quantization, Pseudo-inverse, Linear interpolation. 

1   Introduction 

Cerebellar model articulation controller (CMAC) network, proposed by Albus [1], 
[2], is a kind of supervised neural network inspired by the human cerebellum. This 
network learns input-output mappings based on the premise that similar inputs should 
produce similar outputs. Therefore, unlike multi-layer feedforward networks, CMAC 
networks store information locally. Owing to its fast learning speed, good generaliza-
tion ability and ease of implementation by hardware, the CMAC network has been 
successfully applied in many applications such as control problem, signal processing 
and pattern recognition [3]-[5]. 

Albus’ CMAC network has two major limitations: enormous memory requirement 
for solving high-dimensional problem and difficult in selecting the memory structure 
parameters [6], [7]. Several studies had proposed to solve one of those two limita-
tions, such as hierarchical CMAC (HCMAC) network [6], tree-type CMAC structure 
[8], macro structure CMAC (MS_CMAC) network [9], and so on. This study attempts 
to propose a two-dimensional (2D) adaptive growing cerebellar model articulation 
controller (AG-CMAC) network which is constructed by connecting several 1D 
CMACs as a two-level tree structure. The term “adaptive growing” means that the 
input space can be adaptively quantized by the proposed growth mechanism. There 



 Two-Dimensional Adaptive Growing CMAC Network 263 

are two growth processes in this study. The first one is the state growth process which 
is used to adaptively quantize the domain of one direction, say x-axis, by gradually 
inserting some new knots into the specific regions. Inserting new knots will cause 
some increase in the number of states (i.e., state growth). Note that the state growth 
process is analogous to the previous work [10]. The second one is the CMAC growth 
process which is used to adaptively quantize the domain of the other direction, say y-
axis, by gradually increasing the number of 1D CMACs in a certain region. That is to 
say, not only the number of the 1D CMACs but also the number of the states is 
gradually increased during the adaptive growing process. With the help of those two 
growth processes, the proposed AG-CMAC network can simultaneously achieve the 
purpose of self-organizing input space and overcome two major limitations of Albus’s 
CMAC network. Note that this study only focuses on the 2D problem because the 
multidimensional problems can be solved by use of the hierarchical structure as the 
HCMAC network [6]. 

2   Conventional CMAC Network 

In a CMAC network, each state variable is quantized and the problem space is divided 
into discrete states [1], [2]. A vector of quantized input values specifies a discrete 
state and is used to generate addresses for retrieving information from memory ele-
ments for this state. Fig. 1 illustrates a simple block division of 2D CMAC network. 
This simple example has two state variables, x1 and x2, with each quantized into three 
discrete regions, called blocks, in each layer. Areas, such as Bb, Ee, and Ih, formed by 
quantized regions are called hypercubes. Only the blocks on the same layer can be 
combined to form a hypercube. The CMAC associates each hypercube to a physical 
memory address. Information for a discrete state is distributively stored in memory 
elements associated with the hypercubes being addressed. 

Assume that there are Ns quantized states in the input space and that information 
for a quantized state is distributively stored in Ne memory elements. Let Nnem repre-
sent the entire memory size (Nnem > Ne). Then the stored data yk (the actual output of 
the CMAC) for the state sk is the sum of stored contents of all addressed hypercubes 
and can be expressed as 

 ,1 ,∑ === nemN
l llkkk way wa  (1) 

where wl, l = 1, 2, 3, …, Nnem, is the content of the lth memory element, w = [w1, w2, 

…, 
nemNw ]T, ak,l is the association index indicating whether the lth memory  

element is addressed by the state sk, and ]...,,,[ ,2,1, nemNkkkk aaa=a . Since each  

state addresses exactly Ne memory elements (hypercubes), only those addressed 
ak,l’s are 1, and the others are 0. The CMAC uses a supervised learning method to 
adjust the memory contents during each learning cycle. Its updating rule can be 
described as 

 )],(ˆ[)()1( ty
N

tt kk
T
k

e

waaww −+=+ η
  ...,3,2,1=t  (2) 



264 M.-F. Yeh 

 

Fig. 1. Block division of 2D CMAC network 

 

Fig. 2. Structure of 2D AG-CMAC network 

 
where w(t+1) is the memory content at time t+1, w(t) is the one at previous time t, η 
is the learning rate, kŷ  is the desired value for the state sk, and )(ˆ ty kk wa−  is the 

error for the state sk. Note that only the addressed memory elements are updated.  The 
analytical solution of w is 

 ,ŷAw +∗ =  (3) 

where ,ˆ[ˆ 1yT =y ]ˆ...,,ˆ2 sNyy  and 1)( −+ = TT AAAA  is the pseudo-inverse of the asso-

ciation matrix A formed from the association vector ak, k = 1, 2, 3, …, Ns, as row 
vector. That is to say, the updating rule (2) could converge to w* if the learning rate is 
properly selected [11]. 

The block division of 1D CMAC network is very similar to Fig. 1, but just takes a 
single variable into consideration. Besides, the 1D CMAC associates each block, not 
the hypercube, to a physical memory address. Information for a state is stored in the 
memory elements associated with those blocks being addressed. 

3   Two-Dimensional Adaptive Growing CMAC Network 

The proposed 2D AG-CMAC network is constructed by connecting several 1D 
CMACs as a two-level tree structure as given in Fig. 2. Although the proposed struc-
ture is similar to the two-level tree structure of MS_CMAC network [9], three main 
differences between them could be briefly stated as follows. The first one is that the 
root node in the MS_CMAC network is a 1D CMAC, but the last layer of the pro-
posed network is an interpolation node. The second one is that all 1D CMACs (nodes) 
in the 2D AG-CMAC network could be dynamically updated in utilizing, but the leaf 
nodes in the MS_CMAC network are static. Other nodes in the MS_CMAC network 
are still dynamical. The last one is that the 2D AG-CMAC network allows both the 
number of states and the number of 1D CMACs to be gradually increased during the 
learning process, but the MS_CMAC can not. 
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3.1   Quantization of 2D Input Space 

Assume that the proposed 2D AG-CMAC network is constructed by M 1D CMACs, 
the ith CMAC, denoted by Ni, i = 1, 2, …, M, is quantized into Ns(i) states by the knots 

qi,j’s, j = 0, 1, 2, …, Ns(i), and the considered 2D input space is S = ],[],[ 2211
ULUL xxxx × , 

where the superscripts L and U represent the lower and upper bounds of the input 
variable x1 or x2, respectively. Then those 1D CMACs could partition the 2D input 

space into several subspaces and there are ∑ =
M
i isN1 )(  states in the input space S. Be-

sides, without lost of generality, the active parameter for each 1D CMAC in the net-
work hereafter is assumed to be x2. This means that the output of any 1D CMAC is 
only depended on the value of x2. Fig. 3 demonstrates a possible quantization of the 

input space for the case of M = 4. The subspace i
UL

ii Rxxgg =×− :],[],[ 221  represents 

the region covered by the ith CMAC, where the knots on the x1-axis, gi’s, are used to 

partition the domain ],[ 11
UL xx . Note that the region Ri is not the input space of the ith 

CMAC. In fact, the input space of any 1D CMAC in this example is ],[ 22
UL xx . The 

area formed by [gi−1, gi]×[qi,j−1, qi,j] := Ui×Vi,j represents the quantization region asso-
ciated with the state si,j (the jth state in the ith CMAC). For example, the gray cell in 
Fig. 3 represents the region covered by the state s3,2. 

3.2   Network Operations 

When an arbitrary input pair, say p = ),( 21 xx ′′ , is applied to the proposed network, 

some temporary pairs generated from the input pair are used to determine which 
CMAC is active. Assume that p ∈ si,j (the jth state of the ith CMAC). The relation 
between the temporary pairs and the given input pair is depicted in Fig. 4. In general, 
an input pair will generate two temporary pairs: one is ti = ),( 2,1 xx i ′  ∈ si,j and the 

other is ti−1 = ),( 21,1 xx i ′−  ∈ si−1,k. These two temporary pairs, located in adjacent states 

but in different CMACs, could indicate which CMACs are active. In this case there 
exist two active CMACs, i.e., vi = vi−1 = 1. However, when 1,11 xx <′  or Mxx ,11 >′ , there 

is only one temporary pair, ),( 21,1 xx ′  or ),( 2,1 xx M ′ , to be generated. At this situation, 

only one CMAC is active. To sum up, determining which CMACs are active can be 
simply represented by 

 
⎪
⎩

⎪
⎨

⎧

=>′
===≤′≤

=<′

−−

.1then,If

.1then,...,,3,2,If

.1then,If

,11

1,111,1

11,11

MM

iiii

vxx

vvMixxx

vxx

                     (4) 

Note that those CMACs which are not identified as active are inactive. 
Once the node association vector v = [v1, v2, …, vM] is determined, the output of 

each leaf node can be obtained by 

)()(),( 2121 xxvxxo iii ′′=′′ N , i = 1, 2, …, M,                             (5) 
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Fig. 3. Input space quantization of 2D 
AG-CMAC network 

 
Fig. 4. Relation between the temporary pairs 
and the input pair 

 
where )( 1xvi ′  denotes the ith node association index due to 1x′  and )( 2xi ′N  represents 

the output of the ith CMAC due to 2x′ . The switches between the root and leaf layers 

are also controlled by the node association vector. If vi = 1, the corresponding switch 
is closed; otherwise, it is opened. A leaf node can deliver its output to the root node if 
the corresponding switch is closed. Finally, the root node performs the linear interpo-
lation on its receiving values to obtain the network output as follows. 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>′

≤′≤
−
−′

+
−

′−
<′

=′′ −
−

−
−

−

, if

, if,

, if,

),(

,11,

,111,1
1,1,1

1,11
1

1,1,1

1,1

1,111

21

MM

iii
ii

i
i

ii

i

xxo

xxxo
xx

xx
o

xx

xx
xxo

xxy  (6) 

where 1 < i ≤ M. 

3.3   Virtual Training and Testing Patterns 

Let the target function be in the form of y = f(x1, x2) and pα,β = (x1,α, x2,β) be a given 
input pair in S, where α = 1, 2, …, Np1 and β = 1, 2, …, Np2. By this definition, there are 
Np1×Np2 := Np given pairs in S. Denote N(Ui) as the number of the input points x1,α’s in 
Ui, N(Vi,j) as the number of the input points x2,β’s in Vi,j, and N(si,j) as the number of 
input pairs belonging to the state si,j. Then it can be shown that N(si,j) = N(Ui)×N(Vi,j). 

Two kinds of virtual patterns, state training patterns the state testing patterns, also 
generated from the given patterns are used in the state growth process. The state train-

ing patterns are in the form of ( ji,p , jid , ), where ji,p  and jid ,  are defined by 
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It is obvious that there are exactly ∑ =
M
i isN1 )(  state training patterns and no two distinct 

training patterns are associated with the same state. The state training patterns allow 
the proposed network to be trained by a few instances. In Fig. 3, the black triangle in 
each cell represents the corresponding virtual input pair. 

To compute the state errors, every CMAC output must be known in advance. This 
will result in a heavy computational complexity during the entire state growth proc-
ess. In order to reduce the computational complexity on calculating the state errors, 
each CMAC is provided with a set of testing patterns. The state testing patterns for 

the ith CMAC are in the form of )
~

,~( ,, ββ ii dp , where the input pair ),(~
,2,1, ββ xx ii =p  

and the corresponding desired output β,
~

id  are defined as follows. 
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By this way, there are only N(Vi,j) input pairs β,
~

ip ’s belonging to the state si,j. That is, 

the number of testing patterns for the state si,j is reduced from N(Ui) × N(Vi,j) to 
N(Vi,j). 

3.4   State Growth Process 

Adaptive growing process of the proposed network involves two main stages. One is 
the state growth stage. The other is the CMAC growth stage. Note that the latter al-
ways follows the former during the proposed adaptive growing process. Learning 
starts with the network composed of a small number of 1D CMACs, e.g., M = 4 in 
Fig. 2. Those 1D CMACs could quantize the problem space into several discrete 
states as shown in Fig. 3. Once the 2D input space is quantized, the state training 

patterns could be determined by (7) and (8). Then letting jij dy ,ˆ = , i = 1, 2, …, M and 

j = 1, 2, …, Ns(i), enables the memory contents of the ith CMAC to be attained by the 
pseudo-inverse scheme (3). That is the so-called one-step training method for any 
CMAC in the network. 

Once every CMAC has been trained, the RMSE for the state si,j due to the state 
testing patterns can be obtained by 
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Those states with larger state error must be further quantized to minimize the gener-
alization caused by quantization. The evaluation criterion is that a state, say si,j, needs 
to be repartitioned if es(si,j) ≥ ρ, where ρ is a predefined threshold. If the state si,j is 

evaluated to be repartitioned, it can be achieved by inserting the new knot i
jx ,2  (the x2 

element of ji,p ) into the associated interval (qi,j−1, qi,j]. If there are more than one state 
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which must be repartitioned at the same time, each associated interval must be in-
serted a corresponding new knot for re-quantization. The state growth process for 
each CMAC will stop when a specified performance measure or a pre-specified 
maximum number of states (or epochs) is reached. 

Once any state is repartitioned, the state training patterns must be regenerated by 
(7) and (8) according to the newly quantized space. Each CMAC has its own state 
growth process. Different CMACs therefore may have different quantization results 
as illustrated in Fig. 3. Since the state growth process will not affect the values of the 

state testing patterns )
~

,~( dp ’s, they need not update in this stage. 

3.5   CMAC Growth Process 

Once the state growth stage is completed, each given input pair pα,β is applied to the 
proposed network such that the network outputs could be used to evaluate where need 

to insert some new CMACs for further improving the learning accuracy. Let Lxx 10,1 =  

and U
M xx 11,1 =+ , and define the ith interpolation region as =iR  ],[],[ 22,11,1

UL
ii xxxx ×− , 

i = 1, 2, …, M+1 as given in Fig. 4. Then the region iR , 1≠i  and M+1, are associ-

ated with the (i−1)th and ith CMACs. Note that the outmost regions, 1R  and 1+MR , is 

covered by only a single CMAC, i.e., the first and the last one, respectively. The 
RMSE for the kth interpolation region, termed the region error, is defined as 
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where )( kRN  represents the number of input pairs in the region kR . Then the (k−1)th 

and kth CMACs need to be repartitioned if δ≥)( kR Re , where δ is a predefined repar-

tition threshold for the CMAC growth process. The repartition interval is defined as 
the interval covered the (k−1)th and kth CMACs, i.e., [gk−2, gk]. It is possible that there 
are r, r ≥ 1, successive regions jR ’s, 1...,,1, −++= rkkkj , satisfied that 

δ≥)( jR Re . At this situation, the repartition interval is defined as [gk−2, gk+r−1] which 

is covered by (r+1) CMACs. Since there are r interior points in the repartition interval 
[gk−2, gk+r−1], repartitioning that interval can be simply implemented by linearly spac-
ing one or two more interior points between the knots gk−2 and gk+r−1. The CMAC 
growth process will stop when a specified performance measure or a pre-specified 
maximum number of CMACs (or epochs) is reached. 

3.6   Adaptive Growing Algorithm 

The algorithm for the overall adaptive growing process is presented below. 

1) Start with a network composed of a small number of 1D CMACs. 
2) Uniformly quantize the input space of each CMAC into several states. 
3) Determine whether the stopping criterion of CMAC growth process is fulfilled or 

not. If fulfill, terminate the process; otherwise, go to Step 4. 
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4) Perform state growth algorithm as follows. 
4.1) Produce the state testing patterns by (9) and (10). 
4.2) Generate the state training patterns by (7) and (8). 
4.3) Obtain the memory contents for each CMAC by (3). 
4.4) Calculate the 1D CMAC output oi for each state training pattern by (5). 
4.5) Determine whether the stopping criterion of state growth process is fulfilled. 

If fulfill, terminate the state growth process; otherwise, go to Step 4.6. 
4.6) Compute all state errors es(si,j)’s by (11). 
4.7) Insert a new knot into the state with state error larger than the repartition 

threshold ρ, and then return to Step 4.2. If there are more than one state 
which need to be repartitioned simultaneously, each state must be assigned a 
corresponding new knot. 

5) Perform the following CMAC growth algorithm and then return to Step 2. 
5.1) Apply each given pattern p into the network and then calculate the network 

output y by (6). 
5.2) Compute all region errors by (12). 
5.3) Determine all possible repartition intervals satisfied the evaluation criterion 

for CMAC growth. 
5.4) Quantize each repartition interval by linearly spacing one or two more inte-

rior points. 

 
Fig. 5. Simulation results 

4   Simulation Results 

Consider a 2D AG-CMAC network trained to generate the target function f(x1, x2) = 
2exp(−2x1)sin(πx1)sin(πx2), where (x1, x2) ∈ [0.0, 2.0]×[0.0, 2.0]. The network ini-
tially is constructed by only two 1D CMACs with each corresponding space being 
equally quantized into three states as shown in the bottom left of Fig. 5. Each state is 
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distributively stored in three memory elements, i.e., Ne = 3. Besides, the repartition 
thresholds for both the state growth stage and the CMAC growth stage are set to be 
0.05, i.e., ρ = δ = 0.05. For each 1D CMAC, the pre-specified maximum number of 
learning cycles for the state growth process is 3. 

While the network is trained by 441 (212) training instances which are uniformly 
distributed in the input space, the learning result and the corresponding quantization 
of the input space at the end of the 8th epoch are also depicted in Fig. 5. Since the 
target function in the region of [0.75, 2.00]×[0.0, 2.0] is very close to a flat surface, 
the proposed approach actually quantizes that region into a small amount of states by 
use of three 1D CMACs. The remaining region is partitioned into 68 states by use of 
other six CMACs. In this example, the testing set contains 961 (412) instances where 
around 25% of instances have been trained. Table 1 compares the results of 2D AG-
CMAC network with other CMAC models. In the table, “1−N CMAC” represents that 
the number of nodes in the root and leaf layers for MS_CMAC network are 1 and N, 
respectively, and “N1×N2 CMAC” represents that the quantization numbers of the x1- 
and x2-axes for Albus’ CMAC are N1 and N2, respectively. Those comparison models 
are also trained with the learning rate η of 0.1 and the generalization size Ne of 3. 

In this example, the ratio of computational time for each Albus’ CMAC becomes 
around 0.60, but two MS_CMAC models require much more computational time than 
the proposed network. Generally speaking, the proposed network can attain better 
results in the training and testing accuracies, except that the 21×21 CMAC outper-
forms the 2D AG-CMAC network in the learning accuracy. Since each training in-
stance is corresponding to one and only one state in the 21×21 CMAC, this manner 
could effectively reduce the learning interference during the learning process. Hence 
the 21×21 CMAC can achieve the best training result. However, its generalization 
ability still remains poorer than the proposed network’s. 

Table 1. Comparison of AG-CMAC with other CMACs 

RMSE Model Number of 
States 

Memory 
Size Training Test 

Computational 
Time Ratio 

AG-CMAC 79 97 0.0497 0.0415 1.0000 
MS_CMAC      

1-9 CMAC 81 110 0.1026 0.1097 1.0578 
1-12 CMAC 144 182 0.0632 0.0701 1.2053 

Albus’ CMAC      
9×12 CMAC 108 52 0.1163 0.1070 0.5920 

12×12 CMAC 144 66 0.0904 0.0876 0.5920 
15×15 CMAC 225 97 0.0779 0.0668 0.5920 
18×18 CMAC 324 134 0.0729 0.0627 0.6267 
21×21 CMAC 441 177 0.0205 0.0539 0.6267 

5   Conclusions 

This study developed a 2D AG-CMAC network which is constructed by several 
CMACs as a two-level tree structure. In the proposed network, not only the number of 
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states for each CMAC but also the number of CMACs is gradually increased during 
the adaptive growing process. Without requiring the knowledge of the target function 
in advance and with the help of the proposed adaptive growing mechanism, the input 
space can be adaptively quantized during the learning process. In addition, the pro-
posed network also utilizes the linear interpolation scheme to smooth the network 
output. Both the adaptive growing mechanism and the linear interpolation scheme 
enable the 2D AG-CMAC network to achieve a better learning performance with less 
memory requirement. Besides, the proposed network also could perform the best 
generalization ability among all considered models and, in general, attain a faster 
convergence speed. 
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Abstract. In this paper, a new evolutionary algorithm based on global inferior-
elimination thermodynamics selection strategy (IETEA) is proposed. Also, a 
definition of the two-dimensional entropy (2D entropy) of the particle system is 
given and the law of entropy increment is applied to control the algorithm run-
ning. The purpose of the new algorithm is to systematically harmonize the con-
flict between selective pressure and population diversity while searching for the 
optimal solutions. The new algorithm conforms to the principle of minimal free 
energy in simulating the competitive mechanism between energy and entropy in 
annealing process. By solving some typical high-dimension problems with mul-
tiple local optimizations, satisfactory results are achieved. The results show that 
this algorithm has preferable capability to avoid the premature convergence ef-
fectively and reduce the cost in search to some extent.  

Keywords: Evolutionary algorithm, Free energy, Entropy, Selection strategy. 

1   Introduction 

The evolutionary algorithm is wildly used in the fields of searching, optimization, and 
machine learning [1], in which connotative parallel character and efficiency of using 
global information are two prominent characteristics. However, it often suffers from 
the premature convergence because of the loss of population diversity at the early 
stage and the extremely slow search especially in some high-dimension problems with 
multiple local optimizations.  

To harmonize the contradiction between exploration and exploitation in evolution-
ary algorithm, a wide variety of improvements in evolutionary algorithms were raised 
such as scaling the fitness, sharing the fitness, and driving all individuals moving as 
the most possible [2] etc. But they have been not yet sufficiently systematical and 
effective for some optimization problems. Mori and his fellows have proposed the 
thermodynamics genetic algorithm (TDGA) [6] combined SA and GA. Although 
TDGA was effective to solve some problems, it was unsatisfied performance with 
extremely high cost in computation and could not be directly applied to solve numeri-
cal optimization problems with real-coded since the calculation of entropy was 
closely related with the encoding method. To improve the stability and decrease the 
computational cost of TDGA, a global inferior-elimination thermodynamics selection 
strategy for evolutionary algorithm (IETEA) is proposed in this paper. 
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2   Brief Thermodynamic Background on IETEA 

The main idea of thermodynamic evolutionary algorithm (TEA) was an introduction 
of competition mechanism between energy and entropy in the process of solid anneal-
ing to evolutionary algorithm. In an annealing process, a metal with high temperature 
and disorder is regarded as a system which is slowly cooled to the approximate ther-
modynamics equilibrium at any temperature [6]. As the cooling, the system will be-
come to be in order gradually and approach a “frozen” state at the temperature com-
ing to zero. 

The second law of thermodynamics has described an isolated system is always 
evolving towards the direction of increasing entropy and its formula can be described 
in algebra as the express dS≥0, which means that the isolated system will evolve to-
wards the stable status with the continually increasing of the entropy.  

3   Description of IETEA 

The population and the individuals in GA may be regarded as a thermodynamics 
system and particles. Then the energy, the entropy and the temperature is served as 
the fitness, the measurement of population diversity and the controllable weight pa-
rameter respectively. Every population state is exactly full of global optimization that 
can be interpreted as the ground state. This analogy provides an approach for IETEA 
to simulate the competitive mechanism between energy and entropy in annealing to 
systematically harmonize the conflicts between selective pressure and population 
diversity in GA.  

3.1   2D Entropy and Measurement of Population Diversity 

It is a critical part how to measure population diversity when introducing the competi-
tive mechanism into GA. Therefore, in order to measure population diversity more 
effectively, 2D entropy defined in search space is introduced. 

Definition 1: Let P＝{X1,X2,…,Xn} ⊆  H’ be a population in the search space H’, the 

variable Xi be a individual of the population P, Xi = (xi1,xi2,…,xim)T, Xi∈H’∩H’ ⊂ Rm,  
i=1,2,…,n, the variable di indicate the distance between Xi and the center of search 
space H’, the variable R=max{di|i=1,2,…,n} be the largest radius and the variable R 
be equally divided into several segments d=R/r, (u-1)d≤R＜ud, u=1,2,…r, the method 
of dividing is called the dividing in distance and  if the express di∈Ru is true, the 
individual Xi is regarded the individual belonged to the radius scope Ru. Here 

1

r

j
j

R R
=

=∑ ∩ 1 1j r j N≤ < + ∩ ∈ ∩ (R1=R2=…= Rr).  

Definition 2: Let a vector Xd be a individual of the population P＝{X1,X2,…, Xn} ⊆ H’ 

and dd=R, and the value 
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∑ ∑ ∑  is the cosine of the 

angle between the vector Xi and the vector Xd, if the field [min( cos idθ ), max(cos idθ )] 
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is divided into continual fields Cv, (Cv=l)∩(v=1,2,…c)∩(v-1)l≤Cv＜ vl, then the 
method of dividing is called the dividing in angle and if cos idθ ∈Cv, the individual Xi 

is regarded the individual belonged to the angle scope Cv. 

Definition 3: Let P＝{X1,X2,…,Xn} ⊆  H’ be a population in the search space H’, Xi = 

(xi1,xi2,…,xim)T, Xi ∈H’∩H’ ⊂ Rm,  i=1,2,…,n,  Cv and Ru is the representation of the v-
th angle scope and the radius scope u-th respectively, v=1, 2,…c, u=1,2,…r, if the 
individual Xi ∈ Cv∩Xi∈Ru , then the common field is called two-dimensional field 
(2D field) Qj. here j=1,2,…,k, k=rc. Let the function g(Xi, Qj) be a index function, 
π={Qj|1≤j≤k∩j∈N}, if the express Xi ∈ Cv∩Xi∈Ru is true, then the equation g(Xi, 
Qj)=1 be true, otherwise, the equation g(Xi, Qj)=0 be true. The count of individuals in 

population P can be calculated as the formula
1

( , )
n

j i j
i

n g X Q
=

= ∑ , Xi ∈P and the 

express S(P) is called two-dimensional entropy (2D entropy) of population P. Here 
the entropy is denoted as: 

1

( ) l o g
k

j j
k

j

n n
S P

n n=

= − ∑
.  

(1) 

According to 2D entropy, the measurement of diversity of population is in a sphere 
with the best solution as the center and utmost distance from the best solution to a 
particle among the current population as radius. If the number of the particles be-
longed to Qj is nj(i=1, 2,…, k), the probability about the particle Xi belonged to radius 
scope Rj is the value pi =nj/n. Here the conditions accord with the follow expresses 

1≤j≤k+1∩j∈N , 
1

k

j
i

n n
=

=∑ , 
1

1
k

j
j

p
=

=∑ . So the value of 2D entropy can be calculated ac-

cording to probability distributed in every two-dimensional field and be applied to 
measure the diversity of population efficiently instead of depending on the mode  
of particle's encoding. In the course of calculation of 2D entropy, the division of  
every 2D field manifests a principle that more near the center of the space 2D field  
is, smaller field the 2D field is, which justly guaranteed the diversity of current  
population.  

3.2   Minimization of Free Energy at Each Temperature 

In order to apply the principle of minimal free energy in thermodynamics to IETEA, 
the method of free energy of population is presented as follow. 

Definition 4: For Pt＝{X1, X2, …, Xn}∈ nH ,  E(Pt) is called the population energy of 

population Pt where
1

1
( ) ( )

n

t i
i

E P e X
n =

= ∑ . 

Here the energy e(Xi) is the value f(Xi) if the optimized problem is minimum min(f(X)) 
or the energy e(Xi) is the value -f(Xi) if the optimized problem is maximum max(f(X)). 

Definition 5: For Pt＝{X1,X2,…,Xn}∈ nH , { |1 1 }tjR j k j Nπ = ≤ < + ∩ ∈ , F(π ,T, Pt) is 

called the free energy of population Pt at temperature T for partition π where 
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F(π,T,Pt)=E(Pt)-TS(π,Pt) . (2) 

The aim of algorithm is to minimize the free energy of population at each temperature 
Tt during the process of evolution so as to drive the thermodynamic system towards 
equilibrium state. 

3.3   Global Inferior-Elimination Thermodynamic Selection Strategy 

As an idea strategy, its task is to generate next generation population Pt+1 from popu-
lation Pt and sub-population Ot and to sure the free energy of population Pt+1 is mini-
mal. However, the time-complexity to minimize the free energy of each generation 
population precisely was up to O(nC n+m

n), which was unfeasible in practical execu-
tion. A greedy selection of thermodynamics strategy (greedy thermodynamic selec-
tion, GTS) was presented in TDGA, in which the time-complexity to minimize the 
free energy of each generation is O(mn2) and the effectiveness could not be guaran-
teed. At beginning of every population Pt+1, the selection pressure always keeps 
maximization since the entropy is zero and with the proceeding of the selection, the 
selection pressure decreased slowly. It was clear that the GTS could not reflect the 
competition between energy and entropy completely. So a global inferior-elimination 
thermodynamic selection strategy (ETS) was presented in this paper. 

For a population q
tP ＝ {X1 ， X2 ， … ， Xq} ∈ Hq  , 1 q q N≤ ∩ ∈ , if 

,( 1) t i opt tj R d jR− ≤ < 1 j q j N∩ ≤ < ∩ ∈ , then g(Xi, Rtj)=1, otherwise g(Xi, Rtj)=0. 
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i tX P∈ . A temporary variable 1( , )q

tS Pπ −  representing 

possible entropy of the population 1q
tP − where a particle has been eliminated can be 

calculated according to follow formula.  
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Similarly, another temporary variable 1( )q
tE P −  representing possible entropy of the 

population 1q
tP −  where a particle has been eliminated can be calculated according to 

follow formula. 
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 . 

(3) 

So the free energy F(π, T, Pt
n-q, Xu) of population Pt

q-1 - {Xu} at temperature T for parti-
tion π can be got according to following formulation. 

1 1 1( , , , ) ( ) ( )q q q
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1 1 1
q

t u r u r u r u r u

q
F T P e X T n n n n q q q q

q q q
π= − − − − − − − − −

− − −
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Here the variable Xu is a representation of eliminated particle and the variable nr(u) is a 
counting number to denote how many particles of the population belong to the 2D 
field where the particle Xu belong to. 

ETS (π, T, Pt , Ot ) is described as follows: 

Step 1: Produce an interim population Pt
n+m by appending the offspring population Ot 

to the parent population Pt
n, divide 2D field according to definition 2 and 

definition 3, let selected[m+n]=1, q=1, and get count the number of particles 
in each 2D field and the value of free energy F(π, T, Pt

n+m). 

Step 2: Set i=0, Fmin= F(π, T, Pt
n+m). 

Step 3: If selected[i]==0, then i++. if i <=m+n, then go to Step 3, else go to Step 6. 
Step 4: If F(π, T, Pt

n+m-q, Xi) < Fmin then Fmin = F(π, T, Pt
n+m-q, Xi) , no=i. 

Step 5: Set i++. If  i < =m+n, then go to Step 3. 
Step 6: Set F(π, T, Pt

n+m-q) = Fmin, selected[no]=0, q++, if q<=m, go to Step 2. 
Step 7: Form next generation population Pt+1 constituted by particles in population 

Pt
n+m with corresponding value of the array selected is nonzero. 

It is clear that the competition between the energy and entropy do not carry on in 
nowhere during whole process of ETS and the time complexity is lowed to 
O((n+m)m).  

3.4   Procedure of IETEA 

Procedure of IETEA is described as follows: 

Step 1: Create particles randomly with size n as an initial population P0, determine the 
value of k, m, T0 and MAXGENS and set t=0; 

Step 2: Generate offspring population Ot with m particles by uniform crossover and 
mutation. 

Step 3: Pt+1= ETS(m+n). 
Step 4: t++, Tt=T0 /(1+t/100). 
Step 5: If Termination_test(Pt)==False, then go to Step 2. 
Step 6: Output the final results. 

4   Experiments and Results Analysis 

The significance of a new optimization strategy depends on the effectiveness of 
solving practical problems. Generally, it is more complicated for some high-
dimension problems with multiple local optimizations or some optimization prob-
lems required more precise solution. In this section, three typical high-dimension 
problems with multiple local optimizations are solved by IETEA and gave the com-
pared results with other methods so as to test the performance and reliability of each 
optimization algorithm. Here three functions are selected from test set of Benchmark 
and denoted with notations f1 and f2  respectively. The dimensions of each function 
are set at 30.  
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Test 1:  
1

2
1

0

m in ( ) ( 1 0 c o s ( 2 ) 1 0 )
n

i i
i

f x x xπ
−

=

= − +∑ ,  5 . 1 2 5 . 1 2ix− ≤ ≤  

Test 2:  
2

2 1 1

1 1
min ( ) 20 exp( 0.2 ) exp( cos(2 )) 20

n n

i ii i
f x x x e

n n
π

= =
= − − − + +∑ ∑ , 30 30ix− ≤ ≤  

The first function f1, called rastrigin function, is a typical high-dimension global 
minimization problems with multiple local minimization and the global minimization 
is minf1 (x)=0 when X=(0, 0, …, 0)T. There are about 10n local minimization in its 
search space [1.25, 1.25]n.  

The second function f2, called Ackley function, is an optimized problems with mul-
tiple local minimization and the global minimization is minf2 (x)=0 when  
X=(0, 0, …, 0)T. 

In this experiment, four algorithms included Guotao algorithm (GTGA) [8], parti-
cle swarm optimization (PSO), thermodynamics genetic algorithm (TDGA) and 
IETEA are applied. All of them are utilized uniform crossover operator with the prob-
ability Pc=0.8, the uniform mutation operator with the probability Pm=0.05, and the 
same population size n=30.The termination condition is satisfied when the minimal 
fitness of the function is less than 1×10-20 or the generation is more than MAXGENS. 
The size m of offspring population for TDGA and IETEA is 10 respectively. The four 
algorithms are carried out on functions f1 and f2 on the same machine and gets the 
mean results, the worst results and the best results respectively for 30 times. The 
compare of statistic results are given as table 1. 

Table 1. Experiment results for test 1, test2 and test3 

Algorithm Best  Mean  Worst  
GTGA 4.2563E-2 1.5600E+2 2.0664E+2 
TDGA 2.5764E-2 1.0047E+1 2.2001E+1 
PSO 3.2042 E-4 1.2901E+2 5.8513 E+3 

Test 1 

IETEA 1E-20 1E-20 1E-20 
GTGA 8.3051E-3 7.04506 8.9713 
TDGA 2.4274 E-3 2.72963 4.2742 
PSO 2.4989 E-3 1.0394E-1 1.4969E+1 

Test 2 

IETEA 1E-20 1E-20 1E-20 

Through the compare of every instance of the mean results, the worst results and 
the best results performed with GTGA, TDGA, PSO and IETEA, it is clear that the 
result carried out in IETEA is the best than other algorithms. The convergence curves 
for test 1 and test2 on GTGA, TDGA, PSO and IETEA were presented as fig.1 and 
fig2 respectively. 

Viewing from fig.1 and fig2 some conclusion can be drawn that IETEA could ob-
tain very good accuracy, stability and faster rate to converge comparing other three 
algorithms for its strong search capabilities in every generation, reliability to maintain 
the right search direction and ability to avoid premature convergence effectively. So  
it is regarded as a very important algorithm for some engineering optimization  
problems.  
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Fig. 1. Convergence curves of function f1 on GTGA, TDGA, PSO and IETEA 
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Fig. 2. Convergence curves of function f2 on GTGA, TDGA, PSO and IETEA 

The main reason why the outstanding performance could be archived for IETEA 
lies in its adaptive capability to maintain the dynamic balance between “selective 
pressure” and “species diversity” by adjusting the temperature in the process of ETS. 
Generally, in competition between “selective pressure” and “species diversity”, the 
entropy occupies the predominance for high temperature in the early stages of evolu-
tion which lows level of aggregation and energy plays main function for low tempera-
ture in the latter evolution which allows a higher degree of aggregation contributing to 
converge to the optimization solution set. 

5   Conclusion 

In this paper, attempting to systematically harmonize the conflict between selective 
pressure and population diversity while searching for the optimal solutions, an im-
provement of evolutionary algorithm based on global inferior-elimination thermody-
namics selection strategy is proposed. In IETEA, the definition of 2D entropy to 
measure the diversity of population and the introduction of global inferior-elimination 
thermodynamic selection strategy are given. The new algorithm reduces the complex-
ity of the algorithm to some extent. By solving some typical testing problems,  
the efficiency and good performance of the IETEA were tested. Therefore, IETEA 
avoids premature convergence successfully and obtains faster rate, good accuracy and 
stability.  
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Further research will concentrate on more examinations on the other problems 
such as TSP and the analysis of the convergence traits about IETEA from the view-
point of statistical mechanism. 
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Abstract. This paper proposes a new learning method for process neural net-
works (PNNs) based on the Gaussian mixture functions and particle swarm op-
timization (PSO), called PSO-LM. First, the weight functions of the PNNs are
specified as the generalized Gaussian mixture functions (GGMFs). Second, a
PSO algorithm is used to optimize the parameters, such as the order of GGMFs,
the number of hidden neurons, the coefficients, means and variances of Gaus-
sian functions and the thresholds in PNNs. In PSO-LM, the parameter space is
transformed from the function space to real number space by using GGMFs. PSO
can give a global search in the real number parameter space by avoiding the pre-
mature and gradient calculations in back propagation method. According to our
analysis and several experiments, PSO-LM can outperform current basis function
expansion based learning method (BFE-LM) for PNNs and the classic back prop-
agation neural networks (BPNNs).

Keywords: Process Neural Networks, Learning Method, Particle Swarm
Optimization, Gaussian Mixture Model.

1 Introduction

Recently, He et al. proposed this process neural networks (PNNs) to deal with process
inputs, which can be related to time, locations etc. [1]. Inputs such as time series are
usually sensitive to the time parameter, so the weights and thresholds should also be
related to time in order to accumulate the effects of inputs more precisely. In PNNs,
there exist process neurons (PNs). The inputs, connection weights and threshold of a
PN can all be functions of time. Theoretically, the approximation capabilities of PNNs
are better than classic artificial neural networks (ANNs) when solving for time-varying
function problems. ANNs are considered as the special case of PNNs. PNNs have been
applied in many actual tasks, such as simulation of oil reservoir exploitation [1] and
traffic flow prediction [2].

In this study, we propose this new learning method for PNNs. Instead of transform-
ing the inputs and weight functions, we specify the weight functions connected to the
process neurons as the generalized Gaussian mixture functions (GGMFs), which the-
oretically can approximate any continuous functions. Afterward, instead of using the
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classic back propagation method, we use PSO to optimize the parameters, such as the
order and coefficients of GGMFs, the means and variances of Gaussian functions, the
number of hidden neurons and their thresholds. This new learning method for PNNs is
called PSO-LM for short.

The remainder of this paper is organized as follows. Section 2 describes the original
PNN model and a standard PSO model. The PSO-LM is proposed in Section 3 with
discussions about its qualities. Section 4 elaborates two experiments to compare the
PSO-LM with the existing BFE-LM for PNNs and the BPNN. Concluding remarks are
drawn in Section 5.

2 Background

2.1 Process Neural Networks

PNN is a generalized model of traditional neural networks, the inputs are related to in-
stantaneous conditions [1]. The key of PNNs is the special structure of PNs. Fig. 1(a)
shows a simple process neuron model (SPN), in which xi(t)(i = 1, 2, . . . , n) are the
input time-varying functions and wi(t)(i = 1, 2, . . . , n) are the corresponding weight
functions. K(·) is the aggregate function of the SPN, which can be summation or inte-
gration etc.. f(·) is the activation function, with a threshold value θ. The output of the
SPN is a constant. A simple feed forward process neural network (PNN) is shown in
Fig. 1(b).

The current learning methods for PNNs include: basis function expansion method
(BFE) [1] and numerical learning method (NL) [3]. The BFE includes two steps: first,
transform the input data and the weight functions of the PNN into the space that ex-
panded by some specified orthogonal basis functions. Therefore, there will be no time-
varying parameters in the model. Second, adjust the parameters in the networks by
back propagation method. However, how to choose appropriate basis functions and how
many expansion items should be reserved are awkward to decide. Furthermore, trans-
forming the input data in the first place certainly will lose information contained in the
input signals, which can restrain the performance of PNNs.

The NL method is only suitable for small-scale discrete input signals. When the
length of the input series increases, the number of parameters in NL will increase

(a) Simple Process Neuron Model (b) Feed-Forward Process Neural Network

Fig. 1. Process Neural Networks
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rapidly, which can lead to huge computational complexity. Furthermore, these two
learning methods both rely on the back propagation (BP) method, which will suffer
from the premature convergence problem and gradient calculations.

2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) [4], as a stochastic global optimization technique
based on a social interaction metaphor, can be used to train ANNs effectively [5].

Bratton and Kennedy defined a standard PSO model (SPSO) in [6]. The update rules
can be equivalently transformed and expressed as follows:

Vid(t + 1) = ωVid(t) + c1ε1(PiBd(t) −Xid(t))
+c2ε2(PnBd(t) −Xid(t)), (1)

Xid(t + 1) = Xid(t) + Vid(t + 1). (2)

where i = 1, 2, · · · , n, n is the number of particles in the swarm, d = 1, 2, · · · , D, and
D is the dimensionality of solution space. The learning factors c1 and c2 are nonnega-
tive constants, r1 and r2 are random numbers uniformly drawn from the interval [0, 1],
which are all scalar quantities for each particle in each dimension. PiBd and PnBd are
the locations of the best positions found so far by particle i and its neighbors in di-
mension d. ω is called inertia weight, which determines the effect of the inertia to the
movements of particles.

3 The Proposed PSO-LM for PNNs

It is impossible to learn the weight functions directly from the function space. In this
study, we assume that all weight functions are GGMFs based on the fact that all the con-
tinuous functions can be approximated by GGMFs. Afterwards, the constant parameters
in the model are optimized by PSO.

3.1 Generalized Gaussian Mixture Functions

A standard Gaussian mixture model is defined in (3), and its qualities are expressed in
Theorem 1. For the proof of the theorem, one can refer to [7].

f =
k∑

i=1

aiN(ui, σi), (3)

where N(ui, σi) is the normal distribution with mean ui and variance σi, Σk
i=1ai = 1,

ai ≥ 0, i = 1, 2, . . . , k and k is the order of the model.

Theorem 1 (Gaussian Mixture Model Approximation Theorem). Finite Gaussian
mixture model can approximate a non-negative Riemann integrable function in real
number field by any degree of accuracy. Particularly, it is able to approximate any
probability density functions by any degree of accuracy. #$
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The generalized Gaussian mixture function is also defined as in (3), only with the dif-
ference that ai ∈ R. Therefore, one can derive the following corollary. The proof of
this corollary is straight according to the above theorem.

Corollary 1. Generalized Gaussian mixture functions can approximate a continuous
function in real number field by any degree of accuracy. #$

3.2 Learning Method for PNNs Based on PSO (PSO-LM)

Consider the feed-forward PNN shown in Fig. 1(b). Only the hidden neurons are simple
process neurons, and the other parameters are all constants. Theoretically, the approxi-
mation capability of this PNN can be retained if the weight functions are specialized as
generalized Gaussian mixture functions.

There are n input neurons. The following parameters will be optimized by PSO ac-
cording to specific objectives: the order of GGMFs (k), the number of hidden neurons
(m), the coefficients, means and variances of Gaussian functions corresponding to the
weight functions that connect from input neurons to hidden neurons (aijl, uijl, σijl , i =
1, . . . , n; j = 1, . . . ,m; l = 1, . . . , k), the thresholds of hidden neurons (θj , j =
1, . . . ,m) and the output neuron (θ).

So, a particle in the swarm of PSO can be expressed as:

p = (k,m, aijl, uijl, σijl, θj , wj , θ), i = 1, . . . , n; j = 1, . . . ,m; l = 1, . . . , k. (4)

Each position of the particle in the search space represents one process neural network.
The PSO will search for a PNN that has appropriate structure and parameter values to
optimize the objective function, which is the performance evaluation of the PNN. When
the swarm of PSO converges to one position, which is supposed to be the best parameter
setups of the PNN, the learning process terminates.

According to the above study, the PSO-LM for PNNs can be summarized as in
Algorithm 1:

Algorithm 1. PSO-LM for PNNs
Step 1: Set up the objective function of the training as the fitness function of PSO and the
generalized Gaussian mixture functions as the weight functions of PNs shown in Fig. 1(a).
Step 2: Set parameters of PSO (particle number p, w, c, search space borderlines).
Step 3: Each particle in PSO is formed according to (4).
Step 4: Run PSO.
Step 5: Stop criterion (maximum iterations or/and fixed learning precision).
Step 6: If the result is not satisfactory, go back to Step 3.

3.3 Discussions

The proposed PSO-LM has several advantages comparing with the existing learning
methods for PNNs.
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First, PSO-LM does not need any transformation to the input signals, which will not
lose any information carried in inputs. BFE-LM extracts the principal components of
the input data by using the basis function expansion, which will retain most of the infor-
mation. However, the detailed information carried in inputs is the most needed informa-
tion in some task. For example, in pattern recognition, two patterns might have the same
first and second principal components, which will be reserved according to BFE-LM.
But, it is the detailed differences carried in their third components that can distinguish
them, which will be eliminated by BFE-LM. Thereafter, samples from different classes
can be misclassified into the same pattern. Furthermore, the transformations also bring
more computation.

Second, gradient information is no longer needed in PSO-LM. The structure and
the parameters of the PNNs can be optimized simultaneously by PSO. The learning
capability will be enhanced, which is guaranteed by the strong optimization capability
of PSO.

Furthermore, PSO-LM is able to solve high dimensional data learning problems by
using high dimensional GGMFs as the weight functions. PSO-LM can also solve multi-
objectives training problems as PSO is good at doing multi-objective optimization.

The computational complexity of PSO-LM for PNNs can be expressed as C = F ×
P × I . F is the amount of one time feed-forward calculation of PNN which is also
one time fitness calculation for PSO, P is the number of particles in PSO, and I is
the maximum number of iterations. The generalization performance of PSO-LM can be
verified by the following experiments.

4 Experiments

4.1 Traffic Flow Prediction

The data is from P eMS system [8], which is a performance measurement system of
freeway traffic from University of California. In this study, we chose traffic volume
data recorded every five minutes in the time interval 10:00 to 15:00 during the week-
days from 2009/6/1 to 2009/6/21. The data is taken from five sequential loop detectors,
whose serial numbers are 716810, 717907, 717898, 717896 and 717887 in District 7.

Experimental Setups. The objective is to predict the traffic flow of loop 717898, which
lies in the middle of the five loops, in the next five minutes. We will use the previous five
records from all the five loops to predict the next value of the third loop [3]. The data
from the first two weeks which contains 120 samples is used to train the three models
mentioned above, and the data of the third week which has 55 samples is used as the
test data to test their generalization performances.

The parameters of the three models are listed in Table 1. The number of db1 wavelet
basis functions chosen in BFE-LM is ten, which is decided by trial-and-error and is
also the number of neurons in the first hidden layer of BFE-LM. k is the order of the
GGMFs and m is the number of neurons in hidden layer of PSO-LM, which will both
be decided by PSO to optimize the objective function. Finally, the activation functions
of neurons are all chosen to be purelin function according to experiments. Notice that
k = 2 and m = 13 is decided by PSO.
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Table 1. Parameter Setups For Traffic Flow Experiment

Structures Activation Functions Parameters

BPNN 5-25-1 purelin, purelin
BFE − LM 5-10-25-1 purelin, purelin db1 wavelet basis
PSO − LM 5-m-1 purelin, purelin k=2, m=13

The evaluation of the models depends on the following two targets:

MPAE =
1
n

n∑
t=1

| yt − ŷt |
yt

(5)

RMSE =

√∑n
t=1(yt − ŷt)2

n
(6)

We will compare the models on each day of the weekdays independently. Each of the
models ran 30 times independently, and the averaged results were recorded.

Experimental Results. The averaged results are shown in Fig. 2. As can be seen, PSO-
LM outperforms BFE-LM and BPNN. According to the variance analysis, the p values
of MPAE and RMSE are 0.013 and 0.034, which mens the improvements of the
performance by PSO-LM is statistically significant.

The PSO-LM can learn the data well and predict the traffic flow more precisely,
which indicate that PSO-LM can give PNNs more powerful learning capability and
also good generalization capability. PSO-LM spent the most time to achieve the best
performance for its global search strategy. BFE-LM consumes the least time, because
the basis function expansion for the inputs retains only the principal components of the
data, which makes it easier for NNs to learn. Nevertheless, BFE-LM can not guarantee
good performances.

4.2 Spam Detection

In this experiment, the three models will be compared in identifying spam on a standard
Spambase data [9]. There are 4601 samples, each of which has 57 attributes and one
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label. The label denotes whether the e-mail is considered as a spam (1) or not (0). In
this study, we will use the first 48 attributes which denote the frequencies of 48 words
occurring in the e-mails.

Experimental Setups. We use cross-validation in this experiment. First, 601 samples
are randomly chosen to join a test data. Then, we use the rest 4000 samples to perform
the standard ten times cross-validation to train and validate the models. Finally, the
trained models will be tested on the test data to show their generalization capabilities.
Each model will run 30 times independently to get statistical results. The parameters in
this experiment are shown in Table 2. All the parameters are with the same meanings as
in Table 1.

Table 2. Parameter Setups For Spambase Experiment

Structures Activation Functions Parameters

BPNN 48-15-1 tansig, logsig
BFE − LM 1-10-5-1 tansig, logsig db1 wavelet basis
PSO − LM 1-m-1 purelin, logsig k=4, m=16

Experimental Results. The averaged results are shown in Fig. 3. The validation accu-
racies of the ten times cross-validation are shown in Fig. 3(a). As can be seen, PSO-LM
can obviously outperform the other two models, which indicates that the PSO-LM has
the best learning capabilities. The test accuracies are shown in Fig. 3(b). Similarly,
PSO-LM has the best generalization capability. Time consuming comparison is shown
in Fig. 3(c). As the same reason as in the above experiment, the PSO-LM needs more
time to gain better performance that the other models can not achieve. Furthermore, the
p values of the validation and test accuracy are 0.0486 and 0.0491, which means the
performance improvements made by PSO-LM are statistically significant.
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5 Conclusion

This paper proposed a new learning method for process neural networks based on the
Gaussian mixture weight functions and particle swarm optimization (PSO-LM). The
weight functions were specified as the generalized Gaussian mixture functions. The struc-
ture and parameters in the model were then optimized by PSO. According to experiments,
PSO-LM had better performance on time-series prediction and pattern recognition than
BFE-LM and BPNNs. Although it needed more computations for the global search strat-
egy of PSO, it achieved better performances that other methods can not gain.
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Abstract. In order to alleviate user fatigue and improve the performance

of interactive genetic algorithms(IGAs) in searching, we introduce a co-

training semi-supervised learning(CSSL)algorithm into interval fitness

IGAs with large and variational population size. The CSSL is adopted to

model the user’s preference so as to estimate abundant of unevaluated in-

dividuals’ fitness. First, the method to select the labeled and unlabeled

samples for CSSL is proposed according to the clustering results of the

large size population. Combined with the approximation precision of two

co-training learners, an efficient strategy for selecting high reliable unla-

beled samples to label is given. Then, we adopt the CSSL mechanism to

train two RBF neural networks for establishing the surrogate model with

high precision and generalization. In the evolution, the surrogate model

estimates individuals’ fitness and it is managed to guarantee the approx-

imation precision based on its estimation error. The proposed algorithm

is applied to a fashion evolutionary design system, and the experimental

results show its efficiency.

Keywords: interactive genetic algorithms, interval fitness,

semi-supervised learning, surrogate model, variational population size.

1 Introduction

Interactive genetic algorithms (IGAs), proposed in mid 1980s, are effective meth-
ods to solve an optimization problem with implicit or fuzzy indices [1]. These
algorithms combine traditional evolution mechanism with a user’s intelligent
evaluation, and the user assigns an individual’s fitness rather than a function
which is difficult or even impossible to be explicitly expressed. Up to now, they
have been successfully applied in design of simple emotions [2], hearing aid fitting
[3] and so on.

The obvious characteristic of IGAs, compared with traditional genetic algo-
rithms, is that the user assigns an individual’s fitness. Frequent interactions
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result in user fatigue, therefore traditional IGAs often have a small popula-
tion size and few evolutionary generations, which restrict the performance of
these algorithms in exploration and their applications in complicated optimiza-
tion problems. Therefore, it is necessary to develop efficiency IGAs with large
population size or evolutionary generations.

In IGAs with large population size, if traditional evaluating approaches are
adopted, i.e., all individuals are evaluated by a user, the user must be too fatigue
and the evolution even cannot go on. Fitness estimation is usually involved
in such algorithms so that the population size increases whereas user fatigue
dose not increase. Generally speaking, there are two kinds of fitness estimation
strategies, one is clustering-based [4] [5] [6] and the other is surrogate model-
assisted[7] [8].

In the clustering-based strategy, the large size population is clustered and the
center individual’s fitness is evaluated by the user with a crisp value and other in-
dividuals’s fitness are evaluated based on the centers. There is an assumption in
such algorithms that the cluster’s center is the best individual of that cluster. Ob-
viously, it is not always true, which will result in large estimation error, misleading
the direction of search and influencing such algorithms’ performance. Moreover,
the crisp fitness cannot reflect the user’s uncertain cognition in IGAs [9].

In the surrogate model-assisted IGAs, the individual’s fitness is estimated by
the surrogate model instead of the user, which reduces the number of individuals
evaluated by the user. Compared with the clustering-based strategy, the surro-
gate model-assisted algorithms have been widely developed in both crisp fitness
and uncertain ones, e.g., interval fitness [10] and fuzzy random fitness [11]. How-
ever, the surrogate models are trained with supervised learning algorithms, and
many learning samples are usually needed for obtaining precise model. However,
these samples are obtained only through many human-computer interactions
which will lead to user fatigue, violating our expectations. Therefore, we should
combine new machine learning strategy into IGAs for establishing precise model
with few evaluated individuals.

Semi-supervised learning(SSL) [12] is a machine learning method between
supervised learning and unsupervised learning, whose learning samples include
labeled data and unlabeled data. It trains initial learners with few labeled sam-
ples and use large amount of unlabeled data to improve the performance of the
initial models. Because SSL requires less human effort and gives higher accuracy,
it has become a topic of significant recent interest. Therefore, we introduce the
SSL into IGAs to develop an IGA with interval fitness and variational population
size.

Among existing semi-supervised learning methods, co-training algorithm is
simple and has been successfully applied in many fields, and here it is adopted.
Up to now, most researches of co-training semi-supervised(CSSL) learning de-
votes to classification and regression with static data [12]. Whereas, the data in
IGAs dynamically changes along with evolution. Therefore, we here consider the
dynamic of IGAs when combining CSSL, and mainly focus on four problems:
selection strategy of labeled samples and unlabeled samples for CSSL, efficient
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selection method of unlabeled samples with high reliability to label, training
and application of the surrogate model, and update of the surrogate model. The
first two contents can improve the computation efficiency of CSSL by combin-
ing the characteristic of IGAs. And the last two contents really improve IGA’s
performance through applying the results of semi-supervised learning.

This work is the extension of our previous research [6], clustering-based IGAs
with variational population size, but here, the individuals’ fitness is interval and
CSSL is adopted to construct surrogate model.

2 Related Work

The following optimization problem is considered in this paper:

max f(x)
s.t. x = (x1, x2, . . . , xI) ∈ S

S = g1 × g2 × . . .× gI .

(1)

where f(x) is a performance index to be optimized, and can not be expressed
by an explicit function, x is an I-dimensional integer decision variable belonging
to the domain S, xj ∈ gj j = 1, 2, ..., I . On condition of not causing confusion,
we also denote x and S as the corresponding individual and the search space,
respectively.

We adopt IGAs to solve problem (1). The uncertainty of user’s cognition
makes it difficult for him/her to precisely assign individuals’ fitness, and we
have proposed an IGA with individual’s interval fitness [9].

In our previous work [6], we cluster the individuals according to the similarity
of gene meaning units. The clusters’ centers are denoted as c1(t), c2(t), ..., cNc(t),
where Nc is the number of clustering. In our work[7], the individual’s fit-
ness is a crisp value. In this paper, the uncertainty of user’s cognition is con-
sidered and the fitness of clusters’ centers are expressed with intervals, i.e.,
f(c1(t)), f(c2(t)), ..., f(cNc(t)) with f(ck(t)) being

f(ck(t)) = [f(ck(t)), f(ck(t))], k = 1, 2, ..., Nc . (2)

where f(ck(t)) and f(ck(t)) are the lower limit and the upper limit of the user’s
evaluation on the k-th center ck(t), respectively.

Combined the surrogate model-assisted algorithm with the idea of variational
population size, we adopts CSSL to establish surrogate model with high precision
based on the evaluated clusters’ centers and other unevaluated individuals.

3 Obtainment of Surrogate Model Based on CSSL

The surrogate model which learns the user’s cognition in IGAs is established
by using CSSL. Labeled samples and unlabeled samples are selected combined
with the characteristic of IGAs. Then according to the manifold assumption of
CSSL and clustering results presented in literiture[6], we present a new strategy



Interval Fitness Interactive Genetic Algorithms 291

for selecting many reliable unlabeled samples in once iteration when applying
CSSL. The training samples and surrogate model are both updated along with
the evolution to guarantee the approximation performance.

3.1 Construction of Surrogate Model with CSSL

Two issues are considered here for constructing surrogate models of IGAs with
CSSL. One is the selection of training samples for CSSL, e.g., labeled samples
and unlabeled ones. And the other is the building of the surrogate model.

In this paper, we establish surrogate model based on the initial population
by use of CSSL with the selected learning samples. We denote the initial popu-
lation as P (1) = {x1, x2, ..., xN1} , and cluster it using the approach presented
in [6], then obtain the clusters’ centers as C(1) = {c1(1), c2(1), ..., cNc(1)} .
The user evaluates these clusters’ centers and gives their fitness f(ck(t)) =
[f(ck(t)), f(ck(t))], k = 1, 2, ..., Nc . The labeled data set is expressed as L(1) =
{(ck(1), f(ck(1)))|k = 1, 2, ..., Nc(1)} , the unlabeled one is U(1) = P (1)\C(1) .
In the subsequent evolutions, these two sets are dynamically updated due to
continuously generated individuals and varied user preference.

With L(1), we use CSSL to generate surrogate model to approximate the
user’s cognition. Because the individuals’ fitness evaluated by the user are in-
tervals, to construct surrogate model is just to approximate intervals. In order
to guarantee the efficiency of CSSL[12], two regressors with different structure
or parameters, h1 and h2, should be selected. In this paper, we adopt two RBF
neural networks with different structures as regressors and each approximates
an interval. Therefore, the outputs of each regressor are two, i.e., the upper limit
and lower limit of an interval.

The L(1) is firstly used to train h1 and h2 . Because the training samples of
h1 and h2 change in the training process, we denote the training samples set
of h1 and h2 as L1(t) and L2(t) with size |L1(t)| and |L2(t)| , where Li(t) =
{(ci

k(t), f(ci
k(t)))|k = 1, 2, ..., |Li(t)|}. For ci

k(t) , the two outputs of a regressor

are f̂i(ci
k(t)) and f̂i(ci

k(t)), i = 1, 2. To assess the performance of these regressors,
the MSE of each regressor on an interval is defined as follows.

ei =
1

2|Li(t)|

√√√√|Li(t)|∑
k=1

(e2
i (c

i
k(t)) + e2i (ci

k(t))), i = 1, 2 . (3)

where ei(ck(t)) = f̂
i
(ck(t)) − f(ck(t)), ei(ck(t)) = f̂ i(ck(t)) − f(ck(t)). Small ei

means that the i− th regressor has well approximation performance.

3.2 Identification and Selection of Reliable Unlabeled Samples

It is critical for identifying and selecting reliable unlabeled samples to label
for refining regressors in CSSL. Based on the influence on the precision of the
surrogate model after adding unlabeled samples, Zhou presented a method of
selecting reliable samples [12]. But this method only selects one unlabeled sample
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to label, which results in high computational complexity. We here still adopt that
idea and propose a new strategy of selecting many reliable samples once based on
manifold assumptions and clustering results, improving the efficiency of CSSL.

The j-th cluster’s individuals not being evaluated by the user are denoted
as Uj = {xj

k}, and the unlabeled set is U =
⋃Nc(t)

j=1 Uj . For the individual xj
k

in Uj, its estimated fitness by the hi is f̂i(x
j
k(t)) = [f̂i(x

j
k(t)), f̂i(x

j
k(t))] . The

{xj
k, f̂i(x

j
k)|k = 1, 2, ...|Uj|} are added to Li(t) for retraining hi. The retrained

regressor is h
′
i. Then the MSE’s variations of h

′
i and hi is calculated as Δi(Uj) =

ei − e
′
i, i = 1, 2. Where ei and e

′
i are calculated from Eq.(3). If Δ1(Uj) > 0, it

means that the precision of h1 increases after adding unlabeled samples Uj into
the training set of h1. Similarly, if Δ2(Uj) > 0, it means that the precision of h2
increases after adding unlabeled samples Uj into the training set of h2. Those
individuals and their estimations in one cluster which make the largest Δ1(Uj)
(Δ2(Uj)) are reliable samples. These samples are added to L2(t)((L1(t))) and
deleted from U . The updated L1(t) and L2(t) are used for retraining h1 and h2.
The above process is repeated until U = φ .

When the above process has finished, h1 and h2 estimated all unevaluated
individuals. For individual x(k), the average outputs of h1 and h2 on it is calcu-
lated as the estimated fitness,i.e.,

f̂(xk) =
f̂1(xk) + f̂2(xk)

2
= [

f̂1(xk) + f̂2(xk)
2

,
f̂1(xk) + f̂2(xk)

2
] . (4)

3.3 Application and Updates of Surrogate Model

The surrogate model, expressed in Eq.(5), is obtained based on a few evaluated
individuals generated in the initial population, and it is used to estimate all
unevaluated individuals’ fitness. Along with the evolution, new individuals are
generated with genetic operators and the user preferred scope will change, there-
fore, the surrogate model must be updated when it is used in the subsequent
evolutions. To perform this, there are two problems must be considered, one is
when to update the surrogate model and the other is how to obtain the new
training samples, i.e., how to update the learning samples of CSSL.

The population is clustered and all centers are displayed to the user to-
gether with their estimated fitness with Eq.(5). If the individual’s estima-
tion deviates from the user’s preference, the user reevaluates it. It is assumed
that the user reevaluate (Q) individuals with (Q) being constant, and these
individuals are denoted as cr(t), r = 1, 2, ..., Q , their reevaluated fitness is
f(cr(t)) = [f(cr(t)), f(cr(t))] . When the difference between the user’s reevalua-
tion and the estimation is big, the surrogate model needs to be updated at this
time. Therefore, the update condition is as follows.

1
Q

√
(f(cr(t)) − f̂(cr(t)))2 + (f(cr(t)) − f̂(cr(t)))2 ≥ f0 . (5)

Where f0 is a threshold.
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In every generation, the user reevaluates some individuals’ fitness which rep-
resent the current cognition of the user, and therefore we reserve these data
to be new labeled samples for updating the surrogate model. Supposing that
the surrogate model is updated in T generation, then the labeled sample set is
L(t) =

⋃T
t=2{cr(t), f(cr(t))|r = 1, 2, ..., Q}.

4 Application in Fashion Evolutionary Design System

4.1 Back Ground

Fashion evolutionary design system is a typical application platform for inter-
active genetic algorithms. Therefore, the proposed algorithms (shorted as VPS-
CSSL)is applied to a fashion evolutionary design system to show its efficiency by
comparing it with the neural network based surrogate model of interval fitness
IGAs (shorted as IGA-IIFSM)[10] and IGAs with variational population size
(shorted as VPS)[6].

The genetic operators and control parameters of the three algorithms are set
to be same. The upper limit and the lower limit of an individual’s interval fitness
are within [0, 1000]. The initial population size of VPS-CSSL, IGA-IIFSM and
VPS are 200, 10 and 200.Tournament selection with size two, one-point crossover
and one-point mutation operators are adopted with their probabilities being 0.6
and 0.02, respectively. Q = 2, f0 = 150. Each experiment runs for 5 times and the
average of all results is compared. Every generation 10 suits are displayed to the
user on the interface. An individual’s phenotype is a suit composed of the styles
of coat and skirt and their color. There are 32 styles and 16 colors of coats and
skirts respectively. Then, the decision variable space is 25 ∗ 25 ∗ 24 ∗ 24 = 262144.

          

(a)                                                    (b) 

Fig. 1. (a)Interface of human-computer interaction.(b)The optimal result

The corresponding interactive interface of VPS-CSSL is shown in Fig. 1(a).
The evolution repeated by performing this interface until the user finds his/her
satisfactory solutions, e.g., shown in Fig.1(b).

4.2 Results and Analysis

This algorithm is an improvement of VPS, and we do some comparisons of VPS
and VPS-CSSL to illustrate the performance of our algorithm. On condition of
finding the optimal suit shown in fig.1(b), we compare these two algorithms from
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Table 1. Comparisons of VPS-CSSL and VPS

� of individuals

evaluated by user

time-

consuming

generations

average VPS-CSSL 42.4 6’38” 17.2

VPS 132 13’14” 13.2

3 aspects, i.e., number of individuals evaluated by the user, time-consuming and
generations, and the statistical results are listed in Table 1.

It can be observed from Table 1 that the average number of individuals being
evaluated by the user of our algorithm is 42.4, much smaller than that of VPS,
i.e., 132. The average time-consuming of the user’s evaluations of our algorithm
is 6’38”, much less than that of VPS,13’14”. These two results show that our
algorithm greatly alleviates user fatigue. Whereas, it is worth noting that the
evolutionary generations of VPS-CSSL are 17.2, larger than VPS’s 13.2. The
reason may be that the surrogate model has little error and can not learn the
user’s cognition absolutely. However, the user fatigue does not increase. To sum
up, compared with VPS, our algorithm can find the optimal solution with less
user fatigue.

Then, we compare VPS-CSSL with IGA-IIFSM in four aspects and the results
are listed in Table 2.

Table 2. Comparisons of VPS-CSSL and IGA-IIFSM

� of user evaluated

individuals

generations time-

consuming

� of searched

individuals

average VPS-CSSL 42.4 17.2 6’38” 2583.6

IGA-IIFSM 150.4 51.4 10’21” 312.8

Similarly with the analysis of Table 1, we can draw the conclusion that our
algorithm has more opportunities to find the optimal solution because varia-
tional population size is adopted in our algorithm, and it improves the IGAs’
performance in searching.

To sum up, our algorithm greatly alleviates user fatigue and has more oppor-
tunities to find the optimal solutions due to the combination of CSSL and IGAs
with variational population size.

5 Conclusions

Aiming at solving interval fitness IGAs with variational population size, we use a
little information to establish surrogate model through semi-supervised learning.
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And the surrogate model estimates other individuals’ fitness in clusters and in
subsequent evolutions. The user reevaluates some individuals’ fitness, forming
updated data samples. In order to guarantee the precision of the surrogate model,
we update it in an appropriate time. The proposed algorithm is successfully
applied in a fashion evolutionary design system, and experimental results show
its advantageous in searching and alleviating user fatigue. How to solve IGAs
with large population size and an individual’s fuzzy fitness is an issue to be
further studied.
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Abstract. For solving the optimization problems with slow convergence speed 
and local optimum in fuzzy optimal selection neural network, this paper applies 
the chaos optimization algorithm by using a chaos variable from one-
dimensional iterative map to optimize the network weight. For selecting the 
reasonable chaos variable, multi one-dimensional chaos maps, such as Logistic 
Map, Sine Map, Cosine Map and Cubic Map, are researched and compared. To 
verify feasibility of one-dimensional chaos map for fuzzy optimal selection 
neural network in the practical application, the case of Yamadu Hydrological 
Station located in Yili River for annual runoff forecast is analyzed and dis-
cussed. The results show that the chaos optimization algorithm is an efficient 
learning algorithm which has the advantage of speed convergence and high pre-
cision for fuzzy optimal selection neural network. 

Keywords: chaos map; fuzzy optimal selection; neural network; optimization. 

1   Introduction 

The theory of fuzzy optimal selection has been widely applied in many engineering 
field since it was proposed by professor Chen [1] in 1990. The papers [2,3] further 
combined fuzzy optimal selection with neural network, and the reasonable method of 
determining network topological structure and adjusting amount equation of weight 
were presented in 1997. Recently, there has been a growing interest in combining 
fuzzy optimal selection, BP neural network and genetic algorithm [4,5,6]. In general, 
the weights of fuzzy optimal selection neural network are calculated by gradient-
descended algorithm in the above research. Therefore, sometimes there exist the prob-
lems of slow convergence speed and local optimum in solving optimization problems 
of some multi-modal functions. Since chaos movement has the characteristics of the 
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interior stochastic, the ergodicity and the regulation, especially the ergodicity which 
can be used as the optimal mechanism to avoid local optimum, the paper applies the 
chaotic optimization algorithm by using a chaos variable from one-dimensional itera-
tive map to optimize the network parameters. To verify feasibility of the chaos opti-
mization algorithm, the case of Yamadu Hydrological Station located in Yili River for 
annual runoff forecast is analyzed and discussed. 

2   Fuzzy Optimal Selection Neural Network 

Cause-effect relationship is one of expressive form of prevalent contact and mutual 
restriction in objective world and in nature the change of some phenomena or factors 
will arouse other phenomena or factors produce. Therefore, we assume that y (fore-
cast object) represents some phenomena affected by multi-factors, and xi (forecast 
factors) represent a variety of factors that effect y. Apparently forecast object y is the 
result influenced by multi-factors. 

Assuming that there are n forecast object that constitute sample set, and their fea-
ture vector are y = (y1, y2, …, yn). By using (1), we get relative membership degree 
matrix of forecast object to fuzzy set A in [7]. 

( ) ( )nyyyjy rrrr ,,, 21=  

)min(max/)min( jjjjjy yyyyr −−=                           (1) 

Each forecast object parallels m feature values, and for n samples, feature values ma-
trix of forecast factors may be expressed as   

( ) njmixX ij ,,2,1;,,2,1, ===                                (2) 

where xij is feature value of sample jth to factor ith. Due to physical dimension of m 
feature values of forecast factors is different, matrix (2) should be normalized. If fore-
cast factors has positive correlation with forecast object y, normalized equation (3) are 
adopted, otherwise, (4) are adopted.  

)/()( minmaxmin iiiijjix xxxxr −−=                                     (3) 

)/()-( minmaxmax iiijijix xxxxr −=                                     (4) 

                                   
ij

n

jiij

n

ji xxxx
1min1max ,

==
∧=∨=

              
 

After the above procedure, matrix (2) is transformed into relative membership degree 
matrix of feature values in section [0 1]: 

njmirR ijxx ,,2,1;,,2,1),( ===                        (5) 

According to Chen (2002), the fuzzy optimal selection network can be constructed as 
3 layers with m input neurons, k hidden neurons and a scalar output. The sketch of 
network is depicted in Fig. 1. 
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Fig. 1. Sketch of fuzzy optimal selection neural network 

For the neuron i of input layer, information of node i directly is transferred to hid-
den layer, so its input and output is equal. 

ijij ru =                                                                (6) 

For the neuron k of hidden layer, its input can be expressed as (7) 

∑
=

=
m

i
ijikkj rwI

1

                                                       (7) 

where wik is the weight between input node i and hidden node k. Stimulation function 
of hidden node adopts sigmoid function, its output is 
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For output layer, there is only one neuron, its input is  

∑
=

=
l

k
kjkppj uwI

1

                                                     (9) 

where wkp is the weight between hidden node k and output node p. And Stimulation 
function of node p also adopts sigmoid function, its output is  

2-1

1

11
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛+=
−

=
∑

l

k
kjkppj uwu                                        (10) 

The network output pju  is the response of fuzzy optimal selection network to input 

sample ( )mjxjxjx rrr ,,, 21 . Assuming that expected output of sample j is ( )pjuM , thus its 

mean square errors of n samples is  
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3   One-Dimensional Chaos Maps for Neural Network 

The studies [8, 9] reveal chaos optimization algorithm has high efficiency and high 
precision in the seeking optimization process, especially in solving optimization  
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problems of large space and multi-variable references, and its theory is simple and  
program easily. Therefore, this paper applies the chaos algorithm to optimize network 
parameters wik and wkp. For simplifying expression, wik and wkp are expressed as wi. In 
order to select the reasonable chaos variable, multi one-dimensional chaos maps, such 
as Logistic Map, Sine Map, Cosine Map and Cubic Map, are discussed and compared. 
The above chaos maps are expressed as  

4),1(1 =−=+ μμ kkk xxx  

99.0),sin(1 ==+ μπμ kk xx  

99.0),5.0cos(1 =−=+ μπμ kk xx  

59.2),1( 2

1 =−=+ μμ kkk xxx  

Consider the following optimization about the minimum of the square errors functions 
in (11). 
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where variable wi belongs to [ai, bi], i is variable number. The chaos variables come 
from the above four one-dimensional iterative logistic maps. 

Suppose k is iterative numbers, and the basic steps of the chaos optimization algo-
rithm based chaos variable are expressed as follows: 

Step 1 Initialization of the algorithm. Let k =0, )0(i

k

i xx = , )0(*
ii xx = , E* is a big 

positive number, and there are i chaos variables xi (i = 1, 2, …, n) from chaos map 
when random xi(0) is given as the initial value of the self-map. 

Step 2 Transformation of chaos variables in optimization design region of the vari-
able. The region [0 1] of ith chaos variable can be transformed into the optimization 
design region of the variable [ai, bi] by using (13). 
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Step 3 Iterating searching of chaos variables. If *)( EwE k

i < , then )(* k

iwEE = , 
k

ii ww =* , k

ii xx =* ; If *)( EwE k

i ≥ , then continue next iterating search. 

Step 4 1+= kk , )( k

i

k

i xfx = .  

Step 5 Repetition of step 2 ~ step 4 until E* keeps unchanged within enough iterating 
times. 

Here, this paper applies chaos variable from Logistic Map, Sine Map, Cosine Map 
and Cubic Map to optimize the neural network constructed in the following case 
study. Each chaos map for optimizing network runs 10 times, and initial values of 
each optimization are given randomly. The compared results indexed by iterative 
times k and mean square error (MSE) show that the above maps all attain the expected 
precision and the efficiency is little difference among them. But the initial values of 
chaos maps have obvious effect on convergence speed. 
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Table 1. Compared results of one-dimensional chaos maps by iterative times k and MSE 

Network Logistic Map Sine Map Cosine Map Cubic Map 
learning k MSE k MSE k MSE k MSE 

1 174 0.0113 3167 0.0118 3544 0.0092 842 0.0114 
2 4149 0.0115 2105 0.0102 1348 0.0094 4641 0.0103 
3 3606 0.0107 2015 0.0093 18 0.0117 11728 0.0108 
4 3553 0.0118 4264 0.0104 3671 0.0100 3121 0.0097 
5 2652 0.0113 2668 0.0114 3480 0.0110 4625 0.0119 
6 590 0.0071 2476 0.0072 2356 0.0096 3762 0.0119 
7 2447 0.0117 6800 0.0119 1907 0.0095 291 0.0101 
8 509 0.0079 502 0.0117 1124 0.0111 252 0.0116 
9 327 0.0112 2402 0.0095 4347 0.0112 9207 0.0088 

10 252 0.0071 2469 0.0095 576 0.0101 1146 0.0110 
Average 1826 0.0102 2887 0.0103 2237 0.0103 3962 0.0108 

4   Case Study 

To verify feasibility of the chaos optimization algorithm for fuzzy optimal selection 
neural network in the practical application, the case of Yamadu Hydrological Station 
for annual runoff forecast is analyzed and discussed. The observed annual runoff 
quantities of 23 years and its relevant 4 forecast factors are listed in table 2 where 
factor x1 is aggregate rainfall volume from last Nov. to this Mar of Yili weather  
 

Table 2. Observed annual runoff and relevant factors of Yamadu Hydrological Station 

Sample x1 x2 x3 x4 y 
1 114.6 1.10 0.71 85 346 
2 132.4 0.97 0.54 73 410 
3 103.5 0.96 0.66 67 385 
4 179.3 0.88 0.57 87 446 
5 92.7 1.15 0.44 154 300 
6 115.0 0.74 0.65 252 453 
7 163.6 0.85 0.58 220 495 
8 139.5 0.70 0.59 217 478 
9 76.7 0.95 0.51 162 341 

10 42.1 1.08 0.47 110 326 
11 77.8 1.19 0.57 91 364 
12 100.6 0.82 0.59 83 456 
13 55.3 0.96 0.40 69 300 
14 89.8 0.96 0.39 105 314 
15 78.5 0.89 0.44 94 280 
16 29.8 0.83 0.49 120 289 
17 248.6 0.79 0.50 147 483 
18 64.9 0.59 0.50 167 402 
19 95.7 1.02 0.48 160 384 
20 152.1 1.04 0.49 77 433 

(21) 121.8 0.83 0.60 140 401 
(22) 81.0 1.08 0.54 96 336 
(23) 90.0 0.95 0.43 89 301 



 Research on One-Dimensional Chaos Maps 301 

station, factor x2 is lunar average zonal circulation index in last Aug. at Europe and 
Asia region, factor x3 is meridianal index of Europe and Asia region in last May, fac-
tor x4 is 2800MHz sun radio jet stream of last Jun. In this case, the former 20 years 
data are used for determining model parameters, and latter 3 year data are used for 
verifying model. 

According to samples data 1-20 in table 2, the correlation coefficients of annual 
runoff y to forecast factor xi can be calculated, viz. ρ1=0.80, ρ2=-0.63, ρ3=0.44 and 
ρ4=0.40. So factors x1, x3, x4 use (3) and x2 uses (4) for normalizing. We take the for-
mer 20 years data as training samples and network topologic structure can be con-
structed as 3-layer network: 4 nodes input, one node output and 4 nodes hidden layer 
on experience. The one-dimensional chaos maps are applied to training the fuzzy 
optimal selection network, and weights (wik), (wkp) are obtained. 

At last, we use optimized weights to forecast last 3 year annual runoff in Yamadu. 
The forecast results are listed in table 3. From relative error of forecast, we can see 
that forecast precision is satisfying, and it proves that the one-dimensional chaos maps 
for fuzzy optimal selection neural network are valid.  

Table 3. Runoff and its forecast of the samples for testing 

Sample 
Observed 

(m3/s) 
Forecast 

(m3/s) 
Relative error 

(%) 
21 401 440 9.73 
22 336 315 6.25 
23 301 312 3.65 

5   Discussion 

This paper applies chaos variable from Logistic Map, Sine Map, Cosine Map and 
Cubic Map to optimize the weights of fuzzy optimal selection network. From the 
compared results of the above chaos maps show that they all attain the expected pre-
cision and the efficiency is little difference among them. But the initial values of 
chaos maps have obvious effect on convergence speed. The chaos optimization algo-
rithm has many advantages, such as fast search, precise result, and convenience. To 
verify feasibility of the chaos optimization algorithm for fuzzy optimal selection neu-
ral network in the practical application, the case of Yamadu Hydrological Station 
located in Yili River for annual runoff forecast is analyzed and discussed. The results 
show that the chaos optimization algorithm is an efficient learning algorithm for fuzzy 
optimal selection neural network.  
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Abstract. The quality and size of the training data sets is a critical stage on the
ability of the artificial neural networks to generalize the characteristics of the
training examples. Several approaches are focused to form training data sets by
identification of border examples or core examples with the aim to improve the
accuracy of network classification and generalization. However, a refinement of
data sets by the elimination of outliers examples may increase the accuracy too.
In this paper, we analyze the use of different editing schemes based on nearest
neighbor rule on the most popular neural networks architectures.

Keywords: neural networks; editing techniques; reduction training set; accuracy.

1 Introduction

Artificial neural networks (ANN) are computational models that have become a popular
tool used in remote sensing data analysis, the computer-aided medical diagnosis and
the identification of microbiological taxa. However, it is well know that in supervised
classification the maximum accuracy depends on the quality of the training data set.
In this sense, several approaches in the area of neural networks are towards to training
data selection with the aim to improve the performance of the network in terms of speed,
computational requirements and classification accuracy.

Most research on this topic has traditionally focused to obtain reduced training data
sets (TS) by the identification of two kinds of samples: i) core training patterns and
ii) border training patterns [1, 2]. However, the outliers or noise may introduce a false
decision boundary. Consequently, the training data extracted may also be subject to
refinement intelligent procedures.

An outlier has traditionally been defined as a prototype that does not follow the same
model as the rest of the data [3]. In this context, some approaches to allow remove
outliers from the original training set and also cleaning possibles overlapping among
classes. This strategy has generality been referred as to editing [4].

The general idea behind almost any editing procedure consists of estimating the true
classification of prototypes in the TS to retain only those which are correctly labeled.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 303–310, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The first proposal to select a representative subset of prototypes for a further nearest
neighbour classification corresponds to Wilson editing algorithm [5], in which a k-NN
classifier is used to retain in the TS only good samples (that is, training samples that are
correctly classified by the k-NN rule).

In the present work, we study the use of several editing schemes proposed in the lit-
erature and their effects on the classification performance of three supervised artificial
neural networks. This study mainly tries to show how these methods used in the nearest
neighbour rule improve the classification accuracy and generalization of the most pop-
ular neural networks architectures. In order to accomplish this, we experiment with two
class data sets and multiclass data sets.

The structure of the paper is as follows. Section 2 presents the learning algorithms.
In Section 3, we briefly describe the editing algorithms used to reduce the training data
sets. Section 4 consists of experiments on real data sets and an exhaustive discussion
of results. Finally, we will conclude the main remarks and outline some directions for
future work in Section 5.

2 The Classifiers

In this section, we briefly describe the classifiers selected for the present experimental
study. All these algorithms work under the assumption that there exists a set of n previ-
ously labeled examples (training set, TS), say X = {(x1, ω1), (x2, ω2), . . . , (xn, ωn)},
where each element has an attribute vector xi and a class label ωi.

2.1 Multilayer Perceptron

The multilayer perceptron (MLP) neural network [6] usually comprises one input layer,
one or more hidden layers, and one output layer. Input nodes correspond to features,
hidden layers are used for computations, and output layers are the problem classes.
A neuron is the elemental unit of each layer. It computes the weighted sum of its in-
puts, adds a bias term and drives the result thought a generally nonlinear (commonly,
sigmoid) activation function to produce a single output.

The most popular training algorithm for MLP is the backpropagation, which takes
a set of training instances for the learning process. For the given feedforward network,
the weights are initialized to small random numbers. Each training instance is passed
through the network and the output from each unit is computed. The target output is
compared with the output estimated by the network to calculate the error, which is fed
back through the network. To adjust the weights, backpropagation uses gradient descent
to minimize the squared error between the target output and the computed output. At
each unit in the network, starting from the output unit and moving down to the hidden
units, its error value is used to adjust weights of its connections so as to reduce the error.
This process of adjusting the weights is repeated for a fixed number of times or until
the error is small or it cannot be reduced.

2.2 Radial Basis Function

The radial basis function (RBF) [7] neural network, which has three layers, can be seen
as an especial kind of multilayer feedforward networks. Each unit in the hidden layer
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employs a radial basis function, such as Gaussian kernel, as the activation function. The
output units implement a weighted sum of hidden unit outputs. The input into an RBF
network is nonlinear. The output is linear. The kernel is centered at the point specified
by the weight vector associated with the unit. Both the positions and the widths of
these kernels are learned from training instances. Each output unit implements a linear
combination of these radial basis functions.

An RBF is trained to learn the centers and widths of the Gaussian function for hidden
units, and then to adjust weights in the regression model that is used at the output unit.
To learn the centers of the Gaussian functions, the k-means algorithm can be used,
obtaining k Gaussian functions for each attribute in the instance. After the parameters
for the Gaussian function at the hidden units have been found, the weights from these
units to the output unit are adjusted using a linear regression model.

2.3 Support Vector Machine

Support vector machines (SVMs) [8] are a set of related supervised learning methods
used for classification and regression. They belong to a family of generalized linear
classifiers. A special property of SVMs is that they simultaneously minimize the empi-
rical classification error and maximize the geometric margin; hence they are also known
as maximum margin classifiers.

SVMs map input vectors to a higher dimensional space where a maximal separating
hyperplane is constructed. Two parallel hyperplanes are constructed on each side of the
hyperplane that separates the data. The separating hyperplane is the hyperplane that
maximizes the distance between the two parallel hyperplanes. An assumption is made
that the larger the margin or distance between these parallel hyperplanes the better the
generalization error of the classifier will be.

3 Algorithms to Select Training Samples

The present section describes the procedures for handling outliers in a TS. This alter-
natives are based on the employment of a surrounding neighborhood to obtain a filtered
TS, that is, to detect and remove outliers from the TS.

3.1 Edited Nearest Neighbor Rule

Wilson [5] developed the Edited Nearest Neighbor (ENN) algorithm in which S starts
out the same as TS, and then each instance in S is removed if it does not agree with the
majority of its k nearest neighbors (with k=3, typically). This edits out noisy instances
as well as close border cases, leaving smoother decision boundaries. It also retains
all internal points, which keeps it from reducing the storage requirements as much as
most other reduction algorithms. Algorithmically, the ENN scheme can be expressed as
follows:

1. Let S = X .
2. For each xi in X do:

– Discard xi from S if it is misclassified using the k-NN rule with prototypes in
X − {xi}.
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3.2 Editing with the Nearest Centroid Neighborhood

The nearest centroid neighborhood (NCN) [9] refers to a concept in which neighbor-
hood is defined taking into account not only the proximity of prototypes to a given
input sample but also their symmetrical distribution around it. From this general idea,
the corresponding classification rule, the k-nearest centroid neighbours (k-NCN) [10],
has been proven to overcome the traditional k-NN classifier in many practical situations.
Now the NCN editing (NCNE) approach presented here corresponds to a slight modifi-
cation of the original work of Wilson and basically consists of using the leaving-one-out
error estimate with the k-NCN classification rule.

3.3 Proximity Graph Based Editing

Proximity graph based editing scheme are based on the concepts of Gabriel Graph (GG)
and Relative Neighborhood Graph (RNG) [11]. The method consists of applying the
general idea of Wilson’s editing algorithm [5] but using the graph (GG or RNG) neigh-
bors of each sample, instead of the Euclidean distance-based neighborhood, in order
to estimate whether a sample is mislabeled or not. In a few words, the simplest GG
and RNG prototypes based editing can be summarized as follows: after computing the
graph neighborhood of every sample in the original training set, discard those samples
that are misclassified by their graph neighbors (instead of their k nearest neighbors).

This editing technique provides some advantages as compared to conventional me-
thods. Firstly, it considers the neighborhood size as a characteristic which depends on
each one of the prototypes in the training set. Secondly, GGE and RNGE provides
some kind of information about prototypes close enough but homogeneously distributed
around a given sample, which can be specially interesting to detect outliers close to the
inter-class or decision boundaries. A more detailed description of GGE and RNGE can
be found in [12].

4 Experimental Results

The experiments were carried out on ten real data sets taken from the UCI Machine
Learning Database Repository (http://archive.ics.uci.edu/ml/). A brief
summary is given in the Table 1. For each database, we have estimated the overall
accuracy by 5–fold cross–validation: each data set was divided into five equal parts,
using four folds as the training set and the remaining block as independent test set. The
Overall Accuracy were calculated from the equation:

Acc = 1 − ne

nt
(1)

where ne is the number of misclassified examples and nt is the total number of testing
examples.

The experiments have been performed using the Weka Toolkit [13] with the learn-
ing algorithms described in Section 2, that is, MLP, SVM and RBF. Each classifier has
been applied to the original training set and also to sets that have been preprocessed
by the methods NNE, RNGE, NCNE and GGE. These editing approaches has been

http://archive.ics.uci.edu/ml/
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Table 1. Data sets used in the experiments

Data set Classes Features Samples training Samples test

Diabetes 2 8 614 154
German 2 24 800 200
Heart 2 25 217 55
Liver 2 6 276 69
Phoneme 2 5 4323 1081
Sonar 2 60 166 42

Cayo 11 4 4815 1204
Ecoli61 6 7 265 67
Fetwell 5 15 8755 2189
Satimage 6 36 5148 1287
1 Ecoli6 is obtained from Ecoli. In this work classes 7 and 8 have been eliminated since these only have two samples.

Table 2. Size reduction rate using different editing techniques

Data set NNE RNGE NCNE GGE

Diabetes 29.75 22.60 32.03 23.08
German 31.71 23.47 33.70 26.46
Heart 35.48 29.03 41.47 31.33
Liver 35.74 29.96 38.98 31.04
Phoneme 11.40 7.83 9.85 12.18
Sonar 18.56 17.96 18.56 34.13
Average 27.11 21.81 29.1 26.37

Cayo 8.20 6.41 9.01 8.20
Ecoli6 14.66 14.28 17.66 18.42
Fetwell 1.77 1.49 1.31 7.38
Satimage 9.53 7.20 9.53 17.98
Average 8.54 7.35 9.38 12.99

improved the classification accuracy of an Nearest Neighbor Rule classifier [14]. Ac-
cordingly, this paper addresses the problem of selecting prototypes in order to improve
the classification accuracy of an ANN classifier.

The Table 2 reports the percentage of size reduction yielded by the different editing
algorithms over ten databases. The results show that in the case of the two-classes data
sets, the average reduction rate was approximately 26.1% , meanwhile in the situation
of multi-class data sets was 8% to 17% (approximately). From this, the NCNE and the
GGE achieve the highest rates in the two-class and multiclass data sets, respectively.
Consequently, this implies a important decrease in computational cost in the learning
phase. This issue is important in applications with high-size data sets.

On other hand, in Feltwell the number of discards was minimal (except for the GGE
method). This is due to the measuring criteria used by NNE, NCNE, and RNGE suggest
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Table 3. Experimental results (Acc) for three different artificial neural network architectures

Neural Network Data set Original NNE RNGE NCNE GGE

Diabetes 75.01(4.88) 74.74(3.56) 75.66(4.31) 75.65(3.05) 75.39(1.69)
German 70.30(2.20) 72.50(3.81) 73.90(2.38) 72.50(2.57) 71.20(1.48)
Heart 82.59(4.83) 81.11(7.57) 78.52(4.83) 78.52(4.65) 80.74(4.46)
Liver 70.14(4.65) 69.28(5.46) 64.06(4.74) 68.12(8.51) 73.04(3.01)
Phoneme 80.96(1.64) 81.48(1.19) 81.24(1.23) 80.92(1.34) 81.74(0.89)

MLP Sonar 86.52(5.03) 82.69(1.99) 86.53(2.78) 85.57(5.64) 76.91(2.86)
Average 77.59(6.8) 76.97(5.55) 76.65(7.61) 76.88(6.20) 76.50(4.17)

Cayo 86.59(0.29) 86.29(0.34) 86.18(0.33) 86.48(0.59) 86.48(0.71)
Ecoli6 86.73(2.97) 87.65(3.27) 85.24(2.47) 87.35(1.67) 86.75(1.23)
Fetwell 95.11(0.77) 95.53(0.48) 94.80(0.37) 95.88(0.44) 94.90(0.27)
Satimage 88.78(0.67) 89.62(0.49) 89.49(0.66) 89.68(0.58) 87.29(1.56)
Average 89.30(4.00) 89.77(4.07) 88.93(4.32) 89.85(4.24) 88.86(4.04)

Neural Network Data set Original NNE RNGE NCNE GGE

Diabetes 72.91(4.93) 75.13(4.76) 74.35(6.67) 72.78(5.55) 75.26(4.65)
German 74.50(4.11) 70.80(2.46) 72.60(3.27) 72.30(3.83) 71.70(1.96)
Heart 80.00(6.06) 81.11(5.14) 80.37(4.26) 82.59(4.65) 79.63(3.46)
Liver 65.22(2.29) 61.45(3.64) 65.80(4.42) 61.45(2.20) 65.22(3.55)
Phoneme 78.57(1.29) 77.81(1.20) 77.54(0.78) 77.98(1.71) 78.18(0.66)

RBF Sonar 74.52(8.18) 72.57(6.61) 74.97(5.68) 76.42(4.06) 77.89(6.25)
Average 74.29(5.20) 73.15(6.81) 74.27(4.96) 73.92(7.17) 74.65(5.40)

Cayo 87.26(0.58) 87.81(0.38) 88.14(0.54) 87.86(0.55) 87.71(0.47)
Ecoli6 85.83(2.37) 84.94(2.09) 86.76(2.82) 87.35(2.75) 84.64(1.23)
Fetwell 90.63(0.61) 89.99(1.72) 89.99(0.95) 89.99(1.25) 91.08(0.76)
Satimage 84.01(0.48) 85.86(0.83) 86.05(0.99) 85.84(0.86) 85.70(1.12)
Average 86.93(2.80) 87.15(2.24) 87.74(1.74) 87.76(1.72) 87.28(2.83)

Neural Network Data set Original NNE RNGE NCNE GGE

Diabetes 76.95(1.97) 75.65(4.15) 76.82(2.53) 76.56(3.01) 76.56(3.17)
German 75.40(3.31) 72.30(1.89) 73.60(2.13) 74.00(1.90) 71.00(0.71)
Heart 84.07(4.46) 81.48(6.93) 81.85(4.22) 81.11(5.14) 82.96(3.56)
Liver 58.55(1.30) 57.97(0.00) 57.97(0.00) 58.26(0.65) 57.97(0.00)
Phoneme 77.37(1.08) 77.00(1.14) 77.48(1.13) 77.15(1.23) 77.59(1.04)

SVM Sonar 79.28(7.07) 82.21(4.01) 81.72(2.81) 79.31(4.06) 78.37(5.57)
Average 75.27(8.72) 74.42(8.90) 74.90(8.90) 74.40(8.27) 74.06(8.80)

Cayo 66.94(0.48) 66.37(0.13) 66.62(0.48) 65.36(0.39) 69.13(1.00)
Ecoli6 83.43(1.51) 83.13(1.37) 85.55(0.75) 84.32(3.03) 84.94(1.08)
Fetwell 91.01(0.14) 91.25(0.23) 91.22(0.26) 91.15(0.28) 91.07(0.33)
Satimage 86.53(0.99) 86.54(0.84) 86.40(0.86) 86.65(0.85) 85.45(0.99)
Average 81.98(10.50) 81.82(10.83) 82.45(10.84) 81.87(11.37) 82.65(9.43)
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that this data set is not overlapped, i.e., the decision boundary is well defined. However,
it is doubtful whether this is really so or if necessary use other measures to locate the
prototypes in the overlap region.

Examining the Table 3, the results shown that the editing algorithms obtain simi-
lar classification accuracy (Acc) to that of original data sets (i.e., without performing
editing). This indicate that, the shrink of training set give a lower computational loads,
but also not involve a loss performance. In this sense, although in the case of NCNE
no outperform the original data sets (for three classifiers with two-class data set), the
differences in such cases are not statistically significant. A final remark from the exper-
iments and perhaps important, refers to that in certain cases the classification accuracy
is improved.

In summary, the observations reported in Table 3 suggest that, on multiclass prob-
lems the performance editing techniques is better than that of two class problem, and
illustrate that these techniques have a tendency to improve the classification accuracy.

5 Conclusion and Further Extensions

When using an ANN, the presence of mislabelled prototypes can degrade the corre-
sponding classification accuracy. Many models for identifying and removing outliers
have been proposed. This paper has reviewed some works in the frame of editing the
nearest neighbor rule. A number of experiments over ten real data sets have been car-
ried out in order to evaluate the accuracy of those editing methods. The experiments
illustrate that editing techniques have a tendency improve the classification accuracy.

In the other hand, the editing techniques here studied, we can diminish the size of the
data bases, and with this the diminution of the computational cost and the learning time
in the ANN (RBFNN, MLP and SVM). Especially, in two class problem (was reported
more of the 21% of reduction, approximately).

Future work is primarily addressed to investigate the potential of these editing meth-
ods applied to the hidden space of the neural network. This idea could generate great
expectations. In order to obtain this one would be to use a dissimilarity measurement
in the transformation space of the training sample and not in the feature space, such as
commonly happens with the Wilson editing and its variants.
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Abstract. In order to enhance the speed of wavelet transform in signal  
processing, in this paper an accelerative computing theory is elaborated for 
generalized wavelet transform and the fast lifted wavelet transform from the 
perspective of the multi-resolution analysis theory. The capability of accelerative 
algorithm is proved in theory. Then the accelerative computing procedure for a 
series of bi-orthogonal Haar wavelet is demonstrated. Appling this idea to 
multi-resolution representation for medical image, the quality of image is  
retained and the running time is saved effectively. 

Keywords: Accelerative algorithm, Multi-resolution, Embedded sub-analysis. 

1   Introduction 

A common application of the Discrete Wavelet Transform (DWT) is in image and 
signal processing[1-3]. Image compression is playing an important role in the modern 
life with a rapid increase in the amount of digital camera. But in many fields, the DWT 
is quite a costly operation. So some people proposed fast algorithm to speed it up[4-6]. 

On the other hand, the generalized fast wavelet transform is a linear time algorithm 
when the supports of filters are uniformly bounded[7]. But for general filters, the time 
complexity of wavelet transform algorithm may be nonlinear. So it is necessary to 
study the time complexity of wavelet transform and the accelerative algorithm when 
the supports of filters are not uniformly bounded. 

In this paper the accelerative computing theory, algorithm for generalized fast 
wavelet transform is proposed. This accelerative algorithm can be applied into the lifted 
wavelet transform. The paper is organized as follows. In section 2, the accelerative 
algorithm for generalized wavelet transform is presented. The author intends to give 
analysis of time complexity for accelerative algorithm. Section 3 presents a series of 
bi-orthogonal Haar wavelet and accelerative computing procedure. Section 4 applies 
this idea to multi-resolution representation for medical image. Finally, section 5 con-
tains the conclusion for this paper. 

2   Accelerative Algorithm for Generalized Wavelet Transform 

2.1   Accelerative Algorithm Theory 

The generalized multi-resolution analysis theory is the foundation for fast wavelet 
transform. It is defined as follows[7]. 
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Definition 1. A multi-resolution analysis M of 2L  is a sequence of closed subspaces 

}|{ 2 ZJjLVM j ⊂∈⊂= , so that 

1. 1+⊂ jj VV ,  

2. jJj V∈∪  is dense in 2L , 

3. For jVJj ,∈∀ has a Riesz basis given by scaling functions ,{ | ( )}j k k K jϕ ∈ . 

Where ),,(22 μΣ= XLL  is a general function space, with nRX ⊂  being the spatial 

domain, ∑  is a σ -algebra, and μ  is a non-atomic measure on ∑ . We do not require 

the measure to be translation invariant, so weighted measures are allowed. 
The )( jK  is regarded as general index set and ( ) ( 1)K j K j⊂ + . Let M  and M ′   

are two multi-resolution analysis of 2L , where ' 2{ | ' ' }jM V L j J Z′ = ⊂ ∈ ⊂ . For de-

scribing the procedure of accelerative algorithm theory, we give the following definition. 

Definition 2. A multi-resolution analysis M ′  is called embedded sub-analysis of 
M if:  

1. M M′ ⊂ , 

2. M M′ ⊂ , where M  is a dual multi-resolution analysis of M , 
3. For j J′ ′∀ ∈ , 'jV  has the same scaling functions base and wavelet functions base 

in M  and M ′ , either do 'jV . 

This definition shows that for 
2Lf ∈∀ , f  has the same projection coefficients in M  

and M ′ . 
Assume ,p qV M V M∈ ∈  and p q> . 

For 2Lf ∈∀ , the wavelet transform from 
pV  to 

qV  is denoted as ),,( qpMWf  in M . 

If the 
pV  and 

qV  are belong to M ′ , and M ′  is embedded sub-analysis of M . It is 

clear that the efficiency of ( ', , )Wf M p q  is higher than one of ),,( qpMWf . 

Because of J Z⊂ , so the index set J  is discrete. 

Definition 3. For , ,p q J p q∀ ∈ > , p  and q  are called partners in set J , if and only 

if for r J∀ ∈ , r p q≥ >  or p q r> ≥ . 

Specially, there is only one step in the ( ', , )Wf M p q  when the indices p  and q  are 

partners in set J ′ . 

2.2   Accelerative Algorithm Procedure 

In pseudo code the procedure of ),,( qpMWf  is as follows[7]. 

for j = p-1  downto  q  step -1 

1

~
+= jjj H λλ  

1

~
+= jjj G λγ  

next j 



 A New Algorithm for Generalized Wavelet Transform 313 

When the index p  and q  are partners, the procedure of ( ', , )Wf M p q  is 

 pq H λλ ~= , pq G λγ ~= , (1) 

where 11

~~~~
−+= pqq HHHH , 1 1q q pG G H H+ −= . It is the accelerative algorithm. 

These two algorithms lead to the same results are followed: 

 1 1q q q p pH H Hλ λ+ −= , 1 1q q q p pG H Hγ λ+ −=  . (2) 

2.3   Analysis of Time Complexity for Accelerative Algorithm 

Now we analyze the time complexity of these algorithms. The running time of the 
algorithm is decided by matrix multiplication, which contains scalar multiplication and 
addition. The number of scalar multiplication is denoted as ),( jMcount  In the j-th 

iteration cycle. So we have: 

   
1 1( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j j j j j

j j j j

count M j r H c H c r G c G c

r H c H r G c G

λ λ+ += × × + × ×

= × + ×
, (3) 

where the )(⋅r  and  )(⋅c  represent  the dimensions of matrix. 

Total number of scalar multiplication in ),,( qpMWf  is: 

∑
−=

×+×=
q

pj
jjjj GcGrHcHrMcount

1

)]
~

()
~

()
~

()
~

([)(  . (4) 

From the matrix multiplication and multi-resolution analysis definition, we have the 
following equations. 

)()
~

()
~

(, 1+==∈∀ jjj rGcHcJj λ , 1( ) ( ) ( )j j jr H r G r λ ++ =  . (5) 

This results in 

1

2

1

( ) [ ( ) ( ) ( ) ( )]

( )

q

j j j j
j p

q

j
j p

count M r H c H r G c G

c H

= −

= −

= × + ×

=

∑

∑
. (6) 

Similarly, the total number of scalar multiplication in ( ', , )Wf M p q  is: 

 2
1( ') ( ) ( ) ( ) ( ) ( ) ( ) ( )p p pcount M r H c H c r G c G c c Hλ λ −= × × + × × = . (7) 

So the efficiency of accelerative algorithm is defined as 2 2
1

1

1 ( ( ) ( ) )
q

p j
j p

c H c H−
= −

− ∑ . If 

1( ) ( ) 1 2k kc H c H− =  for k∀ , The accelerative efficiency are shown in Table 1.  
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In this case, we have 2 2
1

1

1 ( ( ) ( ) ) 1/ 3, when -
q

p j
j p

c H c H p q−
= −

− → → ∞∑ . 

Note that in the accelerative algorithm there is no restriction on the filters. If the 
support of wavelet filters is uniformly bounded, we only care for scaling coefficients.  
This conclusion is also correct.  

Table 1. Accelerative efficiency with different p q−  

p q−  2 3 4 5 
Accelerative 

efficiency 
20.00% 23.81% 24.71% 24.93% 

3   Accelerative Algorithm for Bi-orthogonal Haar Wavelet 

In [7] the generalized orthogonal Haar wavelet is presented. The index set ( , )L j k  of 

this Haar wavelet contains either 2 or 3 elements. Now we generalize a series of Haar 
wavelet. In which the index set ( , )L j k  contains t elements, instead of 2 or 3 elements. 

Then the accelerative computing procedure for Haar wavelet is demonstrated. 

3.1   Generalized Bi-orthogonal Haar Wavelet 

A set of measurable subsets ,{ | , ( )}j kX j J k K j∈ ∈  is called a nested set of parti-

tioning[7] if it is a set of partitioning, and for ,j k∀ ∀ , there exists index set ( , )L j k , so 

that 

∪
),(

,1,
kjLl

ljkj XX
∈

+=  . 
(8) 

The spaces jV  and jV  are defined as[7] 

, 2{ | ( )}j j kV closspan k K j Lϕ= ∈ ⊂ , , 2{ | ( )}j j kV closspan k K j Lϕ= ∈ ⊂ , (9) 

where 
,, j kj k Xϕ χ= , 

,, ,/ ( )
j kj k X j kXϕ χ μ= . 

In the following part we assume for kj ∀∀ , , | ( , ) | 2L j k t= ≥ , where t  is a constant.  

It is easy to proof the space jV  generate a multi-resolution analysis denoted as 

( )M t  of 2L , with the scaling function ,j kϕ . The space jV  generate a dual 

multi-resolution analysis with the dual scaling function ,j kϕ . 

Because there are t  elements in index set ( , )L j k , let 

1 2 3( , ) { , , , , }tL j k m m m m= , (10) 

where 1m k= . 
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For every j J∈ , wavelet , ij mψ  and dual wavelet , ij mψ are defined as 

1

1,
1,1

, , 1
1,

1,
1

2 ( )
2 ( )

s
i

i i

i

s

i

j m
j ms

j m j m i
j m

j m
s

X
X

ϕ ϕ
ψ ψ

μμ

−

+
+=

−
+

+
=

= = −
∑

∑
, (11) 

where {2,3, , 1, }i t t∈ − . 

From Eq.(9) we have  

j jV V= , j jW W= , (12) 

where jW  is the orthogonal complement of jV  in 1jV + . 

Now we get a series of multi-resolution analyses ( )M t , 2,3,t = . In each of 

( )M t , the scaling functions are bi-orthogonal and orthogonal. Either do wavelets. 

For every ( )M t , because of 
,, ,/ ( )

j kj k X j kXϕ χ μ=  and , 1,
( , )

j k j l
l L j k

X X +
∈

= ∪ , so the 

filters are below. 

1,
, ,

,

( )
( , ),

( )
j l

j k l
j k

X
l L j k h

X

μ
μ

+∀ ∈ =  . (13) 

From Eq. (11), we have 

1,
1 2 11

1,, ,
1

( )
, { , , , }

2 ( )

1/ 2,

si

j l
ii

j mj m l
s

i

X
l m m m

Xg

l m

μ

μ

+
−−

+
=

⎧
∈⎪⎪= ⎨

⎪
⎪ =⎩

∑  . (14) 

3.2   Accelerative Algorithm for Haar Wavelet 

From the constructing of ( )M t , we see that every multi-resolution analysis ( )M t  

comes from a nested set of partitioning ,{ | , ( )}j kX j J k K j∈ ∈ . The nested set of 

partitioning which generate ( )M t  is denoted as ( )
,{ | , ( , )}t

j kX j J k K j t∈ ∈ . 

For fixed 0 2t ≥ , then there are 0 1t −  Haar wavelet bases in every jW  of 0( )M t . 

The procedure of 0( ( ), , )Wf M t p q  is given by 
For  j = p-1  downto  q  step -1 

1j j jHλ λ +=  

1j j jGγ λ +=  

next j 

where the filters ,j jH G  are described in Eq.(13) and (14). 
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Now for the fixed subspace pV  and qV  in 0( )M t , we will construct the embedded 

sub-analysis 0( )p qM t −  by the following procedure. So that the subspace pV  and qV  

belong to 0( )p qM t − , where the indices p  and q  are partners. 

The set 0( )
, 0{ | , ( , )}t

j kX j J k K j t∈ ∈  are denoted simply as ,{ | , ( )}j kX j J k K j∈ ∈ , 

which generates the 0( )M t . For ,j k∀ ∀ , the ( , )L j k  in Eq.(8) contain 0t  elements. 

Now we define a new set as follows. 

,{ | ( ) , , , ( )}j kX j p p q r j J r Z k K jΩ = = + − ∈ ∈ ∈  . (15) 

For ,j k∀ ∀ , there exists index set '( , )L j k , so that , ,
'( , )

j k j p q l
l L j k

X X + −
∈

= ∪ , where the 

number of elements in '( , )L j k  is a fixed natural number 0
p qt − . 

It is easy to validate the space jV  and jV  satisfy three conditions of definition 1, 

where ( ) ,j p p q r j J= + − ∈ . So a multi-resolution analysis and its dual 

multi-resolution analysis are generated by respectively space jV  and jV , denoted as 

0( )p qM t −  and 0( )p qM t − . Now we reach the following conclusion: 

Theorem 1. For ( ) ,j p p q r j J∀ = + − ∈ , the scaling functions which construct jV  in 

0( )M t  are the same as in 0( )p qM t − , either do jV . 

This theorem shows that for 
2Lf ∈∀ , f  has the same projection coefficients in 

0( )M t  and 0( )p qM t − . 

So the accelerative procedure for 0( ( ), , )Wf M t p q  is 0( ( ), , )p qWf M t p q−  which is 

the wavelet transform from pV  to qV  in 0( )p qM t − . The procedure is 

 pq H λλ ~= , pq G λγ ~= , (16) 

where the elements of filter H  are below 

 , , ,, , ( ) ( )k l p l q kl k h X Xμ μ∀ =  . (17) 

There are two options of filter G . First, dual wavelet bases in 0( )p qM t −  are the same as 

in 0( )M t , then filter 1 1q q pG G H H+ −= . Second, dual wavelet bases in 0( )p qM t −  are 

constructed with Eq.(11). So the elements of filter are described in Eq.(14) . 

4   Experimental Results 

In this session we apply the accelerative algorithm in multi-resolution representation 
for medicine computer tomography (CT) in order to validate its capability. First step is 
building the partitioning gridding for computer tomography data. Then construct  
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bi-orthogonal Haar wavelet and accelerate the computing procedure. In this wavelet, 
we have | ( , ) | 2, for ,L j k j k= ∀ . Fig.1 illustrates the original medicine CT and trans-

formed image.  

 
                      a. Original medicine CT                         b. Transformed image with 4p q− =  

Fig. 1. Original medicine CT and transformed image 

In this experiment the transformed images have the same quality whether the 
transform is accelerated. This results from theorem 1. But the accelerated transform has 
saved about 20 percent of time expenditure. This accelerative efficiency is less than 
theory one in table 1. In fact, besides the wavelet transform the experiment has I/O and 
other time expenditure. 

5   Conclusion 

In this paper, a new framework of generalized fast wavelet transform is presented, 
within which one can accelerate the computing of generalized fast wavelet transform. 
The analysis of time complexity shows that the running time is saved. This idea can be 
applicable to the fast lifted wavelet transform and dual lifting scheme as well. The 
accelerative algorithm is applied to multi-resolution representation for medical image 
and has a striking effect in running time. 
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Abstract. Aimming at the characteristics that the samples to be processed have 
high-dimension feature variables, and combining with the structure feature of 
neural networks, a new algorithm of Neural Networkss (NNs) based on Factor 
Analysis (FA) is proposed. Firstly we reduce the dimensionality of the feature 
space by FA, regard the data after dimension reduction as the input of the neural 
networks, and then output the prediction results after training and emulating. 
This algorithm can simplify the NNs structure, improve the velocity of conver-
gence, and save the running time. Then we apply the new algorithm in the field of 
pest prediction to emulate. The results show that the prediction precision is not 
reduced, the error of the prediction value is reduced by using the algorithm here, 
and the algorithm is effective. 

Keywords: neural networks algorithm; factor analysis (FA); feature extraction. 

1   Introduction 

Neural networkss (NNs) [1] is based on the intelligent computation which uses the 
computer network system to simulate the biological neural networks. For the NNs 
algorithm itself, the massive sample features provide available information, but at the 
same time it also increases the difficulties of processing these data. If it regards all of 
the data as the inputs, it is not good for the design of the network, and will take a lot of 
storage space and computing time, too much feature inputs will also cause the 
time-consuming training process, impede the constringency of the training work, and 
even ultimately affect the network recognition precision. So it is necessary to process 
the original data firstly, then analyze and extract useful variable features from the 
massive data, remove the influence of related or redundant factors, and reduce the 
dimension of the variable features as much as possible under the premise of not af-
fecting the question solution.  

It is also a current hot spot to improve the neural networks through processing the 
original data. Some scholars proposed some algorithms combined principal component 
analysis (PCA) and neural networks, such as Lin S K proposed a neural networks 
prediction algorithm based on clustering and PCA[2]. The proposed algorithm divides 
samples which have characteristic of decentralization into different sub-classes with 
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the aid of pedigree clustering, and uses principle components analysis method to reduce 
the dimensionality of the feature space, and then builds neural networks forecasting 
algorithm. E Lewis et al uses neural networks algorithm based on PCA analyzed the 
complex optical spectra and time resolution signal[3]. Combined Independent Com-
ponent Analysis (ICA) and NNs, E S Gopi used ICA to extract the features of forged 
images, to identify the forged images through NNs [4]. Song JH proposed a new 
combined algorithm based on ICA and neural networks[5]. Firstly, the independent 
component analysis algorithm is used for feature extraction. The spectral features are 
assumed to be a linear mixture of constituent spectra from the material types. The 
independent components are informative for classification, meanwhile the number of 
independent components is much smaller than the bands of original data. In addition, 
some scholars constructed the new neural networks algorithm based on correlation 
analysis[6], factors analysis (FA)[7], and verified in practice. 

However, the research of NNs algorithm based on FA is relatively rare. The original 
feature variables are processed by standardization and mathematics transformation, it 
will eliminate the different of distribution indicators and non-comparability caused by 
numerical difference in order to ensure the data quality. So, through FA, it is not only to 
avoid information duplicating, but also to overcome the determining weight with the 
subjective factors. FA concentrates the information of the system's numerous original 
indexes, it can also adjust the amount of the information by controlling the number of 
the factors, according to the precision that the actual problems need. 

In this paper, firstly, we reduce the dimensionality of the feature space by FA, regard 
the data after dimension reduction as the input of the neural networks. And then we 
propose a new algorithm of neural networks based on FA. The purpose is to simplify 
the NNs structure, improve the velocity of convergence and generalization ability, save 
the running time, and so it will improve the performance of neural networks. Finally 
we apply the new algorithm in the field of pest prediction to emulate, and prove that the 
algorithm is effective. 

2   FA-BP Combined Neural Networks Algorithm 

2.1   The Basic Principles of FA 

FA can be seen as the promotion of PCA, also is a statistical analysis method which 
changes many feature indexes into several integrated indexes[8,9]. It is a multi-variable 
statistical analysis method which makes variables with some of the complex relation-
ship transform into the comprehensive factors. It researches on the variables’ internal 
correlated dependencies relationship. 

The basic idea of FA is to classify the observation variables, make the variables that are 
higher correlated in the same class, the correlations among variables of different classes 
are lower, so in fact each class of variables represents a basic structure, which is public 
factor. The research problems try to use the sum of the linear function of least number of 
unobservable public factors and the special factors to describe each component of the 
original observation. FA has more superiority in the explanation aspect. The basic problem 
of FA is to determine the load factor by the related coefficient between variables.  
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FA's main purpose is to simplify the structure of the system. Then we can discover 
each variable’s best subset from numerous factors, describe the multivariable systems 
results and the influence to the system by the various factor from the information in-
cluded in the subsets, so as to achieve the goal of dimensionality reduction. 

2.2   The Basic Principle of NNs 

The NNs is a non-linear, self-adapting information process system which is composed 
by massive processing units, to process the information by simulating the way of 
processing and remembering the information by the cerebrum neural networks. 

On the network each node can be seen as a neuron, it can memory (storage), process 
some information, and work with other nodes. When solving the problem, to study 
some learning guidelines and then simulation output.  Based on the powerful 
fault-tolerance of the NNs, the NNs can easily achieve nonlinear mapping process, and 
has large-scale computing capacity. Its essence is to gain a parallel and distributed 
information process functions through the transformation of the network and the dy-
namics behavior, and simulate the information processing functions of human brain 
nervous system to some extent, and has some characteristics of self-adapted, 
self-organization and real-time learning. 

At present, hundreds of neural networks algorithms have been proposed, in which 
Back-Propagation (BP) neural networks [10] is one of most mature and most wide-
spread algorithms, One BP network with three-layer, can approach any continuous 
function to any precision. 

BP algorithm is composed by the forward spread of the data stream and the reverse 
spread of the error signal. The forward-propagating direction is input layer→ hidden 
layer→ output layer, the state of neurons of each layer only affect the neurons of next 
layer, if it can not obtain the expected output, then turns to the process of reverse spread 
of the error signal. If there are n  inputs and m  outputs in the network, and there are s 
neurons in the hidden layer, the output of middle layer is jb , the unit threshold of 

middle layer is jθ , the unit threshold of output layer is kθ  the transfer function of 

middle layer is 1f , the transfer function of output layer is 2f , the weight from input 

layer to middle layer is ijw ，the weight form middle layer to output layer is jkw , then 

we can get the output of the network ky , the desirable output is kt  the output of j th 

unit of the middle layer is: 
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To calculate the output yk of the output layer through the output of the middle layer, 
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Define the error function by the network actual output, 

( )∑
=

−=
m

k
kk yte

1

2
                                           (5) 

The network training is a continual readjustment process to the weight and the thresh-
old value, to make the network error reduce to a pre-set minimum or stop at a pre-set 
training step. Then input the forecasting samples to the trained network, and obtain the 
forecasting result. 

2.3   FA-BP Algorithm 

Through factor analysis, the dimensionality reduction data of the original data is gotten. 
Then these low-dimensional data act as the input of the NNs, a new neural networks 
algorithm based on FA is established, this algorithm can also be referred to as FA-BP 
algorithm. The basic steps of FA-BP algorithm are as follows: 

Step 1. Standardize the original data, and get the correlation coefficient matrix R; 
Step 2. Solve the eigenvalue and eigenvector of R, compute the variance contribution 

rate and the cumulative variance contribution rate, and determine the principal factor;  
Step 3. Rotate the factor loading matrix, compute the factor score, and regard it as a 

new sample; 
Step 4. Design BP network structure according to the number of the extracted prin-

cipal factors and the output of the actual problem, determine the number of hidden layer 
neurons; 

Step 5. Select suitable samples from the new samples as the training samples to train 
the network, and determine the connection weights and the threshold value; 

Step 6. Use the trained FA-BP algorithm to predict the forecasting samples. 

3   Case Analysis 

Known data[11], predicting the occurrence degree of wheat midge in Guan-zhong area. 
The forecast of the pest occurrence system can be regarded as an input-output system in 
essence, the transformational relations include three aspects, that is data fitting, fuzzy 
conversion and logical-inference, these may be expressed by neural networks. 

The meteorological conditions have close relationship with the occurrence of wheat 
midge, so we use the meteorological factors to forecast the occurrence degree of wheat 
midge. Here we choose 40 samples from 1961 to 2000 as the research object, use 

1x - 14x  to express the 14 feature variables (meteorological factor) of the original data 
which need to be processed, use Y to express the occurrence degree of wheat midge in 
the same year. Then use standardized methods to standardize the original data (the data 
after processing are still signed as X ). 

Using MATLAB toolbox to establish a BP neural networks with 14 neurons in the 
input layer and 1 neuron in the output layer. In the experiments we choose 30 samples 
from 1961 to 1990 as the training samples, 10 samples from 1990 to 2000 as the 
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simulation forecast samples. The results are listed in Table 1 (the error sum of squares 
is the square sum of the difference of predicted value and actual value). 

Using FA-BP algorithm to forecast, carrying out factor analysis for the data which 
have been standardized with MATLAB software, from this example we extract 5 
principal factors. Rotate the factor loading matrix so as to make the factors explain the 
variables better, and make the factor loading matrix satisfy “the most simple structure 
criterion”, then compute the scores of the factors. After then the algorithm takes the 
processed data as the inputs of the network, and establish the new BP network for 
testing.  

Table 1. The comparison of the performance of BP algorithm and FA-BP algorithm 

NNs Algorithm Precision Training Steps Error Sum Quares 
BP Algorithm 80% 799 1.8423 

FA-BP Algorithm 80% 406 105875 

 
Table 1 shows that, the comparison of the performance of FABP algorithm and BP 

algorithm, the forecasting precision of the two new network algorithms has not re-
duced, but the convergence steps and the error sum of squares actually reduce. Original 
data through factor analysis get low-dimension data, the network inputs are reduced, it 
is easy to design the network, the network architecture is simplified, the network 
training speed is enhanced, and the convergence rate is accelerated. It indicates that the 
FA-BP algorithms are superior to the traditional BP algorithms, the application is 
stronger, and worthy popularizing. 

4   Results and Discussion 

Based on the FA algorithm, combined with BP neural networks algorithm, in this paper 
we propose FA-BP combination neural networks algorithm. By reducing the feature 
dimension of original data, the data redundancy is reduced, and also the influence of 
interrelated, repeated data is excluded. The neural networks has a more powerful ability 
of processing non-linear problems, the new algorithm that organically combines the 
two’s advantages can better fit more complex non-linear predicted problems. The results 
of the case analysis show that the FA-BP algorithm has great improvement compare to 
the single neural networks forecast, the self-learning ability is strengthened, the con-
vergence rate is speeded up, and the run time is saved. Through the data dimension 
reduction, although certain information has lost, the forecasting precision does not re-
duce. This article is the main example of predict the pests occurrence used meteoro-
logical factors, applications in the future will further, consider the pests occurrence of 
ecological factors, with a view to improving the Precision of forecasts. The algorithm 
provides a new and effective way for the study of insect ecology and pest forecast. 

Factor analysis which the main purpose is reduced high-dimensional data, when the 
processing object is a large sample with a large number of data and many feature vari-
ables, will better show the advantages. But when the large sample is forecasted by the 
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neural networks, it is difficult to design the network architecture. To design the network 
architecture after dimension reduction, so the FA-BP combination neural networks 
algorithm is more suitable to the large sample with many characteristic variables. During 
the process of the study, the combination of the multivariate statistical analysis and the 
neural networks, improves the efficiency of the neural networks in processing problems 
in great degree. Further extending this thinking, aiming at the characteristics of the 
forecasting problems, if we choose the appropriate statistical theories, match a ideal 
neural networks algorithm, then establish a new algorithm, or fix with other intelligent 
methods, possibly will have new discovery. It is also worth paying attention to such as, 
improving the dimension reduction algorithms, the improvement of network architec-
ture and the algorithms, the research of the combination way. 
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Abstract. In this paper, we propose an iterative self-organizing map ap-

proach for spatial outlier detection (IterativeSOMSO). IterativeSOMSO

method can address high dimensional problems for spatial attributes

and accurately detect spatial outliers with irregular features. Detection

of spatial outliers facilitates further discovery of spatial distribution and

attribute information for data mining problems. The experimental re-

sults indicate our proposed approach can be effectively implemented for

the large spatial dataset based on U.S. Census Bureau with approving

performance.

Keywords: Neural network; Self-organizing map; Mahalanobis distance;

Spatial data mining; Spatial outlier.

1 Introduction

Data mining, as a crucial technique in many of today’s data intensive applica-
tions, aims to extract implicit and useful knowledge from large-scale arbitrary
datasets. Among most data mining techniques, the procedure of outlier detec-
tion is similarly compared with discovering “nuggets of information” [1] in the
large databases. In many situations, the outlier normally carries the important
information. However, spatial outlier detection [2] still remains challenging and
controversial for several reasons. Firstly, the definition of neighborhood is cru-
cial to determine spatial outliers. Secondly, the statistical approaches for spatial
outliers are required to illuminate the distribution of the attribute values for
variety of locations compared with the aggregate distribution of attribute values
over the all neighboring clusters [3].

In our previous research work, SOMSO [5][7] was proposed by integrating self-
organizing map (SOM) [4] with Mahalanobis distance [6] to detect the spatial
outliers. The advantage of SOMSO approach is that it can not only reduce data
dimensions, but more importantly, the topological information of spatial location
can be preserved to accurately seek similar spatial relationship in large databases.
In this paper, we extend the SOMSO approach to be an iterative approach, the
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IterativeSOMSO method, to improve its efficiency and robustness. The key idea
of IterativeSOMSO method is to use the iterative SOM mechanism to effectively
determine the neighbor sets to reduce the influence of potential local outliers.
Experiment results based on the U.S. Census Bureau database [8] demonstrate
the effectiveness of this approach.

The rest of this paper is organized as follows. Section 2 presents the detailed
IterativeSOMSO algorithm. In section 3, the detailed simulation analysis of this
method is illustrated based on the U.S. Census Bureau databases for spatial
outlier detection. Finally, we give a conclusion in section 4.

2 The Proposed Method: IterativeSOMSO

The proposed IterativeSOMSO algorithm can effectively detect spatial outlier
with multiple spatial and non-spatial attributes. In this approach, we adopt the
Mahalanobis distance concept to determine the threshold for identifying spatial
outliers with multiple non-spatial attributes. With iterative utilization of SOM,
the neighbor set can be effectively updated to eliminate the influence of potential
local outliers for more robust detection.

[IterativeSOMSO Algorithm]

1. Given the spatial dataset x = {x1, x2, . . . , xn} in a space with dimension
p ≥ 1, attribute function f with dimension q ≥ 1.

2. Normally standardize the non-spatial attribute f(x), i.e., f(x) ← f(x)−μf

σf
.

3. For each spatial point xi, calculate the neighbor set N(xi) via SOM as
following steps:
(a) Initialize weight vectors with random small values, for j = 1, 2, . . . ,

Nneuron, where Nneuron denotes the number of neurons in the lattice.
(b) Randomly select a sample from the input data space.
(c) Search best-matching (winning) neuron at each time iteration through

minimum Euclidean distance.
(d) Update the synaptic weight vector of all neurons.
(e) Recursively implement step (b) until convergence of the feature map.

4. Compute the neighborhood function g(xi)= average or median of the dataset,
and comparison function h(xi) = f(xi) − g(xi).

5. Calculate Mahalanobis distance MDi as (1).

MDi =
√

(xi − μ)TS−1(xi − μ) (1)

where μ = 1
n

n∑
i=1

xi, S = 1
n−1

n∑
i=1

(xi − μ)(xi − μ)T

6. Search largest Mahalanobis distance and its corresponding spatial index,
then remove non-spatial feature of this data item.

7. Iteratively implement Step (4)-(6) until top M outlier candidates emerge.
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8. Sort by Mahalanobis distance of the top M outlier candidates in descending
order.

9. Let χ2
q(β) denote chi-square distribution with certain confidence level β, If

MD2
i > χ2

q(β), xi can be identified as a spatial outlier candidate.

The key idea of the proposed IterativeSOMSO algorithm is that distinctive
properties of SOM is provided to determine how to organize synaptic weight
vectors to represent the original spatial attributes to obtain spatial clusters.
SOM can be considered as a special class of artificial neural networks based
on competitive learning. The output neuron is essentially the winning neuron
placed on the nodes of the lattice (usually one or two dimensions). For various
input patterns, the neurons can be selectively adjusted or updated to adapt the
competitive learning process. Briefly speaking, the learning SOM involves these
stages: competitive phase, cooperative phase and adaptive phase. The principle
goal of SOM is to project the input vector with higher dimensions into one or
two dimensional discrete map in topologically ordered pattern, which can be
effectively used to identify the neighbor set to facilitate spatial outlier detection.
In this paper, we also compare the proposed method with the existing technique
such as Grid based KNN method [10]. Based on the combination of Grid and
KNN method, Grid based KNN approach might improve efficiency to find neigh-
borhood in lower dimension, but it fails to apply this method in spatial outlier
detection with high accuracy when spatial attribute dimension increases. A brief
description is summarized as follow.

[Grid based KNN method]

1. Construct the specific grid for spatial data.
2. Find the grid index of each spatial point xi.
3. Those who have the same grid index share the neighborhood relationship.
4. If the number of data points within the same grid is greater than k, search

k-nearest neighbors for xi and then update the neighbor set. Otherwise, keep
the results of the neighbor set in step 3.

3 Simulation Result Analysis

The “house” dataset, primarily focused on the housing units and building per-
mits in the United States, collects the detailed information about the housing or
building ownerships and distribution density. The non-spatial attributes with 5
dimensions include house units in 2000, house units net change percentage from
2000 to 2005, house units per square mile of land area in 2005, housing units
in owner-occupied percentage in 2000 and housing units in multi-unit structures
percentage in 2000. The experiment shows that SOM approach is provided as
an effective tool to detect spatial outliers. It differs from the traditional machine
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Fig. 1. Spatial clusters: The data points in the clusters with continuously identical

marks and colors share common spatial properties in the neighborhood

learning and data mining techniques used in searching spatial neighboring clus-
ters, which are merely concentrated on Euclidean distance for spatial attributes.
However, competitive learning promotes synaptic neurons to collaborate with
each other and adaptively form feature map with the property of topological
ordering. By visual geometric computation in Fig. 1, the proposed method can
ultimately acquire important information of the inherent connection for spatial
data mining.

Table 1. The top 20 spatial outlier candidates for house dataset detected by Iterative-

SOMSO algorithm

Rank County
Mahalanobis Units 2000-2005 units Units per Units in owner- Units in multi-unit

Distance 2000 net change % square mile 2005 occupied % in 2000 structures % in 2000

1 New York, NY 47.0005 6.8489 0.5159 44.77 7.1244 9.2892

2 Los Angeles, CA 30.1396 29.1008 0.6165 0.8977 3.4559 3.2217

3 Cook, IL 20.1359 18.5294 0.5892 2.7144 2.1363 4.5226

4 Kings, NY 16.6126 8.0432 0.6668 16.7425 6.2006 7.9136

5 Bronx, NY 15.0883 4.0819 0.5752 14.8914 7.1903 8.1802

6 Maricopa, AZ 12.6488 10.9183 2.0930 0.0658 0.8695 1.5582

7 Harris, TX 12.5962 11.3482 1.0502 0.9227 2.4794 2.6778

8 Flagler, FL 11.3892 0.1134 9.0886 0.0347 1.3078 0.2440

9 Hudson, NJ 10.4354 1.8318 0.4953 6.5289 5.7256 7.7003

10 San Francisco, CA 10.3692 2.7849 0.5620 9.4251 5.1582 5.9408

11 Chattahoochee, GA 10.3348 0.3036 0.8650 0.1198 6.2138 1.0996

12 Queens, NY 9.8641 7.0208 0.6698 9.4402 4.1289 6.0901

13 Paulding, GA 9.4858 0.0704 7.2627 0.0390 1.6773 0.7771

14 Suffolk, MA 9.1950 2.2989 0.8840 6.1808 5.3033 7.4231

15 Loudoun, VA 9.0758 0.2259 7.3439 0.0893 0.7008 0.2786

16 King, TX 8.8654 0.3319 0.4893 0.1364 5.2505 1.1610

17 Kenedy, TX 8.6339 0.3309 0.4937 0.1364 5.1846 0.6198

18 Rockwall, TX 8.4423 0.1953 6.3160 0.0792 1.1363 0.2546

19 Dallas, TX 8.2839 7.3522 0.2013 1.1706 2.8357 2.9764

20 Eureka, NV 8.0410 0.3242 0.3352 0.1363 0.0513 0.8944
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Table 2. The top 20 spatial outlier candidates for house dataset detected by Grid

based KNN algorithm

Rank County
Mahalanobis Units 2000-2005 units Units per Units in owner- Units in multi-unit

Distance 2000 net change % square mile 2005 occupied % in 2000 structures % in 2000

1 New York, NY 47.1676 6.8489 0.5159 44.77 7.1244 9.2892

2 Los Angeles, CA 33.1943 29.1008 0.6165 0.8977 3.4559 3.2217

3 Cook, IL 19.9999 18.5294 0.5892 2.7144 2.1363 4.5226

4 Kings, NY 17.2194 8.0432 0.6668 16.7425 6.2006 7.9136

5 Bronx, NY 15.6216 4.0819 0.5752 14.8914 7.1903 8.1802

6 Harris, TX 12.4259 11.3482 1.0502 0.9227 2.4794 2.6778

7 Maricopa, AZ 12.3113 10.9183 2.0930 0.0658 0.8695 1.5582

8 Flagler, FL 11.2978 0.1134 9.0886 0.0347 1.3078 0.2440

9 Hudson, NJ 10.8455 1.8318 0.4953 6.5289 5.7256 7.7003

10 Queens, NY 10.6102 7.0208 0.6698 9.4402 4.1289 6.0901

11 San Francisco, CA 10.1129 2.7849 0.5620 9.4251 5.1582 5.9408

12 Chattahoochee, GA 10.0224 0.3036 0.8650 0.1198 6.2138 1.0996

13 San Diego, CA 9.9802 9.0266 0.1974 0.1967 2.4662 2.4646

14 Suffolk, MA 9.9380 2.2989 0.8840 6.1808 5.3033 7.4231

15 Loudoun, VA 9.0355 0.2259 7.3439 0.0893 0.7008 0.2786

16 Henry, GA 9.0182 0.0551 7.2163 0.1149 1.4662 0.3719

17 Paulding, GA 8.9215 0.0704 7.2627 0.0390 1.6773 0.7771

18 Orange, CA 8.8396 8.3907 0.1501 1.4840 1.6744 2.2620

19 Kenedy, TX 8.5330 0.3309 0.4937 0.1364 5.1846 0.6198

20 Alexandria, VA 8.4137 0.2447 0.1052 5.5310 4.4984 5.5250

To better visualize spatial clusters, the topological information will be shown
by the cluster density, which can illustrate the number of spatial data items
on each neuron. The analysis of cluster density can help us to understand the
quantity of spatial data with similar spatial patterns. Besides, the histogram of
spatial clusters is employed to display the neighborhood based on the feature
map as Fig. 2.

Table 1 and Table 2 illustrate the top 20 (M = 20) spatial outlier candidates
for house dataset detected by the proposed IterativeSOMSO and the Grid-based
KNN algorithm, respectively. From these two tables one can see that both meth-
ods can provide comparable results. Since the iterative procedure in Iterative-
SOMSO can eliminate unknown influence arising from local outliers, we believe

Fig. 2. Histogram of the cluster distribution
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the outliers detected by the IterativeSOMSO approach might be more reliable. In
terms of computational cost, Grid based KNN will have large computational cost
when the dimension of spatial attribute is high. Based on the simulation results,
we hope that IterativeSOMSO algorithm may provide an effective approach for
such challenging spatial outlier detection applications.

4 Conclusion

In this work, we propose an IterativeSOMSO approach for spatial outlier detec-
tion. Experimental results and comparative analysis illustrate the effectiveness
of this method. There are a few interesting future directions along this topic.
For instance, theoretical analysis of the propose method in terms of convergence
is critical to understand the fundamental mechanism of this approach. Also,
large-scale experiments and comparative study are necessary to fully justify the
effectiveness of this approach. Furthermore, the computational cost of this ap-
proach should also be investigated from both a theoretical and empirical point of
view. We are currently investigating all these issues and will report their results
in the future. Motivated by our results in this paper, we believe the Iterative-
SOMSO method might be a powerful technique for spatial outlier detection with
multiple attributes.
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Abstract. Optimized design of neural network based on biologic immune 
modulated symbiotic evolution (BIM) is proposed, which combines with the ad-
justment of antibody of immune modulated theory so as to keep the individual 
diversity. With combining evolved intergrowth algorithm and density of im-
mune principle suppress modulation mechanism together, system shortens the 
individual's length of code and lightened the calculating amount by solving the 
evolution of the colony to the neuron part, eliminates the premature conver-
gence effectively. Meanwhile, system adopts the improved immune adjustment 
algorithm, which improved the variety of the colony availably. The neuron that 
produced in the colony in this way can get and realize the network quickly. The 
results of simulation experiment which applies in system of the two stands  
reversing tandem cold mill show that this method is applied to the complicated 
climate, it has good capabilities of convergence and capability of resisting  
disturbance. 

1   Introduction 

Optimization technology is a mathematical basis, used to provide various engineering 
solutions to the problems of optimizing the application technology, in many areas of 
the project's quickly spread and applied [1-3]. In engineering, science, economic man-
agement and many other fields we frequently encountered the complex optimization 
problems. When using dynamic programming, branch-and-bound or some other clas-
sic algorithms to solve such problems, because the algorithm is too complex to be 
applied in engineering. And a number of new optimization algorithms, such as Artifi-
cial Neural Networks, Chaos[4], Genetic Algorithm, Evolutionary Programming, 
Simulated Annealing, Tabu Search and Hybrid Optimization Strategy[5], get rapid 
development through simulating or revealing some natural phenomena or processes, 
supply new ideas and means to solve complex problems. 

Biological immune system is the most complex and the most unique function of 
the organism. There are many advantages to draw on for the development of new 
calculation methods. Immunization is a new algorithm based on the principle of  
immune system, with the multi-peak searching and global optimization capabilities  
to form multimodal functions. Since the late 20th century, Immune algorithm and  
its application has become a new field of research and widespread concerned by 



332 D. Xiaoling, S. Jin, and F. Luo 

Computational Intelligence scholars[6], which is  another hotspot after the neural net-
works and evolutionary computation. As the immune algorithm can maintain the 
diversity of groups adaptively and self-regulatory function, so it has the feature of 
whole and local search capability features, and is effectively applied at optimization. 
Immune algorithm has been present in immune function optimization[7], combinatorial 
optimization, scheduling, network planning[8], neural network optimization and many 
other optimizations which have applied it and  achieved better results.  

It means calculating the evolution of the colony that is solved partly that the inter-
growth evolves it make up the total solution. And it is solved completely that it carries 
on operation to the colony with the traditional evolution algorithm to the colony that 
is solved completely, different from disappearing and solving optimally in the overall 
situation finally [9]. The intergrowth evolves in a kind of separate search way that runs 
side by side. Pay attention to the intergrowth among the individuals and cooperation 
relation further [10], operation is faster in speed. The ones are especially helpful to the 
solution in complicated environment [11, 12]. 

On the basis of combining intergrowth evolving with immune adjustment [13], this 
text proposes Immune Modulated Symbiotic Evolution (BIM) [14, 15], which is used in 
the neural network. BIM adopts the improved immune algorithm, and it can guarantee 
the convergence property of the algorithm further. 

2   Immune Modulated Symbiotic Evolution 

Evolution of the Immune system exists. Through the study we learn the immune sys-
tem produces antibodies to destroy the invading organism antigen. Immune system 
contains a large number of lymphocytes, named B cells and T cells which may play a 
major role in the antibody producing process. When the antigen penetrates into the 
body, the B cells of high antigen affinity combined with the antigen, splitted in the 
effect of T cells, then the B-daughter-cells growed in the mother cells on the basis of 
changes, and the B cells of high antigen affinity survived. This process is called clonal 
selection. Survivals of B-daughter-cells in clonal selection experience the same proc-
ess. After several generations, they produced lots of the B cells, which produced anti-
bodies to eliminate antigen. T cells maintain the proper concentration of antibodies by 
stimulating or inhibiting B cells division. 

Through asexual reproduction the immune system achieved that B cells groups 
evolved to search for the high-affinity B cells which were amplified, and cloned re-
ceptor editing was used for local and global search, bone marrow generates new B 
cells. 

In the literature [6], Zuo Xingquan and others brought forward an immune evolu-
tionary algorithm based on the immune system of the evolutionary mechanism. Algo-
rithm defined choice, expansion, replacement and mutant, four species of operation. 
They introduced the concept of neighborhood, by defining the expanded radius and 
mutation radius two algorithm parameters construct the smaller neighborhood  and the 
larger  neighborhoods, then used these two neighborhoods respectively to give for 
local and global search expansion and  mutation operation, achieved the double-deck 
neighborhood search mechanism from the overall to the local. 
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The procedure of BIM Algorithm is as Fig. 1 shows. The Symbiotic Evolution 
meets one degree of foundations appraised according to neuron behavior of partici-
pated in network as there are [16]. It indicates that the neuron with higher adaptability 
facilitates the form of the optimum network and has better cooperative ability with 
other neurons at the same time. The immune adjustment that keeps on the basis of 
variety, even at the advanced evolving stage, can maintain the variety of the colony 
effectively too. Colony produces in this way at all with neuron whose function shines 
upon through it may form and realize the solution of the specific task. 
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Fig. 1. IMSE arithmetic flow structure 

 
As the individual neuron in the colony is solved partly, we need to choose a neural 

unit C at random from the colony, construct out the corresponding neural network 
(namely total solution). In order to adapt the degrees of value to test among environ-
ment network by this, we will meet degrees of value which form each adaptation of 
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neuron of network at the degrees of variable to participate in to get to add, repeat the 
course of structure of the net and test course, until each neuron has participated in the 
test of a certain number of times, then individual Ni pieces of adaptation of neuron 
one degree of value: 
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Δ
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In the type: △—— the times of neuron participating in constructing the network; 
V（η）——network η Adapt ion one degree of appraising value. 
Neural network’s input node and output node can not be changed which is up to the 

assignment generally, the neuron that the intergrowth evolves in the colony is used in 
building the latent layer of nodes. Each neuron should include all the   definition of 
connections with output and input layers. Take a single latent layer of feed forwards 
network for example, number of connection of each neuron Num defines to be: 

Num = (N+M) ×D                                                     (2) 

In the type: M——number of input layer nodes; N——number of output layer nodes; 
D——connect density, generally the fetching value is [0.8, 1]. Each connection in-
cludes two pieces of threshold, one is label threshold Li, the other is power threshold 
Wi, connecting the chromosome code which forms a neuron with a lot of connections, 
still includes the threshold value of θ neuron in the code, the neuron individual's 
code scheme, as the following shows: 

L1 W1 L2 W2 … LNum WNum θ  

Label threshold Li is 8bits unsigned data, representatives connect to specific nodes 
including input or output Nod. 
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⎨
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ii
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LifML
iNod                            (3) 

i pieces of connections according to grade value of threshold, though  it is confirm,  it 
connects to some input or at the node the outputs to calculate. Power threshold is 16 
bit signed data, generally assigned as [-5, +5] Real number, whose quantized preci-
sion can up to 0.00015 in adjusting power value. All power values of the connection 
initialize random number among [-1,+1]. 

As to the same network, if use the standard hereditary algorithm to get the whole 
neural network code, the number of connections is encoded as Num=( M + 

N)×D× ξ  makes one bunch of codes obviously increase, thus it takes long time to 

search, the calculating amount is heightened, Therefore it's inapplicability to expand 
to the network with more neurons and joining values. And adopting the method of 
individual neuron code, the number of units in it increases, the length of code in-
creases with latent layer, and it is easy to carry on the expansion of scale. 

Regard the neuron individual as an antibody, utilizing the density of the antibody 
to choose, the mechanism realizes the function relation that is promoted and sup-
pressed among antibodies, carries on variety to keep improving and has not  
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disappeared triply, improves the performance that the intergrowth evolves. But if it 
operates improperly, it will bring unfavorable influence to convergence property of 
the algorithm. To solve it, improve the realization of immune adjustment algorithm in 
this text. Narrate it as follows: 

(1) Several concepts 
Information entropy: algorithm for indicating variety of antibody of the colony, 
introduce information concept of entropy. There is an antibody of N (neuron); the 
length of code of each antibody is L. It adopts binary scale have the individual's code 
character collects for {0, 1}, namely character collection of S =2, N piece antibody j 
information entropy Hj (N) of location it defines to be: 

∑
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Among them pij is represent i appear probability at j . Then get average information 
entropy H (N ) of an antibody of N: 
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Degree of kissing among the antibodies: kissing degree between two antibodies u 
and v of A u,v indicates the similar degree of two antibodies, when it defines to be: 
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=υ                                                       (6) 

A u,v the fetching value range of v is (0, 1), A u,v  is used to show two antibodies kiss or 
not similar. That A u,v =1  expresses the two code genes are self-same. 

The density of the antibody: Ci is antibody density of i defined: 
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constants confirmed in advance, generally the fetching value 0.9≤λ ≤1. 

Choose probability: choosing probability to reflect the individual's adaptation de-
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The constants α and β regulate the factor. Type (8) indicates individual meets de-

grees of F(i) heavy to choose probability to be heavy , but individual density Ci heavy 
to choose probability to be little. 

(2) Calculation procedure of improved immune adjustment 

STEP1: Initialize: Produce an initial antibody of N at random; 
STEP2: Appraise to an antibody of N, Calculate the density of the antibody accord-

ing to type (7); 
STEP3: Calculate the individual's choice probability according to type (8), through 

choosing the mechanism to carry on the promotion of the antibody and suppress  
regulating; 

STEP4: Upgrade the colony: Use operator of crossing and make a variation opera-
tor, cross operator adopt simple single some cross methods, the individual mates at 
random and cross according to what has been scheduled probability is operated alter-
nately; it adopts adaptive Cauchy function perturbation making a variation method to 
operate on a variation, this method can survey optimum solution close to the area at 
present effectively, have certainly gotten rid of some extremely excellent abilities, the 
concrete method as follows: 

Through making a variation probability to choose a variation neuron corresponding 
weight increases on power value △x: 

Wi=Wi+△x=Wi+T·tan（π ·R（-0.5，+0.5））                        (9) 

Among the type R（-0.5，+0.5）is a random variable in the same size among the 
area [-0.5，+0.5]. The function of density probability of △x is namely that Cauchy is 
distributed function: 
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In the type: T is an adaptive parameter, defined as: 

avgFF

T
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In type: Fmax——Adaptation degree of the optimum individual in some generation of 
colony; Favg——Average adaptation degree of the colony; T0——regulation constant. 

The closer between Fmax and Favg ,the less difference of adaptation degree among 
the individuals in the colony, easier to fall into some regions which are extremely 
excellent. After adding self-adapting parameter, when group tends disappearing too 
early in the colony, it can change the distribution of Cauchy function, strengthen per-
turbation value, and regions which are extremely excellent can be surveyed out and 
the new cyberspace breaks away from them. 

3   Examples 

Numerical examples from the literature [10]. Done on the basis of the example of the 
one-year period as follows: planning, the final planning stages load lesser load, take 
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the time to use the biggest load 5000h, admission 0.35 tariff assuming currency units 
(Operator cases consistent with the literature [10]).  "Group” of the scale of about 10, 
100, after the end of evolutionary optimization. 

Figure 2 for the same population size, the same evolutionary algebra conditions, 
Genetic algorithms were applied traditional and new examples of the same genetic 
algorithm network optimization repeated 50 times the efficiency and resumption 
Convergence and Stability Results curve. As compared to the same network optimiza-
tion objective function the same. So two groups of genetic algorithm in the same 
plane with the evolutionary scale and algebra under the premise optimization process 
each time for the same cost. 

 

               
 

Fig. 2. Computing efficiency and convergence stability comparing curve 

The MIMO system can be decomposed into several MISO subsystems to identify, 
therefore  it maintains its universality, so we only discuss the identification of MISO 
system in the paper.  

Can be seen from Figure 1, compared with the traditional genetic algorithm, This 
paper introduces a new type of genetic algorithm has good stability and convergence 
of the computational efficiency. Through the optimization have been repeated 50 
times the statistical results are as follows: 

For example a project of the scale of this optimization problem in optimization 
hundred behalf of the group of 10 under set conditions. New genetic algorithms and 
genetic algorithm to find the probability of 0.04 and 0.76 respectively : optimal solu-
tion sub-optimal solution within ± 1%. a 0.98 and 0.12 ± 2% probability to find the 
optimal solution within the scope of sub-optimal solution The probability of finding 
the optimal solution is closer to 0.54 ± 5% range of sub-optimal solutions. 

In addition, due to new genetic algorithms using the "learning paradigm" evolu-
tionary optimization mechanisms, m at the end of the process optimization "para-
digm" can provide a different choice of the optimal solution for the planning staff  
to amend. 
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4   Conclusions 

It has been proved that through the application instance above, on the basis of optimi-
zation neural network design method of BIM, with combining evolved intergrowth 
algorithm and density of immune principle suppress regulation mechanism together, 
system have shortened the individual's length of code and lightened the calculating 
amount by solving the evolution of the colony to the neuron part. Meanwhile, system 
adopted the improved immune adjustment algorithm, which improved the variety of 
the colony effectively. The neuron that produced in the colony in this way can quickly 
get and realize the network, which is controlled by the thick and shape of the board. 
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Abstract. In this paper, an adaptive optimization system is established. In order 
to improve the global ability of basic ant colony algorithm, a novel ant colony 
algorithm which is based on adaptively adjusting pheromone decay parameter 
has been proposed，and it has been proved that for a sufficiently large number 
of iterations, the probability of finding the global best solution tends to 1. The 
simulations for TSP problem show that the improved ant colony algorithm can 
find better routes than basic ant colony algorithm. 

1   Introduction 

Ant colony algorithm is a new heuristic optimization algorithm initially proposed by 
Italian scholar Dorigo M, etc in 1991. It adopts positive feedback theory, speeds up 
evolution course, and it is a parallel algorithm in essence that the individual can coop-
erate with each other and find better routes by exchanging and transmitting informa-
tion continuously. Ant colony algorithm is the hot and front research topic in the field 
of heuristic optimization algorithm both domestic and abroad. Now it has been suc-
cessfully applied in solving TSP problem, frequency distribution problem in commu-
nication, controlling parameter optimization problem and image treatment problem, 
etc. But at present most scholars only put out algorithm method and application 
method with no theoretical analysis of algorithm convergence. Until recent years 
some scholars gave proof of some algorithm convergence. Up to now the most impor-
tant document about convergence proof is [7-10]. Documents [8, 9] give the graph-
based proof of ant colony algorithm convergence based on the theory of describing 
the pheromone strength on the best routes as Markow stochastic process of discrete 
time. Document 10 constructs a branch Ant colony algorithm in accordance with 
stochastic process which proves the algorithm convergence based on the ant quantity, 
route quantity and birth and death rate by the way of stochastic process. This paper 
proposes a novel Ant colony algorithm algorithm which is based on adaptively adjust-
ing pheromone decay parameter and proves its convergence by fully considering the 
effect of the pheromone decay parameter to the algorithm convergence. 

2   Basic ANT COLONY ALGORITHM Summarize 

Ant colony algorithm is initially applied in solving TSP problem. Let’s explain ant col-
ony system by taking TSP problem as example. Suppose: Set c is composed of D 
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cities, m ants, dij (i,j=1,2,…, D) indicating the distance between City i and City j, lij 
(i,j=1,2,…, D) indicating the line between two cities, and τij(t) indicating the remained 
pheromone strength on route between City i and City j on t hour to simulate the actual 
ant secretion. Ant k (k=1, 2, … , m) decides its direction according to the information 
quantity on each route when it moves. And at the same time take notes of the cities 
Ant k has passed in taboo table tabuk(k=1,2,….,n). The set adjusts dynamically in 
accordance with evolution process. The ant counts mode shift probability in searching 
process according to the information quantity and heuristic information on the route. 
Pk

ij indicates the mode shift probability that Ant k shifting from City i to City j on t 
hour, expressed in formula (1). 
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In this formula, allowedk={c-tabuk} indicates the cities the ants are allowed to choose 
in next step. α is information heuristic parameter indicating the relative importance of 
the locus and reflecting the role of the information accumulated in the process of 
moving. The bigger the value becomes, the more possible the ant chooses the route 
other ants have passed and the stronger the cooperation among the ants is. β is the 
expectation heuristic parameter indicating the relative importance of visibility and 
reflecting the valued degree of the heuristic information in the process of choosing 
routes. The bigger the value becomes, the closer the mode shift probability is to the 
greedy rule. ηij (t) is the heuristic function. It is expressed in formula (2). 
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In order to avoid the remained information covering the heuristic information, renew 
the remained information after each ant finished one step or passed all D cities. It is 
expressed in formula (3) and (4). 
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∆τij(t) indicates the pheromone the ants left on the route between City i and City j in 
this cycle. The algorithm depends on the counting model. In the most used Ant-Cycle 
model, i.e., formula (5) 
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Q is the constant indicating the pheromone strength. It affects the convergence speed 
of algorithm to some degree. Lk is the total length of the route the ant passed in this 
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cycle. The parameter α,β,ρ in Basic ant colony algorithm, Q may decide its optimum 
group by experiment. Stopping factors may use fixed evolution algebra or it may stop 
counting when the evolution tendency is not obvious. 

3    The Adoptive ANT COLONY ALGORITHM 

Because of the existence of pheromone decay parameter ρ, if ρ is bigger, the informa-
tion quantity on the unsearched route will reduce to 0 and lower the global searching 
ability of the algorithm. Although reducing the value of ρ will enhance the global 
searching ability of algorithm to some degree, the algorithm convergence speed will 
be lowered. This paper changes the value of ρ by adaptive adjusting according to 
actual situation. First, give ρ an initial value within (0, 1). 

Definition 1 
When the better routes remain unchanged after N (N is a constant) times cycle, the 
better route is doubted to be in partial minimum value.  

When the better route is doubted to be in partial minimum, ρ will adjust adaptively 
by adopting formula (6).  

,

)1),1(
)(

min

min

⎩
⎨
⎧ ≥−⋅−⋅

=
else

tift
t

ρ
ρρξρξ

ρ
（

         

(6) 

In formula (6), ζ(0,1) is decay binding modulus, ρmin is the minimum value of ρ which 
can prevent ρ lowering the convergence speed when ρ is too small. In addition, com-
pared with basic ANT COLONY ALGORITHM, this algorithm renews the phero-
mone globally according to the better solution of iterations instead of the partial re-
newal of pheromone. In this way, the improved algorithm enhances the convergence 
speed.  

Adaptive ant colony algorithm process is as following: 

Step 1: Parameter Initialization. Order time t=0, cycle number NC=0. Set the 
maximum cycle number NCmax, randomly distribute m ants to D cities, place the start-
ing city in taboo table tabuk, set the value of α,β,ρ, τij=τ0, i,j∈R. 

Step 2: NC=NC+1; 
Step 3: Ant individually chooses City i according to the probabilities counted by 

mode shift formula (1) and go forward， }{ ktabuCj −∈  

Step 4: Amend taboo table indicator, i.e. remove the ant in a new city after choos-
ing the city and remove the chosen city in the taboo table of the ant individual.  

Step 5: If the cities in Set c have not been passed through, i.e. k<m, then k=k+1 
and skip to Step3.  

Step 6: After m ants finished one cycle, count the route distance L with formula (7) 
and retain the shortest route Lmin, order the better route in the first cycle as Lg.  
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Step 7: Global renewal of pheromone. Renew the pheromone globally according to 
formula (3),(4) and (8) after the ants passed all cities. If τij (t+1)≤τmin, then order τij 

(t+1)=τmin.  
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Step 8: When the better route is doubted to be in partial minimum value, renew the 
pheromone decay parameter with formula (6). 

Step 9: Compared Lmin with Lg got in this cycle, if Lmin< Lg, order Lg = Lmin and re-
place the better route table.  

Step 10: If the cycle number NC≥NCmax, then the cycle finished and get the better 
route length Lg and better route table. Otherwise clear away taboo table and skip to 
Step 2. 

4    The Convergence Analysis of New Algorithm 

The directions of the principle 1: With regarding to ijτ∀ ，there is always having 
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Proving: Suppose: The optimum route of some on behalf of the ant looking for 
food is S0, aggregation A={ 1ρ , 2ρ , …, kρ  } Among that, 1ρ ≥ 2ρ ≥… kρ ≥ minρ , 

(1) The optimum disambiguation does not appear to be like being caught in mini-
mal value of part in t fall generation. 
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(2) There is k times to be like being caught in minimal value of part time giving a 
disambiguation preferential treatment most in the t among time of iteration, so ,be 
based on formula (6), the value of the ρ needs to be adjusted. We write ρ1 is initial 
value, ρ2, ρ3, …, ρn is adjusted value, The corresponding iteration number of times 
adjusting front is respectively t1,t2,t3,…, tk-1. tk=t,t0=0. 
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Theorem 1: Supposing of the P0 (n) is t time of iteration inner algorithm discovering 
the probability untying S0 giving preferential treatment most first，then with regard-
ing to arbitrarily small 0>ε and big sufficient iteration number of times t, the 

ε−≥1)(0 tP  is right. 

Proving: Because of information amounts ijτ  is restricted between minτ and maxτ , 

In the process that ant structure solves, therefore, the feasibility changing probability 
chooses state as Pmin > 0,what is more, there is 

βαβα

βα

ητητ
ητ

minminmaxmax

minmin
minmin )1( +−

=≥
∧

D
PP . 

The letter of  D expresses the number of cities in the formula. There will be allowed 

probability comes into being of the 0min >≥
∧∧ n

PP  with regarding to S’, in the list, n is 

stand for max. Therefore, tPtP )1(1)(0

∧
−−= .Think that, when t is sufficient big, with 

regarding to arbitrarily small 0>ε ,there is ε−≥1)(0 tP . [the proving is over] 

Theorem 1. gets the probability explaining that the algorithm can be used during the 
period of the t ∞→ ,which giving a solution preferential treatment most. 
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Theorem 2. Set up t * being S0 iteration number of times discover the optimum solu-
tion first, ∀ (i,j)∈ S0, ∀ (k,l)∈ L ∧ (k,l)∉ S0,the there is )()( tt klij ττ > for any t0 

when t>t*++t0,among that, 
1

1
0

1
ρ

ρ−=t . 

Proving: Consider the very worst condition，order *t  replaces the day after tomor-

row w time again and again, there is min
*)( ττ =tij , max)( ττ =tkl , We in case that t * 

is at any time corresponding 
'
1ρ , '* tt +  o'clock carve corresponding 

'
kρ , 

( min
''

2
'
11 ρρρρρ ≥≥≥≥ k… ), Within the [ *t , '* tt + ], the optimum disambiguation seems 

going forward being caught in minimal value of part takes that t0 parts for plain itera-

tion number of times as '
1

'
2

'
1 ,, −kttt ,

 
we write it as ='

kt
'* tt + , In the light of the 

method ,we can prove that  
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'* '

τρττ ⋅−=+ t
kl tt , ijτ ∈S0, Usually, the overall situation re-

news ascending, ijτ  monotonous ascending, the reason why having minττ >ij  to be 

founded according to information. Therefore, if we want to testify 

)()(, ttt klij ττ >∀  is right, we as lonely as testifying 

)()1( *1
1
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1

11
t=−=

ρ
ρ . [the proving is over] 

5    Simulation and Discussion 

In order to test the efficiency of the improved algorithm, we conduct simulation 
study to Oliver 30, Ei150 in TSP problem and get the simulation result after 20 times  
 

Table 1. Calculate Result 

Algorithm Optimum  
solution 

Average 
solution 

Improved ACO 425.29 433.25 

 
Oliver30 

Basic ACO 432.56 440.87 

Improved ACO 428.39 436.54  
Eil51 

Basic ACO 434.85 440.75 
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Fig. 1. Oliver 30 the better route evolution curve 

operation. The simulation results of different parameter α are in Table 1, its evolution 
curve in Fig. 1. 

By Table 1, we could see that the improved ant colony algorithm has advantage 
than Basic ant colony algorithm in finding better routes, figure 1 explain this point 
more clearly. In figure 1, the basic ant colony algorithm will be in partial minimum 
value in about 55 iterations in solving Oliver30 problem and affect finding the better 
routes. The improved ant colony algorithm adaptively adjusts the pheromone decay 
parameter and skips the partial minimum value although its value remains unchanged 
in 36-71 generations. 

6   Conclusions 

The pheromone of the basic ant colony algorithm renews through constant decay 
parameter and this will often cause the algorithm falling in the partial better routes in 
searching process. This paper enhances the algorithm globalization by adaptively 
adjusting pheromone decay parameter and avoids falling into the partial minimum 
value when the ants are searching too concentrated. The theorem in this paper proves 
the ant colony algorithm convergence and points out that this algorithm can find the 
global best solution tends to 1 for a sufficiently large number of iterations. Based on 
the simulation result of TSP problem, the algorithm globalization has been improved 
and the improved algorithm is effective. 
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Abstract. In this paper, we propose a novel 4-layer infrastructure of

wavelet network. It differs from the commonly used 3-layer wavelet net-

works in adaptive selection of wavelet neurons based on the input

information. As a result, it not only alleviates widespread structural re-

dundancy, but can also control the scale of problem solution to a certain

extent. Based on this architecture, we build a new type of wavelet net-

work for function learning. The experimental results demonstrate that

our model is remarkably superior to two well-established 3-layer wavelet

networks in terms of both speed and accuracy. Another comparison

to Huang’s real-time neural network shows that, at similar speed, our

model achieves improvement in generalization performance. abstract
environment.

Keywords: Wavelet network, neural network, sparse infrastructure,

Regression.

1 Introduction

As is well known, neural network that has widely used iterative searching method-
ology in the learning algorithms is marked with the shortcoming of slow conver-
gency speed, particularly in the case of large-scale observations and/or high
accuracy expectation .Hence, the real-time handling capacity is a great chal-
lenge as far as neural network is concerned. Recently,wavelet was introduced
into neural network to take the advantages of both the time-frequency property
of wavelets and the effective learning mechanism of neural networks [2,4]. The
resultant wavelet neural network has become a powerful tool for many applica-
tions. Typically, regarding function learning as a fundamental and vital problem
in many fields, Jun Zhang built an orthogonal wavelet network in order to solve
the redundancy and non-orthogonal problems of basis in Multi-Layer Perceptron
(MLP) and Radial Basis Function (RBF) neural network. It ultimately leads the
learning problem of model to solution to a set of linear equations. Therefore the
iterative searching methodology can be avoided in the construction of model.

However, there still exist at least two problems as far as Jun Zhang’s work
is concerned. Firstly, in [3], Jun Zhang pointed out that the solution of a set
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of linear equations may be computation intensive when the scale of problem
gets larger. For real-time applications, computation load has to be controlled in
solving the linear equations. Secondly, with respect to the whole function, we
can build the orthogonal wavelet network for approximation that does not have
any redundancy, just as [3] has done. Furthermore, aiming at a specific prob-
lem, we can employ certain algorithms for structural adaptation of the wavelet
network in order to eliminate unnecessary wavelons. Due to the sparseness of
large-dimensional training data, more specifically, wavelets whose supports do
not contain any data point can be eliminated in the training process [5]. But
concerning part of the function, the wavelet networks built by the above methods
still have structural redundancy. That is to say, not all the wavelons are needed
to handle part of the function.

Wavelet network model successfully maintains the favorable advantages of the
RBF neural network structure. Therefore most scholars are concentrating on the
algorithm improvement and pushing forward the study of the wavelet network
theory, yet few pay adequate attention to the structural redundancy. For the first
question mentioned above, more and more algorithms for wavelet networks have
been proposed. While for the second question generally existing in all kinds of
wavelet network models, restricted by the present structure of wavelet networks,
such redundancy is unavoidable.

Inspired by the idea of Huang et al [6] about the neuron quantizer for general
neural networks, in this paper, we propose a novel 4-layer wavelet network archi-
tecture for function learning that substantially differs from the previous wavelet
network models adopting the RBF architecture. Based on the input, this novel
architecture can adaptively select a subset of the wavelons by designing a group
of wavelon selectors. Under this architecture, not only the structural redundancy
widely existing in wavelet networks can be avoided as much as possible, but it
can also control the number of wavelons in each calculation with a view of reduc-
ing the scale of the problem solutions. Furthermore, based on this infrastructure,
we build a new wavelet networks and evaluates them with function learning. Per-
formance comparison has been made on its generalization ability and learning
speed with the aforementioned existing models in [2,4].

2 Orthogonal 3-Layer Wavelet Network Infrastructure

2.1 Wavelet Network for Function Learning

The wavelet decomposition of a function f(x) can be expressed as

f(x) =
∑

n

〈f, ϕm0,n〉ϕm0,n(x) +
∑

m≥m0

∑
n

〈f, ψm,n〉ψm,n(x) (1)

where ϕ(·) and ψ(·) denotes the scaling function and the wavelet function re-
spectively; 〈·, ·〉 represents the inner product and m0 is an arbitrary integer
representing the lowest resolution or scale in the decomposition. Given a set of
training data TN = (xi, f(xi))N

i=1, the purpose of function learning is to find
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Fig. 1. The 3-layer wavelet network [5]

an estimate f̂(x) that closely approximates f(x). For this purpose, a 3-layer
wavelet network model according to the wavelet theory can be built, as shown
in Fig.1. The hidden layer contains two kinds of nodes that we call ϕ set and ψ
set both containing countable numbers of nodes. All of these nodes are named
as wavelons in this paper. Lemma 2.1 gives the bias of each ϕ neuron and the
size of ϕ subset. The result is the same with ψ subset.

Lemma 2.1[5]. Without loss of generality, if the support of ϕ(x) is [0,μ] and
that of f(x) is [0,1], for the purpose of making {ϕm0,n = 2

m0
2 ϕ(2m0x − n)}

overlay f(x), the most neurons of ϕ set is (2m0 + μ− 1) and the corresponding
biases are bm0 = {−μ + 1, ..., 2m0 − 1}. m0 represents the lowest resolution or
scale in the decomposition.

As a matter of fact, the problem solution can be converted to solution of
a set of linear equations which has been discussed in [3]. When k is large, a
direct solution to (1), which involves the inversion of a large matrix, may be
computation intensive.

2.2 Shortcoming of 3-Layer Wavelet Network

As discussed above and Lemma 2.1, in the practical implementation of the
wavelet network, the number of hidden layer nodes is determined by integers
m0,m1, as well as the supports of both function f and scaling function ϕ(·)(or
wavelet function ψ(·)). For example, suppose the interval [0, α] is the support of
the function f and the support of scaling function is [0,μ], then the
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number of hidden nodes is (2m0α + μ − 1) and the corresponding biases are
bm0 = {−μ + 1, ..., 2m0α − 1}. However, for the part of the function f whose
interval is [c, d],(c > 0, d < α), the wavelet network only need the hidden nodes
whose corresponding biases are b

′
m0

= {2m0c−μ+1, ..., 2m0d− 1}. So, the num-
ber of hidden nodes is (2m0d− 1) − (2m0c− μ + 1) + 1. In other words, it does
not entail so many hidden nodes as far as part of the function is concerned.

Without loss of generality, for d dimensional function f and distinct samples
TN = (xi, f(xi))N

i=1, where xi = [xi1, xi2, ..., xid]T ∈ Rd and f(xi) ∈ R, we
suppose the support of f is [0, α]d. As far as j-th dimension is concerned, the
sample set can be divided into L group as follows.

V q
j = {xij | (q − 1) · α

L
< xij <

q · α
L

},
1 ≤ q ≤ L, 1 ≤ j ≤ d, q, j ∈ Z (2)

and L can be set as any positive integer. Furthermore, regarding all the dimen-
sions, we can divide the sample set into Ld groups as follows.

GroupV p = {xi | (qj − 1) · α
L

< xij <
qj · α
L

, 1 ≤ j ≤ d,

j ∈ Z}, 1 ≤ p ≤ Ld, p =
d∑

j=1

(qj − 1) · L(j−1) + 1 (3)

We define a partition of function and its sub-functions as follows.

Definition 1: In view of d dimensional function f , a partition of function f
is given by f = f1 ⊕ f2 ⊕ ... ⊕ fLd , where fi represent the i-th sub-function of
f according to the supports being continuously and equally divided in all the
dimensions.

Remark: According to the above discussion, we know that the data belonging
to GroupV p are sampled from sub-function fp.

Therefore, if a model can adaptively select the necessary hidden nodes to ap-
proximate the sub-function according to the input information, then the redun-
dant wavelons for the sub-function can be eliminated accordingly. In the following
section, we will introduce a novel wavelet network architecture for this purpose.

3 Proposed 4-Layer Wavelet Network Infrastructure

Assuming x as a d dimensional input, we construct the novel 4-layer wavelet
network with two hidden layers and d additional wavelon selection units in the
first hidden layer. As shown in Fig.3, each selection unit consists of two neurons
named A-type neuron and B-type neuron. The neurons in the j-th selection
unit are denoted by Aj and Bj . Regarding an arbitrary input x ∈ [0, 1], wavelon
selection unit plays the role of correctly choosing one of the Ld outputs of the
second hidden layer as the final output. Such functionality is realized through
choosing the weights and biases of the wavelet selection units as follows.
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Fig. 2. Four layer architecture of wavelet network

1) The biases bq
Aj

and bq
Bj

of the two neurons in the j-th wavelon selection unit
for the p-th neuron in the second hidden layer, where 1 ≤ p ≤ Ld, j = 1, ..., d.,
is designed as follows. ⎧⎪⎨⎪⎩

bq
Aj

= −Tj(
q · α
L

)

bq
Bj

= Tj(
(q − 1) · α

L
)

(4)

where q =

⎧⎪⎪⎨⎪⎪⎩
p mod Ld−j+1 − p mod Ld−j

Ld−j
j = d

p mod Ld−j+1 − p mod Ld−j

Ld−j
+ 1 j �= d

1 ≤ j ≤ d 1 ≤

q ≤ L.
2) Denote ωAj and ωBj as the weights that link the j-th neuron in the input
layer to the j-th wavelon selection unit. Suppose ωAj = −ωBj = Tj,1 ≤ j ≤ d.
Lemma 3.1 and Theorem 3.1 can be given as follows.

Lemma 3.1: Given arbitrarily small positive value η < 0.5, there exists a con-
stant set

Tset = {T const
j |T const

j =
ln(1−η

η )

min1≤i≤N
1≤q≤L

(xij − q·α
L )

, 1 ≤ j ≤ d}.

When Tj ≥ T const
j , for ∀xij ∈ V k

j , k = 1, ..., L, the corresponding output
OutputAq

j
of neuron Aj for the p-th neuron of the second hidden layer satisfies

OutputAq
j
(xij) =

{
≤ η, if q ≤ k

≥ 1 − η, if q < k
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Theorem 3.1[1]: Give arbitrarily small positive value η < 0.5, there exists a set
Tset

T set = {T const
j |T const

j =
ln(1−η

η )

min1≤i≤n
1≤q≤L

(
∣∣xi,j − q·α

L

∣∣) , 1 ≤ j ≤ d}

when Tj ≥ T const
j ,1 ≤ j ≤ d,for ∀xi ∈ GroupV p, p = 1, ..., Ld, the corresponding

Outputp
(A

j
+B

j
)
(xi), satisfies

Outputp
(A

j
+B

j
)
(xi) =

⎧⎨⎩
≤ 2η, xij ∈ V q

j

≥ 1 − 2η, xij /∈ V q
j

(5)

According to Theorem 3.1, ∀xi ∈ GroupV q,q = 1, ..., Ld, we can get η → 0,
thus making the inputs of the q − th neuron in the second hidden layer, which
come from the all of the wavelon selectors next to zero and the other neurons
in the second hidden layer at least have one input that come from the wavelon
selectors next to one.According to the orthogonality of wavelet, with respect to
each neuron in the second hidden layer, the weights linking it to wavelons from
different sub sets of ϕ set and ψ set can be determinated independently and suc-
cessively through a transformation to the solution of a set of linear equations.
The major advantage of this novel architecture is that the scale of each set of
linear equations can be well controlled through function partition. On one hand,
it reduces the structural redundancy as much as possibly to improve the gen-
eralization performance. On the other hand, the aim of controlling the model’s
computation load is achievable.

4 Experimental Results

In this section, a four-layer wavelet network (FWN) is constructed based on the
novel architecture.To construct the model, we can divide the data set into two
subsets, including training set TraSetN = (ti, f(ti))N

i=1 and test set TesSetM =
(ti, f(ti))M

i=1. In order to evaluate the proposed architecture of wavelet networks
for function learning, two examples shown in Fig.3 were given to demonstrate
the validity of the presented FWN. All simulations of FWN were run in matlab
6.5 environment on an ordinary PC with Pentium 1.7 GHZ processor and 256MB
memory. The measure used in [3] was taken as the performance index.

Error =

√√√√ n∑
i=1

[f̂(ti) − f(ti)]2/
n∑

i=1

[f̄ − f(ti)]2 (6)

where f̄ = 1
n

n∑
i=1

f(ti), and n is the number of sampled data. In Table 1, we

compare the performance of our FWN model with the existing well established
work in [2] [4] on the learning speed and generalization ability with the mea-
sure defined in (6). Obviously, both the two performance indexes of our model
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Fig. 3. Function 1 and Function 2 as examples

are remarkably superior to the previous works. Although the number of nodes
has been increased, the weights and bias of most nodes can be determined at
first. Because the learning algorithms of our models are not gradient-based, the
approximation can be performed in a single “epoch”.

Table 1. Performance comparison

Function Model Hid-Nodes Epochs Test-Err Times(s)

Zhang[2] 7 10000 0.0506 1100

Pati[4] 31 800 0.0240 101.7

Function 1 BP 7 10000 0.1329 1150

FLWN 34 1 0.0024 0.172

Zhang[2] 49 40000 0.0339 21300

Pati[4] 187 500 0.0230 500

Function 2 BP 225 40000 0.2938 95640

FLWN 217 1 0.0085 3.2180

5 Conclusion

In this paper, we proposed a novel 4-layer architecture of wavelet network.
Through designing a group of wavelon selection units, it adaptively selects the
necessary wavelons based on the input information. The infrastructure can over-
come the structural redundancy often met in conventional 3-layer architecture
and bring the computation load into the effective control. Hence, it not only
effectively improves the generalization performance of the model but also has
faster learning capacity than the 3-layer architecture. Based on the experiment
results for function learning, compared with the existing wavelet networks, the
learning speed and the generalization performance of the new wavelet network
models have been greatly improved.
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Abstract. As the data bases grow bigger, the data mining becomes

more and more important. In order to explore and understand the data,

the help of computers and data mining methods, like clustering, is a ne-

cessity. This paper introduces some information theory based distances

and how they can be used for clustering. More precisely, we want to clas-

sify a finite set of discrete random variables. This classification has to be

based on the correlation between these random variables. In the design

of a clustering system, the choice of the notion of distance is crucial,

some information distances and classification methods are provided. We

also show that in order to have distances over clusters, the variables that

are functions of other variables have to be removed from the starting set.

The last part gives some applications run on Matlab.

Keywords: Information distance, Hierarchical classification, Markov

chain.

1 Introduction

A clustering algorithm classifies a set of elements into subsets (called clusters). In
this paper, we suppose that our elements are discrete random variables (defini-
tion and more information in [1]): this is very practical because nearly everything
can be represented by a random variable. The elements that will be set in a same
cluster during the classification have to be similar in some sense. This sense is
defined by a specific measure (or distance) that has to be chosen before the clas-
sification. We are trying to find which random variables work with which other
ones, such that, in the final classification, as much as possible, the correlated
variables should be classified in the same clusters, and the independent ones
should not be together. For that we need a distance that measure the inverse
of correlation between the random variables. A high correlation degree will have
a small measure, and the more independent the variables are, the greater the
distance should be.

Classification of random variables based on correlation has already be treated
by scientists. The most usual methods use linear correlation based distances
for the classification, like in [2] and [3], but it has been shown in [4] that the
mutual information can also be used and seems better. Closer to what we are
going to study in these papers: [5] and [6] work on the same problem, they
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use information distances for clustering of random variables. This paper tries to
continue this work.

If two random variables have a bijection between them, then they are com-
pletely correlated: they express twice the same information. In information the-
ory, this two variables are considered to be equivalent, we say that they are
equal.

Definition 1. Let X and Y be two random variables. We say that X is equal
to Y (X ∼ Y ) if:

∃ a bijection f such that f(X) = Y .

Notation: Because of this definition, we will use X[1,n] to express the random
vector: (X1, . . . , Xn), where [1, n] = {1, . . . , n}. It may seem strange because
for a random vector the order of the coordinates is important and in this new
notation X[1,n] there is no such an order. But, after noticing that for a random
vector and any other random vector that is a permutation of the coordinates
of the first random vector, these two random vectors are equal (a permutation
of the coordinate is a bijection). Then, with this new equality, the order of the
coordinates is not important. We extend this notation to any subset G of [1, n],
XG represents the random vector:(Xi)i∈G.

This paper, first, focuses on information theory: entropy and mutual informa-
tion. In the thrid part, some information theory based distances over random
variables are studied. With these tools, the fourth part continues with cluster-
ing: how to extend these distances over clusters and how to achieve classification.
This paper ends with some tests run on Matlab.

2 Information Theory: Entropy and Mutual Information

The theory of information has first be introduced by Shannon [7], and it has
today a lot of applications. It gives to scientists a set of tools that help to
measure the quantity of information in the outcome of a random experiment,
or passing through a channel. It can also, as we will see with more details later,
help to measure the degree of association between two or more events. This part
reminds basic definitions of some information theory tools such as the entropy
and the mutual information. Let χ (resp. Ψ,Ξ) be the alphabet of the random
variable X (resp. Y, Z).The entropy of the random variable X is a real value
that represents how much unknown there is in one outcome of X :

H(X) = −
∑
i∈χ

pi log(pi). (1)

If we have two or more variables, we can study the entropy the union of these
variables. For example, with three variables, we have:

H(X,Y, Z) = −
∑

(i,j,k)∈(χ×Ψ×Ξ)

pi,j,k log(pi,j,k). (2)
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The conditional entropy is a real value that represents how much unknown re-
mains in X if we already know Y , it is defined as:

H(X | Y ) = −
∑

(i,j)∈(χ×Ψ)

pi,j log(pi|j). (3)

The mutual information is an interesting object, because, first it measures the
association between two random variables, second, unlike the linear correlation,
it takes in account all the possible kinds of correlation between the random
variables. The weak point of the mutual information is the estimation: if the
number of data is small, it is difficult to estimate precisely the information theory
functions. This fact is well developed in [8] or [9]. The mutual information is a
real value that represents how much information on Y we can get if we know X
(and vice-versa), or how much information is shared by X and Y .

I(X ;Y ) = H(X,Y ) −H(X | Y ) −H(Y | X), (4)
I(X ;Y ) = H(X) + H(Y )−H(X,Y ). (5)

From that, we can see that the mutual information can be the base of the creation
of a good functions that measure the degree of association between two variables.
For more information about these previous information theory definitions, please
refer to [10] or [11].

3 Distances Based on Information Theory

One of the most important features in the design of an unsupervised classification
algorithm is the choice of the notion of distance. This choice defines the notion
of closeness for the studied elements, it is important to understand that different
choices for this notion can lead to completely different classifications. This section
introduces information theory based functions that measure the inverse of the
correlation: Subsection 3.1 deals with normal distances and Subsection 3.2 gives
normalized distances. Although nearly any function can be chosen to define a
notion of distance, usually it is better to use a distance function that has a
precise definition in Mathematics:

Definition 2. d : E × E →  is a distance over E if:

– d is positive: d(x, y) ≥ 0 with equality if and only if x = y
– d is symmetric: d(x, y) = d(y, x)
– d verifies the triangular inequality: d(x, y) ≤ d(x, z) + d(z, y)

3.1 Distances

In this part, we will define two information theory based distances over the
random variables.

D1(X,Y ) = H(X,Y )− I(X ;Y ) = H(X | Y ) + H(Y | X), (6)
D2(X,Y ) = max(H(X), H(Y )) − I(X ;Y ) = max(H(X | Y ), H(Y | X)). (7)
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It is easy to see that these two functions measure the inverse of the correlation
between X and Y. If we take two random variables X and Y, the more information
they share, the less the distance between them is. When these two variables are
equal: complete correlation, the distance is zero. The measurements D1 and D2
are mentioned in [10] and [12], the following paragraphs show that they are
distances.

Property 1. D1 and D2 both are distances over the random variables.

Proof. For both D1 and D2 the positivity and the symmetry are quite obvious.
For the triangular inequality, with D1:

D1(X,Y ) = H(X | Y ) + H(Y | X) ≤ H(X,Z | Y ) + H(Y, Z | X)
= H(Z | Y ) + H(X | Y, Z) + H(Z | X) + H(X | Y, Z)
≤ H(Z | Y ) + H(X | Z) + H(Z | X) + H(X | Z)
= D1(X,Z) + D1(Z, Y ).

So D1 verifies the triangular inequality. For D2, we need to proceed with a
disjunction of cases on the values of the entropy of X,Y, Z.

– If H(X) ≥ H(Y ) ≥ H(Z):

D2(X,Y ) = H(X | Y ) = I(X ;Z | Y ) + H(X | Y, Z)
≤ H(Z | Y ) + H(X | Z) ≤ H(Y | Z) + H(X | Z)
= D2(X,Z) + D2(Z, Y ).

– If H(X) ≥ H(Z) ≥ H(Y ):

D2(X,Y ) = H(X | Y ) = I(X ;Z | Y ) + H(X | Y, Z)
≤ H(Z | Y ) + H(X | Z) = D2(X,Z) + D2(Z, Y ).

– If H(Z) ≥ H(X) ≥ H(Y ):

D2(X,Y ) = H(X | Y ) ≤ H(Z | Y )
≤ H(Z | Y ) + H(Z | X) = D2(X,Z) + D2(Z, Y ).

– The cases where H(Y ) > H(X) are symmetric.

So D2 verifies the triangular inequality. #$

3.2 Normalized Distances

To compare different distances or to compare the distance between two unions of
variables that do not have the same size, it could seem normal to use normalized
distances. This is the normalized forms of D1 and D2

d1(X,Y ) = 1 − I(X ;Y )
H(X,Y )

, (8)

d2(X,Y ) = 1 − I(X ;Y )
max(H(X), H(Y ))

. (9)
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Property 2. d1 and d2 both are normalized distances over the random variables.

Proof. The paper [6] provides a good demonstration. #$
So we have seen four possible information theory based distances over random
variables (for more properties about information measure, refer to [12]). And as
an union of random variables is still a random variable, we can also compute the
distances between unions of random variables. But, in practice for clustering,
it is better to use distances over clusters: we will see that even if clusters and
unions of random variables both deal with groups of random variables, still they
are a bit different.

4 Classification Using Information Distances

This part explains how unsupervised classification can be achieved using the in-
formation theory distances of the previous section. The random variables of the
starting set have to be regrouped using an information distance. The strongly
correlated variables should be classified in the same clusters, and the independent
ones should not be together. Subsection 4.1 explains the extension of the infor-
mation distances to clusters. In Subsection 4.2, we develop some classification
methods.

4.1 Equality and Distances for Clusters

The information theory based distances that we have seen so far are distances
over random variables or random vectors. But in fact, for classification, we need
distances over clusters. To understand the difference between clusters and
unions of random variables is important. Although both express the idea
of a group of random variables: set of random variables and union of random
variables, the difference still exists. This difference comes from their different
definition of equality. Two clusters are equal if and only if they are constituted
with exactly the same elements. Two unions of random variables are equal if and
only if there is a bijection between them.

Definition 3. In classification of the variables X1, . . . , Xn, we say that two clus-
ters are equal if they are composed of the same variables. ∀G1 ×G2 ⊆ [1, n]2:

{Xi | i ∈ G1} := {Xi | i ∈ G2} ⇔ G1 = G2. (10)

For example, if X,Y, Z are three random variables such that X ∼ Y then the two
unions of random variables satisfy: (X,Z) ∼ (Y, Z). But the clusters {X,Z} and
{Y, Z} are not the same. Then, with all the information distances that have been
studied in the previous section, the distance between these two clusters {X,Z}
and {Y, Z} is zero, because the random variables are equal, but these clusters
are different: impossible. Thus, the information distances of the previous section
are not distances over the clusters. But if the random variables satisfy a simple
hypothesis, we can continue to use these information distances with clusters.
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Lemma 1. For the random variables: X1, . . . , Xn such that

∀k ∈ [1, n], H(Xk | X[1,n]\{k}) �= 0, (11)

we have

∀G1 ×G2 ⊆ [1, n]2, {Xi | i ∈ G1} = {Xi | i ∈ G2} ⇔ XG1 ∼ XG2 . (12)

That is to say: clusters’ equality ⇔ random variables’ equality. Secondly, the
reciprocal is also true: the equivalence (12) implies the condition (11).

Proof. For the first part of the lemma, let’s suppose that ∀k ∈ [1, n], H(Xk |
X[1,n]\{k}) �= 0. As we know that in any case:

< 1 > clusters’ equality ⇒ random variables’ equality.

And if G1 �= G2 such that G1 is not included in G2, let k ∈ G1 \ G2 then
H(Xk | X[1,n]\{k}) �= 0 and H(XG1 | XG2) > 0. So XG1 is not equal to XG2 . We
have just showed:

< 2 > no clusters’ equality ⇒ no random variables’ equality.

With < 1 > and < 2 > we have the equivalence in (12). For the second part of the
lemma, we assume that: ∃k ∈ [1, n], H(Xk | X[1,n]\{k}) = 0. Let G1 = [1, n]\ {k}
and G2 = [1, n] then XG1 ∼ XG2 but {Xi | i ∈ G1} �= {Xi | i ∈ G2}. So, in this
case, the equivalence in (12) is not true. Thus (12) implies (11). #$

Therefore, a necessary and sufficient condition for the equivalence of the clusters’
equality and the random variables’ equality is no variable is a function of the
other variables. The interest is that we can have distances over clusters under
the condition (11).

Theorem 1. Under the hypothesis (11) of Lemma 1, D1, D2, d1, d2 are distances
over the clusters of {X1, . . . , Xn}

Proof. In fact, with clusters, everything goes in the same way as with unions of
variables, the only problem was the first property of the distances. Without the
supposition of Lemma 1, we can have two different clusters with a distance be-
tween them equal to zero. But if we use the hypothesis of Lemma 1, we know that
this can not happen anymore. So D1, D2, d1, d2 are distances over clusters. #$

That means that each variable has to add a bit of randomness or information to
the system. This theorem suggests that, before classification, the variables that
are function of the others have to be removed from the starting set. Then, we
can do the clustering. The classification is done on the causes of the system, it is
no use to classify the other variables, because they do not add any meaning to
the system. And if we do the classification with these variables, it is like taking
twice in account the same information: it risks to unbalance the classification.
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4.2 Hierarchical Classification Algorithm

Once a notion of distance is fixed, there still a choice to make: the algorithm that
will use the distance to separate data into clusters. The hierarchical classification
algorithm works in this way:

– Each element of the starting set begins in its own cluster.
– Construct the distance matrix of the clusters (all the cluster to cluster dis-

tances).
– Find two clusters such that their distance is the minimum of the distance

matrix (if the minimum is achieved by more than one choices, just select
one).

– Merge these two clusters into a new cluster.
– Update the distance matrix.
– While the number of clusters is greater than 1, go back to the third step.

The outcome of this algorithm is a binary tree: its leafs are all the elements of
the starting set, and each other node corresponds to the merging of two clusters.
Then, any horizontal cut of this tree gives a classification of the variables. For
more details about Hierarchical Classification, refer to [5] or [13]. This is an
empirical algorithm, so in some cases, this algorithm will not produce the best
solution, it will just produce a good solution.

5 Application

Subsection 5.1 explains the studied system. Then, in Subsection 5.2, we compare
two hierarchical algorithms that use the same distance, the difference is that one
accepts the hypothesis of Lemma 1 and the other does not.

5.1 The Data

This part shows how the classification works in practice. For convenient reasons,
we use simulated data. This is the study of a quite complex system that contains
ten binary random variables, the system is known. The idea is not really to
study this system but it is to compare the classification methods applied on it.
Fig. 1 shows how this system is constructed and what the relations between
the different variables are. The system has some entries, they are all binary,
independent and uniformly distributed random variables (thick arrows on the
graph), they are generated by Matlab. For example, the variables X1 and X2
are equal to two of these entries. Then, combinations of these entries give the
other variables of the system: X3 = X1 xor X2. The variables X4, X5 and X6
are constructed together, they are all the combination (and operation) of a
multiple entry (the triple arrow in the center) and another entry. We also see
that the variable X7 is a function of X3, X4, X5, X6, this function is defined by
this equation: X7 = X3∧ (X4∨ (X5 xor X6)). In the end, we can notice that the
last variables X7, X8, X9, X10 form a Markov Chain (X7 → X8 → X9 → X10).
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Fig. 1. Diagram of the studied system

At first sight, this diagram shows that the system seems to be divisible in
three part:

{X1, X2, X3}, {X4, X5, X6}, {X7, X8, X9, X10}. (13)

We can hope that the classifications will show this repartition.

5.2 Hierarchical Classification

This part compares the results of two different hierarchical classifications, both
these classifications use the normalized distance d1, the difference relies on the
acceptation or non-acceptation of the hypothesis of Lemma 1. This hypothesis
is that no variable should be a function of the other variables.

The first classification does not satisfy this hypothesis, it takes the ten variables,
builds the distance matrix using d1 and proceeds to classification following the
hierarchical algorithm that was presented in Section 4.2. This is the method that
was given in [5] and [6]. The binary tree of the classification is given in Fig. 2.

This classification is not bad, the variables X1 and X2 are both pairwise
independent with the other variables, they are merged the last with the other

Fig. 2. The first hierarchical classification with all the variables
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Fig. 3. The second hierarchical classification with hypothesis of Lemma 1

variables. And if we just look at the Markov Chain: variables X7 to X10, the
classification follows the order of the chain. The problem is that the division of
the system in subsystems is not clear (compare with (13)).

The second classification takes in account the hypothesis of Lemma 1. We
quickly find out that X7 is a function of X3, X4, X5, X6 and so has to be removed,
so does X3 which is a function of X1, X2. Another classification is made using
the same distance d1 but only with the remaining variables. This time, we obtain
Fig. 3.

This classification has the same properties as the previous one, but it has a
good advantage: at the first sight, this tree shows the separation of the system
in three parts. As X3 is a function of X1, X2, we put them together, then the
tree shows that X4, X5, X6 work together, so do X8, X9, X10. The role of X7 can
then be seen as a kind of link between these three groups: X7 is a function of the
first two groups, and but it is also correlated to the last group. So from the point
of view of the meaning (see (13)), the classification that accepts the hypothesis
of Lemma 1 is better than the other. It is also better in computation time.

6 Conclusion

To conclude, four information distances over the random variables have been
provided. Then, this paper proves, in Theorem 1, that it is possible to extend
this distances to clusters with the hypothesis of Lemma 1. We also have explained
some classification methods. Finally, some practical applications has been run
on Matlab, they explain and compare different classification methods. And they
show, in practice, the advantage of the hypothesis of Lemma 1.

But there is still a lot to do. First, we can improve the algorithm: find other
classification algorithms and compare them to the hierarchical classification.
Second, if we want to use the information theory based classification methods
with real data, we need to improve the functions that estimate the information
theory distances.
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Abstract. One of the basic ideas of present transfer learning algorithms is to find
a common underlying representation among multiple related tasks as a bridge of
transferring knowledge. Different with most transfer learning algorithms which
are designed to solve classification problems, a new algorithm is proposed in
this paper to solve multiple regression tasks. First, based on ”self-consistency” of
principal curves, this algorithm utilizes non-parametric approach to find the prin-
cipal curve passing through data sets of all tasks. We treat this curve as common-
across-tasks representation. Second, the importance of every sample in target task
is determined by computing the deviation from the principal curve and finally
the weighted support vector regression is used to obtain a regression model. We
simulate multiple related regression tasks using noisy Sinc data sets with various
intensities and report experiments which demonstrate that the proposed algorithm
can draw the useful information of multiple tasks and dramatically improve the
performance relative to learning target task independently. Furthermore, we re-
place principal curve with support vector regression with model selection to find
common representation and show the comparative results of these two algorithms.

Keywords: Transfer learning, Support vector machine, Principal curve.

1 Introduction

Traditional machine learning algorithms are constructed under the assumption that the
training and test data have same distribution and feature sets. But in practical engineer-
ing, this fundamental assumption is often violated. In recent years, transfer learning
has been studied to solve this problem. The goal of transfer learning is to improve
learning performance in target domain by reusing knowledge learnt in some related
source domain, which has demonstrated impressive performance in the fields of text
recognition[1] and sensor network[2], etc.

According to [3], there are two main approaches to transfer learning in the past. One
is referred to as instance-transfer ,in which training instances in source domain are re-
weighted in the light of the similarity to the target domain. For example, Dai[4] aimed
at solving the learning problem with a small number of target-domain data and a lot
of source-domain data. The author utilized AdaBoost as basic learning tool to find the
useful data in source-domain by iteratively adjusting their weights. Shi[5]firstly con-
structed a classifier trained only in target domain to measure the similarity of source
instance to target instances and then set higher weights on similar instances in k-NN.
The other is feature-representation-transfer , in which the common methods are to find

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 365–372, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



366 W. Mao et al.

a low-dimensional representation across multiple domains. As a representational work,
Argyrious[6] adopted 1-norm regularization to control the number of common features
and transformed it to a convex optimization using trace-norm regularization. Finally the
common-across-tasks representation was found. Pan[7] learned a low-dimensional la-
tent feature space by which the useful knowledge of source domain can be transferred to
target domain. The key part of this algorithm is to find the same or close distributions be-
tween source and target domains. It is worth noting that most of present transfer learning
algorithms aim at solving classification problems, while only few of literatures[6,7] con-
sidered regression problem. Inspired by [6,7,5], we combine the characteristics of these
two kinds of approaches and present a simple but efficient transfer learning algorithm.
It has a plain interpretation: it performs a non-parametric analysis and a supervised step
in order, where in the former step we learn common-across-tasks representations via
principal curve, which keeps in step with feature-representation-transfer, and in the
latter step we learn task-specific functions using weighted support vector regression,
which approximates instance-transfer. We choose non-parametric rather than paramet-
ric analysis to seek internal structure of multiple related tasks because there often is
little priori knowledge about data distribution and causative connection between tasks.
As a rule of thumb, we should explore the best way to describe the regular pattern of
data directly from data itself, without any pre-defined parameters. This paper is orga-
nized as follows. In Section 2, we provide a brief review to principal curve. In Section
3, the idea and design of transfer learning algorithm based on principal curve are elab-
orated in detail. Experimental results on simulated Sinc data sets are then presented in
Section 4, followed by a conclusion of the paper in last section.

2 Theory of Principal Curve and K Curve

In 1983, Hastie[8] firstly introduced the theory of principal curve. Afterwards, this the-
ory were successfully applied to solve practical problems, like data visualisation[9] and
ecology analysis[10], etc. Principal curve is the extension of principal component analy-
sis and its basic idea is to find a continuous one-dimensional manifold that approximate
the data in the sense of ”self-consistency”, i.e. the curve should coincide at each posi-
tion with the expected value of the data projecting to that position[8]. Intuitively, this
curve passes through the ”middle” of a high-dimensional data set. The difference be-
tween principal curve and regression is that a non-parametric method is used to explore
the trajectory in data set, without any assumption about causal relationships among
instances[11]. Hastie argued that principal curve can truly reflect the shape of data set,
i.e. the curve is skeleton and the data set is cloud[8].

In this paper, we choose K curve for its good practicability. Kégl[12] proved that
for any data set with finite second moments there always exists a principal curve. The
definition of K curve is listed as follows.

Definition 1 (K principal curve[13]). For a data set X = {x1, x2, · · · , xn} ⊂ R
d, a

curve f∗ is called a K principal curve of length L for X if f∗ minimizes ((f) over all
curves of length less than or equal to L, where f is a continuous function f : I → R

d,
((f) is the expected squared distance between X and f and defined as:
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((f) = E[((X, f)] = E[infλ ‖X − f(λ)‖2] = E[‖X − f(λf (X))‖2]
where λf (x) = sup {λ : ‖X − f(λ)‖ = infτ ‖x− f(τ)‖} is called projection index.

The goal of K curve is to find a set of polygonal lines with K segments and with a given
length to approximate the principal curve. The algorithm is based on a common model
about complexity in statistical learning theory[12]. The framework of this algorithm
can be summarized as follows. At the beginning, f1,n is initialized by the first principal
component line and in each iteration step, a new vertex is added on fi−1,n which is
obtained in i−1 step, to increase the number of segments. According to the principle of
minimizing the projection distance, the position of vertexes are optimized to construct
a new curve fi,n. Kégl[12] gave a detailed description of this algorithm.

3 Transfer Learning Based on Principal Curve

If we treat the data of multiple related tasks as features of a data set, then as suggested
by [6], the important point becomes how to find the bridge of transferring knowledge,
i.e. the common low-dimensional representations. For regression problems, this prob-
lem equals to find the low-dimensional skeleton of data clouds of multiple tasks, which
is in complete agreement with ”self-consistency” of principal curve in the sense of 1-
dimensional manifold. Moreover, we usually lack enough priori knowledge about the
internal pattern of tasks’ data. So the better choice is choosing non-parametric method
to analyze multiple regression tasks. However, there are differences between the method
of using principal curve to find across-tasks representations and the approaches pro-
posed in [6,7]. Comparatively speaking, the former focuses on depicting the shape of
data set, for example, principal curve is in 1-dimensional space and principal surface
is in low-dimensional space which are not suited for direct modeling, while the latter
is inclined to reconstruct target data by means of the latent low-dimensional space, and
then model the target task using present learning algorithms. Therefore, it needs to con-
sider how to transfer the knowledge represented by principal curve. The strategy we
choose is assigning different weights on samples in learning algorithm in the light of
the deviation from principal curve, which is inspired by [13]. The values of weights
are relevant to the degree of deviation. We adopt weighted solution path algorithm of
support vector regression proposed in [14] as learning algorithm.

We firstly analyze the rationality of using principal curve to represent the common
part of multiple tasks. Qi[13] gave the following theorem:

Theorem 1. Let D ⊆ R
d be a sample space and W is a set of parameters. Let T ⊆ D,

X = {x1, x2, · · · , xd} ∈ T , w ∈ W . λf (X) is defined in Definition 1. If f(λ) is a
principal curve and let w = λf (X), it holds that:∑d

j=1 V ar(xj) = E‖X − f(λf (X))‖2 +
∑d

j=1 V ar(fj(λf (X))

The proving procedure of Theorem 1 was given in detail in [13].
In the case of multiple related tasks, T is the assembly of all tasks’ data. Then The-

orem 1 means the data of every task is sum of two parts where the first one is estimate
variance caused by principal curve which passes through the middle of T , and the other
is the residual variance in the sense of the expected squared distance from a sample in
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target task to its projection position on the curve. It indicates principal curve can repre-
sent the across-tasks knowledge of multiple related tasks.

The details of transfer learning algorithm based on principal curve are described as
follows.

Algorithm1:
Input: source data sets S = {(xti, yti)}m

i=1,t ∈ {1, · · · , T }(T is the number of source
tasks), target training set {(xi, yi)}p

i=1 and test set {(xi, yi)}q
i=1

Parameters: regularization parameter λ, Gaussian kernel width σ
Output: regression output Y = (y1, · · · , ym)
Initialization: set f is the first principal component line of S
Use the algorithm in [12] to compute f as the K-principal curve of S
Use a cubic spline to interpolate f and obtain a new curve f∗

for i = 1, · · · , p
compute distancei = ‖xi−f∗(λf (xi))‖

‖xi‖
end for
Arrange all samples in descending sequence of distancei,i = 1, 2, · · · , p
Utilize the weighted solution path algorithm of support vector regression[14] to model
the training set. Exponential weight function which is introduced in [15] is chosen to
produce the weights and described as follows:

w(i) = 1
1+exp(a−2ai/l) where a is the parameter to control the ascending rate.

Finally predict test set.
End Algorithm 1.

4 Experimental Results

In order to test the effectiveness of Algorithm 1, we choose noisy Sinc data set as
regression task to model. First, the data sets {(xi, yi)} of 10 tasks are generated with
xi drawn uniformly from [−3,+3] and yi = sin(xi)/(xi) + ei, where ei is a Gaussian
noise term with zero mean and variance from 0.1 to 1.0 with interval of 0.1. We assign
the number of these tasks from 1 to 10 in ascending sequence of variance. Each task
consists of 100 samples. In each task, 70 samples are randomly selected as training set
and others are for testing. Obviously these 10 tasks are highly related. The Gaussian
RBF kernel is thus used and defined as K(xi, xj) = exp(‖xi − xj‖2/σ).

In this section Algorithm 1, called here TLPCURVE, is tested in comparison with
two methods: one is learning each task independently using ε− Path[16], called here
NoTL, and another is replacing principal curve in Algorithm 1 with support vector
regression(SVR), called here TLSVM. The reason of comparing TLSVM is to test the
performance of parametric analysis. In order to get the best performance of TLSVM,
we adopt the model selection method in [17] to find the regression curve with best
generalization. For TLPCURVE and NoTL, the regularization parameter λ is set 0.01

and Gaussian kernel width σ is set 0.02. RMSE =
√

1
q

∑q
i=1 |ŷi − yi| on the test set

is computed, where ŷi is the value of prediction and yi = sin(xi)/xi with no noise. A
method with lower RMSE is better.
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Fig. 2. The modeling performance of TLPCURVE and TLSVM

As pointed out by [15], different values of a affect the performance of forecasting
intensively. In our experiments, the parameter a of exponential weight function is set
0.2, 1, 10 to test this functions performance. Just like [15], we depict the weight curves
with various a in Fig.1 for more clear illustration. Moreover, linear weight function is
also introduced for comparison and described as[15]: w(i) = i

l(l+1)/2 .
First, we choose the former 6 tasks to test, where task 5 is set as target task and others

are source tasks. a is set 10. Fig.2 shows the modeling performances of TLPCURVE
and TLSVM.

As priori knowledge, Sinc curve is common part among these 6 tasks. As illustrated
in Figure 1, although the randomicity of noise negatively affect the performance of two
methods, principal curve (dashed line) deviates Sinc curve(solid line) less than the best
regression curve obtained after model selection. It confirms again that in the case of
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Table 1. Mean error and standard deviation of 30 RMSEs

TLPCURVE TLSVM NoTL

Exponential(a=10) 0.32226(0.05048) 0.37621(0.07245) 0.39307(0.10383)
Exponential(a=1) 0.40193(0.08547) 0.39953(0.08663) 0.39307(0.10383)

Exponential(a=0.2) 0.39537(0.08421) 0.42269(0.13277) 0.39307(0.10383)
Linear 0.38305(0.11550) 0.37340(0.08726) 0.39307(0.10383)

lacking enough priori knowledge about data sets, non-parametric methods which ex-
plore the internal structure directly from data perhaps perform better than parametric
methods. The comparative results also suggest the effectiveness of TLPCURVE whose
RMSE is 0.2675 versus 0.5481 of NoTL and 0.3283 of TLSVM.

For the sake of reducing the negative effect of randomicity of noise, we repeat gen-
erating all ten tasks’ data and implement three methods 30 times. We then report the
average RMSE and standard deviation for the 30 RMSEs on predicting test data in
Table 1.

As listed in Table 1, the mean error of TLPCURVE with a=10 is lower than NoTL
and TLSVM as well as standard deviation value(in bracket). Moreover, the performance
of TLSVM is better than NoTL. In addition, the errors of TLPCURVE with a=0.2 and
linear weight-setting are both lower than NoTL. As discussed above, the key question
of obtaining good performance is to choose a proper parameter of weight function.
Faulty weights will deteriorate performance, just as the exponential weights with a=1
and a=0.2 in Table 1. It is obvious that a=10 is much better than other three weight-
setting methods. As shown in Fig.1, the curves with a=1 and a=0.2 are close to straight
line, which cannot reflect the variation tendency of samples’ importance well. As a re-
sult, a is always set 10 in the rest of this paper. The comparative results indicate that
principal curve is fit for acting as a bridge of transferring knowledge and can improve
the learning performance. Meanwhile, TLSVM cannot exploit the knowledge of data
entirely and then has to get an inferior performance than TLPCURVE.

In order to test the effectiveness of Algorithm 1 on different tasks, we produce an
individual data set and select a task as target task and set other 9 tasks as source tasks.
The parameters are same as above. Fig.3 demonstrates the comparative results of three
methods.

As shown in Fig.3, TLPCURVE gets much lower generalization error than NoTL on
almost all tasks, except for task 1 and 9. This is because learning independently on task
1 with smallest noise can obtain a regression curve which is very close to sinc curve.
And the randomicity of noise in former tasks interrupts the transfer learning for task 9.
In addition, the performance of TLPCURVE is apparently better than TLSVM only on
task 2,3,5,7,8. It indicates that larger deviation of noise in target task will lead to invalid
regression model of SVR. It is worth noting that the generalization error of TLSVM is
higher than NoTL on task 2,3,5 which indicates that unreasonable mining the internal
structure of training data sets could inversely cause bad performance, and demonstrates
again that principal curve is a efficient way to find the across-tasks representation.
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5 Conclusion

In this paper, we have presented a new transfer learning algorithm which utilizes prin-
cipal curve to seek the common-across-tasks representation among multiple regression
tasks. We choose weighted support vector regression to transfer common knowledge
from principal curve to target task through measuring deviation of target data from the
curve. The whole analysis of this paper is based on the characteristic ”self-consistency”
of principal curve which make the common part of multiple regression tasks be truly
represented using non-parametric methods. It is worth noting that principal curve can
depict data set with special structure (for example, ring shape) much better than SVR
and other supervised methods, which is the primary reason we choose it. This work may
be extended in different directions. First, the experimental results in Table 2 demon-
strate that the weight-setting method is crucial to improve the learning performance of
the proposed algorithm. So we need to generate a group of more effective weights by
analyzing the correlation among various tasks. Moreover, the simulation example in
Section 4 is in two-dimensional space, and the proposed algorithm is also applicable to
multi-dimensional data sets. So one solution is replacing principal curve with principal
surface whose dimension is greater than 1. Because the unit of area on surface doesn’t
act globally, how to build a reasonable theory about local equivalence will be a difficult
point.
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Abstract. In a stochastic decision system, mean-risk is an approach

frequently used for modeling the choice among random outcomes, the

method quantifies a risk management problem by two criteria (i.e., mean

and risk) with possible trade-off analysis. In the literature, there are dif-

ferent risk definitions for a random variable such as variance, critical

probability and stochastic dominance. This paper presents semivariance

of fuzzy random variable as a new risk criteria for measuring hybrid un-

certain outcomes. Since the semivariance is defined by nonlinear fuzzy

integral, its computation is a challenge issue for research, and usually

depends on intelligent algorithms. This paper will develop some useful

semivariance formulas for common triangular and trapezoidal fuzzy ran-

dom variables, which have potential applications in various practical risk

management problems.

Keywords: Mean, Risk, Semivariance, Fuzzy random variable.

1 Introduction

The seminal Markowitz portfolio optimization model [1] employs the variance
as the risk measure in mean-risk analysis. Since then, the method has been used
and extended by a number of researchers in the literature. Yan et al. [2] used
semivariance in Markowitz portfolio model and extended one period portfolio to
multi-period; Ogryczak and Ruszcyński [3] showed that the standard semidevi-
ation as the risk measure makes the mean-risk model consistent with the second
degree stochastic dominance; Wagner et al. [4] considered a location-optimization
problem, in which the classical uncapacitated facility location model is recast in
a stochastic environment with several risk factors; Chang et al. [5] introduced
a heuristic approach to portfolio optimization problems in different risk mea-
sures and compared its performance to mean-variance model, and Graves and
Ringuest [6] gave a tutorial that demonstrated the current state-of-the-art meth-
ods for incorporating risk into project selection decision making.

As an extension of random variable, fuzzy random variable was first pro-
posed by Kwakernaak [7], it has been extended by a number of researchers
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in fuzzy community, and became a popular tool to deal with twofold uncer-
tainty in a decision system. For recent development about the study of fuzzy
random variable as well as its applications, the interested reader may refer to
[8,9,10,11,12,13,14,15,16,17]. The purpose of this paper is to present semivariance
of a fuzzy random variable as a new risk criteria for measuring hybrid uncertain
outcomes. Our motivation for this work is as follows. In the literature, the use
of the semivariance of random variable rather than variance as the risk measure
was suggested by Markowitz [18], and it was shown that the mean-risk model
using a fixed-target semivariance as the risk measure is consistent with stochas-
tic dominance. In addition, just as pointed out by Estrada [19], the variance
of random returns is an appropriate measure of risk only when the underlying
probability distribution of returns is symmetric, and it can be applied straight-
forwardly as a risk measure only when the underlying probability distribution
of returns is Normal. On other hand, the semivariance of random returns is a
more plausible measure of risk because the semivariance is more useful than
the variance when the underlying probability distribution is asymmetric and
just as useful when the underlying probability distribution is symmetric. More
important, investors obviously do not dislike upside volatility, they only dislike
downside volatility. However, compared with the stochastic situation, the com-
putation for the semivariance of a general fuzzy random variable is difficult due
to its definition including nonlinear fuzzy integral. Hence, in this paper, we con-
sider the case when the fuzzy random variables are triangular and trapezoidal,
for which the exact computational formulas can be derived.

The plan of the paper is as follows. Section 2 defines the semivariance of a
fuzzy random variable and discusses its basic properties. In Section 3, for any
given random outcome, we compute the quadratic semi-deviation for triangu-
lar and trapezoidal fuzzy variables. Based on the computational results about
quadratic semi-deviation, Section 4 derives several useful semivariance formu-
las for common triangular and trapezoidal fuzzy random variables. Section 5
concludes the paper.

2 Semivariance and Its Properties

Let (Ω,Σ,Pr) be a probability space. A fuzzy random variable [14] is a map
ξ : Ω → Fν such that for any Borel subset B of , the following function
Pos{ξ(ω) ∈ B} is measurable with respect to ω, where Fν is a collection of fuzzy
variables defined on a possibility space. In addition, the expected value of ξ was
defined as (see [14])

E[ξ] =
∫ ∞

0
Pr{ω ∈ Ω | E[ξ(ω)] ≥ r}dr −

∫ 0

−∞
Pr{ω ∈ Ω | E[ξ(ω)] < r}dr (1)

provided that at least one of the two integrals is finite, where E[ξ(ω)] is the
expected value of fuzzy variable ξ(ω) (see [20]).

Let ξ be a fuzzy random variable, and its negative part is denoted as ξ− =
max{−ξ, 0}, which is also a fuzzy random variable.
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Definition 1. Let ξ be a fuzzy random variable with finite expected value E[ξ].
The semivariance of ξ is defined as the expected value of fuzzy random variable
[(ξ − E[ξ])−]2, that is

SV [ξ] = E[(ξ − E[ξ])−]2. (2)

Similar to the property of variance [14], the semivariance preserves the following
property.

Theorem 1. Let ξ be a fuzzy random variable. Then SV [ξ] = 0 if and only if
ξ = E[ξ].

The following theorem deals with the interconnection between variance and semi-
variance.

Theorem 2. Let ξ be a fuzzy random variable with finite expected value E[ξ].
Then we have

(i) SV [ξ] ≤ V [ξ], and
(ii) SV [ξ] = 0 if and if V [ξ] = 0.

3 Quadratic Semideviation of Fuzzy Variable

Let ξ be a triangular fuzzy random variable such that for each ω, ξ(ω) =
(X(ω), α, β) is a triangular fuzzy variable, where α > 0, β > 0, and X is a
random variable with finite expected value. Then for each ω, the expected value
of fuzzy variable ξ(ω) is E[ξ(ω)] = (4X(ω)−α+β)/4. Moreover, by formula (1),
we have E[ξ] = (4E[X ]− α + β)/4.

Given a random event ω, we now compute the quadratic semi-deviation of
fuzzy variable E[(ξ(ω) − E[ξ])−]2. The first result is as follows.

Proposition 1. Let ξ be a triangular fuzzy random variable such that for each
ω, ξ(ω) = (X(ω), α, β) with α �= β, and denote m = (4E[X ] − α + β)/4 as the
expected value of ξ.

(i) If m + α < X(ω), then E[(ξ(ω) −m)−]2 = 0;
(ii) If m < X(ω) ≤ m + α, then E[(ξ(ω) −m)−]2 = −(X(ω)− α−m)3/6α;
(iii) If m − β < X(ω) ≤ m, then E[(ξ(ω) − m)−]2 = −(X(ω)−m)3/6β +

(X(ω)−m)2/2− α(X(ω) −m)/2 + α2/6;
(iv) If X(ω) ≤ m−β, then E[(ξ(ω)−m)−]2 = (X(ω)−m)2+β(X(ω)−m)/2−

α(X(ω) −m)/2 + (α2 + β2)/6.

Example 1. Let ξ be a triangular fuzzy random variable. For each ω, ξ(ω) =
(X(ω) − 3, X(ω), X(ω) + 1) with α = 3, β = 1, and X ∼ N (1, 1). In this case,
the expected value of ξ is m = 1/2. By Proposition 1, we have:

(i) If 7/2 < X(ω), then E[(ξ(ω) −m)−]2 = 0;
(ii) If 1/2 < X(ω) ≤ 7/2, then E[(ξ(ω)−m)−]2 = −X(ω)3/18 + 7X(ω)2/12−

49X(ω)/24 + 343/144;
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(iii) If −1/2 < X(ω) ≤ 1/2, then E[(ξ(ω) −m)−]2 = −X(ω)3/6 + 3X(ω)2/4 −
17X(ω)/8 + 115/48;

(iv) If X(ω) ≤ −1/2, then E[(ξ(ω) −m)−]2 = X(ω)2 − 2X(ω) + 29/12.

Let ξ be a trapezoidal fuzzy random variable such that for each ω, ξ(ω) =
(X(ω)− δ,X(ω)−α,X(ω)+α,X(ω)+ β) is a trapezoidal fuzzy variable, where
δ > α > 0, β > α > 0, and X is a random variable. Then for each ω, the expected
value of ξ(ω) is E[ξ(ω)] = (4X(ω)− δ+β)/4. Moreover, by formula (1), we have
E[ξ] = (4E[X ] − δ + β)/4. As a consequence, given a random event ω, we can
compute the quadratic semi-deviation of fuzzy variable E[(ξ(ω)−E[ξ])−]2, and
the computational results are reported in the following proposition.

Proposition 2. Let ξ be a trapezoidal fuzzy random variable such that for each
ω, ξ(ω) = (X(ω) − δ,X(ω) − α,X(ω) + α,X(ω) + β) with δ �= β, ξ > α ≥ 0,
β > α ≥ 0, and denote m = (4E[X ]− δ + β)/4 as the expected value of ξ.

(i) If m + δ ≤ X(ω), then E[(ξ(ω) −m)−]2 = 0;
(ii) If m+α < X(ω) ≤ m+δ, then E[(ξ(ω)−m)−]2 = −(X(ω)−m−δ)3/6(δ−

α);
(iii) If m− α < X(ω) ≤ m+ α, then E[(ξ(ω)−m)−]2 = (X(ω)−m)2/2− (δ +

α)(X(ω) −m)/2 + (α2 + αδ + δ2)/6;
(iv) If m−β < X(ω) ≤ m−α, then E[(ξ(ω)−m)−]2 = −(X(ω)−m+α)3/6(β−

α) + (X(ω) −m)2/2 − (δ + α)(X(ω) −m)/2 + (α2 + αδ + δ2)/6;
(v) If X(ω) ≤ m− β, then E[(ξ(ω)−m)−]2 = (X(ω)−m)2 − (δ − β)(X(ω)−

m)/2 + (β2 + 2α2 + δ2 + αβ + αδ)/6.

Example 2. Let ξ be a trapezoidal fuzzy random variable. For each ω, ξ(ω) =
(X(ω) − 4, X(ω) − 1, X(ω) + 1, X(ω) + 2) with δ = 4, α = 1, β = 2, and
X ∼ N (1, 4). In this case, the expected value of ξ is m = 1/2. By Proposition 2,
we have:

(i) If 9/2 < X(ω), then E[(ξ(ω) −m)−]2 = 0;
(ii) If 3/2 < X(ω) ≤ 9/2, then E[(ξ(ω) −m)−]2 = −X(ω)3/18 + 3X(ω)2/4 −

27X(ω)/8 + 81/16;
(iii) If −1/2 < X(ω) ≤ 3/2, then E[(ξ(ω)−m)−]2 = X(ω)2/2−3X(ω)+117/24;
(iv) If −3/2 < X(ω) ≤ −1/2, then E[(ξ(ω)−m)−]2 = −X(ω)3/6 +X(ω)2/4−

25X(ω)/8 + 233/48;
(v) If X(ω) ≤ −3/2, then E[(ξ(ω) −m)−]2 = X(ω)2 − 2X(ω) + 65/12.

4 Semivariance Formulas for Fuzzy Random Variables

In this section, we apply the quadratic semi-deviation formulas derived in Sec-
tion 3 to frequently used triangular and trapezoidal fuzzy random variables to
establish some useful semivariance formulas.
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First, for a triangular fuzzy random variable, we have the following result:

Theorem 3. Let ξ be a triangular fuzzy random variable such that for each ω,
ξ(ω) = (X(ω), α, β) with α �= β, and denote m = (4E[X ] − α + β)/4 as the
expected value of ξ. If X ∼ N (μ, σ2), then

SV [ξ] = (5α+β
8α σ2 + 13α3+13α2β+39αβ2−β3

384α ) + ( σ3

3
√

2πα
+ (3α+β)2

96
√

2πα
σ) exp(− (3α+β)2

32σ2 )

+( α−β

3
√

2παβ
σ3 + (α−β)3

96
√

2παβ
σ) exp(− (α−β)2

32σ2 )

−( σ3

3
√

2πβ
+ α2+6αβ−81β2

96
√

2πβ
σ) exp(− (α+3β)2

32σ2 )

+(3α+β
8α σ2 + (3α+β)3

384α )Φ(3α+β
4σ )

+( (α−β)2

8αβ σ2 + −α4+58α3β+48αβ3+22α2β2+β4

384αβ )Φ(α−β
4σ )

−(α+3β
8β σ2 − α3−71α2β−69αβ2−53β3

384β )Φ(α+3β
4σ ).

Proof. Since X ∼ N (μ, σ2), we have E[X ] = μ, and m = (4μ − α + β)/4. By
Proposition 1, we have the following computational results.

If m + α < X(ω), then SV1 = 0. If m < X(ω) ≤ m + α, then

SV2 =
∫ m+α

m (− 1
6α )(x −m− α)3 × 1√

2πσ
exp(− (x−μ)2

2σ2 )dx

= −( (3α+β)3

384α + 3α+β
8α σ2) + ( σ3

3
√

2πα
+ (3α+β)2

96
√

2πα
σ) exp(− (3α+β)2

32σ2 )

−( σ3

3
√

2πα
+ 37α2+10αβ+β2

96
√

2πα
σ) exp(− (α−β)2

32σ2 )

+( (3σ+β)
8α σ2 + (3α+β)3

384α )Φ(3α+β
4σ ) + ( (3α+β)

8α σ2 + (3α+β)3

384α )Φ(α−β
4σ ).

If m− β < X(ω) ≤ m, then

SV3 =
∫ m

m−β[− (x−m)3

6β + (x−m)2

2 − α(x−m)
2 + α2

6 ] × 1√
2πσ

exp(− (x−μ)2

2σ2 )dx

= ( σ3

3
√

2πβ
+ α2+34αβ+13β2

96
√

2πβ
σ) exp(− (α−β)2

32σ2 )

−( σ3

3
√

2πβ
+ α2+30αβ−9β2

96
√

2πβ
σ) exp(− (α+3β)2

32σ2 )

+( (α−5β)
8β σ2 − α3−31α2β−21αβ2−13β3

384β )× Φ(α−β
4σ )

−( (α−5β)
8β σ2 − α3+25α2β+27αβ2+11β3

384β )Φ(α+3β
4σ ).

If X(ω) ≤ m− β, then

SV4 =
∫ m−β

−∞ [(x −m)2 + β−α
2 (x−m) + α2+β2

6 ]× 1√
2πσ

exp(− (x−μ)2

2σ2 )dx

= σ2 + 5α2+5β2+6αβ
48 + (α+3β

4
√

2π
σ) exp(− (α+3β)2

32σ2 )

−(σ2 + 5α2+5β2+6αβ
48 )Φ(α+3β

4σ ).

Noting that SV [ξ] = SV1 + SV2 + SV3 + SV4, then the proof of the theorem
is complete by combining the above computational results.

We now provide an example to illustrate how to compute the semivariance of a
triangular fuzzy random variable.
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Example 3. Let ξ be the triangular fuzzy random variable defined in Example 1.
For each ω, ξ(ω) is a triangular fuzzy variable. Since α = 3, β = 1, σ2 = 1, and
X ∼ N (1, 1), it follows from Theorem 3 that SV [ξ] = 8.99.

Furthermore, for a trapezoidal fuzzy random variable, we have

Theorem 4. Let ξ be a trapezoidal fuzzy random variable such that for each
ω, ξ(ω) = (X(ω) − δ,X(ω) − α,X(ω) + α,X(ω) + β) with δ �= β, ξ > α ≥ 0,
β > α ≥ 0, and denote m = (4E[X ] − δ + β)/4 as the expected value of ξ. If
X ∼ N (μ, σ2), then

SV [ξ] = (1
2σ

2 + 16α2+7β2+3δ2+4αβ+12αδ+6βδ
96 )

+( σ3

3
√

2π(δ−α)
+ (3δ+β)2

96
√

2π(δ−α)
σ) exp(− (3δ+β)2

32σ2 )

−( σ3

3
√

2π(δ−α)
+ 16α2+β2+δ2+8αβ−8αδ−2βδ

96
√

2π(δ−α)
σ) exp(− (4α−δ+β)2

32σ2 )

+( σ3

3
√

2π(β−α)
+ 16α2+β2+δ2−8αβ+8αδ−2βδ

96
√

2π(β−α)
σ) exp(− (4α+δ−β)2

32σ2 )

−( σ3

3
√

2π(β−α)
+ (δ+3β)2

96
√

2π(β−α)
σ) exp(− (δ+3β)2

32σ2 ) + ( (3δ+β)3

384(δ−α) + 3δ+β
8(δ−α)σ

2)Φ(3δ+β
4σ )

+(1
2σ

2 + 16α2+3β2+7δ2+12αβ+4αδ+6βδ
96 − (3δ+β)3

384(δ−α) − 3δ+β
8(δ−α)σ

2)Φ(4α−δ+β
4σ )

+(1
2σ

2 + (4α+δ−β)3

384(β−α) + 8α+δ−5β
8(β−α) σ2)Φ(4α+δ−β

4σ )

−(σ2 + (4α+δ−β)3

384(β−α) + 8α+δ−5β
8(β−α) σ2 + 16α2+7β2+3δ2+4αβ+12αδ+6βδ

96 )Φ( δ+3β
4σ ).

Proof. Since X ∼ N (μ, σ2), we have m = (4μ−δ+β)/4. By using Proposition 2,
we can derive the semivariance of ξ. The computational process is divided into
several steps.

Step I. If m + δ < X(ω), then SV1 = 0.
Step II. If m + α < X(ω) ≤ m + α, then

SV2 =
∫ m+δ

m+α [−(x−m− δ)3/6(δ − α)] 1√
2πσ

exp(− (x−μ)2

2σ2 )dx

= ( σ3

3
√

2π(δ−α)
+ (3δ+β)2

96
√

2π(δ−α)
σ) exp(− (3δ+β)2

32σ2 )

−( σ3

3
√

2π(δ−α)
+ 16α2+β2+37δ2−4αβ−44αδ+10βδ

96
√

2π(δ−α)
σ) exp(− (4α−δ+β)2

32σ2 )

+( (3δ+β)3

384(δ−α) + (3δ+β)
8(δ−α)σ

2)Φ(3δ+β
4σ ) − ( (3δ+β)3

384(δ−α) + (3δ+β)
8(δ−α)σ

2)Φ(4α−δ+β
4σ ).

Step III. If m− α < X(ω) ≤ m + α, then

SV3 =
∫ m+α

m−α
[12 (x−m)2 − 1

2 (δ + α)(x −m)

+ 1
6 (δ2 + αδ + α2)]× 1√

2πσ
exp(− (x−μ)2

2σ2 )dx

= −σ2

2 − 16α2+3β2+7δ2+12αβ+4αδ+6βδ
96 + 3δ+β

8
√

2π
σ exp(− (4α−δ+β)2

32σ2 )

− 8α+3δ+β

8
√

2π
σ exp(− (4α+δ−β)2

32σ2 )

+(σ2

2 + 16α2+3β2+7δ2+12αβ+4αδ+6βδ
96 )Φ(4α−δ+β

4σ )
+(σ2

2 + 16α2+3β2+7δ2+12αβ+4αδ+6βδ
96 Φ(4α+δ−β

4σ ).
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Step IV . If m− β < X(ω) ≤ m− α, then

SV4 =
∫ m−α

m−β
[− 1

6(β−α) (x−m + α)3 + 1
2 (x−m)2

− 1
2 (δ + α)(x −m) + 1

6 (α2 + αδ + δ2)] × 1√
2πσ

exp(− (x−μ)2

2σ2 )dx

= ( σ3

3
√

2π(β−α)
+ −80α2+13β2+δ2+76αβ−28αδ+34βδ

96
√

2π(β−α)
σ) exp(− (4α+δ−β)2

32σ2 )

−( σ3

3
√

2π(β−α)
+ −81β2+δ2−72αβ−24αδ+30βδ

96
√

2π(β−α)
σ) exp(− (δ+3β)2

32σ2 )

+( (4α+δ−β)3

384(β−α) + 8α+δ−5β
8(β−α) σ2 − 16α2+3β2+7δ2+12αβ+4αδ+6βδ

96 )Φ(4α+δ−β
4σ )

−( (4α+δ−β)3

384(β−α) + 8α+δ−5β
8(β−α) σ2 − 16α2+3β2+7δ2+12αβ+4αδ+6βδ

96 )Φ( δ+3β
4σ ).

Step V . If X(ω) ≤ m− β, then

SV5 =
∫ m−β

−∞ [(x −m)2 − 1
2 (δ − β)(x −m)

+ 1
6 (β2 + 2α2 + δ2 + αβ + αδ)] × 1√

2πσ
exp(− (x−μ)2

2σ2 )dx

= (σ2 + 16α2+5β2+5δ2+8αβ+8αδ+6βδ
48 ) + δ+3β

4
√

2π
σ exp(− (δ+3β)2

32σ2 )

−(σ2 + 16α2+5β2+5δ2+8αβ+8αδ+6βδ
48 )Φ( δ+3β

4σ ).

Since SV [ξ] = SV1 +SV2 +SV3 +SV4 +SV5, it follows from Step I to Step V
that the proof of the theorem is complete.

As an application of Theorem 4, consider the following example:

Example 4. Let ξ be the trapezoidal fuzzy random variable defined in Example 2.
Noting that for each ω, ξ(ω) is a trapezoidal fuzzy variable, and X ∼ N (1, 4),
then Theorem 4 implies SV [ξ] = 3.91.

5 Conclusions and Future Research

To model the choice among uncertain outcomes, mean-risk approach is frequently
used in the literature. This paper presented a new risk criteria for the measure
of risk in hybrid uncertain systems. The major new results include the following
several aspects. (i) The semivariance of a fuzzy random variable was defined as
a new risk measure for hybrid uncertain outcomes, and the fundamental proper-
ties of the semivariance were analyzed (Theorems 1 and 2); (ii) Given a random
outcome, the formulas for the quadratic semi-deviation of fuzzy variable were
established (Propositions 1 and 2), and (iii) the semivariance formulas for fre-
quently used triangular and trapezoidal fuzzy random variables were derived
(Theorem 3 and 4).

The established formulas about quadratic semi-deviation and semivariance
can be used in various practical risk management problems, which will be our
future research.
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Abstract. Extreme learning machine (ELM) has shown to be extremely

fast with better generalization performance. However, the implementa-

tion of ELM encounters two problems. First, ELM tends to require more

hidden nodes than conventional tuning-based algorithms. Second, sub-

jectivity is involved in choosing hidden nodes number. In this paper, we

apply the modified Gram-Schmidt (MGS) method to select hidden nodes

which maximize the increment to explained variance of the desired out-

put. The Akaike’s final prediction error (FPE) criterion are used to au-

tomatically determine the number of hidden nodes. In comparison with

conventional ELM learning method on several commonly used regres-

sor benchmark problems, our proposed algorithm can achieve compact

network with much faster response and satisfactory accuracy.

Key words: Extreme learning machine (ELM), Modified Gram-Schmidt

algorithm (MGS), Feedforward neural networks.

1 Introduction

Huang et al. have recently proposed a new theory to show that SLFNs with
randomly generated additive or RBF hidden nodes can work as universal ap-
proximators [1,2]. Strongly supported by this theoretical results, Huang et al.
have proposed a new learning algorithm for the feedforward neural network re-
ferred to as extreme learning machine (ELM). In ELM, the parameters of hidden
nodes are randomly selected and the output weights are analytically determined
through simple generalized inverse operation of the hidden layer output matri-
ces. The performance of ELM has been evaluated on a number of benchmark
problems. In many real world applications, ELM has been shown to generate
good generalization performance at extremely high learning speed.

Nevertheless, the implementation of ELM faces two problems. First, ELM
tends to require more hidden nodes than conventional tuning-based algorithms.
Some of the hidden nodes in such a network may play a much minor role in
network output and thus may eventually increase network complexity [3,4,5].
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Second, when using ELM to handle the problem in hand, it remains a trial and
error process. The subjectivity is involved in choosing the number of hidden
nodes.

In this paper, we adopt a systematic approach to address these two problems.
The selection of hidden nodes in random hidden nodes pool can be regarded as
a problem of subset model selection in a linear regression model. The modified
Gram-Schmidt (MGS)[6,7,8] algorithm can be employed as a forward regression
procedure to select a suitable set of hidden nodes from a large set of candidates.
We apply the Akaike’s final prediction error (FPE) criterion [9,10] to select the
appropriate number of hidden nodes. Various benchmark regressor datasets were
used to demonstrate the effectiveness of our proposed algorithm.

2 A Brief Review of ELM

Assume we have N arbitrary distinct samples (xk, tk) ∈ Rn ×Rm, where xk is
an input vector and tk is the corresponding desired output. A standard single
hidden layer feedforward networks (SLFNs) with Ñ additive hidden nodes and
activation function G(x) can be represented by

fÑ (xk) =
Ñ∑

i=1

ωiG(ai · xk + bi), k = 1, . . . , N. (1)

where ai = [a1i, · · · , ani]T is the weight vector connecting the input layer to the
ith hidden node, bi is the bias of the ith hidden node, and ai · xk denotes the
inner product of vectors ai and xk in Rn. The activation functions G(x) are
sigmoids.

The ultimate purpose of SLFNs is to find out the values of ωi, ai and bi such
that

∑N
k=1 ‖fÑ(xk) − tk‖ = 0, or

fÑ (xk) =
Ñ∑

i=1

ωiG(ai · xk + bi) = tk, k = 1, . . . , N. (2)

Then, (2) can be written compactly as

Hω = T, (3)

where

H(a1, . . . ,aÑ , b1, . . . , bÑ ,x1, . . . ,xN )

=

⎡⎢⎣ G(a1 · x1 + b1) · · · G(aÑ · x1 + bÑ )
... . . .

...
G(a1 · xN + b1) · · · G(aÑ · xN + bÑ )

⎤⎥⎦
N×Ñ

,
(4)

ω =

⎡⎢⎣ ω1
...

ωÑ

⎤⎥⎦ and T =

⎡⎢⎣ t1
...
tN

⎤⎥⎦ . (5)
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The main idea of ELM [1] is that for N arbitrary distinct samples (xk, tk)
in order to obtain arbitrarily small non-zero training error, one may randomly
generate Ñ(≤ N) hidden nodes (with random parameters ai and bi). Under this
assumption, H is completely defined. Then, (3) becomes a linear system and the
output weights ω are estimated as

ω̂ = H†T, (6)

where H† is the Moore-Penrose generalized inverse of the hidden layer output
matrix H.

3 Enhanced-ELM

An efficient learning procedure for selecting suitable random hidden nodes can
readily be derived on the modified Gram-Schmidt (MGS) method [6,7,8,10]. In
order to understand the proposed algorithm, it is essential to view the network
(1) as a special case of the linear regression model

tk =
Ñ∑

i=1

ωiG(ai · xk + bi) + εk, k = 1, . . . , N. (7)

This construction procedure can be described by the following matrix equation:

T = Hω + E, (8)

where E = [ε1, · · · , εN ]T .
Then, let us define a set of vectors ψi(i = 1, · · · , Ñ) by

ψi = ζi

⎡⎢⎣ G(ai · x1 + bi)
...

G(ai · xN + bi)

⎤⎥⎦ , i = 1, · · · , Ñ , (9)

where ψi is, in fact, the normalized version of the column-vectors of H in (8),
and ζi satisfies

ζi = (
N∑

k=1

(G(ai · xk + bi))2)−
1
2 , i = 1, · · · , Ñ , (10)

so that ψT
i ψi = 1, i = 1, · · · , Ñ .

So a modified equation consists in replacing (8) by

T = H0ω + E, (11)

where H0 = [ψ1, . . . ,ψÑ ].
The problem of how to select a suitable set of hidden nodes from the random

hidden nodes pool can be regarded as an example of how to select a subset of
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significant regressors from the given candidate set {ψ1, . . . ,ψÑ} in a forward-
regression manner.

At iteration m, denote by lm the index of the hidden node selected from
random hidden nodes pool. In other words, ψlm is selected at iteration m. Let
m be the current iteration number, then ψl1 ,ψl2 , · · · ,ψlm−1 have been selected
in the previous iterations. Define the intermediate vectors by

plj (i) = plj (i− 1)− (ψT
lj qli−1)qli−1 , i = 1, · · · ,m− 1, j = i, · · · ,m− 1, (12)

with plj (0) = ψlj and ql0 = 0. Thus we generate the vectors ql1 , · · · , qlm−1 by

qlj = ((plj (i))
T
plj (i))

− 1
2 plj (i), i = 1, · · · ,m− 1, j = i, · · · ,m− 1, (13)

then qlj is an orthonormalized version of ψlj , j = 1, · · · ,m− 1.
Now, orthogonalize the remaining vectors ψj to ql1 , · · · , qlm−1 ,

pj(m) = pj(m− 1)− (ψT
j qlm−1)qlm−1 , (14)

The vectors ψl1 ,ψl2 , · · · ,ψlm−1 and ψj span the same space as ql1 , · · · , qlm−1 ,
and pj(m). Since ql1 , · · · , qlm−1 , and pj(m) are orthogonal, the best ψj to be
chosen for the current iteration corresponds to the pj(m) the “closest” to T.
Thus we should choose

lm = argmax
j

(pj(m))TT

((pj(m))T pj(m))
1
2
, (15)

and accordingly

qlm = ((plm(m))T
plm(m))

− 1
2 plm(m). (16)

The number of hidden nodes can be determined by the Akaike’s final prediction
error criterion (FPE) [9,10]. The FPE criteria can be written as

FPE(j) =
1 + nj/N

1 − nj/N
σ2

j , (17)

where nj is the number of the parameters in the estimator, N is the sample length
of the training data, and σ2

j is the variance of the residual corresponding to the
random hidden nodes selection procedure. This kind of information theoretic
criterion is combined with random hidden nodes selection procedure in such
a way that regressors are selected based on (15) as described previously and
the selection procedure is automatically terminated when FPE(j) reaches its
minimum.

From the MGS theory, it is known that

[ψl1 , . . . ,ψlM ] = [q l1 , . . . , q lM ]A, (18)

where q lj , (j = 1, · · · ,M), are orthogonal vectors, which satisfy

[q l1 , . . . , q lM ]T [q l1 , . . . , q lM ] = I, (19)
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and A is an upper-triangular matrix, given as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 α12 α13 · · · α1M−1 α1M

0 α22 α23 · · · α2M−1 α2M

0 0 α33 · · · α3M−1 α3M

...
...

. . . . . .
...

...
0 0 · · · 0 αM−1M−1 αM−1M

0 0 · · · · · · 0 αMM

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

Hence, the coefficients ωli are determined by⎡⎢⎣ ωl1
...

ωlM

⎤⎥⎦ = A†

⎡⎢⎣ ω̃l1
...

ω̃lM

⎤⎥⎦ (21)

where A† is the Moore-Penrose generalized inverse of matrix A.
The network is then constructed as

fM (x) =
M∑
i=1

ωliψli(x). (22)

4 Performance Evaluation

In [1], authors have demonstrated that ELM can outperform many popular al-
gorithms like BP, SVM and other well-known algorithms in many cases, thus we
may only need to compare the performance of the proposed algorithm with the
conventional ELM algorithm in this paper.

In this paper, all the simulations have been conducted in MATLAB 7.1 en-
vironment running on ordinary PC with 2.0 GHZ CPU and 512M RAM. For
simplicity, all the input and output data were normalized into the range [-1,1].
The activation function used in our experiments was a simple sigmoidal additive
activation function, the input weights a were randomly chosen from the range
[-1,1] while the biases b were randomly chosen from the range [0,1]. In our study,
we considered the number of hidden nodes in the range of [10, 500] and a step
size of 10 nodes. This defines the overall training time of the conventional ELM.

4.1 Artificial Case: Approximation of ‘SinC’ Function with Noise

In this example, we presented the performance of the proposed algorithm and
conventional ELM on the ‘SinC’ function, a popular choice to illustrate ELM in
the literature [1]

y(x) =
{
sin(x)/x, x �= 0,
1, x = 0.

Both algorithms were used to approximate a training set (xi, yi) and testing
set (xi, yi) with 5000 data, respectively, where xi’s were uniformly randomly
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distributed on the interval [−10, 10]. In order to make the regression problem
‘real’, large uniform noise distributed in [−0.2, 0.2] has been added to all the
training samples while testing data remain noise-free.

For our proposed algorithm, We conducted an experimental study by varying
the number of initial hidden neurons from 10 to 500 in steps of 10. The variation
of the testing accuracies and the training time are illustrated in Fig. 1 and
Fig. 2. The results indicate 500 initial hidden nodes appears to be sufficient for
the problems considered.Fig. 3 shows the FPE values for each optimal hidden
nodes number. It suggests to choose 12 hidden nodes for constructing the ELM
network.

As shown in Table 1, we compared the performance of the proposed method
with ELM approach. It can be seen from Table 1 that enhanced-ELM learning
algorithm spent 62.1187s CPU time obtaining the testing root mean square error
(RMSE) 0.0073, however, it takes 160.1541s CPU time for conventional ELM
algorithm to reach a higher testing error 0.0074. Based on the results, enhanced-
ELM arrives at competitive prediction accuracy at the cost of significantly lower
training time. Furthermore, enhanced-ELM produces a more compact network
compared with conventional ELM algorithm.
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Table 1. Performance comparison for learning noise free function: SinC

Algorithm No. of nodes Testing Training times(s)

RMS Dev

enhanced-ELM 12 0.0073 0.0016 62.1187

ELM 20 0.0074 1.6163e-004 160.1541

In Fig. 4, we plotted the true and the approximated function of the enhanced-
ELM and conventional ELM learning algorithm. The comparison with the con-
ventional ELM method confirms the more general applicability of our proposed
algorithm.

4.2 Benchmarking with Regression Problem

The performance of ELM and our proposed algorithm were compared on five real
world benchmark regression datasets from UCI ML repository. The specifications
of the data sets are listed in Table 2. For each problem, 50 trials were done.

The performance results are tabulated in Tables 3. In comparison to ELM,
enhanced-ELM arrives at competitive prediction accuracy at significantly lower
training time. The training time of enhanced-ELM excludes the computational
time used to choose the appropriate hidden nodes for the problems considered.
Note that what is reported in Table 3, ELM takes a step size of 10 nodes

Table 2. Specification of five benchmark regression datasets

Data set No. of observations Attribute

Training data Testing data

Ailerons 7154 6596 40

Bank domains 4500 3692 32

Elevators 8752 7846 18

Kinematics 4000 4192 8

Puma32H 4500 3692 32

Table 3. Performance comparison in more benchmark applications

Data sets Methods No. of Testing Training time(s)

nodes RMS Dev

Ailerons enhanced-ELM 90 1.6208e-004 1.1527e-006 94.5750

ELM 130 1.6173e-004 8.2616e-007 236.1891

Bank domains enhanced-ELM 71 0.0874 5.2811e-004 60.5031

ELM 350 0.0877 6.4680e-004 194.6844

Elevators enhanced-ELM 244 0.0024 2.1214e-004 116.1238

ELM 250 0.0023 5.7885e-005 297.6750

Kinematics enhanced-ELM 251 0.1127 0.0025 57.8025

ELM 500 0.1108 0.0037 182.3547

Puma32H enhanced-ELM 71 0.0273 1.0047e-004 63.9269

ELM 90 0.0271 8.7990e-005 171.7672
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and enhanced-ELM takes a step size of 1 node. In addition, results illustrate
enhanced-ELM produces significantly more compact networks.

5 Conclusions

An enhanced-ELM algorithm is proposed which is more constructive in the sense
that it automatically determines the number of hidden nodes and selects the most
suitable hidden nodes in random nodes pool. In contrast to conventional ELM
algorithm, enhanced-ELM produces compact network structure and generates
competitive testing accuracy at cost of significantly lower training time.
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Abstract. Artificial neural networks (ANNs) have been successfully applied to 
many areas due to its powerful ability both for classification and regression 
problems. For some difficult problems, ANN ensemble classifiers are consid-
ered, instead of a single ANN classifier. In the previous study, the authors pre-
sented the systematic trajectory search algorithm (STSA) to train the ANN. The 
STSA utilizes the orthogonal array (OA) to uniformly generate the initial popu-
lation to globally explore the solution space, and then applies a novel trajectory 
search method to exploit the promising areas thoroughly. In this paper, an evo-
lutionary constructing algorithm, called the ESTSA, of the ANN ensemble is 
proposed. Based on the STSA, the authors introduce a penalty term to the error 
function in order to guarantee the diversity of ensemble members. The perform-
ance of the proposed algorithm is evaluated by applying it to train a class of 
feedforward neural networks to solve the large n-bit parity problems. By com-
paring with the previous studies, the experimental results revealed that the  
neural network ensemble classifiers trained by the ESTSA have very good  
classification ability.  

Keywords: Artificial neural networks, orthogonal array, ensemble, n-bit parity 
problems. 

1   Introduction 

Artificial neural networks (ANNs) have been applied to many application areas and 
have gained remarkable success. The back-propagation (BP) algorithm is the well-
known training algorithm for feedforward neural networks. The drawback of the BP is 
that it may be trapped in local optima and its activation function must be differenti-
able. Thus, many evolutionary algorithms had been proposed to train the connection 
weights and/or the architectures of neural networks. Yao [1] gave an elaborate survey 
in 1999. Recently Mendes et al. [2] proposed a particle swarm optimization algorithm 
for feedforward neural network training. Nikolaev and Iba [3] hybridized the genetic 
programming and the backpropagation algorithm to train the polynomial feedforward 
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neural networks. Tasi et al. proposed a hybridized algorithm, which combines the 
Taguchi method and the genetic algorithm, to tune the structure and parameters of a 
neural network [4]. Recently, Tseng and Chen proposed the TPGLS [5], the two-
phase genetic local search algorithm, to train feedforward neural networks, and the 
authors observed that it is important to keep a good balance between the global search 
and the local search.  

For complicated problems, to train the ANNs is not easy. Instead of using a single 
ANN, combining multiple simpler neural networks is adopted to tackle the complex 
problems. On combining ANNs, there are two main approaches: ensemble-based and 
modular [6]. In this paper, the proposed training algorithm is based on the first ap-
proach. As mentioned in [6], the ensemble has better generalization performance than 
any individual network for classification problems. But, it is not easy to construct the 
ANN ensemble. While constructing the ANN ensemble, there are two main issues: 
the selection of a set of ANNs to be the members of the ensemble and the combina-
tion of the outputs of the members of the ensemble. Sharkey pointed out that the 
members of the ensemble must generalize differently; otherwise there is no advantage 
to combining them together. Thus, the key of success is to keep the diversity of mem-
bers of the ensemble as well as the accuracy [7]. In ensemble, if any two members 
make different errors on any instance, they are diverse. As usual, we want the degree 
of diversity to be as higher as possible among ensemble members. Sharkey presented 
an overview of the main methods for creating ensemble members [6]. The readers are 
further referred to [8] for the valuable survey of diversity creation methods. In [9], 
Liu and Yao proposed a learning algorithm, called the negative correlation learning 
(NCL), to train ANN ensembles. In the NCL, a correlation penalty term was added 
into the error function in order to produce negative correlated members. Based on the 
NCL, Liu et al. [10] proposed evolutionary ensembles with the NCL (EENCL) in 
which fitness sharing and the NCL are used to maintain the diversity of different 
members of the population. Recently, Yao and Islam [11] gave a review of research 
on evolutionary approaches for constructing ANN ensembles. 

For the non-linearly separable property, the n-bit parity problem is known as a dif-
ficult classification problem. Especially when n is large, it can hardly be solved in 
reasonable time, except the special designed methods [12][13]. Thus, it is usually 
used as a benchmark for testing new ANN training algorithms.  

In our recent research [14], we presented the systematic trajectory search algorithm 
(STSA) to train feedforward neural networks. The STSA was tested on training feed-
forward neural networks to solve the n-bit parity problems of various sizes and two 
real medical diagnosis problems. The experimental results show that the feedforward 
neural networks trained by the STSA have very good classification ability. But, for 
large n-bit parity problems, the STSA spent a lot of time to train the ANNs. In this 
paper, based on the STSA, the authors propose an evolutionary method for construct-
ing ANN ensembles to solve some larger n-bit parity problems. The experimental 
results revealed the effectiveness of the proposed method.  

The remainder of the paper is organized as follows. Section 2 introduces the pro-
posed method for constructing the ANN ensemble. Section 3 gives the experiments 
and results, and finally Section 4 concludes the paper. 
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2   The Evolutionary ANN Ensemble  

The flowchart of the STSA is shown in Fig. 1 (with shaded blocks removed). In the 
global search phase, the orthogonal array (OA) is utilized to generate uniformly distrib-
uted initial solutions. Among these solutions, k best ones are selected as seeds. Then in 
the local search phase, a local search method called random array local search (RALS) 
is applied to each seed. The details of the STSA can be found in [14]. Based on the 
STSA, we propose an evolutionary method, called ESTSA, for constructing ANN en-
sembles to solve classification problems. As mentioned above, there are two main issues 
for constructing ensembles: the selection of a set of ANNs to be the members of the 
ensemble and the combination of the outputs of the members of the ensemble. The 
detail of the constructing method of ANN ensembles is described in Fig. 1. 

2.1   Method for Creating Ensemble Members 

In this paper, we incrementally construct the ensemble from the evolutionary popula-
tion in each epoch. Inspired by the NCL [9][10], we introduce a penalty term into the 
error function in order to maintain the higher diversity among the members of the 
ensemble during evolving the population. For the simplicity of validation, without 
loss of generality, we focus on the two-class classification problems where the output 
of the ANN classifier is 1 or 0. The error function and the penalty term of the ith 
member of the population are defined as follows: 
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where N is the number of instances, fij and dj are the ith member’s output and the 
desired output for the jth instance, respectively, and K is the size of the ensemble, 

kijlp  is the penalty term, α and β are user-defined parameters to adjust the weight of 

the penalty term. In the equation (2), jlk
f  is the output of the kth ensemble member 

for the jth instance. If the ith member of the population misclassifys the jth instance as 

well as the kth ensemble member does, 
kijlp  will be 1. Otherwise, 

kijlp  will be 0. 

Thus, the penalty term will enforce each individual in the population to avoid mis-
classifying the same instances which are misclassified by the ensemble members and 
thus guarantee the diversity of ensemble members. 

Updating Rules of Ensemble. In this paper, the maximum size of ensemble is fixed 
during constructing period. The following are the rules for updating the ensemble.  

Step1. If the size of the ensemble does not exceed the upper bound, add the new 
member into the ensemble and then return. 

Step2. Otherwise, replace the worst member of the ensemble with the new member if 
the new member is better than the worst member of the ensemble. 
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2.2   Method of Combining the Outputs 

There are many kinds of combining methods for producing the output of the ensem-
ble. This study just focused on the classification problems, thus the majority voting 
was adopted.  

Uniformly generate the initial population by applying OA

Yes

Output the 
global-best

Compute the fitness of each solution

 Better than the local-best ? 

No

Peak one solution from the seed population

Increase stuckCounter

Reach max. stuck count ?

No
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Global Search Phase
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local-best and update the 
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Trajectory Moving
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Update the Ensemble with 
the local-best

Empty the Ensemble

Is the output of the 
ensemble optimal ?

No

Yes

Ensemble
Storage update

refer by
error function

 
 

Fig. 1. The flowchart of the ESTSA for constructing ANN Ensemble 

3   Experiments and Results   

The n-bit parity problem, which is not linearly separable, is one of the most difficult 
classification problems. So we used the n-bit parity problems to test the classification 
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ability of the feedforward neural networks trained by the proposed algorithm. The 
program was coded in Java and run on a personal computer with Intel Core 2 
Quad/Q6600 2.40Ghz CPU and 1024 MB memory. The java program was imple-
mented with single threading mode that means only one CPU serves each running 
program even though the computer has an Intel Core 2 Quad CPU. 

3.1   The Settings of Experiments 

In order to compare the results with those of the previous study [14], ten runs were 
conducted for each of the neural network architectures: N-1-1-1-1 with N=8, 9, 10, 11 
and 12. For N=13, 14 and 15, five, three and two runs were conducted respectively. 
After doing some preliminary study, we decided that the hidden nodes used the sign 
activation function which will output either -1 or 1, and the output nodes used the step 
activation function which will output 0 or 1. All the 2n instances were used in training 
phase. When n is 15, the number of instances is 32768 which is very large for any 
classifier. The parameters used in the proposed algorithm are shown in Table 1. The 
number of iteration of the RALS varies for different n in the STSA. As can be seen, 
for larger n, the number of iteration of the RALS is larger in order to search the 
neighborhood more thoroughly in the STSA. On the other hand, the number of itera-
tion of the RALS is the same with different n in the ESTSA for saving the searching 
time. But, in order to explore the neighborhood more thoroughly, the search involves 
more dimensions and it visits more neighbors. 

Table 1.  Parameters used in the STSA and the ESTSA for the n-bit parity problem 

 

3.2   Experimental Results 

The experimental results are listed in Table 2 for the n-bit parity problems. In  
Table 2, the value of each entry stands for the average computation time over some 
experimental runs.  

Parameters Value in STSA Value in ESTSA 
Size of the seed population (k) 30 30 
Orthogonal Array OA( 243, 20, 3, 3) OA( 243, 20, 3, 3) 
RALS Number of neighbors in 

the neighborhood  
300 500 

 Levels of each dimension 10 10 

 Number of iterations of 
RALS  

100 for N= 8, 9 
200 for N=10, 11 

10 

 minDim 1 1 
 maxDim 3 #dimension/4 
 vRatio 0.3 0.3 

Maximum stuck counter 5 20 
Size of Ensemble (maximum) N/A 5 
Parameters of the Penalty (α , β) N/A ( 1.0, 1.0) 
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For some larger n-bit parity problems, the STSA spent a lot of time to train the 
networks with architecture N-2-2-2-1. For example, when N is 11, the STSA needed 
more than nine hours to train an ANN classifier. Besides, STSA still failed to gain an 
optimal solution in some cases. The results in Table 2 also show that the ESTSA is 
more effective and more efficient than the STSA while applying them to solve the 
large n-bit parity problems. 

Table 2. Comparison between the ESTSA and the STSA. The results of the ESTSA were 
averaged over the complete runs. (*1) The value is the average of nine successful runs out of 
ten complete experiments in the STSA; (*2) The value is the average of five successful runs out 
of ten complete experiments in the STSA. 

 

4   Conclusions  

In the previous study, the authors presented the systematic trajectory search algorithm 
(STSA) to train the ANN and gained some valuable results. The STSA utilizes the 
orthogonal array (OA) to uniformly generate the initial population in order to globally 
explore the solution space, and then applies a novel trajectory search method to ex-
ploit the promising areas thoroughly. In this paper, an evolutionary constructing algo-
rithm, called the ESTSA, of the ANN ensemble is proposed. Based on the STSA, we 
introduced a penalty term into the error function in order to guarantee the diversity of 
ensemble members and incrementally construct the ensemble by applying the ESTSA 
to search the solution space. The ESTSA was applied to solve some large n-bit parity 
problems. When n is 15, the number of instances is 32768 which is very large for 
general classifiers. The experimental results reveal that the ESTSA is more effective 
and more efficient than the STSA. It can train a feedforward neural network with a 
simple architecture (N-1-1-1-1) to classify 15-bit parity problem.  
 
 

STSA [14] 
( N-2-2-2-1 ) 

ESTSA 
( N-1-1-1-1 ) 

 

Average CPU time Average CPU time 
Average 
size of  

ensemble 
N=8 0 hour 8 min. 1 min. 27 sec. (10/10 runs) 3.2 

N=9 0 hour 25 min. 4 min. 59 sec. (10/10 runs) 4.4 

N=10  3 hour 33 min. (*1) 15 min. 25 sec. (10/10 runs) 4.0 

N=11 9 hour 37 min. (*2) 46 min. 42 sec. (10/10 runs) 5.0 

N=12 N/A 1 hour 28 min. (9/10 runs)  4.6 

N=13 N/A 6 hour 26 min. (3/5 runs) 5.0 

N=14 N/A 13 hour 28 min. (3/3 runs) 5.0 

N=15 N/A 26 hour 17 min. (1/2 runs) 5.0 
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For future studies, we plan to apply the ESTSA to classify some medical datasets 
of the UCI machine learning repository. We also plan to do some research works on 
the updating mechanism of the ensemble.  
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Abstract. Preference elicitation (PE) is an very important component

of interactive decision support systems that aim to make optimal recom-

mendations to users by actively querying their preferences. In this paper,

we present three principles important for PE in real-world problems: (1)

multiattribute, (2) low cognitive load, and (3) robust to noise. In light of

three requirements, we introduce an approximate PE framework based

on a variant of TrueSkill for performing efficient closed-form Bayesian

updates and query selection for a multiattribute utility belief state — a

novel PE approach that naturally facilitates the efficient evaluation of

value of information (VOI) for use in query selection strategies. Our VOI

query strategy satisfies all three principles and performs on par with the

most accurate algorithms on experiments with a synthetic data set.

Keywords: preference elicitation, decision-making under uncertainty.

1 Introduction

Preference elicitation (PE) is an important component of eCommerce and rec-
ommender systems that propose items or services from a potentially large set
of available choices but due to practical constraints may only query a limited
number of preferences. The PE task consists of (a) querying the user about their
preferences and (b) recommending an item that maximizes the user’s latent util-
ity. Of course, a PE system is limited by real-world performance constraints that
require phase (a) to be efficient while ensuring phase (b) can make an optimal
recommendation with high certainty. To this end, we outline five principles im-
portant for the practical application of PE in real-world settings used to guide
our research in this work:

1. Multiattribute: Exploiting the natural attribute structure of services or items
in the form of multiattribute utility functions [10] is crucial when the number
of recommendable items exceeds the number of queries a PE system can
reasonably ask. In this case, learning preferences over attribute dimensions
can simultaneously inform preferences over many items.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 396–403, 2010.
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2. Low cognitive load : Since the task of utility elicitation is cognitively difficult
and error prone [5], queries that are more difficult for users lead to higher
noise and less certainty in the utility elicited. Thus, we focus on pairwise
comparison queries known to require low cognitive load for users [6].

3. Robust to noise: A real-world PE system has to make robust utility pre-
dictions in the presence of noisy query responses. Bayesian PE approaches
that maintain a belief distribution over utility functions and update beliefs
using a realistic query confusion model are one natural way to handle noise,
although exact inference in these Bayesian models may often be intractable.

In the following sections, we develop an approximate Bayesian PE framework
to satisfy all three of these principles and demonstrate this empirically on a
synthetic dataset.

2 Bayesian Preference Elicitation

2.1 User Utility Model

In multiattribute utility theory (MAUT) [10], utilities are modeled over a
D-dimensional attribute set X = {X1, . . . , XD} with attribute choices Xd =
{xd1, . . . , xd|Xd|} (where |Xd| denotes the cardinality of Xd). An item is described
by its attribute choice assignments x = (x1, . . . , xD) where xd ∈ Xd. In our
model, an attribute weight vector w = (w11, . . . , w1|X1|, . . . , wD1, . . . , wD|XD |)
describes the utility of each attribute choice in each attribute dimension.

We assume that the utility u(x|w) of item x w.r.t. attribute weight vector w
decomposes additively over the attribute choices of x, i.e.,

u(x|w) =
D∑

d=1

wd,#(x,d), u∗(x) =
D∑

d=1

w∗
d,#(x,d) (1)

where #(x, d) returns index in {1, . . . , |Xd|} for attribute choice xd of x and u∗

represents the user’s true utility w.r.t. their true (but hidden) w∗.
Since w∗ is unknown to the decision support system, it is the goal of preference

elicitation to learn an estimate w of w∗ with enough certainty to yield a low
expected loss on the item recommended. We take a Bayesian perspective on
learning w [3] and thus maintain a probability distribution P (w) representing
our beliefs over w∗.

Because P (w) is a distribution over a multidimensional continuous random
variable w, we represent this distribution as a Gaussian with diagonal covariance,
represented compactly in a factorized format as follows:

P (w) =
D∏

d=1

|Xd|∏
i=1

p(wdi) =
D∏

d=1

|Xd|∏
i=1

N (wdi;μdi, σ
2
di). (2)

We assume the vectors μ and σ represent the respective mean and standard
deviation for the normal distribution over each corresponding attribute choice
in w.
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2.2 PE Graphical Model and Inference

In this paper, we take a Bayesian approach to PE. Thus, given a prior utility
belief P (w|Rn) w.r.t. a (possibly empty) set of n ≥ 0 query responses Rn = {qkl}
and a new query response qij , we perform the following Bayesian update to
obtain a posterior belief P (w|Rn+1) where Rn+1 = Rn ∪ {qij}:

P (w|Rn+1) ∝ P (qij |w, Rn)P (w|Rn)
∝ P (qij |w)P (w|Rn) (3)

Assuming that our query likelihood P (qij |w) is modeled as an indicator function,
we note that the form of the exact posterior is not a diagonal Gaussian as
is the initial prior P (w|R0) = P (w|∅) = P (w) defined in (2), rather, it is a
mixture of truncated Gaussians where the number of mixture components grows
exponentially with the number of queries.

To avoid this exponential exact inference, we must turn to approximate
Bayesian inference techniques. First we note that the use of (3) leads to a slight
variation on the TrueSkillTM [8] graphical model for multiattribute PE shown
in Figure 1.

Fig. 1. PE factor graph variant of TrueSkill for qij = i 
 j. Items i and j have two

attribute choices each with respective weights (w1, w2) and (w2, w3) (note that i and

j share the common attribute choice with weight w2). The posterior over (w1, w2, w3)

can be inferred with the following message passing schedule: (1) messages pass along

gray arrows from left to right, (2) the marginal over d is updated via message 1 followed

by message 2 (which required moment matching), (3) messages pass from right to left

along black arrows.

Of key importance in this approximate Bayesian updating scheme is to note
that from prior sufficient statistics μn and σn for P (w) in the form of (2), the
update with the n+1st query response qij results in posterior sufficient statistics
μn+1 and σn+1. While not guaranteed in practice due to approximation, ideally
we would expect that in the limit of queries as n → ∞, our belief distribu-
tion will approach full certainty in the user’s hidden utility, i.e., μn → w∗ and
σn → 0.
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3 Value of Information

Now that we know how to efficiently update our multiattribute utility distri-
bution based on a user’s query responses, we are left with the question of how
to formulate a query strategy. While all queries should improve the certainty of
our utility estimate w.r.t. some items, we are most concerned with finding the
optimal item with high certainty.

One way to evaluate different queries is to measure the extent to which they
help the PE system reach this optimal decision, which can be formalized using
value of information (VOI) [9]. VOI plays an important role in many Bayesian
PE strategies, as first proposed in [5] and our Bayesian PE framework naturally
facilitates an approximation of VOI as we show next.

One way to formalize the VOI of a query in our PE framework is to note
that the query which maximizes our VOI is the one that most reduces our loss.
Unfortunately, we can never know our true loss for recommending an item,
we can only calculate our expected loss — the query leading to the maximum
reduction in expected loss will then maximize our expected VOI.

But how do we define the expected loss at any stage of PE? First we note
that if we stop PE after eliciting query response set R, then we have posterior
utility beliefs P (w|R) summarized by sufficient statistics (μR, σR). From this,
we can efficiently compute the highest expected utility item i∗R

1:

i∗R = arg max
i

EP (w|R)[u(i|w)] = argmax
i

u(i|μR). (4)

This straightforward result exploits the fact that P (w|R) is diagonal Gaussian
and thus the expectation factorizes along each attribute dimension.

Now let us assume that we have access to the true utilities of items i and k,
respectively u∗(i) and u∗(k) recalling (1). If we recommend item i in place of
item k, then our loss for doing so is max(0, u∗(k) − u∗(i)), i.e., if u∗(k) > u∗(i)
then we lose u∗(k) − u∗(i) by recommending i, otherwise we incur no loss.

Of course, we do not have the true item utilities to compute the actual loss.
However, in the Bayesian setting, we do have a belief distribution over the item
utilities, which we can use to compute the expected loss. Thus, to compute the
expected loss (EL) of recommending item the best item i∗R instead of recom-
mending item k, we evaluate the following expectation:

EL(k, R) = EP (w|R) [max (0, u(k|w)− u(i∗R|w))] (5)

Unfortunately, the computation of EL is difficult because the expectation integral
over the max prevents the calculation from factorizing along attribute dimensions
of the Gaussian utility beliefs. For this reason, we opt for a computationally
simpler approximation of the expected loss (ÊL) where we use the expected
utility u(i∗R|μR) of i∗R from (4) as a surrogate for its true utility, leading to the
closed-form calculation:
1 We assume any item is synonomous with its feature vector (e.g., i∗R and xi∗

R
are used

interchangeably).
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ÊL(k, R) = (μi∗R − μk)(1 − Φμk,σ2
k
(μi∗R)) − σk√

2π
exp

(
− (μi∗R − μk)2

2σ2
k

)
(6)

Here, Φμk,σ2
k

is the normal CDF, μk =
∑

d μd,#(k,d), σ2
k =

∑
d σ

2
d,#(k,d), and

μi∗R =
∑

d μd,#(i∗R,d). (Space limitations require omission of the derivation.)
From this single item expected loss, we can determine the maximum expected

loss (MEL) we might incur by recommending i∗R instead of some other k:

MEL(R) = max
k

ÊL(k, R). (7)

From MEL, we can finally approximate the expected reduction in loss — the
expected VOI (EVOI) — of obtaining query response qij for items i and j:

EVOI(R, i, j) = −MEL(R) +
∑
qij

[
EP (w|R)P (qij |w)

]
MEL(R ∪ {qij}) (8)

4 PE Query Selection Strategies

A query strategy specifies what comparison query between item i and item j
should be asked when given the current query response set Rn = {qkl} after n
queries have been asked.

Ideally, we are supposed to propose the query qij such that the user’s response
can maximally reduce the expected loss with regard to the belief on w, i.e.,

Fig. 2. Illustration of two-step look ahead with maximization and expectation query

strategy (incomplete for illustration purpose). For a given belief state b, suppose there

are three possible queries, a1, a2, a3, each with three possible responses, we represent

the intermediate belief state of asking a1 at b by v
′
1. For given v

′
1, we use b

′
11 to

represent the posterior belief when observing response r1. Same operation applies to

b
′
11 and yields the two-step look ahead search tree. The operators associates with red

circle and black circle represent expectation and maximization, respectively.
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the expected value of information. We adopt a two-step look ahead strategy
involving maximization and expectation to find the best query (Figure 2), and
we call it PE-ME. Given the current belief state and each possible query, we
simulate the user’s response and evaluate the posterior belief state. Then, we
apply the same operation to each posterior belief state. Once we compute the
EVOI for each query and possible user’s response, we compute the expectation
of EVOI of asking a query with different user responses, and select the query
that maximizes the EVOI for each query. Then, we repeat the expectation and
maximization operations, and select the query with maximal EVOI.

Aside from the above strategies, we also experimented with the PE query
strategies that do not use VOI heuristics. The first query strategy is Random
Two, a baseline strategy that randomly picks two items for a query and serves as
an upper bound for worst-case performance. The second is Preference elicitation
upper confidence bounds (PE-UCB), which queries the items with the largest
and second largest upper confidence bounds. Given μ (mean) and σ (standard
deviation) of the item belief, the upper confidence bounds are μ + cσ, where
c > 0 is a constant. We use c = 1 (PE-UCB(1)), c = 2 (PE-UCB(2)), and c = 3
(PE-UCB(3)), respectively.

5 Experimental Results

5.1 Data Set and User Simulation

We evaluate our approach using a synthetic data set. For this data set, we
generate items with all combinations of three item attributes of interest, with 2,
2, and 5 choices, respectively, making 20 items total. In this dataset, we assume
all attribute combinations are feasible.

To simulate the user response process, we drew random utilities for the at-
tribute choice vector w according to two models: (a) a uniform distribution over
[1, 100] for each attribute choice, and (b) a normal distribution with mean μ
drawn uniformly from [1, 100] for each attribute choice, and sampling random
positive semidefinite matrices for use as full covariance matrices.

5.2 Results

All of the following experiments were implemented in Matlab (code available
on request), under Windows, using an Intel(R) CoreTM2 Quad CPU Q9550,
2.83GHz, 3Gb RAM PC. ε = 5 for Bayesian updates.

We show a plot of the normalized average loss (maxj u
∗(j) − u∗(i∗R)) of all

algorithms vs. the number of query responses elicited in Figure 3. That is, on
the y-axis, we show for 50 averaged trials what fraction of the total loss was
incurred by each algorithm after the x-axis specified number of queries. A result
of 0 indicates no loss and is optimal.

For uniformly distributed utility distributions, ‘PE-ME’ query strategy out-
performs ‘Random Two’ and ‘PE-UCB(c)’ when less than 4 queries were asked.
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Fig. 3. Normalized average loss vs. number of queries for various PE strategies. Error

bars indicate standard error.

After that, all the ‘PE-UCB(c)’ strategies start to get better performance.
Amongst those strategies, the performance of ‘PE-UCB(3)’ is the best when
less than 8 queries are asked, however, it is not stable. Since the ninth queries,
‘PE-UCB(2)’ and ‘PE-UCB(1)’ become the best two. For Gaussian utility func-
tions, ‘PE-ME’ achieves the best performance till ninth query is asked. It turns
out that ‘PE-ME’ is very effective in reducing normalized average when a few
queries are asked.

6 Related Work

Space limitations prevent a thorough literature review; we briefly discuss how
related work addresses the three PE principles, which is summarized Section
in 1. While various early PE research influenced many of the design decisions
in this work [5, 4, 1] such as the Bayesian modeling approach, factorized belief
representation, and VOI, these papers typically relied on either standard gamble
queries requiring users to state their preference over a probability distribution of
outcomes or they directly elicit utility values. While theoretically sound, these

Table 1. Comparison among PE algorithms in terms of three requirements

Literature Multiattribute Low cognitive load Robustness

[5]
√ √

[4]
√ √

[1]
√

[7]
√ √

[6]
√

[12]
√

Our approach
√ √ √
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methods may require high cognitive load for elicitation, and thus are prone to
error [5]; we rely on pairwise comparison queries known to require low cognitive
load [6].

7 Conclusion

In light of the PE requirements, we developed an effective Bayesian PE frame-
work based on a variant of TrueSkill for performing efficient closed-form multi-
attribute utility belief updates — a novel PE approach that facilitated efficient
closed-form VOI approximations for PE query selection. This contrasted with
related work that failed to satisfy all requirements. As demonstrated on the syn-
thetic data set, the ‘PE-ME’ query strategy is multiattribute, low cognitive load
via pairwise queries, robust to noise.
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Abstract. Based on Jordan Curve Theorem, a universal classification

method, called Hyper Surface Classifier (HSC) was proposed in 2002.

Experiments showed the efficiency and effectiveness of this algorithm.

Afterwards, an ensemble manner for HSC(HSC Ensemble), which gener-

ates sub classifiers with every 3 dimensions of data, has been proposed

to deal with high dimensional datasets. However, as a kind of covering

algorithm, HSC Ensemble also suffers from rejection which is a com-

mon problem in covering algorithms. In this paper, we propose a local

bayesian based rejection method(LBBR) to deal with the rejection prob-

lem in HSC Ensemble. Experimental results show that this method can

significantly reduce the rejection rate of HSC Ensemble as well as enlarge

the coverage of HSC. As a result, even for datasets of high rejection rate

more than 80%, this method can still achieve good performance.

Keywords: HyperSurface Classification (HSC); HSC Ensemble;

Rejection.

1 Introduction

Among various kinds of classification algorithms in machine learning, there exists
a family of covering algorithms (also called rule learning algorithms) which follow
the so-called separate-and-conquer or covering strategy. In detail, these methods
learn a rule at a time, which explains(covers) a part of the training examples,
then the covered examples are removed and the rest examples are used to learn
new rules successively [1]. This procedure is carried on until all the training
examples are covered. While in the classifying phase, for a test example, rules
are tried until it satisfies any of the learned rules and then it is classified as the
label implied by the satisfied rule.

Different covering algorithms differ in the way how single rules are gener-
ated. Based on the McCulloch-Pitts Neural Model, Zhang et al. [2] proposed a
covering algorithm for classification which models an M-P neuron as a cover-
ing on the input space and constructs a set of labeled sphere neighborhoods for
classification. Based on the same model, Wu et al. [3] combined the kernel func-
tion algorithm of SVM and spherical domain covering algorithm of constructive
machine learning method, and made improvements for the algorithm.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 404–412, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Based on Jordan Curve Theorem, He et al. [4] proposed another covering al-
gorithm for classification which constructs hypersurface homeomorphic to lower
dimensional sphere of the input space, and class labels are obtained according to
whether the intersecting number between the test sample and the hypersurface
is odd or even. In fact, He et al. [4] view the hypersurface as single rules and
generate them recursively, while Zhang et al. [2] and Wu et al. [3] consider the
labeled sphere neighborhoods to be single rules and construct them iteratively.

In machine learning and data mining, a typical assumption is that the training
data and the test data are drawn from the same feature space and follow the
same distribution [5]. However, in the real world, distributions of training data
and test data do not actually match, and then rejection happens.

There are mainly two types of rejection, one rises when a new class label
appears only in the test data [6], and the other rises typically in covering al-
gorithms when test samples belong to the areas which no classifier(or covering)
covers [3]. In case of the former kind of rejection, there are several strategies to
handle, such as distance-based reject-option [7], ambiguity reject-option [7] and
combinations of one-class and supervised classifiers [8].

However, the classification threshold or the rejection threshold for the above
mentioned methods are difficult to choose [6].

In case of the latter kind of rejection, Zhang et al. [9] put forward a probabilis-
tic model which utilizes a Gaussian kernel covering function, they also implement
Expectation Maximization Algorithm for global optimization. As a result, this
model broadens the application domain of their covering algorithm and reduces
the rejection rate. However, it remains a difficult problem on how to select a
proper kernel function.

As a kind of covering algorithm also suffering from rejection, HSC was pro-
posed to classify spirals in [4]. In case of real world data, He et al. [10] proposed a
dimension reduction method for HSC which transforms high dimensional dataset
into three-dimensional dataset. Afterwards, for high dimensional classification,
Zhao et al. [11] proposed HSC Ensemble, which divides a dataset vertically into
sub datasets with every three dimensions of data, and then ensembles sub clas-
sifiers generated by every sub dataset. However, Zhao et al. [11] did not take
rejection into consideration. In this paper, we study the rejection problem of
HSC Ensemble and only discuss the second type of rejection, i.e., only rejection
when test examples exceed the boundary of HSC is investigated. The rest of this
paper is organized as follows: in Section 2, we outline the main idea of hyper
surface classifier (HSC). Then in Section 3, we focus on HSC Ensemble and the
rejection method, the results of which are presented in Section 4, and Section 5
concludes our paper.

2 Main Idea of HSC Algorithm

HSC is a universal classification method based on Jordan Curve Theorem in
topology. Compared to SVM, this approach can directly solve the nonlinear
classification problem in the original space other than higher dimensional space,
therefore without the use of kernel function.
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Jordan Curve Theorem. Let X be a closed set in n-dimensional space . If X
is homeomorphic to a sphere in n-dimensional space, then its complement has
two connected components, one called inside, the other called outside. Based on
the Jordan Curve Theorem, n-dimensional space can be separated by a double-
sided surface that is homeomorphic to a sphere in (n − 1)-dimensional sphere.
So X can be seen as a separating hyper surface.

Classification Theorem. For any given point x ∈ Rn/X , x is inside of X ,
iff, the intersecting number between any radial from x and X is odd; and x is
outside of X , iff, the above-mentioned intersecting number is even.

Based on the above theorems, we can construct hypersurface and use it for
classification. Main steps are in the following.

Main Steps of HSC. There are two major procedures in HSC, one is the
training procedure, and the other is the testing procedure.

Training Procedure
Step 1. Input the training samples, containing k categories and d-dimensions.
Let the training samples be distributed within a rectangular region.

Step 2. Divide the region into
︷ ︸︸ ︷
10 × 10× · · · × 10(10d) small regions called units.

Here, 10 is the number of divisions we perform on each dimension practically,
and actually it could be any number that is above 1.
Step 3. If there are some units containing samples from two or more different
categories, then divide them into smaller units recursive until each unit covers
at most samples from the same category.
Step 4. Label each unit with 1, 2, · · · , k according to the category of the samples
inside, and unite the adjacent units with the same labels into a bigger unit.
Step 5. For each unit, save its contour as a link, and this represents a piece of
hyper surface.

Testing Procedure
In the testing procedure, we just count the number of intersections between the
radial starting from the test sample and the trained hypersurface. If the number
is odd, then the sample is marked as the class indicated by the link.

The classification algorithm based on hypersurface is a polynomial algorithm
if the same class samples are distributed in finite connected components. Ex-
periments showed that this method can work fairly well in both accuracy and
efficiency in three-dimensional space even for large size data up to 107. Specifi-
cally, [12] pointed out that models trained from Minimal Consistent Subset can
correctly classify all the remaining points in the sample set.

3 HSC Ensemble and Rejection Method

3.1 HSC Ensemble

By attaching equal importance to each feature, HSC Ensemble firstly groups the
overall dataset into sub datasets with every three dimension of data, when there
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is less than three dimension for the last sub dataset, one dimension or two from
the last but one sub dataset is reused. Detailed algorithms can be found in [11].

3.2 Rejection Problem

Fig. 1 illustrates the rejection problem in two dimensional space, where the hy-
persurface(also called HSC Classifier or HSC model in this paper) is constructed
from combinations of rectangles. Suppose there are two classes in the figure, one
is covered by the hypersurface on the bottom left corner (depicted with “+”),
and the other is covered by the hypersurface on the top right corner (depicted
with “.”). When test data are located in the covering rectangles, there is no
rejection. However, when test data come from the ellipse region, which is not
covered by any of the hypersurface, all the data points in this region become
unrecognized and rejection happens.

Fig. 1. Rejection Problem in 2 Dimension

3.3 Local Bayesian Based Rejection Method

HSC divides the feature space recursively until all pure covers(hypersurface) are
constructed. The way that HSC covers feature space is so conservative that a
cover only covers points exactly from the same class. Moreover, from the main
steps of HSC, we can see that, after each dividing, the edge length of HSC
decreases to 1/10 of the original edge length before dividing.

As a result, the more deeply HSC divides the feature space, the shorter the
edge of HSC would be and the more unrecognized fragments there would be in
the feature space. In an extreme case, each HSC cover may cover only 1 point
with extremely short edges. Thus when class labels are assigned to points in a
haphazard manner, the feature space has to be divided recursively in order to get
pure HSC covers. Consequently, small fractions of attribute range are rejected.
In case of high dimensionality, the coverage of HSC may shrink exponentially
when too many fractions of attribute range are rejected.

From the above analysis, there are two strict constraints restricting the cover-
age of HSC. The first is that each piece of hypersurface should only cover points
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that have determinate class labels the same as the hypersurface. The second is
that edge length of hypersurface becomes smaller during recursive dividing.

Encouraged by the above analysis, we proposed the following method to deal
with rejection problem in HSC. From the bayesian inference theory we have:

P (C|X) =
P (C,X)
P (X)

=
P (X |C)× P (C)

P (X)
(1)

In Equation (1), X denotes a sample, P (X) is the probability of X , while C
is a class label and P (C) corresponds to its probability. P (C|X) denotes the
probability of class label C conditioned on X and P (X |C) is the probability of
X conditioned on C. For a classification problem, the goal is to find the class
label C which has the highest P (C|X). As P (X) is the same for any class label,
so the classification problem is to estimate the probability P (X |C) × P (C), as
to find the class label C with the maximal P (C,X).

However, when dealing with rejection, it becomes unrealistic to estimate
P (C,X) as there is no hypersurface covering X . In order to solve this problem,
we choose points from the local area of X to estimate the probability P (C,X).
Moreover, instead of viewing X from 3-dimensional perspective as from HSC, we
analyze X from each-dimensional perspective and then ensemble the probability
P (C,X) for all possible C.

Here, suppose the dimension number of X is d, and X is represented as
X(x1, x2, x3, ..., xd), we define the local area of X to be:

Local Area(X) = {P (p1, ..., pd)|P ∈ TS, ∃i ∈ (1, ..., d), (+xi, ≤ pi < -xi.)} (2)

In Equation (2), P (p1, ..., pd) is a point from training set (denoted as TS), while
+xi, denotes the largest integer smaller than xi and -xi. is the smallest integer
larger than xi. From the equation above, we can see that for a point which has
at least one dimension with attribute value pi falling into the scope of +xi, and
-xi., it will be included in Local Area(X). This is different from the cover of
hypersurface which follows:

Cover(H) = {P (p1, ..., pd)|P ∈ TS, ∀i ∈ (1, ..., d), (hilow
≤ pi < hiup)} (3)

In Equation (3), P is the same as in Equation (2), while H([h1low
, h1up),

[h2low
, h2up),..., [hdlow

, hdup)) stands for a piece of hypersurface, where [hilow
,hiup)

composes the edge of H in the ith dimension. Compare Equation (2) with Equa-
tion (3), we can see that the local area has a much more smooth boundary, while
an HSC Classifier has a so strict boundary that many points would be rejected.
Moreover, the edge length of local area remains 1, however, based on the dividing
mechanism of HSC, the edge length of HSC is ≤ 1 (“=” happens only in the
first dividing of feature space). In consequence, Local Area(X) has a much larger
coverage than Cover(H). Take a 2-dimensional example, a point A(2.1, 2.2) cor-
responding to a hypersurface of H : {X(x, y)|2 ≤ x < 3, 2 ≤ y < 3} and a local
area L : {X(x, y)|2 ≤ x < 3}⋃{X(x, y)|2 ≤ y < 3}, another point B(2.9, 3.1)
would not belong to the hypersurface H but fall into L.

Since we only aim to maximize P (C,X) in the Local Area(X), therefore,
when we have the Local Area(X) constructed, calculating the probability of
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P (C,X) in Local Area(X) is equal to calculating the probability of P (C) in
Local Area(X), as all X are from the same Local Area(X). For a test example
X that is rejected, detailed operations for classification are as follows:

Step 1. Scan the training data and construct Local Area(X) defined in Equa-
tion (2).
Step 2. For each class label C, for all the points in Local Area(X), compute
P (C).
Step 3. Select the class label C which has the highest P (C) and predict X as
label C.

In step 2, we compute P (C) in the Local Area(X), as mentioned above, maximiz-
ing this P (C) is equivalent to maximizing the P (C,X) in Local Area(X). And we
call the above algorithm as local bayesian based rejection method(LBBR). On the
time complexity of the above algorithm, suppose N is the number of training in-
stances, d is the number of dimensions and c is the number of total class labels.
The average-run-time of Step 1 is O(d∗N). Since we use a hash tree to store class
labels, the average-run-time of Step 2 is O(α∗d∗N), where α is the percentage of
points in the Local Area to the whole dataset, so α < 1. For Step 3, the average-
run-time is O(c). As c is much smaller than d ∗ N , thus the overall average time
is O(d ∗N + α ∗ d ∗N) = O(β ∗ d ∗N), with β < 2.

Therefore, the time complexity of local bayesianbased rejection(LBBR)method
is linear with the size of training data. Thus LBBR has a good scalability. Exper-
imental results are given in Section 4. Also, we make use of the ROC (Receiver
Operating Characteristic) space for a clear comparison between HSC with LBBR
(denoted as “HSC+LBBR” in the following) and HSC without.

4 Experiments

4.1 Experimental Data

We use data sets from UCI repository [13] to evaluate our rejection method.
Table 1 gives the detailed description of data sets adopted. We divide training
sets and testing sets in the same way as [11], i.e., we randomly choose about 2/3
of data for training and the rest for testing. For some of the datasets in Table 1,
we delete some ineffective or redundant attributes. Take the dataset image for
example, we delete 2 attributes which are not important for classification but
actually impede the construction of sub HSC Classifiers.

Table 1. Description of data Sets

Data Set Number of Number Of Number Of Number Of
Dimensions training Samples testing Samples classes

hayes 5 80 71 3
breast 9 369 200 2
glass 9 151 54 7
image 17 150 60 7
parkins 21 130 65 2

inosphere 34 250 101 2
libras 90 300 59 15
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4.2 Experimental Results

We implemented LBBR and results are shown in Table 2. In Table 2, Recall
denotes the accuracy of HSC on training data and HSC+LBBR stands for the
accuracy of “HSC+LBBR” on test data. Accuracy of HSC denotes, for all the
test samples that are not rejected, the accuracy of HSC. And Accuracy of LBBR
is, for all the rejected test samples, the accuracy of LBBR. From Rejection Rate
column, we can see that different datasets have different rejection rates. Besides,
we can see from the table that when rejection rate is high, the overall accuracy
mainly depends on the accuracy of LBBR. Thus when local Bayesian performs
well, such as on the dataset libras, the overall accuracy would be high.

Table 2. Results of HSC Ensemble on Rejection Problem

Data Set Recall Rejection Rate Accuracy of HSC Accuracy of LBBR HSC+LBBR

hayes 86.25% 50.7% 88.57% 72.22% 80.28%
breast 99.46% 24.85% 99.99% 96.34% 99.09%
glass 100.00% 98.14% 100.00% 66.04% 66.67%
image 100.00% 100.00% - 85.00% 85.00%
parkins 100.00% 100.00% - 76.92% 76.92%

inosphere 100.00% 95.05% 99.95% 91.67% 92.08%
libras 100.00% 100.00% - 91.53% 91.53%
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Fig. 2. ROC Points of HSC Classifiers With LBBR And Without

Fig. 2 shows the ROC points of HSC Classifiers on 3 different datasets,
corresponding to Breast, Inosphere and Parkins, respectively. In the ROC space,
each point is coordinated as (1 − specificity, sensitivity). For specificity and
sensitivity, we have:

Specificity =
TN

TN + FP
, Sensitivity =

TP

TP + FN
(4)

In the above equations, TP denotes the number of True Positives, FN -False Neg-
atives, TN -True Negatives and FP -False Positives. Thus a ROC point describes
the classification capability of a classifier. For a binary classification problem,
an ideal classifier would obtain a sensitivity of 1 and a specificity of 1, thus, in
the ROC space, it would be represented as the point(0,1). Classifiers that take
random guess with Sensitivity = 1−Specificity, would be lined as y = x. Thus,
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classifiers better than random guess should be represented as points above the
line(y = x) in the ROC space.

In all subgraphs of Fig. 2, ROC2 includes the ROC points of HSC+LBBR
classifiers, and ROC1 includes the ROC points of HSC classifiers. All points
on ROC2 are closer to (0,1) than points on ROC1, which indicates that sub
HSC+LBBR classifiers outperform sub HSC classifiers. The larger is the area
between ROC2 and ROC1, the more effective is LBBR. Looking at the rejection
rate of breast, inosphere and parkins in Table 2, we can see that the area between
ROC1 and ROC2 becomes larger as the rejection rate grows. From the discussion
and comparisons above, we can see that LBBR for HSC is effective.

5 Conclusion

In this paper, after analyzing the cause of rejection in HSC Ensemble, we propose
a local bayesian based rejection method(LBBR) to solve the rejection problem in
HSC Ensemble. This method computes the probability of a test sample belonging
to a certain class in the local area of the test sample and get the class label of test
sample in use of Bayesian method. As a result, this method not only smooths
the edge of hypersurface, but also enlarges the coverage of HSC Ensemble. As
shown by our experiments, this method obtains high accuracy as well as obvious
improvement for HSC classifiers. In conclusion, the local bayesian based method
could deal with the rejection problem of HSC Ensemble effectively.
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Abstract. This paper proposes an improved orthogonal least square algorithm 
based on Singular Value Decomposition for spare basis selection of the lin-
ear-in-the-weights regression models. The improved algorithm is based on the 
idea of reducing meaningless calculation of the selection process through the 
improvement of orthogonal least square by using the Singular Value Decompo-
sition. This is achieved by dividing the original candidate bases into several parts 
to avoid comparing among poor candidate regressors. The computation is further 
simplified by utilizing the Singular Value Decomposition to each sub-block and 
replacing every sub-candidate bases with the obtained left singular matrix, which 
is a unitary matrix with lower dimension. It can avoid the computation burden of 
the repeated orthogonalisation process before each optimal regressor is deter-
mined. This algorithm is applied to the linear-in-the-weights regression models 
with the predicted residual sums of squares (PRESS) statistic and minimizes it in 
an incremental manner. For several real and benchmark examples, the present 
results indicate that the proposed algorithm can relieve the load of the heave 
calculation and achieve a spare model with good performance. 

Keywords: singular value decomposition, orthogonal least square, predicted 
residual sums of squares (PRESS) statistic, spare bases selection. 

1   Introduction 

In many situations, multivariate time series are required to model the complex dynamic 
of chaotic systems [1, 2]. It has been shown that predictions using multivariate time 
series may be significantly better than those using univariate time series [3]. Although 
the multivariate inputs can provide more information for modeling, the increment of the 
inputs also means more complex model structure, which would produce very poor 
generalization and heavy time consuming. In order to achieve accurate predictions with 
multivariate inputs, the effective complexity of the model has to be controlled based on 
the principle that ensures the smallest possible model that fits the training data well.  

Several methods have been developed for simplifying the model complexity, which 
are typically divided into constructive approaches [4, 5], and pruning methods [6, 7]. In 
the constructive approach, the structure of the network is incrementally built through 
adding nodes to the hidden layer one by one or group by group, while the pruning 
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approach starts with an initial selection of a large number of hidden units which is 
reduced as the algorithm proceeds.  

In a recent publication, Billings [8] introduced the forward orthogonal least squares 
(OLS) algorithm for model construction. For a large class of linear-in-the-weights 
model, the orthogonal least square method has been known as an useful method for 
model complexity control and the ill-conditioning problems can also be solved effec-
tively. To achieve a spare model with directly optimizing model generalization capa-
bility, a full automated procedure is proposed by using the PRESS statistic as a cost 
function for iterative model evaluation [9]. In [10], the OLS and a D-optimality crite-
rion are used to determine the structure as for optimizing the model approximation 
ability, spare, and robust simultaneously. However, In the OLS algorithm, to select a 
candidate regressor, the vectors formed by the candidate regressors must be processed 
by using orthogonal methods, which is time consuming.  

In the present paper, an orthogonal least squares based on Singular Value Decom-
position for Spare Basis Selection is proposed (OLS-SVD). The new algorithm divides 
the candidate regressors into some sub-blocks to avoid comparing among the poor 
neurons and uses the forward orthogonal least squares algorithm based on the SVD 
approach to select the candidate regressors. The paper is organized as follows. Section 
2 briefly reviews some primarily acknowledge on Linear-in-the-weights regression 
model. The OLS-SVD algorithm based on SVD and Press statistic is described in 
section 3. In section 4, two examples are simulated to illustrate the performance of the 
new algorithm. Finally, the conclusions of this paper are given in section 5. 

2   Linear-in-the-Weights Regression Model 

Consider a discrete nonlinear dynamical system of the form 

( ) ( ) ( ) ( ) ( )( ) ( )1 , , , 1 , ,y uy k f y k y k n u k u k n e k= − − − − +… …       (1) 

where f(·) is an unknown nonlinear mapping, u(k) and y(k) are the input and output 
variables of the system at discrete time step k, nu and ny represent the maximal orders in 
u(k) and y(k), respectively, while e(k) is assumed to be Gaussian noise with zero mean 
and unit variance. A linear-in-weights regression model of the form (2) can approxi-
mate f(·) with zero error. 

( ) ( ) ( ) ( )( ) ( )

( ) ( )
1

ˆ
Mn

i i
i

T

y k y k e k Φ x k e k

k e k

θ
=

= + = +

= +

∑
Φ θ

, 1, ,k N= …          (2) 

where N is the size of the observation data set, ˆ( )y k is the model output, θi are the 
model weights，θ = [θ1,..., θnM]T

，Φi(x(k)) are the regressors and Φ(k) = [Φ1(x(k)),..., 
ΦnM(x(k))]T

，x(k)=[y(k-1),…,y(k-ny),u(k-1),...,u(k-nu)]
T denotes the system input vec-

tor, and nM is the total number candidate regressors.  
The above N equations can be written compactly as  

= +y Φ eθ                               (3) 
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where Φ = [Φ(1),..., Φ(N)]T, where Φi = [Φi(1),..., Φi(N)]T, 1 ≤ i ≤ nM, and defining y = 
[y(1),..., y(N)]T, e = [e(1),..., e(N)] T. 

The forward selection algorithm is often used to construct a parsimonious model 
with a subset of n0 nM regressors by some model-selective criterion, among which  
the leave-one-out cross validation are metrics that measures a model’s generalization 
capability.  

Let {x(k), y(k)}k=1:N,-k, be the resulting data set by removing the kth data point from 
the training data set {x(k), y(k)}k=1:N, and denote estimated model output with j regressors 
as ,ˆ ( )j ky k− , and the related predicted residual at k as , ( )j k kε − . For a linear-in-the-weights 
model with nM candidate regressors, the PRESS errors are calculates as 

, ,

1

ˆ( ) ( ) ( )

( )

1 ( )( ) ( )

M M

M

n k n k

n

T T

k y k y k

k

Φ k Φ k

ε
ε

− −

−

= −

=
− Φ Φ

                                      (4) 

where ˆ( ) ( ) ( )
M Mn nk y k y kε = −  

3   OLS_SVD Algorithm Based on SVD and Press Statistic 

It appears that the computation burden of choosing the best subset model, which 
minimizes the mean square PRESS error ,[ ( )]

Mn kE kε − , will be expensive, as the matrix 
inversion involving. However, if employing an orthogonal forward regression to in-
crementally minimize PRESS error as presented in [11, 12], the model selection pro-
cedure would become computationally affordable. 

Consider the linear-in-the-weights regression model (3), several OLS algorithms 
have been developed for selecting the candidate regressiors, such as Classical 
Gram-Schmidt (CGS) algorithm, Modified Gram-Schmidt (MGS) algorithm and 
Householder algorithm. The three methods have the same drawbacks to select candi-
date regressors with a forward selection procedure, as almost all the unjustified re-
gressors need an orthogonal process with the predetermined ones before each optimal 
column is selected, and the computational complexity of the orthogonalisation proce-
dure increases with the number of columns has been selected. Moreover, at each se-
lection step, the PRESS statistic or other selective criterion with each unjustified 
column has to be formed for comparison. It appears that the computation burden in-
creases as the growing of model size, and repeated comparing among the poor candi-
date regressors would also make the computation effort of the selection procedure 
extensive. 

To overcome these drawbacks, an improved orthogonal least square algorithm based 
on SVD is proposed for spare model construction. The new algorithm divides the de-
sign matrix into several sub-blocks to avoid comparing among poor candidate regres-
sors. And then SVD is applied to each sub-block, which would avoid the repeated 
orthogonalisation process by replacing the sub-design matrix with the obtained or-
thogonal singular matrix. Based on the model form of (3), the algorithm is showed as 
follows. 
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Firstly, dividing the design matrix Φall into d parts equally by column, Φ is a 
sub-block derived from Φall with nM (nM<nMall) columns. Assuming the rank of Φ is p in 
columns, and Φ can be decomposed according to the Singular Vector Decomposition 
theorem as 

H⎡ ⎤
= ⎢ ⎥

⎣ ⎦

Σ
Φ U V

O

O O
                                             (5) 

where ( )1 2, , , pdiag σ σ σ=Σ , and the diagonal elements of Σ are in the order 
σ1≥σ2≥,…,≥σp, U is an N×N orthogonal matrix consisting of all the orthogonalized 
eigenvectors associate with the eigenvalues of ΦΦT, and V is and nM×nM orthogonal 
matrix. Then only the first r eigenvectors (associated with the larger eigenvalues) are 
retained, while (p-r) smaller components are discarded, assuming that the latter de-
scribe mostly noise, and the r selected eigenvalues satisfy 

2

1
0

2

1

r

i
i
p

j
j

σ
η

σ

=

=

>
∑

∑
                                                     (6) 

where η0 is a user defined parameter, 0<η0<1. According to the r eigenvalues, blocking 
the matrix U, V and Σ as 

1 2[ ]=V V V| ， 1 2[ ]=U U U| ， 1 2[ ]=Σ Σ Σ|                       (7) 

where V1 is a nM by r Matrix, V2 is a M by (nM-r) Matrix, U1 is a N by r Matrix, U2 is a 
N by (N-r) Matrix, and Σ is a r by r Matrix, V2 is a (p-r) by (p-r) Matrix.  

Therefore, by neglecting the small singular values, which can be shown that mainly 
represent noise, Eq. (5) can be simplified by Φr, whose rank equals the number of 
remaining singular values. 

1 1 1
H

r =Φ U Σ V                                                   (8) 

where [ ]1 1 2, , , r=U u u u .  
Then, based on the approximation matrix Φr, the linear-in-the-weights regression 

model (3) can be expressed as 

1 1 1
H

r= + ≈ + = ⋅ ⋅ +Y Φθ e Φ θ e U Σ V θ e                              (9) 

Define [ ]1 1 2, , ,
TH

Mg g g= ⋅ =g ΣV θ , and Eq. (9) can be rewritten as 

1= +Y U g e                                                  (10) 

Eq. (8) is similar to the linear-in-the-weights regression model (3), but there are several 
significant differences between the two candidate regression matrix, U1 and Φ. First, 
compared to the matrix Φ, U1 is an orthogonal matrix, which means all the candidate 
regressors are already orthogonal with each other, and the repeated orthogonalisation 
decomposition of Φ is avoided in the forward selection process. Second, by neglecting 
the small singular values in the matrix Σ, U1 is an N by r orthogonal matrix consisting 
of only r orthogonalized eigenvectors associate with the r most significant eigenvalues 
of ΦΦT. Substituting Φ with U1 would reduce the number of the candidate regressors, 
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and avoid the comparing among the poor regressors at each selection step, which is 
time consuming and complicated.  

Then, the PRESS statistic can be embodied as a selective criterion for model con-
struction, and the formulation is similar to the case given in [9]. For the improved 
orthogonal model (8) with r candidate regressors, the PRESS errors are calculates as 

, ,

1
1 1 1 1

ˆ( ) ( ) ( )

( ) ( )

1 ( )( ) ( ) ( )

n k n k

n n
T T

n

k y k y k

k k

k k k

ε
ε ε

η

− −

−

= −

= =
− U U U U

                                 (11) 

where U1 is an orthogonal matrix. 
To measure the generalization capability of a sub-model with n candidate regressors, 

the mean square PRESS error is the given by averaging all these PRESS errors. 

2 2
2
, 2

( ) 1 ( )
[ ( )]

( ) ( )
n n

n n k

n n

k k
J E k E

k N k

ε εε
η η−
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⎢ ⎥= = =⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                                  (12) 

Note that the model residual εn(k) for the n-term model can be computed recursively as 

1
1

( ) ( ) ( ) ( ) ( )
n

n i i n n n
i

k y k u k g k u k gε ε −
=

= − = −∑
           

                  (13) 

where  
T
i

i T
i i

g = u y
u u

                                                     (14) 

And similarly, the PRESS error weighting ηn(k) can be written in a recursive formula by 

2 2

1
1

( ) ( )
( ) 1 ( )

n
i n

n nT T
i i i n n

u k u k
k kη η −

=

= − = −∑ u u u u
                                     (15) 

Assume Φ1,Φ2,…,Φd are the d sub-blocks of the design matrix Φall and iU (i=1,2,…,d) 
is the ith subsets obtained from the selection process described above with each Φi, 
then the final basis function for model (3) is reconstructed as 1 2, ,..., ]d=U [U U U . If 
the size of U is still a large number, we can repeat this strategy till an appropriate model 
structure is achieved. It is worth to notice that d is a user defined parameter. The 
computation of selection procedure is simpler as the increase of d, for the candidate 
regressors in each sub-blocks is small. However, the computation burden of SVD 
needed is also increase as more subsets have to be considered. Given no a priori 
knowledge, there is no automated optimal way of choosing d, so in a practical scenario, 
we depend on the user’s experiment and familiarity with size of data available to guide 
the choice of this parameter.  

4   Simulations 

The sparse modeling procedure described in the previous sections is applied to the 
simulated and benchmark data set, respectively.  
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4.1   Approximation of SinC Function with Noise 

In this example, a RBF network with the Gaussian basis function is employed to ap-
proximate the SinC function, which is a popular choice to illustrate Support Vector 
Machine for regression (SVR) in the literature 

sin( )
0

( )
1 0

x
x

y x x
x

⎧ ≠⎪= ⎨
⎪ =⎩                    

                          (16) 

The Gaussian basis function employed is given by 

( )
2

2

|| ||
exp

2
i

iΦ σ
⎛ ⎞−= −⎜ ⎟
⎝ ⎠

x c
x

                    
                     (17) 

and ci and σ are the centers and the widths of the basis functions, respectively.  
The proposed algorithm is firstly compared with an OLS method based on and 

PRESS statistic to illustrate its efficiency in computation cost, in which the orthogo-
nalisation process is achieved by employing a modified Gram-Schmidt (MGS) method. 
Moreover, for comparing the influence of the size of training set, 5 experiments are 
provided for each algorithm. In these experiments, the training set {x(k), y(k)} is cre-
ated from y(x) where the input x(k) is uniformly distribution on the interval (-10, 10). 
The number of the training sample is given in Table 1, which changes from 200 to 
1000. In order to make the regression problem real, the Gaussian noise with zero mean 
and standard deviation 0.2 has been added to all the training samples. A testing set 
{x(k), y(k)} is also created from y(x) with two hundred noise free data, in which x(k) is 
equally spaced in (-10, 10). The optimal kernel width is found to be σ2=10 empirically, 
and the candidate center is taken as each training data point x(k). Therefore, the number 
of regressors in each experiment is the same as that of the training set {x(k), y(k)}.  

Table 1. Performance comparison of computation cost and accuracy for the simulated data set 

Algorithm Training  
time 

Training  
MSE 

Testing 
 MSE 

Training 
size 

Number of 
sub-blocks 

OLS with PRESS 2.9312 0.0429 0.0424 200 1 
OLS-SVD with PRESS 0.2320 0.0408 0.0421 200 1 

OLS with PRESS 12.0031 0.0287 0.0294 400 2 
OLS-SVD with PRESS 0.8125 0.0290 0.0292 400 2 

OLS with PRESS 26.5750 0.0331 0.0330 600 3 
OLS-SVD with PRESS 2.1125 0.0305 0.0310 600 3 

OLS with PRESS 47.7125 0.0235 0.0244 800 4 
OLS-SVD with PRESS 3.9688 0.0237 0.0238 800 4 

OLS with PRESS 73.5094 0.0172 0.0179 1000 5 
OLS-SVD with PRESS 6.8024 0.0179 0.0185 1000 5 

Table 1 compares the performance of the two OLS based method in the term of the 
computation cost and the modeling accuracy. As observed from Table 1, both the al-
gorithms are comparable in accuracy. However, in the term of computation time, the 
OLS algorithm based on PRESS statistic is more time consuming for the repeated 



 Orthogonal Least Squares Based on Singular Value Decomposition 419 

orthogonalisation process in each selection step, and the training time increases dra-
matically with the number of the sample size. For the proposed algorithm, the model 
selection procedure is computation efficient by dividing the original design matrix into 
sub blocks and employing the SVD to simplify the orthogonalisation process. Com-
pared with the OLS algorithm based on PRESS statistic, training time of the proposed 
algorithm increases slowly with the sample size.  

4.2   Approximation of Nonlinear Dynamic Control System 

Consider the following nonlinear dynamic control system 

2 2

( 1) ( 2) ( 3) ( 2)( ( 3) 1) ( 1)
( )

1 ( 2) ( 3)

z k z k z k u k z k u k
z k

z k z k

− − − − − − + −=
+ − + −

         (18) 

A training set {x(k), y(k)} and testing set {x(k), y(k)} are created form (18) with 200 
and 100 samples, respectively, where the system input u(k) is uniformly distribution 
on the interval [-1, 1]. In order to make the problem real, the Gaussian noise with  
zero mean and standard deviation 0.05 has been added to all the training and testing 
samples.  

A RBF network with the thin-plate-spline basis function is employed to follow the 
dynamic process 

( )( ) ( ) ( )( )2
logi i iΦ k k k= − −x x c x c

    
                 (19) 

And the system input vector is denoted as  

( ) ( ) ( ) ( ) ( )( ) 1 2 3 1 2
T

k y k y k y k u k u k= − − − − −⎡ ⎤⎣ ⎦x             (20) 

As each training data point x(k) is considered as a candidate center of the network, there 
are 200 candidate regressors. In addition, for the small sample size, no dividing process 
is provided in this example.  

To illustrate the generalization ability of the proposed algorithm, it is also compared 
with 5 other model construction methods, such as the LROLS algorithm with PRESS 
statistic, the OLS algorithm with PRESS statistic, the LROLS algorithm with MSE, the 
RVM algorithm, and the enhanced k-means clustering and least squares (CLS). All 
these algorithms have been employed in [9].  

Table 2. Performance comparison of model size and accuracy for the nonlinear  system 

Algorithm Validation 
set used 

Model 
size 

Training  
MSE 

PRESS  
statistic 

Testing  
MSE 

OLS with PRESS [9] No 51 0.002280 0.003864 0.005187 
LROLS with PRESS [9]] No 31 0.003192 0.003706 0.005892 
LROLS with MSE[ [9] No 42 0.001883 0.003067 0.004872 

RVM [9] No 42 0.001598 0.002577 0.004935 
CLS [9] Yes 49 0.003940 0.007607 0.005580 

OLS-SVD with PRESS No 30 0.002527 0.003517 0.005210 
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Table 2 illustrate that, the six algorithms are comparable with each other in the term 
of model size and accuracy. In this example, the 200 candidate regressors are reduced 
to a size of 66 first, and a sparse model with 30 terms is achieved after the forward 
selection process. The model size of the proposed algorithm is comparable with the 
LROLS algorithm with PRESS statistic, while much smaller than the other four algo-
rithms. However, although the LROLS with PRESS can construct a parsimonious 
model, its modeling accuracy is the worse, compared with the other five algorithms. 
For the proposed algorithm, as only the small singular values, which can be shown that 
mainly represent noise, are neglected in the process of SVD, the reconstructed candi-
date regressors in model (10) kept most of the useful information. Hence, the proposed 
algorithm can be acceptable in modeling accuracy. In addition, as same as the OLS with 
PRESS, the LROLS with PRESS and the RVM, the proposed algorithm is also an 
automated procedure without any requirement of a validation set.  

5   Conclusions 

In this paper, a new OLS algorithm based on SVD for linear-in-the-weights regression 
models is proposed. This is achieved by dividing the original candidate bases into 
several parts to avoid comparing among poor candidate regressors. The computation is 
further simplified by utilizing the Singular Value Decomposition to each sub-block. It 
can avoid the computation burden of the repeated orthogonalisation process before 
each optimal regressor is determined and further reduce the number of the candidate 
regressors. The results obtained from the examples which include the SinC function 
and a nonlinear dynamic control system demonstrate its effectiveness and accuracy.  
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Abstract. The problem of clustering data has been driven by a demand

from various disciplines engaged in exploratory data analysis, such as

medicine taxonomy, customer relationship management and so on. How-

ever, Most of the algorithms designed to handle data in the form of

point clouds fail to cluster data that expose a manifold structure. The

high dimensional data sets often exhibit geometrical structures which are

often important in clustering data on manifold. Motivated by the fact,

we believe that a good similarity measure on a manifold should reflect

not only the statistical properties but also the geometrical properties of

given data. We model the similarity between data points in statistical

and geometrical perspectives, then a modified version of spectral algo-

rithm on manifold is proposed to reveal the structure. The encouraging

results on several artificial and real-world data set are obtained which

validate our proposed clustering algorithm.

Keywords: Clustering; Manifold Learning; Spectral Clustering.

1 Introduction

Clustering data with similar features into clusters has been studied in a wide
range of literatures and many effective algorithms have been proposed[1]. De-
spite the success they fail to cluster data that expose a manifold structure, like
speech, motion and images, that generally exist in the form of paths in a high-
dimensional space. Manifold learning is a learning scheme that characterizes
a possibly non-linear manifold on which the data would lie. Popular manifold
learning techniques include Locally Linear Embedding (LLE)[2], Hessian LLE[3],
ISOMap[4], Laplacian Eigenmaps[5] and so on.

Differing from the manifold learning that primarily discovers a manifold em-
bedding of input data, manifold clustering attempts to partition a set of data
into several different clusters each of which contains data points originating from
a separate low-dimensional manifold. There exist several works that cluster the
data on manifolds. In [6], R. Souvenir et al. presented an approach to factor low-
rank manifold of data that originate from multiple, intersecting low-dimensional
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manifolds. In their method, two novel technical contributions are highlighted:
node-weighted multidimensional scaling and a fast algorithm for weighted low-
rank approximation for rank-one weight matrices. Q. Guo et al. proposed a
manifold clustering approach with energy minimization strategy [7]. In which an
energy function has been defined by weighted components on Euclidean distance
between two consecutive and discrete curvature of manifolds. The function then
be minimized by tabu search to find the locally optimal sequence of the data.
Finally, clusters are generated by breaking the sequence and merging some iso-
lated points. It is worthy of noting that the approach only works on 2-D and 3-D
data space. In [8], R. Haralick et al. described a new cluster model LMCLUS
which is based on the concept of linear manifolds. In order to detect clusters
embedded in lower dimensional linear manifolds, LMCLUS uses the strategy
of hierarchical-divisive procedure and random projection via sampling and his-
togram thresholding to construct trial linear manifolds of various dimensions.

In this paper, we are motivated by the fact that high dimensional data sets
often exhibit geometrical structures which are important to be considered in clus-
tering data on manifold. We believe that a good similarity measure on a manifold
should reflect not only the statistical properties but also the geometrical prop-
erties of data sets. We then propose a manifold clustering algorithm SCM which
uses spectral analysis to drive the clusters and evaluate the proposed algorithm
on several synthetic and real-world data set, the results obtained indicate the
improvement in the model quality and give additional insights into the data.

The remainder of this article is organized as follows. The problem of manifold
clustering is formulated in Section 2. In Section 3, we first proposed a variant
of spectral clustering in which the graph is constructed with the statistical and
geometrical similarity, then, the algorithm SCM is described in details. The ex-
perimental results on synthetic and real-world are reported in Section 4. Finally,
Section 5 concludes the paper.

2 Problem Formulation

Generally speaking, the goal of manifold clustering is to find clusters with an
intrinsic dimensionality that is much smaller than the dimensionality of the data
set. The problem of clustering data on multiple complex manifold structure can
be described as follows: Suppose a set of points X = {x1,x2, · · · ,xn} that
derived from S intersecting manifolds, where xi ∈ R

d, n is the size of X , d is
the dimension and S is the possible number of manifold. The goal of clustering
is to partition the data into S clusters each of which corresponds to a manifold.
The output of clustering generally requires a set of labels C = {c1, c2, · · · , cn},
where ci ∈ {1, 2, · · · , S}, 1 ≤ i ≤ n.

3 SCM: Spectral Clustering on Manifold

3.1 Motivation

The basic goal in clustering analysis is to group data objects with similar fea-
tures together. In manifold clustering, most existing algorithms utilize certain
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traditional similarity measure that emphasizes the statistical properties in given
data set. However, we believe that, in additional to statistical properties, high
dimensional data sets often exhibit geometrical structures which are often im-
portant to be considered in clustering data on manifold: similar data samples
should have similar geometrical properties. Furthermore, a good similarity mea-
sure on a manifold should reflect not only the statistical properties but also
the geometrical properties of given data set, which is the direct motivation of
proposed approach in this paper. In our approach, the statistical property of
similarity is often implemented with nearest neighborhood technique and the
geometrical property of given data sample is measured with data objects whose
distances are smaller than a threshold value ε.

3.2 Modeling the Similarity

As introduced in the above, we consider the statistical properties and geomet-
rical properties to model the similarity between data objects. Like most of the
traditional clustering methods, the k nearest neighborhood techniques is chosen
to calculate the similarity in the perspective of statistical properties. In addi-
tion, the similarity in geometrical property of given data object is modeled with
ε neighborhood in our consideration. The k nearest neighborhood and ε neigh-
borhood are defined as follows:

Definition 1 (k-neighborhood). Ni(k) is a set of data points in dataset X
that contains k nearest points of xi.

Definition 2 (ε-neighborhood). Ni(ε) is a set of data points in dataset X
that contains points satisfying ‖xi − xj‖ < ε, i.e.

Ni(ε) = {xj |‖xi − xj‖ < ε,xj ∈ X} (1)

k-neighborhood and ε-neighborhood describe the local relationship of a data
point xi in statistical and geometrical aspects respectively. Thus, we can define
the k-neighborhood and ε-neighborhood graph as follows:

Definition 3 (k-neighbor Graph). Given a set of points X={xi,x2,· · ·,xn},
and the k-neighborhood of each point xi, 1 ≤ i ≤ n. A weighted undirected graph
Gk = 〈Vk, Ek〉 is constructed from the given data set X where,

– Vk = X, i.e. that each vertex in the Gk corresponds a data object in X;
– Ek = {xixj |xi ∈ Nj(k)}, that is two data instances xi and xj are connected

if and only if one is in the k-neighborhood of the other;
– The weight wk

ij of edge connecting xi and xj is the similarity between xi and
xj;

Definition 4 (ε-neighbor Graph). Given a set of points X={xi,x2,· · ·,xn},
and the ε-neighborhood of each point xi, 1 ≤ i ≤ n. A weighted undirected graph
Gε = 〈Vε, Eε〉 is constructed from the given data set X where,
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– Vε = X, i.e. that each vertex in the Gε corresponds a data object in X;
– Eε = {xixj |xi ∈ Nj(ε)}, that is two data instances xi and xj are connected

if and only if one is in the ε-neighborhood of the other;
– The weight wε

ij of edge connecting xi and xj is the weighted similarity be-
tween xi and xj ;

In general, there exists three possible choices to weight the edge in graph G.
The simplest method for building the weighted graph is the binary weighting
approach, the second approach is Gaussian Kernel(GK) which is often applied
in many application, the final method to estimate the edge is given by the locally
linear embedding technique and the weight wij can be calculated by solving an
optimization problem [2].

Definition 5 (Similarity Graph). Given a set of points X={xi,x2,· · ·,xn},
and the k-neighborhood and ε-neighborhood of each point xi, 1 ≤ i ≤ n. The
k-neighbor graph Gk = 〈Vk, Ek〉 and ε-neighbor graph Gε = 〈Vε, Eε〉 can be
constructed according to definition (3) and definition (4). Thus, a weighted graph
that combines the statistical and geometrical similarity will be created as G =
〈V,E〉, where

– V = X, i.e. that each vertex in the G corresponds a data object in X;
– E = {Ek ∪Eε}, that is two data instances xi and xj are connected if one is

in the k-neighborhood or ε-neighborhood of the other;
– The weight wij of edge connecting xi and xj is the linearly combined weighted

similarity between xi and xj, and

wij = αwk
ij + (1 − α)wε

ij α(0 ≤ α ≤ 1) is the coefficient (2)

As mentioned above, the graph G = 〈V,E〉 considers the two local relationship of
a data point xi, i.e. the k-neighborhood and ε-neighborhood which are incorpo-
rated into a unified graph representation via linear combination. It is worthy of
noting that the graph is not symmetrical, like most approaches in the literature,
here, we also use the symmetrical graph by W ′ = 1

2 (W +W�). Without loss the
generality, W denotes the symmetrical similarity in the remainder of the paper.
After the data points and local relationship representation in graph is obtained,
we can derive the clusters using the spectral analysis.

3.3 SCM Algorithm

Spectral clustering works by detecting the clusters in data set via analyzing
the eigenvectors of graph Laplacian. In other words, the multiplicity k of the
eigenvalue 0 of unnormalized graph Laplacian L or normalized graph Laplacian
Lnorm equals the number of connected components in the graph. The graph
Laplacian L and Lnorm are computed as follows,

L = D −W (3)

Lnorm = D−1/2LD−1/2 (4)

where D is the degree matrix of W , Dii =
∑

j wij , 1 ≤ i ≤ n.
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Following the general framework of spectral clustering, we can derive our spec-
tral clustering variant that clusters data on a manifold considering the statistical
and geometrical similarity. The proposed algorithm is described in Figure (1).

Algorithm 1. SCM: Spectral Clustering Algorithm on Manifold
Input: Data set X, statistical and geometrical neighborhood k, ε, the

bandwidth of kernel σ, the number of clusters K;

Output: Clusters C1, C2, · · · , CK ;

Construct the k-neighborhood graph with statistical similarity, Let Wk be its1

weighted matrix;

Construct the ε-neighborhood graph with geometrical similarity, Let Wε be its2

weighted matrix;

Construct a similarity graph by considering the statistical and geometrical3

similarity with Equation (2). Let W = αWk + (1−α)Wε be its weighted matrix;

Compute the unnormalized Laplacian L or the normalized Laplacian Lnorm;4

Compute the first K generalized eigenvectors u1, u2, · · · , uK of the generalized5

eigen problem Lu = λDu;

Let U ∈ R
n×K be the matrix containing the vectors u1, u2, · · · , uK as columns;6

For i = 1, · · · , n, let yi ∈ R
K be the vector corresponding to the i-th row of U ;7

Cluster the points (yi)i=1,··· ,n, in R
K with the k-means algorithm into clusters8

C1, · · · , CK ;

In the first step, the complexity for compute statistical k-neighborhood for
all points is O(n3 · log(n)), while the complexity is O(n3) for the geometrical
ε-neighborhood, where n is the number of data points. The later three steps are
implemented in a spectral clustering algorithm, the time complexity of the im-
plemented algorithm depends on the complexity of the eigenvalue decomposition
algorithm is about O(n3), where n is the number of rows/columns. In most cases,
it is possible to reduce the time complexity, since the algorithm needs certain
eigenvectors only (which are corresponding to smallest or largest eigenvalues in
magnitude). Thus, the proposed algorithm has about the same time complexity
with the classic spectral clustering.

4 Experimental Results

We experiment the proposed algorithm on several synthetic and real-world data
from UCI machine-learning repository [9]. Our spectral is in fact a general variant
of classic spectral clustering. There have several parameters need to be set. In all
experiments, we select the Gaussian Kernel to measure similarity between two
data points and the bandwidth of kernel σ is set to 2. In addition, we treat the
statistical similarity and geometrical similarity equally, so the coefficient α is set
to 0.5. For the purpose of comparing performance of clustering, RandIndex is
selected to evaluate the performance of our algorithm. In each experiment, we
run the algorithm on each data set for 10 times, then the mean RandIndex value
is calculated.
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4.1 Synthetic Data

We select two synthetic data sets, namely “twomoons” and “spiral” data for
evaluating our proposed algorithm. The “twomoons” and and “spiral” data set
have become the standard benchmarks in numerous other manifold related ex-
periments. Note that these synthetic data cannot be clustered in a meaningful
way by certain methods that assume the data form a compact shape. The orig-
inal data set of “twomoons” and “spiral” are illustrated in Figure (1) and (5),
respectively.
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Fig. 1. Two moons

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 2. k = 4, ε = 0.2
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Fig. 3. k = 1, ε = 0.2
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Fig. 4. kmeans
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Fig. 6. k = 4, ε = 0.2
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Fig. 8. kmeans

The clustering results of our proposed algorithm are shown in figure (2) to (3)
for twomoons data and figure (6) to (7) for spiral data. We can see our algorithm
work very well with different configuration of parameters. Figure (4) and (8) are
the results that the k-means algorithm returns. It is obvious that our algorithm
can find much more meaningful clusters than the classic k-means for the data
on the manifold.

4.2 Real-World Dataset

We also test our algorithms on several real-world data sets from the UCI machine-
learning repository [9]. Four data, namely “Soybean”, “Vowel”, “Iris” and “Zoo”
are selected to measure the performance with RandIndex. All data are multi-
attirubte and multi-class that are considered to situate on the manifolds. The
basic information of these data sets is described in the Table (1).

In our experiment, different configuration of parameters are tested to compare
the performance improved. Four k-neighborhood, i.e. k = 0, 10, 20, 30 nearest
neighbors are constructed as the statistical similarity, and four ε-neighbors, i.e.
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Table 1. Data set description from UCI

Name Num of Insts Num of Attrs Num of Disc. Num of Cont. Num of Class

Soybean 683 36 36 0 19

Vowel 990 14 4 10 11

Iris 150 5 4 1 3

Zoo 101 18 17 1 7

ε = 0, 0.5, 2, 5 geometrical neighborhoods are constructed as the geometrical
similarity. Thus, our proposed algorithm is tested on the possible statistical and
geometrical similarity of 15 combination to measure the clustering performance,
the coefficient is set to 0.5 in all experiments (except for k = 0 and ε = 0). The
experiment results are shown in the Table. (2) to (5).

Table 2. Soybean data

k ε = 0 ε = 0.5 ε = 2 ε = 5

k = 0 N/A .8307 N/A .7552

k = 10 .8334 .8338 .8494 .8099

k = 20 .7760 .7761 .7779 .7775

k = 30 .7994 .8030 .6860 .8503

Table 3. Vowel data

k ε = 0 ε = 0.5 ε = 2 ε = 5

k = 0 N/A N/A N/A .8286

k = 10 .8011 .8160 .8141 .8277

k = 20 .8090 .7951 .8157 .8312

k = 30 .8164 .8342 .8359 .8280

Table 4. Iris data

k ε = 0 ε = 0.5 ε = 2 ε = 5

k = 0 N/A .7766 .8797 .8797

k = 10 .8759 .8859 .8797 .8797

k = 20 .9017 .9055 .8797 .8797

k = 30 .9124 .9124 .8787 .8737

Table 5. Zoo data

k ε = 0 ε = 0.5 ε = 2 ε = 5

k = 0 N/A .6945 .6669 .9002

k = 10 .8996 .8976 .8996 .8996

k = 20 .7826 .7869 .8994 .8994

k = 30 .8924 .8994 .8994 .8994

From these figures, we can see the proposed algorithm can certainly improve
the performance of clustering on manifolds. For the “soybean” data, the best
clustering results is obtained when k = 30, ε = 5. Our algorithm uses the statisti-
cal and geometrical similarity to describe the local neighborhood relationship and
outperform classic spectral clustering (using k-neighborhood or ε-neighborhood)
and k-means algorithm whose randIndex is .5427.

5 Conclusions and Future Work

In this paper, we proposed a variant of spectral clustering that perform well on
several data sets. Our work is motivated by the fact that similar data points in
high dimensional data sets often exhibit similar geometrical structures. Differing
from most existing algorithms that emphasize the statistical properties in given
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data set, we consider a good similarity measure on a manifold should reflects not
only the statistical properties but also the geometrical properties of given data
set. We use the k-neighborhood and ε-neighborhood to model the statistical
and geometrical aspects respectively and derived the new variant of spectral
clustering. An extensive experiments have been conducted to test the quality of
the clusters produced by proposed algorithm on a varied collection of artificial
and real-world data set. The results indicate promising performance that validate
our proposed algorithm.
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Abstract. The Fuzzy Adaptive Resonance Theory is an unsupervised clustering 
algorithm that solves stability plasticity dilemma. The existing winner-take-all 
approach to updating weights in Fuzzy ART has two flaws: (i) it only updates 
one cluster while an input might belong to more than one cluster and (ii) the 
winner-take-all approach is costly in training time since it compares one weight 
to the input at a time. We propose an algorithm that compares all weights to the 
input simultaneously and allows updating multiple matching clusters that pass 
the vigilance test. To mitigate the effects of possibly updating clusters belong-
ing to the wrong class we introduced weight scaling depending on the “close-
ness” of the weight to the input. In addition, we introduced supervision to  
penalize the weight update for weights that have the wrong class. The results 
show that our algorithm outperformed original Fuzzy ART in both classifica-
tion accuracy and time consumption. 

Keywords: Fuzzy ART, supervised learning, clustering. 

1   Introduction 

Fuzzy Adaptive Resonant Theory (Fuzzy ART) is an unsupervised neural network 
that answers the stability-plasticity dilemma. The network is able to learn new pat-
terns (plastic) while retaining the information from previously learned knowledge 
(stable) [1], [2], [3].  One of the major limitations of the Fuzzy ART is the winner 
take all approach, which allows only one prototype (weight) to be updated at a time 
[4]. However, a training point might have the same class as more than one prototype. 
In order to maximize the learning potential of the algorithm, all the prototypes that 
meet the threshold requirements should be updated.  

In the conventional Fuzzy ART if  the “closest match” prototype to the input that 
passes the vigilance test belongs to the wrong class, then by updating only that one 
weight minimizes the separation between the classes. The advantage of the proposed 
method is that it addresses this shortcoming by distributed weight updating. Out of 
multiple weights that get updated, some might belong to the correct class. The main 
disadvantage of having a distributed weight update is that the prototypes that are not 
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the closest match and pass the vigilance test are updated even though the input is from 
a different class. The effect of distributing to the wrong classes is mitigated in the 
proposed approach through weight scaling and supervision. Updating weight for 
wrong classes differently maximizes the separation between classes.  

This paper is organized as follows. In section 2, we discuss the algorithms includ-
ing the original Fuzzy ART and proposed Supervised Distributed Fuzzy ART (SDF 
ART) algorithm. The experiments and results are discussed in section 3. We conclude 
and describe our future plans in section 4.  

2   Algorithms 

2.1   Original Fuzzy ART 

Fuzzy ART [1], [2], [3] is based on combination of the ART1 network and fuzzy 
logic and uses the fuzzy operators min(∧), and max(∨). The input to the network, I, 
is normalized by appending the actual input, A, to its complement 1-A.   

The normalized input pattern I is used for computing y as shown in Eq. 1. w matrix 
contains all the weight (prototype) vectors. Alpha, which is chosen by the user, is the 
conservation limit, which when small, minimizes recoding during learning. 

( )jjj wwIy += α^  .                                                (1) 

The node that yields the largest value of y is selected as the winner. The winner, 
which is denoted by yJ with J as the winning node index, has to pass the vigilance test 
shown in Eq. 2. ρ, a value between 0 and 1, is a vigilance parameter set by the user. k 
is the number of existing prototypes.  

kwI J^≤ρ  .                                                         (2) 

If the test is passed, resonance occurs. The input I joins cluster J and the winning 
prototype vector, wJ, is updated using Eq. 3. β is the learning rate and ranges between 
0 and 1.  

( ) ( ) old
J

old
J

new
J wwIw ββ −+= 1^  .                                   (3) 

If the test is failed, the winning prototype is inhibited. The next highest value of y 
from Eq. 1 is selected as the winner and passed on to the test in Eq. 2. This process 
continues until the test is passed or if all the components of y are inhibited. In the 
latter case, a new cluster is formed and the input is the new cluster.  

2.1   Kondadadi Distributed Weight Update 

A recent paper [6] discusses the areas of improvement for Fuzzy ART. One of areas 
discussed is that distributed weight update is a much needed improvement. However, 
very little work has been done on this topic. Kondadadi et al [4] show the distributed 
weight update by updating every single prototype that matches the input. However, 
they fail to take into account that while these prototypes pass the vigilance test, they 
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might not all belong to the correct class. We, therefore, impose a criterion that scales 
the weight update by the “closeness” of the input to the prototypes. Furthermore, we 
integrated supervised learning to penalize the weight update for the incorrect class.  

Input
I = (A, 1-A)

End of
Training

Did w Change?

Yes

No

Resonance 

Provide Input

Update w

Create new cluster

and1nn Iwn

Yes

No

w is the weights matrix.; each row is a prototype
j =1, 2, …, n where n is the number of prototypesk

wI
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j

j

^

Are any 
sj

t

t
t w

wI
y

^
P is the number of prototypes that 
passed the vigilance test and T 
vector contains their indices
t = T(1), T(2), …, T(P)

old
t

old
tt

new
t wwIyw 1*

 is the learning rate between 0 and 1
* =  if correct class,  otherwise

 

Fig. 1. SDF ART Structure 
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2.3   Supervised Distributed Fuzzy ART 

The proposed SDF ART is shown in Fig. 1. Unlike original Fuzzy ART it does not 
select the “closest match” winner. Instead it goes directly to the vigilance test which 
selects all weights that meet the threshold requirements. If no prototypes satisfy the 
vigilance criteria, then a new cluster is formed with the input as the prototype. This 
makes the algorithm more time efficient as it does not have to go through the loop to 
find one winning cluster at a time.  

While distributing input to multiple prototypes, since it is possible to update other 
weights that don’t match the class, the weight updates are scaled. The weights are 
updated using the same “closeness” criteria used in Original Fuzzy ART to find the 
winner shown in Eq. 1. In addition, the supervised approach was added to penalize the 
weight update in case it was the wrong class. This was accomplished by performing 
the weight update with an operator, *, which is min(∧) if it is the correct class, and 
max(∨) if it belongs to the wrong class. The formula for the updated weight is shown 
in Eq. 4, where * is the supervision operator and yt is the weight scale factor.   

( )( ) ( ) old
t

old
tt

new
t wwIyw ββ −+= 1*                                  (4) 

During the classification stage, there are some prototypes that were formed using 
inputs from multiple classes. These prototypes are assumed to belong to the class that 
had the majority number classified inputs to that prototype.  

3   Experiments and Results 

To evaluate the proposed algorithm we applied the SDF ART, and original Fuzzy 
ART for comparison, to Ionosphere dataset from the UCI Machine Learning Reposi-
tory [5]. The data contains RADAR returns from the ionosphere for classification into 
good or bad returns. The entire dataset consists of 351 feature vectors, out of which 
we used 234 points for training and 117 for testing.  
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Fig. 2. Percent Correct Classifications 
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Experiments were conducted for studying the changes in the parameters. Since 
Fuzzy ART is affected by the order of inputs, the order of inputs was kept consistent 
during the parameter tests to get a fair comparison of effects with changes in control 
parameters. The same input order was kept for original Fuzzy ART and SDF ART. 
The percent correct classification rates for Fuzzy ART and SDF ART algorithms are 
shown in Fig 2. It can be observed from Fig. 2 that SDF ART always outperforms the 
original Fuzzy ART.  

Table 1 shows the number of cycles it takes to converge with the change in beta 
(the learning rate). With larger beta both Fuzzy ART and SDF ART take fewer cy-
cles, whereas they take longer with smaller beta. However, it can be observed that 
regardless of what beta is, SDF ART always takes less cycles to converge. In addi-
tion, the SDF ART converged in less than one third of the time that it took original 
Fuzzy ART to converge.  

Table 1. Number of Cycles 

Beta (β)  0.001 0.25 0.5 0.75 1 

Fuzzy ART Original 879 767 542 414 134 
# of cycles 

SDF ART 871 760 535 407 124 

Table 2. Number of clusters with change in rho 

Rho (ρ)  .001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fuzzy ART 1 8 16 26 49 62 71 85 98 107 115 # of  
clusters SDF ART 1 6 14 21 46 57 64 82 95 102 106 

Table 3. Percent Correct Classification with Change in Input Order 

 Test 1 Test 2 Test 3 Test 4 Test 5 

% Correct Classification 99.15% 97.44% 96.56% 99.15% 97.44% 

 
The number of prototypes formed with changing values of rho is shown in Table 2 

for both the original Fuzzy ART and SDF ART algorithms. On average, the SDF ART 
has approximately 4 prototypes less than original Fuzzy ART. Having fewer prototypes 
gives SDF ART an added advantage since it allows faster classification during testing.  

Another test done on the modified Fuzzy ART was to study the variations in the 
accuracy with change in input order. Table 3 depicts the classification results with 
different input orders. It was observed that even with the change in input order the 
results were fairly consistent and within 3% of each other. This shows that the SDF 
ART algorithm is able to produce consistent results regardless of input orders.  

Lastly, we compared our distributed weight update approach to the one proposed by 
Kondadadi et al [4]. Fig. 3 shows our percent correct classification results vs. theirs. It 
can be observed that our approach performs slightly better. However, their algorithm 
converges faster taking about 3/4 of the time it takes our algorithm to converge.  
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Fig. 3. Percent Correct Classification for SDF ART and Kondadadi approach 

4   Conclusions and Future Work 

It was observed that the SDF ART outperformed the Original Fuzzy ART in two 
aspects. It had better classification performance, and it takes less time during training 
and testing. It is expected that when the dataset is larger, the performance of SDF 
ART would be even better than original Fuzzy ART. In addition, it is expected that 
the time difference for training and testing between the SDF ART and fuzzy ART 
would be even greater. It was also observed by comparing results with Kondadadi 
approach that weight scaling performs better when it comes to classification.  

For future work, we plan on using the INRIA pedestrian dataset with 9000+ points 
to classify pedestrians versus the background using the proposed approach. In addi-
tion, we will test this on datasets that have more than 2 classes. Lastly, we will ex-
plore additional methods of determining which class the cluster belongs to instead of 
selecting majority class since the weight updates are also scaled by the closeness.  
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Abstract. In this work, a hybrid neural network model (HNNM) is proposed, 
which combines the advantages of genetic algorithm, multi-agents and rein-
forcement learning. In order to generate networks with few connections and 
high classification performance, HNNM could dynamically prune or add hidden 
neurons at different stages of the training process. Experimental results have 
shown to be better than those obtained by the most commonly used optimiza-
tion techniques. 

Keywords: Multi-agent, Reinforcement learning, Neural networks, Optimiza-
tion, Genetic algorithm. 

1   Introduction 

It is one of the most important issues over many years for researchers how to design 
an optimal and adaptive architecture for artificial neural networks (ANNs), especially 
hidden neurons and connections weights. There have been many approaches to adjust 
hidden neurons of ANNs, such as constructive or pruning, constructive and pruning, 
evolutionary and hybrid algorithms [1,2,3,4,5], etc. But, all of these methods have a 
common weakness, i.e. not able to adjust automatically networks architecture.  

In order to dynamically adjust hidden neurons, Islam presented an adaptive merg-
ing and growing algorithm (AMGA), which could autonomously merge and add hid-
den neurons of ANNs [6]. However, there are some problems in the algorithm, for 
example, significance of each hidden neuron depends on experience, and specified 
parameters, such as significance threshold, can not be modified automatically. It is 
also difficulty to compute the correlation coefficient between selected neuron and 
other neuron, Additionally, BP training algorithm is easy to be trapped into local 
minima [7]. Considering the factors in AMGA, a hybrid learning model based on 
reinforcement learning (RL) agent is proposed in this work, where the neural net-
works consisting of three layers are trained by NN agent using GA algorithm, while 
training parameters will be chosen by RL agent, which include significance of hidden 
neurons, epochs, errors, initial weights, and hidden neurons, etc. 
                                                           
* Corresponding author. 
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The paper is organized as follows. Section 2 introduces proposed hybrid neural 
network learning model, and describes the function of main agents. In section 3, 
learning algorithm for NN agent is described in detail. Section 4 offers an insight into 
learning algorithm of RL agent. Experimental results are discussed in section 5 and 
the conclusions and a look to future work is put forward in the last. 

2   Architecture of Hybrid Learning Model 

In the model, we design a multi-agent platform, which consists of two containers, 
main container and agent container, shown in Fig.1. Two agents, NN agent and RL 
agent live in containers which provide a run-time and the services for agents. NN 
agent is responsible of pruning or adding hidden neurons and modifying weights of 
ANN by GA. RL agent receives the reward of NN agent and adjusts training parame-
ters to NN agent according to the reward values and expert knowledge. Agents coop-
erate with each other to finish a given tasks [8,9,10]. 

RL
Agent

DF

AMS

Main
container

NN
Agent

GADT

Agent container

GADT

AID addrstate

LADT

AID addrstate

CT
addrID

AID addrstate

LADT

AID addrstate

Q actionstate

Q actionstate

Q-Value Table

Q-Value
Table

Reward

Action: Adjust parameter

Expert
Evaluation

State
DATA
BASE

Output

 

Fig. 1. The proposed learning model based multi-agent 

The main container has the following special responsibilities: 

•  Managing the container table (CT). 
•  Managing agent descriptor table GADT and LADT. 
•  Managing Q-value table (QVT) for RL agents. 

The AMS and the DF provide the agent management and white page service, and the 
default yellow page service of the platform, respectively.  

3   Learning Algorithm for NN Agent 

The aim of NN agent is to find a global best solution by GA algorithm. A solution 
vector is corresponding to an ANN, which consists of the number of neurons for each 
layer, ID of each hidden neuron, and their weights.  
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3.1   Algorithm Procedure 

The developed algorithm for NN agent consists of the following steps: 

Step 1:  Generate randomly an initial population, which consists of variable length 
real-valued chromosomes, and each chromosome is corresponding to an 
ANN. Initialize the number of hidden neurons H and all connection weights 
at random. Set training epoch μi=0, i = 1, 2,. . .,H, for each hidden neuron hi. 

Step 2: The evolutionary process begins by applying the genetic operators (fitness, 
selection, crossover and mutation). 

Step 3: Compute the objective function, that is sum of squared error (SSE) for each 
trained ANN and assign a probability for each solution according to SSE. 

Step 4: Store the ANN architecture with the lowest objective value. 
Step 5: Select a pair parent to perform crossover by the way of binary tournament 

[11], in order to reproduce the offspring that will be reinserted into the 
population replacing the solution with the smallest fitness. 

Step 6: If the best offspring ANN has a lowest SSE, replace the last stored ANN. 
Step 7: Generate randomly a new offspring by mutation operator in order to avoid 

being trapped into local minima.   
Step 8: Execute steps 2–7 again until GA converges or maximum number of gen-

erations is reached.  
Step 9: Compare SSE for the current best solution with the previous. If larger than 

the previous, then restore the previous network. 
Step10: Increase epoch: μi =μi +τ.  
Step11: Save the current solution and the SSE into Database.  
Step12: If termination criteria are met, stop the procedure and output the best. 
Step13: Select the neurons, which significance ηi received from RL agent is less 

than threshold ηth. If not, go to the Step 16. 
Step14: Compute the correlation between the selected hidden neurons and other 

hidden neurons in the network based on the output of hidden neurons. 
Step15: If the pairs are found, then merge them and generate a new population, go 

to step 2 and retrain the networks.  
Step16: If the neuron addition criterion is not satisfied, go to the Step 11. 
Step17: Add one neuron to the hidden layer by splitting an existing neuron. The 

splitting produces two neurons from one neuron. Generate a new population 
and go to the Step 2 and retrain the networks. 

3.2   Objective Function Definition 

Objective function is defined by classification error TER, expressed as follows [7]: 

100
( )

# y P

TER y
P

ε
∈

= ∑  (1)

Where #P is the number of patterns, )( yε is the error for the pattern y, which is 0 
when true class of the pattern y is same as the desired class, otherwise, 1. 
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3.3   Correlation Coefficient Definition 

Correlation measure can be used to measure linear relationship between variables, and 
it can also be used to find the correlation between different hidden neurons in the 
ANN. The correlation coefficient between hi and hj is defined as [12]: 

( ),

( ) ( )

h h

h h
i j

d

i j

cov
P

var var
=  (2)

Where cov is the covariance and var the variance, hi and hj are the output vector of a 
selected hidden neuron i and another unselected hidden neuron j, respectively in the 
training set. Actually, the coefficient is the cosine between output vectors. 

3.4   Neuron Merging Criterion 

If the correlation between neuron ha and hb is greater than the threshold, NN agent 
merges the two neurons into a new neuron hm. The weights of hm are assigned as 

( ) / 2mi ai biw w w= +  (3)

jm ja jbw w w= +  (4)

where wai and wbi are the connection weights from ith input neuron to ha and hb, re-
spectively, while wja and wjb are the connection weights to jth output, respectively. 
Wmi and wjm are the ith input and jth output connection weights of hm, respectively 
[6].  

3.5   Neuron Addition Criterion 

The weights of the new two neurons created by splitting an existing neuron are calcu-
lated as follows: 

1 (1 )w wα= +  (5)

2w wα= −  (6)

where w represents the weight vector of the existing neuron, and w1 and w2 are the 
weight vectors of the new neurons. α is a small mutation parameter.  

3.6   Termination Criterion 

The procedure is terminated when one of the criteria is met as follows: 

① The number of successive iterations without any improvement of the objective 
function value is equal to the maximum.  

② The validation error increases for T consecutive times.  
③ Specified number of generations is reached.  
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4   Learning Algorithm for RL Agent 

RL agent can complete the task to adjust automatically networks architecture through 
cooperation with NN agent. The learning process includes two main stages. First, RL 
agent observes the output of NN agent, and the state of solutions from Database, and 
explores an action that can yield the maximum reward, based on the former experi-
ence associated with the current observation and accumulated reinforcement (reward). 
Next, the agent takes those actions.  

At the beginning, RL agent has nothing about the effect that actions may make. It 
discovers the actions, such as modifying the significance of hidden neuron according 
to an explored optimal policy which may bring the highest reward. After a while, the 
agent gradually takes those actions and then observes the results from NN agent. In 
fact, the reward can be defined objectively based on the results, or gained subjectively 
by directly receiving evaluation from the interactive expert.  

State definition. Define the states s as a vector consisting of architecture of networks 
and modified hidden neurons.   

Action definition. Define the actions a as a vector consisting of modified significance 
of hidden neuron, epoch and GA parameters such as population size.  

Reward definition. Define the reward r as a vector by:  

1
i

i

r
TER

=  
(7)

Where ri is the reward received at neuron i, TERi is classification error associated with 
neuron i, it means that TERi is evaluated according to its influences on training results 
when neuron i is merged or added into the ANN. 

Reward updating criterion. RL agent uses Q-learning algorithm to learn the optimal 
action policy. The action value function Q(s,a) in this case satisfies equation as 
follows: 

a))Q(s,-)a,sQ(max((ra)Q(s,a)Q(s, ′′++←
′a

γα  (8)

Where r is a received reward value, α is a learning rate, and γ  is the discounting 

factor. In order to simplify computation, the policy update is performed based on a 
method called reinforcement comparison [13], which is updated by 

( 1) ( ) ( ( ) ( ))i i i ir k r k r k r kα+ = + −  (9)

Where α (0 <α ≤ 1) is a learning rate, and ( )ir k is reference reward of ( )ir k  in 

general. Then update the policy only if the received reward ( ) ( )i ir k r k>  
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5   Experimental Results 

5.1   Testing Effectiveness of Algorithm 

In this experiment, in order to evaluate the effectiveness of the proposed method, an 
empirical study is carried out on Diabetes data sets, which has eight inputs, two out-
puts, and 768 examples. In the training phase for the classifiers, 768 samples will be 
randomly divided into two subsets, training set with the 60% of samples and testing 
set with the remaining 40%.  

All input are transformed within the range from 0 to 1. Initial population size is set 
20, crossover rate is 0.9, and mutation rate is 0.1. 

Figure 3 shows results including TER, and the best number of hidden neurons. 
TER is less when number of hidden neurons is 5, 10 and 11, respectively.  
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Fig. 2. Compute classification error for different hidden neurons. When the number of hidden 
neurons is 5, classification error is 21.5%, it is best solution.  

5.2   Comparing with Other Algorithms 

In order to compare effectively HNNM with other algorithms, we select adaptive 
merging and growing algorithm (AMGA), basic constructive algorithm (BCA), basic 
constructive–pruning algorithm (BCPA) and Ludermir algorithm[14] as candidates, 
also, we will take same experimental methodologies as possible.  

Table 1 shows the results of HNNM, AMGA,BCA,BCPA and Ludermir over 50 
independent runs for Diabetes data set. It can be seen that HNNM has the smallest 
number of hidden neurons and number of epochs, while BCP is largest in term of 
number of hidden neurons. With respect to TER, HNNM takes the lowest. 
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Table 1. The result of testing Diabetes Data set 

Algorithm Number of hidden neurons TER Number of epochs 
HNNM 5.05 21.55 420 
AMGA 4.14 21.97 390 
BCA 5.96 26.04 467 

BCPA 5.56 26.22 501 
Ludermir 4.53 25.87 -- 

5.3   Discussion 

From the experimental results, HNNM takes better performance than other algorithms 
in terms of TER. There are three reasons. One is that the neural networks are trained 
by GA, which can help to find a global best solution, and avoid procedure being 
trapped into a local minimum. Next is that HNNM uses an adaptive strategy like 
AMGA, and can dynamically prune or add the hidden neurons, while, other algo-
rithms use a fixed modification strategy. Last is that training parameters is taken by 
RL agent. Unlike AMGA, in HNNM, RL agent evaluates significance of hidden neu-
rons according to previous training results, feedback of current training and expertÊs 
knowledge. It isnÊt necessary to compute the significance according to empirical for-
mula. HNNM is easy to be suitable for all classification problems. 

6   Conclusion  

This paper has present a hybrid neural network learning model based on reinforce-
ment learning agents. In this model, NN agent is responsible of training the neural 
networks by using GA algorithm, while RL agent is responsible of determining the 
parameters of the neural networks by reinforcement learning algorithm, such as sig-
nificance of hidden neurons, epochs, errors, initial weights, and hidden neurons, etc. 
There are two main contributions in this paper. First, due to being trained by GA, it’s 
easy that HNNM can find a better global solution. Second, significance of the hidden 
neurons that will be merged may not be computed by formula, but determined by RL 
agent according to the evaluation at their influences on training results (through  
receiving reward and observing state of ANN), so that HNNM has the ability to  
generalize the training algorithm of ANN. A series of simulations are provided to 
demonstrate these. 
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Abstract. Multi-view semi-supervised learning is a hot research topic recently. 
In this paper, we consider the regularization problem in multi-view semi-
supervised learning. A regularization method adaptive to the given data is pro-
posed, which can use unlabeled data to adjust the degree of regularization 
automatically. This new regularization method comprises two levels of regu-
larization simultaneously. Experimental evidence on real word dataset shows its 
effectivity.  

Keywords: multi-view learning, semi-supervised learning, regularization,  
machine learning. 

1   Introduction 

Semi-supervised learning explores how unlabeled data can be used to improve per-
formance of traditional supervised learning [1]. Recently, the multi-view paradigm for 
semi-supervised learning has received increasing attention [2]. In the multi-view set-
ting, the input variable x  can be described with two (or more) different views, a typi-
cal example is to classify web pages, each of which can be represented  by either the 
words on itself, or the words contained in the hyperlinks. 

It is shown that multi-view learning can get better performance than the single view 
counterpart [3], especially when the strengths of one view complement the weak-
nesses of the other. Approaches to multi-view learning can be grouped into two cate-
gories. In the first category, a set of classifiers defined in each view are mutually 
trained in an iterative process [2, 4]. In the second category, unlabeled data are used 
to find a better feature representation, so that it is easy to learn with labeled data in the 
new feature space [5, 6]. 

Many practical semi-supervised learning methods face the problem of overfit. In 
this paper, we propose a multi-view regularization approach to semi-supervised learn-
ing. There are two levels of regularization in our approach, within-view regularization 
and between-view regularization. In the within-view regularization, the unlabeled data 
are used to adjust the degree of regularization automatically. In the between-view 
regularization, the algorithms try to maximize the consensus of each view on the 
unlabeled data, which reduce the complexity of the learning problem by eliminate 
hypothesis that disagree with each other on the unlabeled data. 
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2   Multi-view Regularization for Semi-supervised Learning 

In semi-supervised learning, there are not only L  labeled pairs 1 1( , ),..., ( , )L Lx y x y , 

but also U  unlabeled instances 1,...,L L Ux x+ + . Let 1( ,..., )V
k k kx x x=  be a multi-

view sample with V  views, where each view can be seen as a set of features. Let 

:v vf x y→  be the classifier that we seek in each view, where (1,..., )v V∈ . 

2.1   Within-View Regularization 

In each view of the data, we want to learn a function or hypothesis which effectively 
predicts the y given any vx . If a hypothesis is too complex for the data, it may be 
over-fitting, that is, it will have large test error while the training error is small. Regu-
larization methods figure out this problem by penalizing the global smoothness prop-
erty of the hypothesis. Usually they solve the following minimization problem: 

2*

1

1
arg min ( , , )

K

L

i i K
f H i

f err x y f f
L

γ
∈ =

= +∑                      (1) 

where KH  is an Reproducing Kernel Hilbert space of functions with kernel function 
K; and err  is some loss function, such as squared loss for Regularized Least Squares 
or the hinge loss faction for Support Vector Machines. These methods have shown 
impressive improvements over naïve supervised learning. However, one difficulty 
with these techniques is that they usually require expertise to set proper parameters or 
predefine a norm. 

In this paper, we use a data-specific regularization method to penalize model com-
plexity [7], which is parameter-free. In semi-supervised learning, instead of minimiz-
ing training error on labeled data alone, we search for hypotheses that behave  
similarly on labeled and unlabeled data. The intuition is that if the behavior of a hy-
pothesis on labeled data doesn’t consistent with it’s behavior on unlabeled data, it is 
not likely to generalize to unseen examples. 

Since the exact label of unlabeled data is not known, the behavior of a hypothesis 
on unlabeled data can not be measured directly. However, the difference between two 
hypotheses can be obtained using unlabeled data. In order to make use of the differ-

ence between two hypotheses to seek a good hypothesis vf , we can construct a fixed 

smooth origin function h , e.g. h y= , and estimate the difference of vf  and h on 

both labeled and unlabeled data sets, represented by ˆ( , )vd f h  and ( , )vd f h  re-

spectively. Note that we use d̂ to denote the difference on labeled data, and d to 

denote the difference on unlabeled data. Our criterion is to choose the hypotheses that 
behaves similarly on labeled and unlabeled data, i.e. the hypotheses that makes 
ˆ( , )vd f h  equal ( , )vd f h  as much as possible, which can be achived by making 
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( , )
ˆ( , )

v

v

d f h

d f h
 equal 1 as much as possible. Let ˆ( , )vd f y  represent the difference of 

vf  and the true label y on labeled data, which means the empirical error. Our objec-

tive is to minimize the following equation: 

( , )ˆmin ( , )
ˆ( , )

v
v

v

d f h
d f y

d f h
×                                           (2) 

Since ˆ( , ) ( , )v vd f h d f h≥  in general, the following equation holds: 

( , )
1

ˆ( , )

v

v

d f h

d f h
≥                                                            (3) 

When equation (3) takes “=”, equation (2) will be minimized. 
To avoid the final hypotheses to be biased towards the origin function h , we use 

symmetric forms of the above objective that also penalize hypotheses close to h : 

ˆ( , ) ( , )ˆ( , ) max ,
ˆ ( , )( , )

v v
v

vv

d f h d f h
d f y

d f hd f h

⎛ ⎞
× ⎜ ⎟⎜ ⎟

⎝ ⎠
                              (4) 

which is called the within-view loss function VL , the term ( , )vd f h  uses unlabeled 

data to automatically set the level of regularization, it penalizes the smoothness prop-
erty of the hypothesis in a parameter-free way. 

2.2   Between-View Regularization 

When using the hypotheses got in each view to classify the unlabeled data, there is 
much chance that they disagree with each other. Intuitively, for a certain instance, if 
the predictions of these hypotheses are consistent with each other, the predictions 
have more probability to be true, as these hypotheses are not likely to make mistake 
simultaneously. 

Dasgupta et al. [8] studied the relation between the consensus of two independent 
hypotheses and their error rate, one of their results that hold if the error rate of either 
hypothesis is smaller than 1/2 is the inequality: 

( ) ( )1 2

1,2
max v

v
P f f P f y

=
≠ ≥ ≠                                  (5) 

That is to say, the probability of a disagreement between two independent hypotheses 
upper bounds the error rate of either hypothesis. In fact, even if the two hypotheses 
are not independent, the disagreement between them is also a good way to upper 
bound the error rate of either hypothesis. In this way, to minimize the error rate of 
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hypotheses, we can minimize their disagreement on unlabeled data, which is equal to 
minimize the difference between any two hypotheses on unlabeled data: 

1 2min ( , )v vd f f                                                     (6) 

which is called the between-view loss function BL , where 1 2, (1,..., )v v V∈ . In this 

way, we use the unlabeled data to adjust the degree of between-view regularization 
automatically.  

2.3   Combining Two Levels of Regularization 

To seek the consistent hypotheses between views and keep them smooth in each view, 
we combine two levels of regularization together: 

1 21 , 1

V V

v B
v v v

L Lλ
= =

+∑ ∑                                                (7) 

which has to be minimized. The scalar λ determines the influence of each regulariza-
tion. The first term measures the within-view loss, the last term measures the be-
tween-view loss, both in a data-dependent fashion. That is, the regularization is adap-
tive to the observed data. This raises the possibility of outperforming other regulariza-
tion methods that keep fixed across different observed data. 

We estimate the difference between two hypotheses on unlabeled data and labeled 
data by: 

1

1
( , ) ( ( ), ( ))

U

i i
i

d f g err f x g x
U

ϕ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑                              (8) 

1

1ˆ( , ) ( ( ), ( ))
L

i i
i

d f g err f x g x
L

ϕ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑                                (9) 

For regression problem, err can be squared loss, that is 

2( , ) ( )err f g f g= −                                            (10) 

for classification problem, err can be misclassification loss, that is 

( )( , ) 1 f gerr f g ≠=                                                  (11) 

ϕ  is a function that ensure d  to satisfy metric properties, that is, non-negativity, 
symmetry, and the triangle inequality. Most functions admit a metric, for example, for 

regression problem, 1/ 2( )z zϕ = ; for classification problem, ( )z zϕ = . 

The minimization objective in Equation (6) is not convex. We set several initializa-
tion, and choose the best result. For given initial values, the local optimization solu-
tion can be obtained by any nonlinear optimization technique. 
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3   Experimental Results 

To evaluate the proposed regularization algorithm, in this section we compare it with 
the state-of-the-art related methods on real-world classification problems. The meth-
ods we compare with are co-training [2], co-regularization [9], and regularized least 
square (RLS) [10]. Co-training is the original work in multi-view semi-supervised 
learning. Co-regularization is a popular multi-view regularization algorithm. RLS is 
the classical regularization method in machine learning. 

We perform experiments on the WebKB dataset which deal with hypertext catego-
rization task. We choose this dataset because it is studied in [2, 9] and it is common 
used in multi-view semi-supervised. The WebKB database contains 1051 web pages, 
collected from the websites of computer science faculties of four different universi-
ties. For each web page, the database contains both the words contained in the page 
itself (referred to as View 1) and words appearing in links pointing to that web pages 
(View 2). The data was preprocessed into 3000 features for View 1 and 1840 features 
for View 2 using the Rainbow software [11]. The web pages are split into two classes, 
course and non-course pages. The goal of the learning algorithms presented in this 
section is to correctly classify web pages into these two classes. 

For each method, 10-fold cross-validation is used to get a mean result. The final 

output of the multi-view learning methods is computed as *

1

1 V
v

v

f f
V =

= ∑ . The pa-

rameter λ  in Equation (6) is set to 1 for the experiments. The iteration number of co-
training is set to 100, and the base learner of co-training is naïve bayes. The parameter 
of co-regularization is set as in [9]. 

 

Fig. 1. The precision-recall breakeven points measured as the function of the number of  
labeled data 
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Figure 1 measures the precision-recall breakeven points of these methods, where 
MSR represents Multi-view Semi-supervised Regularization proposed by us. It can be 
seen from figure 1 that MSR outperform other methods distinctly. 

4   Conclusion 

Regularization is a useful method in machine learning to find a proper function  
from the function space. In this paper, we propose a multi-view semi-supervised regu-
larization algorithm, it use unlabeled data to adjust the degree of regularization auto-
matically. Experiments results illustrate that the proposed regularization algorithm 
outperform other related works in this field. 

In future works, we will analyze the generation error bound of the proposed algo-
rithm, and study the complexity of this algorithm. 

Acknowledgements. This work is supported by National High Technology Research 
and Development Program of China (2007AA01Z168), National Nature Science 
Foundation of China (60773016, 60805041, 60872082, 60975078, 60902058), Bei-
jing Natural Science Foundation (4092033), and Doctoral Foundations of Ministry of 
Education of China (200800041049). 

References 

[1] Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge 
(2006) 

[2] Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Pro-
ceedings of the 11th Annual Conference on Computational Learning Theory, Madison, 
WI, pp. 92–100 (1998) 

[3] Kakade, S.M., Foster, D.P.: Multi-view regression via canonical correlation analysis. In: 
The 20th Annual Conference on Learning Theory, pp. 82–96 (2007) 

[4] Zhou, Z.-H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE 
Transactions on knowledge and data engineering 17(11), 1529–1541 (2005) 

[5] Zhou, Z.-H., Zhan, D.-C., Yang, Q.: Semi-supervised learning with very few labeled 
training examples. In: Proceedings of the 22nd AAAI Conference on Artificial Intelli-
gence, Vancouver, Canada, pp. 675–680 (2007) 

[6] Peng, Y., Zhang, D.Q.: Semi-supervised canonical correlation analysis. Journal of Soft-
ware 19(11), 2822–2832 (2008) (in chinese) 

[7] Schuurmans, D., Southey, F.: Metric-based methods for adaptive model selection and 
regularization. Machine Learning 48(1-3), 51–84 (2002) 

[8] Dasgupta, S., Littman, M.L., McAllester, D.: PAC generalization bounds for co-training. 
In: Advances in Neural Information Processing Systems, vol. 14, pp. 375–382. MIT 
Press, Cambridge (2002) 

[9] Sindhwani, V., Niyogi, P., Belkin, M.: A co-regularized approach to semi-supervised 
learning with multiple views. In: Working Notes of the ICML 2005 Workshop on Learn-
ing with Multiple Views, Bonn, Germany (2005) 

[10] Vapnik, V.N.: Statistical Learning Theory. Wiley Interscience, New York (1998) 
[11] McCallum, A.: Bow: A toolkit for statistical language modeling, text retrieval, classifica-

tion and clustering (1996), http://www.cs.cmu.edu/»mccallum/bow 



 

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 450–456, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Multi-reservoir Echo State Network with Sparse 
Bayesian Learning 

Min Han and Dayun Mu 

 School of Electronic and Information Engineering, Dalian University of Technology,  
Dalian, Liaoning 116023, China 
minhan@dlut.edu.cn 

Abstract. A multi-reservoir Echo State Network based on the Sparse Bayesian 
method (MrBESN) is proposed in this paper. When multivariate time series are 
predicted with single reservoir ESN model, the dimensions of phase-space re-
construction can be only selected a single value, which can not portray respec-
tively the dynamic feature of complex system. To some extent, that limits the 
freedom degree of the prediction model and has bad effect on the predicted re-
sult. MrBESN will expand the simple input into high-dimesional feature vector 
and provide the automatic estimation of the hyper-parameters with Sparse 
Bayesian. A simulation example, that is a set of real world time series, is used 
to demonstrate the validity of the proposed method. 

Keywords: Multi-reservoir; ESN; Sparse Bayesian; Time series prediction. 

1   Introduction 

Neural Networks (NN) has played a crucial role in time series prediction. The Recur-
rent Neural Network (RNN) is a NN-based model with consideration of the internal 
feed-back, which has proved to be an efficient algorithm for time series prediction 
and can overcome the inherent limitations of the feed-forward neural network [1]. 
Echo State network (ESN) is a novel recurrent neural network. The ESN approach 
differs from traditional RNN methods in that a large RNN is used (order of 50 to 1000 
neurons, previous techniques typically use 5 to 30 neurons) and only the synaptic 
connections from the RNN to the output readout neurons are modified by learning 
(previous techniques tune all synaptic connections) [2]. Training ESN becomes a 
simple linear regression task, which solves the problems of slow convergence and 
suboptimal solutions in previous methods. Recently, the support vector echo-state 
machine (SVESM) is proposed for predicting the chaotic time series [3]. The basic 
idea is to replace the “kernel trick” with “reservoir trick” in nonlinear system model-
ing, that is to say, performing linear SVR in the high-dimension “reservoir” state 
space. 

However, the complex system usually comprises many variables, and when multi-
variate time series are predicted with single reservoir ESN model [2, 3], the dimen-
sions of phase-space reconstruction can be only selected a single value, which can not 
portray respectively the dynamic feature of complex system. To some extent, that 
limits the freedom degree of the prediction model and has bad effect on the predicted 
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accuracy. Meanwhile, there are some “nuisance” parameters introduced by SVESM 
which were determined in an invalid method. The cross validation is a common 
method used to solve this problem, but it is very time-consuming to find appropriate 
parameters.  

In this paper, the Multi-reservoir ESN based on Sparse Bayesian method is pro-
posed to solve the above problems, so that the prediction can be of high accuracy. 
Every variable of the complex system can be adequately mapped into characteristic 
space by way of every reservoir so that the dynamic characteristic of the complex 
system is fully portrayed. Meanwhile, Sparse Bayesian method is applied to calculate 
the output weight which reduces the complicacy of prediction model and overcomes 
the over-fitting. Consequently the accuracy of multivariate time series prediction is 
enhanced obviously.  

The remaining paper is organized as follows. Section 2 introduces ESN and pre-
sents the architecture of Multi-reservoir Echo State Network. Section 3 presents the 
improved Bayesian Method for Multi-reservoir ESN (MrBESN). Section 4, a real-
world time series which are the annual runoff of Yellow River and sunspots time 
series is applied to test the proposed model. Discussions and conclusions are given in 
Section 5. 

2   The Architecture and Training Algorithm of Multi-reservoir 
ESN 

2.1   Short Introduction to Echo State Network 

Echo state network was first proposed by Jaeger and Haas to learn nonlinear systems 
and predict chaotic time series. Its basic idea is to use a large “reservoir” RNN. 

In the ESN approach, a larger-than-normal layer of neurons is used with random 
recurrent connections where the numeric value ranges from -1 to 1, which is not 
modified during training. They serve as a ‘dynamic reservoir’ (DR) [2]. The network 
has an output layer, and may also have an input layer. Input-to-hidden layer connec-
tions are also randomly generated from -1 to 1 and are not modified during training. 
The hidden-to-output connections Wout are trained as Eq.1: 

1( ) 'outW M T−=  (1)

Where M is the whole internal state matrix through sample period and M−1 is the 
pseudoinverse of M, T is the teacher signal vector. 

2.2   Architecture and Training Algorithm of Multi-reservoir ESN 

The complex system usually comprises many variables, and when multivariate time 
series are predicted with single reservoir ESN model, the dimensions of phase-space 
reconstruction can be only selected a single value, which can not portray respectively 
the dynamic feature of complex system. To some extent, that limits the freedom de-
gree of the prediction model and has bad effect on the predicted accuracy. To solve 
the above problem, Multi-reservoir ESN is presented in this paper. Every variable of 
the complex system can be adequately mapped into characteristic space by way of 
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every reservoir so that the dynamic speciality of the complex system is fully por-
trayed. The architecture of Multi-reservoir ESN is as fig.1: 

OutputReservoirsInput

u1

un

.

.

.
...

y...

 

Fig. 1. Structure of Multi-reservoir ESN 

And the equation of Multi-reservoir ESN (take two reservoirs for example) can be 
then represented as 

1 1 1

2 2 2

( 1) tanh( ( ) ( ))

( 1) tanh( ( ) ( ))
x in

x in

x k W x k W u k

x k W x k W u k

+ = ⋅ + ⋅

+ = ⋅ + ⋅
 (2)

1 1 2 2( 1) ( ) ( )T Ty k w x k w x k ε+ = + +  (3)

where Win represents a weight matrix from the input neurons to the internal ones; Wx 

represents the internal connection matrix; u1(k) and u2(k) are the input fed into the 
network at time step k ; x1(k) and x2(k) are the internal state matrix at time step k; 
y(k+1) is the output at time step k+1.The output of the network is computed according 
to the linear function as the equation (3), where w1 and w2 represent connections to the 
output units, and ε is noisy signal. One of the key features of ESN is that only the 
weights of the connections to the output units w1, w2should be modified during learn-
ing/training process. The topology of the hidden layer and other weight matrixes  
remain unchanged. Because there are no cyclic dependencies between the trained 
readout connections, any linear regression method is available. Therefore, we apply 
the Sparse Bayesian regression algorithm to learn the Wout during training. 

3   Sparse Bayesian Method for Multi-reservoir ESN 

3.1   The Prediction Model 

The equations of the Bayesian Multi-reservoir ESN in Eq.(2),(3)can be represented as 
the following form: 
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(4)

Where tanh denotes hyper-bolic tangent sigmoid function which is applied. Because 
there are no cyclic dependencies between the trained output weights, training Multi-
reservoir ESN becomes a linear regression task. We use the Sparse Bayesian linear 
regression to solve this problem. 

ε is a zero mean Gaussian random variable with precision β. Due to the assumption 
of independent of y(k), the likelihood of the complete data set can be written as 

ˆ
1

1
( | , ) ( ( ) | ( ), )

N
T

k
p y k kβ β −

=
= ∏ ΝY w w x  (5)

For clarity, we omit to notate the implicit conditioning upon the set of the state matrix 
x and subsequent expression. The Equation (5) is the exponential of a quadratic func-
tion of W.  

With as many parameters in the model as training examples, we would expect 
maximum likelihood estimation of w and β from (5) to lead to severe over-fitting. To 
avoid this, a common approach is to impose some additional constraint on the pa-
rameters, for example, through the addition of a ‘complexity’ penalty term to the 
likelihood or error function. Here, we adopt a Bayesian perspective, and ‘constrain’ 
the parameters by defining an explicit prior probability distribution over them[4]. 

We encode a preference for smoother (less complex) functions by making the 
popular choice of a zero-mean Gaussian prior distribution over w: 

0 0( ) ( | , )p = Νw w m S  (6)

In order to simplify the treatment, we consider a zero-mean isotropic Gaussian gov-
erned by a single precision parameter α so that m0=0 and S0=α-1I.  

To compute the posterior distribution, which is proportional to the product of the 
likelihood function and the prior, we use Bayesian theorem as equation (7). 

( | ) ( )
( | ) ( | ) ( )

( )

p P
p p P

p
= ∝Y w w

w Y Y w w
Y

 (7)

Due to the choice of a conjugate Gaussian prior distribution, the posterior will also be 
Gaussian. We can evaluate this distribution by the usual procedure of completing the 
square in the exponential, and then finding the normalization coefficient using the 
standard result for a normalized Gaussian [5]. The prior distribution is shown as 

( | ) ( | , )N Np S= Νw Y w m  (8)
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Where 

T 1 TX , X XN N NS y Sβ α β−= = +m I  (9)

The log of the posterior distribution is given by the sum of the log likelihood and the 
log of the prior and, as a function of w, takes the form 

{ }
ˆ

1

ln ( ) ( 1) ( )
N

T T

k

p y k k
β α

=

= − + − − +∑
2

w Y w x w w const
2 2

 (10)

From the following section, we know that the Sparse Bayesian ESN becomes the 
search of the hyper-parameter posterior mode, Values of α and β can be obtained 
evidence procedure[6,7]. 

3.2   Evaluation of the Prediction 

Prediction is to build a model to approximate the unknown nonlinear function map-
ping of the observed signal. To quantitatively measure the performance of proposed 
prediction model, root-mean-square error (rmse) will be used as indicators in follow-
ing simulation 

[ ]
1/ 2

2

rmse
1

1
ˆ( ) ( )

1

N

k

E y k y k
N =

⎛ ⎞= −⎜ ⎟−⎝ ⎠
∑  (10)

Where ˆ( )y k  is the target value and y(k) is the predicted value, Ermse can be used to 

describe how well the model accounts for the variation in the observed data. In ideal 
situation, if there were no error in prediction, these parameters would indicate like the 
situation that Ermse = 0. 

4   Experiments and Results 

MrBESN is used to estimate the series of annual mean sunspots and natural annual 
runoff of Yellow River measured at Sanmenxia gauge station from 1700 to 2003 
about 304 years. The ESN and SVESM are used as the comparison to the proposed 
MrBESN. The parameters of the ESN and SVESM are the same as the MrBESN in 
Table 1. 

Table 1. Parameters settings of MrBESN 

Item Value 
Size of the Reservoir 100×100 

Sparseness of Wx 5% 
Spectral Radius of Wx 1 

Input weight connections Uniform from[-1 1] 
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According to the correlation dimension method and pseudo-nearest neighbor 
method, the phase-space reconstruction parameters of the sunspots and the Yellow 
River runoff time series are set as followed: Delay time are 4 and 1 and Embedding 
dimension are 2 and 6 respectively. Reconstructed multi-variables are used as the 
input signal of the Multi-reservoir prediction model. We use the former 260 sets of 
datas for training model and the remaining datas for prediction. The corresponding 
forecast results is as shown in Table 2. 

Table 2. Prediction results from different models 

Model MrBESN SVESM[3] ESN[2] 
Ermse(sunspots) 13.665 15.404 23.745 
Ermse(runoff) 43.7003 50.720 48.569 

 
Table 2 shows that the prediction model based on method presented in this paper is 

more accurate and effective.Fig. 2 and Fig. 3 show the performance of the annual 
sunspots and runoff of the Yellow River time series prediction with MrBESN. 

 

Fig. 2. Comparison between the predicted and observed curves of sunspot time series and their 
errors 

r

 

Fig. 3. Comparison between the predicted and observed curves of annual runoff time series of 
Yellow River and their errors 
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4   Conclusion 

In this paper, we proposed a multi-reservoir Echo State Network which is based on 
Sparse Bayesian method (MrBESN), gave the Sparse Bayesian regression method and 
the method to estimate the hyper-parameters. Its performance has been tested by an 
example which are a real-world time series. They are the annual runoff of Yellow 
River and sunspots time series. The simulation results shows that the prediction model 
based on method presented in this paper is more accurate and effective. 
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Abstract. Classified labels are expensive by virtue of the utilization

of field knowledge while the unlabeled data contains significant infor-

mation, which can not be explored by supervised learning. The Man-

ifold Regularization (MR) based semi-supervised learning (SSL) could

explores information from both labeled and unlabeled data. Moreover,

the model selection of MR seriously affects its predictive performance due

to the inherent additional geometry regularizer of SSL. In this paper, a

leave-one-out cross-validation based PRESS criterion is first presented

for model selection of MR to choose appropriate regularization coeffi-

cients and kernel parameters. The Manifold regularization and model

selection algorithm are employed to a real-life benchmark dataset. The

proposed approach, leveraged by effectively exploiting the embedded in-

trinsic geometric manifolds, outperforms the original MR and supervised

learning approaches.

Keywords: Semi-Supervised Learning (SSL); Leave-one-out cross-

validation (LOOCV); Manifold Regularization (MR); Model selection.

1 Introduction

Many developed methods in machine learning and data mining promote the
practicality of real-life applications such as condition monitoring based fault de-
tection. Classified patterns are fairly expensive to obtain because they require
human effort by virtue of the utilization of field knowledge, but unlabeled train-
ing data are readily available. Recently, Semi-Supervised Learning (SSL) [1] has
attracted attention because of its utilization not only from the labeled training
data, but also the structural information in easily available unlabeled data.

Based on the underlying assumptions, Many semi-supervised learning algo-
rithms studied in the literature fall into five categories: SSL with generative mod-
els, SSL with low density separation, graph-based methods, co-training methods,
and self-training methods [1]. The graph-based methods with more applicable
assumption have attracted considerable attention. Specifically, graph-based man-
ifold regularization [2] exploits the geometric structure of the marginal distribu-
tion of the data in the feature space. The incorporation of unlabeled data has
demonstrated the potential for improved accuracy in time series prediction [3], in

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 457–464, 2010.
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speech recognition [4], calibration-effort reduction problem [5], Visual Mapping
[6] and etc.

However, the generalization performance of the manifold regularization ap-
proach is heavily dependent on the model selection process, in this case the well
selection of an appropriate values for the regularization coefficients and kernel
parameters is very critical for real-life applications. This paper is concerned with
model selection of manifold regularization based on minimization of the leave-
one-out cross-validation criteria of the model selection, which can be performed
very efficiently for the manifold regularization of kernel learning methods.

2 Manifold Regularization Based Semi-supervised
Learning

2.1 Manifold and Cluster Assumptions

A basic assumption often used in machine learning is that nearby points are
likely to have the same label. That is, pairwise similarity measure is the basis
of label propagation. Although very useful and widely applicable, this smooth
assumption sometimes is too weak. Most real-world dataset (like the Speech
Sounds [4]) has more complex structures than this assumption could arise, such
as the samples clustered in a certain region may have the same labels. In addition,
the manifold learning approach [7] extracted the intrinsic manifold features from
high-dimensional fault data by directly learning the data and translates complex
mode space into a low-dimensional feature space.

So, to take advantage of unlabeled data, manifold regularization introduced
another two basic assumptions or priors about the data distribution. The first
one is called the manifold assumption, which assumes the data points as forming
a low-dimensional manifold in some feature space. The manifold regularization
use the graph Laplacian of a graph-based representation to characterize the man-
ifold structure [2]. The second one, cluster assumption [8] is : if two patterns in
feature space of samples, e.g. extracted from vibration signal in same condition,
are close in the embedded manifold of the marginal distribution. And their con-
ditional distributions are similar to each other, which favors decision boundaries
for classification passing through low-density regions in the input space [9].

2.2 Manifold Regularization Framework

This Manifold regularization combines the ideas of spectral graph theory, man-
ifold learning and kernel methods in a coherent and natural way to incorporate
both the cluster assumption and the manifold assumption in Reproducing Kernel
Hilbert Spaces (RKHS) regularization framework. In this section, we address the
manifold regularization based SSL framework concisely followed the description
of [2]. More details refer to [10].

Consider a set of l labeled samples {(xi, zi)}l
i=1 and a set of u unlabeled

samples {xj}l+u
j=l+1, where xi, xj ∈ R

d are the feature vectors collected from a
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condition monitoring system and zi ∈ R is the classified label. According to the
marginal distribution PX and zi are governed by the conditional distribution
P(z|x). Manifold regularization introduces to the regularized risk functional an
additional regularizer that serves to impose this assumption on the learning
problem. The learning problem corresponds to solving the following optimization
problem:

f∗ = argmin
f∈HK

1
l

∑l

i=1
V(xi, zi, f) + γA ‖f‖2

K + γI

∫
M

〈∇M ,∇M 〉 (1)

which finds the optimal function f∗ in the RKHS space HK of functions f :
X → R corresponding to a Mercer kernel K : X × X → R.

The first term of the regularized risk functional is defined based on the loss
function V which measures the discrepancy between the predicted value f(xi)
and the actual value zi. The second term controls the complexity of f in terms
of the RKHS norm ‖·‖K, with γA being the RKHS norm regularization param-
eter. The third term is specific to manifold regularization and is based on the
assumption that the support of PX forms a compact submanifold M. It controls
the complexity of f in the intrinsic geometry of PX , with γI being the cor-
responding Manifold regularization parameter. The third term is approximated
using the graph Laplacian defined on all l + u labeled and unlabeled examples
without using the label information. Hence the optimization problem can be
reformulated as:

f∗ = arg min
f∈HK

1
l

∑l

i=1
V(xi, zi, f) + γA ‖f‖2

K +
γI

(l + u)2
f̂TLf̂ (2)

where f̂ = (f(x1), . . . , f(xl+u))′ and L is the graph Laplacian.
From the extended Representer theorem [2], the optimal function can be ex-

pressed in the following form:

f∗(x) =
l+u∑
i=1

αiK(xi, x) (3)

When lose function V in Eq.2 is adopt to be the squared loss function V (xi, zi, f)=
(zi − f(x))2, the Laplacian Regularized Least Squares (LapRLS) algorithm [2]
formulates the optimization problem:

f∗ = argmin
f∈HK

1
l

∑l

i=1
(zi − f(x))2 + γA ‖f‖2

K +
γI

(l + u)2
f̂TLf̂ (4)

For the LapRLS, the optimal solution in Eq.3 α∗ = (α∗
1, . . . , α

∗
l+u)′ is given by

α∗ = (JK + γAlI +
γI l

(l + u)2
LK)−1Z (5)

where K is the (l+u)× (l+u) Gram matrix over all labeled and unlabeled sam-
ples, Z is an (l + u)-dimensional label vector given by Z = (z1, . . . , zl, 0, . . . , 0)′,
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and J = (1, . . . , 1, 0, . . . , 0) is an (l + u) × (l + u) diagonal matrix with the first
l diagonal entries being 1 and the rest being 0.

When lose functionV in Eq.2 is adopt to be the hinge loss function V (xi, zi, f)=
(1 − zif(x)), the algorithm formulates the Laplacian Support Vector Machines
(LapSVM). The details refer to [2].

3 Model Selection

In machine learning community, it is well known that the model selection plays an
essential role in real-life application. A poor kernel parameters in kernel methods
will lead to bad performance. How to implement model selection to improve
recognition performance is a crucial task. The generalization performance of the
Manifold regularization is heavily dependent on the model selection process, in
this case the careful selection of appropriate values for the extrinsic and intrinsic
regularization and semi-supervised kernel parameters.

3.1 Optimizing Regularization and Kernel Parameters

In the Manifold regularization, some form of model selection is required to deter-
mine good values for the hyper-parameters in order to maximize generalization
performance. Generally, for the LapSVM and LapRLS, weuse a Gaussian kernel

K(x, z) = e−
‖x−z‖2

2σ2 and Euclidean nearest neighbor graphs with gaussian weights
since it hold consistently across a wide applications. The continuous variable σ
is Gaussian kernel width, which has prior weightiness to tune. The number of
nearest neighbor N ∈ N

+ and the degree (D ∈ N
+) of the graph Laplacian are

both discrete hyper-parameters in constructing a nearest neighbor graph and
deforming the semi-supervised kernel served as an approximation to the true
manifold. We used the inductive setting in the optimization of the extrinsic and
intrinsic regularization parameters: γA and γI to reduce the complexity. The
inductive setting in [2] chose a fixed split ratio between γI l

(l+u)2 and γAl. Here the
continuous variable split ratio λ is chosen as optimizing hyper-parameter, while
γAl is fixed to 0.01 because of its insensitive to error rate. So, in this paper,
θ = (σ, λ,N,D) is selected as optimization variables.

3.2 Model Selection Criteria

Leave-one-out cross-validation has been shown to give an almost unbiased esti-
mator of the generalization properties of statistical models [11]. Empirical stud-
ies [12] have shown that in some cases the model selection strategies can be
performed very efficiently for kernel learning methods, as well as graph kernel
learning of manifold regularization.

In the Manifold regularization, for LapRLS and LapSVM, the analytic leave-
one-out cross-validation procedure can easily form the basis of an efficient model
selection strategy based on a weighted version of Predicted REsidual Sum of
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Squares (PRESS) criterion [13], which is simply the leave-one-out estimate of
the sum-of squares error:

PRESS(θ) =
l∑

i=1

ςi

(
zi − ẑ

(−i)
i

)2
(6)

In order to tradeoff the contribution of the positive and negative samples mis-
classification in term of the regularized loss function, a weighted loss function is
considered and the weighting factors are chosen according to

ςi =
{

�
2�+ if zi = +1

�
2�− otherwise

(7)

where �+ and �− represent the number of positive and negative examples re-
spectively. Note that the leave-one-out cross-validation procedure is heavily time
consumption in middle or large scale problem. This criteria could be converted to
minimization of k -fold cross validation, even an independent validation dataset.

3.3 Optimization Trick

The minimization of leave-one-out PRESS criterion with ẑi computed by Eq.(6)
often can be found via gradient based optimization in model selection. Unfor-
tunately, due to the discrete hyper-parameters (N,D), the gradient based opti-
mization like [12] is hard to process, even using the continuous approximation
technique [14]. Alternatively, a simple grid-search procedure is adopted in the
majority of practical applications [15] of kernel learning methods. However, this
is often inefficient as a grid-search spends heavily time on investigating hyper-
parameter values if the optimum value is outside the grid.

In this paper, the minimization process is implemented by using a more effi-
cient Nelder-Mead simplex algorithm [16], which is a relatively straight-forward
way that does not use numerical or analytic gradients. There are two problems
need to deal with in the minimization procedure. First, we use the continuous op-
timization algorithm and the evaluation with round variables for the continuous
and discrete hyper-parameters optimization problem. Second, the nominalized
matrix is utilized for mapping unscaled optimized domain to scaled space of the
hyper-parameters. The optimized parameters of the simplex optimizer are set
by δ = 1 and γ = 0.5.

4 Empirical Study and Discussion

In this section, we performed two semi-supervised learning experiments on a real
world dataset (USPS). To verify the classification and fault detection capability
of model selection based manifold regularization, comparisons are made with su-
pervised learning methods and original grid search based manifold regularization
approach. The datasets descriptions and parameter setting of the experiment are
shown in Table 1.
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Table 1. The datasets descriptions and experimental settings

Dataset
Size

Dimensions classes
Train (labeled+ unlabeled) Test

USPS 1000(50+950) 1007 256 10

4.1 Classification Performance Comparison

Support vector machine (SVM) and Regularized Least Squares (RLS) are state
of the art supervised learning methods. From the Table 2 we can see, the
semi-supervised learning techniques leveraged by the structure knowledge of
combining labeled and unlabeled dataset have better performance in pattern
classification on USPS and the various Buma pump datasets. Furthermore,
the leave-one-out based model selection of manifold regularization outperforms
the grid search based original MR approach. For example, the USPS dataset,
LapSVM and LapRLS obtained around 14% improvement over their supervised
counterparts and almost 7% further increase upon the semi-supervised model
not optimized in regularization and kernel parameters. The model parameters
corresponding to LapRLS tuned by model selection are given out in Table 3.
Although the improvements of model selection obviously are data dependent,
generally, the relative good performance can be achieved using the PRESS cri-
terion based optimization process.

In addition, from Table 2 we also can see, the energy features of WPT coef-
ficient outperform the time-domain features under the same sampling strategy.
In particular, the dataset extracted time domain features from high-frequency
sampling has bad separability of classes than other dataset. So, it shows that
the refined features definition still is first option in fault detection.

Table 2. Classification performance comparison among approaches in test error rates

Dataset σ N D λ

USPS 2.07 7 2 0.71

Table 3. Results of Model selection of Manifold Regularization for LapRLS approach

over one of datasets

Dataset

Supervised learning Manifold Regularization

SVM RLS
Grid search Model selection

LapRLS LapSVM LapRLS LapSVM

USPS 24.6 24.5 17.6 17.8 9.34 9.76

4.2 Discussion

This experimental results demonstrate that the leave-one-out cross-validation
based PRESS criterion provides an effective means of model selection of mani-
fold regularization. However, compared with SVM and other supervised learning
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Fig. 1. Local functional characteristics of test error rate vs. pairwise parameters upon

USPS dataset classification

techniques, it is note that semi-supervised learning approaches in term of ad-
ditional introduced regularizer inevitably have more regularization and kernel
parameters to be tuned, which bring a little more intractable in the inherent
local optimum problem. The contours of test error rate vs. the pairwise param-
eters in Fig. 1 show the functional complexity of local characteristics. Thus,
the Nelder-Mead simplex based optimization processes may still fall into local
optimum, in particular for the bad separability dataset, that might means strong
nonlinearity decision function. In such situations, the grid search is an external
reinforcement tool to avoid selection bias.

5 Conclusions

Manifold regularization combines the hidden structural information in the unla-
beled data with the explicit discriminate information of classes to improve the
predictive performance. However, due to the inherent additional geometry regu-
larizer, the regularization and kernel parameters increase heavily the difficulty of
model tuning. The Leave-one-out cross-validation based PRESS criterion is first
presented for the solution of choosing appropriate constructing graph Laplacian
parameter and geometric regularization parameters as well as semi-supervised
kernel parameter. The optimization problem with two continuous and two dis-
crete variables is solved with the proposed improved simplex search algorithm.
The real-life applications validated the better classification performance of super-
vised learning and semi-supervised learning techniques leveraged by effectively
exploiting the embedded intrinsic geometric manifolds. The local optimum prob-
lem in model optimization of MR approach are discussed.
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Abstract. In this research, a local kernel regression method was proposed to im-
prove the computational efficiency after analyzing the kernel weights of the non-
parametric kernel regression. Based on the correlation between the distribution 
function and the probability density function, together with the nonparametric 
local kernel regression we developed a new probability density estimation 
method. With the proper setting of the sparse factor, the number of the kernels 
involved in the kernel smooth was controlled, and the density was estimated with 
highly fitness and smoothness. According to the simulations, we can see that  
the proposed method shows a very well performance both in the accuracy and 
the efficiency.  

Keywords: nonparametric kernel regression; probability density estimation; 
cumulative distribution functions. 

1   Introduction 

Probability density estimation from samples of unknown distributions plays an import 
part in the machine learning [1]. It’s known to all that many pattern recognition ques-
tions, such as the classification and clustering, is based on the probability densities. 
And also the density estimation was an essential step of the calculation of the mutual 
information [2] which can be applied in many statistical areas. Therefore, it will be of 
great significance both in theory and practical application. 

Generally speaking, both the parametric and the nonparametric methods can be 
used to estimate the densities, but they are quite different. The parametric method 
assumes that the samples are drawn from one certain distribution with the unknown 
parameters to be estimated. Therefore the accuracy depends much on the prior knowl-
edge of the distribution. However, the assumption of the distribution will be much 
difficult in practice. On the contrary, nonparametric methods do not introduce the 
prior assumptions of the underlying density which characteristics are learned only 
from the training samples [3]. Thus, nonparametric density estimation technique  
has attracted much attention as it can be utilized to estimate densities functions with 
arbitrary shapes. 

The Kernel Density Estimate (KDE) is supposed to be the most common and  
simple nonparametric method with high accuracy. The classical KDE can be written 
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as a weighted average over the sample distribution function [4] with assigning equal 
weights for all the kernels. However, the number of kernels in the KDE is equal  
to the size of the training data which makes it difficult if the data size extremely  
large.  

Much research has been done in order to improve the computational efficiency. 
Mark Girolami and Chao he[5] present one reduced set density estimator that pro-
vides a kernel based density estimator which employs a small percentage of the avail-
able data sample and is optimal in the L2 sense. Recently, Chen, S. and X. Hong [6-8] 
proposed an even faster sparse kernel density estimate method which based on the 
orthogonal forward regression. But it is difficult to obtain the sparse density estimate 
because of the extra step of the orthogonal forward regression [9].  

The aim of this research is to gain a novel density estimate method based on the 
nonparametric kernel regression and the cumulative distribution functions. The cumu-
lative distribution function was calculated from the training data. Then the probability 
density was estimated based on the correlation with the cumulative distribution func-
tion. And lastly, the probability density estimation of highly fitness and smoothness 
was obtained by the improved nonparametric kernel regression. The number of the 
kernels involved in the kernel smooth was controlled by the settings of the sparse 
factor, and the efficiency was improved. The simulations of the density estimations 
show the ability of the method in this paper with the synthetic data. 

This paper is organized as follows. In Section 2 the nonparametric kernel regres-
sion will be introduced briefly, and in Section 3 will be the proposed algorithm based 
on the local kernel regression and the cumulative distribution function. The numerical 
examples and the conclusions are given in the last two sections. 

2   Nonparametric Kernel Regression 

Nonparametric kernel regression has been widely used for its consonance between 
smoothness and fitness [10].Given a sequence (x1, y1), (x2, y2),…,(xn,yn) coming form 
a model, the aim is to estimate the nonlinear functions from the observation. The 
model can be expressed as the formulation: 

( ) , 1,...,i i iy m x i nε= + =                                               (1) 

where εi are independent, identically distributed random noise.  
It is difficult to estimate the parameters through a certain model, especially when 

the correlation is complex. Therefore, the nonparametric regression models are used 
to describe the underlying relationship between the inputs and outputs.  

Kernel smooth regression is a typical nonparametric regression which smoothes the 
value of Y by the observation data. The widely used Nadaraya-Waston estimator is 
described as follows:  

1

1

1

( )
ˆ ( ) ,
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n

h in
i

i i i n
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K x x

=

=

=

−
= =

−

∑
∑

∑
                                           (2) 
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where ( )hK ⋅ is the kernel function, and Gaussian kernels or the polynomial kernels are 

usually employed. In this paper, we chose the gaussian kernels showed as follows:  

2( )

2
1

exp( )
2

dD

d

x
K

=

= −∑ h
                                                   (3) 

h is the kernel bandwidth, which shows the width of the data included in the kernel 
smooth. Usually, one can obtain it by cross validation or the rules of thumb. 

3   Density Estimation 

3.1   Nonparametric Local Kernel Regression 

Nadaraya–Watson estimator employs the full training data while estimating the value 
at one test point. In order to improve the computational efficiency, we analyzed the 
weights in (2). Figure 1 shows the simulation of the weights with different kernel 
centers.  
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Fig. 1. Kernel weights with different centers 

According to the experiment, we can see that with different kernel centers, there 
exist different weights. Note that, a lot of weights are zeros or near to zeros even if  
the kernel centers are the boundary of the data. Hence a lot of kernel computations are 
useless. And the computational efficiency is affected. 

Therefore, in this research we propose the local kernel smooth which means  
that the estimate value at each point is determined by the training data next to it. The 
Nadaraya–Watson estimator can be improved as follows:  
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where parameter k is determined by the sparse factor α(0<α≤1), and the value of α 
shows the sparseness of the kernel regression ( [ ]i  means to get the inter number). 

[ ]k Nα= ×                                                         (5) 

Note that errors will be occurred while estimating weights of the boundary data 
points. The local kernel weights will be out of the data length. To avoid this problem 
we can improve the local kernel weights by formulation (6)  

( ), 0

0,
h i

i k

K i k N
K

other+

− < + ≤⎧
= ⎨
⎩

x x
                                         (6) 

The computational efficiency is improved by the sparse factor which reduces the 
number of the kernels in the weights computation.  

3.2   Density Estimation Based on Cumulative Distribution Function 

The samples are usually unorganized while estimating the densities, and we can’t 
describe the distribution clearly. Fortunately, here we can chose to estimate the em-
pirical cumulative distribution from the data. 

,
1 1

1, 01
( ; ) ( ), ( )

0, 0

mN

j j k
k j

x
F x N x x x

xN
θ θ

= =

>⎧
= − = ⎨ ≤⎩

∑∏                         (7) 

According to the definition of the probability density function, if the random variable 
X is differentiable and the derivative will be the density.  

0

( ) ( )
( ) ( ) lim

x

F x x F x
f x F x

x+Δ →

+ Δ −′= =
Δ

                                   (8) 

If Δx is chosen as a small number, the density can be approximated as follows:  

( ) ( )
( )

F x x F x
f x

x

+ Δ −≈
Δ

                                                 (9) 

Therefore, the numerical result from the formulation can be chosen as an estimate of 
the density. However, it will not be differentiable in most cases. According to (9), 
what we get is the numerical results rather than the derivative, yet it can be taken as a 
substitute for the approximation of the density.  

Note that the density estimated by the cumulative distribution function is rough. To 
improve the accuracy, here we can smooth the rough density with the nonparametric 
local kernel regression mentioned above.  

The parameter h and α need to be selected beforehand while estimating the densi-
ties. Formally, the cross validation can be used to select the bandwidth. In this paper, 
we choose the bandwidth by a lot of experiments for simplicity.The sparse factor α 
determines the numbers included in the kernel weights computation. With a lot of 
experiments, we can get a range of [0.05, 0.35], which makes a tradeoff between the 
efficiency and the accuracy. 
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For multi-dimensional data points, the approach can be easily expended. Note that 
the data might be very sparse in multi-dimensional space, and hence the density esti-
mated would be of less accuracy.  

Therefore, the density estimation based on the cumulative distribution and the non-
parametric local kernel regression can be summarized as follows: 

1) Estimating the cumulative distribution function from the training data. 
2) Then the probability density is estimated based on the correlation with the 

cumulative distribution function. 
3) Choose the bandwidth h and the sparse factor α. 
4) Smooth the rough density with the nonparametric local kernel regression. 

4   Numerical Examples 

Three examples were used in the simulation to test the proposed algorithm and to 
compare its performance with the Parzen estimator. The L1 test error or L2 test error 
was used to quantify the estimating results. 

2

1 2
1 1

1 1
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test testN N

k k k k
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L p x p x L p x p x
N N= =

= − = −∑ ∑            (10) 

4.1   One-Dimensional Density Estimation 

This was a one-dimensional example, and the density to be estimated was the mixture 
of eight Gaussian distributions given by  
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The number of data points for density estimation was N=200. The experiment was 
repeated 200 times. The number of test data was Ntest = 10000. Figure 2 shows a typi-
cal result with h=0.15, α=0.10. Table 1 shows the L2 test error of each method. The 
proposed algorithm compares favorably with state-of-the-art kernel algorithms. 
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Fig. 2. One-dimensional density estimating 
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Table 1. The simulation result 

Method L2 test error(mean ± standard deviation) 
Prose method (2.5860±0.7382)×10-3 
Parzen KDE (3.0305±0.6903) ×10-3 
SKD[8] (3.0181±2.0991) ×10-3 
RSDE[5] (3.3±3.3) ×10-3 

4.2   Simulation on Running Time 

Another experiment was done to show the superiority of the proposed method for its 
running time. The density to be estimated for this one-dimensional example was the 
mixture of Gaussian and Laplacian given by  

2 0.7 2( 2) /21 0.7
( ) e e

42 2
xxp x

π
− +− −= +                                     (12) 

Specially, the number of training data points is changed with a range from 1000 to 
20000. The number of test data points was fixed at Ntest = 1000. In the simulation, the 
parameters were fixed at h=0.35, α=0.15. The simulation is compared with the Prazen 
estimator, and the performance of the runing time was shown in Figure 3.  
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Fig. 3. Running time of the density estimation with different numbers of the training data  

It can be shown that with the increment of the training data, the running time in-
creased rapidly, while the proposed method kept at a very small running time level. 
And also, the L2 test error was used to quantify the performance of the proposed 
method. The results were shown in Table 2. It can be concluded that computational 
efficiency was improved while the accuracy of the estimation unchanged.  

Table 2. The comparison with the Parzen KDE 

Method L2 test error(mean ± standard deviation) 
Proposed method (1.1117±0.79760)×10-5 

Parzen KDE (1.1522±0.10429)×10-5 
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4.3   Two-Dimensional Density Estimation 

For this two-dimensional example, the true density to be estimated was a mixer of 
five Gaussion distributions. 
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The means of the five distributions were [0.0, -4.0], [0.0, -2.0], [0.0, 0.0], [-2.0, 0.0], 
and [-4.0 0.0], respectively. The number of data points for estimation was 500, and 
the experiment was repeated 100 times. The number of the test data set was also 
Ntest=10000. Figure 4 shows the true distribution and its contour plot, while Figure 5 
shows the estimating results. 

According to the pictures, we can see that our approach has done a very well per-
formance. The L1 test error was used to show the results in Table 3. For comparison 
the results of the typical Parzen estimate and the sparse kernel density with the same 
experiment conditions were quoted from [8]. It can be seen from Table 3 that for this 
example our approach was comparable to the both density estimates. 

 

  

Fig. 4. True density and contour plot for the two-dimensional five Gaussian mixer 

  

Fig. 5. The proposed density estimate and contour plot for the two-dimensional five Gaussian 
mixture, the bandwidth h was [0.75, 0.75], and the sparse factor: α=0.35 
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Table 3. The simulation result of two-dimensional density estimation 

Method L1 test error(mean ± standard deviation) 
Prose method (2.4978±0.6595)×10-3 
Parzen KDE (3.6204±0.4394)×10-3 

SKD[8] (3.6100±0.5025)×10-3 

5   Conclusion 

In this research, the local kernel regression method is proposed to improve the com-
putational efficiency of the nonparametric kernel regression. A novel probability 
density estimation method was introduced with the combination of the improved 
nonparametric kernel regression and the cumulative distribution function. The compu-
tational efficiency was improved by the selection of the sparse factor. According to 
the simulations, we can see that the proposed method is comparable with the classical 
Parzen kernel density estimation and other excellent sparse kernel density estimations.  
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Abstract. In this paper, we present an alternative technique of decision making 
through parameterization reduction by determining maximal supported sets 
from a Boolean-valued information system based soft set theory. Based on such 
reduction, the maximal support will be calculated to determine the optimal 
choice. It is shown that the technique is identical to normal parameter reduction 
from previous research on soft set for decision making. While maximal  
support reduction is in fact has also provided consistency choices in decision 
making. 

Keywords: Boolean-valued information system; Soft set theory; Maximal 
supported set; Reduction; Decision making. 

1   Introduction 

The reliance on information obtained from database is very critical and important. 
Almost in every part of our life, there are lots of instances where we have either direct 
or indirect dealing with databases. One aspect that database plays an important role is 
in the field of decision making. Input obtained from data stored in terms of records 
and attributes in databases do contribute a lot in the process of decision making. To 
this, one practical problem is faced: for a particular property, whether all the attributes 
in the attribute set are always necessary to preserve this property [1]. In decision 
making, precision is considered as a major factor. The main objective of reduction is 
to lessen the number of attributes, and at the same time, preserving the property of 
information in helping the process of decision making. The theory of soft set [2] 
proposed, by Molodtsov 1999 is a new method for handling uncertain data. Soft sets 
are called (binary, basic, elementary) neighborhood systems. As for standard soft set, 
it may be redefined as the classification of objects in two distinct classes, thus 
confirming that soft set can deal with a Boolean-valued information system. 
Molodtsov [2] pointed out that one of the main advantages of soft set theory is that it 
is free from the inadequacy of the parameterization tools, unlike in the theories of 
fuzzy set, probability and interval mathematics [2]. The theory of soft set has been 
applied to data analysis and decision support systems. The concept of reducts is 
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another area which purportedly supports decision making with less involvement of 
data and attributes by reducing the attributes. By applying the concept of co-
occurrence of parameters in an object and it’s support on the Boolean-valued 
information based on soft set theory, we propose an alternative technique termed as 
maximal supported sets reduct. The main purpose of the propose technique is to 
ensure that any process of attribute elimination in  transforming the complex database 
into much simpler database for decision making but not at the expense that will cause 
changes to the optimal and sub-optimal choices. 

The rest of this paper is organized as follows. Section 2 describes related works of 
reduction and decision making under soft set theory. Section 3 describes the 
fundamental concept of an information system and soft set theory. Section 4 analyses 
the work that has been done by Maji [3], Chen et al. [4] and Kong et al. [5]. Section 5 
will introduce an alternative technique of reduction and decision making based on 
maximal supported sets. Section 6 describes experimental result. Finally, we conclude 
our works in section 7. 

2   Related Works 

The idea of reduct and decision making using soft set theory is firstly proposed  
by Maji et al. [3]. In [3], the application of soft set theory to a decision making 
problem with the help of Pawlak’s rough mathematics was presented. Decision was 
selected from among the objects based on maximal weighted value, and it is only 
obtained by reducing the attributes using Pawlak’s rough reduction. However Chen  
et al. [4] highlighted the incorrectness out of the results used by the reduction 
proposed by Maji et al. [3]. Chen et al. [4] also did not miss to point out what was 
inappropriate in Maji’s algorithm used to derive the choice value in selecting the 
optimal objects for the decision problem. They also pointed out that the idea of reduct 
under rough set theory generally cannot be applied directly in reduct under soft set 
theory. The idea of parameterization reduction of soft sets by Chen et al. [4] for soft 
set reduction is only focused on the optimal choice related to each object. However, 
the idea proposed by Chen et al. [4] cannot be considered complete, since the 
problems of the sub-optimal choice have not been addressed. To this, Kong et al. [5] 
analyzed the problem of suboptimal choice and has added parameter set of soft set. 
Then, they introduced the definition of normal parameter reduction in soft set theory 
to overcome the problems in Chen et al. [4] ‘s model by describing two new 
definitions, i.e. parameter important degree and soft decision partition and has used 
them to analyze the algorithm of normal parameter reduction. With this technique, the 
optimal and sub-optimal choices are still been upheld. Our paper will present that our 
proposed alternative technique of reduct based on maximal supported sets is better 
than the proposed attribute reduction by Maji et al. [3] and parameter reduction by 
Chen et al. [4] and at par in terms of achievement with normal parameter reduction 
proposed by Kong et al. [5]. 
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3   Preliminaries 

3.1   Information System 

An information system is a 4-tuple ( )fVAUS ,,,= , where { }
u

uuuU ,,, 21=  is a 

non-empty finite set of objects, { }
A

aaaA ,,, 21= is a non-empty finite set of 

attributes, ∪ Ae e
i

i
VV

∈
= , 

ieV  is the domain (value set) of attribute a, VAUf →×:   

is an information function such that VAUf →×: , aVauf ∈),( , for every 

( ) AUau ×∈, , called information (knowledge) function. In an information system 

( )fVAUS ,,,= , if { }1,0=aV  for every Aa ∈ , then S  is called a Boolean-valued 

information system.  

3.2   Soft Set Theory 

Throughout this section U refers to an initial universe, E is a set of parameters, ( )UP  

is the power set of U. 

Definition 1. (See [2].) A pair ( )EF ,  is called a soft set over U, where F is a 

mapping given by ( )UPEF →:  

In other words, a soft set is a parameterized family of subsets of the universe U. For 
E∈ε , ( )εF  may be considered as the set of ε -elements of the soft set ( )EF , or as 

the set of ε -approximate elements of the soft set, instead of  a (crisp) set. 

Example 2. As an illustration, let we consider a soft set ( )EF ,  which describes the 

“attractiveness of credit card promotions” that Mr. X is considering to purchase. Let 
assume that there are thirty credit card promotions in the universe U that are  
under consideration, { }3021 ,,, pppU = , and E is a set of decision parameters, 

{ }7654321 ,,,,,, eeeeeeeE = , where 1e  stands for the parameter “Magazine”, 2e  stands 

for the parameter “Watch”, 3e  stands for the parameter “Life”, 4e  stands for the 

parameter “Credit Card Insurance”, 5e  stands for the parameter “Car”, 6e  stands for 

the parameter “Car Insurance” and 7e  stands for the parameter “House”. Consider the 

mapping ( )UPEF →:   given by “credit card promotions ( )⋅ ”, where ( )⋅  is to be 

filled in by one of parameters Ee∈ . Suppose that ( ) { ,,,,,,,, 876543211 ppppppppeF =  

}292725222120191817161514131211109 ,,,,,,,,,,,,,,,, ppppppppppppppppp , ( ) { ,,, 11322 pppeF =  

}3028262423181615 ,,,,,,, pppppppp , ( ) { ,,,,,,,,,,,, 242319181615121174323 ppppppppppppeF =  

}302826 ,, ppp , ( ) { }181615324 ,,,, pppppeF = , ( ) { }191413127415 ,,,,,, pppppppeF = , ( ) { ,46 peF =  

}30282624231912117 ,,,,,,,, ppppppppp , ( ) { ,,,,,,,,,,,,, 17161514131098653217 pppppppppppppeF =  

}29272522212018 ,,,,,, ppppppp . As for example, ( )2eF  means credit card promotion for 

watch, whose functional value is the set { }30282624231816151132 ,,,,,,,,,, ppppppppppp . 
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Thus, we can view the soft set ( )EF ,  as a collection of approximations as illustrated 

below: 
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pppppppppppppppe

EF  

Fig. 1. The soft set 

The above soft set can be represented as a finite table, where the entries are “1” 
which is denoted as the presence of described attribute and “0” which mean the 
attribute is not part of the description of the house. The table can also be viewed as a 
Boolean-valued information system. The relation between a soft set and a Boolean-
valued information system is given as follow. 

Proposition 3. If ( )EF ,  is a soft set over the universe U, then ( )EF ,  is a binary-

valued information system { }( )fVAUS ,,, 1,0= . 

Proof. Let ( )EF ,  be a soft set over the universe U, we define a mapping  

{ }nfffF ,,, 21= , 

where  

ii VUf →:  and ( ) ( )
( )⎩

⎨
⎧

∉
∈

=
i

i

i eFx

eFx
xf

,0

,1
,  for Ai ≤≤1 . 

Hence, if EA = , ∪ Ae e
i

i
VV

∈
= , where { }1,0=

ieV , then a soft set ( )EF ,  can be 

considered as a binary-valued information system { }( )fVAUS ,,, 1,0= .         □ 
 

From Proposition 3, it is easily to understand that a binary-valued information system 
can be represented as a soft set. Thus, we can make a one-to-one correspondence 
between ( )EF ,  over U and { }( )fVAUS ,,, 1,0= . 

4   Parameterization Reduction and Decision Making 

In this section, we present the existing techniques on soft reduction and decision 
making techniques proposed by [3], [4] and [5]. The purpose of this analysis is to 
present the comparison in the previous techniques and how our proposed technique 
will provide an alternative way for soft decision making. Suppose we have a soft set 
( )EF,  over universe U with the representation as displayed in Figure 1. Let 

( ) ∑=
j ijiE ppf , where ijp  are the entries in the Boolean-table of ( )EF , . Since it is 
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clearly shown that ( ) 5
18,16,15,3,2

==iiE pf  is the maximum choice value, thus 

,,,, 16`1532 pppp  and 18p  are the original (not reduced) optimal choice. 

4.1   Parameterization Reduction of Maji et al. [3] 

Maji et al. [3] presented a reduction of soft sets and its applications in a decision 
making problem, which can be briefly explained as follows. The most optimal 
decision derived by Maji et al. [3] will be only be deduced after the process of  
identifying the rough set-based reduction set. This can by maintained using a partition 
on U based on the indiscernibility relation on a set of attributes in rough set theory 
[6]. As for our example based on Figure 1, the partition induced by the set of all 
attributes { }7654321 ,,,,,, eeeeeeeE = ,  denoted  by EU /  is given by  

{ } { } { } {
} { } ⎭

⎬
⎫

⎩
⎨
⎧

=
30282624231129272522212017

1098651912741816`153214131

,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,
/

ppppppppppppp

ppppppppppppppppp
EU , 

and optimal choices are now  { }1816`1532 ,,,, ppppp , denoted by the maximum value = 

5. Any subset of E, that will induce partition equal to EU /
 
will be considered as 

attribute reduction of E . As for example, let ER ⊂ , where { }7521 ,,, eeeeR = ,  it will 

produce a partition  induced as follow 

{ } { } { } {
} { } ⎭

⎬
⎫

⎩
⎨
⎧

=
30282624231129272522212017

1098651912741816`153214131

,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,
/

ppppppppppppp

ppppppppppppppppp
RU . 

Therefore, R can also be considered as a reduct of E. However, the optimal objects are 
now { }1816`151413321 ,,,,,,, pppppppp , which has the maximum value of 3. The 

optimal choices obtained from this set R are different from the set E, which is 
{ }1816`1532 ,,,, ppppp . In the other hand, after reduction, the choices for sub-optimal 

are the set { }29272522212019171210986574 ,,,,,,,,,,,,,,, pppppppppppppppp , which is 

different from sub-optimal choices derived from E, which is { }191274 ,,, pppp . The 

major drawback is inconsistency as shown in the selection of optimal and sub-optimal 
chaices. 

4.2   Soft Parameter Reduction of Chen et al. [4] 

Chen et al. [4] has defined ( ) ∑=
j ijiE ppf , where ijp  are the entries in the table of 

( )EF ,  and and EM  denoted for collection of objects in U which has the maximum 

value of Ef . Chen et al. [4] has in fact defined a dispensable set EA ⊂  if only if 

EAE MM =\ . Clearly, parameter reduction of Chen et al. [4] has been able to provide 

consistency in optimal object’s decision. In our analysis based on Figure 1, 
{ }1816`1532 ,,,, pppppM E = . Let  { }76543 ,,,, eeeeeS = , thus we have  
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{ } { } { }1816`1532,,,,, ,,,,
2176543

pppppMM eeeeeeeE ==− . 

Thus, the set { }76543 ,,,, eeeeeS =  is dispensable. 

Optimal choices are still  { }1816`1532 ,,,, ppppp  which has the maximum value of 2.  

and { } { }2176543 ,,,,, eeeeeeeE MM =− . Therefore, { }21 ,ee  can be considered as a parameter 

reduction of E. Chen et al. [4] has succesfully maintain consistency in the optimal 
choices, but failed in maintaining consistency for sub-optimal choices. Notice that, in 
this case, the sub-optimal choices are all of the promotions except the optimal 
promotions, i.e., 
{ ,,,,,,,,,,,,,,,,,,,,, 252423222120181716`15141311109865321 ppppppppppppppppppppp  

}3029282726 ,,,, ppppp , which is different from sub-optimal choices as derived from E, 

i.e., { }191274 ,,, pppp . The major drawback here, is again inconsistency as made 

known in the selection of sub-optimal choices. 

4.3   Normal Parameter Reduction of Kong et al. [5] 

The main purpose of Kong et al.’s normal parameter reduction is to provide 
consistency in selecting the optimal and sub-optimal objects from any reduced set that 
does conforms to the rules that has been defined by Kong et al. [5]. Kong has 
maintained the same the partitions of objects by defining indiscernibility relation 

( )AIND , for EA ⊂  as follows: 

( ) ( ) ( ) ( ){ }jAiAji pfpfUUppAIND =×∈= :, . 

The decision partition of U generated by ( )EIND  is defined as 

{ } { } { }{ }
sfnkfjifiE ppppppC ,,,,,,,,,

211 1 += . 

In the case that for EA ⊂ , if ( ) ( ) ( )nAAA pfpfpf === ...21  implies AEE CC −= , then 

A is called dispensable set. For this definition, Kong et al. [5] has termed AE −  as 
normal parameter reduction. Based on on the Boolean table in Figure 1,  the decision 
partition induced, will be  

{ } { } { }
{ } ⎭

⎬
⎫

⎩
⎨
⎧

229272522212017109865

330282624231413111419127451816`1532

,,,,,,,,,,,

,,,,,,,,,,,,,,,,,

pppppppppppp

pppppppppppppppppp
 

and { }1816`1532 ,,,, ppppp  is the optimal objects and { }191274 ,,, pppp  will be the sub-

optimal objects. Let a subset, { } EeeZ ⊂= 76 , . Obviously, Z is dispensable since the 

decision partition generated by Z has not changed, that is ZEE CC −= . Thus, by 

deleting parameter Z from E, we will have as what so-called normal parameterization 
reduction. And Kong et al. has successfully shown that the optimal and sub-optimal 
decisions, thus maintaining consistency in decision after the reduction. 
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5   Soft Decision Making Using Maximal Supported Sets  

In this section, we propose an alternative technique of obtaining the optimal and sup-
optimal choices in soft reduction and decision making. It is based on maximal 
supported sets from a Boolean table. Firstly, by using the notion of co-occurrence of 
parameters on an object, we then define the notion of support of an object. Then, the 
reduct will be obtained based on the maximum support set value. The next nearest 
support set value will be the indicator for the sub-optimal value.  

Throughout this sub-section the pair ( )EF ,  refers to the soft set over the universe 

U representing a Boolean-valued information system { }( )fVAUS ,,, 1,0= .  

Definition 4. Let ( )EF ,  be a soft set over the universe U and Uu ∈ . A parameter 

co-occurrence set of an object u can be defined as ( ) ( ){ }1,:coo =∈= eufEeu . 

Obviously, ( ) ( ){ }1:Coo =∈= eFEeu . 

Definition 5. Let ( )EF ,  be a soft set over the universe U and Uu ∈ . Support of an 

object u is defined by ( ) ( ){ }( )1,:cardsupp =∈= eufEeu . 

Definition 6. Let ( )EF ,  be a soft set over the universe U and Uu ∈ . An objects u is 

said to be maximally supported by a set of all parameters E, denoted by ( )uMsupp  if  

( ) ( )vu suppsupp > , { }uUv \∈∀ . 

Based on Definition 6, we can make supported (ranked) ordered objects  
according their support value as nUUU >>> 21 , where UUi ⊆  and 

{ }EiuUuUi by  supported maximalth - is :∈= , for ni ≤≤1 . Thus, iU  is a 

collection of objects in U having the same support, i.e., objects of the same support of 

are grouped into the same class. Obviously ∪ ni iUU
≤≤

=
1

 and ,φ=ji UU ∩  for ji ≠ . 

In other word, a collection of { }nUUUEU ,,,/ 21=  is a decision partition of U, so 

called cluster decision of U. 

Definition 7.  Let ( )EF ,  be a soft set over the universe U and EA ⊂ . A is said to be 

indispensable if EUAU // = . Otherwise, A is said to be dispensable. 

Based on Definition 7, we can reduce the number of parameters without changing the 
optimal and sub-optimal decisions. 

Definition 8. For soft set ( )EF ,  over the universe U and EA ⊆ . A is reduction of E 

if only if A is indispensable and ( ) ( )vu AEAE suppsupp \\ = , for every ., Uvu ∈  

Definition 9. For soft set ( )EF ,  over the universe U and Uu ∈ . An object u will be 

the optimal decision if u is maximally supported by E. 

The pseudo-code of searching reduct based on using soft set theory based on maximal 
supported sets is as follows. 
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1. Input a soft set ( )EF ,  over a universe U, where E as the 
available parameters used for the description of U and a 

representation of ( )EF ,  in a Boolean-valued information 

system ( )fVAUS ,,,
)1,0(

= . 

2. Determine the co-occurrence of parameters on each object and 
calculate its support. 

3. Determine the first, second until the least support. 
4. From step 3, determine the cluster decision partition EU / . 

5. Determine EA ⊂ , such that EUAU // =  and ( ) ( )vu
AA
suppsupp = , 

for every Uvu ∈, . 

6. The subset A will be identified as the reduct preserving the 
optimal and sub-optimal decisions. 

Fig. 2. The pseudo-code of the proposed technique 

6   Result and Discussion 

The following will be the co-occurrence set derived from Boolean-valued information 
of Figure 1.  
 

( ) { }7511 ,,Coo eeep = , ( ) { }743212 ,,,,Coo eeeeep = , ( ) { }743213 ,,,,Coo eeeeep = ,  

( ) { }65314 ,,,Coo eeeep = , ( ) { }715 ,Coo eep = , ( ) { }716 ,Coo eep = ,  

( ) { }65317 ,,,Coo eeeeh = , ( ) { }718 ,Coo eep = , ( ) { }719 ,Coo eep = ,  

( ) { }7110 ,Coo eep = , ( ) { }63211 ,,Coo eeep = , ( ) { }653112 ,,,Coo eeeep = ,  

( ) { }75113 ,,Coo eeep = , ( ) { }75114 ,,Coo eeep = , ( ) { }7432115 ,,,,Coo eeeeep = ,  

( ) { }7432116 ,,,,Coo eeeeep = , ( ) { }7117 ,Coo eep = , ( ) { }7432118 ,,,,Coo eeeeep = ,  

( ) { }653119 ,,,Coo eeeep = , ( ) { }7120 ,Coo eep = , ( ) { }7121 ,Coo eep = ,  

( ) { }7122 ,Coo eep = , ( ) { }63223 ,,Coo eeep = , ( ) { }63224 ,,Coo eeep = , 

( ) { }7125 ,Coo eep = , ( ) { }63226 ,,Coo eeep = , ( ) { }7127 ,Coo eep = ,  

( ) { }63228 ,,Coo eeep = , ( ) { }7129 ,Coo eep = , ( ) { }63230 ,,Coo eeep = , 

Thus, support each transaction is given as follow  

( ) 18,16,15,3,2,5supp == ipi  

( ) 19,12,7,4,4supp == jp j  

( ) 30,28,26,24,23,14,13,11,1,3supp == kpk  

( ) 29,27,25,22,21,20,17,10,9,8,6,5,2supp == lpl  

Therefore, the cluster partition is 

{ } { } { }
{ } ⎭

⎬
⎫

⎩
⎨
⎧

=
29272522212017109865

302826242314131111912741816`1532

,,,,,,,,,,,

,,,,,,,,,,,,,,,,,
/

pppppppppppp

pppppppppppppppppp
EU , 
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where it is arrange in descending order of support value. As noted from such cluster, 
the maximum supported set is { }1816`1532 ,,,, ppppp with the support of each element is 

5. And { }191274 ,,, pppp  can be considered as the sub-optimal set based on the support 

value which the next highest, i.e. 4. By comparing optimal choices from our proposed 
technique with parameter reduction from [5], also giving the result of the same the 
optimal and sub-optimal choices. Thus confirming that our reduction also provide the 
right choice for decision making. As in [3] and [4], only the issue of optimal choice 
was addressed, but in our paper, any set of reduct that conforms to our rule of reduct 
will still provide the same optimal and sub-optimal. To elaborate Definitions 7 and 8, 
let { }54321 ,,,, eeeeeA = . Then we will obtain ( ) 301,1supp \ ≤≤= ipiAE . Therefore A 

is indispensable, and we can now delete parameters 6e  and 7e  from E. By deleting 6e  

and 7e , we now have  

{ } { } { }
{ } ⎭

⎬
⎫

⎩
⎨
⎧

=
29272522212017109865

302826242314131111912741816`1532

,,,,,,,,,,,

,,,,,,,,,,,,,,,,,
/

pppppppppppp

pppppppppppppppppp
AU , 

which is still the same partition as in EU / . As we can see from AUEU // = , the 
partition is invariant, therefore  { }76 ,ee  can be deleted from E. Also in the case of 

AUEU // = , the maximum supported sets are still maintained. Again, the optimal 
and sub-optimal choices has not changed, thus confirming that eliminating technique 
based on parameter of co-occurrence and supported sets will not change the optimal 
and sub-optimal choices. So this where, our proposed reduction technique is better 
then the one proposed by [3] and [4], because it still maintains the same optimal and 
sub-optimal choices after reduction. Thus, it is shown that our proposed reduction 
technique is at par with normal parameter reduction by [5] at the point of selecting 
optimal and sub-optimal choices. 

7   Conclusion 

In this paper, we have presented an alternative technique of decision making based on 
algorithm termed maximal supported sets. In order to apply this technique, a Boolean-
valued information system is required. Since the “standard” soft set deals with such 
information system, thus maximal supported sets reduction can be applied for the 
process of decision making. Using the co-occurrence of parameters concept in an 
object, we define the notion of a support of an object under soft set theory. Based on 
the supported set from the parameters co-occurrence, we are able to identify optimal 
and sub-optimal choices. It is proven to be better than reduction of [3] and [4] because 
we are still able to maintain the optimal and sub-optimal objects after the reduction. 
Our reduction technique has proven that the optimal choice has never changed after 
reduction and different reductions will still decide the same optimal and sub-optimal 
choices. Thus proving our proposed reduction provided much improved and 
consistency in decision making. Therefore, it is safe to say that our proposed 
technique will not give rise misleading final decision. 
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Abstract. In this paper, by using nonsmooth analysis approach, topo-

logical degree theory and Lyapunov-Krasovskii function method, the is-

sue of global exponential stability is investigated for competitive neural

networks possessing inverse Lipschitz neuron activations. Several novel

sufficient conditions are established towards the existence, uniqueness

and global exponential stability of the equilibrium point for competitive

neural networks with time-varying delay.

Keywords: Competitive neural networks, Inverse Lipschitz neuron ac-

tivations, Global exponential stability.

1 Introduction

In this paper, we consider the following competitive neural networks (CNNs)
with time-varying delay:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dxi(t)
dt = −αi(xi(t)) +

N∑
j=1

Dijfj(xj(t)) +
N∑

j=1
Dτ

ijfj(xj(t− τ(t)))

+BiSi(t) + Ii,

dSi(t)
dt = −Si(t) + cfi(xi(t)),

(1)

where i = 1, 2, · · · , N , c is a constant and the time delay τ(t) is a time-varying
differentiable function satisfies

0 ≤ τ(t) ≤ τ, τ̇ (t) ≤ μ. (2)

System (1) can be rewritten as the following vector form:⎧⎨⎩
dx(t)

dt = −α(x(t)) + Df(x(t)) + Dτf(x(t− τ(t))) + BS(t) + I,

dS(t)
dt = −S(t) + cf(x(t)),

(3)

where x = (x1, x2, · · · , xN )T ∈ R
N , S = (S1, S2, · · · , SN )T ∈ R

N , α(x(t)) =
diag(α1(x1(t)), α2(x2(t)), · · · , αN (xN (t))), D = (Dij)N×N , Dτ = (Dτ

ij)N×N ,
B = diag(B1, B2, · · · , BN ), f(x(t)) = (f1(x1(t)), f2(x2(t)), · · · , fN (xN (t)))T

,

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 483–492, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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f(x(t− τ(t))) = (f1(x1(t− τ(t))), f2(x2(t− τ(t))), · · · , fN (xN (t− τ(t))))T , I =
(I1, I2, · · · , IN )T .

Recently, the stability analysis of CNNs with their various generalizations
has attracted the attention of many researchers, see for example [1-6]. However,
it is worth noting that in most existing stability results for competitive neu-
ral networks, there is a basic assumption: the neuron activation functions are
Lipschitz continuous, and/or monotonic increasing [1-5]. In this paper, it is our
purpose to study system (1) with (2) and inverse Lipschitz neuron activations.
Firstly, we present a sufficient condition for checking the existence, uniqueness
of the equilibrium point for system (1) by applying topological degree theory.
Secondly, by employing the continuous theorem and Lyapunov-Krasovskii func-
tion method, a delay-dependent criterion guaranteeing the GES of the unique
equilibrium point is derived. The obtained criteria are shown in terms of LMIs
and based on nonsmooth analysis approach, linear matrix inequality technique.

Notations. For any matrix A, AT stands for the transpose of A. If A is a
symmetric matrix, A < 0 (A ≤ 0) means that A is negative definite (negative
semidefinite). λmin(A) represents the minimum eigenvalue of matrix A. Given
the column vector, x = (x1, x2, · · · , xn)T ∈ R

n, the norm is the Euclidean

vector norm, i.e., ‖x‖ = (
n∑

i=1
x2

i )
1/2. ẋ(t) denotes the derivative of function x(t).

2 Preliminaries

The initial conditions associated with system (1) are of the form

xi(t) = φi(t), t ∈ (−τ, 0],
Si(t) = ϕi(t) ≡ ϕi(0), t ∈ (−τ, 0].

Definition 1 [7, 8, 9]. A continuous function g : R → R is said to be
α−inverse Lipschitz, if

(i) g is a strictly monotonic increasing function;
(ii) For any ρ ∈ R, there exist constants qρ > 0 and rρ > 0 which depend on ρ,
satisfying

|g(θ) − g(ρ)| ≥ qρ|θ − ρ|α, ∀ |θ − ρ| ≤ rρ,

where α > 0 is a constant.
By IL(α), we denote the class of α−inverse Lipschitz functions. There are

a great number of functions which belong to IL(α). For example, g(θ) = θ3 ∈
IL(3), g(θ) = arctan θ ∈ IL(1).

Lemma 1([8]). If g(θ) ∈ IL(α), then for any ρ0 ∈ R, we have

lim
|ρ|→+∞

∫ ρ

ρ0

[g(θ) − g(ρ0)]dθ = +∞. (4)

Lemma 2([8]). If g(θ) ∈ IL(α) and g(0) = 0, then there exist constants
q0 > 0 and r0 > 0, such that

|g(θ)| ≥ q0|θ|α, ∀ |θ| ≤ r0. (5)
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Moreover,
|g(θ)| ≥ q0 r

α
0 , ∀ |θ| ≥ r0. (6)

Lemma 3([10]). Let function F : R
n → R

n be locally Lipschitz continuous.
For any given x, y ∈ R

n, there exists an element W in the union
⋃

z∈[x,y]
∂F (z)

such that
F (y)− F (x) = W (y − x),

where [x, y] denotes the segment connecting x and y, ∂F denotes the generalized
Jacobian of function F .

Lemma 4. For any vectors x, y ∈ R
n and positive definite matrix G ∈ Rn×n,

the following matrix inequality holds:

2 xT y ≤ xTGx + yTG−1y.

Let Ω be a nonempty, bounded and open subsets of R
n. The closure and bound-

ary of Ω are denoted by Ω and ∂Ω, respectively.

Lemma 5([11]). Let H(λ, x) : [0, 1] × Ω → R
n be a continuous homotopic

mapping. If H(λ, x) = y has no solutions in ∂Ω for λ ∈ [0, 1] and y ∈ R
n \

H(λ, ∂Ω), then the topological degree deg(H(λ, x), Ω, y) of H(λ, x) is a constant
which is independent of λ. In this case, deg(H(0, x), Ω, y) = deg(H(1, x), Ω, y).

Lemma 6([11]). Let H(x) : Ω → R
n be a continuous mapping. If deg(H(x),

Ω, y) �= 0, then there exists at least one solution of H(x) = y in Ω.

Throughout this paper, we make the following assumptions.

(A1) Functions αi : R → R are locally Lipschitz and nondecreasing, and there
exist constants ai > 0 such that α̇i(x) ≥ ai for all x ∈ R at which αi are
differentiable, i = 1, 2, · · · , N. Define matrix A = diag(a1, a2, · · · , aN ).

(A2) fi(x) ∈ IL(α), i = 1, 2, · · · , N.

3 Main Results

In this section, we will present our main results for neural networks (1) with (2).

Theorem 1. Under assumptions (A1), (A2), system (1) has one unique equilib-
rium point if there exist two matrices RN×N > 0, QN×N > 0, a diagonal matrix
M = diag(m1,m2, · · · ,mN) > 0 such that any one of the following matrix in-
equalities hold:

(i) Ξ1 =R+c2Q+MD+(MD)T+(MDτ)R−1(MDτ )T+(MB)Q−1(MB)T < 0, (7)

(ii) Ξ2 =

⎛⎝ −Q (MB)T 0
MB R + c2Q + MD + (MD)T MDτ

0 (MDτ )T −R

⎞⎠ < 0. (8)
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Proof. According to Schur complement, we can easily check that condition (i) is
equivalent to condition (ii). In the following, we shall prove this theorem under
condition (i) and in two steps.

Step I. In this step, the proof of existence for the equilibrium point will be given.
Note that the equilibrium point (x∗T , S∗T )T of system (1) satisfies the fol-

lowing equations:{−α(x∗) + (D + Dτ )f(x∗) + BS∗ + I = 0,
−S∗ + cf(x∗) = 0. (9)

Equivalently, above equations can be rewritten as{−α(x∗) + (D + Dτ + cB)f(x∗) + I = 0,
S∗ = cf(x∗). (10)

Now, define a map from R
N to R

N as :

F (x) = α(x) − (D + Dτ + cB)f(x) − I

= α̃(x) − (D + Dτ + cB)f̃(x) + F (0),

where α̃(x) = α(x) − α(0), f̃(x) = f(x) − f(0).
It follows from Lemma 3 that

α̃(x) = A(1)(x)x, A(1)(x) ∈
⋃

z∈[0,x]

∂α(z),

where A(1)(x)=diag(a(1)
1 (x), a(1)

2 (x),· · ·, a(1)

N (x)) with a(1)
i (x) ≥ ai, i = 1, 2,· · ·, N .

Moreover, it is easy to see that f̃i ∈ IL(α) satisfying f̃i(0) = 0 and f̃i(xi)xi >
0 (xi �= 0). Let

Ω = {(x1, x2, · · · , xN )T : |xi| < R, i = 1, 2, · · · , N.}, R > 0,

and

H(λ, x) = α̃(x) − λ (D + Dτ + cB)f̃(x) + λF (0)
= A(1)(x)x − λ (D + Dτ + cB)f̃(x) + λF (0),

where x ∈ Ω = {(x1, x2, · · · , xN )T : |xi| ≤ R, i = 1, 2, · · · , N.}, λ ∈ [0, 1].
By means of Lemma 4, we obtain that

f̃ T (x)MDτ f̃(x) ≤ 1
2

[
f̃ T (x)(MDτ )R−1(MDτ )T f̃(x) + f̃ T (x)R f̃(x)

]
,

cf̃ T (x)MBf̃(x) ≤ 1
2

[
f̃ T (x)(MB)Q−1(MB)T f̃(x) + c2f̃ T (x)Q f̃(x)

]
.

(11)
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Applying (7) and (11), we can get

f̃ T (x)MH(λ, x)

= f̃ T (x)M [A(1)(x)x + λF (0)] − λ f̃ T (x)M(D + Dτ + cB)f̃(x)

≥ f̃ T (x)M [A(1)(x)x + λF (0)] − λ
2 f̃ T (x)

[
MD + (MD)T

+(MDτ )R−1(MDτ )T + R + (MB)Q−1(MB)T + c2Q
]
f̃(x)

≥ f̃ T (x)M [A(1)(x)x + λF (0)]

≥
N∑

i=1

[∣∣∣f̃i(xi)
∣∣∣mi a

(1)
i (x) |xi| −

∣∣∣f̃i(xi)
∣∣∣mi |F (0)i|

]
≥

N∑
i=1

∣∣∣f̃i(xi)
∣∣∣mi ai

[
|xi| − |F (0)i|

ai

]
,

where F (0)i (i = 1, 2, · · · , N) denote the ith element of vector F (0).
By virtue of Lemma 2, there exist constants qi > 0 and ri > 0, i = 1, 2, · · · , N

such that ∣∣∣f̃i(xi)
∣∣∣ ≥ qi r

α
i , ∀ |xi| ≥ ri, i = 1, 2, · · · , N. (12)

Let r = max
1≤i≤N

{ri}, a = max
1≤i≤N

|F (0)i|
ai

, Nk = {n1, n2, · · · , nk} ⊂ {1, 2, · · · , N},
∀ k < N . Define

ΩNk
= {x ∈ R

k : |xi| ≤ a, i ∈ Nk}
and

ΦNk
(x) =

∑
i∈Nk

mi ai |f̃i(xi)| [ |xi| − a].

Note that ΩNk
is a compact subset of R

k, and ΦNk
(x) is continuous on ΩNk

.
Hence, ΦNk

(x) can reach its the minimum min
x∈ΩNk

ΦNk
(x) on ΩNk

.

Let l = min
1≤i≤N

{mi aiqi r
α
i }, MNk

= min
x∈ΩNk

ΦNk
(x) andM = min {MNk

: Nk ⊂

{1, 2, · · · , N}}. Set R > max
{√

N(a− M
l ),

√
N r

}
and x ∈ ∂Ω, then there exist

two index sets N and N such that

|xi| ≤ a, i ∈ N , |xi| > a, i ∈ N ,

where N ∪ N = {1, 2, · · · , N}. Furthermore, we can find an index i0 ∈ N such
that

|xi0 | ≥
R√
N

≥ max{a, r}, |xi0 | ≥
R√
N

> a− M
l
. (13)
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Note that M ≤ 0 and by using (12) and (13), for any x ∈ ∂Ω and λ ∈ [0, 1], we
have

f̃ T (x)MH(λ, x)

≥ ∑
i∈N

∣∣∣f̃i(xi)
∣∣∣mi ai

[
|xi| − |F (0)i|

ai

]
+

∑
i∈N

∣∣∣f̃i(xi)
∣∣∣mi ai

[
|xi| − |F (0)i|

ai

]

≥ M+
∣∣∣f̃i0(xi0 )

∣∣∣mi0 ai0

[
|xi0 | − |F (0)i0 |

ai0

]
≥ M+ qi0r

α
i0
mi0 ai0 [ |xi0 | − a]

≥ qi0r
α
i0
mi0 ai0 [ |xi0 | − a + M

l ] > 0.

Thus, we obtain that H(λ, x) �= 0, ∀x ∈ ∂Ω and λ ∈ [0, 1]. An application of
Lemma 5 yields

deg(H(0, x), Ω, 0) = deg(H(1, x), Ω, 0),

i.e., deg(F (x), Ω, 0) = deg(A(1)(x)x,Ω, 0) = sgn
∣∣A(1)(x)

∣∣ �= 0, where
∣∣A(1)(x)

∣∣
denotes the determinant of matrix A(1)(x). It follows from Lemma 6 that F (x) =
0 has at least one solution in Ω. Thus, we obtain that model (1) has at least one

equilibrium point
(
x∗T , c f T (x∗)

)T

.

Step II. In this step, we will prove the uniqueness of equilibrium point by the
method of contradiction.

Assume that
(
x∗

1
T , S∗

1
T
)T

and
(
x∗

2
T , S∗

2
T
)T

are two different equilibrium
points of system (1), then

α(x∗
1) − α(x∗

2) = (D + Dτ + cB) (f(x∗
1) − f(x∗

2)) . (14)

From Lemma 3, we have that

α(x∗
1)− α(x∗

2) = A(2)(x∗
1 − x∗

2), (15)

where A(2) ∈ ⋃
z∈[x∗

1,x∗
2 ]
∂α(z) and A(2) = diag(a(2)

1 , a(2)
2 , · · · , a(2)

N ) with a(2)
i ≥

ai, i = 1, 2, · · · , N .
By means of Lemma 4, (7), (14) and (15), we can obtain

0 < (f(x∗
1) − f(x∗

2))
T MA(2) (x∗

1 − x∗
2)

= (f(x∗
1) − f(x∗

2))
T
M(D + Dτ + cB) (f(x∗

1) − f(x∗
2))

≤ 1
2 (f(x∗

1) − f(x∗
2))

T [
R + c2Q + MD+ (MD)T + (MDτ )R−1(MDτ )T

+(MB)Q−1(MB)T
]
(f(x∗

1)− f(x∗
2)) < 0.

This is a contradiction. This completes the proof of the uniqueness of the equi-
librium point for system (1).
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Theorem 2. Under assumptions (A1), (A2) and 0 ≤ μ < 1, system (1) has
one unique equilibrium point which is globally exponentially stable if there exist
two matrices QN×N > 0, RN×N > 0, a positive definite diagonal matrix M =
diag(m1,m2, · · · ,mN ) > 0 such that the following linear matrix inequality holds:

Ξ3 =

⎛⎝ −Q (MB)T 0
MB R + c2Q + MD + (MD)T MDτ

0 (MDτ )T −(1 − μ)R

⎞⎠ < 0. (16)

Proof. First of all, noticing the definition of negative definite matrix and 0 ≤
μ < 1, it follows from Ξ3 < 0 that Ξ2 < 0. Thus, according to Theorem 1, the
existence and uniqueness of equilibrium point for system (1) can be guaranteed
under condition (16). In the following, we will prove that the condition (16)
also ensures the global exponential stability of the unique equilibrium point via
constructing a proper Lyapunov-Krasovskii functional.

Let U1(x(t), S(t)) = −α(x(t)) + Df(x(t)) + Dτf(x(t − τ(t))) + BS(t) +
I, U2(x(t), S(t)) = −S(t) + cf(x(t)). Since fi ∈ IL(α) and therefore are contin-
uous, αi(xi) are continuous (the definition of locally Lipschitz), i = 1, 2, · · · , N ,
U1(x(t), S(t)), U2(x(t), S(t)) are continuous and local bounded. Hence, we can
obtain the existence of the local solution for system (1) with initial values
x(t) = φ(t), S(t) = ϕ(t), t ∈ [−τ, 0] on [0, t∗), where t∗ ∈ (0,+∞) or t∗ = +∞,
and [0, t∗) is the maximal right-side existence interval of the local solution.

Let (x∗T , S∗T )T be the unique equilibrium point of system (1). Make a trans-
formation u(t) = x(t)−x∗, v(t) = S(t)−S∗, then system (1) is transformed into⎧⎨⎩ u̇(t) = −ᾱ(u(t)) + Df̄(u(t)) + Dτ f̄ (u(t− τ(t))) + Bv(t),

v̇(t) = −v(t) + cf̄(u(t)),
(17)

where ᾱ(u(t)) = α(x∗ + u(t)) − α(x∗), f̄(u(t)) = f(x∗ + u(t)) − f(x∗).
Similarly to (15), from Lemma 3, we have

ᾱ(u(t)) = A(3)(t)u(t), A(3)(t) ∈
⋃

z∈[x∗, x∗+u(t)]

∂α(z), (18)

where A(3)(t)=diag(a(3)
1 (t), a(3)

2 (t), · · · , a(3)
N (t)) with a(3)

i (t) ≥ ai, i=1, 2, · · · , N .
From (16), we can choose a small constant 0 < γ < min{ai, i = 1, 2, · · · , N}

such that

Ξ4 =

⎛⎝ (γ − 1)Q (MB)T 0
MB eγ τR + c2Q + MD + (MD)T MDτ

0 (MDτ )T −(1 − μ)R

⎞⎠ < 0. (19)

Consider the following Lyapunov-Krasovskii functional:

V (t) = V1(t) + V2(t) + V3(t),
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where
V1(t) = eγt vT (t)Q v(t),

V2(t) = 2 eγt
N∑

i=1
mi

ui(t)∫
0

f̄i(s) ds,

V3(t) =
t∫

t−τ(t)
f̄ T (u(s))R f̄(u(s)) eγ(s+τ)ds.

(20)

Calculating the time derivative of Vi(i = 1, 2, 3) along the trajectories of system
(17) on [0, t∗) gives

V̇1(t) = γ eγt vT (t)Q v(t) + 2 eγt vT (t)Q
[−v(t) + cf̄(u(t))

]
= eγt

[
(γ − 2) vT (t)Q v(t) + 2 c vT (t)Q f̄(u(t))

]
.

(21)

Using Lemma 4, we obtain that

2 vT (t)Q
(
cf̄(u(t))

) ≤ vT (t)QQ−1 QT v(t) + c2 f̄ T (u(t))Q f̄(u(t))

= vT (t)Q v(t) + c2 f̄ T (u(t))Q f̄(u(t)).
(22)

Substituting (22) into (21) results in

V̇1(t) ≤ eγt
[
(γ − 1) vT (t)Q v(t) + c2 f̄ T (u(t))Q f̄(u(t))

]
. (23)

V̇2(t) = eγt

[
2 γ

N∑
i=1

mi

ui(t)∫
0

f̄i(s) ds + 2
N∑

i=1
mif̄i(ui(t)) u̇i(t)

]
≤ eγt

{
2 γ uT (t)Mf̄(u(t)) + 2 f̄ T (u(t))M [−A(3)(t)u(t)

+Df̄(u(t)) + Dτ f̄ (u(t− τ(t))) + Bv(t)]
}

≤ eγt
[
2 uT (t)(γM −AM)f̄(u(t)) + 2 f̄ T (u(t))MDf̄(u(t))

+2 f̄ T (u(t))MDτ f̄(u(t− τ(t))) + 2 f̄ T (u(t))MB v(t)
]

≤ eγt[2 f̄ T (u(t))MDf̄(u(t)) + 2 f̄ T (u(t))MDτ f̄(u(t− τ(t)))

+2 f̄ T (u(t))MB v(t)].

(24)

Herein, in the last inequality of (24), the inequality 0 < γ < min{ai, i =
1, 2, · · · , N} has been applied.

V̇3(t) ≤ eγt
[
eγ τ f̄ T (u(t))R f̄(u(t)) − (1 − μ) f̄ T (u(t− τ(t)))R f̄(u(t− τ(t)))

]
.

(25)

Let ξ(t) =

⎛⎝ v(t)
f̄(u(t))

f̄(u(t− τ(t)))

⎞⎠ , and then from (23)-(25), we get

V̇ (t) ≤ eγt ξT (t)Ξ4 ξ(t). (26)



Dynamics of CNNs with Inverse Lipschitz Neuron Activations 491

This implies V̇ (t) < 0 for any ξT (t) �= 0, which gives V (t) ≤ V (0), t ∈ [0, t∗).
Furthermore, it follows from (20) that

λmin(Q) vT (t) v(t) ≤ vT (t)Q v(t) ≤ V (0) e−γt ≤ V (0), (27)

and

2
N∑

i=1

mi

ui(t)∫
0

f̄i(s) ds ≤ V (0) e−γt ≤ V (0). (28)

Obviously, it follows from (27) that vi(t) are bounded on [0, t∗). Moreover, ac-
cording to (28) and Lemma 1, we can derive that ui(t) are bounded on [0, t∗).
Thus, by virtue of the continuous theorem[12], we conclude that t∗ = +∞.

Since f̄i(s) ∈ IL(α), f̄i(0) = 0, by Lemma 2, there exist constants qi > 0 and
ri > 0, i = 1, 2, · · · , N such that

|f̄i(s)| ≥ qi|s|α, ∀ |s| ≤ ri. (29)

Moreover, from (28), we can obtain that

lim
t→+∞ui(t) = 0, i = 1, 2, · · · , N.

Thus, there exists a constant T > 0 such that ui(t) ∈ [−r0, r0], t ≥ T hold for
all i = 1, 2, · · · , N , where r0 = min

1≤i≤N
{ri}, ri are the constants in condition (29).

Let m = min{mi, i = 1, 2, · · · , N}, q = min{qi, i = 1, 2, · · · , N}, from (28)
and (29), we have

V (0)
2 e−γt ≥

N∑
i=1

mi

ui(t)∫
0

f̄i(s)ds ≥
N∑

i=1
mi

|ui(t)|∫
0

qi|s|αds

≥ mq
α + 1

{
max

1≤i≤N
|ui(t)|

}α+1

, t ≥ T.

That is,

max
1≤i≤N

|ui(t)| ≤
[
V (0)(1 + α)

2mq

] 1
1+α

e−
γ

1+α t, t ≥ T. (30)

Let γ
′
= min{γ2 ,

γ
1 + α}, M =

√
V (0)

λmin(Q) +
√
N

(
V (0)(1 + α)

2mq

) 1
1+α

, from (27)

and (30), we get that

‖x(t) − x∗‖ + ‖S(t) − S∗‖ ≤ Me−γ
′
t,

for all t > T . This completes the proof of Theorem 2.
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4 Conclusions

In this paper, a novel class of competitive neural networks has been presented
with inverse Lipschitz neuron activations. By employing nonsmooth analysis
method, applying LMI technique, topological degree theory and Lyapunov-Kras
ovskii function approach, we proved the existence, uniqueness and global expo-
nential stability of the equilibrium point for competitive neural networks with
time-varying delay.
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Stability and Hopf Bifurcation of a BAM Neural
Network with Delayed Self-feedback

Shifang Kuang1, Feiqi Deng1, and Xuemei Li2

1 College of Automation Science and Engineering, South China University of

Technology, Guangzhou 510640, China
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Changsha 410081, China

Abstract. In this paper, we consider a bidirectional associate mem-

ory(BAM) neural networks with delayed self-feedback. Regarding the

self-connection delay as the bifurcation parameter, the linear stability

and Hopf bifurcation analysis are carried out. The stability and direc-

tion of the Hopf bifurcation are determined by applying the normal form

theory and the center manifold reduction. Numerical simulation results

are given to support the theoretical predictions.

Keywords: Neural network, Delay, Stability, Hopf bifurcation.

1 Introduction

Since Hopfied[1] constructed a simplified neural network model in 1984, dynami-
cal characteristics of neural networks have become a subject of intensive research
activity. Based on the Hopfied neural network model, Marcus and Westervelt[2]
proposed a neural network model incorporating time delay. Afterward, a variety
of artificial models has been established to describe neural networks with de-
lays. In [3,4], a class of two-layer heteroassociative networks, called bidirectional
associative memory(BAM) neural networks with or without axonal signal trans-
mission delays, has been proposed and applied in many fields such as pattern
recognition and automatic control.

The delayed BAM neural network is described by the following system{
ẋi(t) = −μixi(t) +

∑m
j=1 cjifi(yj(t− τji)) + Ii,

ẏj(t) = −νjyj(t) +
∑n

i=1 dijgj(xi(t− γij)) + Jj ,
(1)

where, dij , cji(i = 1, 2, · · · , n, j = 1, 2, · · · ,m) are weights of connection through
the neurons in two layers: the I-layer and the J-layer; μi and νj describe the
stability of internal neurons processes on the I-layer and the J-layer, respectively.
On the I-layer, the neurons whose states are denoted by xi(t) receive the inputs Ii

and the inputs outputted by those neurons in the J-layer via activation functions
fi, while on the J-layer, the neurons whose states are denoted by yj(t) receive the
inputs Jj and the inputs outputted by those neurons in the I-layer via activation
functions gj. Parameters τji and γij correspond to the finite time delays of neural
processing and delivery of signals.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 493–503, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In [3], Wang and Zou considered a special case of (1) when all delays in each
layer are identical. In [4], Song et al. assumed that time delay from the I-layer to
another J-layer is τ1, while the time delay from the J-layer back to the I-layer is
τ2, and there are only one neuron in the I-layer and two neurons in the J-layer.
Thus, the simplified BAM neural network model takes the form⎧⎨⎩ ẋ1(t) = −μ1x1(t) + c21f1(y1(t− τ2)) + c31f1(y2(t− τ2)),

ẏ1(t) = −μ2y1(t) + c12f2(x1(t− τ1)),
ẏ2(t) = −μ3y2(t) + c13f3(x1(t− τ1)).

(2)

On the other hand, recent work [5,6] has shown that inhibitory self-connections
play a role in stabilizing a network under some conditions on delays. This moti-
vates us to incorporate inhibitory self-connections terms into the model system
(2). For the sake of simplicity, we shall study a BAM neural network modeled
by the following nonlinear differential system⎧⎨⎩ ẋ1(t)=−kx1(t)+Mf(x1(t− σ))+c21f1(y1(t− τ2))+c31f1(y2(t− τ2)),

ẏ1(t) = −ky1(t) + Mf(y1(t− σ)) + c12f2(x1(t− τ1)),
ẏ2(t) = −ky2(t) + Mf(y2(t− σ)) + c13f3(x1(t− τ1)),

(3)

where k > 0, c1j(j = 2, 3) and ci1(i = 2, 3) are real constants. Our aim in this
paper is to study the stability of the zero solution of (3) and Hopf bifurcations.
Taking the identical delay as a parameter, we shall show that when the delay σ
passes through a critical value, the zero solution loses its stability and a Hopf
bifurcation occurs.

2 Stability and Local Hopf Bifurcation

Throughout this paper, we always assume that τ2 > τ1 > 0 and fi ∈ c1, fi(0) = 0,
for i = 1, 2, 3. Linearizing (3) at the origin leads to⎧⎨⎩

ẋ1(t) = −kx1(t) + βx1(t− σ) + α21y1(t− τ2) + α31y2(t− τ2),
ẏ1(t) = −ky1(t) + βy1(t− σ) + α12x1(t− τ1),
ẏ2(t) = −ky2(t) + βy2(t− σ) + α13x1(t− τ1),

(4)

where αij = cijf
′
j(0) and β = Mf ′(0). Let τ = τ1+τ2

2 . The associated charac-
teristic equation of (4) is

(λ + k − βe−λσ)[(λ + k − βe−λσ)2 − αe−2λτ ] = 0 (α = α12α21 + α13α31) (5)

Throughout this paper, we assume that α > 0. So either

λ + k − βe−λσ = 0, (6)

or
λ + k − βe−λσ ±√

αe−λτ = 0. (7)
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Substituting λ = μ + iω(ω ≥ 0) into the left sides of both (6) and (7) and
separating the real and imaginary parts, we obtain{

Re(6)(μ, ω) = μ + k − βe−μσ cos(ωσ) = 0,
Im(6)(μ, ω) = ω + βe−μσ sin(ωσ) = 0.{

Re(7)(μ, ω) = μ + k − βe−μσ cos(ωσ) ±√
αe−μτ cos(ωτ) = 0,

Im(7)(μ, ω) = ω + βe−μσ sin(ωσ) ∓√
αe−μτ sin(ωτ) = 0.

Theorem 1. If k > |β| + √
α, σ ≥ 0, τ ≥ 0, then all roots of (5) have negative

real parts, and hence the trivial solution of (3) is asymptotically stable.

Proof. Notice that

Re(6)(μ, ω) ≥ k − |β|, Re(7)(μ, ω) ≥ k − |β| − √
α

for all μ ≥ 0, σ ≥ 0, τ ≥ 0. Obviously, if k > |β|, then the root of (6) has negative
real part, and if k > |β|+√

α, then the roots of (7) have negative parts. Hence,
if k > |β| + √

α, then all roots of (5) have negative real parts. This completes
the proof. �

Theorem 2. If β < 0, and
√
α < −β, σ ∈ [0, 1

−2β ], then for all τ ≥ 0, the
trivial solution of (3) is asymptotically stable.

Proof. From Re(7)(μ, ω) = 0 and Im(7)(μ, ω) = 0, we obtain

μ + k − βe−μσ cos(ωσ) = ∓√αe−μτ cos(ωτ),

ω + βe−μσ sin(ωσ) = ±√αe−μτ sin(ωτ),

and hence

(μ+k)2 +ω2−2βe−μσ[(μ+k) cos(ωσ)−ω sin(ωσ)]+β2e−2μσ −αe−2μτ = 0.
(8)

If we assume that
β < 0, and

√
α < −β, σ ∈ [0,

1
−2β

],

it follows from Im(7)(μ, ω) = 0 that

ω < −2β for μ ≥ 0, τ ≥ 0 and ωσ ∈ [0, 1].

Letting the left-hand side of (8) be M(μ, ω), for fixed ω, we have

M(0, ω) = k2 + β2 − α− 2βk cos(ωσ) + ω2 + 2βω sin(ωσ)
> ω2(1 + 2βσ)
≥ 0(because− 1 ≤ 2βσ ≤ 0).

Differentiating M(μ, ω) with respect to μ, we have

∂M(μ, ω)
∂μ

= 2{(μ + k)[1 + βσe−μσ cos(ωσ)] − βe−μσ[cos(ωσ) + βσe−μσ ]

+ατe−2μτ − βσωe−μσ sin(ωσ)}.
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Because β < 0, σ ∈ [0, 1
−2β ], then −βωσe−μσ sin(ωσ) is nonnegative, meanwhile

ατe−2μτ is also nonnegative. Another ωσ ∈ [0, 1] and 1
2 = cos(π/3) < cos 1 ≤

cos(ωσ) ≤ 1,we have

(μ + k)[1 + βσe−μσ cos(ωσ)] ≥ (μ + k)(1 − 1
2
) > 0

and
−βe−μσ[cos(ωσ) + βσe−μσ ] ≥ −βe−μσ(cos 1 − 1

2
) > 0.

Therefore, ∂M(μ, ω)/∂μ > 0. From above discussion, we have M(μ, ω) > 0 for
μ ≥ 0, which contradicts with (8).

From Re(8)(μ, ω) = 0, we can easily obtain the root of (8) has negative real
part, if β < 0, σ ∈ [0, 1

−2β ]. This completes the proof. �
In the following, we will regard σ as the parameter and try to find its critical
value at which the bifurcation occurs. Letting σ = 0 in (5). We have

Re(6)(μ, ω) = μ + k − β ≥ k − β,

Re(7)(μ, ω) = μ + k − β ±√
αe−μτ cos(ωτ) ≥ k − β −√

α,

for all μ ≥ 0, from which, we obtain the following result.

Lemma 1. If the coefficients satisfy

β < k −√
α, (9)

then all roots of (5) have negative real parts at σ = 0 for all τ ≥ 0.
Next we investigate if σ ≥ 0 will destroy the stability. Theorem 1 and Lemma

1 suggest that in order to explore the possibility that σ ≥ 0 destroys the stability,
we need to assume that (9) and |β| +√

α ≥ k hold, or equivalently,

β < −|k −√
α|. (10)

Under this assumption, we know for any fixed τ ≥ 0, all roots of (5) have negative
real parts when σ = o and it is possible for some roots having nonnegative real
parts when σ > 0.

Note that λ = 0 cannot be a root of (5) due to (10), and λ = iω with ω > 0
is a root of (5) if and only if{

k − β cos(ωσ) = 0,
ω + β sin(ωσ) = 0, or

{
β cos(ωσ) = k ±√

α cos(ωτ),
β sin(ωσ) = −ω ±√

α sin(ωτ). (11)

From (11) we have
ω1 =

√
β2 − k2,

or β2 = k2 + ω2 + α± 2
√
α[k cos(ωτ) − ω sin(ωτ)]. (12)

(12) can have either finite number of roots or no root for ω > 0. In the case of
finite number of roots, we denote them by ωk, k = 2, 3. It follows from (11) that

σ1i =
1
ω1

(arccos
k

β
+ 2iπ), i = 0, 1, 2, · · ·
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σ±
kj =

1
ωk

(arccos
k ±√

α cos(ωkτ)
β

+ 2jπ), j = 0, 1, 2, · · · (13)

In the case where (12) has no root, we denote the corresponding σkj(0) = ∞.
Define

σ0 = σk0 = min{σ±
k0(0), σ10}, ω0 = ωk0.

The above analysis and a direct calculation give

Lemma 2. Assume that (10) holds. Then

(i) all roots of (5) have negative real parts for any fixed τ ≥ 0 and for σ ∈ [0, σ0);
(ii) (5) has a pair of simple purely imaginary roots and all other roots have neg-
ative real parts at σ = σ0;
(iii) at least one root of (5) has positive real part if σ > σ0.

Remark 1. Let λ(σ) = μ(σ) + iω(σ) be the root of (5) near σ = σkj satisfying

μ(σkj) = 0, ω(σkj) = ωk. (14)

Substituting λ(σ) into (5) and taking the derivative with respect to σ, we obtain

[(λ+ k − βe−λσ)2 − αe−2λτ ][(1 + βσe−λσ dλ
dσ )]

+(λ+ k − βe−λσ){2(λ+ k − βe−λσ)[(1 + βσe−λσ dλ
dσ )] + 2ταe−2λτ dλ

dσ} = 0.

Then(
dλ

dσ

)−1

=
(1+βσe−λσ)[3(λ+k−βe−λσ)2−αe−2λτ ]+2(λ+k−βe−λσ)ταe−2λτ

λβe−λσ[αe−2λτ − 3(λ + k − βe−λσ)2]
.

(15)
From (14) and (15), we can obtain

Re
[
dλ
dσ

]−1

σ=σkj
= 1

M2+N2 {M [(−3ω2
k + 3k2 + 3β2 − 6β2kσkj) cos(ωkσkj)− 6ωk(k+

β2σkj) sin(ωkσkj) + 3β(k2σkj − 2k − σkjω
2) + 3β2σkj cos(2ωkσkj)

+(α+ 2kτα) cos(ωkσkj − 2ωkτ) + (αβσkj − 2αβτ) cos(2ωkτ)−
2ωkτα sin(ωkσkj − 2ωkτ)] +N [(−3ω2

k + 3k2 − 3β2 − 6kβ2σkj)×
sin(ωkσkj) + 6ωk(k + β2σkj) cos(ωkσkj) + 6ωkβ(kσkj − 1)
−3β3σkj sin(2ωkσkj) + (α+ 2kτα) sin(ωkσkj − 2ωkτ)
+(2αβτ − αβσkj) sin(2ωkτ) + 2ωkτα cos(ωkσkj − 2ωkτ)]},

where

M = αβωk sin(2ωkτ) − 3β3ωk sin(2ωkσkj) − 2ω2
kβk

+2β2ω2
k cos(ωkσkj) − 2kβ2ωk sin(ωkσkj),

N = αβωk cos(2ωkτ) + 3ω3
kβ − 3k2ωkβ − 3β3ωk cos(2ωkσkj)

−2β2ω2
k sin(ωkσkj) − 2kβ2ωk cos(ωkσkj).

Theorem 3. Based on the lemmas presented in the above, we have the following
results.
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(i) If β < k − √
α, then the trivial solution of (3) is asymptotically stable at

σ = 0 for all τ ≥ 0.
(ii) If β < −|k−√

α|, then the trivial solution of (3) is asymptotically stable for
σ ∈ [0, σ0) and unstable of σ > σ0.
(iii) Hopf bifurcation occurs at σ = σ0 if (10) holds and Re

[
dλ
dσ

]
σ=σkj

�= 0.

Remark 2. Note that the stability analysis and Hopf bifurcation on system (3)
is under the condition α > 0. In fact, when α ≤ 0, our method is also effective.

3 Direction and Stability of the Hopf Bifurcating
Periodic Solution

In this section, we discuss the direction of Hopf bifurcation and the stability of
the bifurcating periodic solution. First, we rewrite the DDE(3) as an ODE by
using the Riesz representation theorem. Then we use the method of Hassard et
al.[7] to establish the results on Hopf bifurcation.

Letting u(t) = (x1(t), y1(t), y2(t))T and ut(θ) = u(t + θ) for θ ∈ [−τ2, 0), we
can rewrite (3) as

u̇(t) = Lσ(ut) + F (ut, σ), (16)

with
Lσ(φ) = −Kφ(0) + B1φ(−σ) + B2φ(−τ2) + Bφ(−τ1), (17)

where

K =

⎛⎝k 0 0
0 k 0
0 0 k

⎞⎠ , B1 =

⎛⎝β 0 0
0 β 0
0 0 β

⎞⎠ , B2 =

⎛⎝0 α21 α31
0 0 0
0 0 0

⎞⎠ , B =

⎛⎝ 0 0 0
α12 0 0
α13 0 0

⎞⎠ ,

and

F (φ, σ) =

⎛⎜⎜⎝
l1φ

2
1(−σ) + l2φ

3
1(−σ) + l3φ

2
2(−τ2) + l4φ

3
2(−τ2)

+l5φ
2
3(−τ2) + l6φ

3
3(−τ2) + · · ·

m1φ
2
1(−τ1) + m2φ

3
1(−τ1) + l1φ

2
2(−σ) + l2φ

3
2(−σ) + · · ·

n1φ
2
1(−τ1) + n2φ

3
1(−τ1) + l1φ

2
3(−σ) + l2φ

3
3(−σ) + · · ·

⎞⎟⎟⎠ , (18)

where, φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T ∈ C([−τ2, 0], R3), l1 = Mf
′′

(0)
2 , l2 = Mf

′′′
(0)

6 ,

l3 = c21f
′′
1 (0)
2 , l4 = c21f

′′′
1 (0)
6 , l5 = c31f

′′
1 (0)
2 , l6 = c31f

′′′
1 (0)
6 ,m1 = c12f

′′
2 (0)
2 ,m2 =

c12f
′′′
2 (0)
6 , n1 = c13f

′′
3 (0)
2 , n2 = c13f

′′′
3 (0)
6 .

By the Riesz representation theorem, there exists a bounded variation function
matrix η(θ, σ) for θ ∈ [−τ2, 0] such that

Lσφ =
∫ 0

−τ2

dη(θ, σ)φ(θ), for φ ∈ C([−τ2, 0], R3). (19)
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In fact, we can choose

η(θ, σ) =

⎧⎪⎪⎨⎪⎪⎩
−kId3, θ = 0,
B1δ(θ + σ), θ ∈ [−σ, 0),
Bδ(θ + τ1), θ ∈ [−τ1,−σ),
B2δ(θ + τ2), θ ∈ [−τ2,−τ1),

where δ(θ) is the Dirac function defined and Id3 is the 3 × 3 identity matrix.
Now, for φ ∈ C([−τ2, 0], R3), we define

(Aσφ)(θ) =

{
dφ
dθ , θ ∈ [−τ2, 0),∫ 0
−τ2

dη(ξ, σ)φ(ξ) = Lσ(φ) , θ = 0,
(20)

and

(Rσφ)(θ) =
{

(0, 0, 0)T , θ ∈ [−τ2, 0),
F (φ, σ) , θ = 0. (21)

System(16) can be rewritten as

u̇t = Aσut + Rσut. (22)

For ψ ∈ C([0, τ2], R3), defined

(A∗
0ψ)(s) =

{
− dψ

ds , s ∈ (0, τ2],∫ 0
−τ2

dηT (t, 0)ψ(−t), s = 0,
(23)

and a bilinear inner product

〈ψ, φ〉 = ψ̄(0)φ(0) −
∫ 0

−τ2

∫ θ

ξ=0
ψ̄T (ξ − θ)dη(θ, 0)φ(ξ)dξ, (24)

where η(θ) = η(θ, 0). Then A0 and A∗
0 are adjoint operators. By Theorem 3, we

know that ±iω0 are the eigenvalues of A0. Therefore, they are also eigenvalues
of A∗

0.
Let q(θ) = (1, q1, q2)T eiω0θ(θ ∈ [−τ2, 0]) be an eigenvector of A0 correspond-

ing to the eigenvalue iω0, q∗(s) = D(1, q∗1 , q
∗
2)eisω0 be the eigenvector of A∗

0
corresponding to −iω0. Denote V = (1, q1, q2)T , V ∗ = (1, q∗1 , q∗2). By (24) and
〈q∗(s), q(θ)〉 = 1, we get

D̄ = [V ∗T
V + τ2e

−iω0τ2V ∗T
B2V + τ1e

−iω0τ1V ∗T
BV + σe−iω0σV ∗T

B1V ]−1.

In the following, we use the algorithms in Hassard et al.[7] and the computation
process similar to that in [3,4], we can obtain the coefficients which will be used
in determining the important quantities:
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g20 = 2D̄[(1 + q21 q̄
∗
1 + q22 q̄

∗
2)l1e

−2iσω0 + (l3q
2
1 + l5q

2
2)e

−2iτ2ω0 + (q̄∗1m1 + q̄∗2n1)e
−2iτ1ω0 ]

g11 = 2D̄(l1 + l3q1q̄1 + l5q2q̄2 + q̄∗1m1 + q̄∗1 l1q1q̄1 + q̄∗2n1 + q̄∗2 l1q2q̄2)
g02 = 2D̄[(1 + q̄1

2q̄1
∗ + q̄2

2q̄2
∗)l1e2iσω0 + (l3q̄1

2 + l5q̄2
2)e2iτ2ω0 + (q̄1

∗m1 + q̄2
∗n1)e

2iτ1ω0 ]

g21 = 2D̄[(2l1W
(1)
11 (−σ) + 2l1q̄1

∗q1W
(2)
11 (−σ) + 2l1q̄2

∗q2W
(3)
11 (−σ) + l2 + l2q̄1

∗q21 q̄1+
l2q̄2

∗q22 q̄2)e
−iσω0 + (l1W

(1)
20 (−σ) + l1q̄1

∗q̄1W
(2)
20 (−σ) + l1q̄2

∗q̄2W
(3)
20 (−σ))eiσω0+

(2l3W
(2)
11 (−τ2)q1 + l4q

2
1 q̄1 + 2l5W

(3)
11 (−τ2)q2 + l6q

2
2 q̄2)e

−iτ2ω0 + (l3W
(2)
20 (−τ2)q̄1

+l5W
(3)
20 (−τ2)q̄2)e

iτ2ω0 + (2q̄1
∗m1W

(1)
11 (−τ1) + q̄1

∗m2 + 2q̄2
∗n1W

(1)
11 (−τ1)

+q̄2
∗n2)e

−iτ1ω0 + (q̄1
∗m1W

(1)
20 (−τ1) + q̄2

∗n1W
(1)
20 (−τ1))e

iτ1ω0 ],

(25)

where
W20(θ) =

ig20

ω0
q(0)eiω0θ +

iḡ02

3ω0
q̄(0)e−iω0θ + E1e

2iω0θ, (26)

W11(θ) = − ig11

ω0
q(0)eiω0θ +

iḡ11

ω0
q̄(0)e−iω0θ + E2, (27)

and

E1 =�−1 (τ, 2iω0)

⎛⎝ l1e
−2iσω0 + l3q

2
1e

−2iτ2ω0 + l5q
2
2e

−2iτ2ω0

m1e
−2iτ1ω0 + l1q

2
1e

−2iσω0

n1e
−2iτ1ω0 + l1q

2
2e

−2iσω0

⎞⎠ ,

E2 =�−1 (τ, 0)

⎛⎝2l1 + 2l3q1q̄1 + 2l5q2q̄2
2m1 + 2l1q1q̄1
2n1 + 2l1q2q̄2

⎞⎠ ,

where
(k + λ)I −B1e

−λσ −B2e
−λτ2 −Be−λτ1 def=� (τ, λ).

Based on the above analysis, we can see that each gij in (25) is determined by
the parameters in system (3). Thus we can compute the following values:

c1(0) = i
2ω0

(g20g11 − 2|g11|2 − 1
3 |g02|2) + 1

2g21,

γ2 = − Re{c1(0)}
Re{λ′(σ0)} ,

T2 = − 1
ω0

[Im{c1(0)} + γ2Im{λ′(σ0)}],
B2 = 2Re{c1(0)},

(28)

which determine the quantities of bifurcating periodic solutions on the center
manifold at the critical value σ0, γ2 determines the directions of the Hopf bifur-
cation: if γ2 > 0(γ2 < 0), then the Hopf bifurcation is supercritical (subcritical);
B2 determines the stability of the bifurcating periodic solutions: the bifurcating
periodic solutions on the center manifold are stable(unstable)if B2 < 0(B2 > 0);
and T2 determines the period of the bifurcating periodic solutions: the period
increase (decrease) if T2 > 0(T2 < 0).

According to the above analysis and (28), we obtain the following result.

Theorem 4. Assume (10) holds and Re
[

dλ
dσ

]
σ=σ0

�= 0. Let c1(0) be given in
(28). Then
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(i) the bifurcating periodic solutions exists for σ = σ0 and if γ2 > 0(< 0), the
bifurcation is supercritical (subcritical);
(ii) the bifurcating periodic solutions are stable (unstable) if Re{c1(0)} > 0(< 0);
(iii) T2 determines the period of the bifurcating periodic solutions:the period in-
crease (decrease) if T2 > 0(T2 < 0).

4 Numerical Simulation

In this section, some numerical results of simulating system (3) are presented .
We use the formulas obtained in Section 3 to calculate the Hopf bifurcation of
system (3) . We suppose f(x) = fi(x) = tanh(x)(i = 1, 2, 3) and k = 1,M =
−2, α1j = 1(j = 2, 3), αi1 = 1(i = 2, 3), then (3) is changed into:

Example 1. the system as follows:⎧⎨⎩
ẋ1(t) = −x1(t) − 2 tanh(x1(t− σ)) + tanh(x2(t− π

8 )) + tanh(x3(t− π
8 )),

ẋ2(t) = −x2(t) − 2 tanh(x2(t− σ)) + tanh(x1(t− 3π
8 )),

ẋ3(t) = −x3(t) − 2 tanh(x3(t− σ)) + tanh(x1(t− 3π
8 )).

(29)
By the simple calculation, we know −2 < −|1 − √

2|. From the calculations of
Section 2, we have: σ0 = 0.5238, and ω0 = 3.0594. Meanwhile, we can get

Re[(
dλ

dσ
)σ=σ0 ]

−1 = 0.03925 > 0.

From Theorem 3, we know that the equilibrium of system(29) is asymptotically
stable when σ ∈ [0, 0.5238). According to Fig. 2, the numerical simulation can
illustrate the fact at σ = 0.5138. When σ is increased to the critical value 0.5238,
the origin will lose its stability and the Hopf Bifurcation occurs, see Fig.1. When
σ continues to increase, a stable periodic solution is bifurcated from the zero
solution, see Fig.3.
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Fig. 1. Numerical solution (x1, x2, x3) of system (29) with σ = 0.5238
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Fig. 2. Numerical solution (x1, x2, x3) of system (29) with σ = 0.5138
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Fig. 3. Numerical solution (x1, x2, x3) of system (29) with σ = 0.5300
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Abstract. Global asymptotic stability problem for a class of recurrent

neural networks with a general class of distributed delays has been stud-

ied based on distributed-delay-matrix decomposition method and linear

matrix inequality (LMI) technique. The proposed stability criterion is

suitable for a general class of multiple delayed recurrent neural networks.

Especially, for the recurrent neural networks with different multiple de-

lays, infinite distributed delays and finite distributed delays, we have

also established corresponding LMI-based stability criteria, which are

simple in expression form and easy to check. Compared with the exist-

ing results, our results are new and can be regarded as an alterative of

M-matrix based stability results in the literature. . . .

Keywords: Recurrent neural networks, global asymptotic stability,

distributed delays, Lebesgue-Stieljies measures, linear matrix inequality

(LMI).

1 Introduction

It is well known that recurrently connected networks have been extensively stud-
ied both in theory and applications. They have been successfully applied in signal
processing, pattern recognition and associative memories, especially in static im-
age treatment. Such applications heavily rely on the dynamic behaviors of the
neural networks. Therefore, the analysis of these dynamic behaviors is a neces-
sary step for the practical design of neural networks [1]-[10].

In hardware implementation, time delays inevitably occur due to the finite
switching speed of the amplifiers and communication time. Neural networks
with time delays have much more complicated dynamics due to the incorpo-
ration of delays. Therefore, stability analysis for recurrent neural networks with
different delays have been received many attentions in last decades. In the
existing references, different kinds of delays have been considered, for exam-
ple, discrete or concentrated constant delays τ , τj , τij and their time vary-
ing counterparts; finitely distributed delays

∫ t

t−τ
gj(xj(s))ds,

∫ t

t−τj
gj(xj(s))ds,

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 504–511, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Stability Analysis of Recurrent Neural Networks 505∫ t

t−τij
gj(xj(s))ds and their time varying counterparts; infinitely distributed de-

lays
∫ t

−∞ kij (t− s)gj(xj(s))ds, where gj(·) are the neuron activation functions,
kij(s) are some Kernel functions. Different stability results for recurrent neural
networks with above delays have been established, for example, in the form of
M-matrix and linear matrix inequality [1]-[10],[23].

Recently, a more general distributed delay model, i.e.,
∫∞
0 gj(xj(t−s))dKij(s),

which is the Lebesgue-Stieljies integral, has been studied in the literature, see
[11]-[22]. As pointed in [14,17], can we propose an effective approach to inves-
tigate them in a universal framework? An affirmative answer has been given in
[14,17] to integrate the different delays based on M-matrix framework. It is well
known that linear matrix inequality is a very powerful tool to deal with stability
problems associated with different delays. Meanwhile, as a parallel mathematical
method to M-matrix in analyzing the stability problem, it is necessary to ask
whether LMI based method can also solve the problem proposed in [14,17]. In
our previous papers [2,3,4,23], we have established LMI-based stability results
for recurrent neural networks with different multiple delays τij(t), infinitely dis-
tributed delays

∫ t

t−τ gj(xj(s))ds and infinitely distributed delays
∫ t

−∞ kij(t −
s)gj(xj(s))ds, respectively. In this paper, we will also give an affirmative answer
to the problem proposed in [14,17] and establish an LMI-based stability crite-
rion for recurrent neural neural networks with distributed delays

∫∞
0 gj(xj(t −

s))dKij(s), which will integrate the cases with above different delays.

2 Problem Description and Preliminaries

The following recurrent neural networks with a general continuously distributed
delays will be discussed in this paper,

ẋi(t) = −aixi(t) +
n∑

j=1

wijfj(xj(t)) +
n∑

j=1

∫ ∞

0
fj(xj(t− τij(t)− s))dKij(s), (1)

where x = (x1, · · · , xn)T , A = diag(a1, · · · , an), ai > 0, W = (wij)n×n is a
real constant matrix, f(x(t)) = (f1(x1(t)), · · · , fn(xn(t)))T , fi(xi(t)) are the
activation functions, τij(t) are the time varying delays with τij(t) ≤ τM and
τ̇ij(t) ≤ μij < 1, μij > 0 are positive constants, dKij(s) are Lebesgue-Stieljies
measures for each i, j = 1, · · · , n.

Assumption 1. The activation function fi(xi) are bounded and continuous,
which satisfy

0 ≤ fi(η)
η

≤ δi, (2)

for any η �= 0, η ∈ �, and δi > 0, fi(0) = 0.

Assumption 2. The Lebesgue-Stieljies measures dKij(s) satisfy∫ ∞

0
dKij(s) = mij > 0, (3)

for positive constants mij > 0, i, j = 1, · · · , n.
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Inspired by the matrix-decomposition-method proposed in [2,3,4,23], we de-
compose the distributed delayed terms

∑n
j=1

∫∞
0 fj(xj(t− τij(t)− s))dKij(s) in

(1) and rewrite (1) in a compact matrix-vector form as follows,

ẋ(t) = −Ax + Wf(x(t) +
n∑

k=1

Ikθk(t), (4)

where Ik is an n× n constant matrix, whose elements in k-th row are all 1, and
the others rows are all zeros, i.e.,

I1 =

⎡⎢⎢⎢⎣
1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎦
n×n

, I2 =

⎡⎢⎢⎢⎣
0 0 · · · 0
1 1 · · · 1
...

...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎦
n×n

, In =

⎡⎢⎢⎢⎣
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
1 1 · · · 1

⎤⎥⎥⎥⎦
n×n

,

θk(t) =
( ∫∞

0 f1(x1(t−τk1(t)−s))dKk1(s),
∫∞
0 f2(x2(t−τk2(t)−s))dKk2(s), · · · ,∫∞

0 fn(x1(t − τkn(t) − s))dKkn(s)
)T

.

Lemma 1. (see [23]) For any continuous functions g1(s) and g2(s), which are
well defined in the integral interval, the following inequality holds,(∫ t

−∞
g1(s)g2(s)ds

)2
≤

(∫ t

−∞
g2
1(s)ds

)( ∫ t

−∞
g2
2(s)ds

)
, (5)

for t ≥ 0.

3 Main Results

Under above assumptions, we now state our main results in this section.

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. If there ex-
ist positive diagonal matrices P and Hi such that the following linear matrix
inequality holds,

Ω =

⎡⎢⎢⎢⎢⎢⎣
Ψ PI1 PI2 · · · PIn

(PI1)T −H1M
−1
1 U1 0 · · · 0

(PI2)T 0 −H2M
−1
2 U2 · · · 0

...
...

...
. . .

...
(PIn)T 0 0 · · · − HnM−1

n Un

⎤⎥⎥⎥⎥⎥⎦ < 0,

then the equilibrium point of neural network (4) is globally asymptotically stable,
where Ψ = −2PAΔ−1 + PW + (PW )T +

∑n
i=1 HiMi, Δ = diag(δ1, δ2, · · · , δn),

Mi = diag(mi1, mi2, · · · , min) and Ui = diag(1−μi1, 1− μi2, · · · , 1− μin) are all
positive diagonal matrices, i = 1, · · · , n.
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Proof. Let us consider the Lyapunov functional V (t) = V1(t) + V2(t), where

V1(t) =
n∑

i=1

2pi

∫ xi(t)

0
fi(s)ds,

V2(t) =
n∑

i=1

n∑
j=1

hij

∫ ∞

0
dKij(s)

∫ t

t−τij(t)−s

f2
j (xj(z))dz,

where P = diag(p1, · · · , pn) and Hi = diag(hi1, hi2, · · · , hin) are all positive
diagonal matrices, i = 1, · · · , n.

The derivative of V1(t) is as follows

V̇1(t) = 2fT (x(t))P ẋ(t)

= 2fT (x(t))P
[
− Ax(t) + Wf(x(t) +

n∑
k=1

Ikθk(t)
]

≤ 2fT (x(t))P
[
− AΔ−1f(x(t)) + Wf(x(t) +

n∑
k=1

Ikθk(t)
]
.

The derivative of V2(t) is as follows

V̇2(t) =
n∑

i=1

n∑
j=1

hij

∫ ∞

0

[
f2

j (xj(t)) − (1 − τ̇ij(t))f2
j (xj(t − τij(t) − s))

]
dKij(s)

≤
n∑

i=1

n∑
j=1

hijmijf
2
j (xj(t))

−
n∑

i=1

n∑
j=1

(1 − μij)hij

mij

∫ ∞

0
dKij(s)

∫ ∞

0
f2

j (xj(t − τij(t) − s))dKij(s)

≤
n∑

i=1

fT (x(t))HiMif(x(t))

−
n∑

i=1

n∑
j=1

(1 − μij)hij

mij

(∫ ∞

0
fj(xj(t − τij(t) − s))dKij(s)

)2

=
n∑

i=1

fT (x(t))HiMif(x(t)) −
n∑

i=1

θT
i (t)HiM

−1
i Uiθi(t)

where θi(t)=
( ∫∞

0 f1(x1(t−τi1(t)−s))dKi1(s),
∫∞
0 f2(x2(t−τi2(t)−s))dKi2(s),· · ·,∫∞

0 fn(x1(t − τin(t) − s))dKin(s)
)T

, Mi = diag(mi1, mi2, · · · , min) and Ui =
diag(1−μi1, 1−μi2, · · · , 1−μin) are all positive diagonal matrices, i = 1, · · · , n.

Combining (6) with (6), it yields

V̇ (t) ≤ ζT (t)Ωζ(t) < 0,



508 Z. Wang, H. Zhang, and J. Feng

for any ζ(t) �= 0, where ζT (t) =
(
fT (x(t)) θT

1 (t), θT
2 (t), · · · , θT

n (t)
)

and Ω is
defined in (6). According to Lyapunov stability theory, the equilibrium point of
neural network (4) is globally asymptotically stable.

As pointed out in [14,17], model (4) includes many delayed neural network mod-
els. Next, we will discuss the following three cases.

1) In the case dKij(s) = δ(s)w1
ijds, where δ(s) is the Dirac-delta function,

model (4) is reduced to the system with different multiple time varying delays,

ẋi(t) = −aixi(t) +
n∑

j=1

wijfj(xj(t)) +
n∑

j=1

w1
ijfj(xj(t − τij(t))).

In this case, we have the following result for system (6), which can be derived
in a similar manner to the proof of Theorem 1.

Corollary 1. Suppose that Assumption 2 holds. If there exist positive diagonal
matrices P and Hi such that the following linear matrix inequality holds,

Ω1 =

⎡⎢⎢⎢⎢⎢⎣
Ψ1 PE1 PE2 · · · PEn

(PE1)T −H1U1 0 · · · 0
(PE2)T 0 −H2U2 · · · 0

...
...

...
. . .

...
(PEn)T 0 0 · · · −HnUn

⎤⎥⎥⎥⎥⎥⎦ < 0,

then the equilibrium point of neural network (6) is globally asymptotically stable,
where Ψ1 = −2PAΔ−1+PW +(PW )T +

∑n
i=1 Hi, Δ = diag(δ1, δ2, · · · , δn), Ei is

a n×n square matrix, whose i-th row is composed of the i-th row of matrix W1 =
(w1

ij) and the other rows are all zeros, and Ui = diag(1−μi1, 1−μi2, · · · , 1−μin)
are all positive diagonal matrices, i = 1, · · · , n.

When Δ is an identity matrix and τij(t) = τij are constant delays, Corollary 1
is reduced to the main result in [2].

2) In the case dKij(s) = kij(s)w1
ijds and τij(t) = 0, model (4) is reduced to

the system with infinitely continuously distributed delays,

ẋi(t) = −aixi(t) +
n∑

j=1

wijfj(xj(t)) +
n∑

j=1

w1
ij

∫ ∞

0
kij(s)fj(xj(t − s))ds.

As far as model (6) is concerned, no LMI-based stability result has been pub-
lished in the literature. If the kernel function kij(s) also satisfies Assumption 2,
i.e., ∫ ∞

0
kij(s)ds = mij > 0,

for positive constants mij > 0, i, j = 1, · · · , n, then we have the following result
for system (6).
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Corollary 2. Suppose that Assumption 1 and condition (6) hold. If there ex-
ist positive diagonal matrices P and Hi such that the following linear matrix
inequality holds,

Ω2 =

⎡⎢⎢⎢⎢⎢⎣
Ψ2 PE1 PE2 · · · PEn

(PE1)T −H1M
−1
1 U1 0 · · · 0

(PE2)T 0 −H2M
−1
2 U2 · · · 0

...
...

...
. . .

...
(PEn)T 0 0 · · · − HnM−1

n Un

⎤⎥⎥⎥⎥⎥⎦ < 0,

then the equilibrium point of neural network (6) is globally asymptotically stable,
where Ψ2 = −2PAΔ−1 + PW + (PW )T +

∑n
i=1 HiMi, Δ = diag(δ1, δ2, · · · , δn),

Ei is a n×n square matrix, whose i-th row is composed of the i-th row of matrix
W1 = (w1

ij) and the other rows are all zeros, Mi = diag(mi1, mi2, · · · , min)
and Ui = diag(1 − μi1, 1 − μi2, · · · , 1 − μin) are all positive diagonal matrices,
i = 1, · · · , n.

3) In the case of 2), if the delay kernel function kij(s) are of the form kij(s) =
Lij(s) if s ∈ [0, rij ], otherwise, kij(s) = 0, then the duration intervals for time
delays are finite and

∫ rij

0 Lij(s)ds = mij > 0, rij > 0. Thus, model (4) is reduced
to the following neural networks with finite distributed delays,

ẋi(t) = −aixi(t) +
n∑

j=1

wijfj(xj(t)) +
n∑

j=1

w1
ij

∫ t

t−rij

Lij(t − s)fj(xj(s))ds.

If we further take a special form of the delay kernel function as Lij(s) = mij/rij ,
then model (6) can be reduced to the following form

ẋi(t) = −aixi(t) +
n∑

j=1

wijfj(xj(t)) +
n∑

j=1

w1
ijmij/rij

∫ t

t−rij

fj(xj(s))ds.

As far as model (6) is concerned, no LMI-based stability result has been published
in the literature. Now we present the following stability result for system (6).

Corollary 3. Suppose that Assumption 1 holds. If there exist positive diagonal
matrices P and Hi such that the following linear matrix inequality holds,

Ω3 =

⎡⎢⎢⎢⎢⎢⎣
Ψ3 PF1 PF2 · · · PFn

(PF1)T −H1 0 · · · 0
(PF2)T 0 −H2 · · · 0

...
...

...
. . .

...
(PFn)T 0 0 · · · − Hn

⎤⎥⎥⎥⎥⎥⎦ < 0,

then the equilibrium point of neural network (6) is globally asymptotically stable,
where Ψ3 = −2PAΔ−1 + PW + (PW )T +

∑n
i=1 Hi, Δ = diag(δ1, δ2, · · · , δn), Fi

is a n × n square matrix, whose i-th row is composed of the i-th row of matrix
Wmr = (w1

ijmij/rij) and the other rows are all zeros, i = 1, · · · , n.
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In summary, the discrete delays τij(t), infinite distributed delays
∫∞
0 kij(t − s)

fj(xj(s))ds and finite distributed delays
∫ t

t−rij
fj(xj(s))ds can be included in the

model (4) by choosing suitable kernel functions, and above Corollary 1–Corollary
3 can be derived in a similar way to the proof of Theorem 1, respectively.

Now we can revisit the problem proposed in [14,17]. Obviously, parallel to the
expression form of stability results based on M-matrix, we have established an
alterative form of stability results based on linear matrix inequality. In a unifying
framework, we have established a general expression form of stability results for
recurrent neural networks with different delays.

4 Conclusions

Inspired by the problem proposed in [14,17] and our previous studies on the
recurrent neural networks with different multiple delays [2,3,4,23], we have pro-
posed a novel LMI-based stability result for a class of recurrent neural network
with a general class of distributed delays. The proposed stability result has built
a unified structure for multiply delayed recurrent neural networks, including
multiple discrete delays, infinite distributed delays and finite distributed delays.
Therefore, our results will provide a common way to study the nature of different
kind of delayed systems.
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Abstract. This paper studies the stability problem of a class of ge-

netic regulatory networks (GRN) with multiple delays. By using a novel

Lyapunov-Krasovskii (L-K) functional based on line integral, the delay-

dependent asymptotical stability criterion is first proposed for GRN with

multiple delays. The obtained stability result is easy to be checked by lin-

ear matrix inequality (LMI) and improve upon the existing ones. Then,

a numerical example is given to verify the effectiveness of the proposed

criterion.

Keywords: Genetic regulatory networks (GRN), Multiple delays,

Asymptotical stability, Linear matrix inequality (LMI), Line integral.

1 Introduction

Genetic regulatory network (GRN) is a collection of DNA segments in a cell.
GRN interact with each other indirectly, through their RNA and protein ex-
pression products, and with other substances in the cell, thereby governing
the rates at which genes in the network are transcribed into mRNA. Each
mRNA molecule acts for making a specific protein (or, a set of proteins). In
some cases, this protein is structural; while in some other cases, this protein is
merely an enzyme that catalyzes a certain chemical reaction. Some proteins only
serve to activate the other genes, which are the transcription factors binding to
the promoter region at the start of other genes turned on by them, initiating the
production of another protein, and so on (see [1]).

Similarly to other dynamic systems (such as recurrent neural networks), stabil-
ity is a key property for GRN, and some recent results have also been published,
see [2]–[6]. It has been recognized that the slow processes of transcription, trans-
lation, and translocation or the finite switching speed of amplifiers will inevitable
cause time delays, which should be taken into account in the biological systems
or artificial genetic networks in order to have more accurate models [7]. It has
been shown in [8], by mathematically modelling recent data, that the observed
oscillatory expression and activity of three proteins is most likely to be driven
by transcriptional delays, and delays can have significant impact both on the dy-
namical behavior of models and on numerical parameter prediction. Therefore,
the effects of transcriptional delays should be assessed in the dynamics of genetic

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 512–519, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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networks whose time scales are short and transcription is regulated by feedback.
Especially, when there are the different transcriptional delays in connections
among nodes of GRN, the great challenges will be brought. Furthermore, to the
best of the authors’ knowledge, there is no report on stability analysis of GRN
with multiple delays by using Linear Matrix Inequality (LMI).

Therefore, motivated by the above discussions, the new LMI-based asymptot-
ical stability problem for GRN with multiple delays is studied in this paper. By
introducing a novel Lyapunov-Krasovskii (L-K) functional based on line integral,
it is the first time to propose delay-dependent asymptotically stability criterion
for GRN with multiple delays. Meanwhile, a numerical example is given to illus-
trate the effectiveness of the developed theoretical result.

2 Model and Preliminaries

The following GRN with multiple delays is considered in this paper.

ṁi(t) = − aimi(t) + Gi(p1(t − τ1), p2(t − τ2), · · · , pn(t − τn))
ṗi(t) = − cipi(t) + dimi(t − σi)

(1)

where τi and σi denote the constant delays, i = 1, 2, · · · , n. From (1) we can see
that, in this network, for any single gene i, there is only one output pi(t− τi) to
other genes, but multiple inputs pj(t − τj) (j = 1, 2, · · · , n) from other genes.

As a monotonic increasing or decreasing regulatory function, Gi usually
takes the Michaelis-Menten or Hill form. Here, since each transcription factor
acts additively to regulate the ith gene or node, the function Gi is taken as
Gi(p1(t), p2(t), · · · , pn(t)) =

∑n
j=1 Gij(pj(t)), which is called SUM logic [9] [10].

Gi is a monotonic function of the Hill form, that is, if transcription factor j is
an activator of gene i, then

Gij(pj(t)) = gij

(
pj(t)
αj

)Hj

1 +
(

pj(t)
αj

)Hj
(2)

and if transcription factor j is a repressor of gene i, then

Gij(pj(t)) = gij
1

1 +
(

pj(t)
αj

)Hj
= gij

⎛⎜⎝1 −
(

pj(t)
αj

)Hj

1 +
(

pj(t)
αj

)Hj

⎞⎟⎠ (3)

where Hj are the Hill coefficients, αj is a positive constant, and gij is a bounded
constant, which is the dimensionless transcriptional rate of transcription factor
j to i. Based on (2) and (3), the gene networks (3) can be rewritten as

ṁi(t) = − aimi(t) +
n∑

j=1

bij f̄j(pj(t − τj)) + Ui

ṗi(t) = − cipi(t) + dimi(t − σi)

(4)
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where f̄j(pj(t)) =
(

pj(t)
αj

)Hj

/

(
1 +

(
pj(t)
αj

)Hj
)

, Ui =
∑

j∈Ii
gij , and Ii is the set

of all the j which is a repressor of the gene i, i = 1, 2, · · · , n. B = [bij ] ∈ �n×n

is defied as follows:

bij =

⎧⎨⎩ gij if transcription factor j is an activator of gene i;
0 if there is no link from gene j to gene i;
−gij if transcription factor j is a repressor of gene i.

The initial condition of the GRN (4) is given by{
m(t) = φ(t)
p(t) = ϕ(t)

t ∈
[
− max

1�i�n
(τi, σi), 0

]
,

where φ(·) and ϕ(·) are continuous functions. Meanwhile, the constant delays σi

and τi satisfy the following condition⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σi > 0, 0 < σav =

1
n

n∑
i=1

σi � max
1�i�n

(σi)

τi > 0, 0 < τav =
1
n

n∑
i=1

τi � max
1�i�n

(τi)

(5)

For convenience, the model (4) will be written as the following vector-matrix
format:

ṁ(t) = − Am(t) + Bf̄(p̄(t̄ − τ̄ )) + U

ṗ(t) = − Cp(t) + Dm̄(t̄ − σ̄)
(6)

where m(t) = [m1(t), m2(t), · · · , mn(t)]T , p(t) = [p1(t), p2(t), · · · , pn(t)]T , t̄ =
tET , E = [1, 1, · · · , 1]1×n, τ̄ = [τ1, τ2, · · · , τn]T p̄(t̄ − τ̄) = [p1(t − τ1), p2(t −
τ2), · · · , pn(t − τn)]T f̄(p̄(t̄ − τ̄ )) = [f̄1(p1(t − τ1)), f̄2(p2(t − τ2)), · · · , f̄n(pn(t −
τn))]T , σ̄ = [σ1, σ2, · · · , σn]T , m̄(t̄ − σ̄) = [m1(t − σ1), m2(t − σ2), · · · , mn(t −
σn)]T , A = diag(a1, a2, · · · , an), B = [bij ]n×n, C = diag(c1, c2, · · · , cn), D =
diag(d1, d2, · · · , dn), and U = [U1, U2, · · · , Un].

Remark 1. A vector-matrix model (6) is given by constructing the vectors σ̄
and τ̄ . Namely, the multiple delays σi and τi can be expressed by vectors σ̄ and
τ̄ . Compared with the existing methods, it is more convenient to handle the
stability problem for GRN with multiple delays by using LMI technique.

Let m� = [m�
1, m

�
2, · · · , m�

n]T and p� = [p�
1, p

�
2, · · · , p�

n]T be an equilibrium of (6).
Thus, we can obtain the following equations

−Am� + Bf̄(p�) + U = 0,

−Cp� + Dm� = 0.
(7)
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Define xi(·) = mi(·) − m�
i and yi(·) = pi(·) − p�

i , system (6) can then be trans-
formed into the following form:

ẋ(t) = − Ax(t) + Bf(ȳ(t̄ − τ̄ ))
ẏ(t) = − Cy(t) + Dx̄(t̄ − σ̄)

(8)

where x(t) = [x1(t), x2(t),· · ·, xn(t)]T , y(t) = [y1(t), y2(t), · · · , yn(t)]T , fi(y(t)) =
f̄i(yi(t)+ y�

i )− f̄i(y�
i ), f(ȳ(t̄− τ̄)) = [f1(y1(t− τ1)), f2(y2(t− τ2)), · · · , fn(yn(t−

τn))]T , and x̄(t̄ − σ̄) = [x1(t − σ1), x2(t − σ2), · · · , xn(t − σn)]T .
Since fi is a monotonically increasing function with saturation, it satisfies the

following constraint:

0 � f̄i(u) − f̄i(v)
u − v

� li (9)

for all u �= v ∈ �. Thus, it is obvious that the function fi(·) satisfies the following
condition

0 � fi(u)
u

� li (10)

3 Main Results

In this section, the new stability criterion for GRN (8) with multiple delays will
be proposed. Since there are two vector delays τ̄ and σ̄ (i.e., multiple delays)
in model (8), a novel L-K functional based on line integral will be used in the
stability criterion. Then, the new criterion can be given as follows.

Theorem 1. The GRN (8) with multiple delays σi and τi satisfying (5) is
asymptotically stable, for given σav and τav, if there exist matrices Z = ZT =[
Z11 Z12
ZT

12 Z22

]
> 0, Q = QT > 0, W1 = diag(w11, w12, · · · , w1n) > 0, W2 =

diag(w21, w22, · · · , w2n) > 0, R1 = RT
1 > 0, R2 = RT

2 > 0, and scalar
parameters β1 > 0 and β2 > 0, such that the following LMI holds:

Ω + σ2
avβ1Ā

T Ā + τ2
avβ2C̄

T C̄ < 0 (11)

where

Ω =

⎡⎢⎢⎢⎢⎢⎢⎣

Ω11 Z12D + β1
n3 ET E Ω13 0 0 Z11B

∗ −Q − β1
n3 ET E DZ22 0 0 0

∗ ∗ Ω33
β2
n3 ET E LW1 ZT

12B

∗ ∗ ∗ −R1 − β2
n3 ET E 0 LW2

∗ ∗ ∗ ∗ R2 − 2W1 0
∗ ∗ ∗ ∗ ∗ −R2 − 2W2

⎤⎥⎥⎥⎥⎥⎥⎦
Ω11 = − Z11A − AZ11 + Q − β1

n3 ET E

Ω13 = − Z12C − AZ12

Ω33 = − Z22C − CZ22 + R − β2

n3 ET E

E =[1, 1, · · · , 1]1×n, L = diag(li),
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Ā =[−A, 0, 0, 0, 0, B], C̄ = [0, D, −C, 0, 0, 0]

i = 1, 2, · · · , n, n is the dimension of system (8), and ∗ denotes the symmetric
term in a symmetric matrix.

Proof. Consider the following L-K functional:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t), (12)

where

V1(t) =
[

x(t)
y(t)

]T

Z

[
x(t)
y(t)

]
,

V2(t) =
1
n

∫
C1

x̄T (η)Qx̄(η)Edη,

V3(t) =
1
n

∫
C2

ȳT (η)R1ȳ(η)Edη +
1
n

∫
C2

fT (ȳ(η))R2f(ȳ(η))Edη,

V4(t) =
σav

n
β1

∫
C1

˙̄xT (η) ˙̄x(η)(η − t̄ + σ̄)T dη,

V5(t) =
τav

n
β2

∫
C2

˙̄yT (η) ˙̄y(η)(η − t̄ + τ̄)T dη,

where C1 and C2 denote two different integral paths, where C1 is from [t −
σ1, t− σ2, · · · , t− σn]T to [t, t, · · · , t]T and C2 is from [t− τ1, t− τ2, · · · , t− τn]T

to [t, t, · · · , t]T , i.e.,

C1 ={[c11, c12, · · · , c1n]T |c1i : t − σi −→ t, i = 1, 2, · · · , n},
C2 ={[c21, c22, · · · , c2n]T |c2i : t − τi −→ t, i = 1, 2, · · · , n}.

Calculating the time derivatives of Vk(x(t)) (k = 1, 2, 3, 4, 5) along the trajecto-
ries of system (8) yields

V̇1(t) =
[

x(t)
y(t)

]T

Z

[−Ax(t) + Bf(ȳ(t̄ − τ̄ ))
−Cy(t) + Dx̄(t̄ − σ̄)

]
(13)

V̇2(t) =xT (t)Qx(t) − x̄T (t̄ − σ̄)Qx̄(t̄ − σ̄) (14)

V̇3(t) =yT (t)R1y(t) − ȳT (t̄ − τ̄)R1ȳ(t̄ − τ̄ ) + fT (y(t))R2f(y(t))

− fT (ȳ(t̄ − τ̄ ))R2f(ȳ(t̄ − τ̄ )) (15)

V̇4(t) =
σav

n
β1ẋ

T (t)ẋ(t)Eσ̄ − σav

n
β1

∫
C1

˙̄xT (η) ˙̄x(η)Edη (16)

V̇5(t) =
τav

n
β2ẏ

T (t)ẏ(t)Eτ̄ − τav

n
β2

∫
C2

˙̄yT (η) ˙̄y(η)Edη (17)

Then, by using Jensen’s inequality for vector, we have

V̇4(t) �σ2
avβ1ẋ

T (t)ẋ(t) − 1
n2 β1

∫
C1

˙̄xT (η)Edη

∫
C1

˙̄x(η)Edη (18)

V̇5(t) �τ2
avβ2ẏ

T (t)ẏ(t) − 1
n2 β2

∫
C2

˙̄yT (η)Edη

∫
C2

˙̄y(η)Edη (19)



Stability of GRN with Multiple Delays via a New Functional 517

Because of
(∫

C1
ẋi(ηi)Edη

)2
�

(∫
C1

ẋi(ηi)dηi

)2
and

(∫
C2

ẏi(ηi)Edη
)2

�(∫
C2

ẏi(ηi)dηi

)2
(i = 1, 2, · · · , n), we can know that∫

C1

˙̄xT (η)Edη

∫
C1

˙̄x(η)Edη �
n∑

i=1

(∫
C1

ẋi(ηi)dηi

)2

� 1
n

∫
C1

˙̄xT (η)dη

∫
C1

˙̄xT (η)dη, (20)∫
C2

˙̄yT (η)Edη

∫
C2

˙̄y(η)Edη �
n∑

i=1

(∫
C2

ẏi(ηi)dηi

)2

� 1
n

∫
C2

˙̄yT (η)dη

∫
C2

˙̄yT (η)dη. (21)

Meanwhile, according to Generalized Stokes’s Theorem [11], we can obtain the
following equations,

xT (t)ET − x̄T (t̄ − σ̄)ET =
∫

C1

˙̄xT (η)dη (22)

yT (t)ET − ȳT (t̄ − τ̄ )ET =
∫

C2

˙̄yT (η)dη (23)

Thus, V̇4(t) and V̇5(t) can be expressed as

V̇4(t) �σ2
avβ1ẋ

T (t)ẋ(t) − 1
n3 β1

∫
C1

˙̄xT (η)dη

[∫
C1

˙̄xT (η)dη

]T

=σ2
avβ1ẋ

T (t)ẋ(t) − 1
n3 β1(xT (t) − x̄T (t̄ − σ̄))ET E(x(t) − x̄(t̄ − σ̄)) (24)

V̇5(t) �τ2
avβ2ẏ

T (t)ẏ(t) − 1
n3 β2

∫
C2

˙̄yT (η)dη

[∫
C2

˙̄yT (η)dη

]T

=τ2
avβ2ẏ

T (t)ẏ(t) − 1
n3 β2(yT (t) − ȳT (t̄ − τ̄ ))ET E(y(t) − ȳ(t̄ − τ̄ )) (25)

On the other hand, according to (10), for diagonal matrices W1 > 0 and W2 > 0,
we can obtain that

0 �fT (y(t))W1Ly(t) − fT (y(t))W1f(y(t)) (26)

0 �fT (ȳ(t̄ − τ̄ ))W2Lȳ(t̄ − τ̄ ) − fT (ȳ(t̄ − τ̄ ))W2f(ȳ(t̄ − τ̄ )) (27)

Thus, according to (13)–(15) and (24)–(27), the derivative of V (t) is obtained
as follows:

V̇ (t) �ζT (t)(Ω + σ2
avβ1Ā

T Ā + τ2
avβ2C̄

T C̄)ζ(t) (28)

where ζT (t) = [xT (t) x̄T (t̄ − σ̄) yT (t) ȳT (t̄ − τ̄) fT (y(t)) fT (ȳ(t̄ − τ̄))].
Obviously, if Ω+σ2

avβ1Ā
T Ā+τ2

avβ2C̄
T C̄ < 0, the system (8) is asymptotically

stable.
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Remark 2. In Theorem 1, a novel L-K functional based on line integral is em-
ployed to deal with GRN (8) with multiple delays (i.e., delay vectors σ̄ and τ̄).
Since line integral is an effective tool at vector operation, it is obvious that the
functional based on line integral is more suitable to deal with stability of system
(8) than the common L-K functional.

Remark 3. Obviously, Theorem 1 is a delay-dependent stability criterion, which
depends on the average value of delays σi and τi, i.e., σav and τav. It is achieved
by employing the functionals V4 and V5, Lemma 1, (20) and (21), and Gener-
alized Stokes’s Theorem (i.e., (22) and (23)). Furthermore, it is also first time
to present the delay-dependent asymptotical stability criterion for GRN with
multiple delays.

4 Numerical Example

In this section, a numerical examples are given to verify the criterion proposed
in this paper be effective.

Example 1. Consider GRN (8) with the following parameters [4],

A = diag(3, 3, 3), C = diag(2.5, 2.5, 2.5), D = diag(0.8, 0.8, 0.8),

B =

⎡⎣ 0 0 −2.5
−2.5 0 0

0 −2.5 0

⎤⎦ , f̄i(pi(t)) =
p2

i (t)
1 + p2

i (t)
, U = [2.5, 2.5, 2.5]T ,

(29)

According to these parameters, we can know that the Hill coefficient Hi = 2,
αi = 1, and li = 0.65, i.e., L = diag(0.65, 0.65, 0.65). Then, we let σav = 1.5
and τav = 0.5, it means that the delays σ1 + σ2 + σ3 = 4.5s and τ1 + τ2 + τ3 =
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Fig. 1. Transient response of m1(t), m2(t), m3(t), pi(t), pi(t), and pi(t), respectively,

when the initial value are [1, 0.5, 0.3]T and [0.3,−0.1, 0.5]T
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1.5s. Following, the stability of GRN with parameters (29) can be verified by
using Theorem 1. Fig.1 shows the trajectories of variables m1(t), m2(t), m3(t),
pi(t), pi(t), and pi(t), respectively, when the initial value are [1, 0.5, 0.3]T and
[0.3,−0.1, 0.5]T .

5 Conclusion

In this paper, a class of GRN with SUM regulatory logic and multiple delays
has been given by exploiting the structure of the genome-proteome network
and by representing RNAs and proteins with different variables. For this GRN,
a delay-dependent asymptotical stability criterion has been proposed based on
LMI technique. It has been carried out by constructing a L-K functional based on
line integral. Based on numerical simulation, the obtained criterion can guarantee
the asymptotical stability of GRN with multiple delays.
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The Impulsive Control of the Projective
Synchronization in the Drive-Response

Dynamical Networks with Coupling Delay
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Abstract. In this paper, we study the impulsive control of the pro-

jective synchronization in the drive-response dynamical networks with

coupling delay, where the drive system is a partially linear chaotic sys-

tem and the response system is a delay-coupled dynamical network. The

method also allows us to arbitrarily amplify or reduce the scale of the

dynamics of the response network through the impulsive control. Nu-

merical simulations are provided to demonstrate the effectiveness of the

proposed control method.

Keywords: Projective synchronization, Drive-response dynamical

network, Impulsive control, Coupling delay, Chaos.

1 Introduction

Since the pioneering work of Pecora and Carroll [1] in 1990, chaos synchro-
nization has been extensively investigated due to its potential applications in
secure communication [2,3,4,5,6]. The typical configuration of chaotic synchro-
nization consists of drive and response systems and has been intensively studied.
In 1999, the projective synchronization, a new chaos synchronization phenom-
ena, is first reported by Mainieri and Rehacek [7] in partially linear systems.
Under certain conditions, the state vectors of the drive and response systems
could be synchronized up to a scaling factor. Scaling factor characterizes the
synchronized dynamics of projective synchronization in partially linear chaotic
systems but it is difficult to be estimated. To manipulate projective synchroniza-
tion of chaotic systems in a favored way, in [8,9,10], Xu et al. proposed a control
algorithm to direct the scaling factor onto a desired value. Since then, many
control methods have been introduced to control the system to the solution
of synchronization in a defined way, such as feedback control method [11,12],
observer-based approach[13,14], pinning control method[15], impulsive control
method [16,17] and so on. Furthermore, the researches on projective synchro-
nization have been extended to general nonlinear systems [18], and time-delayed
chaotic systems[19,20], generalized projective synchronization[21,22,23].
� This work was jointly supported by the National Natural Science Foundation of
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In Ref. [15], Hu et. al. studied projective synchronization in the drive-response
dynamical networks. By pinning control techniques, scaling factor can be pro-
jection synchronized onto a desired value. Considering the existence of delays
due to the finite speed of transmission and spreading as well as congestions,
time-delay is a very familiar phenomenon in signal transition. Thereby, time
delays should be modelled in order to simulate more realistic networks. Zhao
and Yang investigated the impulsive control of projective synchronization in the
drive-response complex system[17]. In [28], Cao et. al. discussed the projective
synchronization of a class of delayed chaotic systems via impulsive control. To
the best of our knowledge, the projective synchronization of the drive-response
dynamical networks with coupling delays has not been reported.

In this paper, we study the projective synchronization of a class of the drive-
response dynamical networks with coupling delays. The state vectors of the drive
and response networks could be synchronized onto a desired scaling factor via
the impulsive control, which allows us to arbitrarily amplify or reduce the scale of
the dynamics of the response network. Also, using impulsive control method, the
respond networks receive the information from the drive system only in discrete
times and the amount of conveyed information is, therefore, decreased. This is
very advantageous in practice due to reduced control cost.

The organization of this paper is as follows: In Section 2, preliminaries and
the drive-response dynamical networks with coupling delays are given. In Section
3, some projective synchronization criteria are obtained based on the stability
theory for impulsive functional differential equations. In Section 4, an illustrative
example is provided to show the theoretical results. Conclusions are given in
Section 5.

2 Model Description and Preliminaries

Consider the following impulsive functional differential equations⎧⎨⎩
ẋ(t) = f(t, xt), t �= tk, t ≥ t0,
δx = x(t+k ) − x(t−k ), t = tk, k = 1, 2, . . . ,
x(t0) = x0

(1)

where x(t) ∈ Rn is the state variable. xt(θ) = x(t + θ) for θ ∈ [−τ, 0]. f :
[t0, +∞) × Ω → Rn is a smooth nonlinear vector function. δx = x(t+k ) − x(t−k )
is the control law where x(t−k ) = lim

t→t−k
x(t) and x(t+k ) = x(tk) (k = 1, 2, . . .). The

time set {tk} satisfies 0 < t1 < t2 < . . . < tk < . . . , lim
k→∞

tk = ∞.

We give some lemmas which are needed throughout this paper.

Lemma 1.[26,27] Assume that there exist V ∈ v0, w1, w2 ∈ K, ϕ ∈ κ and
H ∈ Γ such that
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(1) w1(‖ x ‖) ≤ V (t, x) ≤ w2(‖ x ‖) for (t, x) ∈ [t0, +∞) × Sρ;
(2) for all x ∈ Sρ1 , 0 < ρ1 ≤ ρ, V (tk, Jk(x)) ≤ ϕ(V (t−k , x)) for all k;
(3) for any solution x(t) of Eq.(1), V (t + s, x(t + s)) ≤ ϕ−1(V (t, x(t))), (−τ ≤
s ≤ 0), implies that

D+(V (t, x(t))) ≤ g(t)H(V (t, x(t))),

where g : [t0, +∞) → R+ is locally integrable, ϕ−1 is the inverse function of ϕ;
(4) H is nondecreasing and there exist constants l2 ≥ l1 > 0 and r > 0 such that
for any μ > 0, l1 ≤ tk − tk−1 ≤ l2 and∫ μ

ϕ(μ)

ds

H(s)
−
∫ tk

tk−1

g(s)ds ≥ r, (k = 1, 2, . . .).

Then the zero solution of Eq.(1) is uniformly asymptotically stable.

Lemma 2. If A = AT is an irreducible real symmetric matrix with
N∑

j=1
aij = 0,

then there exists a unitary matrix G = (gij)N×N such that A = GΞGT , where
GT G = I, Ξ = diag(λ1, λ2, . . . λN ), 0 = λ1 > λ2 ≥ . . . ≥ λN , λi is the eigenvalue
of A.

In this paper, we first introduce the drive-response dynamical networks with
coupling delays. The network model is described by⎧⎪⎪⎨⎪⎪⎩

u̇d = M(z) · ud,
ż = f(ud, z),

u̇ri = M(z) · uri + c
N∑

j=1
aijurj(t − τ), i = 1, 2, . . .N,

(2)

where τ ≥ 0 is a bounded constant representing the time delay. c > 0 is the
coupling strength. A = (aij)N×N is the coupling configuration matrix that is

irreducible and satisfies:
N∑

j=1
aij = 0, aij = aji ≥ 0 (i �= j, 1 ≤ i ≤ N). A reflects

the topological structures of the whole network. ud = (u1
d, u

2
d . . . , un

d )T ∈ Rn is
the drive vector, uri = (u1

ri, u
2
ri, . . . , u

n
ri)

T ∈ Rn is the response state variable.
M(z) = (mij(z))n×n is a square matrix which depends on the variable z. The
equation of z is nonlinear related to the state vector ud.

If there exists a constant α(α �= 0) such that lim
t→∞ ‖ uri − αud ‖= 0 for

all i, then the projective synchronize of dynamical network (2) is achieved. α
is a desired scaling factor. Now, we are interesting in designing an appropriate
impulsive controller such that projective synchronize between the drive system
and the response networks with coupling delays can achieve, namely, the scaling
factor is directed onto a desired value. By introducing the impulse δuri = d(uri−
αud) at instant time tk, the system (2) can be rewritten as follows
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u̇d = M(z) · ud,
ż = f(ud, z),

u̇ri = M(z) · uri + c
N∑

j=1
aijurj(t − τ), t �= tk,

δuri(tk) = d(uri(t+k ) − αud(t−k )), t = tk,

(3)

where d is the control gain.
Define the term ei(t) = uri(t)−αud(t) as the projective synchronization error

of system (3), the error dynamical system can be described as follows⎧⎪⎪⎨⎪⎪⎩
ėi = M(z)ei + c

N∑
j=1

aijej(t − τ), t �= tk,

ż = f(ud, z),
ei(tk) = (1 + d)ei(t−k ), t = tk, i = 1, 2, . . .N.

(4)

Then the projective synchronization problem of the dynamical network(2) is
equivalent to the problem of stabilization of the error system (4).

Since A = AT is an irreducible real matrix with
N∑

j=1
aij = 0, according to

Lemma 2, there exists an orthogonal matrix G such that A = GΞGT , where
Ξ = diag(λ1, λ2, . . . λN ).

Let e(t) = (e1(t), e2(t), . . . eN(t))T ∈ RN×n, from system (4), one has

ė = eMT (z) + cAe(t − τ). (5)

Let e = Gη, where η = (η1, η2, . . . ηN )T . The error dynamical system (4) is
replaced by ⎧⎨⎩

η̇i = M(z)ηi + cλiηi(t − τ), t �= tk,
ż = f(ud, z),
ηi(tk) = (1 + d)ηi(t−k ), t = tk, i = 1, 2, . . .N.

(6)

The stability about zero point of linear system (6) implies the stability of origin
of the error dynamical system (4).

3 Some Criteria for Projective Synchronization

In this section, some criteria for projective synchronization of the drive-response
networks will be established.

Theorem 1. If there exist a set of positive-define matrices Pi > 0, a set of
positive diagonal matrices Ri > 0 and constants βi > 0, control gain d such that
the following conditions hold:

(1) 0 < |1 + d| < 1,

(2) PiM(z) + MT (z)Pi + cλ2
i PiRiPi + cλmax(R−1

i P−1
i )

(1+d)2 I ≤ βiPi,

(3) max
1≤i≤N

{βi}(tk − tk−1) + ln(1 + d)2 < 0.
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Then the origin of system (6) is asymptotically stable. That is to say, the projec-
tive synchronization of the coupled delayed dynamical drive-response networks
(2) is realized, and the scaling factor is the desired value α in advance.

Proof. Considering the following Lyapunov function

V (t, η) =
N∑

i=1

ηT
i Piηi.

For η ∈ S(ρ1), 0 < ρ1 ≤ ρ,

V (tk, (1 + d)η) =
N∑

i=1

(1 + d)2ηT
i Piηi = (1 + d)2V (tk, η).

Let ϕ(s) = (1 + d)2s, ϕ ∈ κ. For any solution of (6), if
V (t + s, η(t + s)) ≤ ϕ−1(V (t, η(t))), s ∈ [−τ, 0],

specially, for s = −τ , one has
N∑

i=1
ηT

i (t − τ)Piηi(t − τ) ≤ 1
(1+d)2 V (t, η(t)).

Calculating the Dini derivative of V (t, η) along the trajectories of (6), we have

D+V (t, η) =
N∑

i=1

[M(z)ηi + cλiηi(t− τ)]TPiηi +
N∑

i=1

ηT
i Pi[M(z)ηi + cλiηi(t− τ)]

≤
N∑

i=1

ηT
i [MT (z)Pi + PiM(z)]ηi + c

N∑
i=1

[λ2
i η

T
i PiRiPiηi + ηT

i (t− τ)R−1
i ηi(t− τ)]

≤
N∑

i=1

βiη
T
i Piηi ≤ max

1≤i≤N
(βi)V (t, η(t))

Let g(t) = 1, H(s) = max
1≤i≤N

(βi)s, by the condition (3) in Theorem 1, we have

∫ μ

ϕ(μ)

ds

H(s)
−
∫ tk

tk−1

g(s)ds =
−ln(1 + d)2

max
1≤i≤N

(βi)
− (tk − tk−1) > 0.

Since Pi is a positive-define matrix, we have

min
1≤i≤N

(λmin(Pi))
N∑

i=1

ηT
i ηi ≤ V (t, η) ≤ max

1≤i≤N
(λmax(Pi))

N∑
i=1

ηT
i ηi.

Then the conditions in Lemma 1 are all satisfied. Therefore, the origin of sys-
tem(6) is asymptotically stable. This completes the proof.
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Corollary 1. Let Pi = Ri = I and the impulses be equidistant and separated
by interval Δ. Assume that there exist constant β and d such that

(1) 0 < |1 + d| < 1,
(2) M(z) + MT (z) + c(λ2

N + 1
(1+d)2 )I ≤ βI, β > 0

(3) βΔ + ln(1 + d)2 < 0.

Then the origin of the error system (4) is asymptotically stable.

4 Numerical Example on Lorenz System

In this section, to illustrate the effectiveness of results obtained in the previous
section, we take a three-dimensional chaotic system as the drive system. Based on
the three-dimensional chaotic system, the drive-response networks with coupling
delays are described by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = a(y − x),
ẏ = xz − y,
ż = b − xy − dz,

ẋi = a(yi − xi) + c
5∑

j=1
aijxj(t − τ),

ẏi = xizi − yi + c
5∑

j=1
aijyj(t − τ), i = 1, 2, . . .5,

(7)

where the coupling strength c = 0.2, time delay τ = 0.5 and the coupling matrix
is

A =

⎡⎢⎢⎢⎢⎣
−3 1 1 0 1
1 −2 0 1 0
1 0 −3 1 1
0 1 1 −3 1
1 0 1 1 −3

⎤⎥⎥⎥⎥⎦ ,

Drive system in (7) is found to be chaotic in a wide parameter range. For exam-
ple, when a = 5, d = 1, b = 16, the drive system is chaotic.

For M(z) =

(
−a a
−z − 1

)
, after a simple calculation, we have

λ1,2[M(z) + MT (z)] = −(1 + a) ±
√

(1 − a)2 + (a − z)2. (8)

Let m = sup(λ[M(z)+MT (z)]), by (8), we have m ≤ 7.6015. Let d = −1.5, m =
7.6015, the upper bound of the impulsive interval Δ is

Δ < − 2ln|1 + d|
7.6015 + 0.2(λ2

5 + 1
(1+d)2 )

= 0.1034.

In simulations, the impulsive gain and the impulsive interval are chosen k =
−1.5 and Δ = 0.1, respectively. Fig.1 shows the simulation results of projective
synchronization with the scaling factor α = 3. Fig.2 shows the simulation results
of anti-synchronization α = −1.
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Fig. 1. State trajectories, synchronization errors and phase plot in system (7) with

α = 3
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5 Conclusion

This paper has discussed the projective synchronization in drive-response dy-
namical networks with coupling delay. Some conditions for the projective syn-
chronization have been derived based on impulsive control method and the
stability theory for impulsive functional differential equations. The scaling fac-
tor can be arbitrarily amplified or reduced a desired value, that is, the received
signals can be changed as demands, which is very a advantageous in applications
such as in secure communication. Numerical simulations are given to verify the
proposed theoretical results.
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Abstract. In this paper, we consider the uniqueness and global robust

stability of the equilibrium point of the interval Hopfield-type delayed

neural networks. A new criteria is derived by using linear matrix inequal-

ity and Lyapunov functional and also a numerical example is given to

show the effectiveness of the present results.
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Lyapunov functional.

1 Introduction

Since J. J. Hopfield proposed the classes of neural networks in [1] and [2], the
neural networks with delays (DNN) has attracted much attention due to their
application in parallel computation, pattern recognition, associative memories
and especially in solving optimization problem.

There are many stability criteria are derived in the present works, for exam-
ple, asymptotically stability criteria in [3] and [4], and to get more conservative
stability criteria, it is of importance to study the robust stability criteria, which
are derived in [5]-[12]. Moreover, in this paper, we illustrate a new LMI condition
which is more conservative and convenient to verify in practise.

Now we consider a DNN model described by the following functional differ-
ential equations:

ẏi(t) = −aiyi(t) +
n∑

j=1
bijgj(yj(t)) +

n∑
j=1

cijgj(yj(t− τ)) + ui,

i = 1, 2, · · · , n.
(1)

where ai, i = 1, 2, · · · , n are positive constants, τ is the transmission delay, bij
and cij , i, j = 1, 2, · · · , n, denotes the weight coefficients of the neurons, the ui,
i = 1, 2, · · · , n, represent the external constant inputs, and gj , j = 1, 2, · · · , n,
denotes the activation functions. The activation functions are assumed to satisfy
the following:

0 ≤ gj(ξ1)−gj(ξ2)
ξ1−ξ2

≤ Lj , j = 1, 2, · · · , n. (2)

for each ξ1, ξ2 ∈ R, ξ1 �= ξ2, where Lj, j = 1, 2, · · ·n, are positive constants. The
quantities ai, bij , cij may be considered as intervalized as following:
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AI = {A = diag(ai) : A ≤ A ≤ A, i.e.,
ai ≤ ai ≤ ai, i = 1, 2, · · · , n, ∀A ∈ AI}
BI = {B = (bij)n×n : B ≤ B ≤ B, i.e.,

bij ≤ bij ≤ bij , i, j = 1, 2, · · · , n, ∀B ∈ BI}
CI = {C = (cij)n×n : C ≤ C ≤ C, i.e.,

cij ≤ cij ≤ cij , i, j = 1, 2, · · · , n, ∀C ∈ CI}.

(3)

2 Preliminaries

Definition 1 [6]. The system given by (1) with the parameter ranges de-
fined by (3) is globally robust stable if there is a unique equilibrium point
y∗ = (y∗1 , y∗2 , · · · , y∗n)T of the system, which is globally asymptotically stable
for all A ∈ AI , B ∈ BI , C ∈ CI .

Lemma 1 [9]. For any x = [x1, x2, · · · , xn]T , y = [y1, y2, · · · , yn]T , B = (bij)n×n,
C = (cij)n×n with |bij | ≤ cij , we have

xTBy ≤ |x|TC|y|. (4)

For the proof of the uniqueness and global robust stability of the equilib-
rium point of system (1), we make the following transformation: Let y∗ =
(y∗1 , y∗2 , · · · , y∗n) ∈ Rn is the origin of the system, we will always shift an intended
equilibrium point y∗ of system (1) to the origin by letting x(t) = y(t)−y∗, which
transform the system (1) into the following system:

ẋ(t) = −Ax(t) +Bf(x(t)) + Cf(x(t − τ)). (5)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T is the state vector of the transformed
system, f(x) = [f1(x), f2(x), · · · , fn(x)]T denotes the activation function vector
f(x) possesses the following properties:

0 ≤ fj(xj)
xj

≤ Lj, fj(0) = 0, j = 1, 2 · · · , n. (6)

Clearly, the equilibrium point x∗ of (5) with (6) is globally robust stable if and
only if the equilibrium point of system (1) with (2) and (3) is globally robust
stable. Thus, we only consider the global robust stability of the equilibrium point
for system (5).

In the following, for real symmetric matrix X and Y , the notation X > Y (re-
spectively, X ≥ Y ) means that the matrix X−Y is positive definite(respectively,
semi-define). For x = [x1, x2, · · · , xn]T ∈ Rn, let |x| denote the absolute-value
vector given by |x| = [|x1|, |x2|, · · · , |xn|]T . For a matrix A = (aij)(n×n) ∈
Rn×n, let |A| denote the absolute-value matrix given by |A| = (|aij |)n×n,
L = diag(L1, L2, · · · , Ln).
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3 Main Result

Theorem 1. Under the assumptions (3), system (5) is globally robust stable if
there exits positive diagonal matrices P , Q, Q1, Q3, Q4 and a matrix Q2, such
that the following LMIs holds:

Π1 =

⎡⎢⎢⎣
−2PA+Q+ 2Q1 + LTQ4L 0 PB∗ + 2Q2 PC∗

0 −Q1 0 −2Q2

B∗TP + 2QT
2 0 −Q4 +Q3 0

C∗TP −2QT
2 0 −Q3

⎤⎥⎥⎦ < 0, (7)

and

Π2 =

⎡⎢⎢⎣
−Q+ LTQ4L 0 PB∗ PC∗

0 −Q1 0 0
B∗TP 0 −Q4 +Q3 0
C∗TP 0 0 −Q3

⎤⎥⎥⎦ < 0, (8)

and [
Q1 Q2
QT

2 Q3

]
> 0, (9)

where B∗ = 1
2 (B +B), B∗ = 1

2 (B −B), C∗ = 1
2 (C + C), C∗ = 1

2 (C − C).

Proof. Consider the following positive definite Lyapunov functional:

V (x(t)) = xT (t)Px(t) + 2
∫ t

t−τ

[
x(s)

f(x(s))

]T [
Q1 Q2
QT

2 Q3

] [
x(s)

f(x(s))

]
ds. (10)

The time derivative of along the trajectories of (5) takes the form:

V̇ (x(t)) = 2xT (t)P ẋ(t) + 2
[

x(t)
f(x(t))

]T [
Q1 Q2
QT

2 Q3

] [
x(t)

f(x(t))

]
−2

[
x(t − τ)

f(x(t− τ))

]T [
Q1 Q2
QT

2 Q3

] [
x(t − τ)

f(x(t− τ))

]
= 2xT (t)P (−Ax(t) +Bf(x(t))

+Cf(x(t− τ))) + 2xT (t)Q1x(t)
+2fT (x(t))QT

2 x(t) + 2xT (t)Q2f(x(t))
+2fT (x(t))Q3f(x(t))
−2xT (t− τ)Q1x(t − τ)
−2fT (x(t− τ))QT

2 x(t− τ)
−2xT (t− τ)Q2f(x(t− τ))
−2fT (x(t− τ))Q3f(x(t− τ)).
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Since ai, pi, i = 1, 2, · · · , n, are positive constants, we can get that

− 2xi(t)piaixi(t) ≤ −2xi(t)piaixi(t), i = 1, 2 · · · , n. (11)

i.e.

− 2xT (t)PAx(t) ≤ −2xT (t)PAx(t). (12)

Also, there is a matrix Q4, such that

2fT (x(t))Q4f(x(t)) ≤ 2xT (t)LTQ4Lx(t). (13)

Then we rewrite xT (t)PBx(t) as

xT (t)PBf(x(t)) = xT (t)PB∗f(x(t)) + xT (t)PB0f(x(t)). (14)

where B0 = B − B∗. From (3), we can get |b0ij | ≤ b∗ij . since pi ≥ 0, i =
1, 2, · · · , n, we can get |pib0ij | ≤ pib∗ij . It can get from Lemma 1 that

xT (t)PB0f(x(t)) ≤ |x(t)|TPB∗|f(x(t))|. (15)

So, we have

xT (t)PBf(x(t)) ≤ xT (t)PB∗f(x(t)) + |x(t)|TPB∗|f(x(t))|. (16)

Similarly, we have

xT (t)PCf(x(t− τ)) ≤ xT (t)PC∗f(x(t− τ)) + |x(t)|TPC∗|f(x(t− τ))|. (17)

Obviously, it is easy to see that

xT (t)Qx(t) = |x(t)|TQ|x(t)|,
fT (x(t))Q3f(x(t)) = |f(x(t))|TQ3|f(x(t))|,

fT (x(t− τ))Q3f(x(t− τ) = |f(x(t− τ))|TQ3|f(x(t− τ))|.
(18)

Then, by using (11) − (18), we can get that

V̇ (x(t)) ≤ xT (t)(−2PA+Q)x(t)
+2xT (t)PB∗f(x(t)) + 2|x(t)|TPB∗
×|f(x(t))| + 2xT (t)PC∗f(x(t− τ))
+2|x(t)|TPC∗|f(x(t− τ))|
+2xT (t)Q1x(t) + 2fT (x(t))QT

2 x(t)
+2xT (t)Q2f(x(t)) + 2fT (x(t))Q3f(x(t))
−2xT (t− τ)Q1x(t− τ)
−2fT (x(t − τ))QT

2 x(t− τ)
−2xT (t− τ)Q2f(x(t− τ))
−2fT (x(t − τ))Q3f(x(t− τ))
−xT (t)Qx(t) + 2xT (t)LTQ4Lx(t)
−2fT (x(t))Q4f(x(t))

= ΘT (t)Π1Θ(t) + |Θ(t)|TΠ2|Θ(t)|.
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where Θ(t) = [xT (t), xT (t− τ), fT (x), fT (x(t − τ))]T . Then from the LMIs, we
can get that V̇ (x(t)) < 0. So the origin of (5) is globally robust stable.

Now we will prove the uniqueness of the equilibrium. The equilibrium point
x is given by

−Ax+Bf(x) + Cf(x) = 0. (19)

Assume that there exists an nonsingular equilibrium point satisfying (19), we
define

F (x) = 2xTP [−Ax+Bf(x) + Cf(x)] + xT (t)Qx(t) − xTQx(t)

+2
[

x(t)
f(x(t))

]T [
Q1 Q2
QT

2 Q3

] [
x(t)

f(x(t))

]
−2

[
x(t)

f(x(t))

]T [
Q1 Q2
QT

2 Q3

] [
x(t)

f(x(t))

]
;

G(x) = 2xT (t)LTQ4Lx(t) − 2fT (x(t))Q4f(x(t)).

(20)

We can see that F (x) = 0 and G(x) ≥ 0, so F (x) + G(x) ≥ 0. On the other
hand,

F (x) +G(x) ≤ Θ
T
(t)Π1Θ(t) + |Θ(t)|TΠ2|Θ(t)|. (21)

where Θ(t) = [xT (t), xT (t), fT (x(t)), fT (x(t))]T . From (7) and (8) we can know
that Θ

T
(t)Π1Θ(t)+ |Θ(t)|TΠ2|Θ(t)| < 0, which implies system (5) has a unique

equilibrium point x∗.
This proof is complete.

Remark 1: In this paper, a new inequality technique, i.e. Lemma 1 is used. By
Lemma 1, we obtain a new sufficient criteria in form of LMI for the unique-
ness and global robust stability of the equilibrium point of the interval Cohen-
Grossberg neural network with time-varying delays. It is well known that the
inequality ‖ A ‖2≤‖ A∗ ‖2 + ‖ A∗ ‖2 is extensively adopted to investigated
the robust stability of the neural networks in the existing works, as a result,
the obtained criteria contain the terms of ‖ A∗ ‖2 and ‖ A∗ ‖2. However, in this
paper, by virtue of Lemma 1, the obtained results don’t contain ‖ A∗ ‖2 and
‖ A∗ ‖2, therefore, our results are less restrictive than those existing ones.

4 Example

In the following, we will give an example to consider a delayed neural networks:

A =
[
1 0
0 1

]
, A =

[
1.02 0
0 1.01

]
, B =

[
0.01 −0.035
0.03 0.01

]
, B =

[
0.03 −0.025
0.03 0.03

]
,

C =
[−0.025 −0.015
−0.016 −0.025

]
, C =

[
0.075 0.085
−0.014 0.075

]
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and with fj(xj) = tanh(xj), j = 1, 2. So, we can get that:

B∗ =
[
0.02 −0.03
0.06 0.02

]
, B∗ =

[
0.01 0.005
0 0.01

]
, C∗ =

[
0.025 0.035
−0.015 0.025

]
,

C∗ =
[

0.05 0.05
0.001 0.05

]
, L =

[
1 0
0 1

]
.

By using the Matlab LMI Control toolbox, it can be easily verified that the
LMIs (7) − (9) is feasible and

P =
[

27.3638 0
0 27.4136

]
, Q =

[
16.2519 0

0 16.2750

]
, Q1 =

[
9.6075 0

0 9.6226

]
,

Q2 =
[−0.1216 0.1824
−0.3655 −0.1218

]
, Q3 =

[
8.8439 0

0 8.8492

]
, Q4 =

[
13.2887 0

0 13.3047

]
.
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Abstract. In this work we propose two hybrid algorithms combining evolution-
ary search with optimization algorithms. One algorithm memetically combines
global evolution with gradient descent local search, while the other is a two-step
procedure combining linear optimization with evolutionary search. It is shown
that these algorithms typically produce smaller local unit networks with perfor-
mance similar to theoretically sound but large regularization networks.

1 Introduction

The problem of supervised learning is extensively studied both in theory and applica-
tions. Consider the situation when we are given a set of examples {(xi, yi) ∈ Rd ×
R}N

i=1 obtained by random sampling of some real function f , generally in presence of
noise. To this set we refer as a training set. The goal is to recover the function f from
data, or find the best estimate of it. It is not necessary that the function exactly interpo-
lates all the given data points, but we need a function with good generalization. That is
a function that gives relevant outputs also for the data not included in the training set.

The supervised learning is often studied as a function approximation problem [1].
Given the data set, we are looking for the function that approximates the unknown
function f . It is usually done by empirical risk minimization, i.e. minimizing the func-
tional H [f ] = 1

N

∑N
i=1(f(xi) − yi)2 over a chosen hypothesis space, i.e. over a set of

functions of a chosen type (representable by a chosen type of neural network).
We studied the relation between the network size and approximation accuracy and

generalization by experimental means [2]. With respect to theoretical results, we expect
the approximation accuracy to improve with increasing number of hidden units. Rea-
sonable approximation accuracy should be achieved already with small networks. In
addition, high number of hidden units makes the learning task more difficult, which can
influence the results. Based on these recommendations, we introduce in Section 3 two
hybrid learning algorithms combining global search by genetic algorithm and a local
search by a gradient descent method or linear optimization, respectively. The perfor-
mance of the algorithms is demonstrated on experiments in Section 4.

2 Approximation via Regularization Network

We are given a set of examples {(xi, yi) ∈ Rd × R}N
i=1 obtained by random sampling

of some real function f and we would like to find this function. Since this problem

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 534–541, 2010.
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is ill-posed, we have to add some a priori knowledge about the function. We usually
assume that the function is smooth, in the sense that two similar inputs corresponds to
two similar outputs and the function does not oscillate too much. This is the main idea of
the regularization theory, where the solution is found by minimizing the functional (1)
containing both the data and smoothness information.

H [f ] =
1
N

N∑
i=1

(f(xi) − yi)2 + γΦ[f ], (1)

where Φ is called a stabilizer and γ > 0 is the regularization parameter controlling the
trade-off between the closeness to data and the smoothness of the solution. The regu-
larization scheme (1) was first introduced by Tikhonov [3] and therefore it is called a
Tikhonov regularization. The regularization approach has good theoretical background,
it was shown that for a wide class of stabilizers the solution has a form of feed-forward
neural network with one hidden layer, called regularization network, and that different
types of stabilizers lead to different types of regularization networks [4,5].

Poggio and Smale in [5] proposed a learning algorithm (Alg. 2.1) derived from the
regularization scheme (1). They choose the hypothesis space as a Reproducing Kernel
Hilbert Space (RKHS) HK defined by an explicitly chosen, symmetric, positive-definite
kernel functionKx(x′) = K(x,x′). The stabilizer is defined by means of norm in HK ,
so the problem is formulated as follows:

min
f∈HK

H [f ],where H [f ] =
1
N

N∑
i=1

(yi − f(xi))2 + γ||f ||2K . (2)

The solution of minimization (2) is unique and has the form

f(x) =
N∑

i=1

wiKxi
(x), (NγI +K)w = y, (3)

where I is the identity matrix, K is the matrixKi,j = K(xi,xj), and y = (y1, . . . , yN ).
The solution (3) can be represented by a neural network with one hidden layer and

output linear layer. The most commonly used kernel function is Gaussian K(x,x′) =

e
−
( ‖x−x′‖

b

)2

.
The power of the above algorithm is in its simplicity and effectiveness. However, its

real performance depends significantly on the choice of parameter γ and kernel function
type. Optimal choice of these parameters depends on a particular data set and there is
no general heuristics for setting them.

An RBF network is a standard feed-forward neural network with one hidden layer of
RBF units and linear output layer (Fig. 2). The RBF units represent RBF functions (5),
usually Gaussians. The network computes its output (6) as linear combination of outputs
of the hidden layer.

There is a variety of algorithms for RBF network learning, in our past work we
studied their behavior and possibilities of their combinations [6]. The most common
used Gradient learning algorithm is sketched bellow, cf. [6] for details.
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Input: Data set {xi, yi}N
i=1 ⊆ X × Y

Output: Function f .

1. Choose a symmetric, positive-definite function Kx(x′), continuous on
X × X.

2. Create f : X → Y as f(x) =
∑N

i=1 ciKxi(x) and compute
w = (w1, . . . , wN ) by solving

(NγI + K)w = y, (4)

where I is the identity matrix, Ki,j = K(xi , xj ), and y =

(y1, . . . , yN ), γ > 0.

Fig. 1. Algorithm of regularization network learning

y(x) = ϕ

( ‖ x − c ‖
b

)
(5)

fs(x) =

h∑
j=1

wjsϕ

( ‖ x − cj ‖
bj

)
(6)

Fig. 2. a) RBF network architecture b) RBF network function

The solution derived in the previous section contains as many hidden units as is
the number of data samples. Such solution is unfeasible for most real life problems.
Therefore solutions with lower number of hidden units are considered.

We studied the relation between the network size (i.e. number of hidden units) and
approximation accuracy and generalization by experimental means [2].

Since the convergence is quite fast, we can suggest that small networks provide suffi-
ciently good solutions. The theoretically estimated convergence rates justify using net-
work of smaller complexity in real-life applications. Smaller networks have also smaller
number of parameters that has to be tuned during the training process. Therefore, they
are more easily trained.

3 Two Hybrid Learning Algorithms

In this section we propose a memetic learning algorithm and a two-step hybrid algo-
rithm creating regularization networks with small number of hidden units. It is based
on a combination of evolutionary algorithms and gradient descent method, or linear
optimization respectively.
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Input: Data set {xi, yi}N
i=1

Output: {ci, bi, Ci, wij}j=1..m
i=1..h

1. Put the small part of data aside as an evaluation set ES,
keep the rest as a training set TS .

2. ∀j cj(i) ← random sample from TS1, ∀j bj(i), Σ
−1
j (i) ← small

random value, i ← 0

3. ∀j, p(i) in cj(i), bj(i), Σ
−1
j (i):

Δp(i) ← −ε δE1
δp

+ αΔp(i − 1), p(i) ← p(i) + Δp(i)

4. E1 ← ∑
x∈TS1

(f(x) − yi)
2, E2 ← ∑

x∈TS2
(f(x) − yi)

2

5. If E1 and E2 are decreasing, i ← i+1, go to 3, else STOP. If E2 started
to increase, STOP.

Fig. 3. Gradient learning of RBF network

Evolutionary algorithms have been used as a very robust and efficient search proce-
dure in various tasks, including neural networks training [7,8]. In [6] we have shown that
in the case of RBF networks, the evolutionary learning has both certain advantages and
drawbacks. On one hand, evolutionary algorithms are prone to local minima stucking
problem, but on the other hand, they are less computationally efficient in finding best
global solution. That is the main motivation behind hybrid approaches that combine
the evolutionary framework with local fine tuning operations, such as various gradient
algorithms.

Our proposed memetic algorithm (see Fig. 4) works with the population of individu-
als which represent encoded parameterizations of regularization networks.

By an individual I we understand a vector of floating-point encoded values
(c11, . . . , c1n b1, w1, . . . ch1, . . . , chnbh, wh), where h is a number of units, n is an input
dimension, wi ∈ R are weights of linear combination, bi ∈ R are widths, and cij ∈ R
are centroid positions of every unit.

Such an individual I corresponds to a regularization network computing function
FI(x) : Rn → R

FI(x) =
h∑

i=1

wiKbi(ci, x)

The fitness fI of an individual I is computed by means of an performance error over a
given training set {(x1, d1), . . . (xT , dT )}, e.g.

fI = 100 − 100
1
T

T∑
t=1

(FI(xt) − dt)
2
.

New populations are created using genetic operations of selection, mutation and
crossover types. The selection operator is a fairly standard tournament selection with a
small elitist rate.
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There are three different operators of a mutation type: a small random change of pa-
rameterization, unit addition and a unit deletion. The first operator (cf. mutate) performs
a small random change of individual parameters:

Ii = Ii +N(−1, 1),

The unit deletion operator (cf. delete) selects a substring of parameterization corre-
sponding to randomly chosen regularization unit in a network, and deletes a this sub-
string. The unit addition operator (cf. insert) randomly generates a substring of a size
of one unit in a regularization network, and inserts it into a random position on the unit
borders of the original parameterization. It is clear to see that the last two operations
alter the network size in a opposite manner.

The crossover operator is a simple 1-point crossover on a floating point vector.
Before the fitness is evaluated, the gradient local search (cf. gradient) for an individ-

ual I performs ng steps of gradient algorithm starting from the current parameterization
value I . It uses the error partial derivative values to compute the gradient and then per-
form a small change of parameters accordingly (for details cf. [6])

Ii = Ii − α
∂E

∂Ii

where α > 0 is a learning rate parameter.
The whole scheme of the memetic algorithm is sketched in Fig. 4 The starting pop-

ulation consists of networks with one unit only letting the evolution freedom to create
bigger networks by mutation operator.

The second algorithm—referred to as a hybrid one—proposed in this paper is a com-
bination of evolutionary learning described above that sets the centers and widths of the
network, followed by a linear gradient learning to set the output weights. The advan-
tage, as opposed to the gradient algorithm described earlier is that the procedure is

1. Create randomly an initial population P0 of M individuals.
2. i ← 0

3. For each individual I ∈ Pi:
(a) gradient(I) : perform local search by gradient descent algorithm.
(b) evaluate fitness fI .

4. Pi+1 ← empty set
5. I1 ← selection(Pi); I2 ← selection(Pi)

6. with probability pcross: (I1, I2) ← crossover(I1, I2)

7. with probability pmutate: Ik ← mutate(Ik), k = 1, 2
8. with probability pdelete: Ik ← delete(Ik), k = 1, 2
9. with probability pinsert: Ik ← insert(Ik), k = 1, 2

10. insert I1, I2 into Pi+1

11. if Pi+1 has less then M individuals goto 5
12. i ← i + 1

13. goto 4 and iterate until the fitness stops increasing

Fig. 4. Memetic learning algorithm
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1. Create randomly an initial population P0 of M individuals.
2. i ← 0

3. For each individual I:
(a) solve linear equations for wIh, and fixed them
(b) evaluate the fitness of I

4. Pi+1 ← empty set
5. I1 ← selection(Pi); I2 ← selection(Pi)

6. with probability pcross: (I1, I2) ← crossover(I1, I2)

7. with probability pmutate: Ik ← mutate(Ik), k = 1, 2
8. with probability pdelete: Ik ← delete(Ik), k = 1, 2
9. with probability pinsert: Ik ← insert(Ik), k = 1, 2

10. insert I1, I2 into Pi+1

11. if Pi+1 has less then M individuals goto 5
12. i ← i + 1

13. goto 4 and iterate until the fitness stops increasing

Fig. 5. Memetic learning algorithm

linear, using any matrix pseudo inverse method with good numerical properties (such
as QR decomposition). Thus, we aim for the simplicity of the original regularization
network algorithm by combining the evolutionary learning (for hidden layer) with lin-
ear optimization (for output layer). The scheme is sketched in the Fig. 5. Note, that the
individual for the algorithm does not evolve all the parameters from the network, the
wh weights are set by linear optimization and remain fixed for mutation and crossover
in one generation.

4 Experiments

The memetic and hybrid algorithm was tested on tasks from Proben1 data repository [9],
which contains benchmark data sets used for neural network testing. The algorithms
were run 10 times and average performance was evaluated.

Table 1 lists error on training and testing set achieved by our two proposed algo-
rithms, and by the original regularization network learning algorithm. In the terms of
training errors the memetic algorithm performed better in 4 cases, in the rest 5 cases
the error is slightly higher than for regularization networks. The hybrid algorithm per-
formed six times better w.r.t. the training error. Regarding the generalization capability,
i.e. the testing error, the memetic algorithm performed better in 6 cases, while the hy-
brid never won, although the results are within the same order. Note that the number of
hidden units needed by regularization networks is much higher than the ones needed by
any of our two hybrid algorithms.

Figure 6 a) shows the flow of error function during the run of the memetic algorithm,
while b) demonstrates an evolution of the number of hidden units. Figure 7 shows fitness
and error function evolution for the hybrid algorithm on a two-dimensional test task.
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Table 1. Comparison of hybrid, memetic, and original RN learning algorithms

Hybrid alg. 2 Memetic alg. RN
Task Etrain Etest units Etrain Etest units Etrain Etest units
cancer1 1.45 2.43 8 1.85 1.49 8 2.28 1.75 525
cancer2 1.67 3.77 8 1.68 2.97 8 1.86 3.01 525
cancer3 1.63 4.10 8 1.77 2.78 8 2.11 2.79 525
card1 9.62 10.74 8 8.88 9.82 9 8.75 10.01 518
card2 8.43 15.18 8 7.15 13.39 15 7.55 12.53 518
card3 8.98 12.58 8 8.14 12.48 13 6.52 12.35 518
diabetes1 13.89 17.18 8 14.52 16.01 7 13.97 16.02 576
diabetes2 13.33 19.76 8 14.40 18.02 5 14.00 16.77 576
diabetes3 13.78 18.07 8 14.86 15.33 5 13.69 16.01 576
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Fig. 6. a) Graph of a fitness function evolution. b) Number of hidden units during evolution.
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5 Conclusion

Most of the learning algorithms work with networks of fixed architectures. Those op-
timizing also the number of hidden units can be divided into two groups – incremental
and pruning. Pruning algorithm starts with large networks and tries to eliminate the ir-
relevant units, while incremental algorithms start with small network and add units as
long as the network performance improves. The mentioned theoretical results speaks
in favor of incremental algorithms. First, learning of small networks is fast since small
numbers of parameters has to be optimized. Second, it is quite probable that reasonable
solution will be found among smaller networks. Based on our experiments, we recom-
mend to start with small number of hidden units and increase the network size only as
long as also generalization ability improves.

Two hybrid learning algorithms were proposed, combining global approximation by
evolutionary algorithm and local search by gradient descent, or linear optimization, re-
spectively. Based on the mentioned results, both algorithms work as incremental. The
performance of the memetic and hybrid algorithm was demonstrated on experiments,
and it was shown that they both achieve the solution comparable with the full regular-
ization network with much smaller number of hidden units.
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Synchronization for a Class of Uncertain Chaotic
Cellular Neural Networks with Time-Varying

Delay
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Abstract. Synchronization problem of a class of chaotic cellular neural

networks with time-varying delay and parameter uncertainties is probed

in. Given the Lipschitz conditions, based on Lyapunov-Krasovskii func-

tional method and the analysis of the bounded uncertainties, a kind of

convenient linear controller is derived. It can be designed by only solving

a linear matrix inequality and can lead the error system to be globally

asymptotical stable. The simulation results indicate the super properties

of the controller.

Keywords: Chaos, Cellular neural networks, Synchronization, Parame-

ter uncertainty, Time delay, Lyapunov-Krasovskii functional.

1 Introduction

Cellular neural network (CNN) is a kind of nonlinear processors array, whose
powerful functionality and simple implementation endow it broad applications.
Besides software implementation, its hardware constructions have been grad-
ually achieved. In [1], a kind of spatial domain equivalent framework of the
sigma-delta (SD) modulation by the CNN is composed to reconstruct the 2D
image and shows excellent reconstruction capabilities. Then, in [2], a low cost
hardware implementable SD-CNN is proposed. In [3], a new design procedure for
synthesizing associative memories based on a novel CNN structure is presented.
The designed parameters are few, even though the dimension of desired patterns
may be very high.

As an important issue of the control theory, chaos synchronization has been
probed in by many scholars. Many kinds of synchronized methods have been put
forward and intensively studied, such as sliding mode control method [4], robust
control method [5], fuzzy logic control method [6] or adaptive control method [7].
Its theories have also been applied in many fields of engineering, such as medi-
cal science [8], laser control [9], secret communication [10], energy science [11],
et al. Under certain conditions, CNN can presents chaotic behavior of three or
even higher dimensions [12], which gives more possibilities to be used in above-
mentioned applications. One example is that a secure communication system
based on the hyperchaotic synchronization of the quantum cellular neural net-
work is presented in [13]. However, due to the effects of complex environmental

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 542–547, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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factors, we should take the time delays and uncertainties into consideration. In
this paper, bounded parameter distortions and time-varying delays are brought
into the driving and responsive cellular neural networks, and a globally asymp-
totical synchronous controller is designed, which is linear and convenient to get,
by only solving a linear matrix inequality.

2 Design of the Synchronization Controller

Choose the controlled response system and the driving system as following cel-
lular neural networks with time-varying delays:

ẋ = (−C −ΔC) x(t) + (A+ΔA) f(x(t)) + (B +ΔB) f(x (t− τ (t))) + u, (1)

ẏ = (−C −ΔC) y(t) + (A+ΔA) f(y(t)) + (B +ΔB) f(y (t− τ (t))), (2)

where x(t), y(t), u(t) ∈ Rn, 0 < τ(t) <∞, τ̇ (t) ≤ α < 1, f(x(t)) = (f1(x1), · · · ,
fn(xn))T , f(y(t)) = (f1(y1), · · · , fn(yn))T , and fi(xi(t)) = 0.5 li(|xi + 1| − |xi

− 1|). Hence the Lipschitz constants is

0 ≤ fi(ξ1) − fi(ξ2)
ξ1 − ξ2

≤ li, i = 1, 2, · · · , n. (3)

Denote ΔC, ΔA and ΔB as the uncertainties, which can be described as ΔC =
H1F1E1, ΔA = H2F2E2, ΔB = H3F3E3. Hi, Ei, i = 1, 2, 3 are real constant ma-
trices with appropriate dimensions, and Fi(t), i = 1, 2, 3 are uncertain matrices,
which satisfy FT

i Fi ≤ I, where I is the identity matrix. Define e(t) = x(t)−y(t),
then the error system is

ė(t) = − (C +ΔC) e(t) + (A+ΔA) g(e(t)) + (B +ΔB) g(e(t− τ(t))) + u, (4)

in which g
(
e(t)

)
= f

(
e(t) + y(t)

)− f
(
y(t)

)
. We know that e(t) = 0 is the fixed

point of g
(
e(t)

)
. According to (3), g

(
e(t)

)
satisfies

0 ≤ gi

(
e(t)

)
ei(t)

≤ li, i = 1, 2, · · · , n. (5)

Lemma 1 [14]. Let H,F,E be real matrices of appropriate dimensions with
FTF ≤ I. Then for any scalar ε > 0, HFE + ETFTHT ≤ ε−1HHT + εETE.

According to lemma 1, we have⎧⎨⎩
−ET

1 F
T
1 H

T
1 P − PH1F1E1 ≤ ε−1

1 PH1H
T
1 P + ε1E

T
1 E1,

AET
2 F

T
2 H

T
2 +H2F2E2A

T ≤ ε−1
2 H2H

T
2 + ε2AE

T
2 E1A

T ,
BET

3 F
T
3 H

T
3 +H3F3E3B

T ≤ ε−1
3 H3H

T
3 + ε3BE

T
3 E3B

T .

(6)

Theorem 1. Consider (1) and (2), the globally asymptotical synchronization
between them can be achieved under the control
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u = −1
2
(
AAT +BBT +

3∑
i=1

ε−1
i HiH

T
i + ε2AE

T
2 E2A

T + ε3BE
T
3 E3B

T

+
3∑

i=2

‖Ei‖2‖Hi‖2I
)
Pe(t), (7)

where ε1, ε2, ε3 are the parameters satisfying (6), ‖·‖ is the 2-norm of the matrix.
P is the positive definite symmetric solution of the following linear inequality

CT + PC − 2 − α

1 − α
L− ε1E

T
1 E1 > 0. (8)

Proof: Choose a positive definite functional V
(
t, τ(t)

)
= V1(t) + V2

(
t, τ(t)

)
as

Lyapunov functional, where{
V1(t) = eT (t)Pe(t),
V2

(
t, τ(t)

)
= 1

1−α

∫ t

t−τ(t) e
T (θ)Le(θ)dθ, (9)

in which P and L are both positive definite matrices. Take the derivative of V1(t)
along (4), we have

V̇1(t) = −eT (t)
[
(C +ΔC)TP + P (C +ΔC)

]
e(t) + 2gT

(
e(t)

)
(A+ΔA)TPe(t)

+2gT
(
e(t− τ(t))

)
(B +ΔB)TPe(t) + 2eT (t)Pu

≤ −eT (t)
[
(C +ΔC)TP + P (C +ΔC)

]
e(t) +

n∑
i=1

g2
i

(
e(t)

)
+eT (t)P (A+ΔA)(A +ΔA)TPe(t) +

n∑
i=1

g2
i

(
e(t− τ(t))

)
+eT (t)P (B +ΔB)(B +ΔB)TPe(t) + 2eT (t)Pu

≤ −eT (t)
[
(C +ΔC)TP + P (C +ΔC)

]
e(t) + eT (t)Le(t)

+eT (t)P (A+ΔA)(A +ΔA)TPe(t) + eT (t− τ(t))Le(t − τ(t))
+eT (t)P (B +ΔB)(B +ΔB)TPe(t) + 2eT (t)Pu, (10)

where L = diag
(
l21, l

2
2, · · · , l2n

)
. Owing to following inequalities

(A+ΔA)(A+ΔA)T = AAT +AΔAT +ΔAΔAT

≤ AAT + ε−1
2 H2H

T
2 + ε2AE

T
2 E2A

T

+‖E2‖2‖H2‖2I, (11)
(B +ΔB)(B +ΔB)T = BBT +BΔBT +ΔBΔBT

≤ BBT + ε−1
3 H3H

T
3 + ε3BE

T
3 E3B

T

+‖E3‖2‖H3‖2I, (12)
−ΔCTP − PΔC ≤ ε−1

1 PH1H
T
1 P + ε1E

T
1 E1, (13)
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which are in accordance with (6), we have

V̇1 ≤ eT (t)
[
− CTP − PC + L+ P (AAT +BBT )P +

3∑
i=1

ε−1
i PHiH

T
i P

+P (ε2AET
2 E2A

T + ε3BE
T
3 E3B

T )P +
3∑

i=2

‖Ei‖2‖Hi‖2PP + ε1E
T
1 E1

]
e(t)

+eT (t− τ(t))Le(t− τ(t)) + 2eTPu (14)

and

V̇ = V̇1 + V̇2 ≤ eT (t)
[
− CTP − PC +

2 − α

1 − α
L+ P (AAT +BBB)P

+
3∑

i=1

ε−1
i PHiH

T
i P + P (ε2AET

2 E2A
T + ε3BE

T
3 E3B

T )P

+
3∑

i=2

‖Ei‖2‖Hi‖2PP + ε1E
T
1 E1

]
e(t) + 2eT (t)Pu. (15)

Then, choose (7) as the controller, we can get V̇ ≤ −eT (t)Qe(t), where

Q = CTP + PC − 2 − α

1 − α
L− ε1E

T
1 E1. (16)

So if CTP + PC − (2−α)L
1−α − ε1E

T
1 E1 > 0, a constant ρ > 0 can be found out

to make V̇ ≤ −ρ‖e(t)‖2. Then the controller will offer the error system globally
asymptotical stability. This completes the proof.

3 Example and Simulations

Consider a class of uncertain chaotic cellular neural networks with time-varying
delays as the driving system and the response system, with the system matrices
and structure expressions of (1) and (2) assigned as

x =
(
x1(t)
x2(t)

)
, y =

(
y1(t)
y2(t)

)
, f

(
x(t)

)
=

(
0.5

(|x1 + 1| − |x1 − 1|)
0.5

(|x2 + 1| − |x2 − 1|)
)
, C =

(
1 0
0 1

)
,

A =
(

π+4
4 20

0.1 π+4
4

)
, B =

(
−√

2·1.3π
4 0.1

0.1 −√
2·1.3π
4

)
, H1 = E1 =

(
0.4 0
0 −0.4

)
, (17)

H2 = E2 = diag(0, 0.2), H3 = E3 = diag(0.2, 0). Note that l1 = l2 = 1. The
chaotic attractor of the driving system is shown in Fig. 1.

In order to use theorem 1, we should find a solution P of (8). With εi, i =
1, 2, 3 chosen as 1, and α chosen as 0.9, a solution is

P =
(

7.5 0
0 7.5

)
. (18)
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The synchronous controller can be derived as

u =
(−1581 −139

−139 −21

)
e(t). (19)

With the initial conditions of the driving system and the response system given
as y(0) = [3 3]T and x(0) = [0.1 0.1]T , the synchronization errors are shown
in Fig. 2.

As seen in Fig. 2, the synchronous error curves can convergence to 0 within 0.4s
without any overshoot, which reflects the rapidity of the synchronous controller.

4 Conclusions

In this paper, the synchronization problem of a class of uncertain chaotic cellular
neural networks with variable time delays is probed in, and a kind of convenient
linear controller is derived. Moreover, the problem with the piecewise links of
the cellular neural networks can be effectively solved by this method. This set of
theoretical methods can be used in more widespread synchronization problems
of time-delayed and uncertain systems.
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Abstract. In this paper, the global exponential stability of the Hopfield neural 
network with delay is studied. By using of the methods of constant variation 
and variable substitution, a new sufficient global exponential stable criterion for 
the equilibrium point of the network is derived. The result is different to the 
known references and is realizable easily.  
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1   Introduction 

Since the American biologist Hopfield brought forward the Hopfield neural network 
in 1982, it has attracted much attention for the wide applications in many areas such 
as associative memory, pattern recognition and optimization in recent years, because 
of its rich dynamic behavior and overall computing power, which is pointed out in 
[1]-[3]. However, a number of issues in the hardware implementation of the neural 
network, such as switching delay and communication delay, greatly reduce the dy-
namic performance of the hardware neural network and may lead to network instabil-
ity, because one of the key factors is the network time delay, which is described in 
[4]-[6]. Therefore, it is very important and significant to study the stability of the 
Hopfield neural network. 

2   Preliminary 

The Hopfield neural network with delay can be described by the following differential 
equations 

1

( )
( ) ( ( ))

n
i

i i ij j j j j i
j

du t
b u t T f a u t I

dt
ι

=

= − + − +∑ , 0, 1,2,...,ib i n> = . (1)

where n  is the quantity of the neuron in the network, ( )ju t  denotes the state variable 

of the j -th neuron at time t , ( ( ))j j jf u t ι−  denotes the output of the j -th neuron at 
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time jt ι− , , , ,i ij j ib T a I  are constants, ib  denotes the rate with which the i -th unit will 

resets its potential to the resting state in isolation when disconnected form the network 
and external inputs, ijT  denotes the influence intensity of the output of the j -th neu-

ron toward the i -th neuron at time t , iI  is the input, jι  denotes the transfer delay of 

the j -th neuron. 

According to [7] and [8], the initial conditions associated with system (1) are of the 
following form 

[ ]0 0
1

( ) ( ), , , , 1,2,...,maxi i i
i n

u t t t t t i nφ ι ι ι
≤ ≤

= ∈ − = = . 

where ( )i tφ  are bounded continuous functions defined on [ ]0 0,t tι− . 

Assume that the activation functions ( 1,2,...,jf j n= ） are continuous and can be 

characterized by the following assumptions. 

(H1) jf  are bounded defined on R . 

(H2) There exist constants 0jμ > , such that jf  satisfies ( ) ( )j j jf x f y x yμ− ≤ −  

for all ,x y R∈  and 1,2,...,i n= . 

The following lemmas are given to assure the existence of an equilibrium point and 
its global exponential stability. 

Lemma 1. If ( 1,2,..., )jf j n=  satisfy the assumptions (H1) and (H2), then there exist 

an equilibrium point of system (1). 

Proof. If * * * *
1 2( , ,..., )T

nu u u u=  is an equilibrium point of system (1), then *u  satisfies 

the following nonlinear equation 

*
* *

1 1

( )1
( )

n n
ij j j j i

i ij j j j i
j ji i i

T f a u I
u T f a u I

b b b= =

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
∑ ∑  

*( )ij j j j ib f a u q= +∑ 1,2,...,i n= . (2)

where ( ) / ,ij n n ij i n n
B b T b× ×

= = 1 2( , ,..., )T
nq q q q= , /i I iq I b= , 1,2,...,i n= . Therefore, 

(2) can be rewritten in the following vector- matrix form 

* * *( ) ( )u F u Bf u q= = + . (3)

where * * * *
1 1 1 2 2 2( ) ( ( ), ( ),..., ( ))T

n n nf u f a u f a u f a u= , *u  is an fixed point for 

: n nF R R→ . The existence of the fixed point of the mapping F  can be proved by 
the Brouwer fixed point theorem. In fact, a hypercube is defined by 

nu R u q B M
∞ ∞

Ω = ∈ − ≤ . (4)
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where ( )supmax i
i s

M f s= .Then 

( ) ( ) ( )F u q Bf u B f u B M
∞ ∞ ∞ ∞ ∞

− = ≤ ≤ . (5)

where the mapping F  is continuous and F  maps a closed convex set into itself. 
Consequently, based on the Brouwer fixed point theorem, F  has at least one fixed 
point. This means that there exists at least one equilibrium point 

* * * *
1 2( ,..., )T

nu u u u= ， for system (1). 

Based on the above analysis, if ( 1,2,..., )jf j n=  satisfy the assumptions (H1) and 

(H2), system (1) exists an equilibrium point. The proof is completed. 

Lemma 2. If ( 1,2,..., )jf j n=  satisfy the assumptions (H1) and (H2), then any solu-

tion of system (1) is bounded on [ )0,∞ . 

Proof. Any solution of (1) satisfies the following differential inequality 

( )
( ) ( )i

i i i i i i

du t
b u t b u t

dt
β β− − ≤ ≤ − + . (6)

where 
1

( ) ( )sup
n

i ij i i
j s R

T f s Iβ
= ∈

= +∑ . Therefore, any solution of (1) is bounded on 

[ )0,∞ . The proof is completed. 

3   Stability Researches 

Theorem. If ( 1,2,..., )jf j n=  satisfy the assumptions (H1) and (H2), the parameters 

jμ , ja , ijT , ( , 1, 2,..., )i j n= satisfies the following condition 

1 1

1max
n

j j ij
i n j

a Tμ
≤ ≤ =

⎧ ⎫
<⎨ ⎬

⎩ ⎭
∑ . 

then the equilibrium point of system (1) is global exponential stable. 

Proof. If the Hopfield neural network converges to an equilibrium point, then the 
solution of (1) satisfies the following equation 

*

1

( ) 0lim
n

i i
t i

u t u
→∞ =

− =∑ . (7)

By using the method of variable substitution, set *( ) ( ) 1, 2,...,i i iy t u t u i n= − =， , then 

* *

1

( )
( ) ( ( ( )) ( ))

n
i

i i ij j j j j j j j
j

dy t
b y t T a f u y t f u

dt
ι

=

= − + + − −∑ . (8)
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Therefore, in order to study the global exponential stability of the equilibrium point of 
system (1), it is equivalent to study the global exponential stability of the zero solu-
tion of (8). The research method of the neural network stability is simplified. 

By using the method of constant variation, (9) can be deduced. 

]0

0

( )
( ) * *

0
1

( ) ( ) ( ( ( )) ( ) )
n t stt t

i i i ij j j j j J j jt
j

y t b y t e e T a f u y s f u dsι
− −

− −

=

⎡= + + − −⎣∑∫ . (9)

Considering the assumption (H2), (10) can be deduced. 

0

0

( ) ( ) * *
0

1

( ) ( ) ( ( )) ( )
n tt t t s

i i i ij j j j j j j jt
j

y t b y t e e T a f u y s f u dsι− − − −

=

⎡≤ + + − − ⎤⎦⎣∑∫

0

0

( ) ( )

1

( )
n tt t t s

i j j ij j jt
j

b e a e T y s dsφ μ ι− − − −

=

≤ + −∑ ∫ . (10)

When 0t t> , set 0

0

( ) ( )

1

( ) ( )
n tt t t s

i i j j ij j jt
j

P t b e a e T y s dsφ μ ι− − − −

=

= + −∑ ∫ . When 

0 0t t tι− ≤ ≤ , set ( )i iP t bφ= . 

Considering the assumption (H2), when 0t t ι≥ − , (11) can be deduced. 

( ) ( ), 1,2,...,i iy t P t i n≤ = . (11)

Considering the initial conditions, when 0t t≥ , (12) can be deduced. 

0

0

( ) ( )

1 1

( )
( ) ( )

n ntt t t si
i j j ij j j j j ij j jt

j j

dP t
b e a e T y s ds a T y t

dt
φ μ ι μ ι− − − −

= =

= − − − + −∑ ∑∫  

1 0

( ) ( )sup
n

i j j ij j
j

P t a T P t
ι θ

μ θ
= − ≤ ≤

≤ − + +∑ . (12)

Set 0( )
0( ) ( ) , , 1,2,...,t t

i iS t P t e t t i nε ι ι+ −= ≥ − = , then 

0 0( ) ( )/( )
( ) ( )t t t ti

i i

dS t
P t e P t e

dt
ε ι ε ι ε+ − + −= +  

0 0( ) ( )

1 0

( ) ( ) ( )sup
n

t t t t
i j j ij j i

j

P t a T P t e P t eε ι ε ι

ι θ

μ θ ε+ − + −

= − ≤ ≤

⎡ ⎤
≤ − + + +⎢ ⎥
⎣ ⎦

∑  

1 0

( 1 ) ( ) ( )sup
n

i j j ij j
j

S t a T S t
ι θ

ε μ θ
= − ≤ ≤

= − + + +∑ . (13)

Considering (11), if the zero solution of system (9) is global exponential stable, then 
(14) can be deduced. 

0 0( ) ( )
0( ) ( ) ( ) , , 1,2,...,t t t t

i i iy t P t S t e e t t i nε ι εφ− + − − −≤ = ≤ ≥ = . (14)
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Therefore, in order to study the global exponential stability of the zero solution of 
system (9), it is only to verify that there exists a sufficient small 0ε > , which satisfies 
the following equation 

0( ) ,iS t e t tειφ ι≤ ≥ − . (15)

A proof by contradiction is selected as the method to prove the above conclusion. 
Assume that (15) is not correct, there exist i  and 1 0t t> , which satisfy the following 

equation 

1 0 1( ) , ( ) , ( ) , , , 1, 2,...,i i jS t e S t e S t e t t t j i j nει ει ειφ φ φ= < ≤ ≤ ≤ ≠ = . (16)

In the one hand, (17) can be deduced. 

1( )
0idS t

dt
≥ . (17)

In the other hand, because 
1 1

1max
n

j j ij
i n j

a Tμ
≤ ≤ =

⎧ ⎫
<⎨ ⎬

⎩ ⎭
∑ , (18) can be deduced. 

1

1 0, 1,2,...,
n

j j ij
j

a T i nε μ
=

− + + < =∑ . (18)

According to (13) and (18), (19) can be deduced. 

1
1

1 0

( )
( 1 ) ( ) ( )sup

n
i

i j j ij j
j

dS t
S t a T S t

dt ι θ

ε μ θ
= − ≤ ≤

≤ − + + +∑  

1

( 1 )
n

j j ij
j

e a T eει ειε φ μ φ
=

= − + +∑
1

1 0
n

j j ij
j

a T eειε μ φ
=

⎡ ⎤
= − + + <⎢ ⎥
⎣ ⎦

∑ . (19)

(19) is contradictory to 1( )
0idS t

dt
≥ . Therefore, (15) is correct. So the zero solution of 

system (9) and the equilibrium point of system (1) are global exponential stable. The 
proof is completed. 

4   Conclusions 

In this paper, for the Hopfield neural network with delay, the existence of the equilib-
rium point and its global exponential stability are studied. Based on the methods of 
constant variation and variable substitution, the sufficient criterion is derived. The 
result is different to the known references and is realizable easily. 

Acknowledgments. It is a project supported by the science and technology project of 
Civil Aviation University of China (05YK05M, ZXH2009D020). 
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Abstract. In this paper, with assuming global Lipschitz conditions on the acti-
vation functions, applying idea of vector Lyapunov function, Young inequality 
and Halanay differential inequality with delay, the global exponential stability 
of the equilibrium point for a class of Cohen-Grossberg neural networks with 
time-varying delays and impulses is investigated, the sufficient conditions for 
globally exponential stability of neural networks are obtained.  

Keywords: global exponential stability; Lyapunov function. 

1   Introduction 

In recent decades, much attention has been devoted to the studies of the Cohen-
Grossberg neural networks, there are many interesting phenomena in the dynamical 
behaviors of Cohen-Grossberg neural networks. The asymptotic stability, exponential 
stability, robust stability, periodic bifurcation and chaos of the neural network have 
been hot topics. Liu Jiang [1] studied the globally exponential stability of Cohen-
Grossberg neural networks with time-varying delays described by the system of 
nonlinear delay differential equations: 

1

( ) ( ( ))[ ( ( )) ( ( ( )))], ( , 1, 2, , ).
n

i i i i i ij j j j
j

u t a u t b u t T f u t t i j nτ
=

= − − − =∑           (1) 

In this paper, we consider the globally exponential stability of following impulsive 
Cohen-Grossberg neural networks with time-varying delays:  

1

( ) ( ( ))[ ( ( )) ( ( ( )))], ( , 1, 2, , )., , 0,

( ) ( ) ( ) ( ( )),

( ) ( ), 1, 2, , .

n

i i i i i ij j j j k
j

i k i k i k ik k

i i

u t a u t b u t T f u t t i j n t t t

u t u t u t I u t k N

u s s i n

τ

φ

=
+ − −

⎧ =− − − = ≠ ≥⎪⎪
⎨Δ = − = ∈
⎪

= =⎪⎩

∑
     (2) 
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In which the sequence of times { }k k Nt ∈  satisfies 
1 2 kt t t< < < <  is a strictly increas-

ing sequence such that lim , ( )k i kk
t u t −

→∞
=+∞  and ( )i ku t+  denote the left-hand and right-

hand limit at 
kt , respectively, 

ikI  shows impulsive perturbation of the ith neuron at 

time 
kt . We always assume  

( ) ( ),i k i ku t u t k N−= ∈ . 

The system (2) is supplemented with initial values given by 

0( ) ( ) , [ ,0], 1,2, ,i iu t t t t i nϕ τ+ = ∈ − = ,                                  (3) 

( )i tϕ  denote real-valued bounded and continuous functions defined on [ ,0]τ− .  

In this paper, we introduce the following assumptions for system (2):  

H1) the activation function :jf R R→  is globally Lipschitz continuous with a 

Lipschitz constant 0jl >  namely ( ) ( )j j jf u f v l u v− ≤ −  for all 1,2, , , , , .j n u v u v R= ≠ ∈   

H2) Each function ( )ia u  is bounded, positive and locally Lipschitz continous. Fur-

thermore, 0 ( )i i ia a u a< ≤ ≤ <+∞  for all ( , )u R∈ = −∞ + ∞  and 1, 2, , .i n= …  

H3) Each function ( )ib u  is locally Lipschitz continous and 1( ) ( , )ib u C R R∈  and there 

exists 0iβ >  such that ( ) 0i ib u β′ ≥ >  for , 1, 2, , ;u R i n∈ = …  both ( )ib ⋅  and 1( )ib− ⋅  are 

locally Lipschitz continous. 

2   Preliminaries 

In the following, we will cite some definitions and some lemmas which will be used 
in the proof of the main results.  

Definition 1. Vector function 
1( ) ( ( ), , ( ))T

nu t u t u t=  is called a solution of system (2), 

if ( )u t  is continuous at 
kt t≠  and 0, ( ) ( ),k kt u t u t −≥ =  and ( )ku t +  exist, ( )u t  satisfies Eq. 

(2) and initial condition (3). Especially, a point * * * *
1 2( , , , )nu u u u=  in nR  is called an 

equilibrium point of (2), if *( )u t u=  is a solution of (2). Where the components *
iu  are 

governed by the algebraic system 

* *

1

0 ( ) ( )
n

i i ij j j
j

b u T f u
=

= −∑                                            (4) 

Throughout this paper, we always assume that the impulsive jumps 
kI  satisfy 

*( ) 0, 1, , , .k iI u i n k N= = ∈  Here * * * *
1 2( , , , )T

nu u u u=  is the equilibrium point of system 

(2). If ( ) 0ikI u =  for all , 1, , ,nu R i n k N∈ = ∈ , then the impulsive model (2) becomes 

continuous cellular neural networks with delays model (1). Let 
0( , , )u t t ϕ denote the 

solution of system (2) through 
0( , )t ϕ .  
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Definition 2. The equilibrium point * * * *
1 2( , , , )T

nu u u u=  of system (2) is said to be 

globally exponential stable if there exist constants 0σ >  such that *( )u t u− ≤  

* tu e σφ −−  for all 0t≥ , where 

* *

[ ,0] 1

sup [ ( ) ]
n

j j
s j

u s u
τ

φ φ
∈ − =

− = −∑ . 

Definition 3. (Cao and Wang [2]) A map: : n nH R R→  is a homeomorphism of nR  onto 

itself, if 0H C∈  is onto and the inverse map 1 0H C−∈ . 

Lemma 1. (Forti and Tesi [3]) If 0( )H x C∈  satisfies the following conditions: 

(i) ( )H x  is injective on nR  

(ii) ( )H u →∞  as u →∞ . 

Then ( )H x  is a homeomorphism of nR  onto itself. 

Lemma 2. (Young inequality [4]) Assume that 
1 20, 0, 1lξ ξ> > >  and 1 1 1,

l m
+ =  then 

following inequality: 
1 2 1 2

1 1l m

l m
ξ ξ ξ ξ≤ +  holds. 

Lemma 3. (Halanay inequality [5]) Let α  and β  be constants with 0α β> >  and ( )u t  

be a nonnegative continuous function on 
0 0[ , ]t tτ− . If ( )u t  satisfies the following 

inequality '( ) ( ) ( ) ,u t u t u tα β≤− +  where { }( ) su p ( ) , 0
t s t

u t u s
τ

τ
− ≤ ≤

= ≥  is a constant, 

then for 
0,t t≥  we have 0( )

0( ) ( ) r t tu t u t e− −≤ . In which r  is the unique positive solu-

tion of the equation rr e τα β= − . 

3   Main Results 

In this section, we will give the criteria to guarantee the globally exponential stability 
for the impulsive system (2). We consider the impulsive state displacements charac-
terized by :kI R R→  at fixed instants of time ,kt t k N= ∈  are defined by 

*( ) ( ) ( ( )) ( ( ) ), , 1, 2, , .i k i k k k ik k iu t u t I u t u t u k N i nγ− − −− = = − ∈ =               (5) 

where 
ikγ  denote real numbers. For convenience in our analysis, we let 

* * *( ) ( ) , ( ( ( ))) ( ( ( )) ) ( ), ( 1, 2, , ).i i i j j j j j j j j jy t u t u f y t t f y t t u f u j nτ τ= − − = − + − =  

So that (2) can be rewritten as 

1

*

( ) ( ( ))[ ( ( )) ( ( ( )))], 0,

( ) ( ), 1, 2, , ; ,

( ) ( ) ( ) , [ , 0].

n

i i i i i ij j j j
j

i k ik i k

i i i i

y t a u t b u t T f u t t t

y t y t i n k N

y s s s u s

τ

γ
ψ φ

=
−

⎧ =− − − ≥⎪⎪
⎨ = = ∈
⎪

= = − ∈ −∞⎪⎩

∑
                        (6) 
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Theorem 1.  Let 
ijT R∈ , in addition to H1), H2), H3), suppose the condition: 

H4) If                                          
1 21 1

1

min{ } max{ } 0
n

i i iji n j n
i

k l T kγ
≤ ≤ ≤ ≤ =

= > = >∑                               (7) 

is satisfied. Then there exists a unique equilibrium point *u  of (2). 

Proof. Consider a map 

0
1 2( ) ( ( ), ( ), , ( )) ( , )T n n

nH u H u H u H u C R R= ∈  

where 

1

( ) ( ) ( ), ( 1, 2 , , )
n

i i i ij j j
j

H u b u T f u i n
=

= − =∑ . 

The map 0H C∈  is a homeomorphism on nR  if it is injective on nR  and satisfies 

( )H u →∞  as u →∞ . We demonstrate the injective part, namely ( ) ( )H u H v=  implies 

u v=  for any , nu v R∈ , as follows, we have  

1 1

( ) ( ) ( ) ( ),
n n

i i ij j j i i ij j j
j j

b u T f u b v T f v
= =

− = −∑ ∑  

and consequently  

1

( ) ( ) ( ) ( ) ,
n

i i i i ij j j j j
j

b u b v T f u f v
=

− = −∑  

which leads to 

1 1 1 1 1

( )
n n n n n

i i i j ij j j j ij i i
i i j i j

u v l T u v l T u vγ
= = = = =

− ≤ − ≤ −∑ ∑∑ ∑ ∑  

which gives 

1 2
1

( ) 0
n

i i
i

k k u v
=

− − ≤∑ .                                           (8) 

It follows, from (8) that 
i iu v=  for 1,2, ,i n= , (i.e. u v= ). Hence, the map 0H C∈  is 

injective on nR .  

Next, we prove that ( )H u →∞ as u →∞ , we consider the map ˆ( ) ( ) (0)H u H u H= − , i.e. 

1

ˆ ( ) ( ) (0) ( ) ( ),
n

i i i i i ij j j
j

H u H u H b u T f u
=

= − = −∑  

for , 1,2 , ,iu R i n∈ = . It is enough to show 

ˆ ( )H u →∞  as .u →∞  
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We have 

1 2
1 1 1 1 1 1 1 1

ˆsgn( ) ( ) sgn( )[ ( ) ( )] [ ] [ ] ( ) ,
n n n n n n n n

i i i i i ij j j i i j ij j i i ji i i
i i j i j i j i

u H u u b u T f u u l T u l T u k k uγ γ
= = = = = = = =

= − ≤ − + =− − ≤− −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

that yields 

1 2
1 1 1

ˆ ˆ( ) sgn( ) ( ) ( )
n n n

i i i i
i i i

k k u u H u H u
= = =

− ≤− ≤∑ ∑ ∑ . 

It then follows that  

1 11 2

1 ˆ ( )
n n

i i
i i

u H u
k k= =

≤ −∑ ∑  

and from which we assert ˆ ( )H u →∞  as u →∞ . We conclude that the map 0H C∈  is 

a homeomorphism on nR  and this guarantees the existence of a unique solution 
* nu R∈  of the algebraic system (4) which defines the unique equilibrium state of the 

impulsive network (2). The proof is now complete. 

Theorem 2. Let 
ijT R∈ , in addition to H1), H2), H3) and (5) hold, assume further 

that: 

H5) 2 2
3 41 1

1

1min{ } max{ ( } 0
2

n
p q p q

i i i j ij j iji n j n
i

k a a l T l T kγ − −
≤ ≤ ≤ ≤ =

= > + = >∑ . 

H6) There exists a constant γ  such that 

1

ln
, 1 , 2 , ,k

k k

k
t t

γ γ λ
−

≤ < =−
 

where 
1max{1, 1 , , 1 },k k nk k Nγ γ γ= + + ∈ , the scalar 0λ>  is the unique positive solu-

tion of the equation: 
3 4 .tk k eλλ = −  

Then the equilibrium point *u  of system (2) is globally exponential stable. 

Proof. We consider the following Lyapunov function 

1

( ) ( )
n

i
i

V t y t
=

=∑  . 

We denote 

1

( ) s u p ( ) s u p ( ( ) )
n

i
t s t t s t i

V t V s y s
τ τ− ≤ ≤ − ≤ ≤ =

= = ∑  

for 0t≥ . The upper right Dini derivative ( )D V t+  of ( )V t  along the solutions of sys-

tem (6) is obtained as 
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* *

1 1

1 1
2 2

2 2 2 2

1 1 1

( )

( ( ( ))[ '( ) ( ) ( ( ( ( )) ) ( )))]

( ( ( ))[ '( ) ( ) ( ( ))]

( ) ( ( ))

(

n n

i i i i i ij j j j j j j
i j
n n

i i i i i ij j j j
i j

n n n q q p p

i i i i ij ij j j j j
i i j

i i i

D V t

a y t b y t T f y t t u f u

a y t b y t T l y t t

a y t a T T l l y t t

a y

θ τ

θ τ

γ τ

γ

+

= =

= =
− −

= = =

= − − − + −

≤ − − −

≤− + −

≤−

∑ ∑

∑ ∑

∑ ∑ ∑
2 2

1 1 1

2 2
1 1

1 1 1

3 4

1) [ ] ( ( ))
2

1m in{ } ( ) m ax{ [ ]} ( )
2

( ) ( )

n n n
q p q p

i ij j ij j j j
i i j

n n n
q p q p

i i i i ij j ij j ii n j n
i j i

t a T l T l y t t

a y t a T l T l y t

k V t k V t

τ

γ

− −

= = =

− −
≤ ≤ ≤ ≤= = =

+ + −

≤− + +

≤− +

∑ ∑ ∑

∑ ∑ ∑

 

According to assumption H6) and Lemma 3, it is obviously that 

0( )
0( ) ( ) (0)t t tV t V t e V eλ λ− − −≤ =   

for 
0 10 t t t= < < . Where λ is the unique positive solution of the equation 

3 4 .tk k eλλ= −  

Also, in view of condition (5), one has 

1 1 1 1 1 1( ) ( ) ( ( ) ) (1 )( ( ) )i i i i i i i i i iu t u u t u I u t u u t uγ∗ − ∗ − ∗ − ∗− = − + − = + − . 

Then at 
1t t= , 

1 1 1 1 1 1 1 1 1
1 1 1

( ) ( ) ( ) ( ) ( ) (0).
n n n

i i i i
i i i

V t y t y t y t V t Vγ γ γ γ+ + − − −

= = =
= = ≤ = ≤∑ ∑ ∑  

By following the similar inductive arguments as before, we derive that 

1
1 0 1 2 1( ) (0) kt

k kV t V e λγ γ γ γ −−+
− −≤ , 

for 
1,kt t k N−= ∈ , where 

0 0t =  and 
0 1γ = , by the mathematical induction, we can con-

clude that 

0 1 2 1( ) (0) t
kV t V e λγ γ γ γ −
−≤ ,                                      (9) 

for 
1 ,k kt t t k N− < < ∈ . Noticing that 1( )k kt t

k eγγ −−≤  by H6), we can use (9) to conclude that 

1 0 1 02 12 ( ) 2 ( ) 2 ( )2 ( ) 2 2 2 2 2( )( ) (0) (0) (0) (0) ,k kt t t t t tt t t t t t tV t V e e e e V e e V e e V eγ γ γγ λ λ γ λ λ γ−− − −− − − − − −≤ ≤ = =  

for 0 ,kt t k N< < ∈ , which is equivalent to 

( )

1

( )
n

t
i

i

y t e λ γψ − −

=
≤∑  for 0 ,kt t k N< < ∈ ,  

where 

* *

[ ,0] 1

sup[ ( ) ].
n

j j
s j

u s u
τ

ψ φ φ
∈ − =

= − = −∑  
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Hence  

( )

1

( )
n

t

i

y t e λ γψ − −

=
≤∑  

for 0 ,kt t k N< < ∈ . So the vector solution ( )y t  converges to the equilibrium state * 0y =  

of the impulsive network (6) exponentially as t→∞ , that is, the equilibrium point *u  

of system (2) is globally exponentially stable. This completes the proof. 

4   Conclusion 

In this paper, we consider the exponential stability of a class of Cohen-Grossberg 
neural networks with time-varying delays and impulses. Under assumption that the 
activation function is globally Lipschitz continuous, we obtain some sufficient condi-
tions for the Existence and globally exponential stability of a unique equilibrium. 
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Abstract. In this paper, we consider p-moment asymptotic behaviors

of a nonautonomous delay stochastic differential equation. By using L-

operator differential inequality techniques, we get some sufficient crite-

rions for p-moment ultimately bounded and exponential stability. These

results are fit for stochastic neural networks model.

Keywords: Ultimate boundedness, L-operator, Exponential stability,

Neural networks.

1 Introduction

In recent years, the ultimate boundedness for solutions and global attracting set
of dynamical system has attracted more and more attention. It plays an impor-
tant role in networks design, chaos, synchronization, system norm estimation,
robust control and so on. A lot of relative results about functional differential
equations could be searched in [1]- [8].

In fact, most processes may be effected by some random perturbation. We de-
scribe these perturbation in mathematics by ”white noise” [13]. Subject to the
time delay and stochastic perturbation, it is more exactly to study the stochastic
differential equations with delay. According to the best of my knowledge, there
is few results about ultimate boundedness and global attracting sets of stochas-
tic differential equations with delay. Some general research such as stochastic
ultimate boundedness come from [9].

In this paper, we try to establish some interesting methods for p-moments
ultimate boundedness and global attracting sets of stochastic differential equa-
tions with delay as functional differential equations. In section (3), combining L-
operator, we construct the inequality about the expect of the stochastic solution
process. Using the inequality techniques( [7] [10] [11]) and the properties of M-
matrix( [12] [13]), we obtain successfully some sufficient criterions for p-moments
ultimate boundedness and global attracting sets of nonautonomous stochastic
differential equations with delay. By our methods, we can count the boundary

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 561–568, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for p-moments of solutions of nonautonomous stochastic differential equations
with delay. Especially, we can use our methods to deal with the p-moments ex-
ponential stability of nonautonomous stochastic differential equations with delay
when the attracting set is zero.

2 Preliminaries and Model

Throughout this paper, Rn denotes the n-dimensional Euclidean space, R+
n =

[0,+∞)×· · ·× [0,+∞) and C[X,Y ] is the class of continuous mapping from the
topological space X to the topological space Y .

In this paper, we consider the nonautonomous delay differential equation with-
out stochastic perturbation as follows:{

dx(t) = [−A(t)x(t) + f(t, x, xt)]dt, t ≥ 0
x0(s) = φ(s), −τ ≤ s ≤ 0, (1)

wherex(t)=col{x1, · · · , xn}, f(t, x(t), xt(s)) = col{f1(t, x, xt), · · · , fn(t, x, xt)}∈
C[R+ × Rn × Rn, Rn], xt

Δ= x(t + s), −τ ≤ s ≤ 0. That is said x0(s) = x(s) =
φ(s), −τ ≤ s ≤ 0 and τ is a positive number.

Clearly, the system (1) is a basic frame of dynamical system. There exist
many results about the ultimate boundedness and global attracting set about
this system( [1]- [8]). But for describing the dynamic system more exactly, we
must consider the stochastic perturbation to this function differential equations.
Unless otherwise specified, we let (Ω,F, {Ft}t≥0, P ) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions(i.e. it is right con-
tinuous and increasing while F0 contains all P-null sets) and Cτ

F0
[[−τ, 0], Rn]

be the family of all F0 measurable bounded C[[−τ, 0], Rn]-valued random vari-
ables φ = {φ(s)| − τ ≤ s < 0}. We denote Cτ

F0

Δ= Cτ
F0

[[−τ, 0], Rn] if no
confusion occurs. Let the n-dimensions Brownian motion defined on the space
(Ω,F, {Ft}t≥0, P ) stochastically perturb the system (1). Consequently, we get
the general nonautonomous stochastic differential equations with delay which
describe motions exactly as follows:{

dx(t) = [−A(t)x(t) + f(t, x, xt)]dt + σ(t, x, xt(s))dw(t), t ≥ 0
x0(s) = φ(s), −τ ≤ s ≤ 0, (2)

in which w(t) = col{w1(t), · · · , wn(t)} is n-dimensions Brownian motion defined
on the complete probability space with a filtration {Ft}t≥0. The initial func-
tion φ(s) ∈ Cτ

F0
. The weight of stochastic perturbation σ(t, ·) = (σij(t, ·))n×n,

σij(t, ·) ∈ C[R+ ×Rn, Rn] is locally Lipschitz continuous and satisfies the linear
growth condition( [9]). So it is known that for any initial value φ ∈ Cτ

F0
, sys-

tem (2) has an unique global solution on t ≥ 0, which is denoted by x(t, φ) in
this paper. Obviously, the solution x(t, φ) is a stochastic process respect to the
probability space (Ω,F, {Ft}t≥0, P ).

For convenience, we denote [x]+ = col(|x1|, · · · , |xn|), [x]p =
col(|x1|p, · · · , |xn|p). For any stochastic process x(t), we denote E[x]p =
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col(E|x1|p, · · · , E|xn|p), in which E(·) is the expectation operator of stochastic
process with respect to the probability space (Ω,F, {Ft}t≥0, P ) . For each φ(s) =
col{φ1(s), · · · , φn(s)} ∈ Cτ

F0
, E[φ(s)]pτ = col{E‖φ1(s)‖p

τ , · · · , E‖φn(s)‖p
τ}, where

E‖φi(s)‖p
τ = sup

−τ≤s≤0
E|φi(s)|p.

According to the Ito formula, we defined that V (t, x) =
col(V1(t, x), · · · , Vn(t, x)) ∈ C[R+ × Rn, Rn

+], where x(t) is a n-dimensions
stochastic process. For each i, the Vi(t, x) ∈ C2,1[R+ × Rn, Rn

+] which denotes
the family of all nonnegative functions on R+ ×Rn which are continuous twice
differentiable in x and once differentiable in t. For each Vi ∈ C2,1, we define an
operator LVi associated with the system (2) by

LVi = (Vi)t + (Vi)xf(t, x, xt) +
1
2
trace[σT (Vi)xxσ]

where (Vi)t = ∂Vi

∂t , (Vi)x = ( ∂Vi

∂x1
, · · · , ∂Vi

∂xn
), (Vi)xx = ( ∂(Vi)

∂xixj
)n×n.

Furthermore, for any V (t, x) ∈ C[R+ × Rn, Rn
+], we denote LV (t, x) =

(LV1(t, x), · · · , LVn(t, x)). The inequality ” ≤ ”(” > ”) between matrices or vec-
tors such as A ≤ B(A > B) means that each pair of corresponding elements of A
and B satisfies the inequality ” ≤ ”(” > ”). Especially, A is called a nonnegative
matrix(or vector) if A ≥ 0.

In the following, we will give some definitions as those for the differential
equation with delays given in [6] [7] [10] [11]:

Definition 1. The system (2) is called p-moments ultimate boundedness if,
there exists a constant vector K > 0, such that for any initial value φ ∈ Cτ

F0
,

there is a T (0, φ), when t > T (0, φ), the solution x(t, φ) of system (2) satisfies

E[x(t, φ)]p ≤ K.

or
lim sup
t−→∞

E[x(t, φ)]p = K

In this case, the set Ω = {φ ∈ Cτ
F0
|E[φ(s)]pτ ≤ K} is said to be the p-moment

global attracting set of (2).

Definition 2. The solution of system (2) is p-moment exponential stable if,
there exist a positive real number r and a constant vector D > 0, such that

E[x(t)]p ≤ De−rt, t > 0.

Meanwhile, r is called the exponential convergence rate of system (2).

3 Asymptotic Behavior Analysis

In this section, combining the inequality technique in Lemma as follows with
properties of M-matrices, we use the Ito formula and L operator to establish some
sufficient criterions for the p-moment ultimately boundedness and exponential
stability of system (2).
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Lemma 1. ( [11]) If ai ≥ 0, bi ≥ 0, p > 0, q > 0 and 1
p + 1

q = 1 then

n∑
i=1

aibi ≤ (
n∑

i=1

ap
i )

1
p (

n∑
i=1

bqi )
1
q

Lemma 2. ( [11]) For xi ≥ 0, αi > 0 and
∑n

i=1 αi = 1, we have

Πn
i=1x

αi

i ≤
n∑

i=1

αixi

Lemma 3. ( [13]) If A is a M -matrix, then for positive vector I > 0, A−1I > 0.

Lemma 4. Let P = (pij)n×n and pij ≥ 0 when i �= j, Q = (qij)n×n ≥ 0
are real matrix, R = col(R1, · · · , Rn) ≥ 0. The vector function u(t) =
col(u1(t), · · · , un(t)) satisfies the differential inequality following:

Du(t) ≤ h(t)[Pu(t) +Qu(t− τ) +R], t ≥ 0. (3)

Where D(·) denotes the Dini derivation. h(t) is a positive integral function and
lim

t→∞
∫ t

0 h(s)ds = +∞.
∫ t

t−τ h(s)ds is bounded for ∀t > 0. If M = −(P +Q) is a
M-matrix, then we have

u(t) ≤ Ke−r
∫

t
0 h(s)ds − (P +Q)−1R, t ≥ 0. (4)

provided that the initial conditions satisfies

u(t) ≤ Ke−r
∫ t
0 h(s)ds − (P + Q)−1R, − τ ≤ t ≤ 0

where K = col{k1, · · · , kn} is a positive constant vector and r is determined by
the inequality (rE + P +Qe−r

∫
t
t−τ

h(s)ds)K < 0, E is an unit matrix.

Proof. The proof is similar as [8, 10].

Theorem 1. Let P = (pij)n×n, pij ≥ 0 for i �= j. Q = (qij)n×n ≥
0. R = col(R1, · · · , Rn) ≥ 0. The positive integral function h(t) satisfies
lim

t→∞
∫ t

t0
h(s)ds = +∞ and ∀t > 0,

∫ t

t−τ h(s)ds is bounded. Assume there ex-

ists a vector function V (t, x) = col(V1(t, x), · · · , Vn(t, x)) ∈ C2[R+ × Rn, Rn
+],

where x(t) is a solution of system (2), such that

LVi(t, x) ≤ h(t)[
n∑

j=1

(PijVj(x) +QijVj(xt)) +Ri]

If −(P +Q) is a M-matrix, then we have

EV (t, x) ≤ Ke−λ
∫

t
0 h(s)ds − (P +Q)−1R, t > 0

provided that the initial function satisfies

EV (t, x) ≤ Ke−λ
∫ t
0 h(s)ds − (P +Q)−1R, − τ ≤ t ≤ 0
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Proof. Since x(t) is a solution of system (2) and V (t, x) ∈ C2[R+ ×Rn, Rn
+], by

the Ito formula, we can get for ∀i ∈ N

Vi(t) = Vi(0) +
∫ t

0
LVi(x(s))ds +

∫ t

0

∂Vi(x(s))
∂x

σ(s, x(s), xs)dw(t), t > 0 (5)

Counting expectation both sides of (5), we have

EVi(t) = EVi(0) +E

∫ t

0
LVi(x(s))ds, t > 0 (6)

Let 
t > 0 is small enough, then we get

EVi(t + 
t) − EVi(t) = E

∫ t+�t

t

LVi(x(s))ds, t > 0 (7)

Due to Fubini Theorem, we know that

EVi(t + 
t) − EVi(t) =
∫ t+�t

t

ELVi(x(s))ds

≤
∫ t+�t

t

h(s)[
n∑

j=1

(PijEVj(x) +QijEVj(xs)) +Ri]ds (8)

We can derived that

DEVi(t) ≤ h(t)[
n∑

j=1

(PijEVj(x) +QijEVj(xt) +Ri], t > 0 (9)

From Lemma 4, we complete the proof.

Next, we give some assumptions about system (2) for studying P-moment asymp-
totic behavior by using theorem above.

(A1). For A(t), assume that aii(t) ≤ aiih(t), where aii < 0, |aij(t)| ≤ aijh(t),
where aij ≥ 0; [f(t, x, xt)]+ ≤ h(t)[B[xt]+ + I], where B = (bij)n×n ≥ 0, I =
col{I1, · · · , In} ≥ 0.
(A2). There are two nonnegative matrix C = (cij)n×n and D = (dij)n×n such
that |σiσ

T
i | ≤ h(t)[

∑n
j=1 cijx

2
j (t)+

∑n
j=1 dijx

2
j (t−τ)], where σi = (σ1i, · · · , σni),

i = 1, · · · ,m.
(A3). Positive function h(t) satisfies lim

t→∞
∫ t

t0
h(s)ds = +∞ and ∀t > 0,∫ t

t−τ h(s)ds is bounded.
(A4). The matrix −(P+Q) is a M-matrix, in which P = (pij)n×n, Q = (qij)n×n,
pii = paii + (p − 1)(

∑
i�=j

aij +
∑n

j=1 bij) + p − 1 + (p − 1)cii + 1
2 (p − 1)(p −

2)
∑n

j=1(cij + dij)
pij = aij +(p−1)cij , i �= j; qij = bij +(p−1)dij , ∀i, j ∈ N ; R = (Ip

1 , · · · , Ip
n).
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Theorem 2. Let assumptions(A1)-(A4) hold, then the solution process x(t) of
system (2) satisfies estimate as follows

E[x(t)]p ≤ Ke−λ
∫

t
0 h(s)ds − (P +Q)−1R, t > 0. (10)

if the initial condition satisfies

E[x(t)]p ≤ Ke−λ
∫

t
0 h(s)ds − (P +Q)−1R, − τ ≤ t ≤ 0.

where λ is determined by (rE + P +Qer
∫ t

t−τ
h(s)ds)z < 0.

Proof. We choose Vi(x) = |xi(t)|p(p ≥ 2, i = 1, · · · , n), where xi(t) is a solution
of system (2). Obviously, we get

∂Vi(x)
∂xi

= p|xi|p−1sgn(xi),
∂2Vi(x)
∂x2

i

= p(p− 1)|xi|p−2sgn(xi)

where sgn(xi) is the sign function.
Using assumptions (A1)(A2), we can obtain that

LVi(x) = p|xi|p−2xi[
n∑

j=1

aij(t)xj + fi(t, x)] +
1
2
p(p− 1)|xi|p−2sgn(xi)σiσ

T
i

≤ paii(t)|xi|p + p|xi|p−1
∑
i�=j

|aij(t)||xj | + p|xi|p−1h(t)
n∑

j=1

bij |xj |t

+p|xi|p−1Iih(t) +
1
2
p(p− 1)|xi|p−2h(t)[

n∑
j=1

cijx
2
j +

n∑
j=1

dij |xj |2t ]

≤ paiih(t)|xi|p + p|xi|p−1h(t)
∑
i�=j

aij |xj | + p|xi|p−1h(t)
n∑

j=1

bij |xj |t

+p|xi|p−1h(t)Ii +
1
2
p(p− 1)|xi|p−2h(t)[

n∑
j=1

cijx
2
j +

n∑
j=1

dij |xj |2t ] (11)

According to Lemma 1 and Lemma 2, we know that

LVi(x) ≤ paiih(t)|xi|p + p|xi|p−1h(t)
∑
i�=j

aij |xj | + p|xi|p−1h(t)
n∑

j=1

bij |xj |t

+p|xi|p−1h(t)Ii +
1
2
p(p− 1)|xi|p−2h(t)[

n∑
j=1

cijx
2
j +

n∑
j=1

dij |xj |2t ]

≤ h(t)paii|xi|p + h(t)
∑
i�=j

aij [(p− 1)|xi|p + |xj |p]



Asymptotic Behavior of Stochastic Differential Equation 567

+h(t)
n∑

j=1

bij [(p− 1)|xi|p + |xj |pt ] + (p− 1)|xi|p + Ip
i

+
1
2
(p− 1)h(t)

n∑
j=1

cij [(p− 2)|xi|p + 2|xj |p]

+
1
2
(p− 1)h(t)

n∑
j=1

dij [(p− 2)|xi|p + 2|xj |pt ] (12)

It can be deduced from inequality above

LVi(x) ≤ h(t){[paii + (p− 1)(
∑
i�=j

|aij | +
n∑

j=1

bij) + p− 1

+(p− 1)cii +
1
2
(p− 1)(p− 2)

n∑
j=1

(cij + dij)]|xi|p

+
∑
i�=j

[|aij | + (p− 1)cij ]|xj |p +
n∑

j=1

[|bij | + (p− 1)dij ]|xj |pτ + Ip
i }

= h(t)[
n∑

j=1

(pijVj(x) + qijVj(xt)) +Ri] (13)

From theorem (1), we can obtain that

E[x(t)]p ≤ Ke−λ
∫ t
0 h(s)ds − (P +Q)−1R, t > 0.

The proof is completed.
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Exponential Stability of the Neural Networks
with Discrete and Distributed Time-Varying

Delays
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Zhengzhou University of Light Industry, Zhengzhou 450002, China
2 School of Electrical and Electronic Engineering,
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Abstract. For a class of generalized neural networks(NNs) with dis-

crete and distributed time-varying delays, this paper is concerned with

the problem of the global exponential stability analysis. By introducing a

novel augmented Lyapunov-Krasovskii functional and some appropriate

free-weighting matrices, a new delay-dependent stability criterion is de-

rived in terms of linear matrix inequalities (LMIs). Finally, a numerical

example is given to show the superiority of the obtained results.

Keywords: Neural networks, Exponential stability, Delay-dependent,

Free-weighting matrix, LMIs.

1 Introduction

Recently, there has been a rapidly growing research interest on neural networks
(NNs), for it has successful applications in many areas, especially in various signal
processing problems. It is well-known that time delay is a inherent feature of
neural networks and its existence often leads to instability, oscillation, and poor
performances of neural networks. Hence, increasing attention has been focused on
stability problem of neural networks with time delays[1,2,3,4,5,6,7,8,9,10,11,12].

Considering practical applications, when modeling neural networks, both the
discrete and distributed time delays should be taken into account[3]. Therefore,
much attention has been paid to the kind of NNs[3,4,5,6,7,8,9]. For example, Liu
et al. [4] has considered the global exponential stability analysis of generalized
recurrent neural networks. However, the delays considered in [2,4,7,12] are all
constants. We know, in most situations, the studies of NNs with time-varying
delays are more realistic than those with constant ones.

In this paper, the main purpose is to study the global exponential stabil-
ity analysis of generalized neural networks with discrete and distributed time-
varying delays. A delay-dependent criterion is derived for the exponential
stability, meanwhile, the corresponding convergence rate can be estimated. Fi-
nally, resorting to LMI in the Matlab toolbox, the effectiveness and improvement
of our results can be checked by numerical examples.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 569–576, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Throughout this paper, ‖ · ‖ denotes the Euclidean norm. A real symmetric
matrix P > 0(≥ 0) denotes P being a positive definite (positive semi-definite)
matrix, λmax(P ) and λmin(P ) represent for the maximum and minimum eigen-
values of the matrix P respectively. The symmetric terms in a symmetric matrix
are denoted by ∗.

2 Problem Formulations

Consider the following neural networks with discrete and distributed delays

ẋ(t) = −Cx(t) +Af1(x(t)) +Bf2(x(t− d(t))) +D

∫ t

t−τ(t)
f3(x(s))ds + u, (1)

where x(·) = [x1(·), x2(·), · · ·, xn(·)]T ∈ Rn is the neuron state vector, fi(x(·)) =
[fi1(x1(·)), fi2(x2(·)), · · ·, fin(xn(·))]T ∈ Rn (i = 1, 2, 3) denote the neuron ac-
tivation functions, u = [u1, u2, · · ·, un]T ∈ Rn is a constant input vector.
C = diag{c1, c2, · · ·, cn} is a positive diagonal matrix, and A, B, D denote,
respectively, the connection weight matrix, the discretely delayed connection
weight matrix and the distributively delayed connection weight matrix, d(t), τ(t)
are the time-varying delays, and satisfying 0 ≤ d(t) ≤ dM , ḋ(t) ≤ μ, τ(t) ≤ τM ,
where dM , μ, and τM are constants.

For i ∈ {1, 2, ..., n}, ∀ x, y ∈ R, x �= y, the neutron activation functions in (1)
are assumed to be bounded, and satisfy

l−i ≤ f1i(x)−f1i(y)
x−y ≤ l+i , σ

−
i ≤ f2i(x)−f2i(y)

x−y ≤ σ+
i , υ

−
i ≤ f3i(x)−f3i(y)

x−y ≤ υ+
i ,

where l−i , l
+
i , σ

−
i , σ

+
i , υ

−
i , υ

+
i are some constants.

Remark 1. In this paper, it is assumed that the derivative of time-varying de-
lay d(t) can take any value, and the above constants l−i , l

+
i , σ

−
i , σ

+
i , υ

−
i , υ

+
i are

allowed to be positive, negative or zero, which make the paper have better
applicability.

Obviously, system (1) has one equilibrium point[5]. Assume x∗ = [x∗1, x∗2, · ·
·, x∗n]T ∈ Rn is the equilibrium point of system (1). We make the transformation
z(·) = x(·) − x∗, then system (1) can be transformed into

ż(t) = −Cz(t) +Ag1(z(t)) +Bg2(z(t− d(t))) +D

∫ t

t−τ(t)
g3(z(s))ds, (2)

where z(·) = [z1(·), z2(·), · · ·, zn(·)]T is the state vector of the transformed
system (2), and the transformed neuron activation functions are gi(z(·)) =
[gi1(z1(·)), gi2(z2(·)), · · ·, gin(zn(·))]T = fi(z(·) + x∗) − fi(x∗)(i = 1, 2, 3). Ac-
cording to assumptions above, it is easy to derive that

l−i ≤ g1i(x)−g1i(y)
x−y ≤ l+i , σ

−
i ≤ g2i(x)−g2i(y)

x−y ≤ σ+
i , υ

−
i ≤ g3i(x)−g3i(y)

x−y ≤ υ+
i .

Let the initial conditions be z(s) = φ(s), s ∈ [−τ∗, 0], τ∗ = max{dM , τM},
where φ(s) is a continuous real-valued function on its domain. We are now to
introduce the notion of the global exponential stability for the system (2).
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Definition 1. The equilibrium point x∗ is said to be globally exponentially sta-
ble, if there exist scalars k > 0 and r > 0 such that

‖z(t)‖ ≤ re−kt‖φ‖, ∀t > 0, (3)

where ‖φ‖ = sup−τ∗≤s≤0 ‖φ(s)‖, scalar k > 0 is called the exponential conver-
gence rate.

3 Main Results

To establish the main results of the paper, the following lemma will be used.

Lemma 1. For any constant matrix W ∈ Rm×m,W = WT > 0, scalar 0 <
r(t) < r, vector function ω : [0, r] → Rm such that the integrations concerned
are well defined, then

r(t)
∫ r(t)

0
ωT (s)Wω(s)ds ≥ (

∫ r(t)

0
ω(s)ds)TW (

∫ r(t)

0
ω(s)ds). (4)

For presentation convenience, in the following, we denote Λ1 = diag{l−1 , · ·
·, l−n }, Λ2 = diag{σ−

1 , ···, σ−
n }, Λ3 = diag{υ−1 , ···, υ−n }; Λ̄1 = diag{l+1 , ···, l+n }, Λ̄2 =

diag{σ+
1 , · · ·, σ+

n }, Λ̄3 = diag{υ+
1 , · · ·, υ+

n }; l̃i = max{|l−i |, |l+i |}, Λ̃1 = diag{l̃1, · ·
·, l̃n}, σ̃i = max{|σ−

i |, |σ+
i |}, Λ̃2 = diag{σ̃1, · · ·, σ̃n}, υ̃i = max{|υ−i |, |υ+

i |}, Λ̃3 =
diag{υ̃1, · · ·, υ̃n}, where i ∈ {1, 2, · · ·, n}, and

Σ1 = diag{l+1 l−1 , · · ·, l+n l−n }, Σ2 = diag{ l
+
1 + l−1

2
, · · ·, l

+
n + l−n

2
},

Σ3 = diag{σ+
1 σ

−
1 , · · ·, σ+

n σ
−
n }, Σ4 = diag{σ

+
1 + σ−

1

2
, · · ·, σ

+
n + σ−

n

2
},

Σ5 = diag{υ+
1 υ

−
1 , · · ·, υ+

n υ
−
n }, Σ6 = diag{υ

+
1 + υ−1

2
, · · ·, υ

+
n + υ−n

2
}. (5)

Theorem 1. For given scalars μ > 0, dM > 0, and τM > 0, the equilibrium
point of the system (2) is globally exponentially stable, if there exist matrices

P > 0, Qi > 0(i = 1, 2, 3, 4), G =
[
G11 G

T
12

G12 G22

]
> 0, H =

[
H11 H

T
12

H12 H22

]
> 0,

diagonal matrices Ui > 0(i = 1, 2, 3, 4), Ri > 0(i = 1, 2, 3), and appropriately

dimensional matrices Mj =
[
Mj1
Mj2

]
(j = 1, 2), such that the following inequali-

ties hold ⎡⎣Ω +Ξ +ΞT dMΠT dMMT
l

∗ −dMG22 0
∗ ∗ −dMG

⎤⎦ < 0, (6)
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where l = 1 or 2, and

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 0 0 HT
11 HT

12 Ω16 Ω17 Ω18 Ω19 Ω1,10
∗ Ω22 0 Ω24 Ω25 0 0 U4Σ4 0 0
∗ ∗ −Q2 −H12 −HT

22 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 ATR2 R1B ATR3 R1D
∗ ∗ ∗ ∗ ∗ ∗ Q3 − U2 R2B 0 R2D
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 BTR3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ τ2

MQ4 − U3 R3D
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

with

Π =
[−G22C 0 0 0 0 G22A 0 G22B 0 G22D

]
,

Ξ =
[
MT

12 −MT
12 +MT

22 −MT
22 MT

11 MT
21 0 0 0 0 0

]
,

Ω11 = −PC − CTP +Q1 +Q2 + 2[R1Λ1 +R2Λ2 +R3Λ3]C − U1Σ1 − U2Σ3

−U3Σ5 + dMG11 − dMGT
12C − dMCTG12,

Ω16 = PA− CTR1 − (Λ1R1 + Λ2R2 + Λ3R3)A+ U1Σ2 + dMGT
12A,

Ω17 = −CTR2 + U2Σ4, Ω18 = PB − (Λ1R1 + Λ2R2 + Λ3R3)B + dMGT
12B,

Ω19 = −CTR3 + U3Σ6, Ω1,10 = PD − (Λ1R1 + Λ2R2 + Λ3R3)D + dMGT
12D,

Ω22 = −(1 − μ)Q1 − U4Σ3, Ω24 = −(1 − μ)HT
11 + (1 − μ)H12,

Ω25 = −(1 − μ)HT
12 + (1 − μ)H22, Ω66 −R1A+ATR1 − U1,

Ω88 = −(1 − μ)Q3 − U4.

Proof. Firstly, we introduce the following Lyapunov-Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t), (8)

where

V1(t) = zT (t)Pz(t) + αT (t)Hα(t),

V2(t) =
∫ t

t−d(t)
zT (s)Q1z(s)ds +

∫ t

t−dM

zT (s)Q2z(s)ds,

V3(t) = 2
n∑

i=1

{r1i

∫ zi(t)

0
(g1i(s) − l−i s)ds + r2i

∫ zi(t)

0
(g2i(s) − σ−

i s)ds

+r3i

∫ zi(t)

0
(g3i(s) − υ−i s)ds},

V4(t) =
∫ t

t−d(t)
gT
2 (z(s))Q3g2(z(s))ds,
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V5(t) = τM

∫ 0

−τM

∫ t

t+θ

gT
3 (z(s))Q4g3(z(s))dsdθ,

V6(t) =
∫ 0

−dM

∫ t

t+θ

βT (s)Gβ(s)dsdθ,

with αT (t) = [(
∫ t

t−d(t) z(s)ds)
T , (

∫ t−d(t)
t−dM

z(s)ds)T ], βT (s) = [zT (s), żT (s)].
The time derivatives of Vi(t) along the trajectory of system (2) yield

V̇1(t) = 2zT (t)P [−Cz(t) +Ag1(z(t)) +Bg2(z(t− d(t)) +D

∫ t

t−τ(t)
g3(z(s))ds]

+2αT (t)H
[

z(t) − (1 − μ)z(t− d(t))
(1 − μ)z(t− d(t)) − z(t− dM )

]
, (9)

V̇2(t) ≤ zT (t)(Q1 +Q2)z(t) − (1 − μ)zT (t− d(t))Q1z(t− d(t))
−zT (t− dM )Q2z(t− dM ), (10)

V̇3(t) ≤ 2[gT
1 (z(t))R1 + gT

2 (z(t))R2 + gT
3 (z(t))R3 − zT (t)(Λ1R1 + Λ2R2

+Λ3R3)][−Cz(t) +Ag1(z(t)) +Bg2(z(t− d(t))

+D
∫ t

t−τ(t)
g3(z(s))ds], (11)

V̇4(t) ≤ gT
2 (z(t))Q3g2(z(t)) − (1 − μ)gT

2 (z(t− d(t))Q3g2(z(t− d(t)), (12)
V̇5(t) ≤ τ2

MgT
3 (z(t))Q3g3(z(t))

−(
∫ t

t−τ(t)
g3(z(s))ds)TQ3(

∫ t

t−τ(t)
g3(z(s))ds), (13)

V̇6(t) ≤ dM [zT (t)G11z(t) + 2zT (t)GT
12(−Cz(t) +Ag1(z(t)) +Bg2(z(t− d(t))

+D
∫ t

t−τ(t)
g3(z(s))ds) + ξT (t)ΠTG−1

22 Πξ(t)] −
∫ t

t−d(t)
βT (s)Gβ(s)ds

−
∫ t−d(t)

t−dM

βT (s)Gβ(s)ds, (14)

where Λ1, Λ2, Λ3, and Π have been defined before, and ξT (t) = [zT (t), zT (t −
d(t)), zT (t− dM ), (

∫ t

t−d(t) z(s)ds)
T , (

∫ t−d(t)
t−dM

z(s)ds)T , gT
1 (z(t), gT

2 (z(t)),

gT
2 (z(t− d(t)), gT

3 (z(t)), (
∫ t

t−d(t) g3(s)ds)T ].
Moreover, the enlargement of two following integral terms can be conducted

−
∫ t

t−d(t)
βT (s)Gβ(s)ds

≤ 2ξT (t)MT
11

∫ t

t−d(t)
z(s)ds+ 2ξT (t)MT

12[z(t) − z(t− d(t))]

+d(t)ξT (t)MT
1 G

−1M1ξ(t), (15)

−
∫ t−d(t)

t−dM

βT (s)Gβ(s)ds
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≤ 2ξT (t)MT
21

∫ t−d(t)

t−dM

z(s)ds+ 2ξT (t)MT
22[z(t− d(t)) − z(t− dM )]

+(dM − d(t))ξT (t)MT
2 G

−1M2ξ(t). (16)

It can be seen that there exit diagonal matrices Ui > 0(i = 1, 2, 3, 4) such that
the following inequalities hold(see [5,7,8] for detail).[

z(t)
g1(z(t))

]T [−U1Σ1 U1Σ2
∗ −U1

] [
z(t)

g1(z(t))

]
≥ 0, (17)[

z(t)
g2(z(t))

]T [−U2Σ3 U2Σ4
∗ −U2

] [
z(t)

g2(z(t))

]
≥ 0, (18)[

z(t)
g3(z(t))

]T [−U3Σ5 U3Σ6
∗ −U3

] [
z(t)

g3(z(t))

]
≥ 0, (19)[

z(t− d(t))
g2(z(t− d(t)))

]T [−U4Σ3 U4Σ4
∗ −U4

] [
z(t− d(t))

g2(z(t− d(t)))

]
≥ 0, (20)

where Σi(i = 1, 2, 3, 4, 5, 6) are defined in (5).
Therefore, the time derivative of Lyapunov-Krasovskii functional V (t) yields

V̇ (t) ≤ ξT (t){Ω +Ξ +ΞT + (dMΠ)T (dMG22)−1(dMΠ) + d(t)MT
1 G

−1M1

+(dM − d(t))MT
2 G

−1M2}ξ(t) (21)

where Ω, and Ξ are defined in Theorem 1. If (6) hold, then we have

Δj = Ω +Ξ +ΞT + (dMΠ)T (dMG22)−1(dMΠ) + dMMT
j G

−1Mj < 0, (22)

where j = 1, 2. Define ε = max{λmax(Δj)}, then we know that V̇ (t) ≤ ε‖ξ(t)‖2 ≤
ε‖z(t)‖2. Letting V̄ (t) = e2ktV (t), then

V̄ (t) ≤ V (0) +
∫ t

0
[2ke2ksV (s) + e2ksε‖z(s)‖2]ds. (23)

Let τ̄ = max{2dM , dM + τM}, and it follows that

żT (s)ż(s) ≤ 4[λmax(CTC)‖z(s)‖2 + λmax(ATA)λmax(Λ̃T
1 Λ̃1)‖z(s)‖2

+λmax(BTB)λmax(Λ̃T
2 Λ̃2)‖z(s− d(s))‖2

+τMλmax(DTD)λmax(Λ̃T
3 Λ̃3)

∫ s

s−τM

‖z(ν)‖2dν]. (24)

We denote δ = λmax(CTC) + λmax(ATA)λmax(Λ̃T
1 Λ̃1) + λmax(BTB)

× λmax(Λ̃T
2 Λ̃2) + τ2

Mλmax(DTD)λmax(Λ̃T
3 Λ̃3), then

∫ s

s−dM

βT (ν)β(ν)dν ≤
∫ s

s−τ̄

‖z(ν)‖2dν + 4δ
∫ s

s−τ̄

‖z(ν)‖2dν. (25)



Exponential Stability of the Neural Networks with Time-Varying Delays 575

Combined with (24) and (25), we can obtain

V (s) ≤ Θ0‖z(s)‖2 +Θ1

∫ s

s−τ̄

‖z(ν)‖2dν, (26)

where

Θ0 = λmax(P ) + λmax((Λ̄1 − Λ1)R1) + λmax((Λ̄2 − Λ2)R2)
+λmax((Λ̄3 − Λ3)R3),

Θ1 = dMλmax(H) + λmax(Q1) + λmax(Q2) + λmax(Q3)λmax(Λ̃T
2 Λ̃2)

+τ2
Mλmax(Q4)λmax(Λ̃T

3 Λ̃3) + dM (4δ + 1)λmax(G).

Using the similar methods, V (0) yields

V (0) ≤ ϑ‖φ‖2, (27)

where

ϑ = λmax(P ) + d2
Mλmax(H) + dM [λmax(Q1) + λmax(Q2)

+λmax(Q3)λmax(Λ̃T
2 Λ̃2) + dM (4δ + 1)λmax(G)] + λmax((Λ̄1 − Λ1)R1)

+λmax((Λ̄2 − Λ2)R2) + λmax((Λ̄3 − Λ3)R3) + τ3
Mλmax(Q4)λmax(Λ̃T

3 Λ̃3).

Then by (23-27), we get

V̄ (t) ≤ (ϑ+ 2kΘ1τ̄
2e2kτ̄ )‖φ‖2 + (ε + 2kΘ0 + 2kΘ1τ̄ e

2kτ̄ )
∫ t

0
e2ks‖z(s)‖2ds.

(28)

Choose a constant k0 satisfy ε + 2k0Θ0 + 2k0Θ1τ̄ e
2k0 τ̄ ≤ 0, then V̄ (t) ≤ (ϑ +

2k0Θ1τ̄
2e2k0 τ̄ )‖φ‖2. On the other hand, we have V̄ (t) ≥ e2k0tλmin(P )‖z(t)‖2,

then it follows that ‖z(t)‖ ≤
√

ϑ+2k0Θ1 τ̄2e2k0 τ̄

λmin(P ) ‖φ‖e−k0t. Then, by definition 1,
the system (2) is exponentially stable with a convergence rate k0, and our proof
is completed.

4 Numerical Example

In the section, a numerical example will be given to illustrate the main results.

Example 1. Consider a third-order delayed neural networks(6)[9], where

C =

⎡⎣2.3 0 0
0 3.4 0
0 0 2.5

⎤⎦ , A =

⎡⎣ 0.9 − 1.5 0.1
−1.2 1 0.2
0.2 0.3 0.8

⎤⎦ ,
B =

⎡⎣0.8 0.6 0.2
0.5 0.7 0.1
0.2 0.1 0.5

⎤⎦ , D =

⎡⎣0.3 0.2 0.1
0.1 0.2 0.1
0.1 0.1 0.2

⎤⎦ ,
g1i(s) = g2i(s) = g3i(s) = 0.1 × (|xi + 1| − |xi − 1|), i = 1, 2, 3, d(t) = τ(t).
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By applying Theorem 1 to this example, we can conclude that the system is
global exponentially stable or not, and the maximum allowable bound dM of
delay can be obtained for several μ. [9] has concerned the asymptotic stability of
the system. For different μ as 0, 0.5, 0.9, various maximum allowable bounds dM

of delay in [9] are 23.78, 22.67, 18.00, respectively. However, our corresponding
results are 26.05, 25.12, 21.11. It is obvious that our criterion is less conservative
than those in [9].

5 Conclusions

In the paper, we have investigated the global exponential stability problem of the
generalized neural networks with discrete and distributed time-varying delays.
By employing an augmented Lyapunov-Krasovskii functional, we proposed a
novel stability criterion for the considered systems. Finally, a numerical example
is given to show the superiority of proposed results.
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Abstract. This paper is concerned with the mean square stability for

stochastic delayed Hopfield neural networks with Markovian switching.

The sufficient conditions to guarantee the exponential stability in mean

square of an equilibrium solution are given. Moreover, we give the mean

square stability of the numerical method. The result shows that the nu-

merical method shares the stability of the true solution.

Keywords: Hopfield neural networks, Markovian switching, Mean

square stability.

1 Introduction

Stability of Hopfield neural networks plays an important role in their potential
applications such as associative content-addressable memories, pattern recog-
nition and optimization [1-5]. Recently, both delay independent and delay de-
pendent sufficient conditions have been proposed to verify the asymptotical or
exponential stability of delay systems.

In applications of neural networks, it is not uncommon for the parameters of
neural networks change abruptly due to unexpected failure or designed switch-
ing [6]. In such a case, neural networks can be represented by a switching model
which can be regarded as a set of parametric configurations switching from one to
another according to a given Markov chain. Furthermore, in real nervous systems,
the synaptic transmission is a noisy process brought on by random fluctuations
from the release of neurotransmitters and other probabilistic causes. Hence, the
stability analysis problem for stochastic neural networks with Markoving switch-
ing becomes increasingly significant, and some results related to this problem
have recently been studied [5]. But few authors have considered the exponential
stability for stochastic delayed systems with Markoving switching.

Most of stochastic Hopfield neural networks with Markovian switching, similar
to stochastic differential equations with Markovian switching, do not have ex-
plicit solutions. Hence the numerical methods such as Euler-Maruyama scheme

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 577–584, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are used to deal with their properties. To best of our knowledge, there has been
little work on the exponential stability of numerical methods for stochastic de-
lay Hopfield neural networks, although there are many papers concerned with
the numerical solutions to stochastic delay differential equations with Markovian
switching [7-9].

This article is organized as follows. In Section 2, we give some notations. The
sufficient conditions to guarantee the exponential stability in mean square of
an equilibrium solution are given in Section 3. In Section 4 we will prove the
exponential stability of the numerical method and give an example to illustrate
our theory.

2 Preliminaries

Throughout this paper, unless otherwise specified, Rn and Rn×m denote, respec-
tively, the n-dimensional Euclidean space and the set of n × m real matrices.
Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0
satisfying the usual conditions (i.e. the filtration contains all p-null sets and is
right continuous). B(t) be a scalar Brownian motion defined on the probability
space. If A is a vector or matrix, its transpose is denoted by AT . E denotes
mathematics expectation with respect to P .

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space
taking values in a finite state-space S = {1, 2, · · ·, N} with generator Γ =
(γij)N×N given by

P{r(t +Δ) = j|r(t) = i} =
{
γijΔ+ o(Δ), if i �= j,
1 + γiiΔ+ o(Δ), if i = j,

(1)

where Δ > 0. Here γij ≥ 0 is the transition rate from i to j if i �= j. While
γii = −∑

j �=i γij . We assume that the Markov chain r(·) is independent of the
Brownian motion B(t).

To analyze the Euler–Maruyama scheme as well as to simulate the approxi-
mate solution, we will need the following well-known lemma.

Lemma 2.1. Given 
 > 0, let r�M = r(M
) for M ≥ 0. Then {r�M ,M =
0, 1, 2, ...} is a discrete Markov chain with the one-step transition probability
matrix P (
) = (Pij(
))N×N = e�Γ .

Consider the stochastic delayed Hopfield neural networks with Markovian
Switching

dx(t) = [−C(r(t))x(t) +A(r(t))f(x(t)) +B(r(t))g(xτ (t))]dt
+σ(x(t), r(t))dB(t) (2)

with x(t) = ξ(t),−τ ≤ t ≤ 0, where, we shall write A(i) = Ai etc.

x(t) = (x1(t), x2(t), · · ·, xn(t))T , Ci = diag(Ci
1, C

i
2, · · ·, Ci

n), τ = max1≤k≤nτk,

Ai = (ai
kl)n×n, B

i = (bikl)n×n, f(x(t)) = (f1(x1(t)), ···, fn(xn(t)))T ,
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g(xτ (t)) = (g1(x1(t−τ1)), ···, gn(xn(t−τn)))T , B(t) = (B1(t), B2(t), ···, Bn(t))T ,

ξ(t) = (ξ1(t), · · ·, ξn(t))T , σ(x, i) = σi
k(x), xτ (t) = (x1(t− τ1), · · ·, xn(t− τn))T .

In the above models, n ≥ 1 is the number of neurons in the networks, xk is
the state variable of the ith neuron at time t, fl and gl denote the output of
the lth unit at time t and t − τl, respectively. cik, a

i
kl, b

i
kl and τl are constants:

cik represents the rate with which the kth unit will reset its potential to the
resting state in isolation when disconnected from the network and the external
stochastic perturbation in the mode of i, and is a positive constant; τl is the
transmission delay along the axon of lth unit and is a nonnegative constant; ai

kl

and bikl are weight the strength of the lth unit on the kth unit at time t and
t− τl in the mode of i, respectively.

To study the stability of the solutions for Eq. (2), we need the following
assumption:

(A1) fl(0) = gl(0) = σi
k(0) = 0. fl, gl and σi

k satisfy Lipschitz condition with
Lipschitz constant αl > 0, βl > 0 and Li

k > 0, respectively.
It follows from [9] that under the assumption (A1), Eq. (2) has a global

solution on t ≥ 0 and any i0, which is denoted by x(t; ξ, i0), or x(t), if no
confusion occurs. Clearly, Eq. (2) admits an equilibrium solution x = 0.

3 Exponential Stability

In the section we give the exponential stability of the true solution to Eq. (2).

Definition 3.1. For Eq. (2) and every ξ ∈ L2
F0

([−τ, 0];Rn), i0 ∈ S, the equi-
librium point is exponentially stable in the mean square if for all network mode,
there exist positive constants M and λ such that

E|x(t)|2 ≤Me−λtE|ξ|2.

Theorem 3.1. Eq. (2) is exponentially stable in mean square, if Eq. (2) satisfies
(A1) and (A2): For each i ∈ S, k = 1, 2, · · ·, n,

−2cik +
n∑

l=1

|ai
kl|αl +

n∑
l=1

|bikl|βl +
N∑

j=1

|γij | + (Li
k)2 +

n∑
l=1

|ai
lk|αk +

n∑
l=1

|bilk|βk < 0.

Proof. From the condition, there exists a sufficiently small positive constant λ
such that

−2cik +
n∑

l=1

|ai
kl|αl +

n∑
l=1

|bikl|βl +
N∑

j=1

|γij | + (Li
k)2

+
n∑

l=1

|ai
lk|αk + eλτ

n∑
l=1

|bilk|βk ≤ 0
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We define a Lyapunvon function as V (x, t, i) = eλtxT (t)x(t), applying Itô for-
mula along Eq. (2), we can have

V (x(t), t, i) = V (x(0), 0, i0) +
∫ t

0
λeλsxT (s)x(s)ds +

∫ t

0
eλs

N∑
j=1

γijx
T (s)x(s)ds

+
∫ t

0
2eλs{−Cix(s) +Aif(x(s)) +Big(xτ (s))}ds

+
∫ t

0
eλstrace[σT (x(s), i)σ(x(s), i)]ds +M(t)

≤ V (x(0), 0, i0) +
∫ t

0
λeλsxT (s)x(s)ds +M(t)

+
∫ t

0
2eλs

n∑
k=1

{[− cik +
1
2

n∑
l=1

|ai
kl|αl +

1
2

n∑
l=1

|bikl|βl

+
1
2

n∑
l=1

|γij |
]
x2

k(s) + [
1
2

n∑
l=1

|ai
kl|αl +

1
2

n∑
l=1

(Li
l)

2]x2
l (s)

+
1
2

n∑
l=1

|bikl|βlx
2
l (s− τl)

}
ds,

where M(t) =
∫ t

0 2eλsxT (s)σ(x(s))dB(s). On the other hand, for t > 0, it is easy
to see that∫ t

0
eλsx2

l (s− τl)ds ≤ eλτ

∫ 0

−τ

eλsx2
l (s)ds + eλτ

∫ t

0
eλsx2

l (s)ds.

Consequently,

V (x(t), t, i) ≤ V (x(0), 0, i0) +M(t) + eλτ

∫ 0

−τ

eλs
n∑

k=1

n∑
l=1

|bikl|βl|xl(s)|2ds

+
∫ t

0
eλs

n∑
k=1

{[
λ− 2cik +

n∑
l=1

|ai
kl|αl +

n∑
l=1

|bikl|βl +
N∑

l=1

|γij |

+(Li
k)2 +

n∑
l=1

|ai
lk|αk + eλτ

n∑
l=1

|bilk|βk

]
x2

k(s)
}

ds

≤ V (x(0), 0, i0) +M(t) + eλτ

∫ 0

−τ

eλs
n∑

k=1

n∑
l=1

|bikl|βl|xl(s)|2ds

We hence obtain that

Eeλt|x(t)|2 ≤ E|x(0)|2 + eλτ

∫ 0

−τ

Eeλs
n∑

k=1

n∑
l=1

|bikl|βl|xl(s)|2ds.

This completes the proof.
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4 Stability in the Numerical Simulation

In this section we shall analyze the stability of the numerical method for Eq.
(2). Now apply the Euler–Maruyama method to Eq. (2), then we have

yk,M+1 = yk,M + [−ck(r�M )yk,M +
n∑

l=1

akl(r
�
M )fl(yk,M )

+
n∑

l=1

bkl(r
�
M )gl(yk,M−ml

)]
 + σk(yk,M , r�M )
Bk,M . (3)

where 
 is a stepsize which satisfied τl = ml
 for a positive integer ml and
tM = M
. When tM ≤ 0, we have yk,M = ξk(tM ). Moreover, 
Bk,M is normal
distribution with mean zero and variance 
.

Definition 4.1. Under condition (A1), (A2) and (A3): For each i ∈ S,

n∑
l=1

|ai
kl|αl +

n∑
l=1

|bikl|βl ≤
n∑

l=1

|ai
lk|αk +

n∑
l=1

|bilk|βk.

Then a numerical method is said to be mean square stable, if there exist a 
 > 0
such that the numerical solution sequence {yk,M} produced by this numerical
scheme satisfies limM→∞ E|Yk,M |2 = 0. for every stepsize 
 ∈ (0,
0) with

 = τl

ml
.

Theorem 4.1. Assume that for any i ∈ S, (A1)−(A3), then the Euler–Maruyama
method for Eq. (2) is mean square stable.

Proof. By Lemma 2.1, the generation of r�M occurs before computing yk,M+1,
then r�M is known. Since r�M ∈ S, for any i ∈ S, from (3), we then have

yk,M+1 = [(1 − cik
)yk,M + σk(yk,M , i)
Bk,M ]

+
n∑

l=1

ai
klfl(yk,M )
 +

n∑
l=1

biklgl(yk,M−ml
)
.

Squaring both sides of the above equality, we obtain

y2
k,M+1 = [(1 − cik
)yk,M + σk(yk,M , i)
Bk,M ]2 + 
2(

n∑
l=1

ai
klfl(yk,M ))2

+2
[(1 − cik
)yk,M + σk(yk,M , i)
Bk,M ]
n∑

l=1

ai
klfl(yk,M )

+2
[(1 − cik
)yk,M + σk(yk,M , i)
Bk,M ]
n∑

l=1

biklgl(yk,M−ml
)

+2
2
n∑

l=1

ai
klfl(yk,M )

n∑
l=1

biklgl(yk,M−ml
) + 
2(

n∑
l=1

biklgl(yk,M−ml
))2.



582 H. Yang, F. Jiang, and J. Liu

It follow from 2abxy ≤ |ab|(x2 + y2), a, b ∈ R, that

y2
k,M+1 ≤ 2(1 − cik
)yk,Mσk(yk,M , i)
Bk,M

+(1 − cik
)2y2
k,M + σ2

k(yk,M , i)(
Bk,M )2

+
2
n∑

l=1

|ai
kl|αl

n∑
p=1

|ai
kp|αpy

2
k,M + 
2

n∑
l=1

|bikl|βl

n∑
p=1

|bikp|βpy
2
k,M−ml

+

n∑

l=1

|(1 − cik
)ai
kl|αl[y2

k,M + y2
l,M ]

+2
σ2
k(yk,M , i)
Bk,M

n∑
l=1

ai
klfl(yk,M )

+

n∑

l=1

|(1 − cik
)bikl|βl[y2
k,M + y2

l,M−ml
]

+2
σ2
k(yk,M , i)
Bk,M

n∑
l=1

biklgl(yk,M−ml
)

+
2
n∑

l=1

|ai
kl|αl

n∑
l=1

|ai
kl|βl[y2

k,M + y2
l,M−ml

]. (4)

Note that E
Bk,M = 0, E(
Bk,M )2 = 
 and fl(yk,M ), gl(yk,M−ml
), σk(yk,M , i)

are FtM -measurable. Consequently,

E[
Bk,Mfl(yk,M )σk(yk,M , i)] = E[
Bk,Mgl(yk,M−ml
)σk(yk,M , i)] = 0

and
E[(
Bk,M )2σk(yk,M , i)] = 
Eσk(yk,M , i)2.

Let Yk,M = Ey2
k,M , From (4) and (A1), we hence have

Yk,M+1 ≤ PYk,M +
n∑

l=1

QlYl,M +
n∑

l=1

RlYl,M−ml
, (5)

where

P = (1 − cik
)2 + (Li
k)2
 + 


n∑
l=1

|(1 − cik
)ai
kl|αl + 


n∑
l=1

|(1 − cik
)bikl|βl,

Ql = 
2|ai
kl|αl

n∑
p=1

|ai
kp|αp + 
|(1 − cik
)ai

kl|αl + 
2|ai
kl|αl

n∑
l=1

|bikp|βp,

Rl = 
2|bikl|βl

n∑
p=1

|bikp|βp + 
|(1 − cik
)bikl|βl + 
2|ai
kl|αl

n∑
l=1

|bikp|βp.

Then Yk,M+1 ≤ (P +
∑n

l=1 Ql +
∑n

l=1 Rl)max1≤l≤n{Yk,M , Yl,M , Yl,M−ml
}. By

recursive calculation we conclude that Yk,M → 0(M → ∞) is P +
∑n

l=1 Ql +
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l=1 Rl < 1, which is equivalent to

−2cik + (Li
k)2 + 2

n∑
l=1

[|1 − cik
ai
kl|αl + |1 − cik
bikl|βl]

+

[
(cik)2 + (

n∑
l=1

|ai
kl|αl)2 + (

n∑
l=1

|bikl|βl)2 + 2
n∑

l=1

|ai
kl|αl

n∑
l=1

|bikl|βl

]
< 0.(6)

Let


′
0 = min

{
min
i∈S

1
|cik|

,min
i∈S

2cik − (Li
k)2 − 2

∑n
l=1 |ai

kl|αl − 2
∑n

l=1 |bikl|βl

(cik −∑n
l=1 |ai

kl|αl −
∑n

l=1 |bikl|βl)2

}
.

By (A2) and (A3), we have 
′
0 > 0. If 
 ∈ (0,
′

0), we have

−2cik + (Li
k)2 + 2

n∑
l=1

|ai
kl|αl + 2

n∑
l=1

|bikl|βl + (cik −
n∑

l=1

|ai
kl|αl −

n∑
l=1

|bikl|βl)2 < 0,

which shows that (6) holds. Now let 
0 = min{1,
′
0}, then limM→∞ E|yk,M |2 =

0. This proof is complete.
To illustrate our result, we give an example as follows. Let B(t) be a Brown

motion. Let r(t) be a right-continuous Markov chain taking values in S={1,2}
with generator

Γ =
( −1 1

1 −1

)
.

Assume that B(t) and r(t) are independent. Consider the following equation

dx(t) = [−Cix(t) +Aif(x(t)) +Big(xτ (t))]dt + σi(x(t))dB(t), (7)

with the initial segment x1(t) = t+1, t ∈ [−1, 0], r(0) = 1, where C1 = −9, C2 =
−0.1, A1 = 1, A2 = 1, B1 = 1, B2 = 4, σ1(x) = −2x, σ2(x) = −9x, f(x) =
sin x, g(x) = x. It is obvious that α1 = β1 = 1, and the conditions of Theorem
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Fig. 1. Numerical simulation: left � = 0.02 and right � = 0.25
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4.1 hold. Hence the numerical method is mean square stable if 
 ∈ (0, 0.11).
The data used in all figures are obtained by the mean-square of data by 100
trajectories, that is, ωi : 1 ≤ i ≤ 100, Yn = 1

100

∑100
i=1 |Yn(ωi)|2. For this example,

Fig. 1 reveals the numerical solution will tend to 0 on 
 = 0.02 but the numerical
solution will not tend to 0 on 
 = 0.25.

5 Conclusions

In this paper, we investigate the mean square exponential stability for stochastic
delayed Hopfield neural networks with Markovian switching. Notice that the
criteria on stochastic delayed Hopeld neural networks with Markovian switching
are independent of the delays, which means that the delays are harmless in
stochastic delayed Hopeld neural networks with Markovian switch- ing with the
structure satisfying the conditions. Moreover, we give the square mean stability
of the numerical method to Eq. (2). The result shows that the numerical method
shares the stability of the true solution.
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Abstract. In this paper, we use the Lyapunov function to establish new

results on the existence uniqueness and globally exponential stablity of

anti-periodic solutions for high-order Cohen-Grossberg neural networks

with time-varying delays. Finally, an example and its simulation are given

to illustrate the feasibility and effectiveness of our results.
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1 Introduction

Since Cohen-Grossberg neural networks (CGNNs) was first proposed by Cohen
and Grossberg [1] in 1983, many authors have done extensive works on this sub-
ject due to their applications in many fields such as pattern recognition, parallel
computing, associative memory, signal and image processing and combinatorial
optimization. In such applications, it is of prime importance to ensure that the
designed neural networks is stable.

In reality, high-order neural networks have stronger approximation property,
faster convergence rate, greater storage capacity, and higher fault tolerance than
lower-order neural networks. High-order neural networks have been the object of
intensive analysis by numerous authors in recent years. In particular, there have
been extensive results on the problem of the existence and stability of equilibrium
points and periodic solutions of CGNNs in the literature. We refer the reader
to [1-11] and the references cited therein. To the best of our knowledge, few
authors have considered anti-periodic solutions for high-order Cohen-Grossberg
neural networks. This motivates us to consider the anti-periodic solution for the
following high-order Cohen-Grossberg neural networks with time-varying delays
described by

x′i(t) = −ai(xi(t))[bi(xi(t)) −
n∑

j=1

cij(t)fj(xj(t)) −
n∑

j=1

dij(t)gj(xj(t− τij(t)))

−
n∑

j=1

n∑
l=1

eijl(t)hj(xj(t− σijl(t)))hl(xl(t− νijl(t))) − Ii(t)], (1)
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where i, j = 1, 2, . . . , n, and n corresponds to the number of units in the neural
network. xi(t) corresponds to the state of the ith unit at time t. ai represents an
amplification function. bi is an appropriately behaved function. cij(t) denotes the
strengths of connectivity between cell i and j at time t. dij(t) and eijl(t) are the
first-order and second-order connection weights of the Cohen-Grossberg neural
network. τij(t) > 0, σijl(t) > 0 and νijl(t) > 0 correspond to the transmission
delays, respectively. Ii(t) denotes the external inputs at time t. fj, gj and hj are
the activation function of signal transmission.

A primary purpose of this paper is to give the conditions for the existence and
exponential stability of anti-periodic solutions for system (1). We will establish
some sufficient conditions for the existence and uniqueness and globally expo-
nential stability of anti-periodic solutions of system (1). Our results different
from those of the references listed above.

Let u(t) : R → R be continuous in t. u(t) is said to be T-anti-periodic on R , if
u(t+T ) = −u(t), for all t ∈ R. If a system is T -anti-periodic x(t+T ) = −x(t),
then it is 2T -periodic x(t + 2T ) = −x(t + T ) = x(t).

Denote R+ = [0,+∞). Throughout this paper, for i, j, l = 1, 2, . . . , n and
for all t, u ∈ R, it will be assumed that ai, τij , σijl, vijl ∈ C(R,R+) and
bi, cij , dij , eijl, Ii ∈ C(R,R) and cij , dij and eijl are 2T -periodic, and

ai(−u) = ai(u), bi(−u) = −bi(u), cij(t + T ) = cij(t), (2)
dij(t + T )gj(u) = −dij(t)gj(−u), Ii(t + T ) = −Ii(t), (3)
eijl(t + T )hj(u)hl(u) = −eijl(t)hj(−u)hl(−u), (4)
τij(t+ T ) = τij(t), σijl(t + T ) = σijl(t), νijl(t + T ) = νijl(t). (5)

Morever, we suppose that there exits constant τ such that

τ = max{ max
1≤i,j≤n

sup
t∈R

τij(t), max
1≤i,l≤n

sup
t∈R

σijl(t), max
1≤i,l≤n

sup
t∈R

vijl(t)}.

We also assume that the following conditions hold.
(H1) there exists a positive constant ai such that ai(u) ≤ ai, for all

u ∈ R, i = 1, 2, . . . , n;
(H2) bi(0) = 0 and there exist positive constants La

i and Lab
i such that |ai(u)−

ai(v)| ≤ La
i |u− v|, |ai(u)bi(u) − ai(v)bi(v)| ≤ Lab

i |u− v|, for all
u, v ∈ R, i = 1, 2, . . . , n;

(H3) for each j ∈ {1, 2, . . . , n}, there exist nonnegative constants Lf
j , L

g
j and

Lh
j such that

fj(0) = 0, |fj(u) − fj(v)| ≤ Lf
j |u− v|, gj(0) = 0, |gj(u) − gj(v) ≤ Lg

j |u− v|,
hj(0) = 0, |hj(u) − hj(v)| ≤ Lh

j |u − v|, |hj(u)| ≤Mh
j , for all u, v ∈ R.

(H4) there exists an constant β > 0 such that for all t > 0, H < −β < 0.
For convenience, we introduce some notations. We will use x(t) = (x1(t), . . . ,

xn(t))T ∈ Rn to denote a column vector in which they symbol ()T denotes the
transpose of a vector. We let |x| denote absolute-value vector given by |x| =
(|x1|, |x2|, . . . , |xn|)T , and define ||x|| = max1≤i≤n |xi|.
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The initial conditions associated with system (1) are of the form xi(s) =
ϕi(s), s ∈ (−τ, 0], i = 1, 2, . . . , n, where ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T ∈
C([−τ, 0];Rn).

Definition 1. Let x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t))T be an anti-periodic solution

of system (1) with initial value ϕ∗(t) = (ϕ∗
1(t), . . . ,

ϕ∗
n(t))T . If there exist constants λ > 0 and M > 1 such that for every solu-

tion x(t) = (x1(t), x2(t), . . . , xn(t))T of system (1) with any initial value ϕ(t) =
(ϕ1(t), ϕ2(t), . . . , ϕn(t))T ,

|xi(t) − x∗i (t)| ≤M ||ϕ− ϕ∗||∞e−λt, ∀t > 0, i = 1, 2, . . . , n,

where ‖ϕ − ϕ∗‖∞ = sup−∞≤s≤n max1≤i≤n |ϕi(s) − ϕ∗
i (s)|, then x∗(t) is said to

be globally exponentially stable.

The organization of the rest of this paper is as follows. In Section 2, we intro-
duce some definitions and make some preparations for later sections. In Section
3, we establish our main results for the existence and exponential stability of
anti-periodic solutions of (1). Finally, we present an example to illustrate the
feasibility and effectiveness of our results obtained in previous sections.

2 Preliminary Results

The following lemmas will be used to prove our main results in Section 3.

Lemma 1. Let (H1)− (H4) hold. Suppose that x̃(t) = (x̃1(t), x̃2(t), . . . , x̃n(t))T

is a solution of system (1) with initial conditions

x̃i(s) = ϕ̃i(s), |ϕ̃i(s)| < γ, s ∈ [−τ, 0], i = 1, 2, . . . , n, (6)

where

γ > (Lab
i )−1aj

[ n∑
j=1

|cij(t)|Lf
j +

n∑
j=1

|dij(t)|Mg
j +

n∑
j=1

n∑
l=1

|eijl(t)|Mh
j M

h
l

+|Ii(t)|
]

(7)

then

|xi(t)| < γ, for all t > 0, i = 1, 2, . . . , n. (8)

Proof. Assume, by way of contradiction, that (8) does not hold. Then, there
must exist i ∈ {1, 2, . . . , n} and t0 > 0 such that

|x̃i(t0)| = γ and |x̃j(t)| < γ, for all t ∈ (−∞, t0], j = 1, 2, . . . , n. (9)
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Calculating the upper left derivative of |x̃i(t)|, together with (H1) − (H4), (8)
implies that

0 ≤ D+(|x̃i(t0)|) ≤ −Lab
i x̃i(t0) + aj |

n∑
j=1

cij(t0)L
f
j x̃i(t0)

n∑
j=1

dij(t0)gj(x̃j(t0

−τij(t0))) +
n∑

j=1

n∑
l=1

eijl(t0)hj(t0 − σijl(t0))hl(xl(t0 − νijl(t0)))) + Ii(t0)|

≤ −Lab
i γ + (

n∑
j=1

|cij(t0)|Lf
j +

n∑
j=1

|dij(t0)|Mg
j +

n∑
j=1

n∑
l=1

|eijl(t0)|Mh
j M

h
l

+|Ii(t0)|)aj < 0,

Which is a contradiction and implies that (8) holds, the proof of Lemma 1 is
now completed.

Remark 1. In view of the boundedness of this solution, from the theory of func-
tional differential equations in [13], it follows that x̃(t) on [−τ,∞), provided that
initial conditions are bounded by γ.

Lemma 2. Suppose that (H1) − (H4) are satisfied. Let x∗(t) = (x∗1(t),
x∗2(t), . . . , x

∗
n(t))T be the solution of system (1) with initial value ϕ∗(t) = (ϕ∗

1(t),
ϕ∗

2(t), . . . , ϕ
∗
n(t))T , ||ϕ∗(t)|| < γ, and x(t) = (x1(t), x2(t), . . . , xn(t))T be the so-

lution of system (1) with initial value ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T . Then
there exist constants λ > 0 and Mϕ > 1 such that

|xi(t) − x∗i (t)| ≤Mϕ||ϕ− ϕ∗||∞e−λt, for all t > 0, i = 1, 2, . . . , n.

Proof. Let y(t) = x(t) − x∗(t). Then

y′i(t) = −[ai(xi(t))bi(xi(t)) − ai(x∗i (t))bi(x
∗
i (t))] +

n∑
j=1

cij(t)ai(xi(t))[fj(xj(t))

−fj(x∗j (t))] +
n∑

j=1

cij(t)[ai(xi(t)) − ai(x∗i (t))]fj(x∗j (t)) +
n∑

j=1

ai(xi(t))

×dij(t)[gj(xj(t− τij(t))) − gj(x∗j (t− τij(t)))] +
n∑

j=1

dij(t)[ai(xi(t))

−ai(x∗i (t))]gj(x∗j (t− τij(t))) +
n∑

j=1

n∑
l=1

eijl(t)ai(xi(t))[hj(xj(t− σijl(t)))

×hl(xl(t− νijl(t))) − hj(x∗j (t− σijl(t)))hl(x∗l (t− νijl(t)))]

+
n∑

j=1

n∑
l=1

eijl(t)[ai(xi(t)) − ai(x∗i (t))]hj(x∗j (t− σijl(t)))hl(x∗l (t− νijl(t)))

+[ai(xi(t)) − ai(x∗i (t))]Ii(t), i = 1, 2, . . . , n. (10)
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We consider the Lyapunov functional

Vi(t) = |yi(t)|eλt, i = 1, 2, . . . , n. (11)

Calculating the left upper derivative of Vi(t) along the solution y(t) of system
(10) with the initial value ϕ̄ = ϕ− ϕ∗, form (10) and (11), we have

D+(Vi(t)) ≤ −Lab
i |yi(t)|eλt + λ|yi(t)|eλt +

n∑
j=1

|cij(t)|aiL
f
j |yi(t)|eλt

+
n∑

j=1

|cij(t)|La
j |yi(t)|eλtLf

j γ +
n∑

j=1

|dij(t)|aiL
g
j |yj(t− τij(t))|eλt

+
n∑

j=1

|dij(t)|ai|yi(t)|eλtLg
jγ +

n∑
j=1

n∑
l=1

[ai|eijl(t)|(Lh
jM

h
l |yj(t

−σijl(t))|eλt +Mh
j L

h
l |yl(t− νijl(t))|)]eλt +

n∑
j=1

n∑
l=1

[|eijl(t)|La
i |yi(t)|

×eλtMh
j M

h
l + La

i Ii(t)|yi(t)|eλt

≤
[
λ− Lab

i +
n∑

j=1

|cij(t)|aiL
f
j +

n∑
j=1

|cij(t)|La
jL

f
j γ +

n∑
j=1

|dij(t)|aiL
g
jγ

+
n∑

j=1

n∑
l=1

|eijl(t)|La
iM

h
j M

h
l + La

i Ii(t)
]
|yi(t)|eλt +

[ n∑
j=1

|dij(t)|aiL
g
j

×|yj(t− τij(t))| +
n∑

j=1

n∑
l=1

ai|eijl(t)|(Lh
jM

h
l |yj(t− σijl(t))| +Mh

j L
h
l

×|yl(t− νijl(t))|)
]
eλt, i, j, l = 1, 2, . . . , n. (12)

Let M > 1 denote an arbitrary real number such that

M ||ϕ− ϕ∗||∞ = sup
−∞<s≤0

max
1≤j≤n

|ϕj(s) − ϕ∗
j (s)| > 0, i = 1, 2, . . . , n.

It follows from (11) that

Vi(t) = |yi(t)|eλt < M ||ϕ− ϕ∗||∞, for all t ∈ [−τ, 0] , i = 1, 2, . . . , n. (13)

We claim that

Vi(t) = |yi(t)|eλt < M ||ϕ− ϕ∗||∞, for all t > 0, i = 1, 2, . . . , n. (14)

Otherwise, there must exist i, j ∈ {1, 2, . . . , n} and ti > 0 such that

Vi(ti) = M ||ϕ− ϕ∗||∞ and Vj(t) < M ||ϕ− ϕ∗||∞, ∀t ∈ [−τ, ti). (15)



590 Z. Li, K. Zhao, and C. Yang

It follows from (11) that

Vi(ti) −M ||ϕ− ϕ∗||∞ = 0 and Vj(t) −M ||ϕ− ϕ∗||∞ < 0, ∀t ∈ [−τ, ti). (16)

Together with (12) and (16), we obtain

0 ≤ D+(Vi(ti) −M ||ϕ− ϕ∗||∞) = D+(Vi(ti))

≤
[
λ− Lab

i +
n∑

j=1

|cij(ti)|aiL
f
j +

n∑
j=1

|cij(ti)|La
jL

f
j γ +

n∑
j=1

|dij(ti)|aiL
g
jγ

+
n∑

j=1

n∑
l=1

|eijl(ti)|La
jM

h
j M

h
l + La

i Ii(ti)
]
|yi(ti)|eλti +

[ n∑
j=1

|dij(ti)|aiL
g
j |yj(ti

−τij(ti))| +
n∑

j=1

n∑
l=1

ai|eijl(ti)|(Lh
jM

h
l |yj(ti − σijl(ti))| +Mh

j L
h
l |yl(ti

−vijl(ti))|)
]
eλti

=
[
λ− Lab

i +
n∑

j=1

|cij(ti)|aiL
f
j +

n∑
j=1

|cij(ti)|La
jL

f
j γ +

n∑
j=1

|dij(ti)|aiL
g
jγ

+
n∑

j=1

n∑
l=1

|eijl(ti)|La
iM

h
j M

h
l + La

i Ii(ti)
]
|yi(ti)|eλti +

[ n∑
j=1

|dij(ti)|aiL
g
j |yj(ti

−τij(ti))|eλ(ti−τij(ti))eλτij(ti) +
n∑

j=1

n∑
l=1

ai|eijl(ti)|(Lh
jM

h
l |yj(ti − σijl(ti))|

×eλ(ti−σijl(ti))eλσijl(ti) +Mh
j L

h
l |yl(ti − vijl(ti))|eλ(ti−vijl(ti ))eλvijl(ti)

]
eλti

≤ [λ− Lab
i +

n∑
j=1

|cij(ti)|aiL
f
j +

n∑
j=1

|cij(ti)|La
jL

f
j γ +

n∑
j=1

|dij(ti)|aiL
g
jγ

+
n∑

j=1

n∑
l=1

|eijl(ti)|La
jM

h
j M

h
l + La

i Ii(ti)]M ||ϕ− ϕ∗||∞ +
n∑

j=1

|dij(ti)|aiL
g
je

λτ

M ||ϕ− ϕ∗||∞ +
n∑

j=1

n∑
l=1

ai|eijl(ti)|(Lh
jM

h
l +Mh

j L
h
l )eλτM ||ϕ− ϕ∗||∞

≤
[
λ− Lab

i +
n∑

j=1

|cij(ti)|aiL
f
j +

n∑
j=1

|cij(ti)|La
jL

f
j γ +

n∑
j=1

|dij(ti)|aiL
g
jγ

+
n∑

j=1

n∑
l=1

|eijl(ti)|La
jM

h
j M

h
l + La

i Ii(ti) +
n∑

j=1

|dij(ti)|aiL
g
je

λτ

+
n∑

j=1

n∑
l=1

ai|eijl(ti)|(Lh
jM

h
l +Mh

j L
h
l )eλτ

]
M ||ϕ− ϕ∗||∞. (17)
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Thus,

0 ≤ λ− Lab
i +

n∑
j=1

|cij(ti)|aiL
f
j +

n∑
j=1

|cij(ti)|La
jL

f
j γ +

n∑
j=1

|dij(ti)|aiL
g
jγ

+
n∑

j=1

n∑
l=1

|eijl(ti)|La
jM

h
j M

h
l + La

i Ii(ti) +
n∑

j=1

|dij(ti)|aiL
g
je

λτ

+
n∑

j=1

n∑
l=1

ai|eijl(ti)|(Lh
jM

h
l +Mh

j L
h
l )eλτ � H.

Which contradicts (H4), hence (14) holds. It follows that |xi(t) − x∗i (t)| =
|yi(t)| < M‖ϕ − ϕ∗‖∞e−λt, i = 1, 2, . . . , n, t > 0. This completes the proof
of Lemma 2.

Remark 2. If x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t))T is the T -anti-periodic solution of

system (1) with initial value ϕ∗ being bounded by γ, it follows from Lemma 2
and Definition 1 that x∗(t) is globally exponentially stable.

3 Main Results

The following is our main result.

Theorem 1. Suppose that (H1) − (H4) are satisfied. Then system (1) has ex-
actly one T -anti-periodic solution x∗(t). Moreover, x∗(t) is globally exponentially
stable.

Proof. Let v(t) = (v1(t), v2(t), . . . , vn(t))T be a solution of system(1) with initial
conditions

vi(s) = ϕν
i (s), |ϕν

i (s)| < γ, s ∈ (−∞, 0], i = 1, 2, . . . , n. (18)

According to Remark 1, v(t) exists on [0,∞). Moreover, by Lemma 1, the solution
v(t) is bounded and

|vi(t)| < γ, for all t ∈ [−τ,∞), i = 1, 2, . . . , n. (19)

Form (2)-(5), we have

((−1)k+1vi(t + (k + 1)T ))′ = (−1)k+1v′i(t + (k + 1)T )

= (−1)k+1{−ai(vi(t + (k + 1)T ))[bi(vi(t+ (k + 1)T )) −
n∑

j=1

cij(t + (k + 1)T )

×fj(vj(t + (k + 1)T )) −
n∑

j=1

dij(t + (k + 1)T )gj(vj(t + (k + 1)T − τij(t

+(k + 1)T ))) −
n∑

j=1

n∑
l=1

eijl(t + (k + 1)T )hj(vj(t + (k + 1)T − σijl(t
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+(k + 1))T ))hl(vl(t + (k + 1)T − νijl(t + (k + 1)T ))) − Ii(t + (k + 1)T )]}

= (−1)k+1{−ai(vi(t + (k + 1)T ))[bi(vi(t+ (k + 1)T )) −
n∑

j=1

cij(t + (k + 1)T )

×fj(vj(t + (k + 1)T )) −
n∑

j=1

dij(t + (k + 1)T )gj(vj(t + (k + 1)T − τij(t)))

−
n∑

j=1

n∑
l=1

eijl(t+ (k + 1)T )hj(vj(t + (k + 1)T − σijl(t))hl(vl(t + (k + 1)T

−νijl(t))) − Ii(t + (k + 1)T )]}

= −ai((−1)k+1vi(t + (k + 1)T ))[bi((−1)k+1vi(t+ (k + 1)T )) −
n∑

j=1

cij(t)

×fj((−1)k+1vj(t + (k + 1)T )) −
n∑

j=1

dij(t + (k + 1)T )gj(vj(t+ (k + 1)T

−τij(t))) −
n∑

j=1

n∑
l=1

eijl(t)hj((−1)k+1vj(t + (k + 1)T )− σijl(t))hl((−1)k+1

×vl(t + (k + 1)T − νijl(t))) − Ii(t)], i = 1, 2, . . . , n. (20)

Thus, for any natural number k, (−1)k+1v(t + (k + 1)T ) are the solution of
system(1) on R. Then, by Lemma 2, there exists a constant M > 0 such that

|(−1)k+1(vi(t + (k + 1)T ) − (−1)kvi(t + kT )|
≤ Me−λ(t+kT ) sup

−τ≤s≤0
max

1≤i≤n
|vi(s + T ) + vi(s)|

≤ 2e−λ(t+kT )Mγ, ∀ t+ kT > 0, i = 1, 2, . . . , n. (21)

Thus, for any natural number m, we obtain

(−1)m+1vi(t + (m+ 1)T ) = vi(t) +
m∑

k=0

[(−1)k+1vi(t+ (k + 1)T )−

(−1)kvi(t+ kT )]. (22)

Then,

|(−1)m+1vi(t+ (m + 1)T )| ≤ |vi(t)| +
m∑

k=0

|(−1)k+1vi(t + (k + 1)T )

−(−1)mvi(t + kT )|, i = 1, 2, . . . , n. (23)

In view of (21), we can choose a sufficiently large constant P > 0 and a positive
constant α > 0, for i = 1, 2, . . . , n such that

|(−1)k+1vi(t + (k + 1)T )− (−1)kvi(t+ kT )| ≤ αe−λτk, ∀ k > P, (24)
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on any compact set of R. It follows from (22)-(24) that (−1)mv(t +mT ) uni-
formly converges to a continuous function x∗(t) = (x∗1(t), x

∗
2(t), . . . , x

∗
n(t))T on

any compact set of R.
Now we will show that x∗(t) is T -anti-periodic solution of system (1). First,

x∗(t) is T -anti-periodic, since,

x∗(t + T ) = lim
m→∞(−1)mv(t+ T +mT )

= − lim
(m+1)→∞

(−1)m+1v(t + (m+ 1)T ) = −x∗(t).

Next, we prove that x∗(t) is a solution of system(1). In fact, together with the
continuity of the right side of system(1) and (20) implies that {((−1)m+1v(t +
(m + 1)T ))′} uniformly converges to a continuous function on any compact set
of R. Thus, letting m → ∞, we obtain

d{x∗i (t)}
dt

= −ai(x∗i (t))
[
bi(x∗i (t)) −

n∑
j=1

cij(t)fj(x∗j (t)) −
n∑

j=1

dij(t)gj(x∗j (t

−τij(t))) −
n∑

j=1

n∑
l=1

eijl(t)hj(x∗j (t− σijl(t)))hl(x∗l (t− νijl(t))) − Ii(t)
]

Therefore, x∗i (t) is a solution of system (1).
Finally, from Remark 1 and by Lemma 2, we know that (1) has an T -anti-

periodic solution, and we can prove that x∗(t) is exponentially stable. This com-
pletes the proof.

4 An Example

Let n = 2, consider the following high-order Cohen-Grossberg neural networks
with delays:

x′i(t) = −ai(xi(t))
[
bi(xi(t)) −

2∑
j=1

cij(t)fj(xj(t)) −
2∑

j=1

dij(t)gj(xj(t− τij(t)))

−
2∑

j=1

2∑
l=1

eijl(t)hj(xj(t− σijl(t)))hl(xl(t− νijl(t))) − Ii(t)
]
, (25)

where

a1(x1(t)) = 3 + | cos(x1(t))|, a2(x2(t)) = 3 + | sin(x2(t))|,
b1(x1(t)) =

8x1(t) + sin(x1(t))
2 + | cos(x1(t))| , b2(x2(t)) =

8x2(t) + sin(x2(t))
2 + | cos(x2(t))| ,

cij(t) =
(

1/16| sin t| 1/32‖ cos t|
1/6| cos t| 1/15| sin t|

)
, dij(t) = 1/16, e112 = e212 =

1
8
(sin t),

ijl �= 212, ijl �= 112 , σ112(t) = 5 sin2 t, σ212(t) = sin2 t, ν112 = 2 sin2 t,

ν212 = 4 sin2 t, τij(t) = 1/2 cos2(t), fj(u) = sinu, gj(u) = 1/2 sinu,
hi(t) = 1/2(|x+ 1| − |x− 1|), I1(t) = 2 sin t, I2(t) = sin t.
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Note that
Lab

1 = Lab
2 = 7, a1 = a2 = 4, Lf

1 = Lf
2 = 1, Lh

1 = Lh
2 = 1/2, Lg

1 = Lh
2 =

Mg
1 = Mh

2 = 1. Then

max
1≤i≤2

{
(Lab

i −
2∑

j=1

|cij(ti)|aiL
f
j −

n∑
j=1

|cij(ti)|La
jL

f
j γ −

n∑
j=1

|dij(ti)|aiL
g
jγ

−
2∑

j=1

2∑
l=1

|eijl(ti)|La
jM

h
j M

h
l − La

i Ii(ti))
−1

( n∑
j=1

|dij(ti)|aiL
g
j

+
2∑

j=1

n∑
l=1

ai|eijl(ti)|(Lh
jM

h
l +Mh

j L
h
l )
)}

< 1.

where i = 1, 2, which implies that system (25) satisfies all the conditions in The-
orem 1. Hence, system (25) has exactly one T -anti-periodic solution. Moreover,
the T -anti-periodic solution if globally exponentially stable.
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Abstract. In this paper,a class of the BAM type Cohen-Grossberg neural network 
with delays is considered on time scales. Some sufficient conditions about the exis-
tence of equilibrium point, globally exponential stability and globally exponentially 
robust stability are obtained.At last,an example can be demonstrate the results.  

Keywords: Cohen-Grossberg BAM neural network, Lyapunov function, time 
scales. 

1   Introduction 

Cohen-Grossberg BAM neural networks aroused extensive researches by numerous 
scholars due to its applicability in solving image processing, signal processing and 
pattern recognition problems.The dynamical behaviors of neural network has been 
extensively studied in the literature, e.g., Ref[1-10]. 

In Ref.[11], on the basis of the structure of BAMs neural network, the authors ob-
tained some sufficient conditions of globally exponential stability of solutions. 

In this paper,we consider a general class of Cohen-Grossberg neural networks with 
delay on time scales: 

1 1

1 1

( ) ( ( ))[ ( ( )) ( ) ( ( )) ( ) ( ( )) ( )],   , 0,

( ) ( ( ))[ ( ( )) ( ) ( ( )) ( ) ( ( )) ( )],   , 0,

m m

i i i i i ji j j j j ji iji
j j

n n

j j j j j ij i i i i ij jij
i i

x t a x t b x t p t f y t p t f y t I t t t

y t a y t b y t q t g x t q t g x t J t t t

τ

σ

Δ

= =

Δ

= =

⎧ =− − − − + ∈Τ >⎪
⎨
⎪ =− − − − + ∈Τ >
⎩

∑ ∑

∑ ∑
  (1) 

where the functions ,i ja a  represent the abstract amplification function, while the 

function ,i jb b represent the self-excitation rate function, , ,, ,ij j i ij jip q p q  are the con-

nection weights. ( ), ( )i jI t J t  denote the i th and j th component of an external input 

source introduced from outside the network to the cell the cell i  and ,j  respectively. 

                                                           
* This project was supported by the NSF of Guangdong Province of China (No.8151027501000 

053) and National Natural Science Foundation (50775075) and Project of Zhongkai Univer-
sity Agriculture and Engineering(G3071728). 

** Corresponding author. 
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The system (1) is supplemented with initial values given by 

{ }
{ }

1 ,1

1 ,1

( ) ( ), [ , 0] , m ax , 1, 2, ,

( ) ( ), [ , 0] , m ax , 1, 2, , ,

i i T ji
i n j m

j j T ij
i n j m

x s s s i n

y s s s j m

ϕ τ τ τ
ψ σ σ σ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⎧ = ∈ − = =⎪
⎨ = ∈ − = =⎪⎩

 

where ([ , 0] , ), ([ , 0] , ).i T j TC R Rϕ τ ψ σ∈ − ∈ −  

2   Preliminaries 

To begin with,we introduce some notation and recall some basic definitions. 
A time scale T  is an arbitrary non-empty closed subset of the real numbers R .On 

any time scale we define theforward and backward jump operators by 

{ } { }( ) : in f : ,   ( ) : sup :t s T s t t s T s tσ ρ= ∈ > = ∈ <          (2) 

A point t  is said to be left-dense if ( ) ,t tρ =  right-dense if ( ) ,t tσ =  left scattered if 

( ) ,t tρ <  and right scattered if ( )t tσ > .The graininess μ  of the time scale is define by 

( ) ( )t t tμ σ= − . The set kT  is derived from T  as follow: if T  has a left-scattered 

maximum m , then { }kT T m= − ; otherwise, kT T= . 

For :f T R→  and kt T∈ , we define ( )f tΔ  to be the number (provided it exists) such 

that given any 0ε > , there is a neighborhood U  of t  with 

[ ( ( )) ( )] ( )[ ( ) ] ( ) .f t f s f t t s t sσ σ ε σΔ− − − ≤ −  

We call ( )f tΔ  the delta derivative of f  at t . 

A function :f T R→  is said to be rd-continuous at each right-dense point and if 

there exists a finite left limit in all left-dense points, and f  is said to be differentiable 

if its derivative exists.The set of rd-continuous functions :f T R→  will be denoted by 

( , )rdC T R . 

Lemma 1. (Bohnerand Peterson [12]).Assume , :f g T R→  are differential at kt T∈ , 

then  

(i) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ( ))fg f t g t f t g t f t g t f t g tσ σΔ Δ Δ Δ Δ= + = +  

(ii) 
( ) ( ) ( ) ( )

( ) ( )
( ) ( ( ))

f f t g t f t g t
t

g g t g tσ
Δ Δ

Δ −= . 

Lemma 2. (Bohner and Peterson [12]).If , , , ,a b c T Rα β∈ ∈  and , :f g T R→  then 

(i) ( ) ( ) ( );
b

a
f t t f b f aΔ Δ = −∫   

(ii) [ ( ) ( )] ( ) ( ) ;
b b b

a a a
f t g t t f t t g t tα β α β+ Δ = Δ + Δ∫ ∫ ∫  
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(iii) ( ) ( ) ( ) ;
b c b

a a c
f t t f t t f t tΔ = Δ + Δ∫ ∫ ∫   

(iv) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ;
b b

a a
f t g t t fg b fg a f t g t tΔ ΔΔ = − − Δ∫ ∫   

(v) if ( ) ( )f t g t≤  on [ , )a b , then ( ) ( ) ;
b b

a a
f t t g t tΔ ≤ Δ∫ ∫  

(vi) if ( ) 0f t ≥  for all a t b≤ ≤  then ( ) 0.
b

a
f t tΔ ≥∫  

A function p  is a regressive function,then the generalized exponential function pe  is 

defined by 

( )( )( , ) exp ( ( )) ,   
t

p ts
e t s pμξ τ τ= Δ∫  for  ,s t T∈                       (3) 

with the cylinder transformation 
(1 )

,    0,( )
,                    0.

h

Log hz
hz h

z h
ξ

+⎧⎪ ≠= ⎨
=⎪⎩

 

Lemma 3. (Bohner and Peterson[12]). If ,p q ∈ℜ  then  

(i) ( , ) 1pe t t ≡  and 
0 ( , ) 1;e t s ≡  

(ii) ( ( ), ) (1 ( ) ( )) ( , );p pe t s t p t e t sσ μ= +   

(iii) 1( , ) ;
( , )p

p

e t s
e s t

=  

(iv) ( , ) ( , ) ( , );p p pe t s e s r e t r=  

(v) ( , ) ( , ) ( , );p q p qe t s e t s e t s⊕=  

(vi) 
0( , ) 0pe t t >  for all 0, .p t T> ∈  

Definition 1. (Lakshmikantham and Vatsala [13]) For each t T∈ , let N  be a 
neighborhood of t . Then [ , ],n

rdV C T R R+∈ ×  define ( , ( ))D V t x t+ Δ  to mean that. 

given 0,ε >  there exists a right neighborhood N Nε ⊂  of t  such that 

1
[ ( ( ), ( ( )) ( , ( ( ))) ( , ) ( , ( ))] ( , ( ))

( , )
V t x t V s x t t s f t x t D V t x t

t s
σ σ σ μ ε

μ
+ Δ− − < +  

for each ,s N s tε∈ >  where ( , ) ( ) .t s t tμ σ= −  If t  is rs and ( , ( ))V t x t  is continuous 

at t , this is reduces to 

( ( ), ( ( ))) ( , ( ( ))
( , ( ))

( )

V t x t V t x t
D V t x t

t t

σ σ σ
σ

+ Δ −=
−

 

Definition 2. The solution * * * * *
1 1( ) ( ( ), , ( ), ( ), , ( ))T

n mu t x t x t y t y t=  of system (1) is 

said to be exponentially stable if there exist a positive constant α  such that for every 
Tδ ∈ , there exists ( ) 1N N δ= ≥  such that the solution 

1( ) ( ( ), ,u t x t=  

1( ), ( ), , ( ))T
n mx t y t y t  satisfies 
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* * *

1 1

1( ) ( ) ( ) ( ) ( ) ( ) ,
( , )

n m

i i j j
i j

u t u t N x y t T
e tα

ϕ δ δ ψ δ δδ
+

= =

⎛ ⎞
− ≤ − + − ∈⎜ ⎟

⎝ ⎠
∑ ∑  

where { }[ max , ,0]Tδ τ σ∈ − . 

Throughout this paper, we assume that 

1(H )  ( ) 0,l la a>i  are bounded, that is, there exist , 0l la a >  such that ,l la a a≤ ≤  

{ } { } { }1,2, ,max , , min , max ;l ll m n a a a a= = =  

2(H ) 0 ( )l ll
bγ γΔ≤ ≤ ≤i  for any { }1, 2, ,max ,l m n= ; 

3(H ) there exist 0, 0f g
j iL L> >  such that  

( ) ( ) , ( ) ( ) ,f g
j j j i i if u f v L u v g u g v L u v− ≤ − − ≤ −  

for any , , 1,2, , ; 1,2, , .u v R i n j m∈ = =  

In the following,we use the following norm of n mR + : 

1 2
1

, ( , , , )
n m

T n m
l n m

l

w w w w w w R
+

+
+

=

= = ∈∑  

Assume that * * * *
1 1( , , , , , )T

n mx x y y  is an unique equilibrium point of system (1). 

Let  

* * *( ) ( ) , ( ) ( ) , ( ( )) ( ( ) ),i i i j j j i i i i iz t x t x z t y t y z t a z t xα= − = − = +  

* * *( ( )) ( ( ) ), ( ( )) ( ( ) ) ( ),j j j j j i i i i i i iz t a z t y z t b z t x b xα β= + = + −  

* * * *( ( )) ( ( ) ) ( ), ( ( )) ( ( ) ) ( ),j j j j j j j i i i i i i iz t b z t y b y z t g z t x g xβ ψ= + − = + −  

* *
1 1( ( )) ( ( ) ) ( ), ( ) ( ( ), , ( ), ( ), , ( )) ,T

j j j j j j j n mz t f z t y f y z t z t z t z t z tϕ = + − =  

then the system (1) can be written in the following form: 

1 1

1 1

( ) ( ( ))[ ( ( )) ( ) ( ( )) ( ) ( ( ))],

( ) ( ( ))[ ( ( )) ( ) ( ( )) ( ) ( ( ))].

i

j

m m

i i i i ji j j ji j j ji
j j

n n

j j j j ij i i ij i i ij
i i

z t z t z t p t z t p t z t

z t z t z t q t z t q t z t

α β ϕ ϕ τ

α β ψ ψ σ

Δ

= =

Δ

= =

⎧ = − − − −⎪⎪
⎨
⎪ = − − − −
⎪⎩

∑ ∑

∑ ∑
    (4) 

3   Main Results 

Theorem 1. Assume that 

{ } { }2ker( , ) ( , ) ( ) 0, ( ) 0 ( , ) ( ( )) ( ), ( ( )) ( ) ,j i i j i i i j j jf g x y R f y g x x y b x t I t b y t J t= ∈ = = ∩ = − = − ≠ ∅  

then the system (1) has at least an equilibrium point. 
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Proof. If * * * *
1 1( , , , , , )T

n mx x y y  is an equilibrium point of system (1), then we 

have 

* *

1

* *

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m

i i ji ji j j i
j

n

j j ij ij i i j
i

b x p p f y I t

b y q q g x J t

=

=

⎧ = + −⎪⎪
⎨
⎪ = + −
⎪⎩

∑

∑
                        (5) 

which is equivalent to 

* *

1

* *

1

*

1

*

1

( ) ( ) ( )

( ) ( ) ( )

( 1) ( ) 0

( 1) ( ) 0,

m

i i j j i
j
n

j j i i j
i

m

ji ji j j
j

n

ij ij i i
i

b x f y I t

b y g x J t

p p f y

q q g x

=

=

=

=

⎧ = −⎪
⎪
⎪ = −
⎪
⎨
⎪ + − =
⎪
⎪

+ − =⎪
⎩

∑

∑

∑

∑

                                      (6) 

form the third and forth equations of (6),we can see that any element in ker ( , )f g  is 

solution. So, by assumption,we can know that there exist some element in ker( , )f g  

which is solution of the first and second equations of (6). So the system (1) has at 
least an equilibrium point. 

Corollary 1. Assume that the conditions of Theorem 1, as well as the hypothesis 

1 3(H ) (H )−  hold, then the system (1) has an unique equilibrium point. 

Lemma 4. (Halanay inequality) Assume that there exists 
1 2 0,k k> >  

0 0( ) [ , ]Th t C t tτ∈ −  is non-negative, { }
[ , ]

0, ( ) sup ( ) ,
Ts t t

h t h sτ

τ
τ

∈ −
> =  and 

1 2( ) ( ) ( ),D h t k h t k h tτ+ Δ ≤ − +   

then 
0 0

0

1( ) ( ) ,   ,
( , )

h t h t t t
e t t

τ

λ
≤ ≥  where λ  is unique solution of the equation 

1 2 (0, ).k k eλλ τ= − −  

Theorem 2. Under the conditions in Theorem 1, Assume that 
1 3(H) (H)−  hold, and  

(i) ( ) , ( ) , ( ) , ( ) ,ji ji ij ij ji ji ij ijp t p q t q p t p q t q≤ ≤ ≤ ≤  

where , , ,ji ij ji ijp q p q  are positive constants; 

(ii) 
1 2

1 .1 1 .1
1 1 1 1

min , , max , , 0;
m n m n

g f g f
ij i ji j ij i ji ji ji n j m i n j m

j i j i

k a q L p L k a q L p Lγ γ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤= = = =

⎧ ⎫ ⎧ ⎫
= − − > = >⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑ ∑ ∑  

then the equilibrium point of system (1) is globally exponentially stable. 
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Proof. Consider Lyapunov function as follows: 

( ) ( )
( ) ( )

0 0
1 1

( ) ,
i j

n mz t z t

i ji j

Sgns Sgns
V t s s

s sα α= =

= Δ + Δ∑ ∑∫ ∫  

then 
1 1

( ) ( ) ( ) ,z t V t z t
aa

≤ ≤                                               (7) 

Since 
1 1 1 1

,
m n n m

ij i ij i
j i i j

η μ η μ
= = = =

=∑∑ ∑∑  we have 

1 1 1

1 1 1

1 1 1

( ) ( )[ ( ( )) ( ) ( ( )) ( ) ( ( ))]

            ( )[ ( ( )) ( ) ( ( )) ( ) ( ( ))]

[ ( ) ( )

n m m

i i i ji j j ji j j ji
i j j

m n n

j j j ij i i ij i i ij
j i i
n m m

f
i ji j j jii

i j j

V t Sgnz t z t p t z t p t z t

Sgnz t z t q t z t q t z t

z t p L z t p

β ϕ ϕ τ

β ψ ψ σ

γ

Δ

= = =

= = =

= = =

= − − − −

− − − −

≤ − − −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

1 1 1

1 1 1 1

1 1 1 1

1 2

( ) ]

   [ ( ) ( ) ( ) ]

( ) ( )

   ( ) ( )

( )

f
j j ji

m n n
g g

j ij i i ij i i ijj
j i i
n m n m

g g
ij i i ij i i iji

i j i j
m n n m

f f
ji j j ji j j jij

j i i j

L z t

z t q L z t q L z t

q L z t q L z t

p L z t p L z t

k k
z t

a

τ

γ σ

γ σ

γ τ

= = =

= = = =

= = = =

−

− − − −

⎛ ⎞
= − − + −⎜ ⎟

⎝ ⎠
⎛ ⎞− − + −⎜ ⎟
⎝ ⎠

≤ − +

∑

∑ ∑ ∑

∑ ∑ ∑∑

∑ ∑ ∑∑

1 2( ) ( ) ( ).z t k V t k V t
a

τ τ≤ − +

 

Since 
1 2 ,k k>  by Halanay inequality, it follows that 

0
0

1
( ) ( ) ,

( , )
V t V t

e t t
τ

λ

≤                                              (8) 

by (8), we have            
0

1
( ) .

( , )
V t N

e t tλ

≤                                                                 (9) 

where { }
0 0

0
[ , ]

( ) sup ( )
Ts t t

N V t V sτ

τ∈ −
= = , from the Eq.(7), we have 

0

1
( ) , 0.

( , )
z t aN t

e t tλ

≤ >  

i.e., * *

0

1
( ) ( ) ,  0.

( , )i i j jx t x y t y aN t
e t tλ

− + − ≤ >  

Therefore, we know the equilibrium point of system (1) is globally exponentially 
stable. 
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In this section, we assume that  

( ) , ( ) , ( ) , ( ) ,
ji ji

ijji ij ji ijji ij ji ij ija p t a b q t b c p t c d q t d≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  

where , , , , , , ,
ji ji

ij ijji ij ji ija a b b c c d d  are constant. Let 

(0) (1) (0) (1)1 1 1 1
( ), ( ), ( ), ( ),

2 2 2 2
ij ijji ji ij ijji ji ji ji ij ijp a a p a a q b b q b b= + = − = + = −

(0) (1) (0) (1)1 1 1 1
( ), ( ), ( ), ( ),

2 2 2 2
ij ijji ji ij ijji ji ji ji ij ijp c c p c c q d d q d d= + = − = + = −  

(0) (1) (0) (1)
1 1 ,1

1 1

min ( ) , ( ) , ,
m n

g f
i ij ij i j ji ji j

i n j m
j i

k a q q L p p Lγ γ
≤ ≤ ≤ ≤ = =

⎧ ⎫
= − + − +⎨ ⎬

⎩ ⎭
∑ ∑  

(0) (1) (0) (1)
2

1 ,1
1 1

max ( ) , ( ) , ,
m n

g f
ij ij i ji ji j

i n j m
j i

k a q q L p p L
≤ ≤ ≤ ≤ = =

⎧ ⎫
= + +⎨ ⎬

⎩ ⎭
∑ ∑  

Theorem 3. Under the conditions in the Theorem 1, assumethat 
1 3(H) (H)−  hold, and 

1 2 0,k k> >  then the equilibrium point of system (1) is globally robust exponentially 

stable. 

Proof. Note (0) (1) (0) (1) (0) (1) (0) (1)( ) , ( ) , ( ) , ( ) ,ji ji ji ij ij ij ji ji ji ij ij ijp t p p q t q q p t p p q t q q≤ + ≤ + ≤ + ≤ +   

similar to the proof of theorem 2, it is easy to prove the above theorem. 

4   Example 

Consider the following system: 

1 1 1 1

1 1 1 1

1 1( ) (6 cos )[ ( ) sin cos( ( )) sin cos( ( )) ],
10 21
1 1( ) (5 sin )[ ( ) cos sin( ( )) cos sin( ( )) ],

12 18 2

x t t x t t y t t y t

y t t y t t x t t x t

τ π
πσ

Δ

Δ

⎧ = − − − − − −⎪
⎨

= − + − − − −⎪⎩

   (10) 

where 1, ( ) , ( ) .
2i jI t I t πτ σ π= = = − = −  We can compute 

11 11
1 14, 7, , ,

10 12
a a p q= = = =  

11 11 1 2 1 1
91 1 1, , , , 1.

21 18 10 5
f gp q k k L L= = = = = =  

From the above assumption,the conditions of Theorem 2 are satisfied. Therefore, 

the equilibrium point ( , )
2
ππ  of system (10) is globally exponentially stable. 
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Abstract. In the paper, we present the existence of mn locally expo-

nentially stable equilibrium points for a general n-dimensional delayed

neural networks with multilevel activation functions which have m seg-

ments. Furthermore, the theory is also extended to the existence of mn

locally exponentially stable limit cycles for the n-dimensional delayed

neural networks evoked by periodic external input. The results are ob-

tained through formulating parameter conditions, which are easily veri-

fiable and independent of the delay parameter. Two numerical examples

are given to show the effectiveness of the theory.

Keywords: Neural networks, Delay, Multilevel function, Multistability,

Multiperiodicity.

1 Introduction

In the past decades, neural networks (NNs) have been used in many fields such
as pattern recognition, associative memory, signal processing and combinatorial
optimization [1]. Mathematical analysis for dynamical behaviors of NNs is a
prerequisite for most applications. Due to these, extensive attention has been
paid to study the dynamical behaviors such as stability, periodic oscillation,
bifurcation and chaos [2,3,4]. The theory on dynamics of NNs has been developed
according to the purposes of applications.

Stability and periodic oscillation are two interesting dynamical properties of
NNs. Besides stability, neuron activation states may also be periodically oscilla-
tory around an orbit. The properties of periodic solutions are of great interest
since many biological and effective activities usually requires repetition [5]. In ad-
dition, an equilibrium point can be viewed as a special case of periodic oscillation
of NNs with arbitrary period. In this sense, the analysis of periodic oscillation of
NNs is more general than that of equilibrium point. Moreover, multistability is
a necessary property in order to enable certain applications where monostabil-
ity networks could be computationally restrictive [6]. Recently, there have been
extensive results on multistability for NNs [7, 8, 9].

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 603–610, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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However, all of the studies mentioned above are focused upon NNs with ac-
tivation functions being continuous or even Lipschitzen. In fact, the authors of
Forti et al. have pointed out that some common NNs with discontinuous activa-
tions are important and frequently arise in a large number of practice [10]. For
example, in optimal control problems, open-loop, bang-bang controllers switch
discontinuously between extreme values of the inputs to generate minimum time
trajectories from the initial to the final states. The dynamical behaviors of NNs
with discontinuous activations have been studied in [11, 12, 13, 14].

To the best of our knowledge, the study on multistability for NNs with dis-
continuous activations is few. In [15] the multistability has been developed for
NNs with multilevel activations which are discontinuous but without delays. It
is found that a k-neuron networks can have up to nk locally exponentially stable
equilibria. In [15] the authors point out that the dynamics of NNs with delay
was their another subject of interest to investigate in near future. Motivated by
the fact, in this paper, we consider the following delayed NNs with discontinuous
activations,

ẋi(t) = −xi(t) +
n∑

j=1

αijfj(xj(t)) +
n∑

j=1

βijfj(xj(t− τij)) + Ii, (1)

for i = 1, 2, · · · , n, where xi(t) is the state of neuron i; αij and βij are connection
weights from neuron j to neuron i; fj(·) is the input-output activation function
of jth neuron; τij corresponds to the transmission delay and satisfies 0 ≤ τij ≤ τ ,
where τ is a constant; Ii is a constant external input. The model of delayed NNs
with periodic inputs associate with system (1) is described as follow,

ẋi(t) = −xi(t) +
n∑

j=1

αijfj(xj(t)) +
n∑

j=1

βijfj(xj(t− τij)) + Ii(t), (2)

where Ii(t) is a continuous w-periodic function.
Throughout this paper, we assume that fj are multilevel functions with m

segments, which are described as follow,

fj(x) =

⎧⎪⎨⎪⎩
b1j, if x < a1,

blj if al−1 ≤ x < al, l = 2, 3, · · · ,m− 1,
bmj, if x ≥ am−1,

(3)

where a1 < a2 < · · · < am−1, and −1 = b1j < b2j < · · · < bm−1,j < bmj = 1. If
we set a0 = −∞ and am = +∞, (3) can be rewritten as

fj(x) = blj , if al−1 ≤ x < al, l = 1, 2, · · · ,m

Here, if al−1 = −∞ or al = +∞, the inequality constraints are one side. Denote

Ω = {(a0, a1), [a1, a2), [a2, a3), · · · , [am−1, am)}
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and

Ωn =

{
n∏

i=1

Ji

∣∣∣∣∣ Ji ∈ Ω

}
.

It is obvious that
⋃
Ω = R and

⋃
Ωn = R

n. Given a set S, denote int(S)
is the interior of S. Given any x ∈ R

n, denote ‖x‖ = max1≤i≤n{|xi|}. Let
C([t0 − τ, t0], D) be the space of continuous functions mapping [t0 − τ, t0] into
D ⊂ R

n with norm defined by ‖φ‖t0 = max1≤i≤n{sups∈[t0−τ,t0] |φ(s)|}.
For any φ = (φ1, φ2, · · · , φn)T ∈ C([t0 − τ, t0],Rn), the initial conditions for

the network (1) or (2) are assumed to be

xi(t) = φi(t), t0 − τ ≤ t ≤ t0, i = 1, 2, · · · , n.

Denote x(t; t0, φ) as the solution of (1) (or (2)) with initial condition φ, which
means that x(t; t0, φ) is continuous and satisfies (1) (or (2)) and x(t; t0, φ) = φ(t)
for t ∈ [t0 − τ, t0].

2 Preliminaries

In this section, we state a definition and two preliminary lemmas, which will be
used throughout this paper.

Definition 1. A set D is said to be an invariant set of system (1), if the solution
x(t; t0, φ) of (1) with any initial condition φ(s) ∈ C([t0 − τ, t0], D), satisfies
x(t; t0, φ) ∈ D for t ≥ t0.

Lemma 1. If for any i ∈ {1, 2, · · · , n} and l ∈ {1, 2, · · · ,m},

al−1 +
n∑

j=1,j �=i

|αij + βij | < (αii + βii)bli + Ii < al −
n∑

j=1,j �=i

|αij + βij |, (4)

then for any D ∈ Ωn, int(D) is an invariant set of (1).

Proof. Let int(D) = (ak1−1, ak1) × (ak2−1, ak2) × · · · × (akn−1, akn), where ki ∈
{1, 2, · · · ,m}. For any φ(s) ∈ C([t0 − τ, t0], int(D)), there must be a close set
D′ ⊂ int(D) such that

φ(s) ∈ D′, ∀s ∈ [t0 − τ, t0].

Let D′ = [a′k1−1, a
′
k1

] × [a′k2−1, a
′
k2

] × · · · × [a′kn−1, a
′
kn

]. Then aki−1 < a′ki−1 <
a′ki

< aki , for any i ∈ {1, 2, · · · , n}. Let x(t; t0, φ) is a solution of (1) with the
initial condition φ(s). We say that it stays in the local area D′. if it is not true,
there is a time t2 > t0 such that x(t2) is not in D′. There must be an xp(t2) not
in [a′kp−1, a

′
kp

], where p ∈ {1, 2, · · · , n}. If xp(t2) < a′kp−1, then there is a time
t1 ∈ (t0, t2) such that xp(t1) = a′kp−1 and ẋp(t1) < 0. Without loss of generality,
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we assume that for any j ∈ {1, 2, · · · , n}, xj(t) ∈ [a′kj−1, a
′
kj

], ∀t ∈ [t0 − τ, t1].
However, on the other hand, from (1) and (4), we have

ẋp(t1) = −xp(t1) +
n∑

j=1

αpjfj(xj(t1)) +
n∑

j=1

βpjfj(xj(t1 − τpj)) + Ip

= −a′kp−1 + (αpp + βpp)bkp,p +
n∑

j=1,j �=p

αpjbkj ,j +
n∑

j=1,j �=p

βpjbkj ,j + Ip

> −a′kp−1 + (αpp + βpp)bkp,p −
n∑

j=1,j �=p

|αij + βij | + Ip > 0,

which is a contradiction. Thus we have xp(t) ≥ a′kp−1, ∀t > t0. In the same way,
we can prove xp(t) ≤ a′kp

, ∀t > t0. This shows the solution x(t; t0, φ) stays in the
region D′, which is also in int(D). So int(D) is an invariant set of (1).

Lemma 2. If for any i ∈ {1, 2, · · · , n} and l ∈ {1, 2, · · · ,m},

al−1 +
n∑

j=1,j �=i

|αij + βij | < (αii + βii)bli + Ii(t) < al −
n∑

j=1,j �=i

|αij + βij |, (5)

then for any D ∈ Ωn, int(D) is an invariant set of (2).

Proof. The proof is similar to Lemma 1. So we omit it.

3 Main Results

In this section we will establish some sufficient conditions to ensure that the
n-neuron NNs can have mn locally exponentially stable equilibrium points.

Theorem 1. If the condition (4) in Lemma 1 holds, then for any D ∈ Ωn, the
neural network (1) has a unique equilibrium point in region int(D) which is lo-
cally exponentially stable. Therefore, the system (1) has mn locally exponentially
stable equilibrium points in R

n.

Proof. Let int(D) = (ak1−1, ak1) × (ak2−1, ak2) × · · · × (akn−1, akn), where ki ∈
{1, 2, · · · ,m}. If x∗ = (x∗1, x

∗
2, · · · , x∗n) ∈ int(D) is an equilibrium of system (1),

we have

x∗i =
n∑

j=1

αijbkj ,j +
n∑

j=1

βijbkj ,j + Ii.

From (4), we have

aki−1 <

n∑
j=1

αijbkj ,j +
n∑

j=1

βijbkj ,j + Ii < aki .

Hence, the system (1) has exactly equilibrium x∗ in the local region int(D).



Multistability of Delayed Neural Networks 607

From Lemma 1, we know that int(D) is a invariant set of (1), which means for
any initial condition φ(s) ∈ C([t0 − τ, t0], int(D)), the solution x(t; t0, φ) stays
in int(D). Thus we can rewrite (1) as

ẋi(t) = −xi(t) +
n∑

j=1

αijbkj ,j +
n∑

j=1

βijbkj ,j + Ii = −xi(t) + x∗i .

It is obvious that x(t; t0, φ) tends to x∗ exponentially.
It is noted that Ωn has mn elements, hence there are mn locally exponentially

stable equilibrium points for system (1).

In the following we will consider the multiperiodicity of the system (2).

Theorem 2. If the condition (5) in Lemma 2 holds, then for any D ∈ Ωn,
The neural network (2) has a unique limit cycle in region int(D) which is locally
exponentially stable. Therefore, the system (5) has mn locally exponentially stable
limit cycles in R

n.

Proof. Let int(D) = (ak1−1, ak1) × (ak2−1, ak2) × · · · × (akn−1, akn), where ki ∈
{1, 2, · · · ,m}. By Lemma 2, int(D) is a invariant set of (2), which means for
any initial condition φ(s) ∈ C([t0 − τ, t0], int(D)), the solution x(t; t0, φ) stays
in int(D). Thus the system (2) can be rewritten as

ẋi(t) = −xi(t) +
n∑

j=1

αijbkj ,j +
n∑

j=1

βijbkj ,j + Ii(t). (6)

Denote xt(s;φ) = x(t + s; t0, φ), where s ∈ [t0 − τ, t0], t ≥ 0. It is clear that
xt(·;φ) ∈ C([t0−τ, t0], int(D)) since int(D) is an invariant set. Define a mapping
H : C([t0 − τ, t0], int(D)) → C([t0 − τ, t0], int(D)) by H(φ) = xw(·;φ). Then
Hm(φ) = xmw(·;φ)

Let us fix any ξ(s), ζ(s) ∈ C([t0 − τ, t0], int(D)) and consider the solutions
x(t; t0, ξ) and x(t; t0, ζ) of system (2) with initial conditions ξ(s) and ζ(s), re-
spectively. Then we can derive from (6) that

d(xi(t; t0, ξ) − xi(t; t0, ζ))
dt

= −(xi(t; t0, ξ) − xi(t; t0, ζ)).

Thus
xi(t; t0, ξ) − xi(t; t0, ζ) = (ξi(t0) − ζi(t0))e−(t−t0), (7)

which can imply that

‖Hm(ξ) −Hm(ζ)‖t0 = ‖(ξ(t0) − ζ(t0))e−(mw+s−t0)‖t0

≤ e−(mw−τ)‖ξ(t0) − ζ(t0)‖
≤ e−(mw−τ)‖ξ − ζ‖t0 .

In particular, setting m ∈ N such that mw − τ > 0, we have that Hm is a
contraction mapping and has a unique fixed point in C([t0 − τ, t0], int(D)), that
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is, there is a unique φ∗ ∈ C([t0 − τ, t0], int(D)) such that Hm(φ∗) = φ∗. In
addition,

Hm(H(φ∗)) = H(Hm(φ∗)) = H(φ∗)

that shows H(φ∗) is also a fixed point of Hm. Hence, by the uniqueness of the
fixed point of Hm, we have H(φ∗) = φ∗, that is xw(s;φ∗) = φ∗(s). Let x(t; t0, φ∗)
be a solution of (2) with initial condition φ∗. From (6), by using Ii(t+w) = Ii(t),
it follows that x(t + w; t0, φ∗) is also a solution of (2). Thus, ∀t ≥ t0,

x(t + w; t0, φ∗) = x(t; t0, xw(s;φ∗)) = x(t; t0, φ∗).

This shows that x(t; t0, φ∗) is a periodic solution with period w. From (7), we
can have

‖x(t; t0, φ) − x(t; t0, φ∗)‖ = ‖φ(t0) − φ∗(t0)‖e−(t−t0)

≤ ‖φ− φ∗‖t0e
−(t−t0).

This means that the periodic solution x(t; t0, φ∗) is locally exponentially stable
in int(D).

It is noted that Ωn has mn elements, hence there are mn locally exponentially
stable limit cycles for system (1).

Remark 1. In [15], the authors investigated the dynamics for NNs without de-
lays. When βij = 0 in (1) and (2), the NNs reduce to a special case without
delays. Therefore, Theorem 1 and 2 extend the work of [15].

4 Illustrative Examples

In this section, we give two examples to illustrate the effectiveness of our results.

Example 1. Consider the following neural networks,(
ẋ1(t)
ẋ2(t)

)
= −

(
x1(t)
x2(t)

)
+

(
1.5 −0.2
0.5 0.8

)(
f1(x1(t))
f2(x2(t))

)
+

(−0.2 0.1
−0.3 0.6

)(
f1(x1(t− 0.1))
f2(x2(t− 0.2))

)
+

(
0.1
0.15

)
,

where

f1(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1, if u < −1,
−0.5 if −1 ≤ u < 0,
0.5 if 0 ≤ u < 1,
1, if u ≥ 1,

f2(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1, if u < −1,
−0.6 if −1 ≤ u < 0,
0.4 if 0 ≤ u < 1,
1, if u ≥ 1.

This networks satisfies the conditions of Theorem 1. As numerical simulate
shows, the networks has 42 locally stable points (Fig. 1).
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Example 2. Consider the following neural networks,⎛⎝ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞⎠ = −
⎛⎝x1(t)
x2(t)
x3(t)

⎞⎠ +

⎛⎝1.5 0.2 −0.1
0.3 1 0.1
0.1 −0.2 −0.1

⎞⎠⎛⎝f1(x1(t))
f2(x2(t))
f3(x3(t))

⎞⎠
+

⎛⎝ 0.5 0.2 −0.1
−0.1 1 0.15
0.1 0.15 1.9

⎞⎠⎛⎝f1(x1(t− 0.1))
f2(x2(t− 0.1))
f3(x3(t− 0.1))

⎞⎠ +

⎛⎝0.2 sin(t)
0.3 cos(t)
0.5 sin(t)

⎞⎠ ,

where

f1(u) = f2(u) = f3(u) =

⎧⎪⎨⎪⎩
−1, if u < −1,
0 if −1 ≤ u < 1,
1, if u ≥ 1.

This parameters also satisfy the conditions of Theorem 2. As numerical simulate
shows, there are 33 locally stable limits cycles (Fig. 2).

5 Conclusion

In this paper, we have investigated the multistability for a class of delayed NNs
with multilevel activation function. By using local invariant sets, some parameter
conditions, which can be examined easily, are established to guarantee the the
networks to have mn exponentially stable equilibria and mn exponentially stable
limit cycles. Simulation examples are employed to illustrate the theories. Fur-
thermore, considering other classes of discontinuous activation functions, which
are more general than multilevel functions, is an interesting job. It will be per-
formed in near future.
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Abstract. The problem of finite-time boundedness(FTB) for a class

of Cohen-Grossberg neural networks(CGNNs) with multiple delays and

parameter perturbations is analyzed in this paper. By way of extending

the concept of FTB for time delay system and constructing a suitable

Lyapunov function and using linear matrix inequality(LMI) technique,

some delay-dependent criteria are derived to guarantee FTB for uncer-

tain and certain CGNNs with multiple delays. Meanwhile, an algorithm

is also presented. Finally, simulation examples are given to demonstrate

the effectiveness of the conclusion.

Keywords: Cohen-Grossberg neural network; Parameter perturbations;

Finite-time boundedness; Linear matrix inequality; Multiple delays.

1 Introduction

Recently, linear matrix inequality(LMI)-based techniques have been successfully
used to tackle various stability problems for neural networks with a single de-
lay[1] and multiple delays[2]. The main advantages of the developed approach
include that firstly it only needs tuning of parameters and matrices, and sec-
ondly it can be solved numerically using the effective interior-point algorithm
that can solve optimization problems involving LMI[3]. Since Cohen and Gross-
berg proposed a class of neural networks in 1983[4], and this model has received
increasing interest[5-6] due to its promising for applications in classification,
parallel computing, associative memory. In many practical applications, some
systems may be unstable, in this case, the main concern is the behavior of the
system over a fixed finite time interval, it could be required that the trajectories
of the controlled system do not exceed given bounds. In order to deal with this
problem, Peter Dorato[7] presented the concept of finite-time stability(FTS).

In this paper, we further extend the results of FTB to the general Cohen-
Grossberg neural networks with multiple delays and norm-boundedness paramet-
ric uncertainties in Section 2. The sufficient conditions are derived for
ensuring FTB of the uncertain and certain CGNNs in Section 3. Section 4
gives some numerical examples to demonstrate the main theoretical results. We
conclude this paper in Section 5.
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2 Problem Statement

In this brief, considering the influences of uncertainties for a class of generalized
Cohen-Grossberg neural networks with multiple delays, we can describe it by
the following nonlinear differential equation:

u̇(t) = −α(u(t))[β(u(t)) − (W0 +ΔW0)g(u(t)) −
K∑

i=1

(Wk

+ΔWk)g(u(t− τk))], (1)

where u = (u1, · · · , un)T ∈ Rn, α(u) = diag(α1(u1), · · · , αn(un)), β(u) = (β1(u1),
· · · , βn(un))T . Amplification function αi(·), behaved function βi(·) and acti-
vation function gi(·) are subject to certain conditions to be specified later.
W0 = [w0ij ] ∈ Rn×n means that part of the interconnecting structure which
is not associated with delay, Wk = [wkij ] ∈ Rn×n denotes that part of the
interconnecting structure which is associated with delay τk, where τk stand
for the kth delay, k = 1, · · · ,K and τ = max{τ1, · · · , τk}. ΔWk = [Δwkij ] ∈
Rn×n, k = 0, · · · ,K are time-invariant matrices representing the norm-bounded
uncertainties.

The initial condition is u(s) = φ(s), for s ∈ [−τ, 0], where φ ∈ C([−τ, 0], Ω).
Here, C([−τ, 0], Ω) denotes the Banach space of continuous vector-valued func-
tions mapping the interval [−τ, 0] into Rn with a topology of uniform
convergence.

In order to establish the conditions of main results for the neural networks
(1), it is necessary to make the following assumptions:

Assumption 1. For the uncertainties ΔWk, k = 0, · · · ,K, we assume that

[ΔW0, · · · , ΔWK ] = HF [E0, · · · , EK ], (2)

where F is an unknown matrix representing parametric uncertainty, which
satisfies

FTF ≤ I, (3)

and H,E0, · · · , EK are known constant matrices with appropriate dimensions.

Assumption 2. For i = 1, 2, · · · , n, we assume that

(H1) αi(ui) > 0, αi are bounded, that is, there exist positive constants αm
i

and αM
i such that 0 < αm

i ≤ αi(ui) ≤ αM
i < +∞ for all u ∈ R;

(H2) The behaved function βi(·) ∈ C(R,R), and (βi(x) − βi(y))/(x − y) ≥
γi > 0 for any x, y ∈ R and x �= y;

(H3) The activation function g(u) is bounded and global Lipschitz with Lip-
schitz constants σi ∈ R+, that is |gi(x) − gi(y)| ≤ σi|x− y| for any x, y ∈ R;

Lemma 1. Assume that (H1)-(H3) hold, then system (1) has at least an equi-
librium point.

The proof is omitted.
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Definition 1. System (1) is said to be finite time boundedness(FTB) with re-
spect to (c1, c2, T )(0 < c1 < c2), if

sup
t∈[−τ,0]

‖ϕT (t)‖2 ≤ c21 ⇒ ‖xT (t)‖2 < c22, ∀t ∈ [0, T ].

Lemma 2. [8] For matrices Y , D and E of appropriate dimensions, where Y
is a symmetric matrix, then Y + DFE + ETFTDT < 0 holds for all matrix
F satisfying FTF ≤ I, if and only if there exists a constant ε > 0 such that
Y + εDDT + ε−1ETE < 0 holds.

3 Main Results

In this section, sufficient conditions for FTB are given by Theorem 1 and
Corollary 1.

Theorem 1. For any bounded delay τk, k = 1, · · · ,K, system (1) is FTB with
respect to (c1, c2, T ), if there exist a nonnegative scalar α, a positive definite
matrix P , a positive constant ε and positive definite diagonal matrices Q, Λk,
k = 1, · · · ,K, such that the following conditions:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γ PAMW0 PAMW1 · · · PAMWK PAMH
WT

0 A
MP −Q+ εET

0 E0 εET
0 E1 · · · εET

0 EK 0
WT

1 A
MP εET

1 E0 −Λ1 + εET
1 E1 · · · εET

1 EK 0
...

...
...

. . .
...

...
WT

KA
MP εET

KE0 εET
KE1 · · · −ΛK + εET

KEK 0
HTAMP 0 0 · · · 0 −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0(4)

and

eαT c21[λmax(P ) + τΛλmax(σTσ)]
λmin(P )

< c22 (5)

hold, where Γ =−BTAmP−PAmB+σ(
∑K

i=1 Λk+Q)σ−αP , σ=diag(σ1, · · · , σn),
AM = diag(αM

1 , · · · , αM
n ), Am = diag(αm

1 , · · · , αm
n ), B = diag(γ1, · · · , γn), Λ =∑K

k=1(λmax(Λk)).

Proof. Here, we introduce the following Lyapunov function:

V (x(t)) = xT (t)Px(t) +
K∑

k=1

∫ t

t−τk

fT (x(s))Λkf(x(s))ds.

Then, the derivative of V (x(t)) with respect to t along any trajectory of system
(1) is given by

V̇ (x(t)) ≤ −xT (t)(BTAmP + PAmB)x(t) + 2xT (t)PAM (W0 +ΔW0)f(x(t))
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+2xT (t)PAM
K∑

k=1

(Wk +ΔWk)f(x(t− τk)) +
K∑

k=1

fT (x(t))Λkf(x(t))

−
K∑

k=1

fT (x(t − τk))Λkf(x(t− τk)) + fT (x(t))Qf(x(t))

−fT (x(t))Qf(x(t)), (6)

Noting that Q > 0 is a diagonal matrix and Assumption 2, we can obtain

fT (x(t))Qf(x(t)) ≤ xT (t)σTQσx(t). (7)

Taking (7) into (6), we can get

V̇ (x(t)) ≤ ξTΘξ,

where ξ = [xT (t), fT (x(t)), fT (x(t − τ1)), · · · , fT (x(t − τK))]T ,

Θ =

⎡⎢⎢⎢⎢⎢⎣
Γ1 PA

M (W0 +ΔW0) PAM (W1 +ΔW1) · · · PAM (WK +ΔWK)
∗ −Q 0 · · · 0
∗ ∗ −Λ1 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −ΛK

⎤⎥⎥⎥⎥⎥⎦ ,

and Γ1 = −BTAmP − PAmB + σ(
∑K

i=1 Λk +Q)σ.
Making use of Assumption 1, from the form of Θ we can rewrite it as follows:

Θ =

⎡⎢⎢⎢⎢⎢⎣
Γ1 PAMW0 PA

MW1 · · · PAMWK

WT
0 A

MP −Q 0 · · · 0
WT

1 A
MP 0 −Λ1 · · · 0

...
...

...
. . .

...
WT

KA
MP 0 0 · · · −ΛK

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣
PAMH

0
0
...
0

⎤⎥⎥⎥⎥⎥⎦F
[
0 E0 E1 · · · EK

]

+

⎡⎢⎢⎢⎢⎢⎣
0
ET

0
ET

1
...

ET
K

⎤⎥⎥⎥⎥⎥⎦FT
[
HTAMP 0 0 · · · 0

]
. (8)



Finite-Time Boundedness Analysis of Uncertain CGNNs 615

From Lemma 2, Θ < 0 is equivalent to the following inequality:

Υ =

⎡⎢⎢⎢⎢⎢⎣
Γ1 PAMW0 PA

MW1 · · · PAMWK

WT
0 A

MP −Q 0 · · · 0
WT

1 A
MP 0 −Λ1 · · · 0

...
...

...
. . .

...
WT

KA
MP 0 0 · · · −ΛK

⎤⎥⎥⎥⎥⎥⎦

+ε−1

⎡⎢⎢⎢⎢⎢⎣
PAMH

0
0
...
0

⎤⎥⎥⎥⎥⎥⎦
[
HTAMP 0 0 · · · 0

]
+ ε

⎡⎢⎢⎢⎢⎢⎣
0
ET

0
ET

1
...

ET
K

⎤⎥⎥⎥⎥⎥⎦
[
0 E0 E1 · · · EK

]

=

⎡⎢⎢⎢⎢⎢⎣
Γ2 PAMW0 PAMW1 · · · PAMWK

WT
0 A

MP −Q+ εET
0 E0 εET

0 E1 · · · εET
0 EK

WT
1 A

MP εE1E
T
0 −Λ1 + εET

1 E1 · · · εET
1 EK

...
...

...
. . .

...
WT

KA
MP εET

KE0 εET
KE1 · · · −ΛK + εET

KEK

⎤⎥⎥⎥⎥⎥⎦ < 0,

where Γ2 = −BTAmP − PAmB + σ(
∑K

i=1 Λk +Q)σ + ε−1PAMHHTAMP .
Continuing to using Schur complement, Υ < 0 is equivalent to the following

LMI:

Υ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 PAMW0 PAMW1 · · · PAMWK PAMH
WT

0 A
MP −Q+ εET

0 E0 εET
0 E1 · · · εET

0 EK 0
WT

1 A
MP εET

1 E0 −Λ1 + εET
1 E1 · · · εET

1 EK 0
...

...
...

. . .
...

...
WT

KA
MP εET

KE0 εET
KE1 · · · −ΛK + εET

KEK 0
HTAMP 0 0 · · · 0 −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

Then, we have
Υ = Υ1 + Υ2,

where Υ2 = diag[αP, 0, 0, · · · , 0].
Furthermore, we can also deduce that

V̇ (x(t)) ≤ ξTΘξ < 0 ⇔ V̇ (x(t)) ≤ ξTΥξ < 0
⇔ V̇ (x(t)) ≤ ξT (Υ1 + Υ2)ξ < 0 ⇒ V̇ (x(t)) ≤ ξTΥ2ξ < 0.

Namely,

V̇ (x(t)) < αxT (t)Px(t) ≤ α[xT (t)Px(t) +
K∑

k=1

∫ t

t−τk

fT (x(s))Λkf(x(s))ds]

= αV (x(t)). (9)
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Multiplying (9) by e−αt, we can get

d
dt

(e−αtV ) < 0, (10)

Integrating (10) from 0 to t, with t ∈ [0, T ], we have

e−αtV (x(t)) ≤ V (x(0)).

Then

V (x(t)) ≤ eαtV (x(0)) = eαt[xT (0)Px(0) +
K∑

k=1

∫ 0

−τk

fT (x(s))Λkf(x(s))ds]

≤ eαT c21[λmax(P ) + τΛλmax(σTσ)]. (11)

Noting that

xT (t)Px(t) ≤ V (x(t)) ⇒ λmin(P )xT (t)x(t) ≤ V (x(t)). (12)

Putting together (11) and (12), we have

‖xT (t)‖2 ≤ eαT c21[λmax(P ) + τΛλmax(σTσ)]
λmin(P )

.

Condition (9) and the above inequality imply

‖xT (t)‖2 < c22, for all t ∈ [0, T ].

The proof is completed.
When ΔWk = 0, k = 0, · · · ,K, we have the following corollary.

Corollary 1. For any bounded delay τk, k = 1, · · · ,K, system (1) is FTB with
respect to (c1, c2, T ), if there exist a nonnegative scalar α, a positive definite
matrix P and positive definite diagonal matrices Q, Λk, k = 1, · · · ,K, such that
the following conditions:⎡⎢⎢⎢⎢⎢⎣

Γ PAMW0 PA
MW1 · · · PAMWK

WT
0 A

MP −Q 0 · · · 0
WT

1 A
MP 0 −Λ1 · · · 0

...
...

...
. . .

...
WT

KA
MP 0 0 · · · −ΛK

⎤⎥⎥⎥⎥⎥⎦ < 0 (13)

and

eαT c21[λmax(P ) + τΛλmax(σTσ)]
λmin(P )

< c22 (14)

hold, where Γ =−BTAmP−PAmB+σ(
∑K

i=1 Λk+Q)σ−αP , σ=diag(σ1, · · · , σn),
AM = diag(αM

1 , · · · , αM
n ), Am = diag(αm

1 , · · · , αm
n ), B = diag(γ1, · · · , γn), Λ =∑K

k=1(λmax(Λk)).
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Fig. 1. The behavior of system (15) with ten state trajectories of random initials

4 Simulation Examples

In this section, we give four numerical examples to illustrate the validity of our
theoretical results by using MATLAB’s LMI toolbox.

Firstly, considering the case that there exist two delays τ1, τ2 and certain
parameters, then system (1) can be rewritten as

ẋ(t) = −a(x(t))[b(x(t)) −W0f(x(t)) −W1f(x(t− τ1))
−W2f(x(t− τ2))], (15)

Example 1. For (15), we choose the parameters as

W0 =
[−2.5 0

1 0.5

]
,W1 =

[
1 0.8
0 −1

]
,W2 =

[−2.3 1.7
1 0

]
,

a(x(t)) =
[
sin(x1) + 1.2 0

0 cos(x2) + 1.3

]
,

f(x(t)) = [0.13 tanh(x1), 0.13 tanh(x2)]T , b(x(t)) = [10 tan(x1), 6 tan(x2)]T .
So, by computing, we can get

0.2 ≤ a1(x1) ≤ 2.2, 0.3 ≤ a1(x1) ≤ 2.3.

Hence,
AM = diag[2.2, 2.3], Am = diag[0.2, 0.3], B = diag[10, 6], σ = diag[0.13, 0.13],

τ1 = 0.8, τ2 = 1.0, c1 = 1.
If α = 0, by Corollary 1, we can get the neural network system (15) is global

asymptotically stable with the minimum boundedness c2 = 4. The solution is
given as follows:

P =
[
0.3978 0.5352
0.5352 1.4503

]
, Q =

[
8.5969 0

0 4.7541

]
, Λ1 =

[
3.0899 0

0 8.0907

]
,

Λ2 =
[
8.0449 0

0 9.5577

]
.
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During the process of simulation, we choose the different initial conditions. The
following simulation picture of system (15) testifies the validity of result. That
is to say, system (15) is global asymptotically stable when τ1 = 0.8s, τ2 = 1.0s.

In this case, system (15) is also FTB with respect to (c1, c2, T ) for a maximum
T = 3.7s, when α = 0.1, c2 = 4.

5 Conclusion

The paper has mainly studied the problem of FTB analysis for uncertain Cohen-
Grossberg neural network with multiple delays. Based on LMI technique, some
sufficient conditions which guarantee the FTB for uncertain and certain CGNNs,
respectively, are derived. In the end, an example has been provided to demon-
strate the validity of the proposed theoretical results.
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Abstract. In this paper, the problem on global dissipativity is investi-

gated for stochastic neural networks with time-varying delays and

generalized activation functions. By constructing appropriate Lyapunov-

Krasovskii functionals and employing stochastic analysis method and lin-

ear matrix inequality (LMI) technique, a new delay-dependent criterion

for checking the global dissipativity of the addressed neural networks is

established in terms of LMIs, which can be checked numerically using the

effective LMI toolbox in MATLAB. The proposed dissipativity criterion

does not require the monotonicity of the activation functions and the

differentiability of the time-varying delays, which means that our result

generalizes and further improves those in the earlier publications. An

example is given to show the effectiveness and less conservatism of the

obtained conditions.

Keywords: Stochastic neural networks, Global dissipativity,

Time-varying delays.

1 Introduction

The dissipativity in dynamical systems is a more general concept and it has
found applications in the areas such as stability theory, chaos and synchroniza-
tion theory, system norm estimation, and robust control [1]. Recently, the dissi-
pativity of neural networks was considered [2], some sufficient conditions on the
dissipativity of delayed neural networks were derived, for example, see [2]-[9] and
references therein. In [2]-[4], authors analyzed the dissipativity of neural network
with constant delays, and derived several sufficient conditions for the global dis-
sipativity of neural network with constant delays. In [5]-[6], authors considered
the global dissipativity and global robust dissipativity for neural network with
both time-varying delays and unbounded distributed delays, several sufficient
conditions for checking the global dissipativity and global robust dissipativity
were obtained. In [7]-[8], by using linear matrix inequality technique, authors
investigated the global dissipativity of neural network with both discrete time-
varying delays and distributed time-varying delays. In [9], authors proposed the

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 619–626, 2010.
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concept on global dissipativity of stochastic neural networks with constant de-
lay, and gave several criteria for checking the global dissipativity of stochastic
neural networks with constant delay. However, time delays can occur in an ir-
regular fashion, and sometimes the time-varying delays are not differentiable. In
such a case, the method developed in [9] may be difficult to be applied, and it
is therefore necessary to further investigate the global dissipativity problem of
stochastic neural networks with time-varying delays under milder assumptions
for the activation functions. To the best of our knowledge, few authors have
considered the problem on the dissipativity of stochastic neural networks with
time-varying delays and generalized activation functions. Therefore, the study
on the dissipativity of stochastic neural networks with with time-varying delays
and generalized activation functions is not only important but also necessary.

Motivated by the above discussions, the objective of this paper is to study
the problem on global dissipativity for stochastic neural networks with time-
varying delays and generalized activation functions. By employing appropriate
Lyapunov-Krasovskii functionals and using stochastic analysis method and LMI
technique, we obtain a new sufficient condition for checking the global dissipa-
tivity of the addressed neural networks.

2 Problem Formulation and Preliminaries

In this paper, we consider the following neural network:

dx(t) = [−Cx(t) +Af(x(t)) +Bf(x(t− τ(t))) + u]dt
+σ(t, x(t), x(t − τ(t)))dω(t) (1)

for t ≥ 0, where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is state vector of the net-
work at time t, n corresponds to the number of neurons; C = diag(c1, c2, · · · , cn)
is a positive diagonal matrix, A = (aij)n×n and B = (bij)n×n are intercon-
nection weight matrices; f(x(t)) = (f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T denotes
neuron activation at time t; u = (u1, u2, · · · , un)T is a external input vector;
τ(t) is the time-varying delay, and is assumed to satisfy 0 ≤ τ(t) ≤ τ , where τ
is constant. σ(t, x(t), x(t − τ(t))) ∈ R

n×n is the diffusion coefficient matrix and
ω(t) = (ω1(t), ω2(t), · · · , ωn(t))T is an n-dimensional Brownian motion defined
on a complete probability space (Ω,F, {Ft}t≥0,P) with a filtration {Ft}t≥0 sat-
isfying the usual conditions (i.e., it is right continuous and F0 contains all P -null
sets). The initial condition associated with model (1) is given by x(s) = φ(s) on
s ∈ [−τ, 0], and φ ∈ L2

F0
([−τ, 0],Rn).

Throughout this paper, we make the following assumptions:

(H1).([10]) For any j ∈ {1, 2, · · · , n}, fj(0) = 0 and there exist constants F−
j

and F+
j such that

F−
j ≤ fj(α1) − fj(α2)

α1 − α2
≤ F+

j

for all α1 �= α2.
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(H2).([9]) There exist two symmetric positive definite matrices R1 > 0 and
R2 > 0 such that the following inequality

trace[σT (t, u, v)σ(t, u, v)] ≤ uTR1u+ vTR2v

holds for all (t, u, v) ∈ R × R
n × R

n.

Definition 1. ([9]) Neural networks (1) is said to be a globally dissipative,
if there exists a compact set S ⊆ R

n, such that ∀φ0 ∈ L2
F0

([−τ, 0],Rn), ∃
T (φ0) > 0, when t ≥ t0 + T (φ0), Ex(t, t0, φ0) ⊆ S, where x(t, t0, φ0) denotes
the trajectory of (2) from initial state φ0 and initial time t0. In this case, S is
called a globally attractive set. A set S is called a positive invariant, if ∀Eφ0 ∈ S
implies Ex(t, t0, φ0) ⊆ S for t ≥ t0.

To prove our result, the following lemmas that can be found in [8] and [9] are
necessary.

Lemma 1. ([8]) The inequality 2aT b ≤ aTQa+bTQ−1b holds for any a, b ∈ R
n

and any Q > 0.

Lemma 2. ([8]) Given constant matrices P , Q and R, where PT = P , QT = Q,
then [

P R
RT −Q

]
< 0

is equivalent to the following conditions

Q > 0 and P +RQ−1RT < 0.

Lemma 3. (Jensen’s inequality [9]) Lete Ω,F,P) be a probability space, X an
integrable real-valued random variable and Ψ : R −→ R a measurable convex
function, with E(|Ψ(X)|) < ∞. Then Ψ(E(X)) < E(Ψ(X)).

3 Main Results

For presentation convenience, in the following, we denote

F1 = diag(F−
1 F+

1 , · · · , F−
n F+

n ), F2 = diag(
F−

1 + F+
1

2
, · · · , F

−
n + F+

n

2
),

Theorem 1. Suppose that (H1) and (H2) hold. If there exist a scalar λ > 0,
six symmetric positive definite matrices Pi (i = 1, 2, · · · , 6), two positive diagonal
matrices L and S, and four matrices Qi (i = 1, 2, 3, 4) such that the following
LMIs hold:

P1 < λI, (2)
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Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Q1 0 Ω15 Q4B Q1 Q1 Q2 Q4 0 0
∗ Ω22 0 0 Q3A Q3B 0 0 0 0 Q3 0
∗ ∗ Ω33 Q2 0 F2S 0 0 0 0 0 Q2
∗ ∗ ∗ −P2 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −L 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −S 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ − 1

τ P3 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −P1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P5 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

τ P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3)

where Ω11 = −Q1 − QT
1 + P2 − F1L − Q4C − CQT

4 + P6 + λ(1 + τ)R1, Ω12 =
P1 −Q4 −CQT

3 , Ω15 = F2L+Q4A, Ω22 = τP3 −Q3 −QT
3 , Ω33 = −Q2 −QT

2 −
F1S + λ(1 + τ)R2, then model (1) is globally dissipative, and

S =
{
z : |z| ≤

√
uT (P4 + P5)u
λmin(P6)

, z ∈ R
n
}

(4)

is a positive invariant and globally attractive set.

Proof. Let y(t) = −Cx(t)+Af(x(t))+Bf(x(t−τ(t)))+u, α(t) = σ(t, x(t), x(t−
τ(t))), then model (1) is rewritten as

dx(t) = y(t)dt+ α(t)dω(t). (5)

Consider the following Lyapunov-Krasovskii functional as

V (t, x(t)) = xT (t)P1x(t) +
∫ t

t−τ

xT (s)P2x(s)ds +
∫ 0

−τ

∫ t

t+θ

yT (s)P3y(s)ds

+
∫ 0

−τ

∫ t

t+θ

trace[αT (s)P1α(s)]dsdθ. (6)

By Itô differential rule, the stochastic derivative of V (t) along the trajectory of
model (1) can be obtained as

dV (t, x(t)) =
{
2xT (t)P1y(t) + xT (t)P2x(t) − xT (t− τ)P2x(t− τ)

+τyT (t)P3y(t) −
∫ t

t−τ

yT (s)P3y(s)ds

+(1 + τ)trace[αT (t)P1α(t)] −
∫ t

t−τ

trace[αT (s)P1α(s)]ds
}
dt

+[xT (t)P1α(t) + αT (t)P1x(t)]dω(t). (7)
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Integrating both sides of (5) from t− τ(t) to t, by Lemma 1 and noting τ(t) ≤ τ ,
we have

0 = −2xT (t)Q1

[
x(t) − x(t− τ(t)) −

∫ t

t−τ(t)
y(s)ds−

∫ t

t−τ(t)
α(s)dω(s)

]
≤ xT (t)

(
− 2Q1 + τQ1P

−1
3 QT

1 +Q1P
−1
1 QT

1

)
x(t)

+2xT (t)Q1x(t− τ(t)) +
∫ t

t−τ(t)
yT (s)P3y(s)ds

+
(∫ t

t−τ(t)
α(s)dω(s)

)T

P1

( ∫ t

t−τ(t)
α(s)dω(s)

)
. (8)

Integrating both sides of (5) from t− τ to t− τ(t), by using of the same way, we
get

0 ≤ xT (t− τ(t))
(
− 2Q2 + τQ2P

−1
3 QT

2

)
x(t− τ(t)) + 2xT (t− τ(t))Q2x(t− τ)

+
∫ t−τ(t)

t−τ

yT (s)P3y(s)ds + xT (t)Q2P
−1
1 QT

2 x(t)

+
(∫ t−τ(t)

t−τ

α(s)dω(s)
)T

P1

( ∫ t−τ(t)

t−τ

α(s)dω(s)
)
. (9)

From assumption (H1), we have [10][
x(t)

f(x(t))

]T [
F1L −F2L
−F2L L

] [
x(t)

f(x(t))

]
≤ 0 (10)

and [
x(t− τ(t))

f(x(t− τ(t)))

]T [
F1S −F2S
−F2S S

] [
x(t− τ(t))

f(x(t− τ(t)))

]
≤ 0. (11)

From the definition of y(t) and Lemma 1, we have

0 = 2
(
yT (t)Q3 + xT (t)Q4

)[
− y(t) − Cx(t) +Af(x(t))

+Bf(x(t− τ(t))) + u
]

≤ xT (t)(−2Q4C +Q4P
−1
5 QT

4 )x(t) − 2xT (t)(Q4 + CQT
3 )y(t)

+2xT (t)Q4Af(x(t)) + 2xT (t)Q4Bf(x(t − τ(t)))
+yT (t)(−2Q3 +Q3P

−1
4 QT

3 )y(t) + 2yT (t)Q3Af(x(t))
+2yT (t)Q3Bf(x(t− τ(t))) + uT (P4 + P5)u. (12)

From assumption (H2) and condition (2), we get

trace[αT (t)P1α(t)] ≤ λ[xT (t)R1x(t) + xT (t− τ(t))R2x(t− τ(t))]. (13)
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From the proof of [11], we have

E

{(∫ t−τ(t)

t−τ

α(s)dω(s)
)T

P1

( ∫ t−τ(t)

t−τ

α(s)dω(s)
)}

= E

{∫ t−τ(t)

t−τ

trace[αT (s)P1α(s)]ds
}
, (14)

E

{(∫ t

t−τ(t)
α(s)dω(s)

)T

P1

(∫ t

t−τ(t)
α(s)dω(s)

)}
= E

{∫ t

t−τ(t)
trace[αT (s)P1α(s)]ds

}
. (15)

Taking the mathematical expectation on both sides of (7), it follows from (7) to
(15) that

dEV (t, x(t)) ≤ E

{
− xT (t)P6x(t) + uT (P4 + P5)u+ ξT (t)Πξ(t)

}
dt, (16)

where ξ(t) =
(
xT (t), yT (t), xT (t − τ(t)), xT (t − τ), fT (x(t)), fT (x(t − τ(t)))

)T

,
and

Π =

⎡⎢⎢⎢⎢⎢⎢⎣
Π1 P1 −Q4 − CQT

3 Q1 0 F2L+Q4A Q4B
∗ Π2 0 0 Q3A Q3B
∗ ∗ Π3 Q2 0 F2S
∗ ∗ ∗ −P2 0 0
∗ ∗ ∗ ∗ −L 0
∗ ∗ ∗ ∗ ∗ −S

⎤⎥⎥⎥⎥⎥⎥⎦
with Π1 = −Q1 − QT

1 + τQ1P
−1
3 QT

1 + Q1P
−1
1 QT

1 + P2 + Q2P
−1
1 QT

2 − F1L −
Q4C −CQT

4 +Q4P
−1
5 QT

4 +P6 +λ(1 + τ)R1, Π2 = τP3 −Q3 −QT
3 +Q3P

−1
4 QT

3 ,
Π3 = −Q2 −QT

2 + τQ2P
−1
3 QT

2 − F1S + λ(1 + τ)R2.
It is easy to verify the equivalence of Π < 0 and Ω < 0 by using Lemma 2.

Thus, one can derive from condition (3), inequality (17) and Lemma 3 that

dEV (t, x(t)) ≤ E

{
− xT (t)P6x(t) + uT (P4 + P5)u

}
dt

≤
{
− λmin(P6)|Ex(t)|2 + uT (P4 + P5)u

}
dt < 0 (17)

when Ex(t) ∈ R
n\S. Hence,

EV (t, x(t)) < EV (t0, x(t0))

From (6), we can get that

EV (t, x(t)) ≥ λmin(P1)E|x(t)|2 ≥ λmin(P1)|Ex(t)|2.
So we can easily see that there exists a T (t0, ϕ0) such that Ex(t) ∈ S for t >
t0 + T (t0, ϕ0). By Definition 1, the stochastic neural network (1) is globally
dissipative and S is an attractive set in mean of it. The proof is completed.
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Remark 1. When the time-varying delay τ(t) of model (1) is not differentiable,
the method developed in [9] may be difficult to derive the dissipativity criterion
of model (1). To overcome the difficult, we structure a new Lyapunov-Krasovskii
functional (6) in this paper. So, the obtained result is new.

4 An Example

Consider a two-neuron neural network (1), where

C =
[

0.4 0
0 0.3

]
, A =

[−0.1 0.3
−0.1 0.2

]
, B =

[−0.4 0.2
0.3 0.1

]
, u =

[
1.2
−0.9

]
,

f1(z) = tanh(0.2z), f2(z) = tanh(−0.1z), τ(t) = 0.2| sin t|.

σ(t, x(t), x(t−τ(t))) =
[

0.1x1(t) + 0.3x1(t− τ(t)) 0
0 −0.2x2(t) + 0.1x2(t− τ(t))

]
.

It can be verified that assumptions (H1) and (H2) are satisfied, and F1 = 0,

F2 = diag{0.1,−0.05}, R1 =
[

0.04 0
0 0.06

]
, R1 =

[
0.12 0
0 0.03

]
, τ = 0.2.

By the Matlab LMI Control Toolbox, we find a solution to the LMIs (2) and
(3) as follows:

P1 =
[

97.6256 0.6636
0.6636 88.4531

]
, P2 =

[
30.7742 0.4516
0.4516 18.0988

]
, P3 =

[
42.5011 −0.1326
−0.1326 38.8319

]
,

P4 =
[
139.7012 0.3138
0.3138 140.5565

]
, P5 =

[
381.9800 −4.2125
−4.2125 367.5476

]
, P6 =

[
5.6510 0.0938
0.0938 4.9914

]
,

Q1 =
[

9.3411 0.9634
−1.7783 10.1721

]
, Q2 =

[
22.0716 0.2684
0.2797 13.7402

]
, Q3 =

[
40.0101 6.2630
−6.8178 46.9272

]
,

Q4 =
[

90.0020 −2.6613
2.8820 79.7409

]
, L=

[
124.9855 0

0 214.9204

]
, S=

[
230.4348 0

0 167.3793

]
,

λ = 117.8144.

Therefore, by Theorem 1, we know that the considered model (1) is globally
dissipative. It is easy to compute that the positive invariant and global attractive
set are

S =
{
z : |z| ≤ 15.3383, z ∈ R

n
}
.

It should be pointed out that the conditions in [9] can not be applied to check
the dissipativity for this example since it require that the delay is constant, and
activation functions are monotonic or bounded.



626 J. Zhou, Q. Song, and J. Yang

5 Conclusions

In this paper, the global dissipativity has been investigated for stochastic neural
networks with time-varying delays and generalized activation functions. By con-
structing appropriate Lyapunov-Krasovskii functionals and employing stochastic
analysis method and linear matrix inequality (LMI) technique, a new delay-
dependent criterion for checking the global dissipativity of the addressed neural
networks has been established in terms of LMIs, which can be checked numer-
ically using the effective LMI toolbox in MATLAB. The obtained result gener-
alizes and improves the earlier publications. An example has been provided to
demonstrate the effectiveness and less conservatism of the proposed criterion.
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Multistability Analysis: High-Order Networks
Do Not Imply Greater Storage Capacity Than

First-Order Ones

Zhenkun Huang
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Abstract. This paper presents new multistability of the networks with

high-order interconnection. We construct invariant regions and establish

new criteria of coexistence of equilibria which are exponentially stable.

Our results show that high-order interactions of neurons may have lower

storage capacity than first-order ones. Numerical simulations will illus-

trate our new and interesting results.

Keywords: Multistability, high-order networks, division regions,

exponential stability.

1 Introduction

The analog neural networks are widely investigated due to their important appli-
cations such pattern recognition, associative memories and optimization [1] and
the dynamical behavior has been discussed extensively [2,3,4,5,6,7,8,9,10] and so
on. It should be noted that authors in [2] pointed out that neural models with
high-order synaptic connectivity would improve dramatically their storage ca-
pacity. Meanwhile, in many previous works such as [3,4], authors claim that one
of their main motivations of research of high-order neural networks relies on the
basic facts: High-order neural networks have greater storage capacity and higher
fault tolerance than lower-order ones. Hence, an interesting and serious question
arises: Does high-order synaptic connectivity always imply faster convergence
and greater storage capacity?

Strongly motivated by the question, we should consider the following general
class of networks with high-order synaptic connectivity:

duk(t)
dt

= −bkuk(t) +
N∑

j=1

wkjgj

(
uj(t)

)
+

N∑
j=1

N∑
l=1

ekjlgj

[
uj(t− τkj(t))

]
gl

[
ul(t− τkl(t))

]
+ Ik, (1)

where k, j, l ∈ N :=
{
1, 2, · · · , N}

. We will derive some criteria guaranteeing
the existence and exponential stability of equilibria for any designated region
and show that our results drop some conservative assumptions which should be
satisfied in [5-8], [10] and improve the existing ones.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 627–634, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Preliminaries

Denote by C([t0− τ, t0],RN
)

the space of all continuous functions mapping [t0−
τ, t0] into R

N with the norm ‖Φ‖ = maxk∈N
[
supt0−τ≤s≤t0 |φk(s)|], where Φ =(

φ1, φ2, · · · , φN

) ∈ C([t0 − τ, t0],RN
)
, 0 < τ < +∞. Let uΦ(t) be the solution of

system (1) with Φ ∈ C([t0 − τ, t0],RN
)
. For each k, j, l ∈ N , we assume that

(H1) bk > 0, wkj , ekjl and Ik are constants, wkk ≥ 0, 0 ≤ τkj(t) ≤ τ :=
maxk,j∈N {τkj}.
(H2) Each gj(·) satisfies gj(·) ∈ C2, ġj(·) > 0 and limυ→−∞ gj(υ) = ǧj <
gj(υ) < ĝj = limυ→+∞ gj(υ) < +∞. Moreover, there is a �j ≥ 0 such that
(υ − �j)g̈j(υ) < 0 for all υ ∈ R/{�j}.

The assumption (H2) implies that each gj(·) has basic properties:

(P1) |gj(υ)| ≤ g�
j := max{|ĝj|, |ǧj |} for all υ ∈ R.

(P2) supυ∈R
ġj(υ) = ġj(�j) and limυ→±∞ ġj(υ) = infυ∈R ġj(υ) = 0.

(P3)ġj(υ) is strictly increasing on (−∞, �j ] and is strictly decreasing on [�j ,+∞).

Define the following functions (k = 1, 2, · · · , N):

F �
k(υ) := (−1)�

[∑
j �=k

|wkj |g�
j +

N∑
j=1

N∑
l=1

|ekjl|g�
jg

�
l

]
+ Fk(υ) + Ik, (2)

where Fk(υ) := −bkυ + wkkgk(υ) and " = 1, 2. Since bk > 0 and wkk ≥ 0 hold,
there are only two cases for us to discuss:

Case I. (HD
gk

) bk < wkk sup
υ∈R

ġk(υ) = wkk ġk(�k).

Similarly as [7-8], if (HD
gk

) holds then there exist only two points pk and qk with
pk < �k < qk such that Ḟk(pk) = Ḟk(qk) = 0 and Ḟk(υ) ·sgn{(υ−pk)(υ−qk)

}
<

0, where υ ∈ R and υ �= pk, qk. Due to Ḟk(υ) < 0 for υ ∈ (−∞, pk) and
limυ→−∞ F 2

k (υ) = +∞, if F 2
k (pk) < 0, then there exists a unique point p†k with

p†k < pk such that F 2
k (p†k) = 0 and F 2

k (υ) < 0 for υ ∈ (p†k, pk]. Similarly, due
to Ḟk(υ) < 0 for υ ∈ (qk,+∞) and limυ→+∞ F 1

k (υ) = −∞, if F 1
k (qk) > 0, then

there exists a unique point q†k with qk < q†k such that F 1
k (q†k) = 0 and F 1

k (υ) > 0
for υ ∈ [qk, q

†
k).

Case II. (HU
gk

) bk ≥ wkk sup
υ∈R

ġk(υ) = wkk ġk(�k).

It is obvious that Ḟk(υ) ≤ 0, Ḟk(υ) = 0 if and only if ġk(υ) = bk/wkk and
υ = �k. Due to limυ→±∞ F 2

k (υ) = ∓∞ and the continuity of F 2
k (υ), if Ḟk(υ) < 0

(υ �= �k), then there exists only one point q‡k such that F 2
k (q‡k) = 0 and F 2

k (υ) < 0
for all υ ∈ (q‡k,+∞). Similar argument can derive that there exists only one point
p‡k with p‡k < q‡k such that F 1

k (p‡k) = 0 and F 1
k (υ) > 0 for all υ ∈ (−∞, p‡k).
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Definition 1. Ñ := (N1,N2,N3) is said to be a division of N if and only
if (i)N2 ⊆ {

k ∈ N ∣∣(HU
gk

) holds
}
, N1 ⊆ {

k ∈ N ∣∣(HD
gk

) holds and F 2
k (pk) <

0
}
, N3 ⊆ {

k ∈ N ∣∣(HD
gk

) holds and F 1
k (qk) > 0

}
; (ii)N1 ∩ N3 is empty and

N1 ∪N2 ∪ N3 = N .

For each division Ñ = (N1,N2,N3) of N , we always let ΣÑ :=
{
u ∈ R

N
∣∣uk ∈

(−∞, p†k], k ∈ N1; uk ∈ [p‡k, q
‡
k], k ∈ N2; uk ∈ [q†k,+∞), k ∈ N3

}
and ΣÑ is

said be a division region of R
N with respect to the division Ñ . Without otherwise

statement, we always designate � = 1, 2, 3 and �1
j := p†j for j ∈ N1, �2

j := �j for
j ∈ N2, �3

j := q†j for j ∈ N3.

3 Main Results

Theorem 1. Assume that (H1)-(H2) hold. For each division Ñ = (N1,N2,N3)
of N , if

2bk −
N∑

j=1

[
|wkj | +

N∑
l=1

(|ejkl| + |ejlk|)g�
l

]
ġk(�i

k)

>

3∑
�=1

∑
j∈N�

[
|wkj | +

N∑
l=1

(|ekjl| + |eklj |)g�
l

]
ġj(��j ), k ∈ Ni (3)

hold, then it follows that (a) Each ΣÑ is a positively invariant set of system (1);
(b) System (1) has an equilibrium in ΣÑ which is locally exponentially stable.

Proof. (a) Consider any solution uΦ(t) = (uΦ
1 (t), · · · , uΦ

N (t)) with initial condition
Φ = (φ1, · · · , φN ) ∈ C([t0 − τ, t0], ΣÑ

)
. We claim that the solution uΦ(t) ∈ ΣÑ

for all t ≥ t0. Contrarily, there are three cases for us to discuss:

Case 1. As k ∈ N1 and there exist a sufficiently small constant ε > 0 (ε �
pk − p†k) and t1 > t0 such that uΦ

k (t1) = p†k + ε, u̇Φ
k (t1) ≥ 0 and uΦ

k (t) ≤ p†k for
t0−τ ≤ t < t1. Due to wkk ≥ 0, (H2), Case I of Section 2 and local monotonicity
of gk(·), it follows from system (1) that

u̇Φ
k (t1) ≤ Fk(p†k + ε) +

∑
j �=k

|wkj |g�
j +

N∑
j=1

N∑
l=1

|ekjl|g�
jg

�
l + Ik = F 2

k (p†k + ε) < 0.

This contradicts that u̇Φ
k (t1) ≥ 0. Therefore uΦ

k (t) ≤ p†k for t ≥ t0, k ∈ N1.

Case 2. As k ∈ N2 and there exist a sufficiently small constant ε > 0 (ε �
q‡k − p‡k) and t1 > t0 such that either uΦ

k (t1) = q‡k + ε, u̇Φ
k (t1) ≥ 0 and uΦ

k (t) ≤ q‡k
for t0−τ ≤ t < t1 or uΦ

k (t1) = p‡k−ε, u̇Φ
k (t1) ≤ 0 and uΦ

k (t) ≥ p‡k for t0−τ ≤ t < t1.
We only consider the first subcase. From system (1), due to wkk ≥ 0, (H2), Case
II of Section 2 and local monotonicity of gk(·), we get

u̇Φ
k (t1) ≤ Fk

(
q‡k + ε

)
+

∑
j �=k

|wkj |g�
j +

N∑
j=1

N∑
l=1

|ekjl|g�
jg

�
l + Ik = F 2

k

(
q‡k + ε

)
< 0.
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This contradicts that u̇Φ
k (t1) ≥ 0. Therefore uΦ

k (t) ≤ q‡k for t ≥ t0, k ∈ N2. The
second subcase can be proved similarly. Hence we have p‡k ≤ uΦ

k (t) ≤ q‡k for
t ≥ t0 , k ∈ N2.

Case 3. As k ∈ N3 and there exist a sufficiently small constant ε > 0 (ε �
q†k − qk) and t1 > t0 such that uΦ

k (t1) = q†k − ε, u̇Φ
k (t1) ≤ 0 and uΦ

k (t) ≥ q†k for
t0 − τ ≤ t < t1. From system (1), due to wkk ≥ 0, (H2), Case I of Section 2 and
local monotonicity of gk(·), we get

u̇Φ
k (t1) ≥ Fk(q†k − ε) −

∑
j �=k

|wkj |g�
j −

N∑
j=1

N∑
l=1

|ekjl|g�
jg

�
l + Ik = F 1

k (q†k − ε) > 0.

This contradicts that u̇Φ
k (t1) ≤ 0. Therefore uΦ

k (t) ≥ q†k for t ≥ t0, k ∈ N3. From
Case 1 to Case 3, we know that ΣÑ is a positively invariant set of system (1).

(b)Let uΦ(t) and uΨ (t) be any two solutions of system (1) with Φ(s), Ψ(s) ∈
C([t0 − τ, t0], ΣÑ

)
, respectively. By the positive invariance of ΣÑ , we get that

uΦ(t), uΨ (t) ∈ ΣÑ for all t ≥ t0. Define �k(t) = uΦ
k (t)−uΨ

k (t), k ∈ N and t ≥ t0.
It follows from system (1) that

d�k(t)
dt

= −bk�k(t) +
N∑

j=1

wkj

[
gj(uΦ

j (t)) − gj(uΨ
j (t))

]

+
N∑

j=1

N∑
l=1

ekjl

[
gj

(
uΦ

j (t− τkj(t))
)
gl

(
uΦ

l (t− τkl(t))
)

−gj

(
uΨ

j (t− τkj(t))
)
gl

(
uΨ

l (t− τkl(t))
)]
, (4)

Define H (�)(t) :=
N∑

k=1
�k(t)2/2 for t ≥ t0, where �(t)= (�1(t),�2(t),· · · ,�N (t)).

From (4), applying a2 + b2 ≥ 2ab, we compute that

d

dt
H (�)(t) ≤ −

N∑
k=1

{
bk −

N∑
j=1

|wjk|
2

ġk(�i(k)
k ) −

3∑
�=1

∑
j∈N�

[
N∑

l=1

(|ekjl| + |eklj |)g�
l

2

+
|wkj |

2

]
ġj(��j )

}
�k(t)2 +

N∑
k=1

N∑
j=1

N∑
l=1

(|ejkl| + |ejlk|)g�
l

2
ġk(�i(k)

k )

× sup
s∈[t−τ,t]

�k(s)2 ≤ −�H (�)(t) + � sup
s∈[t−τ,t]

H (�)(s),

where ġk(�i(k)
k ) := ġk(�i

k) as k ∈ Ni and

2�:= min
1≤ k≤ N

{
2bk −

N∑
j=1

|wjk|ġk(�i(k)
k )
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−
3∑

�=1

∑
j∈N�

[
|wkj | +

N∑
l=1

(|ekjl| + |eklj |)g�
l

]
ġj(��j )

}
,

2�:= max
1≤k≤N

{
N∑

j=1

N∑
l=1

(|ejkl| + |ejlk|)g�
l ġk(�i(k)

k )

}
.

It follows from (3) that

H (�)(t) ≤ sup
s∈[−τ,0]

H (�)(s) exp(−� t), t ≥ 0 (5)

where � is the unique solution of � = �− � e� τ . Then it follows

N∑
k=1

�k(t)2 ≤ sup
s∈[−τ,0]

N∑
k=1

�k(s)2 exp(−� t), t ≥ 0.

By the Cauchy convergence principle, uΦ(t) approaches a unique constant vector
u∗ which is an equilibrium of system (1) in ΣÑ . From (5), we know that u∗ is
locally exponentially stable in ΣÑ .

Remark 1. In [5-8] and [10], (HD
gk

), F 2
k (pk) < 0 and F 1

k (qk) > 0 should be
satisfied for all k ∈ N . These conservative ones are relaxed in our theorem.

Theorem 2. Assume that (H1)-(H2) hold, Ñ = (N1,N2,N3) is a division of N
and

N∑
j=1

|wkj |g�
j +

N∑
l=1

N∑
j=1

|ekjl|g�
jg

�
l <

⎧⎨⎩ bkpk − Ik, k ∈ N1

−bkqk + Ik, k ∈ N3

(6)

Reset

p†
k :=

Ik +
N∑

j=1

|wkj |g�
j +

N∑
l=1

N∑
j=1

|ekjl|g�
jg

�
l

bk
, q†k :=

Ik −
N∑

j=1

|wkj |g�
j −

N∑
l=1

N∑
j=1

|ekjl|g�
jg

�
l

bk
.

Then system (1) has a unique globally exponentially stable equilibrium in ΣÑ .

Proof. The proof is similar to [9], we omit it here.

Remark 2. Our results can complement or improve the previous ones [7,8] and
make the research method adopted in [5,6] and [10] more flexible for multistable
analysis of neural networks.

4 Numerical Simulations

Consider the networks with two neurons:

duk(t)
dt

= −bkuk(t) +
2∑

j=1

wkjgj(uj(t)) + Ik
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+
2∑

j=1

2∑
l=1

ekjlgj

[
uj(t− τkj(t))

]
gl

[
ul(t− τkl(t))

]
, k = 1, 2. (7)

Simulation 1. We let b1 = 1, b2 = 3, I1 ≡ −4, I2 ≡ −7.5, W = (wkj)2×2 =(
8 0.5

0.1 15

)
, E(1) = (e1kj) = 0, E(2) = (e2kj) = 0, τkj(t) ≡ 0, gj(υ) := 1

1+e−υ .

Obviously, (H1)-(H2) hold and existing results in [3,4] are not applicable. Let
F1(υ) = −υ + 8g1(υ) and F2(υ) = −3υ + 15g2(υ). We can check that (HD

g1
),

(HD
g2

) hold and p1 ≈ −1.763, q1 ≈ 1.763, p2 ≈ −0.962, q2 ≈ 0.962.There
exist 4 divisions Ñ1 = (∅, ∅, {1, 2}), Ñ2 = ({1}, ∅, {2}), Ñ3 = ({1, 2}, ∅, ∅),
Ñ4 = ({2}, ∅, {1}) of N = {1, 2} satisfying (3). From Theorem 1, we can check
that system (7) has an equilibrium in each division region Ml := ΣÑl

which
is locally exponentially attractive (l = 1, 2, 3, 4). Fig. 1 shows the four division
regions and the phase view of four equilibria of system (7) without high-order
interconnections.

Simulation 2. Let b1 = 1, b2 = 3, I1 ≡ −4, I2 ≡ −5, W = (wkj)2×2 =(
8 0.1

0.1 15

)
, E(1) = (e1kj)2×2 =

(
0.1 0.1
0 0.1

)
, E(2) = (e2kj)2×2 =

(
2 0

0.1 0.5

)
,

gj(υ) ≡ g(υ) := 1
1+e−υ , τkj(t) ≡ 10, k, j = 1, 2.

From Theorem 1, there exist only two locally exponentially attractive equi-
libria of system (7). For the phase view of system (7) with high-order intercon-
nections, we can refer to Fig. 2.

Simulation 3. Let

b1 = 4, b2 = 8, I1 ≡ 3, I2 ≡ −2, W = (wkj)2×2 =
(

2 0
0 4

)
, τkj(t) ≡ 10
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Fig. 1. The phase view of system (7) without high-order interconnections
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Fig. 3. The trajectory versus time of system (7) with high-order interconnections

E(1) =
(

0.01 0.1
0 0.1

)
, E(2) =

(
0.2 0
0.1 0.1

)
, gj(υ) ≡ g(υ) :=

eυ − e−υ

eυ + e−υ
, k, j = 1, 2.

We can check that (H1)-(H2), (HU
g1

) and (HU
g2

) hold. Then there exists only one
division Ñ = (∅, {1, 2}, ∅) of N = {1, 2} satisfying (10). From Theorem 2, there
exists a unique globally exponentially attractive equilibrium of system (7) in
M := ΣÑ . Fig. 3 shows the trajectory of state variable (u1, u2) of system (7).
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Remark 3. Simulation 2 shows that the high-order synaptic connectivity impose

additional load
N∑

l=1
(|ekjl|+ |eklj |)g�

l (refer to (3)) to system (7) and hence system

(7) has only two division regions which are invariant and locally attractive. The
interesting phenomena show that high-order interactions of neurons may have
less storage capacity than first-order ones.

5 Concluding Remarks

In this paper, we reveal a new result that high-order synaptic connectivity im-
poses an additional load to neural system and hence may reduce storage ca-
pacities; This conclusion refutes traditional viewpoint: high-order interactions of
neurons have greater storage capacity than first-order ones.

Acknowledgments. This work was supported by the Foundation for Young
Professors of Jimei University, the Scientific Research Foundation of Jimei Uni-
versity, the Foundation for Talented Youth with Innovation in Science and Tech-
nology of Fujian Province (2009J05009).
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Abstract. This paper discusses about the existence and uniqueness of

periodic solutions of Logistic model with discrete and distributed delay.

By using a Lyapunov function which unlike the former method, the con-

ditions of existence and uniqueness of periodic solutions for this Logistic

model are obtained. The result of this paper extend results of periodic

solutions for the delay differential equations.

Keywords: Logistic model, Lyapunov function, Periodic solutions.

1 Introduction

In this work, we consider a new general Logistic model with discrete and dis-
tributed delay, mainly discuss the existence and uniqueness of periodic solutions
of this system:

dx(t)
dt

= x(t)[r(t) − a(t)x(t − τ) − b(t)

+∞∫
0

k(s)G(x(t − s))ds] (1)

with initial condition x(t) = φ(t), φ(0) = 0 for all t ≤ 0, where φ(t) : (−∞, 0] →
[0,+∞) is continues and bounded with φ(0) = 0. k : [0,+∞) → [0,+∞) is a
piecewise continuous function and satisfies

+∞∫
0

k(s)ds = 1, δ =

+∞∫
0

sk(s)ds < +∞ (2)

r(t), a(t), b(t) are almost periodic on R, and for any t ∈ R satisfy

0 < r0 ≤ r(t) ≤ r1 < ∞, 0 < a0 ≤ a(t) ≤ a1 <∞, 0 < b0 ≤ b(t) ≤ b1 < ∞ (3)

G(u) is a continuous function, and satisfies

G(0) = 0, G(u) ≥ u > 0, 0 < l0 ≤ G′(u) ≤ l1 < ∞ (4)

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 635–642, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This work’s results extend results of [1-4]. Set G(u) = u, then system (1) is
reduced to the model (5) of [2]

N ′(t) = N(t)[a(t) − c(t)N(t− τ) − b(t)

+∞∫
0

k(s)N(t− s)ds] (5)

We lead the discrete delay τ into the model of [1], then system (1) can be
obtained. Set a(t) = 0, G(u) = u, then system (1) is reduced to the model (6) of
[3-4]

N ′(t) = N(t)[a(t) − b(t)

+∞∫
0

k(s)N(t− s)ds] (6)

2 Preliminaries

In the [1,5], as we know, one can study the existence and uniqueness of periodic
solutions for the function differential equations by using a Lyapunov function as
Theorem A. in [1]. And we can get the following lemmas.

Lemma 2.1. Assume x(t) is a solution of system (1) corresponding to the initial
condition φ(t), then x(t) > 0 for all t ≥ 0.

Proof. Assume when 0 ≤ t ≤ t1, x(t1) = 0. Define z(t) on 0 ≤ t < t1 :
z(t) = lnx(t), then we can obtained that limt→t−1

z(t) = −∞. Since z′(t) =

1
x(t)x

′(t) = r(t) − a(t)ez(t−τ) − b(t)
+∞∫
0

k(s)G(ez(t−s))ds, from (2)(3) and (4) we

can obtain that z′(t) bounded, then z(t) bounded is obtained. This contradicts
limt→t−1

z(t) = −∞. Then for any t ≥ 0, x(t) > 0 is obtained.

Lemma 2.2. Assume that conditions (2)-(4) hold, for any solution x(t) of system
(1) corresponding to the initial condition φ(t) bounded for all t ≥ 0.

Proof. Assume x(t) is a solution of system (1), then follows Lemma 2.1. that
x(t) > 0 for all t ≥ 0. From (1), we have x′(t) < x(t)r(t). It follows for t ≥ s > 0

that x(t) < x(t− s)exp[
t∫

t−s

r(t)dt] ≤ x(t− s)er1s, which implies that x(t)e−r1s <

x(t−s), t ≥ s > 0, and x(t)e−r1τ < x(t−τ), t ≥ τ. Follows from (2) we have that

∀ B0 > ε > 0, ∀ t > T, ∃ T > 0 s.t. b0
+∞∫
t

k(s)e−r1sds < ε. Then from t > T + τ

we get

x′(t) ≤ x(t)[r(t) − a(t)x(t− τ) − b(t)

t∫
0

k(s)G(x(t − s))ds]
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< x(t)[r1 − a0x(t)e−r1τ − b0

t∫
0

k(s)x(t)e−r1sds]

< r1x(t) − [B0 − ε]x2(t),

where B0 = a0e
−r1τ + b0

+∞∫
t

k(s)e−r1sds.

Set z(t) = 1
x(t) , then we have that z′(t) > −r1z(t) +B0 − ε for all t > T + τ ,

so z(t) > z(0)e−r1τ + (B0−ε)(1−e−r1t)
r1

, for all t > T +τ , which implies that x(t) <
x(0)r1

r1e−r1t+(B0−ε)(1−e−r1t) . Then we have that limt→+∞ supx(t) ≤ r1
B0−ε < r1

B0
.

This means that x(t) is upper bounded for t ≥ 0. So there exists a nonnegative
constant β such that 0 < x(t) ≤ r1

B0
+ β for any t ≥ 0.

Let M(t) = lnx(t), for any t ≥ 0, system (1) can be written as

M ′(t) = r(t) − a(t)eM(t−τ) − b(t)

+∞∫
0

k(s)G(eM(t−s))ds (7)

From condition (2), we obtain δ =
+∞∫
0

sk(s)ds =
+∞∫
0

t∫
t−s

k(s)dvds < +∞. Let

M1 = ln( r1
B0

+ β), then M(t) ≤ M1 for t ≥ 0. And We have

M2 = sup
t≥0

+∞∫
0

t∫
t−s

b(v + s)k(s)G(eM(v))dvds < +∞,

M3 = sup
t≥0

t∫
t−τ

a(s + τ)eM(s)ds < +∞.

Assume that there exists a constant A = M2 +M3 > 0 satisfies that for M(t) <
−A, it have r0 − a1e

M(t) − b1G(eM(t)) > 0.
Consider a Lyapunov function as follows

V (t) = [M(t) −
t∫

t−τ

a(s+ τ)eM(s)ds−
+∞∫
0

t∫
t−s

b(v + s)k(s)G(eM(v))dvds]2 (8)

Let B > max{(M1 +M2 +M3)2, (|M(0)|+M2 +M3)2, (A+M2 +M3)2}, then
V (0) < B and the derivative of V (t) along the solution of system (8) is

V ′
(8)(t) = 2[M(t) −

t∫
t−τ

a(s+ τ)eM(s)ds−
+∞∫
0

t∫
t−s

b(v + s)k(s)G(eM(v))dvds]

×[r(t) − a(t+ τ)eM(t) −G(eM(t))

+∞∫
0

b(t + s)k(s)ds].
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Let t̄ = sup{t|0 ≤ t1 ≤ t, V (t1) ≤ B}, then t̄ = +∞. Otherwise, if t̄ < +∞, then
there exists a σ such that V (t1) = B, V (t) > B for t̄ < t < t̄ + σ. Since M(t) ≤
M1(t ≥ 0), then sup−A≤M(t)≤M1

(M(t)−M2−M3)2 < B, so we haveM(t̄) < −A.
SinceV ′

(8)(t̄) < 0, so V (t) < V (t̄) = B. This contradicts V (t) > B(t̄ < t < t̄+ σ).
So for any t ≥ 0, we have V (t) ≤ B. From (7), there exists a constant m such
that M(t) > m for t ≥ 0. It follows that 0 < m1 � em ≤ x(t) ≤ r1

B0
+ β(t ≥ 0).

3 The Existence and Uniqueness of Periodic Solution

Theorem 3.1. Assume that conditions (2)-(4) hold, and

r1b1δ(a2
1 + l21 + 2b1l21) + r1a1b1τ(1 + l21) + 2τr1a2

1 ≤ 2B0(a0 + b0l0) (9)

+∞∫
0

s2k(s)ds < +∞ (10)

Then there exists a unique periodic solution x̃(t) of the system (1), and 0 <
m1 ≤ x̃(t) ≤ r1

B0
for all t ∈ R, limt→+∞(x(t) − x̃(t)) = 0 , where x(t) is an

arbitrary solution of system (1).

Proof. From Lemma 2.1. and Lemma 2.2., we can know that

N ′(t) = r(t) − a(t)eN(t−τ) − b(t)

+∞∫
0

k(s)G(eN(t−s))ds] (11)

N(t) = lnx(t),M(t) = lny(t) is the bounded solutions of system (11), and

0 < lnm1 ≤ N(t) ≤ ln
r1
B0

, 0 < lnm1 ≤M(t) ≤ ln
r1
B0

, (t ∈ R)

⎧⎪⎪⎨⎪⎪⎩
N ′(t) = r(t) − a(t)eN(t−τ) − b(t)

+∞∫
0

k(s)G(eN(t−s))ds

M ′(t) = r(t) − a(t)eM(t−τ) − b(t)
+∞∫
0

k(s)G(eM(t−s))ds
(12)

Now we construct a Lyapunov function as follows

V (t) = [N(t) −M(t) −
+∞∫
0

t∫
t−s

b(v + s)k(s)(G(eN(v)) −G(eM(v)))dvds

−
t∫

t−τ

a(s + τ)(eN(s) − eM(s))ds]2
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+(a2
1 + a1b1)

t∫
t−τ

t∫
s

(eN(v) − eM(v))2dvds

+(b21 + b1)

+∞∫
0

k(s)

t∫
t−s

t∫
v

(G(eN(u)) −G(eM(u)))2dudvds.

The derivative of V (t) along the solution of system (12) is

V ′
(12)(t) = −2[N(t) −M(t) −

t∫
t−τ

a(s + τ)(eN(s) − eM(s))ds

−
+∞∫
0

t∫
t−s

b(v + s)k(s)(G(eN(v)) −G(eM(v)))dvds]

×[a(t + τ)(eN(t) − eM(t)) +

+∞∫
0

b(t+ s)k(s)(G(eN(t)) −G(eM(t)))ds]

+(b21 + b1)

+∞∫
0

k(s)

t∫
t−s

(G(eN(t)) −G(eM(t)))2rmdvds

−(b21 + b1)

+∞∫
0

k(s)

t∫
t−s

(G(eN(v)) −G(eM(v)))2dvds

+(a2
1 + a1b1)

t∫
t−τ

(eN(t) − eM(t))2ds

−(a2
1 + a1b1)

t∫
t−τ

(eN(s) − eM(s))2ds

= −V1(t) + V2(t) + V3(t) − V4(t),

where V1(t) = 2(N(t) −M(t))[a(t + τ)(eN(t) − eM(t))

+

+∞∫
0

b(t+ s)k(s)(G(eN(t)) −G(eM(t)))ds],

V2(t) = 2[

t∫
t−τ

a(s+ τ)(eN(s) − eM(s))ds

+

+∞∫
0

t∫
t−s

b(v + s)k(s)(G(eN(v)) −G(eM(v)))dvds]
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×[a(t+ τ)(eN(t) − eM(t))

+

+∞∫
0

b(t+ s)k(s)(G(eN(t)) −G(eM(t)))ds],

V3(t) = (b21 + b1)

+∞∫
0

k(s)

t∫
t−s

(G(eN(t)) −G(eM(t)))2dvds

+(a2
1 + a1b1)

t∫
t−τ

(eN(t) − eM(t))2ds

= (b21 + b1)(G(eN(t)) −G(eM(t)))2
+∞∫
0

k(s)

t∫
t−s

dvds

+(a2
1 + a1b1)(eN(t) − eM(t))2

t∫
t−τ

ds

= δ(b21 + b1)(G(eN(t)) −G(eM(t)))2 + τ(a2
1 + a1b1)(eN(t)) − eM(t))2,

V4(t) = (b21 + b1)

+∞∫
0

k(s)

t∫
t−s

(G(eN(v)) −G(eM(v)))2dvds

+(a2
1 + a1b1)

t∫
t−τ

(eN(s) − eM(s))2ds

and V2(t) ≤
+∞∫
0

t∫
t−s

b(v + s)k(s)[(G(eN(v)) −G(eM(v)))2 + a2(t + τ)

(eN(t) − eM(t))2]dvds+

+∞∫
0

t∫
t−s

b(v + s)k(s)[(G(eN(v))−G(eM(v)))2

+(G(eN(t)) −G(eM(t)))2]dvds×
+∞∫
0

b(t+ s)k(s)ds

+

t∫
t−τ

a(s+ τ)a(t + τ)[(eN(s) − eM(s))2 + (eN(t) − eM(t))2]ds

+

t∫
t−τ

a(s+ τ)[(eN(s) − eM(s))2 + (G(eN(t)) −G(eM(t)))2]ds
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×
+∞∫
0

b(t+ s)k(s)ds

≤ b1a
2
1

+∞∫
0

k(s)

t∫
t−s

(eN(t) − eM(t))2dvds

+b21

+∞∫
0

k(s)

t∫
t−s

[(G(eN(t)) −G(eM(t)))2]dvds

+(b1 + b21)

+∞∫
0

k(s)

t∫
t−s

[(G(eN(v)) −G(eM(v)))2]dvds

+a2
1

t∫
t−τ

(eN(s) − eM(s))2ds+ a1b1

t∫
t−τ

(eN(s) − eM(s))2ds

+a2
1

t∫
t−τ

(eN(t) − eM(t))2ds + a1b1

t∫
t−τ

(G(eN(t)) −G(eM(t)))2ds

= δb1a
2
1(e

N(t) − eM(t))2 + δb21(G(eN(t)) −G(eM(t)))2

+τa2
1(e

N(t) − eM(t))2 + τa1b1(G(eN(t)) −G(eM(t)))2 + V4(t).

Using the Mean Value Theorem, we can get that

(N(t) −M(t))(eN(t) − eM(t)) =
(eN(t) − eM(t))2

eθ(t)N(t)+(1−θ(t))M(t) ≥ B0(eN(t) − eM(t))2

r1
.

So we have

V ′
(12)(t) ≤ −2(N(t) −M(t))[a(t + τ)(eN(t) − eM(t))

+

+∞∫
0

b(t + s)k(s)(G(eN(t)) −G(eM(t)))ds] + δb1a
2
1(e

N(t) − eM(t))2

+δb21(G(eN(t)) −G(eM(t)))2 + τa2
1(e

N(t) − eM(t))2

+τa1b1(G(eN(t)) −G(eM(t)))2 + δ(b21 + b1)(G(eN(t)) −G(eM(t)))2

+τ(a2
1 + a1b1)(eN(t) − eM(t))2 + V4(t) − V4(t)

≤ −2a0
B0(eN(t) − eM(t))2

r1
− 2b0(N(t) −M(t))G′(ξ)(eN(t) − eM(t))

+(δb1a2
1 + τa2

1 + τa2
1 + τa1b1)(eN(t) − eM(t))2

+(τa1b1 + δb21 + δb21 + δb1)(G(eN(t)) −G(eM(t)))2

≤ −[
2B0(a0 + b0l0)

r1
− δb1(a2

1 + l21 + 2b1l21)

−τa1b1(1 + l21) − 2τa2
1](e

N(t) − eM(t))2.
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Set r = 2B0(a0+b0l0)
r1

− δb1(a2
1 + l21 + 2b1l21) − τa1b1(1 + l21) − 2τa2

1), From (10),
we can know that r > 0, it follows that V ′

(12)(t) ≤ −r(eN(t) − eM(t))2, using the
Mean Value Theorem again, we can get V ′

(12)(t) ≤ −rm2
1(N(t) −M(t))2, t ∈ R.

It means that there exists a positive constant c such that

V ′
(12)(t) ≤ −cV (t), t ∈ R. (13)

And we can easily know that V (t) satisfies the conditions (1)(2) of Theorem
A. in [1], so from Theorem A. in [1], we can get that there exists a unique
positive periodic solution Ñ(t) of system (11), it follows that there exists a
unique positive periodic solution x̃(t) of system (1), and 0 < m1 ≤ x̃(t) ≤
r1
B0
, t ∈ R. From (13) we know that N(t),M(t) is the solution of system (11),

and limt→+∞(N(t) −M(t)) = 0. This means that limt→+∞(x(t) − x̃(t)) = 0.

Remark 1. The Theorem 3.1. completely answered the proposal of [5].

Remark 2. This work’s results improved the results of [1-4].

4 Conclusion

This paper has mainly studied the problem about the existence and uniqueness
of periodic solutions of Logistic model with discrete and distributed delay. By
emplying Lyapunov methods, we get the more general conditions of the prop-
erties of periodic solutions in the Logistic model. The results improved some
known results of periodic solutions for the delay differential equations.
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Abstract. This paper treats the globally exponentially attractive set

and synchronization problem of the Qi chaotic system. Firstly, based on

the generalized Lyapunov function theory, a new ellipsoid estimation of

the globally exponentially attractive set and positive invariant set of the

Qi chaotic system was given without existence assumptions. Secondly,

based on some inequalities techniques and matrix theory, nonlinear feed-

back control with two inputs was used to realize the globally exponen-

tially synchronization of two chaotic systems. Some sufficient algebraic

criteria for the globally exponential synchronization of two chaotic sys-

tems are obtained analytically. Finally, numerical simulations are pre-

sented to show the effectiveness of the proposed chaos synchronization

scheme.

Keywords: Chaos, Globally exponentially attractive set, Positive

invariant set, Generalized Lyapunov function, Feedback control.

1 Introduction

Since the discovery of the Lorenz chaotic attractor in 1963, many other chaotic
systems have been found, including the well-known Rössler system, Chua’s cir-
cuit, Chen and Lü systems, which have been served as models for study of chaos.
Because of sensitive dependence on initial conditions, chaotic systems are dif-
ficult to be synchronized or controlled. From the earlier works, the researchers
have realized that synchronization of chaotic motions are possible, synchroniza-
tion of chaos was of great interest in these years[1-7].

Recently, estimating the bound of chaotic systems has been a flurry of re-
search activities. Because the ultimate boundedness of a chaotic system is very
important for the study of the qualitative behavior of a chaotic system. If one can
show that a chaotic system under consideration has a globally attractive set, then
one knows that the system cannot have equilibrium points, periodic or quasi-
periodic solutions, or other chaotic attractors existing outside the attractive set.
This greatly simplifies the analysis of dynamics of the system. The ultimate
boundedness also plays a very important role in the designs of chaos control

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 643–650, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and chaos synchronization[2-7]. For the Lorenz system, the ultimate bounded-
ness property was first studied by G. Leonov and some important results were
obtained[8]. Since then, the ultimate boundedness property of the Lorenz sys-
tem has further been investigated by many researchers [3, 9-14] and some more
explicit estimates of the globally attractive set and the positive invariant set for
the Lorenz system are provided. The bound and globally attractive set of the
Chen system were also investigated by [15]. However, so far very little has been
achieved on the other chaotic systems [2, 4-7], regarding the property of ultimate
boundedness.

In paper [16], a new chaotic system named the Qi system is set up, which is
a third order autonomous system exhibiting very complex dynamical behaviors
with some interesting characteristics. For the Qi chaotic system, there were few
results for its globally attractive set[2, 4], where some ellipsoidal estimates of
the globally attractive set and the positive invariant set were obtained, but the
result [2] for all positive parameters of the system have not been considered. In
this paper, we will further investigate the ultimate bound and positive invari-
ant set for the Qi chaotic system by the generalized Lyapunov function theory
and present some new formula to estimate the globally exponentially attrac-
tive set and positive invariant set. Meanwhile, nonlinear feedback control with
two inputs was used to realize the globally exponentially synchronization of two
chaotic systems and new sufficient algebraic criteria for the globally exponential
synchronization of two chaotic systems are obtained analytically.

Chaotic system can be described by the following system of differential
equations [16] ⎧⎨⎩

ẋ = a(y − x) + yz,
ẏ = cx− y − xz,
ż = xy − bz,

(1)

where a, b and c are parameters that are all positive real. When the system
parameters a = 35, b = 8

3 and c ∈ (17, 189), this system exhibits chaotic behavior
[16] and see Figure 1. Without the particular statement, these values are adopted
in this whole paper.

Definition 1. [10] For generalized radially unbound and positive definite func-
tion Vλ(X) = Vλ(x, y, z) with λ ≥ 0, if there exists a constant number Lλ > 0
such that for Vλ(X0) > Lλ and Vλ(X) > Lλ imply limt→+∞ Vλ(X(t)) = Lλ,
then Ωλ = {X |Vλ(X(t) ≤ Lλ)} is said to be a globally attractive set of the
system (1). If for any X0 ∈ Ωλ and any t ≥ t0 imply X(t, t0, X0) ∈ Ωλ, then
Ωλ is said to be positive invariant set. If there exists constant numbers Lλ > 0,
rλ > 0 and ∀X0 ∈ R3 such that for Vλ(X0) > Lλ and Vλ(X(t)) > Lλ im-
ply Vλ(X(t)) − Lλ ≤ (Vλ(X0) − Lλ)e−rλ(t−t0), then Ωλ = {X |Vλ(X(t) ≤ Lλ)}
is said to be a globally exponentially attractive set of the system (1). Where
X = X(t) = (x(t), y(t), z(t))T , X0 = X(t0).
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2 Globally Exponentially Attractive Set and Positive
Invariant Set of the Qi Chaotic System

Theorem 1. Suppose a > 0, b > 0 and c > 0, for any constant λ > 0, then the
ellipsoid

Ωλ : λx2 + (λ+ 2)y2 + 2(z − λa + (λ+ 2)c
2

)2 ≤ R2
λ, (2)

is a globally attractive set and positive invariant set of the system (1). Where

R2
λ =

⎧⎪⎨⎪⎩
(λa+(λ+2)c)2

2 , 0 < b ≤ 1 ≤ a;
b2

8(b−1) (λa + (λ+ 2)c)2, a ≥ 1, b > 1;
b2

8a(b−a) (λa + (λ+ 2)c)2, 0 < a < b ≤ 1 or a < 1 < b.

Proof. Consider the following generalized positive definite Lyapunov function
with radially unbound

Vλ =
1
2
λx2 +

1
2
(λ+ 2)y2 + (z − λa + (λ+ 2)c

2
)2. (3)

At first, we consider the case of 0 < b ≤ 1. Employing Lyapunov function (2) and
computing the derivative of Vλ along the positive half-trajectory of the system
(1), we have

dVλ

dt
|(1) = −λax2 − (λ + 2)y2 − 2bz2 + b(λa + (λ+ 2)c)z. (4)

For a ≥ 1, we obtain
dVλ

dt |(1) ≤ − b
2λx

2 − b
2 (λ+ 2)y2 − bz2 + b(λa + (λ+ 2)c)z

= − b
2 (λx2 + (λ+ 2)y2 + 2(z − λa+(λ+2)c

2 )2) + b
4 (λa + (λ+ 2)c)2

= −bVλ(X(t)) + b
4 (λa + (λ+ 2)c)2 < 0

for λx2 + (λ+ 2)y2 + 2(z − λa+(λ+2)c
2 )2 > 1

2 (λa + (λ+ 2)c)2 and

Vλ(X(t)) − 1
4
(λa + (λ + 2)c)2 ≤ (Vλ(X(t0)) − 1

4
(λa + (λ + 2)c)2)e−b(t−t0).

Then, the ellipsoid λx2 + (λ+ 2)y2 + 2(z − λa+(λ+2)c
2 )2 ≤ 1

2 (λa+ (λ+ 2)c)2 for
a ≥ 1 and 0 < b ≤ 1 is the globally exponentially attractive set and positive
invariant set of the system (1).

For a ≥ 1 and b > 1, let

F2(X) = λ(1−a)x2−2(b−1)(z− (b− 2)(λa + (λ+ 2)c)
4(b− 1)

)2 +
b2(λa + (λ+ 2)c)2

8(b− 1)
,

then F2(X) ≤ b2(λa+(λ+2)c)2

8(b−1) . We compute the derivative of Vλ along the trajec-
tory of the system (1) as follows

dVλ

dt |(1) = −λx2 − (λ+ 2)y2 − 2(z − λa+(λ+2)c
2 )2 + F2(X)

≤ −2Vλ(X(t)) + b2(λa+(λ+2)c)2

8(b−1) < 0
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for λx2 + (λ+ 2)y2 + 2(z − λa+(λ+2)c
2 )2 > b2(λa+(λ+2)c)2

8(b−1) , and

Vλ(X(t)) − b2(λa + (λ+ 2)c)2

16(b− 1)
≤ (Vλ(X(t0)) − b2(λa + (λ+ 2)c)2

16(b− 1)
)e−2(t−t0).

Then, the ellipsoid λx2 +(λ+2)y2 +2(z− λa+(λ+2)c
2 )2 ≤ b2(λa+(λ+2)c)2

8(b−1) for b > 1
and a ≥ 1 is the globally exponentially attractive set and positive invariant set
of the system (1).

For 0 < a < b ≤ 1 or a < 1 < b, let

F1(X) = (a−1)(λ+2)y2−2(b−a)(z− (b − 2a)(λa + (λ + 2)c)

4(b − a)
)
2
+

b2(λa + (λ + 2)c)2

8(b − a)
,

then F1(X) ≤ b2(λa+(λ+2)c))2

8(b−a) . From (3) and (4), we have

dVλ

dt |(1) = −a(λx2 + (λ+ 2)y2 + 2(z − λa+(λ+2)c
2 )2) + F1(X)

≤ −2aVλ(X(t)) + b2(λa+(λ+2)c)2

8(b−a) < 0

for λx2 + (λ+ 2)y2 + 2(z − λa+(λ+2)c
2 )2 > b2(λa+(λ+2)c)2

8(b−a) , and

Vλ(X(t)) − b2(λa + (λ+ 2)c)2

16a(b− a)
≤ (Vλ(X(t0)) − b2(λa + (λ+ 2)c)2

16a(b− a)
)e−2a(t−t0).

So, the ellipsoid λx2 + (λ + 2)y2 + 2(z − λa+(λ+2)c
2 )2 ≤ b2(λa+(λ+2)c)2

8(b−a) for 0 <

a < b ≤ 1 or a < 1 < b is the globally exponentially attractive set and positive
invariant set of the system (1). This proof is completed.

3 The Application in Chaos Synchronization

We assume that we have two systems and that the drive system with the sub-
script 1 is to control the response system with subscript 2, then the drive system
(5) and the response system (6) are defined as follows, respectively⎧⎨⎩

ẋ1 = a(y1 − x1) + y1z1,
ẏ1 = cx1 − y1 − x1z1,
ż1 = x1y1 − bz1,

(5)

and ⎧⎨⎩
ẋ2 = a(y2 − x2) + y2z2 + u1(t),
ẏ2 = cx2 − y2 − x2z2 + u2(t),
ż2 = x2y2 − bz2 + u3(t).

(6)

We define the error system as the differences between the systems (5) and (6)
by using e(t) = (e1, e2, e3)T = (x2 − x1, y2 − y1, z2 − z1)T . Using this notation,
we get an error dynamic system as⎧⎨⎩ ẋ1 = −ae1 + ae2 + e2e3 + y1e3 + z1e2 + u1(t),

ẏ1 = ce1 − e2 − e1e3 − z1e1 − x1e3 + u2(t),
ż1 = −be3 + e1e2 + x1e2 + y1e1 + u3(t).

(7)
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Theorem 2. Suppose that My and Mz defined by (8) and (9) from (2) are the
upper bounds of the absolute values of variables y1 and z1, respectively. Then
the origin of the system (7) is exponentially stable with one of the following
control laws

(A1) u1 = −ke1, u2 = 1
2x1e3, u3 = 0;

(A2) u1 = −ke1, u2 = 0, u3 = x1e2.

Where k > M2
y

b + (a+2c+Mz)2

8 − a, and

My =

⎧⎪⎪⎨⎪⎪⎩
a+3c√

6
, 0 < b ≤ 1 ≤ a;

b(a+3c)
2
√

2(b−1)
, a ≥ 1, b > 1;

b(a+3c)
2
√

2a(b−a)
, 0 < a < b ≤ 1 or a < 1 < b.

(8)

Mz =

⎧⎪⎪⎨⎪⎪⎩
a+ 3c, 0 < b ≤ 1 ≤ a;
b+2

√
b−1

4
√

b−1
(a + 3c), a ≥ 1, b > 1;

b+2
√

a(b−a)

4
√

a(b−a)
(a + 3c), 0 < a < b ≤ 1 or a < 1 < b.

(9)

Proof. Construct a Lyapunov function in the form of V = 1
2e

2
1 + e22 + 1

2e
2
3, then

V̇ |(7) = −ae21 − 2e22 − be23 + (a + 2c− z1)e1e2 + 2y1e1e3 − x1e2e3
+e1u1 + 2e2u2 + e3u3

= −(a + k)e21 − 2e22 − be23 + (a + 2c− z1)e1e2 + 2y1e1e3
= −(e1, e2, e3)Q(e1, e2, e3)T ,

where Q =

⎛⎝ a+ k z1−a−2c
2 −y1

z1−a−2c
2 2 0

−y1 0 b

⎞⎠ . Obviously, to ensure that the origin of

the error system (7) is exponentially stable, we let the matrix Q be positive
definite. This is the case if and only if the following three inequalities hold:

k + a > 0, 8b(k + a) > (z1 − a− 2c)2, 8b(k + a) > 8y2
1 + b(z1 − a− 2c)2. (10)

It is easy to show that the condition (10) holds if

8b(k + a) > 8M2
y + b(a + 2c+Mz)2

is satisfied. Then the matrix Q is positive definite, and V̇ |(7) is negative definite,
we have

V̇ |(7) ≤ −λmin(Q)V,

i.e.
e21 + e22 + e23 ≤ 2(e21(t0) + e22(t0) + e23(t0))e

−λmin(Q)(t−t0). (11)

The inequality (11) implies that the origin of the error system (7) is exponen-
tially asymptotically stable. Therefore, the drive system (5) is exponentially
synchronizing with the response system (6). This concludes the proof.
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Corollary 1. Let k > 0 and 8(k+a) > (a+2c+2Mz)2 with Mz defined by (9),
then the origin of the error system (7) is exponentially stable, and consequently,
the two chaotic systems (5) and (6) can be exponentially synchronized with one
of the following control laws:

(B1) u1 = −ke1 − 2y1e3, u2 = 1
2x1e3, u3 = 0;

(B2) u1 = −ke1, u2 = 0, u3 = x1e2 − 2y1e1;
(B3) u1 = −ke1 − 2y1e3, u2 = 0, u3 = x1e2.

Corollary 2. Let k > 0 and 8(k + a) > (a + 2c)2, then the origin of the error
system (7) is exponentially stable, and consequently, the two chaotic systems
(5) and (6) can be exponentially synchronized with one of the following control
laws:

(C1) u1 = −ke1 + z1e2, u2 = 0, u3 = x1e2 − 2y1e1;
(C2) u1 = −ke1 + z1e2 − 2y1e3, u2 = 1

2x1e3, u3 = 0.

Remark 1. The condition 8(k+ a) > (a+ 2c)2 in Corollary 2 gives an estimate
for the range of the control gain k. Specifically, we can determine a critical value
k∗ = 1

8 (a + 2c)2 − a > 0 such that complete synchronization can be achieved if
k > k∗. In fact, if let a = 35, c = 18, then it is easy to calculate k∗ = 595.125.

4 Numerical Simulation

To verify the theoretical results given in the previous sections, we will discuss
the simulation results for the chaotic systems with the parameters a = 35, b =
8
3 , c = 18. The initial conditions of drive and response systems are (2, 3, 4) and
(0, 6,−1), respectively. In order to choose the control parameters in Theorem 2,
My ≥ |y| and Mz ≥ |z| need to be estimated. Through simulations, we obtain
Mx = 23.3540,My = 16.6188,Mz = 30.5374. The controllers (A1) with k = 1340
is chosen as the control law for the system (7), then the response system (6)
synchronizes with the drive system (5) as shown in Fig.2. Fig.3(a) and Fig.3(b)
show the trajectory e1, e2, e3 of the error system (7) with the control laws (B1)
for k = 1240 and (C1) for k = 600, respectively.
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Fig. 1. System (1) exhibits chaotic behavior
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Fig. 2. Shows synchronization errors with the control (A1)
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Fig. 3. (a) shows synchronization errors with the control (B2); (b) shows synchroniza-

tion errors with the control (C1)

.

5 Conclusion

According to the parameters, a new detailed ellipsoid estimation of exponential
attractive sets for the Qi chaotic system is presented without any hypothesis
on the existence in this paper. Meanwhile, nonlinear feedback control with two
inputs is investigated and some sufficient conditions for the globally exponen-
tial synchronization of two chaotic systems are obtained analytically. All the
numerical simulation results are in line with the theoretical analysis.
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Abstract. This paper addresses the local stability of the delayed Cohen-

Grossberg neural networks (CGNNs). A sufficient condition for the local

exponential stability of an equilibrium point is presented, and the size of

the attractive basin of a locally exponentially stable equilibrium point is

estimated. Finally, the utility of our results is illustrated via a numerical

example.
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Stability, Attractive basin.

1 Introduction

Recently, Cohen-Grossberg neural networks (CGNNs) have been an active re-
search topic (see [1-6]), since it could include a lot of models from evolutionary,
population biology and neurobiology. Especially, in the context of associative
memory, a CGNNs should possess multiple locally asymptotically stable equilib-
rium points, and every equilibrium point that stands for a stored pattern should
possess a guaranteed attractive basin. However, to our knowledge, few results
have now been reported in the literatures on the local stability condition of an
equilibrium point of a CGNNs, or the estimation of size of the attractive basin
of a locally asymptotically stable equilibrium point of a CGNNs (see [1-4, 6]).

Motivated by the previous work and comment, this paper addresses the lo-
cal stability of delayed CGNNs. A sufficient condition for the local exponential
stability of an equilibrium point is presented, and an estimate on the size of
the attractive basin of a locally exponentially stable equilibrium point is estab-
lished. The proposed condition and estimate are easily checkable and applicable,
because they are phrased in terms of the network parameters, the neurons’ non-
linearities, and the relevant equilibrium point. To our knowledge, this is the first
time to present such an estimate for delayed CGNNs. The utility of our results
is illustrated via a numerical example.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 651–658, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Preliminaries

In this paper, we will investigate delayed Cohen-Grossberg neural networks of
the form

dxi

dt
= ai(xi)

[
bi(xi) −

n∑
j=1

cijdj(xj) −
n∑

j=1

eijhj(xj(t− τj(t)))
]
, t ≥ 0, (2.1)

i = 1, 2, · · · , n, where xi(t) stands for the state of the ith neuron at time t,
di(·) and hi(·) stand respectively for the output of the ith neuron at time t and
t − τi(t), cij and eij are the connection weight from the jth neuron to the ith
neuron.

In this paper, we adopt the following hypotheses.
(H1) The function ai is positive and continuous on R, i = 1, 2, · · · , n.
(H2) The function bi is non-increasing and continuously differentiable on R,

i = 1, 2, · · · , n.
(H3) The functions di and hi are continuously differentiable onR, i=1, 2,· · ·, n.
(H4) The time delays τi(t) are continuous and bounded with 0 ≤ τi(t) ≤ τ ,

i = 1, 2, · · · , n.
An equilibrium point of system (2.1) is a vector x∗ = (x∗1, · · · , x∗n)T satisfying

bi(x∗i ) =
n∑

j=1

cijdj(x∗j ) +
n∑

j=1

eijhj(x∗j ), i = 1, 2, · · · , n.

Definition 2.1. Let x∗ be an equilibrium point of system (2.1),
(a) x∗ is locally stable if for every ε > 0, there exists δ > 0, such that every
solution x to (2.1) with ‖x(0) − x∗‖∞ < δ satisfies ‖x(t) − x∗‖∞ < ε for all
t ≥ 0.
(b) x∗ is locally exponentially stable if (i) x∗ is locally stable; and (ii) there are
three positive numbers δ, α, β, such that every solution x to with ‖x(0) − x∗‖∞ <
δ satisfies ‖x(t) − x∗‖∞ < α ‖x(0) − x∗‖∞ e−βt for all t ≥ 0.
(c) The attractive basin of x∗, AB(x∗), is a maximal region such that any solution
x to (2.1) with x(0) ∈ AB(x∗) approaches x∗.

The following properties of the upper right Dini derivative can readily be
proved.

Lemma 2.1. Let f be a continuous function on R, g a differentiable function
on R. Then

D+(f(t) + g(t)) = D+f(t) + ġ(t).

Lemma 2.2. Let f be a differentiable function on R. Then

D+ |f(t)| =

⎧⎪⎨⎪⎩
ḟ(t), if f(t) > 0;
−ḟ(t), if f(t) < 0;∣∣∣ḟ(t)

∣∣∣ , if f(t) = 0.



Stability and Attractive Basin of Delayed Cohen-Grossberg Neural Networks 653

Lemma 2.3. Let f and g be two continuous functions on R. Then

D+ max{f(t), g(t)} =

⎧⎨⎩D+f(t), if f(t) > g(t);
D+g(t), if f(t) < g(t);
max{D+f(t), D+g(t)}, if f(t) = g(t).

Lemma 2.4. Let f be a differentiable function on R, and g be a continuous
function on R. Then

D+(f(t) × g(t)) = ḟ(t)g(t) + f(t)D+g(t).

3 Main Results

Theorem 3.1. Consider a CGNNs of the form (2.1) that satisfies (H1)− (H4).
Let x∗ = (x∗1, · · · , x∗n)T be an equilibrium point of this network, such that∣∣∣ḃi(x∗i )∣∣∣ > n∑

j=1

|cij |
∣∣∣ḋj(x∗j )

∣∣∣ +
n∑

j=1

|eij |
∣∣∣ḣj(x∗j )

∣∣∣ , i = 1, 2, · · · , n. (3.1)

Then x∗ is locally exponentially stable, and

{x ∈ Rn : ‖x− x∗‖∞ < δ} ⊆ AB(x∗), (3.2)

where

δ = sup{r : min
|z−x∗

i |≤r
{
∣∣∣ḃi(z)∣∣∣} > n∑

j=1

|cij | max
|z−x∗

j |≤r
{
∣∣∣ḋj(z)

∣∣∣}
+

n∑
j=1

|eij | max
|z−x∗

j |≤r
{
∣∣∣ḣj(z)

∣∣∣}}, i = 1, 2, · · · , n. (3.3)

In order to prove this theorem, we need the following lemma.

Lemma 3.2. Consider a CGNNs of the form (2.1) that satisfies (H1) − (H4).
Let x∗ = (x∗1, · · · , x∗n)T be an equilibrium point of this network that satisfies the
condition (3.1). Let 0 < r < δ, where δ is defined in (3.3). Let α > 0 satisfy

α < min
1≤i≤n

{ min
|z−x∗

i |≤r
{ai(z)}

[
min

|z−x∗
i |≤r

{
∣∣∣ḃi(z)∣∣∣} − n∑

j=1

|cij | max
|z−x∗

j |≤r
{
∣∣∣ḋj(z)

∣∣∣}
−

n∑
j=1

|eij | max
|z−x∗

j |≤r
{
∣∣∣ḣj(z)

∣∣∣}]}, i = 1, 2, · · · , n. (3.4)

Define a Lyapunov function associated with every solution x �= x∗ of this network
in the following way:

V (x(t)) = eαt ‖x(t) − x∗‖∞ = eαt max
1≤i≤n

{|xi(t) − x∗i |} , (3.5)
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Then the following assertions hold.

(a) Given any t ≥ 0. If ‖x(t) − x∗‖∞ < r, then D+V (x(t)) < 0.
(b) Given any t ≥ 0. If ‖x(0) − x∗‖∞ < r and V (x(t)) < V (x(0)), then

‖x(t) − x∗‖∞ < r.
(c) The function D+V (x(t)) is continuous.
(d) If ‖x(0) − x∗‖∞ < r, then D+V (x(t)) < 0 holds for all t ≥ 0.

Proof. (a) For any given t ≥ 0, there is an integer k, 1 ≤ k ≤ n, such that

|xk − x∗k| = max
1≤i≤n

{|xi − x∗i | , |xi(t− τi(t)) − x∗i |} > 0 (3.6)

Clearly,

d(xk − x∗k)
dt

= ak(xk)
[
bk(xk) −

n∑
j=1

ckjdj(xj) −
n∑

j=1

ekjhj(xj(t− τj(t)))
]

− ak(xk)
[
bk(x∗k) −

n∑
j=1

ckjdj(x∗j ) −
n∑

j=1

ekjhj(x∗j )
]

= ak(xk)
[
bk(xk) − bk(x∗k)

]− ak(xk)
n∑

j=1

ckj

[
dj(xj) − dj(x∗j )

]
− ak(xk)

n∑
j=1

ekj

[
hj(xj(t− τj(t))) − hj(x∗j )

]
(3.7)

By Lemma 2.2 and in view of (H2), we get

D+ |xk − x∗k| ≤ −ak(xk) |bk(xk) − bk(x∗k)| + ak(xk)
n∑

j=1

|ckj |
∣∣dj(xj) − dj(x∗j )

∣∣
+ ak(xk)

n∑
j=1

|ekj |
∣∣hj(xj(t− τj(t))) − hj(x∗j )

∣∣ (3.8)

By the Lagrange mean value theorem, we get

|bk(xk) − bk(x∗k)| =
∣∣∣ḃk(ξk)

∣∣∣ |xk − x∗k| , (3.9)

where ξk lies between x∗k and xk.
By the Lagrange mean value theorem and in view of (3.6), we get∣∣dj(xj) − dj(x∗j )

∣∣ =
∣∣∣ḋj(ζj)

∣∣∣ ∣∣xj − x∗j
∣∣ ≤ ∣∣∣ḋj(ζj)

∣∣∣ |xk − x∗k| , j = 1, 2, · · · , n.
(3.10)

where ζj lies between x∗j and xj .∣∣hj(xj(t− τj(t))) − hj(x∗j )
∣∣ =

∣∣∣ḣj(ηj)
∣∣∣ ∣∣xj(t− τj(t)) − x∗j

∣∣ ≤ ∣∣∣ḣj(ηj)
∣∣∣ |xk − x∗k| ,

j = 1, 2, · · · , n. (3.11)

where ηj lies between x∗j and xj .
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Substituting (3.9) − (3.11) into (3.8), we get

D+ |xk − x∗
k| ≤ −ak(xk)

[ ∣∣∣ḃk(ξk)

∣∣∣ − n∑
j=1

|ckj |
∣∣∣ḋj(ζj)

∣∣∣− n∑
j=1

|ekj |
∣∣∣ḣj(ηj)

∣∣∣ ] |xk − x∗
k|

(3.12)

By virtue of (3.6) and (3.12), it follows from Lemma 2.4 that

D+V (x) = αeαt max
1≤i≤n

{|xi − x∗i |} + eαtD+(
max

1≤i≤n
{|xi − x∗i |}

)
= αeαt |xk − x∗k| + eαtD+ |xk − x∗k|

≤ −eαt{ak(xk)
[ ∣∣∣ḃk(ξk)

∣∣∣− n∑
j=1

|ckj |
∣∣∣ḋj(ζj)

∣∣∣− n∑
j=1

|ekj |
∣∣∣ḣj(ηj)

∣∣∣ ]
− α} |xk − x∗k|

≤ −eαt{ min
|z−x∗

k|≤r
{ak(z)}

[
min

|z−x∗
k|≤r

{
∣∣∣ḃk(z)

∣∣∣} − n∑
j=1

|ckj | max
|z−x∗

j |≤r
{
∣∣∣ḋj(z)

∣∣∣}
−

n∑
j=1

|ekj | max
|z−x∗

j |≤r
{
∣∣∣ḣj(z)

∣∣∣}]− α} |xk − x∗k|

< 0.

(b) Clearly,

‖x(t) − x∗‖∞ = e−αtV (x(t)) ≤ V (x(t)) ≤ V (x(0)) = ‖x(0) − x∗‖∞ < r.

(c) By sequentially applying Lemma 2.2, Lemma 2.3 and Lemma 2.4, we get

D+V (x(t)) = αeαt max
1≤i≤n

{|xi(t) − x∗i |} + eαt max
1≤k≤n

{
D+ |xk(t) − x∗k|

}
= αeαt max

1≤i≤n
{|xi(t) − x∗i |}

+ eαt max
{

max
1≤k≤n,xk(t)>x∗

k

{ẋk(t)} , max
1≤k≤n,xk(t)<x∗

k

{−ẋk(t)}
}
.

It follows from the continuity of xi and
dxi

dt
(see (2.1)), that the function

D+V (x(t)) is continuous.
(d) From ‖x(0) − x∗‖∞ < r and by Lemma 3.2(a), we induce D+V (x(0)) < 0.
For the sake of contradiction, we assume there is t > 0 such that D+V (x(t)) ≥ 0.
Let t0 = inf {t : D+V (x(t)) ≥ 0}. It follows from Lemma 3.2(c), that

D+V (x(t0)) ≥ 0. (3.13)

Thus D+V (x(t)) < 0 for all t ∈ [0, t0], which implies V (x(t)) is strictly decreasing
in the interval [0, t0] and hence V (x(t0)) < V (x(0)). From it, and by Lemma
3.2(b), we get ‖x(t0) − x∗‖∞ < r. This inequality plus Lemma 3.2(a) yields

D+V (x(t0)) < 0. (3.14)

There is a contradiction between the (3.13) and (3.14).
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We are now in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let x �= x∗ be an arbitrary solution to the network,
such that ‖x(0) − x∗‖∞ < δ. Then there exists r > 0 such that ‖x(0) − x∗‖∞ <
r < δ. Hence,

min
1≤i≤n

{ min
|z−x∗

i |≤r
{ai(z)}

[
min

|z−x∗
i |≤r

{
∣∣∣ḃi(z)∣∣∣} − n∑

j=1

|cij | max
|z−x∗

j |≤r
{
∣∣∣ḋj(z)

∣∣∣}
−

n∑
j=1

|eij | max
|z−x∗

j |≤r
{
∣∣∣ḣj(z)

∣∣∣}]} > 0, i = 1, 2, · · · , n.

Let α > 0 satisfy

α < min
1≤i≤n

{ min
|z−x∗

i |≤r
{ai(z)}

[
min

|z−x∗
i |≤r

{
∣∣∣ḃi(z)∣∣∣} − n∑

j=1

|cij | max
|z−x∗

j |≤r
{
∣∣∣ḋj(z)

∣∣∣}
−

n∑
j=1

|eij | max
|z−x∗

j |≤r
{
∣∣∣ḣj(z)

∣∣∣}]}, i = 1, 2, · · · , n.

and let
V (x(t)) = eαt ‖x(t) − x∗‖∞ = eαt max

1≤i≤n
{|xi(t) − x∗i |} .

It follows from Lemma 3.2(d) that V (x(t)) < V (x(0)) for all t ≥ 0. So,

‖x(t) − x∗‖∞ = e−αtV (x(t)) ≤ e−αtV (x(0)) = e−αt ‖x(0) − x∗‖∞ .

The claimed assertions follow.
As a byproduct of Theorem 3.1, we have

Theorem 3.3. Consider a CGNNs of the form (2.1) that satisfies (H1)− (H4).
Let x∗ = (x∗1, · · · , x∗n)T be an equilibrium point of this network that satisfies

inf
z∈R

{∣∣∣ḃi(z)∣∣∣} >
n∑

j=1

|cij | sup
z∈R

{∣∣∣ḋj(z)
∣∣∣} +

n∑
j=1

|eij | sup
z∈R

{∣∣∣ḣj(z)
∣∣∣} , i = 1, 2, · · · , n.

(3.15)
Then x∗ is globally exponentially stable.

4 Application
As the application to neural associative memories, we consider the following
example.

Example. Consider the CGNNs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= b1(x1) − c11d1(x1),

dx2

dt
= b2(x2) − c21d1(x1) − c22d2(x2) − c22d1(x1(t− τ(t))),

dx3

dt
= b3(x3) − c31d1(x1) − c33d3(x3) − e33d1(x1(t− τ(t))),

dx4

dt
= b4(x4) − c41d1(x1) − c44d4(x4),

(4.1)
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where di(z) = d(z) = 2 tanh(z), 1 ≤ i ≤ 4, τ(t) = sin2(t), α = d(1) = −d(−1),

b1(x1) = e1x
3
1 − e1 + αc11, b2(x2) = αc22x

3
2 + α(c21 + c22),

b3(x3) = αc33x
3
3 + α(c31 + e33), b4(x4) = αc44x

3
4 + αc41.

By simple calculation, we get ḋ(z) = 2 sech2(z), β =
∣∣∣ḋ(1)

∣∣∣ =
∣∣∣ḋ(−1)

∣∣∣ = 0.8399.
It can be verified that the four patterns

x(1) = (1, 1, 1, 1)T , x(2) = (1, 1,−1,−1)T ,

x(3) = (1,−1,−1, 1)T , x(4) = (1,−1, 1,−1)T

are all equilibrium points of the network (4.1).
If the conditions

e1, c22, c33, c44 < 0, 3 |e1| > β |c11| , 3α |c22| > β |c21| + 2β |c22| ,
3α |c33| > β |c31| + β |c33| + β |e33| , 3α |c44| > β |c41| + β |c44|

hold simultaneously, it follows from Theorem 3.1 that these four equilibrium
points are all locally exponentially stable. Furthermore,

{x ∈ R4 :
∥∥∥x− x(i)

∥∥∥
∞
< δ} ⊆ AB(x(i)), 1 ≤ i ≤ 4,

where δ = min {δ1, δ2, δ3, δ4}, 0 < δi < 1, and

3 |e1| (1 − δ1)2 = 2 |c11| sech2(1 + δ1),

3α |c22| (1 − δ2)2 = 2(|c21|) + 2 |c22|)sech2(1 + δ2),

3α |c33| (1 − δ3)2 = 2(|c31|) + |c33| + |e33|)sech2(1 + δ3),

3α |c44| (1 − δ4)2 = 2(|c41|) + |c44|)sech2(1 + δ4).

As an instance, let us set e1 = −α, c22 = c33 = c44 = −1, c11 = 1.5, c21 = −0.5,
c31 = 0.25, e33 = 0.25, c41 = −0.5. Then the system (4.1) reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= −1.5232(x3

1 − 2.5) − 1.5d(x1),
dx2

dt
= −1.5232(x3

2 + 0.5) + 0.5d(x1) + d(x2) + d(x1(t− sin2(t))),
dx3

dt
= −1.5232(x3

3 − 0.5) − 0.25d(x1) + d(x3) − 0.25d(x1(t− sin2(t))),
dx4

dt
= −1.5232(x3

4 + 0.5) + 0.5d(x1) + d(x4).

(4.2)
The previous argument ensures that x(1), x(2), x(3) and x(4) are all locally

exponentially stable equilibrium points of this system. Furthermore,

{x ∈ R4 :
∥∥∥x− x(i)

∥∥∥
∞
< 0.7184} ⊆ AB(x(i)), 1 ≤ i ≤ 4.
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Abstract. In this paper, the global exponential stability analysis prob-

lem is investigated for discrete-time stochastic BAM neural networks

with time-varying delays. By constructing the appropriate Lyapunov

functional, and by resorting to free weight matrix method, the delay-

dependent exponential stability criteria are derived in terms of linear

matrix inequalities (LMIs). Numerical examples are presented to show

the effectiveness and benefits of ours results.

Keywords: Exponential stability; Discrete-time BAM neural networks;

Stochastic disturbances; Time-varying delays; LMIs.

1 Introduction

Due to the wide applications of bidirectional associative memory (BAM) neural
networks and the existence of time delays in many practical neural networks, the
stability analysis problem for continuous-time delayed BAM neural networks has
received great attention during the past years, see. e.g. [1-3]. However, when im-
plementing the continuous-time neural networks for computer simulation, for ex-
perimental or computational purposes, it is essential to formulate a discrete-time
system that is an analogue of the continuous-time recurrent neural networks.
Therefore, the stability analysis for discrete-time delayed BAM neural networks
was also widely studied in recent years [4-7]. By employing the more general Lya-
punov functional and by introducing some slack matrices, the improved delay-
dependent exponential stability criterion was proposed in [7] in terms of LMIs.
However, it should be pointed out that h(k), hM − h(k), τ(k), τM − τ(k) in [7]
were enlarged as hM , hM −hm, τM , τM −τm, respectively, which may bring much
conservativeness. On the other hand, in real nervous systems, the synaptic trans-
mission is a noisy process brought on by random fluctuations from the release of
neurotransmitters and other probabilistic causes, and it has been realized that
a neural network could be stabilized or destabilized by certain stochastic inputs
[8] which leads to the research on dynamics of stochastic neural networks, see,

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 659–666, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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e.g. [9-10]. However, to the best of the authors’ knowledge, the exponential sta-
bility analysis problem for discrete-time stochastic BAM neural networks with
time-varying delays has not been adequately investigated.

Motivated by the above discussions, this paper considers the exponential sta-
bility problem for a class of discrete-time stochastic BAM neural networks with
time-varying delays. By constructing the appropriate Lyapunov functional, and
by using the less conservative enlargement for estimating the difference of Lya-
punov functional, we obtain the delay-dependent exponential stability criteria
in terms of LMIs. Finally, two numerical examples are given to illustrate the
effectiveness and less conservativeness of the obtained results.

Notation. Throughout this paper, the superscript “T ” stands for the transpose
of a matrix. R

n and R
n×n denote the n-dimensional Euclidean space and set

of all n × n real matrices, respectively. A real symmetric matrix P > 0(≥ 0)
denotes P being a positive definite (positive semi-definite) matrix. I is used to
denote an identity matrix with proper dimension. For integers a, b, and a < b,
N [a, b] denotes the discrete interval N[a, b] = {a, a + 1, · · · , b − 1, b}. λM (X)
and λm(X) stand for the maximum and minimum eigenvalues of the symmetric
matrixX , respectively. ‖·‖ refers to the Euclidean vector norm. (Ω,F ,P) denotes
a complete probability with a filtration Ft ≥ 0 satisfying the usual conditions
(i.e., the filtration contains all P-null sets and is right continuous). E{·} stands
for the mathematical expectation operator with respect to the given probability
measure P . Matrices, if not explicitly stated, are assumed to have compatible
dimensions. The symmetric terms in a symmetric matrix are denoted by ∗.

2 Problem Formulation

In this paper, the discrete-time stochastic delayed BAM neural network consid-
ered can be described as follows:

x(k + 1) = Ax(k) +Wf(y(k − τ(k))) + σ1(k, x(k), y(k − τ(k)))ω(k),
y(k + 1) = By(k) + V g(x(k − h(k))) + σ2(k, y(k), x(k − h(k)))ω(k),
x(s) = φ(s), y(s) = ψ(s), ∀ s ∈ N[−τ∗, 0], τ∗ = max{τM , hM}, (1)

where x(k) = [x1(k), x2(k), · · · , xn(k)]T and y(k) = [y1(k), y2(k), · · · , ym(k)]T

denote the states of the neurons; A = diag{a1, a2, · · · , an} and B = diag{b1, b2,
· · · , bm} with ai, bj ∈ (0, 1); W = (wij)m×n, V = (vij)n×m and wij , vji de-
note the synaptic connection weights; f(·) = [f1(·), f2(·), · · · , fm(·)]T , g(·) =
[g1(·), g2(·), · · · , gn(·)]T . and fj(·), gi(·) denote the activation functions of the
neurons; ω(k) is a scalar Brownian motion defined on (Ω,F ,P) with E{ω(k)} =
0,E{ωT (k)ω(k)} = 1 and E{ωT (i)ω(j)} = 0 (i �= j); the functions φ(s), ψ(s)
represent initial conditions; τ(k) and h(k) represent time-varying delays satisfy-
ing τm ≤ τ(k) ≤ τM , hm ≤ h(k) ≤ hM , where τm, τM , hm and hM are positive
integers. σ1 : R×R

n×R
m −→ R

n, σ2 : R×R
m×R

n −→ R
m are the continuous

functions, and are assumed to satisfy

σT
1 σ1 ≤ ρ1x

T (k)x(k) + ρ2y
T (k − τ(k)))y(k − τ(k))), (2)
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σT
2 σ2 ≤ ρ3y

T (k)y(k) + ρ4x
T (k − h(k)))x(k − h(k))), (3)

where ρi(i = 1, 2, 3, 4) are known constant scalars. Throughout this paper, the
the activation functions fj(·), gi(·) satisfy the following condition
(A1) For any ζ ∈ R, there exist positive scalars l1j, l2i such that

0 ≤| fj(ζ) |≤ l1j | ζ |, 0 ≤| gi(ζ) |≤ l2i | ζ | . (4)

Definition 1. The trivial solution of discrete-time stochastic BAM neural net-
work (1) is said to be globally exponentially stable in the mean square, if there
exist scalars r > 1 and K > 1 such that

E
{‖x(k)‖2} + E

{‖y(k)‖2}
≤ K

(
sup

s∈N[−hM ,0]
E
{‖φ(s)‖2} + sup

s∈N[−τM ,0]
E
{‖ψ(s)‖2})r−k.

3 Main Results

Theorem 1. For given matrices L1 =diag{l11, · · · , l1m}, L2 = diag{l21, · · · , l2n},
and constants hm, hM , τm, τM . The discrete-time stochastic delayed BAM neural
network (6) is globally exponentially stable in the mean square, if there exist
positive scalars λ1 and λ2, matrices Pi > 0, Qi > 0, Ri > 0, Si > 0, Zi > 0, (i =
1, 2), Lj,Mj , Nj, Tj , (j = 1, 2, · · · , 8), and diagonal matrices D1 = diag{d11, · · · ,
d1m} > 0, D2 = diag{d21, · · · , d2n} > 0, such that the following LMIs hold

rP1 + rhMhMZ1 ≤ λ1I, rP2 + rτM τMZ2 ≤ λ2I, (5)[
Ω Σ1
ΣT

1 Σ2

]
< 0,

[
Ω Σ3
ΣT

3 Σ4

]
< 0,

[
Ω Σ5
ΣT

5 Σ6

]
< 0,

[
Ω Σ7
ΣT

7 Σ8

]
< 0, (6)

where

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Ω12 Ω13 Ω14 Ω15 Ω16 Ω17 LT
8

∗ Ω22 Ω23 Ω24 Ω25 Ω26 Ω27 Ω28
∗ ∗ Ω33 −T T

4 Ω35 Ω36 Ω37 −T T
8

∗ ∗ ∗ Ω44 N4 Ω46 −M4 0
∗ ∗ ∗ ∗ Ω55 Ω56 Ω57 Ω58
∗ ∗ ∗ ∗ ∗ Ω66 Ω67 Ω68
∗ ∗ ∗ ∗ ∗ ∗ Ω77 −MT

8
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ1 =
[√

hML
√
τMN

]
, Σ3 =

[√
hML

√
τmN

√
τM − τmT

]
,

Σ2 = diag{−Z1,−Z2}, Σ4 = diag{−Z1,−Z2,−Z2},
Σ5 =

[√
hmL

√
hM − hmM

√
τMN

]
, Σ6 = diag{−Z1,−Z1,−Z2},

Σ7 =
[√

hmL
√
hM − hmM

√
τmN

√
τM − τmT

]
,

Σ8 = diag{−Z1,−Z1,−Z2,−Z2},
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and

Ω11 = rATP1A+ rhMhM (A− I)TZ1(A− I) − P1 + (hM − hm + 1)Q1 +R1

+ L1 + LT
1 + λ1ρ1I, Ω12 = LT

2 + T1 −N1, Ω13 = LT
3 − T1, Ω14 = rATP1W

+ rhMhM (A− I)TZ1W + LT
4 , Ω15 = LT

5 +N1, Ω16 = −L1 + LT
6 +M1,

Ω17 = −M1 + LT
7 , Ω22 = −r−τMQ2 + T2 + T T

2 +D1 −N2 −NT
2 + λ1ρ2I,

Ω23 = −T2 + T T
3 −NT

3 , Ω24 = T T
4 −NT

4 , Ω25 = T T
5 +N2 −NT

5 , Ω26 = T T
6

+M2 − L2 −NT
6 , Ω27 = −M2 + T T

7 −NT
7 , Ω28 = T T

8 −NT
8 , Ω33 = −r−τMR2

− T3 − T T
3 , Ω35 = N3 − T T

5 , Ω36 = M3 − L3 − T T
6 , Ω37 = −M3 − T T

7 , Ω44 =

rWTP1W + rhMhMWTZ1W − L−1
1 D1L

−1
1 , Ω46 = M4 − L4, Ω55 = rBTP2B+

rτM τM (B − I)TZ2(B − I) − P2 + (τM − τm + 1)Q2 +R2 +N5 +NT
5 + λ2ρ3I,

Ω56 = M5 − L5 +NT
6 , Ω57 = −M5 +NT

7 , Ω58 = rBTP2V + rτM τM (B − I)T

× Z2V +NT
8 , Ω66 = −r−hMQ1 − L6 − LT

6 +D2 +M6 +MT
6 + λ2ρ4I,

Ω67 = −LT
7 −M6 +MT

7 , Ω68 = −LT
8 +MT

8 , Ω77 = −r−hMR1 −M7 −MT
7 ,

Ω88 = rV TP2V + rτM τMV TZ2V − L−1
2 D2L

−1
2 , L =

[
LT

1 LT
2 . . . LT

8
]T

,

M =
[
MT

1 MT
2 · · · MT

8
]T

, N =
[
NT

1 NT
2 · · · NT

8
]T

, T =
[
T T

1 T T
2 · · · T T

8
]T

.

Proof. Choose the following Lyapunov-Krasovskii candidate function:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k), (7)

where

V1(k) = rkxT (k)P1x(k) + rkyT (k)P2y(k),

V2(k) =
k−1∑

l=k−h(k)

rlxT (l)Q1x(l) +
k−1∑

l=k−τ(k)

rlyT (l)Q2y(l),

V3(k) =
−hm∑

θ=−hM+1

k−1∑
l=k+θ

rlxT (l)Q1x(l) +
−τm∑

θ=−τM+1

k−1∑
l=k+θ

rlyT (l)Q2y(l),

V4(k) =
k−1∑

l=k−hM

rlxT (l)R1x(l) +
k−1∑

l=k−τM

rlyT (l)R2y(l),

V5(k) = rhM

−1∑
θ=−hM

k−1∑
l=k+θ

rlηT
1 (l)Z1η1(l) + rτM

−1∑
θ=−τM

k−1∑
l=k+θ

rlηT
2 (l)Z2η2(l),

and η1(l) = x(l + 1) − x(l), η2(l) = y(l + 1) − y(l). Calculating the difference
of V (k) along the trajectories of (1), and taking the mathematical expectation,
then we can obtain

E{
V1(k)} =rk
E
{
xT (k)(rATP1A− P1)x(k) + 2rxT (k)ATP1Wf(y(k − τ(k)))

+ rfT (y(k − τ(k))WTP1Wf(y(k − τ(k)) + yT (k)(rBTP2B
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− P2)y(k) + 2ryT (k)BTP2V g(x(k − h(k)) + rgT (x(k − h(k))

× V TP2V g(x(k − h(k)) + rσT
1 P1σ1 + rσT

2 P2σ2
}
, (8)

E{
V2(k)}+E{
V3(k)} ≤ rk
E
{
(hM − hm + 1)xT (k)Q1x(k)

− r−hMxT (k − h(k))Q1x(k − h(k)) + (τM − τm + 1)

× yT (k)Q2y(k) − r−τM yT (k − τ(k))Q2y(k − τ(k))
}
, (9)

E{
V4(k)} =rk
E
{
xT (k)R1x(k) − r−hMxT (k − hM )R1x(k − hM )

+ yT (k)R2y(k) − r−τM yT (k − τM )R2y(k − τM )
}
, (10)

E{
V5(k)} ≤rk
E
{
rhMhM [(A− I)x(k) +Wf(y(k − τ(k)))]TZ1[(A− I)x(k)

+Wf(y(k − τ(k)))] + rτM τM [(B − I)y(k) + V g(x(k − h(k)))]T

× Z2[(B − I)y(k) + V g(x(k − h(k)))]

+ rhMhMσT
1 (k, x(k), y(k − τ(k)))Z1σ1(k, x(k), y(k − τ(k)))

+ rτM τMσT
2 (k, y(k), x(k − h(k)))P2σ2(k, y(k), x(k − h(k)))

−
k−1∑

l=k−hM

ηT
1 (l)Z1η1(l) −

k−1∑
l=k−τM

ηT
2 (l)Z2η2(l)

}
. (11)

Using the fact 2aT b ≤ aTQa+ bTQ−1b, (Q > 0), we have

−
k−1∑

l=k−h(k)

ηT
1 (l)Z1η1(l) ≤ 2

k−1∑
l=k−h(k)

ηT
1 (l)LT ξ(k) +

k−1∑
l=k−h(k)

ξT (k)LZ−1
1 LT ξ(k)

= ξT (k)(Ψ1L
T + LΨ1)ξ(k) + h(k)ξT (k)LZ−1

1 LT ξ(k), (12)

−
k−h(k)∑

l=k−hM

ηT
1 (l)Z1η1(l) ≤ 2

k−h(k)∑
l=k−hM

ηT
1 (l)MT ξ(k) +

k−h(k)∑
l=k−hM

ξT (k)MZ−1
1 MT ξ(k)

= ξT (k)(Ψ2M
T +MΨ2)ξ(k) + (hM − h(k))ξT (k)MZ−1

1 MT ξ(k), (13)

−
k−1∑

l=k−τ(k)

ηT
2 (l)Z2η2(l) ≤ 2

k−1∑
l=k−τ(k)

ηT
2 (l)NT ξ(k) +

k−1∑
l=k−τ(k)

ξT (k)NZ−1
2 NT ξ(k)

= ξT (k)(Ψ3N
T +NΨ3)ξ(k) + τ(k)ξT (k)NZ−1

2 NT ξ(k), (14)

−
k−τ(k)∑

l=k−τM

ηT
2 (l)Z2η2(l) ≤ 2

k−τ(k)∑
l=k−τM

ηT
2 (l)T T ξ(k) +

k−τ(k)∑
l=k−τM

ξT (k)TZ−1
2 T T ξ(k)

= ξT (k)(Ψ4T
T + TΨ4)ξ(k) + (τM − τ(k))ξT (k)TZ−1

2 T T ξ(k), (15)

where L,M,N, T are defined in Theorem 1 and

Ψ1 =
[
I 0 0 0 0 −I 0 0

]T
, Ψ2 =

[
0 0 0 0 0 I −I 0

]T
,

Ψ3 =
[
0 −I 0 0 I 0 0 0

]T
, Ψ4 =

[
0 I −I 0 0 0 0 0

]T
,
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and ξ(k) =
[
xT (k) yT (k − τ(k)) yT (k − τM ) fT (y(k − τ(k))) yT (k) xT (k −

h(k)) xT (k − hM ) gT (x(k − h(k)))
]T
. By condition (4), it follows that there

exist diagonally matrices Di ≥ 0, (i = 1, 2) such that

rk{yT (t− τ(t))D1y(t− τ(t))) − fT (y(t− τ(t)))L−1
1 D1L

−1
1 f(y(t− τ(t)))} ≥ 0,

(16)

rk{xT (t− h(t))D2x(t− h(t))) − gT (x(t − h(t)))L−1
2 D2L

−1
2 g(x(t− h(t)))} ≥ 0,

(17)

where L1 = diag{l11, · · · , l1m}, L2 = diag{l21, · · · , l2n}. From the A1 and (5), it
follows that

σT
1 (rP1 + rhMhMZ1)σ1 ≤ λ1[ρ1x

T (k)x(k) + ρ2y
T (k − τ(k)))y(k − τ(k)))],

(18)

σT
2 (rP2 + rτM τMZ2)σ2 ≤ λ2[ρ3y

T (k)y(k) + ρ4x
T (k − h(k)))x(k − h(k)))].

(19)

Substituting (12)-(15) into (11), adding the left sides of (16)-(19) to E(V (k)),
and combining with (8)-(11), then we can obtain

E
{
V (k)} ≤rk

E
{
ξT (k)

[
Ω + h(k)LZ−1

1 LT + (hM − h(k))MZ−1
1 MT

+ τ(k)NZ−1
2 NT + (τM − τ(k))TZ−1

2 T T
]
ξ(k)

}
=rkμ1(k)E

{
ξT (k)

[
Ω + hMLZ−1

1 LT + τMNZ−1
2 NT

]
ξ(k)

}
+ rkμ2(k)E

{
ξT (k)

[
Ω + hMLZ−1

1 LT + τmNZ−1
2 NT

+ (τM − τm)TZ−1
2 T T

]
ξ(k)

}
+ rkμ3(k)E

{
ξT (k)

[
Ω

+ hmLZ
−1
1 LT + (hM − hm)MZ−1

1 MT + τMNZ−1
2 NT

]
ξ(k)

}
+ rkμ4(k)E

{
ξT (k)

[
Ω + hmLZ

−1
1 LT + (hM − hm)MZ−1

1 MT

+ τmNZ−1
2 NT + (τM − τm)TZ−1

2 T T
]
ξ(k)

}
, (20)

where Ω is defined in Theorem 1, and μ1(k) = (h(k)−hm)(τ(k)−τm)
(hM−hm)(τM−τm) , μ2(k) =

(h(k)−hm)(τM−τ(k))
(hM−hm)(τM−τm) , μ3(k) = (τ(k)−τm)(hM−h(k))

(hM−hm)(τM−τm) , μ4(k) = (hM−h(k))(τM−τ(k))
(hM−hm)(τM−τm) .

Therefore, ifΩ+hMLZ−1
1 LT +τMNZ−1

2 NT < 0, Ω+hMLZ−1
1 LT +τmNZ−1

2 NT +
(τM−τm)TZ−1

2 T T < 0, Ω+hmLZ
−1
1 LT +(hM−hm)MZ−1

1 MT +τMNZ−1
2 NT <

0, Ω+hmLZ
−1
1 LT +(hM−hm)MZ−1

1 MT +τmNZ−1
2 NT +(τM−τm)TZ−1

2 T T < 0,
then we have E{ΔV (k)} < 0, which implies that

E{V (k)} ≤ E{V (k − 1)} ≤ E{V (k − 2)} ≤ · · · ≤ E{V (1)} ≤ E{V (0)}. (21)

By Schur complement, LMIs in (6) are equivalent to above matrix inequalities.
Thus, if (5)-(6) hold, we can obtain E{V (k)} ≤ E{V (0)}. Using the similar
analysis as in [7], we can obtain

E{V (0)} ≤μ1 sup
s∈N[−hM ,0]

E{‖φ(s)‖2} + μ2 sup
s∈N[−τM ,0]

E{‖ψ(s)‖2}, (22)
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where μ1 = λM (P1)+[(hM−hm+1)λM (Q1)+λM (R1)+4rhMhMλM (Z1)]1−r−hM

r−1 ,

μ2 = λM (P2)+ [(τM − τm + 1)λM (Q2) +λM (R2)+ 4rτM τMλM (Z2)]1−r−τM

r−1 . On
the other hand,

E{V (k)} ≥ rkλm(P1)E{‖x(k)‖2} + rkλm(P2)E{‖y(k)‖2}. (23)

From (22) and (23), we can obtain: E{‖x(k)‖2} + E{‖y(k)‖2}
≤ α

β

(
sups∈N[−hM ,0] E{‖φ(s)‖2} + sups∈N[−τM ,0] E{‖ψ(s)‖2})r−k, where α =

max{μ1, μ2}, β = min{λm(P1), λm(P2)}. Obviously, α
β > 1, by Definition 1, the

model (1) is globally exponentially stable in the mean square.
Based on the Theorem 1, we can easily obtain the exponential stability crite-

rion of the following discrete-time delayed BAM neural network:

x(k + 1) = Ax(k) +Wf(y(k − τ(k))),
y(k + 1) = By(k) + V g(x(k − h(k))). (24)

Corollary 1 . The discrete-time delayed BAM neural network (24) is globally
exponentially stable, if modified LMIs in (6) hold (ρi in Ω is fixed as 0).

4 Numerical Examples

Example 1. Consider the BAM NN (24) with the following parameters

A =
[
0.8 0
0 0.9

]
, B =

[
0.5 0
0 0.4

]
, W =

[
0.1 −0.01
−0.2 −0.1

]
, V =

[
0.15 0
−0.2 0.1

]
.

The activation functions satisfy Assumption A1 with L1 = L2 = diag{1, 1}.
By the Corollary 1 in this paper with r = 1, some maximum allowable delay

bounds for guaranteeing the asymptotic stability of this system can be obtained.
For a detailed comparison with the Theorem 1 in [5,7] and the Corollary 1 in
[6], we made Table 1. For this example, it is obvious that the Corollary 1 in this
paper is less conservative than the results in [5-7].

Table 1. Maximum allowable delay bounds for Example 1

τm = hm 2 4 6 8 10 15 20 25

τM = hM [5, 6] 6 8 10 12 14 19 24 29

τM = hM [7] 11 12 13 15 16 21 25 30

τM = hM Corollary 1 13 14 15 16 17 21 26 30

Example 2. Consider the BAM NN (1) with the following parameters

A =
[
1/5 0
0 1/5

]
, B =

[
1/10 0

0 1/10

]
, W =

[
0 1/8

1/8 0

]
, V =

[−1/20 0
0 −1/20

]
,

ρ1 = ρ2 = ρ3 = ρ4 = 0.05, L1 = L2 = diag{1, 1}.
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Assume that hm = τm = 2, hM = τM = 5, r = 1.2, we can find that LMIs (5)-(6)
are feasible and part solutions are given as follows:

P1 = diag{0.1310, 0.1310}, P2 = diag{0.1486, 0.1486}, Q1=diag{0.0236, 0.0236},
Q2 = diag{0.0309, 0.0309}, R1=diag{0.0041, 0.0041}, R2=diag{0.0043, 0.0043}.
By Theorem 1, it is concluded that BAM NN (1) with above parameters is global
exponential stability in the mean square.

5 Conclusion

This paper considers the global exponential stability for discrete-time stochastic
BAM neural networks with time-varying delays. Based on the Lyapunov stability
theory and LMI technique, the delay-dependent exponential stability criteria are
established . The obtained results are expressed by LMIs and can be checked by
using the Matlab LMI Toolbox. Finally, we present two numerical examples to
show the feasibility and less conservativeness of obtained results.
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Abstract. In this paper, we study the positive invariant set, and glob-

ally exponentially attractive set for a class of nonlinear separated vari-

ables systems with bounded time-varying delays. Based on inequality

techniques, the properties of non-negative matrices and vector Lyapunov

function method, some algebraic criterions for the the above-mentioned

sets are obtained. Finally, one example is given to demonstrate our

results.

Keywords: Nonlinear system, Time-varying delays, Inequality tech-

niques, Invariant set, Globally exponentially attractive set.

1 Introduction

Differential systems with separated variables and time delays are not only com-
monly seen in automatic control and theory of neural networks, but also often-
used systems, such as delayed Hopfield neural networks model, delayed BAM
networks model, delayed Lurie networks model and so on. Some authors have
investigated the global stability of equilibrium point of separated variables sys-
tems[1,2]. Jian et al.[3] discussed the globally exponential stability of equilib-
rium states of a class of nonlinear separated variables systems with bounded
time-varying delays by employing the Lyapunov function method and Halanay’
delay differential inequality. However, the invariant set and the attractive set
of the systems are rarely studied, leave alone their exponentially attractive set.
In many applied subjects, we find that they play a great role to find periodic
solutions and singular attractors. Motivated by the above discussions, and re-
sorting to the ideas of [4,5], this paper is devoted to the problem of the positive
invariant set and the globally exponentially attractive set of the nonlinear sys-
tems, and gives some sufficient conditions for the above-mentioned sets by the
differential inequality techniques, the properties of non-negative matrices and
vector Lyapunov function method.

The remaining paper is organized as follows: Section 2 describes some pre-
liminaries including some necessary notations, definitions, assumptions and a
lemma. The main results are stated in Section 3. Section 4 gives one numerical
example to verify our main results. Finally, conclusions are made in Section 5.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 667–674, 2010.
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2 Preliminaries

In this paper, R+ means R+=[0,∞), Rn denotes the n-dimensional Euclidean
space, C[X,Y ] is a class of continuous mapping set from the topological space
X to topological space Y . Especially, C�C([−τ, 0], Rn), where τ >0.

Consider the nonlinear separated variables systems with n-dimensional

dxi(t)
dt

=
n∑

j=1

aij(t)fj(xj(t)) +
n∑

j=1

bij(t)fj(xj(t− τj(t))), (1)

where i, j = 1, 2, · · · , n, 0 ≤ τj(t) ≤ τ , τ is a positive constant, aij(t) and
bij(t) are bounded and continuous functions on [t0 − τ,∞), fj(0) = 0, fj(t) ∈
C[R,R]. The initial conditions associated with (1) is of the form xi(t) = ϕi(t),
t ∈ [t0 − τ, t0], where ϕi is bounded and continuous on [t0 − τ, t0]. For any
ϕ = (ϕ1, . . . , ϕn)T ∈ C, a function x = (x1, · · · , xn)T : [t0 − τ,+∞) → Rn is
the solution of the system (1) if it satisfies (1). And an equilibrium point of the
system (1) is a constant vector x∗ = (x∗1, x∗2, · · · , x∗n)T satisfying

∑n
j=1(aij(t0) +

bij(t0))fj(x∗j ) = 0, i = 1, 2, · · · , n. Throughout the paper, we always assume that
the system (1) has a continuous solution denoted by x(t, t0, ϕ) or simply x(t) if
no confusion should occur.

For convenience, we introduce some notations. We let I denotes identity
matrix, E = [1, 1, · · · , 1]T ∈ Rn, and for any matrixes or vectors A and B,
A ≥ B(A < B) means that each pair of corresponding elements of A and B
satisfies the inequality aij ≥ bij(aij < bij). Especially, A is called a nonnegative
matrix if A ≥ 0. For all x ∈ Rn, we define [x(t)]+ = [|x1(t)|, · · · , |xn(t)|]T , for
x ∈ C, [x(t)]+τ = [|x1(t)|τ , · · · , |xn(t)|τ ]T , where

|xi(t)|τ = sup
−τ≤s≤0

|xi(t+ s)|, i = 1, · · · , n.

Definition 2.1 ([4]). The set S ⊂ C is called a positive invariant set of (1) if
for any initial value ϕ ∈ S, we have x(t, t0, ϕ) ∈ S.

Definition 2.2 ([4]). A set S ⊂ C is called an attractive set of (1), if S possesses
an open neighborhood D such that for any initial value ϕ ∈ D, the solution
x(t, t0, ϕ) converges to S as t → +∞, that is

dist(x(t, t0, ϕ), S) → 0, t → +∞,

where dist(x, S) = infy∈S d(x, y), and d(x, y) denotes the distance of x to y
in Rn.

The set S is called a global attractive set of (1) if D = C .

Definition 2.3 ([6]). The set S = {x ∈ Rn | Vi(xi(t)) ≤ $i} is called a globally
exponentially attractive set of (1), if Vi(xi(t)) is an radially unbounded and
positive define Lyapunov function, there exist positive constants $i and λ such
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that for any solution x(t) = x(t, t0, ϕ) of (1), Vi(ϕi) > $i, Vi(xi(t)) > $i, t ≥ t0,
implies

Vi(xi(t)) − $i ≤ exp{−λ(t− t0)}(V̄i(ϕi) − $i), i = 1, 2, · · · , n,

where V̄i(ϕi) ≥ Vi(ϕi) and V̄i(ϕi) is a constant.

Remark. In fact, lettingKi(ϕ) = V̄i(ϕ) − $i in the Definition 2.4 of [5], we can
obtain the Definition 2.3 of this paper.

Lemma ([8]). If M ≥ 0 and ρ(M) < 1, then (1−M)−1 ≥ 0, where ρ(M) denotes
the spectral radius of a square matrix M .

3 Main Results

Throughout this paper we always suppose that:

(H1) 0 < l̃i ≤ fi(xi)
xi

≤ li, i = 1, 2, · · · , n, for any xi ∈ R \ {0};
(H2) aii(t) ≤ aii < 0, |aij(t)| ≤ aij , for i �= j, and |bij(t)| ≤ bij , i, j =

1, 2, · · · , n;
(H3) ρ(M) < 1.

Where M = Q−1(A∗L + BL), L = diag{l1, l2, · · · , ln}, B = (bij)n×n, qi =
−aiil̃i, i = 1, 2, · · · , n, Q = diag{q1, q2, . . . , qn}, Q−1 = diag{ 1

q1
, 1

q2
, · · · , 1

qn
},

A∗ = [(1 − δij)aij ]n×n, and δij =
{

1, i = j,
0, i �= j.

Theorem 3.1. If the hypotheses (H1) ∼ (H3) hold, then the set

S = {ϕ ∈ C | [ϕ]+τ ≤ K = (I −M)−1Eα}

is a positive invariant set of the system(1), where α is an arbitrary positive con-
stant.

Proof. We first prove, for any given β > 1, when [ϕ]+τ < βK,

[x(t)]+ < βK, t ≥ t0. (2)

If it is not true, there must be some i, and t1 > t0, such that

[xi(t1)] = βki, (3)

and

[xi(t1)] ≤ βki, t0 ≤ t ≤ t1, (4)

where ki is the ith component of vector K.
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From (1) and (H1) ∼ (H3), one yields

D+|xi(t)| |(1) = aii(t)fi(xi(t))sgn xi(t) +
n∑

j=1,j �=i

aij(t)fj(xj(t))sgn xi(t)

+
n∑

j=1

bij(t)fj(xj(t− τj(t)))sgn xi(t)

≤ aii l̃i|xi(t)| +
n∑

j=1,j �=i

ljaij |xj(t)| +
n∑

j=1

ljbij |xj(t)|τ , t > t0,

then

D+|xi(t)| |(1)≤ −Q[x(t)]+ +A∗L[x(t)]+ +BL[x[t− τ(t)]+τ , t > t0.

It follows that

[x(t1)]+ ≤ e−Q(t1−t0)[ϕ]+τ +
∫ t1

t0

e−Q(t1−s){A∗L[x(s)]+ +BL[x(s)]+τ }ds

≤ e−Q(t1−t0)βK +
∫ t1

t0

e−Q(t1−s){A∗LβK +BLβK}ds

= e−Q(t1−t0)βK +
∫ t1

t0

e−Q(t1−s)QMβKds

= e−Q(t1−t0)βK + (I − e−Q(t1−t0))MβK

= e−Q(t1−t0)(βK −MβK) +MβK.

Noting that β > 1 and βK = β(MK + Eα) > βMK, so we obtain

[x(t1)]+ ≤ e−Q(t1−t0)(βK −MβK) +MβK < βK,

which contradicts (3), and so (2) holds. Letting β → 1 in (3), when [ϕ]+τ ≤ K,
we have for all ϕ ∈ C,

[x(t)]+ ≤ K, t ≥ t0. (5)

Following from Definition 2.1, the Theorem can be proved.

Corollary 3.1. If the system (1) has an equilibrium point and the hypotheses
(H1) ∼ (H3) hold, then the equilibrium point of is uniformly stable.

From the proof of Theorem 3.1 and (2), for a given ϕ ∈ C, there exists β > 1,
for all t ≥ t0, when [ϕ]+τ < βK, then [x(t)]+ < βK, so we have the following
Corollary.

Corollary 3.2. If the hypotheses (H1) ∼ (H3) hold, then the solutions of (1)
are uniformly bounded.
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Theorem 3.2. If the hypotheses (H1) ∼ (H3) hold, then the set

S = {ϕ ∈ C | [ϕ]+τ ≤ K = (I −M)−1Eα}
is an attractive set of the system (1), where α is an arbitrary positive constant.

Proof. For any ϕ ∈ C, we have the solution x(t) satisfies

lim
t→+∞ sup[x(t)]+ = K, (6)

otherwise, from (5), we know that there must be a constant vector σ > 0 such
that

lim
t→+∞ sup[x(t)]+ = K + σ. (7)

According to the definition of superior limit, for sufficient small constant ε > 0,
there exists t1 > t0 such that

[x(t− τ(t))]+ ≤ K + σ + εE. (8)

Because of Q = diag{q1, · · · , qn} with qi > 0, i = 1, · · · , n, for the above ε > 0,
there is T > 0, such that ∫ ∞

T

e−QsQMβKds < εE. (9)

From (1), (2), (8) and (9), when t ≥ t2 + T , we obtain

[x(t)]+ ≤ e−Q(t−t0)[ϕ]+τ +
∫ t

t0

e−Q(t−s){A∗L[x(s)]+ +BL[x(s)]+τ }ds

= e−Q(t−t0)[ϕ]+τ + (
∫ t−T

t0

+
∫ t

t−T

)e−Q(t−s){A∗L[x(s)]+ +BL[x(s)]+τ }ds

≤ e−Q(t−t0)[ϕ]+τ +
∫ +∞

T

e−QsQMβKds

+
∫ t

t−T

e−Q(t−s)QM(K + σ + εE)}ds

≤ e−Q(t−t0)[ϕ]+τ + εE +MK +Mσ + εME.

Combining (7) with the definition of superior limit, there exists tw ≥ t2 + T ,
w = 1, 2, · · ·, such that

lim
tw→∞[x(tw)]+ = K + σ.

Letting tw → +∞, ε → 0 and noting K = MK + αE, we obtain

σ +K ≤ MK +Mσ < K +Mσ,

i.e. σ < Mσ, then from Theorem 8.3.2 of [8], σ ≥ 0 and σ is not always zero,
one has ρ(M) ≥ 1, which contradicts ρ(M) < 1. Hence, σ must be zero vector
and (6) holds. The proof is finished.
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Corollary 3.3. If the hypotheses (H1) ∼ (H3) hold, then the solutions of (1)
are globally asymptotically stable.

Theorem 3.3. If the hypotheses (H1) ∼ (H3) hold, then the set

S∗ = {x(t) | |xi(t)| ≤ 1
λ

[
n∑

j=1,j �=i

aij ljβkj +
n∑

j=1

bij ljβkj ] � k̃i}

is a globally exponentially attractive set of the system (1), where 0 < λ ≤
min

1≤i≤n
{qi}, β > 1, and ki is the ith component of vector K which is given in

Theorem 3.1.

Proof. We consider the radially unbounded and positive define Lypunov
function

V (x(t)) = (V1, V2, . . . , Vn)T = (|x1(t)|, |x2(t)|, · · · , |xn(t)|)T .

Choose λ such that 0 < λ ≤ min
1≤i≤n

{qi}, and let γ = (γ1, γ2, · · · , γn)T , where

γi =
n∑

j=1,j �=i

aij ljβkj +
n∑

j=1
bij ljβkj . We consider another radially unbounded and

positive definite Lypunov function W (t) = eλt[V (x(t)) − γ
λ ], and Wi(t) denotes

the ith component of vector W (t), then

D+Wi(t) |(1) = λeλt|xi(t)| + eλt xi(t)
dt

sgn xi(t) − γie
λt

= eλt[λ|xi(t)| +
n∑

j=1

aij(t)fj(xj(t))sgn xi(t)

+
n∑

j=1

bij(t)fj(xj(t− τj(t)))sgn xi(t) − γi]

≤ eλt[λ|xi(t)| + aii l̃i|xi(t)| +
n∑

j=1,j �=i

ljaij |xj(t)|

+
n∑

j=1

ljbij |xj(t)|τ − γi],

From Corollary 3.2, we obtain

D+Wi(t) |(1) = eλt[−(qi − λ)|xi(t)| +
n∑

j=1,j �=i

lj |aij |βkj

+
n∑

j=1

lj |bij |βkj − γi]

= −e−λt(qi − λ)|xi(t)| ≤ 0.
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that is

D+eλVi |(1)≤ 0. (10)

Integrating two sides of (10) from t0 to arbitrary t > t0, we have

eλt[Vi(x(t)) − γi

λ
] ≤ Vi(x(t0)) − γi

λ
,

i.e.

Vi(x(t)) − γi

λ
≤ e−λt[Vi(x(t0)) − γi

λ
].

Following from Definition 2.3, the proof is completed.

4 An Illustrative Example

Example. Consider the following example:{
dx1(t)

dt = −5f1(x1(t)) + 0.1f1(x1(t− τ1(t))) + 0.05f2(x2(t− τ2(t)))
dx2(t)

dt = −5f2(x2(t)) + 0.05f1(x1(t− τ1(t))) − 0.1f2(x2(t− τ2(t)))
(11)

where fi(xi(t)) = sinxi(t)
3 + xi(t)

3 (i = 1, 2), 1
3 ≤ fi(xi)

xi
≤ 1, we choose l̃1 = l̃2 = 1

3 ,
l1 = l2 = 1, by simply calculation, we obtain

L =
(

1 0
0 1

)
, Q =

( 5
3 0
0 5

3

)
, Q =

( 3
50

3
100

3
100

3
50

)
, (I −M)−1 =

( 9400
8827

300
8827

300
8827

9400
8827

)
.

And choosing α = 8827
10000 , we have K = ( 97

100 ,
97
100 )T . According to Theorem 3.1

and Theorem 3.2, we can know that the set S = {ϕ ∈ C | |ϕ1| ≤ 97
100 , |ϕ2| ≤ 97

100}
is the invariant set and attractive set of the system (11). And we let λ = 5

4 , β = 5
3 ,

from Theorem 3.3, we obtain that the set S∗ = {x(t) | |x1(t)| ≤ 97
500 , |x2(t)| ≤

97
500} is a globally exponentially attractive set of the system (11).

5 Conclusion

This paper has established detailed estimations of the positive invariant set and
the globally exponentially attractive set together with the attractive set of a
class nonlinear separated variables systems with bounded time-varying delays.
One example has been worked out, and it implies that the attractive set is larger
than the exponentially attractive set, which confirms the validity of our results.
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Abstract. This paper considers the problem of delay-dependent stability of the 
systems with nonlinearity, uncertainty and time-varying delays. The uncertainty 
is assumed to be of norm-bounded form. By constructing Lyapunov-Krasovskii 
functional and introducing appropriate free-weighting matrices, the sufficient 
delay-dependent condition is derived for the asymptotic stability of the system. 
The proposed result is formulated in terms of linear matrix inequality, which 
can be efficiently solved by standard convex optimization algorithms. 

Keywords: Stochastic system, Delay-dependent, Stability, Linear matrix  
inequality (LMI). 

1   Introduction 

During the past decades, the problem of robust stability analysis of delay systems has 
received significant attention. Time-delays are frequently encountered in practical 
systems such as engineering, communications and biological systems and may induce 
instability, oscillation and poor performance. The stability and control of time-delay 
systems have been of great importance and interest. Current efforts can be classified 
into two catalogs according to their dependence on the information about the size of 
time-delays of the system, namely delay-independent stability criterion (see [1-3]) and 
delay-dependent stability criterion (see [4-6]). The delay-independent stability is 
independent of the size of the delays and delay-dependent stability is concerned with 
the size of delays. Generally, for the cases of small delays, delay-independent results 
are more conservative than those dependent on the size of delays. Therefore, increas-
ing attention has been focused on the delay-dependent stability of stochastic systems 
recently. For example, in [7], the problem of delay-dependent stability and delayed-
state-feedback stabilization of uncertain stochastic systems were studied, and a delay-
dependent criterion for exponential stability of uncertain stochastic delay systems was 
established. In [8], based on a neutral transformation with Markovian switching and 
linear matrix inequality (LMI) technique, some new delay-dependent stability criteria 
were derived for uncertain stochastic systems with time-delays and Markovian jump 
parameters. In [9], by using a descriptor model transformation and applying Moon’s 
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inequality for bounding cross terms, delay-dependent exponential stability criterion 
for stochastic systems with multiple delays was proposed. However, in the existing 
literatures, most of them were about the stability for uncertain linear stochastic sys-
tems. The problem of delay-dependent stability for nonlinear uncertain stochastic 
systems with time-varying delays has not been fully investigated, which still remains 
an interesting research topic. 

In this paper, we aim to solve the problem of delay-dependent stability for nonlin-
ear uncertain stochastic systems with time-varying delays. Based on oIt ˆ  differential 
formula and Lyapunov stability theory, sufficient delay-dependent criterion is derived 
in terms of LMI. Instead of employing the traditional model transformation, we intro-
duce appropriate free-weighting matrices that can be chosen properly to lead to a less 
conservative result. The condition can be easily checked by resorting to available 
software packages. 

Notation. The superscript “T” stands for matrix transposition. nR denotes the n-

dimensional Euclidean space. mnR ×  is the set of all real matrices of dimension nm × . 
0>P  means that P  is real symmetric and positive definite. The notation || ⋅  refers 

to the Euclidean vector norm in nR , and |||| ⋅ stands for the Euclidean norm for vector 

or the spectral norm of matrices. }{⋅E  stands for the mathematical expectation. The 

symbol ∗ is used to denote a matrix which can be inferred by symmetry. 

2   Problem Formulation 

Consider the following stochastic system with nonlinearity, uncertainty and time-
varying delays: 

⎪⎩

⎪
⎨
⎧

−∈=
−++

−+−+=

]0,[),()(
)())](()()()([

))]((),(,())(()()()([)(

htttx
tdwttxtDtxtC

dtttxtxtfttxtBtxtAtdx

ϕ
τ

ττ
           (1) 

where nRtx ∈)(  is the state vector; )(tA , )(tB , )(tC and )(tD are matrix functions 

with time-varying uncertainties described as follows 

)()( tAAtA Δ+= , )()( tBBtB Δ+= , =)(tC )(tCC Δ+ , )()( tDDtD Δ+= , 

where CBA ,, and D  are known constant matrices while uncertainties ),(tAΔ  

),(tBΔ )(tCΔ  and )(tDΔ  are assumed to be of the following form: 

])[()]()()()([ 4321 EEEEtHFtDtCtBtA =ΔΔΔΔ                        (2) 

where 4321 ,,,, EEEEH  are known real constant matrices with appropriate dimen-

sions, and )(tF is the time-varying uncertain matrix satisfying ItFtFT ≤)()( . Vec-

tor )(tω is an m-dimensional Brownian motion defined on a probability space. )(tϕ  
is an initial condition. The time-delay of system )(tτ is a known function that  
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satisfies ∞<≤≤ ht)(0 τ , ττ ≤)(t . ))((),(,( ttxtxtf τ−  denotes the nonlinear uncer-

tainties which satisfies the following condition: 

||))((||||)(||||)))((),(,(|| 11 ttxFtxFttxtxtf ττ −+≤−                   (3) 

with known constant matrices of appropriate dimensions 1F  and 2F . 

The purpose of this paper is to develop a delay-dependent stability criterion for sto-
chastic system (1). For this purpose, the following definition is first introduced. 

Definition 1. For all admissible uncertainties satisfying (2), the nonlinear uncertain 
stochastic delay system is said to be robustly stochastically stable, if for any 0>ε , 
there exist 0)( >εδ  such that )(|})(|{sup

0
εδϕ <

≤≤−
tE

th

, then the following inequality 

holds: 

ε<}||)({|| 2txE  

and is said to be stochastically asymptotically stable if for any initial condition, we 
have 

0}||)({||lim 2 =
∞→

txE
t

 

3   Main Results 

Let us give the following lemmas which will be used in the proof of our main result in 
this paper. 

Lemma 1[10]. (Schur complement) If the constant matrices 321 ,, ΣΣΣ  where 

T
11 Σ=Σ  and T

220 Σ=Σ< , then 03
1

231 <ΣΣΣ+Σ −T  if and only if 0
23

31 <⎥
⎦

⎤
⎢
⎣

⎡

Σ−Σ
ΣΣ T

. or, 

equivalently 0
13

32 <⎥
⎦

⎤
⎢
⎣

⎡
ΣΣ
ΣΣ−

T . 

Lemma 2[11]. Given appropriately dimensioned matrices NM ,,ϕ  with Tϕϕ = , 

Then, 

0)()( <++ TTT MtFNNtMFϕ  

holds for all )(tF  satisfying ItFtFT ≤)()(  if and only of for some 0>ε  

01 <++ − TT MMNN εεϕ  

Lemma 3[12]. Let YX , be real matrices of appropriate dimensions. Then, for any 

scalar 0>ε and vector nRyx ∈, , we have  

YyYyXxXxXYyx TTTTT εε +≤ −12  
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Lemma 4[13]. For any pair of symmetric positive definite constant matrix nnRR ×∈ , 

scalar 0>r , and a vector function nRtx →],0[: , the following inequality holds: 

∫∫∫ −−−
⋅⋅≤−

t

ht

t

ht

Tt

ht

T dssxRdssxdssRxsxh )()()()(  

We will use LMI method and free-weighting matrices to solve the asymptotical stabil-
ity of the stochastic system (1). The following theorem presents a sufficient delay-
dependent condition. 

Theorem 1. Consider the system (1). For given scalar 0≥h and τ , the nonlinear 
stochastic uncertain system with time-varying delays is stochastically asymptotically 
stable if there exist matrices 0>P , 0>Q , 0>R . 321 ,, NNN , 321 ,, MMM , and scalar 

numbers )3,2,1(0 => iiε  and )2,1(0 => iiμ  such that  

0
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⎥
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⎥
⎥
⎥
⎥
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⎢
⎢
⎢
⎢
⎢
⎢
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⎡
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ΦΦΦ

=Φ

I

I

I

I

I

PHP

R

MHMN

MHMPDN

MHMPCN
T

T

ε
ε

ε
μ

μ
     (4) 

Where  

33211111321111111 )(2 EEEEFFNNQMAAM TTTTTT μμεεε +++++−−++=Φ  

432211212112 EEEENNMABM TTTTT μμ ++−++=Φ  

TTT NMMAP 31313 −−+=Φ  

44222122321222222 )(2)1( EEEEFFNNQMBBM TTTTTT μμεεετ +++++++−−+=Φ  
TTT NMMB 32323 +−=Φ , 

RhMM T 2
3333 +−−=Φ  

Proof. For convenience, let 

))((),(,())(()()()()( ttxtxtfttxtBtxtAty ττ −+−+= , 

))(()()()()( ttxtDtxtCtg τ−+=                                          (5) 
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Then system (1) becomes  
tdtgdttytdx                                           (6) 

Choose a Lyapunov functional candidate to be  
t

ht

t

s
Tt

tt
TT dsdRyyhdssQxsxtPxtxtV            (7) 

where QP, and R are real symmetric positive-definite matrices to be determined. 

Then by making use of the oIt ˆ  differential rule, we obtain the stochastic differential 
as  

)()()(2)()( tdtPgtxdttLVtdV T ω+=                                (8) 

where  

12 ttQxttxttQxtxtPytxtLV TTT

        
t

ht
TTT dssRysyhtRytyhtPgtg 2                     (9) 

Integrating (6) from )(tt τ−  to t  gives  

t

tt

t

tt
sdsgdssyttxtx  

which yields for any matrices 21, NN  and 3N  with appropriate dimensions  

0)()()(

)())(()())()(

)()(

321
t

tt

t

tt

TTT

sdsgdssy

txttxNtyNttxNtx
                    (10) 

Similarly, for any matrices 21, MM  and 3M  with appropriate dimensions, we have  

0)]()))((),(,())(()(

)()()[)())(()(( 321

=−−+−+
+−+

tyttxtxtfttxtB

txtAMtyMttxMtx TTT

ττ
τ                          (11)  

By adding the left sides of (10), (11) to (8), we can obtain  

)()()(2)(
~

)( tdtPgtxdttVLtdV T ω+=  
t

tt
TTT sdsgNtyNttxNtx

)(3212   (12) 

where  

))(())(())(1()()()()(2)(
~

ttQxttxttQxtxtPytxtVL TTT τττ −−−−+=  

))(()()())(()()()())(( ttxtPDtDttxtxtPCtDttx TTTT τττ −−+−+  

))(()()()()()()()( ttxtPDtCtxtxtPCtCtx TTTT τ−++  )()(2 tRytyh T+  
t

ht
T dssRysyh 2 321 NtyNttxNtx TTT  

t

tt
dssytxttx 212 MttxMtx TT  

)]()))((),(,())(()()()([])( 3 tyttxtxtfttxtBtxtAMtyT −−+−+×+ ττ (13) 
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Noting (3) and using Lemma 3, we have  

)()()))((),(,()(2 11
1

11 txMMtxttxtxtfMtx TTT −≤− ετ    

)))((),(,()))((),(,(1 ttxtxtfttxtxtf T ττε −−+          

)()(2)()( 11111
1

1 txFFtxtxMMtx TTTT εε +≤ −  

             ))(())((2 221 ttxFFttx TT ττε −−+                       (14) 

))(())(()))((),(,())((2 22
1

22 ttxMMttxttxtxtfMttx TTT ττεττ −−≤−− −  

)))((),(,()))((),(,(2 ttxtxtfttxtxtf T ττε −−+          

)()(2))(())(( 11222
1

2 txFFtxttxMMttx TTTT εττε +−−≤ −  

))(())((2 222 ttxFFttx TT ττε −−+                                  (15) 

)()()))((),(,()(2 33
1

33 tyMMtyttxtxtfMty TTT −≤− ετ  

          )))((),(,()))((),(,(3 ttxtxtfttxtxtf T ττε −−+  

)()(2))()( 11333
1

3 txFFtxtyMMty TTTT εε +≤ −  

))(())((2 223 ttxFFttx TT ττε −−+                                         (16) 

By Lemma 4 and inequalities (14)-(16), we see 

     ))(())(()1()()()()(2)(
~

ttQxttxtQxtxtPytxtVL TTT τττ −−−−+≤  

))(()()())(()()()())(( ttxtPDtDttxtxtPCtDttx TTTT τττ −−+−+  

))(()()()()()()()( ttxtPDtCtxtxtPCtCtx TTTT τ−++ )()(2 tRytyh T+  

             
t
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t

ht
T dssyRdssy 2 321 NtyNttxNtx TTT  

))(( ttx τ−× )(])())(()([2 321 txNtyNttxNtx TTT ×+−+− τ  

∫ −
×+−++

t

tt

TTT dssyNtyNttxNtx
)(321 )(])())(()([2

τ
τ  

         )()(])())(()([2 321 txtAMtyMttxMtx TTT ×+−++ τ  

))(()(])())(()([2 321 ttxtBMtyMttxMtx TTT ττ −×+−++  

)))((),(,(])())(()([2 321 ttxtxtfMtyMttxMtx TTT ττ −×+−++  

))(())(()()( 22
1

211
1

1 ttxMMttxtxMMtx TTTT ττεε −−++ −−  

)()()222()()( 1132133
1

3 txFFtxtyMMty TTTT εεεε ++++ −  

))(())(()222( 22321 ttxFFttx TT ττεεε −−+++  

)(])())(()([2 321 tyMtyMttxMtx TTT ×+−+− τ )()( ttT ξξ Θ=             (17) 

where  

])()())(()([)( ∫ −
−=

t

ht

TTTTT dssytyttxtxt τξ  
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By Schur complement, inequality 0<Θ  is equivalent to  
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Then, through condition (18), we have 

      0)()()()( 344312211 <ΣΣ+ΣΣ+ΣΣ+ΣΣ+Π=Θ TTTTTT tFtFtFtF      (19) 
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where  

TTTTTTT MHMHMH ]00[ 3211 =Σ , ]000[ 212 EE=Σ , 
TT PH ]0000[3 =Σ , ]000[ 434 EE=Σ             (20) 

By Lemma 2, (19) holds if  
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Then, by Schur complement and substituting of (20) into (21), we see 
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  (22)  

By Schur complement, (22) is equivalent to (4), which implies that systems (1) is of 
stochastically asymptotical stability. This completes the proof. 

4   Conclusions 

The delay dependent stability problem has been investigated for the stochastic system 
with nonlinearity, uncertainty and time-varying delays. The new stability criterion has 
been derived by introducing some free-weighting matrices, which has more freedom 
to determine the stability of the systems. The proposed result is formulated in terms of 
linear matrix inequality, which can be efficiently solved by standard convex optimiza-
tion algorithms. 
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Abstract. In this paper, we investigate a class of fuzzy Cohen-Grossberg neural 
networks (FCGNN) with distributed delays and reaction-diffusion terms. Based 
on the properties of M-matrix, by constructing vector Liapunov functions and 
applying differential inequalities, the sufficient conditions ensuring existence, 
uniqueness, and global exponential stability of the equilibrium point of FCGNN 
with distributed delays and reaction-diffusion terms are obtained.  

Keywords: Stability, FCGNN, Reaction-diffusion, Distributed Delays. 

1   Introduction 

In recent years, Cohen-Grossberg neural network (CGNN) [1], have attracted the 
attention of the scientific community due to their promising potential for tasks of 
associative memory, parallel computation and their ability to solve difficult optimiza-
tion problems. In these applications it is required that there is a well-defined comput-
able solution for all possible initial states. This means that the neural network should 
have a unique equilibrium point that is globally stable. Thus, the qualitative analysis 
of dynamic behaviors is a prerequisite step for the practical design and application of 
neural networks. There are many papers discuss the qualitative properties for neural 
networks [2], and fuzzy cellular neural network (FCNN) [3]. In hardware implemen-
tation, time delays are unavoidable, and may lead to an oscillation and instability of 
networks [4]. In most situations, the time delays are variable, and in fact unbounded. 
Therefore, the study of stability of neural networks with variable and unbounded 
delay is practically important. Stability of neural networks and CGNN with constant 
and variable time delays stand by differential equation has been studied in [4~6]. The 
global exponential stability of CGNN with reaction-diffusion terms and distributed 
delays are studied in [7~8].  

In this paper, we study FCGNN with reaction-diffusion terms, which contain both 
variable time delays and unbounded delay. We relax some conditions on activation 
functions and diffusion functions of systems similar to that discussed in [6~9], by 

                                                           
* Corresponding author. 
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using M-matrix theory and nonlinear integro-differential inequalities, even type 
Liapunov functions were constructed to analyze the conditions ensuring the existence, 
uniqueness and global exponential stability of the equilibrium point of the models. 

2   Model Description and Preliminaries 

In this paper, we analyze the stability of reaction-diffusion FCGNN with both variable 
delays and unbounded delay described by the following differential equations 
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where iu  is the state of neuron i, ),,2,1( ni =  and n is the number of neurons; 

),,( ii uxtD is smooth reaction-diffusion function, nnijaA ×= )( , nnijbB ×= )(  are connec-

tion matrices, T
1 ),,( nJJJ =  is the constant input vector. T

11 ))(),...,(()( nn ufufuf = , 
Τ= ))(,),(()( 11 nn ugugug , and T

11 ))(),...,(()( nn uhuhuh =  are the activation functions 

of the neurons; )( ii ud  represents an amplification function; )( ii uρ  is an appropri-

ately behaved function such that the solutions of model (1) remain bounded. The 
variable delays )(tijτ  ( nji ,,2,1, = ) are bounded functions, i.e. ττ ≤≤ )(0 tij , and 

),0[),0[: ∞→∞ijk , ),,2,1,( nji = are piecewise continuous on ),0[ ∞ . Let nnijkk ×= )( .

∧ and ∨ denote the fuzzy AND and fuzzy OR operation, respectively. nnij
cC ×= )( 11 and 

nnij
cC ×= )( 22 are elements matrices of fuzzy feedback MIN template, fuzzy feedback 

MAX template, respectively. 
The conventional conditions for kernel functions of (1) meet the following  

assumptions: 

Assumption A: ∫
∞

=
0

1)( dsskij , ∫
∞

+∞<
0

)( dssskij , ),,2,1,( nji = . 

Assumption B: ∫
∞

=
0

1)( dsskij , ∫
∞

+∞<=
0

)( ijij
s Kdsskeβ , ),,2,1,( nji = . 

In order to study the exponential stability of neural networks (1) conveniently, we 
inquire kernel functions meet the following assumption: 

Assumption C: ∫
∞

=
0

)()( ββ
ijij

s Ndsske , ),,2,1,( nji = , where )(βijN  are continu-

ous functions in ),0[ δ , 0>δ , and 1)0( =ijN .  
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It is easy to prove that the Assumption C includes Assumption A and B [5]. 
The initial conditions of (1) are of the form )()( ssu ii φ= , 0≤s , where iφ  is 

bounded and continuous on ]0,(−∞ . (2) is the boundary condition of (1), in 

which mRx ⊂Ω∈ , Ω  is a compact set with smooth boundary and 0>Ωmes , Ω∂ is 
the boundary of Ω , ],0[ +∞=∈ It .  

For convenience, we introduce some notations. The express nT
n Ruuuu ∈= ),...,,( 21  

represents a column vector (the symbol T)(  denotes transpose). For matrix 

nnijaA ×= )( , || A  denotes absolute value matrix given by nnijaA ×= |)(||| , i, j =1, 2,…, n; 
SA][  is defined as 2/)( T AA + . For nRx ∈ , Τ= |)||,...,(||| 1 nxxx , |||| x  denotes a vector 

norm defined by |}{|max||||
1

i
ni

xx
≤≤

= . ),...,diag( 1 nρρρ = , ),...,diag( 1 nddd = . And 

),),,((),,(
1 k

i
iij

m

k k
ii x

u
uxtD

x
uxtD

∂
∂

∂
∂=∑

=
 

So model (1) becomes the following system: 
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j
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t
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n
j dssuhstkc ))(()(1

1  ]))(()(2
1 i

t

jjij
n
j Jdssuhstkc ij ∫ ∞−= +−∨− .         (3) 

Therefore, system (3) and (1) has the same properties of stability. 
Now we consider the activation functions of the neurons, amplification function 

and behaved function satisfying the following assumption: 

Assumption D: For each },,2,1{ ni ∈ , RR: →if , RR: →ig  and RR: →ih , 

there exist the real numbers 0>ip , 0>iq  and 0>ir  such that 

|
)()(

|sup
zy

zfyf
p ii

zy
i −

−=
≠

, |
)()(

|sup
zy

zgyg
q ii

zy
i −

−=
≠

, |
)()(

|sup
zy

zhyh
r ii

zy
i −

−=
≠

 

for every zy ≠ . Let ),...,diag( 1 nppP = , ),...,diag( 1 nqqQ = , ),...,diag( 1 nrrR = . 

Assumption D introduced the supremum of Global/Local Lipschitz constants, and 
expanded the scope of system application. So, the activation functions such as sig-
moid type and piecewise linear type are the special case of that satisfying it. 

Assumption E: For each },,2,1{ ni ∈ , RR: →ie  is strictly monotone increasing, 

i.e. there exists a positive diagonal matrix 0),,,diag( 21 >= nρρρρ  such that  

i
ii

vu

vu ρρρ ≥
−
− )()(

, )( vu ≠  . 

Assumption F: For each },,2,1{ ni ∈ , RR: →id  is continuous function and 

ii d≤< σ0 , where iσ  is a constant. 
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3   Existence and Uniqueness of the Equilibrium Point 

In this section, we shall study the condition which ensures the existence and unique-
ness of the equilibrium point of system (1). 

For convenience, we introduce some definitions and lemmas as follows. 

Definition 1 [10]. A real matrix nnijaA ×= )(  is said to be an M-matrix if 0≤ija  

nji ,...,2,1, = , ji ≠ , 0>iia  and all successive principal minors of A  are positive. 

Definition 2. The equilibrium point *u  of (1) is said to be globally exponentially 

stable, if there exist constant 0>λ  and 0>β  such that ||*)(|| utu − tu λφβ −−≤ e||*||  

( 0≥t ), where |)(|supmax||*|| *

]0,[1
ii

sni
usu −=−

−∈≤≤
φφ

τ
. 

If there is a constant constuu == *
00 (const denotes invariable constant) which is the 

solution of the following equations: 
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then 0
*

=
∂
∂

x

ui . That is to say (4) and (3) have the same equilibrium point, and so, 

system (4) has the same equilibrium point as that of system (1). 
We firstly study the solutions of the nonlinear map associated with (1) as follows: 

ijjij
n
jjjij

n
jij
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j
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j
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1
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1
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ρ     (5) 

Let T
nn uHuHuHxH ))(),...,(),(()( 2211= . It is well known that the solutions of 0)( =uH  

are equilibriums in (1). If map 0)( =uH  is a homeomorphism on nR , then system (1) 

has a unique equilibrium *u  (see [2]). In the following, we will give condition ensur-
ing 0)( =uH  is a homeomorphism. 

Lemma 1 [5]. If 0)( CuH ∈  satisfies the following conditions: (i) )(uH  is injective 

on nR ; (ii) ∞→)(uH  as ∞→u ; then )(uH  is a homeomorphism of nR . 

Lemma 2 [3]. Suppose x and y are two states of system (1), then 
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Theorem 1. If Assumption D, E, and F are satisfied, and 

)|||||||(| 21 RCRCQBPA +++−= ρα  is an M-matrix, then, for every input J , 

system (1) has a unique equilibrium *u . 

Proof: In order to prove that for every input J , system (1) has a unique equilibrium 

point *u , it is only to prove that )(uH  is a homeomorphism on nR . In following, 

we shall prove it in two steps. 

Step 1, we will prove that condition (i) in Lemma 1 is satisfied. Suppose, for pur-

poses of contradiction, that there exist nyx R, ∈  with yx ≠  such that )()( yHxH = .  

From Assumption E, we know that there exists matrix ),,,,diag( 21 nββββ =  

)( ii ρβ ≥  such that )()()( iiiiiii yxyx −=− βρρ , for ni ,...,2,1= . 

Form (5), we get  
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n
j yhcxhcyhcxhc ==== ∨−∨+∧−∧+ , ),...,2,1( ni =  

From Assumption D, E and Lemma 2, we get 

0||)]|||||||(|[ 21 ≤−+++− yxRCRCQBPAβ .                       (7) 

Because of α  being an M-matrix, from Lemma 1, we know that all elements of 
121 ))|||||||(|( −+++− RCRCQBPAβ  are nonnegative. Therefore 0|| ≤− yx , i.e., 

yx=  . From the supposition yx≠ , thus this is a contradiction. So )(uH  is injective.  

Step 2. We now prove that condition (ii) in Lemma 1 is satisfied. Let 

))0()()( HuHuH −= . From (5), we get 
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n
j hcuhchcuhc ==== ∨−∨+∧−∧+ , (i=1, 2,…,n). 

To show that )(uH  is homeomorphism, it suffices to show that )(uH  is homeo-

morphism. According to Assumption D, we get 

|||)0()(| upfuf iii ≤− , |||)0()(| uqgug iii ≤− , |||)0()(| urhuh iii ≤− ,(i=1, 2,…,n). 

Since )|||||||(| 21 RCRCQBPA +++−= ρα is an M-matrix, so 

)|||||||(| 21 RCRCQBPA +++−= βα  is an M-matrix. From the property of M-

matrix [10], there exists a matrix 0),,diag( 1 >= nTTT  such that  
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0)]||||||||([ 21 <−≤++++− n
S ERCRCQBPAD εβ                        (8) 

for sufficiently small 0>ε , where nE  is the identity matrix. Calculating 
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From (9) and using Schwartz inequality, we get ||)(|||||||||||||| 2 uHuTu ≤ε , namely,      

 ||)(||||||||||| uHTu ≤ε  .                                              (10) 

So, +∞→||)(|| uH , i.e., +∞→||)(|| uH  as +∞→|||| u . From Lemma 1, we know that 

for every input J , map )(uH  is homeomorphism on nR . So systems (1) have a 

unique equilibrium point *u . The proof is completed. 

4   Global Exponential Stability of Equilibrium Point 

In this section, we shall apply the ideal of vector Lyapunov method to analyze global 
exponential stability of model (1). 

Theorem 2. If Assumption D, E and F are satisfied and 

)|||||||(| 21 RCRCQBPA +++−= ρα  is an M-matrix, then for each input J , 

systems (1) have a unique equilibrium point, which is globally exponentially stable. 

Proof: Since α  is an M-matrix, from Theorem 1, system (1) has a unique equilib-

rium point *u . Let *)()( ututz −= , model (1) can be written as 
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The initial condition of (11) is *)()( uss −= φψ , 0≤s , and  (11) have a unique equi-

librium at 0=z . So according to the Assumption D, we get 

|)(||))((| tzptzf jjjj ≤ , |))((||))((| ttzpttzg ijjjijjj ττ −≤− ）（ , |)(||))((| tzrtzh jjjj ≤ . 

Due to α  being an M-matrix, so )|||||||(| 21 RCRCQBPA +++−= βα  is an 

M-matrix. Using property of M-matrix [10], there exist 0>iξ  ),...,2,1( ni =  satisfy  
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From Assumption F, we know that ))((0 *
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Here, τ  is a fixed number according to assumption of neural networks (1). Let 
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λ= ),...,2,1( ni = , and Lyapunov function ∫Ω= dxtVtV ii |)(|)( , calculat-

ing the upper right derivative )(tVD i
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dxtVDtVD ii ∫Ω
++ = |)(|)( ∫Ω += dxzezze i

t
ii

t |)|sgn( λλ λ .                      (14) 

From (11) and (14), according to Assumption D, boundary condition (2), and 
0>Ωmes , we get 
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Defining the curve },...,2,1,0,:)({ nillyly ii =>== ξγ , and the set },0:{)( γ∈≤≤=Ω yyuuy . 
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a constant number, then |,)(|e|||:{| sVV s ψλ=  ))((}0 00 lzs Ω⊂≤≤−τ , namely 
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i ξψλ <= , 0≤≤− sτ , i=1,2,…, n. 



 Stability Analysis of Fuzzy Cohen-Grossberg Neural Networks 691 

 

We claim that 0|)(| ltV ii ξ< , for ),0[ +∞∈t , i=1, 2, … , n . If it is not true, then 

there exist some index i and 1t  ( 01 >t ) such that 01 |)(| ltV ii ξ= , 0|)(| 1 ≥+ tVD i , and 

0|)(| ltV jj ξ≤ , for 1tt ≤<−τ , j =1, 2, … , n. So we could get 

0|)(|)( 11 ≥= ∫Ω
++ dxtVDtVD ii . However, from (13) and (15), we get 
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There is a contradiction. So 0|)(| ltV ii ξ< , for ),0[ +∞∈t , therefore, 

t
ii ltz λξ −< e|)(| 0 minmax /||||)1( ξξψδ+≤ tλ−e ||||ψβ= tλ−e ,  

where minmax /)1( ξξδβ += . From definition 2, the zero solution of systems (11) is 

globally exponentially stable, i.e., the equilibrium point of systems (1) is globally 
exponentially stable. The proof is completed.  

It is obvious that the result in theorem 2 extended that in [6~9]. 

5   Conclusions 

In the paper, a thorough analysis of existence, uniqueness, and global exponential 
stability of the equilibrium point for FCGNN with reaction-diffusion terms and both 
variable delays and unbounded delay have been presented. The conditions ensuring 
the existence and uniqueness of the equilibrium are obtained. By constructing proper 
Liapunov functionals, using M-matrix theory and qualitative property of the differen-
tial inequalities, the sufficient conditions for global exponential stability of the equi-
librium point for FCGNN are obtained. Some restrictions on FCGNN are removed, 
and the results in this paper are explicit and convenient to verify in practice. 
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Abstract. Some conditions ensuring existence, uniqueness for a class of delayed 
interval Hopfield neural networks with reaction-diffusion terms are proposed in 
this paper. Applying vector Lyapunov function and M-matrix theory, the global 
exponential robust stability of the system is studied. The obtained conditions 
containing diffusion terms improve the conservative of the previous results. An 
illustrated example shows how to use our results in practice. 

Keywords: Hopfield neural networks, Reaction-diffusion, Delays, Robust  
stability. 

1   Introduction 

Hopfield neural networks (HNN), which were proposed by Hopfield [1] in 1982, 
caused a high degree of attention due to their potential applications for associative 
memory, parallel computation and their ability to solve difficult optimization problems 
[2]. Considering that time delays, which not only reduces the transmission speed of 
signal but also leads to instability of networks, unavoidably exist in neural networks, 
the stability of HNN with delays [3-7] has important theoretical significance and 
practical value. While neural networks model is only connected with time, it is a dif-
ferential equation. However, strictly speaking, diffusion effect cannot be avoided in the 
neural networks when electrons are moving in asymmetric electromagnetic field, which 
could cause instability of the states, the stability analysis for delayed neural networks 
with reaction-diffusion terms becomes increasingly significant. Wang [8] considered 
dynamical behavior of HNN with time delays and reaction-diffusion terms, and got the 

2L -norm global exponential stability of HNN for the first time. Thereafter, large 

numbers of papers about neural networks with reaction-diffusion terms have emerged 
see [9-12] and reference therein. Nevertheless, the sufficient conditions for the stability 
of networks are the same as those obtained in the cases that there are not reac-
tion-diffusion terms in the system because the reaction-diffusion terms are all elimi-
nated by inequality analysis techniques in the above references, namely, these results 
are conservative. With Dirichlet boundary conditions, recurrent neural networks [13] 
and cellular neural networks [14] with reaction-diffusion terms are researched, the 
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sufficient conditions including reaction-diffusion terms are less conservative, but the 
existence and uniqueness of the equilibrium point were not considered.  

As far as we know, the entire existing criterion about the existence and uniqueness of 
the equilibrium point of neural networks do not contain reaction-diffusion terms. In this 
paper, with relative lemma of homeomorphism mapping and M-matrix theory, some 
conditions including reaction-diffusion terms are obtained to ensure the existence and 
uniqueness and global exponential stability of the equilibrium point of HNN with 
reaction-diffusion terms.  

2   Model Description 

Assuming that mR∈Ω  is a compact set with smooth boundary Ω∂ , and 0>Ωmes . Let 
),( xtui  be the state of neural networks, Ω∈x , ni ,...,2,1= . Denote by m∂∂ /  the out-

ward normal derivative. Denote )(2 ΩL  the Lebesgue measurable function spaces, i.e. 
2/12 )||(|||| 2 dxuu iLi ∫Ω= , ni ,...,2,1= . For matrix nnijaA ×= )( , || A  denotes the absolute-value 

matrix given by nnijaA ×= |)(||| ; For vector n
n Ruuuu ∈= ),...,,( 21 , |||| u  denotes a vector 

norm defined by 2

1

1

2 )||||(|||| 2∑
=

=
n

i
Liuu . 

Hopfield neural networks with time delays and reaction-diffusion terms is described 
as follows  

)),(([)),(()
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(
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xtu
D
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u
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n

j

ijii

k

i
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m

k k

i ∑∑
==

+−
∂

∂
∂
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=
∂
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iijjjij Jxttugb +−+ ))]),((( τ , 0≥t , ni ,...,2,1= , Ω∈x ,         (1a) 

0),( =
Ω∂

xtui , ni ,...,2,1= , Ω∈x .                                 (1b) 

Where 2≥n  denotes the number of neurons, ),( xtui  represents the state variable of ith 

neuron, ni ,...,2,1= . 0),( ≥xtDik  denotes diffusion function and let 

}{ ,0
1

ikxt
mk

i Dsupmin Ω∈≥≤≤
=θ , ni ,...,2,1= . )),(( xtud ii  is an appropriately behaved function, 

nnijaA ×= )( , nnijbB ×= )( , represent the weight matrices of the neurons, 
T

nn ugugugug ))(),...,(),(()( 2211=  corresponds to the activation function of neurons. 

0)( ≥tijτ , nji ,...,2,1, = , is time-varying delays of the neural networks, and 

)}({,,1 tsup ijRtnji ττ ∈≤≤= . iJ  denotes the external input on the ith neuron, let 
T

nJJJJ ),...,,( 21= . The initial conditions of Eq. (1) are of the forms ),(),( xsxsu ii φ= , 

0≤s , where iφ  is bounded and continuous on ]0,[ τ− , ni ,...,2,1= . 

Define interval matrix as follows: 

AAAaAA nnijI ≤≤== × :)({  ..ei  },...,2,1,, njiaaa ijijij
=≤≤ ; 

BBBbBB nnijI ≤≤== × :)({ ..ei },...,2,1,, njibbb ijijij
=≤≤ , 
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let nnijaA ×= )( 00 , nnijbB ×= )( 00 , where |}||,max{|0
ijijij aaa = , |}||,max{|0

ijijij bbb = , 

nji ,...,2,1, = . Let T
nuuuu ),,,( 21
∗∗∗∗ =  be the equilibrium point of system (1). 

Definition 1. The equilibrium point of system (1) is said to be globally exponentially 
robustly stable if there exist constant 0>M  and 0>λ  such that for all IAA∈ , IBB∈  

and nRJ ∈ , tuxsMuxtu λφ −∗∗ −≤− e||),(||||),(||  holds, where 0≥t , Ω∈x , 

∑
=−∈

∗ −=−
n

i

Lii
s

uxssupuxs
1

*

]0,[
2

||),(||||),(|| φφ
τ

.  

Definition 2 [7]. A real matrix nnijaA ×= )(  is said to be a M-matrix if 0≤ija , 

nji ,...,2,1, = , ji ≠ , and all successive principal minors of A  are positive. 
In the following, a lemma given in [14] is proposed, but its form is different from the 

lemma in [14]. 

Lemma 1 [3]. Let mR∈Ω  is a compact set, which has smooth boundary Ω∂ . Let 
Ω∈x , kkx ω≤||  ( mk ,...,2,1= ), and )(xui  be a real-valued function belonging to 

)(1 ΩC and 0)( =
Ω∂

xui , then dxuu
m

dxu i
T
ii ∫∫ ΩΩ
∇∇≤

2
2 π

, where k
mk

ωπ
≤≤

=
1
max , ni ,...,2,1= . 

Assumption A1. For each },...,2,1{ ni ∈ , function id : RR → , is strictly monotone in-

creasing, i.e. there exists constant 0>iγ  such that for all ii vu ≠ ,  

ii

iiii
i vu

vdud

−
−≤< )()(

0 γ . 

Assumption A2. Each function ig : RR → , ni ,...,2,1= , is globally Lipschitz with 

Lipschitz constant iL , i.e. for all ,iu  iv , |||)()(| iiiiiii vuLvgug −≤− . 

Define )(uH  is a nonlinear map associated with Eq.(1).  

Lemma 2. If 0)( CuH ∈  satifies (i) )(uH  is injective on nR ; (ii) ∞→||)(|| uH  as 

∞→|||| u , then )(uH  is the homeomorphism of nR .  

It is well known that if )(uH  is homeomorphism on nR , then neural networks (1) have 

a uniqueness equilibrium point *u . In the following section, we will give a theorem 
ensuring )(xH  is a homeomorphism. 

Theorem 1. Suppose that Assumption A1 and Assumption A2 are satisfied, then 
neural networks (1) has uniqueness equilibrium point *u  if for all IAA∈ , IBB∈ , 

nRJ ∈ , matrix P is a M-matrix, here 

jij

n

j

ijiiii Lba
m

p |)||(|
2

1 0

1

0

2
+−+= ∑

=π
θγ ; jij

n

j

ijij Lbap |)||(|
2

1 0

1

0 +−= ∑
=

, ni ,...,2,1= . 

Proof. For all IAA∈ , IBB∈ , due to P is a M-matrix, from the property of M-matrix 

[7], we know that there exist 0>iξ , ni ,...,2,1= , such that  
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n
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jijijjij
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j

ijiii LbaLba
m ξγθ
π

ξ , 

then for a sufficient small 0>δ , we have 

0|)||(|
2

1
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2

1
[
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δξγθ
π

ξ j

n
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j
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m .    (2) 

Consider a map ),())(),...,(),(()( 0
21

nnT
n RRCuHuHuHuH ∈= endowed with the norm 

2
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1

2 )||||(|||| 2∑
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⋅=⋅
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i
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, where 
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u
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∂
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∂
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= ∑∑
==

)()()(][)(
11

, ni ,...,2,1= .        (3) 

First of all, we demonstrate the injective part. 
When )()( vHuH = , we get the following equation: 

∑∑∑∑
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Considering Assumption A1, for ni ,...,2,1= , we get 

0)]()()[(||]
)(

[
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∂

−∂
∂
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==
jjjjij
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j

ijiii
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m

k k

vgugbavu
x

vu
D

x
γ .          (4) 

Multiply both sides of (4) by || ii vu −  and integrate it on the domain Ω  with respect to 

x, and consider Assumption A2, we get  

dxvu iii

2

||∫Ω −γ  

dxvgugvubadx
x

vu
D

x
vu jjjj

n

j

iiijij

k

ii
ik

m

k k

ii ))()((||)(]
)(

[||
11

∫ ∑∫ ∑ Ω =Ω =
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∂

−∂
∂
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m
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n

j

iijijijiii ∫ ∑∫ Ω =Ω
−−++−−≤ |||||)||(|||

1

2

2π
θ

                  
                  (5) 

Estimation (5) through Holder inequality and Young inequality leads to 

dxvu iii

2

||∫Ω −γ  

2

1
22

1
2

1

2

2
)||()||(|)||(||| dxvudxvuLbadxvu

m
jjiijij

n

j

ijiii ∫∫∑∫ ΩΩ=Ω
−−++−−≤

π
θ  

dxvuLbadxvuLba
m

jjjij

n

j

ijiijij

n

j

iji ∫∑∫∑ Ω=Ω=

−++−+−−≤ 2

1

2

1
2

|||)||(|
2

1
||]|)||(|

2

1
[

π
θ .  

Moreover  

0|||||)||(|
2
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||||]|)||(|

2

1
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1
2 22 ≤−+−−+−+ ∑∑

==
Ljjj

n

j

ijijLiijij

n

j

ijii vuLbavuLba
m

π
θγ , 

namely 0)||||,...,||||,||(|| 22
22

2
11 222 ≤−−− T

LnnLL
vuvuvuP . 
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Since P is a M  matrix, from the property of M-matrix, it follows that 0|||| 2
2 =−

Lii vu , 

namely ii vu = , ni ,...,2,1= . So the map 0)( CuH ∈  is injective on nR . 

Next, we will demonstrate ∞→||)(|| uH  as ∞→|||| u .  

Let )0()()( iii ΗuΗuH −= , where ijij

n

j

iji JgbaΗ ++=∑
=

)0()()0(
1

, ..ei   

)]0()()[()()()(
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i
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==

, ni ,...,2,1= .  (6) 

It is suffice to show ∞→||)(|| uH  as ∞→|||| u  in order to demonstrate the property 
∞→||)(|| uH  as ∞→|||| u . Multiply both sides of Eq.(6) by iu  and integrate them on the 

domain Ω  with respect to x, we get 

∫Ω dxuuH ii )( dxgugbauu
x

u
D

x
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γ .    (7) 

From Assumption 1 and in virtue of Holder inequality and Young inequality, we have  

∫Ω dxuuH ii )( ∫ ∫∫∑Ω ΩΩ=
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1
22

1
2

1

2

2
)||()||(|)||(|||)( dxudxuLbadxu
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Multiply both sides of (8) by iξ  and consider (2), we get  
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Furthermore ∑∑ ∫∑
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LiLiini
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i
Li uuHdxuuHu

1
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222 ||||||)(||}{max)(|||| ξξδ .               (9) 

Employing Holder inequality for (9), we obtain  

||||.||)(||}{max)||||()||)(||}({max|||| 1
2

1

1
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1

1
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1

2
22 uuHuuHu ini

n

i
Li

n
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Liini ξξδ ≤≤

==
≤≤ =≤ ∑∑ , 

..ei  ||)(||}{max|||| 1 uHu ini ξδ ≤≤≤ . Apparently, ∞→||)(|| uH  as ∞→|||| u , which directly 

implies that ∞→||)(|| uH  as ∞→|||| u . It can be concluded that )(uH  is a homeomor-
phism on nR , namely, Eq. (1) has unique equilibrium point.                                         □ 
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3   Main Results 

In this section, we will establish a family of conditions ensuring global exponential 
robust stability of Eq. (1). 

Conveniently, we introduce coordinate translation for model (1), let *
iii uuz −= , 

ni ,...,2,1= , the system (1) can be rewritten as follows: 
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xtzi , ni ,...,2,1= ,                                     (10b) 

where )()),(()),(( ∗∗ −+= iiiiiii uduxtzdxtzh , )()),(()),(( ∗∗ −+= jjjjjjj uguxtzgxtzf . 

The initial condition of Eq. (10) is *),(),( iii uxsxs −= φϕ , 0≤≤− sτ , ni ,...,2,1= . Next, 

we will give some sufficient conditions for Eq.(10). 

Theorem 2. Suppose that Assumption A1 and Assumption A2 are satisfied, then the 
zero solution of system (10) is globally exponentially robustly stable if for all IAA∈ , 

IBB∈ , matrix P  is a M-matrix, where  
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Proof. Firstly, from (2), it can be concluded that  
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Constructing the functions 
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Let 2
2||),(||e)(
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i xtztV λ= , ni ,...,2,1= , calculating the upper right derivation iVD+  of iV  

along the solution of Eq.(10), we get 
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By the Lemma 1, we have 

∫ ∑Ω = ∂
∂

∂
∂

dx
x

xtz
D

x
xtz

k

i
ik

m

k k

i ]
),(

[),(
1

dxxtz
m

dxxtzxtz iii
T
ii ∫∫ ΩΩ

−≤∇∇−≤ ),(),(),( 2

2π
θθ      (13) 

Substituting (13) into (12), and from AssumptionsA1-A2, we have 
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by using Holder inequality and Young inequality for (14), we get  
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Defining the curve, }0,:)({ >== χχξχζ iiyy , and the sets },0:{)( ζκ ∈≤≤= yyzzy . 

Let }{1min inimin ξξ ≤≤= , }{1max inimax ξξ ≤≤= . Taking minξϕδχ /|||| 2
0 = , here 1>δ  is a con-
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We claim that 0)( χξii tV < , 0≥t , ni ,...,2,1= . If it is not true, then there exists some i  

and 0'>t , such that 0)'( χξ ii tV = , 0)'( ≥+ tVD i  and 0)( χξ jj tV ≤ , 'tt ≤≤−τ , nj ,...,2,1= . 

However, from (11) and (15), we get  
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From Definition 1, the zero solution of the system (10) is globally exponentially 
robustly stable, namely, the equilibrium point of Eq. (1) is globally exponentially 
robustly stable. The proof is completed.                                                                          □ 
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4   Example 

Consider the following system: 
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with the boundry condition 0),( =
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xtui , taking ttij sin6.01)( +=τ , 0=iJ   
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. Obviously, the Assumptions 

A1-A2 hold and by easy computation, we get 11 =θ , 22 =θ , 2=π , 51 =γ , 5.42 =γ ; 

)1,1(diagL = ; 6.1=τ . Furthermore, we can obtain matrix ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

95.455.0

1.165.4
P .  

Clearly, from Definition 2, we know that P is M-matrix, so the equilibrium point of 
system (16) is globally exponentially stable. 

5   Conclusion 

In this paper, applying vector Lyapunov method and M-matrix theory, the analysis of 
existence, uniqueness and global exponential robust stability of the equilibrium point of 
a class of delayed Hopfield neural networks with reaction-diffusion terms have been 
presented. The obtained sufficient conditions are less conservative. An example is 
given at last to illustrate the practicability of our results. 
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Stability and Bifurcation of a Three-Dimension Discrete 
Neural Network Model with Delay 

Wei Yang and Chunrui Zhang* 
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Abstract. In this paper, we consider a three-dimension discrete neural network 
model with delay. The characteristic equation of the linearized system at the 
zero solution is a polynomial equation involving very high order terms. We de-
rive some sufficient and necessary conditions on the asymptotic stability of  
the zero solution. In addition, it is found that there exist Hopf bifurcations when 
the parameter passes a sequence of critical values by using Extensional Jury 
Criterion. Finally, computer simulations are performed to support the theoretical 
predictions. 

Keywords: Discrete neural network, Stability, Hopf bifurcation, Periodic  
solution, Jury Criterion. 

1   Introduction 

Since Hopfield's work, a great deal of research activities into the theories and applica-
tions of neural networks introduced by Hopfield. Recently, the dynamical behaviors 
(including stability, instability, periodic oscillatory and chaos) of the discrete-time 
Hopfield neural networks without or with delay have received increasing interesting 
due to their promising potential applications in many fields. Some results have been 
reported. See [1]~[8]. For example, Guo et al.[1] discuss the linear stability and Hopf 
bifurcation of a discrete system of two neurons with three delays. C.Zhang and 
B.Zheng [2] consider a two-dimension discrete neural network model with multi-
delay by using Euler method. However, no one has applied Extensional Jury Crite-
rion[9] to discuss the dynamical behaviors of a discrete neural network model without 
or with delay. 

In this paper, we consider a three-dimension discrete neural network model with 
delay: 

⎪
⎩

⎪
⎨

⎧

+++=
+++=
+++=

−−−+

−−−+

−−−+

)()()(

)()()(

)()()(

1

1

1

knknknnn

knknknnn

knknknnn

ygxgzfazz

xgzgyfayy

zgygxfaxx

ββα
ββα
ββα

              (1.1) 
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where nnn zyx ,, denote the activations of three neurons, ak、、、βα are parameters. 

0>a is the internal decay of the neurons, k is non-negative integer which denote the 
synaptic transmission delay, βα、  are the connection weights. gf、 : RR → is the 

activation function. We allow that every neuron has self-feedback and delayed signal 
transmission which is due to the finite switching speed of neurons. 

The goal of this paper is to investigate how parameter affects the discrete neural 
network model with delay (1.1) by using Hopf bifurcation theory of discrete system 
and Extensional Jury Criterion [9]. We not only discuss the stability of the fixed  
point and the existence of the Hopf bifurcations, but also the direction of Hopf bifur-
cation and the stability of the bifurcation periodic solutions. 

2   Stability Analysis and Bifurcation 

Throughout this section, to establish the main results for the discrete neural network 
model with delay (1.1), we make the following hypothesis on the activation functions 
in (1.1) : 

       RRgfH →::)( 1 、  is a −1C smooth function with ;0)0(,0)0( == gf  

        1)0()0(:)( ''
2 == gfH . 

Under the assumptions )( 1H and )( 2H , it follows that the origin (0,0,0) is an equilib-

rium of (1.1). Linearizing system(1.1) about origin (0,0,0) gives the following linear 
system:  

⎪
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⎪
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                             (2.1) 

we can induce the method from [2] to mark nn AMM =+1  

where 
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then, the characteristic equation for (2.1) is given by  

        02)(3)( 31231 =−−−−−−=− ++ βαλλβαλλλ kkkk aaAE          (2.2)   

That is                   

               0))(2( 211 =+−−−−− ++ βαλλβαλλ kkkk aa          (2.3)  

For discussing the linear stability and Hopf bifurcations of the (1.1), we only need to 
analyze the distribution of the roots of the (2.4) and (2.5).   

We consider the following two cases: 

Case 1:    

021 =−−−+ βαλλ kk a                                                (2.4) 

To work up simply, we can mark βα 201 −−=a .  

Case 2:    

0)( 21 =+−−+ βαλλ kk a                                              (2.5) 

Same as 01a , we also mark βα +−=02a , also we can mark (2.4) and (2.5) as  

00
1 =+−+

t
kk aaλλ ,  2,1=t                                            (2.6)  

It is well known that the trivial solution of (1.1) is asymptotically stable if all 
roots λ of (2.3) are inside the unit circle. Hence, to discuss the stability for (1.1), we 
give the following result by concerning Jury Criterion: 

Theorem 1. If 

              )( 'a  10 −> aa t ; )( 'b ;1)1( 0
1 aa t

k −−>− + )( 'c 11 0 <<− ta ;  

   )( 'd  )2()2(
0 ktt aa > , )3(

)1(
)3(

0 tkt aa −> , , )1(
3

)1(
0

−− > k
t

k
t aa , )(

2
)(

0
k
t

k
t aa > . 

are satisfied for (1.1), then the zero solution of (1.1) is asymptotically stable. 

Where ,1,,1,0;2,1 ,
)1( +=== kjaat jtjt  

.3,,2,1,0,2,,3,2,)1()1(
)3(

)1(
]3)([

)1(
0)( +−=+== −−

+−

−
++−

−

ikjki
aa

aa
a i

jt
i

tik

i
tjik

i
ti

jt  

Proof. )( 'a . First, we can mark (2.3) as  

t
k

k
k

kkktnnt aaaaaaDaaaD 0
1

11010 ),,;(),,;( +−== +
++− λλλλ            (2.7) 

where βα 2,,1 011 −−===+ aaaa kk , βα +−=02a .By applying Jury Criterion , we 

have derived that 01),,;( 010 >+−=+ tkkt aaaaaD λ . Hence, we have 10 −> aa t ;  
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     )( 'b . We can substitute 1−=λ  into (2.7), 

0])1()1[()1(),,;()1( 0
11

10 >+−−−−=− ++
+ t

kkk
kkt

n aaaaaD λ  

then, we have  

aa t
k −−>− + 1)1( 0

1 ; 

     ).( 'c We know that 10 +< kt aa , so we have 11 0 <<− ta ; 

     ).( 'd By the table of [9] , it is easily to know  

   )2(
00 tt ab =       )3(

00 tt ac =      ......    )2(
00

−= n
tt al   

            

   )2(
11 tt ab =       )3(

11 tt ac =       ......    )2(
11

−= n
tt al  

     ......          ......         ......    )2(
22

−= n
tt al  

  )2(
)1()1( tntn ab −− =   )3(

)2()2( tntn ac −− =   ......    )2(
33

−= n
tt al      

Since 1+= kn (2.7), we have 

)2(
)1( kttn ab =−      )2(

)1()2( tktn ac −− =    ......    )1(
33

−= k
tt al  

From Jury Criterion we know that 

)2()2(
0 ktt aa > , )3(

)1(
)3(

0 tkt aa −> , , )1(
3

)1(
0

−− > k
t

k
t aa , )(

2
)(

0
k
t

k
t aa >  

The proof is completed. 
Then, we discuss the bifurcation for the (1.1). We give the following result by con-

cerning Extensional Jury Criterion[9] and the distribution of the zeros of polynomial 
[Zhang C. et al.,2006]. First, we give the Lemma 1: 

Lemma 1[9] .(Extensional Jury Criterion) Define a real coefficient polynomial 

                    ),0,3(),,,;( 1,0 >≥ nn anaaazD                   (2.8) 

The necessary and sufficient conditions for (2.8) to have a couple of conjugate com-

plex roots and the length of modulo equal to 1, other length of modulo of 2−n  roots 

are less than 1: when 3=n ,the following conditions (i)(ii)(iii)(v) are established, 

when 3>n , (i)(ii)(iii)(iv)(v) are established: 

(i) ;0),,,;1( 10 >naaaD    (ii) ;0),,,;1()1( 10 >−− n
n aaaD  

                    (iii) ;0 naa <                       (iv) 302010 ,,, −−− >>> nnn llccbb     

                    (v) 20 mm =  

By Lemmas 1 and the Hopf bifurcation theorem as stated in [10], we have the follow-
ing results on stability and bifurcation in (1.1).  
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Theorem 2. If  

        )( 'a  101 −> aa ;  )( 'b aak −−>− + 1)1( 01
1 ; )( 'c 11 01 <<− a ; 

       )( 'd  )2(
1

)2(
01 kaa > , )3(

1)1(
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01 −> kaa , , )1(
31

)1(
01

−− > kk aa ; 

                        )( 'e  )(
21
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01

kk aa = . 

are satisfied for (1.1), then (1.1) has a Generic Hopf bifurcation at the origin(0,0,0). 
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Proof. we can only to prove )( 'e . From Lemma 1(v), we easily to know that 

20 mm = also mean )(
21

)(
01

kk aa = . The proof is completed.  

The minimum absolute value of 01a in the inequality is marked 00a , and 00iwe± satisfies 

the following expression: 
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Substitute (2.11) into (2.10), we have 
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Hence, we have obtained that 0sin 00 >ωk . The sign of 
00

2
00 )(

ad

ad λ

 

is determined by 

000000 )1cos()1sin(2sin)1(2 ωωω ++−+ kkk . In fact, we know 0)1cos( 00 >+ ωk and 

,0)1sin( 00 <+ ωk
 
so 0)1cos()1sin(sin)1(2 000000 >++−+ ωωω kkk . Finally, we have 

.0
)(

00

2
00 >

ad

ad λ
 The proof is completed. 

Theorem 3. If  

          (a) 102 −> aa ;   (b) aak −−>− + 1)1( 02
1 ;  (c) 11 02 <<− a ; 
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32
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          (e) )(
22
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kk aa = . 

are satisfied for (1.1), then (1.1) has a Equivariant Hopf bifurcation at the origin(0,0,0). 

Where ,1,,1,0,2
)1(
2 +== kjaa jj                    
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Proof. The method of proof for Theorem 3 is the same as Theorem 2. 

3   D_3-Equivariant and Multiple Bifurcations 

Lemma 2. System (1.1) is D3-equivalent, where D3 is the dihedral group of order 6.  
Proof: D3 can be generated by matrices  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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⎥
⎥
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⎢
⎢

⎣

⎡
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010

001

,

001

100

010

QP . 

Hence, matrix group },,,,,{ 22
33 QPQPQPPID = . Consider the subgroup of D3: 

 },
3

2
)(,{1

πωωθ −==Γ ttP  },)(,{ 2 ttQ ωωθ ==Γ })(,{   3 πωωθ −==Γ ttQP . 

Let
00

2

ω
π=T and denote TP the Banach space of all continuous T-periodic function 

)(tx . Denoting TSP the subspace of TP consisting of all T-periodic solution of system  

 
 



708 W. Yang and C. Zhang 

(1.1). Let } allfor  , ;{),(Fix 3DGxGxSPxSP TT ∈=∈=Γ ,and using the Golubitshy's 

theorems [11], we have 

2),(DimFix    ,2),(DimFix   ,2),(DimFix 321 =Γ=Γ=Γ TTT SPSPSP  

Theorem 4. Assume that 02a satisfy the conditions(a)(b)(c)(d)(e). Then near 02a there 

exist eight branches of small-amplitude periodic solutions of (1.1) with period T 

near
00

2

ω
π

and they are: 

①two phase-locked oscillations : )
3

2
()(

00
1 ω

π±= − nxnx ii for i (mod) 3, 

②three mirror-reflecting waves: )()()( nxnxnx kji ≠=  for some distinct i, j,            

  k in {1, 2, 3}, 

③three standing waves: )()(
00ω

π±= nxnx ji  for some distinct i, j in {1, 2, 3}. 

4   Numerical Simulation 

In this section, we will study the specific example of (1.1) along with numerical simu-
lation. First we can use the numerical simulation to show the zero solution of (1.1) is 
asymptotically stable. Let 2=k , tanh)()( == xgxf , 1=a , 01.0=α , 5.0−=β . 

The characteristic equation is deprived as  

0))(2( 22323 =+−−−−− βαλλβαλλ aa  

The result of numerical simulation as follow:  

 

Fig. 1. The origin of (1.1) is stable when 5.0,01.0,1,2 −==== βαak  
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Fig. 2. A periodic solution of (1.1) is orbitally asymptotically stable at 621.000 −=a  
when k 

= 2, a=1.02, α = 0.022,  β =−0.599 

 

Fig. 3. Multiple periodic solution of (1.1) occurs at 62.000 −=a when ,0.1,2 == αak
 

6.0,02.0 −== βα  
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Abstract. In this paper, a class of impulsive neural networks with time-varying 
delays is considered to study the globally exponential stability. New sufficient 
conditions for globally exponential stability are obtained by using the vector 
Lyapunov function, Young inequality and Halanay differential inequality with 
delay.  

Keywords: neural networks, globally exponential stability, Lyapunov function. 

1   Introduction 

Recently, the dynamical behaviors of neural networks have aroused extensive 
researches by numerous scholars due to their applicability in solving image 
processing, signal processing and pattern recognition problems. In 1988, Chua and 
Yang [1] put forward the cellular neural networks, Zhang Li-juan [2] studied the 
globally exponential stability of a class of neural networks with time-varying delays 
described by the system of nonlinear delay differential equations: 

1 1

( ) ( ) ( ( )) ( ( ( ))) , 0, ( 1,2, , )
n n

i i i ij j j ij j j ij i
j j

x t cx t a f x t b g x t t J t i nτ
= =

=− + + − + ≥ =∑ ∑  (1)

Most widely used neural networks is neither purely continuous-time nor purely 
discrete-time ones, these are called impulsive neural networks [3-9]. In this paper, we 
consider the following impulsive neural networks: 

1 1

( ) ( ) ( ( )) ( ( ( ))) , , 0,

( ) ( ) ( ) ( ( )), 1,2, , , {1, 2, }.

n n

i i i ij j j ij j j ij i k
j j

i k i k i k ik k

x t c x t a f x t b g x t t J t t t

x t x t x t I x t i n k N

τ
= =

+ − −

⎧ =− + + − + ≠ ≥⎪
⎨
⎪ Δ = − = = ∈⎩

∑ ∑  
(2)

where 
1( ) ( ( ), , ( )) , ( )T

n ix t x t x t x t=  corresponds to the state of the ith neuron at time ,t n  

corresponds to the number of units in the neural networks, 0c>  denotes the neuron 
firing rate, 

i ja  and 
i jb  represent the connection weight and the delayed connection 

                                                           
* This work is supported by Science Foundation of Zhongkai University of Agriculture and 
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weight, respectively, 
iJ  is an external input on the ith neuron at time , ( ) 0ijt tτ ≥  is the 

transmission delay, and ,j jf g  are the activation functions in system (1). 
kt  is called 

impulsive moment and 
1 2 kt t t< < < <  is a strictly increasing sequence such that 

lim , ( )k i kk
t x t−

→ ∞
= +∞  and ( )i kx t+  denote the left-hand and right-hand limit at ,kt  

respectively, 
ikI  shows impulsive perturbation of the ith neuron at time kt . We always 

assume ( ) ( ), .i k i kx t x t k N−= ∈  

2   Preliminaries 

In this section, we will study the existence and globally exponential stability of the 
equilibrium point of Eq. (2). To obtain our results, we need to introduce the following 
definitions and lemmas. Throughout this paper, we further assume that the activations 

,j jf g  and the delays ( )ij tτ  satisfy the following conditions:  

H1) Each 
jf  and 

jg  are bounded continuous and for each 1, 2, , ,j n=  there 

exist real numbers 0jp >  and 0jq >  such that  

sup( ( ) ( )) ( ) , sup( ( ) ( )) ( ) ,j j j j j j
x y x y

p f x f y x y q g x g y x y
≠ ≠

= − − = − −  

for every x y≠ . 

H2) The time delays ( )( , 1,2, , )i j t i j nτ =  are bounded and nonnegative functions. 

That is, there is a positive number 0τ>  such that 0 ( )ij tτ τ≤ ≤ . 

The system (2) is supplemented with initial values given by  

0( ) ( ), [ ,0], 1,2, ,i ix t t t t i nϕ τ+ = ∈ − = , (3)

( )i tϕ  denote real-valued bounded and continuous functions defined on [ ,0]τ− .  

If ( ) 0ikI x =  for all , 1, , ,nx R i n k N∈ = ∈ , then the impulsive model (2) becomes 

continuous cellular neural networks with delays model (1). 

Definition 1. (Cao and Wang [3]) A map: : n nH R R→  is a homeomorphism of nR  
onto itself, if 0H C∈  is onto and the inverse map 1 0H C− ∈ . 

Definition 2. Vector function 
1( ) ( ( ), , ( ))T

nx t x t x t=  is called a solution of system (2), if 

( )x t  is continuous at 
kt t≠  and 0, ( ) ( )k kt x t x t−≥ =  and ( )kx t+ exist, ( )x t  satisfies Eq. (2) 

and initial condition (3). Especially, a point * * * *
1 2( , , , )nx x x x=  in nR  is called an 

equilibrium point of (2), if *( )x t x=  is a solution of (2). Where the components *
ix  

are governed by the algebraic system 

* * *

1 1

0 ( ) ( )
n n

i i ij j j ij j j i
j j

c x a f x b g x J
= =

=− + + +∑ ∑  (4)
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Throughout this paper, we always assume that the impulsive jumps 
kI  satisfy 

*( ) 0, 1, 2, , ,k iI x i n k N= = ∈ , here * * * *
1 2( , , , )T

nx x x x=  is the equilibrium point of system 

(2). Let 
0( , , )x t t ϕ  denote the solution of system (2) through 

0( , )t ϕ . 

In the following theorem and definition, we use a result due to Forti and Tesi [10] 
in order to prove there is a unique solution of the system (4) under  the general 

Euclidean norm 1

1

( )
n

r r
r i

i

u u
=

= ∑ , where 1r≥  and 
1 2( , , , )T n

nu u u u R= ∈ .  

Definition 3. The equilibrium point * * * *
1 2( , , , )nx x x x=  of system (2) is said to be 

globally exponential stable if there exist constants 1β ≥  and 0σ >  such that 
* *( ) t

r rx t x x e σβ φ −− ≤ −  for all 0t≥ , where 

1
* *

[ ,0] 1

[ sup[ ( ) ]] .
n

r r
r j j

s j

x s x
τ

φ φ
∈ − =

− = −∑  

Lemma 1. (Forti and Tesi [11]) If 0( )H x C∈  satisfies the following conditions: 

(i) ( )H x  is injective on ,nR  

(ii) ( )H u →∞ as u →∞ . 

Then ( )H x  is a homeomorphism of nR  onto itself. 

Lemma 2. (Young inequality[12]) Assume that 
1 20, 0, 1lξ ξ> > >  and 1 1 1

l m
+ = , then the 

inequality 
1 2 1 2

1 1l m

l m
ξξ ξ ξ≤ +  holds. 

Lemma 3. (Halanay inequality [13]) Let α  and β  be constants with 0α β> >  and 

( )x t  be a nonnegative continuous function on 
0 0[ , ]t tτ− . If ( )x t  satisfies the following 

inequality '( ) ( ) ( ),x t x t x tα β≤− +  where { }( ) s u p ( ) , 0
t s t

x t x s
τ

τ
− ≤ ≤

= ≥  is a constant, 

then for 
0t t≥ , we have 0( )

0( ) ( ) r t tx t x t e− −≤ . In which r  is the unique positive solution of 

the equation rr e τα β= − . 

3   Main Result 

In this section, we shall establish one globally exponential stability criteria for 
impulsive system (2). We consider the impulsive network (2) in which the impulsive 
state displacements characterized by :kI R R→  at fixed instants of time ,kt t k N= ∈  are 
defined by 

*( ) ( ) ( ( )) ( ( ) ), , 1,2, , .i k i k k k ik k ix t x t I x t x t x k N i nγ− − −− = = − ∈ =  (5)

Where ikγ  denote real numbers. For convenience in our analysis, we let 

* * * * *( ) ( ) , ( ( )) ( ( ) ) ( ), ( ( ( ))) ( ( ( )) ) ( ), ( 1,2, , ).i i i j j j j j j j j j ij j j ij j j jy t x t x f y t f y t x f x g y t t g y t t x g x j nτ τ= − = + − − = − + − =  
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So that (2) can be rewritten as 

1 1

*

( ) ( ) ( ( )) ( ( ( ))), 0,

( ) (1 ) ( ), 1, 2, , ; ,

( ) ( ) ( ) , [ , 0].

n n

i i i ij j j ij j j ij
j j

i k ik i k

i i i i

y t c y t a f y t b g y t t t

y t y t i n k N

y s s s x s

τ
γ

ψ φ τ

= =−

⎧ = − + + − ≥⎪⎪
⎨ = + = ∈
⎪

= = − ∈ −⎪⎩

∑ ∑
 

(6)

Theorem 1. Let 1, 0, , , ,i ij ij ir c a b J R> > ∈  the function ( )jf i  and ( )jg i  satisfy H1), and 
the delay ( )ij tτ  satisfy H2), suppose the condition  

H3)  If there exist constants 0iα >  such that 

(1 ) (1 )1 1(1 ) (1 )1 1
1 2

1 1
1 1

1 1min{ ( ( 1)( ))} max{ }
ij ijij ij

ji jiji ji

r rr rn n
j jr rr rr rr r

i ji i ij j ij j ji i
i n i ni ij j

k c a p r a p b q b q k
r r

σ σδ δ
σ σδ δα α

α α
− −− −− −− −

≤≤ ≤≤= =
= − + − + > =∑ ∑ (7)

is satisfied, where ,i j ijδ σ  denote real numbers. Then there exists a unique equilibrium 
point *x  of (2). 

Proof. Consider a map 0
1 2( ) ( ( ), ( ), , ( )) ( , )T n n

nH u H u H u H u C R R= ∈ endowed with the 

norm 
1

1

( ( ) )
n

r r
r i

i

u u t
=

= ∑  for 1r> , where 

1 1

( ) ( ) ( ) ,( 1,2, , )
n n

i i i ij j j ij j j i
j j

H u cu a f u b g u J i n
= =

=− + + + =∑ ∑ . 

The map 0H C∈  is a homeomorphism on nR  if it is injective on nR  and satisfies 
( ) rH u →∞  as 

ru →∞ .  
First, we claim that H  is injective on nR , namely ( ) ( )H u H v=  implies u v=  for any 

, nu v R∈ , as follows, we have  

1 1 1 1

( ) ( ) ( ) ( ) ,
n n n n

i i ij j j ij j j i i i ij j j ij j j i
j j j j

cu a f u b g u J cv a f v b g v J
= = = =

− + + + =− + + +∑ ∑ ∑ ∑  

and consequently  

1 1

, 1,2, , ,
n n

i i i ij j j j ij j j j
j j

c u v a p u v b q u v i n
= =

− ≤ − + − =∑ ∑  

under the hypotheses. Further estimation through the use of the Young inequality 
leads to 

1 1

1 1 1 1 1

1 1 1 11 1

1 1 1 1

[( ) ( )] [( ) ( )]

[

ij ij ij ij ij ij ij ij

n n n n n
r r r

i i i i i ij j j j i i i ij j j j i i
i i j i j

n n n n
r r

i ij j i i ij j j j i ij j i i ij j j j
i j i j

i

cu v a p u v u v b q u v u v

a p u v a p u v b q u v b q u v

r

δ σ δ σ δ σ δ σ

α α α

α α

α

− −

= = = = =

− − − −− −

= = = =

− ≤ − − + − −

= − × − + − × −

≤

∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

(1 ) (1 ) (1 ) (1 )1 1 1 1

1 1 1 1

(1 )1 1

1 1

1 1 1 1] [ ]

1 1[

ij ij ij ij

ij ij ij ij

ij ij

ji

r r r rn n n n rr r r rr r rr r r r
ij j i i ij j j j i ij j i i ij j j j

i j i j
r rn n

j rr r
i ij j ji i

ii j

ra p u v a p u v b q u v b q u v
r r r r

r
a p a p

r r

δ σ δ σ
δ σ δ σ

δ σ
δ

α
α

α α

− − − −− − − −

= = = =

−− −

= =

− −− + − + − + −

−= +

∑ ∑ ∑ ∑

∑ ∑ (1 ) (1 ) (1 )1 1

1 1

(1 ) (1 ) 1 1 1 1

1 1 1

1 1] [ ]

1 1{ [ ( 1) ( )]} {

ij ij

ji ji ji

ij ij ij ij

ji ji

r rn n
jr r rr rr r

i i i ij j ji i i i
ii j

r r r rn n n
j jr r rr r r r

i ji i ij j ij j i i i
i ii j j

r
u v b q b q u v

r r

a p r a p b q u v b
r r

δ σ
σ δ σ

δ σ δ σ
δ σ

α
α α

α α
α αα α

− − −− −

= =

− − − − − −

= = =

−− + + −

= + − + − +

∑ ∑

∑ ∑ ∑ (1 ) (1 )

1 1

}ji ji

n n
r r r

ji i i i
i j

q u vδ σ− −

= =
−∑ ∑
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which gives 

1 2
1

( ) 0
n

r
i i i

i

k k u vα
=

− − ≤∑ . (8)

It follows, therefore, from (8) that i iu v=  for 1,2, ,i n=  (i.e. u v= ). Hence, the map 
0H C∈  is injective on nR . Second, we prove that ( ) rH u →∞  as 

ru →∞ , we consider 
the map ˆ( ) ( ) (0)H u H u H= − , i.e. 

1 1

ˆ ( ) ( ) (0) ( ) ( ),
n n

i i i i i ij j j ij j j
j j

H u H u H cu a f u b g u
= =

= − =− + +∑ ∑  for , 1,2, ,iu R i n∈ = . 

It is enough to show ˆ ( ) rH u → ∞  as 
ru →∞ , we have 

1 1

1 1 1 1

1 1

1 1 1

1 1

1 1 1

ˆsgn( ) ( ) sgn( )[ ( ) ( )]

[ ]

1 1( ) { [
ij ij

n n n n
r r

i i i i i i i i i ij j j ij j j
i i j j

n n n
r r r

i i i i ij j j i i ij j j i
i j j

r rn n n
r rr r

i i i i ij j i i
i i j

u u H u u u cu a f u b g u

c u a p u u b q u u

r
c u a p u a

r r

δ σ

α α

α α α

α α

− −

= = = =

− −

= = =

− −

= = =

= − + +

≤ − + +

−≤ − + +

∑ ∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑ (1 ) (1 ) (1 ) (1 ) 1 1

1

(1 ) (1 )1 1 1 1

1 1 1

11] [ ]}

1 1[ ] [( 1)( ) ] [

ij ij

ij ij ij ij

ij ij ij ij

ji ji

r rn
r r r rr r rr r

j j j ij j j ij j i
j

r r r rn n n
r rjr rr r r r

i i i i ij j ij j ji i i i
ii i j

r
p u b q u b q u

r r

c u r a p b q a p u
r r

δ σ
δ σ δ σ

δ σ δ σ
δ σα αα α αα

− − − − − −

=

− −− − − −

= = =

−+ +

≤ − + − + + +

∑

∑ ∑ ∑ (1 ) (1 )

1 1

(1 ) (1 ) (1 ) (1 )1 1 1 1

1 1 1

1 2
1

]

1 1{ [( 1)( ) ] [ ]}

( ) ,

ji ji

ij ij ij ij

ji ji ji ji

n n
r rj r

ji i i
ii j

r r r rn n n
r r r rj j rr r r r

i i ij j ij j ji i ji i i
i ii j j

n
r

i i
i

b q u

c r a p b q a p b q u
r r

k k u

δ σ

δ σ δ σ
δ σ δ σ

α
α α

α α α
α

− −

= =

− − − −− − − −

= = =

=

=− − − + + −

≤− −

∑ ∑

∑ ∑ ∑
∑

 

that yields 

1 1
1 2

1 1 1

ˆ ˆ( ) sgn( ) ( ) ( )
n n n

r r r
i i i i i i i i i

i i i

k k u u u H u u H uα α α− −

= = =

− ≤− ≤∑ ∑ ∑  

On applying a Holder  inequality 

{ } { } 1 1
( 1)

1 2 1, ,1, , 1 1 1

ˆ( )min max ( ) ( ( ) ) ,
n n n

r r s rs r
i i i i i ii ni n i i i

k k u u H uα α α −
== = = =

− ≤∑ ∑ ∑  

where 1 1 1
r s
+ = . It then follows that  

{ }
{ }

1 1
1, ,

1 11 2
1, ,

m ax
ˆ( ) ( ( ) )

( )m in

n nii nr rr r
i i

i ii
i n

u H u
k k

α
α

=

= =
=

≤ −∑ ∑  

and from which we assert ( ) rH u →∞  as 
ru →∞ . We conclude that the map 0H C∈  is 

a homeomorphism on nR  and this guarantees the existence of a unique solution 
* nx R∈  of the algebraic system (4) which defines the unique equilibrium state of the 

impulsive network (2). The proof is now complete. 

Theorem 2. Let 1, 0, , ,i ij ij ir c a b J R> > ∈ , in addition to H1), H2), H3) and (5) hold, assume 
further that: 



716 J. Yang et al. 

H4) There exists a constant γ  such that 

1

ln
, 1, 2, ,k

k k

k
t t

γ γ λ
−

≤ < =−
 

where 
1max{1, 1 , , 1 },r r

k k nk k Nγ γ γ= + + ∈ , the scalar 0λ >  is the unique positive 

solution of the equation: 

1 2 .r tr rk rk e λλ= −  

Then the equilibrium point *x  of system (2) is globally exponential stable. 

Proof. According to assumption H1), we get  

* * * *( ( ) ) ( ) ( ) , ( ( ( )) ) ( ) ( ( )) .j j j j j j j j j ij j j j j j ijf y t x f x p y t g y t t x g x q y t tτ τ+ − ≤ − + − ≤ −  (9)

We consider the Lyapunov function 
1

( ) ( )
n

r
i i

i

V t y tα
=

=∑ , we denote ( ) sup ( )
t s t

V t V s
τ− ≤ ≤

= =  

1

sup( ( ) )
n

r
i i

t s t i

y s
τ

α
− ≤ ≤ =

∑  for 0t≥ . From (8), the upper right Dini derivative ( )D V t+ of ( )V t  

along the solutions of system (6) is obtained as 

[1 * * * *

1 1 1

1 1

1 1 1

( )

( ) sgn( ( )) ( ) ( ( ( ) ) ( )) ( ( ( ( )) ) ( ))]

[ ( ) ( ) ( ) ( ( )) ( ) ]

[ (

n n n
r

i i i i i ij j j j j j ij j j ij j j j
i j j
n n n

r r r
i i i j ij j i j ij j ij i

i j j

i i i

D V t

r y t y t c y t a f y t x f x b g y t t x g x

r c y t p a y t y t q b y t t y t

r c y t

α τ

α τ

α

+

−

= = =

− −

= = =

= − + + − + − + −

≤ − + + −

= −

∑ ∑ ∑
∑ ∑ ∑

1 1 1 11 1

1 1 1

(1 ) (1 ) 1 1

1 1

) [( ( ) ) ( ( ))] [( ( ) ) ( ( ( )))]]

11[ ( ) ( ) (

ij ij ij ij ij ij ij ij

ij ij

ij ij

n n n
r r r

ij j i ij j j ij j i ij j j ij
i j j

r rn n
r rr r r r

i i i ij j j ij j i
i j

a p y t a p y t b q y t b q y t t

rr c y t a p y t a p y
r r

δ σ δ σ δ σ δ σ

δ σ
δ σ

τ

α

− − − −− −

= = =

− − − −

= =

+ × + × −

−≤ − + +

∑ ∑ ∑

∑ ∑ 1 1

1 1

(1 ) (1 )

1

(1 ) (1 ) 1 1 11

1 1 1

1) ( )

1 ( ( )) ]

11[ ( )] ( )

ij ij

ij ij

ij ij ijij

ji ji

r rn n
r rr r

ij j i
j j

n
r r r

ij j j ij
j

r r rrn n n
j r r rr r rr

i i ji i ij j ij j i
ii j j

j
i j

i

rt b q y t
r

b q y t t
r

rr c a p a p b q y t
r r

b

δ σ

δ σ

δ σ σδ
δ σ

τ

αα α
αα α

− −

= =

− −

=

− − − − −−

= = =

−+

+ −

−= × − + + +

+

∑ ∑
∑

∑ ∑ ∑
(1 ) (1 )

1 1

(1 ) (1 ) (1 ) (1 )1 1 1 1

1 1
1 1

1

( ( ))

1 1min{ (( 1)( ) )} ( ) max{ } ( )

( )

ji ji

ij ij ij ij

ji ji ji ji

n n
r r r

i i i ji
i j

r r r rn n
j jr r r rr r r r

i ij j ij j ji i ji ii n i ni ij j

q y t t

r c r a p b q a p V t r b q V t
r r

rkV t

δ σ

δ σ δ σ
δ σ δ σ

τ

α α
α α

− −

= =

− − − −− − − −
≤ ≤ ≤ ≤= =

−

≤− − − + + +

=−

∑ ∑

∑ ∑
2 ( ).rkV t+

 

According to assumption H3) and Lemma 3, it is obviously that 

0( )
0( ) ( ) (0)r t t r tV t V t e V eλ λ− − −≤ =   

for 
0 10 t t t= < < . Where λ is the unique positive solution of the equation 

1 2 .r tr rk rk e λλ= −  
Also, in view of condition (5), one has 

1 1 1 1 1 1( ) ( ) ( ( ) ) (1 )( ( ) )i i i i i i i i i ix t x x t x I x t x x t xγ∗ − ∗ − ∗ − ∗− = − + − = + − . 
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Then at 1t t= , 

1 1 1 1 1 1 1 1 1
1 1 1

( ) ( ) 1 ( ) ( ) ( ) (0) .
n n n

r r r r r r r
i i i i i i i

i i i

V t y t y t y t V t Vα α γ γ α γ γ+ + − − −

= = =
= = + ≤ = ≤∑ ∑ ∑  

By following the similar inductive arguments as before, we derive that  

1
1 0 1 2 1( ) (0) kr tr r r r

k kV t V e λγ γ γ γ −−+
− −≤   

for 
1, ,kt t k N−= ∈  where 

0 0t =  and 0 1,rγ =  by the mathematical induction, we can 
conclude that 

0 1 2 1( ) (0) r r r r r t
kV t V e λγ γ γ γ −

−≤ . (10)

For 
1 ,k kt t t k N− < < ∈ , noticing  that 1( )k kt t

k eγγ −−≤   by H4), we can use  (10) to conclude that 

1 0 1 02 1( ) ( ) ( )( ) ( )( ) (0) (0) (0) (0)k kr t t r t t r t tr t t r t r t r t r t r tV t V e e e e V e e V e e V eγ γ γγ λ λ γ λ λ γ−− − −− − − − − −≤ ≤ = =  

for 0 ,kt t k N< < ∈ , which is equivalent to 

( )

1

( ) ( )
n

r r r t
i r

i

y t e λ γβ ψ − −

=
≤∑    

for 0 ,kt t k N< < ∈ , where  

{ } { } 1
* *

11 [ ,0] 1

max /min 1, {sup [ ( ) ]} .
n

r ri i r r j j
i ni n s j

x s x
τ

β α α ψ φ φ
≤ ≤≤ ≤ ∈− =

= ≥ = − = −∑  

Hence 

1
( )

1

[ ( ) ]
n

r trr
i r

i

y t e λ γβ ψ − −

=
≤∑  for 0 ,kt t k N< < ∈ . 

So the vector solution ( )y t  converges to the equilibrium state * 0y =  of the 

impulsive network (6) exponentially in the norm 
1

1

( )
n

r r
r i

i

u u
=

= ∑  as t→∞ , that is, 

the equilibrium point *x  of system (2) is globally exponentially stable. This completes 
the proof. 

4   Conclusion 

In this paper, we consider the globally exponential stability of the neural networks 
with variable delays and impulses. Under assumption that the activation function is 
not bounded, monotonic or differentiable, we obtain some sufficient conditions for the 
existence and globally exponential stability of a unique equilibrium. 
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Abstract. This paper deals with the problem of discrete-time nonlin-

ear system identification via Recurrent High Order Neural Networks. It

includes the respective stability analysis on the basis of the Lyapunov

approach for the extended Kalman filter (EKF)-based NN training al-

gorithm, which is applied for learning. Applicability of the scheme is

illustrated via simulation for a discrete-time nonlinear model of an elec-

tric induction motor.

1 Introduction

Neural networks (NN) have become a well-established methodology as exempli-
fied by their applications to identification and control of general nonlinear and
complex systems. In particular, the use of recurrent high order neural networks
(RHONN) has increased recently [8]. There are recent results which illustrate
that the NN technique is highly effective in the identification of a broad cat-
egory of complex discrete-time nonlinear systems without requiring complete
model information ([12], [13]).

Lyapunov approach can be used directly to obtain robust training algorithms
for countinuous-time recurrent neural networks ([8], [9]). For discrete-time sys-
tems, the problem is more complex due to the couplings among subsystems,
inputs and outputs. Few results have been published in comparison with those
for continuous-time domain ([12], [13]). By other hand discrete-time neural net-
works are more convenient for real-time applications.

For many nonlinear systems it is often difficult to obtain their accurate and
faithful mathematical models, regarding their physically complex structures and
hidden parameters as discussed in [2]. Therefore, system identification becomes
important and even necessary before system control can be considered not only
for understanding and predicting the behavior of the system, but also for ob-
taining an effective control law.

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 719–726, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The identification problem consists of choosing an appropriate identification
model and adjusting its parameters according to some adaptive law, such that the
response of the model to an input signal (or class of input signals), approximates
the response of the real system to the same input [9].

Several training methods for discrete-time recurrent networks have been pro-
posed in the literature as a viable alternative. New training algorithms, e.g., those
based on Kalman filtering, have appeared [4], [5], [10]. In this paper, we use an
Extended Kalman Filter (EKF)-based training algorithm for the RHONN, in
order to identify discrete-time nonlinear systems.

2 Mathematical Preliminaries

Through this paper we use k as the step sampling, k ∈ 0 ∪ Z
+ , |•| for the

absolute value, ‖•‖ for the Euclidian norm for vectors and for any adequate
norm for matrices. For more details related to this section see [3]. Consider a
MIMO nonlinear system:

χ (k + 1) = F (χ (k) , u (k)) (1)

where χ ∈ �n, u ∈ �m and F ∈ �n ×�m → �n is nonlinear function.

2.1 Discrete-Time Recurrent Neural Networks

Consider the following discrete-time recurrent high order neural network
(RHONN):

xi(k + 1) = w
i zi(x(k), u(k)), i = 1, · · · , n (2)

where xi (i = 1, 2, · · · , n) is the state of the ith neuron, Li is the respective
number of higer-order connections, {I1, I2, · · · , ILi} is a collection of non-ordered
subsets of {1, 2, · · · , n}, n is the state dimension, wi (i = 1, 2, · · · , n) is the
respective on-line adapted weight vector, and zi(x(k), u(k)) is given by

zi(x(k), u(k)) =

⎡⎢⎢⎢⎣
zi1

zi2
...

ziLi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Πj∈I1y

dij(1)
ij

Πj∈I2y
dij(2)
ij

...
Πj∈ILi

y
dij(Li)
ij

⎤⎥⎥⎥⎥⎦ (3)

with dji(k) being a nonnegative integers, and yi is defined as follows:

yi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yi1
...
yin

yin+1

...
yin+m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(x1)
...

S(xn)
u1
...
um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)
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In (4), u = [u1, u2, . . . , um] is the input vector to the neural network, and S(•)
is defined by

S(x) =
1

1 + exp(−βx)
(5)

Consider the problem to approximate the general discrete-time nonlinear system
(1), by the following discrete-time RHONN serie-parallel representation [9]:

χi (k + 1) = w∗
i zi (x(k), u(k)) + εzi (6)

where χi is the ith plant state, εzi is a bounded approximation error, which
can be reduced by increasing the number of the adjustable weights [9]. Assume
that there exists ideal weights vector w∗

i such that ‖εzi‖ can be minimized on
a compact set Ωzi ⊂ �Li The ideal weight vector w∗

i is an artificial quantity
required for analytical purpose [9]. In general it is assumed that this vector exists
and is constant but unknown. Let us define its estimate as wi and the estimation
error as

w̃i (k) = w∗
i − wi (k) (7)

The estimate wi is used for stability analysis which will be discussed later. Since
w∗

i is constant, then w̃i (k + 1) − w̃i (k) = wi (k + 1) − wi (k), ∀k ∈ 0 ∪ Z
+.

2.2 The EKF Training Algorithm

Kalman filtering (KF) estimates the state of a linear system with additive state
and output white noises [2], [4]. For KF-based neural network training, the net-
work weights become the states to be estimated, with the error between the
neural network output and the desired output being considered; this error is
considered as additive white noise. For identification, the desired output is in-
formation generated by the plant; in this paper, the respective state. Due to
the fact that the neural network mapping is nonlinear, an extended Kalman
Filtering (EKF)-type is required.

The training goal is to find the optimal weight values that minimize the predic-
tion errors (the differences between the desired outputs and the neural network
outputs). The EKF-based NN training algorithm is described by

Ki (k) = Pi (k)Hi (k)Mi (k) i = 1, · · · , n
wi (k + 1) = wi (k) + ηiKi (k) ei (k) (8)
Pi (k + 1) = Pi (k) −Ki (k)H

i (k)Pi (k) +Qi (k)

with

Mi (k) =
[
Ri (k) +H

i (k)Pi (k)Hi (k)
]−1

(9)
ei (k) = χi (k) − xi (k) (10)
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where ei (k) is the respective identification error, Pi (k) ∈ �Li×Li is the prediction
error covariance matrix at step k, wi ∈ �Li is the weight (state) vector, Li is
the respective number of neural network weights, χi is the ith plant state, xi is
the ith neural network state, n is the number of states, Ki ∈ �Li is the Kalman
gain vector, Qi ∈ �Li×Li is the NN weight estimation noise covariance matrix,
Ri ∈ � is the error noise covariance; Hi ∈ �Li is a vector, in which each entry
(H

ij
) is the derivative of one of the neural network state, (x

i
), with respect to

one neural network weight, (w
ij

), as follows

H
ij

(k) =
[
∂xi (k)
∂wij (k)

]
wi(k)=wi(k+1)

(11)

where i = 1, ..., n and j = 1, ..., Li

Usually Piand Qi are initialized as diagonal matrices, with entries Pi (0) and
Qi (0), respectively. It is important to remark that Hi (k) , Ki (k) and Pi (k) for
the EKF are bounded; for a detailed explanation of this fact see [11].

Then the dynamics of the identification error (10) can be expressed as

ei (k + 1) = w̃i (k) zi (x(k), u(k)) + εzi (12)

By the other hand the dynamics of (7) is

w̃i (k + 1) = w̃i (k) − ηiKi (k) e (k) (13)

Now, we establish the main result of this paper in the following theorem.

Theorem 2 : The RHONN (2) trained with the EKF-based algorithm (8) to
identify the nonlinear plant (1) , ensures that the identification error (10) is
semiglobally uniformly ultimately bounded (SGUUB); moreover, the RHONN
weights remain bounded.

Proof. Due to space limitations, the stability proof it is not included in this
paper. Please see [1].

3 Application

In this section we apply the above developed scheme to a three-phase induction
motor model

3.1 Motor Model

The six-order discrete-time induction motor model in the stator fixed reference
frame (α, β) under the assumptions of equal mutual inductances and linear mag-
netic circuit is given by [7]
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ω (k + 1) = ω (k) +
μ

α
(1 − α)M

(
iβ (k)ψα (k) − iα (k)ψβ (k)

)− (
T

J

)
TL (k)

ψα (k + 1) = cos (npθ (k + 1)) ρ1 (k) − sin (npθ (k + 1)) ρ2 (k)
ψβ (k + 1) = sin (npθ (k + 1)) ρ1 (k) + cos (npθ (k + 1)) ρ2 (k)

iα (k + 1) = ϕα (k) +
T

σ
uα (k)

iβ (k + 1) = ϕβ (k) +
T

σ
uβ (k)

θ (k + 1) = θ (k) + ω (k)T +
μ

α

[
T − (1 − a)

α

]
×M (

iβ (k)ψα (k) − iα (k)ψβ (k)
)− TL (k)

J
T 2 (14)

with

ρ1 (k) = a
(
cos (φ (k))ψα (k) + sin (npφ (k))ψβ (k)

)
+b

(
cos (φ (k)) iα (k) + sin (φ (k)) iβ (k)

)
ρ2 (k) = a

(
cos (φ (k))ψα (k) − sin (φ (k))ψβ (k)

)
+b

(
cos (φ (k)) iα (k) − sin (φ (k)) iβ (k)

)
ϕα (k) = iα (k) + αβTψα (k) + npβTω (k)ψα (k) − γT iα (k)
ϕβ (k) = iβ (k) + αβTψβ (k) + npβTω (k)ψβ (k) − γT iβ (k)
φ (k) = npθ (k) (15)

with b = (1 − a)M , α = Rr

Lr
, γ = M2Rr

σL2
r

+ Rs

σ , σ = Ls − M2

Lr
, β = M

σLr
, a = e−αT

and μ = Mnp

JLr
, besides Ls, Lr and M are the stator, rotor and mutual inductance

respectively; Rs and Rr are the stator and rotor resistances respectively; np is
the number of pole pairs; iα and iβ represents the currents in the α and β
phases, respectively; ψα and ψβ represents the fluxes in the α and β phases,
respectively and θ is the rotor angular displacement. Simulations are performed
for the system (14), using the following parameters: Rs = 14Ω; Ls = 400mH ;
M = 377mH ; Rr = 10.1Ω; Lr = 412.8mH ; np = 2; J = 0.01Kgm2; T = 0.001s.

3.2 Neural Network Identification

The RHONN proposed for this application is as follows:

x1 (k + 1) = w11 (k)S (ω (k)) + w12 (k)S (ω)S
(
ψβ (k)

)
iα (k)

+w13 (k)S (ω)S (ψα (k)) iβ (k)
x2 (k + 1) = w21 (k)S (ω (k))S

(
ψβ (k)

)
+ w22 (k) iβ (k)
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x3 (k + 1) = w31 (k)S (ω (k))S (ψα (k)) + w32 (k) iα (k)
x4 (k + 1) = w41 (k)S (ψα (k)) + w42 (k)S

(
ψβ (k)

)
+w43 (k)S (iα (k)) + w44 (k)uα (k)

x5 (k + 1) = w51 (k)S (ψα (k)) + w52 (k)S
(
ψβ (k)

)
+w53 (k)S

(
iβ (k)

)
+ w54 (k)uβ (k)

The training is performed on-line, using a series-parallel configuration. During
the identification process the plant and the NN operates in open-loop. Both of
them (plant and NN) have the same input vector

[
uα uβ

] ; uα and uβ are chirps
functions with 170volts of maximal amplitude and incremental frecuencies from
0Hz to 250Hz and 0Hz to 200Hz respectively. All the NN states are initialized
in a random way as well as the weights vectors. It is important remark that the
initial conditions of the plant are completely different from the initial conditions
for the NN. The identification is performed using (8) with i = 1, 2, · · · , n with
n the dimension of plant states (n = 6).

3.3 Simulation Results

The results of the simulation are presented in Figs. 1-5. Fig. 1 displays the
identification performance for the speed rotor; Fig. 2 and Fig. 3 present the
identification performance for the fluxes in phase α and β, respectively. Figs
4 and 5 portray the identification performance for currents in phase α and β,
respectively.
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Fig. 1. Rotor speed identification
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Fig. 2. ψα identification
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Fig. 3. ψβ identification
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Fig. 4. iα identification
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Fig. 5. iβ identification

4 Conclusions

This paper has presented the application of recurrent high order neural networks
to identification of discrete-time nonlinear systems. The training of the neural
networks was performed on-line using an extended Kalman filter. The bound-
ness of the identification error was established on the basis of the Lyapunov
approach. Simulation results illustrate the applicability of the proposed identifi-
cation methodology. Researches are being pursued to develop new discrete-time
nonlinear adaptive control based on the discussed identification scheme.

Acknowledgements.Theauthors thank the support ofCONACYTMexico, through
Projects 57801Y and 103191Y.
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Stability Analysis for Stochastic BAM Neural
Networks with Distributed Time Delays
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Abstract. This paper is concerned with the stability problem for

stochastic bidirectional associative memory neural networks with dis-

tributed time delays. By applying the Lyapunov functional method, the

semimartingale convergence theorem, and some inequality techniques,

some sufficient conditions are derived to guarantee the almost sure

exponential stability of the system. One example is provided at the end

of this paper to show the effectiveness of our results.

Keywords: Almost surely exponentially stable, BAM neural net-

works, Lyapunov functional, Distributed time delays, Itô’s formula.

1 Introduction

Bidirectional associative memory (BAM) neural networks was firstly proposed
by Kosko in 1987 [1,2]. The dynamics analysis for BAM neural networks have
attracted much attention from scholars due to their potential applications in
associative memory, parallel computation and pattern recognition etc. Some re-
sults have been reported in [3,4,5].

In practice, time-delays are often encountered in various neural networks be-
cause of the finite speed of information transmission. The existence of time-delays
may affect the dynamic behaviors of neural networks and therefore is of great
significance to be considered in research. Discrete time delays are often used
in modeling neural networks. However, in some cases, distributed time delays
are more suitable in modeling the transmission processes. BAM neural networks
with distributed time delays can be described by:⎧⎪⎪⎨⎪⎪⎩

u̇i(t) = −ciui(t) +
n∑

j=1
aij

∫ t

−∞Kij(t− s)gj(vj(s))ds + Ii

v̇j(t) = −djvj(t) +
m∑

i=1
bji

∫ t

−∞Hji(t− s)fi(ui(s))ds + Jj

(1)

where i = 1, 2, . . . , n; j = 1, 2, . . . ,m; t > 0; ui(t), vj(t) denote the potential of
cell i and j at time t, respectively; ci, dj are positive constants, they represent
the rate with which the cell i and j reset their potential to the resting state
when isolated from the other cells and inputs; aij , bji are real numbers, they
denote the strengths of connectivity between the cells j and i; fi, gj represent

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 727–734, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



728 G. Wang

the signal propagation functions; Ii, Jj are the external inputs to cell i and
j, respectively; Kij , Hji, i = 1, · · · ,m, j = 1, · · · , n are the delay kernels. Some
BAM neural networks with distributed delays had been studied, see e.g. [3,5].

In the dynamical analysis for neural networks, most research focuses on the
deterministic model. However, it should be pointed out that the circumstance
noise may disturb the inputs of neural networks during their operating. The re-
sults in [6] suggested that the neural networks can be stabilized or destabilized
by certain stochastic inputs. Some results about the stochastic stability of neural
networks can be found in [7,8,9,10]. In these researches, the almost sure expo-
nential stability problem of neural networks was studied by Blythe et al [7],Zhao
and Ding [9],etc.

Motivated by above discussions, in this paper, we will study a stochastic BAM
neural network with unbounded distributed delays described by some stochas-
tic nonlinear integro-differential equations. With the help of suitable Lyapunov
functional and the semimartingale convergence theorem, some sufficient condi-
tions ensuring the almost sure exponential stability for the model are obtained.
One numerical example is also given to illustrate our theoretic results in the
end.

2 Model Formulation and Preliminaries

In this paper, we study the following stochastic BAM neural network with un-
bounded time delays:⎧⎪⎪⎨⎪⎪⎩

dui =
[
− ciui +

n∑
j=1

aij

t∫
−∞

Kij(t− s)gj(vj(s))ds + Ii

]
dt+

n∑
j=1

ρij(vj)dwm+j

dvj =
[
− djvj +

m∑
i=1

bji

t∫
−∞

Hji(t− s)fi(ui(s))ds + Jj

]
dt+

m∑
i=1

σji(ui)dwi

(2)

where w(t) = (w1(t), w2(t), ..., wm+n(t))T is an (m + n)-dimensional Brownian
motion and σij(uj), ρji(vi) are noise intensity functions defined on R; the ker-
nels Kij , Hji, i = 1, · · · ,m, j = 1, · · · , n are nonnegative functions defined on
[0,∞), satisfying

∫∞
0 Kij(s)ds = 1,

∫∞
0 Kij(s)eμsds < ∞,

∫∞
0 Hji(s)ds = 1,∫∞

0 Hji(s)eνsds < ∞, where μ and ν are positive real numbers. A typical ex-
pression of Kij(·)(Hji(·)) is Kij(s) = sr

r! λ
r+1
ij e−λijs, s ∈ [0,∞), where λij ∈

[0,∞), r ∈ {0, 1, · · · , n}. About the kernels, the readers can refer to [3].
For the convenience of the stability analysis, we need the following

assumptions:
(H1): The signal functions fi, gj , σji, ρij i = 1, · · · ,m, j = 1, · · · , n are Lip-

schitz continuous, that is, there exist positive constants αi, βj , γji, ηij such
that

|fi(z1) − fi(z2)| ≤ αi|z1 − z2|, |gj(z1) − gj(z2)| ≤ βj |z1 − z2|,
|σji(z1) − σji(z2)| ≤ γji|z1 − z2|, |ρij(z1) − ρij(z2)| ≤ ηij |z1 − z2|, ∀z1, z2 ∈ R.
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(H2): Assume that (2) has an equilibrium (u∗i , v
∗
j ), i, j = 1, · · · , n, which

satisfies ⎧⎪⎪⎨⎪⎪⎩
−ciu∗i +

n∑
j=1

aijgj(v∗j )ds + Ii = 0 i = 1, · · · ,m

−djv
∗
j +

m∑
i=1

bjifi(u∗i )ds + Jj = 0, j = 1, · · · , n
(3)

(H3): For all i = 1, · · · ,m, j = 1, · · · , n, σji(u∗i ) = 0, ρij(v∗j ) = 0.
Let xi(t) = ui(t) − u∗i , yj(t) = vj(t) − v∗j , then (2) becomes⎧⎪⎪⎨⎪⎪⎩
dxi =

[
− cixi +

n∑
j=1

aij

∫ t

−∞Kij(t− s)g̃j(yj(s))ds
]
dt +

n∑
j=1

ρ̃ij(yj)dwm+j

dyj =
[
− djyj +

m∑
i=1

bji

∫ t

−∞Hji(t− s)f̃i(xi(s))ds
]
dt+

m∑
i=1

σ̃ji(xi)dwi,
(4)

here f̃i(xi(t)) = fi(xi(t) + u∗i ) − fi(u∗i ), g̃j(yj(t)) = gj(yj(t) + v∗j ) − gj(v∗j ),
σ̃ji(xi(t)) = σji(xi(t)+u∗i )−σji(u∗i ), ρ̃ij(yj(t)) = ρij(yj(t)+ v∗j )−ρij(v∗j ). From
(H1), one can easily see that |f̃i(xi)| ≤ αi|xi|, |g̃j(yj)| ≤ βj |yj |, |σ̃ji(xi)| ≤
γji|xi|, |ρ̃ij(yj)| ≤ ηij |yj |, ∀xi, yj ∈ Rn.

Now, we give the definition of almost sure stability of stochastic system (4).

Definition 1. The trivial solution of (4) is said to be almost surely exponentially
stable if for almost all sample paths of the solution (x(t), y(t)), we have

lim sup
t→∞

1
t

ln |(xT (t), yT (t)))T ‖ < 0.

The following Semimartingale convergence theorem plays a key role in proving
the almost sure stability of several stochastic systems [7,9].

Lemma 1. (Semimartingale convergence theorem [11]) Let A(t) and U(t) be
two continuous adapted increasing processes on t ≥ 0 with A(0) = U(0) = 0 a.s.
Let M(t) be a real-valued continuous local martingale with M(0) = 0 a.s. Let ξ
be a nonnegative F0-measurable random variable. Define

X(t) = ξ +A(t) − U(t) +M(t), for t ≥ 0

If X(t) is nonnegative, then

{ lim
t→∞A(t) < ∞} ⊂ { lim

t→∞X(t) < ∞} ∩ { lim
t→∞U(t) <∞}, a.s.,

where B ⊂ D a.s. means P (B ∩Dc) = 0. In particular, If lim
t→∞A(t) <∞ a.s.,

then for almost all ω ∈ Ω

lim
t→∞X(t) < ∞ and lim

t→∞U(t) < ∞,

that is both X(t) and U(t) converge to finite random variables.
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3 Main Results

The purpose of this section is to study the stability of (4). By constructing a
suitable Lyapunov functional and using the semimartingale convergence theo-
rem, the almost sure stability criterion is derived as follows:

Theorem 1. Assume that (H1)(H2)(H3) hold. If there exist constants pi > 0,
qj > 0, such that the following inequalities hold for all i = 1, · · · ,m, j = 1, · · · , n

2cipi > pi

n∑
j=1

|aij | +
n∑

j=1

qjγ
2
ji + α2

i

n∑
j=1

qj |bji| (5)

2djqj > qj

m∑
i=1

|bji| +
m∑

i=1

piη
2
ij + β2

j

m∑
i=1

pi|aij |, (6)

then the trivial solution of (4) is almost surely exponentially stable.

Proof. It can be seen from (5)-(6) that there exists a positive constant λ, which
satisfies λ < min{μ, ν}, such that

ϕi(λ)=(2ci − λ−
n∑

j=1

|aij |)pi −
n∑

j=1

qjγ
2
ji − α2

i

n∑
j=1

qj |bji|
∞∫
0

Hji(s)eλsds > 0(7)

φj(λ)=(2dj − λ−
m∑

i=1

|bji|)qj −
m∑

i=1

piη
2
ij − β2

j

m∑
i=1

pi|aij |
∞∫
0

Kij(s)eλsds > 0(8)

Constructing a Lyapunov functional candidate as follows:

V (t, x(t), y(t)) = eλt[
m∑

i=1

pix
2
i (t) +

n∑
j=1

qjy
2
j (t)]

+
m∑

i=1

n∑
j=1

|aij |pi

∫ ∞

0

[
Kij(s)

∫ t

t−s

eλ(θ+s)g̃2
j (yj(θ)dθ

]
ds

+
n∑

j=1

m∑
i=1

|bji|qj

∫ ∞

0

[
Hji(s)

∫ t

t−s

eλ(θ+s)f̃2
i (xi(θ)dθ

]
ds (9)

By employing Itô formula, we have

dV (t, x(t), y(t)) = LV (t, x(t), y(t))dt + Vx(t, x(t), y(t))Σ1(x(t))dW (1)(t)
+Vy(t, x(t), y(t))Σ2(y(t))dW (2)(t), (10)

where

LV (t, x(t), y(t))
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= λeλt[
m∑

i=1

pix
2
i (t) +

n∑
j=1

qjy
2
j (t)]

+2eλt
m∑

i=1

pixi(t)
[
− cixi(t) +

n∑
j=1

aij

∫ t

−∞
Kij(t− s)g̃j(yj(s))ds

]
+2eλt

n∑
j=1

qjyj(t)
[
− djyj(t) +

n∑
i=1

bji

∫ t

−∞
Hji(t− s)f̃i(xi(s))ds

]
+eλt[

m∑
i=1

n∑
j=1

piρ̃
2
ij(yj(t)) +

n∑
j=1

m∑
i=1

qj σ̃
2
ji(xi(t))]

+eλt
m∑

i=1

n∑
j=1

|aij |pi

∫ ∞

0
Kij(s)eλsds · g̃2

j (yj(t))

−eλt
m∑

i=1

n∑
j=1

|aij |pi

∫ ∞

0
Kij(s)g̃2

j (yj(t− s))ds

+eλt
n∑

j=1

m∑
i=1

|bji|qj

∫ ∞

0
Hji(s)eλsds · f̃2

i (xi(t))

−eλt
n∑

j=1

m∑
i=1

|bji|qj

∫ ∞

0
Hji(s)f̃2

i (xi(t− s))ds (11)

Noting that

2
m∑

i=1

n∑
j=1

piaijxi(t)
∫ t

−∞
Kij(t− s)g̃j(yj(s))ds

≤
m∑

i=1

n∑
j=1

pi|aij |x2
i (t) +

m∑
i=1

n∑
j=1

pi|aij |
∫ ∞

0
Kij(s)g̃2

j (yj(t− s))ds, (12)

2
n∑

j=1

m∑
i=1

qjbjiyj(t)
∫ t

−∞
Hji(t− s)f̃i(xi(s))ds

≤
n∑

j=1

m∑
i=1

qj |bji|y2
j (t) +

n∑
j=1

m∑
i=1

qj |bji|
∫ ∞

0
Hji(s)f̃2

i (xi(t− s))ds, (13)

combing inequalities f̃2
i (xi(t)) ≤ α2

i x
2
i (t), g̃

2
j (yj(t)) ≤ β2

j y
2
j (t), σ̃2

ji(xi(t)) ≤
γ2

jix
2
i (t), ρ̃

2
ij(yj(t)) ≤ η2

ijy
2
j (t), it can be derived that

LV (t, x(t), y(t)) ≤ eλt[
m∑

i=1

(λpi − 2cipi)x2
i (t) +

n∑
j=1

(λqj − 2djqj)y2
j (t)]

+eλt
m∑

i=1

n∑
j=1

[
|aij |pix

2
i (t) + |bji|qjy

2
j (t)

]
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+eλt
m∑

i=1

n∑
j=1

[
piη

2
ijy

2
j (t) + qjγ

2
jix

2
i (t)

]
+eλt

m∑
i=1

n∑
j=1

|aij |pi

∫ ∞

0
Kij(s)eλsds · β2

j y
2
j (t)

+eλt
m∑

i=1

n∑
j=1

|bji|qj

∫ ∞

0
Hji(s)eλsds · α2

ix
2
i (t)

= −eλt[
m∑

i=1

ϕi(λ)x2
i (t) +

n∑
j=1

φi(λ)y2
i (t)]. (14)

Using Itô formula again, for all T > 0

V (T, x(T ), y(T ))

= V (0) +
∫ T

0
LV (t, x(t), y(t))dt +

∫ T

0
Vx(t, x, y)Σ1(x(t))dW (1)(t)

+
∫ T

0
Vy(t, x, y)Σ2(y(t))dW (2)(t)

≤ V (0) −
∫ T

0
eλt[

m∑
i=1

ϕi(λ)x2
i (t) +

n∑
j=1

φi(λ)y2
i (t)]dt + 2

∫ T

0
eλt

m∑
i=1

n∑
j=1

pi

×xi(t)ρ̃ij(yj(t))dwn+j(t) + 2
∫ T

0
eλt

m∑
i=1

n∑
j=1

qjyj(t)σ̃ji(xi(t))dwi(t), (15)

where

V (0) ≤
m∑

i=1

pix
2
i (0) +

m∑
i=1

n∑
j=1

|aij |pi

∫ ∞

0
Kij(s)eλsds · 1

λ
β2

j sup
−∞<s≤0

{y2
j (s)}

+
n∑

j=1

qjy
2
j (0) +

n∑
j=1

m∑
i=1

|bji|qj

∫ ∞

0
Hji(s)eλsds · 1

λ
α2

i sup
−∞<s≤0

{x2
i (s)}

< +∞. (16)

It can be seen that the right hand-side of the above inequality is a nonnegative
semimartingale, and from Lemma 1 one gets

lim
T→∞

X(T ) <∞ a.s. (17)

here

X(T ) = V (0, x(0), y(0)) + 2
∫ T

0
eλt

m∑
i=1

n∑
j=1

piρ̃ij(yj(t))dwm+j(t)

+2
∫ T

0
eλt

n∑
j=1

m∑
i=1

qj σ̃ji(xi(t))dwi(t). (18)
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Moreover

lim
T→∞

eλT [
m∑

i=1

pix
2
i (T ) +

n∑
j=1

qjy
2
j (T )] ≤ lim

T→∞
V (T, x(T ), y(T )) < ∞ a.s. (19)

So

lim sup
T→∞

1
T

log ‖(xT (T ), yT (T ))T ‖ ≤ −λ, (20)

and then the trivial solution of (4) is almost surely exponentially stable.

Corollary 1. Assume that (H1)(H2) hold. If there exist constants pi > 0, qj >
0, such that the following inequalities hold for all i = 1, · · · ,m, j = 1, · · · , n

2cipi > pi

n∑
j=1

|aij | + α2
i

n∑
j=1

qj |bji| (21)

2djqj > qj

m∑
i=1

|bji| + β2
j

m∑
i=1

pi|aij |, (22)

then the trivial solution of (4) is exponentially stable.

4 Numerical Example

Consider the following BAM neural network:

⎧⎪⎪⎨⎪⎪⎩
dxi =

[
− cixi +

2∑
j=1

aij

∫ t

−∞Kij(t− s)gj(yj(s))ds
]
dt +

2∑
j=1

ρij(yj)dw2+j

dyj =
[
− djyj +

2∑
i=1

bji

∫ t

−∞Hji(t− s)fi(xi(s))ds
]
dt+

2∑
i=1

σji(xi)dwi,

(23)

here i, j = 1, 2. Taking the kernels as

K(s) =
(
e−s e−s

e−s e−s

)
, H(s) =

(
2e−2s 2e−2s

2e−2s 2e−2s

)
, (24)

the signal functions as f1(x1) = f2(x2) = tanh(x1), g1(y1) = g2(y2) = 1
2 (|y1 +

1| − |y1 − 1|), the noise intensity functions as

Σ(1) =
(
σ11(x1) σ12(x2)
σ21(x1) σ22(x2)

)
=

(
0.2x1 0.1x2
0.1x1 0.1x2

)
, (25)

Σ(2) =
(
ρ11(y1) ρ12(y2)
ρ21(y1) ρ22(y2)

)
=

(
0.2y1 0.1y2
0 0.2y2

)
. (26)

The system parameters are selected as:

C =
(

2.0 0
0 2.4

)
, A =

(
1.4 −0.5
0.3 1.7

)
, D =

(
2.2 0
0 2.6

)
, B =

(
0.9 0.2
−0.2 1.1

)
. (27)
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If we further take p1 = 1.2, p2 = 0.9, q1 = 1.7, q2 = 1.4, it is easy to verify
that (5) and (6) are satisfied. From Theorem 1, (4) is almost surely exponen-
tially stable. Letting λ = 0.3, (7), (8) hold, so we can obtain (20), that is, the
convergent rate of (23) is not smaller than 0.3.

5 Conclusions

In this paper, we have studied the almost sure stability problem for stochastic
BAM neural networks. Considering the complex mechanism of signal propaga-
tion in a large scale neural network, we have modeled the BAM neural networks
with distributed time delays. During the proof of the stability of our system, the
well-known semimartingale convergence theorem plays an important role. In the
end, a suitable example has been provided to illustrate the theoretical results,
and the trajectories of our system are also plotted which verify the stability of
the system directly.
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Abstract. In this paper, we study non-autonomous impulsive stochas-

tic neural networks with delays. By establishing an impulsive differential

inequality and an L-operator differential inequality and using stochastic

analysis technique, we obtain some sufficient conditions ensuring the dis-

sipativity in mean square of non-autonomous impulsive stochastic neural

networks with delays. The results extend and improve those of the earlier

publications. An example is also discussed to illustrate the efficiency of

the obtained results.

Keywords: Impulsive, Stochastic, Neural networks, Dissipativity.

1 Introduction

Neural networks play a very important role in associative memories, pattern
recognition and optimization, etc. Therefore, the theory of neural networks has
been developed very quickly. In recent years, stochastic delayed neural networks
and impulsive delayed neural networks have attracted considerable attention.
Many interesting results on the asymptotic behaviors of stochastic delayed neu-
ral networks [1] and impulsive delayed neural networks [2] have been reported,
respectively. It is well known that impulsive effects and stochastic effects fre-
quently coexist in neural networks. Therefore, it is necessary to investigate the
asymptotic behaviors of impulsive stochastic neural networks with delays. How-
ever, to the best of our knowledge, there are few results on this problem [3]-[4],
since the corresponding theory for impulsive stochastic neural networks has not
yet been developed.

As is well known that stability analysis of neural networks is a prerequisite for
the practice design and applications. Therefore, the stability of neural networks
has received much attention. Nevertheless, from a practical point of view, it is not
always the case that there exists an equilibrium point for every neural network,
especially for non-autonomous impulsive stochastic neural networks. Therefore,
it is necessary to investigate the dissipativity of neural networks which has found
applications in diverse areas such as stability theory, chaos and synchronization

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 735–744, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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theory, system norm estimation, and robust control. On the base of the above
discussion, this paper is devoted to the discussion of the dissipativity of non-
autonomous impulsive stochastic neural networks with delays.

2 Model and Preliminaries

Let I denote the n-dimensional unit matrix, N Δ= {1, 2, · · · , n}, N
Δ= {1, 2, · · · }.

C(X,Y ) denote the space of continuous mappings from the space X to Y .
PC(J,Rn) Δ= {ψ : J → Rn | ψ(t) is continuous for all but at most countable

points s ∈ J and at these points s ∈ J, ψ(s+) and ψ(s−) exist, ψ(s+) = ψ(s)},
where J ⊂ R is an interval, ψ(s+) and ψ(s−) denote the right-hand and left-hand
limits of the function ψ(s), respectively.

For ϕ(t) ∈ C(J,Rn) or ϕ(t) ∈ PC(J,Rn), we define

[ϕ(t)]τ = ([ϕ1(t)]τ , · · · , [ϕn(t)]τ )T , [ϕi(t)]τ = sup
−τ≤s≤0

{ϕi(t + s)}, i ∈ N , (1)

where τ is a positive constant. Let D+ϕ(t) denote the upper right derivative of
ϕ(t) at t.

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 con-
tains all P -null sets). w(t) = (w1(t), · · · , wm(t))T is an m-dimensional Brow-
nian motion defined on (Ω,F , {Ft}t≥0, P ). Let PCb

F0
([−τ, 0], Rn) denote the

family of all bounded F0-measurable, PC([−τ, 0], Rn)-valued random variables
ϕ, satisfying ‖ϕ‖2

L2 = sup−τ≤θ≤0 E|ϕ(θ)|2 < ∞, where E denote the expecta-
tion of a stochastic process, |.| is Euclidean norm of Rn. Let σ = σ(t, x, y) =
(σil(t, xi, yi))n×m, σ : R×Rn×Rn → Rn×m, σi =σi(t, xi, yi)=(σi1(t, xi, yi), · · · ,
σim(t, xi, yi)) be ith row vector of σ(t, x, y), i ∈ N .

In this paper, we consider impulsive stochastic delayed neural networks⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t) = [−ai(t)xi(t) +
n∑

j=1
bij(t)fj(xj(t− τij(t))) + Ji(t)]dt

+
m∑

l=1
σil(t, xi(t), xi(t− ri(t)))dwl(t), t ≥ t0, t �= tk, i ∈ N ,

xi(t) = Iik(x1(t−), · · · , xn(t−)), t ≥ t0, t = tk, i ∈ N ,

xi(t0 + s) = ϕi(s), −τ ≤ s ≤ 0, i ∈ N ,

(2)

where ai(t), bij(t), Ji(t), τij(t), ri(t), fj(t) ∈ C(R,R), τij(t), ri(t) ∈ [−τ, 0], i, j ∈
N . And the initial function ϕ(s) = (ϕ1(s), · · · , ϕn(s))T ∈ PCb

F0
([−τ, 0], Rn),

the impulsive function Ik = (I1k, · · · , Ink)T ∈ C(Rn, Rn), k ∈ N, and the fixed
impulsive moments tk satisfy t1 < t2 < · · · , lim

k→∞
tk = ∞.

Throughout this paper, we assume that for any ϕ ∈ PCb
F0

([−τ, 0], Rn), there
exists at least one solution of (1), which is denoted by x(t, t0, ϕ) or x(t).
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Definition 1. The networks (2) are said to be dissipative in mean square, if
there is a constant B > 0, such that for any solution x(t) = (x1(t), · · · , xn(t))T

of networks (1), one has

lim
t→∞ sup Ex2

i (t) ≤ B, i ∈ N . (3)

Definition 2. The networks (2) are said to be exponentially dissipative in mean
square, if there are positive constants M1,M2 and λ such that for any solution
x(t, t0, ϕ), one has

E|x(t, t0, ϕ)|2 ≤ M1‖ϕ‖2
L2e−λ(t−t0) +M2, t ≥ t0. (4)

The zero solution of (1) is said to be exponentially stable in mean square when
M2 = 0.

For an M -matrix S [5], we define ΩM (S) Δ= {z ∈ Rn | Sz > 0, z > 0}.

Lemma 1. [5] For an M -matrix S, ΩM (S) is nonempty and satisfies,

k1z1 + k2z2 ∈ ΩM (S), for any k1, k2 > 0, z1, z2 ∈ ΩM (S).

3 Differential Inequality

In this section, we will first establish an impulsive differential inequality with
delays and then introduce an L-operator differential inequality with delays.

Theorem 1. For b ∈ (t0,+∞], let u(t) = (u1(t), u2(t), · · · , un(t))T ∈ C([t0, b),
Rn) be a solution of the following inequality with the initial condition u(θ) ∈
PC([t0 − τ, t0], Rn)

D+u(t) ≤ h(t)[Pu(t) +Q[u(t)]τ + J ], t ∈ [t0, b), (5)

where P = (pij)n×n, pij ≥ 0 for i �= j, Q = (qij)n×n ≥ 0, J = (J1, · · · , Jn)T ≥
0, h(t) is a nonnegative integral function and sup

t≥t0

∫ t

t−τ h(s)ds ≤ H < ∞. If

S = −(P +Q) is an M-matrix, then

u(t) ≤ ze
−λ

∫
t
t0

h(s)ds − (P +Q)−1J, t ∈ [t0, b) (6)

provided that the initial conditions satisfies

u(θ) ≤ ze
−λ

∫
θ
t0

h(s)ds − (P +Q)−1J, t0 − τ ≤ θ ≤ t0, (7)

where z = (z1, · · · , zn)T ∈ ΩM (S) and the positive constant λ satisfies

[P +QeλH + λI]z < 0. (8)
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Proof. Since S = −(P+Q) is anM -matrix, there exists a vector z = (z1, · · · , zn)T

∈ ΩM (S) such that (P +Q)z < 0. By using continuity, we know that there must
exist a λ > 0 such that (8) holds, that is,

n∑
j=1

(pij + qije
λH)zj < −λzi, i ∈ N . (9)

Let L = −(P +Q)−1J , L = (L1, · · · , Ln)T . We have (P +Q)L+ J = 0, or
n∑

j=1

(pij + qij)Lj + Ji = 0, i ∈ N . (10)

For the above λ and τ , there is a positive constant ε0 such that

eλτε < 1 + ε, for all ε ∈ (0, ε0). (11)

We at first shall prove that for any positive constant ε ∈ (0, ε0),

uj(t) ≤ (1 + ε)zje
−λ

∫ t
t0

[h(s)−ε]ds + Lj
Δ= yj(t), t ∈ [t0, b), j ∈ N . (12)

By (7) and (11), we have

uj(θ) < (1 + ε)zje
−λ

∫ θ
t0

[h(s)−ε]ds + Lj = yj(θ), θ ∈ [t0 − τ, t0], j ∈ N . (13)

If the inequality (12) is not true, then there must be constant t1 ∈ (t0, b) and
some integer m ∈ N such that

um(t1) = ym(t1), D+um(t1) ≥ D+ym(t1), (14)

uj(t) ≤ yj(t), t ∈ [t0 − τ, t1], j ∈ N . (15)
From (15), we have

[uj(t)]τ ≤ (1 + ε)zje
−λ

∫
t−τ
t0

h(s)ds
eλε(t−t0) + Lj

≤ (1 + ε)zje
−λ

∫
t
t0

[h(s)−ε]ds
eλH + Lj , t ∈ [t0, t1], j ∈ N . (16)

By using (5), (9), (10), (14), (15), (16) and pij ≥ 0 ( i �= j ), qij ≥ 0, we have

D+um(t1) ≤ h(t1){
n∑

j=1

pmj [(1 + ε)zje
−λ

∫ t1
t0

[h(s)−ε]ds + Lj ]

+
n∑

j=1

qmj [(1 + ε)zje
−λ

∫ t1
t0

[h(s)−ε]dseλH + Lj ] + Jm}

= h(t1)
n∑

j=1

(pmj + qmje
λH)zj(1 + ε)e−λ

∫ t1
t0

[h(s)−ε]ds

≤ −λh(t1)zm(1 + ε)e−λ
∫ t1

t0
[h(s)−ε]ds

< −λ[h(t1) − ε]zm(1 + ε)e−λ
∫ t1

t0
[h(s)−ε]ds

= D+ym(t1) (17)
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which contradicts the inequality in (14). Thus (12) holds for all t ∈ [t0, b),
ε ∈ (0, ε0). Therefore, letting ε → 0, we have

X(t) ≤ ze
−λ

∫
t
t0

h(s)ds − (P +Q)−1J, t ∈ [t0, b), (18)

and the proof is completed.

Remark 1. The above Theorem 1 with h(t) ≥ 0 is a natural generalization of
some known results, for example, Theorem 3.1 in [2] when h(t) ≡ 1 and Lemma
5 in [6] when h(t) > 0, b = ∞, PC([t0−τ, t0], Rn) replaced by C([t0−τ, t0], Rn).

For the well-known L-operator given by the Itô′s formula, by the above Theo-
rem 1, we have the following Theorem.

Theorem 2. Let J = (J1, · · · , Jn)T ≥ 0, P = (pij)n×n and pij ≥ 0 for i �= j,
Q = (qij)n×n ≥ 0 and S = −(P + Q) be an M -matrix, h(t) be a nonnegative
integral function satisfying sup

t≥t0

∫ t

t−τ h(s)ds ≤ H < ∞. Assume that there exist

functions Vi(x) ∈ C2(Rn, R) such that for t ∈ [tk−1, tk),

ELVi(x(t)) ≤ h(t)[
n∑

j=1

pijEVj(x(t)) +
n∑

j=1

qij [EVj(x(t))]τ + Ji], i ∈ N . (19)

Then we have

EVi(x(t)) ≤ zie
−λ

∫ t
t0

h(s)ds + Li, t ∈ [tk−1, tk), i ∈ N , (20)

provided that the initial conditions satisfy

EVi(x(t)) ≤ zie
−λ

∫
t
t0

h(s)ds + Li, t ∈ [tk−1 − τ, tk−1], i ∈ N , (21)

where L = (L1, · · · , Ln)T = −(P +Q)−1J , z = (z1, · · · , zn)T ∈ ΩM (S), and the
positive number λ satisfies the following inequality

[λI + P +QeλH ]z < 0 . (22)

Proof. The proof is similar with one of Theorem 3.1 in [5]. We omit it.

Remark 2. The above Theorem 2 is Theorem 3.1 in [5] when h(t) ≡ 1, J = 0.

4 Dissipativity in Mean Square

Here, we firstly introduce the following assumptions.
(A1) There exist constants âi > 0, b̂ij ≥ 0, Ĵi ≥ 0, vj ≥ 0 and a nonnegative
integral function h(t) satisfying sup

t≥t0

∫ t

t−τ h(s)ds ≤ H < ∞ such that
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ai(t) ≥ âih(t), |bij(t)| ≤ h(t)b̂ij , |Ji(t)| ≤ h(t)J̃i, |fj(xj)| ≤ vj |xj |, i, j ∈ N .

(A2) There exist nonnegative constants ci, di, J̄i such that the ith row vector σi

of σ in (2) satisfies

E[σiσ
T
i ] ≤ h(t)(ciEx2

i (t) + di[Ex2
i (t)]τ + J̄i), i ∈ N . (23)

(A3) Let S = −(P +Q) be an M -matrix, where

P = (pij)n×n, pii = −2âi +
n∑

j=1

b̂ijvj + ci + J̃i, pij = 0, i �= j, (24)

Q = (qij)n×n, qii = di + b̂iivi, qij = b̂ijvj , i �= j, i, j ∈ N . (25)

(A4) There exist nonnegative matrices Rk = (Rkij )n×n such that

[Ik(x)]+ ≤ Rk[x]+, x ∈ Rn, k ∈ N, (26)

where [Ik(x)]+ = (|I1k(x)|, · · · , |Ink(x)|)T , [x]+ = (|x1|, · · · , |xn|)T . (A5) There
exist nonnegative constants δ and μ such that

ln δk

tk − tk−1
≤ δ, μ =

∞∑
k=1

lnμk <∞ k ∈ N, (27)

where constants δk ≥ 1, μk ≥ 1 satisfy

δkz ≥ R̂kz, μkL ≥ R̂kL, k ∈ N, (28)

where z = (z1, · · · , zn)T ∈ ΩM (S), L = (L1, · · · , Ln)T = −(P + Q)−1Ĵ , Ĵ =
(Ĵ1, · · · , Ĵn)T , Ĵi = J̃i + J̄i, i ∈ N ,

R̂k = (R̂kij )n×n, R̂kij ≥ Rkij

n∑
j=1

Rkij . (29)

Theorem 3. If (A1)-(A5) hold, then the solution xi(t) satisfies

Ex2
i (t) ≤ zi ||ϕ||2L2e

− ∫
t
t0

[λh(s)−δ]ds + eμLi, t ≥ t0, i ∈ N , (30)

where the scalar λ > 0 satisfies the following inequality

[λI + P +QeλH ]z < 0. (31)

Proof. Since S = −(P + Q) is an M -matrix, there exists a vector z ∈ ΩM (S)
satisfying z ≥ (1, · · · , 1)T ∈ Rn such that

Sz > 0 or (P +Q)z < 0. (32)
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By using continuity, there is a positive constant λ satisfying (31).
Let Vi(x(t)) = x2

i (t), i ∈ N , where x(t) = (x1(t), · · · , xn(t))T is the solution
of (1). Then, by the conditions (A1)-(A3), we can get

ELVi(x)

= 2E[−ai(t)x2
i (t) + xi(t)

n∑
j=1

bij(t)fj(xj(t− τij(t))) + Ji(t)xi(t)]

+E[δi(t, xi(t), xi(t− ri(t)))δT
i (t, xi(t), xi(t− ri(t)))]

≤ 2h(t)E[−âix
2
i (t) +

n∑
j=1

b̂ijvj |xi(t)xj(t− τij(t))| + J̃i|xi(t)|]

+h(t)(ciEx2
i (t) + di[Ex2

i (t)]τ + J̄i)

≤ h(t)E[−2âiEx
2
i (t) +

n∑
j=1

b̂ijvjEx
2
i (t) +

n∑
j=1

b̂ijvj [Ex2
j (t)]τ + J̃iEx

2
i (t)

+J̃i] + h(t)(ciEx2
i (t) + di[Ex2

i (t)]τ + J̄i)

= h(t)(piiEVi(x(t)) +
n∑

j=1

qij [EVj(x(t))]τ + Ĵi), t ∈ [tk−1, tk), i ∈ N . (33)

For the initial condition ϕ ∈ PCb
F0

([−τ, 0], Rn), we can get

EVi(x(t)) ≤ zi‖ϕ‖2
L2e

−λ
∫ t

t0
h(s)ds + Li, t ∈ [t0 − τ, t0], i ∈ N , (34)

where, z = (z1, · · · , zn)T ∈ ΩM (S) is the one in (32), L = (L1, · · · , Ln)T ≥ 0
since S is an M -matrix.

From Lemma 1 and z = (z1, · · · , zn)T ∈ ΩM (S), we have ‖ϕ‖2
L2z ∈ ΩM (S).

Then, all conditions of Theorem 2 are satisfied by (33), (34) and (A3). So

EVi(x(t)) ≤ zi‖ϕ‖2
L2e

−λ
∫

t
t0

h(s)ds + Li, t ∈ [t0, t1), i ∈ N , (35)

Suppose that for all m = 1, · · · , k, the inequalities

EVi(x(t)) ≤ δ0δ1 · · · δm−1zi‖ϕ‖2
L2e

−λ
∫ t

t0
h(s)ds

+μ0μ1 · · ·μm−1Li, t ∈ [tm−1, tm), i ∈ N , (36)

hold, where δ0 = 1, μ0 = 1. Then from (A4), (28), (29) and (36), we have

EVi(x(tk)) = Ex2
i (tk) = E|Iik(x(t−k ))|2 ≤ E

⎛⎝ n∑
j=1

Rkij |xj(t−k )|
⎞⎠2
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≤ E

⎡⎣(
n∑

j=1

Rkij )
n∑

j=1

Rkij |xj(t−k )|2
⎤⎦ ≤

n∑
j=1

R̂kij EVj(x(t−k ))

≤ δ0δ1 · · · δk−1 ||ϕ||2L2 e
−λ

∫ t
t0

h(s)ds
n∑

j=1

R̂kijzj + μ0μ1 · · ·μk−1

n∑
j=1

R̂kijLj

≤ δ0δ1 · · · δk−1δk zi ||ϕ||2L2e
−λ

∫ t
t0

h(s)ds + μ0μ1 · · ·μk−1μkLi, i ∈ N . (37)

This, together with (36) and δk ≥ 1, μk ≥ 1, leads to

EVi(x(t)) ≤ δ0 · · · δk zi ||ϕ||2L2e
−λ

∫ t
t0

h(s)ds + μ0 · · ·μkLi, t ∈ [tk − τ, tk]. (38)

On the other hand, from μk ≥ 1 and (33)

ELVi(x) ≤ h(t)(piiEVi(x(t)) +
n∑

j=1

qij [EVj(x(t))]τ

+μ0 · · ·μkĴi), t ∈ [tk, tk+1), i ∈ N , k ∈ N. (39)

By Lemma 1 again, the vector δ0 · · · δk−1δk||ϕ||2L2 z ∈ ΩM (S). It follows from
(38), the above inequality and Theorem 2 that

EVi(x(t)) ≤ δ0 · · · δk zi ||ϕ||2L2e
−λ

∫ t
t0

h(s)ds

+μ0 · · ·μkLi, t ∈ [tk, tk+1), i ∈ N , k ∈ N. (40)

By the mathematical induction and (27), we conclude that

EVi(x(t) ≤ eδ(tk−t0) zi ||ϕ||2L2e
−λ

∫ t
t0

h(s)ds

+eμLi, t ∈ [tk, tk+1), i ∈ N , k ∈ N. (41)

So, (30) hold. The proof is completed.
By Theorem 3, the following Corollary 1 and Corollary 2 are true.

Corollary 1. If (A1) - (A5) hold and lim
t→∞

∫ t

t0
[λh(s)− δ]ds = ∞, then the neural

networks (1) are dissipative in mean square.

Corollary 2. If (A1) - (A5) hold, h(t) ≡ h for t ≥ t0, h is positive constant
satisfying λh− δ > 0 then the neural networks (1) are exponentially dissipative
in mean square.

Corollary 3. If (A1) - (A5) hold and h(t) is a continuous ω-periodic function
satisfying λρ

ω − δ > 0, where ω > 0 and ρ =
∫ ω

0 h(s)ds, then the neural networks
(1) are exponentially dissipative in mean square.
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Proof. Since h(t) is a continuous ω-periodic function and h(t) ≥ 0, we have∫ t

t0

h(s)ds ≥ (
t− t0
ω

− 1)
∫ ω

0
h(s)ds = (

t− t0
ω

− 1)ρ, ∀ t ≥ t0. (42)

By (42) and Theorem 3, Corollary 3 holds.

Remark 3. It is evident that neural networks (1) have an equilibrium solution
x(t) ≡ 0 from (A1), (A2) and (A4) when Ĵ = 0.

Corollary 4. Suppose that Ĵ = 0 and Conditions of Corollary 2 ( or Corollary
3 ) hold. Then the zero solution of (1) is exponentially stable in mean square.

Proof. From Ĵ = 0, we can obtain L = 0 in (28). So Corollary 4 holds by (30)
and Corollary 2 ( or Corollary 3 ).

5 Example

Example 1. Consider the following impulsive stochastic neural networks:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = | sin t|[−6x1(t) + x1(t− 1) + x2(t− 1
2 )]dt

+
√

6| sin t|x1(t)dw1(t) +
√| sin t|dw2(t), t �= tk,

dx2(t) = | sin t|[−5x2(t) + x1(t− 1
3 ) + x2(t− 1

4 )]dt
+
√| sin t|dw1(t) −

√| sin t|x2(t− 1)dw2(t), t �= tk,

x1(tk) = 1
4e

1
4k x1(t−k ) − 1

8e
1
4k x2(t−k ),

x2(tk) = − 3
8e

1
4k x1(t−k ) + 1

8e
1
4k x2(t−k ),

(43)

where tk = 2k, k ∈ N. So, we can choose the parameters in (A1), (A2), (A4),
(A5) by taking τ = 1, h(t) = | sin t|, H = 1, â1 = 6, â2 = 5, b̂11 = b̂12 = b̂21 =
b̂22 = v1 = v2 = 1, J̃1 = J̃2 = 0, c1 = 6, c2 = 0, d1 = 0, d2 = 1, J̄1 = J̄2 = 1,

Rk =
1
8
e

1
4k

(
2 1
3 1

)
, R̂k =

1
64
e

2
4k

(
6 3
12 4

)
. (44)

Then

P =
(−4 0

0 −8

)
, Q =

(
1 1
1 2

)
, Ĵ =

(
1
1

)
, L =

( 7
17
4
17

)
. (45)

It is easy to prove that S = −(P +Q) is an M -matrix and

ΩM (S) =
{

(z1, z2)T > 0 | 1
6
z1 < z2 < 3z1

}
. (46)

Let z = (1, 1)T ∈ ΩM (S), λ = 0.5, δ = 0.25, δk = μk = e
2
4k ≥ 1, k ∈ N, then

ln δk

tk − tk−1
≤ ln e

2
4k

2
=

1
4k

≤ 0.25 = δ, μ =
∞∑

k=1

lnμk =
∞∑

k=1

2
4k

=
2
3
<∞, (47)
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[λI + P +QeλH ]z < 0, R̂kz ≤ δkz, R̂kL ≤ μkL. (48)

So, conditions (A1) - (A5) are satisfied. Furthermore, h(t) = | sin t| is a continu-
ous π-periodic nonnegative function satisfying λρ

π −δ > 0, where ρ =
∫ π

0 h(s)ds =
2. By Corollary 3, the neural networks (43) are exponentially dissipative in mean
square.

Acknowledgements. The work was supported by National Natural Science
Foundation of China under the grant No. 10926033, 10971147 and 10971240, A
Project Supported by Scientific Reserch Fund of SiChuan Provincial Education
Department (08zb026), Key Research Project of Sichuan Normal University,
Natural Science Foundation of Chongqing under Grant CSTC2008BB2364.

References

1. Zhao, H., Ding, N.: Dynamic Analysis of Stochastic Bidirectional Associative Mem-

ory Neural Networks with Delays. Chaos, Solitons & Fractals 32, 1692–1702 (2007)

2. Xu, D., Yang, Z.: Impulsive Delay Differential Inequality and Stability of Neural

Networks. J. Math. Anal. Appl. 305, 107–120 (2005)

3. Wang, X., Guo, Q., Xu, D.: Exponential P-stability of Impulsive Stochastic Cohen-

Grossberg Neural Networks with Mixed Delays. Mathematics and Computers in

Simulation 79, 1698–1710 (2009)

4. Xu, L., Xu, D.: Exponential P-stability of Impulsive Stochastic Neural Networks

with Mixed Delays. Chaos, Solitons & Fractals 41, 263–272 (2009)

5. Yang, Z., Xu, D., Xiang, L.: Exponential P-stability of Impulsive Stochastic Differ-

ential Equations with Delays. Phys. Lett. A 359, 129–137 (2006)

6. Huang, Y., Xu, D., Yang, Z.: Dissipativity and Periodic Attractor for Non-

autonomous Neural Networks with Time-varying Delays. Neurocomputing 70, 2953–

2958 (2007)



 

L. Zhang, J. Kwok, and B.-L. Lu (Eds.): ISNN 2010, Part I, LNCS 6063, pp. 745–752, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Stability Analysis of Discrete Hopfield Neural Networks 
Combined with Small Ones 

Weigen Wu, Jimin Yuan, Jun Li, Qianrong Tan, and Xing Yin 

School of Computer Science and Technology, Pan Zhi Hua University,  
Panzhihua 637000, China 

wwg@mail.pzhu.edu.cn 

Abstract. The stability of Discrete Hopfield neural networks (DHNNs) is very 
important in various applications, but stability analysis of complex DHNNs is 
difficult. However, stability analysis of simple and small DHNNs is easy to 
obtain. In this paper, we study on the stability of DHNNs combined with two 
small ones that maybe have partially or completely different neurons, and 
consider the connected weights of different neurons. And some new stability 
conditions of the DHNNs are obtained by studying the stability of small ones. 
Those results provide the guided significance for designing a DHNNs and 
afford benefit for stability analysis of DHNNs. The obtained results provide 
some theory bases of the application of DHNNs. 

1   Introduction 

Discrete Hopfield neural networks(DHNNs) is one of the famous neural networks 
with a wide range of applications, such as content addressable memory, pattern 
recognition, and combinatorial optimization. Because the stability of DHNNs is the 
foundation of the network’s applications, the stability analysis of the DHNNs has 
attracted considerable interest. Most articles only discuss symmetric、anti-symmetric
、positive and diagonally dominant of connected matrixes[1-10]. Xu Z B proved that 
the networks will be globally convergent to a stable state if the interconnection matrix 
is weekly diagonally dominant. Furthermore, under one of conditions assuring global 
convergence of the network, the maximal attraction radius is found to be half of the 
distribution distance of the state to the network[1,2,3,9]. But most of methods of the 
stability analysis of the DHNNs seldomly consider that a DHNNs may be combined 
with two or more DHNNses. 

When we analyze the stability of complex DHNNs ( ),N W θ=  is difficult, we may 
decompose the weight matrix of the complex DHNNs into many matrixes of the 
simple DHNNses, for example: ( ),N W θ=  is decomposed into two DHNNses 

( )1 ,N A α=  and ( )2 ,N B β= , and 1N  and 2N  have the same neuron, that is 
θ α β= + and W A B= + , where Ma R N. thinks that B  is an increment of the 
weight matrix A  and a new weight matrix W is obtained[3,9,10]. However, neurons 
of 1N  are partially or completely different from neurons of 2N  in reality. We know 
that arbitrary DHNNs may consist of some simple DHNNses. So, in this paper it is 
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the main aim that the stability of the DHHNs is obtained by researching some simple 
DHNNses, which maybe have partially or completely different neurons, when they 
are combined. 

This paper has the following organization. In this section (Section 1), we provide 
the introduction. In Section 2, we analyze the stability of DHNNs combined with two 
and more ones. In Section 3 offers the conclusions of this paper. 

2   Main Results 

With the previous results, we mainly consider stability analysis of DHNNs combined 
with two completely and partially different DHNNses. 

2.1   Stability Analysis of DHNNs Combined with Two Completely Different 
DHNNses 

In this section, we know that neurons of 1N  are the completely same to neurons of 
2N  and the number of neuron is the same from Ma Runnian method. It is not good 

that neurons of 1N  are the completely same to neurons of 2N , for it is unpractical. In 
really, neurons of 1N  are the partially or completely different from neurons of 2N . 

The weight matrix connected between 1N  and 2N is ignored in example 1. We 
consider the weight matrix AW  ( BW ) from neurons of 1N  ( 2N ) to neurons of 2N  
( 1N ). So, the weight matrixW of N is 

A

B

A W

W B

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and we obtain: 

Theorem 1. Let ( ) { }1 , , ij n n
N A A aα

×
= =  and ( ) { }2 , , ij m m

N B B bβ
×

= =  

be two DHNNses. Neurons of 1N are completely different from neurons of 2N  (that 
is 1 2N N = ∅∩ ).  ( )1 2 ,N N N W θ= = , where  

A

B

A W
W A B

W B

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 and 

α
θ α β

β
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

. { }a
A ij n m

W w
×

=  ( { }b
B ij m n

W w
×

= ) 

is the weight matrix from neurons of 1N  ( 2N ) to neurons of 2N  ( 1N ). is the 
combination of two completely different DHNNses. When the changes of energy of 

1N  and 2N  are nonnegative that means ( )1 0
N

E tΔ ≤  and ( )2 0
N

E tΔ ≤ , we have: 

1. If 0AW =  and 0BW = , then N  converges to a stable state; 

2. If AW is the anti-symmetric and transposed matrix of BW ( 0T
A BW W+ = ), then N  

converges to a stable state. 
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Proof: consider the energy function: 

( ) ( ) ( ) ( )1
2

T TE t X t WX t X t θ= − −  

( ) ( ) ( )1
2

AT T

B

A W
X t X t X t

W B

α
β

⎡ ⎤ ⎛ ⎞= − − ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

( ) ( )( ) ( )
( ) ( ) ( )( )1

1 2 1 2

2

1
2 , ,NAT T T T

N N N N
B N

X tA W
X t X t X t X t

W B X t

α
β

⎛ ⎞⎡ ⎤ ⎛ ⎞
= − ⎜ ⎟ − ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎝ ⎠⎣ ⎦ ⎝ ⎠

 

( )1N
X t  and ( )2N

X t  respectively indicate the state of 1N  and 2N . 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2
1 1
2 2

T T T T

N N N N N N
E t X t AX t X t X t BX t X tα β= − − − −  

( ) ( ) ( ) ( )1 2 2 1
1 1
2 2

T T
A BN N N N

X t W X t X t W X t− −  

If 0AW =  and 0BW = , or 0T
A BW W+ = , then 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2
1 1
2 2

T T T T

N N N N N N
E t X t AX t X t X t BX t X tα β= − − − −  

So, 

( ) ( ) ( )1 2N N
E t E t E tΔ = Δ + Δ  

Because ( )1 0
N

E tΔ ≤  and ( )2 0
N

E tΔ ≤ ,  ( ) 0E tΔ ≤  that N  is stable. The proof is 
completed. 

This theorem gives a method of judgment the stability of a DHNNs and provide the 
guided significance for designing a DHNNs. 

2.2   Stability Analysis of DHNNs Combined with Two Partially Different 
DHNNses 

In this section, we introduce a stability condition of DHNNs combined with 1N  and 
2N  that neurons of 1N  are completely different from neurons of 2N  in theorem 1. 

However, how to work on DHNNs combined with 1N  and 2N  that neurons of 1N  
are partially different from neurons of 2N , when two DHNNses are connected. 

In order to analyze, neurons of 1N  are divided into two sets 
( ( )11

1 1,N A α= and ( )12
4 2,N A α= ).

1 1

1
1 { }ij n nA a ×= is the weight matrix of 11N , which 

the number of neuron is 1n .
2 2

4
4 { }ij n nA a ×=  is the weight matrix of 12N , which the 

number of neuron is 2n . 
1 2

2
2 { }ij n nA a ×=  (

2 1

3
3 { }ij n nA a ×= ) is the weight matrix from 

neurons of 11N  ( 12N ) to neurons of 12N  ( 11N ). 1N  is denoted by ( )1 , ,N A α=  where 

1 2

3 4

A A
A

A A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and ( )1 2,α α α=  (1)

Similarly, neurons of 2N  are divided into two sets ( ( )21
1 1,N B β=

 
and ( )22

4 2,N B β= ). 
1 1

1
1 { }ij m mB b ×= is the weight matrix of 21N , which the number of 

neuron is 1m . 
2 2

4
4 { }ij m mB b ×= is the weight matrix of 22N , which the number of neuron 
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is 2m . 
1 2

2
2 { }ij m mB b ×=  (

2 1

3
3 { }ij m mB b ×= ) is the weight matrix from neurons of 21N  

( 22N ) to neurons of 22N  ( 21N ). 2N is denoted by ( )2 , ,N B β=  where 

4 3

2 1

B B
B

B B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and ( )2 1,β β β=  (2)

We suppose that neurons of 12N  are completely same to neurons of 22N , then 

2 2n m= . When 1N is combined with 2N , ( ),N W θ=  ,  where 

1 2

3 3

2 1

A

B

A A W

W A B A L B

W B B

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
1

1

α
θ α β γ

β

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3)

L  is the weight matrix of 12N  or 22N  ( 4 4L A B= + ) , γ  is the threshold value of 
public neurons of 12N  and 22N  ( 2 2γ α β= + ). So, LN  is denoted by ( ),LN L γ= . 

1 1
{ }a

A ij n mW w ×=  (
1 1

{ }b
B ij m nW w ×= ) is the weighted matrix from neurons of 11N  ( 21N ) to 

neurons of 21N  ( 11N ). In this paper,   means the combination of two partially same 
DHNNses. We have: 

Theorem 2: Let ( )1 ,N A α= , which satisfies (1) , and ( )2 ,N B β= , which satisfies 
(2), be two DHNNses. Neurons of 1N are partially different from neurons of 

2N . ( )1 2 ,N N N W θ= = , which satisfies (3). 

1) If the changes of energy of 1N  and 2N  are nonnegative, 
and 0 T

A B A BW W W W= = ∨ = − , then N  converges to a stable state. 
2) If the changes of energy of 11N , LN  and 21N  are nonnegative, and  

( ) ( ) ( )2 3 2 3 2 3 2 30 0 0T T T
A B A BA A A A B B B B W W W W= = ∨ = − ∧ = = ∨ = − ∧ = = ∨ = −  ,  

then N  converges to a stable state. 

Proof : Consider the energy function: 

( ) ( ) ( ) ( )1
2

T TE t X t WX t X t θ= − −  

( ) ( ) ( )( )
( )
( )
( )

11

11 21

21

1 2

1
3 32

2 1

, ,L L

NA

T T T

N N N N

B
N

X tA A W

X t X t X t A L B X t

W B B X t

⎛ ⎞⎡ ⎤ ⎜ ⎟⎢ ⎥= − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

 

( ) ( ) ( )( )11 21

1

1

, ,L

T T T

N N N
X t X t X t

α
γ
β

⎛ ⎞
⎜ ⎟− ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

( )11N
X t , ( )LN

X t  and ( )21N
X t  respectively indicate the state of 11N , LN  and 21N . 
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Because 2 2L A B= +  and 2 2γ α β= +  

( ) ( ) ( ) ( ) ( ) ( )( 11 11 11 11
1

1 3 22( ) L L

T T T

N N N N N N
E t X t A X t X t A X t X t A X t= − + + +

 

( ) ( )) ( ) ( )( )114 1 2L L L

T T T

N N N N
X t A X t X t X tα α− +

 

( ) ( ) ( ) ( )21 11 11 21
1 1
2 2

T T
B AN N N N

X t W X t X t W X t− −
 

( ) ( ) ( ) ( ) ( ) ( )( 21 21 21 21
1

2 3 12 L L

T T T

N N N N N N
X t B X t X t B X t X t B X t− + + +

 

( ) ( )) ( ) ( )( )214 1 2L L L

T T T

N N N N
X t B X t X t X tβ β− +

 

Part one: If 0 T
A B A BW W W W= = ∨ = − , we obtain 

( ) ( )( ) ( )
( )

( ) ( )( )11

11 11

1 2 11
2

3 4 2

( ) , ,L L

L

NT T T T

N N N NT

N

X tA A
E t X t X t X t X t

A A X t

α
α

⎛ ⎞⎡ ⎤ ⎛ ⎞
⎜ ⎟= − − ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎝ ⎠⎣ ⎦ ⎝ ⎠

 

( ) ( )( ) ( )
( )

( ) ( )( )21

21 21

1 2 11
2

3 4 2

, ,L L

L

NT T T T

N N N NT

N

X tB B
X t X t X t X t

B B X t

β
β

⎛ ⎞⎡ ⎤ ⎛ ⎞
⎜ ⎟− − ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎝ ⎠⎣ ⎦ ⎝ ⎠

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2
1 1
2 2

T T T T

N N N N N N
X t AX t X t X t BX t X tα β= − − − −

 

So, ( ) ( ) ( )1 2N N
E t E t E tΔ = Δ + Δ  

Because the changes of energy of 1N  and 2N  are nonnegative that N  converges to a 
stable state. 

Part two: If ( ) ( ) ( )2 3 2 3 2 3 2 30 0 0T T T
A B A BA A A A B B B B W W W W= = ∨ = − ∧ = = ∨ = − ∧ = = ∨ = − , we 

obtain: 

( ) ( ) ( ) ( ) ( ) ( )11 11 11 21 21 21
1 1

1 1 1 12 2( ) T T T T

N N N N N N
E t X t A X t X t X t B X t X tα β= − − − −

 
( )( ) ( ) ( )( )1

4 4 2 22 L L L

T T

N N N
X t A B X t X t α β− + − +  

So, ( ) ( ) ( ) ( )11 21 LN N N
E t E t E t E tΔ = Δ + Δ + Δ  

Because the changes of energy of 1N  and 2N  are nonnegative that N  converges 
to a stable state. The proof is completed. 

2.3   Corollary 

Now, if we want to obtain a stable DHNNs, we may construct a stable large DHNNs 
with some stable simple DHNNses. Like this, it is easy to establish a large and stable 
DHNNs. So, we have 
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Corollary : Let  ( , ), { }
k k

k k k k k
ij n nN W W wθ ×= =  be a DHNNs, kn is the number of 

neuron of DHNNs kN (1 k q< ≤ ). 

1) When , ,k h∀  neurons of kN  are completely different from neurons of hN  and 

there are anti-symmetric or no connections between neurons of kN  and neurons 

of hN ( )1 , ,k h q k h≤ ≤ ≠ ,  if k∀ , the change of energy of kN  is nonnegative, 

then ( )1iN N i q= ≤ ≤  is stable too. 

2) When , ,k h∀  neurons of kN  are partially different from neurons of hN  and 

there are anti-symmetric or no connections between 1kN  and 
1hN ( )1 , ,k h q k h≤ ≤ ≠ , if , ,k h∀  , the changes of energy of 1kN , khLN and 1hN  

are nonnegative , then ( )1iN N i q= ≤ ≤  is stable too. 

3) When , ,k h∀  there are anti-symmetric or no connections between neurons of kN  

that are different from hN  and neurons of hN  that are different 

from kN ( )1 , ,k h q k h≤ ≤ ≠ ,  If k∀ , the change of energy of kN  is nonnegative, 

then ( )1iN or N i q= ≤ ≤   is stable too. 

Proof : similarly to Theorem 1 and 2. 

2.4   Examples 

Example 1:  Given a ( ),0N W= , where 

2 1 5 2 2 0 1

1 4 1 4 2 0 1

5 1 1 1 0 2 1

2 1 1 1 5 3 0

2 2 0 5 2 1 0

0 0 2 3 1 4 1

1 1 1 0 0 1 3

W

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

With the previous method we do not obtain the stability. However, let ( )11
1,0N A= , 

where [ ]1 2A =  , ( ),0LN L= , where  

4 1 4

1 1 1

1 1 1

L

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦
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( )21
1,0N B= , where 

1

2 1 0

1 4 1

0 1 3

B

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 2

2 0 5

0 2 3

1 1 0

B

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

[ ]2 1 5 2A = − − , 3 2
TA A= − , , 3 2

TB B= − , [ ]2 0 1AW = , and [ ]2 0 1
T

BW = − −  
respectively. With the Thermo 2 and ( ),0LN L= is stable[3], we obtain 
that ( ),0N W= , where  

1 2

3 3

2 1

A

B

A A W

W A L B

W B B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

is stable. 

Example 2: In ( )1 ,N A α= , where 

3 1 0 8

1 2 2 1

0 2 4 0

8 1 0 6

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

and 0α = . Here are four neurons that names are L1, L2, L3, and L4 respectively. 
In ( )2 ,N B β=  , where 

5 0 1 1 0

3 1 1 1 4

5 4 4 4 2

3 1 5 5 3

1 1 0 1 0

B

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

and [2,3,0,0,4]Tβ = . There are five neurons that names are L2, L3, L4, L5 and L6, 
respectively. Then we know that L2, L3, and L4 are public neuron. If we 0AW =  and 

0BW = , we obtain ( ),N W θ= , where  

3 1 0 8 0 0

1 7 2 0 1 0

0 1 5 1 1 4

8 4 4 10 4 2

0 3 1 5 5 3

0 1 1 0 1 0

W

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦
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and [0, 2,3,0,0,4]Tθ = . If 1N  combines with 2N , then with the thermo 2 and 
( )2 ,N B β=  is stable[3] we have N  is stable. 

3   Conclusion 

We mainly analyze the stability of DHNNs combined with two small ones. It is 
extend to the stability of DHNNs combined with many small ones that when ,k h∀ ,  
there are anti-symmetric or no connections between neurons of kN  that are different 
from hN  and neurons of hN  that are different from kN ( )1 , ,k h q k h≤ ≤ ≠ ,  If k∀ , 
the energy of kN  is degressive, then ( )1iN or N i q= ≤ ≤   is stable in DHNNs 
set 1 2{ , , , }qN N N . Our results provide some theory bases of the application of 
DHNNs in combinatorial optimization and pattern recognition. In this paper, on the 
one hand, those results provide the guided significance for designing a DHNNs, on 
the other hand, afford benefit for stability analysis of DHNNs. 
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