

IFIP Advances in Information
and Communication Technology 319

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Bertrand Meyer, ETH Zurich, Switzerland

Education
Bernard Cornu, CNED-EIFAD, Poitiers, France

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Barbara Pernici, Politecnico di Milano, Italy

Relationship between Computers and Society
Chrisanthi Avgerou, London School of Economics, UK

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Max A. Bramer, University of Portsmouth, UK

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.

Pär Ågerfalk Cornelia Boldyreff
Jesús M. González-Barahona
Gregory R. Madey John Noll (Eds.)

Open Source
Software:
New Horizons

6th International IFIP WG 2.13 Conference
on Open Source Systems, OSS 2010
Notre Dame, IN, USA, May 30 – June 2, 2010
Proceedings

13

Volume Editors

Pär Ågerfalk
Uppsala University
75120 Uppsala, Sweden
E-mail: par.agerfalk@im.uu.se

Cornelia Boldyreff
University of East London
London E16 2RD, UK
E-mail: c.boldyreff@uel.ac.uk

Jesús M. González-Barahona
Universidad Rey Juan Carlos de Madrid
28933 Móstoles, Spain
E-mail: jgb@gsyc.escet.urjc.es

Gregory R. Madey
University of Notre Dame
Notre Dame, IN 46556, USA
E-mail: gmadey@nd.edu

John Noll
Lero - The Irish Software Engineering Research Centre
Limerick, Ireland
E-mail: john.noll@lero.ie

Library of Congress Control Number: 2010926928

CR Subject Classification (1998): D.2, D.3, C.2.4, D.1, K.6.3, D.2.4

ISSN 1868-4238
ISBN-10 3-642-13243-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13243-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© IFIP International Federation for Information Processing 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

General Chairs’ Foreword

Welcome to the 6th International Conference on Open Source Systems of the
IFIP Working Group 2.13. This year was the first time this international confer-
ence was held in North America. We had a large number of high-quality papers,
highly relevant panels and workshops, a continuation of the popular doctoral con-
sortium, and multiple distinguished invited speakers. The success of OSS 2010
was only possible because an Organizing Committee, a Program Committee,
Workshop and Doctoral Committees, and authors of research manuscripts from
over 25 countries contributed their time and interest to OSS 2010. In the spirit
of the communities we study, you self-organized, volunteered, and contributed
to this important research forum studying free, libre, open source software and
systems. We thank you!

Despite our modest success, we have room to improve and grow our confer-
ence and community. At OSS 2010 we saw little or no participation from large
portions of the world, including Latin America, Africa, China, and India. But
opportunities to expand are possible. In Japan, we see a hot spot of participation
led by Tetsuo Noda and his colleagues, both with full-paper submissions and a
workshop on “Open Source Policy and Promotion of IT Industries in East Asia.”
The location of OSS 2011 in Salvador, Brazil, will hopefully result in significant
participation from researchers in Brazil – already a strong user of OSS – and
other South American countries. Under the leadership of Megan Squire, Publicity
Chair, we recruited Regional Publicity Co-chairs covering Japan (Tetsuo Noda),
Africa (Sulayman Sowe), the Middle East and South Asia (Faheen Ahmed), Rus-
sia and Eastern Europe (Alexey Khoroshilov), Western Europe (Yeliz Eseryel),
UK and Ireland (Andrea Capiluppi), and the Nordic countries (Björn Lundell).
Finally, the future of our community is in the newly emerging researchers, the
doctoral students learning the art and craft of scholarly research on OSS topics.
They had an opportunity to present their research plans and work-in-progress
papers at the doctoral consortium, organized by Kris Ven, Walt Scacchi, and
Jen Verelst. Special thanks go to Kevin Crowston for obtaining National Science
Foundation (USA) support for the doctoral consortium.

Our planning and organization of OSS 2010 benefited greatly from the expe-
rience and advice of organizers of previous conferences. We thank Scott Hissan,
Björn Lundell, Anthony Wasserman, Walt Scacchi, Joseph Feller, and Kevin
Crowston for their generous time, encouragement, and advice. We also thank
Petrinja Etiel and Joseph Feller who served as Tutorial and Panels Chairs, re-
spectively. We also thank the officers of IFIP Working Group 2.13 (Giancarlo
Succi, Walt Scacchi, Ernesto Damiani, Scott Hissam, and Pär J. Ågerfalk) for
permitting us to move OSS 2010 to North America, given some of the challenges
of doing so.

VI Foreword

Our greatest attribution and appreciation for the success of OSS 2010 goes to
John Noll and his Co-program Chairs (Cornelia Boldyreff and Pär J. Ågerfalk)
for the work they did managing the review process, the paper submission server
at Lero, and the preparation of the proceedings and program.

Finally, we still have to mention the main contributor to OSS 2010: the
FLOSS (free, open source software) development community. Without it, our
conference would not be possible. Our thanks go to all those developers for
offering all of us such an interesting field of study.

Gregory R. Madey
Jesús M. González-Barahona

Program Chairs’ Foreword

We are very pleased to present the proceedings of the 6th International Con-
ference on Open Source Systems. This year’s proceedings include 23 full papers
selected from 51 submissions. As in previous years, this year’s papers represent
a broad range of perspectives on open source systems, ranging from software
engineering through organizational issues to law. In a nod to the highly success-
ful conference in Limerick (OSS 2007), this year we included 17 short papers in
the program as well (Part II). Five workshop abstracts (Part III) and four panel
descriptions (Part IV) round out the proceedings contents, for what we hope
will be a highly engaging and useful volume.

We would like to thank the members of the Program Committee for their
hard work reviewing papers under this year’s shortened review schedule, and
especially those who agreed to do additional reviews after the first reviewing
cycle: Matthew van Antwerp, Andres Baravalle, Sarah Beecham, Karl Beecher,
Padmanabhan Krishnan, Gregory R. Madey, Felipe Ortega, Gregorio Robles,
Maha Shaik, Carlos Solis, Klaas-Jan Stol, and Andrea Wiggins. We would also
like to thank the General Chairs - Gregory R. Madey and Jesús M. González-
Barahona - for organizing the first IFIP WG 2.13 meeting in North America.

John Noll
Cornelia Boldyreff

Pär Ågerfalk

Organization

Conference Officials

General Chairs: Gregory R. Madey, University of Notre Dame,
USA

Jesús M. González-Barahona, Universidad Rey
Juan Carlos de Madrid, Spain

Program Chairs: John Noll, Lero - The Irish Software Engineering
Research Centre, Ireland

Cornelia Boldyreff, University of East London,
UK

Pär Ågerfalk, Uppsala University, Sweden
Doctoral Consortium Chairs: Kris Ven, University of Antwerp, Belgium

Walt Scacchi, University of California, Irvine,
USA

Jen Verelst, University of Antwerp, Belgium
Publicity Chair: Megan Squire, Elon University, USA
Publicity Co-chairs:

W. Europe: Yeliz Eseryel, University of Groningen,
The Netherlands

UK and Ireland: Andrea Capiluppi, University of East London,
UK

Nordic Countries: Björn Lundell, University of Skovde, Sweden
Japan: Tetsuo Noda, Shimane University, Japan
Africa: Sulayman Sowe, UNU-Merit, The Netherlands

Middle East and S. Asia: Faheen Ahmed, United Arab Emirates
University, UAE

Russia and E. Europe: Alexey Khoroshilov, Institute for System
Programming of the Russian Academy of
Sciences, Russia

Panel Chair: Joseph Feller, University College Cork, Ireland
Tutorial Chair: Petrinja Etiel, Free University of Bolzno-Bozen,

Italy
Corporate Sponsorships Chair: Gregory R. Madey, University of Notre Dame,

USA

X Organization

IFIP Working Group 2.13 Officers

General Chair: Giancarlo Succi, Free University of
Bolzano-Bozen, Italy

Vice Chair: Walt Scacchi, University of California, Irvine,
USA

Vice Chair: Ernesto Damiani, University of Milan, Italy
Secretary: Scott Hissam, Software Engineering Institute,

USA
Secretary: Pär J. Ågerfalk, Uppsala University, Sweden

Program Committee

Andres Baravalle University of East London, UK
Sarah Beecham Lero - The Irish Software Engineering Research

Centre, Ireland
Karl Beecher Free University of Berlin, Germany
Andrea Bonaccorsi Universitá di Pisa, Italy
Andrea Capiluppi University of East London, UK
Antonio Cerone United Nations University, Macau SAR, China
Gabriella Coleman New York University, USA
Jean-Michel Dalle University Pierre-et-Marie Curie, Paris, France
Ernesto Damiani University of Milan, Italy
Paul David Stanford/Oxford University, USA/UK
Francesco Di Cerbo University of Genoa, Italy
Chris DiBona Google, USA
Gabriella Dodero University of Bolzano-Bozen, Italy
Justin Erenkrantz Apache Software Foundation, USA
Joseph Feller University College Cork, Ireland
Fulvio Frati University of Milan, Italy
Daniel German University of Victoria, Canada
Rishab Aiyer Ghosh UNI-Merit, The Netherlands
Jesús M.

González-Barahona University Rey Juan Carlos, Spain
Stefan Haefliger ETH Zurich, Switzerland
Jeremy Hayes University College Cork, Ireland
Joachim Henkel Technische Universität München, Germany
James Herbsleb Carnegie-Mellon University, USA
Scott Hissam Software Engineering Institute, Carnegie Mellon

University, USA
James Howison Carnegie Mellon University, USA
Chris Jensen University of California, Irvine, USA
Alexey Khoroshilov Institute for System Programming,

Russian Academy of Sciences, Russia
Joseph Kiniry IT University of Copenhagen, Denmark
Stefan Koch Bogazici University, Turkey

Organization XI

Padmanabhan Krishnan Bond University, Australia
Björn Lundell University of Skövde, Sweden
Gregory R. Madey Notre Dame University, USA
Herwig Mannaert University of Antwerp, Belgium
Catharina Melian Stockholm School of Economics, Sweden
Sandro Morasca Universitá degli Studi dell’Insubria, Italy
Steven Muegge Carleton University, Canada
Felipe Ortega Universidad Rey Juan Carlos de Madrid, Spain
Bulent Ozel Istanbul Bilgi University, Turkey
Witold Pedrycz University of Alberta, Canada
Dirk Riehle Friedrich Alexander University of

Erlangen-Nürnberg, Germany
Gregorio Robles Universidad Rey Juan Carlos, Spain
Cristina Rossi Lamastra Politecnico di Milano, Italy
Francesco Rullani Copenaghen Business School, Denmark
Craig Russell Sun Microsystems, USA
Barbara Russo Free University of Bolzano-Bozen, Italy
Walt Scacchi University of California, Irvine, USA
Barbara Scozzi Politecnico di Bari, Italy
Maha Shaikh London School of Economics and Political Science,

UK
Siraj Shaikh Coventry University, UK
Alberto Sillitti Free University of Bolzano-Bozen, Italy
Gregory Simmons University of Ballarat, Australia
Sandra Slaughter Georgia Institute of Technology, USA
Carlos Solis Lero - The Irish Software Engineering Research

Centre, Ireland
Diomidis Spinellis Athens University of Economics and Business,

Greece
Klaas-Jan Stol Lero - The Irish Software Engineering Research

Centre, Ireland
Giancarlo Succi Free University of Bolzano-Bozen, Italy
Robert Sutor IBM, USA
Matthew Van Antwerp Notre Dame University, USA
Kris Ven University of Antwerp, Belgium
Xiaofeng Wang Lero - The Irish Software Engineering Research

Centre, Ireland
Tony Wasserman Carnegie Mellon Silicon Valley, USA
Charles Weinstock Software Engineering Institute, USA
Andrea Wiggins Syracuse University, USA
Frank van der Linden Philips, The Netherlands
Georg von Krogh ETH Zurich, Switzerland

XII Organization

Acknowledgments

OSS 2010 was organized under the auspices of the International Federation of
Information Processsing (IFIP) Working Group 2.13.

The Doctoral Consortium was supported, in part, by the US National Science
Foundation, under grant IIS 1005183.

Table of Contents

Part I: Full Papers

Spago4Q and the QEST nD Model: An Open Source Solution for
Software Performance Measurement . 1

Claudio A. Ardagna, Ernesto Damiani, Fulvio Frati, Sergio Oltolina,
Mauro Regoli, and Gabriele Ruffatti

An Investigation of the Users’ Perception of OSS Quality 15
Vieri del Bianco, Luigi Lavazza, Sandro Morasca, Davide Taibi, and
Davide Tosi

Engaging without Over-Powering: A Case Study of a FLOSS Project . . . 29
Andrea Capiluppi, Andres Baravalle, and Nick W. Heap

The Meso-level Structure of F/OSS Collaboration Network: Local
Communities and Their Innovativeness . 42

Guido Conaldi and Francesco Rullani

To Patent or Not to Patent: A Pilot Experiment on Incentives to
Copyright in a Sequential Innovation Setting . 53

Paolo Crosetto

Voting for Bugs in Firefox: A Voice for Mom and Dad? 73
Jean-Michel Dalle and Matthijs den Besten

The Nagios Community: An Extended Quantitative Analysis 85
Jonas Gamalielsson, Björn Lundell, and Brian Lings

Collaborative Development for the XO Laptop: CODEX 2 97
Andrew Garbett, Karl Lieser, and Cornelia Boldyreff

Risks and Risk Mitigation in Open Source Software Adoption: Bridging
the Gap between Literature and Practice . 105

Øyvind Hauge, Daniela Soares Cruzes, Reidar Conradi,
Ketil Sandanger Velle, and Tron André Skarpenes

Usability Innovations in OSS Development – Examining User
Innovations in an OSS Usability Discussion Forum 119

Netta Iivari

Governance in Open Source Software Development Projects:
A Comparative Multi-level Analysis . 130

Chris Jensen and Walt Scacchi

XIV Table of Contents

Evaluating the Readiness of Proprietary Software for Open Source
Development . 143

Terhi Kilamo, Timo Aaltonen, Imed Hammouda,
Teemu J. Heinimäki, and Tommi Mikkonen

Where and When Can Open Source Thrive? Towards a Theory of
Robust Performance . 156

Sheen S. Levine and Michael J. Prietula

How Open Are Local Government Documents in Sweden? A Case for
Open Standards . 177

Björn Lundell and Brian Lings

Bug Localization Using Revision Log Analysis and Open Bug
Repository Text Categorization . 188

Amir H. Moin and Mohammad Khansari

T-DOC: A Tool for the Automatic Generation of Testing Documentation
for OSS Products . 200

Sandro Morasca, Davide Taibi, and Davide Tosi

Open Source Introducing Policy and Promotion of Regional Industries
in Japan . 214

Tetsuo Noda and Terutaka Tansho

Comparing OpenBRR, QSOS, and OMM Assessment Models 224
Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

Joining and Socialization in Open Source Women’s Groups: An
Exploratory Study of KDE-Women . 239

Yixin Qiu, Katherine J. Stewart, and Kathryn M. Bartol

Download Patterns and Releases in Open Source Software Projects:
A Perfect Symbiosis? . 252

Bruno Rossi, Barbara Russo, and Giancarlo Succi

Modelling Failures Occurrences of Open Source Software with
Reliability Growth . 268

Bruno Rossi, Barbara Russo, and Giancarlo Succi

A Field Study on the Barriers in the Assimilation of Open Source
Server Software . 281

Kris Ven and Jan Verelst

Reclassifying Success and Tragedy in FLOSS Projects 294
Andrea Wiggins and Kevin Crowston

Table of Contents XV

Part II: Short Papers

Three Strategies for Open Source Deployment: Substitution, Innovation,
and Knowledge Reuse . 308

Jonathan P. Allen

Coordination Implications of Software Coupling in Open Source
Projects . 314

Chintan Amrit and Jos van Hillegersberg

Industry Regulation through Open Source Software: A Strategic
Ownership Proposal . 322

Jean-Lucien Hardy

Proposal for Solving Incompatibility Problems between Open-Source
and Proprietary Web Browsers . 330

Jun Iio, Hiroyuki Shimizu, Hisayoshi Sasaki, and Akihiro Matsumoto

FLOSS Communities: Analyzing Evolvability and Robustness from an
Industrial Perspective . 336

Daniel Izquierdo-Cortazar, Jesús M. González-Barahona,
Gregorio Robles, Jean-Christophe Deprez, and Vincent Auvray

BULB: Onion-Based Measuring of OSS Communities 342
Terhi Kilamo, Timo Aaltonen, and Teemu J. Heinimäki

A Network of FLOSS Competence Centres . 348
Jean-Pierre Laisné, Nelson Lago, Fabio Kon, and Pedro Coca

Profiling F/OSS Adoption Modes: An Interpretive Approach 354
David López, Carmen de Pablos, and Roberto Santos

Introducing Automated Unit Testing into Open Source Projects 361
Christopher Oezbek

A Case Study on the Transformation from Proprietary to Open Source
Software . 367

Alma Oručević-Alagić and Martin Höst

High-Level Debugging Facilities and Interfaces: Design and
Developement of a Debug-Oriented I.D.E. 373

Nick Papoylias

To Rule and Be Ruled: Governance and Participation in FOSS
Projects . 380

Zegaye Seifu and Prodromos Tsiavos

XVI Table of Contents

A Comparison Framework for Open Source Software Evaluation
Methods . 389

Klaas-Jan Stol and Muhammad Ali Babar

An Exploratory Long-Term Open Source Activity Analysis:
Implications from Empirical Findings on Activity Statistics 395

Toshihiko Yamakami

Challenges for Mobile Middleware Platform: Issues for Embedded Open
Source Software Integration . 401

Toshihiko Yamakami

Open Source Software Developer and Project Networks 407
Matthew Van Antwerp and Greg Madey

Warehousing and Studying Open Source Versioning Metadata 413
Matthew Van Antwerp and Greg Madey

Part III: Workshops

Workshop – Open Source Software for Computer Games and Virtual
Worlds: Practice and Future . 419

Per Backlund, Björn Lundell, and Walt Scacchi

WoPDaSD 2010: 5th Workshop on Public Data about Software
Development . 421

Jesús M. González-Barahona, Megan Squire, and
Daniel Izquierdo-Cortazar

Second International Workshop on Building Sustainable Open Source
Communities: OSCOMM 2010 . 423

Imed Hammouda, Timo Aaltonen, and Andrea Capiluppi

Open Source Policy and Promotion of IT Industries in East Asia 425
Tetsuo Noda, Sangmook Yi, and Dongbin Wang

OSS 2010 Doctoral Consortium (OSS2010DC) . 427
Walt Scacchi, Kris Ven, and Jan Verelst

Part IV: Panels

Student Participation in OSS Projects . 429
Gregory W. Hislop, Heidi J.C. Ellis, Greg DeKoenigsberg, and
Darius Jazayeri

Open Source Software/Systems in Humanitarian Applications
(H-FOSS) . 431

Greg Madey

Table of Contents XVII

The FOSS 2010 Community Report . 432
Walt Scacchi, Kevin Crowston, Greg Madey, and Megan Squire

The Present and Future of FLOSS Data Archives . 434
Megan Squire, Jesús M. González-Barahona, and Greg Madey

Author Index . 437

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 1–14, 2010.
© IFIP International Federation for Information Processing 2010

Spago4Q and the QEST nD Model:
An Open Source Solution

for Software Performance Measurement

Claudio A. Ardagna1, Ernesto Damiani1, Fulvio Frati1, Sergio Oltolina2,
Mauro Regoli1, and Gabriele Ruffatti2

1 Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano

via Bramante, 65 – 26013 Crema (CR)
{claudio.ardagna,ernesto.damiani,fulvio.frati}@unimi.it,

mregoli@crema.unimi.it
2 Engineering Ingegneria Informatica

Via San Martino della Battaglia, 56 – 00185 Roma, Italy
(sergio.oltolina,gabriele.ruffatti}@eng.it

Abstract. Improving the software development process requires tools and
model of increasing complexity, capable of satisfying project managers’ and
analyzers’ needs. In that paper we present a solution integrating a formalized
and established model for performance evaluation like QEST nD, and an open
source Business Intelligence platform like Spago4Q. We obtain a new environ-
ment that can produce immediate snapshots of projects’ status without any con-
straint on the number of projects and the type of development process.

Keywords: QEST nD, Spago4Q, Performance Indicator, process monitoring.

1 Introduction

The availability of detailed and updated information on the software development
process is of paramount importance for organizations to maintain their competitive-
ness level and operate in new and more challenging markets. Such a scenario of inte-
grated information is known as Business Intelligence and encloses all the business
processes and tools used by organizations for data acquisition.

Within this context, a number of structured process models are adopted by enter-
prises, depending on their application domain and size, to collect specific knowledge
about their development processes, strengthening, at the same time, their know-how in
terms of more efficiency and quality.

In this paper, we describe our experience in the deployment of an integrated and
complete environment for software performance evaluation. To this aim, we exploit a
formal model for process performance evaluation (QEST nD) and we connect it with
an open source Business Intelligence application (Spago4Q). In particular, the QEST
nD model (Quality factor + Economic, Social, and Technological Dimension) is a
multi-dimensional model, proposed in [1] and [3], for the performance evaluation of
software processes. Its multi-dimensional nature is based on three important concepts:

2 C.A. Ardagna et al.

1. A number of measurable concepts derived from different business areas (called
dimensions) including economic, social, and technological ones.

2. The number of business areas interested by the analysis. This number may change
for each single project, without any limit (from here comes the acronym nD – n
Dimensions).

3. Organizations are allowed to choose the dimensions of each analysis with respect
to their needs.

Such a philosophy makes QEST nD an open model, decoupled from any specific
development process, allowing multi-process, multi-project performance analysis.

The final objective of the model is to express the overall process performance (P)
as a combination of the performance of any considered dimension, calculated as the
weighted sum of the applied metrics. The global performance value approach gives an
immediate and accurate snapshot of the current state of the project, and allows a top-
down analysis starting from the global value, which includes all the single measure-
ments, to the analysis of the performance of the single dimension. The performance
indicator is calculated by the integration of instrumental measurements (called RP –
Rough Productivity) and the subjective perception of the overall quality (express as
QF – Quality Factor).

A problem characterizing the QEST nD model and preventing its diffusion in the
Business Intelligence context was the lack of reliable and flexible environments
where the model could be implemented and distributed. As described in the following
sections, we deliver QEST nD on an open source business intelligence platform,
Spago4Q (SpagoBI for Quality) [2][5]. Spago4Q is a platform for maturity assess-
ment, effectiveness of development software processes and application services, and
quality inspection of the released software, achieved by the evaluation of data and
measures collected from the process management and development tools with non-
invasive techniques.

The tool is easily adaptable to different organizational contexts, independently
from the development process adopted by the single projects (i.e. waterfall, XP,
Scrum, etc.), meeting exactly the multi-process multi-project approach of QEST nD.
Although the initial vision of Spago4Q was focused on the software development
process, the implementation of the QEST nD model, and consequently of a global
multi-dimensional performance value, could extend the performance and quality
evaluation to services and business areas that are typical of software organizations.

The paper is organized as follows. Section 2 describes more in detail the two
frameworks (QEST nD and Spago4Q). Section 3 shows the steps to build the imple-
mented integration. Section 4 presents two real case studies. Finally, Section 5 con-
tains our conclusions.

2 The Context: QEST nD and Spago4Q

In the following sections, we give an overview of the two frameworks describing the
mathematical formalization of QEST nD, and the main characteristics of Spago4Q.

 Spago4Q and the QEST nD Model: An Open Source Solution 3

Fig. 1. Geometrical representation of QEST model using E, S, T dimensions and P value as
edges of the figure [1]

2.1 The QEST nD Model

In the software engineering context, several one-dimensional performance models are
available which integrate individual measurements into a single performance index. By
comparison, in more traditional domains such as Business Modeling, there exist a num-
ber of multi-dimensional models that take into account data derived directly from their
accounting systems, which means that multiple viewpoints are, in fact, considered [1].

Furthermore, models currently available in the software engineering domains are
too oversimplified to properly reflect the different aspects of performance when vari-
ous perspectives, or viewpoints, must be taken into account at the same time. There-
fore, to manage simultaneous multi-dimensional constraints in development projects,
managers need to estimate the status of current projects based on their own interpreta-
tion of rough data, due to the lack of reliable measurement models.

In multi-dimensional analysis, complex viewpoints are taken into account simulta-
neously, each one analyzing a distinct aspect of the overall process performance.
Therefore, an extension to the traditional single-dimension approach is needed, to
consider both quality and performance of the development process.

The QEST nD model [3] is aimed at measuring software project performances ad-
dressing the aspects of multidimensionality and qualitative-quantitative assessment.
With respect to the original QEST model that was initially designed for measurements
to be done at the end of a project, QEST nD provides a dynamic extension to analyze
software process data throughout all the development phases. In particular, in the
QEST model the quality can be viewed as the integration of at least three different
viewpoints.

• Economical (E): expresses the viewpoint of management, interested in measure-
ments focused on the overall quality level, rather than the quality of specific fea-
tures or process areas.

• Social (S): measures the perspective of the user, where the quality is intended as
the characteristic of a product to satisfy present and future needs.

4 C.A. Ardagna et al.

Fig. 2. (Qe, Qs, Qt) and (Q’e, Q’s, Q’t) plane sections [1]

• Technical (T): relative to developers, for whom software quality is achieved by
conforming to specific, explicitly stated standards and requirements explicitly
stated.

In the QEST model the measurement of performance (P) is given by combining a
quantitative measurement, indicated by the component RP-Rough Productivity, and a
qualitative measurement, calculated as a perception-based measurement of the overall
product quality (QF-Quality Factor). A detailed explanation of the model, that has
been formalized in [3] [4], is out of the scope of this paper. For the initial QEST
model, the three-dimension geometrical representation of a regular tetrahedron (see
Fig. 1) was selected and studied to help the model formalization. In particular:

• the three dimensions (E, S, T) in the space d to the corners of the pyramid's base,
and the convergence of the edges to the P vertex describes the top performance
level;

• the three sides are of equal length: the solid shape that represents this 3D concept is
therefore a pyramid with a triangular base and sides of equal length (tetrahedron).
The figure represents the ranges to which the dimensions performances will belong
to.

The geometrical approach permits the representation of the measurement of perform-
ance in a simple and visual way, assisting the global performance computation.
Thanks to this representation, it is possible to express the performance value in term
of geometrical concepts like distance, surface, and volume. The value of each dimen-
sion is seen as the weighted sum of a list of n distinct measures, each one representing
single measurable concepts for each perspective. Then, the values of the three dimen-
sions E, S, T are placed on the respective tetrahedron side, describing a sloped plane
section and representing the three dimensional performance measurements [3]. Fig. 2
better explains such a geometrical aspect, indicating the three dimensions’ values as
Qe, Qs, and Qt. Finally, the QF, with respect to each dimension, is added to the previ-
ous values describing an upward or downward translation of the plan (Qe, Qs, Qt)
finding the new plan (Q’e, Q’s, Q’t).

 Spago4Q and the QEST nD Model: An Open Source Solution 5

On the other side, the value RP can simply be expressed as the distance between
each single corner (E, S, T) with the specific point Qe, Qs, and Qt. Please note that
the maximum value of each edge is 1, consequently all the values that are placed on
the tetrahedron have to be normalized. Then, the performance value is calculated as
the distance between the center of gravity of the original tetrahedron and the center of
the described plane section along the tetrahedron height (see Fig. 2).

The explanation above is valid for the QEST nD case, where more than 3 dimen-
sions are taken into account. Through computational geometry, it is possible to de-
velop a generic representation of it with a generalization of a tetrahedral region of
space to n dimensions describing it with a simplex [4]. To conclude, the geometrical
formalization of the model allows to describe it with a simple formula for the compu-
tation of the global performance value P:

∏
=

−−=
n

i
ipP

1

)1(1

(1)

Where pi represents the single dimension performance value added with the respective
QF value. Section 3 and 4 deal with the definition of the environment and, in particular,
of the metrics model that will be used to compute the value of the single dimensions.

2.2 Spago4Q

Spago4Q (SpagoBI for Quality) [2] is an open source platform for the continuous
monitoring of software quality. Its most important characteristic is the total independ-
ence from the adopted development process and from the number of monitored pro-
jects. Spago4Q can then be described as a multi-process multi-project monitoring
platform.

In Spago4Q, the evaluation of metrics and the collection of data are executed in a
fully-transparent way, without any action due by programmers and designers and any
change in their typical working tasks.

Spago4Q includes in its package a number of extractors for the main environments
that are exploited during the software lifecycle (IDE, text editing tools, requirements
management frameworks, and the like) that collect data directly from process work-
products (e.g. java classes or logs).

Since Spago4Q relies exclusively on open frameworks and it is released under an
open source license, its structure could be enriched with the implementation of addi-
tional extractors for particular work-product types. In any case, the extractors will be
executed at specified time intervals and store data directly in the application data
warehouse.

Spago4Q is a vertical adaptation of SpagoBI [10], a more complex framework for
Business Intelligence analysis, whose structure was enriched with the use of a com-
plex meta-model (see Fig. 3) for the representation and description of the generic
development process, the measurement framework, the extractors, and the assessment
framework [5], that defines the entities that play a role in the monitoring process the
relations between them. The Development Process meta-model has been designed to
be as generic as possible, allowing the modeling of virtually all process models, from
waterfall to XP. It is connected with the Measurement Framework meta-model, which

6 C.A. Ardagna et al.

defines a skeletal generic framework and is used to obtain measures from most devel-
opment processes. Then, the Assessment meta-model allows to model a generic
evaluation structure with a simple classification in terms of Category, Target, and
Practice. Finally, the Extractors meta-model is used to formalize and define the ex-
tractors used to retrieve data from process module and supply it to the measurement
module.

In particular, the inclusion of a specific meta-model for the assessment framework
allows the tool to implement metrics that are specific to a particular assessment
model. Originally Spago4Q was studied to fully support the CMMi framework [6] for
the maturity assessment of the development process. However, the intrinsic generality
of the meta-model approach allows adapting it to any assessment model, for instance
ISO 9000 or Balanced Scorecards. In fact, Spago4Q provides support for the defini-
tion and implementation of measurement frameworks based on the GQM (Goal-
Question-Metric) approach [7], which categorizes the metrics in terms of (i) generic
goals to be measured, (ii) the particular aspects that the metric has to measure, and
(iii) the metrics that implement the actual measurement.

Fig. 3. The Spago4Q meta-model [5]

 Spago4Q and the QEST nD Model: An Open Source Solution 7

3 An Integrated Environment

The below-described work has been the subject of a Master thesis carried out within
the Department of Information Technology, Università degli Studi di Milano. The
definition of a QEST nD model is a five-step procedure that will be described in the
following paragraphs, without entering in the implementation details for the sake of
conciseness.

The steps, all executable through the graphical interface of Spago4Q, are coherent
with the PMAI (Plan-Measure-Assess-Improve) cycle [8], which is composed of four
logical phases:

1. PLAN, which consists in defining a set of metrics basing on the GQM approach,
defining the dimensions that characterize the analysis, the mathematic formaliza-
tion of the metrics and the weight to assign to each metric.

2. MEASURE, which includes the collection of data, the computation of metrics
values, the normalization of them (values must be ≤ 1), and the computation of
global Performance value using the Eq. 1.

3. ASSESS: results are presented in dashboards and reports, and analyzed by the
management and analyzers.

4. IMPROVE: every negative or low value is deeply analyzed to find problems in
the processes and consequently find solutions to improve the overall quality.

3.1 Step 1: Metrics and Model Definition

The first step deals with the declaration of a complete GQM, with the definition of the
analysis dimensions, the concepts to measure, and the metrics to apply to project
work-products.

The GQM will be defined using the Model Definition interface, while metrics (or
KPI – Key Performance Indicator) are defined through the KPI Definition section.

In particular, the definition of KPIs involves the specification of an algorithm for
the computation of the metric. This algorithm will exploit the SQL mathematical
library for simple computations, or call an ad-hoc Java class for more complex ones.
The KPI will collect data directly from the Spago4Q data warehouse, which contains
all the data that the extractors get from the project work-products.

3.2 Step 2: Weights and Threshold Definition

The QEST nD model requires each metric to be coupled with the respective weight,
which indicates the importance that such a concept plays in the dimension it belongs
to. A complete analysis of the GQM should be performed prior to define the weights
for each KPI. Thus, for each metric it is important to define the specific thresholds,
which allow to evaluate the value with respect to the organization policies. The
thresholds have to take into account the normalization of metrics and are also impor-
tant for the creation of complete and understandable reports. The KPI Definition inter-
face helps to define such aspects.

Finally, although the use of the QF is optional and its absence does not preclude
the entire Global Performance value, in this step it is possible to assign the QF to each
specific dimension. The definition of the QF is subjected to the analysis of pool of

8 C.A. Ardagna et al.

experts that define the value that will be added to the respective RP. A complete guide
for the definition of the QF of a software product can be found in [3].

3.3 Step 3: Measures Collection

Measures are taken directly from Spago4Q data warehouse, which in turn is filled by
data collected by extractors accessing process work-products. The collection process
is defined in the configuration phase, where a specific dataset, that contains the de-
scription of the metric itself, is defined for each KPI or group of KPIs.

Metrics are described in terms of (i) the name of the model to which the metric is
assigned to, (ii) default value, (iii) minimum and maximum values (for normaliza-
tion), and (iv) the algorithm for the metric computation.

In particular, the algorithm can be implemented using the common mathematic li-
brary of SQL, as a separate Web Services or, for computations that involve complex
operations, as a Java package. Furthermore, the application supplies to users KPI-
specific drivers to be used in the metric formula to help the definition of it in the
selected programming language, supplying methods for the direct access to data ware-
house fields. Finally, specific fields for the KPI results will be added to the data ware-
house and supplied to other KPIs and components of Spago4Q.

3.4 Step 4: Global Performance Computation

In our approach, both global and dimension-wise performance indexes are computed
as simple KPIs that take in input configuration data and results of the metrics at the
bottom of the GQM tree. First of all, the performance value of each dimension is
calculated as the sums of the product of each metric, belonging to the dimension, with
its specific weight:

∑ =
= n

i ii wVD
1

)*(

(2)

where D is the dimension performance value, V is the result of the i-th metric, and w
is the assigned weight. If the QF is provided by the model, its value is added to the
results:

QFwVQFDD
n

i ii +=+= ∑ =1
)*('

(3)

Note that Eq. 2 and 3 are computed for each of the n dimensions that compose the
QEST nD model that has been specified. Finally, the KPI that computes the global
performance indicator could be defined using the Eq. 1, defined in Section 3.1 and it
is valid in the case the QF is defined or not.

∏ =
−−= n

j jDP
1

)1(1

(4)

The global performance P value will be assigned to the root node of the created
model.

 Spago4Q and the QEST nD Model: An Open Source Solution 9

3.5 Step 5: Reports

As last step of the process, a set of reports and dashboards could be defined and con-
figured to satisfy any reporting and managerial need. One of the open source report-
ing tools we integrated with Spago4Q is Eclipse BIRT [9]. The generation of reports
requires the creation of a specific dataset that includes all the data that will be de-
scribed by the report.

Such data is collected from the application data warehouse and, in particular, from
the fields that contain the metrics values. Several pre-defined templates and layouts
are available.

Spago4Q provides methods and interfaces to directly configure and create a new
report using all the facilities provided by BIRT.

4 Case Studies

The application of the QEST nD model in Spago4Q has been tested using two real
case studies on data taken from real development projects realized by Engineering
Ingegneria Informatica, a major player within the community of Spago4Q.

The two projects are of increasing complexity: the first one deals with a little pro-
ject consisting of a single measurement of project data, while the second one meas-
ures the complex performance of three big projects with several measurements in a
three-month time slot.

For the sake of conciseness, in this section we focus on the second case study only,
providing information about the steps that were described in Section 3. The realized
QEST nD model was called Business-Service Model and takes into consideration four
specific analysis dimensions:

1. QEST-EC: Economic performance indicator;
2. QEST-RS: Resource performance indicator;
3. QEST-TE: Technical performance indicator;
4. QEST-CS: Customer Satisfaction performance indicator.

Fig. 4 shows the complete model, highlighting the GQM structure of the metrics. The
root node is the global performance indicator (QEST-BS), which includes the four
goals describing the analysis dimensions. For each dimension, a set of questions (i.e.,
the concepts to measure) has been defined, which in turn includes the metric, or the
metrics, which evaluates the concept. Table 1 summarizes the metrics, along with the
respective weights, that compose the model.

Each metric is associated to specific SQL queries or Java classes that directly ac-
cess to the data warehouse to collect the input for the computation. For each metric, a
field in the data warehouse has been created to store its output, to be used by other
KPIs or reports.

It is important to remark that the definition of weights and thresholds has to be
very careful and must involve skilled experts that have a solid background in the
enterprise scenario. In fact, an overestimation, or underestimation, of metrics weights

10 C.A. Ardagna et al.

Fig. 4. The complete GQM model defined in the case studies

 Spago4Q and the QEST nD Model: An Open Source Solution 11

Table 1. List of KPIs defined for the case study

KPI Description Weight
QEST-KPI-BS Global Performance Indicator

QEST-EC Economic Performance Indicator 1.0

QEST-RS Resources Performance Indicator 1.0

QEST-TE Technical Performance Indicator 1.0

QEST-CS Customers Satisfaction Performance Indicator 1.0

QEST-EC-1 Product/Service Usage Factor 0.2

QEST-EC-2 Support Services – Business Services Costs Ratio 0.4

QEST-EC-3 CR Development Services – Business Services Costs Ratio 0.4

QEST-RS-1 Services Availability Factor 0.7

QEST-RS-2 Resources Turnover Factor 0.15

QEST-RS-3 Unresolved Issues Factor 0.15

QEST-TE-1 Average Cyclomatic Complexity 0.1

QEST-TE-2 Documentation Quality Issues Factor 0.05

QEST-TE-3 Coding Rules Unconformity Factor 0.05

QEST-TE-4 Object-oriented Rules Unconformity Factor 0.1

QEST-TE-5 Running Applications Issues Factor 0.15

QEST-TE-6 Average Recovering Time 0.1

QEST-TE-7 Milestones Shifting Factor 0.1

QEST-TE-8 Productivity Factor 0.1

QEST-TE-9 Application Variability Factor 0.05

QEST-TE-10 Requirement - Test Coverage Ratio 0.08

QEST-TE-11 Deploy Issues 0.07

QEST-TE-12 Patches Installation Frequency 0.05

QEST-CS-1 Training Factor 0.1

QEST-CS-2 Customers Satisfaction Factor 0.6

QEST-CS-3 Usability Factor 0.3

will result in a global value that does not reflect the process state, as well as, the defi-
nition of incorrect thresholds will imply an incorrect analysis of the organization
status. In these case studies, for the sake of conciseness, the QF has not been taken
into consideration; hence the performance computation takes into account only the
weighted sums of the metric results. The experimentation covered three months of
development. Raw data have been collected by the application from process work
products and stored in the data warehouse. In particular, Table 2 shows a snapshot of
values collected at the end of the three months for each project.

Finally, metric values were normalized and used as inputs to Eq. 2 and Eq. 4, for
the computation of single dimension and global performance indicators. The values of
indicators can be represented using the internal Spago4Q dashboards (Fig. 5) or the
user can create ad-hoc reports using BIRT functionalities. In particular, dashboard
gives an immediate snapshot of the situation, highlighting problems and suggesting to
project managers the areas where the effort should be concentrated or where a quality
improvement of the process is needed. By contrast, reports can give a more detailed
analysis of the data, describing in details the results of indicators and better targeting
the improvement actions.

12 C.A. Ardagna et al.

Table 2. Metrics values collected for the three projects at the end of each month. Note that data
are cumulative and have to be normalized before performance computation.

Project 1 Project 2 Project 3 KPI
M1 M2 M3 M1 M2 M3 M1 M2 M3

QEST-EC-1 80 78 82 50 68 72 25 49 70

QEST-EC-2 25 45 30 5 7 6 8 9 7

QEST-EC-3 50 65 55 2 4 5 14 11 10

QEST-RS-1 99 97 98 60 70 87 97 95 96

QEST-RS-2 91 94 95 96 93 94 98 97 97

QEST-RS-3 50 62 82 35 37 68 10 35 88

QEST-TE-1 20 18 15 30 32 25 50 39 35

QEST-TE-2 1.1 1.9 1.8 1.8 2.3 2.1 4.5 3.2 1.9

QEST-TE-3 95 93 94 96 92 93 82 91 92

QEST-TE-4 99 97 95 30 49 67 85 89 93

QEST-TE-5 2 1 2 1 2 1 1 2 2

QEST-TE-6 3,5 3.2 3.1 2,4 1.3 1.1 16 12 8

QEST-TE-7 87 78 83 88 92 93 50 80 85

QEST-TE-8 10 20 17 55 40 35 68 65 55

QEST-TE-9 2 122 9 25 15 12 29 22 18

QEST-TE-10 375 390 410 178 230 245 210 240 255

QEST-TE-11 1 2 2 2 1 1 3 2 2

QEST-TE-12 2 3 4 9 6 5 10 8 7

QEST-CS-1 60 75 89 95 91 92 94 92 91

QEST-CS-2 75 85 90 91 87 90 93 95 94

QEST-CS-3 91 83 92 96 93 92 80 83 93

Fig. 5. Spago4Q dashboards for projects state at month 3

 Spago4Q and the QEST nD Model: An Open Source Solution 13

Looking at the results of our case study, the graphs in Fig. 6 and 7 show that all
projects were concluded with an excellent global performance (close to one), showing
some issues in the process that is worth analyzing.

For instance, the Economic dimension of Project 1 is characterized by a red square,
indicating that the value is within the bad area, hence a deep analysis of that area is
needed for next implementations. In fact, project managers discovered that the finan-
cial resources assigned to the project were overestimated for the needed effort, sug-
gesting an adjustment to the enterprise criteria for projects financing.

Fig. 6. Spago4Q graph for projects global performance comparison

Fig. 7. Spago4Q graph for projects single dimensions performance comparison

14 C.A. Ardagna et al.

5 Conclusions

The integration of the QEST nD model and Spago4Q allows implementing a com-
plete multi-project multi-process performance evaluation environment that combines
the mathematical formalization of the QEST nD model and the facilities offered by
Spago4Q. In this paper, we analyzed such an integration, and described a complete
case study that shows the high configurability and reliability of the framework.

The contribution is twofold. First, we implemented and used a formal model for
process performance evaluation (QEST nD) and we connected it with an open source
Business Intelligence application (Spago4Q). Second, we developed a solution that
derives global performance indicators of the enterprise developing work by analyzing
its process raw data (e.g., java classes, logs).

The main benefit of the proposed solution lays in the fact that it gives the possibil-
ity to analyze the performance of the development process from different points of
view and integrate semantically different metrics and KPIs in a single indicator. The
QEST nD model described in this paper will be made available in the future version
of Spago4Q.

Acknowledgments

This work was partly founded by the European Commission under the project Se-
cureSCM (contract n. FP7-213531) and by the Italian Ministry of Research under
FIRB TEKNE (contract n. RBNE05FKZ2_004).

References

1. Buglione, L., Abran, A.: QEST nD: n-Dimensional Extension and Generalisation. Ad-
vances in Engineering 33(1), 1–7 (2002)

2. SpagoWorld Solutions - Spago4Q (2009), http://www.spago4q.org
3. Buglione, L., Abran, A.: A quality factor for software. In: Proc. 3rd International Conf. on

Quality and Reliability (QUALITA 1999), Paris, France, pp. 335–344 (1999)
4. Buglione, L., Abran, A.: Geometrical and statistical foundation of a three-dimensional

model of performance. Int. J. Adv. Eng. Software 30(12), 913–919 (1999)
5. Damiani, E., Colombo, A., Frati, F., Oltolina, S., Reed, K., Ruffatti, G.: The use of a meta-

model to support multi-project process measurement. In: Proc. 15th Asia-Pacific Software
Engineering Conference (APSEC), Beijing, China, pp. 503–510 (2008)

6. Software Engineering Institute - Carnegie Mellon University, CMMi - Capability Maturity
Model integration (2009), http://www.sei.cmu.edu/cmmi/

7. Basili, V., Caldeira, G., Rombach, H.D.: The Goal Question Metric approach. In: Ency-
clopedia of Software Engineering. Wiley, Chichester (1994)

8. Deming, W.E.: Out of the Crisis. MIT Press, Cambridge (1986)
9. Eclipse BIRT Project (2009), http://www.eclipse.org/birt/phoenix/

10. SpagoWorld Solutions – SpagoBI (2009), http://www.spagobi.org

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 15–28, 2010.
© IFIP International Federation for Information Processing 2010

An Investigation of the Users’ Perception
 of OSS Quality

Vieri del Bianco1, Luigi Lavazza2, Sandro Morasca2, Davide Taibi2, and Davide Tosi2

1 University College Dublin, Systems Research Group, CASL,
Dublin, Ireland

vieri.delbianco@ucd.ie
2 Università degli Studi dell’Insubria, Dipartimento di Informatica e Comunicazione,

Via Mazzini, 5 – 21100 Varese, Italy
{luigi.lavazza,sandro.morasca,davide.taibi,

davide.tosi}@uninsubria.it
http://www.dicom.uninsubria.it

Abstract. The quality of Open Source Software (OSS) is generally much de-
bated. Some state that it is generally higher than closed-source counterparts,
while others are more skeptical. The authors have collected the opinions of the
users concerning the quality of 44 OSS products in a systematic manner, so that
it is now possible to present the actual opinions of real users about the quality of
OSS products. Among the results reported in the paper are: the distribution of
trustworthiness of OSS based on our survey; a comparison of the trustworthi-
ness of the surveyed products with respect to both open and closed-source
competitors; the identification of the qualities that affect the perception of
trustworthiness, based on rigorous statistical analysis.

Keywords: Open Source Software quality, perceived quality, trustworthiness.

1 Introduction

Quality is often an elusive concept in Software Engineering. First, many attributes
exist that may be used to describe software quality. For instance, the ISO9126 stan-
dard [1] views software quality as a multi-attribute concept, and different people may
place different emphasis on the same attribute, depending on their experience, goals,
and software at hand. In addition, the actual quantification of even some specific at-
tribute may be problematic, as measures for that attribute may not be mature enough
to have reached a sufficient degree of consensus, or may provide inconclusive results.
For instance, two measures for the same software attribute may rank two software
applications A and B in a conflicting way, i.e., one measure may rank A better than B
while the other measure may reverse the ranking.

So, software stakeholders often choose to adopt one application over another based
on the quality they perceive, instead of an objective quality evaluation. To some degree,
this happens with several different types of products, if not all. For instance, a prospec-
tive buyer may choose one car over another based on his or her own perception of the

16 V. del Bianco et al.

overall quality of the car, or some of the car’s characteristics, or even the characteristics
of the car’s manufacturer. At any rate, in the case of cars, a number of objective meas-
ures exist, like length, width, height, volume of the engine, maximum speed, number of
miles per gallon, number of seconds needed to get to some specified speed, so a pro-
spective buyer can make informed decisions. When it comes to software, however, the
lack of consensus measures makes decisions even more based on perceptions. Percep-
tions may be even more important for Open Source Software (OSS) than for other types
of software. OSS has often suffered from some kind of biased perception, probably
based on the idea that OSS is built by amateur developers in their spare time. It took a
few years and a few success cases to dispel at least some of these perceptions about
OSS, but some of that stigma is believed to still taint the reputation of OSS vs. Closed
Source Software (CSS) at least in some environments. So, it is important to study how
various attributes of OSS are perceived, to check if those perceptions about OSS quali-
ties are still valid today and which specific qualities are believed to need improving
more than others.

In this paper, we report on an empirical study about the perception of OSS quali-
ties. We carried out the study in the framework of the QualiPSo project [9], which is
funded by the European Union in the 6th Framework Program. Trustworthiness is the
main focus of the QualiPSo project as for OSS product evaluation. However, OSS
trustworthiness itself is a broad concept. On the one hand, trustworthiness is closely
related to the idea of overall OSS quality: an OSS product is adopted only if stake-
holders have sufficient trust in its quality. On the other hand, as OSS trustworthiness
is influenced by a number of diverse factors which may include product- and process-
related ones, several concepts and sources of information may need to be taken into
account when studying OSS trustworthiness.

In the QualiPSo project we investigated the factors that are believed to affect
trustworthiness [3] by OSS stakeholders. Then, we defined a conceptual model that
represents the dependence of trustworthiness on other qualities and characteristics of
the software [4]. To prove the validity of such conceptual model and provide it with
quantitative models of trustworthiness, we collected both subjective evaluations and
objective measures of OSS. Specifically, the subjective evaluations concerned how
users evaluate the trustworthiness and other qualities of OSS. These evaluations are
here analyzed in a rigorous way to derive indications concerning the quality of OSS
that are both quantitative and reliable, since they are rooted on a reasonably wide
sample of users’ opinions.

Our investigation has shown that the majority (56%) of OSS products are consid-
ered very trustworthy and that the surveyed OSS products are generally considered
better than the competitors (both OSS and CSS) by their users. Finally, we discovered
statistically significant models that quantitatively describe the dependence of trust-
worthiness on qualities like reliability, usability, interoperability, efficiency, and
documentation.

The paper is organized as follows. Section 2 describes data collection. Section 3
reports the results of the analysis, while the threats to the validity of the results are
discussed in Section 4. Section 5 discusses the related work, and Section 6 draws
some conclusions and sketches future work.

 An Investigation of the Users’ Perception of OSS Quality 17

2 The Investigation

We carried out a survey to collect OSS stakeholders’ evaluations of several OSS
products according to a number of qualities. We actually selected just a few of all the
qualities identified in the GQM plan that defines the QualiPSo notion of trustworthi-
ness [4], because we knew that users may not be able to evaluate many OSS products,
and, for each OSS product, too many of its qualities. Thus, in addition to a few ques-
tions characterizing the users (including how familiar they were with the product), we
asked them to evaluate the overall trustworthiness of the products and the following
qualities, which are believed to be the ones that most affect trustworthiness, based on
a previous survey that we carried out among OSS stakeholders [3]:

• Usability;
• Portability;
• Functional requirements satisfaction;
• Interoperability;
• Reliability;
• Security;
• Developer community utility;
• Efficiency;
• Documentation;
• Trustworthiness vs. OSS competitors;
• Trustworthiness vs. CSS competitors.

We used a questionnaire to ask our respondents how they would rate the qualities of
up to 22 Java and 22 C++ OSS products. The list of products appears in Fig. 1. We
used a 1 to 6 ordinal scale, where 1 was the worst evaluation and 6 the best evaluation
for a specific quality of a product with the following possible answers:

1 = absolutely not;
2 = little;
3 = just enough;
4 = more than enough;
5 = very/a lot;
6 = completely.

For illustration’s sake, one of the questions was “How usable is the product?” with
reference to some specified product. All other questions about all other qualities were
asked in a similar fashion.

Up to the end of August 2009, we collected 100 questionnaires, containing 722
product evaluations, of which about 36% concerned Java products, while the remain-
ing ones concerned C++ products.

The questionnaires were collected at major international events, not necessarily
dealing with OSS topics, as summarized in Table 1.

We did not screen our respondents beforehand, so we used what is known as a
convenience sample. The possible effects that this may have had on our empirical
study are addressed in Section 4.

18 V. del Bianco et al.

Table 1. Events where data where collected

Event Date (in year 2009) and
location

Collected
questionnaires

Product
evaluations

Apache Conference March 24-27, Amsterdam,
The Netherlands

15 31

OW2 Conference April 1-2, Paris, France 20 31
XP 2009 April 24-30, Pula, Italy 12 95
OSS 2009 June 2-5, Skovde, Sweden 2 5
ICSE 2009 May 15-20, Vancouver,

Canada
9 69

CONFSL 2009 June 12-13, Bologna, Italy 3 27
QualiPSo Meeting July 1-2, Madrid, Spain 6 38
ESC August 30-31, Venice, Italy 31 411
Others 2 15

In the rest of the paper, we often call the respondents “users;” however, in addition

to end-users, these “users” include also developers, managers, and stakeholders that
are interested in OSS for various reasons.

3 The Results of the Investigation

3.1 The Popularity of the Products

A first result of our investigation concerns the popularity of the OSS products we se-
lected. Since users were asked to answer about the products they knew well enough,
the number of evaluations received by a product may be taken as a reasonable indica-
tion of its popularity.

Fig. 1 shows how many users evaluated each product, and how many of them an-
swered that they have good familiarity with the product (the shorter bars report how
many users rated their familiarity > 3).

The results reported in Fig. 1 were quite expected: MySQL, Eclipse and the Linux
Kernel appear to be the most popular products.

We then proceeded to evaluate whether the popularity could be explained in terms
of the type of the product (end-user oriented vs. programmer oriented, database man-
agement systems vs. configuration management systems vs. libraries, etc.). However,
we found no such relationships. We consider this a good result, since it seems to indi-
cate that users evaluated the actual qualities of the products, independent of their
types and target users.

3.2 The Trustworthiness of the Products

We take the median of the evaluations as representative of the evaluations provided
by the respondents (including end users and stakeholders) to the overall trustworthi-
ness of OSS products. However, we noticed that some products had very low median
grades because of only two or three respondents who had little familiarity with the
product. As such evaluations may be deemed unreliable, we removed the evaluations
of respondents with familiarity ≤ 3 from the dataset. Also, we considered only prod-
ucts that were rated by at least 4 respondents.

 An Investigation of the Users’ Perception of OSS Quality 19

0 10 20 30 40 50 60

Tapestry

Open Pegasus

Saxon

SpiderMonkey

TPTP

Weka

Servicemix

Velocity

Jack.Commons IO

Axis

DDD

PMD

Xalan

HttpUnit

Findbugs

Mono

Spring Framework

TCL/Tk

Checkstyle

JFreeChart

Xerces

JMeter

Jasper Reports

OpeLDAP

Struts

Lib XML

SQLite

BusyBox

Hibernate

JBoss

PosgreSQL

GDB

Perl

CygWin

Ant

Log4J

Gnu C Library

Open SSL

Gnu GCC

CVS

Subversion

Linux Kernel

Eclipse

MySQL

Total users

Familiar users

Fig. 1. Number and familiarity of respondents per product

Fig. 2 shows the median of users’ evaluations for each product. On the x axis are
the 32 products for which we collected enough data from users having sufficient fa-
miliarity. In other words, ”Products” is a nominal variable.

It appears that users are generally very satisfied with the OSS products. Never-
theless, the facts that no product’s median reached the maximum, that in several
cases the median was only 4, and in one case even 3, shows that the users were not
‘fanatic’ of OSS. Rather, they seem to have provided well-balanced and reliable
evaluations.

20 V. del Bianco et al.

Products

M
e

di
a

n
(T

ru
st

w
o

rth
in

es
s)

0 5 10 15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

Fig. 2. Overall trustworthiness of the evaluated products (medians per product considered)

3.3 OSS vs. CSS (Closed-Source Software)

Users were asked to rate the trustworthiness of every product in comparison to similar
OSS and CSS products. The medians of these ratings are illustrated in Fig. 3.

Products

Trust wrt CSS
Trust wrt OSS

0 5 10 15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Tr
u

st
_v

s_
O

S
S

_m
ed

ia
n

Fig. 3. Overall trustworthiness of the evaluated products compared to similar OSS and CSS
products (medians per product considered)

A first observation suggested by the figure is that in general the evaluated projects
are highly trusted with respect to both OSS and CSS competition. In fact, both scores
are positioned mainly in the 4–5 range.

 An Investigation of the Users’ Perception of OSS Quality 21

It is then possible to observe that in 21 out of 32 cases (65.6%) the CSS and OSS
alternatives are considered of equivalent quality, though generally lower than the con-
sidered OSS product. This result seems to confirm that the choice of OSS products to
evaluate was actually a good one, in that the considered products are generally con-
sidered very well positioned with respect to OSS and CSS alternatives.

In only 9 cases out of 32 (33%), the OSS alternatives are better than the CSS alterna-
tives (this is the case whenever the red solid line is above the blue dashed line), while in
only 2 cases out of 32 (6%) the CSS alternatives are considered better than the OSS ones.

The overall impression that is conveyed by Fig. 3 is that the OSS user community
does trust OSS, but not in a fanatic manner, since the quality of CSS is also acknowl-
edged, e.g., by considering OSS and CSS alternatives to leading OSS products as sub-
stantially equivalent.

3.4 The Quality of OSS Products

In the QualiPSo project, we have investigated the qualities that –according to OSS us-
ers– most affect the overall notion of OSS trustworthiness [3]. Following such indica-
tions, we have built a conceptual model of OSS trustworthiness that proposes an
explanation of how OSS product sub-qualities (like as-is utility, exploitability in devel-
opment, functionality, reliability) contribute to determining the overall trustworthiness
as perceived by users. Such model is defined via a GQM plan [4], which involves also
objectively measurable characteristics of OSS. The idea is that, when enough data are
available, we can build a quantitative model that explains to what extent the subjectively
perceived qualities of OSS depend on its internal characteristics.

The data reported here are the result of the data collection (concerning exclusively
the subjective evaluations) performed as part of the execution of the GQM plan.

Fig. 4 illustrates the distributions of the median evaluations of different products
for each surveyed quality. For this analysis, only the products evaluated by at least 10
users with sufficient familiarity have been considered. For each quality, the box
represents the range comprising half the population, the thick segment represents the
median, the dashed lines extend to the most extreme data point which is no more than
1.5 times the interquartile range from the box, while the small circles indicate outliers.

usability portability functionality interoperab. reliability security efficiency trustworth.

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Fig. 4. Boxplots and medians for the qualities of the evaluated products

22 V. del Bianco et al.

A first observation suggested by Fig. 4 is that all qualities are given quite high
grades in general, as most evaluations are between 4.0 and 5.0. Also, while overall
trustworthiness is rated very well (see also Fig. 2), the users have been more critical
with other qualities –like usability, interoperability, security and efficiency– which
are given lower grades than trustworthiness. It is interesting to note that security,
which is usually very positively correlated with trustworthiness, is not rated particu-
larly well, even though most products are graded “more than enough secure.”

Fig. 5 reports the box-plots that synthesize the distribution of grades across prod-
ucts for every quality concerning the support to the end user, namely the available
documentation and the support from the developer community. This is a rather
relevant aspect, since users of OSS products often need to rely exclusively on the
available documentation or the support from the developer community in order to get
information or resolve problems concerning OSS products.

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

documentation community support trustworthiness

Fig. 5. User-support qualities (medians) of the evaluated products

0

5

10

15

20

25

30

35

40

45

50

M
yS

Q
L

E
cl

ip
se

Li
n

ux
 K

e
rn

e
l

S
ub

ve
rs

io
n

C
V

S

O
pe

n
S

S
L

Lo
g4

J

G
nu

 G
C

C

G
n

u
C

 L
ib

ra
ry

G
D

B

C
yg

W
in

P
e

rl

P
os

gr
eS

Q
L

A
n

t

B
u

sy
B

ox

JM
et

er

H
ib

er
n

at
e

JB
o

ss

JF
re

e
C

ha
rt

Li
b

X
M

L

S
Q

L
ite

S
tru

ts

C
h

ec
ks

ty
le

Ja
sp

er
 R

e
po

rt
s

O
pe

L
D

A
P

X
er

ce
s

P
M

D

S
pr

in
g

F
ra

m
e

w
or

k

T
C

L/
T

k

F
in

db
u

gs

H
ttp

U
n

it

M
o

no

Familiar users

Trustworthiness

Fig. 6. Trustworthiness and popularity

 An Investigation of the Users’ Perception of OSS Quality 23

The median value of user support is rated “more than enough” in general. How-
ever, user evaluations are not aligned with conventional wisdom: documentation,
which is often considered a weak point of OSS, is rated quite well, while the support
by the developer community, which is generally believed to be a strong point of OSS
is not rated very well for several products.

Fig. 6 shows that the four most popular products are also among those considered
most trustworthy. Anyway, there is clearly no correlation between popularity and
trustworthiness: for instance, several products having relatively little popularity are
considered very trustworthy.

3.5 Influence of the Implementation Language on the User-Perceivable
Trustworthiness

We collected users’ opinions on products written in Java or C++. We investigated if
the implementation language affects user-perceived trustworthiness. The box-plots in
Fig. 7 summarize the distributions of the trustworthiness evaluations for C++ and
Java programs

3.
0

3.
5

4.
0

4.
5

5.
0

Java C++

T
ru

st
w

o
rt

h
in

es
s

Fig. 7. Comparison of the overall (median) trustworthiness of the evaluated products depending
on the implementation language

While 64% of the Java products are rated “very trustworthy,” only 50% of the C++
ones appear to get such rating. According to Fig. 7, Java programs appear to be
slightly better than C++ ones. However, just one additional C++ project rated 5 would
move the median trustworthiness of C++ programs to 5, thus making it equal to the
one of Java programs. In conclusion, it is not possible to state that there is a depend-
ence of trustworthiness on the implementation language.

3.6 Which Factors Affect OSS Trustworthiness?

Here, we investigate whether there is a statistically significant dependence of trustwor-
thiness on other subjective qualities. To this end, we consider the fractions of users that
are satisfied with the given qualities. For instance, the fraction of users satisfied with a

24 V. del Bianco et al.

product’s trustworthiness is computed as the number of users that rated the product’s
trustworthiness above a given threshold, divided by the total number of users who evalu-
ated the product’s trustworthiness. The satisfaction threshold was set at 4, i.e., the satis-
fied users are those who rated the product 5 (very good) or 6 (completely satisfactory).

To have reasonably significant fractions, we limited the analyses to product that
were evaluated by at least 10 users having a good familiarity with the product.

The analyses reported below were conducted using Ordinary Least Squares (OLS)
regression. The choice of OLS regressions is justified by the fact that both the de-
pendent and independent variables are in the 0..1 range.

We used 0.05 as the statistical significance threshold, as is customarily done in
empirical software engineering studies. Therefore, all the reported models have p-
value < 0.05. The normality of the distribution of the residuals, which is a statistical
requirement for safely applying OLS regression, was tested by means of the Shapiro-
Wilk test [5]: consistent with our statistical significance threshold, p-values > 0.05 do
not allow the rejection of the normality hypothesis.

A first result involves the dependence of trustworthiness on reliability. If we de-
note by rrel the fraction of users satisfied with reliability and rtrust the fraction of
users satisfied with trustworthiness, we obtained the following statistically significant
OLS regression model:

rtrust = 0.2726 + 0.7278 * rrel

rrel
0.5 0.6 0.7 0.8 0.9

0.
6

0.
7

0.
8

0.
9

1.
0

rtr
us

t

Fig. 8. Dependence of trustworthiness on reliability: the linear regression line

 An Investigation of the Users’ Perception of OSS Quality 25

The residuals are normally distributed (i.e., the normality hypothesis cannot be re-
jected), and the determination coefficient is reasonably good (R2 = 0.6391, adjusted
R2 = 0.594). So, around 60% of the variability in the degree of trustworthiness satis-
faction is explained by the degree of reliability satisfaction.

The precision of the fitting is quite good: MMRE=9.2%, pred(25)=90%, with er-
rors in the -13%..+25% range.

No valid OLS regression model could be found between trustworthiness and the
satisfaction of functional requirements, portability, security, and the usefulness of the
developers’ community. On the contrary, we found statistically significant models of
the dependence of trustworthiness on usability, interoperability, efficiency and docu-
mentation. These results are summarized in Table 2. In the “Line equation” column,
the dependent variable is always rtrust, while the independent variable is the fraction
of users that were satisfied with the quality reported in the ‘Quality’ column.

Table 2. Correlations found

Quality Line equation R2 MMRE Pred(25) Error range
Usability y= 0.3686 + 0.7252 x 0.4634 11.8% 90% -16% .. +26%
Interoperability y = 0.1370 * 0.9479 x 0.6817 9.2% 100% -16% .. +19%
Efficiency y = 0.3642 * 0.7172 x 0.6579 8.6% 100% -21% .. +14%
Documentation y = 0.3712 * 0.7289 x 0.6256 8.9% 100% -18% .. +18%

4 Threats to Validity

A number of threats may exist to the validity of a correlational study like ours. We
now examine some of the most relevant ones.

4.1 Internal Validity

We checked whether variables are normally distributed when carrying out OLS re-
gressions, as required by the theory of OLS regression. Consistent with the literature,
we used a 0.05 statistical significance threshold, the same we used for all statistical
tests in our paper. The vast majority of statistical tests we carried out to this end pro-
vided quite strong evidence that the variables are indeed normally distributed, with
the exception of Reliability and Usability, for which the p-values obtained with the
Shapiro-Wilk normality test are 0.0612 and 0.09, respectively. These values are close
to the 0.05 statistical significance threshold, but, based on these values, we could still
not reject the hypotheses that Reliability and Usability are normally distributed, so we
could carry out OLS regression. At any rate, the statistical tests used in OLS regres-
sion are somewhat robust and they can be practically used even when the variables’
distributions are not that close to normal.

4.2 External Validity

Like with any other correlational study, the threats to the external validity of our study
need to be identified and assessed. The most important issue is about the fact that our
sample may not be fully “balanced,” and that may have somewhat influenced the re-
sults. While this may be true, the following points need to be taken into account.

26 V. del Bianco et al.

• It was not possible to interview several additional people that could have made
our sample more “balanced,” because they were not available or had no or little
interest in answering our questionnaire.

• No reliable demographic information about the overall population of OSS “us-
ers” is available, so it would be impossible to know if a sample is “balanced” in
any way.

• Like in many correlational studies, we used a so-called “convenience sample,”
composed of respondents who agreed to answer our questions. We collected in-
formation about the respondents’ experience, application field, etc., but we did
not make any screening. Excluding respondents based on some criteria, which
must have been perforce subjective, may have resulted in an “unbalanced” sam-
ple, which may have biased the results.

• We dealt with motivated interviewees, so this ensured a good level for the qual-
ity of responses.

• There is no researcher’s bias in our survey, since we simply wanted to collect
and analyze data from the field, and not provide evidence supporting or refuting
some theory.

4.3 Construct Validity

An additional threat concerns the fact that the measures used to quantify the relevant
factors may not be adequate. This paper deals with trustworthiness, which is an intrin-
sically subjective quality, so the only way to measure it is to carry out a survey. As for
the the other qualities, we are interested in stakeholders’ evaluations and not in objec-
tive measures (which do not exist anyway), so, again, a survey is adequate to collect
information about them.

5 Related Work

Several attempts were made to address the issue of software quality assessment in
general, and within OSS in particular (see for instance the seminal papers by Audris
Mockus et al. [12][14][15]). The online communication platforms and tools used in
the development process (Concurrent Versioning System – such as CVS– Mailing
Lists, Bug Tracking Systems – such as Bugzilla – and online discussion forums) con-
tain a considerable amount of evaluations and data about the quality of the software
project. Therefore, such repositories have often been used for extracting data concern-
ing the quality of OSS.

In [6] Tawileh et al. define a new approach for quality assessment of F/OSS pro-
jects based on social networking. They exploit the use of social networks of users
formed around F/OSS projects, in order to collect data about the perception of OSS
projects’ quality and to make recommendations according to user preferences. Unfor-
tunately, no data about the user’ perception of the quality of OSS projects are reported
in [6]. In our work, we collect data through a more controlled environment than social
networks (i.e., via questionnaires dispensed to OSS users); we statistically analyze the
collected data and we report how users perceive the quality of a representative sample
of Java and C++ OSS products.

 An Investigation of the Users’ Perception of OSS Quality 27

The TOSSAD portal stores an extensive set of surveys about the adoption of OSS
products in target countries. For example in [7] OSS users are asked about their per-
ception of quality about OSS in general. In our survey, we investigate the perceived
quality of specific OSS products instead of the perceived quality of OSS in general.

In 2009, the Eclipse foundation conducted a deep survey about the overall quality
of their IDE as perceived by users [8]. The survey is focalized only on their develop-
ment environment; moreover, it does not take into account the specific qualities of
Eclipse. In our work, we ask OSS users about several specific aspects of quality, thus
ranking not only the general perception of trustworthiness, but also the perception of
reliability, interoperability, efficiency, usability, and documentation of OSS products.

6 Conclusions and Future Work

The evaluation of the trustworthiness of OSS is important because of OSS ever in-
creasing importance in software development and practical applications. However,
lacking objective measures, OSS users and stakeholders rely on their own somewhat
subjective evaluations when deciding to adopt an OSS product.

We carried out a survey to study the users’ perception of trustworthiness and a
number of other qualities of OSS products. We selected 22 Java and 22 C++ products,
and we studied their popularity, the influence of the implementation language on
trustworthiness, and whether OSS products are rated better than CSS products.

In addition, our results seem to provide evidence in favor of the existence of a few
relationships between the user evaluations of a number of OSS qualities and trustwor-
thiness. So, it is possible to have an idea of the impact that the evaluations of these
qualities have on trustworthiness. Some trustworthiness evaluation methods have
been proposed to let potential users assess the quality of OSS products before possibly
adopt them. Such methods –like the OpenBQR [2] and the other similar approaches
[10][11][12]– face typically two problems: what are the factors that should be taken
into consideration, and what is the relative importance of such factors? Generally
these decisions are left to the user, who has to choose the qualities in a usually long
list and assign weights. So, the work reported here improves our knowledge of the
user-perceived qualities and trustworthiness of OSS products and of trustworthiness
models.

Our future work will include the following activities.

• Collecting additional data about users’ evaluations of OSS.
• Collecting data about additional qualities that may be of interest.
• Carrying out studies to check whether there exist relationships between some

structural characteristics of OSS (e.g., size, structural complexity) and the exter-
nal, user-related qualities we study in this paper.

• Using the profiling information about respondents to build more precise models
for specific classes of OSS stakeholders.

The survey of users’ opinions is going on through an on-line questionnaire (the
Trustworthy Products Questionnaire is accessible via the QualiPSo web page
http://qualipso.dscpi.uninsubria.it/limesurvey/index.php?sid=58332&newtest=Y&lan
g=en) and we invite all interested readers to fill out the questionnaire and contribute
to this study).

28 V. del Bianco et al.

Acknowlegments

The research presented in this paper has been partially funded by the IST project

 (http://www.qualipso.eu/), sponsored by the EU in the 6th FP (IST-
034763); the FIRB project ARTDECO, sponsored by the Italian Ministry of Educa-
tion and University; and the projects “Elementi metodologici per la descrizione e lo
sviluppo di sistemi software basati su modelli” and “La qualità nello sviluppo soft-
ware,” funded by the Università degli Studi dell’Insubria.

References

[1] ISO/IEC 9126-1:2001, Software Engineering—Product Quality—Part 1: Quality model
(June 2001)

[2] Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of OSS,
Open Source Software 2007, Limerick (June 2007)

[3] del Bianco, V., Chinosi, M., Lavazza, L., Morasca, S., Taibi, D.: How European software
industry perceives OSS trustworthiness and what are the specific criteria to establish trust
in OSS, QualiPSo report (October 2008)

[4] del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of Open Source Software: the
QualiPSo Trustworthiness Model. In: The 5th International Conference on Open Source
Systems OSS 2009, Skövde, Sweden, June 3-6 (2009)

[5] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52(3-4) (1965)

[6] Tawileh, A., Rana, O., McIntosh, S.: A Social Networking Approach to F/OSS Quality
Assessment. In: Proceeding of the International Conference on Computer Mediated So-
cial Networking (ICCMSN 2008), Dunedin, New Zealand (June 2008)

[7] TOSSAD, Annex5 – Survey Report, Web published:
http://www.tossad.org/publications/ (Accessed 14/12/2009)

[8] Eclipse, The Open Source Developer Report (May 2009), Web published,
http://www.eclipse.org/org/press-
release/Eclipse_Survey_2009_final.pdf (Accessed 14/12/2009)

[9] QualiPSo project portal, http://www.qualipso.org
[10] Atos Origin, Method for Qualification and Selection of Open Source software (QSOS),

version 1.6, http://www.qsos.org/download/qsos-1.6-en.pdf
[11] Business Readiness Rating for Open Source - A Proposed Open Standard to Facilitate

Assessment and Adoption of Open Source Software, BRR 2005 - RFC 1 (2005),
http://www.openbrr.org

[12] Making Open Source Ready for the Enterprise: The Open Source Maturity Model, from
“Succeeding with Open Source” by Bernard Golden. Addison-Wesley, Reading (2005),
http://www.navicasoft.com

[13] Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software de-
velopment: Apache and Mozilla. ACM Trans. Softw. Eng. Meth-odol. 11(3) (2002)

[14] Mockus, A., Weiss, D.: Interval quality: relating customer-perceived quality to process
quality. In: International Conference on Software Engineering 2008, Leip-zig, Germany
(May 2008)

[15] Mockus, A., Zhang, P., Li, P.L.: Predictors of customer perceived soft-ware quality. In:
International Conference on Software Engineering 2005, St. Louis (May 2005)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 29–41, 2010.
© IFIP International Federation for Information Processing 2010

Engaging without Over-Powering: A Case Study of a
FLOSS Project

Andrea Capiluppi1, Andres Baravalle1, and Nick W. Heap2

1 Centre of Research on Open Source Software (CROSS)
University of East London, UK

{a.capiluppi,a.baravalle}@uel.ac.uk
2 The Open University

Walton Hall, Milton Keynes, UK
n.w.heap@open.ac.uk

Abstract. The role of Open Source Software (OSS) in the e-learning business has
become more and more fundamental in the last 10 years, as long as corporate and
government organizations have developed their educational and training programs
based on OSS out-of-the-box tools. This paper qualitatively documents the deci-
sion of the largest UK e-learning provider, the Open University, to adopt the
Moodle e-learning system, and how it has been successfully deployed in its site af-
ter a multi-million investment. A further quantitative study also provides evidence
of how a commercial stakeholder has been engaged with, and produced outputs for,
the Moodle community. Lessons learned from this experience by the stakeholders
include the crucial factors of contributing to the OSS community, and adapting to
an evolving technology. It also becomes evident how commercial partners helped
this OSS system to achieve the transition from an “average” OSS system to a suc-
cessful multi-site, collaborative and community-based OSS project.

1 Introduction

In the first decade of the twenty-first century three factors have been pushing the “e-
learning topic” under the spotlight: first, the recognition that it has become, together
with the underlying technology, a recognized and sustainable industry. Secondly, the
attempts to create Open Data Standards (ODS) for e-learning content, driven by speci-
fication organizations such as the IMS Global Learning Consortium, Aviation Indus-
try CBT (Computer-Based Training) Committee (AICC), and Advanced Distributed
Learning (ADL) network sponsored by the U.S. Office of the Secretary of Defense,
and relevant committees of international standards bodies, such as the IEEE Learning
Technology Standards Committee [7]. Finally, the much wider movement that advo-
cates OSS and open data standards. OSS includes highly successful software such as
the Linux operating system, the Apache web server and OpenOffice.org.

The increased importance of e-learning, the emergence of ODS for e-learning and
the driving push from the Open Source community are creating a fertile environment
where innovation can spread more efficiently.

E-learning platforms have been in use for a number of years, but the technological
focus has been shifting: early adopters were focusing on e-delivery of teaching material,

30 A. Capiluppi, A. Baravalle, and N.W. Heap

that is just allowing users to download teaching material from the web. At present, aca-
demic institutions are also focusing on other areas, and one of the most pressing issues
is the packaging and distribution of e-learning resources. Academics, who are used to
disseminate the findings of their research to the wider academic community, are less
used to use, modify and redistribute teaching material. The complexity of e-learning
software, poor interoperability and the elevate cost of commercial e-learning solutions
play all a central role in this. OSS and ODS can help to address both interoperability and
price, ensuring that teaching material can be exchanged and used more easily and with
inferior economical costs.

This paper studies the evolution of the Moodle e-learning platform, and describes
the process of its deployment in the the Open University, the largest on-line course
provider in the UK. In order to achieve this, this paper uses a mixed qualitative and
quantitative approach, and uses a wealth of information sources, ranging from inter-
views with commercial stakeholders in Moodle, to empirical data contained in the
Moodle code repository. It is argued that this system represents a “hybrid” OSS pro-
ject [6]: since its inception in the early 1980’s, OSS projects were purely volunteer-
based, heavily relying on personal efforts and non-monetary recognitions, and bearing
communication and coordination issues (“Plain OSS”, right end of Figure 1, adapted
from [6]). Nowadays Commercial OSS are also present (more similar to Closed
source systems, as in Figure 1), where a commercial company plays a major role in
the development and decision making. Community OSS instead are more similar to
pure OSS systems, since they are driven by the community, but they also often have
several commercial stakeholders.

Fig. 1. Software licensing continuum

This paper is articulated as follows: section 2 describes the case study from the
point of view of its stakeholders. Section 3 focuses on one stakeholder (the largest
provider of e-learning resources in UK), and illustrates the process of adopting this
OSS solution, and the issues and benefits of doing so. Section 4 focuses on another
commercial stakeholder (Catalyst IT Ltd.) and quantifies its contributions to Moodle
from the point of view of its developers deployed to Moodle. Section 5ss concludes.

2 Moodle

This paper focuses on an extensive analysis (both qualitative and quantitative) of the
business and development model of Moodle, a popular Open Source software for

 Engaging without Over-Powering: A Case Study of a FLOSS Project 31

e-learning. Given its size, extensive development and user community, a more in-
depth appreciation of Moodle, and how it achieved its status, is central to understand-
ing Open Source software and its future among the software competitors.

Moodle’s development is centered around various actors:

1. Moodle core developer: Martin Dougiamas originally developed Moodle
while working at his Ph.D. thesis in Curtin University of Technology, Austra-
lia. Now Moodle’s development is lead by Moodle Pty Ltd, a company he
founded and leads.

2. Commercial stakeholders and Moodle developers: the entities that have an
interest in the creation and support of Moodle:

(a) Moodle partners: a number of organizations across the world who are directly
contributing to the development of Moodle by way of funding or contributing
their expertise. As we write (12/2009) there are some 50 partners, distributed
across the Americas, Europe, Asia and Oceania. As yet there are no African
partners.

(b) Commercial exponents, not participating in the partnership, but working on
the development of modules, plug-ins, themes and language packs.

(c) Moodle developers: whilst Moodle’s development is lead by Martin Dougia-
mas through Moodle Pty Ltd, a large number of individuals have been con-
tributing to the development of Moodle. Just over 200 developers have write
access at this stage, but not all have been contributing into the source code.
Other developers do not have the right to publish their changes in the CVS
tree (as quantified in the next sections). A Moodle partner or a commercial
exponent may employ a number of developers.

(d) Commercial exponents focusing on installation, lightweight customization and
support, but not providing custom development for Moodle.

3. Moodle community: this includes the large number of users of Moodle spread
across 204 countries (as of September 2009). The community engages in
Moodle’s activities though on-line discussions in forums and in other special-
ised events. While the role of the community is important, Moodle is not led,
as other projects, by the community.

It is also important to note that Moodle has been building on existing technologies
and research, from a community much wider than the sole Moodle community. For
example, Moodle uses PHP and MySQL for server-side development, incorporates
previous works on data standards, and is supporting existing technologies as SCORM
and LAMS to incorporate teaching objects.

2.1 Business Model

Before proceeding, it’s important to discuss and analyze the Moodle business model.
While Open Source software is free to use, modify and redistribute, it does not mean
that successful business modules cannot be created around Open Source software [1].
In the context of Moodle, a number of different strategies are currently pursued by
Moodle Pty Ltd, the commercial stakeholders and the developers:

32 A. Capiluppi, A. Baravalle, and N.W. Heap

1. Project lead: Moodle Pty Ltd, and Moodle developers are in a privileged posi-
tion to receive funding for additional features to be included in the system.

2. Partnership synergies: Moodle partners have a “privileged relationship” with
Moodle Pty Ltd, For example, as we will see later, the development on Moodle
itself was lead by a UK company rather than by Moodle Pty Ltd, Partners have a
privileged access to local markets thanks to customer referrals, and at the same
time provide an additional source for funding or resources for Moodle Pty Ltd.

3. Peripheral development: commercial exponents who do not have developer or
partner roles typically work on the more peripheral areas of Moodle, which do
not require changes in the core areas of the code base. As we will see in the next
sections, certain stakeholders may find a number of strategies to be ineffective:
trying to submit changes in core areas might prove difficult and thus can lead to
expensive maintenance costs, as the commercial exponent would have to main-
tain its own fork of Moodle.

2.2 Commercial Stakeholders and Peripheral Development

This subsection summarizes the experience of one of the commercial exponents, but
not a Moodle member. Mediamaisteri Group ltd.1 is a Finish leader in the area of vir-
tual learning environments and as part of its business activities sells Moodle related
services, such as maintenance, deployment, content production. In the past years Me-
diamaisteri has been developing a variety of custom modules (about 15) and compo-
nents, only some of which are used in the community version of Moodle. Between
2003 and 2006 a number of their modules have been approved and included in
Moodle but from 2007 there has been a change in trends.

Although it has been supporting 5 to 10 developers working on Moodle in the pre-
vious years, now the investment on Moodle development has been slowing. Their
modules are not making it in the official Moodle distribution and they find it hard to
support them just with their own workforce. Similarly, their changes to core areas of
Moodle are also not making it to the official Moodle release, and they are now put in
a situation where they have to support their own version of Moodle.

While active in Moodle development, Mediamaisteri is not an official Moodle
partner, nor any of its developers has official developer status in Moodle. The impli-
cation is that they are not involved in the planning phases, and they have a competi-
tive disadvantage comparing to other companies.

Mediamaisteri experience shows that, at least in case of Moodle, commercial part-
ners are treated similarly to any other OSS contributor, and their code patches will go
through the usual scrutiny from the community. Organizations (and individuals) like
Mediamaisteri who have a limited involvement (at least in terms of resources commit-
ted to the project) may find it difficult to modify core components.

3 Moodle at the Open University

The Open University of the United Kingdom is a centrally funded higher education
institution specializing in blended and distance learning, with an established reputation

1 http://www.mediamaisteri.com

 Engaging without Over-Powering: A Case Study of a FLOSS Project 33

for its contributions to educational technologies. Recently, the Open University scored
the highest student satisfaction rating in a National Student Satisfaction Survey cover-
ing England, Wales and Northern Ireland. Students are not required to satisfy academic
entry requirements, which encourages participation from a diverse student body able to
enroll and pursue the majority of awards and curricula.

Experiments with e-learning date from the mid-1980s and the spread of home
computers. Computer conferencing was introduced to courses of 5000 students as
early as 1989 followed by the first web sites in 1993. All these developments were
bespoke and hence expensive to develop and maintain.

In November 2005, the Open University's Learning and Teaching Office (LTO)
announced it was to commence a £5 million programme to “build a comprehensive
online student learning environment for the 21st century”. Moodle is just one part of
this student learning environment, but is the most visible from a student's perspective.
The first courses were hosted in May 2006 at which time it was claimed to be the
largest use of Moodle in the world.

There are valuable lessons to be learned from the Open University's experience,
such as how the institution arrived at its decision to use Moodle, what were the main
issues in its planned development and deployment, and what benefits were gained
from the early adoption of this OSS package.

3.1 Initial Selection

The selection phase for the core of the VLE platform commenced in 2003 and ran for
almost two years. A complete review was undertaken of all existing support and de-
livery systems along with visits to other institutions to learn about their experiences
with various platforms.

Early consideration was given to an in-house development that could tie together
the mixed-bag of systems supporting registration, content delivery, and learning sup-
port, but it was quickly discounted as prohibitively expensive.

A range of proprietary solutions were also considered, but excluded because they
offered limited customization and could not guarantee the scalability required; the
Open University has some 150,000 students using its on-line systems. OSS solutions
were reviewed and initially rejected because of concerns about the high level of risk
and the lack of a viable partner.

Having eliminated all the options the review team went back to investigate a com-
bination of in-house development coupled with an OSS learning platform. By Sep-
tember 2005 the business case was completed and the formal decision to adopt
Moodle was announced in November 2005.

The substantive development phase has now drawn to a close and all courses mi-
grated to the new platform. Although some work remains, the time is right to reflect
on what has been achieved and what lessons have been learnt. As a consequence a
small number of interviews have been undertaken with development staff including
the Director of the Learning Innovation Office, various Project Leads, and individual
programmers.

The selection phase had established some 23 areas of development work that
would be required to add or enhance Moodle features – as they existed in 2005. Of
these the following were regarded as potential 'show stoppers':

34 A. Capiluppi, A. Baravalle, and N.W. Heap

1. Existing user model: the Open University's student support model and admini-
stration system requires a hierarchy of user roles (and associated permissions) to
support the various combinations of full-time and part-time teaching staff, edito-
rial, production, and technical, and the Help-Desk. A typical course may have as
many as 30 user categories whereas Moodle supported just three roles.

2. Limited database support: Moodle offered no support for either Microsoft's or
Oracle's RDBMS, which were the database servers in use in the university. Fur-
thermore, a database abstraction layer was missing.

3. Grade-book feature: a new facility to permit students and teaching staff to re-
view assignment grades.

4. Data entry forms: inconsistent coding of data and text entry forms contributing
to poor accessibility and difficult maintenance.

One of the greatest challenges for the Open University was to balance the benefits of
the Moodle solution against the costs of the enhancements to ensure fitness for pur-
pose. The benefits of adopting an off-the-shelf solution would quickly disappear if too
many in-house changes were implemented prior to deployment.

Discussions within the Moodle community concluded that items 2, 3 and 4 would
enhance the Moodle core and so the Open University agreed to fund the development
costs by contracting out the work to Moodle Pty. As a result of this effort, a database
abstraction layer was created (named XMLDB) and the API improved.

On the other hand, the 'user model' changes were regarded as controversial: many
in the community considered the changes unnecessary, whilst others were concerned
about the potential impact on performance: as a result this effort was undertaken by
the Open University.

3.2 Role of the Open University as Community Contributor

The challenges faced by the Open University are common to any organisation that
contemplates the introduction of an OSS solution into its core business functions.
However, the attitude of many is to adopt OSS packages behind the scenes, possibly
adapting it to fit some niche requirement, but in general to avoid full participation in
the community [20]. They may partake of the community support, which in some
cases is extremely fast, or use the OSS brand to distinguish themselves from their
competitors. At worst they may be viewed as exploiting the computing skills of the
community. What is clear is that their motivations are very different from the individ-
ual developers who decide to invest their efforts into an OSS community [3].

Perhaps it is not surprising that organizations are cautious when it comes to com-
munity participation, for as the Open University had to learn, there are significant
challenges to becoming a full and active member of an OSS community. In this re-
gard the Open University faced two major challenges. The first was to understand the
philosophy of an OSS community, how it operates, how consensus is achieved, and
the pace at which change occurs. The second was to come to terms with the underly-
ing technology of Moodle.

The concept of “contributing to an OSS community” was new to the Open Univer-
sity. As a well known national organization, it was more familiar with a commercial

 Engaging without Over-Powering: A Case Study of a FLOSS Project 35

procurement model of purchasing, based on requirements and specifications, with
fixed delivery dates and penalties for non-compliance.

The second challenge was that the Open University's in-house team had very lim-
ited experience of developing with Moodle's programming language, PHP. Since PHP
is an Object-Oriented (OO) language, the Open University developers erroneously
assumed that they could migrate their OOs skills and practices directly to the Moodle
community. Instead, the developers found that their solutions either didn't work prop-
erly, or impacted Moodle's performance.

The following issues were reported by interviewees when the Open University at-
tempted to contribute code, or proposals for enhancements, to the Moodle community:

• Coding standards: early versions of Moodle showed wide ranges of coding
skills and practice. In order to ameliorate this, recently the overarching
Moodle Pty company has created, and is enforcing, coding and documenta-
tion standards. What was also done in this respect was to bring in more strin-
gent review procedures: they are applied both to proposed changes to Moodle
and during the implementation phase.

• Rejection of contributions: some of the refinements proposed, or com-
pleted, by the Open University were rejected after discussion for the core
trunk of the Moodle project. For example, the Open University's Wiki devel-
opment was rejected by the community, even though the change itself was
later supported by Moodle Pty, due to cleaner code, and a better usability.

• Slow uptake of contributions: although the Blogs and Wiki developments,
undertaken by the Open University, have been contributed back to the com-
munity (in the “plugins” section), the uptake from the community was low.

• The contribution process: in general, it was felt that contributing to the
Moodle community is often hard work. Proposals of development must be
developed first, and time has to be allowed for their public reviews. In some
cases, these reviews may even highlight secondary changes, that eventually
increase the costs of the proposed development. Only occasionally it was
found that the requests from the Open University and Community coincide,
and in those cases the contribution process was facilitated.

• Support to the contribution: within the Moodle community it is accepted
that the contributions require support during the early stages of testing and
deployment. It is also a shared expectation within the community that the
original contributor will support his/her changes. Even in this case, this cost
may not be that significant, as the Open University would have to test and
maintain for its own code-base anyway.

Apart from these aspects, the Open University has been greatly benefiting from
Moodle, as summarised in the following points:

• No license fees: while the Open University has invested considerable
amounts of money, they are now free from license fees.

• Maintenance: the code adopted for core is maintained by Moodle Pty so will
be retained in future releases.

36 A. Capiluppi, A. Baravalle, and N.W. Heap

• No vendor lock-in: the Open University has already experienced the prob-
lem of vendor lock-ins in the past. With thousands of modules running, ven-
dor lock-ins can be problematic and migration to a different technology pro-
hibitively expensive.

3.3 The Open University and the Open Source Community

The Open University avoided to create its own fork of Moodle in order to maximise
the interaction with the community. When new versions are released, all that is nec-
essary is to replace those modules that provide connectivity with other systems, but
the process has been semi-automated. A recent update of the entire system required
only half a day.

Early on in its Moodle development process, the Open University has been releas-
ing too many plug-ins requiring changes to the core, but these were not widely
adopted. Familiarity with Moodle's code has reduced this. More recent developments
by the Open University have been contributed back and have been better received, for
example a new “Session data storage” feature, by using a file server, and fine tuning.

Moodle 2.0 will bring a number of changes, and will reflect the influence of the
Open University. It will also reduce the number of Open University changes to the
standard core, but is likely to increase problems for the tailored plug-ins that the Open
University has been developing.

The Open University has provided a number of benefits for the community:

• Bug reports, code reviews, feed-back.
• Financial help: funding for improvements in a number of critical areas, espe-

cially related to scalability and performance.
• Valuable proof of concept: the Open University's Moodle installation is used

in a high availability environment and it has to sustain high levels of load.
This in turn has proved that Moodle is a commercially viable product for
even the most challenging environments.

• An improved image: the Moodle community can count-in a prestigious univer-
sity. This has clearly benefits for companies providing Moodle consultancy.

On the other hand, the presence of the Open University as a stakeholder within
Moodle has also produced some disadvantages:

• Scheduling of development work and release dates: the Open University has
a long lead-time for course development and production, typically 2-3 years,
so needs to know when features will be available so that they can be incorpo-
rated into new courses.

• The Open University might be, at same stage, an intrusive guest. With over
450,000 users of their courses (between OpenLearn and the paid-for courses)
and nearly 3,600 active modules, they can have an important influence in the
development of the software. Smaller Moodle installations have typically dif-
ferent requirements, priorities, complexities.

 Engaging without Over-Powering: A Case Study of a FLOSS Project 37

4 The Catalyst Involvement

In the previous sections, a report of what Moodle achieved in terms of popularity, the
tiers of its development, and the involvement of the largest e-learning institute in UK
was documented. As a further analysis, it was studied the specific involvement of
Catalyst IT Ltd (“Catalyst”), a Moodle partner which has so far provided a large num-
ber of modifications to the core Moodle, by deploying several of its own developers
who became active contributors within the community.

The analysis of Catalyst's involvement was achieved empirically, by analysing the
public data pertaining the open development of Moodle. In terms of data sources, it
has been established that different development practices have an influence on the
best data source([5], [17]), and that both the Configuration Management Systems
(CMS) and the ChangeLog files offer more reliable information ([4], [11], [21]).

The steps to extract the information from the Moodle server, and to produce the re-
sults regarding Catalyst were i) extraction of raw data, ii) filtering of the raw data, and
iii) extraction of metrics. As part of these steps, Perl scripts were written to download,
extract the activity logs, and parse the raw data contained in the CMS, and finally to
extract pre-defined data fields.

4.1 Raw Data Extraction and Filtering

The choice of the information sources was focused on the CMS commits of the sys-
tem. The Moodle project maintains an own CMS server2, and the data contained spans
some 9 years, between Nov 2001 and Aug 2009. Perl scripts were used to identify and
extract every occurrence of the following items:

• Committer: contributor responsible for the commit;
• Commit: the detailed activity a committer was responsible for;
• Date: day, month and year of change.

The field Commit type includes: File affected (the name of the file created or di-
rectly modified by a change), and Module (the name of the subsystem a file belongs
to). As mentioned above, two types of changes were considered in the present
study: the creation of an element (a file or a module), and the modification of exist-
ing files or modules. After performing the extraction, we arranged the resulting data
on a SQL table. It made up to some 72,000 entries, including new element creations
and changes.

Apart from the basic information on the authorized committers to the Moodle
CMS, several cases were identified were sporadic contributors (i.e., without a com-
mitter ID) submitted their code patches directly to the core Moodle developers. This
additional information was also extracted, and some additional cleansing performed:
for example, obvious variations of people ID’s, in this case their email addresses,
were mapped to one unique ID. Finally, the email address ID’s relating to a known
committer ID were converted into a single ID.

2 The web interface to the Moodle CVS is browsable at http://cvs.moodle.org/

38 A. Capiluppi, A. Baravalle, and N.W. Heap

4.2 Metrics Choice and Description

The analysis of the Moodle system involved the analysis of input metrics: the effort
of developers was evaluated by counting the number of unique (or distinct, in a SQL-
like terminology) developers during a specific interval of time. The chosen granular-
ity of time was based on months: different approaches may be used, as on a weekly or
on a daily basis, but it is believed that the month represented a larger grained unit of
time to gather the number of active developers (i.e., man-month).

4.3 Results

This section presents the main results obtained in the analysis of the Catalyst in-
volvement in the Moodle development. As an high-level objective, it was studied
whether it was possible to trace the activity of this commercial stakeholders: in par-
ticular, the results of Commercial OSS systems (e.g., Eclipse, as reported in [22])
should be compared with Moodle as an example of Community OSS system.

Since March 2004, Catalyst had from one developer up to a maximum of 6 develop-
ers (March 2005) working on Moodle. The profile of the contributed outputs is visible
in Figure 2, and can be defined as a “seasonal” effort pattern, meaning a large contribu-
tion on a very specific time interval, and lower levels of effort before and after it. Also
the modules developed by Catalyst are specifically targeted to a quite focused part of the
core of Moodle: Figure 3 displays the distribution of effort along the modules, and it
becomes evident how Catalyst wanted to be involved early on in the development of the
SCORM (Sharable Content Object Reference Model) collection of specifications.

Fig. 2. Output produced by one of the partners (Catalyst)

Figure 2 and Figure 3 show that the involvement of commercial entities follows the
same principle of attracting individuals into an OSS community: they start to contrib-
ute to the periphery, then become more confident with the code, and have a peak of
productivity, then leave [19].

 Engaging without Over-Powering: A Case Study of a FLOSS Project 39

Fig. 3. Modules contributed by Catalyst

The second observation shows that the Community OSS projects (from Figure 1)
are not overly dependent on specific companies: the reduction of effort and output by
Catalyst does not shrink the overall productivity: on the contrary, Commercial OSS
projects (e.g., Eclipse), led and managed by specific companies (e.g. IBM) would
probably collapse when the company decided to pull away its support.

5 Conclusions

This paper has proposed a mixed qualitative and quantitative study in order to study
the Moodle e-learning platform. This project started as a small project managed by
only one developer on the SourceForge OSS portal, and is now used internationally,
sponsored by several commercial partners and supported by even more commercial
companies. Its usage and needs have grown to the point to require its own servers, and
to gradually being pulled away from the SourceForge hosting.

This paper was essentially two-fold: at first, it proposed the account of the largest
e-learning provider in the UK, the Open University, which in 2005 migrated its tech-
nology to use the Moodle platform. In turn, this had the effect of becoming an active
participant in the development process, and to increase the popularity and visibility of
Moodle as a widely-spread solution for e-learning needs. The second strand of re-
search quantitatively studied the quantitative involvement of a Moodle partner (Cata-
lyst IT Ltd) during its evolution, and recognised an established trend for OSS contri-
butions: a first stage of development where a limited output is contributed, then a
peak of contributions, finally the abandonment of the commitment. The overall devel-
opment of Moodle still appears not to be affected, even when Catalyst discontinued
its contributions to the Moodle core.

As a corollary, this project achieved a double transition: as mentioned in a previous
research work [2], Moodle transited from an Open Forge (i.e., SourceForge) to a more
defined, more successful status, as experienced by OSS projects transiting to more
renowned and quality-stringent OSS portals. Secondly, starting from a “pure” OSS

40 A. Capiluppi, A. Baravalle, and N.W. Heap

project, Moodle has become a Community OSS project, where several commercial
stakeholders start to act as sponsors of the project, increasing its visibility and estab-
lishing it as a de-facto standard in the domain.

Acknowledgements

The authors wish to thank the Open University staff who were interviewed for this pa-
per. Mediamaisteri for their feedback and the clarification of their involvement in the
community development, and the Remote-Learner Canada, who provided feedback on
their involvement within Moodle. Finally we wish to extend our gratitude to the
anonymous reviewers of the paper, who contributed valuable feedback, apart from a
more apt title for this paper.

References

[1] Baravalle, A., Chambers, S.: Market Relations. Non-Market Relations and Free Software.
PsychNology Journal 5(3), 299–309 (2007)

[2] Beecher, K., Capiluppi, A., Boldyreff, C.: Identifying exogenous drivers and evolutionary
stages in FLOSS projects. Journal of Systems and Software 82(5), 739–750 (2009)

[3] Bonaccorsi, A., Rossi, C.: Altruistic individuals, selfish firms? The structure of motiva-
tion in open source software. First Monday 1(9) (January 2004)

[4] Capiluppi, A.: Models for the evolution of OS projects. In: Proc. of Intl. Conference on
Software Maintenance (ICSM 2003), Amsterdam, Netherlands, pp. 65–74 (2003)

[5] Capiluppi, A., Michlmayr, M.: From the Cathedral to the Bazaar: An Empirical Study of
the Lifecycle of Volunteer Community Projects. In: Feller, J., Fitzgerald, B., Scacchi, W.,
Silitti, A. (eds.) Open Source Development, Adoption and Innovation, pp. 31–44 (2007)

[6] Capra, E., Francalanci, C., Merlo, F.: An empirical study on the relationship between
software design quality, development effort and governance in open source projects.
IEEE Trans. Softw. Eng. 34(6), 765–782 (2008)

[7] Dalziel, J.: Open standards versus open source in e-learning: The easy answer not be the
best answer. Educause Quarterly 4, 4–7 (2003)

[8] Fang, Y., Neufeld, D.: Understanding Sustained Participation in Open Source Software
Projects. Journal of Management Information Systems 25(4), 9–50 (2009)

[9] Feller, J., Fitzgerald, B., Hecker, F., Hissam, S., Lakhani, K., van der Hoek, A. (eds.):
Characterizing the OSS process. ACM, New York (2002)

[10] Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from version
control and bug tracking systems. In: Proc. of Intl. Conference on Software Maintenance
(ICSM 2003), Amsterdam, Netherlands, pp. 23–32 (2003)

[11] German, D.M.: An Empirical Study of Fine-Grained Software Modifications. In: Proc. of
Intl. Conference on Software Maintenance (ICSM 2004), Chicago, US (2004)

[12] German, D.M.: The gnome project: a case study of open source, global software devel-
opment. Software Process: Improvement and Practice 8(4), 201–215 (2004)

[13] Hemetsberger, A., Reinhardt, C.: Sharing and creating knowledge in open-source com-
munities: The case of kde. In: Procedings of the Fifth European Conference on Organiza-
tional Knowledge, Learning and Capabilities (OKLC), Insbruck University (2004)

[14] Koch, S., Schneider, G.: Effort, cooperation and coordination in an open source software
project: Gnome. Information Systems Journal 12(1), 27–42 (2002)

 Engaging without Over-Powering: A Case Study of a FLOSS Project 41

[15] Kuniavsky, M., Raghavan, S.: Guidelines are a tool: building a design knowledge man-
agement system for programmers. In: DUX ’05: Proceedings of the 2005 conference on
Designing for User eXperience. AIGA: American Institute of Graphic Arts, New York
(2005)

[16] de Laat, P.B.: Governance of open source software: State of the art. Journal of Manage-
ment and Governance 11(2), 115–117 (2007)

[17] Mens, T., Ramil, J.F., Godfrey, M.W.: Analyzing the evolution of large-scale software:
Guest editorial. Journal of Software Maintenance and Evolution 16(6), 363–365 (2004)

[18] Michlmayr, M., Senyard, A.: A statistical analysis of defects in Debian and strategies for
improving quality in free software projects. In: Bitzer, J., Schrder, P.J.H. (eds.) The Eco-
nomics of Open Source Software Development, Elsevier, Amsterdam (2006)

[19] Robles, G., González-Barahona, J.M.: Contributor turnover in libre software projects. In:
Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.) OSS. IFIP, vol. 203,
pp. 273–286. Springer, Heidelberg (2006)

[20] Robles, G., Duenas, S., González-Barahona, J.M.: Corporate involvement of libre soft-
ware: Study of presence in Debian code over time. In: Feller, J., Fitzgerald, B., Scacchi,
W., Sillitti, A. (eds.) OSS. IFIP, vol. 234. Springer, Heidelberg (2007)

[21] Smith, N., Capiluppi, A., Ramil, J.F.: Agent-based simulation of open source evolution.
Software Process: Improvement and Practice 11(4), 423–434 (2006)

[22] Wermelinger, M., Yu, Y., Strohmaier, M.: Using formal concept analysis to construct and
visualise hierarchies of socio-technical relations. In: Proc. of the 31st International Con-
ference on Software Engineering, Vancouver, Canada, May 18-24 (2009)

The Meso-level Structure of F/OSS
Collaboration Network:

Local Communities and Their Innovativeness

Guido Conaldi1 and Francesco Rullani2

1 Centre for Organisational Research, Univerisity of Lugano, Via Giuseppe Buffi 13,
CH-6900 Lugano, Switzerland

guido.conaldi@usi.ch
2 Department of Innovation and Organizational Economics,

Copenhagen Business School, Kilevej 14A, 2000 Frederiksberg, Denmark
fr.ino@cbs.dk

Abstract. Social networks in Free/Open Source Software (F/OSS) have
been usually analyzed at the level of the single project e.g., [6], or at the
level of a whole ecology of projects, e.g., [33]. In this paper, we also in-
vestigate the social network generated by developers who collaborate to
one or multiple F/OSS projects, but we focus on the less-studied meso-
level structure emerging when applying to this network a community-
detection technique. The network of ‘communities’ emerging from this
analysis links sub-groups of densely connected developers, sub-groups
that are smaller than the components of the network but larger than
the teams working on single projects. Our results reveal the complexity
of this meso-level structure, where several dense sub-groups of develop-
ers are connected by sparse collaboration among different sub-groups.
We discuss the theoretical implications of our findings with reference to
the wider literature on collaboration networks and potential for inno-
vation. We argue that the observed empirical meso-structure in F/OSS
collaboration network resembles that associated to the highest levels of
innovativeness.

1 Introduction

The production of F/OSS is an organizational phenomenon characterized by a
strong bottom-up tendency, which hinges upon the creation of social networks of
developers freely interacting and collaborating [11,13,26]. Therefore, given the
central role as productive infrastructures that social networks play in F/OSS
projects, it is not surprising that they have been object of several studies. Indeed,
various studies have investigated the social networks generated by developers
who take part to F/OSS projects focusing both on the social structure internal
to individual projects, e.g.,[6,17], and on the larger network of collaborations
linking the wide population of F/OSS projects through common developers, e.g.,
[33]. Particularly the entire ecology of F/OSS projects hosted on SourceForge
has been object of study because of the representativeness of the repository for

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 42–52, 2010.
c© IFIP International Federation for Information Processing 2010

The Meso-level Structure of F/OSS Collaboration Network 43

the entire population of F/OSS projects and thanks to the availability of rich
public data [29].

In this paper we also investigate the social network formed by F/OSS develop-
ers who collaborate to one or multiple F/OSS projects. However we concentrate
on a different level of analysis. Instead of focusing on ‘macro’ or ‘micro’ networks,
we investigate the overall collaboration network by looking at the meso-level
structure of collaboration. We apply a technique able to detect sub-groups of
densely connected developers whose connectivity and size is in between that of
the whole network and that of single projects. These sub-groups are commonly
known as ‘communities’ in the methodological literature on graph theory and
network analysis, and constitute the meso-level structure we will investigate in
the following.

We connect our empirical findings to a wider literature on collaboration net-
works and potential for innovation. More specifically, the theorization on the role
of both strongly cohesive teams and brokerage among separated groups [4,9] can
be translated into the configurations characterizing the network of communities
revealed by our analyses. Therefore we discuss theoretically which configurations
of collaboration networks have the potential to foster innovation and argue that
the observed empirical F/OSS collaboration network resembles that associated
to the highest levels of innovation.

The paper is structured as follows: in the second section we discuss more in de-
tail the existing evidence on the social networks of F/OSS projects. In the third
section we firstly describe the data used for reconstructing the F/OSS collabora-
tion network. We then relate our preliminary descriptive findings on the overall
collaboration network with the existing empirical evidence. Subsequently we in-
troduce the method adopted to find communities in the collaboration network
and present the results. Finally, in the fourth section we discuss our structural
findings with reference to the potential for innovation of the overall F/OSS col-
laboration network which we investigate.

2 Background and Related Work

A rapidly growing body of research adopts a network approach for the under-
standing of the structural characteristics of the F/OSS phenomenon. Several
contributions focus on the internal network structure of F/OSS projects, e.g.,
[6,3,18,17], whereas other contributions reconstruct the networks of collaboration
among different projects, e.g., [33].

Several characteristics manifested by the internal communication and collab-
oration networks of F/OSS projects are already known. Studies investigating
the entire spectrum of F/OSS project demonstrate that a significant portion of
them are formed by very few developers, or even only one [5], therefore intro-
ducing size as a dimension influencing the different structures F/OSS networks
can assume. Furthermore, the configuration of F/OSS social networks has been
demonstrated to change throughout the life of the projects. F/OSS projects in-
deed evolve over time. On the one hand they experience a high turnover rate

44 G. Conaldi and F. Rullani

among developers that is negatively correlated with the degree of involvement
into the project [25,12,27]. On the other hand their overall structure reflects the
different maturity and complexity a F/OSS project can assume over time. To this
respect a progression pattern from single hub configurations to core-periphery
structures is found in a longitudinal study of several F/OSS projects [17]. The
variation over time of F/OSS network structures is also confirmed by a study
that tracks the network centralization values of two F/OSS projects and shows
how they varied over time [32].

Several studies present evidence of internal hierarchy in F/OSS internal com-
munication and collaboration networks. It has been shown that well-established
and large F/OSS communities manifest hierarchical structures [6,17]. Sometimes
the project founders assume a great authority on the entire development process
[22,28], whereas other equally relevant projects develop a complex meritocratic
structure that relies on different status levels and voting procedures [21,8].

Also the overall F/OSS phenomenon has been studied adopting a network
perspective. The social network formed by all individuals connected through
the F/OSS projects to which they co-collaborate has been shown to represent
a prototypical complex evolving network [19]. Furthermore, this global F/OSS
collaboration network has been analyzed by sub-dividing it in four subsets of
different type of actors (project founders, core-developers, co-developers, and
active users) and shown to be a self-organizing system that in all subsets obeys
scale-free behaviors [33]. The same study also finds the same network to have a
small average distance and a high clustering coefficient, therefore characterizing
itself as a small world [31]. Finally, [33] discusses the role of individual actors
in the overall F/OSS ecology and stresses the potential impact of co-developers
and active users as direct connections among projects that could benefit from
the fast sharing of information.

Here we adopt a global perspective on the overall F/OSS phenomenon similar
to [33] and we reconstruct a similar F/OSS collaboration network. However,
our focus is on the meso-level of the network. Consequently, we concentrate
firstly on individuating dense communities of co-collaborating developers. The
configuration of the network formed by these communities and their connections
will then be at the core of our empirical analysis and theoretical discussion.

3 Methods and Analysis

3.1 Data

We use data describing the activities of 1,347,698 actors working on 170,706
F/OSS projects hosted on SourceForge [29] in September 2006. The period was
chosen in accordance to the availability of information on individuals’ emails,
necessary for data cleaning. However, this should not be a problem, because
we believe that the evolution of a self-organizing social network as that under
analysis here follows general rules, such as growth and preferential attachment
[2], that are very unlikely to change over a three-year period. SourceForge is
likely not representative of the whole universe of F/OSS projects, as it is a

The Meso-level Structure of F/OSS Collaboration Network 45

company-owned platform and does not host some of the most famous project,
such as Linux. However, it represents by far the largest repository of F/OSS
projects worldwide, and it hosts extremely heterogenous projects, from very
famous, active and large ones to very small or even ‘dormant’ ones. Thus, data
relative to the activities it hosts have been already widely used in previous
studies, e.g., [33,16,10]. In this study we will follow the same line of research.

Only projects labeled as ‘active’ have been retained in the dataset, as well as
only ‘active’ actors registered with at least one project. This assured that we took
into account all the projects and individuals relevant for our analysis, exclud-
ing only non-active projects or individuals who do not belong to the network.
Different virtual identities belonging to the same individual have been aggre-
gated through email address matching. This reduced the number of individuals
to 161,983 and the number of projects to 115,112.

In order to reconstruct the F/OSS collaboration network we used individuals
as nodes and affiliations to the same projects as ties, weighted by the number
of projects in common. In other terms, we projected the weighted two-mode
network formed by developers and projects that we originally collected into a
one-mode network formed only by developers.

All analyses were performed using the igraph package [7] for the R
environment.

3.2 The Overall Network Structure of F/OSS Collaboration

As a first step, we investigate the collaboration network similarly to what has
been previously done by other studies on F/OSS, e.g., [33], and on other virtual
networks, as for example Internet [1]. The main descriptive statistics for the
generated network can be found in the first column of Table 1.

Table 1. Main characteristics of F/OSS collaboration network

Indicator Whole network Giant Component

Number of Nodes 161,983 58,481
Number of Ties 753,421 632,046

Global Clustering Coefficient 0.910 0.907
Average Path Length (APL) 7.105 7.106

APL for a comparable random network 7.804 4.612
(Equal size and average number of ties)

We then isolate and analyze a giant component composed by 58,481 individuals,
the second component spanning 201 nodes. The statistics relative to the degree
distribution (mean: 21.62; standard deviation: 41.23; skewness: 5.12) signal the
heterogeneity of the ego-networks of F/OSS project members (see Figure 1).

As the values reported in the second column of Table 1 show, the Global
Clustering Coefficient (or, equivalently, Transitivity [30]) is extremely high and

46 G. Conaldi and F. Rullani

0
10

00
20

00
30

00
40

00

Weighted Degree of Projects in Giant Component

W
ei

gh
te

d
D

eg
re

e
D

is
tr

ib
ut

io
n

1 23 49 75 104 137 170 203 236 269 303 340 373 408 441 483 516 559 619

Fig. 1. Degree distribution of projects in the giant component of the collaboration
network

the Average Path Length is low (50% larger than that of a random graph, a
proportion in the range of those reported by [1] for comparable cases). This shows
that in the F/OSS world individuals not only gather locally in dense groups of
neighboring collaborators, but also establish collaboration ties with members of
local groups located elsewhere in the network, thus acting as ‘brokers’. Thus,
the network clearly resembles a ‘small world’ [31], a property detected also by
[33]) in a similar context.

The mean (0.38), standard deviation (0.28) and skewness (0.79) of the dis-
tribution of Burt’s measure of constraint [4] confirm this interpretation at the
individual level. Indeed, Burt’s constraint only focuses on the direct neighbor-
hood of each F/OSS project in the network and captures the proportion of
realized ties among its neighbors out of all the possible ones. The low average
value of constraint found among the projects in the giant component, 0.38 with
the constraint index varying in the range [0,2], confirms that projects tend to
connect otherwise disconnected projects, therefore spanning so-called ‘structural
holes’ in their neighborhood and thus acting, in Burt’s terms,as brokers.

3.3 Finding Communities in the F/OSS Collaboration Network

The evidence at the global level of analysis just presented is consistent with
what has been found in the field (e.g., [33]). We now focus on the meso-level of
analysis and we test whether sub-groups of densely connected developers (i.e.,
communities) can be identified and whether they are connected through sparser
collaborations.

The Meso-level Structure of F/OSS Collaboration Network 47

In order to find communities in a network several algorithms are available,
e.g., [23]. We apply the Walktrap algorithm [24]. This algorithm is based on the
intuition that short random walks performed on a sparse network will tend to
remain trapped in denser local areas of the network corresponding to commu-
nities. The Walktrap algorithm makes use of information on the weights of the
ties in the network. This is a fundamental property for our purposes because
of the wide variation existing in the F/OSS context concerning the number of
collaborations in which different developers take part. A characteristic that is
coherently reflected by the weighted degree distributions of our collaboration
network.

The algorithm induces a sequence of partitions of the original network into
communities. It starts with each node representing a community and ends with
all nodes in one community. In order to find which partition best represents
the community structure of the original network we adopt the most widely used
criterion: the modularity Q index [23]. Q relies on the fraction of ties inside a
community and the fraction of ties bound to that community: the best parti-
tion maximizes Q (that lies in the range [-1,1]) and therefore defines communi-
ties which are internally densely connected with only sparse connections among
them.

When applying the Walktrap algorithm to the giant component of our F/OSS
collaboration network we find that the best partition (with a high Q of 0.865,
see Figure 2) individuate 9,931 communities, many of them extremely small,
reaffirming the tendency to create dense, i.e., very close, local sub-groups of
co-collaborators loosely interconnected. Nonetheless, the community-detection

Partitions

M
od

ul
ar

ity

0 10000 20000 30000 40000 50000 60000

0.
86

5
0.

0
0.

2
0.

4
0.

6
1.

0

Fig. 2. Modularity values for all partitions in the giant component of the F/OSS col-
laboration network

48 G. Conaldi and F. Rullani

analysis shows the prominent role also of outward connections: 71% of individuals
in communities with at least two members create ties beyond their community
borders, and the average ratio between the number of their outward weighted
ties and their total weighted degree is 0.28 (standard deviation: 0.19). This
means that these many dense communities, whereas clearly distinguishable, are
not almost isolated, but connected by a large number of brokers and through
important ties. The network of the largest communities (see Figure 3)clearly
shows the coexistence of brokerage and closure.

In Figure 3 each node is a sub-group of densely interconnected developers, i.e.,
a community, identified through the Walktrap algorithm. For simplicity, only
communities having 25 or more members are depicted. The size of each node is
proportional to the amount of collaborations in the same F/OSS projects among
its members. The thickness and color shade of the ties linking the communities
are proportional to the total number of F/OSS projects to which the members
of the different communities co-collaborate. Figure 3 shows that high levels of
collaborations can exist among communities of both comparable and different
sizes.

Figure 4 shows the inner structure of the largest community, identified in
brighter red with a yellow contour in Figure 3. The community is here magnified
to show the connections among its 541 members (the round nodes). The thickness
and color shade of the ties are here proportional to the total number of F/OSS
projects to which two individuals co-collaborate, while the size of the nodes
is proportional to the total number of collaborations each individual has with

Fig. 3. Network of identified communities (with size > 25) in the giant component of
the F/OSS collaboration network

The Meso-level Structure of F/OSS Collaboration Network 49

Fig. 4. Closer view of the largest identified community in the giant component of the
F/OSS collaboration network

members of other communities. Figure 4 shows that inside a community both
central and peripheral individuals manifest high levels of external collaboration.

Therefore, we can affirm that both the network of communities and the net-
work of developers belonging to a same community assume a similar configura-
tion that combines densely connected sub-groups with the presence structural
holes [4], i.e. lack of ties, isolating the sub-groups and some relevant brokers
spanning these borders thanks to inter-community co-collaborations. This com-
bination, in line with the literature on similar phenomena, e.g., the Internet
[1], places F/OSS in a sort of ‘middle range’ between full closure and extensive
brokerage.

4 Discussion and Conclusions: Community Structure and
Innovativeness

Among many others, one question that our analysis raises is whether the commu-
nity structure that we just described hinders or fosters innovation. In a recent
article Mayer-Schönberger [20] warns against the possibility of overestimating
the innovation capabilities of open systems such as F/OSS or the Internet itself.
If diversity is crucial for producing novelty, a conditio sine qua non for ideas
recombination, extremely densely connected collaboration networks, such as he
assumes the F/OSS collaboration network to be, have difficulties to reach high
level of innovation because of their intrinsic tendency to establish many redun-
dant connections, creating thus homogenization and group-thinking. In other

50 G. Conaldi and F. Rullani

words, Mayer-Schönberger puts forward a positive and monotonic relationship
between innovative performance and the importance of structural holes [4] in
the structure.

This point of view certifies the importance of brokerage for innovation, how-
ever other studies balance this perspective warning against possible excessive dis-
connection. Gilsing et al. notice that ‘access to heterogeneous sources of knowl-
edge [that creates] potential for novel combinations . . . requires an emphasis on
diversity and disintegrated network structures. . . .On the other hand [actors]
need to make sure that such novel knowledge, once accessed, is evaluated, and
. . . absorbed. This process favours more homogenous network structures’ [9, p.
1718].

Studies undertaken in related fields confirm this view. Laursen and Salter [14]
found that as the number of different external knowledge sources a firm can use
(e.g., universities, or clients) increases, the positive impact of one more source
on firms’ innovative performance significantly decreases, because absorption and
combination become more difficult. Similarly, Lazear argues that multicultural
teams benefit from members’ diversity, but only if this is coupled with a certain
degree of commonality because ‘Without communication, there can be no gains
from diversity’[15, p. 20].

Thus, according to the full spectrum of studies just introduced, the rela-
tionship between the importance of structural holes and innovative performance
should be rather described as an inverted U-shaped curve. This means that struc-
tures able to produce the highest innovation rate should be located somewhere
in the middle in the continuum between full closure and extensive brokerage [4].

When exploring the social network generated by individuals collaborating in
F/OSS projects on SourceForge we discovered a distinguishable meso-level net-
work linking communities of closely co-collaborating individuals. Furthermore,
we investigated also the collaboration network internal to the largest of these
communities. We found that the structure of these networks both clearly resem-
ble a mixture between densely connected local areas, where information flows
pervasively and diversity is reduced, and a great number of structural holes that
are spanned by several brokers. As the above-mentioned studies on the structure
of innovativeness suggest, in such a structure the idiosyncratic knowledge created
in one community can flow throughout the entire network thereby mixing with
diverse knowledge, increasing the probability of generating novel recombinations.

This mix of closure and brokerage suggests that the F/OSS collaborative envi-
ronment is not a fully connected network in which everybody is co-collaborating
with everybody else, as [20] assumes. On the contrary, the F/OSS collaborative
environment appears to possess the structural characteristics necessary to place
itself in that middle-range area that the literature on innovation associates to
the highest segments of the innovativeness curve.

Therefore, our results give a preliminary insight on a more complex rela-
tionship between the structural dimension of collaboration in the F/OSS world
and innovativeness than the one prosed by [20]. Consequently they also call for
a more in-depth research on the actual innovative performances achieved by

The Meso-level Structure of F/OSS Collaboration Network 51

different local areas of the overall F/OSS collaboration network in order to elab-
orate beyond a first description of the meso-level of community structure that
represented the aim of this study.

References

1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74(1), 47–97 (2002)

2. Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939),
412–413 (2009)

3. Bird, C., Goey, A., Devanbu, P., Swaminathan, A., Hsu, G.: Open Borders? Im-
migration in Open Source Projects. In: Proceedings of the Fourth International
Workshop on Mining Software Repositories (2007)

4. Burt, R.: Structural Holes: The Social Structure of Competition. Harvard Univer-
sity Press, Cambridge

5. Capiluppi, A., Lago, P., Morisio, M.: Characteristics of Open Source Projects,
p. 317 (2003)

6. Crowston, K., Howison, J.: The social structure of free and open source software
development. First Monday 10(2)

7. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
Inter. Journal Complex Systems, 1695 (2006)

8. Germán, D.M.: The GNOME project: a case study of open source, global software
development. Software Process: Improvement and Practice 8(4), 201–215 (2004)

9. Gilsing, V., Nooteboom, B., Vanhaverbeke, W., Duysters, G., Oord, A.V.D.:
Network embeddedness and the exploration of novel technologies: Technological
distance, betweenness centrality and density. Research Policy 37(10), 1717–1731
(2008)

10. González-Barahona, J.M., Robles, G., Andradas-Izquierdo, R., Ghosh, R.A.: Ge-
ographic origin of libre software developers. Information Economics and Pol-
icy 20(4), 356–363 (2008)

11. von Hippel, E., von Krogh, G.: Open Source Software and the “Private-Collective”
Innovation Model: Issues for Organization Science. Organization Science 14(2),
209–223 (2003)

12. Howison, J., Inoue, K., Crowston, K.: Social dynamics of free and open source
team communications. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.
(eds.) Proceedings of the IFIP Second International Conference on Open Source
Software (Lake Como, Italy). IFIP International Federation for Information Pro-
cessing, vol. 203, pp. 319–330. Springer, Boston (2006)

13. von Krogh, G., von Hippel, E.: The Promise of Research on Open Source Software.
Management Science 52(7), 975–983 (2006)

14. Laursen, K., Salter, A.: Open for innovation: the role of openness in explaining
innovation performance among U.K. manufacturing firms. Strategic Management
Journal 27(2), 131–150 (2006)

15. Lazear, E.P.: Globalisation and the Market for Team-Mates. The Economic Jour-
nal 109(454), C15–C40 (1999)

16. Lerner, J., Tirole, J.: The Scope of Open Source Licensing. Journal of Law, Eco-
nomics, and Organization 21(1), 20–56 (2005)

17. Long, Y., Siau, K.: Social Network Structures in Open Source Software Develop-
ment Teams. Journal of Database Management 18(2), 25–40 (2007)

52 G. Conaldi and F. Rullani

18. López-Fernández, L., Robles, G., González-Barahona, J.M., Herraiz, I.: Applying
Social Network Analysis Techniques to Community-driven Libre Software Projects.
International Journal of Information Technology and Web Engineering 1(3), 27–48
(2006)

19. Madey, G., Freeh, V., Tynan, R.: Modeling the free/open source software commu-
nity: A quantitative investigation. In: Koch, S. (ed.) Free/Open Source Software
Development, pp. 203–220. Idea Group Publishing, USA (2005)

20. Mayer-Schönberger, V.: Can we reinvent the Internet? Science 325(5939), 396–7
(2009)

21. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM) 11(3) (2002)

22. Moon, J.Y., Sproull, L.S.: Essence of Distributed Work: The Case of the Linux
Kernel. First Monday 5(11) (2000)

23. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(2), 026113 (2004)

24. Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random
Walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)

25. Robles, G., González-Barahona, J.M.: Developer identification methods for inte-
grated data from various sources. In: Proceedings of the 2005 international work-
shop on Mining software repositories, vol. 30(4) (2005)

26. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Understanding
Free/Open Source Software Development Processes. Software Process: Improve-
ment and Practice 11(2), 95–105 (2006)

27. Shah, S.K.: Motivation, Governance, and the Viability of Hybrid Forms in Open
Source Software Development. Management Science 52(7), 1000–1014 (2006)

28. Shaikh, M., Cornford, T.: Version Control Tools: A Collaborative Vehicle for Learn-
ing in F/OS. In: Collaboration, Conflict and Control: The 4th Workshop on Open
Source Software Engineering 2004, Edimburgh, Scotland (2004)

29. Van Antwerp, M., Madey, G.: Advances in the SourceForge Research Data Archive
(SRDA). Paper presented at the Fourth International Conference on Open Source
Systems, IFIP 2.13, Milan, Italy (September 2008)

30. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

31. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

32. Wiggins, A., Howison, J., Crowston, K.: Social Dynamics of FLOSS Team Commu-
nication Across Channels. In: Proceedings of the Fourth International Conference
on Open Source Software, Milan, Italy (2008)

33. Xu, J., Gao, Y., Christley, S., Madey, G.: A Topological Analysis of the Open Souce
Software Development Community. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (2005)

To Patent or Not to Patent: A Pilot Experiment
on Incentives to Copyright in a Sequential

Innovation Setting

Paolo Crosetto1,2

1 DEAS, Università degli Studi di Milano
paolo.crosetto@unimi.it

2 Dipartimento di Scienze Economiche e Aziendali, Libera Universita Internazionale
degli Studi Sociali, LUISS, Roma

pcrosetto@luiss.it

Abstract. This paper presents preliminary results from a pilot experi-
ment dealing with the economic motivations to contribute to Free/Open
Source Software (FOSS). Bessen and Maskin [1] argue that in a dy-
namic sequential innovation framework the standard argument for grant-
ing patent protection is no more valid and the innovator has at certain
conditions an incentive to fully disclose the results of his works; in these
same conditions, a copyright strategy could result in a tragedy of the
anticommons [5,2].

We study in the lab the choice of copyrighting or copylefting subsequent
innovations in a dynamic setting à la Bessen and Maskin, introducing an
innovative experimental design requiring real effort on the part of subjects.
The players are asked to actually ’innovate’ producing words from given
letters, and face the choice to copyright or copyleft their words.

Preliminary results show that copyleft is more likely to emerge when
royalty fees are relatively high, and when the extendability, modularity
and manipulability of inventions is enhanced.

1 Introduction

The standard economic argument in favour of patents and copyright states that,
since knowledge is a public good with a high fixed cost of production and a
relatively small cost of imitation, the state needs to grant for limited time a
monopoly on the invention to allow the inventor to recover his costs, thus giving
him an incentive to invest in the first place. While a long-standing debate in
economics exists over the exact nature of the cost-benefit tradeoff at the base
of intellectual property regulations from society’s point of view, it has been
widely assumed that an innovator would copyright/patent his innovation when-
ever given the chance to do so. This assumption seems to need further inquiry
as we witness the rise of FOSS.

It has recently been suggested in the economics of innovation literature that
the very nature of software - encoded, algorithmic knowledge - could generate in-
centives to disclose the creation of one’s labour and ingenuity. It has been shown

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 53–72, 2010.
c© IFIP International Federation for Information Processing 2010

54 P. Crosetto

by [1] that when innovations are sequential and research efforts are complemen-
tary, in a dynamic setting it is optimal for innovators to fully disclose their work,
since every inventor gains from the marginal future contributions of others to
his own innovation, made possible by the open nature of his contribution.

The converse argument, i.e. that in dynamic, sequential settings introducing
intellectual property can slow down innovation, has been made several times in
economics [10], and has recently been the focus of the literature about the so-
called tragedy of the anticommons. The name derives from the famous tragedy of
the commons paper by [4]: while in the commons the absence of exclusive usage
rights generated overutilisation and waste, in the anticommons the presence of
overlapping and fragmented exclusion rights generates underuse and waste. The
imposition of patents on research results generates an anticommons whenever ev-
ery right holder independently sets a price for the license without taking into ac-
count negative externalities, with the result of general stagnation of downstream
innovation. This mechanism has been outlined theoretically [2,9], analysed exper-
imentally [3] and proved to be at work in the field of biomedical research [6].

In this paper we present the preliminary results of a new real-effort experimen-
tal design that enables to explore jointly, in a controlled setting, the intellectual
property choices of subjects in a dynamic sequential innovation game and the
aggregate consequences of individual behaviour in terms of anticommons.

2 The Model in Bessen and Maskin [1]

When innovations are sequential, each innovation is both an output and an input
for further innovations developed by different inventors; the true value of the first
invention might only be revealed when the original idea is extended, in directions
possibly unforeseen by the first innovator.

In this context, copyright has ambiguous effects, from both the society and
individual points of view, as Intellectual Property is likely to affect not only the
revenue, but also the costs of the innovator. Copyright generates an expected
stream of revenues for the copyright holder, thus providing incentives to put
effort into the (costly) innovating activity. At the same time, follow-on innovators
face the cost of licensing and increasing transaction costs if bundling of many
innovations patented by different inventors is needed, thus generating a negative
effect on the number of follow-on innovations.

A possible - if radical - solution to the anticommons problems in R&D would
be for the innovator to release its discovery under copyeft licences (’private-
collective’ innovation mode, [11]). Nonetheless, while it is straightforward to see
why a ’private-collective’ solution could spread once initiated - innovators can
freely use and improve upon increasing amounts of knowledge - it is harder to see
why a self-interested innovator should voluntarily forgo any direct appropriation
of revenue from his discovery, releasing it free to the public.

According to [1], the very sequential nature of innovations can provide in-
centives to start sharing and to forgo direct appropriation through IP. In their
theoretical paper patents are shown to be a valid policy tool - enhancing social

To Patent or Not to Patent: A Pilot Experiment 55

welfare as well as providing incentives to innovate to all firms involved, thus
increasing the likelihood of discovery - in a static model; when the same model
is enlarged to include dynamics and sequential and complementary innovations,
though, patents have a counterintuitive effect, and are shown, in line with the
anticommons literature, to become hurdles to innovation rather than spurs, the
social welfare being higher without patents than with them. More to our point,
Bessen and Maskin show that if profit dissipation due to increased competition
is low - i.e. if the availability of further innovations expands the market, increas-
ing opportunities for further R&D on the one side and increasing the number of
interested customers on the other - the firms themselves have an incentive not to
patent their discoveries even if a patent system is available at no cost to them.

The present paper presents preliminary results of a new experimental design
developed to test in the lab the argument of [1].

3 Experimental Design

The experiment has been designed to create a dynamic, interdependent set-
ting in which subjects make choices in a collectively and dinamically co-created
landscape. To simulate innovative activity, the experiment follows a real effort
protocol; the players have to actually innovate - over a set of given rules - using
both economic (experimental money) and cognitive (creative effort) resources.

The real effort task chosen is a sort of Scrabble game. The idea of using
creation of words to mimic innovative activity in investigating FOSS has been
pioneered by Lang et al. [7], who design a double-auction market for words,
inducing demand but leaving players free to make supply decisions. The design
here presented differs greatly from theirs, their interest being in market design,
while the main focus here is on sequential innovations.

The design chosen creates a situation in all respects similar to the [1] model,
but it is not a formal equivalent of the latter; rather, it is a transposition of the
assumptions and workings of the model into an intuitive but controlled setting.

3.1 The Copyleft Game

1. Game structure. The game is played by 6 players. Players play in turns until
there are no letters left in the letter set, with random assignment of starting
positions. The players aim to maximise their monetary payoff from the game.
Players get payoffs from two sources: ’use value’ of the words they produced
or extended, and ’(net) royalty fee revenue’. The game interface is shown in
Figure 3.

2. Letter set. The letter set is composed of 200 letters (see Figure 1). Fre-
quencies of letters are the same as in standard Scrabble. Every letter comes
with an attached payoff this letter will give the player when inserted into a
produced or extended word.

56 P. Crosetto

Fig. 1. Letter set used for the game

3. Turns. In any turn, a player can make at most three actions: buy a ran-
dom letter (for a fixed price); either produce a word or extend an existing
word; decide whether to copyright or copyleft the produced word. Players
can choose to make just one or two decisions, or to pass. Turn structure is
summarised in Figure 2.

Fig. 2. Actions available to the players in every turn

4. Buy phase. When it is their turn, players can buy a random letter for a fixed
price, out of their show-up fee. If a player buys, a letter is drawn from the
letter set (without substitution) and assigned to the player. The price is set
at 2 experimental points, which is slightly above the expected value from
the set, 1.89.

5. Words phase. Players collect payoffs by composing or extending words. A
spelling check is performed on produced words. At every turn, every player

To Patent or Not to Patent: A Pilot Experiment 57

can perform only one action in the words phase, either producte a new or
extend an existing word.
– Producing words. Players may produce from scratch only three-letter

words, called roots. This rule mimics the fact that an innovation must
be more-or-less working when released. Production of a word generates
a ’use value’ payoff that is the sum of the values of the letters used to
form the word. This payoff is incurred only once, the moment the root is
produced. Produced words are common knowledge; the use of the root
as input for extensions is instead subject to the IP choice of the creator.

– Extending words. Players may extend existing words, by one letter at a
time, inserting this letter in any position within the word or at its edges.
Anagrams are not permitted. Words have no length constraints apart
from the ones implicit in the English language. Example extension paths
for the root car are car → care → scare → scared, or car → card →
cards. Extending a word gives as payoff the sum of all the letters com-
posing the extended word but might be subject to copyright fees to be
paid to the word original creator.

6. Spellchecker. To avoid language skills biases, the players are provided with
an interactive free-access spellchecker embedded in the main game interface.

7. Word availability. Extended words do not replace existing roots, but exist
in parallel to them. A root can be used by different extenders to generate
different word trails.

8. Intellectual Property Phase. Players that have produced new roots must de-
cide whether to copyright or copyleft the word or extension. The IP choice
cannot be undone in later stages and lasts throughout the game.

(a) Copyrighting. Copyright can be obtained free of charge, and gives the
copyright holder the exclusive right over the use of his root/extension.
This implies that no other player can produce the same root/extension
and that the copyright holder will receive a royalty fee every time some
player uses it for an extension. The fee is fixed, and is proportional to
the value contributed to the word. A root which value is v generates
a fee of αv, in which 0 < α < 1 is a fixed known parameter. Every
extension falls under the same rule, and if the value added to the word
is w, an extension generates a right to obtain a royalty fee of αw. The
nth extender of a word of value v + w pays α(v + w) in fees, distributed
automatically to other players according to the value contributed. Free
copyright (an irrealistic assumption) has been introduced to strengthen
the external validity of the emergence of copyleft in the lab.

(b) Copylefting. Copyleft is free of charge. It gives the copyleft owner no ex-
clusive rights, but it endows users with a large set of use, redistribution and
modification rights. Extenders can use the word as an input for free, but
they are not allowed to copyright their extension. When extending a word,
a copyleft extender earns all of the use value of the word, without having
to pay any fee, but not getting any further fee from extenders either.

58 P. Crosetto

F
ig

.
3
.
T

he
m

ai
n

in
te

rf
ac

e
fo

r
th

e
C

op
yl

ef
t

G
am

e

To Patent or Not to Patent: A Pilot Experiment 59

The game described above has been designed to share as many features as pos-
sible with the model in [1], but it is not a perfect match. Every deviation from
the model was made on the safe side, lowering the likelihood that the Bessen
and Maskin outcome would emerge.

4 Experimental Results

The pilot experiment was held in October 2009 in the EXEC lab, University of
York, UK. The software was developed in Python [8]. The experiment involved
in total 23 English native speakers. Four sessions of 6 players were run, divided
into two treatments: in the low-fee treatment the royalty parameter was set to
α = 0.7, while in the high-fee treatment it was set to α = 0.9. We expected the
low-fee session to show less copyleft activity and anticommons problems than
the high-fee sessions.

Copyleft emerged in three out of four sessions (the two high-fee and one of
the low-fee), dominating one; anticommons features (underuse of resources, low
cooperation, lower payoffs) emerged in the two high-fee sessions as expected.

4.1 General Results

The sessions differed from one another in many respects. Two main problems
for data analysis emerged: first, Session 4 featured only 5 players instead of the
standard 6; second, in Session 3 the players found a clever way of altering the
game rules to their advantage, and hence played a completely different game.
Safe comparisons can be made between Session 1 (low-fee) and Session 2 (high-
fee). Results from Session 3 will be separately discussed (Section 4.4).

The experiment showed significant emergence of copyleft in the high-fee treat-
ments, and a number of recurring features.

1. The number of roots created is 30 in all sessions. What differentiates the
sessions is the number and nature of extensions; the behaviour of follow-on
innovators determines social welfare and payoffs.

2. Payoffs are significantly higher in the low-fee Session 1 w.r.t. the high-fee
Session 2 (Mann-Whitney U, p-value = 0.041, K-S p-value = 0.1429) and
less so w.r.t. Session 4 (Mann-Whitney U, p-value = 0.129, K-S p-value =
0.5909).

3. The high-fee treatment sessions resulted in a lower number of words created,
and in a higher waste of productive resources (unused letters), resulting in
lower average payoffs. In high-fee sessions players tended to extend their
own roots and to avoid other player’s roots, to access which they had to
pay royalties; this behaviour created quite isolated word trails and lower
extension opportunities.

4. Copyrighted roots are much more likely to be created than copylefted roots.
Players did not create any (but one on the very last period) copylefted root
in Session 1 (low-fee), but did create 5 and 1 copylefted roots in Sessions 2
and 4 (high-fee).

60 P. Crosetto

Table 1. Summary data for the four experimental sessions

Low-fee High-fee
Session1 (6) Session3 (6) Session2 (6) Session4 (5)

Payoff: average (£) 17.76 26 13.95 15.7
Standard Deviation 2.6 4.8 1.95 2.52

Total number of words 112 154 84 91
% copyrighted 99.1% 29.2% 73.8% 90.1%

Total net value created 471 968 237 288
Royalty turnout 268.8 71.4 119.7 71.1
Royalties/value 32.2% 5.3% 21.6% 11.6%
Unused letters 26 16 46 47

Number of copyrighted roots 30 11 30 30
Extensions per root 2.7 3.1 1.06 1.73

Relative extensions per root 0.19 0.27 0.1 0.12

Number of copylefted roots 1 4 5 1
Extensions per root 0 26.25 3.4 8

Relative extensions per root 0 0.4 0.42 0.34

Average word length 4.18 4.53 3.76 3.89
Copyrighted words 4.18 3.73 3.58 3.8
Copylefted words 3 4.86 4.27 4.67

Average word value 7.45 8.63 6.6 6.76
copyrighted words 7.46 6.84 6.22 6.62
copylefted words 6 9.37 7.68 8.11

5. Copylefted roots are three to seven times more likely to be extended than
copyrighted roots. Once copylefted words exist, the incentives to extend them
are higher, because the foregone royalty from one’s extension is more than
counterbalanced by the fact that no royalties are paid on the root.

6. Copylefted roots generate a two to four times higher exploration of extension
possibilities (see ’Relative Extensions’ rows in Table 1). The ’average relative
extensions per root’ index was computed as the average of the ratio of the
actual number of extension of each root and the theoretically possible number
of extensions of each root allowed by the English language.

7. Copylefted words are on average longer and have higher value than copy-
righted words. This is because copylefted words are extended more and new
roots tend to be copyrighted but not extended: when faced with the choice
of copyrighting or copylefting a root, the player most of the time decides to
copyright it; but this decreases the likelihood of follow-on innovations to be
built on top of that root, and hence slows down the pace (extensions per
root), and reduces the exhaustivity (relative extensions per root) of further
inventions.

To Patent or Not to Patent: A Pilot Experiment 61

8. The amount of royalties paid or received is higher in low-fee sessions. When
fees are low, players tend to seize the best opportunities available to them
irrespectively of the fact that there is a royalty to be paid: this results in
a high number of words, lower letter waste, and a high amount of royalties
exchanged. When royalties are higher (high-fee treatment) players tend to
restrict their innovative efforts to the ’free’ roots, either copylefted or owned
by the extender, and hence many opportunities are missed, a higher number
of letters is left unused and a lower amount of royalties flows in the system.

9. Players used the spellchecker extensively - on average more than 100 times
- in all sessions. There is no significant correlation between the use of the
spellchecker and the result in terms of payoff for the player.

A treatment effect can be argued to exist. Copyleft emerged and saw sustained
contributions in high-fee sessions, while it did not emerge in low-fee session; an-
ticommons features appeared in (high-fee) sessions, in which payoffs were lower,
number of unused letters higher, and royalty flows reduced.

The paradoxical effect that better patent protection results in a lower amount
of innovations, one of the central points in [1] is reproduced in the lab; moreover,
players recognise the mild incentives to copyleft, and provide some (though not
many) copylefted roots; once a copylefted root exists, players reap much more
benefits from it, extending it further and deeper, than from copyrighted roots.
There is not enough evidence, though, to support the stronger argument in
Bessen and Maskin’s paper that in a sequential settings the firms prefer not
to patent their innovations, relying on subsequent innovations rather than on
royalties from upstream contributions: if that were the case, we would have
recorded a surge in copylefted roots as the game progressed. What happened
instead was that in all sessions players preferred to release the roots created
as copyright, even when this generated a suboptimal anticommons situation;
nonetheless, players preferred to extend existing copylefted roots much more
than they extended copyrighted roots, and hence copylefted words appeared
and accounted for up to a quarter of all words created.

4.2 Session 1 (low-fee): Copyright and business as usual

Six subjects participated in Session 1, a low-fee treatment. In the session 112
words, all copyrighted but one, were produced: on average, every player produced
18.7 words, 3.6 words per period. The only copyleftd word was created in last
turn by the last player, when the choice was of no importance any more.

The session describes a ’business as usual’ situation. Players copyrighted every
root created and pursued the most profitable extensions without taking into
account the royalty fee. 81.4% of the extensions came from extending a root
created by other players, and hence incurring the royalty fee; conversely, only
18.6% of extensions were built upon own words (Figure 4). Since a player is likely
to produce one sixth of the roots, this figure implies that, on average, the players
extended any root available and had no biases favouring their own creations.

62 P. Crosetto

Fig. 4. Distribution of extensions by root type, session 1

Royalties make up an important share of players’ payoffs. In the session the
net added value created was 471 experimental points (worth 47.1£); royalties
exchanged were worth 268.8 points, i.e. 57% of the value added.

The effect of royalty flows on individual payoffs can be appreciated in Figure 5:
some players produced a lot of added value, but paid high amounts in royalties

Fig. 5. Breakdown of payoffs, session 1

To Patent or Not to Patent: A Pilot Experiment 63

to do so, while other players produced fewer - but more likely to be extended
- roots and extensions, and received a consistent amount of royalties. The two
strategies are somewhat complementary: some inventors prefer to create many,
if marginal, innovations; others focus on seminal, if fewer, innovations.

The session showed an intellectual property system working well: copyright
does not get in the way and royalty fees are considered low enough not to block
follow-on innovations. Copyright generates considerable incentives to innovate
rewarding the creators of the best innovations (in this case, the most extend-
able) through royalties and the hard-working ’marginal’ inventors through use-
value of their marginal inventions. No ’tragedy of the anticommons’ appears, as
downstream innovators are not blocked in their endeavour by excessively high
royalties, upstream inventors can trust that their roots will be used, and royalties
flow from the marginal inventors, extending existing technologies, to the basic
inventors, creating promising roots. In an ideal situation of perfect information,
with no transaction nor legal costs associated with IP and with low, fixed and
ex-ante known royalty fees, the copyright system works and delivers incentives
to different types of innovators.

4.3 Session 2 (high-fee): Copyleft and Anticommons

Six players took part in Session 2, a high-fee treatment. The players left 23
letters unbought and 23 more unused. The players created 84 words, of which
22 copylefted: 14 words per player and 2.5 per period. The session showed both
the emergence of copyleft and of anticommons gridlock: players in Session 2
created less words and enjoyed lower final payoffs w.r.t. Session 1 (see Table 1);
moreover, the letter waste was double (46 vs 23 unused letters), the net value
added half (237 vs 471), the average length (3.76) and value (6.6) of the words
produced was substantially lower than in Session 1 (4.18 and 7.45).

73.8% of the words created were copyrighted, 26.2% copylefted. The players
created 32 copyrighted extensions from 30 roots (1.07 per root), and 17 copy-
lefted extensions from 5 roots (3.4 per root, three times as much). Copylefted
words are furthermore longer and more valuable (see Figure 6). The best efforts
of the players were directed to extend copylefted words. The players showed a
somewhat schizophrenic behaviour: when creating new roots, players opted for
copyright, hoping to enjoy a royalty stream from extenders, but, when extend-
ing, preferred to extend either their own or copylefted roots (Figure 8, right).
This resulted in a mild but significant ’tragedy of the anticommons’; the players
could have broke out of it either by adopting a ’business as usual’ strategy as
seen in Session 1 (but the high royalty fee seems to have made this less likely)
or by starting to create copylefted roots. Having failed to do both, the players
ended up producing less words and earning lower payoffs.

Players started copylefting roots at the very beginning, and switched to copy-
right after the first ’defections’, replicating the usual ’decay of contributions’
phenomenon of Public Good games (Figure 8, left). After period 8 all newly
created roots were copyrighted; nonetheless, copylefted roots continued to be

64 P. Crosetto

Fig. 6. Average word value and length per period per type, session 2

Fig. 7. Share of copyrighted words, length and value per period, session 2

extended during all the rest of the game, possibly to avoid paying royalty fees
to the other players.

The players tended to extend other player’s roots much less than in the low-
fee treatment: only 51% of the extensions came from a root owned by another
player, down from 81.4% in Session 1 (Figure 8, right). This resulted in many
opportunities for extension being lost.

In Session 2 anticommons effects appeared, breaking the flow of innovations
and resulting in lower value added and lower payoffs. Awarding a higher royalty
to innovators generates the perverse effect of lowering the amount of innovation

To Patent or Not to Patent: A Pilot Experiment 65

Fig. 8. Session 2: Words created by period and by type (left) and extensions by root
type (right)

created in the system, at the same time not benefiting the inventors. Upstream
patents, coupled with high royalty fee, discourage follow-on inventors to innovate
on top of someone else’s basic research on the one side, and to invest tout-court
on the other hand (unused letters). Contrary to expectations, though, players
fail to see the incentive to get rid of the patent system altogether, as argued by
[1]: they extend copylefted roots but do not forgo the (low, given the behaviour

Fig. 9. Breakdown of payoffs, session 2

66 P. Crosetto

of players) expected stream of royalties from copyright. This fact could lead to
argue that while incentives to copyleft exist, they imply a much more forward
looking attitude than the one displayed by subjects in this session.

4.4 Session 3 (low-fee): learning to cheat and Copyleft

Six subjects participated in Session 3, a low-fee treatment. The session is radi-
cally different from the others, because of cheating behaviour on the part of the
subjects that was not foreseen and hence not stopped by the software. When the
cheating behaviour was noticed, it was decided to let the session proceed to see
what this ’innovative’ behaviour would mean in terms of aggregate statistics.

Early in the game, a player accidentally found a bug in the software: she
extended ’new ’ into ’wine’, and was not stopped by the system. The software
was not designed to check the order of the remaining letters of the root, thus
leaving the door ajar for a particular kind of anagram, generated by adding one
letter in any position and displacing the other letters at will. Actually created
examples of this anagrams are given by lady → delay, preen → opener. All other
types of extensions were correctly turned down by the software, including simple
displacement (with no added letter, e.g. not → ton) and inclusion of more than
one letter (e.g. sit → shift).

This new rule implies higher tinkering possibilites and higher payoffs, but at
much higher cognitive costs, and it allows for a highly enhanced extendability
of words, thus giving less incentives to create new roots.

After the first player successfully anagrammed a root to form an extension,
the other players noticed and, all but one, endorsed the new practice. Around
period 20, five out of six players were exclusively using the new rule. A further
consequence of this endogenous discovery of value-enhancing rules was that the
players eventually abandoned copyright completely: given the much enhanced
extendability, players found it much more profitable to copyleft the word and

Fig. 10. Average word value and length per period per type, session 3

To Patent or Not to Patent: A Pilot Experiment 67

Fig. 11. Share of copyrighted words, length and value per period, session 3

Fig. 12. Session 3: Words created by period and by type (left) and extensions by root
type (right)

then build on the contributions of the other players than to rely on royalty fees
that were unlikely to be received anyway.

The results of the new rules were striking. In the session 154 words were
created, 25.6 per player and 4.5 per period; the net value added reached the
level of 968, twice the level of Session 1, and four times the level of Session2; the
royalty flow accounted for a mere 7.4% of it, and the unused letters were just 16,
the lowest value of the experiment. The average value and length of copylefted
words increased during the experiment much more than those of copyrighted
words (see Figure 10), and the percentage of copyrighted words dropped steadily,
ending at 29.2% (see Figure 11).

68 P. Crosetto

Fig. 13. Breakdown of payoffs, session 3

In Figure 12, left, it can be seen the point, around period 10, when the new rule
began to spread. The creation of new copyrighted roots did not stop altogether,
but continued at a much lower pace. The breakdown of payoffs records the
importance of copyleft for the very high final payoff enjoyed by subjects (Figure
13). The number of extensions generated using a copyrighted root (see Figure 12,
right) dropped to 12%, as did the use of own roots; three-quarters of extensions
were built on top of the existing 4 copylefted roots, with an impressive 26.25
extension for each copylefted root.

The session showed two important facts: first, the players learned, from obser-
vation and trial and error, a superior set of rules and adopted it quickly; second,
when extendability is enhanced the incentives to copyleft are much higher, and
the role of copyright is more limited.

4.5 Session 4 (high-fee): Copyleft and Anticommons

Only five subjects participated in Session 4, a high-fee treatment. The players
created 91 words, of which 9 copylefted; 18 words per player and 2.67 per period.
The session had many results in common with Session 2, the other high-fee
session: the players were affected by the high royalty fee and preferred to extend
their own roots rather than pay royalties to the other players (Figure 14, right);
this resulted in a substantial letter waste (47 unused letters), low payoffs (average
15.7£), a low number of words produced (even though higher than in Session
2), low average word length (3.89) and value (6.76).

To Patent or Not to Patent: A Pilot Experiment 69

Fig. 14. Session 4: Words created by period and by type (left) and extensions by root
type (right)

Fig. 15. Average word value and length per period per type, session 4

In this session copylefted roots were extended deeper and further than copy-
righted ones, but the players failed to find a way out of the anticommons: all
roots but one were copyrighted, despite the fact that players were not likely
to extend other player’s roots (just 28% of extensions came from a paid root).
The ’isolation’ of players was the highest of all sessions, with 58% of extensions
created from one’s own set of roots (Figure 14, right).

As in all other sessions, the copylefted words showed a higher average value
and length than the copyrighted ones (see Figure 15); here they represented just
10% of the overall value, though, and had a minor impact on payoffs (Figure
17). Royalties also played a minor role: the total net value added was 288, with
royalty flows at a low 71.1, 24.7% of the added value. This was due to the high
reliance of players on own roots rather than on cross-fertilisation of word trails
with other players.

70 P. Crosetto

Fig. 16. Share of copyrighted words, length and value per period, session 4

Fig. 17. Breakdown of payoffs, session 4

Session 4 confirms that when royalty fees are high, players fail to build inno-
vation on top of other players’ roots, reducing the number of profitable oppor-
tunities. Copyleft is a possible way out of this gridlock situation, but players fail
to recognise this fact.

To Patent or Not to Patent: A Pilot Experiment 71

5 Conclusions

This paper sets up a dynamic real-effort experimental game to test the argu-
ment of [1] that in a dynamic setting featuring sequential and complementary
innovations the innovators themselves would, at certain conditions, prefer not to
impose copyright on their creation and instead welcome imitation.

Even if the statistical validity of such a small experiment is admittedly very
low, preliminary results show that both anticommons problems and copyleft are
more likely to emerge when royalty fees are relatively high. Increasing intellectual
property rights leads to less innovation and to potential gridlock on the one hand,
and to firms giving up copyright protection and embracing ’open’ innovations.
Copyleft emerged and saw sustained contributions in high-fee sessions, while it
did not emerge in the low-fee session; anticommons features appeared in high-
fee sessions, resulting in less innovations created, lower payoffs, higher number
of wasted resources (on the form of unused letters), and reduced royalty flows,
w.r.t. low-fee sessions.

The paradoxical effect that better patent protection (higher fees) results in
a lower amount of innovations is reproduced in the lab. There is not enough
evidence, though, to support the argument that in a sequential settings the
firms prefer not to patent their innovations, relying on subsequent innovations
rather than on royalties from upstream contributions.

The experiment is also potentially able to account for the gradual engagement
in the production of Open Source software of more and more corporate giants.
In the experiment, while it is hard to find someone willing to start a copyleft
trail, the incentives to contribute to the copyleft commons with extensions once
such an alternative exists are high. This leads, in time, to the building of a
sizeable body of copyleft roots and extesions. As this grows, more and more
subjects - even the ones that would strongly prefer copyright - have incentives
to extend the copyleft words, because they take out more and more value from
the commons. The copyleft rule forces them to give away any rights on their
marginal contributions; but, as the size of the copyleft commons increases, the
cost-benefit balance of contributing to it shifts gradually to the benefit side.
The copyleft clauses are able to create a growing commons; no matter why the
first contributors decided to forgo their copyright fees, the existence of a free
alternative is an attractor for a larger and larger number of developers.

The preliminary experimental evidence calls for further exploration of this
experimental design, both deepening - i.e. with more replications of the same
treatments, to gain statistical significance - and widening the research agneda.
The word-game design could be used as a platform for testing the effect of
different intellectual property policies or different technological settings on the
amount of innovative activity, licensing choices, social welfare, commons and
anticommons problems. The experimental design would allow for instance to
test the consequences on innovation levels and quality of varying the length
and breadth of patent protection, or varying the menu of licenses available, or
allowing patent pools.

72 P. Crosetto

References

1. Bessen, J., Maskin, E.: Sequential innovation, patents, and imitation. Economics
Working Papers 0025, Institute for Advanced Study, School of Social Science (Mar
2006), http://ideas.repec.org/p/ads/wpaper/0025.html

2. Buchanan, J.M., Yoon, Y.J.: Symmetric tragedies: Commons and anticommons.
Journal of Law & Economics 43(1), 1–13 (2000),
http://ideas.repec.org/a/ucp/jlawec/v43y2000i1p1-13.html

3. Depoorter, B., Vanneste, S.: Putting humpty dumpty back together: Experimental
evidence of anticommons tragedies. SSRN eLibrary (2004)

4. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968),
http://www.sciencemag.org/cgi/content/abstract/162/3859/1243

5. Heller, M.A.: The tragedy of the anticommons: Property in the transition from
marx to markets. Harvard Law Review 111, 621–688 (1998)

6. Heller, M.A., Eisenberg, R.S.: Can patents deter innovation? the anticommons in
biomedical research. Science 280(5364), 698–701 (1998),
http://www.sciencemag.org/cgi/content/abstract/280/5364/698

7. Lang, K.R., Shang, R.D., Vragov, R.: Designing markets for co-production of digital
culture goods. Decision Support Systems 48, 33–45 (2009)

8. van Rossum, G.: Python reference manual. CWI Report (May 1995)
9. Schulz, N., Parisi, F., Depoorter, B.: Fragmentation in property: Towards a general

model. Journal of Institutional and Theoretical Economics 158, 594–613 (2002)
10. Scotchmer, S.: Standing on the shoulders of giants: Cumulative research and

the patent law. Journal of Economic Perspectives 5(1), 29–41 (Winter 1991),
http://ideas.repec.org/a/aea/jecper/v5y1991i1p29-41.html

11. Von Hippel, E., Von Krogh, G.: Open source software and the ‘private-collective’
innovation model: Issues for organization science. Organization Science 14, 209–223
(2003)

http://ideas.repec.org/p/ads/wpaper/0025.html
http://ideas.repec.org/a/ucp/jlawec/v43y2000i1p1-13.html
http://www.sciencemag.org/cgi/content/abstract/162/3859/1243
http://www.sciencemag.org/cgi/content/abstract/280/5364/698
http://ideas.repec.org/a/aea/jecper/v5y1991i1p29-41.html

Voting for Bugs in Firefox:
A Voice for Mom and Dad?

Jean-Michel Dalle1 and Matthijs den Besten2

1 Université Pierre et Marie Curie, Paris
jean-michel.dalle@upmc.fr
2 Ecole Polytechnique, Paris

matthijs.den-besten@polytechnique.edu

Abstract. In this paper, we present preliminary evidence suggesting
that the voting mechanism implemented by the open-source Firefox com-
munity is a means to provide a supplementary voice to mainstream users.
This evidence is drawn from a sample of bug-reports and from informa-
tion on voters both found within the bug-tracking system (Bugzilla) for
Firefox. Although voting is known to be a relatively common feature
within the governance structure of many open-source communities, our
paper suggests that it also plays a role as a bridge between the main-
stream users in the periphery of the community and developers at the
core: voters who do not participate in other activities within the commu-
nity, the more peripheral, tend to vote for the more user-oriented Firefox
module; moreover, bugs declared and first patched by members of the
periphery and bug rather solved in “I” mode tend to receive more votes;
meanwhile, more votes are associated with an increased involvement of
core members of the community in the provision of patches, quite pos-
sibly as a consequence of the increased efforts and attention that the
highly voted bugs attract from the core.

1 Introduction

Firefox is an open source project that explicitly tries to cater to the needs of
a mainstream audience. Judging by its market share, as estimated for instance
by the firm StatCounter (http://gs.statcounter.com), Firefox is succeeding.
What might explain this success? To a large extent it is due to the leadership
of people like Blake Ross, Dave Hyatt and Asa Dotzler and to their apparently
correct judgement in deciding which features and bugs deserve the highest pri-
ority for development. In addition, however, we expect that the success is due
to explicit mechanisms that have been put in place in order to make sure that
the needs of mainstream users are assessed and addressed correctly. Voting for
bugs in the Bugzilla bug tracking system is one such mechanism.

Voting for bugs is of course not unique to Firefox. It is a feature of the Bugzilla
bug tracking system that has been activated by many of the projects who use it.
Moreover, it is generally assumed that some sort of voting is a standard element
of the open source software development model (see, e.g., [11]). Yet, apart from

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 73–84, 2010.
c© IFIP International Federation for Information Processing 2010

http://gs.statcounter.com

74 J.-M. Dalle and M. den Besten

the governance of Apache [10] and Debian [12], there are to our knowledge
surprisingly few explicit analyses or even descriptions of voting procedures in
free/libre open source software communities.

In her analysis of the emergence of voting procedures in Debian, O’Mahony
focuses on the greater efficiency and transparency that is provided by voting com-
pared to consensus based collective decision making usually dominant in small
groups and presents the introduction of voting as a reaction to the increases in
scale and scope of the Debian enterprise. Voting can however be useful even in
small groups: see for example the seminal paper on collective problem identifi-
cation and planning by Delbecq and Van De Ven [4], who propose a model of
an effective group process in which the first phase of problem exploration is con-
cluded with a vote. This, they note, serves to make the results of the exploration
explicit and create pressure for change on the people who will be responsible for
resolving the problem. Here voting is not just about representation, it is also
about “getting heard”.

In this context it might be useful to ponder the framework that Hirschman
[5] developed on the means by which patrons can influence their organizations.
Patrons have basically two options: either they leave the organization and buy
or produce with a competitor (“exit”), or they express their concerns more ex-
plicitly through channels that might be provided by the organization (“voice”).
In open source software development, the primary mechanism for “exit” is fork-
ing [9] and the primary mechanism for “voice” is to “show code” by proposing
patches [1]. For mainstream users such as “mom and dad”, however, neither
forking nor patching is a realistic option, as they typically do not have the skills
to do either. Since Firefox precisely wants to be a product for mom and dad [6],
other options have to be found: “exit” can be implemented by switching to other
browsers like Internet Explorer, Safari, Opera, and Chrome. For “voice”, voting
might be an appropriate answer.

In what follows, we present circumstantial evidence to support our conclusion
that voting for bugs in Firefox is a means to provide a voice to mainstream users.
This evidence is drawn from a sample of bug-reports maintained by Mozilla’s
Bugzilla and from explicit information on voters found at the same site. We
present results regarding voters and bugs in sections 4 and 5, respectively. We
present some more background information on our research in section 2 and
describe our sampling strategy in section 3.

2 Background

This paper is number four in a succession of papers that we have presented at OSS
conferences. In the first paper, presented in Limerick in 2007 [2], we analyzed bug
reports from Mozilla and found that there are some bugs that take exceedingly
long to resolve and that part of the reason for the existence of these “superbugs”,
as we named them, could be related to the insufficient provision of contextual ele-
ments such as screenshots in the bug threads. The second paper, presented in Mi-
lan in 2008 [3], analyzed bug reports that are associated with the Firefox branch

Voting for Bugs in Firefox: A Voice for Mom and Dad? 75

and exploited the existence of the so-called “CanConfirm” privilege — the priv-
ilege to declare bugs as “new” given that the initial status of bugs is “uncon-
firmed” by default — to distinguish between core and peripheral participants
within bug resolution processes and inquired whether various variables could in-
fluence the speed at which new and unconfirmed bugs were patched. In the
third and latest paper, presented in Skövde in 2009 [8], we used text mining tech-
niques to arrive at a further characterization of participants within the core and
the periphery of the Firefox community, stressing notably the fact that members
of the core tend to use to pronoun “We” disproportionately while members of the
periphery, conversely, seem to prefer to use “I”.

By focusing on voters this paper tries to exploring an additional layer of the
onion model of the Firefox community. To echo the language we used in our 2008
paper, while the likes of Blake Ross and Dave Hyatt clearly belong to the inner
core, the periphery is probably mostly populated by “alpha-geek” users — that
is, exactly by those people who Ross and Hyatt professed to ignore in Firefox
development [6]. “Mom and dad” are not there. If at all, they are more likely to
be among the outer periphery of people who are simply voting and contributing
very little otherwise.

This line of inquiry obviously owes a lot to the pioneering work by Mockus et
al. [10] and also to subsequent work by Ripoche [13], who established bug reports
as an object of study. Together with others, e.g. [14], we continue to exploit
this extremely rich source of information. Conceptually we have been inspired
by the analysis of MacCormack at al. [7], who argue that it was necessary to
make the existing code that was left by Netscape more modular before Mozilla
could attract patches from the periphery. We wonder here whether votes could
constitute another element which could help to explain how Firefox could turn
the unwieldy open source project that Mozilla had become into the sleek browser
for the mainstream market that we have now.

3 Sampling Method

For our analysis we constructed two types of data-sets. The first type relates to
bugs, which may or may not have attracted votes, and concerns the history of
the bug resolution process as it is recorded by Bugzilla as well information about
the bugs that can be found in the logs of the cvs code repository. The second
type concerns information that is stored in Bugzilla about the activities of the
people who have voted for one or more bug. For each type we have obtained
several sets and sub-sets of data based on three criteria: first of all, we are
interested in bugs for which we can assume that they have had an impact on the
Firefox code-base in the sense that they are mentioned in the commit-comments
and the cvs repository; secondly, we are interested in bugs that have received
votes; and finally, we are interested in bugs that Bugzilla associates with the
Firefox project. Similarly, we are interested in people who voted for bugs which
eventually found their way into the cvs; we are also interested in the other
bugs they voted for; and we are interested in the people who voted with them

76 J.-M. Dalle and M. den Besten

Fig. 1. Sampling of bugs: 37408 appear in the code base (cvs); among them 3787 have
attracted at least one vote (Votes ∩ cvs) and 418 among these are associated with the
Firefox project (Firefox ∩ Votes ∩ cvs)

on Firefox bugs. Figure 1 is a Venn diagram which illustrates this admittedly
somewhat complex constellation of sets. Our main interest is in the intersection
of bugs from cvs that have been voted on and are also officially associated with
Firefox as well as in the people who have voted for this particular set of bugs.
Other than that we also have some interest in the other subsets formed by the
intersection of the three criteria in order to be able to compare and contrast
with what we find in our main set.

In practice we followed a procedure similar to snowball sampling in order to
obtain our sets and subsets of bugs and voters. We started with the bugs that
we found in the logs of our copy of the Mozilla’s cvs archive concerning the
code for Firefox up until version 2.0. Only a small subset of these bugs, some
10%, has ever attracted a vote. Associated with those bugs is a list of all people
who have cast a vote (people can also retract there vote later; in that case they
fall through our net). Our next step was to retrieve all those lists and compile
a list of cvs voters constituted by union of all sets of voters contained in these
lists — we found 11826 of them. The list of voters that is attached to the bug-
reports in Bugzilla also contains, for each voter, a link to a voter-page that lists
all the bugs the voter in question has voted for split according to the project
with which Bugzilla associates the bug. As far as we can tell, this “project”
field is a new data element in the bug-reports that was not yet displayed in the
original bug-reports that constitute the cvs-set of bugs. That is why we do not
have such project-data for most of the bugs. Nevertheless via the voter-pages we
can determine the project for those bugs for which at least one vote was cast.
Contrary to what one might assume just a fraction of the bugs that we associate
with code in the Firefox-branch of the Mozilla cvs are associated with Firefox
by Bugzilla as well. Partly, this may be due to misattribution from our part, but
mostly this seems to be a reflection of the fact that Firefox shares code with other
applications and the fact that it is based on code that was developed earlier for
other projects. In addition to the project affiliation of cvs bugs the voter-pages
also give the project affiliation for bugs that did not make it into that set — that

Voting for Bugs in Firefox: A Voice for Mom and Dad? 77

Table 1. Summary indication of source of the main sets of bugs and voters

Bugs Voters

CVS Bugs associated with Firefox code
before version 2.0.

Union of lists of voters on bugs in
set defined in previous column.

Votes All bugs that received one or more
votes by voters on the cvs bugs.

As above, ceteris paribus.

Firefox All the bugs associated with Fire-
fox in the listing of bugs per voter.

” ”

is, bugs that did get votes but where not mentions in the commit-comments we
looked at. The union of all these bugs constitutes the voter-set of bugs. We did
not retrieve the complete Firefox-set of bugs, but we do not which part of the
voter-set overlaps with it and that another part of the cvs-set should do as well.
Finally, our set of Firefox-voters is by looking at the voter-lists of all bugs in the
voter-set that are associated with Firefox through Bugzilla and taking the union
of the sets of voters listed in those lists. Table 1 gives a short summary of the
manner in which we obtained our sets described above.

Another and, for now, final detail about the data preparation concerns the
way we link voter-identities with other activities by the same people in the
bug resolution process. For this we rely on the fact that up until recently the
voters as well as participants to the bug forum discussions, bug-reporters, bug-
assignees, etcetera, were identified by their email address. Hence we could assign
various bug-activities to the voters by matching these email addresses. This
method works fine for the bugs that we focus on for this study. However, studies
concerned with the most recent bugs would not be able to apply this method
as Bugzilla has moved to enhanced identity management and does no longer
provide the full email address for voters.

4 Characterizing Voters

A first dimension along which voters can be distinguished from non-voters, re-
ported in Table 2, is with respect to both groups’ status in the community.

Table 2. Number of voters by status for participants in the resolution of bugs which
have received at least one vote, are mentioned in the cvs, and are associated with the
Firefox project (n = 2968; χ2 = 366, df = 3, p-value = 5.243e−79)

Status
Unconfirmed New Both Other Total

Vote 184 25 64 1408 1681
No Vote 286 139 182 680 1287

78 J.-M. Dalle and M. den Besten

Table 2 is a contingency table comparing community status and voting activity
of participants in the bug resolution process for the intersection of 418 bugs with
the following properties: they appear in the cvs; they have attracted votes; and
they are associated with Firefox. As participants, we consider people who have
either contributed at least one comment to at least one discussion thread or who
have cast at least one vote for these bugs. Among the 418 bugs of interest, this
definition yields a total of 2968 participants, 1681 of whom have cast a vote
and 1755 of whom have written at least one message, which implies that 1213
participants have voted but never written a message. A first conclusion that
can be drawn from these numbers, then, is that most voters do not engage in
other activities. If we go one step further and check participation on a bug-by-
bug basis, this finding becomes even more pronounced: typically, voters who are
active in the bugs in the set tend to engage in this activity on bugs for which
they did not vote.

In order to gauge the status of participants we rely on the CanConfirm privi-
lege mentioned earlier. In particular, we check for each participant whether he or
she has ever declared bugs contained in the set of 37408 bugs that appeared in
the cvs logs. For those participants who did declare bugs we look at the initial
status of those bugs. If all the bugs that a participant declared start with status
new the participant is considered to belong to the core; if all the bugs start with
status unconfirmed the participant belongs to the periphery; if some bugs start
with unconfirmed and others with new the participant is considered to be a
freshly joined or a freshly expelled member of core; finally if the participant has
not declared any bug, he or she is classified as member of the outer-periphery,
here denoted as “Other”.

Given all this, the main conclusion from table 2 is that the people who cast
a vote are mostly, yet not exclusively, outsiders. Interestingly, this finding also
holds for the status of the people who voted for any one of the bugs that appeared
in the cvs logs. Of the 11850 voters among these 3787 bugs 10269 have never
declared a bug while only 283 participants have had all the bugs they declared
accepted as new right-away. Furthermore, when we consider the top 1000 most
active voters, 688 among them can still be classified as outsiders while only 36
belong to the core.

Figure 2 gives some indications about the voting activities of the people who
have cast a vote for at least one of the 418 bugs in the latter sample. It shows
the distribution of the number of bugs to which people have cast their vote as
split according to projects and status. Actual outsiders, with status Other, tend
to declare “pure” Firefox bugs while contributors with another status disperse
their votes much more.

Figure 3 tries to shed some light on the timing of bug activity. Votes do not
come with timestamps in the Bugzilla records, but we know that bug-ids are
assigned sequentially. Figure 3 shows how many bugs had received votes before
a given bug id against the sequence number that is used to identify them and
this gives a rough indication about the distribution of voting over time. On
the left is shown this distribution for bugs with votes and that appear in the

Voting for Bugs in Firefox: A Voice for Mom and Dad? 79

bu
gs

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

10^2.5

10^3.0

B N O U

●
● ●

●

●

●
●

●

Core

B N O U

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●●●
●

●

●

●

●●
●●

●

●
●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●●
●
●

●

●

●

●

●●●

●

●●

●

Firefox

B N O U

● ●

MailNews.Core

●

● ●

SeaMonkey

● ● ●

Toolkit

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

10^2.5

10^3.0

● ● ●

other

Fig. 2. Distribution of number of bug declared by status per project. B = both; N =
new; O = other; U = unconfirmed.

id

to
ta

l

0

500

1000

1500

0e+00 1e+05 2e+05 3e+05 4e+05

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●

● ● ● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●● ● ●

● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●●● ●●● ● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●● ●● ●●●● ● ● ● ●●●●●●●●● ●●

●● ● ●● ● ●●●●●●● ●●●●●●● ●● ●●●● ●●●●● ●● ●●●●●●●●● ● ●● ●●●● ●●● ●●●● ●●●●●● ●●● ● ●●

● ●●●● ● ● ●● ●● ●●● ●●● ● ●● ●● ● ● ●
● ●● ●● ● ● ● ● ● ● ● ● ● ●● ● ●

●●● ●● ●● ●● ● ● ● ●● ●●●●● ●●●●●●● ●●● ●●● ●● ●● ●●●●
● ● ● ●●●

Core
Firefox
MailNews Core
SeaMonkey
Toolkit
other

●

●

●

●

●

●

id

to
ta

l

0

1000

2000

3000

4000

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

●●● ●● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●●●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●
●●●

●●●●●●
●●●●●
●●●●●●●

●

Fig. 3. Cumulative sum of bugs per project against bug-id; in the plot on the left
specifically for Firefox (see text)

cvs logs: typically, a steady proportion of bugs attract votes; not all projects
are active at the same time; and some, for instance SeaMonkey, are gradually
abandoned while others take off. The right graph focuses on bugs associated
with the Firefox project more in particular. This graph includes the bugs that

80 J.-M. Dalle and M. den Besten

were voted on by the people who voted for the 418 Firefox cvs bugs that are
represented in purple in the middle of the graph. The picture that appears is
one of a very loyal electorate. Note that we are looking at all the votes that were
cast by people who voted during the specific time window which is occupied
by the 418 Firefox cvs bugs. Normally, one would expect a certain level of
turnover among these people, implying that number of people who continue to
vote would decrease over time. Nevertheless the ratio between increase in the
number of bugs with votes and the increase in the total number of bugs looks
more or less stable. So either people continue to vote, or abandonment of the
project by some people is compensated by increased voting activity of the people
who remain. In addition, the slope might also have been influenced by a change
in the proportion of bug-ids that are attributed to the Firefox project.

5 Analyzing Bugs

Figure 4 shows the share of each project among the bugs in the cvs-set that
have at attracted at least one vote. With 418 out of 3785 bugs Firefox is far from
the most heavily represented project in this set. The most heavily represented
project is “Core”, which can be explained by the fact that “Core” concerns the
foundation of code that is common to most Mozilla projects. The SeaMonkey
project “is a community effort to develop the SeaMonkey all-in-one internet ap-
plication suite” (http://www.seamonkey-project.org/). In a sense, it pursues
a strategy that Firefox explicitly chose not to follow and it is a little ironic that
there are so many SeaMonkey bugs mentioned in commits related to Firefox
code. This may be a reflection of the fact that these siblings have a lot of code in
common. “MailNews Core” is harder to explain as this project is concerned with
code for email clients, which Firefox, in contrast to SeaMonkey, choose not to
include. “Toolkit”, finally, includes cross-platform components such as “Gecko”
the rendering engine for web-pages — which is of course important to Firefox in
particular.

Fig. 4. Pie chart showing the share of Mozilla projects among the bugs that received
bugs in our sample

http://www.seamonkey-project.org/

Voting for Bugs in Firefox: A Voice for Mom and Dad? 81

In order to compare the bugs that attract votes with those that don’t, Table 3
gives the estimations of a generalized linear model, assuming a Poisson distri-
bution for the variable totalVotes, which is a numeric variable whose value rep-
resents the total number of votes that a bug has attracted. The estimates are
based on data from a subset of about ten thousand cases, bugs for which we
don’t have complete information, very old bugs with a low bug-number and
other outliers having been removed. Please refer to [3] for a detailed description
of these variables in so far as they are not explained below.

The number of votes is statistically correlated with NumAttention, which re-
lates to the number of people who have put themselves on the CC-list associated

Table 3. Generalized linear model with Poisson distribution for dependent variable
totalVotes based on 10763 observations

Parameter Est. Std.Er [Wald 95%] χ2 Pr > χ2

Intercept 0.3231 0.1697 -0.0096 0.6558 3.62 0.057
numberOfEditsByBugReporter 0.0061 0.0029 0.0005 0.0118 4.57 0.0326
numberOfEditsByLastAssignee -0.0025 0.0014 -0.0052 0.0003 3.13 0.0771
NoSgRestriction 0.5972 0.1046 0.3922 0.8022 32.6 <.0001
numberOfTimesAssigned 0.1064 0.006 0.0946 0.1182 311.23 <.0001
bugWasReopened 0.3264 0.0264 0.3781 0.2747 153.14 <.0001
nauth 0.1799 0.021 0.1387 0.2212 73.19 <.0001
patches 0.1217 0.0032 0.1154 0.1281 1410.15 <.0001
attach patch 0.1065 0.0049 0.097 0.116 481.08 <.0001
com com -0.5699 0.0152 -0.5997 -0.54 1400.64 <.0001
comauthrate -0.2283 0.0154 -0.2584 -0.1981 220.65 <.0001
severity 0.0341 0.0131 0.0085 0.0597 6.82 0.009
priority 0.0053 0.0097 -0.0138 0.0244 0.3 0.5848
priorityNotIncreased -0.133 0.0698 -0.2698 0.0039 3.63 0.0568
priorityNotDecreased 0.1907 0.0461 0.1005 0.281 17.15 <.0001
severityNotIncreased -0.321 0.0295 -0.3788 -0.2632 118.44 <.0001
severityNotDecreased -0.4144 0.0403 -0.4934 -0.3354 105.71 <.0001
nfile -0.0068 0.0009 -0.0086 -0.0051 58.35 <.0001
dependson 0.0216 0.0075 0.007 0.0363 8.39 0.0038
blocked 0.0561 0.0037 0.0489 0.0633 232.89 <.0001
NumAttention 1.0415 0.0164 1.0093 1.0737 4018.84 <.0001
version2 1.7 1.325 0.1105 1.1084 1.5416 143.73 <.0001
version2 Trunk -0.4801 0.0285 -0.536 -0.4242 283.24 <.0001
Ltpsassign 0.0822 0.0053 0.0718 0.0926 239.27 <.0001
DuplicatesBeforeLastResolved 0.1741 0.0044 0.1654 0.1828 1531.72 <.0001
UX 0.3312 0.0454 0.2421 0.4202 53.12 <.0001
I/we 0.0537 0.0014 0.0509 0.0565 1383.95 <.0001
os3 NonWin 0.1279 0.0299 0.0693 0.1864 18.31 <.0001
OC 0.1415 0.0278 0.0871 0.196 25.94 <.0001
CO 0.424 0.0361 0.3533 0.4947 138.19 <.0001
OO 0.8045 0.0366 0.7327 0.8763 482.33 <.0001
Scale 1 0 1 1

82 J.-M. Dalle and M. den Besten

with the bug so that they can follow the progress on the bug resolution, i.e. with
the attention received by a bug.

More generaly, more votes tend to be associated with “problems” in solving a
bug and notably to neglect: patches, which counts the number of different patches
needed to solve a bug; duplicatesBeforeLastResolved, which indicates repeated
declarations of the same bug; Ltpsassign, the log of the time need for the bug to
be assigned to someone; numberOfTimesAssigned, the number of times a bug has
been assigned; or else bugWasReopened, a self-explanatory dummy variable, are
all variables of this kind. Conversely, high values for com com and com authrate,
which are indicative for a high level of activity and a lot of commitment on a
bug, are correlated with a lower number of votes: votes would be less needed
when there is enough commitment on a given bug.

Interestingly then, several variables generally relevant for the patching and
triage of bugs are not or only weakly significant here: numberOfEditsByBugRe-
porter and numberOfEditsByLastAssignee, two variables that reflect the level of
activity of the people who are most directly involved with the resolution of a
bug; severity, which reflects the current community estimate of the severity of
a bug; priority, the assessment by the community of the importance of a bug;
and dependson, the number of other bugs which have been found to depend on
a given bug.

Finally, and closer to our interest in this article, I/We, which represents the
ratio between the number of times that the personal pronouns I and We appear
in the bug thread, is highly significant: bugs patched in “I-mode” tend to re-
cieve more votes, either because people vote for their own bugs or because bug
patching in I-mode is associated with the involvement of peripheral members of
the community. The significance of OC, CO, and esspecially of OO — dummy
variables indicating that the bug reporter and the first “patcher” for that bug
stem from periphery and core (in case of OC), core and periphery (CO), or both
from the periphery (OO), respectively — tends to support the view that the
involvement of the periphery in patching a bug would be statistically associated
with more votes, even while controlling by attention, commitment, neglect, and
various other problems affecting bug patching.

In this last respect, Figure 5 is the result of an attempt to delve deeper into
the relationship between patching and voting in the context of the relationship
between periphery and core. Most of the patches are proposed by people from the
core of the Firefox community. In many cases the first patch that is proposed is
accepted as the solution for a bug. There are however a few cases in which multiple
patches are proposed before a final patch is accepted as the solution for a bug. Fig-
ure 5 focuses on bugs whose first patch was proposed by a member of the periph-
ery. We compute how many of these bugs do not receive any subsequent patches
by members from the core, relative to bugs that have received zero votes, one to
five votes, six-to-ten votes, and so further, respectively. What Figure 5 shows is
that there is a clear increase in the level of participation of core members of the
community when the number of votes increases. A possible interpretation of this
could be that votes are used by the periphery to attract the attention of the core.

Voting for Bugs in Firefox: A Voice for Mom and Dad? 83

Fig. 5. Proportion of bugs that received patches from the periphery only among all
bugs whose first patch was proposed by a member of the periphery (y-axis) against
number of votes as average over a 5-vote range (i.e. 1 = 0 votes, 2 = 1 − 5 votes,
3 = 6 − 10 votes etc) on the x-axis

6 Conclusion

When Blake Ross and Dave Hyatt initiated Firefox, they established themselves
as benevolent dictators fulfilling the volonté générale, to borrow from Rousseau,
while emphatically reserving the right to ignore the volonté de tous . However,
and contrary to acounts of voting in open source communities which tend to
present it as a method to arrive at a fair representation of the will of the com-
munity, they allowed voting as as a channel through which voices from outside
the community could be heard. Consequently, we found that most votes origi-
nate in the outer periphery. Bugs that attract most votes tend to be bugs that
are relatively neglected or bugs where the periphery is heavily involved. Hence
one can surmise that the votes were cast in order to attract the attention from
the core. It would be interesting to see whether there are additional mechanisms
apart from the votes that help the core to focus its attention.

References

1. Cox, A.: Cathedrals, bazaars and the town council (1998),
http://www.linux.org.uk/Papers_CathPaper.cs

2. Dalle, J.-M., den Besten, M.: Different bug fixing regimes? A preliminary case for
superbugs. In: Proceedings of the Third International Conference on Open Source
Systems, Limerick, Ireland (June 2007)

3. Dalle, J.-M., den Besten, M., Masmoudi, H.: Channelling Firefox developers: Mom
and dad aren’t happy yet. In: Proceedings of the Fourth International Conference
on Open Source Systems, Milan (September 2008)

http://www.linux.org.uk/Papers_CathPaper.cs

84 J.-M. Dalle and M. den Besten

4. Delbecq, A.L., Van de Ven, A.H.: A group process model for problem identification
and program planning. Journal of Applied Behavioral Science 7(4), 466–492 (1971)

5. Hirschman, A.O.: Exit, voice, and loyalty. Harvard University Press, Cambridge
(1970)

6. Livingston, J.: Blake Ross; creator, Firefox. In: Founders at Work: Stories of Star-
tups’ Early Days, Apress (2007)

7. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex
software designs: An empirical study of open source and proprietary code. Man-
agement Science 52(7), 1015–1030 (2006)

8. Masmoudi, H., den Besten, M., de Loupy, C., Dalle, J.-M.: Peeling the onion: The
words and actions that distinguish core from periphery in Firefox bug reports, and
how they interact together. In: Crowston, K., Boldyreff, C. (eds.) Proceedings of
the Fifth International Conference on Open Source Systems (2009)

9. Garcia, J.M., Edward Steinmueller, W.: Applying the open source development
model to knowledge work. INK Open Source Research Working Paper 2, SPRU -
Science and Technolgy Policy Research, University of Sussex, UK (January 2003)

10. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3),
309–346 (2002)

11. O’Mahony, S.: The governance of open source initiatives: what does it mean to
be community managed? Journal of Management and Governance 11(2), 139–150
(2007)

12. O’Mahony, S., Ferraro, F.: The emergence of governance in an open source com-
munity. Academy of Management Journal 50(5), 1079–1106 (2007)

13. Ripoche, G.: Sur les traces de Bugzilla. PhD thesis, Université Paris XI (2006)
14. van Liere, D.W.: How shallow is a bug? Technical report, Rotmon School of Man-

agement, University of Toronto, November 16 (2009)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 85–96, 2010.
© IFIP International Federation for Information Processing 2010

The Nagios Community: An Extended
Quantitative Analysis

Jonas Gamalielsson, Björn Lundell, and Brian Lings

University of Skövde, Sweden
{jonas.gamalielsson,bjorn.lundell,brian.lings}@his.se

http://www.his.se

Abstract. The health of an Open Source ecosystem is an important decision
factor when considering the adoption of an Open Source software or when
monitoring a seeded Open Source project. In this paper we assess the ecosystem
health using approaches involving domain analysis and social network analysis
of mailing lists for the Nagios project. We elaborate approaches for how
involvement of different roles can be analysed through quantitative analysis,
specifically focusing on core developers and professional providers. Our contri-
bution is a step towards a deeper understanding of professional involvement in
professional Open Source ecosystems.

1 Introduction

Before an organisation adopts an Open Source project it is important to evaluate its
community in order to make sure that it is healthy and that the project is likely to be
maintained for a long time (van der Linden et al. 2009), and it can also be the case
that a seeded Open Source project needs to be monitored. One important means in
such an evaluation is to quantitatively assess the health of an Open Source community
(Crowston and Howison 2006). A number of studies have investigated large, well
known Open Source projects through quantitative analysis, including the Linux kernel
(Moon and Sproull 2000), Apache (Mockus et al. 2002), Mozilla (Mockus et al.
2002), Gnome (German 2004) and KDE (Lopez-Fernandez 2006). Several of these
studies focus on social network analysis from different kinds of data sources such as
CVS/SVN (Martinez-Romo et al. 2008), bug reports (Crowston and Howison 2005)
and mailing lists (Kamei et al. 2008).

We have chosen to analyse social networks derived from the mailing lists of an
Open Source project. Such an analysis can reveal how active members in a commu-
nity are interacting with each other. In earlier work (Gamalielsson et al. 2009) we
adopted the approach of Kamei et al. (2008), who studied the community of the
Apache web server project, in a study of the Nagios project (www.nagios.org). Kamei
et al. (2008) studied the user and developer mailing lists for a period of six months;
three months before and after a major release of Apache. In our earlier work, we
chose to study a period of six months from January 2009 to June 2009. The aim was
to investigate to what extent core developers act as mediators within and between the
sub-communities emerging around the user- and developer mailing lists. In this work

86 J. Gamalielsson, B. Lundell, and B. Lings

we extend the earlier work by studying 22 six-month periods from January 2004 to
September 2009, and also suggesting other kinds of analyses.

Important roles in a typical Open Source project are users, developers, core devel-
opers and project leaders (Crowston and Howison 2006). The importance of core de-
velopers applies to any Open Source project as it is well established in the literature
that core developers “contribute most of the code and oversee the design and evolu-
tion of the project.” (Crowston et al. 2006). The influence of Nagios core developers
was explored in the earlier work (Gamalielsson et al. 2009), and also in this work.
Another role to consider, especially with the advent of OSS 2.0 (Fitzgerald 2006), is
the provider role. According to Fitzgerald (2006), OSS 2.0 product support is charac-
terised by “customers willing to pay for a professional ‘whole-product’ approach”.
The provider role is also emphasised in the OSS stakeholder triangle proposed by
Lundell et al. (2009). The model conceptualises an healthy Open Source ecosystem
involving different kinds of professional actors. In such ecosystems there are mutual-
istic relationships between all roles (developer, user and provider). Concerning the
provider aspect, it is evident that there are still misconceptions about support of Open
Source software (Lundell 2009), something which was identified as a myth ten years
earlier by Tim O’Reilly (O’Reilly 1999). This shows that it is important to recognise
the professional involvement in Open Source communities and that companies can
provide professional support. Of particular interest to our work is that companies can
provide different types of support to an Open Source project, including “the participa-
tion to online forums in order to keep the community alive by answering to users and
customers” (Capra et al. 2009).

Earlier research has had limited focus on professional involvement in Open Source
communities (Capra et al. 2009). One notable exception is the study of the Maemo
platform (Ghosh 2006), which reported the extent to which different companies con-
tributed to the project.

In this study we have access to informative data in the form of email addresses of
mailing list contributors. We also have access to explicit lists of core developers and
providers at the website of the project. Given this information, the purpose of our
work is to elaborate approaches for studying how these groups of individuals contrib-
ute to the community around the mailing lists. As a motivation, it has been suggested
that an organisation planning to professionally engage with Open Source needs to
assess “the health of an OS product’s ecosystem” as part of their development of an
Open Source strategy (Watson et al. 2005).

2 The Nagios Project

Nagios is a tool for monitoring IT infrastructure that has been used in many professional
organisations and mission critical systems. For example, Toland et al. (2007) found “the
Nagios availability tool to be effective in the proactive support of mission-critical radi-
ology and other clinical imaging systems.”. It has received several awards over the
years, e.g. InfoWorld’s Best of Open Source Award for both 2008 and 2009. In a recent
survey at “thegeekstuff.com” (September 2009), Nagios was voted as by far the most
popular Open Source monitoring tool. Nagios has a large base of users, with many ac-
tive contributors to the project mailing lists. The core developers of Nagios are explic-
itly listed at the Nagios website (www.nagios.org/development/ teams/core, accessed on

 The Nagios Community: An Extended Quantitative Analysis 87

Table 1. Events in the more recent version history of Nagios

Event Date
V2.0 Feb 2006
V2.2 Apr 2006
V2.3, V2.4, V1.4 May 2006
V2.6 Nov 2006
V2.8, V3.0a1 Mar 2007
V2.9 Apr 2007
V3.0b1 Jul 2007
V2.10 Oct 2007
V3.0rc1 Dec 2007
V2.11, V3.0 Mar 2008
V3.1.0 Jan 2009
V3.0.2, V2.12 May 2009
V3.2.0 Aug 2009

Fig. 1. Number of messages for different and six-month time windows starting at the month
shown at the x-axis. “Use” denotes the user mailing list for Nagios, and “Dev” denotes the de-
veloper mailing list.

21 December, 2009). Furthermore, Nagios has a number of recognised professional
providers. There are two preferred service providers (OP5, and Wuerth Phoenix) and 15
additional service partners for Nagios listed at the project website (www.nagios.org/
support/servicepartners, accessed on 21 December, 2009). The explicit lists of core de-
velopers and providers are utilised in the result analysis.

Table 1 shows the more recent version history of Nagios, which was derived from
the website of the project (www.nagios.org/news, accessed on 21 December, 2009).
The first commits on Nagios were performed as early as in the end of 2001.

88 J. Gamalielsson, B. Lundell, and B. Lings

In order to illustrate the active community of Nagios, Figure 1 shows number of
messages for 22 different and overlapping time windows for the user- and developer
mailing lists of Nagios. It is evident that there is much more activity in the user list. In
fact, the level of activity in these two mailing lists of Nagios is in the same range as
the activity of the corresponding mailing lists for the Apache webserver project for a
six month period (Gamalielsson et al. 2009).

3 Research Approach

Data was collected from the GMANE (gmane.org) archives of the SourceForge mail-
ing lists for Nagios for the period from January 2004 to September 2009. The
GMANE export interface was used to retrieve the raw mbox files for the project. For
a message, the “message-id” field was used to get a unique message identifier. The
“in-reply-to” field of a message was used, which contains the identifier for the mes-
sage it was a reply to. Each message also has a “from” field from which the name and
email address of the sender were derived. Finally, the “date” field was used to obtain
the time and date of the message.

Data cleaning was performed prior to deriving the social networks to make sure
that the same person does not appear several times using different identifiers. The
approach for doing this is similar to the approach adopted by Kamei et al. (2008).
Senders with different names but same email address were treated as the same person.
If the same name (or slight variations of the same name) appears with different email
addresses it is treated as one person, if the message content confirms this.

Two mailing lists were used: the “Nagios-devel” list, intended for development re-
lated issues; and the “Nagios-users” list, intended for problems related to the use of
the software. An undirected edge A-B in the network is created if a person B replies
to a message earlier sent by a person A. The weight of the edge is defined as the num-
ber of times A and B have interacted in the mailing lists used to derive the network,
where each edge may account for several interactions between the connected nodes.
However, in our analysis the edge weight is currently not used in the calculations.

The betweenness centrality measure has been chosen in several previous studies as
a means of assessing the health of a social network representing a community (Kamei
et al. 2008, Martinez-Romo et al. 2008). In our study it was calculated for each of the
nodes (individuals) in the network. This measure takes on values in the interval [0,1],
and quantifies the ability of a node to act as a mediator in the network (Kamei et al.
2008). More precisely, betweenness centrality reflects the number of shortest paths
that pass through a specific node. The loss of a node with high betweenness centrality
may therefore disconnect parts of the network that the node “glues” together. Be-
tweenness centrality is described in mathematical detail in Kamei et al. (2008).

4 Results

In this section we present different approaches for establishing ecosystem health that may
be of a particular interest to a potential adopter in a professional Open Source context. In
so doing, we specifically illustrate professional stakeholders in the Nagios community.

Figure 2 shows an early social network derived from six months of email corre-
spondence (before release of Nagios V2.0, from April to September 2004) in the

 The Nagios Community: An Extended Quantitative Analysis 89

Fig. 2. Social network derived from Nagios developer mailing list Apr-Sep 2004

Fig. 3. Social network derived from Nagios developer mailing list Apr-Sep 2009

Nagios developer mailing list, and Figure 3 shows the corresponding network for the
most recent six month period (April to September 2009). It can be observed that for
both periods, the network has a distributed topology indicating no single point of
“failure”. The networks for the user mailing list are also distributed, but have more
nodes. The Nagios networks (Figure 2 and 3) have a shape similar to the correspond-
ing networks for the Apache webserver project (Kamei et al. 2008).

Simple metrics showing the size of an active community is the number of nodes
and edges in the social network. By calculating these metrics for different time win-
dows it is possible to study the community dynamics. Figure 4 illustrates this for the
Nagios developer mailing list. Here we can observe a positive trend with a long term
growth in both number of nodes and edges. As expected, there is a clear correlation
between number of nodes and edges (Pearson correlation of 0.92).

90 J. Gamalielsson, B. Lundell, and B. Lings

Fig. 4. Statistics for social networks derived for different time windows for the Nagios devel-
oper mailing list

Table 2. Top nine domains for the Nagios developer mailing list. Numbers in brackets repre-
sent percentage of messages. The last row shows the top nine domains when accumulated over
time.

Win #1 #2 #3 #4 #5 #6 #7 #8 #9
Jan-04 com(29) org(17) net(14) se(8) uk(8) us(4) au(4) ru(3) de(2)
Apr-04 com(28) se(13) org(12) net(11) us(9) uk(9) de(4) au(3) ru(3)
Jul-04 com(33) se(19) org(13) us(9) net(6) au(5) de(5) uk(2) br(2)

Oct-04 com(30) se(24) org(16) us(7) de(6) au(5) edu(2) fr(1) pt(1)
Jan-05 com(27) se(23) org(17) au(6) de(6) us(5) net(4) pt(2) edu(2)
Apr-05 com(34) se(20) org(14) net(9) de(5) au(5) fr(2) hu(2) no(2)
Jul-05 com(37) se(18) org(15) net(9) de(7) fr(2) no(2) hu(2) gov(1)

Oct-05 com(23) org(17) se(17) de(13) net(10) br(4) info(2) uk(1) tm(1)
Jan-06 com(22) org(19) net(12) se(11) de(11) br(5) au(2) nl(2) no(1)
Apr-06 com(29) org(20) net(11) de(9) se(6) edu(4) au(4) br(3) nl(3)
Jul-06 com(39) org(16) de(10) net(10) se(7) edu(4) us(2) hu(2) nl(2)

Oct-06 com(34) org(22) de(15) net(8) se(6) edu(3) ca(2) at(2) hu(2)
Jan-07 com(32) org(21) de(18) net(7) se(4) edu(3) ca(3) at(2) br(1)
Apr-07 com(35) de(18) org(17) se(6) net(6) ca(2) edu(2) br(2) at(2)
Jul-07 com(29) org(21) se(14) de(14) net(4) dk(2) edu(2) ru(2) ca(1)

Oct-07 com(27) org(19) de(16) se(12) net(4) dk(3) edu(3) uk(2) fr(2)
Jan-08 com(38) de(17) org(12) se(6) fr(4) net(3) ca(3) uk(3) dk(3)
Apr-08 com(43) de(16) se(10) org(7) ca(5) net(4) fr(4) br(2) uk(2)
Jul-08 com(37) de(19) se(14) org(8) ca(5) net(3) fr(3) br(2) edu(1)

Oct-08 com(38) de(18) se(10) org(9) ca(7) br(5) fr(3) net(2) edu(1)
Jan-09 com(41) se(14) de(13) org(11) ca(6) br(5) net(3) fr(3) edu(1)
Apr-09 com(44) org(15) se(14) de(10) net(4) ca(4) br(3) fr(2) at(1)

Acc. com(34) org(15) se(12) de(12) net(6) ca(2) br(2) edu(2) fr(2)

 The Nagios Community: An Extended Quantitative Analysis 91

As earlier mentioned, the mbox files used to derive the social networks contain
email addresses for the contributors. This data makes it possible to analyse the
domain origins of messages, and assess the involvement of different groups of indi-
viduals. As an example, Table 2 shows the top nine email domains for contributed
messages in the developer mailing list over time. Each row represents a six-month
time window starting at the month specified in the leftmost column. It can be ob-
served in this case that the “com” domain is most dominant, followed by “org” and
“se” when studying all messages accumulated from January 2004 to September 2009.

As an example of how the top domains can be analysed in more detail, Table 3
shows the top five subdomains for the top five domains accumulated for all windows
over time. It can be noted that for several of the top domains there are some very domi-
nant subdomains like “nagios” for the “org” domain and “op5” for the “se” domain.

Table 3. Top five subdomains for the accumulated top five top domains in the Nagios devel-
oper mailing list

Top dom #1 #2 #3 #4 #5
com (34) gmail(8) opservices(2) zango(2) altinity(1) ena(1)
org(15) nagios(11) ldschurch(2) clewett(<1) gmane(<1) debian(<1)
se(12) op5(12) forumsql(<1) cendio(<1) dokad(<1) iis(<1)
de(12) process-zero(4) netways(1) gmx(<1) consol(<1) ederdrom(<1)
net(6) seanius(1) lordsfam(<1) gmx(<1) netshel(<1) elan(<1)

Similarly, it is possible to derive domain trees using the email addresses in the

messages for a mailing list. This can be particularly informative if there are several
levels of subdomains in an email address.

Fig. 5. Percentage of messages contributed by the core developers for the developer- and user
mailing lists of Nagios

92 J. Gamalielsson, B. Lundell, and B. Lings

The availability of mailing list data containing domain information makes it is
possible to assess involvement of a certain group of stakeholders in an OSS ecosys-
tem. As an example of this, Figure 5 shows the percentage of messages contributed
over time by the group of explicitly listed core developers in the Nagios project.
The results show that core developers in this project communicate more on
development related issues than on user related issues, and that they with some
fluctuation on average contribute to about one third of the development related
correspondence.

Another specific group of stakeholders are the providers. The percentage of
messages contributed by providers for Nagios is illustrated in Figure 6. It is evi-
dent that the providers contribute more to the developer mailing list, and it can
also be noted that the shape of the curves is quite similar (Pearson correlation of
0.59). This is partly due to the fact that one individual of the most influential pro-
vider (OP5), who contributes to both lists, is the most active contributor in the set
of providers.

Fig. 6. Percentage of messages contributed by providers in the developer- and user mailing lists

At a more intricate level, we can rank all nodes with respect to betweenness
centrality for the social networks derived from messages contributed during the
22 different time windows from January 2004 to September 2009. This is exem-
plified in Table 4 which shows what individuals that are the top 10 mediators in
the social network derived from the developer mailing list for different six-month
time windows. The number in each table cell (except for those cells in the right-
most column) represents a unique identifier for an individual. As an example,
individual 1 is top ranked in the Jan-04 window, ranked second from Apr-04 to
Jul-05, and ranked first from Oct-05 to Jan-08. It can be argued that this kind of
table reflects the sustainability of the community that actively participates in

 The Nagios Community: An Extended Quantitative Analysis 93

mailing lists. The rightmost column shows the number of new mediators in the
top 10 of a window, which have not been in the top 10 before in the table. One
general observation is that there is a constant addition of new mediators over time
and that there are only a few individuals that contribute over all time windows
(mediator 1 and 3). Mediators at lower ranks (towards 10) also tend to exhibit
lower endurance over time. For example, mediator 12 is ranked as the 8th most
important mediator for the two time windows starting in April 2004 and January
2005, and is thereafter not amongst the ten most important mediators.

Table 4. Mediator index at ranks 1 to 10 for the developer mailing list

Win #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Nnew

Jan-04 1 2 3 4 5 6 7 8 9 10 10
Apr-04 3 1 6 10 11 5 4 12 13 14 4
Jul-04 3 1 11 15 6 10 5 16 13 17 3

Oct-04 3 1 11 15 16 18 17 19 5 20 3
Jan-05 3 1 7 11 18 20 15 12 5 21 1
Apr-05 3 1 7 5 20 22 23 18 24 21 3
Jul-05 3 1 25 22 23 26 27 28 24 29 5

Oct-05 1 3 20 30 31 32 33 26 34 29 5
Jan-06 1 3 20 11 35 31 33 36 37 32 3
Apr-06 1 3 38 39 40 36 11 41 31 42 5
Jul-06 1 43 31 24 3 40 44 45 46 38 4

Oct-06 1 3 44 47 45 46 37 33 48 49 3
Jan-07 1 33 3 45 44 47 50 37 51 31 2
Apr-07 1 33 3 45 52 50 48 53 54 31 3
Jul-07 1 3 33 52 45 55 24 56 57 53 3

Oct-07 1 3 33 45 55 24 58 59 44 60 3
Jan-08 1 3 33 45 61 24 62 31 63 59 3
Apr-08 3 1 33 45 47 61 44 16 31 64 1
Jul-08 3 33 1 45 64 44 16 58 31 65 1

Oct-08 3 45 33 1 61 66 31 65 58 67 2
Jan-09 3 33 45 1 65 68 61 69 70 63 3
Apr-09 3 1 33 71 65 44 72 73 74 16 4

When studying a particular group of stakeholders and the ability to act as a

mediator, it may be better to study the ranking of each of the individuals in the
group. Table 5 illustrates this for the six core developers in the developer mailing
list over time. Like in Table 4, this kind of information gives an indication of sus-
tainability, but here with respect to a particular group of interest. In this particular
case it can for example be noted that CD1 and CD2 have been very important me-
diators in the developer mailing list community since it started, and that CD4 has
become equally important since January 2007. Results of this kind can also be
derived for the provider list.

94 J. Gamalielsson, B. Lundell, and B. Lings

Table 5. Mediator rank for the six core developers (CD1-CD6) in the developer mailing list. N
denotes total number of contributors in a specific time window.

Win N CD1 CD2 CD3 CD4 CD5 CD6
Jan-04 69 1 3 57 - - -
Apr-04 76 2 1 66 - - -
Jul-04 83 2 1 - - - -

Oct-04 93 2 1 - - - -
Jan-05 88 2 1 - - - -
Apr-05 74 2 1 - - - -
Jul-05 71 2 1 - - - -

Oct-05 96 1 2 25 7 - -
Jan-06 104 1 2 25 7 - -
Apr-06 87 1 2 14 18 - -
Jul-06 69 1 5 7 16 - -

Oct-06 84 1 2 3 8 - -
Jan-07 112 1 3 5 2 9 -
Apr-07 121 1 3 13 2 26 -
Jul-07 131 1 2 39 3 126 -

Oct-07 135 1 2 9 3 - 125
Jan-08 118 1 2 11 3 - 114
Apr-08 108 2 1 7 3 104 -
Jul-08 116 3 1 6 2 108 -

Oct-08 114 4 1 17 3 106 -
Jan-09 105 4 1 16 2 41 25
Apr-09 111 2 1 6 3 35 20

5 Conclusion and Discussion

In this paper we have presented an extended quantitative analysis of the Nagios com-
munity by performing domain- and social network analysis of mailing lists. It can be
concluded from our study that there is an increasing ability to develop useful ap-
proaches and metrics to cover the broader aspects of the OSS ecosystem. This means
that we have shown that not only the user and developer role can be analysed, but also
the provider role. This is an important contribution that can offer a more comprehen-
sive understanding of professional involvement in professional Open Source.

Specifically, the way domain analysis has been performed in the context of mailing
lists contains elements of novelty. We have proposed approaches for showing how a
specific group of stakeholders contribute to a mailing list community. In particular,
we have contributed approaches for analysing the sustainability of a mailing list
community or a specific group of stakeholders in a community in terms of mediation
of information when studying social networks derived from mailing list data over
time.

One limitation of the study is that no account was taken of the content of email re-
sponses, so that each response was equally weighted. A clearer indication of the nature
and value of responses would add value to such analyses, but would require techniques
beyond the scope of this study.

 The Nagios Community: An Extended Quantitative Analysis 95

Since quantitative research on OSS to a large extent is data driven, the results can
only be as informative as the available data sources permit. OSS projects that would
like their projects to be taken up more broadly should consider providing as informa-
tive data as possible. In fact, the community as a whole would benefit from a continu-
ous joint effort to make available informative data sources in order to be able to cover
broader aspects of the OSS ecosystem.

In healthy Open Source communities people are active and responsive to questions
during the life cycle of a software system. It is important to consider such indicators
of health prior to any organisational adoption or during the seeding of a community.
The kind of analyses elaborated in this paper serve as important means for establish-
ing the health of an Open Source community.

We are currently working on developing approaches for obtaining valuable infor-
mation about professional involvement in Open Source communities. Such informa-
tion is essential for any professional organisation wishing to better understand the
broader Open Source ecosystem.

Acknowledgement

The authors would like to thank their colleagues in the OSA-project for their encour-
agement and support. The OSA-project is financially supported by the Knowledge
Foundation (“KK-stiftelsen”).

References

Capra, E., Francalanci, C., Merlo, F.: A Survey on Firms’ Participation in Open Source Com-
munity Projects. In: Proceedings of the Fourth Conference on Open Source Systems (OSS
2009), pp. 225–236 (2009)

Crowston, K., Howison, J.: The social structure of Free and Open Source software develop-
ment. First Monday 10(2) (2005)

Crowston, K., Howison, J.: Assessing the Health of Open Source Communities. IEEE Com-
puter 39(5), 89–91 (2006)

Crowston, K., Wei, K., Li, Q., Howison, J.: Core and Periphery in free/Libre and Open Source
software team communications. In: Proceedings of the 39th Hawaii International Confer-
ence on System Sciences, p. 118.1(2006)

Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3) (2006)
Gamalielsson, J., Lundell, B., Lings, B.: Social Network Analysis of the Nagios project. In:

Open Source Workshop (OSW 2009), Skövde, Sweden, October 15-16 (2009)
German, D.: The GNOME project: a case study of open source global software development.

Journal of Software Process: Improvement and Practice 8(4), 201–215 (2004)
Ghosh, R.A.: Study on the: Economic impact of open source software on innovation and the

competitiveness of the Information and Communication Technologies (ICT) sector in the
EU (2006), http://ec.europa.eu/enterprise/sectors/ict/files/2006-
11-20-flossimpact_en.pdf (accessed December 23, 2009)

Kamei, Y., Matsumoto, S., Maeshima, H., Onishi, Y., Ohira, M., Matsumoto, K.: Analysis of
Coordination Between Developers and Users in the Apache Community. In: Proceedings of
the Fourth Conference on Open Source Systems (OSS 2008), pp. 81–92 (2008)

96 J. Gamalielsson, B. Lundell, and B. Lings

van der Linden, F., Lundell, B., Marttiin, P.: Commodification of Industrial Software: A Case
for Open Source. IEEE Software 26(4), 77–83 (2009)

Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: Applying Social Net-
work Analysis Techniques to Community-driven Libre Software Projects. International
Journal of Information Technology and Web Engineering 1, 27–48 (2006)

Lundell, B.: Being Open about the ten Open Source myths: Myth #2 is still alive! Lightning
talk presented at OpenMind 2009, Tampere, Finland, September 30 (2009)

Lundell, B., Forssten, B., Gamalielsson, J., Gustavsson, H., Karlsson, R., Lennerholt, C., Lings,
B., Mattsson, A., Olsson, E.: Exploring Health within OSS Ecosystems. In: First Interna-
tional Workshop on Building Sustainable Open Source Communities (OSCOMM 2009),
Skövde, Sweden, June 6 (2009)

Martinez-Romo, J., Robles, G., Ortuño-Perez, M., Gonzalez-Barahona, J.M.: Using Social
Network Analysis Techniques to Study Collaboration between a FLOSS Community and a
Company. In: Proceedings of the Fourth Conference on Open Source Systems (OSS 2008),
pp. 171–186 (2008)

Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software develop-
ment: Apache and Mozilla. ACM Transactions on Software Engineering and Methodol-
ogy 11(3), 309–346 (2002)

Moon, Y.J., Sproull, L.: Essence of distributed work: The case of the Linux kernel. First Mon-
day 5(11) (2000)

O’Reilly, T. Ten myths about open source software. Transcript of talk given to a group of For-
tune 500 executives (October 1999), http://www.oreillynet.com/lpt/a/2019
(accessed December 22, 2009)

Toland, C., Meenan, C., Warnock, M., Nagy, P.: Proactively Monitoring Departmental Clinical
IT Systems with an Open Source Availability System. Journal of Digital Imaging 20,
119–124 (2007)

Watson, R.T., Wynn, D., Boudreau, M.-C.: Jboss: The Evolution of Professional Open Source
Software. MIS Quarterly Executive 4(3), 329–341 (2005)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 97–104, 2010.
© IFIP International Federation for Information Processing 2010

Collaborative Development for the XO
Laptop: CODEX 2

Andrew Garbett, Karl Lieser, and Cornelia Boldyreff

Centre of Research on Open Source Software – CROSS
University of Lincoln, UK

Abstract. At the University of Lincoln, undergraduate students are given the
opportunity to take part in an Undergraduate Research Opportunities Scheme
(UROS), which allows students to not only contribute to a particular field of re-
search but also to enrich their knowledge and understanding of the chosen re-
search topic. The Centre of Research for Open Source Software (CROSS)
within the School of Computer Science at the University of Lincoln offered
UROS students the opportunity to research into the Collaborative Development
for the XO Laptop (CODEX). The aim of this project is to provide an easily ac-
cessible Open Source platform within which students are able to develop activi-
ties for the One Laptop Per Child (OLPC) XO-1 laptop, as well as create Open
Source applications and contribute to the OS Community. Under the supervi-
sion of Professor Cornelia Boldyreff, two students (Andrew Garbett and Karl
Lieser) were tasked with continuing the initial research and development under-
taken by James Munro on the original CODEX project in the previous year. The
resulting CODEX 2 project has managed to produce sufficient tutorial materials
for new students to begin development for the XO laptop and more specifically
for its Sugar interface utilising a development environment that met the re-
quirements of the project and thus resulting in a successful research outcome.

1 Introduction

The One Laptop Per Child (OLPC) scheme aims to “create educational opportunities
for the world's poorest children by providing each child with a rugged, low-cost, low-
power, connected laptop with content and software designed for collaborative, joyful,
self empowered learning. When children have access to this type of tool they get en-
gaged in their own education. They learn, share, create, and collaborate. They become
connected to each other, to the world and to a brighter future.” [14] In order to pro-
vide the learning experiences for the users of the XO 1 laptop, developers are required
to contribute their own time and effort to create useful, educational and enjoyable
applications; and Computer Science students have been identified as an excellent
source of volunteer developer effort.

The first One Laptop Per Child XO 1 laptop used an Open Source distribution of
the Linux operating system known as Fedora [11] which was coupled with Sugar
[15], a Graphical User Interface, with the aim to be as multilingual as possible
through the use of illustrative graphical icons rather than text. In doing so the XO

98 A. Garbett, K. Lieser, and C. Boldyreff

User Interface does not conform to modern operating system desktop norms; most
notably, Sugar does not contain a taskbar or ‘start menu’ but rather different levels at
which the user is able to interact with not only their own applications but also collabo-
ratively with the applications of other Sugar users on-line. The interface uses activity
based operations rather than a tree structured collection of documents and applications
and can be seen as quite esoteric at first. However, Sugar developers insist that the
interface encourages all its users to learn through experiences rather than prior knowl-
edge of similar products [15]. Therefore developers hope that likeminded individuals
will create activities that will continue the learning process and aid to a child’s educa-
tional experience.

In order to encourage further application development for the XO 1 laptop and
Sugar, the Centre of Research for Open Source Software (CROSS) at the University
of Lincoln has accepted the challenge and has been working to offer student develop-
ers within the university the opportunity to contribute to the worldwide Open Source
community that has grown around the OLPC project. The availability of this offer is
provided by the university’s Undergraduate Research Opportunities Scheme (UROS)
where undergraduate students are provided with the opportunity to gain an under-
standing of the processes and activities entailed when performing a research project.
The UROS research scheme is normally undertaken by students who will be com-
mencing their third year of study and carried out over the summer period under the
supervision of a member of academic staff at the University. The students are usually
“embedded” with an existing research group and work alongside other researchers in
the group.

The CROSS was granted funding to begin a student-led project known as Collabo-
rative Development for the XO Laptop or “CODEX” [5] and it was initialised with
the aim of bringing an easily accessible development environment to the students at
the University of Lincoln in the hope that they would also become a part of and con-
tribute to the OS community.

The initial research was undertaken by James Munro [1] at the University of Lin-
coln as part of UROS, under the supervision of Professor Cornelia Boldyreff. The
CODEX project produced a Live CD that contained Sugar development software as
well as a wiki [6] which contained tutorial information about the setup processes in-
volved and other related resources including a report to the community at the Fifth
International Conference on Open Source Systems held during June 2009 [4].

The success of the CODEX project allowed for a continuation project, aptly named
“CODEX 2”, where students in the following year could contribute by carrying forth
the original stated aims and building upon the work that had previously been com-
pleted. The CODEX 2 project was undertaken by Andrew Garbett and Karl Lieser,
with supervision provided again by Professor Cornelia Boldyreff.

The following discussion describes the aims of the CODEX 2 project (Section 2),
the evolution of objectives that occurred as it was carried out, and the accomplish-
ments that were made (Section 3). A comparison of the accomplishments is provided
thereafter (Section 4) with further work being indicated (Section 5) and finally a con-
clusion provided (Section 6).

 Collaborative Development for the XO Laptop: CODEX 2 99

2 Project Aims

The principle aims of CODEX 2 project, as initially outlined in the project brief
which was provided to students, were to follow on from the objectives of the previous
CODEX 1 project. These objectives were to investigate the OLPC and Sugar projects
in order to develop methods by which student developers and the outside community
alike, could contribute towards developing activities, i.e. applications for the Sugar
interface. These methods would be supported by producing a suitable development
environment, accompanying documentation and tutorial content that could be used in
aid of activity development. Throughout both CODEX projects, the overall aims have
remained the same and are as follows:

1. Identify a suitable development environment for Sugar activities
2. Modify and develop a development environment for student use
3. Produce tutorial content and documentation as a student aid
4. Develop example activities using the environment

Within the CODEX 2 project, there were a number of initial sub-goals identified in
order to build on the previous work completed in CODEX 1. These were to update the
Live CD which had already been produced, via providing a more up to date software
distribution and more suitable means for publication via a LiveUSB replacing the
LiveCD (Aims 1 & 2); and to use the software provided on the LiveUSB to develop
further activities for Sugar and then produce tutorial content and documentation on
how to do so (Aims 3 & 4).

3 Project Process and Accomplishments

As proposed and abstracted from a brief provided to the students, the CODEX 2
project was envisaged to involve three main phases, these being:

• Investigation phase, whereby background research on all areas of the project
could be accomplished, including OLPC, XO Sugar Software and results
achieved in previous CODEX project

• Development phase, allowing the CODEX LiveCD to be updated into a more
enhanced version on a more suitable medium, LiveUSB

• Trial and Evaluation phase, where by applications could be developed using
the deliverable from the previous phase, and production and updating of the
current tutorial guide and documentation could take place

Many of the initial presumptions from the brief, which further detailed the outlined
continuation of the original CODEX project, were soon found to be unwarranted once
the research commenced. The key change that is noted from the main phases of the
project above was the discovery of work relating to the development of software
which already allowed implementation of LiveUSB type mediums; these being
“Sugar-on-a-Stick” and “Fedora Edu Sig” which are discussed later.

Details of how the research actually progressed was recorded in the blogs that were
kept by the two CODEX 2 student researchers. This was accomplished through the

100 A. Garbett, K. Lieser, and C. Boldyreff

use of Lincoln University Blogging system [2] [3]. These have provided a public re-
cord of the research and development of the project, thus producing a useful resource
for future participants in the CODEX project.

Collaborative software technology has also been used in order to consolidate re-
sults from CODEX 1 and CODEX 2, and to manage information during the produc-
tion of the tutorial content and further documentation. These came in the form of the
project Wiki [9] which allowed for the information produced within the blogs and via
research to be filtered. Additionally an online repository Git Hub [12] was used for
storage of documentation and produced software; such as activities that could be
managed and stored.

Before the start of the CODEX 2 project, the student researchers’ knowledge in the
area of open source operating systems and subject areas of the project was limited,
and so during the start of the research, time was spent investigating and learning
within four main areas:

1. Understanding and using Linux; in particular Ubuntu and Fedora
2. Understanding and learning to script in the Python Programming Language
3. Testing the required software for emulation and porting operating systems to

USB devices
4. Investigating CODEX 1, OLPC & Sugar projects, and other background re-

search

In addition to the initial research into the above areas, both researchers made contact
with the online community, thus creating working ties whereby additional help and
support could be obtained in the later stages of the research. It soon became clear after
the initial investigations began that the OLPC and Sugar projects had made substan-
tial progress from the previous summer’s research reported on the original CODEX 1
project, and that much more information and online community presence was now
available.

A number of discoveries were made during research and contact with the online
community which meant that there were already materials available to begin develop-
ing a LiveUSB. The first discovery was the release of “Sugar on a Stick” [15], which
officially allowed the online community to download and create a version of the
Sugar software on a USB storage device.

The second important discovery was finding that Sugar had been included in the
Fedora Linux distribution which allowed users to directly download Sugar through
the Fedora Package Management System. Finally the Sugar Project had made sub-
stantial progress with their online presence, providing an abundance of information on
all aspects of Activity and Sugar Interface Development, and availability of “Sugar
JHBuild”, a repository of the latest Sugar Interface source code.

These discoveries meant that some of the initial CODEX 1 project outputs had now
become obsolete; such as the Ubuntu LiveCD. It could be replaced by either “Sugar
on a stick” or a Fedora installation with Sugar installed, which could also be ported to
a USB drive with ease. The research focus now shifted due to the option of obtaining
a built version of Sugar or its latest released source code online, coupled with the
availability of an abundance of tutorial content in helping to develop for Sugar. Atten-
tion was now being directed to a related and complementary project, as proposed by

 Collaborative Development for the XO Laptop: CODEX 2 101

Fig. 1. Fedora Edu Sig Logo

some of the online Fedora / Sugar development community, called “Fedora Edu Sig”
[10]. The project logo is displayed in Fig.1.

The “Fedora Edu Sig” project is an educational “spin” of the Fedora project where
software is being developed, which includes Sugar pre-installed for easy use to port to
USB devices (Fig.2.); along with developing tutorial information on how to download
and install. These goals fell in line with the objectives outlined in the CODEX
projects; and so the remaining time was spent helping the current developers of the
“Fedora Edu Sig” to build, port and test the software in preparation for its final
release.

Fig. 2. Edu Spin Emulating Sugar

Although much of the information on the areas covered thus far is available online,
time was needed to locate and compile information into a meaningful resource. There
was no single central on-line source that could point student researchers and develop-
ers who had objectives such as the CODEX 2 project in the right direction. Although
tutorial content for activity developers was located, some of the current tutorial con-
tent already developed needed more explanation for entry level student developers,
and thus it was proposed that a primary output of the CODEX 2 project would be the
development of a knowledge base or “gateway” that student developers could use to
find all relevant links. This would be accompanied with the production of short tutori-
als that would complement existing information to allow beginner users, such as new

102 A. Garbett, K. Lieser, and C. Boldyreff

student researchers, to understand and start developing in a shorter time frame. These
new outputs now form the base of the content in the CODEX 2 section of the project
Wiki, and additional content in Git Hub, with each development being recorded in the
project blogs by each student researcher.

The CODEX 2 project team were invited to attend the Summer 09 Open Source
Schools Nottingham ‘Unconference’ [13] which allowed the student researchers to
not only participate in talks, but also to present materials, raise awareness and demon-
strate their knowledge learnt about the OLPC, Sugar Interface and Sugar on a Stick
projects by helping in the Sugar (OLPC) presentation. Both student researchers par-
ticipated in an impromptu video interview by other students at the Unconference [8].
The student researchers also produced a project poster for distribution at the Uncon-
ference [7].

This attendance gave the student researchers an opportunity to engage in dissemi-
nation activities normally associated with academic research and gain feedback from
a wider potential user community in schools.

4 Comparison of Work

Throughout the CODEX project lifecycle the aims have remained the same and have
been as follows:

1. Identify a suitable development environment for Sugar activities
2. Modify and develop a development environment for student use
3. Produce tutorial content and documentation as a student aid
4. Develop example activities using the environment

The CODEX 2 project aimed to take the idea of creating a development environment
and make it more accessible to students by offering a bootable persistent USB pen
drive with preinstalled software. Much like its predecessor, the CODEX 2 project’s
main output took a form of portable medium and provided a development environ-
ment for the potential student developers.

However, with new addition of the bootable pen drives the CODEX 2 project has
excelled in comparison with the initial project. This is due to the ‘Edu-spin’ USB
which can be more easily kept up to date through the use of a persistent USB drive
rather than being a ‘burn once’ CD that quickly became out of date.

Other benefits of the persistent storage include the ability to store the student user’s
files and being able to transport them with the development tools available. This is
arguably the biggest improvement yet as it allows truly portable development from
almost any computer. Another aspect of availability is the ability to install the envi-
ronment on different sized pen drives; as well as the ease at which the user is able to
do so, this allows developers to download additional software and install it within the
operating environment. As almost all modern computers used by students have USB
ports, the development of the persistent pen drive environment has meant that the
students are able to utilise the Sugar development environment with most computers
rather than having to ensure that their machine had a CD drive to boot up the original
CODEX 1 disk.

 Collaborative Development for the XO Laptop: CODEX 2 103

A disadvantage of having USB driven development is that there are some mother-
boards that do not allow the user to boot from USB, although this may be overcome
through the use of “CD Loaders” which recognise the USB device for the system. It
has also been found impossible to boot from USB on some networked computers
where the administrator has locked the BIOS settings thus disallowing the user to se-
lect ‘Boot from USB’, although this too may be overcome through communication
with network administrators. A further concern with the Edu-spin approach is that the
environment had been cut down significantly with regards to non-essential software
and driver files. This stripping of non-essential files may interfere with some student
user’s software and hardware requirements and thus reduce the effectiveness of the
USB by not including certain code libraries and drivers. Although USB drives are
limited in size, there is a good improvement on the storage space available when
compared to the original Live CD produced in the CODEX 1 project.

5 Further Work

Further development for the CODEX project may include a deployment plan in order
to provide the students of The University of Lincoln with all the resources required to
obtain the development environment. This may include the physical aspect of de-
ployment such as looking into the distribution of the necessary software from a cen-
tral or multiple locations. Other aspects concerning the deployment are areas such as
the rebuilding and updating of the development environment ensuring that software,
bookmarks and tutorial materials are relevant.

Since USB drives are expected to increase in size, users will soon be able to store
many more files on their drives. With this being the case, a future investigation could
consider any other software and files that are required to extend the effectiveness of
the current distribution.

6 Conclusions

The CODEX 2 project has been successful in meeting its project aims; and most im-
portantly, the student researchers undertaking the UROS project have gained an in-
sight into collaborative development within the wider Open Source community.
Alongside this, the students have also been given the opportunity to work with Open
Source tools and environments, and have had the chance to learn new skills such as
python development and wiki editing.

The students also attended an Open Source conference and had the chance to listen
to new and exciting ideas from Open Source developers from the open source and
education communities. Whilst undertaking the CODEX 2 project, all research mate-
rials and ideas have been recorded on two separate blogs which show the progress of
the project.

The project managed to produce an abundance of tutorial materials for new
students to use when they begin developing activities for the XO laptop as well as
providing students with an Open Source development environment which can be in-
stalled upon a persistent USB pen drive. The CODEX project will definitely provide
other students with interesting challenges and topics to research in the near future.

104 A. Garbett, K. Lieser, and C. Boldyreff

References

[1] Blog JMunro (2008), http://james.blogs.lincoln.ac.uk/?s=CODEX
[Checked September 2009]

[2] Blog KLieser (2009), http://CODEX2project.blogs.lincoln.ac.uk/
[Checked September 2009]

[3] Blog AGarbett (2009), http://andygarbett.blogs.lincoln.ac.uk/
[Checked September 2009]

[4] Boldyreff, et al.: Undergraduate Research Opportunities in OSS. In: Open Source Ecosys-
tems: Diverse Communities Interacting, vol. 299, pp. 340–350. Springer, Boston (2009),
http://www.springerlink.com/content/b54858r345437548 (Checked
September 2009)

[5] CODEX Project (2008),
http://learninglab.lincoln.ac.uk/wiki/Collaborative_Developm
ent_for_the_XO-1_laptop_%28CODEX%29 (Checked September 2009)

[6] CODEX Wiki (2008),
http://learninglab.lincoln.ac.uk/wiki/OLPC_XO-
1#2008_CODEX_1_Project (Checked September 2009)

[7] CODEX 2 Poster (2009), http://tinyurl.com/CODEX2-Poster (Checked Sep-
tember 2009)

[8] CODEX 2 Video (2009),
http://vle.hamblecollege.co.uk/course/view.php?id=1137
(Checked September 2009)

[9] CODEX 2 Wiki (2009),
http://learninglab.lincoln.ac.uk/wiki/OLPC_XO-
1#2009_CODEX_2_Project (Checked September 2009)

[10] Edu. Sig. (2009), https://fedoraproject.org/wiki/SIGs/Education
(Checked September 2009)

[11] Fedora Project (2009), http://fedoraproject.org/ [Checked September 2009]
[12] GitHub Repo. (2009), http://github.com/Kodex/CODEX-tutorial-

content (Checked September 2009)
[13] OSS Unconference (2009),

http://opensourceschools.org.uk/unconference-programme.html
(Checked September 2009)

[14] OLPC (2009), http://laptop.org/en/vision/index.shtml (Checked
September 2009)

[15] Sugar Project (2009), http://www.sugarlabs.org/ (Checked September 2009)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 105–118, 2010.
© IFIP International Federation for Information Processing 2010

Risks and Risk Mitigation in Open Source Software
Adoption: Bridging the Gap between Literature and

Practice

Øyvind Hauge, Daniela Soares Cruzes, Reidar Conradi, Ketil Sandanger Velle,
and Tron André Skarpenes

Norwegian University of Science and Technology
{oyvh,dcruzes,conradi,ketilsan,skarpenes}@idi.ntnu.no

Abstract. The possible benefits of open source software (OSS) have led or-
ganizations into adopting a variety of OSS products. However, the risks related
to such an adoption, and how to reduce these risks, are not well understood.
Based on data from interviews, a questionnaire, and workshops, this paper re-
ports ongoing work in a multi-national telecom company. The paper has three
main contributions. First, it identifies and discusses several risks related to OSS
adoption. Second, it identifies steps for reducing several of these risks. Third, it
shows how research can be used to increase the visibility of, and involve the
employees in, ongoing OSS efforts.

1 Introduction

The promise of reduced costs, increased flexibility, and independence from vendors
of proprietary products has convinced organizations worldwide into deploying open
source software (OSS) products in their production environments and integrating OSS
components into their software systems [15,16,19,20]. While a couple of studies have
looked at the benefits and drawbacks of such OSS adoption [2,24,35], few have dis-
cussed steps for dealing with related risks.

Our primary goal is to identify relevant risks and risk mitigation steps for organiza-
tions that adopt OSS products. The secondary goal of the study presented here is to
explore the opportunities for increasing organizations’ adoption of OSS. This includes
identifying potential benefits of an increased OSS adoption. The main research ques-
tions investigated in this study are:

RQ1. What are the perceived benefits of an increased adoption of OSS products?
RQ2. What are the perceived risks of such an adoption?
RQ3. What steps may organizations take to reduce these risks?

The study presented in this paper was partially conducted at Telenor, a large inter-
national telecommunications company. Telenor's Norwegian IT division has already
adopted some OSS products, but it is currently looking into increasing its adoption.
However, to avoid the possible pitfalls of OSS adoption, Telenor IT wanted to iden-
tify (1) the benefits s and risks which are relevant to their context and (2) how to deal
with potential risks. To support Telenor in finding the answers to these questions, we

106 Ø. Hauge et al.

have conducted a study consisting of semi-structured interviews, a questionnaire with
86 responses, and three workshops.

2 Related Literature

OSS can be adopted in different ways. In [19] we show that OSS can be adopted
through deploying OSS products, using OSS CASE tools, integrating OSS compo-
nents, participating in the development of OSS products, providing OSS products, or
through using OSS development practices. Grand et al. [18] present a four level
model for resource allocation to OSS. In a company perspective, the four levels are
(1) company as a user of OSS software, (2) OSS software as complementary asset, (3)
OSS software as a design choice, and (4) OSS compatible business mode. This paper
focuses on the deployment of OSS products (like operating systems, database serv-
ers, application servers etc) within in a company at level 1 or 2 in Grand et al.'s model
for resource allocation. The following sections are mainly based on a systematic
literature review focusing on OSS adoption [19].

2.1 Possible Benefits of OSS

The literature discusses several possible benefits (B) of OSS adoption. However,
some of these benefits may be perceived as drawbacks as well [35]. Cost cuts (B1)
are, for instance, frequently mentioned as a benefit of OSS adoption, while hidden
costs (R1) are mentioned as a risk.

Cost cuts (B1): OSS has been claimed to enable costs cuts through for instance re-
duced license fees, hardware requirement, scaling costs, etc. [2,14,24,33].

Independence from vendors of proprietary products (B2): The adopter of OSS
may also get increased freedom from vendor lock-in and increased influence on pro-
viders of both proprietary and OSS products [2,5,6,23,24].

Simplified procurement and license management (B3): The majority of OSS prod-
ucts tend to come with only a few different licenses and without licensing fees. This
may simplify the procurement of the software and the licensing of derivative products
[23,28].

Software reuse (B4): Through adopting software products that are developed, tested,
and used by others, we may gain the benefits of software reuse. This includes ex-
tra/new functionality, increased R&D and innovation, improved quality (e.g. reliabil-
ity, security, performance, defect density) and increased productivity [2,5,6,14,25,34].
OSS may also contribute to increased standardization [1,21] or to establishing de-
facto standards if no standards exist [23].

High availability (B5): OSS products are most often easily available together with
source code and trustworthy information about the products’ true state [22,23,35].

Community support (B6): This openness may lead to increased collaboration be-
tween community members [2,24]. The community might also provide free mainte-
nance and upgrades of the software together with user support [5,24,33].

 Risks and Risk Mitigation in Open Source Software Adoption 107

2.2 Potential Risks of OSS Adoption

There are also risks (R) related to adopting OSS but not all organizations consider
them, as there are organizations adopting OSS without performing any cost/benefit
analysis [35]. There are no papers that explicit focus on potential risks of OSS adop-
tion, but the literature mentions several possible drawbacks of OSS adoption.

Hidden costs (R1): Adoption of OSS products is not without costs: It may be time-
consuming to evaluate them [31]. Adoption may involve user training and configura-
tion [24,31]. We might need to spend resources on community participation [23].
Many organizations would need premium professional support [14,35].

Lack of products (R2): While there are many OSS products available, there may still
be a lack of products with specific functionality [6,24]. The quality of these products
can also be questionable [14,35]. OSS products may furthermore suffer from limited
standardization and compatibility with document formats or with versions of other
software products [2,24,25].

Lack of providers, expertise, and support (R3): Despite the significant adoption of
OSS, there may still be a lack of expertise and support for specific products
[2,24,31,35]. The lack of professional providers may also introduce unclear liability
and uncertainty about the longevity of OSS project as OSS projects may lack road-
maps and documentation [2,24]. Holck et al. hypothesized that this lack of traditional
vendor-customer relationship could stop the adoption of OSS [22].

Customization needs (R4): It may be necessary to customize the OSS products to fit
them into the context in which they are going to be used [1]. When changing an OSS
product we may get a maintenance responsibility [36] as these changes must be up-
dated when more recent versions of the software are adopted. When these situations
arise, the adopter must decide to follow the new releases or ensure backward com-
patibility with his own changes [23].

Licensing issues (R5): The variety of OSS licenses available is confusing, as there is
a lack of guidance on how to interpret them [31]. When adopting OSS and when inte-
grating it into derivative software systems, it may be challenging to combine code
under an OSS licenses with proprietary licenses and APIs [23].

2.3 Risk Mitigation in OSS Adoption

As there are few publications discussing risk mitigation (RM), this section describes
literature on success criteria and enabling versus inhibiting factors of OSS adoption.
Some of these issues may contribute to reduce the risks of OSS adoption.

Employee attitude, awareness, and skills (RM1): A positive employee attitude to-
wards OSS and the OSS ideology can enforce the adoption of it [4,5,16,25,34]. The
adoption of OSS should also be made visible, so that end users have an awareness of
the technology adoption [6]. Finally, if employees have the necessary skills and ex-
perience with OSS, the probability of a successful adoption will increase [6,16,32].

108 Ø. Hauge et al.

Management support (RM2): Management support is also important for OSS adop-
tion [6,14,16]. Management should provide resources for driving the adoption, and a
clear plan for analysis, testing, and pilot projects [6, 13, 16].

Access to support (RM3): The quality of the OSS components [29] is an important
factor for a successful adoption, and for many adopters it is also necessary to have
access to professional support [6,13].

Success stories (RM4): It is furthermore an advantage if the products have been suc-
cessfully adopted by other companies [16]. Lack of such success stories or lack of
other users could easily complicate the OSS adoption [2,4].

No lock-in (RM5): An organization may have a hard time adopting OSS if they are
locked in by industry-wide purchasing agreements and standards for IT or already
have a coherent stable IT infrastructure based on proprietary or legacy technology
[6,16]. The costs related to moving away from such a lock-in situation can signifi-
cantly impede the adoption of OSS [4,17,35].

3 Context and Research Method

Telenor is currently among the ten largest mobile operators in the world Telenor
Norway IT (hereafter Telenor IT) is the information technology and software support
division under Telenor’s Norwegian branch. It has about 380 employees that together
with several external partners develop, maintain, and support more than 500 IT sys-
tems. Open Source 2010 is an Telenor IT project aiming at exploring the opportuni-
ties of adoption of OSS products like databases, application servers etc.

Telenor IT’s motivation for conducting this study was threefold. First, Telenor IT
wanted to increase the awareness of OSS and its Open Source 2010 project within the
organization. Second, it wanted to get feedback from and involve the employees in
the project’s work. Third, it wanted to weaken the grip providers of proprietary prod-
ucts have on Telenor, and reduce Telenor's expenses on licensing and support.

This study consisted of four main steps. As part of a systematic literature review
on OSS in organizations, we reviewed the literature for evidence on the perceived
benefits and drawbacks of OSS [19]. Some of the output from this review was used as
an input for Section 2. Next, we conducted semi-structured interviews with four
employees. The respondents had different positions (developer, system specialist,
chief engineer, and manager) within different parts of Telenor IT (mobile, landlines,
data warehouse & business intelligence, and customer relation management). They
had been with the company from two to nine years. The interviews were carried out
through 30 minutes face-to-face sessions that were recorded and later transcribed.
Based on these interviews, we developed a questionnaire. The questionnaire was pre-
tested by colleagues at the university and nine employees from different parts of
Telenor IT. The questionnaire was written in Norwegian, and the final version con-
tained 42 open and closed questions (using 5-point Likert scales). However, we will
focus mainly on the questions below:

 Risks and Risk Mitigation in Open Source Software Adoption 109

Q1. Which advantages and disadvantages do you see with the use of OSS in
Telenor IT? (See Table 1);

Q2. For which reasons do you think Telenor IT should select OSS instead of pro-
prietary products and vise versa? (See Table 2);

Q3. Why should Telenor IT increase its use of OSS? (Open);
Q4. Which risks do you see with increased use of OSS in Telenor IT? (Open);
Q5. If the use of OSS in Telenor IT should be increased, what should do Telenor

do to facilitate this? (See Table 3);
Q6. Where would an increased use of OSS be appropriate? (Open).

The questionnaire was conducted with a sample of 140 employees from Telenor IT
that were handpicked by our local contact. This sampling technique was used to get a
representative sample of employees from all relevant parts of the organization while
avoiding employees who were not involved in development and/or support of
Telenor’s software systems. In total 86 respondents completed the survey, giving a
response rate of over 60%. The analysis of the data consisted of descriptive statistics,
statistical tests, and grouping of about 200 comments from the open questions.

After the analysis, we held three workshops. First, we presented the results from
the questionnaire to several employees from various parts of the organization. Second,
three project members and three employees with experience from different operating
environments participated in a discussion around (1) benefits, (2) risks, and (3) ap-
proaches related to increasing the organization’s adoption of OSS. These three ses-
sions were performed as ”KJ sessions” [3], where each of the workshop participants
used post-it notes to write down their concerns and put these notes on a white board.
In total 152 post-it notes were collected. Then the participants re-arranged related
notes into groups as a collaborative effort. These groups of related issues were then
discussed. Finally, we presented these results during a third dissemination workshop,
open to all employees at Telenor IT.

4 Results

Results presented in this section were grouped according to the research questions
(RQ) stated in the introduction. In the following, we summarize the main findings
related to these RQs, while keeping a focus on the results most relevant to Telenor.

RQ1. Based on the interviews, questions (Q1, Q2, Q3), and the workshop, we
have identified the main perceived benefits (BT) of OSS adoption;

RQ2. Based on the interviews, question (Q4), and the workshop, we have identi-
fied several potential risks (RT) related to adoption of OSS;

RQ3. Mainly through the workshop and the interviews, but also questions (Q5,
Q6), we have identified steps for (1) facilitating the adoption of OSS and
(2) steps for mitigating (RMT) some of the risks related to it.

4.1 RQ1: Potential Benefits of OSS

Reduced costs (BT1): Cost reduction is the most cited advantage of OSS adoption.
Table 1 shows that the respondents to the questionnaire agreed (Q1.1). Several re-
spondents stressed the value of reducing the expenses on support agreements and

110 Ø. Hauge et al.

claimed that OSS could contribute to this. One respondent suggested that they could
simplify the administration of (proprietary) software licenses. Moreover, Table 2
shows that the respondents expected both development and maintenance costs to be
lower with OSS (Q2.1 and Q2.2). Finally, if Telenor could standardize on one OSS
platform, the IT department could increase its productivity and reduce costs from run-
ning on a more homogeneous and cheaper hardware platform.

Independence from vendors of proprietary products, and the ability to apply
pressure on providers (BT2) was frequently discussed by interviewees, workshop
participants and many of the responses to Q3 (see also Q1.2 and Q1.3). They high-
lighted in particular the ability to use OSS to apply pressure on their vendors in order
to make them lower their license and support fees. As one respondent wrote “[when
using OSS, one] may chose to pay for support if you actually need it (often one does
not need it)” (Q3).

Attractive and future-oriented technology as a motivational factor for the em-
ployees (BT3): Several popular technologies are offered as OSS, and the interviewees
mentioned that using OSS could improve the Telenor brand (Q2.4), be a source of
motivation for current employees (Q1.4), and be a way to attract skilled employees.
The ability to work with new and open technology was also perceived as being fun by
the workshop participants. In fact, quite a lot of attention was drawn to this issue.
OSS technology was also considered to be the future for several areas. For instance,
one workshop participant wrote that “OSS is future oriented and it enables access to
competency”. A respondent in the questionnaire wrote that “OSS is becoming the in-
dustry standard in many areas” (Q3).

Ease of use through access to information and the source code (BT4): The re-
spondents suggested that OSS technology was easier to use because of the high avail-
ability of the software, its source code, and related information (see also Q1.5, Q2.3,
and Q2.5). One workshop participant wrote that because of this availability “[it] is
easier to make prototypes and to evaluate the software”. A respondent in the ques-
tionnaire wrote: “it is better to modify what is meant to be modified rather than buy-
ing a final package and doing extra development around it [the package]” (Q3). The
workshop participants furthermore believed that the flexibility and openness of OSS
could give them better and more innovative solutions. Easy access to technology,
development tools, together with the technical support, documentation, and other re-
sources, could further reduce the effort needed to develop and maintain their systems.

Table 1. Potential advantages and disadvantages with OSS in Telenor IT (Q1)

ID Statement Mean STD
Q1.1 Reduced licenses costs 4.56 0.86
Q1.2 Independence from providers 4.48 0.88
Q1.3 Ability to apply pressure on providers 4.41 0.93
Q1.4 Motivational factor for the employees 4.16 0.99
Q1.5 Access to read and modify source code 4.10 1.01
Q1.6 Confidence and experiences with pro-

vider
3.26 1.18

Q1.7 Existing contracts with providers 3.19 1.28

 Risks and Risk Mitigation in Open Source Software Adoption 111

Having access to the communities behind the OSS products was seen as an advantage,
not only to get support, but also to influence the development of the products. One
responded: “OSS products are quite often having active communities with dedicated
users who are more than willing to help” (Q3). OSS communities were considered to
be more accessible than vendors of proprietary products.

Table 2. Reasons for selecting OSS versus proprietary software (Q2)

ID Statement Mean STD
Q2.1 Reduced maintenance costs. 4.15 1.15
Q2.2 Reduced development costs. 4.05 1.13
Q2.3 Possibility to run pilot-tests (alpha/beta tests) before release. 3.94 1.2
Q2.4 Improve Telenor’s brand and reputation. 3.76 1.17
Q2.5 Adaptability to existing systems. 3.68 1.32
Q2.6 Development time. 3.64 1.13
Q2.7 Influence on provider (add new or changed functionality). 3.64 1.43
Q2.8 Availability of external expertise and experience. 3.48 1.35
Q2.9 Availability of support during development. 3.32 1.33

Q2.10 Available information (manuals etc.). 3.24 1.43
Q2.11 Functional requirements (adequate functionality) 3.19 1.17
Q2.12 Non-functional requirements (quality, reliability, security,

scalability, performance, usability etc.
2.95 1.26

Q2.13 Availability of support in production 2.87 1.38

4.2 RQ2: Potential Risks and Drawbacks

Lack of support and expertise (RT1): The lack of a professional provider is not
necessarily a problem. However, the lack of support and expert advice, in particular
for complex problems, was considered as one of the major challenges with OSS. One
of the interviewees feared that they would need to increase their internal resources
quite dramatically. Telenor requires professional support 24/7. However, providers of
such support are not necessarily available for all OSS products. One workshop
participant pointed this out and wrote that “[there are] few/no international support
organizations (for instance when you need 24/7 operation)”. Moreover, since the dif-
fusion of OSS products is not always as large as their proprietary equivalents, the
workshop participants feared that it could be difficult to get hold of both expert con-
sultants and highly skilled employees.

Hard to select the right OSS product (RT2): The respondents expressed an uncer-
tainty related to whether there existed OSS equivalents for some of the largest and
most advanced systems they had. The respondents moreover feared that existing OSS
products were immature and would miss key functions. One respondent wrote that
“there are in some cases no OSS products, or no OSS products which are good
enough, for solving certain problems” (Q4). The products may also lack support from
a viable community and they may therefore have an uncertain future. Adopting such
immature or unsupported products can introduce significant costs further down the
road, and it was therefore considered important to find the right products.

112 Ø. Hauge et al.

Change and hidden costs (RT3): OSS products would in most cases be acquired and
maintained somewhat differently than proprietary products. Most OSS products are
available over the Internet and do not have the same number of providers pushing and
supporting the products. These changes may improve the way the organization works
but any change introduces challenges, uncertainty, and at least some costs. A work-
shop participant wrote that “[Telenor] has to find and relate to new partners”, some-
thing which would include both change and cost. The respondents were uncertain
whether the cost savings from reduced licensing and support fees would outweigh the
cost related to switching technology and changing the way they worked, as some of
them described the total cost of adopting OSS as “foggy”. One respondent wrote that
“replacing familiar technology” (Q4) could be a potential risk. Replacing existing
technology would also make current expertise less valuable.

Unclear liability and responsibility (RT4): As of today Telenor’s partners have
relatively clearly defined responsibilities. Changing these relationships was consid-
ered an important challenge. One responded that it could lead to “unclear distribution
of roles between provider - customer [Telenor]” (Q4). Most OSS products lack a
clear (professional) vendor and the respondents feared ending up in situations with
unclear liability, where they were unable to influence the provider, and where they
would not get sufficient support. One respondent wrote “[we have] no provider to
make responsible in situations with critical errors” (Q4). Such situations could put a
significant strain on Telenor’s internal resources.

Uncontrolled adoption and modification (RT5): Changes, or potential anarchy,
related to the acquisition of software was discussed to some length in the workshop.
This is because (1) there are a lot of easily available OSS products (in many different
versions), (2) there is a lot of hype around many of these products, and (3) they are
very easy to modify. Some participants feared that this could lead to uncontrolled
adoption and modification of new OSS products. This would give Telenor a diverse
and expensive to maintain a software portfolio. One workshop participant wrote that
he feared that “one [Telenor employees] selects products because they are OSS, not
because they solve our problems”. A respondent in the questionnaire feared what he
called “product anarchy” meaning that the selected a lot of products without really
making sure that they were the right ones.

4.3 RQ3: Mitigating the Risks Related to OSS Adoption

Place responsibility, dedicate resources, and ensure support (RMT1): To make
sure that Telenor IT has the necessary resources to develop, support, and operate OSS
based systems, it was considered important to place the responsibility for the adopted
products between internal resources and external partners. This was highlighted by
several participants in our study. One of them wrote that “[Telenor must] coordinate
with development, internal operations, and external [service] providers”. This could
involve increasing the internal resources or allocating employees to, not only support
OSS solutions, but also to developing new solutions and monitoring the OSS commu-
nity. It may also involve dealing with new partners, or driving existing partners into
adopting new technology. The participants in the study expressed particular concerns
about ensuring support for the really difficult problems.

 Risks and Risk Mitigation in Open Source Software Adoption 113

Start pilot projects (RMT2): The respondents agreed that it was important not to
rush the adoption of OSS, but promoted instead a cautious, stepwise approach to OSS.
According to them, Telenor IT had to gain experience with one project at the time
through identifying projects where OSS would be give real benefit. These pilot pro-
jects could then be used to illustrate the potential and true benefits of OSS within the
organization. The respondents acknowledged that pilot projects were important not
only to illustrate the potential of OSS products, but also to have a more moderate
learning curve and limit the consequences of problems. One workshop participant
wrote that “[Telenor should] incrementally introduce OSS and consider new/revise
measures based on our own experience”.

Increase awareness and make the OSS initiative visible (RMT3): The first thing
which could be done, is making the organization’s current and planned use of OSS
visible to, not only its employees and management, but also its partners (see Table 3).
In the workshop one participant wrote that “[Telenor IT must] make the concrete ad-
vantages visible”. By identifying successful cases of OSS adoption and making these
visible, they may create a positive attitude towards OSS and show that it is a viable
option for the future. Moreover, it was considered important to explain why Telenor
IT is planning to increase its adoption of OSS.

Include OSS in strategies supported by top management (RMT4): Finally, the
adoption of OSS should not be left up to chance and the individual employees’ taste.
A workshop participant wrote that “[Telenor] should not allow the system or project
select freely [it should rather] be part of a strategic technological decision”. To en-
sure that the OSS adoption was planned, it should be part of a strategy where (top)
management, developers, operations, and support were involved in the decision mak-
ing process. It was furthermore considered important to assess the benefits versus the
costs in each specific case. Management support was considered important because
Telenor IT mainly used OSS products in risk-free development environments. The
consequences of failure in production environments is obviously higher, and it was
therefore perceived important to ensure the support of management.

Table 3. Possible steps for increasing the adoption of OSS (Q3)

ID Statement Mean STD
Q3.1 Start one/several pilot projects to show possible effects of OSS 4.54 0.85
Q3.2 Make the OSS initiative visible for all employees 4.48 0.63
Q3.3 Make visible the OSS already present in the organization 4.44 0.85
Q3.4 Top management commitment to the OSS initiative 4.42 0.95
Q3.5 Make someone responsible for monitoring selected OSS domains 4.15 0.93
Q3.6 Improve both internal and external knowledge management (e.g.

with a Wiki, message boards, mailing lists, blogs or similar)
4.14 0.94

Q3.7 Hire new employees with OSS experience 3.96 0.99
Q3.8 Hire external consultants with updated expertise 3.06 1.19
Q3.9 Restructure the business model of Telenor IT 2.74 1.12

114 Ø. Hauge et al.

Table 4. Possible risks and steps for reducing these risks

Possible risk reduction steps Potential risks of
adopting OSS products From the Telenor case From the

literature
OSS products may lack
(professional) support.
There may be limited
access to expertise, and
situations involving
unclear liability and
division of responsibility
may occur.
(R3+RT1+RT4)

- Place responsibility at an early stage (RMT1)
- Make sure that your service providers support
OSS products (find new ones or ask existing
ones to extend their service offering) (RMT1)
- Increase/dedicate internal resources to OSS
(RMT1)
- Increase employee skills (hire new or train
existing) (RM1+RMT1)

- Encourage
local “OSS
champions”
[16]

Hidden costs related to
adopting OSS, replacing
existing technology, and
changing current proc-
esses. (R1+RT3)

- Conduct risk assessments
- Execute pilot studies and a planned stepwise
adoption (RM2+RMT2)
- Adopt (only) products which show a clear
added-value and have a proven track record
(RM4&5)

- Evaluate the
total costs of
ownership of
OSS products
in your own
context [35]

Hard to select the right
product due to (1) lack
of products or products
with matching function-
ality and/or quality, and
(2) the amount of prod-
ucts and information
available. (R2+RT2)

- Adopt only mature products which give clear
benefits (RMT4)
- Dedicate personnel to monitoring the OSS
community and selecting OSS products (RMT1)

Research
suggests sev-
eral methods
for selecting
OSS products
like for in-
stance
[7,9,30]

Uncontrolled adoption
and modification, due to
the high availability of
OSS products, their low
purchase price, and the
access to these products'
source code. (RT5)

- Have a plan/strategy behind adopting the vari-
ous OSS products (RMT4)
- Adopt products which show a clear added-
value and have a proven track record (RM4&5)
- Standardize on a limited set of technolo-
gies/products (RMT4)
- Begin with a few products (e.g. operating sys-
tems, databases, and server applications)
- Require that new products should run on OSS
platforms when writing call for tenders and re-
quirements specifications
- Keep track of the adopted software
- Create guidelines for adoption
- Dedicate personnel with responsibilities for
OSS adoption (review and monitoring) (RMT1)
- Conduct risk assessments
- Involve management, development, operation,
support, (and external partners). (RMT1)

- Define a
strategy for
maintenance
and modifica-
tions [35]
- Set up a
central soft-
ware reposi-
tory for
adopted prod-
ucts
[10]

 Risks and Risk Mitigation in Open Source Software Adoption 115

5 Risks and Risk Mitigation Strategies

Our empirical results confirm many of the findings from the literature review pre-
sented in Section 2. Through the literature review and our study we have identified
several risks related to the adoption of OSS products. Table 4 shows an aggregation of
the results from this study and from the literature, in a first step towards a risk mitiga-
tion approach in OSS adoption. Most of these are already presented in Section 2 or 4.
The table is divided in three main columns. The first column lists the main risks iden-
tified in the study. The second column describes possible steps for mitigating these
risks. This is once more based in our study and the papers that implicitly or explicitly
discuss these steps. The third column describes other possible steps that were only
identified in the literature.

Besides the results shown in Table 4, we identified some general steps for reducing
the risks related to adoption of OSS products such as: (1) increasing the employees'
skills (hire new or train existing) (RM1), (2) increasing the employees' attitude to-
wards, and awareness of, current adoption of OSS and ongoing OSS initiatives
(RM1), (3) ensuring top management commitment to the OSS initiative (RM2), and
(4) avoiding going from a proprietary to an OSS lock-in (RM5).

The literature also mentions licensing and customization of the OSS products as
po-tential risks related to OSS adoption. These risks were not discussed in the table or
in our results. First, Telenor IT's Open Source 2010 project did not consider licensing
issues to be a problem, particularly since Telenor is not going to distribute its soft-
ware. Issues related to releasing the source code were therefore not relevant. How-
ever, it was suggested to seek legal advice to approve a set of OSS licenses, and adopt
only prod-ucts with these licenses. Second, customization needs was not given much
attention. One possible explanation could be that Telenor IT focused on software like
operating systems, database servers, and application servers. These products
constitute a “soft-ware infrastructure” and are mainly configured and deployed. Cus-
tomization problems is perhaps more relevant for other kinds of software products or
components.

6 Limitations of This Study

The sampling for the questionnaire was conducted by our contact person at Telenor.
This may pose a possible threat to the validity of our results, since the sample and
respondents may have more experience with OSS than the rest of the organization.
However, our contact has long experience from the company, we got a high response
rate, and the respondents reflect the organization at large. Moreover, when we pre-
sented the results at the workshops the audience was allowed to participate, and we
did not get any feedback indicating that the results were wrong.

The study benefits from data triangulation through the use of interviews, a ques-
tionnaire, and workshops. However, we conduct only four interviews of 30 minutes
each. The study would benefit from further, more in-depth interviews.

There are many different OSS products available, and these products do not share
the same properties. The same holds for proprietary products. Asking about benefits,
risks, and steps for reducing risks related to an increased OSS adoption is therefore

116 Ø. Hauge et al.

somewhat problematic. We must have in mind that the answers reflect the individual
respondent’s perception of OSS and proprietary products. To get more precise data one
would need to compare individual OSS products against specific proprietary products.

7 Conclusion and Future Work

Based on an extensive literature review and a study from a telecom company (Telenor
IT Norway), we have identified several risks related to the deployment of OSS
products. However, the paper's main contributions are the identified steps for reduc-
ing these risks. In addition, we establish a link between our results from a company
and results the literature in Section 5. There are limitations associated with the find-
ings from this paper. Nevertheless, we believe the results of this study are a first step
towards focusing the research, on risks of OSS adoption, on more measurable ap-
proaches for such evaluation. Finally, our study focuses on bridging the gap between
OSS research and practice by focusing on topics highly relevant to practitioners. The
study is furthermore an example of how researchers and practitioners may benefit
from closer collaboration.

As future work we intend to follow the process of adoption of OSS at this company
to further investigate and measure the real effect of the adoption of OSS. A particular
focus will be directed towards the relationship between the Telenor IT’s internal de-
velopment and support, and their partners. We also acknowledge that many of the risks
and mitigation steps described in this paper are similar to the ones described in the
literature of adoption/diffusion of general information technology e.g. [12, 26]. This
research could also lend research on OSS adoption valuable support (see e.g. [13]). We
intend to do more research in order to investigate these issues, so we can focus the OSS
research on the issues that are mostly related to the OSS adoption, and not part of the
general issues related to general adoption/diffusion of information technology.

References

1. Adams, P., Boldyreff, C., Nutter, D., Rank, S.: Adaptive Reuse of Libre Software Systems
for Supporting On-line Collaboration. In: Feller, J., Fitzgerald, B., Hissam, S.A., Lakhani,
K.R., Scacchi, W. (eds.) Open Source Application Spaces: Proceedings of the Fifth Work-
shop on Open Source Software Engineering (WOSSE 2005), pp. 1–4. ACM, New York
(2005)

2. Ågerfalk, P.J., Deverell, A., Fitzgerald, B., Morgan, L.: Assessing the Role of Open
Source Software in the European Secondary Software Sector: A Voice from Industry. In:
Scotto, Succi (eds.) [26], pp. 82–87

3. Birk, A., Dingsøyr, T., Stålhane, T.: Postmortem: Never Leave a Project without It. IEEE
Software 19(3), 43–45 (2002)

4. Bonaccorsi, A., Giannangeli, S., Rossi, C.: Entry Strategies Under Competing Standards:
Hybrid Business Models in the Open Source Software Industry. Management Sci-
ence 52(7), 1085–1098 (2006)

 Risks and Risk Mitigation in Open Source Software Adoption 117

5. Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and firms to
take part in the open source movement: From community to business. Knowledge, Tech-
nology, and Policy 18(4), 40–64 (2006)

6. Brink, D., Roos, L., Weller, J., Van Belle, J.-P.: Critical Success Factors for Migrating to
OSS-on-the-Desktop: Common Themes across Three South African Case. In: Damiani, et
al. (eds.) [8], pp. 287–293

7. Cruz, D., Wieland, T., Ziegler, A.: Evaluation Criteria for Free/Open Source Software
Products Based on Project Analysis. Software Process: Improvement and Practice 11(2),
107–122 (2006)

8. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M. (eds.): Proceedings of the 2nd IFIP
Working Group 2.13 International Conference on Open Source Software (OSS 2006) -
Open Source Systems. IFIP International Federation for Information Processing, vol. 203.
Springer, Heidelberg (2006)

9. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of Open Source Software: The
QualiPSo Trustworthiness Model. In: Boldyreff, C., Crowston, K., Lundell, B.,
Wasserman, A.I. (eds.) Proceedings of the 5th IFIP Working Group 2.13 International
Conference on Open Source Systems (OSS2009) - Open Source Ecosystems: Diverse
Communities, June 3-6. IFIP International Federation for Information Processing, vol. 299,
pp. 199–212. Springer, Heidelberg (2009)

10. Dinkelacker, J., Garg, P.K., Miller, R., Nelson, D.: Progressive Open Source. In: Tracz,
W., Magee, J., Young, M. (eds.) Proceedings of the 24th International Conference on
Software Engineering (ICSE 2002), Orlando, Florida, May 19-25, pp. 177–184. ACM,
New York (2002)

11. Feller, J., Fitzgerald, B., Scacchi, W., Sillitti, A. (eds.): Proceedings of the 3rd IFIP Work-
ing Group 2.13 International Conference on Open Source Software (OSS 2007) - Open
Source Development, Adoption and Innovation, Limerick, Ireland, June 11-14. IFIP Inter-
national Federation for Information Processing, vol. 234. Springer, Heidelberg (2007)

12. Fichman, R.G.: Information Technology Diffusion: A Review of Empirical Research. In:
DeGross, J.I., Becker, J.D., Elam, J.J. (eds.) Proceedings of the Thirteenth International
Conference on Information Systems (ICIS ’92), Dallas, USA, Minneapolis, MN, Decem-
ber 13-16, pp. 195–206. University of Minnesota (1992)

13. Fitzgerald, B.: Open Source Software Adoption: Anatomy of Success and Failure. Interna-
tional Journal of Open Source Software & Processes 1(1), 1–23 (2009)

14. Fitzgerald, B., Kenny, T.: Developing an Information Systems Infrastructure with Open
Source Software. IEEE Software 21(1), 50–55 (2004)

15. Ghosh, R.A.: Study on the Economic Impact of Open Source Software on Innovation and
the Competiveness of the Information and Communication Technologies (ICT) Sector in
the EU. Technical report, UNU-MERIT (2006)

16. Glynn, E., Fitzgerald, B., Exton, C.: Commercial Adoption of Open Source Software: An
Empirical Study. In: Verner, J., Travassos, G.H. (eds.) Proceedings of International Sym-
posium on Empirical Software Engineering (ISESE 2005), Noosa Heads, Australia, No-
vember 17th-18th, pp. 225–234. IEEE Computer Society, Los Alamitos (2005)

17. Goode, S.: Something for nothing: management rejection of open source software in Aus-
tralia’s top firms. Information & Management 42(5), 669–681 (2005)

18. Grand, S., von Krogh, G., Leonard, D., Swap, W.: Resource allocation beyond firm
boundaries: A multi-level model for Open Source innovation. Long Range Planning 37(6),
591–610 (2004)

19. Hauge, Ø., Ayala, C.P., Conradi, R.: Open Source Software in Organizations - A System-
atic Literature Review. Submitted to Information and Software Technology

118 Ø. Hauge et al.

20. Hauge, Ø., Sørensen, C.-F., Conradi, R.: Adoption of Open Source in the Software Indus-
try. In: Russo, B., Damiani, E., Hissam, S.A., Lundell, B., Succi, G. (eds.) Proceedings of
the 4th IFIP Working Group 2.13 International Conferences on Open Source Software
(OSS2008) - Open Source Development Communities and Quality, Milano, Italy, Septem-
ber 7-10. IFIP International Federation for Information Processing, vol. 275, pp. 211–222.
Springer, Heidelberg (2008)

21. Hauge, Ø., Sørensen, C.-F., Røsdal, A.: Surveying Industrial Roles in Open Source Soft-
ware Development. In: Feller, et al (eds.) [11], pp. 259–264

22. Holck, J., Larsen, M.H., Pedersen, M.K.: Managerial and Technical Barriers to the Adop-
tion of Open Source Software. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS,
vol. 3412, pp. 289–300. Springer, Heidelberg (2005)

23. Jaaksi, A.: Experiences on Product Development with Open Source Software. In: Feller, et
al. (eds.) [11], pp. 85–96

24. Morgan, L., Finnegan, P.: Benefits and Drawbacks of Open Source Software: An Explora-
tory Study of Secondary Software Firms. In: Feller, et al. (eds.) [11], pp. 307–312

25. Ozel, B., Jovanovic, U., Oba, B., van Leeuwen, M.: Perceptions on F/OSS Adoption. In:
Feller, et al. (eds.) [12], pp. 319–324

26. Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)
27. Scotto, M., Succi, G. (eds.): Proceedings of The First International Conference on Open

Source Systems (OSS 2005), Genova, Italy, July 11th-15th (2005)
28. Serrano, N., Calzada, S., Sarriegui, J.M., Ciordia, I.: From Proprietary to Open Source

Tools in Information Systems Development. IEEE Software 21(1), 56–58 (2004)
29. Sohn, S.Y., Mok, M.S.: A strategic analysis for successful open source software utilization

based on a structural equation model. Journal of Systems and Software 81(6), 1014–1024
(2008)

30. Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of OSS.
In: Feller, et al. (eds.) [11], pp. 173–186

31. Tiangco, F., Stockwell, A., Sapsford, J., Rainer, A.: Open-source software in an occupa-
tional health application: the case of Heales Medical Ltd. In: Scotto, Succi (eds.) [26],
pp. 130–134

32. Ven, K., Van Nuffel, D., Verelst, J.: The Introduction of OpenOffice.org in the Brussels
Public Administration. In: Damiani, et al. (eds.) [8], pp. 123–134

33. Ven, K., Verelst, J.: The Organizational Adoption of Open Source Server Software by
Belgian Organizations. In: Damiani et al. [8], pp. 111–122

34. Ven, K., Verelst, J.: The Impact of Ideology on the Organizational Adoption of Open
Source Software. Journal of Database Management 19(2), 58–72 (2008)

35. Ven, K., Verelst, J., Mannaert, H.: Should You Adopt Open Source Software? IEEE Soft-
ware 25(3), 54–59 (2008)

36. Ven, K., Mannaert, H.: Challenges and strategies in the use of Open Source Software by
Independent Software Vendors. Information and Software Technology 50(9-10),
991–1002 (2008)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 119–129, 2010.
© IFIP International Federation for Information Processing 2010

Usability Innovations in OSS Development
– Examining User Innovations in an OSS

Usability Discussion Forum

Netta Iivari

University of Oulu, Department of Information Processing Science
P.O. Box 3000, FIN-90014 University of Oulu, Finland

netta.iivari@oulu.fi

Abstract. This paper examines the emergence and evolution of user innova-
tions in Open Source Software (OSS) development, with focus on usability in-
novations. Existing literature on user innovation and usability is reviewed, after
which usability innovation is empirically explored in OSS development. The in-
terpretive case study shows that usability innovations emerge and evolve in
OSS development. They emerge after a user recognizes a need, after which she
invents a fix to meet the need, thereafter needing a developer to realize the fix
in the OSS. Afterwards, the user experiments with the solution and may provide
feedback, which again may lead to the developer adjusting the OSS accord-
ingly. The process is characterized as a collaborative negotiation process among
the users and developers. The results also reveal that the usability innovations
may be need, opportunity or creativity based, and connected to improving effi-
ciency, effectiveness or satisfaction. Implications both for theory and practice
are discussed.

1 Introduction

This paper examines how end user innovations emerge and evolve in Open Source
Software (OSS) development, limiting the focus to end users’ usability innovations.
The concept of usability innovation refers to innovations that are trying to contribute
to OSS usability, i.e. to ’the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use’ [15]. Therefore, the focus is on innovations that try to enable the
specified users to achieve their specified goals in the specified context of use more
effectively, more efficiently, or generally in a more satisfactory way.

Innovation, on the other hand, refers to “an idea, practice, or object that is perceived
as new by an individual or other unit of adoption [15: 12]. Innovation necessitates not
only the invention part, but also its implementation and adoption [8]. End user innova-
tion is defined as construction of innovations by end users, instead of manufacturers (or
OSS developers) producing the innovations for the users [22]. The term end user im-
plies that the innovation is to be produced by people without skills or interest to develop
the solution themselves. Therefore, this kind of user innovation always necessitates the
developers joining in the implementation phase. In OSS development the developers

120 N. Iivari

tend to be also users of the software, and their innovation behaviour has already been
examined [6], which will not be done in this paper. Researchers have argued that the
user population of OSS solutions is constantly growing, including a growing number of
users who do not have technical competence or interest to develop the OSS solution [6],
[17], [23]. These users’ innovation behaviour will be examined in this paper. It has also
been argued that usability of the OSS solutions has not traditionally been a major con-
cern among the developers, who have been more interested in improving the functional-
ity of the software than in improving its usability, but since the non-developer users are
entering the scene, also improvement of usability is becoming a legitimate concern [1],
[17], [20].

OSS development is distributed and the OSS projects rely heavily on Internet tools
supporting their work, i.e. on mailing lists, discussion forums, chat and bug reporting
and version control systems [6], [19], [23]. In this paper the focus will be on end user
innovation, which is observed during communication among OSS users and between
OSS users and OSS developers in an OSS usability discussion forum that has been
established by an OSS project to increase the software’s usability and therefore pro-
vides a unique opportunity to study this phenomenon.

The next section reviews user innovation and usability literatures and relates them
to the OSS development context. The third section discusses the interpretive case
study that has been carried out, particularly focusing on a usability discussion forum
of an OSS project, the fourth section outlining the main empirical results. The fifth
section discusses their implications and limitations, and identifies paths for future
work.

2 User and Usability Innovation

2.1 User Innovation

OSS development has been praised as an arena fostering user innovations (e.g. [3],
[6]). Franke and von Hippel [6] have carried out an empirical study on user innova-
tion in OSS development, arguing that user innovation is needed since the users’
needs are highly heterogeneous. However, also they show that there are clear differ-
ences in the skill levels of the OSS users, some of them being able to modify the
software, while others not, the skilled users being more satisfied with the software
than the less skilled users. [6] Therefore, it can be assumed that the possibility to in-
novate leads to increased user satisfaction, but the results indicate that this may be
very challenging for the non-developer users. This paper will examine how, if at all,
non-developer user innovation happens in OSS development.

Even though non-developer user innovation has not been examined in OSS devel-
opment, it has been studied in other contexts. Researchers have analysed it e.g. in
sports communities and in the research and development context (see e.g. [7], [10],
[16]). Hyysalo [10] discusses micro-innovations as self-made modifications and adap-
tations to the existing products. Micro-innovations involve people making “various
small alterations” both to the products and to their practices and usage patterns “to
make their activity more enjoyable” and products “work better” [10: 250]. Also other
researchers [16], [21] have considered user innovations contributing either or both to

 Usability Innovations in OSS Development – Examining User Innovations 121

the development in the user domain and in the technical domain, and the non-
developer users have been conceptualised as co-developers in the process that neces-
sitates also the developers joining in [16]. Also in this paper the non-developer user
innovations can address either or both the user and the technical domain, the non-
developer users needing developer assistance in realizing the innovation in the OSS.

From the viewpoint of the emergence of user innovations, the following phases
have already been identified: user recognizes a need, solves the problem by invention,
builds a prototype and, finally, establishes the prototype's value in use [22]. Floyd and
colleagues [5] have examined user-driven technological innovation, which, according
to them, starts from user’s everyday life and experiences, during which the user en-
counters problems, to which she rapidly and easily produces fixes through utilizing
technology, after which she reflects on the solution, i.e. on how it fits the overall sys-
tems, and adjusts the system as a result. The cycle starts over when the user, again,
encounters problems in her everyday life. This type of a process can support the crea-
tivity, needs and desires of the users, and it is characterized as rapid, participatory and
collaborative [5]. OSS solutions enable users to explore how technology could be
utilized in their work practices and how their work practices could be conceptualized
anew with technology [5].

2.2 Usability Innovation

Usability innovations have not been discussed in depth in the literature. However,
there exists a huge amount of literature addressing the development and evaluation of
usability. The widely cited usability definition presented already establishes that us-
ability can be developed only after one understands and specifies who the intended
users are and what their goals in using the software are and in what kind of context of
use the software will be used [14]. For gaining this understanding, different kinds of
methods are suggested, e.g. interviews, observation and surveys. Thereafter, one
needs to carefully redesign the users’ future tasks that are to be carried out to achieve
the goals. Only after this the computer-based solution should be considered. Finally,
essential is also to evaluate these design solutions, as early as possible and continually
during the development life cycle [14], [11].

Typically these activities are expected to be carried out by usability (or user-
centered design, usability engineering etc.) specialists [11]. Even though not explicitly
mentioning usability innovations, the literature seems to assume that these specialists
produce the innovations, after being in contact with the users. Part of the literature
views this as a structured engineering process while other part maintains that it is a
creative, artistic process, but generally in the both literatures it seems to be assumed
that there needs to be some understanding of the users and their work practices, some
understanding of the capabilities and limitations of technology and HCI background
[11], the innovations being generated based on the combination of these understand-
ings. This paper, instead, examines the innovations produced by the end users them-
selves, when given the chance to do that.

However, it needs to be underlined that usability in this paper is an etic concept in-
troduced by the researcher. Another approach could be to analyze the multitude of
meanings attached to usability by the OSS developers and users, but this has been
done already, revealing that surprising and rather technical aspects are attached to

122 N. Iivari

usability in OSS development [1], [12]. Instead of showing this again, this paper
adopts the established, etic usability definition from the literature and limits the focus
to the innovations that adhere to this definition.

Existing OSS research has already outlined many issues, which may cause prob-
lems for usability innovation in OSS development. Typically, the developers do not
have knowledge about the non-developer users, their goals and their contexts of use,
and they do not necessarily have any interest in learning about them either. In addi-
tion, communicating usability problems to the development has proven to be difficult
for the non-developer users. [2], [17], [20], [24] It has been argued that usability bugs
are very complex to fix and difficult to explain textually [20]. Furthermore, usability
specialists would be very useful in improving OSS usability, but typically there is a
lack of usability specialists in OSS projects [2], [17], [24].

3 Research Design

This research relies on the qualitative research tradition [4]. One case is analyzed: an
OSS project developing a media application for end user without necessarily any
technical knowledge or programming skills. The project is interested in their users
and their feedback regarding the solution. The usability discussion forum asks the
users of the OSS to take part in improving the program. Altogether, over 1600
messages and nearly 400 topics have emerged in this discussion forum. Nearly 600
message senders have contributed to the discussion forum. The project is a small but
active one: there are 9 developers listed for the project, the development status being
5 (production/stable).

The analysis focused on the discussions in the usability discussion forum, which is
assumed to be the place where user innovation occurs in this OSS project. The re-
search data consists of the usability discussion forum messages (altogether 1600), all
of which were printed out for the analysis purposes. First, the researcher familiarized
her with the discussion forum and the message senders. All posts of the usability dis-
cussion forum were printed and read thorough. The focus was in identifying messages
that could be connected to non-developer users’ usability innovation, i.e. on messages
that were suggesting something considered new [8], [18] by the community as well as
dealing with improving usability, i.e. proposing improvements related to how users
can achieve their goals more effectively, efficiently or in a more satisfactory way
[15]. After the examination, it became evident that there were a lot messages without
any replies. However, there were also some topics that had gained popularity in the
sense of the number of replies as well as some of the discussions indicating that
changes have resulted in the OSS due to these discussions. The focus was further lim-
ited to these discussions.

They were analyzed from the viewpoint of non-developer users’ usability innova-
tion. The literature presented in section 2 was used as a sensitizing device. In addition,
a textual approach was utilized as a theoretical tool. It postulates that during
development, the developers always ‘configure the users’ [9]; i.e. the developers
(knowingly or not) delineate the future users and their work practices already while
producing the software text [9]. OSS development arena enables the users to gain
access and voice in the process through mailing lists, discussion forums, chat and

 Usability Innovations in OSS Development – Examining User Innovations 123

such, which do not necessitate competence in technical development [13]. The users
even if they were not capable to directly affect the source code, can participate in the
discussions taking place in the OSS projects’ websites, during which user innovation
might occur. The innovating users “constitute a specific group of users that adopt spe-
cific, informed ways of not just reading but also introducing new scripts, by inscribing
characteristics of their specific use situation into the product” [21: 186].

4 Empirical Insights

In this OSS project non-developer user innovations improving effectiveness, effi-
ciency and satisfaction in users’ goal achievement were all evident. Especially inno-
vations improving how users achieve their goals more efficiently were outlined. Some
of them were implemented also fast by the developers, as in the following example. A
user asks:

“Better Keyboard/Shortcut integration: I'm asking for Shortcuts to show/hide the
side bar, to change between the different sidebar tabs or a way to focus [an element].
To edit [information] which is not in the first column, a mouse is needed.” (User)

A developer advises the user that the user can use tab and no mouse is needed. The
user replies, after some experimentation.

“I never thought about using the tab in the edit mode - thanks for this information.
Now I found some odd behaviour: the tab key circles through all possible entries in-
cluding the non-visible one. So in some situations I have to press the tab key three or
more times” (User)

Another developer joins the discussion the same day and announces that a new edi-
tor has been implemented and asks the user to test the solution.

The discussion reveals that the developer accepts the idea proposed by the user, i.e.
he lets the user to establish certain aspects related to the future use practices (effi-
ciency in editing), afterwards realizing those in the OSS text.

Another user also proposes improvement to the efficiency:
“What about a keyboard shortcut for selecting the next tag in the same column?”

(User)
A developer suggests to the user to use tab, to which the user replies:
“I have in fact tried tab. Maybe I’m an unusual user; I’d like to jump to the next

row, same column. Anyhow, in a recurring action like tag editing possibly it could be
more useful with more control over navigation - e.g. the ability to move back and
forwards, up and down” (User)

The developer agrees with the user and promises to try to enable it. Therefore, one
can again conclude that the developer lets the user to establish certain aspects related
to the future use practices (efficiency in editing). Related to realizing those in the OSS
text, he promises to do as much as he can, the existing technological solution, how-
ever, restricting his possibilities.

Both of these examples illustrate that creating something ‘new’ involves a collabo-
rative negotiation process among users and developers.

Also effectiveness in achieving goals is brought up, e.g. in the following relating to
user goal of organizing his files:

124 N. Iivari

“[Another user wrote]: “I would like a way to view [an element] like in [another
application].”) Another vote for it. (…) When I have my list sorted [according to a
field/field] I cannot just toggle them because the entries are greyed out. This is not
convenient. Please permit it and use only the primary entry in this case.” (User)

The same day a developer replies that the suggestion was smart and it has already
been implemented. A noteworthy observation is also the voting for the suggestion of
another user with which the message starts. In this case the developer does not im-
plement it, however. Imitation of other applications is not appreciated in this OSS
project, as can be concluded from numerous messages criticizing it in the discussion
forum.

The user innovations implemented can be all labelled as small scale, incremental
[8] micro-innovations [10] based on the users’ needs. In these discussions, the users
refer to their needs or problems in the ‘configuration of the user’ they expect to be
met or removed through the solutions they propose. On the other hand, some discus-
sions make it clear that not only ‘needed’ but also ‘cool’ and ‘eye candy’ features are
to be included in this OSS, causing not only improvements in effectiveness or effi-
ciency in goal achievement, but clearly also in satisfaction in doing so. For example, a
user argues for tag guessing and for a tab with favourite and last files that both would
be ‘cool’, and another user argues for using certain kinds of visualizations in the ap-
plication that he calls ‘eye-candy’, maintaining that they would make use more fun
but also introduce ‘cool’ usability improvements. Based on the discussions, one can
conclude that the users are not only motivated by efficiency or effectiveness im-
provements, but also by ‘cool, ‘fun’ and ‘eye candy’, which, nevertheless, also con-
tribute to the users’ goal achievement.

However, in the discussions it is not only the ‘configuration of the user’ in the OSS
to be refined according to the users’ requests, but the innovation concerns also the
users’ use practices that are conceptualised anew (see [5]), the change being informed
or inspired by the existing ‘configuration of the user’. In the community there has
been a lot of discussion related to enabling accurate ranking. The OSS incorporates
ranking but the users argue that it is not done correctly and they wish to be able to
have more power related to that. An example message from a user is shown below:

“I've been thinking a lot about how to do automatic ranking given implicit info on
[user's use patterns], and there's really no good way. The problem is that the user's
mood changes often. The entire scoring system can be totally broken based on the
user's mood. [The system] would have to take the moods in to account to score cor-
rectly. You could achieve this with statistics on e.g. whether you were in front of your
computer and how long you were there, plus what you did and didn't. Then make a
decision how your "mood" changes your taste. There are two solutions for that: 1)
Use stats from an entire community instead of making all new users train the system
every time. 2) Give the users more guidance in the training process. A simple low
tech way would be to provide a slider that tells how much skipping affects the score.”
(User)

Therefore, the user wishes to be able to achieve his goal related to accurate ranking
of media files and proposes few solutions that in this case address both the technical
solution and the ‘configuration of the user’ in the OSS. However, a developer informs
the user that the idea has been to achieve another goal, altogether: the idea has been to
let the OSS to set the scores based on the longer time span usage habits, but the users

 Usability Innovations in OSS Development – Examining User Innovations 125

are arguing for the possibility to give ratings themselves. Nevertheless, the developer
informs that due to the users’ requests the developers have implemented the rating
functionality as well. However, he also argues that his own habits have changed due
to the scoring information that indicates to the users what their long time favourites
are. This information may lead the users to reflect on and even change their current
habits.

The reciprocal relationship between use practice and technology becomes inten-
sively visible in this discussion: the ‘configuration of the user’ sets the boundaries for
the users’ use practices, as well as it is modified to enable more efficient, effective
and satisfactory use practices, but the use practices may also be adapted, inspired or
conceptualised anew (see [5]) when encountering the existing ‘configuration of
the user.

5 Concluding Discussion

This paper promised to examine the emergence of non-developer user innovations in an
OSS usability discussion forum, at a detailed level in the natural setting without re-
searcher intervention. Table 1 summarizes the key empirical findings of the examination.

Table 1. Characterizing User Innovation in OSS Development

Aspect Empirical Finding
Encountering
usability
problems in
everyday life

- Emergence of need-based usability innovations: user recognizes a need
- Emergence of creativity or opportunity -based (‘cool’) usability
innovations: user recognizes ways technology could be utilized in creative
or opportunistic ways to improve usability

Producing
usability
fixes

- User invents usability fixes to the ‘configuration of the user’
- Developer realizes the fixes in the OSS
- Producing fixes a collaborative process involving negotiation among
users and between developers and users

Reflecting on
and
adjusting

- Users provide feedback to the refined ‘configuration of the user’
- Developers adjust the ‘configuration of the user’ accordingly
- Users adjust their use practices accordingly

Relationship
between use
practice and
technology

- Users identify usability fixes to the ‘configuration of the user’ after
considering how technology could bring more efficiency, effectiveness or
satisfaction to their goal achievement
- Users conceptualize anew (adding efficiency, effectiveness or
satisfaction to) their use practices based on the encounter with the current
‘configuration of the user’

First of all, the results indicate that in the OSS development context end user us-

ability innovation occurs, i.e. non-developer users innovate usability improvements to
the OSS and those may also end up in the OSS. Next this process is characterized in
more detail.

The process of user innovation is argued to include the following phases (modified
from [5], [22]): a user recognizes a problem during her everyday life and experiences,

126 N. Iivari

she solves the problem by invention, she outlines a solution and finally she establishes
its value in use, i.e. she reflects on the solution; how it fits the overall system and may
also adjust the system as a result. All these phases could be identified in the usability
discussion forum, but also clear differences and additions could the identified. Related
to the user recognizing a usability problem during her everyday life and experiences,
one clear distinction can be made between need-based and creativity or opportunity-
based usability innovations (cf. [5]): some of the innovations are to meet the needs
presented by the user, but other usability innovations are motivated as ‘cool’, even
though still aiming at bringing efficiency, effectiveness or satisfaction to the users’
use practices. Related to professional usability specialists working in the commercial
context, one can argue that during user studies and such they are likely to encounter
the usability problems and maybe also identify at least partly similar need-based us-
ability innovations, but it might be very difficult for them to introduce the ‘cool’ fac-
tor into their innovations. Their ‘cool’ or ‘eye-candy’ may not equal the users’ ‘cool’
or ‘eye-candy’.

In the OSS development the users are speaking on behalf of themselves: they are
reporting what they consider as needed, cool or eye-candy. The usability profession-
als, on the other hand, try to represent the users in the commercial software develop-
ment context [13], i.e. they speak on behalf of these other people they are trying to
learn to know. This ‘speaking on behalf of other people’ has been reported to exist
also in the OSS development context, in which, however, it seems to be carried out by
amateur intermediaries, i.e. by users who do so without professional background on
the matter [13]. Despite that, the contribution from these users, whether speaking on
behalf of themselves or other users, could be of interest also in the commercial soft-
ware development context, in which there might be professional, hired usability pro-
fessionals available, but in which the development could still benefit from this type of
amateur usability contributions as well. It might be that there are totally different
kinds of innovations created by people who encounter the software continuously in
their everyday life than by people studying the software use in other people’s every-
day life or than by people developing the software as part of their everyday life, but
not using it. However, one should very carefully consider the motives behind these
amateur usability contributions to be able to judge the validity of the claims – it might
be that in some cases they are not trying to improve the OSS usability, but instead to
accomplish other goals (cf. [13]).

User innovation necessitates the user to solve the problem by invention. In the OSS
development context it is evident that people not interested in or capable to code do
invent usability fixes to the ‘configuration of the user’ without touching the source
code. Their suggestions are connected to the introducing efficiency, effectiveness and
satisfaction to the users’ goal achievement. The users rely on their in-depth domain
knowledge and reflection on their usage habits and practices in producing the sugges-
tions (cf. [10], [21]), i.e. while they are introducing these new scripts to the OSS. The
non-developer users however need the developers for realizing their usability innova-
tions, since the non-developer users are by definition not capable to code. Therefore,
usability innovations in this case are necessarily produced during a collaborative
process between users and developers, collaboration among the users also emerging
related to backing up each other and discussing and further refining the ideas.

 Usability Innovations in OSS Development – Examining User Innovations 127

After the implementation, the users can reflect on the innovations’ value in use and
adjust the system accordingly. Of course, this happens during the longer time span,
which might also be observable in the OSS forum discussions. In this project it is evi-
dent that after the developers have changed the ‘configuration of the user’, the users
eagerly experiment with it and provide feedback. User feedback gathering through
OSS discussion forums has already been recommended in the literature [19], [23].
Also in this case the discussion forum has been built up for users to provide feedback
and improvement ideas. Interestingly, even though most users are asking fixes to the
‘configuration of the user’ after considering how technology could be utilized to bet-
ter support their use practices, in some messages also the question of how their use
practices could be conceptualised anew with technology (cf. [5]) emerge: the users
may conceptualise their use practices anew after experimenting with the existing
‘configuration of the user’. These discussions, however, were clearly in minority in
the discussion forum.

This study opens interesting avenues for user innovation researchers. This study
provides a lens through which to examine user-developer interaction related to innova-
tion in the context of technology development. The lens emphasizes that technological
artefacts always include a ‘configuration of the user’ the users encounter and interpret.
The users may wish to provide feedback and suggest fixes to the configuration, but
they may also redefine their use practices anew after the encounter. The artefact al-
ready implies certain kind of future user with certain kind of future use practices, but
the users can also interpret and modify those in new, creative, innovative ways. Other
researchers are welcomed to adopt and refine this sensitising device.

Companies are showing increasing interest to enhance user innovation related to
their products and services. Use of OSS communities for that has already been rec-
ommended (e.g. [3], [6]). The results of this study suggest that also end user innova-
tion occurs in OSS development and online forums provide support for it. However, it
might be a great challenge for companies to establish online forums and associated
communities and to keep them vital. In traditional OSS development everything oper-
ates on a voluntary basis, and it might be a challenge to invite the non-developer users
to participate in development and in the associated discussions. The forum examined
in this paper has succeeded in inviting also the non-developer users to contribute to
the development. However, this study does not provide tools for companies for online
community building, but it informs the companies that end user innovation may
emerge and evolve in online OSS forums. In addition, this study offers interesting
insights for usability research, showing that ‘amateur usability specialists’ are con-
tributing to OSS development. They are at least active and creative usability innova-
tors, probably not replacing the professional ones but surely producing interesting
ideas to be considered for the implementation.

This study is based on only one case, which is naturally particular in many ways.
In the future more cases and more diversity (small vs. large projects, new-found vs.
long-term projects, different kinds of application domains, projects with or without
company involvement and so on) should be included in the future analysis in the OSS
development context.

128 N. Iivari

Acknowledgements

This research has been partly funded by the Academy of Finland.

References

[1] Andreasen, M., Nielsen, H., Schrøder, S., Stage, J.: Usability in Open Source Software
Development: Opinions and Practice. Information Technology and Control 25(3A),
303–312 (2006)

[2] Benson, C., Müller-Prove, M., Mzourek, J.: Professional usability in open source projects:
GNOME, OpenOffice.org, NetBeans. In: Extended Abstracts of CHI, pp. 1083–1084.
ACM Press, New York (2004)

[3] Chesbrough, H.: The Era of Open Innovation. MIT Sloan Management Review 44(3),
35–41 (2003)

[4] Denzin, N., Lincoln, Y.: Introduction: The Discipline and Practice of Qualitative Re-
search. In: Denzin, N., Lincoln, Y. (eds.) Handbook of Qualitative Research, 2nd edn.,
pp. 1–28. Sage Publications, Thousand Oaks (2000)

[5] Floyd, I., Jones, M., Rathi, D., Twidale, M.: Wab Mash-ups amd Patchwork Prototyping:
User-driven technological innovation with Web 2.0 and Open Source Software. In: Proc.
HICSS 2007. IEEE, Washington (2007)

[6] Franke, N., von Hippel, E.: Satisfying heterogeneous user needs via innovation toolkits:
the case of Apache security software. Research Policy 32, 1199–1215 (2003)

[7] Franke, N., Shah, S.: How communities support innovative activities: an exploration of
assistance and sharing among end-users. Research Policy 32, 157–178 (2003)

[8] Garcia, R., Calantone, R.: A critical look at technological innovation typology and inno-
vativeness terminology: A literature review. Journal of Product Innovation Manage-
ment 19(2), 110–132 (2002)

[9] Grint, K., Woolgar, S.: The Machine at Work. In: Technology, Work and Organization.
Polity Press, Cambridge (1997)

[10] Hyysalo, S.: User innovation and everyday practices: Micro-innovation in sports industry
development. R&D Management 39(3), 247–258 (2009)

[11] Iivari, N.: Discourses on ‘culture’ and ‘usability work’ in software product development.
Acta Universitatis Ouluensis, Series A, Scientiae rerum naturalium 457 (2006)

[12] Iivari, N.: Usability in open source software development – an interpretive case study. In:
Proc. ECIS, Galway, Ireland, June 9-11 (2008)

[13] Iivari, N.: “Constructing the Users” in Open Source Software Development – An Inter-
pretive Case Study of User Participation. Information Technology & People 22(2),
132–156 (2009)

[14] ISO 13407. Human-centered design processes for interactive systems. International stan-
dard (1999)

[15] ISO 9241-11. Ergonomic requirements for office work with visual display terminals
(VDT)s - Part 11 Guidance on usability. International standard (1998)

[16] Lettl, C., Herstatt, C., Gemuenden, H.: Users’ Contributions to Radical Innovation: Evi-
dence from Four Cases in the Field of Medical Equipment Technology. R&D Manage-
ment 36(3), 251–272 (2006)

[17] Nichols, D., Twidale, M.: Usability Processes in Open Source Projects. Software Process
Improvement and Practice 11, 149–162 (2006)

[18] Rogers, E.: Diffusion of Innovations, 5th edn. Free Press, New York (1995)

 Usability Innovations in OSS Development – Examining User Innovations 129

[19] Scacchi, W.: Understanding the requirements for developing open source software sys-
tems. IEE Proceedings – Software 149(1), 24–39 (2002)

[20] Twidale, M., Nichols, D.: Exploring Usability Discussions in Open Source Development.
In: Proc. HICSS. IEEE, Washington (2005)

[21] van Oost, E., Verhaegh, S., Oudshoorn, N.: From Innovation Community to Community
Innovation: User-initiated Innovation in Wireless Leden. Science, Technology & Human
Values 34(2), 182–205 (2009)

[22] von Hippel, E.: The Sources of Innovation. Oxford University Press, New York (1988)
[23] Ye, Y., Kishida, K.: Toward an Understanding of the Motivation of Open Source Soft-

ware Developers. In: Proc. ICSE, pp. 419–429. IEEE, Washington (2003)
[24] Zhao, L., Deek, F.: Improving Open Source Software Usability. In: Proc. AMCIS,

Omaha, USA, August 11-14, pp. 923–928 (2005)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 130–142, 2010.
© IFIP International Federation for Information Processing 2010

Governance in Open Source Software
Development Projects: A Comparative

Multi-level Analysis

Chris Jensen and Walt Scacchi

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455
{cjensen,wscacchi}@ics.uci.edu

Abstract. Open source software (OSS) development is a community-oriented,
network-centric approach to building complex software systems. OSS projects
are typically organized as edge organizations lacking an explicit management
regime to control and coordinate decentralized project work. However, a grow-
ing number of OSS projects are developing, delivering, and supporting large-
scale software systems, displacing proprietary software alternatives. Recent
empirical studies of OSS projects reveal that OSS developers often self-
organize into organizational forms we characterize as evolving socio-technical
interaction networks (STINs). STINs emerge in ways that effectively control
semi-autonomous OSS developers and coordinate project activities, producing
reliable and adaptive software systems. In this paper, we examine how practices
and processes enable and govern OSS projects when coalesced and configured
as contingent, socio-technical interaction networks. We draw on data sources
and results from two ongoing case studies of governance activities and elements
in a large OSS project.

1 Introduction and Overview

In this paper, we contribute to this growing understanding for how to characterize the
ways and means for affecting governance within and across OSS projects, as well as
the participants and technologies that enable these projects and the larger communi-
ties of practice in which they operate and interact. Specifically, our contribution cen-
ters around providing an alternative perspective and analytical construct that offers
multi-level analysis and explanation, as well as a framework for comparison and gen-
eralization based on empirical studies of OSS projects, work practices, development
processes, and community dynamics [cf. 20]. The perspective draws from socio-
technical interaction networks (STINs) [18] as a persistent organizational form for
collective action with/through technical (computing) work systems, and also puts
forward STINs as the analytical construct that serves as an organizing concept,
configurational form [13], and adaptive process that both enacts and explains how
governance in OSS projects is realized and directed.

Our belief is that the governance practices enacted through STINs found in OSS
projects can be framed as possible options for understanding how these projects can

 Governance in OSS Development Projects: A Comparative Multi-level Analysis 131

develop complex and reliable software without an explicit, centralized software pro-
ject management regime. Further, these STINs act in a self-organizing manner to ef-
fectively realize a decentralized approach to organize, coordinate and control a
dispersed, somewhat autonomous work force. This in turn can then be used to both
understand the foundations for OSS organizational practices in the development, de-
ployment, and support of complex software systems.

Table 1. OSS governance analytical levels and emergent themes

Analyti-
cal Level

Agents Emergent Themes

Micro Individual
participants

Individual actions and resources, artifacts and
resources as objects of interaction

Meso Project
teams

Collaboration, leadership, control, conflict
resolution

Macro Inter-project
ecosystem

Coordination, leadership, control, conflict
resolution

2 Analytical Levels and Elements for Understanding Governance
in OSS Projects

OSS work practices, engineering processes, and community dynamics can best be
understood through observation and examination of their socio-technical elements
from multiple levels of analysis [20]. In particular, OSS projects can be examined
through a micro-level analysis of (a) the actions, beliefs, and motivations of individ-
ual OSS project participants, and (b) the social or technical resources that are mobi-
lized and configured to support, subsidize, and sustain OSS work and outcomes [19].
Similarly, OSS projects can be examined through meso-level analysis of (c) patterns
of cooperation, coordination, control, leadership, role migration, and conflict mitiga-
tion, and (d) project alliances and inter-project socio-technical networking [4]. Last,
OSS projects can also be examined through macro-level analysis of (d) multi-project
OSS ecosystems, and (e) OSS as a social movement and emerging global culture. As
such, we will provide a multi-level analysis of the elements of OSS governance. Re-
cent research on software development governance showed there are many issues
critical to governing software development, including decision rights, responsibilities,
roles, accountability, policies and guidelines, and processes [25]. The governance
issues we have identified at these three levels in OSS bear similarities (see Tabel 1).

We engage in multi-level analysis of the elements of OSS governance using data
sources and empirical results drawn from an ongoing, longitudinal case study of OSS
projects. Our results have emerged from several years of research on how OSS practi-
tioners organize themselves to get work done and what social and technical processes
are employed in development, including recruitment and role migration or project par-
ticipants, how software requirements are asserted, and how products are released. Our
research is ethnographic, using a grounded theory approach to the analysis of project

132 C. Jensen and W. Scacchi

artifacts, including email discussions, chat transcripts, summary digests, (and others),
as well as face-to-face interviews of project contributors.

The project of study is NetBeans, a sponsored OSS project focused on the develop-
ment, support, and evolution of a Java-centered, Integrated Development Environment
(IDE), which is a tool for developing Web-based enterprise software applications
coded in the Java programming language that utilize other Java-based software prod-
ucts and services, such as those offered by Sun Microsystems Inc. [10]. NetBeans is a
large OSS project with more than 400,000 active users, and tens of thousands of
contributors.

Finally, it is our view that the elements of OSS governance span these multiple
levels of analysis because they coalesce and are actively configured by OSS project
participants into network forms for collective action―networks we designate as
socio-technical interaction networks (STINs) [18]. Why? Our observation drawn from
our own studies of OSS and those of others [4, 5, 13, 20] suggest to us that govern-
ance activities, efforts, and mechanisms are not disjoint or unrelated to one another,
but instead are arrayed and configured by OSS project participants into networks for
mobilizing socio-technical interactions, resources, rules, and organizational forms.
Project participants are only accountable to each other, and not to corporate owners,
senior executives, or stock investors. They can often suffice with lightweight govern-
ance forms that they configure and adapt to their needs and situations, rather than to
budget, schedules, or profit growth. Accordingly, they choose organizational forms
that are neither purely a decentralized market (a “bazaar”) nor a centralized hierarchy
(a “cathedral”), but instead choose a more agile network form that can be readily be
adapted to local contingencies or emergent conditions that arise in the interactions
among project participants, the technical computing systems/resources at hand, or the
joint socio-technical system that is the OSS project. Thus, our multi-level analysis is
one that is construed to draw attention to the persistent yet adaptive STINs that par-
ticipants enact to span and govern OSS projects, practices, and processes that arise at
different levels of socio-technical interaction.

3 Micro-level Analysis of OSS Governance Issues

Our analysis of OSS governance begins by examining what resources OSS project
participants mobilize to help govern the overall activities of their project work and
contributions. Much of the development work that occurs in an OSS project centers
around resources that enable the creation, update, and other actions (e.g., copy, move,
delete) applied to a variety of software development artifacts. These resources and
artifacts serve as coordination mechanisms [16, 21, 22], in that they help participants
communicate, document, maintain awareness, and otherwise make sense of how the
software is structured/designed, what the emerging software system is suppose to do,
how it should be or was accomplished, who did what, what went wrong before, and
how to fix it. These artifacts help in coordinating local, project-specific development
activities, whereas between multiple project communities, these artifacts emerge as
boundary objects [10, 12] through which inter-project activities and relations are ne-
gotiated and revised. The artifacts may take the form of text messages posted to a
project discussion list, webpages, source code directories and files, site maps, and

 Governance in OSS Development Projects: A Comparative Multi-level Analysis 133

more, and they are employed as the primary media through which software require-
ments and design are expressed. These artifacts are software informalisms that are
collectively used to manage the consistency, completeness, and traceability of soft-
ware functionality, development activities, and developer comprehension [17]. They
act as coordination resources in OSS projects since participants generally are not co-
located, do not meet face-to-face, often work asynchronously, and authority and ex-
pertise relationships among participants are up for grabs.

Accordingly, in order to explore where issues of collaboration, leadership, control
and conflict may arise within or across related OSS projects, then one place to look to
see such issues is in how project participants create, update, exchange, debate, and
make sense of the software informalisms that are employed to coordinate their devel-
opment activities. This is the approach taken here in exploring the issues both within
the NetBeans project, as well as across the fragile software ecosystem of inter-related
OSS projects that situate NetBeans within a Web information infrastructure [10].

4 Meso-level Analysis of OSS Governance Issues

At the meso-level, have observed at least three kinds of governance elements that
arise within an OSS community like NetBeans. These are collaboration, leadership
and control, and conflict resolution.

4.1 Collaboration

According to the NetBeans website, individuals may participate by joining in discus-
sions on mailing lists, filing bug and enhancement reports, contributing Web content,
source code, newsletter articles, and language translations [11]. These activities can
be done in isolation, without coordinating with other community members, and then
offered up for consideration and inclusion. Reducing the need for collaboration is a
common practice in the community that gives rise to positive and negative effects.
We discuss collaboration in terms of policies that support process structures that pre-
vent conflict, looking at task completion guidelines and community architecture.

4.1.1 Policies and Guidelines
The NetBeans community has detailed procedural guidelines for most common de-
velopment tasks, from submitting bug fixes to user interface design and creating a
new release [24]. We can classify these guidelines as development task and design
style guidelines. Incidentally, the procedures for policy revision have not been explic-
itly specified, though social norms have developed to govern their revision.

Precedent states that policy and procedure revisions are brought up on the commu-
nity or module discussion mailing lists, where they are debated and either ratified or
rejected by consensus. Consensus here means some support from at least one or two
other developers, along with the absence of strong conflicts or major disagreements
by other project contributors. Developers are expected to take notice of the decision
and act accordingly, while the requisite guideline documents are updated to reflect the
changes. In addition, as some communities resort to “public flogging” for failure to

134 C. Jensen and W. Scacchi

follow stated procedures, requests for revision are rare and usually well known among
concerned parties, so no such flogging is done within NetBeans.

Overall, these policies allow individual developers to work independently within a
process structure that enables collaboration by encouraging or reinforcing developers
to work in ways that are expected by their fellow community members, as well as
congruent with the community process.

4.1.2 Separation of Concerns: An Architectural Strategy for Collaborative
Success

Software products often employ a modular, plug-in application program interface
(API) architectural style in order to facilitate development of add-on components that
extend system functionality. This strategy has been essential in an open source arena
that carries freedom of extensibility as a basic privilege or, in some cases, the right of
free speech or freedom of expression through contributed source code. But this sepa-
ration of concerns strategy for code management and software architecture also pro-
vides a degree of separation of concerns in developer management, and therefore,
collaboration [cf. 2, 16, 9].

In concept, a module team can take the plug-in API specification and develop a
modular extension for the system in complete isolation from the rest of the community.
This flexibility is attractive to third-party contributors in the NetBeans community who
may be uninterested in heavy involvement in the project, or who are unwilling or
unable to contribute their source code back to the community. This separation of con-
cerns in the NetBeans design architecture engenders separation of concerns in the de-
velopment process [10]. Still, module dependencies limit development isolation.

Last, volunteer community members have observed difficulties collaborating with
non-volunteer community members. At one point volunteer contributors experienced
a lack of responsiveness of the (primarily Sun employed) user interface team1. This
coordination breakdown led to the failure of usability efforts for a period when usabil-
ity was arguably the most-cited reason users chose competing tools over NetBeans.
Thus, a collaboration failure gave rise to product failure. After resolving collabora-
tion issues NetBeans was able to deliver a satisfactory usability experience2.

4.2 Leadership and Control

Ignoring internal Sun's organizational structure, there are five observable layers of the
NetBeans community hierarchy. Members may take on multiple roles while migrating
through different role sets [11]. Some of these roles span several layers of software
functionality, development activity, commitment, and expertise. At the bottom layer are
users, who can later migrate upward into roles as source contributors, module-level
managers, project level release managers (i.e. IDE or development platform), and
finally, community level managers at the top-most layer. Interestingly, the “manage-
ment” positions are limited to coordinating roles; they carry no other technical or mana-
gerial authority. The release manager, for example, has no authority to determine what
will be included in and excluded from the release3 or the authority to assign people to

1 http://www.netbeans.org/servlets/ReadMsg?msgId=531512&listName=nbdiscuss
2 http://www.javalobby.org/thread.jspa?forumID=61&threadID=9550#top
3 http://www.netbeans.org/community/guidelines/process.html

 Governance in OSS Development Projects: A Comparative Multi-level Analysis 135

complete the tasks required to release the product. The same is true of module and
community managers. Instead, their role is to announce the tasks that need to be done
and wait for volunteers to accept responsibility. Overall, this practice at NetBeans re-
sembles the adaptive hybrid mix of organizational governance mechanisms that O'Ma-
hony and Ferraro [15] found in their study of the Debian project.

In NetBeans, we find that accountability and expectations of responsibility are
based on precedent (prior practices) and volunteerism rather than explicit assignment.
Such uncertainty has led to confusion regarding the role of parties contributing to de-
velopment. Leadership is not asserted until a community member champions a cause
and while volunteerism is expected, this expectation is not always obvious. The lack
of a clear authority structure is both a cause of freedom and chaos in open source de-
velopment. Though often seen as one of its strengths in comparison to closed source
efforts, it can lead to process failure if no one steps forward to perform critical activi-
ties or if misidentified expectations cause dissent.

The coordination challenges across organizations occasionally brought up in the
community mailing lists stem from the lack of a shared understanding leadership in
the community. This manifests itself in two ways: a lack of transparency in the deci-
sion making process and decision making without community consent. While not
new phenomenon, they are especially poignant in a movement whose basic tenets
include freedom and knowledge sharing.

4.2.1 Transparency in the Decision Making Process
In communities with corporately backed development effort, there are often decisions
made that create a community-wide impact that are made company meetings. How-
ever, these decisions may not be explicitly communicated to the rest of the project.
Likewise private communication between parties may cause similar breakdowns. The
lack of transparency in decision-making process prevented other community members
from understanding and accepting the changes taking place. This effect surfaced in
the NetBeans community recently following a discussion of modifying the release
process4. Given the magnitude of contributions from the primary benefactor, other
developers were unsure of the responsibility and authority Sun assumed within the
development process. The omission of a stated policy outlining these bounds led to a
flurry of excitement when Sun members announced major changes to the licensing
scheme used by the community without any warning. It has also caused occasional
collaboration breakdown throughout the community due to expectations of who
would carry out which development tasks. The otherwise implicit nature of Sun's
contributions in relation to other organizations and individuals has been revealed
primarily through precedent rather than assertion.

4.2.2 Consent in the Decision Making Process
Without an explicit authority structure, OSS decisions in NetBeans are made
through consensus, except among those over-arching or broad scope decisions that
lack transparency. In the case of the licensing scheme change, some developers
expressed their view that Sun was within its rights as the major contributor and the

4 http://www.netbeans.org/servlets/BrowseList?listName=nbdiscuss&by=thread&from=19116

&to=19116&first=1&count=41

136 C. Jensen and W. Scacchi

most exposed to legal threat 5 while others saw it as an attack on the "democratic
protection mechanisms" of the community that ensure fairness between participat-
ing parties6. A lack of consideration and transparency in the decision making proc-
ess alienated those who are not consulted and eroded the sense of community.

4.3 Conflict Resolution

Conflicts in the NetBeans community are resolved via community discussion mailing
lists. The process usually begins when one member announces dissatisfaction with an
issue in development. Those who also feel concern with the particular issue then write
responses to the charges raised. At some point, the conversation dissipates- usually
when emotions are set aside and clarifications have been made that provide an under-
standing of the issue at hand. If the problem persists, the community governance
board is tasked with resolving the matter.

The governance board is composed of three individuals and has the role of ensuring
the fairness throughout the community by solving persistent disputes. Two of the
members are elected by the community, and one is appointed by Sun. The board's au-
thority and scope are questionable and untested. While it has been suggested that the
board intercede in the past, the disputes have dissolved before the board has acted.s

Board members are typically prominent members in the community. Their status
carries somewhat more weight in community policy discussions, however, even when
one member has suggested a decision, as no three board members have ever voted in
resolution on any issue, and thus, it is unclear what effect would result. Their role,
then, is more of a mediator: to drive community members to resolve the issue
amongst themselves. To this end, they have been effective.

5 Macro-level Analysis of OSS Governance Issues

As noted earlier, the NetBeans project is not an isolated OSS project. Instead, the
NetBeans IDE which is the focus of development activities in the NetBeans project is
envisioned to support the interactive development of Web-compatible software appli-
cations or services that can be accessed, executed, or served through other OSS sys-
tems like the Mozilla Web browser and Apache Web server. Thus, it is reasonable to
explore how the NetBeans project is situated within an ecosystem of inter-related OSS
projects that facilitate or constrain the intended usage of the NetBeans IDE. Figure 1
provides a rendering of some of the more visible OSS projects that surround and em-
bed the NetBeans within a Web information infrastructure [10]. This rendering also
suggests that issues of like coordination (integration of software products and devel-
opment effort) and conflict can arise at the boundaries between projects, and thus these
issues constitute relations that can emerge between projects in a software ecosystem.
With such a framing in mind, we look at coordination, leadership and control, and con-
flict resolution issues arising across projects that surround the NetBeans project.

5 http://www.netbeans.org/servlets/ReadMsg?msgId=534707&listName=nbdiscuss
6 http://www.netbeans.org/servlets/ReadMsg?msgId=534520&listName=nbdiscuss

 Governance in OSS Development Projects: A Comparative Multi-level Analysis 137

5.1 Coordination

In addition to their IDE, NetBeans also releases a general application development
platform on which the IDE is based. Other organizations, such as BioBeans and
RefactorIT build tools on top of or extending the NetBeans platform or IDE. These
organizations interact via bug reports, patches, and feature requests submitted to the
NetBeans issue-tracking repository. Moreover, NetBeans (in part via its sponsoring
organization) is a member of the Java.net and Java Tools communities, whose mis-
sions are to bring tool developers together to form standards for tool interoperability.

5.2 Leadership and Control

Leadership and control of the ecosystem is difficult to exert and more difficult to ob-
serve. However, at one point, NetBeans and its primary OSS competitor, the Eclipse
Java IDE project (sponsored largely by IBM), considered merging as a single project.
Ultimately, the union failed to emerge, largely due to (a) technical and organizational
differences between Sun and IBM7, including the inability or unwillingness to deter-
mine how to integrate the architectures and code bases for their respective user inter-
face development frameworks (Swing for NetBeans and SWT for Eclipse), and (b)
the potential for either company to be viewed as having lost in it's ability to assert
technological superiority or design competence.

5.3 Conflict Resolution

Conflicts among communities in a software ecosystem can be especially complex
considering differences in beliefs, values, and norms between organizations (both
open and non-open source) in addition to technical hurdles.

NetBeans has a defined leadership and organizational structure, in part vis a vis its
relationship with Sun Microsystems. Thus, Sun representatives play a significant role
in macro-level conflict resolution involving the NetBeans community, as shown in the
negotiations with Eclipse. Community member feedback extended beyond intra-
community communication channels to include prominent technical forums (e.g.
Slashdot and developer blogs). Unfortunately, many of these discussions occur after
the collaborating developer has moved away from using NetBeans (often, in favor of
Eclipse). Nevertheless, the feedback they provide gives both parties an opportunity to
increase understanding and assists the NetBeans community by guiding their technical
direction.

6 Discussion

The public communication channels we have seen used in OSS projects like
NetBeans include mailing lists, defect repositories, requests for enhancement, Internet
Relay Chat (IRCs), developer/stakeholder blogs and Web pages, trade forums, and
developer conferences. Of these, mailing lists, defect repositories, and requests for

7 http://www.adtmag.com/article.asp?id=8634, and

http://www.eweek.com/article2/0,1759,1460110,00.asp

138 C. Jensen and W. Scacchi

enhancement (RFEs) are intra-organizational--they exist within project community
boundaries. IRC chats and developer conferences that facilitate communication may
be intra or inter-organizational, in that they can be hosted by the community or by
other organizations. On the other hand, stakeholder webpages and blogs and trade
forums are purely inter-organizational. Communication channels provide means for
enabling intrinsic governance in OSS projects through collaboration, leadership, con-
trol, and conflict negotiation processes. But they do not tell us much about how de-
velopers collaborate, lead, control, and resolve conflicts, nor what is collaborated on,
led, controlled, and causing/resolving conflicts. We address these here.

In NetBeans, we have observed the following objects of interaction guiding OSS
technical development and social integration processes: (a) project and software sys-
tem architecture; (b) community vision/mission statement; (c) release plans and devel-
opment roadmap; (d) community policies, task guidelines, and interaction guidelines;
(e) defect reports and request for enhancements (RFEs); (f) mailing list discussions;
and (g) private meetings (work done by organizations associated with the community).
Arguing that project architecture is a primary coordination mechanism for software
development, Ovaska and colleagues [16], and also Baldwin and Clark [2], collectively
observed six coordination processes in multi-site software development like OSS
projects. These include managing interfaces between system components, managing
assembly order of system components, managing the interdependence of system com-
ponents, communication, overall responsibility, and orientation (configuration) of the
organization.

The link between organizational structure and system design has been known since
Conway first published on the subject, however, in the NetBeans case, it is impossible
to determine whether the system design evolved to reflect the desired organizational
structure or vice versa. This observation also holds true for other large OSS projects.
German [9] observes a similar coordination strategy in Gnome project: module inter-
relationships are kept to a minimum so each module can develop independently,
thereby reducing the coordination burden across modules. Similar to NetBeans, De-
bian cross-module coordination is managed by a release team, whose role is to keep
development on schedule. In contrast, system design can also restrict participation in
OSS STINs. Core developers of the widely used Pidgin instant messaging client re-
main adamant that contributions to the project respect the strict isolation of user inter-
face and communication protocol code even at the cost of added frequently requested
functionality8. Of added note, the Gnome project does not have a single primary bene-
factor, like NetBeans, German reports similar governance and conflict resolution
community structures.

Community interaction modes act as communication channels for governing, coor-
dinating, and articulating of development tasks. Mission statements are important to
the formation of the community social and technical infrastructure early in the com-
munity’s lifespan when more concrete guidelines have not been explicitly stated (if
established). They are the core instructions for the way individuals and organizations
will interact with the community as a whole. But they are also a metric by which each
release will be judged. Additional release planning activities in OSS typically consist
of asserting the requirements for the release (what work will be done), the schedule of

8 http://developer.pidgin.im/ticket/34

 Governance in OSS Development Projects: A Comparative Multi-level Analysis 139

the release (when will the work be completed), and who will be responsible for what
work (who will do what work) [17].

Defect/product recovery and redesign, as registered through submission of
bug/defect reports is an integral coordination process. Like release planning, defect
reports and RFCs (Request for Comments) tell developers both what work needs to be
done as well as what has not been done yet, without an explicit owner or administra-
tive supervisor to assign responsibility for doing it.

These observations suggest that governance processes are inherent in activities re-
quiring coordination or leadership to determine which development tasks need to be
done and when they need to be completed. This is analogous to what has previously
been observed by management scholars (and also OSS developers) as adaptive “Inter-
net Time” development practices [3] that enable a kind of project self-governance
through adaptive synchronization and stabilization activities.

In some instances, leadership in coordinating development tasks is done in private
meetings or communications between developers, for which little evidence is public or
observable. However, we observed leadership and control of OSS project community
through:

• Contribution of software informalisms (e.g., source, defect reports, requests for
changes, news, internationalizations, etc. [17])

• Articulating and sharing technical expertise (e.g., on the mailing lists and defect
repository reports, [7])

• Coordination of development and other tasks (e.g., through the role of the release
manager, module maintainer, and source code contributors with “commit access”
to shared source code repositories).

The NetBeans community is an unusual project: it receives the majority of its finan-
cial and developmental support from Sun Microsystems. Sun, as the primary benefac-
tor and community founder, established the community vision, social and technical
infrastructure, funds development by providing many core developers, and initiates
most release plans, driving the development roadmap. Thus, Sun is most exposed to
risks from community failure and external threats. As demonstrated by Sun’s move to
alter the project licensing scheme, exercising this authority unilaterally led to division
within the community, risking breakdown of the project and development process. As
such, social process conflict can give rise to conflict within the overall technical de-
velopment process.

Drawing on this, sources of conflict that precipitate some form of active governance
to deliberate and resolve may arise from: (a) community infrastructure, sociopolitical
vision, and direction; (b) technical direction (what should be in the release, when
should a release occur, which tools to use to develop software); (c) how developers can
get involved in making decisions and what roles they play; and (d) relationships be-
tween and alignment of the diverse goals of many organized groups (e.g., corporations)
and unaffiliated volunteers involved in the community. These conflicts are resolved
through OSS governance activities in a variety of ways. When conflicts arise due to
miscommunication or lack of communication between developers, or between devel-
opers and organized groups contributing to the community, resolution is reached by
talking it out on community mailing lists. In more pronounced cases, it may take

140 C. Jensen and W. Scacchi

Fig. 1. An overview of integration and conflict relationships between NetBeans and other OSS
projects that facilitate and constrain activities within NetBeans [10]

project veterans and highly influential community members to act as mediators. Failing
this, in NetBeans, the project culture prescribes that developers shall bring the issue to
the governance board for deliberation, who will issue a final decision on the matter.
Board involvement is viewed as a last resort, and community members are encouraged
to resolve their conflicts through other means.

We find social processes like collaboration, leadership and control, and conflict
resolution are ways for governing OSS through articulating and reconfiguring the
technical processes that are either unstated or understated. In a way, articulation is
the background social process of making sure people understand the technical devel-
opment process [18]. As such, when there is a breakdown, whose responsibility is it
to address or resolve the breakdown? In the NetBeans project, accountability is only
partially assigned but does exist in some fashions. No complete articulation of gov-
ernance infrastructure exists in NetBeans. The emerging processes to do this are col-
laboration, leadership, control, and conflict negotiation, which are used to continually
re-articulate the process and figure out what is going on at present. Based on our
study, OSS is best understood neither as primarily a technical development or social
process perspective, but instead as an inherent network of interacting socio-technical
processes, where its technical and social processes are intertwined, co-dependent, co-
evolving, and thus inseparable in performance.

7 Conclusions

The results and interpretations we present on intrinsic governance forms, conditions,
and activities as STINs are limited and therefore preliminary, though based on empirical

 Governance in OSS Development Projects: A Comparative Multi-level Analysis 141

case studies. They are limited in that our analysis focuses on two contrasting case stud-
ies, which differ in many ways, and thus represent merely an initial sample with little
knowledge about whether what we have observed in representative of other types, sizes,
or samples of OSS project communities. Additional studies may in turn lead us to revise
our emerging model of how governance is realized in globally distributed OSS project
communities. However, we believe that we have observed through empirical study of
OSS (by us and others) the emergence of a comparatively small network of interacting
socio-technical relationships that can serve as foundations that can account for how de-
centralized OSS projects can be self-governed. Such a result represents an alternative to
the long dominant views that software development projects must be centrally con-
trolled and explicitly managed, and must adhere to mature software development proc-
ess capabilities, in order to produce complex yet reliable software systems.

Acknowledgments

The research described in this report is supported by grants from the Center for Edge
Power at the Naval Postgraduate School, and the National Science Foundation,
#0534771 and #0808783. No endorsement implied.

References

[1] Augustin, L., Bressler, D., Smith, G.: Accelerating Software Development through
Collaboration. In: Proc. 24th Intern. Conf. Software Engineering, pp. 559–563. IEEE
Computer Society, Orlando (2002)

[2] Baldwin, C.Y., Clark, K.B.: The architecture of participation: Does code architecture
mitigate free riding in the open source development model? Management Science 52(7),
1116–1127 (2006)

[3] Cusumano, M., Yoffe, D.: Software Development on Internet Time. Computer 32(10),
60–69 (1999)

[4] de Laat, P.B.: Evolution of open source networks in industry. The Information Soci-
ety 20(4), 291–299 (2004)

[5] de Laast, P.B.: Governance of open source software: state of the art. J. Management and
Governance 11(2), 165–177 (2007)

[6] Elliott, M., Scacchi, W.: Free Software Development: Cooperation and Conflict in A Vir-
tual Organizational Culture. In: Koch, S. (ed.) Free/Open Source Software Development,
pp. 152–172. Idea Publishing, Pittsburgh (2005)

[7] Elliott, M., Ackerman, M., Scacchi, W.: Knowledge Work Artifacts: Kernel Cousins for
Free/Open Source Software Development. In: Proc. ACM Conf. Support Group Work
(Group 2007), Sanibel Island, FL, pp. 177–186 (2007)

[8] FOSSBazaar,org., https://fossbazaar.org (last accessed September 2, 2008)
[9] Franck, E., Jungwirth, C.: Reconciling rent-seekers and donators –The governance struc-

ture of open source. J. Management and Governance 7(4), 401–421 (2003)
[10] German, D.: The GNOME project: a case study of open source, global software devel-

opment. Software Process–Improvement and Practice 8(4), 201–215 (2004)
[11] Jensen, C., Scacchi, W.: Process Modeling of the Web Information Infrastructure. Soft-

ware Process–Improvement and Practice 10(3), 255–272 (2005)

142 C. Jensen and W. Scacchi

[12] Jensen, C., Scacchi, W.: Role Migration and Advancement Processes in OSSD Projects:
A Comparative Case Study. In: Proc. 29th. Intern. Conf. Software Engineering, pp. 364–
374. IEEE Computer Society, Minneapolis (2007)

[13] Lee, C.: Boundary Negotiating Artifacts: Unbinding the Routine of Boundary Objects
and Embracing Chaos in Collaborative Work. Computer Supported Cooperative
Work 16(3), 307–339 (2007)

[14] Markus, M.L.: The governance of free/open source software projects: monolithic, multi-
dimensional, or configurational? J. Management. and Governance 11(2), 151–163 (2007)

[15] O’Mahony, S.: The governance of open source initiatives: what does it mean to be com-
munity managed? J. Management and Governance 11(2), 139–150 (2007)

[16] O’ Mahony, S., Ferraro, F.: The Emergence of Governance in an Open Source Commu-
nity. Academy of Management J. 50(5), 1079–1106 (2007)

[17] Ovaska, P., Rossi, M., Marttiin, P.: Architecture as a Coordination Tool in Multi-Site
Software Development. Software Process–Improvement and Practice 8(4), 233–247
(2003)

[18] Scacchi, W.: Free/Open Source Software Development: Recent Research Results and
Emerging Opportunities. In: Proc. European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Dubrovnik, Croatia,
September 2007, pp. 459–468 (2007b)

[19] Schmidt, K., Simone, C.: Coordination Mechanisms: Towards a Conceptual Foundation
of CSCW System Design. Computer Supported Cooperative Work 5(2-3), 155–200
(1996)

[20] Simone, C., Mark, G.: Interoperability as a Means of Articulation Work. In: Proc. Intern.
Joint Conf. on Work Activities Coordination and Collaboration, San Francisco, CA, pp.
39–48. ACM Press, New York (1999)

[21] Strauss, A.: The Articulation of Project Work: An Organizational Process. The Sociologi-
cal Quarterly 29(2), 163–178 (1988)

[22] Shah, S.K.: Motivation, governance and the viability of hybrid forms in open source soft-
ware development. Management Science 52(7), 1000–1014 (2006)

[23] NetBeans Issuezilla Issue Repository,
http://www.netbeans.org/community/issues.html (last accessed
November 28, 2009)

[24] NetBeans Community Guidelines,
http://www.netbeans.org/community/guidelines (last accessed
November 27, 2009)

[25] Workshop Summary: Software Development Governance 2008,
http://www.cs.technion.ac.il/~yael/SDG2008/ (last accessed December
20, 2008)

Evaluating the Readiness of Proprietary
Software for Open Source Development

Terhi Kilamo, Timo Aaltonen, Imed Hammouda, Teemu J. Heinimäki,
and Tommi Mikkonen

Department of Software Systems, Tampere University of Technology
Korkeakoulunkatu 1, FI-33720 Tampere, Finland

{firstname.lastname}@tut.fi

Abstract. As more and more companies are releasing their proprietary
software as open source, the need for supporting guidelines and best
practices is becoming evident. This paper presents a framework called
R3 (Release Readiness Rating) to evaluate the readiness of proprietary
software for open source development. The framework represents a check-
list for the elements required to ensure a better open source experience.
The framework has been applied to an industrial proprietary software
planned to be released as open source. The evaluation has been carried
out by both external and internal stakeholders. The early experiences of
the case study suggest that the R3 framework can help in identifying
possible bottlenecks before evangelizing the software to the open source
community.

1 Introduction

Companies are getting more and more interested in releasing their closed source
software products to open source communities. The two large scale examples of
this are Sun Microsystems’ opening of its Java platform during 2006 and 2007,
and Nokia’s actions to open the Symbian operating system during 2009-2010 [11].
As the trend is relatively recent, the phenomenon of opening industrial software
is not well understood despite of the existence of general guidelines such as
in [2,10]. In this paper we tackle the problematic of releasing industrial software.

Most often companies are not used to release the source code of their prod-
ucts. Their standard ways of behavior tend to be more biased to hiding than to
releasing information. The processes, tools and infrastructure used by compa-
nies might turn out to be an obstacle for a successful release. The software itself
might have been written so that open source developers run into troubles when
trying to contribute. This suggests that there is a need for proper methodologies
to evaluate the readiness of proprietary software for open source development.
Such methodologies would help identifying possible bottlenecks before taking the
software to the open. The bottlenecks are then resolved to in order to increase
the success rate of community building around the software.

Given the above observations, the research questions we would like to explore
include the following:

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 143–155, 2010.
c© IFIP International Federation for Information Processing 2010

144 T. Kilamo et al.

– What kind of evaluation criteria could be used to assess software readiness
for open source development?

– How the evaluation should be planned and which stakeholders are involved?
– How to obtain data for the evaluation process?
– How to exploit the results of the evaluation process?

We argue that these issues have not been studied enough by the open source re-
search community. The closest works to our study are the open source maturity
models such as OSMM (Open Source Maturity ModelTM) [3], QSOS (Qualifica-
tion and Selection of Open Source Software) [8], and BRR (Business Readiness
RatingTM) [1]. These models are typically used by companies that plan to use
open source. The context of our research problem in this paper is just the oppo-
site: taking software out from companies to open source communities.

The main contribution of the paper is two-fold. First, we discuss the speci-
ficities of the problem of opening proprietary software. Second, we present a
framework called R3 (Release Readiness Rating) to evaluate the readiness of
proprietary software for open source development. In order to demonstrate our
approach, we have applied the framework to an industrial proprietary software
planned to be released as open source.

The rest of this paper is structured as follows. In Section 2 we discuss related
work and the challenges of opening proprietary software. The details of the
R3 framework and the overall evaluation process are presented in Section 3.
In Section 4, we evaluate the R3 framework in the context of two industrial
case studies. Future work is discussed in Section 5 and finally, we conclude in
Section 6.

2 Background

2.1 Open Source Maturity Models

Several methods have been developed assessing the maturity of open source soft-
ware. For instance, Open Source Maturity ModelTM(OSMM) enables a quick
assessment of the maturity level of an open source product. Products are ranked
according to OSMM scores, which are evaluated in a three-phase process: 1) as-
sess each product element’s maturity and assign maturity score; 2) define weight-
ing for each element based on the company’s requirements and 3) calculate the
score.

The Qualification and Selection of Open Source Software (QSOS) maturity
model is a four-step iterative process: 1) define (and organize criteria), 2) assess
(against the criteria), 3) qualify (define weighted scores, new and mandatory
criteria) and 4) select (asses using the weights, and select). Another evaluation
framework called Business Readiness RatingTM(BRR) was proposed as a new
standard model for rating open source software. The model consists of a four-
phase process: 1) quick assessment filter (for quickly abandon bad candidates), 2)
target usage assessment (for inputting the needs of the company), 3) data collec-
tion & processing (for collecting the actual information) and 4) data translation
(which leads to one outcome: the rating).

Evaluating the Readiness of Proprietary Software for OS Development 145

Compared to the method we propose in this paper these maturity models take
a totally different direction. Whereas our model attempts to study one software
product which is going out from a company, these maturity models attempt to
study a set of software products, one of which is selected to come in to the
company. However, some ideas are still quite similar. For example, in both cases
the architecture of the software plays an important role, and it can be evaluated
similarly. On the other hand the infrastructure of an open source project might
not be so important when evaluating open source software to be used, however
it is a crucial element when building an open source community.

2.2 Opening Proprietary Software

Like any other online community [7], creating and maintaining a sustainable
open source community for proprietary software can be considered as a multi-
facet challenge. It is a complex process that is driven by various kinds of factors,
which in turn can be grouped along six dimensions.

Software. Improved software quality may increase the success rate of community
building. Quality can be enhanced by incorporating best practices, documenta-
tion, code cleanup, coding standards and convention. Furthermore, in order to
support the community, source code may be accompanied with user manuals,
API documentation, and architecture descriptions. It is vital to have the first
experience with downloading, installing, deploying and using the software as
easiest as possible.

Infrastructure. There are two key elements in any open source project: community
andproject repository.Anopen source engineeringprocess shouldprovide enabling
tools and technologies to facilitate the planning, coordination, and communication
between the community members. In addition, efficient mechanisms and tools are
needed to facilitate the access and management of the project repository.

Process. Open source development can be regarded as an open maintenance
process. A process needs to be established in order to handle decisions regarding
the evolution of the software, maintenance actions, and release management. The
process needs to balance between the practices of communities and the needs of
the company.

Legality. The releasing company needs to select a license type (e.g. GPL ver-
sus LGPL) and a licensing scheme (e.g. single or multi licensing). In addition,
source code should be legally cleared against IPR and copyright issues. Also, the
availability of trademarks and names used in the software should be checked.

Marketing. Building an open source community can be regarded as a marketing
challenge. Effective marketing strategies are needed to market the open source
project to potential users and developers. Selecting an existing open source com-
munity as a target customer can be an important success factor.

Community. The releasing company should be ready to support the project
community. For instance, community members should be provided with clear

146 T. Kilamo et al.

guidelines on how and what to contribute. Furthermore, company developers
who are participating in the community should be trained for their new roles
and should be given clear responsibilities. When the software is opened, it is vital
that all information are made public and that private discussions are avoided.
In addition, there should be trust among community members, zero tolerance
of rudeness and no use of bad language both in the software artifacts and the
communication among the members.

In the next section, we present a framework that addresses these questions by
evaluating software in a pre-bazaar phase. The pre-bazaar phase helps in getting
early feedback and experiences on using and evolving the software outside its
original development environment. This may need the involvement of external
stakeholders.

3 The Release Readiness Rating Framework

The Release Readiness Rating (R3) framework is a tool for planning the open
sourcing of a software system. The goal of the framework is to help identifying
possible bottlenecks and to eliminate them in so-called pre-bazaar phase, whose
goal is to prepare the software to be released and the releasing company to the
continuation of the life of the system as open source.

3.1 Framework Overview

The evaluation criteria for R3 consists of four different dimensions, including
software itself, intended community and its roles, legality issues, and the releas-
ing author. The output of the evaluation can be considered as a vector that
determines the relative values of these different elements. The dimensions are
further decomposed as indicated in Table 1. The table also lists the relative
importance of the item.

The current weights are based on our experience on previous case studies. All
dimensions are equal in weights when the individual items are associated with
different weights.

3.2 Evaluation Criteria

In the following, we discuss the different views that should be considered when
deciding the value set for the items representing different dimensions.

Software. The software itself forms an important aspect for any open source
project for obvious reasons. Based on our experience, at least the following issues
must be taken into account.

Source code. Fundamentally, any open source project deals with source code.
When releasing a new software system to open source, there are numerous prop-
erties that the system itself, manifested in its code, should contain. These in
particular include quality of code, integrity, and coding conventions that help

Evaluating the Readiness of Proprietary Software for OS Development 147

Table 1. R3 dimensions, items and relative weights

Dimension Item Weight

Software 0.25

Source code 0.5
Architecture 0.4
Quality attributes 0.1

Community 0.25

Purpose and mission 0.4
User community 0.4
Partners 0.2

Legalitites 0.25

Copyright 0.6
Licensing 0.3
Branding 0.1

Releasing 0.25
authority

Mindset, culture 0.5
and motivation
Process, organization 0.3
and support
Infrastructure 0.2

other developers to participate in coding. The importance of coding conventions
is highlighted, since introducing coding conventions as an afterthought can turn
out to be impossible. Moreover, the source code should express code of conduct,
which is a necessity for making the code public. Finally, documentation of the
system is a practical necessity for attracting other developers.

Architecture. In order to make a software system easily approachable, it must
be easy to understand by the developers. This in turn calls for an architecture
that can be easily understood and communicated - and preferably documented.
In addition to this, one should pay special attention to the design drivers of the
architecture: Is the system designed as a monolithic system that solves a partic-
ular problem, or has the design taken into account extensibility, modifiability,
and the use of the system as a subsystem in another system. Provided that the
architecture has been designed with changes in mind, it is often easier for other
developers to alter certain parts to create various types of new systems.

Quality attributes. In software, quality attributes are commonly associated with
architectures. Indeed, many qualities, such as performance, scalability, and mem-
ory footprint, are often dictated by the architecture. However, when considering
a completed software system, quality properties are often considered separately
from the actual implementation, which makes the perceived quality of software
being released as open source an important factor.

Community. In order to release a software system in open source, one generally
has an idea on what kinds of developers should get involved. Careful planning

148 T. Kilamo et al.

of the intended community participants can have an impact on what to release
and how.

Purpose. As already stated in [9], good work on software commonly starts by
developers scratching their own itch. Therefore, we feel that in order to become
attractive for developers, the released system should be of practical importance
and relevant for the developers. This in turn enables one to solve their own
problems, not further developing some random software for companies who seek
profit in maintenance and creativity of others. Based on the above, the goal
of the community is probably the most important single issue when releasing a
piece of software as open source. Provided with a mission statement welcomed by
developers, companies, and other organizations, a community can obtain support
from numerous sources. The goal must be practical enough to be meaningful for
the developers, as well as clear enough to manifest itself in the development.
Unfortunately, estimating the attractiveness of a certain purpose is difficult, and
therefore it is sometimes difficult to make assumptions in this respect. Moreover,
since there commonly are numerous similar ongoing projects, the adequacy of
the mission is only a prerequisite for a successful launch, not an automata for
succeeding in community building.

User community. In addition to partners developing software, we feel that the
potential for the user community is important. Based on recent findings, it seems
that a community of 100 users can support one full-time developer. In contrast,
provided with an active user community, development resources can be invested
in actual development, and the user community can provide support for other
activities, such as peer user guidance, documentation, and testing.

Partners. The definition of partners that join in the community can be straight-
forward. For instance, if a releasing company has been subcontracting from an-
other company, the latter may be automatically involved in the newly formed
community. Moreover, the use of subcontracting may also imply that at least
some documentation exists, which in turn simplifies introducing the system to
other partners. In general, getting partners involved in a community guides the
authoring company towards processes that liberate the development from com-
pany specific tools and practices. In contrast, if the company that is about to
release a piece of software as open source has no partners that would share the
interest in the development, there should be a clear plan to motivate others to
join in the development effort.

Legalities. In the context of companies, one of the most commonly consid-
ered aspects of releasing software as open source is legalities. This is a wide
topic to cover, and there can be several subtle differences in different contexts.
Here, we assume a straightforward view where different concerns are discussed
independently.

Copyright and intellectual property rights (IPR). Most commonly, companies
release software whose copyright and IPR they own. However, things can be more
complex, if subcontractors or open source communities have provided pieces of

Evaluating the Readiness of Proprietary Software for OS Development 149

the system that is being released. If the company does not own the copyright, it
can sometimes be obtained via different transactions.

Licensing. Provided with the copyright of the system to be released, the com-
pany is in principle somewhat free to determine its licensing scheme. However,
the choice of license (or licenses if several alternatives are offered) also has an
effect on how others perceive the community. This in turn potentially affects the
willingness of developers to participate in the community effort. Therefore, since
licenses that have strong copyleft, such as GPL [6], can be considered safe for
community building, they bear some advantage over other licenses in this re-
spect. However, since licenses with no copyleft, such as MIT [6] and BSD [6], are
favored due to their liberal flavor in some other contexts, one should also take
the mission of the community into account when defining the license. Moreover,
license compatibility with related systems should also be considered. Further-
more, one can even compose a list of accepted open source licenses, which can
be used during the development.

Branding. Availability of brand names is an issue for any project looking for a
good name that can be used in public. While issues such as trademarks may
bear little significance when developing an in-house product, once the product
is released, branding becomes an issue. Moreover, since an open source project
can be a long lasting one, selecting suitable brand names is important. The same
applies to hosting the project, since in many cases it would be practical to reflect
the name of the project also in the domain.

Releasing Authority. The final element we address in our framework is the
releasing authority, most commonly a company in the scope of the framework,
which is targeted to releasing in-house software as open source. However, also
other parties can act as the releasing authority, including universities, non-profit
organizations, and individuals.

Mindset, culture, and motivation. Sometimes the mindset of developers working
in a company is somehow biased - either positively or negatively - towards open
source development. This is particularly true when their pet project is about
to be open sourced. In order to benefit from an open source community, the
releasing authority should be mentally and culturally ready for dealing with
developers outside the company under fair terms. The terms include equal access
to code, similar guidelines and conventions, as well as mutual respect. We believe
that the seeds of building such cooperative relation should somehow be sewn well
before entering the pre-bazaar phase. Therefore, evaluating the readiness of the
company to go for open source is fundamentally dependent on mindset, culture,
and motivation.

Process, organization, and support. In order to gain benefits from open sourcing
a system, the releasing authority should have a system in place that provides
support for users and developers. This requires planning of a process that is to
be followed, and putting the process in practice by the support organization.
Establishing such support organization is a natural step to take towards the end

150 T. Kilamo et al.

of the pre-bazaar phase. However, it should be in place before the actual release,
since support should be available from the very beginning.

Infrastructure. In order to establish an open source project, the releasing
authority sometimes must be prepared to provide infrastructure. For instance,
the company that releases a piece of software may provide web servers for hosting
the system, as well as maintain a build system needed for compiling the code on
top of certain reference hardware. While some systems do not need such support
as such - it would be perfectly reasonable solution to release a vanilla Linux
program in SourceForge - companies often wish to gain visibility through offering
the download opportunity. Moreover, if a company is releasing a system targeted
for the development of embedded systems, it is only reasonable to assume that
also tools for composing builds are offered from the very beginning in open
source.

The R3 evaluation model is organized into three main levels. For each dimen-
sion there are a number of categories. Each category is then associated with a
number of measures (i.e. questions). This is illustrated in Figure 1 taking the
software dimension as example.

Fig. 1. The R3 framework model

3.3 Evaluation Process

The diversity of software products (and different goals of companies) makes
it impossible to evaluate all software in similar fashion. The evaluation model
itself must be tuned to take into account the characteristics of the product
under release. Not all criteria make sense to all cases, and some crucial criteria
might be missing. The proposed R3 model should be considered as a template
which has to be instantiated to each case. Instantiation R3 means going through
all aspects of the model and validating that they are appropriate to the case
in hand.

At the concrete level the evaluation process starts with downloading R3 Spread
Sheet Template from http://tutopen.cs.tut.fi/R3/R3_Template.xls.
Instantiating the template requires removing and adding dimensions and crite-
ria to the spread sheet. Also the evaluation weights require attention from the
evaluator.

http://tutopen.cs.tut.fi/R3/R3_Template.xls

Evaluating the Readiness of Proprietary Software for OS Development 151

On the Criteria. The evaluation criteria form a continuum from a criterion
that can stop the release process to others that can be easily fixed. Examples of
the former are some legality issues, like possible copyright and IPR violations,
and probably mindset of partners. Changing these is hard or even impossible.
The latter group can be worked on during the releasing process: usability, and
quality can be improved; infrastructure and process can be organized. An exam-
ple continuum is depicted in Figure 2.

Fig. 2. The continuum of criteria

Actual Process. The evaluation process consists of three phases depicted in
Figure 3.

Phase 1: Deciding the evaluation order. The evaluation is carried out according
to continuum of criterion. This allows early no-go decisions. If, for example, the
company does not own copyright of the product, it makes no sense to continue
the process. However, there is no one unique and universal order of the criteria,
but the order is fixed in the beginning of the process.

Phase 2: Data collection and processing. Most of the work is done in this
phase. The criteria are evaluated one by one in the order fixed in the first phase.
This activity is shaped by the framework model presented in Figure 1. First a
dimension (e.g. software) is picked, then a specific category (e.g. source code) is
selected, and finally concrete questions are answered. After each evaluation the
decision of continuing the release process is made. Each measurement is filled to
a standard spreadsheet with justification of the evaluation.

Fig. 3. Evaluation process

152 T. Kilamo et al.

Measures require expertise from different fields: engineers, marketing people,
legal experts and external open source experts. For example, the legal depart-
ment of the company is often contacted in the beginning of the evaluation to
verify the copyright and possible IPR issues of the release. Engineers take care
of technically-oriented criteria. External open source experts have probably the
best understanding of the whole release process, and they know how open source
communities operate. The releasing process reminds much of marketing chal-
lenges, therefore, marketing people are valuable for the process.

Phase 3: Data translation. In the data translation phase the evaluation of
the criteria is transformed to an array of scalars with respect to the dimensions
of the framework. The final result of the process is a four-dimensional array
of evaluations of each dimension: software, community, legalities and releasing
authority.

3.4 Open Source Engineering

R3 assessment of proprietary software is not just a pass-or-fail process. The out-
come of R3 evaluation is a set of recommendations based on which the software
under evaluation and its development environment undergoes an open source
engineering process. This process needs to be carried out before evangelizing the
software to the open source community. The aim is to eliminate the problems
and shortcomings identified during the assessment process. This will increase the
success rate of community building and sustaining. The open source engineering
process itself is driven by different kinds of influential factors that follow the
same criteria as we used in the R3 framework.

In the case of the software itself, any considerable rework requires an extensive
investment. Therefore there are numerous restrictions on what can be accom-
plished during the pre-bazaar phase. Still, it is possible to clean up the code, if
there are some company specific remarks in comments. Since the code may al-
ready be in use in products, special attention must be paid to determine what to
do with comments that indicate faulty or incomplete features. To some extend,
documentation can also be composed in pre-bazaar phase, or simply included in
the comments in the code.

Adding purpose to a community as an afterthought can be difficult. Assuming
that a system has been developed with only business interests in mind, it can
be difficult to introduce attractions for an independent developer. However, a
mission for a community can be defined in pre-bazaar phase, provided that the
software to be released enables a number of possible uses. Unfortunately compa-
nies can be somewhat biased towards supporting their own plans regarding the
released system only, which in turn sometimes hinders the outside participation
in the development for reaching some other goals, especially if the missions are
conflicting. For instance, the releasing authority may not be willing to incorpo-
rate a community contribution for free, if the same feature can be sold for a
commercial customer by the company.

Legalities most commonly form the most straightforward category of items.
There is a lot of freedom to define the other legal aspects once the copyrights

Evaluating the Readiness of Proprietary Software for OS Development 153

have been provided. However, copyrights can be difficult to obtain in pre-bazaar
phase only.

The seeds of building cooperative relation between the releasing authority and
the actual community should in our opinion be somehow sewn at the latest when
entering the pre-bazaar phase. This can already be evidenced by existing ways
of working and infrastructure, but they can also be introduced later on.

4 Case Study

In order to demonstrate our approach, we have applied the R3 framework
to measure the open source readiness of an industrial software platforms:
Wringer and Gurux. The Wringer software is a JavaScript binding platform
for GNOME/GTK+ [4] using V8 [12] as JavaScript engine. It was originally de-
veloped by Sesca Mobile Oy. The Gurux software [5] is a platform for developing
device communication systems.

4.1 The Wringer Case

The R3 evaluation of the Wringer platform has been carried out separately by
the releasing authority as an internal stakeholder and by us as external open
source experts. It was observed that we agree on most answers. However there
are still a number of differences. For instance, in the software dimension, there
were few differences with respect to rating the technology used, the use of well-
known design principles, rating of bugs and warnings, and scalability level. We
received more pessimistic answers from the releasing authority. A partial reason
for this could be that the company is assessing Wringer, which is a prototype
software, relative to other high quality products developed inside the company.

On the opposite, the answers with respect to the community perspective for
instance have been mostly identical. This probably shows that both parties are
aware and honest about the community-related properties of the software. Also
this shows that both parties are fairly aware of related user and developer com-
munities.

Taking a numerical perspective, we noticed that the software and legality
dimensions received the best scores compared to the community and releasing
authority dimensions. This confirms our hypothesis that companies are generally
dealing with open source from legality point of view. We could also infer that
software-related properties are considered important irrespective of whether the
software is supposed to be used and developed as closed source or as open source.

The low rating of the community dimension suggests that the company have to
work on making the software more attractive to open source communities, involve
business partners if possible, and look for potential users of the software. As for
the releasing authority dimension, the low rating suggests that the company is
not fully ready for open source operations. Concrete remedial actions include
training internal developers, setting clear open source related processes, and
building an infrastructure for the project. As mentioned earlier, these remedial
actions are to be carried out in the context of an R3 evaluation post activity
called the open source engineering process.

154 T. Kilamo et al.

4.2 The Gurux Case

Four people from the releasing authority carried out the R3 evaluation for the
Gurux platform before it was released as open source in November 2009. The
overall impression was positive and R3 was considered a valuable and useful tool
in the pre-bazaar phase. The evaluation process acted as a good checklist for
things that need to be considered when planning the release and showed well
the items where most improvement is required. In addition, those items where
improvement would be most beneficial were easily identified with R3, i.e. the
releasing authority knew where to focus most of the effort.

Some items were not seen relevant in the case of the Gurux platform. However,
this was not a significant problem for the process as irrelevant items were simply
skipped by the people doing the evaluation.

Sometimes choosing the correct grading was found hard. Grades like ”well”
and ”reasonably” may mean different things to different people as these types of
grades depend on how things are seen by individuals doing the evaluation and
what they value.

5 Future Work

We are in the process of improving the R3 framework based on our experiences
with the case projects. This includes adjusting the weights, proposing new met-
rics, and covering other dimensions if found necessary. Currently the weights
are chosen based on experience gained from earlier similar case studies. As the
framework is applied to further cases, enough data will be gathered to enable us
to better finetune the weights.

Furthermore, the case studies confirmed that it is difficult to come up with
a one R3 framework template for all software projects. For instance, usability
as a quality metric should be considered for end user software but was found
less relevant in the case of software platforms like Wringer and Gurux. We plan
to provide different templates for different kinds of software. Still, it is highly
probable that the R3 framework template needs to be adapted to the needs of
the subject software on a case by case basis.

6 Conclusions

Similarly to other major steps in software development, aiming at releasing a
piece of in-house software as open source requires an engineering effort. More-
over, in order to estimate the outcome of the release, tools and techniques are
needed for evaluating the potential of the emerging community as well as the
attractiveness the system for external developers.

In this paper, we have introduced the concept of Release Readiness Rating
Framework to determine how complete an in-house piece of software is for re-
leasing in open source, and what its potential to attract external developers is -
in essence evaluating how easily a cathedral could be transformed into a bazaar.
We also discussed potential engineering actions that can be taken as a part of
this transformation process, and provided a summary of two industrial cases.

Evaluating the Readiness of Proprietary Software for OS Development 155

References

1. BRR. http://www.openbrr.org/ (Last visited March 2009)
2. Fogel, K.: How to Run a Successful Free Software Project. O’Reilly Media, Inc.,

Sebastopol (October 2005)
3. Golden, B.: Succeeding with Open Source. Addison-Wesley, Reading (2004)
4. GTK+, http://www.gtk.org/ (Last visited March 2009)
5. Gurux/open source, http://www.gurux.fi/index.php?q=OpenSource

(Last visited December 2009)
6. Licences, http://www.opensource.org/licenses (Last visited February 2009)
7. Preece, J.: Online Communities: Designing Usability, Supporting Sociability. Wiley,

Chichester (2000)
8. QSOS, http://www.qsos.org/ (Last visited March 2009)
9. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly Media, Sebastopol (1999)

10. Stürmer, M.: Open source community building. licentiate thesis (2005)
11. The Symbian Foundation, http://www.symbian.org/ (Last visited December

2009)
12. V8 JavaScript Engine, http://code.google.com/p/v8/ (Last visited February

2009)

http://www.openbrr.org/
http://www.gtk.org/
http://www.gurux.fi/index.php?q=OpenSource
http://www.opensource.org/licenses
http://www.qsos.org/
http://www.symbian.org/
http://code.google.com/p/v8/

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 156–176, 2010.
© IFIP International Federation for Information Processing 2010

Where and When Can Open Source Thrive?
Towards a Theory of Robust Performance

Sheen S. Levine1 and Michael J. Prietula2

1 Singapore Management University
50 Stamford Road
Singapore 178899

sslevine@sslevine.com
2 Emory University
Atlanta, GA 30322

United States of America
prietula@bus.emory.edu

Abstract. While the economic impact of, and the interest in, open source inno-
vation and production has increased dramatically in recent years, there is still no
widely accepted theory explaining its performance. We combine original field-
work with agent-based simulation to propose that the performance of open
source is surprisingly robust, even as it happens in seemingly harsh environ-
ments with free rider, rival goods, and high demand. Open source can perform
well even when cooperators constitute a minority, although their presence
reduces variance. Under empirically realistic assumptions about the level of co-
operative behavior, open source can survive even increased rivalry and per-
formance can thrive if demand is managed. The plausibility of the propositions
is demonstrated through qualitative data and simulation results.

Keywords: Innovation, Exchange, Performance, Agent-based Modeling.

1 Introduction

Interest in open source is booming. With its roots in freely shared software [1], the
term has been expanding to include broader instances of product development [2],
process innovation [3], and knowledge exchange among end-users [4].1 All in myriad
fields, including technology, science [7], medicine [10], and law [11], among others.

Open source software has become a viable alternative to commercial software.
What has once been the domain of computer hobbyists (or “hackers”), has gained
acceptance with major corporations and governments [12] and created hundreds of
millions of dollars in value [13]. In software, where open source has frequently been
studied, developers were found to contribute through collective action organized on-
line and in absence of direct monetary compensation [1, 14, 15]. Not only that the

1 We use “open source” as shorthand to refer not only to open source software, but also to what

scholars have called “community-based innovation” [e.g., 5, 6], “commons-based peer pro-
duction” [7, 8], “free software” and “software libre” [9]. We are not attempting to diminish
the differences between them.

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 157

produced software is shared among contributors, but it is also freely available to non-
contributors for personal and (often) commercial use.

The actions of such collectives, working in unison yet often without ever meeting
each other to create products and services of economic value, have captured the atten-
tion of the media, general public, business practitioners and academics. Yet despite its
growing economic impact, a theoretical explanation for its performance is still in-
complete. While many have documented cases of open source and theorized about the
motivation of participants, internal organization and market dynamics, there is little
understanding of its performance. For instance, while open source has been discussed
often in the case of software, recent accounts suggest that it may be much more wide-
spread. In which industries, then, can we expect open source to compete with firms?
Which goods can be successful produced by open source? Which environment does it
require to succeed? Ultimately, what affects the performance of open source?

We build on previous explanations, mostly pertaining to open source software, and
combine original fieldwork with agent-based simulation to generate propositions that
offer analytical and predictive power as to the performance of open source. These can
aid in pinpointing the elements that make such entities successful in achieving their
collective goals. We proceed by reviewing the relevant literature and briefly present-
ing our fieldwork and the agent-based model and. We then present the computational
experiments we conducted and the resulting propositions, the implications of which
are later discussed.

2 Literature Review

The last decade saw booming interest in open source as a mechanism of production
and innovation initially in software and more recently in realms beyond it [16, 17] A
bibliometric query reveals a pattern of rapid growth in the use of “open source” and
“open innovation” as terms in the academic literature. While in the three year period
1995-1998 “open source” was mentioned only 12 times, it appeared 32 times in 1999,
40 times in 2000, and more than double that in the following year. In 2009, the term
appeared 687 times, representing an impressive seventeen-fold growth in a decade. 2

2.1 Open Source Differs from Firm-Based Innovation

Scholars generally agree that open source represents a distinctive way of innovating
as well as producing goods and services (hereafter: “goods”). Open source is “a fun-
damentally different organizational model for innovation and product development”

2 The citation count was carried out in January 2010, using the Web of Science database, which

provide access to current and retrospective bibliographic information, author abstracted, and
cited references from over 10,000 leading journals of science, technology, social sciences,
arts and humanities and over 100,000 book-based and journal conference proceedings. It pro-
vides access to seven databases: Science Citation Index (SCI), Social Sciences Citation Index
(SSCI), Arts & Humanities Citation Index (A&HCI), Index Chemicus, Current Chemical
Reactions, Conference Proceedings Citation Index: Science and Conference Proceedings
Citation Index: Social Science and Humanities. See http://thomsonreuters.com/products_
services/science/science_products/a-z/web_of_science

158 S.S. Levine and M.J. Prietula

a

419
420

Fig. 1. Appearances of the terms “open source” and “open innovation” in the academic litera-
ture, 1995-2009

[18]. While open source may complement (or replace) firm-based innovation [5, 19],
it is emphatically different in elements as diverse as the individual motivation to par-
ticipate [20], production [21], governance [18, 22] and market behavior [23, 24].

The characteristics that distinguish open source from firm-based (and market-
based) innovation are related to its unique benefits. First is the ability to build upon
others’ work in the most direct way because the architecture of the good is visible and
openly available, such as the lines of code in software or the circuits of a mobile
phone [25, 26]. Second, open source may enhance innovation and problem solving by
“removing barriers to entry to non-obvious individuals” [27], allowing users to con-
tribute as much or as little as they may wish (or able) to contribute, without requiring
upfront commitment or pre-specified roles, unlike in most firm settings [7, 28]. For
firms, open source can generate rents from innovations created not by its personnel,
but by users or consumers [29-31]. Better performance can also come from engaging
in open collaboration with other firms [32, 33]. At the societal level, open source can
benefit public welfare [7, 34] as well as foster virtue [8].

2.2 A Lingering Puzzle of Performance

Yet those unique benefits of open source also pose several important puzzles [16]. It
is intriguing that open source thrives on the internet [but also elsewhere, cf. 35],
which is largely devoid of “the social signaling, cues, and relationships that tend to-
ward moderation in the absence of law” [36]. These were thought to be necessary for

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 159

such collaborative sharing behavior to occur [cf. 37]. The same conditions that give
rise to open access and consumption with minimal intellectual property rights should
have also caused it to quickly collapse under the weight of free riding, as theoretician
have predicted [38, 39, cf. 40]. It is all the more puzzling because participants in open
source effort could have easily regulated the sharing of costs and benefits by restrict-
ing access to those able and willing to contribute. Sharing does not necessitate open
source. [cf. the notion of club goods, 41]. Nevertheless, open source seems resistant to
free riding and highly skewed contributions [28, 42, 43].

While there is a large and growing body of knowledge on innovation in firms, the
same has been developing for open source production and innovation. It is hard to
imagine how the same conditions that promote innovation in firms would apply un-
changed to open source, given the dramatic differences in the why innovations are
produced [for a review see 5, 42]. Hence, we see a need to identify variables that exert
important effect on the performance of open source organization, be it a coding com-
munity, file sharing or an advice forum [44]. Such theory would be essential in en-
couraging it, as some have urged to do [45, 46].

3 From Qualitative Data to a Model of Open Source

We build on qualitative data originating in a non-software environment, where a prod-
uct of economic value is openly shared, to develop agent-based modeling. We use the
two approaches jointly to investigate the phenomenon, utilizing the complementary
nature of a grounded theory and formally expressed theory [47]. Qualitative accounts
are rich in detail, evocative, describe processes lucidly, and possess high external va-
lidity [48, cf. 49]. However, qualitative data is hardly parsimonious, affords little in
generalizability, and allows only limited field experimentation [cf. 50, 51]. Formal
models have been employed in some of the pivotal studies in organizational theory [52,
53]. Agent-based models, of the kind we employ here, are increasingly seen as a prom-
ising way to study complex phenomena, whether social or organizational [54-56].
They have been used in the study of open source [57]. As recently demonstrated [58],
agent-based models can capture features of the social order, such as embeddedness of
actors and the emergence and dynamics of norms, that are difficult to represent by
traditional analytic models.

3.1 Specifying the Model: Building Blocks of Open Source

In line with the boarder conceptualization of open source, which extends beyond
software to other realms of innovation and production, we sought to indentify ele-
ments that were present in the specific field setting and also theoretically distinguish-
ing between open source and non-open-source systems. While an all encompassing
definition is beyond the scope of this paper, we present a working definition that
marks the boundaries of our framework. It is applicable to all systems that feature the
following elements.

160 S.S. Levine and M.J. Prietula

Table 1. Modeled Elements of Open Source

Elements Description Corresponding
Model Manipulation

Theoretical and
Empirical Referents

Open access to
contribute and
consume

Anyone can join the
development process
or partake in its
outcome, regardless
of their level of
contribution

Any agent in the
model can
participate in
development or
consumption with no
exclusions

[1, 17, 44, 59, 60]

Create products of
economic value

Products have clear
economic value.
That is,
organizations whose
primary purpose is
social interaction
(e.g., primary social
group) are excluded

The dependent
variable is the
overall value created
by the efforts of the
collective, reflecting
the economic value
created

[17, 19, 35, 61]

Interaction and
exchange activities
are central

Participants interact,
exchange and reuse
each other’s work

Each agent can
engage in its own
work or exchange
with others

[7, 25-28, 62]

Participants work
purposefully yet
loosely coordinated

Coordination,
structure and
hierarchy are
emergent and less
specified compared
to a firm or market
setting

Agents coordinate
only when engaging
in exchange events

[5, 18, 21, 22, 42,
62-64]

The elements allow the model to capture multiple instances of what is generally

regarded as open source, including beyond software [35], e.g. Wikipedia [28, 36, 65],
user-run support forums [44, 66] and file sharing services.

3.2 Specifying the Model: Variables Related to Open Source Performance

While the variables presented above are thought to define open source as such, the
manipulated variables are likely to affect the performance of the system.

Degree of Rivalry. A good is considered non-rival if for any level of production the cost
of providing it to a marginal (additional) individual is zero [41]. Non-rivalry does not
imply that the total production costs are low, but that the marginal production costs are
low.3 Thus, sharing a pure non-rival good does not decrease the utility of any individual
from consumption (e.g., sharing a digital music file or software code). Few goods are
perfectly rival or non-rival and one can imagine a continuum of rivalry [18, 71].

3 For instance, a non-rival good such as national defense is extremely expensive to produce, but

the cost is insensitive to the number of beneficiaries.

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 161

Table 2. Model variables Manipulated in the Studies

Level of
Analysis

Variable Description Corresponding
Model Manipulation

Theoretical
and
Empirical
Referents

Individuals Agent &
Populations
Characteristics
(Study 1)

Agent characteristic
is defined in terms
of its likelihood to
contribute;
population
characteristic is
defined in terms of
the distribution of
agent characteristics
in a population.

Agent characteristics
are drawn from three
types: cooperator,
reciprocator, and
free rider;
Population
characteristics are
systematically varied
and their impact on
performance is
assessed.

[18, 38, 40,
42, 43, 67]

 Demand
(Study 2 & 3)

Demand describes
the uniqueness of a
sought resource.

Levels of Demand
were manipulated to
discern effect on
performance, and
how Agent,
Population &
Rivalry
characteristics
interact with it.

[7, 27, 28,
68-70]

Goods Rivalry
(Study 2 & 3)

Goods differ on the
cost associated with
providing them to a
marginal individual,
i.e., the cost of
contributing them to
others. E.g., rival
good cannot be used
simultaneously by
more than one
agent.

Levels of Rivalry
were manipulated to
discern effect on
performance, and
how Agent,
Population &
Demand
characteristics
interact with it.

[19, 41]

Composition of Cooperative Types in the Population. People’s behavior with regards
to cooperation is heterogeneous between- and stable within-individuals [67, 72-75] with
remarkable stability across cultures [76]. An individual’s type is so stable that “a
group’s cooperative outcomes can be remarkably well predicted if one knows its type
composition” [67]. We reflect those recent findings by assigning agents to follow one of
the three empirically observed types: 1) Cooperators – which contribute to others even
at cost to self [77]; 2) Reciprocators – which contribute based on others’ behavior [cf.
78], e.g., contribute if they observed others doing so; 3) Free Riders – which do not
contribute, but still consume. Kurzban and Hauser’s [67; hereafter: KH] empirical re-
sults (hereafter: KH ratio) suggest that 13% of individuals can classified as Cooperators,

162 S.S. Levine and M.J. Prietula

53% as Reciprocators, and 20% as Free-riders. The behavior of the remaining 14% is
not stable enough to be classified. In implementing the KH types in the model, a global
parameter of group contribution behavior was defined in terms of the exchange ratio
(exchanges/attempts), reflecting the population rate of contribution for a given period,
εp.4

Demand Homogeneity. Of particular importance is the homogeneity of participants
with regards to demand, which may be dependent on relevant skills [e.g., 7, 27, 28]
and the motivation to contribute and consume [e.g., 4, 18, 69, 70]. Together, they both
determine the extent to which participants are placing demand on the open source
system.

4 Computational Experiments and Results

The model consists of a simple population of 100 agents (a1,….,a100), each of which
follows the algorithm described in the figure.5

Fig. 2. Agent behavioral algorithm for the simulation

4.1 The Impact of Cooperative Types on Performance

We consider the impact of a range of cooperative type mixes, modeled after KH types,
on the time (measured in steps) that it takes to complete the set of problems (goals) in
an open source system. Hundred agents were randomly assigned 100 goals each to
complete, with initial resources levels randomly drawn from a [0,100] flat distribution.

4 Detailed description of implementation of KH types in the model is available from the authors.
5 Complete description of the model is available from the authors.

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 163

All goals were unique (i.e., low demand for each resource) and all resources were non-
rival. The values of each type were varied in steps of 10% ranging from 0.0% to 100%,
with 100 runs made for each configuration.6 Each run defines an instance of a problem
faced by the population of the open source system. All problems are considered inde-
pendent, such that there is no knowledge carryover from prior runs.

Results. The results are plotted the figure as overall performance means for each level
of cooperator percentage in the population (solid line), with the vertical bars denoting
95% confidence intervals. In the figure, the x-axis depicts the percent of cooperators
in the population (e.g., 5%). For each set of runs at a fixed cooperator percentage of
the x-axis, the remaining percent (i.e., 95%) of the population contains reciprocators
and free-riders whose mix is systematically varied from all reciprocators to all free-
riders. An expected main effect of cooperators is apparent and confirms our intuition
about cooperation in general – the more cooperators in the population, the better per-
formance of the open source model.

Proposition 1a: Cooperators Improve Performance. Over a mix of reciprocator and
free-rider levels, a higher ratio of cooperators leads to better performance.

Although the performance plot is increasing (see figure), that there is a distinct con-
cavity in the graph. We continued by analyzing further the effect of cooperator ratio
on performance to reveal a significant pattern of nonlinearity. The figure shows (in
dotted line) the added benefit in performance due to higher percentages of coopera-
tors. As is suggested in the figure, there is a decreasing marginal benefit to the addi-
tion of cooperators to the population.7 The largest gain occurs when the percentage in
the population jumps from 1% to 5%, but trends down as more cooperators enter the
population.

Proposition 1b: Decreasing Marginal Returns from Cooperation. Over a mix of re-
ciprocator and free-rider levels, increasing the ratio of cooperators has decreasing
marginal positive effect on performance.

Finally, an examination of the confidence intervals in the figure indicates that the
spread decreases (i.e., the intervals become “tighter”) as the ratio of cooperators
increases. That is, the variation in performance for a given ratio of cooperators de-
creases as there are more cooperators in the population.

Proposition 1c: Cooperators Reduce Variance. Over a range of reciprocator and free-
rider levels, a higher ratio of cooperators reduces variation in performance. Stability,
and thus predictability, in model performance is accommodated by increasing the
ratio of cooperators in the population.

6 For all three studies, cell sample sizes (replications) were planned in order to detect absolute effect

sizes with α = 0.05 for all main effects and interaction contrasts with likely power ≥ .80 [79].
7 An analysis of variance confirmed that differences in performance across percentage levels of

cooperators were significant (F(1,8588) = 4897.8, p < .001). A post-hoc analysis (Games &
Howell 1976) revealed that all means differed from each other significantly and the subtended
line connecting the means had a best fit with a logarithmic model (R2 = .842, SE = .075). All
analyses conducted using SPSS 17.0 (www.spss.com) and Statistica 8 (www. statsoft.com).

164 S.S. Levine and M.J. Prietula

Fig. 3. Mean performance for cooperator ratio in the population (solid line), marginal
improvement in performance (dotted line)

What accounts for the higher variation and unpredictability in performance with
lower ratios of cooperators? To answer this question, we examined the sensitivity of
performance to these specific mixes of reciprocators and free-riders. As can be seen in
the figure, for each cooperator percentage, there is an embedded plot that shows per-
formance decreasing from left to right, as less reciprocators (and more free-riders)
enter the population. We interpret this as a distinct sensitivity to the percentage of free-
riders. For example, as indicated in the figure, populations with 5% cooperators exhibit
a wide variation in performance depending on the particular mix of reciprocators and
free-riders (compare performance in point A in the figure with performance in point
B). Thus, variance in performance is driven by the ratio of reciprocators to free-riders.

As described in Figure 4, performance drops can be mitigated: for example, a
change of 95% reciprocators to 55% reciprocators results in only a 3% average drop
in performance, after which a significant decline performance ensues (C in the
figure). A pattern of compensatory substitution between cooperators and reciprocators
is revealed in the data: high levels of reciprocators can compensate for low levels of
cooperators, and vice versa. For example, in the figure, the Φ-line depicts a perform-
ance level of 42%, which can be achieved with a population with 1% cooperators, but
also with 5% cooperators or 10% cooperators, all under various mixes of Reciproca-
tors and Free-riders. However, this flexibility of these types of tradeoffs decreases as
the percent of Cooperators increase in a population. In part, this is due to the decrease
in sensitivity to the number of Free-riders in the population and, consequently, the
decline in performance variance.

Kurzban-Houser Ratio

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 165

Fig. 4. Performance by varying types of agents. For each constant percent of cooperators
(x-axis), the relative ratio of reciprocators to free-riders is varied (high to low reciprocators).

Proposition 1d: Cooperator-Reciprocator Trade-off. Reciprocators improve perform-
ance and higher-ratios provide performance improvements. But the performance im-
provements decline as more Cooperators are present.

Intuitively, the finding is driven by the varying presence of reciprocators in the
population, which is reversely correlated with the presence of free riders. Empirically,
reciprocators, who adjust their behavior according to that of those around them, are
the largest section of human population [67, 76]. At low levels of cooperators (left
side of the X axis) it means that a large chunk of agents are willing to “change colors”
according to the situation. Performance is then driven by the group (cooperators or
free riders) that serves as the “role model” for reciprocators. In each step in the analy-
sis, we held the ratio of Cooperators constant while varying the ratio of Reciprocators
to Free-riders. As the ratio of Free-riders grew, they exert growing influence on the
behavior of reciprocators pushing them to behave as free-riders. The conversion proc-
esses accelerates, which leads to rapid decrease, indeed a collapse, in performance. As
one travels to higher ratios of cooperators (by moving towards the right side of the X
axis), there is more influence on reciprocators to mimic a cooperator-like behavior.
Reciprocators are less likely to be influenced by free-riders, the variance in perform-
ance decreases and the substitution effect is lessened.

95% Reciprocators, 0% Free-riders

55% Reciprocators, 40% Free-riders

Φ

Kurzban-Houser Ratio

0%Reciprocators, 95% Free-riders 5% Cooperators

166 S.S. Levine and M.J. Prietula

4.2 The Impact of Rivalry and Demand

To simplify the initial analysis, we elected to explore the facets (the extreme values)
of the parameter space. We examined three mixes of the population: 1) Cooperative,
which we defined as 98% Cooperative, 1% Reciprocators, 1% Free-riders; 2) Recip-
rocators, which we defined as 1% Cooperative, 98% Reciprocators, 1% Free-riders;8
and 3) KH ratio, defined as above with 13% cooperators, 53% reciprocators, 20%
free-riders, and remaining 14% unclassified. Similarly, two levels of Rivalry were
examined. In High Rivalry, goods were perfectly rival, such that they could be con-
sumed by one individual at a time (e.g., could not be copied). In Low Rivalry, goods
were perfectly non-rival, such that a good could be consumed by N > 1 individuals
(e.g., could be copied). Also, Demand was defined in terms of the distribution of
goals in the population. High Demand (or homogenous demand) was realized by a
high replication of goals in the population (e.g., all desiring the same resource) while
Low Demand (or heterogeneous demand) was realized as few goal replications in the
population (e.g., all desiring different resources).9 For each condition, 100 runs were
conducted.

We found three statistically significant results. The first two are expected and intui-
tive. High Rivalry and high Demand decreased the performance of the model.10 Ex-
pected as they are, these two main effects serve to substantiate the validly of the
model by matching theoretical predictions made elsewhere (see Table 2).

Proposition 2a: Rivalry Decreases the Effectiveness of Open Source Performance.

Proposition 2b: High (Homogenous) Demand Decreases Open Source Performance.

The third result is less expected. As visible in the figure, we found an interaction:
under low Rivalry conditions performance is at its highest when Demand is high
(50.9%); however, when Rivalry conditions are high, high Demand resources drive
performance to its lowest level (21.1%). Recall that high demand conditions would be
reflected in many agents seeking the same resource type and vice versa. The conse-
quences for resource availability are specified by the Rivalry factor interacting with
the Demand – high demand results high exchanges and resource redundancy when the
Rivalry is low (e.g., exchanging music files). However, when both Demand and Ri-
valry is high, available resources existing in the network are quickly extracted and
resistant to exchange. Therefore, available supply, and consequently performance,
would vary across Demand conditions subject to resource availability within Rivalry
constraints.

8 One percent rather than zero was used in order to prevent conditions where no exchanges

would occur in the case of cooperators, and therefore was incorporated in the other conditions
for balance. Dominant free-riders (i.e., 98%) were eliminated from this analysis because of
the extremely low performance.

9 High Demand was determined by a random draw from a [90-100%] flat distribution of goal
redundancy while Low Demand was determined by a random draw form a [0-10%] flat
distribution.

10 The overall main effects for Rivalry and Demand were F(1, 1196) = 87.3, p < .001) and F(1,
1196) = 26.8, p < .001) respectively. The interaction was F(1, 1188) = 63824.0, p < .001),
and a post-hoc Tukey analysis indicated that all means differed significantly (p < .001).

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 167

Fig. 5. Interaction between Rivalry levels and Demand levels, across the entire mix of coopera-
tive ratios

But would such obvious constraints on exchange vary across agent types? To an-
swer this, we analyzed the interaction between these factors and the population
types. In this analysis, we also included the Kurzban-Houser ratio, the most empiri-
cally valid ratio. The results are shown in Figure 6. Populations with high numbers of
cooperators under low demand are insensitive to rivalry, but populations with KH
ratio compositions are sensitive, resulting in significant drops in performance, but not
near those populations dominated by reciprocators. The former populations are will-
ing and able to share resources, but the latter populations are suffering from the im-
pact of free riders. In KH populations, there seem to be sufficient cooperators to sway
the behavior reciprocators repeatedly toward higher donation behaviors. On the other
hand, with high demand goods, cooperators are more sensitive to rivalry than KH
ratio populations. Under high rivalry conditions, cooperating population performance
declines greater than the KH decline, and the two converge to virtually the same per-
formance levels. Despite well-intended cooperators, exchanging high rivalry goods
essentially does not alter the performance as supplies are fixed within the population.
Variation in performance (i.e., low reciprocators) is accounted for by a substantial
drop in cooperation where the base level of resources in the population (from initial
conditions) is not extracted. Therefore, KH populations function to distribute re-
sources as efficiently as high ratios of cooperators.

168 S.S. Levine and M.J. Prietula

KH ratio populations also exhibit an interaction between Demand and Rivalry lev-
els, where under non-rival conditions low demand conditions outperform high de-
mand, but this is reversed under high rivalry. The reason is that under low demand
conditions with high rivalry, fewer exchanges are made (not all are seeking the same
resource, and not all resources are associated with pure cooperators) which bias the
reciprocators to act more like free-riders. Finally, and although substantially lower in
performance, reciprocators also exhibit a strong interaction, but the opposite of the
KH – under non-rival conditions, high demand performs better, while under rivalry
low demand dominates.11

Fig. 6. Interaction between Rivalry levels, Demand levels, and three mixes of cooperator types

Proposition 2c. Population Types Interact with Rivalry and Demand Levels Differently.
The impact of Rivalry and Demand on performance varies with the cooperative mix of a
population.

Intuitively, lower rivalry alleges some of the damage done by free riding, because
even massive free riding decrease only slightly the availability of goods to coopera-
tors. In contrast, if the goods are highly rival, free riders will bear no cost but enjoy all
benefits, while cooperators will still bear cost. Obviously, a system with more con-
tributors will likely be better off, but the point here is that when goods are (perfectly)
non-rival, the tragedy of the commons would be avoided even with free riding.

11 Rivalry by Demand by Cooperator Type interaction: (F(2,1188) = 21690.0, p < .001).

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 169

4.3 Typical Cooperation Type Ratios in the Population

With growing interest in the cooperative type distributions found in the human popu-
lation [e.g., 67, 72-75], we elected to conduct further analysis on the KH ratio.12 We
examined multiple population compositions that meet KH ratio limits across three
levels of Rivalry (0%, 50%, 100%) and three levels of Demand (1%: Low, 50%: Me-
dium, 100%: High) with 100 runs per level, then plotted the surface mapped into
performance levels. The result is shown in the figure.13 Interestingly, the performance
surface changes from a linear response (under High Rivalry, see α) to a non-linear
response (under High Demand, see β). Thus,

Proposition 3a. Rivalry has Non-Linear Effect on Performance. Open source perform-
ance in Kurzban-Houser ratio responds linearly to Demand and non-linearly to Rivalry.
The impact of Rivalry and Demand on performance varies with the levels of each.

Fig. 7. Performance surface for Kurzban-Houser ratios, crossing Demand levels with Rivalry
levels. Colors reflect bands of performance levels from maximum (Dark Red) to minimum
(Dark Green).

12 Where 13% were classified as cooperators, 53% as reciprocators, and 20% as free-riders,

with the remaining 14% behaving inconsistently.
13 900 points were plotted done using Statistica 8.0 (www.statsoft.com) a using distance-

weighted least squares fit model.

Demand

Performance

Rivalry

α β

3

2

1

4

170 S.S. Levine and M.J. Prietula

This finding begins to explain why open source does not collapse due to free rid-
ing. First, the impact of free riders is not large because, as KH showed, they are a
minority to begin with. It is apparent in the figure that even with few cooperators and
many reciprocators an increase in the free rider population affects performance appre-
ciably only when they become a large part of the population. Second, the effect is
further weakened thanks to the low rivalry (e.g., in point β), where the presence of
free riders does not lead to decreased availability of goods. Because the goods are
non-rival, the consumption of each marginal unit is zero, much like a downloader of
music or video file does not directly reduce the availability of the same file for other
users. The only effect of free-riders is in the opportunity cost of their time, which
reduces the overall performance since they make no contributions. Overall then, the
effect of free riders is muted.

The most interesting result comes from the interaction between the two variables.
A combination of low rivalry (hypothesized to improve performance) and high de-
mand (hypothesized to harm performance) (point 1) generates performance at level
that is remarkably close to of the ideal combination of low rivalry and low demand
(point 2). Similarly, the combination of high rivalry and low demand generates per-
formance on par (point 3). Only the combination of high rivalry and high demand
results in expectedly low performance (point 4). Hence,

Proposition 3b. Rivalry–Demand Compensatory Effect. Under realistic assumptions
of cooperation, open source will exhibit close to perfect performance with either low
rivalry or low demand.

The last finding is perhaps the most important of the three. The mechanism behind it
may be as follows: when rivalry=100% and demand high, almost the entire population
is composed of users only and the cost of contribution is expensive, equal to the cost
of production. In these circumstances, decreasing rivalry leads to an instant perform-
ance boost, because although there are still few contributors, their cost of contributing
goes down as fast as rivalry decreases (follow the curved line from point 4 to point 1,
along the edge of the surface). When rivalry reaches zero, even few contributors are
enough to provide the demands of a large user population. At this point, decreasing
demand will not lead to much improvement in performance, as the model shows (fol-
low the linear edge between point 1 and point 2, along the edge of the surface).

A similar process is apparent when one begins from the same point of departure
and takes the second path for performance gain by reducing demand (follow the line
from point 4 to point 3, along the edge of the surface). As demand shrinks, more and
more users are also becoming contributors, catering to their own needs. While the cost
of contributing remains high, users are providing their own needs, and the perform-
ance of the system improve. At the extreme (point 3), all users are also self-sufficient
as contributors. Then, decreasing rivalry leads to just small improvement in perform-
ance (follow the line connecting point 3 to point 2, along the edge of the surface).

5 Discussion and Conclusion

The results contribute to the emerging theory of open source. One, they validate the
model and provide theoretical support of existing theory. Two, several propositions

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 171

point out to novel effects, which we have not seen proposed hitherto. Importantly, we
find decreasing marginal returns from cooperation (proposition 1b) and trade-off
effect between cooperators and reciprocators in the population (proposition 1d). These
findings may have significant implications for research and practice. For instance,
they suggest that open source systems do not require a population of cooperators.
Open source can thrive even when cooperators are just a small minority in the popula-
tion, implying that it can be expected to appear in more places. Not only that, but also
the performance of the system depends critically on just a small core group of con-
tributors. Increasing that group leads to performance improvement but in a decreasing
manner. Of particular interest is the finding that under the realistic cooperation as-
sumptions of the Kurzban-Houser ratio, the most empirically valid ratio, performance
of 42.5% can be achieved with only 13% cooperators, While researchers have ob-
served that contributions in open source setting are highly skewed, our propositions
aid in making sense of that. Having a core group of cooperators is not a deficiency in
the system, but a rather expected feature. Cooperators, which may be difficult to find
as they are a minority in human population can be replaced by reciprocators, which
are much more common. For practitioners who are interested in facilitating open
source, these findings can offer relief: creating a viable system may be easier than
previously presumed.

While many cooperators are not necessary for open source systems to perform
well, their presence has another impact: they reduce variance in performance (propo-
sition 1c). This can lead a step forward in designing more fertile grounds for open
source. Some systems, such as research and development teams, may be geared more
towards high performance than reliability [cf. 80]. In such environments, a small
percentage of cooperators with a majority of reciprocators may be sufficient to
achieve the breakthrough sought. Additional effort to attract cooperators will better
performance but can be inefficient in terms of cost versus benefit. This can explain,
for instance, the focus on open sources in innovation systems, as opposed to produc-
tion systems. However, even when reliable performance are sought, for instance in
when providing an on-going service (e.g., Wikipedia), open source can still thrive.
There, the effort to attract more cooperators may be efficient as it leads to more reli-
able performance over time.

Finally, the results suggest interactions between conditions of rivalry and demand,
on the one hand, and population composition, on the other hand. We find that the
impact of rivalry and demand on performance varies with the cooperative mix of a
population (proposition 2d). For instance, increasing rivalry leads to a dramatic drop
in performance, but mostly in populations that are made of cooperators. In the more
empirically likely case of KH ratio population, increasing rivalry leads to a gentler
drop in performance in the case of high demand, which is important in applications of
open source. Once again, this is good news for observers of open source as well as
practitioners who would like to benefit from it.

Finally, two propositions carry particular importance for the performance of open
source in harsh environments, such as with rival goods or high (homogenous) de-
mand. The findings suggest that Rivalry has non-linear effect on performance in the
likely case of a KH ratio population (proposition 3a). The implication is that even a
slight reduction in rivalry can bring about a boost in performance. For practitioners
this can be an effective tool in improving the performance of open source systems.

172 S.S. Levine and M.J. Prietula

Additionally, even systems with high rivalry can end up in close to perfect perform-
ance if the demand is low (proposition 3b). Thus, even products that are close to per-
fect rivalry (e.g., in producing food) can benefit from open source production, as long
as demand is managed properly. This suggests that open source can be expected in
greater variety of venues that we currently see.

Our analysis leaves much room for future work on the performance of open source.
One future direction may include modeling of social institutions, such as those that
regulate exchange. We know that individuals can exchange (or contribute) under
multiple exchange configurations [81, 82]. In particular, two exchange configurations
that were documented as legitimate in the institutional sense [83, 84]: embedded ex-
change [85, 86] and generalized exchange (“pay it forward”, “gift economies”),
where unacquainted participants help each other with the expectation that reciprocity
will come from any other member, not necessarily the specific receiver [87, 88].
While such analysis is beyond the scope of this paper, we suspect that it may be fruit-
ful in furthering our understanding of open source performance.

Acknowledgements. We are thankful for comments at the meetings of The American
Sociological Association 2006 in Montréal, The Academy of Management 2008 in
Anaheim, California, and the User and Open Innovation workshop 2009 at the
Hamburg University of Technology. We thank Ian Zi Yang Lim for his research and
editorial support.

References

1. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly, Sebastopol (1999)
2. Henkel, J.: Champions of Revealing - The Role of Open Source Developers in Commer-

cial Firms. Industrial and Corporate Change 18, 435–471 (2009)
3. von Hippel, E.: Open Source Software Projects as User Innovation Networks. In: Feller, J.,

Fitzgerald, B., Hissam, S.A., Lakhani, K.R. (eds.) Perspectives on Free and Open Source
Software, pp. 267–278. The MIT Press, Cambridge (2005)

4. Franke, N., Shah, S.: How Communities Support Innovative Activities: An Exploration of
Assistance and Sharing Among End-Users. Research Policy 32, 157–178 (2003)

5. Lee, G.K., Cole, R.: From a Firm-Based to a Community-Based Model of Knowledge
Creation: The Case of the Linux Kernel Development. Organization Science 14, 633–649
(2003)

6. Shah, S.: Community-Based Innovation & Product Development: Findings From Open
Source Software and Consumer Sporting Goods. Massachusetts Institute of Technology,
Cambridge (2003)

7. Benkler, Y.: Commons-Based Strategies and the Problems of Patents. Sci. 305, 1110–1111
(2004)

8. Benkler, Y., Nissenbaum, H.: Commons-based Peer Production and Virtue. Journal of Po-
litical Philosophy 14, 394–419 (2006)

9. Berry, D.M.: The Contestation of Code: A Preliminary Investigation into the Discourse of
the Free/Libre and Open Source Movements. Critical Discourse Studies 1, 65–89 (2004)

10. Maurer, S.M., Rai, A., Sali, A.: Finding Cures for Tropical Diseases: Is Open Source an
Answer? PLOS Medicine 1, E56 (2004)

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 173

11. Bodie, M.T.: The Future of the Casebook: An Argument for an Open-Source Approach.
Journal of Legal Studies 57, 10–35 (2007)

12. Guth, R.A.: Asia to Develop Software to Rely Less on Microsoft. The Wall Street Journal,
B4 (2003)

13. Lohr, S.: Novell to Buy SuSE Linux for $210 Million, p. 6. The New York Times, New
York (2003)

14. O’Mahony, S.: The Emergence of A New Commercial Actor: Community Managed Soft-
ware Projects. Unpublished doctoral dissertation, Stanford University (2002)

15. Kogut, B., Metiu, A.: Open-source Software Development and Distributed Innovation.
Oxford Review of Economic Policy 17, 248–264 (2001)

16. von Krogh, G., von Hippel, E.: The Promise of Research on Open Source Software. Man-
agement Science 52, 975–984 (2006)

17. von Krogh, G., von Hippel, E.: Special issue on open source software development. Re-
search Policy 32, 1149–1157 (2003)

18. Shah, S.K.: Motivation, Governance and the Viability of Hybrid Forms in Open Source
Software Development. Management Science 52, 1000–1014 (2006)

19. von Hippel, E., von Krogh, G.: Open source software and the private-collective innovation
model: Issues for organization science. Organization Science 14, 209–223 (2003)

20. Roberts, J.A., Hann, I.-H., Slaughter, S.A.: Understanding the Motivations, Participation
and Performance of Open Source Software Developers: A Longitudinal Study of the
Apache Projects. Management Science 52, 984–999 (2006)

21. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the Structure of Complex Soft-
ware Designs: An Empirical Study of Open Source and Proprietary Code. Management
Science 52, 1015–1030 (2006)

22. O’Mahony, S., Ferraro, F.: The Emergence of Governance in an Open Source Community.
Academy of Management Journal 50, 1079–1106 (2007)

23. Casadesus-Masanell, R., Ghemawat, P.: Dynamic Mixed Duopoly: A Model Motivated by
Linux vs. Windows. Management Science 52, 1072–1084 (2006)

24. Economides, N., Katsamakas, E.: Two-Sided Competition of Proprietary vs. Open Source
Technology Platforms and the Implications for the Software Industry. Management Sci-
ence 52, 1057–1071 (2006)

25. Häfliger, S., von Krogh, G., Späth, S.: Code Reuse in Open Source Software. Mangement
Science 54, 180–193 (2008)

26. Majchrzak, A.: The Effect of Expertise Sharing and Integrating Behaviors in Wiki-based
Organizational Intranets. Working Paper (2009)

27. Jeppesen, L.B., Lakhani, K.R.: Marginality and Problem Solving Effectiveness in Broad-
cast Search. Organization Science (forthcoming)

28. Anthony, D., Smith, S.W., Williamson, T.: Explaining Quality in Internet Collective
Goods: Zealots and Good Samaritans in the Case of Wikipedia. Rationality and Society 21,
283–306 (2009)

29. Bonaccorsi, A., Giannangeli, S., Rossi, C.: Entry Strategies Under Competing Standards.
Hybrid Business Models in the Open Source Software Industry Management Science 52,
1085–1098 (2006)

30. von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005)
31. West, J.: How open is open enough? Melding proprietary and open source platform strate-

gies. Research Policy 32, 1259–1285 (2003)
32. Henkel, J.: Selective Revealing in Open Innovation Processes: The Case of Embedded

Linux. Research Policy 35, 953–969 (2006)

174 S.S. Levine and M.J. Prietula

33. Waguespack, D.M., Fleming, L.: Scanning the Commons? Evidence on the Benefits to
Startups Participating in Open Standards Development. Management Science 55, 210–223
(2009)

34. Maurer, S.M., Scotchmer, S.: Open Source Software: The New Intellectual Property Para-
digm. National Bureau for Economic Research Working Paper W12148 (2006)

35. Shah, S.K.: Open Beyond Software. In: Cooper, D., DiBona, C., Stone, M. (eds.) Open
Sources 2.0: The Continuing Evolution, pp. 339–360. O’Reilly Media, Sebastopol (2005)

36. Zittrain, J.: The Future of the Internet – and How to Stop It. Yale University Press (2008)
37. Uehara, E.: Dual Exchange Theory, Social Networks, and Informal Social Support.

American Journal of Sociology 96, 521–557 (1990)
38. Hardin, G.: The Tragedy of the Commons. Sci., 1243–1248 (1968)
39. Olson, M.: The Logic of Collective Action: Public Goods and the Theory of Groups.

Harvard University Press, Cambridge (1965)
40. Milinski, M., Semmann, D., Krambeck, H.-J.: Reputation helps solve the ’tragedy of the

commons’. Nature 415, 424–426 (2002)
41. Cornes, R., Sandler, T.: The theory of externalities, public goods, and club goods. Cam-

bridge University Press, Cambridge (1986)
42. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two Case Studies of Open Source Software

Development: Apache and Mozilla. In: Feller, J., Fitzgerald, B., Hissam, S.A., Lakhani,
K.R. (eds.) Perspectives on Free and Open Source Software, pp. 163–209. The MIT Press,
Cambridge (2005)

43. Lerner, J., Tirole, J.: Economic Perspectives on Open Source. In: Feller, J., Fitzgerald, B.,
Hissam, S.A., Lakhani, K.R. (eds.) Perspectives on Free and Open Source Software,
pp. 47–78. The MIT Press, Cambridge (2005)

44. Lakhani, K.R., von Hippel, E.: How Open Source Software Works: Free User to User As-
sistance. Research Policy 32, 923–943 (2003)

45. Lessig, L.: Open Code and Open Societies. In: Feller, J., Fitzgerald, B., Hissam, S.A.,
Lakhani, K.R. (eds.) Perspectives on Free and Open Source Software, pp. 349–360. The
MIT Press, Cambridge (2005)

46. Free Software Foundation, http://www.gnu.org/philosophy
47. Strauss, A., Corbin, J.: Basics of qualitative research. Sage Publications, Newbury Park

(1990)
48. Glaser, B., Strauss, A.: The Discovery of Grounded Theory: Strategies for Qualitative Re-

search. Aldine De Gruyter, New York (1967)
49. Maanen, J.V.: Different Strokes - Qualitative Research in the Administrative Science

Quarterly from 1956-1996. In: Maanen, J.V. (ed.) Qualitative Studies of Organizations,
vol. 1. Sage Publications, Thousand Oaks (1998)

50. Perlow, L.A.: The Time Famine: Toward a Sociology of Work Time. Administrative Sci-
ence Quarterly 44, 57 (1999)

51. Lewin, K.: Action Research and Minority Problems. Journal of Social Issues 2, 34–46
(1946)

52. Nelson, R.R., Winter, S.G.: An Evolutionary Theory of Economic Change. Harvard Uni-
versity Press, Cambridge (1982)

53. Cyert, R., March, J.G.: A Behavioral Theory of the Firm. Prentice Hall, Englewood Cliffs
(1963)

54. Black, L.J., Carlile, P.R., Repenning, N.P.: A Dynamic Theory of Expertise and Occupa-
tional Boundaries in New Technology Implementation: Building on Barley’s Study of CT
Scanning. Administrative Science Quarterly 49, 572–607 (2004)

Where and When Can Open Source Thrive? Towards a Theory of Robust Performance 175

55. Rudolph, J.W., Repenning, N.P.: Disaster Dynamics: Understanding the Role of Quantity
in Organizational Collapse. Administrative Science Quarterly 47, 1–31 (2002)

56. Repenning, N.R., Sterman, J.D.: Capability Traps and Self-Confirming Attribution Errors
in the Dynamics of Process Improvement. Administrative Science Quarterly 47, 265
(2002)

57. Bonaccorsi, A., Rossi, C.: Why Open Source software can succeed. Research Policy 32,
1243–1258 (2003)

58. Moss, S., Edmonds, B.: Sociology and Simulation: Statistical and Qualitative Cross-
Validation. American Journal of Sociology 110, 1095–1131 (2005)

59. Zeitlyn, D.: Gift economies in the development of open source software: anthropological
reflections. Research Policy 32, 1287–1291 (2003)

60. Kollock, P.: The Economics of online cooperation: Gifts and public goods in cyberspace.
In: Smith, M.A., Kollock, P. (eds.) Communities in Cyberspace, pp. 220–239. Routledge,
New York (1999)

61. Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and
Freedom. Yale University Press, New Haven (2006)

62. von Krogh, G., Späth, S., Lakhani, K.R.: Community, joining, and specialization in open
source software innovation: a case study. Research Policy 32, 1217–1241 (2003)

63. Koch, S., Schneider, G.: Effort, Cooperation and Coordination in an Open Source Software
Project: GNOME. Information Systems Journal 12, 27–42 (2002)

64. Kuk, G.: Strategic Interaction and Knowledge Sharing in the KDE Developer Mailing List.
Management Science 52, 1031–1042 (2006)

65. Giles, J.: Internet encyclopaedias go head to head. Nature 438, 900–901 (2005)
66. Jeppesen, L.B., Laursen, K.: The role of lead users in knowledge sharing. Research Pol-

icy 38, 1582–1589 (2009)
67. Kurzban, R.O., Houser, D.: An experimental investigation of cooperative types in human

groups: A complement to evolutionary theory and simulations. Proceedings of the National
Academy of Sciences 102, 1803–1807 (2005)

68. Thomas-Hunt, M.C., Ogden, T.Y., Neale, M.A.: Who’s Really Sharing? Effects of Social
and Expert Status on Knowledge Exchange Within Groups. Management Science 49
(2003)

69. Dahlander, L., Mckelvey, M.: Who is not developing open source software? non-users, us-
ers, and developers Economics of Innovation and New Technology 14, 617–635 (2005)

70. Alexy, O., Henkel, J.: Promoting the Penguin: Who is Advocating Open Source Software
in Commercial Settings? Working Paper (2007)

71. Leach, J.: A course in public economics. Cambridge University Press, Cambridge (2004)
72. Fischbacher, U., Gächter, S.: Heterogeneous Social Preferences And The Dynamics Of

Free Riding In Public Good Experiments. Working Paper The Centre for Decision Re-
search and Experimental Economics, School of Economics, University of Nottingham
(2008)

73. Kim, J., Lee, S.M., Olson, D.L.: Knowledge Sharing: Effects of Cooperative Type and Re-
ciprocity Level. International Journal of Knowledge Management 2, 1–16 (2006)

74. Simpson, B., Willer, R.: Altruism and indirect reciprocity: The interaction of person and
situation in prosocial behavior. Social Psychology Quarterly 71, 37–52 (2008)

75. Fehr, E., Fischbacher, U., Gächter, S.: Strong Reciprocity, Human Cooperation and the
Enforcement of Social Norms. Human Nature 13, 1–25 (2002)

76. Ishii, K., Kurzban, R.: Public Goods Games in Japan: Cultural and Individual Differences
in Reciprocity. Human Nature 19, 138–156 (2008)

77. Fehr, E., Fischbacher, U.: The Nature of Human Altruism. Nature 425, 785–791 (2003)

176 S.S. Levine and M.J. Prietula

78. Fowler, J.H., Christakis, N.A.: Cooperative Behaviour Cascades in Human Social Net-
works. Working Paper (2009)

79. Lenth, R.V.: Some Practical Guidelines for Effective Sample-Size Determination. The
American Statistician 55, 187–193 (2001)

80. Hannan, M.T., Freeman, J.: Structural Inertia and Organizational Change. American So-
ciological Review 49, 149–164 (1984)

81. Biggart, N.W., Delbridge, R.: Systems of Exchange. Academy of Management Review 29,
28–49 (2004)

82. Levine, S.S., Prietula, M.J.: Towards a Contingency Theory of Knowledge Exchange in
Organizations. In: Weaver, K.M. (ed.) Best Paper Proceedings, Academy of Management,
Atlanta (2006)

83. Thomas, G.M., Walker, H.A., Morris, Z.J.: Legitimacy and Collective Action. Social
Forces 65, 378–404 (1986)

84. Meyer, J.W., Rowan, B.: Institutionalized Organizations: Formal Structure as Myth and
Ceremony. American Journal of Sociology 83, 340–363 (1977)

85. Granovetter, M.: Economic Action and Social Structure: The Problem of Embeddedness.
American Journal of Sociology 91, 481–510 (1985)

86. Uzzi, B.: Social Structure and Competition in Interfirm Networks: The Paradox of Em-
beddedness. Administrative Science Quarterly 42, 35–67 (1997)

87. Ekeh, P.P.: Social Exchange Theory: The Two Traditions. Harvard University Press,
Cambridge (1974)

88. Baker, W.E., Levine, S.S.: Mechanisms of Generalized Exchange. Working Paper (2009),
http://ssrn.com/abstract=1352101

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 177–187, 2010.
© IFIP International Federation for Information Processing 2010

How Open Are Local Government Documents
in Sweden? A Case for Open Standards

Björn Lundell and Brian Lings

University of Skövde, Sweden
{bjorn.lundell,brian.lings}@his.se

http://www.his.se

Abstract. There is in Europe an increasing recognition of the need for govern-
mental organisations to support and promote the effective curation of electronic
data, including public documents, for easy public access and reuse. Such a vi-
sion can stand in stark contrast with reality. In this paper we address the ques-
tion: to what extent are local government documents preserved electronically
for discovery and re-use? Our goal is to establish the level to which calls for the
greater use of open document standards is being heeded, and to understand the
potential consequences of not heeding the advice. We find that availability of
electronic copies of documents is very variable, and accessibility is poor. In
particular, there is little evidence of policy to maintain electronic copies of
documents, and little awareness of open standards and their importance in data
curation. This is in stark contrast to stated central Government policy. The
study highlights a lack of strategy in organisations regarding the effective cura-
tion of electronic data.

1 Introduction

On 26th March 2009 the Swedish Government took a decision to set up a delegation
for e-Governance (Regeringen 2009). The delegation was mandated to first draft a
strategy for e-Government. In doing so, a number of principles were to be observed.
Notable amongst these were principles relating to:

– accessibility and usability in ICT;
– the use of open standards and “software based on open source software”;
– solutions that gradually liberate the administration from dependence on specific

platforms and solutions;
– long-term digital preservation.

The proposed strategy was published 19th October 2009 as SOU 2009:86 (SOU
2009) and contains strategies for considering open source and open standards in pub-
lic sector procurement. The reference to open standards is important; standardisation
is not in itself considered to be sufficient. The definition of an open standard in SOU
2009:86 (SOU 2009) is identical to that included in the European Interoperability
Framework version 1.0 (EU 2004), namely:

178 B. Lundell and B. Lings

1. The standard is adopted and will be maintained by a not-for-profit organisation,
and its ongoing development occurs on the basis of an open decision-making pro-
cedure available to all interested parties (consensus or majority decision etc.);

2. The standard has been published and the standard specification document is avail-
able either freely or at a nominal charge. It must be permissible to all to copy, dis-
tribute and use it for no fee or at a nominal fee;

3. Intellectual property – i.e. patents possibly present – of (parts of) the standard is
irrevocably made available on a royalty-free basis;

4. There are no constraints on the re-use of the standard.”

The principles and strategy are in line with current best practice on the transmission
and archiving of electronic data (see, for example, DCC (2005)). The development of
effective strategies is seen as essential for the preservation of access to data long-
term, something which is of particular importance in the public sector.

Sweden is not alone in setting such objectives. Belgium, the Netherlands, Denmark
and Norway already have guidelines on the use of an ISO approved open format for
documents used in public administration. PDF and ODF have been specifically identi-
fied amongst the few applicable formats. According to Morten Andreas Meyer, Nor-
wegian Minister of Modernisation, in a press announcement on 2nd July 2009:

“When exchanging documents attached to emails between the Government and
users, it is from 1 January 2011 mandatory to use the document formats PDF or
ODF.” (Regjeringen 2009)

Many articles have been written about the problem of legacy data, i.e. data for
which the originating software or hardware is no longer available. Such data is at best
difficult and costly to recover, and at worst no longer accessible. In practice, many
organisations recognise the potential problems this may cause. In the words of
Gordon Frazer, managing director of Microsoft UK:

“Unless more work is done to ensure legacy file formats can be read and edited in
the future, we face a digital dark hole.” (BBC 2007)

The need is pressing in the case of open standards for document formats, not just
for public access to current data but also for maintaining the archives of data received
and generated by governmental organisations.

In this paper, we consider the extent to which, in the absence of a clear policy,
electronic access to local government data is being supported. We do this through a
quantitative and qualitative study of the availability and accessibility of electronic
copies of executive board meetings of Swedish municipalities.

2 Open Standards for Document Formats

The concept of a standard in ICT is well understood. According to Berkman (2005)
they are the “mortar holding interoperable ICT systems together.” Standards enable
interoperability between diverse systems. Add to this the concept of openness, and the
concept is less well understood. Krechner (2005) suggests ten important rights that
enable open standards, covering everything from IPR to how the standard is devel-
oped. However defined, open standards are increasingly recognised as central to in-
teroperability – and have been credited with making the internet revolution possible.

 How Open Are Local Government Documents in Sweden? 179

Two of Krechner’s ‘ten rights’, access to documentation and free usage of open
standards, are often considered as the most important features. Perhaps the most im-
portant effect of openness is that it encourages free competition and thereby diversity,
which in turn protects against reliance on one product or platform. In other words,
open standards lower risk. As put by Bird (1998): “(an) open standard is one which is
used as a basis for producing interoperating products from a large number of provid-
ers – who can compete on any of a multitude of competitive advantages to the market
buying their product.”

The primary purpose of open standards for document formats is to make
documents independent of the systems which generated them. This is of paramount
importance for any organisation wishing to promote long term accessibility, including
interoperability. Otherwise, in the worst case, a specific tool must be purchased and
maintained in order to access an organisation’s data; and this tool may well not be
available on all ICT platforms. A separate advantage of open standards for document
formats is that they act as enablers of fair competition in the marketplace, encourag-
ing the development of tools which can compete because of their ability to inter-
change documents. The two most cited standards in government contexts are PDF/A
and ODF.

PDF/A is an ISO standard for using PDF format (see www.pdfa.org). It is designed
for the long-term archiving of electronic documents, and is currently based on PDF
Reference Version 1.4. It restricts PDF in order to better guarantee prospects for ar-
chiving; in particular, it ensures visual reproduction of the document (PDF/A-1b
compliance) and document structure, to allow searching and reuse (PDF/A-1a com-
pliance).

Open Document Format (ODF, docs.oasis-open.org/office/v1.2/) is a standard
developed by the Organization for the Advancement of Structured Information Stan-
dards (OASIS), and also published as an ISO/IEC standard. It is an XML-based for-
mat specification for office applications, including text and spreadsheets amongst
others. It has gained traction as an open standard adopted within the open source
OpenOffice.org application suite.

3 Research Approach

The research question addressed through this study is the following. To what extent
are local government documents preserved electronically for discovery and re-use? In
particular, we address three related sub-questions. To what extent are official records
available digitally? And, of those available, to what extent are they accessible, that is
can be opened with the latest versions of current applications? Importantly, of those
which are available and accessible, to what extent are they searchable? In essence, a
searchable document is available for re-use. This clearly rules out scanned PDF
documents as reusable assets.

The question is made easier to answer in Sweden, which has a very strict policy on
governmental responses to questions: all questions must be responded to.

We emailed a questionnaire to each municipality (290 in all) requesting minutes of
selected executive board meetings. These minutes represent the decisions of the most
senior board in each municipality, and hence need to be preserved. In fact, these minutes

180 B. Lundell and B. Lings

are archived and kept indefinitely (over hundreds of years) – usually in paper copy. Al-
though rules on the long term electronic preservation of official documents are under
consideration by the National Archives, there is currently no official policy.

Three requests were made. The first was for the minutes of the last meeting in
2008. The second was for the minutes of the first meeting in 1999; this was the oldest
which could be expected in some cases as municipalities are allowed to selectively
but systematically purge certain less important records after 10 years. Some munici-
palities interpret this as including electronic versions of minutes. The third was for the
oldest minutes available electronically. The requests were sent in late January 2009 to
the official email address of the registrar for each. If the request was not answered
then a final reminder was sent in mid June. Responses to each email were recorded,
together with all attached minutes.

The request was specifically for documents as currently stored electronically. It
was made clear that the documents sent should not be specially created from physical
archives or transformed from their stored format.

The study resulted in both quantitative and qualitative data. Quantitative data was
analysed to answer the three specific questions on the extent to which minutes are
available, accessible and searchable. The text of email responses was analysed quali-
tatively, to give some indication of factors affecting availability.

4 Quantitative Analysis

Of the 290 municipalities contacted, 267 (92%) have responded to date. Of these, 264
were able to provide documents. Of the three that did not, one does not save any elec-
tronic copies; another will start in 2009; the third only stores scanned documents and
understood that these were not of primary interest to us. Of the respondents, only 88%
responded promptly. This may be significant, as the request for 1999 was at the edge
of a 10 year window and a significantly delayed response could affect availability due
to deletion policies. The oldest available document gives some insight into the possi-
ble significance of this. In the worst case, 4 authorities may have removed the re-
quested document during the period of data collection, sending a later 1999 document
as the oldest. However, all of these responded early so this is a low probability.

About the Documents Received

Table 1 details the documents and formats sent by municipalities. In that table,
“Other” includes files with the following extensions: .htm(6), .pro(4), .wpd(3), .tif(2),
.dot(1), .027(1), .rft(1) and no extension (4). In all cases except .htm, .tif and .rft it
was possible to open the document as an .rtf file. RFT is an (outdated) IBM binary
format used on their mainframes, requiring special software to open it. In several
cases, the filename extensions did not correspond to the actual format of the file
which caused some confusion (e.g. some files were sent without extension, and some
with a .doc extension were actually formatted as RTF).

Table 2 details the applications used by the municipalities for generating the
documents. In analysing each file it was possible to identify which application had
been used to generate it with a high degree of certainty. For almost all files sent to us

 How Open Are Local Government Documents in Sweden? 181

in PDF we were able to identify the application used. Interestingly, no municipality
that used OpenOffice.org sent us their minutes in ODF format.

We also looked at the application which generated each PDF file. Table 3 shows
the results.

Clearly, if a document format was unavailable at the time that the minutes of a
meeting were created, then reformatting has subsequently taken place. This is very
evident with PDF files for 1999. Clearly, at least 66% of the PDF files sent for the
year 1999 are not contemporary.

Table 1. Responses by document format

Format of
response

Minutes from
2008

Minutes from
1999

Earliest Minutes
available

DOC 57% (154) 74% (120) 66% (175)
PDF 38% (104) 18% (29) 24% (64)
RTF 3% (9) 6% (9) 4% (10)

DOCX1 1% (2) 0% (0) 0% (1)
Other 1% (2) 2% (4) 5% (14)

TOTAL2 100% (271) 100% (162) 100% (264)
Paper only (3) (106) (3)

Did not reply (23) (23) (23)

Table 2. Application used to generate documents

Application generating
the document

Minutes from
2008

Minutes from
1999

Word 89% (242) 96% (153)
WordPerfect 0% (0) 1% (2)

IBM DisplayWriter 0% (0) 0% (0)
OpenOffice.org 1% (3) 0% (0)

Scanner 10% (26) 3% (5)
TOTAL 100% (271) 100% (160)

Table 3. PDF versions, 2008 and 1999

Adobe PDF version
number

Year Minutes from
2008

Minutes from
1999

1.2 1996 3% (3) 14% (4)
1.3 1999 20% (21) 21% (6)
1.4 2001 61% (63) 38% (11)
1.5 2003 10% (10) 14% (4)
1.6 2005 7% (7) 14% (4)

TOTAL 100% (104) 100% (29)

1 One of the documents from 1998 was sent in .docx format, which was not available at the

time of the meeting (see next section for related discussion).
2 Up to 3% of municipalities provided their minutes for a given year in both DOC and PDF

formats.

182 B. Lundell and B. Lings

We further analysed documents for signs of post-facto curation. In particular, we
excluded PDF documents created by scanning paper copies from the archive. We also
noted documents created significantly after the date for the meeting, implying that the
document was re-saved after further processing (for example, generated as PDF for a
more recent initiative to place documents on the web).

Maintaining electronic access to documents is of significant and ongoing concern
to archivists. Two primary methods are used when document formats are no longer
supported: reformatting and emulation. In the former, documents are transformed to a
current format and re-archived. In the latter, access to old formats is maintained by
emulating the applications which originally produced them. Looking at the DOC for-
matted documents, there is clear evidence of reformatting – the most extreme case
being the 10 year old minutes in .docx format.

Availability

To consider availability, we analysed the oldest document provided by each munici-
pality. First we analysed each of these documents irrespective of its format and how it
was created. When viewed cumulatively (Figure 1), it is possible to gain a sense of
the level of electronic availability of documents by year over all municipalities. The
data is not fully accurate. As our request only concerned one specific meeting (in
1999) it is evident from the comments in the responses that several municipalities also
have other gaps, for various reasons, in what has been kept in electronic form (see
further next section). We are in fact aware of some drop-outs – cases in which an
older document than for 1999 has been provided but not one for 1999 itself.

Fig. 1. Earliest available document by year

Accessibility

For accessibility we looked at both the 1999 and 2008 documents, but were particu-
larly interested in 2008. This can give an indication of the extent to which e-
government initiatives have penetrated local government, specifically in areas which
are not directly controlled through legislation.

We classify a word processing document as accessible if it can be opened in the
latest, currently available version of an appropriate word processing application in a

 How Open Are Local Government Documents in Sweden? 183

manner which preserves its content and layout (to the extent that it can be read as in-
tended, so for this analysis we ignored detailed formatting issues). We consider both
proprietary and Open Source options. The only clear proprietary candidate was Mi-
crosoft Word (hereafter referred to as Word), as all word processing documents from
2008 were produced in Microsoft formats.

Table 4 shows the Word versions used in 2008 and for 1999 (for comparison). Of
the total of 156 files received for 2008 two were docx-files and the other 154 were
documents in “Word.Document.8” format. For the minutes received from 1999, 64
documents were supplied in “Word.Document.8” format and 56 were supplied in
“Word.Document.6” format.

Table 4. Word versions used for 2008 (and 1999 for comparison)

MS Word version Minutes from 2008 Minutes from 1999
MS Office Word for Windows 95 0% (0) 28% (34)

MS Word 6.0 0% (0) 24% (29)
MS Word 8.0 3% (4) 32% (39)
MS Word 9.0 18% (28) 0% (0)

MS Word 10.0 17% (27) 6% (7)
MS Office Word 63% (95) 9% (11)

MS Office Word (for docx) 1% (2) 0% (0)
TOTAL 100% (156) 100% (120)

We classify any other document as accessible if it can be opened in the latest,

currently available version of an appropriate application. Again we considered both
proprietary and Open Source options. As all but two of these documents are in PDF,
we conducted the tests with Adobe Reader 9.1 and Sumatra (Beta) v0.9.4. The two
remaining documents were in .htm and .tif formats.

In testing the documents there were three primary concerns:

1. can the document be opened with the appropriate proprietary software application?
2. can the document be opened with the appropriate Open Source software application?
3. is the document searchable in each application?

The first step was to attempt to open all of the set of ‘oldest’ documents, in appropri-
ate current applications. This is a test of their current accessibility. Clearly reformat-
ting may have improved or compromised accessibility, and may have compromised
reusability (for example if a scanned paper copy was maintained).

We initially considered the level of success in opening word processor documents
using Word 2007 and OpenOffice.org 3.1. We considered the oldest documents first.
It is documented on the vendor website that early versions of the .doc format are not
supported in recent versions of their software (Word 2003 and Word 2007). This was
confirmed when we tried to open documents stored in Word for Windows 1.x (1
document) and 2.0 formats (6 documents in all). Interestingly, all documents, includ-
ing these, could be opened in OpenOffice.org 3.1. However, the Windows 1.x docu-
ment was treated as a text file. The text of the minutes could be discerned, but most of
the formatting was lost and the binary encodings were presented as unicode text. Both

184 B. Lundell and B. Lings

applications were able to open all other documents with file formats .doc or .rtf. Both
were also able to open a number of documents with other file formats, namely Word-
Perfect 5.x and 6.x and the single occurrence of a docx file (clearly curated).

All documents from the 2008 set could be opened in both Microsoft Word 2007
and OpenOffice.org 3.1, although a number of problems were still encountered. These
included problems related to: formatting that breaks; macros and the use of different
variables and templates that are not kept embedded in the document; locked and
password protected documents; documents that try to access embedded SQL-queries
(with dependencies on other applications); and Word comments that cause problems
(the document opens with comments that are generated in a previous version of
Word).

All PDF documents could be opened with Adobe Reader 9.1 and with Sumatra
(Beta) v0.9.4. Although we were able to open all files there was for one PDF-file a
font problem identified when using Adobe (resulting in an error message which
warned that the file may not display and print correctly), whereas such an error was
not indicated when we opened the same file using Sumatra. We therefore concen-
trated on the question of whether the document was searchable – this being an indica-
tor of whether a document was reusable.

Reusability

For studying reusability, we are interested primarily in the information within a
document, not its styling. We consider the data sets from early 1999 and late 2008,
giving us a view of two time points roughly 10 years apart.

Looking at the minutes submitted of the first meeting of each municipality held in
1999 (29 documents in PDF format), we found that 5 (17%) were produced by some
form of scanning and were not searchable. All of the other documents were searchable.

In looking at the details of each non-scanned document, it could be seen that the
PDF had been generated using a variety of versions of Word. Considering these to-
gether with the .doc documents from the same period, we obtain a snapshot of the
latest versions of Word used to save each document (see Table 5). This does not nec-
essarily reflect the Word version used to create the file, since PDF generation may
have been done at a later point in time, and the document may have been opened and
saved in a later version of Word at a later date – for example to update its format.

Finally, we considered the documents supplied from 2008. The majority of these
were .doc format (see Table 1), but the proportion in PDF format had significantly in-
creased (from 18% to 38%). This is unsurprising, as many municipalities now routinely
publish meeting minutes on the web, but few extend back as far as 1999. Some munici-
palities even supplied URLs in their response rather than attaching documents.

The increase in use of PDF for maintaining electronic copy of documents raises
further questions. In particular, are the documents in a form of PDF which is reusable,
accessible and open? For this research we checked whether each PDF file could be
searched (a necessary prerequisite for reusability) and whether it was open (in a for-
mat compatible with PDF/A, and in particular the weaker requirement PDF/A-1b).
PDF/A is a subset of PDF designed to be more suitable for the long-term archiving of
documents. Disappointingly, only one document from 2008 was found to be compli-
ant with PDF/A-1b.

 How Open Are Local Government Documents in Sweden? 185

Of the 104 PDF-documents from 2008, the percentage non-searchable was found
to be 23%, whereas for the 29 documents from 1999 the percentage non-searchable
was 17%. It should also be noted that not all non-scanned documents were searchable.
Interestingly, one of the documents was generated by OCR using the Adobe Acrobat
paper capture plug-in.

5 Qualitative Analysis

Analysing the document attachments gives insight into the extent of availability and
accessibility of files. However, any explanation of why certain documents are unavail-
able or inaccessible requires a qualitative study. For this, we analysed the content of
the emails to which documents were attached. In most cases an explanation was given
if there was any problem in meeting the request. We present these for insights into
availability (and hence archiving policies), and also, where relevant, for accessibility.

In 40% of cases municipalities could not provide the requested minutes from 1999.
Reasons varied. At one extreme, there was a practice of keeping no electronic ar-
chives. In some cases, there was a policy of periodically pruning back. For example:

“Electronically stored copies are selectively deleted and this has been the case with
the minutes from 1999”

Such policies are not always strictly systematic. The minutes of these meetings –
although related to the top level committee of the municipalities – are not protected
by law except in their paper form. Hence this next response:

“The minutes written before 2000 have probably been deleted at the time the min-
utes were signed and archived. There is no record kept about how this was handled
exactly in the year 1999.”

This lack of obligation to protect electronic copy of minutes has led to a lack of
policy, allowing this informal approach. This potentially impacts both on availability
and accessibility. Hence, even where minutes are made available this seems to be as a
result of other informal processes. For example,

“(The municipality) does not have any electronic storage of documents How-
ever, the minutes are temporarily available as PDF and stored in an ordinary folder on
disc (and) used for presentation on our home page.”

Most had a less systematic reason for unavailability. Most pertinent to our enquiry
is loss of unavailability due to legacy systems and formats:

“I can unfortunately not find anything from 1999. A different system was in use
then, which we do not have access to today.”

“Unfortunately we do not have the minutes from 1999 for technical reasons.”
It is clear that even after only ten years there are problems related to accessing or

interpreting files which are known to exist. In a number of instances this was because
the file uses a proprietary format which is only interpretable by the legacy tool which
created it. This may imply extra cost and delay in meeting a request:

“The oldest minutes are not available and the minutes from 1999 should be
available but the tool ... has been phased out from the organisation. Your request has
triggered our IT department to resurrect the software.”

186 B. Lundell and B. Lings

In fact, it may be significant enough for the organisation to seek a way of not in-
curring the expense:

“From 1994-08-10 we used Ergo-ord for electronic documents. We have not been
able to recreate the first document from 1993-01-13, a specific environment is neces-
sary for this which we have not set up. You will have to be satisfied with a document
from 1994-08-10, which is the first Word version. Please come back to me if you in-
sist on the minutes from 1993.”

In other cases, it was not possible to completely reconstruct the document even
though the organisation was willing to make the effort. In one case this resulted in
significant data loss:

“For the documents from 1990 I have been forced to ask the IT section to convert
so that the documents can be read. The meeting minutes from 1990-01-09 were in-
serted into a pre-printed template, hence this is missing in the document. The minutes
from 1999-01-12 contain only 2.5 paragraphs and 4 pages. According to the original
minutes in paper form there should be 35 pages.”

In a different case, layout information was lost even for recent minutes, and the
older minutes also suffered data loss (in the response a paragraph refers to a distinct
item on the agenda):

“The minutes from 2008 are digitally preserved in Word but in that the paragraphs
are not in the correct order. The 1999 minutes are only partially preserved: the first
page and a few of the paragraphs are missing” ... “We had the principle of one Word
file for each paragraph at the time, so it is messy to organise these.

Such access problems were not limited to documents generated by tools which are
no longer used. In a number of instances old files, in a proprietary format, could not
be opened natively in the latest version of the tool which created them. Interestingly
these same files could be opened natively in an open source tool, OpenOffice.org.

6 Discussion and Conclusions

There is no evidence from our study that municipalities have a data curation policy
with respect to executive minutes. In the absence of a direct duty to preserve elec-
tronic copy, curation is left to the work practices of individuals.

Where electronic copy is kept, proprietary and closed formats are overwhelmingly
used for public documents, even though there is experience of losing access to, or
increased cost of access to documents because of formats which are no longer sup-
ported. Further, and perhaps more significantly, we find no evidence that this situation
is changing.

Our general finding is that availability of electronic copies of executive board
minutes for municipalities in Sweden is very variable, and accessibility is poor. In
particular, there is little evidence of the existence of policies to maintain electronic
copies of documents, and little awareness shown of open standards and their impor-
tance in data curation. It is striking that no municipality provided a document in a
reusable, open standard document format. This stands in stark contrast with stated
central Government policies. The study also highlights a consequent lack of strategies
in organisations regarding effective communication and archiving of electronic data.

 How Open Are Local Government Documents in Sweden? 187

As a result, there are already many gaps in the electronic data record even for the
most recent 10 year period. In this very real sense, the mooted digital dark hole in
public records is fast becoming a reality.

References

BBC, Warning of data ticking time bomb, BBC News (July 3, 2007),
 http://news.bbc.co.uk/2/hi/technology/6265976.stm (accessed 2009-

12-23)
Berkman, Roadmap for Open ICT Ecosystems, Berkman Centre for Internet & Society at Har-

vard Law School (2005)
Bird, G.B.: The Business Benefit of Standards. StandardView 6(2), 76–80 (1998)
DCC Digital Curation Manual: Instalment on Open Source for Digital Curation (August 1,

2005),
 http://www.dcc.ac.uk/resource/curation-manual/chapters/

open-source/
EU, European Interoperability Framework for pan-European eGovernment Services, European

Commission, Version 1.0 (2004),
 http://ec.europa.eu/idabc/servlets/Doc?id=19529
Krechmer, K.: The Meaning of Open Standards. In: Proceedings of the 38th Hawaii Interna-

tional Conference on System Sciences – 2005. IEEE Computer Society, Los Alamitos
(2005)

Regeringen, Kommittédirektiv: Delegation för e-förvaltning, Dir., March 19–26 (2009) (in
Swedish),
http://www.sweden.gov.se/content/1/c6/12/40/02/ec50b88b.pdf

Regjeringen, Nye obligatoriske IT-standarder for staten vedtatt, Fornyings- og Administras-
jonsdepartementet, Pressrelease (July 2, 2009) (in Norwegian),

 http://www.regjeringen.no/nb/dep/fad/pressesenter/
pressemeldinger/2009/nye-obligatoriske-it-standarder-for-
stat.html?id=570650

SOU, Strategi för myndigheternas arbete med e-förvaltning, Statens Offentliga Utredningar:
SOU 2009:86, e-Delegationen, Finansdepartementet, Regeringskansliet, Stockholm (Octo-
ber 19 , 2009) (in Swedish),

 http://www.sweden.gov.se/content/1/c6/13/38/13/1dc00905.pdf

Bug Localization Using Revision Log Analysis
and Open Bug Repository Text Categorization

Amir H. Moin and Mohammad Khansari

Department of IT Engineering, School of Science & Engineering,
Sharif University of Technology, International Campus, Kish Island, Iran

moin@kishlug.ir, khansari@sharif.edu

Abstract. In this paper, we present a new approach to localize a bug
in the software source file hierarchy. The proposed approach uses log
files of the revision control system and bug reports information in open
bug repository of open source projects to train a Support Vector Machine
(SVM) classifier. Our approach employs textual information in summary
and description of bugs reported to the bug repository, in order to form
machine learning features. The class labels are revision paths of fixed
issues, as recorded in the log file of the revision control system. Given an
unseen bug instance, the trained classifier can predict which part of the
software source file hierarchy (revision path) is more likely to be related
to this issue. Experimental results on more than 2000 bug reports of
‘UI’component of the Eclipse JDT project from the initiation date of the
project until November 24, 2009 (about 8 years) using this approach,
show weighted precision and recall values of about 98% on average.

1 Introduction

Both the total number of open source software projects and the total amount of
open source code in the world, are growing at an exponential rate [1]. In addi-
tion, the number of developers interested in working in this field, are increasing
tremendously fast. For example, the number of developers involved in the Linux
kernel development project has doubled over the past three years [2]. Hence, one
should expect a very high rate of bug reporting to the issue tracking system of
large open source projects. As an example, consider the case of the Eclipse open
bug repository, with an average bug reporting rate of above 50 issues per day
from January 1 until November 24, 2009 [3]. Suppose that each issue takes an
average of ten minutes from a developer in order to be localized in the software
source file hierarchy. This simply means, at least 8 professional person-hours per
day is required merely for searching where the buggy piece of the code is located,
which is indeed an invaluable and rare resource for most open source projects.

In this paper, we present a new approach for automating bug localization,
i.e. finding the most relevant part of the software source file hierarchy to a bug
reported to an open bug repository. Firstly, we analyze the history of source
revisions, available in the log file of the version control system, in order to find
the bug IDs and their corresponding revision path (path of the revised file during

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 188–199, 2010.
c© IFIP International Federation for Information Processing 2010

Bug Localization Using Revision Log Analysis 189

a successful bug fix). Secondly, we send a query to the open bug repository of the
project in order to obtain summary and description of the extracted bug IDs.
Then, we prepare our dataset in the proper and acceptable format for training
the classifier. Afterward, we perform the classification via training a Support
Vector Machine (SVM) classifier. Finally, given a new bug, we can localize the
bug in the software source file hierarchy using the trained classifier.

Our approach is novel in that we use the large amount of valuable information
in the open bug repositories of open source projects rather than performing
analysis on the software source repositories to find latent software defects [14] [15]
[16] [17] [18] [19] [20] [21]. Moreover, rather than looking for an exact bug-related
source file and its line number, we localize the bug in one higher level of the
software source file hierarchy (file path). One of the possibly useful applications
of this approach could be in bug triage, i.e. deciding each reported issue should
be assigned to which developer in order to be fixed [4] in a time and cost effective
manner. In that problem, the triager could assign bugs with respect to the field
of expertise [5] and level of interest [6] of developers in that particular part of
the software source file hierarchy.

The paper is organized as follows. Section 2 provides some background about
revision control systems, open bug repositories and machine learning. In section
3, we present the proposed approach for bug localization. Section 4 provides
validation and experimental results, and Section 5 reviews related work. Finally,
we draw conclusion and suggest future work in section 6.

2 Background

To understand the proposed approach one should be familiar with various areas
including version control systems, open bug repositories and machine learning.
We review the related concepts of these topics by giving examples from Eclipse
projects.

2.1 Version Control Systems

A Version Control System (or more accurately, revision control system) is a
combination of technologies and practices for tracking and controlling changes
to a project’s files, in particular to source code, documentation, and web pages.
The main role of such a system is change management via identifying each
change to the project, annotating it with relevant metadata such as the date,
author, and possibly the reason of that change, and finally replaying these facts
to whoever asks, in the desired format. In other words, it is an inter-developer
communication mechanism where a change is the basic unit of information. The
most widely used revision control system in the Free1/Open Source Software
(FOSS) world is Concurrent Versions System (CVS). Although it has become
the default choice along the time and most experienced developers are already
1 Here, Free is a matter of liberty, not a matter of price. For more information please

visit http://www.gnu.org/philosophy/free-sw.html

http://www.gnu.org/philosophy/free-sw.html

190 A.H. Moin and M. Khansari

Fig. 1. A small part of a sample CVS log, the Eclipse JDT Project. (’...’ represents
the omitted lines.)

familiar with CVS, it has few disadvantages which consequently has led to the
emergence of a number of alternatives such as Subversion (SVN), Git, Bazaar,
and Mecurial [7].

Fortunately, the log files of the version control system for different components
of a software project could be queried and saved in separate files. Figure 1 shows
a very small part of the CVS log file for ‘Core’component of the Eclipse JDT
project.

2.2 Open Bug Repositories

Providing a bug tracking system (or more accurately, issue tracking system)
is one of the necessary tools of open source software development [7]. A bug
tracking system usually consists of a database known as bug repository which
contains information about the bug reports. Almost any open source project is
supported by an open bug repository in which anyone could have a username
and password and either report an issue or put a comment on an existing report.

There are various bug tracking software such as Bugzilla and JIRA. Fur-
thermore, some projects like Debian GNU/Linux have their own bug tracking
system [8].

Structure of Bug Reports

One of the better known bug tracking systems is Bugzilla. A typical bug report
in Bugzilla consists of various parts including the predefined fields, free-form
text, attachments and dependencies [4].

Figure 2 depicts the predefined fields in a sample bug report of the Eclipse
bug repository. This bug report corresponds to the CVS log shown in figure 1.
Some predefined fields such as the bug ID or reporter are specified when the
report is created and fixed over the life cycle of the bug report (this life-cycle
is covered in the next subsection). Other fields, either change successively while
the bug report is tossed among the developers, i.e. forwarded from the developer
to whom it is initially assigned to another one [9], like the Assigned To field, or
change occasionally such as the Importance or the CC list2 [10].
2 The CC list is the list of the email addresses of people who are interested to be kept

up-to-date about the status of the issue.

Bug Localization Using Revision Log Analysis 191

Fig. 2. Predefined fields in a sample Bugzilla bug report

The free-form text includes a one line summary of the issue, also known as its
title, a detailed description of the report which should help a developer reproduce
the bug and finally a number of comments on this issue which might refer to
other similar bugs [4].

Other parts of bug reports include attachments and dependencies. Attach-
ments are usually non-textual information such as screen-shots. Moreover, the
bug tracking system tracks bugs which their resolution depend on fixing a specific
bug report [10].

Life-cycle of Bug Reports

Initially, when a new issue comes to the open bug repository of the Eclipse
projects, its status field is set to NEW. Then either it is assigned to a developer
by the triager or a volunteer developer accepts its responsibility. Consequently, it
is tagged with ASSIGNED.3 At the end, when there is no remaining task due to
the resolution of the bug report, it is marked as RESOLVED. If the triager finds
that this issue is already reported, it is marked as RESOLVED DUPLICATE. If
the report is not indeed a bug report, for example it states a natural feature of
the software which is mistakenly thought to be a bug, the report is tagged with
RESOLVED INVALID. When the erroneous behavior is not repeatable, perhaps
because of poor description of the problem, the developer sets the status to
RESOLVED WORKSFORME. Otherwise, the resolution might need applying
changes in the source code which causes the issue to be marked as RESOLVED
FIXED. If a bug is believed to be unsolvable for any reason, it will be tagged
with RESOLVED WONTFIX [11].
3 There exist few cases in which bug reports are not assigned to developers and resolved

immediately by the triager.

192 A.H. Moin and M. Khansari

Fig. 3. Life-cycle of bug reports in Eclipse projects

The resolution status of the RESOLVED reports may later change to VER-
IFIED and then CLOSED. One is allowed to reopen a previously RESOLVED,
VERIFIED or even CLOSED issue at any time. Figure 3 shows the typical
life-cycle of the Eclipse bug reports [11].

In this paper, we only care about the bug reports which are either RESOLVED
FIXED, VERIFIED FIXED or CLOSED FIXED.

2.3 Machine Learning

Machine learning is a discipline concerned with design and development of algo-
rithms in order to allow computers to learn how to recognize complex patterns
in data, to be able to make smart decisions. In the context of machine learning,
the training data consist of a number of examples which are called instances.
Each instance bears a number of input objects known as attributes or features
which are usually encapsulated in a vector. In supervised machine learning an
output value is assigned to each instance of the training data in advance and
the problem is to deduce a function in order to predict the output value of any
similar valid input vector. If the output value is a continuous value, the prob-
lem is called regression; otherwise, the output value is called the class label,
the function is named as classifier and the problem is called classification. One
of the many applications of this kind of classification is in text categorization,
where the classifier is expected to assign a relevant category to an arbitrary text
document based on a number of previously seen examples [12] [13].

Bug Localization Using Revision Log Analysis 193

3 The Proposed Approach

Given a new bug report from the open bug repository of an open source software
project, our approach uses a Support Vector Machine (SVM) classifier to suggest
the part of the source file hierarchy which is more likely to be related to this
issue. The suggestion is made based on a number of previously seen examples,
i.e. fixed bug reports in the past. Various components engaged in the proposed
approach are presented in figure 4.

Fig. 4. Various components of the proposed approach

Our approach has three steps:

1. Analyzing the Revision Logs
When a bug is fixed by a developer, the revision path, i.e. the path of the
file which is revised due to this bug resolution, is not mentioned anywhere in
the open bug repository. Consequently, one should analyze the entire change
history of a specific software component in the log file of the version control
system for that component, in order to find patterns such as ‘fix for bug
no ...’or similar among the comments of developers. The extracted bug IDs
are used in step two, and the revision paths are used as class labels of the
classifier in step three.

2. Querying the Bug Repository
For each extracted bug ID in the previous step, we send a query to the bug
tracking system and ask for the summary and description of that bug ID.

194 A.H. Moin and M. Khansari

3. Training the Classifier
After conducting previous steps, we have the revision path in software file
hierarchy as well as the summary and description for each resolved bug ID.
We use this information to train a Support Vector Machine (SVM) classifier.

4 Validation and Experimental Results

We have trained and tested our classifier with fixed4 bug reports in the open
bug repository of the Eclipse JDT Project (‘UI’component), reported from the
initiation date of the project until November 24, 2009. Thus, we have worked
with more than 2000 bug reports.

We analyze the revision logs through the aid of a couple of useful GNU/Linux
(and UNIX) commands, grep and awk. The result of this step is expected to be a
number of textual files, each named with an existing path (directory level rather
than file level) in the source file hierarchy and filled with all bug IDs related to
that specific path.

After analyzing the CVS log file of the software component, 23 revision paths
were found. A few number of these paths as well as the number of bug reports
related to each, are shown in table 1.

Table 1. Several revision paths of ‘UI’component of the Eclipse JDT project

Revision paths No. of bugs

ui/org/eclipse/jdt/internal/ui/ 1392
core extension/ 133
core refactoring/ 137
ui/org/eclipse/jdt/ui/ 203

We have developed a Java application in order to connect to the Bugzilla open
bug repository of the Eclipse JDT project using XML Remote Procedure Call
(XML-RPC), a well known protocol for performing remote procedure calls over
HTTP. For each of the bug IDs gathered in the previous step, we send a query
to the bug tracking system and ask for the summary and description of that
bug report. Eventually, we save the collected information about each bug in a
separate textual file, named the same as the bug ID. One should keep every file
related to a specific revision path in a distinct directory which is named after
the revision path, in order to create a dataset to be used in the following steps.

In order to implement our approach, we use the Free/Open Source Software
(FOSS) suite for machine learning written in Java, called WEKA. WEKA re-
quires both the training and testing datasets to be in a standard format called
ARFF. Fortunately, there is a converter, named TextDirectoryLoader in WEKA.
This converter, receives a number of directories which contain a set of text files,
4 Trivially, the revision path for unfixed bugs is meaningless.

Bug Localization Using Revision Log Analysis 195

and then treats the directory names as class labels, the text files as instances of
each class and the information within each text file as features of that instance.
The output of this converter is an ARFF file as desired.

Since the classifier which we use in the next step cannot handle String at-
tributes, we must apply an appropriate filter to the dataset, i.e. the ARFF file,
in order to perform TF-IDF (Term Frequency-Inverse Document Frequency)
transformation. This transformation is often used in information retrieval and
text mining problems in order to give a weight to each term, based on the num-
ber of occurrence of the term. The basic assumption is that the more times a
specific term appears in a text document, the more important it is to that doc-
ument [25]. There is a filter in WEKA, called StringToWordVector which does
the needed transformation easily. The output is still an ARFF file.

The classifier also cannot handle numeric attributes. However, our ARFF file
contains a number of such attributes. The solution is applying another filter
available in WEKA, named NumericToNominal. Now, the resulted ARFF file is
ready to be used for training the SVM classifier.

After gathering and preparation of the dataset, the next step is to train the
classifier and validate the learned model.

We use an improved Support Vector Machines (SVMs) algorithm, called Se-
quential Minimal Optimization (SMO) with linear kernel. SMO is much faster
and more memory-efficient than the initial SVM algorithm [26] [27]. We use bi-
nary SMO implementation with linear kernel which is available in WEKA as
BinarySMO. This implementation replaces all missing values and transforms
nominal attributes into binary ones. It also normalizes all attributes by default.
The multi-class problem is solved by using pairwise classification [28]. Table 2
shows several normalized attribute weights of our dataset.

Table 2. Several normalized attribute weights

Attribute(term) Weight

JavaCore 0.0847
Synchronizer -0.0328
WM CHAR 0.0173
container 0

As in any other machine learning problem, we should somehow evaluate the
performance of our approach. We use ten fold cross validation for training and
validation of the linear SVM classifier. The detailed evaluation results are pro-
vided in table 3.

The True Positive (TP) rate is equivalent to Recall. It measures how much part
of the class is captured. In other words, the TP rate (Recall) is the proportion
of the instances which are classified as class A, among all instances which indeed
have class A.

196 A.H. Moin and M. Khansari

Table 3. Detailed evaluation results of the binary SMO classifier

TP Rate / FP Rate / Precision / Recall / F-Measure / Class

0.992 0.062 0.99 0.992 0.991 0
0.938 0.008 0.951 0.938 0.944 1
0.985 0.055 0.985 0.985 0.965 Weighted Avg.

The False Positive (FP) rate is the proportion of the instances which are
classified as class A, but belong to a different class, among all instances which
are not of class A.

The Precision is the proportion of the instances which indeed have class A,
among all those instances which are classified as class A.

Since, often there is a trade-off between precision and recall, it is common to
measure the classification performance via a mixture of both, called F-Measure
[29].

F − Measure = 2∗Precision∗Recall
Precision+Recall

Finally, Accuracy is the proportion of the total number of correctly classified
instances among all instances. Our accuracy through the classification has been
98.5137%.

5 Related Work

We are aware of a number of valuable efforts in the field of bug localization
automation. One possible approach is trying to find bugs through checking either
a well-specified program model [14] or real code directly [15] [16] within the
software source code. This approach is called static analysis [17].

Gyimothy et al. [18] use two groups of machine learning algorithms, decision
trees and neural networks to predict buggy classes with a static code analysis
approach.

The second approach is called dynamic analysis which is concerned with the
comparison of the run-time behavior of correct and incorrect executions in order
to localize suspicious segments of the source code [19] [20]. This approach only
labels program executions as correct or incorrect and needs no prior knowledge
of the semantics of the software project [17].

Brun and Ernst [21] use Ernst’s Daikon dynamic invariant extractor [22] to
capture invariant features from the software source code with known errors and
with errors removed. Then two groups of machine learning algorithms, Support
Vector Machines (SVMs) and decision trees are employed to classify invariants
as either fault-invariant or non-fault-invariant.

Most recently, Kim et al. [23] [24] has proposed a new technique for predict-
ing latent software bugs, called change classification. They use Support Vector
Machines (SVMs) to predict whether a specific change to the software source is
more likely to be buggy or clean, based on the previous change history.

Kim et al.’s approach is similar to ours in a couple of aspects. Firstly, they ana-
lyze log files of the version control system of software projects to find related bug

Bug Localization Using Revision Log Analysis 197

fixes in order to label that change in the source code as buggy. Similarly, we an-
alyze those files in order to find bug-fixing revisions. However, we have nothing
to do with the source code. Instead, we use the bug ID which is mentioned in the
revision log to query the corresponding bug report from the open bug repository
of the software project. Secondly, both works use machine learning algorithms for
classification, in particular Support Vector Machines (SVMs), While the features
(in the machine learning sense), class labels and also the aim of the two approaches
are completely different. Our goal is to predict the most related part of the soft-
ware source file hierarchy to a newly reported bug. In contrast, they try to predict
whether a particular change made by a developer to the source code is more likely
to be buggy or clean. Further, we use textual information of bug reports in open
bug repositories to form our features. However, they use properties of the change
made to the software. An example of such property has been mentioned as the
frequency of words that are present in the source code, before and after perform-
ing the change. Finally, our class labels are various revision paths in the software
source file hierarchy, while their class labels are clean and buggy.

6 Conclusion and Future Work

In this paper, we have presented a new approach to localize bugs in the source
file hierarchy of open source software projects. We have used Support Vector
Machines (SVMs) for predicting the file path which is more likely to be related
to a given software bug report, using its summary and description. The classifier
has been trained using the information of fixed bugs in the past.

We have evaluated our approach on ‘UI’component of the Eclipse Java De-
velopment Tool (JDT) project. Both precision and recall values are about 98%.
Applying this approach on other FOSS projects remains as future work.

Removing stop-words and performing stemming are two common data prepa-
ration tasks in text categorization problems. Here, since the experimental results
are satisfying even without such preparations, we decided not to get involved
with them through this work. However, it is a worthy effort to examine the
effects of those techniques on other FOSS projects in future work.

One part of our future work involves applying other machine learning algo-
rithms to the same dataset and comparing the results. We are also interested in
using our approach, in the field of automated bug triage, as discussed in Section 1.

Finally, one could extend the proposed approach in order to localize the bug,
either in file level or on its exact line of code, instead of our hierarchical directory
level bug localization effort. Moreover, using our approach one could find the
more buggy parts of the code in order to prioritize development tasks.

References

1. Deshpande, A., Riehle, D.: The Total Growth of Open Source. In: The 4th
International Conference on Open Source Systems, OSS 2008 (2008),
http://homepages.uc.edu/%7Edeshpaaa/oss-2008-total-growth-final.pdf

(Retrieved on November 27, 2009)

http://homepages.uc.edu/%7Edeshpaaa/oss-2008-total-growth-final.pdf

198 A.H. Moin and M. Khansari

2. Kroah-Hartman, G., Corbet, J., McPherson, A.: Linux Kernel Development, How
Fast it is Going. The Linux Foundation Publications (2008),
https://www.linuxfoundation.org/publications/

linuxkerneldevelopment.php (Retrieved on November 27, 2009)
3. Eclipse Bug Repository,

https://bugs.eclipse.org/bugs (Verified on November 24, 2009)
4. Anvik, J., Hiew, L., Morphy, G.C.: Who Should Fix This Bug? In: Proc. 28th

International Conference on Software Engineering, ICSE 2006 (2006)
5. Anvik, J., Morphy, G.C.: Determining Implementation Expertise from Bug Re-

ports. In: 4th IEEE International Workshop on Mining Software Repositories, MSR
2007 (2007)

6. Baysal, O., Godfrey, M.W., Cohen, R.: A Bug You Like: A Framework for Auto-
mated Assignment of Bugs. In: 17th IEEE International Conference on Program
Comprehension, ICPC 2009 (2009)

7. Fogel, K.: Producing open source software, 1st edn., pp. 60–79. O’Reilly, Sebastopol
(2005)

8. Debian Bug Tracking System, http://www.debian.org/Bugs/ (Verified on Decem-
ber 9, 2009)

9. Jeong, G., Kim, S., Zimmermann, T.: Improving Bug Triage with Bug Tossing
Graphs. In: The 7th joint meeting of the European Software Engineering Confer-
ence (ESEC) and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, FSE (2009)

10. Anatomy of Eclipse Bugs, Retrieved from
http://www.bugzilla.org/docs/2.18/html/bug_page.html (December 19, 2009)

11. Life-cycle of Eclipse Bugs, Retrieved from
http://www.bugzilla.org/docs/2.18/html/lifecycle.html (December 19,
2009)

12. Witten, I.H., Frank, E.: Data Mining, Practical Machine Learning Tools & Tech-
niques, 2nd edn. Elsevier, Amsterdam (2005)

13. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

14. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

15. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: Pro-
ceeding of the 15th IEEE International Conference on Automated Software Engi-
neering, ASE 2000 (2000)

16. Musuvathi, M., Park, D., Chou, A., Engler, D., Cmc, D.D.: A pragmatic approach
to model checking real code. In: Proceeding of the 5th Symposium on Operating
System Design and Implementation, OSDI 2002 (2002)

17. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: SOBER: Statistical Model-Based
Bug Localization. In: The 3rd joint meeting of the European Software Engineering
Conference (ESEC) and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, FSE (2005)

18. Gyimothy, T., Ferenc, R., Siket, I.: Empirical Validation of Object-Oriented Met-
rics on Open Source Software for Fault Prediction. IEEE Trans. on Software
Eng. 31(10), 897–910 (2005)

19. Cleve, H., Zeller, A.: Locating causes of program failures. In: Inverardi, P., Jazayeri,
M. (eds.) ICSE 2005. LNCS, vol. 4309. Springer, Heidelberg (2006)

20. Liblit, B., Naik, M., Zheng, A., Aiken, A., Jordan, M.: Scalable statistical bug isola-
tion. In: Proc. of ACM SIGPLAN 2005 International Conference on Programming
Language Design and Implementation, PLDI 2005 (2005)

https://www.linuxfoundation.org/publications/linuxkerneldevelopment.php
https://www.linuxfoundation.org/publications/linuxkerneldevelopment.php
https://bugs.eclipse.org/bugs
http://www.debian.org/Bugs/
http://www.bugzilla.org/docs/2.18/html/bug_page.html
http://www.bugzilla.org/docs/2.18/html/lifecycle.html

Bug Localization Using Revision Log Analysis 199

21. Brun, Y., Ernst, M.D.: Finding Latent Code Errors via Machine Learning over
Program Executions. In: Proc. of 26th International Conference on Software En-
gineering (ICSE 2004) (2004)

22. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon System for Dynamic Detection of Likely Invariants. Science
of Computer Programming (2006)

23. Kim, S., Whitehead Jr., E.J., Zhang, Y.: Classifying Software Changes: Clean or
Buggy? IEEE Trans. on Software Eng. 34(2), 181–196 (2008)

24. Shivaji, S., Whitehead Jr., E.J., Akella, R., Kim, S.: Reducing Features to Im-
rove Bug Prediction. In: Proceeding of the 15th IEEE International Conference on
Automated Software Engineering, ASE 2009 (2009)

25. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing & Management 24(5), 513–523 (1988)

26. Plat, J.C.: Technical Report, MSR-TR-98-14, Microsoft Research (April 21, 1998)
27. Plat, J.C.: Advances in Kernel Methods - Support Vector Learning, pp. 41–65.

MIT Press, Cambridge (1998)
28. WEKA 3-7-0 source comments, weka.classifiers.functions.SMO
29. The official WEKA manual, Retrieved from

http://www.cs.waikato.ac.nz/ml/weka/ (December 25, 2009)

http://www.cs.waikato.ac.nz/ml/weka/

T-DOC: A Tool for the Automatic Generation
of Testing Documentation for OSS Products

Sandro Morasca, Davide Taibi, and Davide Tosi

Università degli Studi dell’Insubria,
Dipartimento di Informatica e Comunicazione, Via Mazzini, 21100 Varese, Italy

{sandro.morasca,davide.taibi,davide.tosi}@uninsubria.it

Abstract. In the context of Open Source Software (OSS), the lack of
project documentation is one of the most challenging problems that slows
down the widespread diffusion of OSS products. The difficulty of provid-
ing up-to-date and reasonable documentation for OSS products relates to
two main reasons. First, documenting development activities and techno-
logical issues is viewed as a tedious and unrewarding task. Second, data
and information about an OSS project (such as source code, project
plans, testing requirements, etc.) are scattered and shared via unstruc-
tured channels such as unofficial forums and mailing lists.

In this paper, we focus on technical documentation related to testing
activities. In this context, the lack of documentation is exacerbated due
to the use of the available testing methods that drastically increase code
fragmentation. We propose T-doc, a tool that simplifies the generation of
testing documentation. In particular, T-doc supports (1) the automatic
generation of test cases documentation, (2) the generation of reports
about test case results, and (3) the archiving of testing documents in
central repositories. The automatic generation of documentation is fa-
cilitated by the adoption of built-in testing methods that simplify the
aggregation of testing data.

We apply the tool to the OSS RealEstate Java application to show
the applicability and the real benefits of our solution.

Keywords: Open Source Software testing, testing documentation,
testing tools.

1 Introduction

Open Source Software (OSS) is experiencing an increasing diffusion and popu-
larity in industrial sectors. However, this spreading is slowed down by the frus-
tration a lot of potential users have when they start evaluating an OSS product
that they would like to adopt. This is primarily due to the lack of reasonable and
up-to-date user documentation that deeply describes the intent and the technical
aspects of the project.

Most of the available OSS projects are currently released without up-to-date
user manuals and technical documents. The lack of documentation in OSS is
even more serious in the context of testing activities. It is very rare to find

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 200–213, 2010.
c© IFIP International Federation for Information Processing 2010

T-DOC: A Tool for the Automatic Generation of Testing Documentation 201

well-structured documents, manuals, and reports about all the testing phases
performed during the development of OSS products. Documenting OSS projects
is a tedious and unrewarding task that is made more complicated by the scat-
tering of data and information typical of OSS projects.

In this paper, we focus on the problem of documenting testing activities and
we propose a tool (we called T-doc) that supports the automatic generation of
unit, integration, regression testing documentation, the report of test results,
and the aggregation of these data in dedicated central repositories we called
“testing tracker systems.” The automatic generation is simplified by the use of
built-in testing methodologies that put together the code of methods and test
cases in a single component to avoid the fragmentation of source code and to
simplify the aggregation of the testing data [3]. T-doc provides a three-layered
support:

– automatic generation of test cases documentation (in a java-doc like style);
– automatic generation of suggestions about integration and regression testing

activities that should be performed by each developer and for each compo-
nent of the project;

– automatic generation of reports about the results of test suites execution.

All the documents and testing data are then collected and archived in the testing
tracker system of the project to favor data discovery and data sharing. This
paper is a step towards our final goal, which is the development of a standard
framework that OSS developers can use whenever they start testing their OSS
products. In this paper, we apply an initial implementation of T-doc to the
RealEstate Java application [2] to show the simplicity, the real benefits, and the
level of automation provided by our solution.

The paper is structured as follows: Section 2 reports the analysis we conducted
to confirm the low availability of testing documentation, and discusses the limits
of a set of existing testing tools; Section 3 introduces the motivations that are at
the basis for adopting built-in testing in the context of OSS products; Section 4
separately discusses the three layers of the T-doc tool, and shows how T-doc
comes into play when applied to the RealEstate Java application; and finally we
conclude in Section 5.

2 The Lack of OSS Documentation

The perception we normally have surfing the web portal of OSS products, ob-
serving OSS forums/blogs/discussions, and using OSS products in our every-day
work is that most of the available OSS projects are released without user manuals
and technical documents.

To have an empirical evidence of this perception, we conducted a two-fold
analysis: first, we interviewed 151 OSS users (end users, developers, managers,
OSS experts) and then, we analyzed the web portal of 32 well-known OSS
projects1. The first analysis aimed to identify the importance the factor
1 An extensive report of these experiences can be found in

www.qualipso.eu/node/45 and /node/84

202 S. Morasca, D. Taibi, and D. Tosi

“availability of technical documentation / user manual” has for OSS users. We
discovered that in a scale from 1 (negligible importance) to 8 (fundamental im-
portance), the factor “availability of technical documentation / user manual”
took a very high score equal to 6,5. The second analysis aimed to check the
actual availability of technical documentations and user manuals related to the
32 analyzed projects. We discovered that: 69% of the projects have up-to-date
user manuals while the remaining 31% have not updated or available user man-
uals; 49% of the projects have an up-to-date technical documentation, while the
remaining 51% have not an updated or available technical documentation.

This deficiency is exacerbated when we look at testing documentation: in our
analysis, only 1 product (out of 32) provides a complete documentation about
its internal testing activities. Only JBoss [www.jboss.org] exposes a detailed and
up-to-date documentation about testing plans, testing methodologies, test cases
description, and test suite results. We believe that this is primary due to three
main reasons: first, the use of classical testing methodologies that are based on
external testing (i.e., test cases are independent components that are separated
from the applicative code) drastically augment the fragmentation of data, thus
further complicating the process of documenting testing activities; second, the
lack of well-agreed best practices on how to test OSS products increases the ef-
fort required for testing applications, thus stealing effort in documenting testing
activities. Finally, the lack of tools, which support and automate the documen-
tation of testing activities, leaves too much effort to the side of developers. The
results obtained by our second exploration are in contrast with the requirements
OSS users have. This analysis confirms our intuition and demonstrates the need
for a tool that supports the automatic generation of testing documentation.

Currently, open source tools or frameworks that support the whole docu-
mentation of testing activities are not yet fully available. The famous portal
[www.opensourcetesting.org] gathers a lot of testing tools that support a spe-
cific aspect of the test life cycle, but none of them are able to manage and
create the documentation, the results report and the collection of these informa-
tion. For example, Testopia [www.mozilla.org/projects/testopia] is a test case
management extension for Bugzilla that tracks test cases and allows for test-
ing organizations to integrate bug reporting with their test case run results.
However, Testopia covers only a part of the functionalities provided by T-doc.
Fitness [http://fitnesse.org] is a software development collaboration tool, which
simplifies the management of testing documentation, test reports and the collab-
orative definition of acceptance tests. T-doc, is able to automatically generate
testing documentation and it is not limited to acceptance tests. Moreover, T-doc
is able to automatically suggest the integration and regression testing activities
that should be performed. Other tools, such as TPTP [www.eclipse.org/tptp/]
or Salome-TMF [https://wiki.objectweb.org/salome-tmf/], are complex frame-
works that cover the entire test life cycle but are not able to automatically create
testing documentation.

The next section discusses why a built-in testing method is preferred to classic
testing solutions.

T-DOC: A Tool for the Automatic Generation of Testing Documentation 203

3 Built-in Test in OSS

Built-in self-test (BIST) and Built-in test (BIT) approaches for software systems
originated in the context of component-based systems to simplify the integration
of third-party black-box components and enhance software maintainability [9].
A BIT component (or BIT class) is a traditional component that puts together
applicative code with testing code [3]. A BIT component can operate in a normal
mode (i.e., testing capabilities are switched off to the user) or in maintenance
mode (i.e., the user can test the component in his environment by exploiting the
built-in testing capabilities) by interacting with the application or the testing
interface, respectively. Listing 1 shows a code excerpt for a typical component
with built-in testing abilities, where test cases are declared and implemented
directly into the applicative class.

In the context of OSS, the heterogeneity of the developers/contributors in-
creases the fragmentation of the source code and makes unfeasible the adoption of
available testing methods, programming rules, and testing tools that could favor
the whole comprehension of fragmented testing activities. Simple programming
rules (as shown in Listing 1) may help standardize a common programming style
that can improve the testing activity, decrease the testing effort, and simplify
the generation of testing documentation. Whenever a developer/contributor of
an OSS product introduces or modifies a functionality of a component, he or she
designs and codes unit tests, integration tests and optionally non-functional tests
into the component to provide BIT abilities. Modified components are then up-
loaded into the repository that stores the project and are integrated to generate
the OSS product with comprehensive BIT abilities (as shown in Figure 1).

Putting together application code and testing code into single classes has sev-
eral advantages: (1) it improves the visibility and inheritance of test cases. Test
cases are coded as classic methods thus, when a class extends another class, the
former inherits not only the application methods but also the test case methods.
This simplifies the reuse of available test cases; (2) it favors the standardization

1 Class c lass name {
2 // app l i ca t ion in te r face
3 Data d e c l a r a t i o n ;
4 Constructor d e c l a r a t i o n ;
5 Destructor d e c l a r a t i o n ;
6 Methods d e c l a r a t i o n ;
7
8 // t e s t i n g in te r face
9 TestCases d e c l a r a t i o n ;

10
11 // app l i ca t ion code
12 Constructor ;
13 Destructor ;
14 Methods ;
15
16 // t e s t i n g code
17 TestCases ;
18 }

Listing 1. Code excerpt of a BIT component

204 S. Morasca, D. Taibi, and D. Tosi

functional methodsapplication
interface normal

mode
application code

testing methods

testing
interface

BIT
O
SS

PRO
D
U
CT

maintenance
mode

.

built in testing code

Fig. 1. Aggregating components into an OSS product with BIT abilities

of testing interfaces. Test cases are developed following the coding rules of the
target programming language in use for the application, thus limiting the cre-
ativity of the developers. This improves the readability of the testing code; (3)
it increases the aggregation of data. Test cases are grouped into single classes
instead of into different packages, components, or libraries. This simplifies the
discovery of testing data and their correlation with coding elements; (4) more-
over, the documentation of test activities and the report of test case results is
made easier, thus simplifying regression testing activities. Regression testing is
made upon the availability of test cases and test results. The more test cases and
test results are not available or they are disaggregated, the more the regression
testing activity is tricky; (5) it favors run-time testing [8]: the system can be ex-
ecuted at run-time in maintenance modality [7], thus simplifying the detection
of bugs that are undetectable in a controlled testing environment. In OSS, often
components are separately tested at development time by each contributor that
develops a small unit and tests its behavior in isolation. This leaves undetected
a lot of integration failures. Moreover with BIT, the test suite can be executed
over different hw/sw platform configurations, thus simplifying system, configu-
ration and performance testing. Every time a user installs the application on his
environment, he/she becomes a new tester of the application and he/she uses
his/her hw/sw configuration as a new scaffolding of the testing activity. Hence,
the “eye bird” ability, which is typical of OSS products (i.e., the capacity to
evaluate a product by the large glance of the OSS community), can be fully
exploited and can be complemented by testing activities.

However, BIT also introduces risks and limitations that need to be faced when
designing the T-doc tool: run-time testing can move the system in an inconsis-
tent state that may compromise the stability of the system. To mitigate this
risk, the test suite must be executed in background only once, during the OSS
product installation (or during critical updates). Moreover, BIT is an intrusive

T-DOC: A Tool for the Automatic Generation of Testing Documentation 205

mechanism that can lead to security and privacy-related problems. To mitigate
this risk, final users must be aware that the OSS product is under BIT, so they
can block the BIT abilities if they so wish, and user-related data must not be
collected by the framework. Finally, if built-in tests are executed without a con-
trol, system performance can degrade. The execution of the built-in test suite in
background, during the OSS product installation, alleviates this problem.

To the best of our knowledge, we believe that the use of BIT abilities, in-
stead of classic testing mechanisms, is a valid way to support and simplify the
generation and the gathering of testing documentation in the domain of OSS.

4 The T-Doc Tool

Here, we present the architecture of the T-doc tool and we detail its threefold
support by separately discussing: the automatic generation of test cases docu-
mentation, the automatic generation of suggestions about integration and re-
gression testing activities, and finally the generation of reports about the results
of the test suite execution. Figure 2 shows a high level architecture of T-doc.

Application

method M1method M1
…
testCase T1testCase T1

Integration Testing
…

Documentationout

in

T t C h

in

Test Cases
i lis

h

out Documentation
TESTub

lout
TEST

TRACKER

pT DOC ENGINE TRACKER

i
out

Test suite
out

results Report

Regression Testingout
Documentation

Fig. 2. High level architecture of the T-doc framework

4.1 Test Case Documentation

This first layer of support aims at simplifying and automating test case and
test suite documentation generation. The generated documentation should in-
crease the readability of the technical aspects of each test case, and should

206 S. Morasca, D. Taibi, and D. Tosi

favor an overall comprehension of the testing activity. To allow for the automa-
tion of this process, built-in test cases must be surrounded by doc comments
(i.e. short sentences that describe the test case, its purpose, and its behavior)
and keywords in a way similar to the way comments and block taglets sur-
round methods and functionalities in Java source code. Testing doc comments
(T-doc comments) and block taglets are then parsed and processed by the T-
doc engine to generate the test case documentation much the same way as the
Javadoc tool operates. Javadoc is a tool from Sun Microsystems for generating
API documentation out of declarations and documentation comments in Java
source code. Javadoc produces HTML documentation describing the packages,
classes, interfaces, methods, etc. of a software system. The output format of the
Javadoc can be customized by means of doclets. Javadoc parses special tags
embedded within a Java doc comment. These doc tags are used to automati-
cally generate a complete, well formatted API from the source code. All tags
start with a (@), e.g., @author. The tags are used to add specific information
like a method’s parameters (@param), return type (@return), and exceptions
(@exception).

Cl AClass AClass AClass AClass A
method M1
methodsmethodsmethod M1

testMethod T1
testMethodstestMethods

testMethod T1
testMethods

inin

Doc1
T DOC Doc 1Doc 1

Doc1
A T1TEST SUITE outT DOC

B ilti TC

Doc 1A.T1TEST SUITE
BUILDER

out
Builtin TCsBUILDER

puubl

Class TestSuite

ishh

testMethod T1out
testMethod T2

publish… … publish
TEST

T DOC ENGINE
TRACKER

T DOC ENGINE
TRACKER

Fig. 3. Architecture of the first T-doc layer

To minimize the effort of developers and contributors in writing testing doc-
umentation, favor standardization, and avoid subjective interpretations of data,
we clearly define a set of new conventions and a set of ad-hoc tags that devel-
opers and contributors should follow whenever they add a T-doc comment. An
example of a real T-doc comment can be found in Figure 4.

In compliance with Javadoc, the conventions we defined are:

T-DOC: A Tool for the Automatic Generation of Testing Documentation 207

1) the first line contains the begin-comment delimiter (/**)

2) write the first sentence as a short summary of the test, as T-doc

engine automatically places it in the summary table of the test

3) insert a blank comment line between description and the list of tags

4) the first line that begins with an ‘‘@" character ends the description

5) there is only one description block per T-doc comment

6) the last line contains the end-comment delimiter (*/)

The tags, useful for commenting a test case, are listed below:

@param (name of the parameter, followed by its description)

@return (omit @return for tests that return void; required otherwise)

@succeedIf (summarize the conditions under which the test case succeeds)

@failIf (summarize the conditions under which the test case fails)

@qualityAttribute (specify the quality aspect addressed: performance, etc.)

@scope (specify the test case purpose: unit, integration, etc.)

@author (author name/surname)

@version (version number + checkout date)

@see package.Class#method(Type,...) (ref to the function under test)

Figure 3 shows a subset of the functionalities provided by the T-doc Engine.
The T-doc Engine takes in input the set of classes that are added/modified by
the developer. Each class is analyzed separately to discover and isolate the built-
in test cases and their T-doc comments. The Test Suite Builder component
aggregates all the built-in test cases into a single test suite, and the T-doc TCs
component parses all the t-doc comments to generate the complete documen-
tation of the test suite. Finally, the engine publishes the documentation to the
central repository (Test Tracker) of the project to avoid fragmentation and ver-
sioning problems of the documentation. Versioning problems are also avoided by
means of the introduction of the new tag @version.

To favor the comprehension of this layer, we exemplify the writing of a T-doc
comment for a built-in test case we derived for the RealEstate OSS Java appli-
cation [2]. The RealEstate is a Java application created at North Carolina State
University that reproduces the Monopoly game. The RealEstate application will
be used throughout the whole paper as proof-of-concept of our work. Figure 4
shows the source code of the built-in test case surrounded by a T-doc comment
and T-doc tags. The purpose of this Figure is not to present the internal code
of the test, but to highlight the structure of a T-doc comment.

The documentation automatically generated by the T-doc engine for this test
case looks like as follows:
ID001:: UNIT Test: testGainMoneyCardAction

V1.0.2 06-02-09

Tests the behavior of the applyAction() functionality.

Checks whether the account of the current player’s

CCard is properly updated when a gain of money is performed.

Succeeds if: getMoney() returns a value=1550$

Fails if: getMoney() returns a value!=1550$

See: edu.ncsu.realestate.MoneyCard()

208 S. Morasca, D. Taibi, and D. Tosi

Fig. 4. A built-in test case with T-doc comments for the RealEstate application

The T-doc engine generates a documentation that is compliant with the visual
representation of Javadoc comments, with small differences (such as the use of a
label for each test ID00X), in order to maximize both the compatibility and also
the readability of the documentation. Currently, this T-doc module has been
fully implemented and its is fully compatible with the Eclipse IDE.

4.2 Regression and Integration Testing Documentation

This second layer of support aims at suggesting and documenting the integration
and regression test cases that OSS contributors should develop during the up-
date/maintenance of their OSS products. The generated documentation should
simplify the contributors’ task of writing these test cases. To this end, the depen-
dencies among methods and components must be detected by the T-doc engine
and visually reported to the developer. The T-doc engine uses the idea of change
points and call graphs [4] [5] to automatically detect the source code location
in which a code change has been performed, and to automatically create the
graph of calls related to the method in which the change has been detected.
These graphs are used by the T-doc engine as the starting point to create the
suggestions for integration and regression testing activities.

Figure 5 shows the three main modules of this layer: the T-doc Integration
module, the T-doc Regression module and the Call Graph tool.

The T-doc Integrationmodule is responsible for suggesting integration test-
ing scenarios that should be implemented by the OSS contributors whenever a
new method is added or whenever an existing method is modified (i.e., the
@version tag of the associated test case is updated). Integration testing checks
dependencies among objects of different classes. Class A uses class B if objects
of class A make method calls on objects of class B, or if objects of A contain
references to objects of B [6]. The T-doc Integration takes as input the docu-
mentation generated by the T-doc TCs module (Doc1 A.T1) and automatically

T-DOC: A Tool for the Automatic Generation of Testing Documentation 209

Doc1
A.T1

Doc2Int
T DOC

Integration

Change Point

CP Call Graph:

CG: CP
in out

publis

T DOC
Regression

Doc2Reg

Class TestSuiteRegr

testMethod T3
testMethod T7
… …

out

Class TestSuite

testMethod T1
testMethod T2
… …

TC Call Graphs:

CG: T1

CG: T2

CALL GRAPH
TOOL

TEST
TRACKER

h
publish

in

publish

Fig. 5. Architecture of the second T-doc layer

generates the call graph for the change point (CP) that is related to the docu-
mented test case. To avoid graph size explosion, we chose to limit the computa-
tion to the third level of method’s dependencies. We are conducting additional
experiments to understand the code coverage we obtain with this limit.

Referring to our RealEstate example of Figure 4, the OSS contributor is
working on the MoneyCard class, by modifying the applyAction() method
and writing the built-in test case testGainMoneyCardAction(). First of all,
the T-doc Integration module computes the call graph for the change point
applyAction(), then it produces the integration testing scenario for this change.
Figure 6 shows the result of this computation (Doc2Int). The root of the graph is
the CP applyAction(), while leaves are the methods that directly or indirectly
interact with the applyAction() method. The T-doc Integration module in-
tegrates the functionalities provided by CallGraph [www.certiv.net/projects/]
to automatically create call graphs starting from a change point.

The T-doc Regression module is responsible for automatically detecting the
subset of relevant test cases for regression activities whenever a change into
the code is performed. Without this support, OSS contributors are forced to
manually rerun all the test cases in the test suite for regression purposes. This
task is very expensive for contributors that are not interested in testing. For
instance, rerunning the complete test suite for the OSS WEKA application
[sourceforge.net] require 45 mins in a fully dedicated machine. Moreover, other
problems are: who runs the test suite? Where to store and collect the test cases
that should be re-executed? When must the test cases be rerun? Where are the
results of the test suite execution reported? All these problems are addressed by

210 S. Morasca, D. Taibi, and D. Tosi

Author Davide Tosi made a change to applyAction()

Please, consider the following interactions and
write ad-hoc integration tests that exploit the
suggested testing scenario:

applyAction() instance() GameMaster()S C

getCurrentPlayer() getPlayer(…)

setMoney(…)

getMoney()

Fig. 6. Generated integration testing scenario for the testGainMoneyCardAction()

the T-doc Regression module. This module takes as input the change point
and also the complete set of call graphs computed for each test case by the
Call Graph Tool module. Then, the T-doc Regression module scans all the
call graphs to detect the subset of graphs that are affected by the change point
(i.e., the change point is present into the graph). The subset of relevant call
graphs indicates the meaningful test cases that should be re-executed with re-
spect to the change that has been performed. Here, we show the algorithm
that the T-doc Regression module uses to detect the subset of meaningful test
cases:

Input: test cases, CP

Output: documentation of the subset of meaningful regression tests

1. derive the call graph for each test case ending at the 3rd level

of dependencies;

2. select a graph as starting entry;

3. scan the graph to detect whether the change point is present;

4 if the change point is present:

select the test case for regression;

else: jump to step 2.

5. when all the graphs have been evaluated, generate the regression

documentation as the list of test cases wrt the CP

For the RealEstate application the T-doc Regression module takes as input,
from the Call Graph Tool, 30 graphs and generated the following documenta-
tion (Doc2Reg). For space reason, we do not show the complete set of graphs
computed by the T-doc engine.

T-DOC: A Tool for the Automatic Generation of Testing Documentation 211

Doc2Reg:

This is the set of regression test cases

for the applyAction() change point:

01) testGainMoneyCardAction()

02) testMovePlayerCardAction()

03) testLoseMoneyCardAction()

04) testJailCardAction()

05) testJailCardUI()

06) testLoseMoneyCardUI()

07) testMovePlayerCardUI()

All the data provided by this second layer (Doc2Int, Doc2Reg and the regres-
sion test suite) are published into the central Test Tracker system.

4.3 Test Case Execution Report

This third layer of support aims at homogenizing and collecting all the outputs
coming from the T-doc tool and the results obtained by the execution of the
test cases. In this section, we only introduce the design of this layer since its
implementation is not yet available. This layer is composed of two main entities:
the Test Tracker system and the part of the T-doc engine that is responsible
for collecting and manipulating the test case results.

The Test Tracker system is responsible for managing: (1) the class contain-
ing all the built-in test cases that are incrementally added (or modified) to the
test suite (Class TestSuite); (2) the class of integration test cases (if avail-
able); (3) the class containing the regression test cases derived by the T-doc
Regression module. The Test Tracker system stores the documentation of
each test case (Doc1 A.T1, Doc1 A.T2, Doc1 A.Tn) and aggregates this docu-
mentation in a single document that describes the complete behavior of the test
suite. Moreover, the Test Tracker system stores the documentation related to
integration and regression test cases (Doc2Int and Doc2Reg), and it aggregates
this documentation in a single file. Finally, the Test Tracker system provides
search abilities among all the T-doc documents that are published by the T-
doc engine. As in Bug tracker systems (such as Bugzilla [www.bugzilla.org]),
T-doc documents can be searched and filtered by means of ad-hoc keywords.
These keywords are identical to the tags we defined in Section 4.1. For example,
you can filter your search by @author (T-doc documents are grouped regarding
to the owner of the test cases) or by @scope (T-doc documents are grouped
according to the purpose of test cases).

As mentioned in Section 3, built-in test cases favor the execution of run-time
testing [7]. The T-doc engine exploits this feature and it is able to collect the
results of the run-time execution of the test suite. Figure 7 shows the modules
involved in this task. The two T-Report modules collect the results of the test
cases execution. Hence, the two modules correlate these results with the run-time
HW/SW configuration of the execution environment in which test cases have
been executed. The output of these correlations are two reports (Report a and
Report b) that document the results of the run-time testing activity. Currently,

212 S. Morasca, D. Taibi, and D. Tosi

Report
a

T REPORT
Builtin TCs

Class TestSuite

testMethod T1
testMethod T2
… …

Builtin TC
Results

in out

publis

T REPORT
Regression

Class TestSuiteRegr

testMethod T3
testMethod T7
… …

Regression
TC Results

Profile
MANAGER

HW/SW
Configuration

Report
b

EXECUTION
ENVIRONMENT

interact

in
out

Builtin TS
TEST

TRACKER

h
publish

Fig. 7. Architecture of the third T-doc layer

we are working on the identification of the profile information that should be
collected by the Profile Manager module (such as log files, active processes,
hw/sw capabilities, etc.), and we are implementing this third T-doc layer to
support the testing documentation of Java OSS projects.

4.4 Validation Remarks

Though the RealEstate demo application has shown the feasibility and the ben-
efits of the T-doc tool, we are extending the validation of the tool with addi-
tional case studies. For example, in our labs, we are implementing a complex
OSS project to validate the approach and to understand its potentialities. The
project (we called MacXim) is a static-analysis tool (15000 LOC in 118 classes)
that exploits the solution presented in this paper [1]. The MacXim test suite
(composed of acceptance, unit, integration and regression tests) has been de-
signed with in mind the guidelines proposed in this paper, and each test case
has been documented with a T-doc comment that describes the purpose of
the test.

This controlled project will provide important feedbacks about the potential-
ities and the weaknesses of the T-doc tool, and will be the basis for developing
a stable tool that will be fully exploited in real-life OSS projects and in uncon-
trolled development environments.

5 Conclusions and Future Work

In this paper, we proposed T-doc, a tool that simplifies the generation of testing
documentation in the context of OSS projects. We showed how T-doc supports

T-DOC: A Tool for the Automatic Generation of Testing Documentation 213

the automatic generation of test cases documentation, the generation of reports
about test case results, and the archiving of testing documents in central reposi-
tories. The automatic generation of documentation is facilitated by the adoption
of built-in testing methodologies that simplify the aggregation of testing data.
To understand the T-doc working in practice, we applied the tool to the OSS
RealEstate Java application.

Currently, we are integrating all the modules of the T-doc tool and we are
validating T-doc with the real-life Java application MacXim.

Acknowledgments

The research presented in this paper has been partially funded by the IST project
QualiPSo (http://www.qualipso.eu/), sponsored by the EU in the 6th FP (IST-
034763); the FIRB project ARTDECO, sponsored by the Italian Ministry of
Education and University; and the projects “Elementi metodologici per la de-
scrizione e lo sviluppo di sistemi software basati su modelli” and “La qualità
nello sviluppo software,” funded by the Università degli Studi dellInsubria.

References

1. MacXim: a static code analysis tool. Web published:
http://qualipso.dscpi.uninsubria.it/macxim/ (Accessed: December 2009)

2. The RealEstate demo application. Web published,
http://agile.csc.ncsu.edu/SEMaterials/realestate/ (Accessed: December
2009)

3. Beydeda, S.: Research in testing COTS components - built-in testing approaches.
In: Proceedings of the ACM/IEEE International Conference on Computer Systems
and Applications (AICCSA), pp. 101–104 (2005)

4. Mao, C., Lu, Y., Zhang, J.: Regression testing for component-based software via
built-in test design. In: Proceedings of the ACM Symposium on Applied Computing
(SAC), pp. 1416–1421 (2007)

5. Orso, A., Harrold, M.J., Rosenblum, D.S., Rothermel, G., Soffa, M.L., Do., H.: Us-
ing component metacontent to support the regression testing of component-based
software. In: Proceedings of the IEEE International Conference on Software Man-
intenance (ICSM), pp. 716–725 (2001)

6. Pezzè, M., Young, M.: Software Testing And Analysis. Process, Principles, and Tech-
niques. Wiley, Chichester (2007)

7. Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner, D., Merdes, M., Malaka,
R.: The MORABIT approach to runtime component testing. In: Proceedings of the
International Computer Software and Applications Conference (COMPSAC), pp.
171–176 (2006)

8. Vincent, J., King, G., Lay, P., Kinghorn, J.: Principles of built-in-test for run-time-
testability in component-based software systems. Software Quality Control 10(2),
115–133 (2002)

9. Wang, Y., King, G., Wickburg, H.: A method for built-in tests in component-based
software maintenance. In: Proceedings of the IEEE European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pp. 186–192 (1999)

http://qualipso.dscpi.uninsubria.it/macxim/
http://agile.csc.ncsu.edu/SEMaterials/realestate/

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 214–223, 2010.
© IFIP International Federation for Information Processing 2010

Open Source Introducing Policy and Promotion of
Regional Industries in Japan

Tetsuo Noda and Terutaka Tansho

Shimane University
1060 Nishikawatsu-cho, Matsue-City, Shimane Pref. 690-8504, Japan

nodat@soc.shimane-u.ac.jp, tansho@riko.shimane-u.ac.jp

Abstract. The development style of open source has a possibility to create new
business markets for Regional IT industries. Some local governments are trying
to promote their regional IT industries by adopting an open source in their elec-
tronic government systems. In this paper, we analyze the data of open source
application policy of the Japanese government and case studies of promotion
policy of local industries by local governments; for example, Nagasaki Prefec-
ture and Matsue City. And it aims to extract the issues in the open sources
application policy of local governments and the promotion policy of regional
industries in Japan.

1 Introduction

In Japan, it is public organizations, especially central government offices that have
guided adoption of open source. The Ministry of Internal Affairs and Communica-
tions (MIAC) that aims at the spread of the e-municipality system, started to put
Linux in the list as one of the choices of OS when the electronic government system
was introduced in 2004. Before this, the Ministry of Economy Trade and Industry
(METI) also reported "Survey on Usage of Open Software; A Guideline for its Intro-
duction" in 2003. In this report, such matters were examined as using OSS including
Linux positively as a choice, a guideline for examining the arrangement of its intro-
duction, and a legal problem, etc. Thus, open source software promotion organization
"OSS Center", as an affiliated association of METI, was established in 2006. The OSS
center has been collecting and offering technological information in cooperation with
domestic major IT vender enterprises.

As a result of the open source promotion plan that centers on these central government
offices, in the IT-Solution market in Japan, the market of public organizations occupies
an especially large percentage. The IT solution market using open source was 917 billion
yen in fiscal year 2006 (8.8% of the entire IT solution market). It expanded to 1.05 tril-
lion yen in 2007; an increase of 10.5 points compared to the previous year (10.8% of the
entire IT solution market), and is expected to expand to 1.16 trillion yen, an increase of
14.5 points compared to the previous year in 2008. And, the ratio of the usage by public
organizations to the entire open source market was 254 billion yen (24.2% in composi-
tion ratio) in fiscal year 2006, and 227 billion yen (24.8%) in fiscal year 2007. In Japan
the public organizations occupy a big specific gravity in open source market, and they
have still been guiding the growth of the entire open source market.

 Open Source Introducing Policy and Promotion of Regional Industries in Japan 215

In addition, after 2006, the open source introduction policy in Japanese local gov-
ernments has been advanced by "Open source software use infrastructure agenda" of
the OSS Center. Though this is a policy of doing financial support by the OSS Center
when regional municipalities introduce open source in their local electronic govern-
ment systems, the support load and other expenses are not considered for later years.
Therefore, some local governments have difficulties in continuing the maintenance of
their systems when the financial supports break off. Moreover, the number of enter-
prises with technologies that can continuously support open source in provinces is
small, and this is also a factor that the introduction policy doesn't continue in local
governments. Consequentially, the market is only created for the major IT vender
enterprises that were involved in the initial introductions to the local governments.

Thus the introduction and the spread of open source policy have been advanced
around the central government offices and the major IT vender enterprises, as the policy
has been concentrated on the adoption and introduction of open source. As the result, it
led to the expansion of the IT-Solution market among the major IT vender enterprises. It
somehow succeeded in protecting the IT-Solution market of domestic IT vender enter-
prises from the foreign IT enterprises (Table 1 and Table 2)1. But development method
= Cathedral type of the top down has not been able to be changed.

Table 1. Major IT enterprises’ share in IT solution market using open source (*domestic IT
vender enterprises)

 2006 2007 2008
Fujitsu* 7.3% 8.6% 9.3%
IBM 7.2% 7.1% 6.9%
NEC* 6.2% 6.7% 6.9%
HITACHI* 5.0% 5.3% 5.9%
HP 1.4% 1.4% 1.5%
Sun 0.6% 0.6% 0.6%

Table 2. Major IT enterprises’ share in IT solution market in the public organizations using
open sources (*domestic IT vender enterprises)

 2006 2007 2008
Fujitsu* 10.1% 10.3% 10.7%
NTT-Data* 9.3% 9.4% 9.5%
NEC* 8.3% 9.3% 9.8%
HITACHI* 7.9% 8.5% 9.1%
IBM 4.4% 4.3% 4.2%

On the other hand, the development style of open source is extending beyond the

boundary of organizations, so it has the possibility to create new business markets for
regional IT industries. So some local governments are trying to promote their regional IT
industries by adopting open source in their electronic government systems. In the later
sections, we analyze the data of open source application policy of Japanese government

1 MIC Economic Research Institute (2008).

216 T. Noda and T. Tansho

and case studies of promotion policies of local industries by local governments, for ex-
ample, Nagasaki Prefecture and Matsue City of Shimane Prefecture, located in a typical
local country area in Japan.

2 Introduction of OSS and Promotion of Regional Industries

2.1 The Method of Divided Orders by Using OSS in Nagasaki Prefecture

Actually, in introducing OSS at the local government level, in addition to Introduc-
tion/Management-cost reduction of the IT system of the municipality, local industry
promotion has been advanced in Japan. A typical case is the construction of "Elec-
tronic Prefectural Government System" in Nagasaki Prefecture.

Nagasaki Prefecture invited CIO from a private organization in 2001, and adopted
open source system for the basic technology of the electronic Prefectural government
systems which consist of three functions (document management, application and
tenders). Then, the orders, that used to be placed as a whole with major IT vender
enterprises in Tokyo, are now divided to small systems before ordering.

Why did it become possible? Because, (1) The staff in the prefecture made speci-
fications of the systems, (2) When the external program development was consigned,
the divided orders decreased the budget for a matter, (3) The technology was decided
before system was constructed. These processes enabled local small and medium-
sized IT enterprises in Nagasaki to participate in the development of these systems.
By this method, expenditure related to the computer system of the prefecture was
greatly reduced with 694 million yen in fiscal year 2003 from 991 million yen in
fiscal year 2002. This cost continues for five years for the leasing contract of the
server system. But, when the server systems consisting of a mainframe, are com-
pletely replaced by the Linux server in five years, Nagasaki Prefecture estimates that
the entire cost will be compressed into 30% of that of 2002 (Figure 1)2.

4.48

2.59 2.10 2.10 2.10 2.10

0.5

2.03

2.00
2.00 2.00 2.00 2.00

0.1

3.04

2.35
2.35 2.35 2.35 2.35

2.21

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

2002 2003 2004 2005 2006 2007 2013

(expectation)

100 million yen

Server systems expenditure Cliant systems expenditure Operating cost

Fig. 1. Introduction/Management cost reduction of the IT system by using OSS in Nagasaki
Prefecture

2 Nagasaki Prefecture (2008).

 Open Source Introducing Policy and Promotion of Regional Industries in Japan 217

Moreover, it becomes possible also for the local IT enterprises to participate in the
system development by the divided order method. As a result, they received 48/100
orders directly in 2002- 2003 fiscal year (15.1% in terms of monetary amounts), and
73/96 orders in 2004 fiscal year (32.7% in terms of monetary amounts) (Table 3).

Table 3. Ratio of order receipt for local IT enterprises in the Nagasaki e-municipality system

 Number of Cases Amount of Money
Before 2001 No Result No Result

2002 47.9% 15.2%
2003 48.1% 15.1%
2004 76.0% 32.7%
2005 75.4% 46.3%
2006 82.1% 69.3%
2007 88.1% 62.8%

Adopting the open source policy and divided orders made it possible for them to

expand the market for the local IT enterprises. But, this would not last longer than
several years because the entire cost of the electronic government systems in Na-
gasaki was compressed in 2003. However they have expanded the ratio of the market,
although it is obvious that the total pie has been cut back. They have to develop new
market of open source. Nagasaki Prefecture’s regional-industry promotion plan needs
to move on to the next stage.

2.2 Opening of Source Codes and Regional-Industry Promotion

In Nagasaki, by this method of divided orders, local IT enterprises were encouraged to
participate in the processes of making specifications and entry into the processes of the
project and decision making for specifications that had been major IT vender enter-
prises' "Role", so that they could not only increase their orders of "Electronic Prefectural
Government System" but also improve their abilities in project management.

In 2004, Nagasaki Prefecture announced the plan to shift legacy system from main-
frame to Linux within eight years. Moreover, the source codes of their three systems,
"Vacation system", "System of WEB list of government officials" and "Document
keeping system" were opened to the public in 2005. These systems had already been
decided to be introduced also to other prefectures such as Tokushima Prefecture and
Wakayama Prefecture. This shows the possibility of expanding the market for the IT
enterprises in Nagasaki Prefecture (The orders from outside of Nagasaki Prefecture
have also increased).

Thus, there has already been a success case of promotion of the local IT enterprises,
by introducing OSS, and to expand Market in Japan. In the system construction of a
local government, it not only adopts OSS which local IT industries have developed, as a
user = a purchaser, but also, if products are open to the public on Internet as OSS, it can
promote many chances that the local IT industries can expand their own market on a
nationwide scale. "Cathedral type development method" or "Vender lock-in" by major

218 T. Noda and T. Tansho

IT vender enterprises can be released, so the local IT industries can participate in the
process of software development and receive orders of the systems that have been di-
vided in small sizes.

However, to make this process possible, as was shown in the case in Nagasaki Pre-
fecture, the staff of the administration sector must participate in the upper processes
of the software development, such as processes of "Requirement definition" or "De-
sign". The reason why major IT vender enterprises secured orders of their own was
that they had participated in these processes. Nagasaki Prefecture’s case was, so to
speak, an indirect development aid by the administration whose staff in the prefecture
were related to these processes of "Requirement definition" and "Design", so it en-
abled them to achieve regional-industrial promotion plan.

Moreover, if they only aim to lock up the market of any local electronic govern-
ment systems, they will come up against the cutting back of these total markets, and
the scramble for the market would result. As is shown in Table 3, the local IT enter-
prises’ order ratio in amount of money had increased till 2006. But it decreased by 6.5
points from 2006 to 2007. This is because that the other local IT enterprises out of
Nagasaki invaded the market of the electronic Prefectural government systems in
Nagasaki. The scramble for the open source market had already started. This may be
the fact, but there will be another method for the regional-industry promotion plan.

3 OSS Development Style and Regional-Industry Promotion

3.1 Situation of Regional IT Industries in Shimane Prefecture

As we have mentioned above, in introducing OSS to local governments, their staff
need to participate in the upper processes of the software development. And, the staff
in Nagasaki Prefecture exactly did it. The reason why Nagasaki Prefecture decided to
start this regional-industry promotion project is that most of the regional IT industries
in Japan depend on their regional public organizations’ orders for their market. And it
is obvious that the market will reduce in later years because of the critical financial
situation in Japan.

The situation is also the same for Shimane Prefecture. As is shown in Figure 2,
their main market for IT enterprises is "Information Service Industries" themselves,
amounting to 37%3. It is so high a ratio compared to that of the whole of the country
(28.3%)4. It shows the multiple chains of commission and entrust among the same
trade relations in Japanese IT industry, which is a typical water fall model of devel-
opment. The local IT enterprises depend on the major IT vender enterprises in Tokyo
for their receiving of orders.

And "Administration Sector" (22%) and "Construction Industry" (9%) follow in
the commercial report of Shimane. In the national report those ratios are 8.6% and
1%, respectively. On the other hand, "Service Industry" (16%) and "Finance and In-
surance" (1%) are extremely low compared to the whole in the country. It is shown
that the orders are given by major enterprises outside Prefecture.

3 Shimane Prefecture (2005).
4 The Ministry of Economy Trade and Industry of Japan (2005-2008).

 Open Source Introducing Policy and Promotion of Regional Industries in Japan 219

Shiame Prefecture　（34 enterprises)

37%

6%
22%

10%

6%

10%

1%

8%
Information Service
Industry
Manufacturing Industry

Administration Sector

Construction Industry

Semijobber Industry

Service Industry

Finance and Insurance

Other Industries

Whole of Country (12,300)

28%

23%

9%

1%

7%

8%

19%

5%

Information Service Industry

Manufacturing Industry

Administration Sector

Construction Industry

Semijobber Industry

Service Industry

Finance and Insurance

Other Industries

Fig. 2. The receipt of orders for IT industries from different industry categories in Shimane and
Japan (Whole of country)

The orders from "Administration Sector" and "Construction Industry" had already
been decreasing in nationwide scale. If they had depended mainly on the orders in
these fields indefinitely, the sales would have clearly declined fast. Shimane Prefec-
ture faced the need to make a choice whether waiting for the reduction of the market
or starting regional industry promotion policy.

Additionally, when we asked what skills were mostly insufficient in these enter-
prises, the first listed answer was not the ability of “System Development”(26%) but
the ability of “Project Management”(65%) which is dominated by major IT vender
enterprises in Tokyo, and the local IT enterprises in Nagasaki acquired it by partici-
pating in the electronic Prefectural government systems (Figure 3).

Insufficient Skills (34 enterprises, multiple answer allowed)

2

0

5

7

16

5

22

9

9

17

0 5 10 15 20 25

No Insufficient

Others

Linguistic Attainments

Knowledge of Law

Business Transaction

Customer Service

Project Management

Package Development

System Development

Consulting

Fig. 3. Insufficient Skills of the IT enterprises in Shimane Prefecture

220 T. Noda and T. Tansho

3.2 OSS Ruby and Ruby City Matsue Project in Shimane Prefecture

Matsue City is the capital city of Shimane Prefecture. In the city, 70% of IT enter-
prises and workers of the Prefecture are concentrated. And it was necessary to change
this trend, because of the reduction of the market for the local IT enterprises. So,
Matsue City and Shimane Prefecture began to learn from the case of Nagasaki Prefec-
ture, but they thought it was difficult to instruct city’s administration staff to acquire
the skill to participate in the upper processes of the software development in a short
term. They calculated the cost for the labor improvement and the specification-
decision ability of administration staff, including invitation of CIO. Consequently
they came to the conclusion that adopting open source for the electronic municipality
systems could not necessarily cut the budget of the administration totally.

At the same time, Matsue City, having their own regional open source resource
“Ruby”, intended to make open source development style in the industrial promotion
plan. The City adopted another method, a little different one from Nagasaki Prefec-
ture’s. It is not the style that the administration adopt open source for its electronic
municipality systems but the style of promoting open source innovation.

Ruby is the Object-oriented Script Language invented by Mr. Yukihiro Matsumoto
called "Matz" in the community, and opened to the public in 1993. Matz lives in Mat-
sue City and has been developing Ruby with many developers all over the world
through the Internet. At first, Ruby did not spread in business uses except among
some fanatic engineers. But in 2004, David Heinemeier Hansson, a programmer in
Denmark, released “Ruby on Rails” which is a web application framework. Hence,
Ruby came to attract attention and to be used also in enterprise areas. Then Matsue
City started the project, which attempts to create a new regional city based brand
around the Ruby programming language, as part of its efforts to regenerate the City
and its environs.

There has never been a regional-industrial promotion policy of using programming
language that can be said "Statelessness". And, Ruby is the open source software
developed and supported by the communities which consist not of a specific enter-
prise but of worldwide developers. Matsue City regarded this "Open" and "Stateless-
ness" as a regional resource of the City, and tried to promote regional IT industry. To
put it the other way around, Matsue City tried to start industrial promotion, which
would be impossible by the City itself alone, by the support of worldwide community,
like the development style of open source.

This project was named “Ruby City Matsue Project” and started in 2006. The pro-
ject aims, through the "Matsue Open source Lab" facility, at creating a hub for all
activities relating to open source software and making Matsue a centre for OSS re-
search, development and exchanges. But, only by this project alone, it was impossible
to improve the abilities of the project management which is the most insufficient skill
in the local IT enterprises. The development power of Ruby would have been used
only for major IT vender enterprises in Tokyo.

3.3 OSS Development Style and Promotion of Regional Industries

To support and advance this project, the organization of open source, "Open source
Society Shimane" was also established in 2006, by enterprises, technicians, researchers,

 Open Source Introducing Policy and Promotion of Regional Industries in Japan 221

students, and users who specialize in open source software for them to be able to ex-
change knowledge and information, and to improve their technological development
and project management abilities through utilizing "Matsue Open source Lab". Through
such activities Matsue City will be able to become a national centre for open source
software development, duly leading to new technological innovation, increased com-
petitiveness in the field of OSS, and above all else the development of a modern work-
force well versed in the intricacies of the IT world. Ultimately, it is expected to make
Matsue City a world-renowned Mecca for Ruby and OSS.

In order to materialize its mission of promoting the local IT enterprises through
open source initiatives, Open source Society Shimane conducts many varieties of
activities in both fields of policy and technology. One of the Society’s main activities
is to hold “Open source Salon” in Matsue Open source Lab. This “Salon” is a series
of study meeting or seminar in highly casual forms. The theme of the salon also var-
ies; with government officials explaining their policy initiatives, university professors
presenting the recent OSS or IT-related research results, and the Ruby or OSS engi-
neers illustrating the cutting-edge OSS technologies, know-how and applications.

The salon has been held almost once a month for four years. With the number of
audiences amounting to approximately 30 to 40, this salon becomes the “hub” for
connecting people and information. With regard to the business area, the Society
conducts “Business Exchange Meeting” when receiving the visitors from ICT-related
enterprises outside of Shimane. This business meeting is exclusively for the members.
Hence, the Society plays the hub role connecting people, information, technology, and
businesses.

These are, so to speak, the Superficial Result, but most important purpose is indus-
trial promotion by creating abilities in project management in the local IT enterprises.
In Nagasaki Prefecture, the administration sector of the prefecture did it. On the other
hand, in Matsue City "Open source Society Shimane", the organization of industry-
government-academia complex in the region has been doing this role. By improving
the abilities in project management, the local IT enterprises have been increasing the
chances to participate in the upper processes of the software development. For exam-
ple, “Medical and Nursery Care System of Matsue City” was constructed by “Techno
Project” using Ruby in 2007, “Matsue SNS -Collaboration Effect of Regional SNS
Connection” was opened by “Wacom IT” using Ruby on Rails in 2008, and “Knowl-
edge Management System of Matsue City” by “NaCl” was constructed also using
RoR in 2008. These are all local IT enterprises in Matsue City. Moreover, Shimane
Prefecture developed “Shimane Prefecture CMS” using RoR to construct its own Web
Site, and opened the source of “Shimane Prefecture CMS” to the public in 2008.
Then, many other local governments come to get interested in this CMS and prepare
to adopt it for their Web site. “Shimane Prefecture CMS” is, of course, open source,
but to construct and maintain Web sites, the roles of private businesses are needed,
and the orders mostly come to the local IT enterprises in Matsue City. As a result,
according to the investigation report book by Shimane Prefecture Information Indus-
try Association5, sales and the number of starting works of the IT enterprises in Shi-
mane Prefecture show the expansion more than the whole country in fiscal year 2008
since fiscal year 2006.

5 Shimane Prefecture Information Industry Association (2009).

222 T. Noda and T. Tansho

Table 4. Transition of Amount of Sales in IT industries（million yen)

 Whole of Country rate of increase Shimane Prefecture rate of increase

2006 13,751,730 10,452

2007 13,409,700 -2.5% 12,060 15.4%

2008 14,817,900 10.5% 13,241 9.8%

Table 5. Transition of Number of Persons Engaged in IT industries (man)

 Whole of Country rate of increase Shimane Prefecture rate of increase

2006 567,498 1,022

2007 501,807 -11.6% 1,389 35.9%

2008 557,263 11.1% 1,537 10.7%

One of the key success factors of the project of Matsue City and Shimane Prefec-

ture is the development power jointly collaborated with the nationwide open source
community. By touching upon the nation wide expertise of the open source, Matsue
City and the project-related people have recognized the crucial importance to cooper-
ate with the open source of the whole country which connects further to the
worldwide open source community. In addition, a personnel training and industrial
promotion are advanced by the cooperation of the industry-government-academia
complex in the region. In Nagasaki Prefecture, the prefecture itself participated in the
upper processes of the software development and divided their own orders to local IT
enterprises. On the other hand, in Matsue City, local IT enterprises in the city gather
and collaborate through "Open source Society Shimane", the industry-government-
academia complex as a catalyst, and improve their abilities of project management to
acquire the orders and expand Markets. In both cases, adoption of the development
style of open source can make the possibilities to expand more Markets outside of the
regions 3 OSS Development style and Regional-Industry Promotion.

4 Conclusions

In the development style of open source, so to speak “Bazaar Style Development”, a
lot of researchers, developers, and also enterprises voluntarily participate in the or-
ganization, extending the boundary of the organizations. So it has the possibility to
create new business markets to regional IT industries. But, the open source applica-
tion policy or the adoption assistance to local governments requires the capabilities in
technique, development, and project management, both for adoption sides and pro-
vider sides. As the result, it tends to lead to the expansion of the IT-Solution market
among the major IT vendor enterprises.

However, as was shown in the case in Nagasaki Prefecture, once the staff of
the administration sector (the adoption side) participates in the upper processes of the
software development, they can get the ability in project management and divide the
orders of their own to be placed. This process enables them to expand the market for
the local IT enterprises. And, acquiring the orders by participating in developing

 Open Source Introducing Policy and Promotion of Regional Industries in Japan 223

processes, they can improve the abilities in technologies corresponding to the devel-
opment of open source including the project management and decision making for
specifications. Moreover, if the deliverables are opened, the market will expand much
further for the IT enterprises in Nagasaki Prefecture. This is the indirect development
aid by the administration to promote the regional IT industry.

On the other hand, as typically shown in the “Ruby City Matsue Project”, there is
another method to develop the ability of the provider side. In local cities in Japan,
enterprises tend to depend on the orders from "Administration Sector" of their areas.
It is obvious that these orders would not last for a long time in the future. Matsue City
and Shimane Prefecture took the choice of this method, which not only uses open
source technology but also adopts open source development style.

Thus, local governments in Japan can somehow lead regional-IT industry promo-
tion policies, but the main constituents are local government administrations. Because
that the local IT enterprises themselves have little motivation for improving their
technological abilities which can expand their market. This is the one problematic
point. And, the more acute point is that if they come up against the scramble for the
market they wouldn’t have the ability to overcome by themselves.

I think, while the competition between regions may accompany it, cooperation and
collaboration of regions are also needed to expand their market, and to compete
against the major IT vender enterprises. Though this may be a matter of the policy
and the business, it is necessary to gaze at it as a research object.

References

1. MIC Economic Research Institute: Current State and View of OSS Using IT Solution Mar-
ket in Japan (2008)

2. The Ministry of Economy Trade and Industry of Japan: Specific Service Industry Investiga-
tion of Actual Conditions (2005-2008)

3. Nagasaki Prefecture: Promotion of Computerization from Purchaser Subject (2008)
4. Shimane Prefecture: Shimane Prefecture Commerce and Industry Labor Division (2005)
5. Shimane Prefecture Information Industry Association: Investigation Report Book of Soft-

ware Industry in Shimane (2009)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 224–238, 2010.
© IFIP International Federation for Information Processing 2010

Comparing OpenBRR, QSOS, and OMM
Assessment Models

Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

Free University of Bolzano, Italy

Abstract. The objective of this study was to investigate the quality and usabil-
ity of three Free/Libre Open Source Software assessment models: the Open
Business Readiness Rating (OpenBRR), the Qualification and Selection of
Open Source software (QSOS), and the QualiPSo OpenSource Maturity Model
(OMM). The study identified the positive and negative aspects of each of them.
The models were used to assess two Free/Libre Open Source Software projects:
Firefox and Chrome (Chromium). The study is based on a set of controlled ex-
periments in which the participants performed the assessment using only one
model each. The model used and the Free/Libre Open Source Software project
assessed were randomly assigned to the participants. The experiment was con-
ducted in a controlled environment with defined tasks to be performed in a
given time interval. The results revealed that the three models provided compa-
rable assessments for the two assessed projects. The main conclusion was that
all the three models contain some questions and proposed answers that are not
clear to the assessors, therefore should be rewritten or explained better. The
critical aspects of each model were: Functionality and Quality for OpenBRR;
Adoption, Administration/Monitoring, Copyright owners, and Browser for
QSOS ; and Quality of the Test Plan, and the Technical Environment for OMM.
Participants perceived the quality and usability of the three models of compara-
ble level.

Keywords: FLOSS Assessment Model, Quality Criteria, Software Quality,
FLOSS Development Process.

1 Introduction

The quality of Free/Libre Open Source Software (FLOSS) products is affected by many
variables and it varies strongly in different products. Often, the adoption of a product is
affected by the reputation of the producer rather than the real quality of the product it-
self. However, different indicators can provide hints on the quality of a FLOSS project,
for example: the number of users, the longevity of the project, the documentation avail-
able on-line, etc. The list of possible indicators is limitless and besides the most well-
known (number of product downloads, number of bugs reported, etc.) there are many
others that can have different interpretations. Therefore, it is important to have a struc-
tured set of criteria to use to assess the quality of a FLOSS project. The most well-
known set of criteria used to assess the quality of software development (usually Closed
Source) is part of the CMMI model [1]. However, additional sets have been proposed in
the last few years targeting FLOSS. Such models include:

 Comparing OpenBRR, QSOS, and OMM Assessment Models 225

• Open Source Maturity Model (OSMM) from Cap Gemini (2003) [3]
• Open Source Maturity Model (OSMM) from Navica (2004) [6]
• Methodology of Qualification and Selection of Open Source software (QSOS)

(2004) [2]
• Open Business Readiness Rating (OpenBRR) (2005) [10]
• Open Business Quality Rating (Open BQR) (2007) [9]
• QualiPSo OpenSource Maturity Model (OMM) (2008) [7, 11]

The large plethora of available models witness the interest and the need of systematic
approaches for the assessment of the quality of FLOSS projects.

The proposed assessment models provide a selected set of criteria with their inter-
pretation and the description of how to use them. Besides the few mentioned criteria,
there are several more indicators for the quality of the code, for the functionality, the
usability, the testability, the documentation, the development process followed.
Moreover, there are several ways to measure such characteristics. Therefore, it is
essential to include in the assessment model a consistent subset of metrics that can be
used for the assessment since not all of them can be used in all the cases. The propos-
ers of a model have to take in consideration also different use cases for their model: a
FLOSS developer, a FLOSS user, and/or a FLOSS integrator. All of them will proba-
bly have different expectations about the product and the development process. For
these reasons, an assessment model must be flexible and be able to adapt to different
use cases. An important aspect of the criteria included in the assessment model is the
names of the criteria themselves and the wording of the related questions that are used
to detail them.

Another important aspect in the evaluation of the quality of FLOSS is the devel-
opment processes followed. Our opinion is that it is necessary to take in consideration
both aspects of FLOSS: product and process. For example, the maintainability of the
product is affected by both. FLOSS integrators may be interested in the documenta-
tion produced and if it is easy to use parts of it inside their other products. For such
reasons, they will be interested in the process followed to develop the FLOSS prod-
uct. In this case, the measurement of the FLOSS development process of the FLOSS
project is important. Available FLOSS assessment models contain some aspects of the
final product and some aspects of the development process. However, most of the
models are focused on the assessment of the final product. Only the OMM model
covers more in details the FLOSS development process, resembling to some extent
the approach adopted in the CMMI. Nevertheless this difference of focus, we identi-
fied many commonalities between the analysed models, and we think that a compari-
son of three of them is reasonable.

We conducted this research comparing three similar models, partially to evaluate
the OMM model that we developed but mainly to see how it is perceived by users
in comparison with the other two models. Moreover, some of the results of this re-
search related to OMM were useful for validation purposes of the model and its future
improvement.

The research offers also a use case demonstration of the other FLOSS assessment
models. We think that it is essential to verify how the proposed models can be used
concretely and what are the perceptions of people and their confidence in the results
obtained by using different models.

226 E. Petrinja, A. Sillitti, and G. Succi

In the available literature, there are no comparisons of different use cases of avail-
able FLOSS assessment models. This research aims at (partially) filling this gap pre-
senting some empirical data about the comparison of different models. We expect
significant differences in the quality perception of models by users, however we must
be aware that this difference depend also on the use cases adopted inside the experi-
mentation. Some models are perceived better in the area of FLOSS communities, oth-
ers are preferred by developers, and others by users.

This paper is structured as follows. After this first introductory section, we briefly
present some related work. In the third section we describe our research design pre-
senting in details the experimentation performed. The fourth section is the main part
of the paper and presents research results. Afterwards, we present some threats to va-
lidity of the research conducted, and, finally, we present our conclusions.

2 Related Work

The OpenBRR and the QSOS models were partially validated by their developers and
used in a small number of use cases with results available on their web portals [2, 10].
However, there are no empirical evaluations of the validity of the two models. More-
over, the number of use cases is limited and we noticed a quite steady number of re-
ported FLOSS projects assessments on the web portals of the two models.

We conducted an initial validation of the OMM model as part of the QualiPSo
project [8]. We involved all the partners of the project that are interested in the future
use of OMM. The description of the initial validation process is available in reports of
the project [8]. Inside those documents are available also results of the research pre-
sented in this paper with additional content that we were not able to present here due
to space limitations. A key outcome of the research presented by authors lists the ac-
tions necessary to improve the OMM model. Such reports contains also an evaluation
of critical elements identified mainly inside the OMM model but also inside the
OpenBRR and the QSOS models.

In our knowledge, only a few researches have been published analysing and com-
paring available FLOSS assessment models. One of them was conducted by Deprez
and Simons that compared the OpenBRR and the QSOS models [12]. They have done
a rigorous comparison of both models and they identified advantages and disadvan-
tages of both. The main difference between their approach and the one proposed in
this paper is that we wanted to use the models with real FLOSS projects and try to
find out what are the problems encountered by participants during the assessment
process and collect their subjective perceptions related to the quality and usability of
the models. Deprez and Simons proposed a detailed conceptual comparison of ele-
ments of the two models without conducting a real use case.

3 Research Design

Our plan was to conduct a controlled experiment [5, 4]. We managed to satisfy many
requirements for a controlled experiment as: randomization of participants, and test-
ing specimens, and the set up of a controlled environment, the detailed planning of the

 Comparing OpenBRR, QSOS, and OMM Assessment Models 227

experimentation process, and others. However, we were not able to involve different
types of participants, for example professional programmers. This can be a problem
for the generalization of results. Anyway, we took different actions to mitigate these
and few other threats to validity of our research and we present key one in section 5.
A detailed description of the scope of the research and the methodology used are pre-
sented in the following subsections.

3.1 Scope

The research included three FLOSS assessment models: OpenBRR, QSOS, and
OMM. For the research we used all questions of the three models unifying their pres-
entation and structure. We did not use the on-line questionnaires provided by the two
methodologies. We carefully, taking care not to loose any details of the two models,
copied all questions in a uniform structure, with a comparable level of details. For the
experimentation we choose two well known FLOSS projects: Firefox, and Chrome
(Chromium). Google Chrome is not a FLOSS project but its development is tightly
related to the Google Chromium FLOSS project. In this paper we will use generically
the name Chrome. We assessed two FLOSS projects that are providing similar func-
tionality, namely a web browser. Therefore, we were able to compare specific final
FLOSS products and FLOSS development process characteristics.

3.2 Methodology

We planned to conduct a well structured and executed experimentation process ac-
cording to the operational definition of the experimentation process stated in one of
the most frequently cited papers about this subject [5]:

Controlled experiment in software engineering is: “A randomized experiment or a
quasi-experiment in which individuals or teams (the experimental units) conduct one
or more software engineering tasks for the sake of comparing different populations,
processes, methods, techniques, languages, or tools (the treatments)”.

From the definition we see that an important aspect of a controlled experiment is
randomization of:

• individuals participating to the experiment,
• the tasks that they will have to perform, and
• all the treatments that are included in the experiment.

We randomized most of the experimentation components. After we decided to use
three assessment models (OpenBRR, QSOS, and OMM) we distributed them ran-
domly between all participants. The only constrained we imposed was that the num-
ber of users using each model was the same. For the experimentation we decided to
use two FLOSS projects: Firefox and Chrome. Partially we choose these two projects
because during the previous two years most of our students were involved in univer-
sity projects that used Firefox or Chrome as source of code, and other type of project
data. We expected most of our participants will be therefore at least aware of the two
projects. We distributed the two projects randomly between all participants, taking
care to give the same number of each projects to participants using a specific model.

228 E. Petrinja, A. Sillitti, and G. Succi

In this way we managed to have random participants using the same number of mod-
els on both FLOSS projects.

During the project planing process we addressed the following five aspects of the
experimentation process:

1. Object of the study – What is studied?
 The object of the study was one of the three FLOSS assessment models. At the

same time we were also interested in the components of the three models. Par-
ticipants had to answer to all questions present in the model and they were also
asked to express their opinion on each question.

2. Purpose – What is the intention?
 The purpose of the experiment was to predict the usability and precision of met-

rics inside the three models and the perception of the quality of the whole model.
Based on the results, we wanted to know also which model better characterizes
specific aspects of FLOSS.

3. Quality focus – Which effect is studied?
 Our quality focus was the completeness of specific parts of the model and the

precision of results for specific parts of the models. How detailed the model is in
specific areas of FLOSS and whether the answers from different participants
were similar or they diverged.

4. Perspective – Whose view?
 Participants were students. We expected that they are mostly FLOSS users and a

smaller percentage of FLOSS developers.
5. Context – Where is the study conducted?
 The experimentation environment was a university laboratory.

An important aspect of the experiment conducted was the environment where the ex-
periment was conducted. We included in the experiment mostly free willing partici-
pants from our university. We managed to involve 26 participants coming from the
last year of the software engineering Bachelor and Master programs at our university.
The experiments were always conducted in the same laboratory room where partici-
pants were able to use a computer connected to the web. Participants were separated
and each was using his own computer. They were not allowed to communicate during
the experimentation process.

The experiment had three phases:

1. First participants received an initial questionnaire where they were asked to report
contextual data (age, experience in programming, experience with the assessed
project, experience with the assessment model, and others information). This
phase lasted 20 minutes.

2. For the second phase we distributed the printed version of questions relative to
the assessment model they had to use. We gave them two hours (120 minutes) to
assess the FLOSS project that was assigned to them. They were able to browse
web pages of the assessed project, search source code repositories, mailing lists,
bug/issue management systems, and other web available sources to answer to
questions that are part of the assessment model they used. We did not restricted
their web access, they were allowed to search anywhere for information.

 Comparing OpenBRR, QSOS, and OMM Assessment Models 229

3. After the two hours, we asked them to finish the assessment process and we dis-
tributed a final questionnaire in which we asked them to describe their opinions
of the quality of the model, the clarity of questions, the coverage of FLOSS as-
pects, and others. We gave them some possible answers to questions and allowed
them to add also additional answers. The third phase lasted also 20 minutes.

Afterwords we collected results of all three phases and the experiment was concluded.

4 Results

We present first the contextual data about participants, then we present results of each
assessment models used, their comparison, and at the end of this section we present
opinions of the participants on the use of the three assessment models.

Contextual Data
We collected many contextual data during the first phase of the experiment. We pre-
sent here only a few aspects we consider important for understanding the results of
the experiment:

• the role that best describes the current position in the assessed FLOSS project,
• the number of FLOSS projects the participant is or were involved in, and
• their experience in the assesed project related tasks.

Some of the questions are personal, others are FLOSS specific, and some asks
participants if they were already in contact with the assessed FLOSS project or the
assessment model. If they were involved in the assessed project their assessment can
influence the assessment process and can explain a better compilation of the assess-
ment questionnaire.

Contextual question: Role that best describes the position of the participant in the
assessed FLOSS project
From the three charts (Figure 1) we can see that almost all the participants have de-
clared to have already used Firefox or Chrome browsers (nearly 100% of partici-
pants for both browsers; two participants did not choose any answer to this question).
We do not know if they use them regularly or they have tried to use them just few
times. Anyway, they are aware of the product and what it is used for. We can also see
from the charts that few participants have contributed to the two FLOSS projects; they
have declared to be testers, translators, or even active developers inside the Firefox or
Chrome projects. We can see from the three charts that the number of developers is
homogeneously distributed in all three assessment models groups. From the third
chart we can see that we have an equal number of FLOSS developers involved in both
Firefox and Chrome projects using the OMM methodology. Another peculiarity of the
group using OMM is that we have additionally also a small number of translators par-
ticipating to the experiment.

230 E. Petrinja, A. Sillitti, and G. Succi

Fig. 1. Role of participants in the assessed FLOSS project

 Comparing OpenBRR, QSOS, and OMM Assessment Models 231

Fig. 1. (Continued)

Contextual question: Number of FLOSS projects you are/were involved in?

Table 1. Number of FLOSS projects participants were involved in

232 E. Petrinja, A. Sillitti, and G. Succi

Some of the participants of the experimentation were already involved in FLOSS
projects (Table 1). We asked them in how many projects they have actively partici-
pated. We obtained comparable answers from them; some of them were never ac-
tively involved in any FLOSS project, others have participated in one or more (one
student declared to participate in 3 FLOSS projects). From the three tables we can see
that the mean is around one project and that it varies just slightly. We can notice that
participants of the QSOS and OMM groups were involved in few more projects than
the participants of the OpenBRR group. Anyway the difference between participants
is small and it does not influence the results of the experiment.

Contextual question: Your experience in this project related tasks?

Table 2. Experience of participants in the assessed FLOSS project

We wanted to know also if participants have actively contributed to the assessed
FLOSS project. From the three tables (Table 2) we can see that participants were only
marginally involved in the two assessed FLOSS projects. The variability between the
three groups is small, therefore we can be confident that this aspect does not influence
the results of the experimentation process.

Results of assessing two FLOSS projects using three assessment models
We provide here our interpretation for the results obtained by using each of the three
methodologies; additionally, we present an overview of similar characteristics meas-
ured by the three methodologies. We calculated mean values and standard deviations
for assessments done by participants for each quality characteristic. We expect that a
low value of the standard deviation means a similar assessment result obtained by

 Comparing OpenBRR, QSOS, and OMM Assessment Models 233

Table 3. Use of OpenBRR

different participants. This can confirm that the questions were clear, the people were
able to find appropriate information on the web, and the threshold values were de-
fined appropriately.

From the results presented in Table 3 we can notice that the Firefox project ob-
tained better grades than the Chrome project; we can see this from most of the as-
sessed criteria. The larger differences are on the Functionality and on the Architec-
ture. Only two criteria obtained a higher grade for the Chrome project: Quality, and
Community. The important information for us is the value of the standard deviation
for different criteria. We can not identify a criteria that has a high standard deviation
for both projects, therefore we can not be sure of the bad quality of a specific criteria.
The criteria that were not assessed homogeneously for one or the other project (the
standard deviation value is relatively large) were: Scalability, Documentation, Sup-
port, and Adoption.

The QSOS assessment methodology has a different number of thresholds for as-
sessing specific criteria than the other two methodologies (Table 4). QSOS has just
three different thresholds. This aspect changes the range of values of the standard
deviation. Also smaller values of standard deviations compared with the other two
methodologies represent considerable deviations of assessment values given by users.
We can see from the table that the highest standard deviation values are in the follow-
ing characteristics: Adoption, Administration/Monitoring, Copyright owners, and
Browser features. Also by using the QSOS methodology we can see that the Firefox
project graded slightly better than the Chrome Project; however, the differences be-
tween the two are smaller than in the case of the assessment using the OpenBRR
model. From the table we see also that the QSOS methodology has four different
granularity levels for the summary of results. This is different from the other two
methodologies. We decided to present results for the third level of granularity that has
a similar number and type of characteristics as the chosen level of granularity of the
OpenBRR and OMM models.

234 E. Petrinja, A. Sillitti, and G. Succi

Table 4. Use of QSOS

From the mean values for different trustworthy elements (TWE is one of the charac-
teristics measured inside the OMM model) composing the OMM model we can see in
Table 5 that the Firefox project in comparison with the Chrome project obtained bet-
ter grades. The difference of the quality of the two projects is even sharper than it
appeared with the use of the other two methodologies. From our point of view, this
difference between the two projects reasonable since the Firefox project exists a
longer period and it has a larger community. There is only one TWE that is larger for
the Chrome project than for the Firefox project and is: RASM. The level of RASM
for Chrome is not high (2,1) but it is even lower for the Firefox project (1,8), showing
that the Firefox product is not tested and/or presented appropriately on the project's
website. The values of standard deviations calculated for OMM are lower than for the
other two methodologies; keeping in consideration the 5 grades threshold levels. The
higher standard deviations resulted for the Quality of the Test Plan (QTP) (Firefox
project 0,6 and Chrome project 0,8) and the Technical Environment (ENV) (Firefox

 Comparing OpenBRR, QSOS, and OMM Assessment Models 235

Table 5. Use of OMM

project 0,7 and Chrome project 0,8). The use of the OMM methodology on both pro-
jects showed higher standard deviation values for QTP and ENV. We analysed more
in details the two TWEs and identified the questions that obtained largely heterogene-
ous answers by different participants. We plan to propose some changes related to
those TWEs in the newer version of OMM.

Participants assessment of the three models
In this section, we present answers to only two questions out of ten that we asked. We
present only the answers that are important to better understand the use of the three
methodologies.

Fig. 2. Completeness of coverage of FLOSS process areas

236 E. Petrinja, A. Sillitti, and G. Succi

As evident from Figure 2, participants perceived OMM as flexible to a large ex-
tent; 12% strongly agree that the model is flexible and a large 88% perceived it as
flexible. We think that this result is a good indication of the modularity of the pro-
posed model. Other two models obtained similar, just slightly lower values.

Fig. 3. The model addresses appropriately FLOSS characteristics

The OMM model scored best on the question about the quality of coverage of
characteristics that were actually included in the model (Figure 3). A large majority of
users of OMM agreed with the sentence and none disagreed with it. The other two
methodologies scored also good as is evident from the chart, only the QSOS model
obtained a 10% of negative answers.

5 Threats to Validity

The randomization of used assessment models, of assessed FLOSS projects, and par-
ticipants was a key requirement for the experiment and a possible threat to validity of
the results obtained. Therefore, we planned this aspect in advance and try to mitigate
its negative elements as already presented in the third section.

An aspect that we want to improve is the number of participants of experiments
coming from the industry. We plan to conduct additional controlled experiments with
individuals coming from industry as programmers, and (integration) software projects
managers. This is an important aspect for us to be able to see the usability of the three
models in general for all potential users. A large percentage of experiments conducted
with students can prevent the generalization of results. However, in the current ex-
perimentation process we wanted mainly to identify some problems of the three mod-
els and specially the OMM model in order to be able to improve it in the future. In the
following iteration we want to identify the quality of the OMM model and the other
two models in general and propose OMM to a larger user base.

Characteristics assessed by the three methodologies differ slightly, therefore not all of
the characteristics can be compared. Small differences between some parts of the three
models presented also a possible threat to validity of our conclusions. We managed to
mitigate this threat by unifying the look and feel of the three models at the same time

 Comparing OpenBRR, QSOS, and OMM Assessment Models 237

however not loosing any content part of the three assessment models. Since we were not
able to remove all differences, we preferred to present in this document separately results
obtained for all three models and provide an interpretation and comparison just for a lim-
ited subset of comparable characteristics.

6 Discussion and Conclusions

An important inconsistency in the used models was the naming of the characteristics
assessed by each model. Although the three models contain characteristics that have
sometimes the same name (for example license in OMM and QSOS) it is difficult or in
some cases impossible to compare them because the internal questions are often (par-
tially) different. For the conclusion we will present the comparison of one characteristic
that is present in all three models (Documentation). The mean values obtained for the
Firefox project using the three methodologies were: 4,2 (OpenBRR), 3,0 (QSOS), 3,9
(OMM). Taking in consideration that 3 is the highest value for QSOS we see that
for this characteristic the three models obtained a similar value. The three values meas-
ure for the Chrome project were: 3,1 (OpenBRR), 2,3 (QSOS), and 3,5 (OMM). This
three values are also quite similar (value 2 in QSOS is the intermediate value). Also the
differences of the values for documentation of the Firefox and the Chrome projects are
quite constant using all three models. For comparable characteristics we can see that the
three models provide similar evaluation results for the two assessed projects.

Nevertheless we were mostly interested in the specific problems related to the
OMM model, we identified also key problematic components of the OpenBRR and
QSOS models. Based on the results of our experimentation process, we identify sev-
eral problems related to each of the three assessment models. The Functionality and
the Quality characteristics were assessed divergently by different participants using
the OpenBRR model. The diverging values for the QSOS model were obtained for:
Adoption, Administration/Monitoring, Copyright owners, and Browser characteris-
tics. In the case of the OMM model the problematic characteristics were: Quality of
the Test Plan (QTP), and the Technical Environment (ENV). Based on the final ques-
tionnaire filled during the experimentation process, we found out that most often the
problems related to specific questions are caused by a not clear formulation of the
question and in some cases the not clear understanding of the threshold value (avail-
able value for the answer) used by each model.

Based on the results of the experimentation process conducted we saw that OMM
obtained at least as good results as OpenBRR and QSOS models. In few aspects (Fig-
ure 2 and Figure 3) it was perceived better then the other two models. With the ex-
perimentation we found out some elements of the model that have to be improved:

• the identification of misleading questions inside the QTP and ENV Trustwor-
thy elements,

• simplification of the overall complexity of some questions,
• simplification of thresholds values (current answers are complex and to extensive),
• automation of the scoring mechanism for calculating Practices, Goals, and

TWEs scores (in some case we identified errors in the calculated results in all
three models); and

• creation of an easy to understand description of how to use the OMM model.

238 E. Petrinja, A. Sillitti, and G. Succi

These action items will help us modify appropriately the OMM model in order to im-
prove its quality and usability.

Acknowledgement

The research was conducted in the scope of the QualiPSo project (FP-IST-034763).
We are grateful to all QualiPSo partners and other participants to experimentation
processes conducted.

References

1. Amoroso, E., Watson, J., Marietta, M., Weiss, J.: A process-oriented methodology for assess-
ing and improving software trustworthiness. In: Proceedings of the 2nd ACM Conference on
Computer and communications security, pp. 39–50. ACM Press, New York (1994)

2. Origin, A.: Method for Qualification and Selection of Open Source Software (QSOS),
http://www.qsos.org (Last visited: December 2009)

3. Duijnhouwer, F.-W., Widdows, C.: Capgemini Expert Letter Open Source Maturity
Model, Capgemini (2003)

4. Hannay, J.E., Hansen, O., By Kampenes, V., Karahasanovic, A., Liborg, N., Rekdal, A.: A
Survey of Controlled Experiments in Software Engineering. IEEE Trans. Softw.

 Eng. 31(9), 733–753 (2005), http://dx.doi.org/10.1109/TSE.2005.97
5. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam, K.E.,

Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng. 28(8), 721–734 (2002),

 http://dx.doi.org/10.1109/TSE.2002.1027796
6. Navica Inc.: The Open Source Maturity Model is a vital tool for planning open source suc-

cess, http://www.navicasoft.com/pages/osmm.htm (Last visit: December
2009)

7. Petrinja, E., Nambakam, R., Sillitti, A.: Introducing the OpenSource Maturity Model. In:
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Devel-
opment collocated with 31st International Conference on Software Engineering (ICSE
2009), Vancouver, Canada (2009)

8. Qualipso Consortium: QualiPSo - Quality Platform for Open Source Software,
 http://www.qualipso.org/index.php (Last visit December 2007)

9. Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: Aframework for the assessment of OSS.
In: Open Source Software 2007, Limerick (June 2007)

10. Wasserman, M.P., Chan, C.: Business Readiness Rating Project, BRR Whitepaper 2005
RFC 1,

 http://www.openbrr.org/wiki/images/d/da/BRR_whitepaper_
 2005RFC1.pdf (Last visited: December 2009)

11. Wittmann, M., Nambakam, R., Ruffati, G., Oltolina, S., Petrinja, E., Ortega, F.: Deliver-
able A6.D1.6.3: CMM-like model for OSS,

 http://www.qualipso.org/sites/default/files/
 A6.D1.6.3CMM-LIKEMODELFOROSS.pdf (last visited December 2009)

12. Deprez, J.-C., Alexandre, S.: Comparing Assessment Methodologies for Free/Open Source
Software: OpenBRR and QSOS, June 2008. LNCS, pp. 189–203. Springer, Berlin (2008)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 239–251, 2010.
© IFIP International Federation for Information Processing 2010

Joining and Socialization in Open Source Women’s
Groups: An Exploratory Study of KDE-Women

Yixin Qiu, Katherine J. Stewart, and Kathryn M. Bartol

University of Maryland, Van Munching Hall, College Park, MD 20742, USA
{yqiu,kstewart,kbartol}@rhsmith.umd.edu

Abstract. This research investigates how women’s groups facilitate people’s
participation in the open source community by examining the joining activities in
KDE Women. Leveraging literatures on group membership roles and socializa-
tion, and adopting a qualitative research method, a joining script of different
kinds of participants was identified. It is found that members developed organ-
izational and leadership skills and were engaged in defining group norms and
values upon joining KDE Women. This study extends prior literature on so-
cialization and provides better understanding of women’s groups in open source.

Keywords: women’s group, membership roles, joining, socialization, qualitative.

1 Introduction

Open source software (OSS) projects are increasingly recognized as an important
domain of technological innovation. They constitute an important means of involve-
ment in technical work and in informal networks that aid the acquisition and mainte-
nance of technical expertise. Several studies have highlighted the importance of
attracting and retaining participants needed for the success of OSS projects [10,16,
25,27]. Consistent with the general finding that women’s rates of participation in IT
related fields remain relatively low across both the United States and Europe [4,23,29],
survey and anecdotal evidence have indicated that attracting and retaining women
participants in OSS projects has been particularly challenging [13,28].

Recognizing the under-representation of women in OSS, several “grass roots”
women’s groups have formed to focus on facilitating the involvement of women in
OSS. These are volunteer-led online groups that aim to provide a forum and resources
for women participants in OSS projects, and ultimately seek to increase the number of
female participants contributing to OSS. Examples of these groups include LinuxChix,
KDE Women, Ubuntu Women, and Debian Women.

Prior research has focused on identifying barriers to women’s participation in tech-
nical work (e.g., work-life conflict), and on understanding the impacts of diversity in
work settings [1,4,5]. The FLOSSPOLS 2006 [24] presents some rather alarming
findings about the gender issue in the open source community. They suggest that
women are treated as either alien other or (in online contexts) are assumed to be male
and thus made invisible. Women’s contributions in areas other than coding receive less

240 Y. Qiu, K.J. Stewart, and K.M. Bartol

valuation. Inflammatory talk and aggressive posturing exacerbates the confidence dif-
ficulties women tend to have [p.5].

Little research however, has explored the processes by which women actually do
become involved in technical work, and, in particular, the role online grass roots
women’s groups may play in such involvement. An understanding of this is of critical
importance for attracting women into the open source field because design guidelines
could be drawn to make these online groups more effective in achieving their goals.
Furthermore, people’s interaction patterns found in these online women’s open source
groups will shed light on similar grass roots efforts in the offline settings and in other
technology domains where lack of women’s participation is an issue. This research
intends to address the research gap by analyzing the actual group joining and sociali-
zation practices of one OSS women’s group: KDE Women. KDE is a widely used
desktop environment for UNIX workstations. KDE Women is a KDE sub-project, along
with KDE-devel, KDE-Accessibility, KDE-Artists, KDE-edu, KDE-Usability, etc. The
main goal of KDE Women is to “build an international KDE forum for women by
providing a place where women can present what they already contribute to KDE and
where women, who want to contribute, find a starting point.” Through this project, they
“actively want to contribute to the success of KDE” (http://women.kde.org/aboutus/
announcement.php, accessed March, 2008).

According to Tilly [26], “joining” is a behavioral script that provides a structure for
the activity of becoming a member of a collective action project. Prior research on
joining patterns in OSS has identified patterns based on the amount and type of early
activities of a member and demonstrated that certain kinds of joining scripts were
associated with the later technical contribution of members [27]. Building on this
definition, the study addresses two research questions. First, what joining and initial
socialization activities are associated with participation in KDE Women? Second, do
joining and socialization differ for people in different KDE participation phases and if
so, how? Given the relatively limited prior works on female participation in open
source and the exploratory nature of the study, we adopted a qualitative research
method by combining the deductive and inductive coding method to answer these two
research questions [11,17].

Von Krogh et al. [27] proposed that participants behaving according to a particular
kind of joining script were more likely to be granted access to the developer community
than participants who do not follow the joining script. Following on this work, we
expect that identifying the joining scripts in OSS women’s groups will be important to
provide a window for further understanding the processes and practices through which
a women’s group facilitates women’s participation in open source. Given the relatively
broad mission of OSS women’s groups, we take a broad view of participation, in-
cluding both technical and non-technical activities (e.g., project documentation and
general leadership activities).

We differentiate KDE Women participants into three categories based on their partici-
pation phases: those who have participated in other KDE groups before KDE Women, those
who limit their participation to KDE Women only, and those who later engage in other KDE
subgroups after KDE Women. Knowledge of people’s joining patterns based on different
participation phases will render a more nuanced understanding of the role of OSS women’s

 Joining and Socialization in Open Source Women’s Groups: An Exploratory Study 241

groups. Potentially more targeted implications with respect to people’s different motiva-
tions in joining OSS women’s groups can be drawn from this investigation.

2 Theoretical Background

In order to understand the initial group joining behavior, we leverage literatures on
group roles and group socialization of newcomers and combine this with an inductive
analysis of the content unique to the group studied. In one of the seminal works on
group membership roles, Benne and Sheats [6] identified three categories of functional
member roles. 1) Group task roles. Members assuming these roles facilitate and coor-
dinate group effort in the selection and definition of a common problem and in the
solution of that problem [p.42]. Examples include initiator-contributor, information
giver, information seeker, opinion giver, opinion seeker, coordinator, etc. 2) Group
building and maintenance roles. Contributions of these roles are to alter or maintain the
group way of working, to strengthen, regulate and perpetuate the group as a group
[p.42] Examples include encourager, harmonizer, compromiser, etc. 3) Individual
roles. The outcome of these roles is some individual goal which is not relevant either to
the group task or to the functioning of the group as a group [p.43]. Examples in this
category include aggressor, blocker, recognition-seeker, etc. While most research
suggests that these group membership roles function in the offline face to face setting
[15], Maloney-Krichmar & Preece [21] demonstrates that the group membership role
schema by Benne and Sheats applies to members in the online setting as well. Through
a study of an online health community, they found that such analysis can serve as a
useful diagnostic tool in the online environment for determining if there are differences
in the stated purpose of a group and the roles that members play [p.16].

Literatures on individuals’ adaptation behavior in organization [2,12,14] identify
different types of information people seek. Morrison [22] maintains that information
seeking can facilitate newcomers’ socialization process in terms of their task mastery,
role clarification, acculturation, and social integration. The prior work shows that
newcomers seek five types of information: (1) technical information, which is infor-
mation about how to perform job tasks; (2) performance feedback, which is information
about the appropriateness or correctness of fulfilling tasks; (3) referent information,
which is information about job requirements and expected role behaviors; or what is
expected of you in your job, (4) normative information, which is information about an
organization’s norms and values; or behaviors and attitudes that the firm values and
expects, and (5) social feedback, which is information about how one’s social behavior
is being perceived and evaluated by others [p.174].

Based on these literatures we focus our qualitative investigation on understanding
the initial roles that members play (task, group building or maintenance, or individual)
and what information is sought or provided during members’ initial interactions. Prior
work on newcomer socialization has not examined the seeking and giving behaviors in
a same context. Therefore, using the five types of seeking content and the membership
role schema as a basis, we extended the coding to assess the “giving” and other actions
associated with the different content of the socialization activities, in addition to the
“seeking” action.

242 Y. Qiu, K.J. Stewart, and K.M. Bartol

The next section discusses our methodological approach including the data collec-
tion approach and the analytical processes employed. This is followed by preliminary
results from our analysis. We then discuss the implications from our findings.

3 Methodology

3.1 Data Collection

As mentioned earlier, multiple grass roots women’s groups were identified. We se-
lected KDE Women over others as a case to study women’s joining and socialization in
the open source world, because a relatively complete history of the group is available.
As of May 2007, the group’s activities tapered off: on average one message was added
in each subsequent month. In spite of that, the group had been well established since its
founding in 1998, and reached critical mass during the period from February 2001 to
May 2005. A complete history of a well-developed group has advantages over other
ongoing groups for capturing various joining and socialization patterns of people with
different participation levels.

Because many of the activities and interactions within both KDE Women and the
KDE OSS projects are conducted online through email lists, we looked into the ar-
chives of these lists as our main data source. We identified the email addresses of every
person who has ever posted a message to the KDE Women mailing list and developed
tools to download all messages in all threads in which these people have posted a
message, both on the KDE Women’s list and other email lists associated with the KDE
projects. There are 89 people who have posted on KDE Women at least once. Table 1
shows descriptive statistics about people’s participation length in KDE Women (“Days

Table 1. Descriptive statistics of participation in KDE Women (KDEW) and KDE-affiliated
projects (KDE)

 Days in
KDEW

Days in
KDE

Number of
messages in
KDEW

Number of
messages in
KDE

KDE then KDEW (N=28)
Average 620.07 1868.11 8.96 760.96
Max 2125 3701 105 3912
Min 1 1 1 1

KDEW only (N=51)
Average 90.45 n/a 2.14 n/a
Max 2196 n/a 14 n/a
Min 1 n/a 1 n/a

KDEW then KDE (N=10)
Average 184.5 297.4 2.9 5.9
Max 1277 1381 11 18
Min 1 1 1 1

 Joining and Socialization in Open Source Women’s Groups: An Exploratory Study 243

in KDEW”) and other KDE-affiliated projects (“Days in KDE”) as well as their posting
activities, all of which were documented since people’s first post in either KDE Women
or other KDE projects to the date of data collection in July 2007. Based on the dates of
these 89 people’s first posts, we identified people at three participation phases.

3.2 Data Analysis

As mentioned earlier, a combination of deductive and inductive qualitative coding
method was used to address the research questions. Every person’s message(s) in their
first thread posted on the mailing list of KDE Women were coded to capture the joining
patterns. For the deductive coding of the joining activities, we utilized the group
membership roles by Benne & Sheats [6] and the five types of information seeking
behaviors for newcomers’ socialization [22] as a coding scheme. In the meantime, we
allow new meanings to emerge from the data, resulting in new categories.

Data were coded using NVivo 7.0. For the deductive coding, two researchers first
independently coded the same subset of the data according to the coding scheme and
then compared the results. After consensus was reached, each researcher coded half of
the rest of the data. For the inductive coding, each researcher first developed new
categories for a same cluster of data. These categories were compared and the inter-
pretations of differences in the coding were reconciled. This process continued for
another round and a condensed list of categories were finalized when a high level of
agreement across researchers was reached and most messages were adequately coded
using the existing set of categories.

4 Findings

4.1 Joining and Initial Socialization Activities on KDE Women

In this research, we are interested in exploring the joining behaviors of KDE Women
participants. Adopting a qualitative approach, we developed a joining script of these
people through combining the literatures on group membership roles, newcomer so-
cialization, and inductive coding technique.

The first research question is on finding out the joining and initial socialization ac-
tivities associated with participation in KDE Women. We found that the key group
membership roles exhibited in the KDE Women are five types: information seeker,
opinion seeker, information giver, opinion giver, and encourager. Except for “en-
courager”, which is a group building and maintenance role, the others are task roles [6].

Socialization literatures indicate that newcomers usually seek five kinds of infor-
mation: technical information, performance feedback, referent information, normative
information, and social feedback. Building on this framework, our findings bring forth
finer-grained dimensions and new meanings of these socialization activities in KDE
Women. For KDE Women members, the technical component relates to using or de-
veloping specific software programs. The performance component includes
group-related tasks, such as building, promoting or representing KDE Women in the
KDE community in general. The referent dimension is concerned with members’

244 Y. Qiu, K.J. Stewart, and K.M. Bartol

seeking of job requirements and identity in KDE Women. The normative dimension
elaborates on issues such as group goal setting, group legitimacy and composition, and
technological ideology debate. Specifically, early KDE Women members collectively
determined the group goal and mission statement (group goal setting). After the group
was formed, later joined participants had heated debate on whether the KDE Women
group was being sexist, and whether men should be allowed in the group (group le-
gitimacy and composition). During the group discussions, the war between open source
and windows was constantly brought up (technology ideology debate). And lastly,
the social dimension was mainly concerned with people’s communication behaviors
where they expected others’ response.

Linking these socialization activities with the membership roles creates a complete
configuration of the joining script in KDE Women, as shown in Table 2. Cells with a
number suggest the frequency of a particular type of joining script where members take
on certain roles in specific socialization activities, therefore indicating the kind of be-
havioral structures people engage in when becoming a member of KDE Women.
Grayed areas indicate no such behavioral structures were found. For example, the
combination of “information seeker” and “technical” creates one kind of joining script,
meaning that participants in KDE Women would seek technical related information.
However, no joining script exists as a combination of “opinion seeker” and “technical”,
showing that no one seems to seek technical opinions while first joining the group. As
shown in Table 2, there are several kinds of joining script. Firstly, people seek and give

Table 2. Joining script of KDE Women members

 Major group membership roles played

Socialization
Activities

Information
Seeker

Opinion
Seeker

Information
Giver

Opinion
Giver

Encourager

1. Technical 16 5 1

2. Performance

2.1 Group tasks
7 6 1 3 2

3. Referent 9 1

4. Normative
4.1 Group goal 2 3 8

4.2 Group le-
gitimacy and
composition

2 10 2

4.3 Technologi-
cal ideology

3 3

5. Social
5.1 Communica-
tion stimulation

11 2 1

Note. Numbers indicate frequency of KDE Women members’ joining script of that con-
figuration. Grayed area: no joining script found.

 Joining and Socialization in Open Source Women’s Groups: An Exploratory Study 245

information, as well as give opinions on technical issues. Secondly, they seek and give
information, as well as seek and give opinions, and encourage each other on group
tasks-related issues. Thirdly, for job requirement and membership identity issues, KDE
Women members only seek for feedback and being encouraging about that, but don’t
engage in any giving activities. Fourthly, KDE Women members give information and
opinions and provide encouragement on normative issues; and yet they don’t seek
anything on this dimension. Lastly, they seek social feedback and provide information
or encouragement to be social, especially when they want to stimulate some conver-
sations on the mailing list.

4.2 Joining Activities across People at Different Participation Phases

The second research question addresses whether joining activities differ for people in
different KDE participation phases and if so, how? In Table 3, which is adapted from
Table 2, “A” stands for people who participated in KDE Women after KDE (N=28),
“B” stands for those who participated in KDE Women only (N=51), and “C” stands for
those who participated in KDE after KDE Women (N=10). It shows where participants
of KDE Women stand respectively in the joining script configuration. In other words, it
demonstrates which of the three groups belong to which joining script configuration.
For example, all three types of people seek technical information, type A and type B
people seek opinions on group tasks, and only type B people give opinions on technical

Table 3. Joining script of KDE Women members at three different phases

 Major group membership roles played

Socialization
Activities

Information
Seeker

Opinion
Seeker

Information
Giver

Opinion
Giver

Encourager

1. Technical ABC AB B

2. Performance

2.1 Group tasks
AB AB A A AB

3. Referent B B

4. Normative
4.1 Group goal A AC AB

4.2 Group le-
gitimacy and
composition

AC ABC AB

4.3 Technological
ideology

B AB

5. Social
5.1 Communica-
tion stimulation

ABC AB B

Note. “A”: people who participated in KDE Women after KDE (N=28); “B”: people who
participated in KDE Women only (N=51), “C”: people who participated in KDE after KDE
Women (N=10). Grayed area: no joining script found.

246 Y. Qiu, K.J. Stewart, and K.M. Bartol

information. Below characteristics of these people’s joining scripts on KDE Women
will be presented. They are illustrated by sample quotes, and the corresponding codes
representing joining scripts are included in the parentheses. These quotes are not meant
to be exhaustive; rather, they are most representative of the joining activities of people
at the three participation phases.

4.2.1 People Who Participated in KDE Women after KDE (Denoted as A in
Table 3)

There are 28 people in this category. As demonstrated in Table 3, this group of people
was very involved in group tasks issues and normative issues. They assumed all roles
related to the former and all but information giver on the technological ideology issue
to the latter. For example, this person was looking for volunteers to help with the KDE
Women booth at the Linux Expo:

“Hello all, I am just in the process of organising the KDE booth at the
Linux Expo’s in London (3/4 July) and Birmingham (12/13 Sep)...I am
looking for some kde-women representation at the booth. If you can help
with the following, please get in touch…” (Performance / group task –
information seeker)

Another person gave suggestions as to what a PR article should cover about KDE
Women:

“I think it’s important to mention in the article that it’s not only for
women to participate. Rather it seems from the website that the focus is to
get more women invovled with KDE and to address gender-specific is-
sues in KDE.” (Performance / group tasks – opinion giver)

This person presented ideas on involving more women in KDE:

“What we want to do about this: getting women involved into KDE as
an integrated part. Let them give the audience and the chance to change
computing in a way they think it is right for them also….That also makes
KDE the only project until now I know of that cares about women’s needs
generally in connection with the design and usage of graphical computer
interfaces.” (Normative / group goal – information giver)

People in this category were also interested in technical issues: they were both in-
formation seeker and information giver on software usage or development. An example
is as follows:

“I'm in desperate need of a program that:

- has an interface to KOrganizer to keep track of dates
- has an interface to MySQL to maintain a musicians and customers database
- can do bookkeeping WITH the option of taking the VAT out by triple booking”
(Technical – information seeker)

 Joining and Socialization in Open Source Women’s Groups: An Exploratory Study 247

In addition to the above joining activities, this group extended communication on the
list in hope of receiving feedback from others by performing the information seeker and
information giver roles. Interestingly, this group was not engaged in referent issues,
probably because they were very clear about their membership identity, so it would be
unnecessary for them to seek information on their responsibility for the group.

4.2.2 People Who Only Participated in KDE Women and Not Other KDE
Projects (Denoted as B in Table 3)

In total 51 people belong to this category. Being the largest group on KDE Women,
these people were very social, in the sense that they gave encouragement to other group
members’ ideas and opinions in several aspects, and wanted to receive feedback on
their greetings to the list. For example, in terms of normative issues, while they didn’t
comment on group goals, they showed encouragement on that:

“Second, I great appreciation for this list and its members. It is so nice
to know other women who are thrilled with similar interests. I've never
been a room with another female programmer…Look forward to the
list.” (Normative / group goal -- encourager)

This member ended the self-introduction with the hope to know more people on the
group:

“I'm surprised at how much I have to say. I hope to get to know some
of you-and learn from you.” (Social / communication stimulation –
information seeker)

More interestingly, they were the only group that sought information regarding
group membership identity. In other words, this group showed strong willingness to
find a fit to contribute to the group:

“I’m not entirely sure how I can help, but I have a lot of skills and can
probably help more than I know. I'm decently proficient in C... I mostly
just like to help out.” (Referent – information seeker)

In addition to the above examples, this group of people showed interest in technical
issues, and they were both seekers and givers in this regard. The following quote il-
lustrates that a person encountering a technical difficulty was seeking help:

“I've seen articles saying that it can be done but I'm having trouble
actually doing it. I need to compile a *.so file for Solaris using a linux
box…Has anybody done this?” (Technical – information seeker)

This person expressed interest in working out some technical issues:

“I’m fairly familiar with php, and I wouldn't mind working with other
kde-women to set something like this up” (Technical – information
giver)

248 Y. Qiu, K.J. Stewart, and K.M. Bartol

4.2.3 People Who Participated in Other KDE Projects after KDE Women
(Denoted as C in Table 3)

The smallest group in KDE Women, this category has 10 people. Their main joining
scripts centered on normative issues. They were information giver and opinion giver on
group legitimacy and composition, as well as opinion giver on group goals.

“I’d like to see KDE women as a forum to encourage to write (well
documented) code… not just lending a helping hand with documentation
and stuff. Don't misunderstand me: documentation is important. But in
my sparetime I'd rather write my own stupid KDE program (I hope one
day I will...) that possibly will never reach the quality of say Konqueror
instead of writing documentation for a boy who liked coding but disliked
documentation.” (Normative / group goal – opinion giver)

“As you can guess by the title I am against the group…Why bother, tell
me something, are women \less capable then everybody else... Is there
some kind of issue with women \ not being able to handle it on there own”
(Normative / group legitimacy – opinion giver)

In the meanwhile, they sought information on technical issues, as illustrated by the
following example:

“I'm trying to install KDE3 next to KDE2 following the instructions on
the page "How to get KDE2 and KDE3 (from cvs) working on the same
machine". ... which 4 lines are meant here? All help welcome best re-
gards” (Technical – information seeker)

This group also sought social feedback from the list. While they were engaged in
several seeking activities, they didn’t seem to give back on those dimensions. More-
over, participants in this category did not show much concern about group related tasks,
nor about their membership identity. They were also not engaged in much of the en-
courager role for any aspect of the joining activities.

5 Discussions

A comparison across these three categories of people indicates that there are two
commonalities among them in terms of their joining and socialization activities. First,
all three classes of members played the information seeker role on both technical and
social dimensions. This suggests that people joined KDE Women in order to obtain
answers to technical questions and receive feedback. A second similarity, which con-
trasts with prior literature, is that no one was engaged in the “seeking” activities
regarding group normative information. Literatures on newcomers suggest the impor-
tance of adaptation to team expectations [7,8,9,20], and the impact of information
seeking about organization’s norms and values on individuals’ social integration in the
organization [22]. What we found instead, is that rather than seeking information on
the group norms, members participated in shaping the group norms and values – they
were information and opinion givers and encouragers in this respect. This finding well

 Joining and Socialization in Open Source Women’s Groups: An Exploratory Study 249

reflects the dynamics on the gender issues in the open source world. While the implicit
consensus is that open source is a male-dominated environment, a group dedicated to
involving more women still stirred a great deal of debate and encountered many op-
posing view points. While many participants embraced the idea of a women’s group,
others objected, arguing, for example, that it served to segregate women rather than
engage them. The norms and values of KDE Women thus remained in flux throughout
the life of the group, and served as a common point of interest to bring engage all dif-
ferent kinds of members in discussion.

People at the three participation phases also reveal apparent differences in their
joining and socialization patterns. For the group performance or tasks related activities,
only people who had experience with KDE before entering the KDE Women’s group
were engaged in all aspects of the roles in this dimension. Through KDE Women, they
were able to exercise organizational and leadership skills that, perhaps, they could not
find the opportunity to develop in other KDE projects. People who never had any in-
teractions with other KDE projects had diverse experience in KDE Women. Interest-
ingly enough, only this group sought information regarding job requirements and
membership identity, and showed encouragement to others on this dimension. There-
fore, unlike those who were more experienced with KDE and took on group related
tasks right away, these people, while very willing to contribute to KDE Women, were
not quite sure how. Lastly, people who proceeded to other KDE projects from KDE
Women started their participation on KDE Women through discussion on the normative
topics of the group. Unlike the other two groups however, upon joining, they were not
involved in any group task related activities. They were also less social: they did not
give or share much information with others, nor did they show an encouraging attitude
to other people. Overall, this group seems to have engaged in the one topic most unique
to KDE Women: discussing the group itself, and targeted their task related participation
to other KDE groups.

6 Conclusion and Future Research

In this research, we studied how women’s groups facilitate people’s participation in
open source by investigating joining activities on KDE Women. Leveraging literatures
on group roles and socialization, we developed an understanding of the joining scripts
of different kinds of participants and thereby identified activities that people engage in
to become a member of the group. In particular, we found two unique ways that KDE
Women appeared to provide a place for participants to engage in ways that may not
have been available to them in the broader KDE environment. These were (1) by pro-
viding an opportunity for members to develop their leadership skills and (2) by pro-
viding a place for members to participate in the development of an environment with
norms and values consistent with their own vision. This study extends prior literature
on socialization by including the giving side of members’ activities on different di-
mensions. We also illustrated joining patterns of members at three participation phases,
and thus highlighted the different ways in which people utilized women’s group for
their participation in open source.

250 Y. Qiu, K.J. Stewart, and K.M. Bartol

The study remains a work in progress. As we continue with the research, we plan to
expand our data coding and analysis in several ways. In particular, we plan to examine
later threads of KDE Women members to understand their subsequent activities, and the
outcomes of the various joining activities. We also plan to extend the study to other
women’s groups to gain a more comprehensive understanding of how these groups
facilitate the participation of women and which of their practices are most successful
and most likely to be adaptable to other contexts, such as the incorporation of women
into professional technical roles.

Acknowledgements. We would like to thank Chang-han Jong and Lydia Chiu for
excellent research assistance.

References

1. Ahuja, M.K.: Women in the Information Technology Profession: A Literature Review, Syn-
thesis and Research Agenda. European Journal of Information Systems 11(1), 20–34 (2002)

2. Ashford, S.J.: The Role of Feedback Seeking in Individual Adaptation: A Resource Per-
spective. Academy of Management Journal 29(3), 465–487 (1986)

3. Ashford, S.J., Taylor, M.S.: Adaptation to Work Transitions: An Integrative Approach. In:
Ferris, G.R., Rowland, K.M. (eds.) Research in Personnel and Human Resource Manage-
ment, pp. 1–39. JAI Press, Greenwich (1990)

4. Bartol, K.M., Aspray, W.: The Transition of Women from the Academic World to the IT
Workplace: A Review of the Relevant Research. In: Cohoon, J.M., Aspray, W. (eds.)
Women in Information Technology: Research on Underrepresentation, pp. 377–419. MIT
Press, Cambridge (2006)

5. Bartol, K.M., Williamson, I.O., Langa, G.A.: Gender and Professional Commitment among
IT Professionals: The Special Case of Female Newcomers to Organizations. In: Cohoon,
J.M., Aspray, W. (eds.) Women in Information Technology: Research on Underrepresen-
tation, pp. 421–438. MIT Press, Cambridge (2006)

6. Benne, K.D., Sheats, P.: Functional Roles of Group Members. Journal of Social Issues 4(2),
41–19 (1948)

7. Chatman, J.A.: Matching People and Organizations: Selection and Socialization in Public
Accounting Firms. Administrative Science Quarterly 36(3), 459–484 (1991)

8. Chen, G., Klimoski, R.: The Impact of Expectations on Newcomers on Newcomer Per-
formance in Teams as Mediated by Work Characteristics, Social exchanges, and Empow-
erment. Academy of Management Journal 46(5), 591–607 (2003)

9. Chen, G.: Newcomer Adaptation in Teams: Multilevel Antecedents and Outcomes.
Academy of Management Journal 48(1), 101–116 (2005)

10. Crowston, K., Annabi, H., Howison, J.: Defining Open Source Software Project Success.
Paper presented at the International Conference on Information Systems, Seattle, WA (2003)

11. Duriau, V.J., Reger, R.K., Pfarrer, M.D.: The Content Analysis of Content Analysis. Or-
ganizational Research Methods 10(1), 5–34 (2007)

12. Feldman, D.C.: A Contingency Theory of Socialization. Administrative Science Quar-
terly 21(3), 433–452 (1976)

13. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/Libre Open Source Software: Survey
and Study. In: Workshop on Advancing the Research Agenda on Free/Open Source Soft-
ware, International Institute of Infonomics, University of Maastricht, Brussels, Netherlands
(2002)

 Joining and Socialization in Open Source Women’s Groups: An Exploratory Study 251

14. Graen, G.: Role Making Processes Within Complex Organizations. In: Dunnette, M.D. (ed.)
Handbook of Industrial and Organizational Psychology, pp. 1201–1245. Rand McNally,
Chicago (1976)

15. Hare, A.P.: Roles, Relationships, And Groups In Organizations: Some Conclusions And
Recommendations. Small Group Research 34(2), 123–154 (2003)

16. Hars, A., Ou, S.: Working for Free? Motivations for Participating in Open Source Projects.
International Journal of Electronic Commerce 6(3), 25–39 (2002)

17. Hennig-Thurau, T., Walsh, G.: Electronic Word-of-Mouth: Motives for and Consequences
of Reading Customer Articulations on the Internet. International Journal of Electronic
Commerce 8(2), 51–74 (2003)

18. Katz, R.: Time and Work: Toward an Integrative Perspective. In: Staw, B.M., Cummings,
L.L. (eds.) Research in Organizational Behavior, pp. 81–127. JAI Press, Greenwich (1980)

19. Louis, M.R.: Surprise and Sense-making: What Newcomers Experience in Entering Unfa-
miliar Organizational Settings. Administrative Science Quarterly 25(2), 226–251 (1980)

20. Louis, M.R.: Newcomers as Lay Ethnographers: Acculturation During Socialization. In:
Schneider, B. (ed.) Organizational Climates and Cultures, pp. 85–129. Jossey-Bass, San
Francisco (1990)

21. Maloney-Krichmar, D., Preece., J.: A Multilevel Analysis of Sociability, Usability, and
Community Dynamics in an Online Health Community. ACM Transactions on Com-
puter-Human Interaction 12(2), 1–32 (2005)

22. Morrison, E.W.: Longitudinal Study of the Effects of Information Seeking on Newcomer
Socialization. Journal of Applied Psychology 78(2), 173–183 (1993)

23. National Center for Educational Statistics, Table 46,
 http://www.nsf.gov/statistics/nsf04311/pdf/sectb.pdf (2004)

24. Nafus, D., Leach, J., Krieger, B.: Gender: Integrated Report of Findings. Free/Libre and
Open Source Software: Policy Support FLOSSPOLS. Deliverable D 16, cover page (2006)

25. Roberts, J.A., Hann, I.-H., Slaughter, S.A.: Understanding the Motivations, Participation,
and Performance of Open Source Software Developers: A Longitudinal Study of the Apache
Projects. Management Science 52(7), 984–999 (2006)

26. Tilly, C.: Durable Inequality. University of California Press, Berkeley (1999)
27. Von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, Joining, and Specialization in Open

Source Software Innovation: a Case Study. Research Policy 32(7), 1217–1241 (2003)
28. Weiss, T.R.: Panel: Open-Source Needs More Women Developers. Computerworld (2005)
29. White House Council of Economic Advisors. Opportunities and Gender Pay Equity in New

Economy Occupations. Available in the National Archives (2000)
30. Wu, C., Gerlach, J.H., Young, C.E.: An Empirical Analysis of Open Source Software De-

velopers Motivations and Continuance Intentions. Information & Management 44(3),
253–262 (2007)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 252–267, 2010.
© IFIP International Federation for Information Processing 2010

Download Patterns and Releases in Open Source
Software Projects: A Perfect Symbiosis?

Bruno Rossi, Barbara Russo, and Giancarlo Succi

CASE – Center for Applied Software Engineering
Free University of Bolzano-Bozen

Piazza Domenicani 3, 39100 Bolzano, Italy
{brrossi,brusso,gsucci}@unibz.it

http://www.case.unibz.it

Abstract. Software usage by end-users is one of the factors used to evaluate the
success of software projects. In the context of open source software, there is no
single and non-controversial measure of usage, though. Still, one of the most
used and readily available measure is data about projects downloads. Neverthe-
less, download counts and averages do not convey as much information as the
patterns in the original downloads time series. In this research, we propose a
method to increase the expressiveness of mere download rates by considering
download patterns against software releases. We apply experimentally our
method to the most downloaded projects of SourceForge's history crawled
through the FLOSSMole repository. Findings show that projects with similar
usage can have indeed different levels of sensitivity to releases, revealing dif-
ferent behaviors of users. Future research will develop further the pattern rec-
ognition approach to automatically categorize open source projects according to
their download patterns.

Keywords: Open source software projects, software releases, repository mining.

1 Introduction

Determining the success of software projects is very often non-trivial. There are many
aspects to consider, and even the definition of success can depend from multiple point
of views. Nevertheless, discerning the success of software projects is useful as re-
searchers can evaluate approaches, methods, and processes that performed well -
given a certain context. Furthermore, the availability of large data about open source
software projects made such research more appealing. At the same time such task can
be more difficult, as we miss some important in-context information that can be gath-
ered only as insider of a development team. Reconstructing such information can be
problematic when mining online repositories without strict contact with the original
development team.

The definition of success is also not unique. One of the views of software projects'
success is directly dependent on the users. Specifically, as reported in [2], in Informa-
tion System (IS) research the success of a software system has been studied as directly
dependent on system and information quality [4]. According to this view, system quality

 Download Patterns and Releases in Open Source Software Projects 253

impacts directly on software usage, and thus on users satisfaction. Deriving the success
of a project is thus a question of considering a) the impact of the system quality on the
users’ usage level and b) the acceptance rate of the user. Once this has been determined,
then it is relatively straightforward to associate successful projects to their development
practices, development process characteristics, or even product features. Leaving aside
software quality, the determination of criteria to measure the usage of software and
relative users' satisfaction are relevant research problems.

If we focus on usage, and on commercial software, there is at least one single indi-
cator that can be reliably used as an indication of usage: the number of copies sold on
the market. It is difficult that applications bought do not translate in real usage of the
application. For open source software, the situation is more fuzzy, as there are no
unique indicators of usage. Different proposals have been made, like using the num-
ber of downloads [3], adopting software agents to monitor the software usage [2],
tracking the inclusion in software distributions [2], using downloads time-series to
detect the evolving users’ community [10], or even use web search engines results to
derive the popularity of projects [11].

Conversely, determining users’ satisfaction is probably easier for open source
software than for proprietary software. The large number of data available allows
mining of repositories to audit mailing lists, forums, bug tracking reports, and so on.
Also in this case, there is no single universal indicator of users' satisfaction and differ-
ent proposals have been made: considering user ratings, opinions on mailing lists, or
surveys [2] – among others.

In this work, we focus on software usage and specifically on download rates. Soft-
ware usage needs to take into account different measures, but we believe that
download rates have not been exploited to their full potential. Especially for open
source software, downloads have been identified useful as a proxy of software usage.
Recently, the interest is more on the patterns that have been detected rather than the
mere download indexes (as for example [6] and [10] justify).

Our hypothesis is that it is not true that in all open source software projects
download rates are in relation with software releases. More precisely, we believe that
there are projects in which download rates are in relation with the application type
(e.g. file sharing applications, where users want to have the latest application avail-
able, security fixes included) and others where users do not really care about the re-
lease date (e.g. applications installed and kept for longer time, like graphical utilities).
From these hypotheses, it derives automatically that different patterns and - even
more - download numbers can represent very different situations that are difficult to
generalize. So, before reconstructing patterns to see whether projects were successful
or not, we will need to know how much projects are sensitive to software releases. We
have two research questions for this paper.

• RQ1. Are download patterns connected to releases in open source software
projects?

• RQ2. If such relation exists, is the relation consistent in the same category of
projects?

The paper is structured as follows. Section 2 presents background on deriving open
source software usage and specifically on studies on the evaluation of usage by means
of download rates. Section 3 discusses further the research questions by means of a

254 B. Rossi, B. Russo, and G. Succi

problem statement. Section 4 presents a method for analyzing downloads time
series. Section 5 proposes an experimental evaluation of the method by means of the
highest ranked projects in SourceForge's history. The section includes experimental
design, data collection, data filtering, evaluation of the method, findings and limita-
tions. Section 6 is about conclusions and future works in prospective research.

2 Background

Different techniques have been proposed to derive software usage. If we specifically
focus on download rates, this indicator has been found to have several advantages,
like the fact that it is relatively easy to gather this kind of information from online
repositories. Nevertheless, various disadvantages are also reported, like the issue that
a single download may not really translate in software usage [2]. What is very often
suggested is to use this measure with care [3].

There has been a move in recent years from considering mere download rates (we
can report as an example [6]) towards analyzing time-series and emerging patterns. In
this sense, there is a consensus now among all researchers that download averages, or
totals, do not convey enough information to be used as independent or dependent vari-
able in success prediction models. Time series of downloads convey a larger set of in-
formation. The problem is that in the open source scenario, with large datasets available,
some kind of data compression or summarization is needed so that knowledge about
single projects can be synthetically represented, summarized, and then visualized. We
can report specific studies that are related to the current research (Table 1).

Table 1. Related Studies

Paper Study Results
[6] Identification of classes of successful and

unsuccessful projects according to download
patterns

Six patterns of download rates
identified. Justification of
emergence of such patterns

[7] Identification of successful open source
projects by means of downloads numbers

Categorization of 122,065
projects in super, successful,
and struggling. No evidence of
Zipf’s Law for the number of
downloads for projects on
SourceForge

[10] Proposing a method to measure size of open
source projects and use base based on
downloads time series

Different types of users found
according to adaptation of
downloads to releases

All these studies have in common the analysis of download rates. Research ques-

tions are different, as well as the experimental setting. In [6] and [7] the focus is on
deriving successful projects, in [10] the focus is on deriving the use base from
download patterns.

 Download Patterns and Releases in Open Source Software Projects 255

3 Problem Statement

To present the problem statement, we give a practical example by means of two well
known software. Namely, we consider the most downloaded project of SourceForge's
history - eMule1 - and the TCL2 application. This selection is not random, as those
applications were selected in the categorization made in [6], so the interested reader
can find the motivation more compelling. As can be seen, the two time series of
downloads for the two projects are quite different (Fig. 1 and 2).

Fig. 1. eMule project downloads

What we see from the figures is that there are some short-time cyclic patterns in the
download rates (maybe weekly) in both cases, but in the eMule case there are evident
longer term cyclic patterns. What we ask ourselves is whether the latter type of pat-
terns are related to software releases.

A simple approach would be to simply plot release dates on the same time series
and evaluate manually the situation case by case. Instead, what we want to derive is
an approach that allows to detect automatically - and without visual inspection -
whether a time series is dependent on release dates. In the specific, if there are strong
increases in download rates in coincidence with a software releases. Such method
must also remove less important cyclic patterns in download rates. Considering the
example in Fig. 2, we do not want to consider relevant low cyclic patterns that repeat
weekly.

Thus, we present a proposed automated method that can be used applied to time se-
ries to evaluate the sensitivity to software releases. We apply it to downloads time
series, but it can be potentially applied also to other types of time series (like the
number of commits in time, for example). In the following, we use mostly the TCL
project to explain the method.

1 http://www.emule-project.net
2 http://www.tcl.tk

256 B. Rossi, B. Russo, and G. Succi

Fig. 2. TCL project downloads

4 Method

To eliminate non-relevant cyclic patterns, we use a technique called Piecewise Ag-
gregate Approximation (PAA) that approximates a time series by means of segments.
This approach has been used, for example, when handling large amounts of data to
reduce the complexity of similarity search space [1]. In our case, segmentation helps
not only in reducing the data points to be considered for analysis, but also in reducing
short term cyclic patterns in the time series.

In the specific, in this research, we used a specialized form of PAA that uses a wave-
let transform of the time series to decompose the segments of the time series [1, 8]. The
wavelet used is the simplest form of wavelet: the Haar wavelet [8]. In Figure 3 we pro-
pose an example of PAA applied to a synthetic data set. The original time series is ap-
proximated by means of a wavelet that maintains similar patterns as the original. As can
be seen directly from figures, the data loss is inversely proportional to the number of
segments used for PAA. Conversely, more segments mean also keeping more short time
periodic patterns.

Fig. 3. Example of PAA by using Haar wavelets

 Download Patterns and Releases in Open Source Software Projects 257

Fig. 4. eMule project wavelet transform

Fig. 5. TCL project wavelet transform

The whole theory of wavelets is far beyond scope for this paper, but an interesting
overview can be found in [8]. Alternative and more sophisticate techniques for PAA
can be found in [1]. To show the results of the technique, we applied it to the eMule
and TCL projects (Fig. 4 and 5). After the application of the method, we have thus
eliminated unwanted cyclic patterns from the time series, and got a simpler represen-
tation. We will then use this representation to detect the intersection of areas with
releases automatically.

258 B. Rossi, B. Russo, and G. Succi

In detail, the whole approach is the following:

a. Represent projects as time series of downloads;
b. Filter out projects that have too many missing values;
c. Perform linear interpolation of missing values. This is needed as the original

data set might have missing data points from the data collection process.
Linear interpolation helps in reducing the impact of such data points;

d. Perform PAA on each time series;
e. Discriminate in the wavelets the areas of different levels of activities as de-

termined by PAA;
f. Plot release information into the time series;
g. Evaluate releases in the different intervals identified, summarizing the result

with two metrics;

So, once the transform has been applied, we need a way to summarize the patterns of
the original time series. For this, we divide the wavelet into different intervals accord-
ing to the level of burstiness, identifying bursty intervals and more constant intervals.
The reason is that we want to codify our time series in such a way that it is more easy
to automatically derive intersections with release dates. This is similar to what has
been proposed in [9] to analyze development iterations. After such identification, we
introduce the dates of releases and we evaluate the intersection of release dates with
different areas.

To divide areas of wavelets, we consider periods where activity is frenetic (A) and
others where periods of activity are more constant (B). For this, we will introduce the
following notation for the remaining of the paper: we define twi as the ith point in the
wavelet time series, Ik,ε as an interval in the time series, where twk is the starting point
and a positive integer ε is the length of the interval Ik,ε. To detect automatically areas,
we use the following discriminating rule: > 0, = + , +1 +

, | , + (),

We use this rule to classify between A, and B periods. For convenience, we also de-
fine JA as each connected set of intervals Ik,ε of type A. The same represents JB for B
periods. Fig. 6 shows the results of area mapping for the TCL project.

We next evaluate the relation between different area types and releases. We map
thus how many releases happen for each project in specific areas. More releases in
areas of type A mean that the project is more subject to a relation between releases
and download rates. The simple approach that we used in current research is to use
the intersection of releases and areas. If we apply this to TCL project, we can see that
the project is scarcely sensitive to release dates (Fig. 7).

 Download Patterns and Releases in Open Source Software Projects 259

Fig. 6. TCL project with areas identified (spaces between areas are just to ease the interpreta-
tion of figure)

Fig. 7. TCL project with areas and release dates

To automate the process, and to allow for automatic use of the approach without
examining the figures, we defined two metrics. One metric is about the sensitivity to
releases, the other about the coverage of different areas. This information is needed as
we can have the same level of sensitivity to releases but different level of burstiness
of the time series. Without visual inspection, we will miss this relevant information.
First we define the set of all releases of a project as:

260 B. Rossi, B. Russo, and G. Succi

R = {r1,r2,…,rn} .

Then we define the first metric - that we call s - as the sensitivity to releases:

= R JAR .

(1)

This metric is a weighted ratio of how many releases happen in one period of larger
activity in the downloads time series. An index of 1.0 means that all the releases of a
software project happen when the downloads time series are active the most. Con-
versely, a metric of 0.0 shows no reaction to releases: users' download of software is
completely separated from release dates.

We then define the second metric as the amount of burstiness of different time se-
ries. We refer to this metric as b. b = JA(JA JB) .

(2)

An hypothetic index towards 1.0 means a time series of downloads completely bursty.
An index towards 0.0, inversely represents a time series of downloads where rates are
almost constant. Thus in the example of TCL, we have a download rate that is not
very sensitive to releases (s=0.10) and with a trend of downloads not so bursty
(b=0.31). This result is consistent with what reported in [6] where the application is
reported as an application with regular downloads not related to releases. As can be
seen, these two metrics give us more information than the mere average download
rates.

5 Experimental Results

We provide an experimental evaluation of the method by applying it to several pro-
jects out of the FLOSSMole repository [5] and with data about releases gathered
through SourceForge. The strategy of selection of the sample of projects was to select
the most downloaded projects from the whole SourceForge's history (Table 2). This
choice had the aim of limiting missing data points in the time series on one side, and
providing a first evaluation that can then be replicated on less downloaded projects. In
this way, this first evaluation has the aim to gather findings from a well-known set of
applications where downloads totals are quite consistent.

For each project, we gathered the time series of downloads, limiting the analysis
to 1.000 data points. For the selection of the parameters, based on the sensitivity
analysis reported in the next section, we selected the length of each interval Ik,ε
with ε=30. After collecting the data, we applied the whole approach to the dataset
of each project.

 Download Patterns and Releases in Open Source Software Projects 261

Table 2. Most downloaded projects in Sourceforge's history

Rank Project Name Type Total
Downloads

% Zeros
TS 1000

1 eMule P2P Client 510,493,881 0,00%
2 Azureus / Vuze P2P Client 455,284,828 0,30%
3 Ares Galaxy P2P Client 209,066,979 0,40%
4 7-Zip Compression Software 76,806,020 12,30%
5 FileZilla Client FTP 71,295,059 34,40%
6 GTK+ and GIMP

installers for Windows
Graphical tool 64,212,148 24,30%

7 Audacity Audio Editor 64,051,083 4,40%
8 DC++ P2P Client 56,488,262 4,30%
9 PortableApps.com:

Portable Software/USB
Utility 55,713,765 18,90%

10 BitTorrent File Sharing 52,031,664 81,08%
11 Shareaza P2P Client 49,799,296 0,20%
12 VirtualDub Video Editing 47,835,670 10,20%
13 CDex Digital Audio Ripper 39,738,454 6,30%
14 Pidgin Instant Messaging 32,309,818 24,10%
15 aMSN Instant Messaging 31,175,716 6,30%
16 WinSCP File Transfer Client 29,681,313 6,10%

5.1 Filtering

A first problem we had with the data set was how to handle zero counts in the time
series. For this set of largely downloaded projects, our interpretation is that a zero in
the download totals for one day means a missing point in the data collection process.
The evolution of the download counts for such projects also justifies this view, with
zeros interleaved to medium-high level download counts. Since our method supposes
the application of interpolation, we wanted in any case to avoid its excessive applica-
tion. For this reason, we filtered out from the sample the projects that had more than
10% zeros in the time series. Additionally, two projects were excluded from the sam-
ple. The DC++ and the CDex projects were removed as we didn't have enough in-
formation about release dates.

5.2 Interpolation

For projects that were included in the sample, we interpolated linearly the missing
points from previous and subsequent values in the time series. In this way, even with
an approximation, we limited the impact of missing values from the data collection
phase that could lead to an erroneous generation of different areas in the time series.
In this experiment, we used a simple linear interpolation.

5.3 Sensitivity Analysis

There is one subjective choice when applying PAA: the selection of the number of
segments to use. In our research, we considered monthly segments (segments of

262 B. Rossi, B. Russo, and G. Succi

length 30) and we believe this is as an appropriate number of segments according to
our knowledge of the dataset, as we wanted to avoid weekly cyclic patterns. To sup-
port this decision, we performed a sensitivity analysis (Fig. 8), by calculating the
Euclidean distance between the original time series and the wavelet. The analysis
shows how PAA fits the original time-series according to different number of seg-
ments. With our selection of the parameters, we do not compress excessively the
original representation of the dataset.

If we consider a higher number of segments, the fitting will improve going from
monthly, to weekly segments, for example. By doing this, we will also introduce more
cyclic patterns into the time series. So there is a trade-off in this sense. Our heuristic
of selection for the estimation of the segments preferred to use monthly segments to
reduce effects of weekly patterns in the time series.

Fig. 8. TCL Project, distance between the wavelet and the time series according to number of
segments (the lower value the better the fitting)

5.4 Results

After filtering and interpolation, we considered out of the initial 16 projects, just 7
projects (Table 3). The following categories were included: a) P2P Clients, b) Audio
applications, c) Instant messaging, d) File Transfer Clients.

Table 3. Selected Projects

Project Name Type Total Downloads
eMule P2P Client 510,493,881
Azureus / Vuze P2P Client 455,284,828
Ares Galaxy P2P Client 209,066,979
Shareaza P2P Client 49,799,296
Audacity Audio(Audio Editor) 64,051,083
aMSN Instant Messaging 31,175,716
WinSCP File Transfer Client 29,681,313

 Download Patterns and Releases in Open Source Software Projects 263

Then we applied to all projects the PAA technique, the derivation of areas in the
time series, and the calculation of the metrics for sensitivity to releases and the level
of burstiness. We report in the following the results.

For each project, we present the project name, the figure of the wavelet against re-
leases, the parameters for sensitivity to releases, and burstiness of the wavelet as cal-
culated by our approach (Table 4). The reader can see that in some cases, a high level
of sensitivity to releases (s parameter) can even be enforced by the fact that there are
shorter areas of burstiness (b parameter).

Table 4. Analysis of the Projects

Project Name Original time series, PAA and releases s b

eMule 0,80 0,39

Azureus / Vuze 0,06 0,15

Ares Galaxy 0,48 0,32

Shareaza 0,66 0,48

Audacity 0,83 0,33

264 B. Rossi, B. Russo, and G. Succi

Table 4. (Continued)

aMSN 0,75 0,38

WinSCP 0,69 0,57

If we look at the results, we can observe the following interesting phenomena. For

almost all projects, there is a relation among releases and download rates. The only
project where this doesn't happen is the Azureus/Vuze project. This goes against our
assumption that a user of a P2P application always wants to get the latest release as
soon as possible, for example to get security fixes that are particularly important for
this category of application or improvements like greater download speeds. If this
doesn't happen for this particular application, it could mean that there specific charac-
teristics of the application, or in the modality of distribution of the application that can
be different. It can also be an indication that users – differently from the other cases –
received the updates mostly from updates inside their Linux operating system distri-
bution and not via software downloads. So this can also be in fact an indication that
download rates for that application have to be taken with care.

5.5 Findings

Popular open source software projects follow different patterns of downloads accord-
ing to the release of a software version. Mostly projects downloads follow the dates of
releases with typical increases, but this is not always the case. It is thus interesting to
examine the reasons of projects that do not strictly follow this rule. We summarize the
findings deriving from the research questions in Table 5.

We suspect that for projects where download patterns are not strictly in relation to
releases there are two distinct explanations:

a. users really do not care about the latest release of the application. This can
also happen because the update of the application requires much effort com-
pared to the advantages of the update, so the user may decide to postpone the
update to a later time;

b. users are interested in updates and are actually updating the software as a
new version appears. In this case, downloads time series do not capture this
behavior, maybe because users are getting the updates by means of alterna-
tive sources (other websites than SourceForge or through the mechanism of
updates in their own Linux distribution);

 Download Patterns and Releases in Open Source Software Projects 265

Table 5. Summary of the Findings

Research Question Finding(s)
RQ1. Are download patterns connected to
releases in open source software projects?

We found that - in the majority of
the projects analyzed - releases lead
to an increase in download rates. In
some cases, such behavior is less
evident or even absent (e.g.
Azureus). The explanation for this
can be in the characteristics of users
or the project features, but can also
be an indication that download totals
are not completely reliable for that
specific application.

RQ2. If such relation exists, is the relation
consistent in the same category of projects?

We found that the behavior is not
consistent across all categories.
Even in the limited set of categories
we used, users respond in different
ways to software releases even in
the same category of applications.
For example, in our sample, it is not
true that users of P2P applications
are more interested than other users
in getting the latest release of the
software.

We argue thus that if we are in the a) case, downloads time-series can still be used as
a somewhat reliable indicator of project's success in combination with other measures
of usage and users' satisfaction. Conversely, if we are in the b) case, the evaluation of
download rates must be complemented with additional information deriving – as an
example – from projects' websites traffic, and/or search engines queries, like has been
proposed in [11].

5.6 Limitations

The main limitation of the approach is about the definition of the parameters of PAA
segmentation and areas definition. Although we provided the heuristic of selection
and sensitivity of the model to the parameters when explaining the approach, it is
clear that different parameters can lead to slightly different results. Specifically, the
choice of the length of the interval Ik,ε can give as result areas of different size to be
used then in the metrics for calculation. Sensitivity analysis has been performed to
reduce and limit this effect.

6 Conclusions and Future Works

We proposed a method to augment the expressiveness of downloads time series of
open source software projects. We added information about the relation of projects'

266 B. Rossi, B. Russo, and G. Succi

downloads to releases and defined two metrics. The metrics defined can give informa-
tion about the responsiveness of the users to releases. This is a first step in research of
automatic detection of patterns in downloads time series. Information from such pat-
terns can then be used in models to detect projects' success.

We applied experimentally the method to a subset of projects in the SourceForge
repository. We showed that codifying the downloads time series as two metrics con-
veys more information than using global metrics like average download rates or total
download counts. As we have seen experimentally, even if projects have similar total
download rates and counts, they can follow completely different download patterns.
As such considering just those numbers can lead to wrong or biased conclusions.
Furthermore, project downloads can be more or less related to software releases
showing different behaviors from the point of view of users that can depend – and this
will need to be validated in future research - on projects characteristics, application
type or even modality of distribution.

Future research goes into two directions. One direction is to extend the approach to
a larger data set, specifically focusing on projects' categories. The second direction is
to investigate successful projects with an extension of the methodology developed in
this paper.

Acknowledgments. We thank the creators and maintainers of the FLOSSMole reposi-
tory for granting access and for their constant effort in providing a useful source of
information about open source projects.

References

1. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality re-
duction for indexing large time series databases. ACM Trans. Database Syst. 27(2), 188–
228 (2002)

2. Crowston, K., Annabi, H., Howison, J.: Defining Open Source Software Project Success.
In: Crowston, K., Annabi, H., Howison, J. (eds.) Proceedings of the 24th International
Conference on Information Systems (ICIS), pp. 327–340 (2003)

3. Crowston, K., Annabi, H., Howison, J., Masango, C.: Towards a portfolio of FLOSS pro-
ject success measures. In: The 4th workshop on Open Source Software engineering, Inter-
national Conference on Software Engineering (2004)

4. Delone, W.H., McLean, E.R.: The DeLone and McLean Model of Information Systems
Success: A Ten-Year Update. J. Management of Information Systems 19, 9–30 (2003)

5. Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative repository for
FLOSS research data and analyses. International Journal of Information Technology and
Web Engineering 1(3), 17–26 (2006)

6. Israeli, A., Feitelson, D.G.: Success of Open Source Projects: Patterns of Downloads and
Releases with Time. In: IEEE International Conference Software Science, Technology, &
Engineering, pp. 87–94 (2007)

7. Feitelson, D.G., Heller, G.Z., Schach, S.R.: An Empirically-Based Criterion for Determin-
ing the Success of an Open-Source Project. In: Proceedings of Australian Software Engi-
neering Conference, pp. 363–368 (2006)

8. Li, T., Li, Q., Zhu, S., Ogihara, M.: A Survey on Wavelet Applications in Data Mining.
SIGKDD Explor. Newsl. 4(2), 49–68 (2002)

 Download Patterns and Releases in Open Source Software Projects 267

9. Rossi, B., Russo, B., Succi, G.: Analysis of Open Source Software Development Iterations
by means of Burst Detection Techniques. In: Proceedings of the 5th International Confer-
ence on Open Source Systems, pp. 83–93. Springer, Boston (2009)

10. Wiggins, A., Howison, J., Crowston, K.: Measuring Potential User Interest and Active
User Base in FLOSS Projects. In: proceedings of the 5th International Conference on Open
Source Systems, pp. 94–104 (2009)

11. Weiss, D.: Measuring Success of Open Source Projects using Web Search Engines. In:
Scotto, M., Giancarlo, S. (eds.) Proceedings of the 1st International Conference on Open
Source Systems, Genova, Italy, pp. 93–99 (2005)

© IFIP International Federation for Information Processing 2010

Modelling Failures Occurrences of Open Source
Software with Reliability Growth

Bruno Rossi, Barbara Russo, and Giancarlo Succi

CASE – Center for Applied Software Engineering
Free University of Bolzano-Bozen

Piazza Domenicani 3, 39100 Bolzano, Italy
{brrossi,brusso,gsucci}@unibz.it

http://www.case.unibz.it

Abstract. Open Source Software (OSS) products are widely used although a
general consensus on their quality is far to be reached. Providing results on OSS
reliability - as quality indicator – contributes to shed some light on this issue
and allows organizations to make informed decisions in adopting OSS products
or in releasing their own OSS. In this paper, we use a classical technique of
Software Reliability Growth to model failures occurrences across versions. We
have collected data from the bug tracking systems of three OSS products,
Mozilla Firefox, OpenSuse and OpenOffice.org. Our analysis aims at determin-
ing and discussing patterns of failure occurrences in the three OSS products to
be used to predict reliability behaviour of future releases. Our findings indicate
that in the three cases, failures occurrences follow a predetermined pattern,
which shows: a) an initial stage in which the community learns the new version
b) after this first period a rapid increase of the failure detection rate until c) very
few failures are left and the discovery of a new failure discovery is rare. This is
the stage in which the version can be considered reliable.

Keywords: Software failures, software reliability growth, open source software.

1 Introduction

Many of the open source projects do not have resources to dedicate to accurate testing
or inspection so that the reliability of their products must rely on community's reports of
failures. The reports are stored in the so-called bug tracking systems, are uploaded by
the community, and moderated by internal members of the open source project. Reports
are archived with various pieces of information including the date of upload and the
description regarding the failure. What information can be collected from these reposi-
tories and how to mine them for reliability analysis is still an open issue ([6], [5]).

This paper proposes a method to mine bug repositories in order to determine pat-
terns of failure occurrences that can be used to model reliability of past, current, and
future versions of an open source product. In particular, this work discusses whether
the traditional theory of software reliability growth can be readily applied to data
coming from open source products. Our approach relies on an deep understanding of
the bug tracking system used by each open source project and an accurate cleaning of

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 268–280, 2010.

 Modelling Failures Occurrences of Open Source Software with Reliability Growth 269

the data. Specifically, we have examined the user reports across versions of three
open source projects, Mozilla Firefox1, OpenOffice.org2, and OpenSuse3. For each
project and version, we have extracted information on the dates of issue opening and
the number of open reports per day. We have fitted the traditional software reliability
growth models with the time series of failures occurred per day for each version. We
have repeated this procedure for major versions of the product and we have ranked
the resulting best fit models for each version by a set of measures of model accuracy
and reliability prediction. To understand whether there is a pattern in the failure oc-
currences of a product, we simply counted the number of times a model type is ranked
at the top among all the versions and per measure of accuracy or prediction.

The paper is organized as follows. Section 2 consists of the background and some
literature related to the work. This section briefly introduces to Software Reliability
Growth Models and measures of accuracy and prediction. Section 3 illustrates the
data sample and reviews the assumption we made in data collection and analysis.
Section 4 introduces the method of regression across versions and pattern definition.
Section 5, reports of the findings. Section 6 illustrates the limitation of the work and
the future work. With section 7 we conclude.

2 Background

Modelling failure occurrences with Software Reliability Growth (SRG) is a classical
approach in static analysis for software reliability ([2], [10], [11], [14]). In reliability
growth, failure occurrences are assumed to grow with time such that the time to the
next failure increases with time, too. This behavior is modeled with stochastic proc-
esses that describe the cumulative number of failures over time ([13]). The expected
mean of the stochastic process defines a parametric function of time and represents
the expected total number of failures at any instant of time t. Then the parameters of
the expected mean are determined by non-linear regression on the actual dataset of
cumulative number of failures over time.

The major challenges in SRG is to determine the mathematical expression of the
expected mean either with a constructive procedure or with regression on predeter-
mined families of time curves. While the former requires a deep understanding of the
failures occurrence process in the operational environment of the software product
([10]), the latter focuses on an ex-post study shifting the complexity of the analysis to
the data cleaning, model fitting, and interpretation, ([8], [9]). In this paper, we adopt
the latter approach for the type of information we were able to gather with remote
queries to data of the open source repositories.

Although this approach seems more feasible in our case, mining repositories for
software reliability is not straightforward. To understand this we need to recall the
meaning of software reliability. Software reliability refers to the capability of a soft-
ware system to follow given specifications in a given interval of time and in given
operational settings. A system experiences a failure when it deviates from this behav-
iour during its usage. As such, the best indicators for failures are users' reports on

1 http://www.mozilla-europe.org/en/firefox
2 http://www.openoffice.org
3 http://www.opensuse.org/en

270 B. Rossi, B. Russo, and G. Succi

misbehaviour of the system during its usage. Gathering data on usage misbehaviour is
hard as it depends on users' feedback, which is difficult to trace down. As a conse-
quence, the majority of the classical works in SRG has used the same failures data-
bases4, not publicly accessible ones, or databases of defects discovered during internal
testing ([10]) preventing proper conclusions on real system misbehaviour and replica-
tions in different applicative domains ([4]).

Nowadays, open source projects represents a new source of data for software reliabil-
ity. They are as open to the everyone and provide enough information to perform
analysis replications, but they may contain duplicate information, lack of complete
information, and use localizations of standards and terminology. For example, in our
case we were not able to find in the repositories information on deployment, customer
usage profiles, and testing data that have been proved to be good predictor of failures
occurrence rates and failures occurrence patterns for software systems prediction, ([2]).
We also had to discard some open source projects that apparently had a large amount of
users' report, but that at the end - after cleaning – data was too scarce to perform a rigor-
ous analysis. Even with such drawbacks, we still believe that reliability analysis on open
repositories is of great value as it is based on the real user’s reports the effort is to un-
derstand whether the specific source provides suitable information.

Among several studies that analyzed open source software from the point of view
of software reliability, we can cite ([12], [15], [18]). For example, Eclipse, Apache
HTTP Server 2, Firefox, MPlayer OS X, and ClamWin Free Antivirus applications
have been evaluated by means of several models, and the Weibull distribution has
been found to adapt well in modelling simpler projects, although more complex mod-
els are claimed to be needed for Firefox and Eclipse [12]. In [15], authors are inter-
ested in evaluating the reliability of a complex system developed with a distributed
approach, the Xfce desktop. Using decision support methods and non-homogeneous
Poisson processes (NHPP), authors show how to model the complex interactions
among components for failure reliability prediction. In [18], several open source
software projects have been analyzed and found to behave similarly to equivalent
closed source applications. Also in this case, the Weibull distribution has been found
to be a simple and effective way to represent software reliability growth.

In our research, after selecting the appropriate open source projects and cleaning
the data our work provides an extension of the work of Li et al ([7]) and Succi et al.
([14]) combining the two approaches - software reliability growth across versions
([7]) and reliability growth and measures of accuracy and prediction ([14]) - and rep-
licating the study on three different OSS. Mining repositories for software failures is a
hot topic ([1], [2], [5], [6], [7], [8]), but at our knowledge it does not seem to be any
research that has compared results across multiple releases and multiple OSS through
multiple measures of accuracy and prediction.

2.1 Candidate Software Reliability Growth Models

We use the Software Reliability Growth Models (SRGMs) adopted in ([14]). SRGMs
are stochastic processes described by a counting random variable determined by the

4 Like the PROMISE Repository of Software Engineering Databases. School of Information

Technology and Engineering, University of Ottawa, Canada http://promise.site.uottawa.ca/
ERepository/ or the new one http://promisedata.org/

 Modelling Failures Occurrences of Open Source Software with Reliability Growth 271

cumulative number of failures over time ([13]). The expected mean at a given time t
of these models is defined by a parametric curve in t, μ(t). The goal of software reli-
ability growth is to determine the parameters of the expected mean. Many of the
SRGMs we used are Poisson Processes whose mass probability is defined by a Pois-
son distribution. The basic model of them is the Musa exponential model ([11])
whose expected number of failures is defined by the parametric expression:

μ(t)=a(1-e-bt), a>0 and b>0 . (1)

SRGMs can be S-shaped or concave depending whether they change concavity at
least once. S-shaped models have an initial learning stage in which the failures detec-
tion rate, starting from very low values, shows a first increase and then a decrease that
finally approaches to zero. Interpreting the model with time between failure occur-
rences, S-shaped models show an initial slow pace of failures occurrences, then a
period in which failures are reported frequently until when relatively few failures
remains in the code and failure discovery becomes hard. Example of S-shaped models
are Weibull and Hossain Dahiya models. Concave models do not foresee such curve
and reveal a good knowledge of the new released version. Failures are discovered
soon after the release with a fast pace. Example of concave models are the Goel-
Okumoto and Gompertz models.

In addition, models can be finite or infinite. Finite models have an horizontal as-
ymptote and therefore a finite total expected number of failures are assumed in the
product. The interested reader can find further details in the papers of Succi et al.,
([14]), and in the book of Lyu, ([10]).

2.2 The Measures of Accuracy and Prediction

The measures of accuracy and prediction capture the properties of a best-fit SRGM.
We group the measures two by two by the attribute of the model we want to investi-
gate. Table 1 introduces them indicating the references for further readings.

Table 1. Measures of accuracy and prediction used to rank the best fit models

Model Attribute Measure Reference
Goodness of fit Coefficient of Determination (R2)

Akaike Information Criterion (AIC)
[3]
[7]

Precision of fit Relative precision to fit (RPF)
Coverage of fit (COF)

[14]
[16]

Forecasting ability Predictive ability (PA)
Accuracy of the final point (AFP)

[14]
[17]

Goodness of fit and precision of fit refers to modelling the dataset, whereas forecast-

ing ability defines the prediction nature of the model. Goodness of Fit expresses the
ability of a mathematical model to fit a given set of data (R2 and AIC). Precision of fit
provides the extent (RPF) and the ability of the model to capture the data (COF) in the
95% confidence interval of the model. In general, these two measures are used in com-
bination as they give complementary information on model precision. Measures of
forecasting ability define the capability of a model to predict early in time (PA) or accu-
rately (AFP) the final total number of failures.

272 B. Rossi, B. Russo, and G. Succi

3 The Dataset

We have selected three well-known OSS products: a web browser, Mozilla Firefox,
an office suite, OpenOffice.org, and an operating system, OpenSuse. Each of these
products maintains a bug tracking system open to the community based on Bugzilla5.
We have chosen these three software projects also because their project’s strategy for
failures storage and the terminology used in Bugzilla is enough similar.

For each version found in the bug tracking system we have collected all the issues
reported at our date of observation together with the date at which they were reported
(date of opening). For each open source project, we have considered all the major
versions until mid 2008 with more than 40 failures. For OpenOffice.org we were able
to get 13 versions until 2006 (that we decided they were enough for the purpose of
this analysis). Unfortunately, OpenSuse and Mozilla Firefox had not so many reports
and versions at the time of our data collection and we had to limit the versions to five
for OpenSuse and three for Mozilla Firefox.

Table 2 illustrates the dataset collected and the models used on the datasets.

Table 2. The Datasets

Application SRGMs type6 Versions Time Window
Mozilla Firefox Weibull, Goel Okumoto,

Gompertz, Logistic, Goel
Okumoto Sshaped,
Hossain Dahiya

1.5, 2.0.0.0 and
3.0.0.0

23.10.2006-8.6.2008

OpenOffice.org Goel-Okumoto, Goel-
Okumoto S-shaped,
Weibull, Hossain-Dahiya,
Yamada

1.0.0, 1.0.1, 1.0.2,
1.0.3, 1.1.0, 1.1.1,
1.1.2, 1.1.3, 1.1.4,
2.0.0, 2.0.1, 2.0.2,
2.0.3

16.9.2001-21.08.2006

OpenSuse Goel-Okumoto, Goel-
Okumoto S-shaped,
Weibull, Hossain-Dahiya,
Gompertz, Logistic

10.0,10.1,10.2,10.
3, 11.0

5.9.2005-1.6.2008

The Bugzilla repository allows to mine failures with sophisticated queries. A report

in Bugzilla is called issue or bug and it may carry a large amount of information that
needs to be pruned according to the research that is performed. To choose the view
more appropriate for the research objective, one needs to understand in details the life
cycle of an issue. In Fig. 1, we report the standard life cycle of a report submitted to a
Bugzilla repository as described in the documentation7.

Although the three projects we have chosen are all supported by a Bugzilla reposi-
tory, we found out that their customization significantly varies. As such, starting from

5 http://www.bugzilla.org
6 The mathematical expression of the SRGMs model can be found in ([10]) or in ([13]).
7 http://www.bugzilla.org/docs/tip/en/html/lifecycle.html

 Modelling Failures Occurrences of Open Source Software with Reliability Growth 273

Fig. 1. Bugzilla life cycle of an Issue

the description in Fig. 1., we had to put some further effort in the homogenization of
the terminology and the procedures used by the open source projects in moderating
the issues.

3.1 Empirical Assumptions

In this section we discuss all the assumptions we have made on the data before start-
ing our analysis.

Looking at the cumulative number of failures, we have noticed that in each version
the rate of growth tends to zero for large values of time (Fig. 2, 3, and 4) indicating a
bound for the total number of failures. For this reason, we have decided to include
only finite models in our analysis, ([10]).

After a deep inspection of the repositories and of their documentation, we have de-
cided to focus on those issues that were declared “bug” or “defect” excluding any
issue that was called something like “enhancement,” “feature-request,” “task” or
“patch”. This would have guarantee that our analysis dealt with proper failures. For
the same reason, we have considered only those issues that were reported as closed or
fixed (according to the terminology of the single repository) after the release date of
each version. Namely, reports before the release date were in general related testing
release candidates and they were not expressing the reliability of the version.

For the same reason, we have cleaned the dataset from issues that were declared some-
thing like “duplicate,” “won’t fix,” or “it works for me.” Table 3 illustrates our choice.

Table 3. Chosen view of the Bugzilla repositories

Issue Type Status Resolution Platforms and
operating systems

Defects/Bugs Resolved, Verified, Closed,
New, Started, Reopened

Fixed/Closed All

274 B. Rossi, B. Russo, and G. Succi

4 The Method

For each version of Table 2, we have collected failures according to their date of
opening. In this way, we had defined a time series of cumulative number of failures
per version. The following three pictures illustrate a sample of the time series and the
plots of their SRGMs. In Fig. 4 we also report the 95% confidence interval of the
Hossain Dahiya model.

Fig. 2. Cumulative number of failures of Firefox version 1.0, the best-fit model (HD) and its
95% confidence interval. HD: Hossain Dahiya, GO-S: Goel Okumoto S-shaped, Gompertz.

Fig. 3. Cumulative number of failures of OpenSuse version 10.0 and its best-fit models. GO:
Goel Okumoto, GO-S: Goel Okumoto S-shaped, Gompertz, HD: Hossain Dahiya, Logistic,
Weibull S: Weibull S-shaped, Weibull more S: Weibull S-shaped, Yamada.

 Modelling Failures Occurrences of Open Source Software with Reliability Growth 275

For every OSS chosen, we have fitted the parametric expected mean of the SRGMs
with the actual cumulative series of failures per each version of Table 2. As a result
we have obtained a set of best fit models each corresponding to one type of SRGM in
Table 2. At the end, we have obtained 18 SRGMs (6 each version) for Mozilla Fire-
fox, 52 SRGMs (4 each version) for OpenOffice.org, and 25 SRGMs (5 each version)
for OpenSuse. Fig. 2, 3, and 4 illustrate the time series and the curves corresponding
to the best-fit models for one version of the three OSS. We have ranked the resulting
best-fit models of every version by the measures of model accuracy and reliability
prediction of Table 1.

A SRGM that outperforms for a given measure across versions of an OSS repre-
sents a pattern of reliability for that OSS. To determine the pattern we have simply
counted for each measure of accuracy or prediction of Table 1, the number of time a
best fit SRGM of a given type outperforms across the versions. In the following sec-
tion, we discuss the existence and the type of pattern we have found.

Fig. 4. Cumulative number of failures of OpenOffice.org version 1.0.1 and its best-fit models.
HD: Hossain Dahiya.

5 Findings

In the following we report of the findings for the three OSS. The Yamada model is
not included as its analysis does not report of significant results.

OpenSuse. For all the versions of OpenSuse, the Weibull model is the best one in all
the measures but prediction ability. Thus, we can say that across versions it represents
the data (Goodness of fit), it captures the majority of the data in small area of confidence
(Precision of fit), and it is accurate in determine the final number of defects that partially
determines forecasting ability. Namely it is not the best for prediction ability, thus we
cannot use it to predict the total number of defects early in time. In fact, there are no
SGRMs that can do it as no model outperforms across versions for predictive ability.

The predominance of the Weibull model confirms the findings in ([7]) extending
the result to other measures of accuracy than the Akaike Information Criterion.

276 B. Rossi, B. Russo, and G. Succi

In Table 4 we report the rankings for version 11.0.

Table 4. Ranking of the best fit models for OpenSuse version 11.0

Model Type R Squared AIC CoF RPF AFP PA
Weibull 0.998 1.38 96% 3075.47 0,05 0.77
Weibull
S-shaped

0.997 1.4 96% 4057.85 0.30 0.77

Goel Okumoto 0.995 1.49 82% 792.31 1.91 0.77
Gompertz 0.993 1.6 18% 144.02 3.15 0.75
Logistic 0.985 1.75 62% 642.75 4.79 0.75
Goel Okumoto
S-shaped

0.956 1.95 69% 10838.81 7.51 0.79

Hossain
Dyohain

0.935 2.05 2% N/A 9.64 0.71

Mozilla Firefox. The Weibull model dominates in all the versions for all the meas-
ures but accuracy of the final point and relative precision of fit. Again this confirms
and extends the results in ([7]). In Table 5, we illustrate the values of the measures of
version 1.5 of Mozilla Firefox. The values in boldface are the best ones. In this ver-
sion, the Weibull model has the worst overall behaviour compared with the other
versions. Nonetheless, it is in the top most ranking in three out of six measures and
well performing in the rest. The exceptional case is RPF that measures the area of the
95% confidence interval over the time span of the series. As measure of accuracy RPF
is subsidiary to CoF and it is used in combination with it. Thus, as models with low
CoF are less relevant per se, the Weibull model is the most interesting, although the
ratio CoF / RPF is not the highest. The Weibull model is not the best for prediction
though. This is true for all the versions and in particular in the case of AFP for version
1.5 in Table 5.

Table 5. Ranking of the best fit models for Mozilla Firefox version 1.5

Model Type R Squared AIC CoF RPF AFP PA
Weibull 0.973 2.55 94% 35.52 0.04 0.62
Goel Okumoto 0.973 2.51 56% 7 0.022 0.62
Gompertz 0.954 3.08 18% 2.68 0.13 N/A
Logistic 0.934 3.45 25% 6.43 0.15 N/A
Goel Okumoto
S-shaped

0.956 3.02 37% 4.52 0.17 N/A

Hossain
Dyohain

0.973 2.54 80% 13.02 0.024 0.62

OpenOffice.org. The Weibull model is again the best model across the measures of
accuracy and prediction. In particular, for CoF the model outperforms 70% of the
times across the versions.

The predominance of the Weibull model across so many versions as in OpenOf-
fice.org is definitely significant.

 Modelling Failures Occurrences of Open Source Software with Reliability Growth 277

Table 6. Ranking of the best fit models for OpenOffice.org version 2.0

Model Type R Squared AIC CoF RPF AFP PA
Weibull 0.998 3.08 0.95 27.09 0.001 47%
Goel Okumoto 0.994 4.05 0.32 7.59 0.04 47%
Gompertz 0.98 5.24 0.17 5.89 0.07 45%
Logistic 0.965 8.85 0.24 23.86 0.09 45%
Goel Okumoto
S-shaped

0.946 6.21 0.23 14.35 0.12 N/A

Hossain
Dyohain

0.991 4.42 0.34 11.44 0.054 46%

Comparing the results for the three applications we can say that:

• For Goodness of fit (R square and AIC) the Weibull model confirms its superiority
according to the work of Li et al. ([7]). The model well represents the data and the
Weibull pattern can be used to represent future versions.

• For Precision of fit the 95% confidence interval of the Weibull model is the best in
capturing data within its 95% confidence interval (CoF) although sometimes with a
poor density (or equivalently in a large confidence interval, RPF). This is a meas-
ure of spread of data around the model also accounting for its variation in its confi-
dence interval. Any significant variation of the model still represent the data with
enough precision. This might turn to be useful when we discuss the time of occur-
rences in the open source repositories. The time reported in the repositories (calen-
dar time) might not refer to the real time in which the user has been experiencing a
failure. Some delay might have been occurred. As such, the result for Precision of
fit even if it gives a positive answer for the Weibull model is not completely satis-
factory and a Monte Carlo sensitivity analysis on the timing for each version will
be matter of future work.

• For Predictive ability the Weibull model is definitely good to estimate the final
total number of failures (AFP) but it cannot be used – as any other SRGM – for
early prediction (PA). For this purpose, other approaches might be considered in
combination ([1], [8], [9]). The lack of a pattern for PA further means that in the
majority of the versions of the three OSS there is a low increase of the failure de-
tection rate as in Fig. 2 (with or without a learning effect) so that it is impossible to
predict the total number of failures of a version at the early stage of the failure re-
porting process. Thus, the case of Fig. 3 where a sudden and early increase of the
detection rate appears, is less frequent across the versions of the three products Fig.
2 better represents the data as after 300 days the number of failures is still far to be
near to the total final number of the version.

6 Limitations and Future Work

During our inspection, we have understood that the bug tracking system is regularly
used by the internal team of the project. Internal team members know better the appli-
cation so their reports might not represent typical end-user’s reports of a failure. Al-
though we have used some measure to limit this bias (section 4.1), as we could not

278 B. Rossi, B. Russo, and G. Succi

differentiate between issues reported by the internal team and the rest of the world, we
could not guarantee that the dataset is a dataset of failures reported only by end-users.
In any case, as we have considered reports issued only after the release date, the re-
ports of the internal team members refer to an operative period of the OSS and as
such they contribute to some extant to the overall reliability of the OSS.

The date of report might be not exactly the date of failure discovery. There might
have been some delay in reporting the issues and - depending on the repository – in
the assignment of the date of opening during the moderation of the issue. This might
create a noise in the timing and it will be matter of future research.

The number of versions, the number and types of SRGMs, and the time windows
of the observations are different in the three OSS. This was due to some time con-
straints, the availability of the data in the repositories, and the missing values for the
measures in Table 1. As we do not pretend to compare the three OSS, but we rather
want to understand whether there is a pattern of reliability in each OSS, this differ-
ence is not crucial.

7 Conclusions

The goal of this paper was to present an approach to investigate reliability of OSS
with software reliability growth. We used open on-line repositories to collect data of
three different projects. We intensively cleaned the data we collected to limit the bias
associated with the open nature of these repositories.

We found that the classical theory of software reliability growth is appropriate for
such data and it is a good instrument to model failure occurrences across software
versions.

We found that the Weibull model is the best model that fits the data across all the
versions for each OSS (Goodness of Fit) with a low percentage of outliers (Precision
of Fit). This confirms the results obtained in ([7]) for the Akaike Information Crite-
rion and reveals a common pattern of software reliability for the three OSS. Namely,
the Weibull model is the best SRGM that represents the failure occurrences in the
three open source products. It is an example of S-shaped curve and as such it indicates
an initial learning phase in which the community of end-users and reviewers of the
open source project does not react promptly to new release. This slow pace at which
failures are reported might originate from various causes like, for example, the unfa-
miliarity with the project or its complexity. Given the existence of candidate releases
and intermediate versions one could expect that the community were ready to report
of failures soon after the public release date. But the learning curve proves differently
in three OSS.

Given the dominance of the Weibull model across the versions of an OSS we can
assume that this type of model can be used for the future versions of the OSS. The
open question is how to predict the parameters of this model without fitting the model
on future data. In [8] the authors propose to use a combination of code and time
measures. This approach will be matter of future research.

For OpenOffice.org and OpenSuse, the Weibull models can also be used for accu-
racy of the final point telling mangers when the version can be considered reliable as
few failures remain to be discovered. As Fig. 2 shows, this does not hold for Mozilla

 Modelling Failures Occurrences of Open Source Software with Reliability Growth 279

Firefox. This may suggest how the community reacts differently to new releases of
Firefox showing a slow pace to report failures in the early days after the release.

Yet, SRGMs are not a good instrument to early prediction of the total number of
failures within the operational life of an OSS. Other instruments like Bayesian mod-
els, Product/Process models or genetic algorithms might be explored in combination
with predictive ability ([1], [8], [9]).

Acknowledgments. We thank Sufian Md. Abu, Stefan Mairhofer, Gvidas Dominis-
kaus for their help in data collection and cleaning. We also thank the projects Mozilla
Firefox, OpenSuse, and OpenOffice.org for the data supplied for this study.

References

1. Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., Guéhéneuc, Y.: Is it a bug or an en-
hancement?: a text-based approach to classify change requests. In: CASCON 2008, vol. 23
(2008)

2. Bassin, K., Santhanam, P.: Use of software triggers to evaluate software process effective-
ness and capture customer usage profiles. In: Eighth International Symposium on Software
Reliability Engineering, Case Studies, pp. 103–114. IEEE Computer Society, Los Alami-
tos (1997)

3. Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley- Interscience, Chichester
(1998)

4. Fenton, N., Neil, M.: A Critique of Software Defect Prediction Models. IEEE Transactions
on Software Engineering 25(5), 675–689 (1999)

5. Godfrey, M.W., Whitehead, J.: Proceedings of the 2009 6th IEEE International Working
Conference on Mining Software Repositories, Vancouver Canada, May 16-17 (2009)

6. Li, P.L., Herbsleb, J., Shaw, M.: Forecasting field defect rates using a combined timebased
and metrics-based approach: a case study of OpenBSD. In: 16th IEEE International Sym-
posium on Software Reliability Engineering (ISSRE), pp. 10–19 (2005)

7. Li, P.L., Herbsleb, J., Shaw, M.: Finding Predictors of Field Defects for Open Source
Software Systems in Commonly Available Data Sources: a Case Study of OpenBSD. In:
11th IEEE International Symposium on Software Metrics (2005)

8. Li, P.L., Shaw, M., Herbsleb, J., Ray, B., Santhanam, P.: Empirical evaluation of defect
projection models for widely-deployed production software systems. In: Proceedings of
the twelfth international symposium on Foundations of software engineering, pp. 263–272
(2004)

9. Li, P.L., Shaw, M., Herbsleb, J.: Selecting a defect prediction model for maintenance re-
source planning and software insurance. In: Proceedings of the Fifth International Work-
shop on Economics-driven Software Engineering Research, Oregon, USA (2003)

10. Lyu, M.R.: Handbook of Software Reliability Engineering. McGraw-Hill, New York
(1996)

11. Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability: Measurement, Prediction, Ap-
plication. McGraw-Hill, New York (1989)

12. Rahmani, C., Siy, H., Azadmanesh, A.: An Experimental Analysis of Open Source Soft-
ware Reliability. In: F2DA 2009 Workshop on 28th IEEE Symposium on Reliable Distrib-
uted Systems, Niagara Falls (2009)

13. Rigdon, S.E., Basu, A.P.: Statistical Methods for the Reliability of Repairable systems, p.
281. Wiley and Sons, Chichester (2000)

280 B. Rossi, B. Russo, and G. Succi

14. Succi, G., Pedrycz, W., Stefanovic, M., Russo, B.: An Investigation on the Occurrence of
Service Requests in Commercial Software Applications. Empirical Software Engineering
Journal 8(2), 197–215 (2003)

15. Tamura, Y., Yamada, S.: Comparison of Software Reliability Assessment Methods for
Open Source Software. In: 11th International Conference on Parallel and Distributed Sys-
tems - Workshops (ICPADS 2005), vol. 2, pp. 488–492 (2005)

16. Wood, A.: Predicting software reliability. Computer 29(11), 69–77 (1996)
17. Yamada, S., Ohba, M., Osaki, S.: S-Shaped Reliability Growth Modeling for Software Er-

ror Detection. IEEE Transactions on Reliability, 475–484 (December 1983)
18. Zhou, Y., Davis, J.: Open Source Software Reliability Model: an empirical approach. In:

International Conference on Software Engineering: Proceedings of the fifth workshop on
Open Source Software Engineering, St. Louis, MO (2005)

A Field Study on the Barriers in the
Assimilation of Open Source Server Software

Kris Ven and Jan Verelst

Department of Management Information Systems,
University of Antwerp, Antwerp, Belgium

{kris.ven,jan.verelst}@ua.ac.be

Abstract. An increasing number of academic studies have been devoted
to the organizational adoption of open source software (OSS). Most
studies have either focused on determining which reasons influence the
adoption of OSS, or which barriers prevent the adoption of OSS. To our
knowledge, no prior study has been conducted to determine which barri-
ers exist to the further adoption of OSS in organizations. Studies address-
ing this issue could provide more insight into whether organizations are
effectively able to overcome the initial barriers to adoption, or whether
new barriers arise when the organization expands its use of OSS. To this
end, we conducted a qualitative field study involving 56 organizations that
were asked to report on which barriers existed to their further adoption of
OSS. The data was analyzed using a mixed methods approach by combin-
ing both qualitative and quantitative techniques. Results showed that the
main barrier reported by organizations was a lack of internal and external
knowledge. Furthermore, our results indicate that there was no relation-
ship between the barriers reported by organizations and their extent of
OSS usage. This indicates that these barriers remain important as orga-
nizations increase their assimilation of OSS.

Keywords: open source software, adoption, assimilation, knowledge,
barriers.

1 Introduction

In the past few years, an increasing number of academic studies have been de-
voted to the organizational adoption of open source software (OSS). One line
of research has investigated which reasons influence the adoption of OSS (see
e.g., [32,8,14,18,16,15,31]). These studies have provided more insight into which
factors have a positive impact on the adoption of OSS. Typically, such studies
hypothesize that organizations that exhibit a number of favorable characteris-
tics are more likely to exhibit a greater extent of adoption [6]. Hence, these
studies consider both organizations with a low extent of adoption and organiza-
tions with a high extent of adoption. A second line of studies has investigated
the non-adoption of OSS (see e.g., [20,12,5,13,19,10,11]). These studies are con-
cerned with determining which barriers prevent organizations from adopting

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 281–293, 2010.
c© IFIP International Federation for Information Processing 2010

282 K. Ven and J. Verelst

OSS. These barriers can have an important negative influence on the organiza-
tional adoption of OSS. It is important to realize that adoption and non-adoption
are indeed two distinct phenomena [21,9]. Gatignon and Robertson have noted
that “the variables accounting for rejection are somewhat different from those
accounting for adoption; rejection is not the mirror image of adoption, but a
different form of behavior.” [9, p. 42]. For example, it has been shown that even
in the presence of several strong arguments in favor of the adoption of OSS, the
existence of additional factors with a negative impact on adoption may result in
non-adoption [13]. Previous studies that investigate the barriers to the adoption
of OSS generally use a sample of organizations that have not adopted OSS (e.g.,
[10,11,13]).

To our knowledge, no prior study has been conducted to determine which
barriers exist to the further adoption of OSS in organizations. However, we
argue that it is interesting to consider which barriers exist for organizations that
have already adopted OSS to some extent. These barriers may limit the ability
of organizations to further increase their adoption of OSS. It seems unlikely
that an organization that has adopted OSS to a limited extent will no longer
experience any barriers when expanding its use of OSS. Instead, a more gradual
process is likely to take place in which organizations slowly overcome the barriers
to adoption over time. Hence, there is currently a lack of studies that consider
the impact of barriers to the further adoption of OSS. Studies addressing this
issue could provide more insight into whether organizations are effectively able to
overcome the initial barriers to adoption, or whether new barriers arise when the
organization expands its use of OSS. The results from such studies could allow to
devise interventions that facilitate the further adoption of OSS in organizations.

In this study, we will address this gap in literature by investigating how the
barriers reported by organizations evolve as organizations increase their use of
OSS. To this end, a qualitative field study involving 56 organizations was con-
ducted to determine which barriers existed to the further adoption of OSS. Our
sample included organizations that did not adopt OSS, as well as organizations
that have adopted OSS to at least some extent. Each respondent was asked to
report which barriers they perceived to be present to the further adoption of
OSS. We investigated whether the existence of these barriers was related to the
extent to which the organization has adopted OSS. This will provide insight into
whether these barriers are overcome by organizations as they increase their as-
similation of OSS, and which additional barriers may arise later in the adoption
process.

2 Methodology

Our study was conducted as a qualitative field study. A self-administered web
survey was used to collect the data for our study. The scope of our survey was
restricted to the use of open source server software (OSSS). For the purpose of
this survey, the term OSSS referred to a limited list of 7 OSS products consisting
of Linux, BSD, Apache, Bind, Sendmail, Postfix and Samba. Respondents were

A Field Study on the Barriers in the Assimilation of OSSS 283

instructed on each page of the survey that the term OSSS referred to this spe-
cific list of OSS products. Our sample consisted of Belgian organizations from
different sectors and sizes. The target person in each organization was the IT
decision maker, commonly the CIO or IT manager. We received a reply from
111 out of 153 organizations that were sent an invitation to participate, which
corresponds to a response rate of 72.5%.

The main question in the survey that respondents needed to answer was the
following: “Which reasons prevent the (further) adoption of OSSS in your orga-
nization?”. The question was open-ended, allowing organizations to provide a
free format reply. This approach allowed us to obtain more in-depth information
than by using a closed-ended question. In addition, organizations were also asked
to report on their extent of Linux adoption and their degree of OSSS assimila-
tion. The extent of Linux adoption was measured on a 7-point point Likert scale
ranging from “no usage” to “to a very large extent”. The assimilation of OSSS
was measured by using the Guttman scale developed by Fichman and Kemerer
[7] which was slightly reworded to fit the context of the adoption of OSSS (see
also [32]).

A mixed methods approach was used to analyze our data, by using both
qualitative and quantitative techniques [24,22]. In a first step, our data was
analyzed by using qualitative techniques [17,2,27]. This analysis was performed
by using NVivo 8. After importing the data in NVivo, all replies were coded to
identify any barriers reported by respondents. In a first cycle, coding took an
inductive approach by creating new codes as new reasons were identified in the
responses [2,27]. After this first cycle, a list of 21 codes was obtained. In a second
cycle, the codes were further aggregated into a hierarchy consisting of 8 main
categories representing the barriers to the further adoption of OSSS [2,27].

In a second step, the qualitative data was converted into quantitative data.
This process is commonly referred to in mixed methods research as quantitizing
[24,23,3,28]. After quantitizing, statistical methods can be used to test hypothe-
ses regarding the relationships between independent and dependent variables de-
rived from both qualitative and quantitative data [28,3]. Combining qualitative
and quantitative analysis techniques is an accepted approach in mixed methods
research and can assist the researcher to more easily distinguish and communi-
cate patterns within the qualitative data [24,23,3,28,17]. Each barrier that was
coded in the qualitative analysis was converted into a dichotomous variable by
using NVivo. Each case was assigned a value of one if the barrier was present,
and zero otherwise. This resulted in a matrix in which the presence or absence
of each code derived from the qualitative data was recorded for each case. This
matrix is referred to as an inter-respondent matrix or a case-by-variable matrix
[24,3]. This matrix was further extended with quantitative data concerning the
degree of OSSS assimilation and the extent of Linux adoption. This matrix was
then used to perform statistical analyses to further analyze the data [24,23,3,28].
These analyses were performed in SPSS 15.0.

284 K. Ven and J. Verelst

3 Findings

A quick inspection of our data showed that 55 out of 111 respondents did not
provide an answer to the question of which barriers (further) inhibit the use
of OSSS. This was indicated by an empty string for the reply field. A missing
reply could have two causes: (1) the respondent did not reply to the question,
or (2) the respondent could not identify any barriers to the further adoption of
OSSS. Unfortunately, we were not able to make a distinction between these two
scenarios. All cases with empty responses were therefore coded as unanswered.
These cases were discarded in the further analysis of our data. As a result, we
obtained usable replies from 56 organizations in our sample. We will first present
an overview of which barriers were reported by our respondents. Next, we will
investigate whether these barriers are related to the assimilation of OSSS or the
extent of Linux adoption.

3.1 Barriers to the Further Adoption of OSSS

A general overview of which barriers were mentioned by the organizations in our
sample is presented in Table 1. This table contains the 8 barriers that were iden-
tified during the coding process. One barrier (“insufficient knowledge”) is further
divided into two subcategories (“internal” and “external” knowledge). The sec-
ond column indicates how many organizations have reported each barrier.1 The
final column indicates the percentage of organizations that has reported each
barrier. Since organizations could mention more than one barrier, the total of
this column does not add up to 100%. This column represents the frequency
effect size of each barrier [22]. We will now discuss each of these barriers in more
detail.

Insufficient Knowledge. The most important barrier that was mentioned by
almost a third of the organizations is a lack of knowledge about OSSS. We further
distinguished between insufficient internal knowledge (i.e., knowledge that is held
by employees within the organization) and external knowledge (i.e., knowledge
that is offered by service providers). Our data shows that internal knowledge is
the most important component. Many organizations reported that they lacked
employees that are familiar with OSSS. One respondent mentioned that it was
“difficult to find in-house the right technical staff to maintain [OSSS]”. In addi-
tion, the knowledge base within the organization may also restrict the opportu-
nities to explore the use of OSSS. One respondent mentioned that the increased
use of OSSS was difficult due to “colleagues who are more proprietary-oriented”.
With respect to the availability of external knowledge, organizations were con-
cerned that no commercial support was available for OSSS and that the internal
IT staff would be responsible for supporting the software. One respondent noted

1 Since one organization reported a lack of both internal and external knowledge, the
number of organizations that reported insufficient knowledge is not the sum of the
number of organizations that reported insufficient internal and external knowledge.

A Field Study on the Barriers in the Assimilation of OSSS 285

Table 1. Overview of Barriers Mentioned by Respondents

Number of Percentage of
Rank Barrier Organizations Organizations

1. Insufficient Knowledge 18 32.1%
Insufficient internal knowledge 13 23.2%
Insufficient external knowledge 6 10.7%

2. No further barriers 15 26.8%
3. Limited functionality 9 16.1%
4. Management guidelines 8 14.3%
5. Insufficient resources 7 12.5%
6. Dependency on vendor 3 5.4%
7. Not a goal 2 3.6%
8. Satisfaction with proprietary software 1 1.8%

Total organizations responding: 56

Note: percentages do not add up to 100% since organizations
could mention more than one barrier.

that “currently no suppliers offer/support OSSS”. It was verified that this spe-
cific respondent was not interested in using OSSS in the organization, and can
therefore be expected to have accumulated little knowledge about OSSS.

No Further Barriers. Some organizations explicitly mentioned that they could
not identify any barriers to the further adoption of OSSS.2 Although this is not
a real barrier that inhibits the use of OSS, it is interesting to consider this factor
as it identifies those organizations that have overcome all barriers to adoption.
For one organization, the absence of any remaining barriers appeared to have
paved the way to make OSSS the preferred technology for the organization, as
the respondent wrote: “We don’t have any reason to prevent future use of OSSS!
We have the intention to use OSSS as much as possible!”.

Limited Functionality. Several organizations mentioned the limited function-
ality of OSSS as a major barrier to adoption. The most important remark in this
regard was the poor interoperability with proprietary applications. For example,
one respondent mentioned “compatibility issues on file-level and application-level
with Microsoft software”. One organization from the financial sector also raised
concerns with respect to the “necessary security requirements in a financial en-
vironment”.

Management Guidelines. The attitude of managers may also impede the use
of OSSS. Several respondents expressed that managers in the organization were
either “unease about the use of OSS” or simply “not in favor of OSS”. This
2 Please note that we were not able to determine whether a blank reply meant that the

respondent did not reply to the question, or that the respondent could not identify
any barriers. It is therefore likely that our data slightly underestimates the number
of respondents that could not identify any barriers.

286 K. Ven and J. Verelst

appeared to be mainly due to a lack of trust in OSS. As one respondent men-
tioned: “we work for a large organization who values the trusted vendors more
than the cost savings of working with OSS”. As a result, some organizations had
a clear policy that did not allow the use of OSSS. The respondent in the financial
organization mentioned above, for example, indicated that “an in-house policy
forbids the use of all OSSS”. In organizations in which IT plays an important
role, managers may also prefer to posit strict guidelines with respect to the use
of IT. This was illustrated by one respondent as: “the decision of the board to
go with ‘standardization’, which seems to be Microsoft nowadays”.

Insufficient Resources. Some organizations reported that a lack of resources
(i.e., time, money, and human resources) inhibited the use of OSSS. For most
organizations, the main issue in this respect seemed to be a lack of internal
resources that are available to gain experience with emerging technologies. This
was expressed by one respondent as: “not enough manpower to try out new
things”. One respondent considered OSSS unsuitable for organizational use by
saying that: “we have no time for such hobbies”. Another organization seemed
to think that using OSSS still required much customization efforts by explaining
that the use of OSSS would require “too much investment to make tailor-made”.

Dependency on Vendor. Some organizations mentioned that they could not
adopt OSSS because they fully depended on a vendor for their software. Inter-
estingly, this factor was mentioned by three public organizations, all so-called
Public Center for Social Welfare (PCSW). As expressed by one respondent,
“given the specific PCSW software, we are dependent on our software vendor”.
These organizations need to use specific software for their services, and only a
limited number of vendors currently offer this software on the market.

Not a Goal. Two organizations mentioned that the further use of OSSS was
not a goal in itself. One respondent indicated that the further use of OSSS was
“not a necessity”. This seems to suggest that these organizations do not want
to increase the use of OSSS per se, but rather decide on a project-per-project
basis which solution (proprietary or OSS) is best suited.

Satisfaction with Proprietary Software. Finally, one organization men-
tioned that “we are satisfied with our current proprietary software [operating
system] and don’t see the ROI or the major change in TCO to move to OSSS”.
If organizations are satifisfied with their existing systems, there may indeed be
no compelling reason to consider the adoption of OSS.

3.2 Relationship with Assimilation of OSSS

Next, we determined whether the existence of certain barriers was related to the
assimilation stage reached by the organization. The Guttman scale developed
by Fichman and Kemerer [7] classifies organizations into 7 different assimilation
stages. Organizations that are situated in stages 0 to 3 have not yet made a
formal decision to adopt OSSS. They have progressed at most to the trial or

A Field Study on the Barriers in the Assimilation of OSSS 287

Table 2. Relationship between Assimilation and Barriers Reported

Number of Percentage of Fisher
organizations organizations Exact

Barrier NAD AD NAD AD Test

1. Insufficient knowledge 10 8 37.0% 27.6% .319
Internal knowledge 7 6 25.9% 20.7% .441
External knowledge 4 2 14.8% 6.9% .301

2. No further barriers 5 10 18.5% 34.5% .148
3. Limited functionality 4 5 14.8% 17.2% .547
4. Management guidelines 3 5 11.1% 17.2% .395
5. Insufficient resources 5 2 18.5% 6.9% .182
6. Dependency on vendor 1 2 3.7% 6.9% .527
7. Not a goal 2 0 7.4% 0.0% .228
8. Satisfaction with proprietary software 1 0 3.7% 0.0% .482

Total number of organizations: 27 29

Note: percentages do not add up to 100% since organizations could mention
more than one barrier.
Legend: NAD: non-adopter, AD: adopter.

evaluation stage, where the use of OSSS is still being considered. Organizations
in the latter stages (4 to 6) have made a formal decision to adopt, and are
using OSSS in a production environment. It therefore appears that stage 4 is a
logical boundary between assimilation stages. For the purpose of this analysis,
organizations that have not progressed beyond stage 3 (evaluation/trial) will be
called “non-adopters”, while organizations that have reached at least stage 4
will be called “adopters”.

Table 2 shows how many adopters and non-adopters have mentioned each bar-
rier. Similar to Table 1, we also calculated the frequency effect size for each bar-
rier [22]. This effect size was calculated by dividing the number of non-adopters
(or adopters) that mentioned a specific barrier by the total number of non-
adopters (or adopters). These effect sizes are displayed in column 4 and 5 and
indicate the relative importance of each barrier for each group.

In order to test whether there are statistically significant differences between
the barriers reported by adopters and non-adopters, we constructed a 2 × 2
contingency table for each of the barriers by using the data from Table 2. The
rows classified organizations according to whether they mentioned a specific
barrier, while the columns distinguished between adopters and non-adopters.
The Fisher Exact Test was used to test for significant relationships. The Fisher
Exact Test can be used when the assumptions of the χ2-test are violated [26].
The use of this test was appropriate in this case given the use of a 2×2 table, the
relatively small sample for each barrier, and an expected frequency below five for
some cells [26]. The Fisher Exact Test returns the propability that exactly the
same observed distribution or an even more disproportional distribution would
be obtained by taking into account the row and column totals [26]. A one-tailed,
directional test was performed since it is expected that adopters would report

288 K. Ven and J. Verelst

Table 3. Relationship between Linux Adoption and Barriers Reported

Number of Percentage of Fisher
organizations organizations Exact

Barrier NLU LU NLU LU Test

1. Insufficient knowledge 13 5 39.4% 21.7% .499
Internal knowledge 9 4 27.3% 17.4% .220
External knowledge 5 1 15.2% 4.3% .665

2. No further barriers 6 9 18.2% 39.1% .381
3. Limited functionality 5 4 15.2% 17.4% .063
4. Management guidelines 5 3 15.2% 13.0% .503
5. Insufficient resources 6 1 18.2% 4.3% .418
6. Dependency on vendor 0 3 0.0% 13.0% .512
7. Not a goal 1 1 3.0% 4.3% .643
8. Satisfaction with proprietary software 1 0 3.0% 0.0% .804

Total number of organizations: 33 23

Note: percentages do not add up to 100% since organizations could mention
more than one barrier.
Legend: NLU: non-Linux user, LU: Linux user.

fewer barriers. The output of the Fisher Exact Test for each barrier is shown
in the final column in Table 2. As can be seen, none of these values are smaller
than a critical level of α = .05. Hence, we have to accept the null hypothesis
that there is no significant difference between adopters and non-adopters with
respect to any of the barriers.

We further investigated this relationship by considering whether organizations
that mentioned a barrier exhibited a lower degree of OSSS assimilation than
those organizations that did not report the barrier. To this end, a t-test for each
barrier was conducted. None of these t-tests identified a significant difference at
α = .05.

3.3 Relationship with Extent of Linux Adoption

We also considered whether the extent to which the organization has adopted
Linux had an influence on the barriers reported. The extent of Linux adoption
was measured using a 7-point Likert scale, ranging from “no usage” to “to a very
large extent”. Based on this data, organizations were divided into two groups.
The first group consisted of those organizations that did not make use of Linux,
or only to a small extent (i.e., those who answered 1–3 on the 7-point Likert
scale) and will be called “non-Linux users”. The second group consisted of those
organization who made use of Linux to at least a moderate extent (i.e., those
who answered 4–7 on the 7-point Likert scale) and will be called “Linux users”.

Table 3 shows a breakdown of the barriers reported by Linux and non-Linux
users, as well as the frequency effect size for each barrier. Similar to before, the
Fisher Exact Test was performed for each barrier to test whether the barriers
reported differed based on the extent of Linux adoption. As can be seen in

A Field Study on the Barriers in the Assimilation of OSSS 289

Table 3, none of the Fisher statistics are smaller than the critical value of α = .05.
Hence, we have found no significant difference between Linux and non-Linux
users with respect to the barriers reported.

We subsequently performed a series of t-tests to investigate whether orga-
nizations that reported a barrier exhibited a lower extent of Linux adoption.
Results showed only one significant difference at α = .05. It was shown that
organizations that reported that they could not identify any further barriers to
the adoption of OSSS exhibited a higher extent of Linux adoption (t = −2.028,
df = 54, p = .048).

4 Discussion and Conclusion

Several of the barriers discussed above were also mentioned in previous research
(see e.g., [10,20,11,12,25,5,19]). However, an important result of this study is
that the most important barrier to the further adoption of OSSS was insufficient
knowledge on OSSS. Our data suggests that the lack of internal knowledge is
more important than a lack of external knowledge. This can be explained by
the fact that it can be rather difficult to reorient the knowledge base of the
organization. Previous research has shown that the skills of employees are of-
ten brand-specific [29], or that the IT staff may resist a change towards a new
platform if it goes against their “vested interests” [30,33]. The use of service
providers is more flexible since they can be hired on an ad-hoc basis to support
the organization in the adoption of OSSS.

Overall, our results indicate that there are important knowledge barriers in-
volved in the adoption of OSSS. Knowledge barriers may occur during the adop-
tion of knowledge-intensive technologies [1]. To overcome these barriers, organi-
zations must engage in a process of organizational learning [1,7]. With respect
to the adoption of OSSS, organizations may have to invest considerable learning
effort if they have primarily experience with proprietary software. The assimila-
tion of OSSS then becomes a process of organizational learning.

These results are very consistent with our findings from previous quantitative
research that investigated which reasons influence the assimilation of OSSS [32].
Results showed that the assimilation of OSSS was primarily influenced by the
knowledge available to organizations, which suggested the presence of knowledge
barriers [32]. In addition, our previous research also showed that the availability
of internal knowledge had a more important impact on the assimilation of OSSS
than the availability of external knowledge [32]. The most important factor in-
fluencing the assimilation of OSSS was the presence of boundary spanners in
the organization [32]. Such boundary spanners are important in overcoming the
knowledge barriers involved in the adoption of new technologies [4]. The find-
ings of this study therefore provide further support for our previous conclusions.
This is remarkable since the aim and research design of both studies was quite
different.

We further used statistical techniques to analyze our qualitative data. Our re-
sults showed that organizations that have adopted Linux to a higher extent tend

290 K. Ven and J. Verelst

to report more often that they cannot identify any remaining barriers to the fur-
ther adoption of OSSS. This suggests that barriers to adoption are only overcome
in the final stages of the assimilation process. This illustrates the importance of
also considering which barriers exist for organizations that have already adopted
OSSS. In addition, we were not able to find any statistically significant indica-
tions that the barriers reported by organizations were related to their degree
of OSSS assimilation or their extent of Linux adoption. This implies that these
barriers remain an issue during the whole assimilation process. Hence, our data
does not suggest that organizations are effectively able to overcome these barri-
ers to adoption. This means, for example, that a lack of knowledge continues to
be an important problem for organizations when increasing their assimilation of
OSSS.

4.1 Contributions

The main contribution of this study is that it addresses a topic that has not
been previously addressed in literature, namely the barries that exist to the
further adoption of OSS. We provided an overview of which barriers exist to
the adoption of OSSS by using a large-scale sample including both organizations
that did not adopt OSSS, and organizations that have adopted OSSS to at least
some extent. By investigating the relationship between the existence of these
barriers and the degree to which the organization has adopted OSSS, it was
shown that these barriers remain important in the whole assimilation process of
OSSS. This highlights the importance of also considering the barriers that limit
the further adoption of OSSS.

A second contribution is that we confirmed the results from our previous
quantitative study. This is noteworthy since a very different approach was used
in this paper. A first difference is that our previous study focused on determin-
ing the factors that influence the assimilation of OSSS. In our present study,
we were concerned with which barriers inhibited the further use of OSSS. It
has been noted in literature that adoption and non-adoption are two fundamen-
tally different phenomena [21,9]. A second difference is that our previous study
used quantitative techniques to analyze the data, while a combination of qual-
itative and quantitative techniques were used in this paper. The fact that the
results from both studies using multiple methods are very consistent increases
the (nomological) validity of our results.

An important practical implication of this study is that organizations should
consider the adoption of OSSS to be a learning process. This learning process
is required to overcome the knowledge barriers associated with the adoption
of OSSS. This implies that organizations should invest sufficient internal re-
sources to support this learning process, instead of relying exclusively on a ser-
vice provider. By having sufficient internal knowledge, the assimilation of OSSS
can be facilitated. Decision makers can also take initiatives to foster the ac-
quisition and exploitation of internal knowledge. Since boundary spanners have
found to be important in overcoming knowledge barriers, decision makers could
try to stimulate the emergence of informal boundary spanners and seek their

A Field Study on the Barriers in the Assimilation of OSSS 291

input during the adoption process. In addition, decision makers should be aware
of the existence of these knowledge barriers when considering the adoption of
OSSS. This means that they should not only consider the advantages that the
adoption of OSSS could offer to the organization (e.g., lower cost, the availabil-
ity of the source code, or the reduction of vendor lock-in), but should also take
into account whether the organization has the ability to acquire the knowledge
required to use OSSS.

4.2 Limitations and Future Research

This study has a few limitations that provide opportunities for future research.
A first limitation is that we did not obtain the perception of each organization
with respect to each of the barriers reported in Table 1. Instead, organizations
were asked to report any perceived barriers in a free text field. This way, we
only obtained those barriers that spontaneously came into the mind of the re-
spondent, without further probing for their opinion on other barriers. This may
have had an impact on our results. Future research may therefore take the list of
barriers identified in this study as a starting point, and measure the perception
of organizations towards each barrier. Finally, the external validity of our study
is limited in the sense that the scope of our study was limited to Belgian orga-
nizations and OSSS. It would therefore be useful to replicate this study in other
regions and by using a different set of OSS products (e.g., OSS desktop products
such as OpenOffice.org) to see to which degree our results can be generalized.

References

1. Attewell, P.: Technology diffusion and organizational learning: The case of business
computing. Organization Science 3(1), 1–19 (1992)

2. Auerbach, C.F., Silverstein, L.B.: Qualitative Data: An Introduction to Coding
and Analysis. Qualitative Studies in Psychology. New York University Press, New
York (2003)

3. Bazeley, P.: The contribution of computer software to integrating qualitative and
quantitative data analyses. Research in the schools 13(1), 64–74 (2006)

4. Cohen, W.M., Levinthal, D.A.: Absorptive capacity: A new perspective on learning
and innovation. Administrative Science Quarterly 35(1), 128–152 (1990)

5. Dedrick, J., West, J.: Why firms adopt open source platforms: A grounded theory of
innovation and standards adoption. In: King, J.L., Lyytinen, K. (eds.) Proceedings
of the Workshop on Standard Making: A Critical Research Frontier for Information
Systems, Seattle, WA, December 12–14, pp. 236–257 (2003)

6. Fichman, R.G.: The diffusion and assimilation of information technology innova-
tions. In: Zmud, R. (ed.) Framing the Domains of IT Management: Projecting the
Future Through the Past, pp. 105–128. Pinnaflex Educational Resources, Cincin-
nati (2000)

7. Fichman, R.G., Kemerer, C.F.: The assimilation of software process innovations:
An organizational learning perspective. Management Science 43(10), 1345–1363
(1997)

292 K. Ven and J. Verelst

8. Fitzgerald, B., Kenny, T.: Open source software in the trenches: Lessons from
a large scale implementation. In: March, S.T., Massey, A., DeGross, J.I. (eds.)
Proceedings of 24th International Conference on Information Systems (ICIS 2003),
Seattle, WA, December 14–17, pp. 316–326. Association for Information Systems,
Atlanta (2003)

9. Gatignon, H., Robertson, T.: Technology diffusion: An empirical test of competitive
effects. Journal of Marketing 53(1), 35–49 (1989)

10. Goode, S.: Something for nothing: Management rejection of open source software
in Australia’s top firms. Information & Management 42(5), 669–681 (2005)

11. Holck, J., Larsen, M.H., Pedersen, M.K.: Identifying business barriers and enablers
for the adoption of open source software. In: Proceedings of the 13th International
Conference on Information Systems Development, Vilnius, Lithuania, September
9–11 (2004)

12. Holck, J., Larsen, M.H., Pedersen, M.K.: Managerial and technical barriers to the
adoption of open source software. In: Franch, X., Port, D. (eds.) ICCBSS 2005.
LNCS, vol. 3412, pp. 289–300. Springer, Heidelberg (2005)

13. Huysmans, P., Ven, K., Verelst, J.: Reasons for the non-adoption of openoffice. org
in a data-intensive public administration. First Monday 13(10) (2008)

14. Larsen, M.H., Holck, J., Pedersen, M.K.: The challenges of open source software in
IT adoption: Enterprise architecture versus total cost of ownership. In: Proceed-
ings of the 27th Information Systems Research Seminar in Scandinavia (IRIS27),
Falkenberg, Sweden, August 14–17 (2004)

15. Li, Y., Tan, C.H., Teo, H.H., Siow, A.: A human capital perspective of organi-
zational intention to adopt open source software. In: Avison, D., Galletta, D.,
DeGross, J.I. (eds.) Proceeding of the 26th Annual International Conference on
Information Systems (ICIS 2005), Las Vegas, NV, December 11–14, pp. 137–149.
Association for Information Systems, Atlanta (2005)

16. Lundell, B., Lings, B., Lindqvist, E.: Perceptions and uptake of open source in
Swedish organisations. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G. (eds.) Open Source Systems, IFIP Working Group 2.13 Foundation on
Open Source Software, Como, Italy, June 8–10, 2006. IFIP International Federation
for Information Processing, vol. 203, pp. 155–163. Springer, Boston (2006)

17. Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Source-
book, 2nd edn. Sage Publications, Thousand Oaks (1994)

18. Miralles, F., Sieber, S., Valor, J.: An exploratory framework for assessing open
source software adoption. Systèmes d’Information et Management 11(1), 85–111
(2006)

19. Morgado, G., van Leeuwen, M., Özel, B., Erkan, K.: Current status of F/OSS
(2007),
http://www.tossad.org/content/download/1385/6894/file/

tOSSad D18 V2.3.pdf

20. Morgan, L., Finnegan, P.: How perceptions of open source software influence adop-
tion: An exploratory study. In: Österle, H., Schelp, J., Winter, R. (eds.) Proceed-
ings of the 15th European Conference on Information Systems (ECIS 2007), St.
Gallen, Switzerland, June 7–9, pp. 973–984. University of St. Gallen, St. Gallen,
Switzerland (2007)

21. Nabih, M.I., Bloem, S.G., Poiesz, T.B.: Conceptual issues in the study of innovation
adoption behavior. Advances in Consumer Research 24(1), 190–196 (1997)

22. Onwuegbuzie, A.J.: Effect sizes in qualitative research: A prolegomenon. Quality
and Quantity 37(4), 393–409 (2003)

http://www.tossad.org/content/download/1385/6894/file/tOSSad_D18_V2.3.pdf
http://www.tossad.org/content/download/1385/6894/file/tOSSad_D18_V2.3.pdf

A Field Study on the Barriers in the Assimilation of OSSS 293

23. Onwuegbuzie, A.J., Dickinson, W.B.: Mixed methods analysis and information
visualization: Graphical display for effective communication of research results.
The Qualitative Report 13(2), 204–225 (2008)

24. Onwuegbuzie, A.J., Teddlie, C.: A framework for analyzing data in mixed methods
research. In: Tashakkori, A., Teddlie, C. (eds.) Handbook of Mixed Methods in
Social and Behavioral Research, pp. 351–383. Sage Publications, Thousand Oaks
(2003)

25. Paré, G., Wybo, M., Delannoy, C.: Barriers to open source software adoption in
quebecs health care organizations. Journal of Medical Systems 33(1), 1–7 (2009)

26. Pett, M.A.: Nonparametric Statistics for Health Care Research: Statistics for Small
Samples and Unusual Distributions. Sage Publications, Thousand Oaks (1997)

27. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Los Angeles
(2009)

28. Sandelowski, M., Voils, C.I., Knafl, G.: On quantitizing. Journal of Mixed Methods
Research 3(3), 208–222 (2009)

29. Shapiro, C., Varian, H.R.: Information Rules: A Strategic Guide to the Network
Economy. Harvard Business School Press, Boston (1999)

30. Swanson, B.E.: Information systems innovation among organizations. Management
Science 40(9), 1069–1092 (1994)

31. Ven, K., Verelst, J.: The organizational adoption of open source server software
by Belgian organizations. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G. (eds.) Open Source Systems, IFIP Working Group 2.13 Foundation on
Open Source Software. IFIP International Federation for Information Processing,
vol. 203, pp. 111–122. Springer, Boston (2006)

32. Ven, K., Verelst, J.: The organizational adoption of open source server software:
A quantitative study. In: Golden, W., Acton, T., Conboy, K., van der Heijden, H.,
Tuunainen, V. (eds.) Proceedings of the 16th European Conference on Information
Systems (ECIS 2008), Galway, Ireland, June 9–11, pp. 1430–1441 (2008)

33. Zmud, R.W.: Diffusion of modern software practices: Influence of centralization
and formalization. Management Science 28(12), 1421–1431 (1982)

Reclassifying Success and Tragedy in FLOSS Projects

Andrea Wiggins and Kevin Crowston

Syracuse University School of Information Studies
Hinds Hall, Syracuse NY 13244 USA

awiggins@syr.edu, crowston@syr.edu

Abstract. This paper presents the results of a replication of English & Schweik’s
2007 paper classifying FLOSS projects according to their stage of growth and
indicators of success. We recreated their analysis using a comparable data set
from 2006. We also expanded upon the original results by analyzing data from an
additional point in time and by applying different criteria for evaluating the rate of
new software releases for sustainability of project activity. We discuss the points
of convergence and divergence from the original work from these extensions of
the classification and their implications for studying FLOSS development using
archival data. The paper contributes new analysis of operationalizing success in
FLOSS projects, with discussion of implications of the findings.

1 Introduction

Much of the empirical analysis of FLOSS has been undertaken using bespoke data sets
laboriously created for a single analysis. However, over the last few years, research
teams have developed several repositories of FLOSS data that provide reliable curated
data about FLOSS projects (4; 7; 9). Use of data from these repositories relieves re-
searchers of the need to spider and parse data from project repository sites, increasing
productivity while also avoiding errors from problems in the data collection processes.
These repositories of repositories (RoRs, (8)) are seeing increasing use by researchers.
Much of the prior research that employed large-scale data sources should be possible
to recreate and extend using the data from RoRs, allowing the research community to
build more quickly on past work to refine theories and methods in FLOSS research.

In this paper, we adopt this approach in replicating English & Schweik’s (3) clas-
sification of project success and failure in open source projects. In this paper, we do
not engage in a detailed critique of the classification; rather our goal is methodological
development in the area of large-scale analysis of archival data from FLOSS reposito-
ries. We note though that objective methods for identifying FLOSS project success and
failure is a topic of interest for both researchers and practitioners. Researchers need to
identify successful and failed projects to be able to investigate the potential causes of
success or failure. Practitioners are interested in being able to evaluate success for sev-
eral reasons: first, this gives an individual decision information with respect to whether
to rely upon or become involved with a given software project; second, it gives soft-
ware foundation decision-makers useful information for determining whether to admit
projects or invest resources into developing them; and third, it provides an assessment
of the health of projects in which individuals and larger organizations are currently
engaged.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 294–307, 2010.
c© IFIP International Federation for Information Processing 2010

Reclassifying Success and Tragedy in FLOSS Projects 295

In the following section, we describe the classification developed by English and
Schweik (3). We then outline the methodology we adopted to recreate their results using
data from the Notre Dame SourceForge Research Data Archive (SRDA) (9). We discuss
our results in relation to the original work, examine the outcomes of varying a single
classification criterion and look at the changes to project classifications over time. We
then reflect on the methodological challenges involved in replicating large-scale anal-
ysis of archival data on open source projects. Finally, we conclude with directions for
future work.

2 Theory: Assessing Project Success

Crowston et al. (2) note that for FLOSS projects, success is a multi-dimensional con-
struct that can be assessed from many perspectives. The original classification by En-
glish and Schweik presents a set of six classes of FLOSS projects, operationalizations
for which are reproduced in Table 1 from Table 1 in (3). English and Schweik developed
the original criteria for their classification based on interviews with FLOSS developers
and the thresholds for the classification originated with their initial manual coding of a
sample of projects. (The original paper provides the full rationale for their definitions.)
The classification has two facets: the stage of the project, either initiation (I, first year
of the project or up to three releases) or growth (G, subsequent to initiation thresholds);
and the outcome, either success (S) or failure, which English and Schweik labeled as
“tragedy” (T) in reference to the tragedy of the commons. In addition, projects might
be labeled as in an indeterminate state (I) if success or failure cannot yet be determined.
Projects were classified based on a number of factors, including age, releases and their
timing, and downloads, which serves as a proxy measure for the creation of useful
software. Finally, projects were labeled as unclassifiable if there is evidence that they
may have distribution channels other than SourceForge, suggesting that the download
or release count data are unreliable. The final column of Table 1 shows the operational-
ization we adopted in our reimplementation of the classification. In many cases, our
criteria are identical, but we discovered a few necessary changes, as discussed below in
the methods section.

2.1 Propositions

Turning to the substantive content of the paper, we present several propositions related
to the three main areas of analysis, both methodological and theoretical.

1. First, we expect that our classification drawing on repository data will produce
comparable results to those reported in the original work, possibly with some minor
variations due to differences in sampling.

2. Second, we expect that the three variations in the classification criterion for the
rate of releases, an indicator of project stability, will result in differences in clas-
sification, though these differences will be limited to specific classes, as not all
classifications rely on this data.

296 A. Wiggins and K. Crowston

Table 1. Six FLOSS success/tragedy classes and their methods of operationalization, from En-
glish & Schweik (2007)

Class/
Abbreviation

Definition Original
Operationalization

Re-operationalization

Success,
Initiation (SI)

Developers have
produced a first release.

At least 1 release (Note:
all projects in the growth
stage are SI)

Not explicitly classified:
Sum of IG, SG and TG

Tragedy,
Initiation (TI)

Developers have not
produced a first re-
lease and the project is
abandoned.

0 releases AND ≥ 1 year
since SF project registra-
tion.

Same

Success,
Growth (SG)

Project has achieved three
meaningful releases of the
software and the software
is deemed useful for at
least a few users.

3 releases AND ≥ 6
months between [all]
releases AND does not
meet the download crite-
ria for tragedy detailed in
the TG description below.

≥ 3 releases AND ≥
6 months between most
recent and third most
recent release AND > 10
downloads

Tragedy,
Growth (TG)

Project appears to be
abandoned before pro-
ducing 3 releases of a
useful product OR has
produced three or more
releases in less than 6
months and is abandoned.

1 or 2 releases AND
≥ 1 year since the last
release at the time of
data collection OR ≤
10 downloads during a
time period greater than
6 months starting from
the date of the first re-
lease and ending at the
data collection date OR 3
or more releases in less
than 6 months AND ≥ 1
year since the last release

1 or 2 releases AND ≥
1 year since the most
recent release OR 3 or
more releases AND ≥
1 year since most re-
cent release OR ≤ 10
downloads1

Indeterminate,
Initiation (II)

Project has yet to reveal
a first public release but
shows significant devel-
oper activity.

0 releases AND < 1 year
since SF registration

Same

Indeterminate,
Growth (IG)

Project has not yet pro-
duced three releases but
shows development activ-
ity OR has produced 3 re-
leases or more in less than
6 months and it has been
less than 1 year since the
most recent release

1 or 2 releases AND <
1 year since the most re-
cent release OR 3 re-
leases AND < 6 months
between releases AND
< 1 year since the most
recent release

Same

1 Note: we used all-time downloads as this was operationally the same when combined with the
release rate criterion.

Reclassifying Success and Tragedy in FLOSS Projects 297

3. Finally, we also expect to see change over time in the classification applied to in-
dividual projects, based on predictions about the potential next states of projects
based on their current classification. For example, no project which has advanced
to a growth stage (SG, TG, IG) can return to an initiation stage classification (TI,
II). Projects that are II will not remain in that state for longer than a year, by defini-
tion, but may progress to any of the other classifications. In all cases where a project
may become either a success or a tragedy in the next classification, we expect to
see success less often than tragedy. As a result, as the number of projects grows,
most classes should grow proportionally, but not all. We expect that over time, the
number of tragedies will increase as a matter of accumulation of failures in the
population as a whole, although we expect that the relative proportion of successes
will remain stable. Further, we expect that the effects of time will lead to larger
proportions of projects identified as being in the initiation stage, as the number of
new projects grows, and this will in subsequent time periods lead to a slow increase
in tragedies at the initiation stage.

3 Methods

The main features of the large-scale archival data analysis consisted of replication and
extension of the original work. We applied an eScience strategy to conducting the anal-
ysis with respect to our choices of data sources and tools, and in the process created
research artifacts in the form of processed data and analysis workflows that will support
further extension of this work.

3.1 Replication

The replication of the original analysis required processing data from approximately
the same time period to provide a suitable comparison. The extension of the work was
intertwined with the replication, and involved preparing additional data for analysis of
change over time along with the addition of new variations of the classification. As our
goal with this research was methodological refinement, we selected and analyzed addi-
tional dates and variations to evaluate the performance of the classification, rather than
to make a theoretically-informed evaluation of change to the community composition
itself.

3.1.1 Data
In the original work by English and Schweik, the authors developed and tested their
classification algorithm using FLOSSmole data from 2005, subsequently creating a
sampling frame from the FLOSSmole project list of August 2006. They then spidered
SourceForge around 16 October of 2006 for release information to augment the FLOSS-
mole data. However, the data spidered by English and Schweik do not include statis-
tics for over 8,000 projects with incomplete data or that were deleted by SourceForge
between August and September. The gap between collecting project data and release
data might also invalidate a portion of the original analysis, as the period of up to two

298 A. Wiggins and K. Crowston

months between data collection times affects values for the thresholds for a project’s ac-
tive lifespan, achievement of maturity and release rate. For example, projects that made
a first release in August or September could be misclassified as TG instead of IG.

The goal of our work was to demonstrate the use of a shared data repository for repli-
cation of the original research. Because of the limitations on the available data from
FLOSSmole, as noted by English and Schweik, we selected SRDA as the data source,
as it contained all of the necessary data for the classification at the time. In addition,
we note that the SRDA data comes straight from SourceForge as a monthly database
dump, which makes it an authoritative data source. FLOSSmole data are parsed from
SourceForge HTML pages, and while the repository provides a reliable data source,
its contents are one step removed from the original source. We analyzed data for Oc-
tober 2006 to match the data collection for releases in the original work; more specif-
ically, we used the October 2006 release of SRDA data, which was captured on 23
October 2006.

3.1.2 Analysis
The analysis was replicated by careful examination of the original English and Schweik
article, from which the requirements for data and processing were derived. A workflow
for the data processing was developed in Taverna, a scientific workflow tool (1; 6). This
approach made it easy to integrate data coming from several different sources, e.g., from
the SRDA and a local cache of release data (previously retrieved from the SRDA), and
to modularize the analysis steps. The analysis was implemented in several phases: a first
phase to retrieve the basic data needed about project downloads and releases, followed
by phase that ran simple tests on criteria to determine whether thresholds had been met,
and finally a stage that classified the projects according to these tests.

For the replication of the classification, we found it challenging to determine the
correct data selection or parameters for classification from the text of the English and
Schweik article. Fortunately, the workflow implementation allowed us to remain flex-
ible in our data selection and to parameterize the analysis. As we sought to reproduce
the classification table in the published article in the format of a truth table to achieve
completeness and exhaustiveness in the classification, we discovered that the classifi-
cation as published was not complete. Some of the negative cases were not included in
the published table, which is not to say that the authors did not consider these cases,
perhaps because those combinations did not arise in the original data sample. For the
most part, we were able to fill in the appropriate classifications for negative cases based
on inheritance from other criteria for each class.

We also faced slight differences in the data available from the SRDA that required
some changes to the operationalizations. For example, the SRDA did not have a con-
venient source for downloads within 6 months, though in the cases where that count
was required, it was functionally equivalent to all-time downloads, which we used in-
stead. The final column of Table 1 shows the operationalizations we developed and
implemented in the workflows.

After debugging and verification of the workflow’s performance with a subset of
data, the final analysis was run with a full replicated data sample and compared to
the original published research. In production, we eventually substituted SQL queries
for the final two phases of the classification workflow due to significant economies

Reclassifying Success and Tragedy in FLOSS Projects 299

in processing time. The analysis of the resulting data was conducted with R on the
classified data stored in a SQL database. To encourage reuse of these data and analysis
approaches, the workflows, SQL scripts and classification data will be made available
to other researchers from our website, http://floss.syr.edu/.

As a result of using the SRDA data, the time required to retrieve and pre-process
data were much lower than reported in original article. English and Schweik spent 22
days to spider the data for the analysis that were not already available in FLOSSmole.
After optimizing our processes, we found that retrieving and preparing the data for
classification requires less than 30 hours for data sets approaching 150,000 projects. In
future efforts, this reduction in processing time will allow us to develop more granular
analysis of changes to project classification over time by generating analysis-ready data
for each monthly release of data from the SRDA.

3.2 Extending Analysis

In addition to replication, we wished to extend the prior work by examining stability of
classification status over time, and evaluating the performance of two alternate means
of operationalizing the rate of release.

3.2.1 Additional Dates
Our data processing times were significantly lower than reported for the original work,
so we were able to analyze data for more than one date. Preparing data for analysis is the
most time consuming part of the process, but by storing the prepared data, we are able
to reuse it more readily with alternate classification schemes. In addition to the original
date, we analyzed data from April 2006 to provide a short-term comparison that would
help evaluate the stability of the classification over a relatively short period of time.
We selected this time period because over a period of six months, there is opportunity
for many projects to change status on several of the indicators, thereby affecting their
classification status.

3.2.2 Implementing English and Schweik’s Future Work
One of the more complex aspects of the original analysis is the qualification of release
rate as an indicator of the sustainability of project activity. The assumption here is that
projects which make releases too quickly cannot maintain the pace of activity; what this
fails to take into account, however, is the wide diversity of release strategies employed
by FLOSS projects. The original measure evaluates release rate by whether the project
has had at least six months elapsed between first and last releases, which automatically
privileges older projects rather than more stable projects. One solution, inspired by
English and Schweik’s discussion of these issues, is setting a threshold for the amount
of the time between the most recent series of releases, rather than for all releases. A
second option is to evaluate the average time between each release against a threshold,
which applies the lifetime perspective of the original method, but seems likely to be
more stable than the alternative that evaluates the time between only the most recent
releases. We have implemented both of these variations, along with the original version,
to evaluate the influence of this factor on project classification.

http://floss.syr.edu/

300 A. Wiggins and K. Crowston

4 Results

We discuss the results of our analysis with three comparisons: comparison to the orig-
inal published results, comparison of results from varying one classification criterion,
and comparison of classification over time.

4.1 Comparison to Original Published Results

Our results for data from October 2006, using the same default values for the classi-
fication thresholds, are compared with the original results for the same time period in
Table 2. We note that as percentages of the classified projects, our results are similar
for the classes of II, IG, TG, and SG. They are also remarkably close in values for the
number of “unclassifiable” projects.

Potential causes for variation in results could be discrepancies in the release and
download data, which English and Schweik retrieved from different sources and at dif-
ferent times, as previously discussed. Variations in release data in particular would be
problematic, as this could affect the determinations of whether or not the project is ac-
tive, whether it has had enough releases, and whether or not the releases have occurred
too quickly to be considered sustainable.

Table 2. Comparison of classification results to original results from English and Schweik

Class Original results Replication Results Difference

unclassifiable 3,186 3,296 +110
II 13,342 (12%) 16,252 (14%) +2,910 (+2%)
IG 10,711 (10 %) 12,991 (11%) +2,280 (+1%)
TI 37,320 (35%) 36,507 (31%) -813 (-4%)
TG 30,592 (28 %) 32,642 (28%) +2,050 (+0%)
SG 15,782 (15%) 16,045 (14%) +263 (-1%)

other 8,422 —

Total 119,355 117,733 (+ 9.6%)

Another variation between these results is that we produced no “other” classifica-
tions. We did not run into problems with differences between sampling frames and ac-
tual data that we were able to collect, as there was no delay between sampling and data
collection. More specifically, we have not sampled so much as taken a census, as we
have used all of the available data for each time period. The discrepancies in total num-
bers of projects, approximately 1,600 fewer in our sample, could also result from the
deletions of inactive projects that the authors cited as a cause for the “other” projects;
however, we were able to classify a larger number of projects overall. The date for the
SourceForge dump upon which our analysis is based is slightly later in the month of
October than the original analysis data collection time period (and two months later
than the collection of project statistics), but in our case, we have no record for projects
that were deleted from the SourceForge system. Overall, we consider the replication
successful, as the greatest variation in classification by proportion is in the TI category,
with a relative difference of just 4%.

Reclassifying Success and Tragedy in FLOSS Projects 301

4.2 Comparison of Release Rate Criteria

As discussed previously, we implemented three different variations for judging the sus-
tainability of the rate at which a project is making releases. The original article called
for a period of at least 6 months between the most recent release and the first in the
window of three releases. English and Schweik mentioned examining the time between
each release, and based on this idea, we implemented a density-based calculation of
the time elapsed over the most recent three releases (Method Two). The final variation
compares the average time between all releases in a project against a threshold (Method
Three); notably, this is a more strict definition than the original and may merit a different
threshold value. The original implementation allowed an average of three months be-
tween releases in the case of the minimum qualifying number of releases for evaluating
success; the results are reported for a six-month threshold in Table 3.

Table 3. Classification outcomes from varying release lag measures for each time period, using a
six month threshold

2006-10-23 Method One Method Two Method Three

IG 12,991 (11%) 14,310 (12%) 19,235 (16%)
II 16,252 (14%) 16,252 (14%) 16,252 (14%)

SG 16,045 (13%) 15,426 (13%) 3,143 (3%)
TG 32,642 (28%) 31,942 (27%) 39,300 (33%)
TI 36,507 (32%) 36,507 (32%) 36,507 (32%)

It is clear that variations in this criterion result in a reclassification of SG projects
as IG or TG projects. This occurs when the release lag evaluation comes out as “too
fast” to be considered sustainable (IG), or the project has not made a release in the
last year (TG). In all other ways, these projects are judged successful according to the
other classification criteria—they have achieved “enough” releases and the software has
been downloaded. This reclassification effect is exaggerated in the comparison between
Method One and Three because the difference in calculation method suggests that a
different threshold value should have been used.

While this change to the release rate criterion seems to have a small effect with the
recent release density function (Method Two) and a larger effect with the averaging
over all releases function (Method Three), comparison of the project-level classifica-
tions tells another story. We find that even at the six-month threshold, Methods One
and Three are most consistent with respect to results; in every case, the changes to a
project’s classification is a transition from SG to IG or TG. However, applying Method
Two yields changes from SG to IG as well as from IG to SG, and likewise with TG. In
addition, more classifications are changed with Method Two than with Method Three,
so the apparently smaller change in summary statistics masks a larger change in classi-
fication at the project level.

4.3 Comparison over Time

The comparison of classification results over time suggests interesting directions for
future analysis at a more granular level. Table 4 compares the counts of projects at two

302 A. Wiggins and K. Crowston

points in time, April and October of 2006. The consistency in SG classifications over
time demonstrates underlying regularity with respect to the proportion of projects which
can meet the classification criteria for success. We also see relative stability in the IG
and II classes. We also observe growth of the TG class over time as it gradually accu-
mulates failures, as we would in fact expect.

Interestingly, the changes between these two periods show small increases in the
proportions of most classifications, with a notable decrease in the frequency of the TI
classification. This suggests that more projects are successful at making at least one
release than odds would suggest. All other things equal, we might expect to small net
increases across all categories, but this would not take into consideration the compound
effects of change over time; the decrease in TI projects would suggest that there is a
substantial number of projects which require more than one year to make their first
release. Logically, these projects are most likely to become TG or IG projects.

Table 4. Classification outcomes from different time periods, using the original release rate
criteria

Class 2006-04-21 2006-10-23

IG 12,166 (10.8%) 12,991 (11.0%)
II 13,592 (12.4%) 16,252 (13.8%)

SG 14,244 (12.7%) 16,045 (13.6%)
TG 28,777 (25.6%) 32,642 (27.7%)
TI 39,948 (35.5%) 36,507 (31.0%)

unclassifiable 3,343 (3.0%) 3,296 (2.8%)

Total 112,430 117,733

To describe the changes in project state between two points in time, we present the
Markov model shown in Figure 1 that shows the percentage of projects that shift from
one classification in April 2006 to a different one in October 2006. New projects are
not included. Omitted from the diagram are the rates for projects remaining in the same
classification: IG at 54%, II at 56%, SG at 100%, TG at 98%, and TI at 98%.

Initial observations from the model include the fact that once a project is classified
a tragedy, it has a very low likelihood of escaping that classification. A TI project has
a 1% likelihood of salvaging itself, while a TG project has a 2% chance–in both cases,
these are not very good odds for survival. Likewise, once a project is labeled SG, there
is no rescinding this title; this is inherent in the operationalization, because once the
thresholds have been reached (adequate releases, downloads, an appropriate amount of
time between releases), there is no criterion that will reverse them.

It comes as little surprise to see that the most common path from II, the default
classification for a newly founded project, is to TI; for a new project, tragedy is four
times more likely than moving on to growth in the IG class, with the potential for
success. This confirms the common assertion that many projects are stillborn and never
make a release, failing nearly immediately. IG projects are three times more likely to
become tragedies than successes, but notably, this is the only route to success, and no
project is an overnight success.

Reclassifying Success and Tragedy in FLOSS Projects 303

II TI TGIG SG
0.12

0.360.08

0.0002

0.36

0.01

0.01

0.01

0.003

Fig. 1. Markov model showing changes in project classification over a six month period in 2006

5 Discussion

In this section, we discuss the implications of our findings and areas for future work.
As the focus of this paper was primarily methodological, so are the implications. These
are related to both the nature of the task for large-scale archival research, and to the
substance of the task, classifying the successes and tragedies among FLOSS projects.

Large-scale analysis of FLOSS repositories sounds simple in conversation, but is
never so straightforward in practice. This effort built on prior work that eased the devel-
opment of data handling scripts and functionality, and yet demonstrated time and again
that this style of analysis requires thorough knowledge of the data sources and analysis
operations. Exceptions in the data source can wreak havoc with automated processing;
while the data can simply be processed again, this can be very inefficient. Although it
may only require 30 hours to analyze a snapshot of the entire SourceForge population,
unexpected variations in source data realistically double or treble the time required to
prepare data, once data verification procedures and troubleshooting are included, so
permitting adequate time for development of the data handling is essential to this type
of analysis. In the process of managing the flow of data between multiple workflows, or
between workflows and other semi-automated processes, we also found that it is partic-
ularly helpful to use exactly the same names for variables in every location where they
are used, from the database fields to the workflows and R scripts.

It is apparent that the challenges of working with the data sources have not changed
significantly since the original classification by English and Schweik, although our tools
and strategies are somewhat improved. We found that workflows were particularly good
for dealing with retrieving and combining data from diverse sources when a single SQL
query is not feasible. When preparing the data involve frequent and repeated format
conversions (e.g., epoch times to SQL times and back again), sophisticated selection
criteria (e.g., the most recent three releases), and careful handling of missing values,
workflows are a better solution than most alternate procedures, particularly as they
can be applied in precisely the same ways many times over, despite the complexity of
the task.

One complication to analysis, as others have observed (5), is that the repository data
structures represented in the SRDA can and do change over time. For example, all-time
downloads data (used in the classification) are no longer available from the most recent
monthly SRDA dumps, so a single analysis script will not work on data from different
periods, complicating longitudinal analysis.

304 A. Wiggins and K. Crowston

In addition to allotting more time for data management than may seem reasonable
to expect for an automated process, we recommend having a set of test data for test-
ing scripts as they are developed. While this may seem obvious, running a complex
analysis on the same data set makes it much more straightforward to identify causes of
unexpected results or inconsistencies. In particular, a manufactured data set containing
a full range of edge cases can be useful in detecting errors in the script before scaling
up analysis.

Although we have been tried to ensure that our algorithm matches the logic of the
original paper as precisely as possible, we noted a number of cases that do not logi-
cally fit into the classifications that they are assigned. This kind of effect is difficult
to trace back to its causes, which may include any of several issues such as bad data,
incorrect implementation of the classification or a missing case in the classification.
We suspect that some of the exceptions we have observed are cases that are illogical
combinations of criteria that were not explicitly addressed in the original definition of
the classifications. For example, the original classification does not cover projects that
have downloads without releases (seemingly impossible), or how to classify a once-
successful project that has long since fallen inactive. There would be no reason to expect
that these configurations exist until they emerge as anomalies in the analysis, noticeable
only through comparison to the expected results.

Finally, while our focus has been on methodological issues, our analysis does suggest
some possible improvements to the English and Schweik classification. First, the influ-
ence of release rate and count thresholds is significant, and these are relatively dynamic
measures compared to the other criteria, as our evaluation of variations in the release
rate criterion demonstrated. Successes were reclassified as tragedies or as indetermi-
nate; those which had not made a release in a year became tragedies, while those whose
release rate was too swift became indeterminate. This suggests that additional testing
and refinement of release-based criteria is primary task for improving the classification.

Second, as Figure 1 shows, a project classified as a success remains a success, even if
it becomes inactive. This is a conservative classification choice, reflecting the reality that
a successful project may not continue releasing new software indefinitely, but may enter
a third stage of “retirement” in which it is still useful but is no longer under active devel-
opment. This is a different state than one-time successes which are later abandoned and
fall into disrepair; finding a way to distinguish between these cases would add significant
nuance to our understanding of the lifecycle of open source project development.

5.1 Limitations

The results reported here are limited by the data sources and analysis methods, which
are conversely also strengths in this analysis. This study is limited in generalizability
in the same ways as the original work: neither result can be generalized to other repos-
itories beyond SourceForge, and both are subject to flaws in the data sources. Both
apply reductionist methods for operationalizing heuristics that are expected to indicate
the development and success of FLOSS projects. While this mode of analysis has the
advantage that it can be applied broadly, it also loses some face validity in broad appli-
cation due to the existence of numerous individual examples (which may or may not be
edge cases) that defy the assumptions embedded in the categorization of projects.

Reclassifying Success and Tragedy in FLOSS Projects 305

Limitations specific to this analysis include the change in data sources from the orig-
inal, which introduces potential sources of error; however, we believe the SRDA data
to be no less authoritative than combined FLOSSmole and bespoke data. Although we
did not test additional variations on most of the parameters with the type of sensitiv-
ity analysis that large-scale analysis permits, doing so is simply a matter of choosing
parameters and allotting processing time.

Finally, any classification of project success and failure will be challenging to vali-
date empirically. English and Schweik developed their criteria for classification based
on interviews with developers. However, once this classification has been applied to
thousands of FLOSS projects, empirical validation becomes particularly challenging,
as there is no established success metric against which to objectively evaluate the re-
sults. Feedback from the developer community on the results of the classification would
provide a measure of validation; however, this method does not scale effectively. We
note this limitation to both our work and the original classification as an opportunity for
further development of the research on success in FLOSS projects.

5.2 Future Work

Replicating this classification using methods specifically oriented to further reuse of the
data and analysis makes it feasible to consider a wide range of potential extensions to
this work. More exhaustive testing of the threshold values is the most apparent direction
for further refinement of the classification. In addition, taking advantage of the infras-
tructure to evaluate alternate measures of the classification criteria would permit the
development of more sophisticated measurements. Just as we have tested variations on
the release rate criterion, another possible variation could implement a function to ad-
just the threshold for downloads based on project lifespan or number of releases, which
might better account for the current usefulness of the software.

While the operationalizations vary by the degree to which they capture the defini-
tions, it is a nontrivial challenge to acquire and prepare data that would permit more
accurate operationalization. For example, the definition of Indeterminate Initiation (II)
is that the project has no public release but has significant developer activity; the op-
erationalization is that the project has no releases and was founded less than a year
before the data collection date. A more ideal operationalization would include explicit
evidence of developer activity, such as communications or CVS activity. However, nei-
ther the original analysis nor our replication makes use of such data. The complexity
of integrating additional data sources to produce such an analysis has been a barrier
to developing more nuanced analysis, but our methodology and research artifacts can
provide an extensible foundation for future work with more sophisticated measures.

As suggested by English and Schweik, incorporating data from CVS, email lists, and
fora would create new potential for evaluating project activity. Rather than classifying
projects as active or inactive based on having made a release within the last year, they
could be classified based on the relative level of activity across a variety of channels
for participation. While these data are available, incorporating them is tricky, and re-
shaping the classification criteria to make use of a greater variety of data would pose
an interesting challenge. Refining a classification scheme such as this has the inherent
problem that there is no objective way to determine what criteria are “best.” We suggest

306 A. Wiggins and K. Crowston

that changes should be made based on improved congruence between definition and
operationalization, and robustness of the measures to perturbation.

Finally, future work could more closely examine the shifts in classification over time.
This effort would serve two goals: first, to further optimize the classification by iden-
tifying criteria that are more dynamic and potentially less representative, and second,
to identify common developmental trajectories of FLOSS projects by charting their
classifications across time. While the second goal is in many ways more attractive for
researchers than the first, we note that refinement of the classification is key to gener-
ating valid results that can help us understand the implications of changes to project
status over time.

6 Conclusions

In this paper, we replicated a classification of FLOSS project success and tragedy for
all projects hosted on SourceForge at two points in time. The contributions of the work
include the extension of the analysis, both in methods and in data analyzed. We extended
the analysis to test three different methods of evaluating release rates; we tentatively
suggest that the method that applies the average time between releases is the most stable
and consistent with the intent of the analysis. We analyzed the data for two time periods,
finding that the proportion of successful projects remained steady, while the number of
tragedies appears to slowly increase over time in greater proportions than overall growth
in sample size would predict. The implications of the work include recommendations
for best practices for conducting large-scale analysis of archival FLOSS project data,
and several suggestions for future work to develop the classification into a robust tool
for research and practice.

Acknowledgements. The authors gratefully acknowledge James Howison’s extensive
contributions to the data and analysis infrastructure employed in this research. This
research was partially supported by the United States National Science Foundation CRI
Grant 07–08437.

References

[1] Taverna project website, http://taverna.sourceforge.net/
[2] Crowston, K., Howison, J., Annabi, H.: Information systems success in free and open source

software development: Theory and measures. Software Process Improvement and Prac-
tice 11(2), 123–148 (2006)

[3] English, R., Schweik, C.: Identifying success and tragedy of FLOSS commons: A prelim-
inary classification of Sourceforge. net projects. In: Proceedings of the First International
Workshop on Emerging Trends in FLOSS Research and Development, p. 11. IEEE Com-
puter Society, Los Alamitos (2007)

[4] Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative repository for FLOSS
research data and analyses. International Journal of Information Technology and Web Engi-
neering 1(3), 17–26 (2006)

[5] Howison, J., Crowston, K.: The perils and pitfalls of mining SourceForge. In: Proceedings of
the International Workshop on Mining Software Repositories (MSR 2004), pp. 7–11 (2004)

http://taverna.sourceforge.net/

Reclassifying Success and Tragedy in FLOSS Projects 307

[6] Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna:
A tool for building and running workflows of services. Nucleic Acids Research 34(suppl. 2),
W729–W732 (2006)

[7] Robles, G., Koch, S., Gonzalez-Barahona, J.: Remote analysis and measurement of libre soft-
ware systems by means of the CVSAnalY tool. In: Proceedings of the 2nd ICSE Workshop
on Remote Analysis and Measurement of Software Systems (RAMSS), Edinburg, Scotland,
UK, pp. 51–55 (2004)

[8] Sowe, S., Angelis, L., Stamelos, I., Manolopoulos, Y.: Using Repository of Repositories
(RoRs) to study the growth of F/OSS projects: A meta-analysis research approach. Interna-
tional Federation for Information Processing 234, 147 (2007)

[9] Van Antwerp, M., Madey, G.: Advances in the SourceForge Research Data Archive (SRDA).
In: Fourth International Conference on Open Source Systems, IFIP 2.13 (WoPDaSD 2008),
Milan, Italy (2008)

© IFIP International Federation for Information Processing 2010

Three Strategies for Open Source Deployment:
Substitution, Innovation, and Knowledge Reuse

Jonathan P. Allen

University of San Francisco, 2130 Fulton St., CA 94117, USA
jpallen@usfca.edu

Abstract. As open source software adoption becomes mainstream, the question
shifts from whether organizations should use open source, to how organizations
can best deploy and use open source. Based on three distinct types of organiza-
tional outcomes for open source use, we propose three different strategies for
deploying open source: a substitution strategy, an innovation strategy, and a
knowledge reuse strategy. Limiting the deployment of open source to a substi-
tution strategy can lead organizations to underestimate the strategic benefits of
open source use.

1 Introduction: Is Using Open Source Different?

As open source software adoption by organizations continues to grow, open source is
increasingly perceived as a ‘normal’ option, rather than as a strange new technology
requiring special justification and extraordinary precautions. In a way, this is a vic-
tory for advocates who have fought to have open source software judged by the same
criteria as ‘normal’ proprietary software (e.g.,[10]). The very term ‘open source’ itself
was invented, in part, to downplay the differences between community-built and tra-
ditional software, making open source seem more familiar and acceptable for organ-
izational use than ‘free’ (as in ‘freedom’) software [12].

However, in the rush to make open source software appear ‘normal’, there is a risk
that the potentially unique benefits of open source might not be fully considered.
Forcing a disruptive innovation to compete using existing performance criteria, rather
than along new dimensions where it excels, often puts the disruptive innovation at a
disadvantage [3]. There continue to be cases where using open source as a direct re-
placement for proprietary software is easily justified (e.g., [6]). However, it can be
difficult to make the case for ‘ripping out’ established proprietary software that ‘al-
ready works’ and replacing it with an open source equivalent that the organization has
no experience with. In these situations, it would be helpful to have a clear argument
for other performance dimensions along which open source use might be superior. It
might also be helpful to think of these new performance dimensions not only in terms
of justification, but also in terms of strategic use. How would open source allow us to
do things differently from proprietary software use? What difference does using open
source make?

The case for open source in software development has been made elsewhere (e.g.,
[7]), along with choices for open source development strategies. Here, we focus on

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 308–313, 2010.

 Three Strategies for Open Source Deployment 309

the choices for user organizations that are not primarily in the business of software
development. Based on three different types of organizational outcomes, we offer
three strategies for open source deployment in user organizations.

2 Open Source Deployment: Three Types of Outcomes

Open source has been seen as a revolutionary, disruptive force for software develop-
ment (e.g., [2]), but debate continues as to whether the organizational outcomes of
open source use are similar to those of traditional proprietary software (e.g., [8]). We
find it helpful to distinguish between the typical business benefits that come from
using open source as a substitute for proprietary software, and the innovation and
knowledge sharing benefits that are unique to open source software.

2.1 Substitution

Substitution takes place when open source software is used to replace the equivalent
proprietary software. Studies of open source adoption suggest that organizations are
motivated by the desire to replace costly proprietary software with open source
equivalents, providing similar functionality and performance (e.g., [4]). Some go
further and argue that organizations ignore the ‘ideological’ dimensions of open
source–such as having the freedom access to source code–and only focus on practical
benefits such as functionality and cost (e.g., [13]).

Table 1. Open source deployment: Three types of organizational outcomes

Type Activity Example Outcomes
Substitution Open source used to

replace equivalent
proprietary software.

Microsoft Office is
replaced by
OpenOffice.

Direct business
benefits from
software use.

Innovation Open source used as a
platform for creating
new applications.

A new product
promotion website
uses WordPress.

Increased rate of
innovation within
organizations.

Knowledge reuse Open source used as a
platform for sharing
new applications.

A new distribution of
Drupal or Joomla is
shared among not-for-
profits.

Increased rate of
innovation sharing
between
organizations.

W expect that the main outcomes of open source use for substitution will be cost

reduction and increased functionality. A typical example of substitution can be seen
in the case of an Irish hospital, searching for software that was “zero cost or as cheap
as possible.” ([6], p. 54) The main outcomes reported in this case were a 6.5 million
Euro initial purchase savings, and 12 million Euros in total savings over a 5 year pe-
riod. In other examples of substitution, pure cost savings are not as important as se-
lecting the ‘best technology’ for the job, usually in terms of functionality, reliability,
or security (e.g., [16]).

310 J.P. Allen

These evolutionary (rather than revolutionary) outcomes from open source soft-
ware use would be similar to those expected from the use of proprietary software. An
open source software package might provide the same or better organizational bene-
fits–return on investment, functionality, security, or standards compliance–as a corre-
sponding proprietary package. For example, a Windows server could be replaced
with a Linux server because it provides better total cost of ownership, or Firefox
could be chosen as a browser over Internet Explorer for improved security.

2.2 Innovation

The second outcome in our framework, innovation, takes place when open source
software is used as a platform or foundation for creating new applications within an
organization. Open source software is a ‘generative system’ [25] that allows organi-
zations to create new applications by building on the freely available work of the
community. The use of open source leads to increased innovation because of the lev-
erage it provides, its accessibility for experimentation, and its adaptability due to
source code access and modular design.

Open source can increase the rate of innovation by providing frameworks and li-
braries for programmers, such as when Django or Rails are used to develop new web
applications quickly. Open source repositories can be used to share software across
projects within an organization (e.g., [11]). Open source applications such as Drupal,
WordPress, Joomla, or SugarCRM have modular architectures that facilitate innova-
tive new applications with little or no custom programming. One example is a new
website built by the City of San Francisco in a few weeks using the WordPress plat-
form, instead of through the usual lengthy development process [1].

The unique aspects of open source licensing allow successful experiments to
quickly spread throughout the organization, without having to be constrained by strict
licensing terms and their associated costs. Organizations can commit serious re-
sources only after an innovation has proven itself.

2.3 Knowledge Reuse

Knowledge reuse is the “sharing of best practices or helping others to solve common
technical problems” ([9], p. 59). As software, open source facilitates knowledge re-
use not only through shared repositories of knowledge about facts, but also by sharing
procedural knowledge–code that runs business processes.

Knowledge reuse comes from the sharing of organizational expertise through open
source software. One type of knowledge reuse comes from creating explicit partner-
ships or alliances to jointly develop open source business applications, such as the
substance abuse treatment system developed in Maryland and Texas and now adopted
by other states [15]. A different type of knowledge reuse comes from the creation of
distributions, or versions of open source software that are pre-configured for specific
business applications. For example, the CiviCRM project configures open source
content management systems for the specific needs of not-for-profit organizations.
Other open source projects allow users to easily create and share add-ons for specific
business applications, such as plug-ins for WordPress sites.

 Three Strategies for Open Source Deployment 311

Knowledge reuse can be seen as the most revolutionary, or disruptive, type of out-
come from open source use in organizations. It might seem difficult to imagine that
organizations would freely reveal their novel business applications to others. And
yet, this is what the research on ‘user-centric’ or ‘democratized’ innovation implies
will happen (e.g., [14]), if open source business software becomes widespread. The
open innovation literature suggests that user organizations, not enterprise software
vendors, might someday provide the majority of innovations, share them freely, and
pool their work with other user organizations, as they do in surprisingly many other
industries. This could lead to the free sharing of organizational innovations and best
practices, through the use of open source software as platforms. Open source may be
much more than low-cost software. It could be a mechanism for sharing and reusing
organizational knowledge.

3 Three Strategies for Open Source Deployment

Because the types of outcomes for open source use are fundamentally different, we
expect that achieving different outcomes will require different strategies.

The substitution strategy is probably the most commonly used today. The substitu-
tion strategy is to evaluate and adopt open source software in exactly the same way as
proprietary software. The advantage of this approach is that it fits the way organiza-
tions already make decisions. The disadvantage is that evaluation and use might not
take advantage of the unique strengths of open source software. The substitution
strategy might force organizations to ‘rip out’ proprietary software that ‘already
works’ for an unproven open source equivalent with roughly the same features. The
open source package could have initial cost advantages, but the substitution strategy
burdens the open source case with the switching costs.

Table 2. Strategies for open source deployment and use in organizations

Strategy Action Plan
Substitution strategy Replace current software with cheaper

and/or better open source equivalents.
Innovation strategy Focus on new applications or needs that are

not being addressed by proprietary software.
Knowledge reuse strategy Collaborate with projects, or partners, who

are already innovating with open source.

A different strategy is to focus on business needs that are not currently being ad-

dressed by proprietary software. Open source software can be deployed and used
without many of the usual cost and license considerations that limit proprietary soft-
ware use. If there are many business processes that could be improved by using new
applications, but are individually too small to justify a full-scale proprietary software
acquisition project, then an innovation strategy might be effective. Once open source
has been brought in for ‘experimental’ or ‘prototype’ projects, growing experience
and expertise with open source could lead to wider deployment. In the banking indus-
try, Linux servers at first were not sold as a direct substitute. But as the years went by,

312 J.P. Allen

and Linux servers ‘just worked’, it was easier to make the case for using Linux more
widely. Open source applications for business can follow a similar path of guerrilla
first, mainstream afterwards.

The knowledge reuse strategy uses open source to find bodies of valuable knowl-
edge (software, and people) that have already been created, and join that community
in order to facilitate your organization’s ability to reuse and refine that shared knowl-
edge. In contrast with the innovation strategy, which involves deploying open source
software that already exists, the knowledge reuse strategy is an attempt to improve a
software project’s usefulness to a user organization through contributions and com-
munity interactions. This strategy opens the possibility of obtaining the full benefits
of open innovation. And it addresses the risk of not having enough influence on an
essential software platform’s future direction, if an organization does not contribute to
its ongoing evolution (e.g., [5]).

4 Conclusion: The Promise of Open Source

We expect that, like many new technologies, open source is mostly understood and
used in the same ways as the technology that came before it. Open source use that
substitutes for proprietary software can have a significant impact by changing cost
structures, or by preventing any one competitor from controlling a technology stan-
dard. But open source use for innovation can make a dramatic difference as well.
Within organizations, it gives IT departments the ability to create new business appli-
cations that would never be practical otherwise, possibly dramatically improving the
performance of business tasks. Open source use for innovation also allows organiza-
tions to launch new products or services that would not have been possible with the
license restrictions of proprietary software.

However, the most revolutionary potential for open source use is when organiza-
tions decide to jointly develop and deploy open platforms. The extension of democra-
tized innovation [14], generative systems [17], and peer-production [2] to enterprise
applications could result in an explosion of knowledge sharing and reuse around basic
business processes. When sharing organizational knowledge through software be-
comes not just ‘a nice thing to do’, but actually the more efficient and effective way to
operate, we will have reached an important cross-over point where freely-revealed
software becomes the norm, rather than the exception; where the majority of business
software innovations come from the business that use it, rather than from proprietary
enterprise software vendors.

References

[1] Allen, J.P.: Open source deployment at the city and county of San Francisco: From cost
reduction to rapid innovation. In: Proceedings of the 43rd HICSS Conference, Kauai,
USA (2010)

[2] Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and
Freedom. Yale University Press, New Haven (2006)

[3] Christensen, C.M., Overdorf, M.: Meeting the challenge of disruptive change. Harvard
Business Review 78(2), 66–77 (2000)

 Three Strategies for Open Source Deployment 313

[4] Dedrick, J., West, J.: An exploratory study into open source platform adoption. In: Pro-
ceedings of the 37th Hawaii International Conference on Systems Sciences, IEEE,
Los Alamitos (2004)

[5] Enkel, E., Gassmann, O., Chesbrough, H.: Open R&D and open innovation: Exploring
the phenomenon. R&D Management 39(4), 311–316 (2009)

[6] Fitzgerald, B., Kenny, T.: Developing an information systems infrastructure with open
source software. IEEE Software 21(1), 50–55 (2004)

[7] Grand, S., von Krogh, G., Leonard, D., Swap., W.: Resource allocation beyond firm
boundaries: A multi-level model for open source innovation. Long Range Planning 37,
591–610 (2004)

[8] Kessler, S., Alpar, P.: Customization of open source software in companies. In: Proceed-
ings of the 5th IFIP WG 2.13 International Conference on Open Source Systems.
Springer, Heidelberg (2009)

[9] Markus, M.L.: Toward a theory of knowledge reuse: Types of knowledge reuse situations
and factors in reuse success. Journal of Management Information Systems 18(1), 57–93
(2001)

[10] Open Source for America (2009), Charter for Open Source for America,
 http://opensourceforamerica.org/charter
 (accessed August 23, 2009)

[11] Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh, B.,
Odenwald, T.: Open collaboration within corporations using software forges. IEEE Soft-
ware 26(2), 52–58 (2009)

[12] Stallman, R.: Why “open source” misses the point of free software. Communications of
the ACM 52(6), 31–33 (2009)

[13] Ven, J., Verelst, J.: The importance of external support in the adoption of open source
server software. In: Proceedings of the 5th IFIP WG 2.13 International Conference on
Open Source Systems. Springer, Heidelberg (2009)

[14] von Hippel, E.: Democratizing Innovation. MIT Press, Cambridge (2005)
[15] Wanser, D.: Crossing state lines to build better software. Behavioral Healthcare 28(7),

19–23 (2008)
[16] Wheatley, M.: The myths of open source. CIO Magazine (March 1, 2004)
[17] Zittrain, J.: The Future of the Internet–And How to Stop It. Yale University Press,

New Haven (2008)

© IFIP International Federation for Information Processing 2010

Coordination Implications of Software Coupling in Open
Source Projects

Chintan Amrit and Jos van Hillegersberg

IS&CM Department, University of Twente,
P.O. Box 217

7500 AE Enschede, The Netherlands
{c.amrit,j.vanhillegersberg}@utwente.nl

Abstract. The effect of software coupling on the quality of software has been
studied quite widely since the seminal paper on software modularity by Parnas
[1]. However, the effect of the increase in software coupling on the coordina-
tion of the developers has not been researched as much. In commercial software
development environments there normally are coordination mechanisms in
place to manage the coordination requirements due to software dependencies.
But, in the case of Open Source software such coordination mechanisms are
harder to implement, as the developers tend to rely solely on electronic means
of communication. Hence, an understanding of the changing coordination re-
quirements is essential to the management of an Open Source project. In this
paper we study the effect of changes in software coupling on the coordination
requirements in a case study of a popular Open Source project called JBoss.

Keywords: Software Coupling, Propagation Cost, Clustered Cost, Open
Source, Coordination.

1 Introduction

Open Source developers generally rely on electronic means of communication, coor-
dination in Open Source environments is difficult to achieve when compared to com-
mercial software development. It is therefore essential for an Open Source project
Manager to understand the changing coordination requirements in Open Source soft-
ware in order to ensure successful coordination. While the coordination implication of
software coupling has been suggested by various researchers [2-5], there has been
little research done on the effect of the change in coupling on the coordination re-
quirements of developers. Such research is especially important in the Open Source
context, where the distributed and generally ad-hoc nature of development makes
coordination of the development challenging.

MacCormack et al. [6] compare the architectures of Linux and Mozilla by compar-
ing the pattern of distribution of their software coupling. They find that Linux had a
more modular structure than the first version of Mozilla. While after a redesign the
resulting architecture, Mozilla became more modular than the previous versions and
even more modular than Linux. This result is in line with the view that in order to
have a successfully coordinated Open Source project one needs to have a loosely

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 314–321, 2010.

 Coordination Implications of Software Coupling in Open Source Projects 315

coupled and modular software [7]. Authors like O’Reilly [8] have claimed that Open
Source software is inherently more modular than commercial software. Other authors
have reasoned that Open Source software needs to be more modular so that the devel-
opment process can be coordinated easily [7]. Paulson et al. [9], compare the coupling
of Open Source projects (Apache, Linux and GCC) with three closed source projects.
They do so, by comparing the growing versus the changing rate for software (as a
tighter coupling will require more changes with each additional feature). Their results
indicate that Open Source projects need more changes when new features are added.
Hence, suggesting tighter coupling in Open Source projects than previously assumed.
Parnas [1] described modularisation as a task assignment while Conway[2] analysed
the relation between product architecture and the organizational structure. Since then,
Conway’s law [10] has come to denote the homomorphism between the product
architecture (or software coupling [3]) and the organizational structure (or the com-
munication between the software developers [3]). As the Open Source project gets
developed, the software code evolves [11], and as a result the coordination require-
ments change [3]. As mentioned earlier, there has been little research done on the
effect that the variation of software coupling has on the coordination requirements of
the software developers. In this paper we try and fill this gap by analysing the effect
of the changes in software coupling on the coordination requirements of the develop-
ers. We postulate that, if there is a sudden increase in the coupling of an Open Source
system, then the coordination requirement among the developers’ increases. Unless
this coordination requirement is handled through communication, it could result in a
coordination problem [12]. By conducting a case study of the of the JBoss application
server, we observe the effect of the changes in coupling on the coordination of the
project. The unique contribution of this paper lies in discussing the coordination im-
plications of an increase in software coupling and then in demonstrating it through a
case study that uses quantitative along with qualitative methods.

The rest of the paper is structured as follows; section 2 describes the Design Struc-
ture Matrices briefly along with the Clustered and Propagation Cost metrics used in
this paper, section 3 describes the case study of JBoss, section 4 discusses the findings
and finally section 5 concludes the paper.

2 Design Structure Matrix and Cost Metrics

In this section we describe the data structure and the metrics we use to study software
coupling. Dependency Structure Matrices (DSM) have been used in engineering lit-
erature to represent the dependency between tasks, since the concept of the Design
Structure Matrix was first proposed by Steward [13, 14]. A DSM highlights the inher-
ent structure of a design by examining the dependencies between its component ele-
ments in a square matrix [13, 15]. Morelli et al. [16] describe a method to predict and
measure coordination-type of communication within a product development
organization. They compare predicted and actual communications in order to learn, to
what extent an organizations communication patterns can be anticipated.

Sosa et al.[4] find a “strong tendency for design interactions and team interactions
to be aligned,” and show instances of misalignment are more likely to occur across
organizational and system boundaries. Sullivan et al. [17] use DSMs to formally

316 C. Amrit and J. van Hillegersberg

model (and value) the concept of information hiding, the principle proposed by Parnas
to divide designs into modules [1]. Cataldo et al.[3] show how DSMs can be used to
predict coordination in a software development organization and then they compare
the predicted coordination DSM with the actual communication DSM. Sosa [5] builds
on the DSM based method of Cataldo et al. [3] and provides a structured approach to
identify the employees who need to interact and the software product interfaces they
need to interact about. Amrit et al. [12, 18] take a similar approach and use DSMs to
detect coordination problems in a software development environments.

We use the Software Dependency Matrix (the DSM of software dependencies) to
calculate the Propagation Cost and Clustered Cost similar to what MacCormack et al.
[6] do. Our unit of analysis is the source code file and we consider the function call
dependencies among the files.

While the Propagation Cost assumes that the cost of dependencies between two ele-
ments are the same irrespective of where the elements lie (the path length between
them), Clustered Cost assumes that the cost of dependency depends on whether the
elements lie in the same cluster [6]. Together the Propagation and Clustered Cost meas-
ure both the number as well as the pattern of the software dependency [6]. In order to
calculate the Propagation Cost, MacCormack et al. first raise their dependency matrix to
successive powers of n and obtain the direct and indirect dependencies for successive
path lengths [6]. They then obtain a Visibility Matrix by summing up all the successive
powers of the dependency matrix. From the Visibility Matrix they calculate the “fan-in”
and “fan-out” visibilities by summing along the columns or the rows and dividing the
result with the total number of elements. As we consider undirected dependencies, we
find the “fan-in” visibility to equal the “fan-out” visibility. The Propagation Cost meas-
ures the elements in the system that could be affected when a change is made to one
element of the system (i.e. how the change propagates) [6].

Unlike the Propagation Cost, the Clustered Cost of an element depends on the loca-
tion of the element (with respect to other elements). In order to measure the Clustered
Cost, the DSM of the software call graph has to be first clustered. The clustering algo-
rithm (described in [6]) tries to group all highly connected or dependent elements into
one cluster. The clustering works by attaching a cost to each element, depending on
where the element is located with respect to other elements (in the same vertical bus
or in the same cluster)). The Clustered Cost of the software is then the summation of
the individual Clustered Cost of the elements.

In the next section we describe the case study of the popular open source project
JBoss. In the case study we describe how we apply the two metrics described in this
section and the conclusions we draw from them.

3 Case Study of JBoss

JBoss project was started in 1999 by Marc Fleury who wanted to advance his research
interests in middleware. JBoss Group LLC was incorporated in 2001 and JBoss be-
came a corporation in 2004. After a few bids from big companies, JBoss was finally
acquired by Red Hat in 2006. The JBoss Application Server is one of the main prod-
ucts of the JBoss project and is said to have pioneered the professional Open Source
business model. JBoss has 79 listed developers and three project administrators of
which one is the Chief Technical Officer (CTO) of JBoss.

 Coordination Implications of Software Coupling in Open Source Projects 317

The aim of the case study is to determine if there was a relation between the
changes in the technical dependencies and the communication among the developers.
For the technical dependencies, the JBoss Application Server (JBoss) source code was
analysed over the period starting from May 2002 to December 2006 that covered the
versions 3.0.0 to 4.0.3_sp1. We used a tool called TESNA [12] that uses Depend-
encyFinder [19] to read the software code and create the DSMs. With the help of
TESNA we could then calculate the Propagation and Clustered Cost based on the
DSMs. The Lines of Code (KLOC) of the different versions of JBoss was also meas-
ured using the same tool.

To determine the communication patterns used by the developers, we analysed the
Mailing List archive of JBoss. The JBoss Mailing List is used to discuss the develop-
ment of the system, report bugs, coordinate the bug fixes, as well as discuss new
features before and after the release of each version. An analysis of the different me-
diums of coordination in JBoss revealed that the Mailing List was the primary means
of coordination. This is the case, as the usage of private means to communicate is
considered unlikely, given the trend of openness in Open Source projects [20]. In
order to find out the timeline around which developers discussed a particular release,
we needed to first find out the coordination mechanisms used by the developers. We
performed a qualitative analysis of the messages in the Mailing List archive where we
read randomly selected mails (around each release) looking for coordination mecha-
nisms as described in previous literature. The following post mailed on 28th of June
shows how the management of each release was undertaken by one of the Project
Leaders (Scott Stark in this case).

Its about 36 hours until I'm planning on cutting the 3.0.1 release. Any
changes you want in 3.0.1 should be in by Sat Jun 29 18:00:00 2002 GMT.

xxxxxxxxxxxxxxxxxxxxxxxx
Scott Stark

This post also shows that the planning for a release was done around a month ear-

lier to the release, as the release date for version 3.0.1 was on 6th August 2002. While
the following post shows another instance of a post reporting a fix for a bug.

Sender: d_jencks
Logged In: YES
user_id=60525
I believe I have fixed this in HEAD. I'd appreciate verification before I

backport it to 3.2, since it is a substantial refactoring of the ejb deploy-
ment/service lifecycle code. I'll close this after backporting to 3.2.

This post shows two important mechanisms; (i) the request for verification implying

the coordination mechanism of code review as was described by Rigby et al. [21], (ii)
the one which d_jenks refers to as “backport”. By “backport” the author refers to mak-
ing changes to the previous version well after the release (2002-08-27). This coordina-
tion mechanism coincides with what was observed by Yamauchi et al. [22], namely, a
bias towards action first and coordination later. Given that the planning for the release
and the coordination for the bugs in the release was conducted around a month before

318 C. Amrit and J. van Hillegersberg

and a month after the release respectively, we decided to consider the messages related
to a release over a three month window. Hence, the Mailing Lists were analysed from
one month before each release to one month after each release, corresponding to the
period of analysis of the JBoss code (i.e. from April 2002 to January 2007). We decided
to consider all the messages in the three months window, as messages dealing with the
coordination of the community for the following reasons:

1) The threads containing more than one message is naturally a discussion
thread implying coordination between messages

2) Threads containing only one message were mostly announcements such as
“Build Fixed” that warrants no further replies. However, such posts are also
coordination alerts for the community to not worry about the compilation
part of the particular version and to concentrate on other work.

Figure 1 describes the variation of the Propagation Cost of JBoss over the different
versions, while Figure 2 denotes the variation of the Clustered Cost of JBoss over
different versions. In both figures and particularly in Figure 1 we notice a sharp rise in
the Clustered Cost for version 3.2.7. While the increase in the Propagation Cost is

Fig. 1. The variation of Propagation Cost of
JBoss over different versions

Fig. 2. The variation of Clustered Cost of
JBoss over different version

Fig. 3. Variation of KLOC with Version num-
ber of JBoss

Fig. 4. Variation of the Number of eMail
messages with JBoss Version number

 Coordination Implications of Software Coupling in Open Source Projects 319

minor, the increase in the Clustered Cost for version 3.2.7 is quite marked. We calcu-
lated the KLOC (Lines of Code in thousands) of each of the versions to see how much
code was actually added. Figure 3 shows the variation of KLOC over the different
versions of JBoss. As can be seen from the figure, the trend is similar to the variation
of coupling seen in Figures 1 and 2. The largest increase in KLOC, as evident from
the slope of the graph in Figure 3, occurs for version 3.2.7. Clearly showing that for
version 3.2.7 not only has the complexity of the code increased (with the increased
coupling), but also the size.

This increase in modularity of the project causes an increase in the coordination re-
quirement [3] and therefore require an increased amount of coordination to resolve
the extra dependencies and features included for version 3.2.7.

Figure 4 describes the variation in the number of messages over the different ver-
sions of JBoss. We see a large increase in the number of messages for discussing the
features and bugs for version 3.2.7. The increase in the number of messages is nearly
5000 and twice as much as the average number of messages (2650) discussing other
versions.

4 Discussion and Conclusion

Though one needs to analyse the mails more closely to ascertain if they are indeed
discussing the particular version, one can say with some confidence that this sharp
increase in messages can be explained by the increased need for coordination. This
increased need for coordination arises from the increased number of couplings and
related features of JBoss in the release. Such an increase in the communication of the
developers in the eMail List can indicate how the developers of JBoss satisfy the
changing coordination needs for different versions and as a result remains a success-
ful Open Source project. Had the coordination not increased to offset the increase in
coupling and complexity of the software, we might have noticed a coordination prob-
lem as described by deSouza [23] and Amrit et. al [12].

In this paper we addressed the implications of coordination of an Open source pro-
ject when the software coupling in the project changes. Clearly, the change in soft-
ware coupling causes a change in the coordination requirements of the project as
suggested by [2, 3, 6]. Unless this increase in the coordination requirement is com-
pensated by an increase in communication related to the coordination, (as in the JBoss
case study) one can expect consequences to the software quality of the project. Hence,
this research has implications for the Open Source project manager. As such a man-
ager has to be aware of the increased coordination requirement arising from changes
in the project’s software coupling.

The contribution of the research in this paper is twofold; (i) a discussion on the co-
ordination implications of an increase in software coupling and (ii) the case study
demonstrating the coordination implication using appropriate metrics like Propaga-
tion, Clustered Cost, KLOC and number of Mailing List messages. The email archive
of JBoss also reveals two particular coordination mechanisms used to coordinate the
development of JBoss, namely code reviews [21] and post-release coordination [22].
Future work can look at why the clustered and propagation cost differed in describing
the coordination requirements in this case. Also, future work could look into different

320 C. Amrit and J. van Hillegersberg

perspectives of comparing the effect of other technical dependencies on social coordi-
nation in Open Source projects. We are also studying the effect the change of cou-
pling has on the health of the Open Source project.

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15, 1053–1058 (1972)

2. Conway, M.: How do Committees Invent. Datamation 14, 28–31 (1968)
3. Cataldo, M., Wagstrom, P., Herbsleb, J.D., Carley, K.M.: Identification of coordination re-

quirements: implications for the Design of collaboration and awareness tools. In: Proceed-
ings of the 2006 20th anniversary conference on Computer supported cooperative work.
ACM Press, Banff (2006)

4. Sosa, M.E., Eppinger, S.D., Rowles, C.M.: The Misalignment of Product Architecture and
Organizational Structure in Complex Product Development. J Manage. Sci. 50, 1674–1689
(2004)

5. Sosa, M.E.: A structured approach to predicting and managing technical interactions in
software development. Research in Engineering Design 19, 47–70 (2008)

6. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science 52,
1015–1030 (2006)

7. Mockus, A., Fielding, R.O.Y.T., Herbsleb, J.D.: Two Case Studies of Open Source Soft-
ware Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11, 309–346 (2002)

8. O’Reilly, T.: Lessons from open-source software development. Commun. ACM 42, 32–37
(1999)

9. Paulson, J.W., Succi, G., Eberlein, A.: An Empirical Study of Open-Source and Closed-
Source Software Products. IEEE Transactions On Software Engineering, 246–256 (2004)

10. Herbsleb, J.D., Grinter, R.E.: Architectures, Coordination, and Distance: Conway’s Law
and Beyond. IEEE Software 16, 63–70 (1999a)

11. Koch, S.: Software evolution in open source projects—a large-scale investigation. Journal
of Software Maintenance and Evolution: Research and Practice 19, 361–382 (2007)

12. Amrit, C., van Hillegersberg, J.: Detecting Coordination Problems in Collaborative Soft-
ware Development Environments. Information Systems Management 25, 57–70 (2008)

13. Steward, D.: The design structure system: a method for managing the design of complex
systems. IEEE Transactions on Engineering Management 28, 71–74 (1981)

14. Steward, D.V.: Partitioning and tearing systems of equations. SIAM J. Numer. Anal. 2,
345–365 (1965)

15. Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A.: A model-based method for or-
ganizing tasks in product development. Research in Engineering Design 6, 1–13 (1994)

16. Morelli, M.D., Eppinger, S.D., Gulati, R.K.: Predicting technical communication in prod-
uct development organizations. IEEE Transactions on Engineering Management 42,
215–222 (1995)

17. Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of modularity
in software design. In: Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 99–108. ACM Press, Vienna (2001)

 Coordination Implications of Software Coupling in Open Source Projects 321

18. Amrit, C., Van Hillegersberg, J.: Exploring the Impact of Socio-Technical Core-Periphery
Structures in Open Source Software Development. Journal of Information Technology
(forthcoming, 2010)

19. Tessier, J.: Dependency Finder (Retrieved on March 1st 2009)
20. Raymond, E.: The Cathedral and the Bazaar. Knowledge, Technology, and Policy 12,

23–49 (1999)
21. Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review practices: a

case study of the apache server. In: Proceedings of the 13th international conference on
Software engineering, pp. 541–550 (2008)

22. Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with Lean Media:
how open-source software succeeds. In: Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pp. 329–338 (2000)

23. de Souza, C.R.B., Redmiles, D., Cheng, L.-T., Millen, D., Patterson, J.: Sometimes you
need to see through walls: a field study of application programming interfaces. In: CSCW
’04: Proceedings of the 2004 ACM conference on Computer supported cooperative work,
New York, NY, USA, pp. 63–71 (2004)

© IFIP International Federation for Information Processing 2010

Industry Regulation through Open Source Software:
A Strategic Ownership Proposal

Jean-Lucien Hardy

Eurocontrol
jl.hardy@eurocontrol.int

Abstract. This paper is about a twofold proposal submitted to the scrutiny of
the OSS scientific community. It is first argued that OSS should be considered a
means to establish an industry regulation. The motivation of this first proposal
is the need for harmonization of the supply chain in certain industrial sectors.
The Air Traffic Management industry (ATM) is the only case considered in this
paper. However, it is assumed that the regulatory advantage of OSS is not spe-
cific to that industry. The second proposal is about how to establish such a regu-
lation through OSS. It is argued that the legal ownership of the OSS product
should be assigned to a public organization, preferably to an organization that
would be dedicated to monitor and promote the evolution of that product. The
motivation for these proposals is based on the analysis of possible scenarios of
OSS ownership in the case of ATM. Perspectives concerning the preliminary
implementation of the proposals are introduced.

Keywords: Industry Regulation, Open Source Software, OSS, Intellectual
Property Rights, IPR, Ownership, Secondary Software Sector, Air Traffic,
ATM, ATC.

1 Introduction

In this introduction, the role of the scientific community in OSS adoption will first be
discussed. Second, the strategic importance of legal ownership of OSS products is
emphasized. Third, the absence of a public regulatory role concerning OSS is pointed
out. Fourth, the context of ATM is introduced as a target case.

1.1 The Role of the OSS Scientific Community

Science is built on research results, but can only progress with development and fore-
sight. The role of the scientific community is not only to do research on existing phe-
nomena, but also to advise decision makers about appropriate deployment choices,
based on clear concepts and hypotheses. OSS is not a fundamental science. Like the
global warming issue, OSS has a strong social component and depends heavily on
managerial or political decisions. The role of the scientific community is critical in
terms of advices to decision makers involved in long term planning. A scientific ap-
proach must guide the decisions concerning the strategic use of OSS.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 322–329, 2010.

 Industry Regulation through Open Source Software: A Strategic Ownership Proposal 323

Scientific advisers should discuss their advices first within the scientific commu-
nity, before presenting them to decision makers. Such an open work-flow is particu-
larly important when the domain is related to public issues and public governance.
OSS is such a domain intrinsically connected to public issues.

A scientific conference about OSS is an opportunity to emphasize, discuss, refine
and publish hypothetical scenarios for decision makers, in order to focus further re-
search on concepts and hypotheses useful beyond the academic world.

1.2 The Ownership of OSS Products

In legal discussions concerning the adoption of OSS, there is generally more emphasis
on the choice of an appropriate license than on the choice of appropriate ownership of
IPR (Intellectual Property Rights). However, the choice of ownership is a prerequisite
to the choice of an appropriate license.

Informal discussions with people unfamiliar with the OSS domain tend to show
that many of them are aware of a special kind of software license for OSS without
understanding that there is a legal owner behind this license. The word “public” in the
name of the most popular OSS license (GPL stands for “General Public License”)
contributes to such a misunderstanding of which the consequences are numerous.
First, it must be counter-explained to people who discover OSS that a product distrib-
uted under GPL terms does not belong to the public. Second, the unnecessary multi-
plication of OSS licenses may well be motivated by the hidden pride to emphasize the
existence of a product owner erroneously considered “public”. Third, the perceived
lack of an OSS owner who could be held responsible or accountable for problems is
used as an excuse for not adopting OSS products [1].

The power of the IPR owner is critical in terms of business, as shown by the case
of MySQL and OpenOffice.org, two popular OSS products whose ownership was
recently transferred as an asset through the acquisition of Sun by Oracle. Oracle Cor-
poration is now in a strong position to promote or jeopardize the OSS spirit concern-
ing these products. There is actually no legal obligation for Oracle to consider the
public interest in its strategy and support to OpenOffice.org and MySQL. Hopefully,
it will be to its corporate and commercial advantage to promote the public interest.

In this paper, it is argued that the ownership of OSS products by public organiza-
tions could be the leverage of a new regulatory role.

1.3 The Absence of a Public Regulatory Role Concerning OSS

In terms of IPR, there are tremendous regulatory efforts built around legal patents.
This regulation is transcribed into legal procedures administered by strong public
organizations (patent offices). However, there is nothing similar for OSS. A quick
look at the literature confirms the absence of a governmental regulatory role concern-
ing OSS. The word “regulation” is not mentioned in any title of the hundreds of pa-
pers presented to the previous IFIP conferences on OSS. The interaction between
industry regulation and OSS does not seem to have yet been investigated.

In this paper, it is argued that regulation of an industry through OSS could be
effective in the interest of all players in that industry, and first of all the customers.

324 J.-L. Hardy

1.4 The ATM Supply Chain

Air Traffic Management covers a spectrum of activities including real-time Air Traf-
fic Control (ATC), planning air traffic flow, design of 3D routes for air traffic, envi-
ronmental concerns in air traffic, taxation of air traffic, etc.

From a conceptual point of view, it has been recently pointed out in a research
panel [2], that an ATM supply chain exists, organized on a continental basis. In
Europe, the ATM supply chain includes:

− the so-called “ATM industry” selling the ATM systems,
− the so-called ANSPs (Air Navigation Service Providers) mainly providing ATC

services,
− many ATM sub-contracting firms supplying particular hardware and software

equipment, and
− the public administrations (civil and military) contributing to operations, research,

co-ordination, regulation and taxation. EUROCONTROL is such a public organi-
zation at the European level.

Most ATM activities are software intensive. Software tools are used for operations, as
well as for research and innovation. In terms of software categorization, ATM is part
of the secondary software sector [1,3]. Most ATM software is currently proprietary.

In this paper, the ATM supply chain is considered a study case for a new kind of
regulation based on OSS.

2 Failure of OSS Adoption in ATM

There are no formal research results about the adoption of OSS in ATM. However,
from the beginning of this century there were some serious initiatives by EURO-
CONTROL to increase awareness and to study the potential of OSS in ATM [4,5,6].
ATM was also considered a case study in the European CALIBRE project. Subse-
quently, the author was interviewed in the context of a formal academic research
concerning the adoption of OSS in the secondary software sector [1].

A general consensus concerning the potential of OSS in ATM emerged from various
events and conferences. One of the main arguments is that OSS could help harmonize
ATM systems in Europe. For the last two decades, the need for this harmonization has
been frequently expressed. Recently, some thorough performance studies have high-
lighted the important costs of fragmentation of the ATM solutions in Europe [7].

Considering the concept of an ATM supply chain [2,8], OSS appears to be the right
harmonizing technology, as it improves software co-operation and interoperability.

When he visited EUROCONTROL for a first seminar in October 2009, Rishab
Ghosh also emphasized benefits in terms of sustainability [9], since OSS offers better
guarantees than proprietary software, especially in a niche market like ATM. Sustain-
ability seems to be necessary to guarantee harmonization over time.

Other technical and business benefits, as well as drawbacks, have been reported for
the European secondary software sector [1,3]. Ideally, there should be a systematic
research in terms of Pareto analysis to determine what the most critical drawback is.
However, this research could hardly be based on strong facts, but rather on statistics

 Industry Regulation through Open Source Software: A Strategic Ownership Proposal 325

based on experts’ opinions that would be artificially consolidated for the sake of a
paper. In the present paper, a Pareto analysis is based on rational reasoning built on
top of the study by Lorraine Morgan and Patrick Finnegan [1], and applied specifi-
cally to the ATM case.

This study reports that the business drawbacks appeared to pose a bigger challenge
for OSS than their technical counterparts. The lack of backing support from the com-
pany and the lack of ownership are mentioned first. The other business drawbacks
found in the same study seem to be derived from the lack of backing: insufficient
marketing, training, competencies and access to code.

In terms of top decision making for the ATM domain, it seems that the harmoniza-
tion and sustainability benefits expected from OSS in ATM cannot explain the lack of
managerial backing.

Therefore, the hypothesis considered in the present paper is that the lack of rele-
vant ownership is the most critical drawback from which the others are derived, in-
cluding the lack of backing support. In terms of a Pareto analysis, it is useful to guide
the decision making with a proposal to overcome this major drawback.

3 Seven Counter-Productive Scenarios for OSS Ownership

Various scenarios of OSS adoption can be considered depending on who is the IPR
owner of the OSS product(s). Considering the classical limiting factor analyzed by
G.A. Miller [10], seven scenarios are discussed here concerning ATM.

3.1 OSS Owned by a Small Company

It is possible for a small company that owns a software product to publish it in OSS
mode, inviting anyone to join a community to develop and improve that product.
There was a recent example of such a scenario in ATM (www.albatross.aero). For a
profit oriented company, the ownership can be motivated by financial speculation on
the value of the IPR enhanced by the value of the OSS community that develops the
OSS product. However, such an underlying speculative objective could hardly serve
the efficiency of the ATM supply chain, because it cannot be shared by other partners.
Therefore, an OSS tool driven by financial speculation would probably increase
fragmentation in ATM.

3.2 OSS Owned by a Major Player in the Industry

In May 2006, there was a CALIBRE meeting in Spain where two major tele-
communication players, Vodafone and Telefonica, explained their OSS initiatives:
since the differentiating power of the software was rather low – Telefonica said 5% –
they decided to go open source in order to enlarge their supplier basis. It appears that
the two companies were creating their own OSS projects, as neither of them ex-
pressed a willingness to join the OSS initiative of the other. Telefonica and Vodafone
gave the impression of using OSS to compete in attracting more suppliers.

If the same scenario happens between major ATM companies, it would not be a so-
lution for the whole ATM supply chain, because the duplication of the OSS commu-
nity would not contribute to harmonization.

326 J.-L. Hardy

3.3 OSS Owned by an OSS Foundation

The copyright of the ADA development environment GNAT was created by a grant
from the US Air Force to the New York University. The copyright of GNAT was
assigned from the New York University to the Free Software Foundation (FSF). Such
a scenario prevents speculation and favors fair competition [11]. Now, what if the IPR
of ATM tools were owned by an OSS foundation, like the FSF? Such a scenario
would probably not work well, because the ATM domain is a specific niche, and
because the FSF is not part of that niche. Therefore, such a foundation could not man-
age the use of the OSS ownership in the interest of the ATM world. For example, if
there were a demand for a commercial license, a disconnected OSS foundation would
have neither the means nor the competence to negotiate this demand for the benefit of
the ATM niche and its specialized players.

3.4 OSS Owned by Cooperatives of Users

Some ATM software tools have their own informal community of users. It could be
easy to create ad hoc legal bodies on top of these communities and to assign them the
OSS copyright. The drawback of such a scenario would be the addition of an adminis-
trative layer with a need for co-ordination, and therefore yet another source of frag-
mentation in the ATM sector. Given the volatility of such small legal bodies, the
sustainability criteria would not be fulfilled either.

3.5 OSS Owned by a National Public Administration

A country in EUROPE could decide to use OSS for its ATM sector. It would make
sense, especially for countries that have a long tradition in public administration of
ATM. This would facilitate fair procurement for the development and maintenance of
OSS tools while avoiding the risk of speculation. However, such a national scenario
would reinforce the existing geographical fragmentation of the European ATM.

3.6 OSS Owned by a Continental Public Organization

EUROCONTROL, a leading public organization in European ATM, is the owner of a
portfolio of software tools used for either operations or R&D (Research and Devel-
opment). Recently, there were two attempts to publish R&D tools in OSS terms
(nogozone.sourceforge .net and atv3d.sourcegorge.net). However, such a publication
cannot be extrapolated for commercial software tools, because EUROCONTROL is a
public body that is not supposed to act in the role of a Pan European software house
disturbing competition in the ATM market.

3.7 OSS Owned by a Global Public Organization

ATM is also in the scope of worldwide organizations. ICAO is a specialized organiza-
tion of the UN dealing with civil aviation. IATA and CANSO are trade organizations
for airlines and ANSPs. Assigning the OSS ownership to such bodies would have the
advantage of providing global harmonization. However, performance studies indicate
that the improvement needs are not the same in Europe and the US [7]. Therefore an
attempt to reach a global harmonization through OSS tools is not a relevant scenario.
It seems useful to keep different ATM solutions based on continental specificities.

 Industry Regulation through Open Source Software: A Strategic Ownership Proposal 327

4 Attaching the OSS Ownership to an Industry Regulatory Role

The seven scenarios of OSS ownership are not productive because the owner does not
have a role that justifies its ownership on behalf of the OSS community.

Therefore, the question is whether it is possible to find such an appropriate role.
From the seven scenarios, it appears that such a role must include protection against
speculative or competitive use of OSS ownership, and governance in the niche do-
main of the OSS tools for the best interest of the public, e.g. aircraft passengers.

Considering that European ATM needs harmonization (and not fragmentation) of
its supply chain, a regulatory role seems to be needed [8]. Since OSS technology has
intrinsic advantages in establishing harmonization, the OSS ownership appears to be a
prerequisite or an advantage for the creation of a regulatory role based on OSS.

Such a role must be assigned to a public organization at the level of the situation to
be improved and harmonized. To tackle the fragmentation of the European ATM, the
European Commission and EUROCONTROL are two candidate institutions, but
EUROCONTROL is probably better suited for a specific OSS role in ATM given its
mission that covers technical aspects of ATM.

To promote its regulatory role, the organization should not be involved in competi-
tive activities such as software development or software services. These activities
belong to the private companies involved in the regulated supply chain.

By holding the IPR ownership, a public regulatory body avoids speculative or
competitive counter-productive effects. It could also tune the licensing scheme to-
wards harmonization. For example, a dual licensing scheme could be used on de-
mand. The reply would be a regulatory process which allows integration of OSS
products with proprietary products. In such a process, the productivity of the supply
chain would be optimized in terms of quality improvements and/or in terms of royal-
ties for the OSS community. A preliminary step towards such a dual licensing scheme
is implemented by the two ATM tools launched in OSS. For these R&D tools, the
door is left open for a commercial license with a counterpart for the OSS community
(nogozone.sourceforge .net and atv3d .sourceforge.net).

Figure 1 summarizes the hypothetical proposal. The harmonization and sustaina-
bility need of the whole industry determines the choice of technology (OSS) and the
main attribute of the regulatory role (IPR). A key issue is that the regulatory role is
also impacted by the choice of technology. Therefore, technology and regulation have
a positive and correlated impact on the efficiency of supply chain.

SUPPLY CHAIN
improved efficiency

TECHNOLOGY
choice: OSS

REGULATION
role: IPR

NEED
harmonization
sustainability

Fig. 1. Technology and regulation contributing to the efficiency of the supply chain

328 J.-L. Hardy

5 Conclusion and Future Perspectives

This paper describes a twofold strategic proposal. First, it is argued that OSS should
be used as a tool for establishing industry regulation when needed. In particular, such
a need exists in the case of a complex industrial supply chain using software products:
the regulated approach through OSS is a way to achieve sustainable harmonization.
The second argument is that an industry regulation through OSS is possible when the
ownership of the OSS products is assigned to the regulatory body, preferably an or-
ganization with the necessary domain specific background to monitor and guide the
evolution of the OSS products in the interest of the public.

In the particular case of the ATM sector in Europe, EUROCONTROL seems to be
in the right position to play such a regulatory role. In a paper concerning the regula-
tion of European ATM [8], Hervé Dumez and Alain Jeunemaître point out "the need
to create new tools for thinking European regional regulation and European infra-
structure management." The present proposal of an ATM regulatory role through OSS
could be an attempt to fulfill this need.

By extrapolation from the ATM case, the proposal could go a step further towards
public OSS. The ownership of OSS should be placed in the hands of public regulatory
bodies, especially when the need for harmonization becomes greater than the need for
innovation. Private companies that own a software product in the phase of commoditi-
zation and no longer commercially differentiating [12] should not just offer an OSS
license for their product. They could consider donating or selling the ownership of that
software product to a public entity in order to facilitate de facto standardization around
that product. On the contrary, the ownership of a software tool by a private company,
even in the case of an OSS product, is the evidence of a competitive advantage that
inevitably hampers contributions, co-operation and harmonization around that tool.

In the end, the validity of the hypothetical strategic proposal will only be estab-
lished if it is adopted by top decision makers who manage private or public organiza-
tions. Based on the present proposal, they could immediately apply the principle of
Alan Kay: "The best way to predict the future is to invent it." However, the best ap-
proach for the interest of a large public might be in a continuous back-and-forth be-
tween innovation and research.

Therefore, some preliminary steps would be useful before a decision can be made
concerning the implementation of industry regulation through OSS. First, it would be
useful to survey the OSS ownership and to hear the opinions of OSS specialists, in
order to predict if the regulation hypothesis is valid a priori, how it should be imple-
mented, and how its value (efficiency and effectiveness) should be evaluated a poste-
riori. Second, since industry regulation seems to be an innovative matter in the OSS
arena, there is a need for case studies. The ATM context might be considered a case
study from which lessons could be extrapolated by the OSS scientific community to
other industries. For example, in terms of preliminary experiments, a few software
products could be used for the experimentation of a regulatory role by
EUROCONTROL, with the intention of finding precise legal, technical, economical,
social, organizational, and institutional implications of this regulatory role.

It is the role of the scientific community which analyzes OSS phenomena and
communities to study the potential of OSS for industry regulation purposes, based on
conceptual modeling, surveys, and case studies. The technical and business benefits
and drawbacks of the regulatory scenarios should be anticipated to pave the way for
future OSS policies and decisions.

 Industry Regulation through Open Source Software: A Strategic Ownership Proposal 329

Disclaimer and Acknowledgment. The author is a civil servant of EUROCONTROL,
but the present proposal is a personal viewpoint that does not reflect the official views
and policies of EUROCONTROL on the matter. The author is also contributing to the
OSS2010 conference as a founding member of the IFIP Working Group 2.13 on Open
Source Software. He is grateful to the two anonymous OSS2010 reviewers for their
challenging comments on the first version of this paper, to his friend John Seifarth of
Words-and-Wires-sprl (www.waw.be) for keen comments on the final version, and to
his wife Jung Yeon Kim for correcting English mistakes despite an imminent extension
of the family. A special dedication goes to Professor Dieudonné Leclercq of the
University of Liège who introduced the passion for software into my life in 1975.

References

1. Morgan, L., Finnegan, P.: Benefits and Drawbacks of Open Source Software: an Explora-
tory Study of Secondary Software Firms. In: Feller, J., Fitzgerald, B., Scacchi, W., Sillitti,
A. (eds.) Open Source Development, Adoption and Innovation. IFIP, vol. 234, pp. 307–
312. Springer, Boston (2007)

2. Jeunemaître, A.: Panel “Innovation in ATM”. In: EUROCONTROL 8th Innovative Work-
shop and Exhibition (2009)

3. Ågerfalk, P.J., Deverell, A., Fitzgerald, A., Morgan, L.: Assessing the Role of Open
Source Software in the European Secondary Software Sector: A Voice from Industry. In:
Scotto, M., Succi, G. (eds.) First International Conference on Open Source Systems (OSS
2005), pp. 82–87 (2005)

4. Hardy, J.-L., Bourgois, M.: Open Source Implications for EUROCONTROL (OSIFE). In:
3rd EUROCONTROL Innovative Research Workshop (2004)

5. Bourgois, M., Hardy, J.-L., O’Flaherty, J., Seifarth, J. (eds.): Potential of OSS in ATM
(2005), http://www.oss-in-atm.info

6. Hardy, J.-L., Bourgois, M.: Exploring the potential of OSS in Air Traffic Management. In:
Darniani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.) Open Source Sys-
tems. IFIP, vol. 203, pp. 173–179. Springer, Boston (2006)

7. EUROCONTROL and FAA: U.S./Europe Comparison of ATM-related Operational Per-
formance (2009),

 http://www.eurocontrol.int/prc/gallery/content/public/Docs/
 US_Europe_comparison_of_ATM_related_operational_
 performance.pdf

8. Dumez, H., Jeunemaître, A.: Restructuring Regulation in Europe. The Case of Air Traffic
Services. Concurrences 1, 1–3 (2008)

9. Ghosh, R.A.: Free Software: How Does it Work. In: European Broadcasting Union Semi-
nar (2007),

 http://www.slideshare.net/kamaelian/free-software-how-does-
 it-work

10. Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychological Review 63(2), 81–97 (1956)

11. Gasperoni, F.: COTS, FLOSS, and Market Freedom in Safety-Centric Industries. In: [5]
(2005)

12. Van der Linden, F., Lundell, B., Marttiin, P.: Commodification of Industrial Software: A
Case for Open Source. IEEE Software 26(4), 77–83 (2009)

Proposal for Solving Incompatibility
Problems between Open-Source and

Proprietary Web Browsers

Jun Iio1, Hiroyuki Shimizu1, Hisayoshi Sasaki2, and Akihiro Matsumoto2

1 Research Center for Information Technology, Mitsubishi Research Institute, Inc.
{iiojun,hshimizu}@mri.co.jp

2 Gluegent, Inc.
{sasaki,matsumoto}@gluegent.com

Abstract. We conducted demonstration experiments to promote the
use of open-source software on desktops as a part of the Open-Source
Software-Utilization Development Program for the education sector. In
these experiments, we found some barriers to popularizing the use of
open-source software in end-user desktop applications. In this paper,
we report some typical problems of Web-browser compatibility, which
are considered to be obstacles for promoting open-source software on
desktops. We also introduce a tool that we developed to help developers
avoid such pitfalls while designing Web applications.

1 Introduction

In the late 1990s when open-source software was not considered as a commod-
ity, open-source server software was used much more widely than open-source
desktop applications. Recently, the open-source desktop applications have also
become popular, and some well-known applications such as OpenOffice.org, Fire-
fox, and Thunderbird are gaining market share and awareness on the Internet.
According to the report from the open source application foundation (OSAF)[1],
the use of Linux on desktops will first become popular among high-end users and
IT engineers, then its use by routine workers (such as call-center operators) will
follow. Ultimately, even office workers will use open-source software on their
desktops.

2 Background

In order to accelerate the spread of open-source applications on desktops, we
conducted a series of demonstration experiments from 2004 to 2008 as part of
the Open-Source Software-Utilization Development Program for the education
sector, which was sponsored by the Information-Technology Promotion Agency
Japan (IPA) and the Center for Educational Computing (CEC). In these exper-
iments, Linux desktop computers were deployed at more than 50 schools, and

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 330–335, 2010.
c© IFIP International Federation for Information Processing 2010

Proposal for Solving Incompatibility Problems 331

students used Linux every day in the classroom. As a results of these experi-
ments, we demonstrated that there were almost no problems using open-source
desktop computers instead of the existing proprietary computers for IT-driven
classes. In addition, we showed the possibility of reducing management cost of
IT systems by adopting open-source software.

On the other hand, our study based on those experiments revealed many
problems that must be solved in order to replace proprietary software with open-
source software on desktop computers. One of the key issues in the use of open-
source applications in the field of education is the ability to handle established
course material for e-learning systems.

Many e-learning systems are constructed as Web applications. In general, Web
browsers are used as client software, and viewing course material via the Internet
requires a Web browser. However, much educational content is designed to be
viewed by a particular Web browser (many e-learning systems are built to run on
Microsoft Internet Explorer (MSIE) and they are tested only on that browser),
In addition, many Web pages are consistently produced with defective content
that cannot be properly viewed by open-source browsers.

Obviously, the trend toward such inappropriate Web content exists not just
in the e-learning field, but also in general Web-based applications in other fields.
Therefore, a study to identify browser-incompatibility trends was required; it was
essential to clarify the practical problems and solutions in order to popularize
the use of open-source browsers.

3 Browser Dependency Problems

Following are the typical types of browser-incompatibility problems.

Embedding of Video and Other Objects. This problem is caused by a dif-
ference in the handling of two tags: <embed> and <object>. To create a
document that contains such an object and that is rendered correctly in
every browser, the object must be embedded in the document using both
tags.

Requirements of Particular Plug-ins. Shockwave, XVL Player / Viewer,
and certain other plug-ins using Active-X technology cannot be handled
in the Linux.

Unsupported Functions in Japanese documents. Text is written in two
directions. MSIE implements the product-specific extension “writing-mode:
tb-rl” in its style-sheet definition to enable vertical writing mode. However,
Mozilla Firefox does not support this function.

Layout Fragmentation by Line-Spacing Misalignment. Somedocuments
specify line spacing using a property of the tag <p>. This is valid only in
MSIE, and not valid in Firefox. According to HTML specification, using
this tag property is inappropriate, and the <div> tag should be used to
adjust line spacing instead.

Garbled Characters. In the representation of Japanese text, there are four
sets of character codes. Especially in Java applications, not assigning explicit
character codes for the text can cause garbled characters to occur.

332 J. Iio et al.

Difference in the Versions of Java Runtime Environment (JRE).
Some systems cannot run as expected because of issues with Java applet
initialization.

Defects in Different JavaScript (ECMAscript) Implementations.
Because of differences in the implementation of JavaScript in MSIE and
Firefox, many malfunctioning scripts, which have been tested only on MSIE,
have been encountered.

3.1 Solutions for This Problem

These problems are serious, because Internet has achieved an important position
in the infrastructure of the information society.

We investigated the problems that exist in the Internet space and their effect
on Internet users. The result of our investigations [2] revealed that approximately
170 incompatibility problems potentially exist in the Internet. Some of other
problems were categorized as fatal errors. For example, some data would never
get displayed in a particular browser. Based on our findings, a recommendation
document [3] was published.

As a solution to this difficult situation, we designed a tool for Web designers,
Web developers, and Web application programmers to make the development of
multi-browser Web application quick and easy. The key advantage of this tool is
the information it offers to Web developers to avoid issues affecting interoper-
ability. The “Pirka’r” system, which is introduced in this paper, was developed
and released to the Internet as an open-source software. Pirka’r version 1.0 was
released at the end of September 2009. It is now available under the Apache
License, Version 2.0, from http://pirkar.ashikunep.org/.

4 System Overview

In this section, we provide an overview of Pirka’r and its ecosystem.

4.1 Overview of Pirka’r

Pirka’r is an integrated development environment for Web designers and Web
application developers consists of two parts: a client running on the user’s work-
station, and a verification server. The verification server can be installed either
on the workstation or on a separate PC.

The Pirka’r front-end was developed as an application in Eclipse Rich Client
Platform (RCP). Following are the main functions available in Pirka’r:

– Verification against standards.
– Assessment of multi-browser interoperability.
– Multi-browser previewing.
– Automatic rendering.
– Multi-functional editing.
– Auto-downloading of a set of Web pages.

http://pirkar.ashikunep.org/

Proposal for Solving Incompatibility Problems 333

The Pirka’r user can verify whether the cascading stylesheet (CSS) definition in
his Web content complies with standards. In addition, HTML/CSS/JavaScript
can be examined in regard to browser-dependent descriptions.

The target Web page can be displayed in multiple browser panes. This func-
tion relieves the designers of the annoyance of handling multiple browsers and
checking rendering results in each browser.

Web content written by the multi-functional editor is rendered in the multi-
browser preview panes in real time. Designers are freed from the need to reload
manually. The multi-functional editor is a HTML/CSS/JavaScript editor, which
has convenient functions such as code completion, syntax highlighting, and gram-
matical checking.

4.2 The Pirka’r Ecosystem

Figure 1 shows an overview of the Pirka’r ecosystem.

Fig. 1. Overview of the Pirka’r ecosystem

The function that verifies interoperability problems on target Web content
uses a verification engine running separately with the Pirka’r client. The verifi-
cation engine provides the results of verification processes, which are based on
verification data provided from the verification data-management server.

A single management server that manages verification data can deliver the
set of verification data to the verification engines that are installed locally on
any network.

334 J. Iio et al.

If a designer detects a new interoperability-discrepancy problem, he can report
the problem via the reporting form provided. When we receive the report, com-
mitters in our community attempt to create new verification data that contains a
check script, as well as a series of documents that show how to fix the problem.

4.3 Verification Script

The verification script is written in JavaScript. It searches for defects in the
target Web content, traversing over its Document Object Model (DOM).

If the problem is not too complex, the verification script is quite simple. We
have already prepared more than 100 scripts to check existing problems, and
stored them in the master database. We are now asking committers who belong
to the Seaser Foundation to update verification scripts. Seaser Foundation is
one of the most famous organizations in Japan associated with Web application
development.

Committers can register new verification data using the submission form of
the verification data-management server, which is also managed by the Seaser
Foundation. A set of verification data consists of a name, category (HTML,
CSS, or JavaScript), language, severity level, reason for the problem, proposals
to solve this problem, verification script, examples of descriptions, and attached
files (if any).

5 Related Works

A study on interoperability-discrepancy problems associated with Web stan-
dards was also carried out by the standard and certification working group of
the North-East Asia Open-Source Software promotion forum. In their group ac-
tivities, information on problems was shared by delegates from China, Japan,
and Korea [4]. Furthermore, solutions to some problems were discussed in the
collaborative work of the members [5].

A number of Web services can provide screenshots of many types of Web
browsers. Moreover, a variety of studies, such as analyses of Web service interop-
erability [6] and browser-compatibility testing methods [7], have been conducted
from the standpoint of software engineering.

Several studies on the standardization of Web content have been conducted over
the past few years. Result of these studies too are useful for our work. Peter K. con-
ducted massive studies of U.S. government Web sites [8] and the People’s Republic
of China government Web sites [9], using the W3C Validator. However, we con-
sider his approach to be practically insufficient, because problems such as those
discussed in this paper may not be detected by simply checking syntax errors.

6 Conclusions

We studied the interoperability-discrepancy problems of Web content for more
than three years. Our activities resulted in the development of Pirkar, which
helps Web designers easily create multi-browser Web applications.

Proposal for Solving Incompatibility Problems 335

Recently, browser vendors have become increasingly aware of standards. If all
Internet users were able to access Web sites using the latest browsers, there would
be no problem. However, it cannot be ignored that there are still many legacy
users, who continue to use old-fashioned browsers that have interoperability
problems, as mentioned in this paper. This is a strong motivation for developing
the Pirka’r tool, which supports Web designers. All of the functions provided by
Pirka’r are language-independent, so this tool can be used by Web developers
worldwide. We will work in the future to promote this activity.

Acknowledgements

This study and Pirka’r development were conducted as part of the Open-Source
Software-Utilization Development Program, supported by the Information Tech-
nology Promotion Agency, Japan.

References

1. Decrem, B.: Desktop Linux Technology & Market Overview. Open Source Applica-
tion Foundation (July 2003)

2. IPA, Research on the Improvement of Web Contents Compatibility Conducive to
the Widespread Use of OSS Desktops, Resarch Report (2007),
http://www.ipa.go.jp/software/open/ossc/download/Web_Research_En.pdf

3. IPA, Research on the Improvement of Web Contents Compatibility Conducive to
the Widespread Use of OSS Desktops, Written recommendations (2007),
http://www.ipa.go.jp/software/open/ossc/download/

Web Recommendations En.pdf

4. NEA-OSS Promotion Forum WG3, Information Technology – Report of Web Inter-
operability, WG3 SWG2 N054, TR00003 (2007)

5. NEA-OSS Promotion Forum WG3, Information Technology – Solution of Web In-
teroperability Discrepancy, WG3 SWG2 N063, TR00004 (2008)

6. De Antonellis, V., Melciori, M., Plebani, P.: An Approach to Web Service Com-
patibility in Cooperative Processes. In: Proceedings of SAINT 2003 Workshops,
pp. 95–100 (2003)

7. Xu, L., Xu, B., Nie, C., Chen, H., Yang, H.: A Browser Compatibility Test-
ing Method Based on Combinatorial Testing. In: Cueva Lovelle, J.M., Rodŕıguez,
B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS,
vol. 2722, pp. 310–313. Springer, Heidelberg (2004)

8. Peter, K.: Government Web standards usage: USA – standards-schmandards
(2005),
http://www.standards-schmandards.com/2005/government-web-

standards-usage-usa

9. Peter, K.: Government Web standards usage: People’s Republic of China –
standards-schmandards (2006),
http://www.standards-schmandards.com/2006/gvmt-standards-prc

http://www.ipa.go.jp/software/open/ossc/download/Web_Research_En.pdf
http://www.ipa.go.jp/software/open/ossc/download/Web_Recommendations_En.pdf
http://www.ipa.go.jp/software/open/ossc/download/Web_Recommendations_En.pdf
http://www.standards-schmandards.com/2005/government-web-standards-usage-usa
http://www.standards-schmandards.com/2005/government-web-standards-usage-usa
http://www.standards-schmandards.com/2006/gvmt-standards-prc

FLOSS Communities: Analyzing Evolvability
and Robustness from an Industrial Perspective�

Daniel Izquierdo-Cortazar1, Jesús M. González-Barahona1, Gregorio Robles1,
Jean-Christophe Deprez2, and Vincent Auvray3

1 GSyC/LibreSoft, Universidad Rey Juan Carlos, Mostoles, Madrid
{dizquierdo,jgb,grex}@libresoft.es

2 Centre of Excellence in Information and Communication Technologies,
Charleroi, Belgium

jean-christophe.deprez@cetic.be
3 PEPITe, Liège, Belgium

v.auvray@pepite.be

Abstract. Plenty of companies try to access Free/Libre/Open Source
Software (FLOSS) products, but they find a lack of documentation and
responsiveness from the libre software community. But not all of the com-
munities have the same capacity to answer questions. Even more, most
of these communities are driven by volunteers which in most of the cases
work on their spare time. Thus, how active and reliable is a community
and how can we measure their risks in terms of quality of the commu-
nity is a main issue to be resolved. Trying to determine how a community
runs and look for their weaknesses is a way to improve themselves and,
also, a way to obtain trustworthiness from an enterprise point of view. In
order to have a statistical basement, around 1400 FLOSS projects have
been studied to create thresholds which will help to determine a project’s
current status compared with this initial set of FLOSS communities.

Keywords: Libre software communities, quality models, data mining.

1 Introduction

QualOSS1 (Quality of Open Source Software) is a research project focused on the
assessment of the quality of FLOSS (free, libre, open source software) endeavor.
A FLOSS endeavor is composed of a set of community members (or contrib-
utors), a set of work products including code, a set of development processes
� This work has been funded in part by the European Commission, under the FLOSS-

METRICS (FP6-IST-5-033547), QUALOSS (FP6-IST-5-033547) and QUALIPSO
(FP6-IST-034763) projects, and by the Spanish CICyT, project SobreSalto
(TIN2007-66172).

1 The QualOSS project is coordinated by CETIC, and includes also University of Na-
mur, Universidad Rey Juan Carlos, Fraunhofer IESE, Zea Partners, UNU-MERIT,
AdaCore and PEPITe. The work described in this paper has been performed, or
coordinated, mainly by the GSyC/LibreSoft group at Universidad Rey Juan Carlos.
More info about the project: http://qualoss.org/

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 336–341, 2010.
c© IFIP International Federation for Information Processing 2010

http://qualoss.org/

FLOSS Communities: Analyzing Evolvability and Robustness 337

followed by the community to produce work products, and a set of tools used to
support the endeavor, to produce work products and to run the FLOSS software
component [2]. In other words, a FLOSS endeavor is really like an enterprise
working on FLOSS development projects. In turn, the exact goal of QualOSS
aims at assessing the robustness and evolvability of FLOSS endeavors.

When acquiring software, enterprises are not only interested to know about
the product and its quality but also interested in who produced that product
and its reputability. For traditional enterprises, reputability can be check based
on financial strength of the software provider. However, for the FLOSS world, we
must find other ways to determine if a FLOSS endeavor (or a FLOSS project) is
serious. This can be done by studying the behavior of a FLOSS community. In
particular, a FLOSS community should behave in a manner to convince potential
FLOSS integrators from industry that it is dependable.

2 Related Research

In the area of FLOSS, several models have been proposed as well, such as Open-
BRR2 or QSoS3. They consider metrics in several realms relevant to FLOSS
development and maintenance, ranging from product to process or community
metrics. In addition, some of them lack the needed benchmarking to fine-tune
the methodologies proposed, and in some cases do not consider some impor-
tant aspects of FLOSS development or maintenance [1]. Finally it is necessary
to show that in the case of OpenBRR the number of metrics associated to the
community side are just two metrics. On the other hand, QSoS provides four
metrics related to activity over the source code.

QualOSS is aimed to fill this gap [6], and specifically in terms of commu-
nity assess to provide a methodology whose metrics and indicators are semi-
automatically retrieved and all based on a theoretical framework. Thus, results
are influenced by the existing methodologies and their lack of information re-
garding communities, what we think that it is a key factor to take into account
in software maintenance process, as well as interviews with FLOSS integrators.

3 Methodology

For achieving its aims, QualOSS started by applying a Goal-Question-Metric
methodology, from which relevant goals, questions, and finally metrics and indi-
cators were derived. The computation of metrics measurements and aggregation
for answering questions of the QualOSS quality model was partially automated
with several tools.

Interviews and GQM
The first step of the QualOSS methodology consisted of gathering the current
state of the art on the topic, from a theoretical and empirical point of view [3].
2 http://www.openbrr.org
3 http://www.qsos.org

http://www.openbrr.org
http://www.qsos.org

338 D. Izquierdo-Cortazar et al.

In addition, some companies were interviewed to know about their needs, direct
or indirect, regarding the quality of software. Those interviews were held with the
goal of identifying the needs from an industrial point of view. Focusing on the
community side, companies with a business model specificallybased on FLOSS are
usually not directly worried to use products still in their preproduction state and
with no stable releases. They highlighted the importance of the surrounding com-
munity and the support it may provide. Therefore these companies do not hesitate
to interact with the community, sharing technical and non-technical goals.

Using the Goal-Question-metric approach, a goal is defined by an issue, a
context, a point of view and the object to analyze. In QualOSS, the issues consist
of identifying the risk to collaborate with a community. The context assumes that
an enterprise considers integrating a FLOSS component and collaborates fully
with the existing FLOSS community. The point of view represents the role of
people in the enterprise who are concerned about the community issue. And
finally, the object to analyze is the FLOSS endeavor itself.

Then, to polish the quality focus it was necessary to create a quality model
based on the ISO 9126 and merging it with the criteria proposed by the com-
panies. From the information above, it is then possible to refine a set of goals
related to community. For each goal, a set of questions determine how to verify
if the goal is fulfill. Those questions are: First: “how can we measure community
robustness?”. Second: “how can we measure community evolvability?”.

Both questions were further elaborated into several sub-questions, with the
aim of characterizing the object of measurement.

Size and Regeneration Adequacy:

– Definition: The degree to which the size evolution and regeneration of a
FLOSS community happens at an adequate rate to maintain a sustainable
community size.

– Questions:

• sra2- New code contributors evolution.
• sra3- New non-code contributors evolution.
• sra4- New core contributors evolution.
• sra5- Evolution of core members who stopped contributing.
• sra6- Balance between new core contributors and those who left the

project.
• sra7- Average longevity of committers to the FLOSS endeavor
• sra9- Number of code contributors submitting changes in major releases.

Interactivity and Workload Adequacy:

– Definition: The degree to which the community interacts adequately and
partition the workload among FLOSS community members adequately to
maintain a community cohesion and motivation.

FLOSS Communities: Analyzing Evolvability and Robustness 339

– Questions:

• iwa1- Is the number of events adequate (to show a lively community)?
• iwa2- Is the number of code commits adequate?
• iwa4- Are there sub-groups disconnected or are active community mem-

bers serving as bridges between these sub groups?
• iwa5- Is there enough community supporting a FLOSS desired version?
• iwa7- Is the current team concerned about the entire source code?

It should be noticed that there are missing questions. Since this analysis is fo-
cused on the source code management system (the most usual data source found
in FLOSSMetrics databases), those metrics related to other data sources (and
so, their questions) have been removed.

Indicators
For each metric defined above (each metric answers one question), there is a
high-level risk indicator. This indicator measures one aspect of the risk taken
by a company engaging in a full FLOSS collaboration. The QualOSS project
has defined the following four color-coded risk levels, in order of decreasing risk:
black, red, yellow and green. However, it should be noticed that indicators should
not be trusted blindly. In particular, they should not be considered separately,
but rather jointly to form an overall risk picture associated to a project.

In this paper, we adopt a data-driven approach to define indicators. Using
the notion of quantile, we search for a partition of a metric’s values into a given
number of intervals with equal probability.

To compute our metrics and estimate our indicators, we use data collected
by the FLOSSMetrics [5]4 project. Many of the open-source projects considered
by FLOSSMetrics appear to be very small and are thus not representative of
our population of interest. Indeed, we are assessing the risks associated to a full
FLOSS collaboration with projects. This precludes very small projects for which,
from a business perspective, a fork should be more appropriate.

4 Threats to Validity

As it was said, during the extraction data from the FLOSSMetrics databases, it
did not provide full of data regarding other data sources except for the source
code management system. Thus, what it is presented in this paper is just based
on those metrics which are retrieved specifically from that data source.

It is also necessary to deal with the fact that projects stored in FLOSSMetrics
database do not represent the whole population of FLOSS projects.

Finally, depending on the policy, projects may have a small set of developers
who are in charge of committing all the changes. This will skew the results
produced by our methodology.

4 http://flossmetrics.org

http://flossmetrics.org

340 D. Izquierdo-Cortazar et al.

5 Results for Illustration

In first place, an approach using the slope as our metric and then defining the
indicators showed a lack of information since most of the slopes were pretty
similar. We used another approach based on the slope, but modifying the way
the indicator is calculated. In fact, those indicators are not dependable of a
given statistical approach and some other may be used to improve the indicator
accuracy. Projects presented for illustration are well known projects and even
when the Evince community is more active than the Nautilus’s or HTTPD1.3’s,
all of them show a similar activity in terms of commits per committer, handled
files and other metrics.

Table 1. Illustration in some projects using a linear model

Pred. diff. evolution evince nautilus httpd1.3

sra7 8.6044 Y 5.0272 B 7.4484 R 15.7206 G
iwa4 0.3666 G 0.4216 G 0.3168 G 0.0923 G
iwa5 374772.4 B 48282.8 R 246991.9 B -
iwa7 0.145 G 0.1904 Y 0.0491 Y 6.0e-4 B

Δ90 sra290 0 Y 0 Y 0 Y 0 Y
Δ90 sra390 0 Y 0 Y 0 Y 0 Y
Δ90 sra990 0 Y 0 Y 0 Y 0 Y
Δ90 iwa190 -0.23327969 R -0.0312513 R -0.20157016 R -0.62113349 R
Δ90 iwa290 -1.03448107 R 0.31998312 Y -1.60891953 R -0.76343814 R

Δ sra4 1 G 2 G 0 Y 0 Y
Δ sra5 1 B 1 B 2 B 0 R
Δ sra6 -1 R 0 Y -1 R 0 Y

6 Conclusions and Further Work

We have presented a way to estimate ”quality” from an industrial perspective
based on statistical analysis of hundreds of FLOSS projects. FLOSS communities
are key actors in the software evolution and maintenance process and better
understanding their behavior through their life will improve the make decision
process.

For instance, checking the tendency by means of the methodology explained
in this paper, we are able to know if a community is growing, or if the number
of core committers is decreasing over and over. Perhaps we are interested in a
specific product and we know that some of its weaknesses are motivated because
of a really high turnover of developers.

Thus, we can check how reliable are the FLOSS communities looking at the
values for the given set of metrics. As it was mentioned, indicators define relative,
and not absolute, risks. A low risk does not mean that the metric value is good,
this is just good compared to other projects. In this case, this is useful if we are

FLOSS Communities: Analyzing Evolvability and Robustness 341

interested in guessing the activity of the community, the general tendency and
how it behaves compared to some other set of projects.

As further work, we should say that indicators must be polished by using new
data from FLOSSMetrics (current status of the Melquiades database5 shows
an increase of 600 projects since results were retrieved for this paper). There
are other publicly available data sources which may be checked in order to add
more accuracy to this analysis. Specifically OSSMole6 or Ohloh7 are some exam-
ples which have been used for academic purposes. The FLOSSMetrics project is
currently adding data from bug tracking systems what means that some other
indicators will be added using the statistical approach defined here.

We also need to include advanced aspects of community behaviors and how
they can be integrated in the QualOSS methodology. For instance, community-
driven projects show interesting interactions among participants [8,4,7].

References

1. Deprez, J.-C., Alexandre, S.: Comparing assessment methodologies for free/open
source software: OpenBRR & QSOS. In: Jedlitschka, A., Salo, O. (eds.)
PROFES 2008. LNCS, vol. 5089, pp. 189–203. Springer, Heidelberg (2008)

2. Deprez, J.-C., Fleurial-Monfils, F., Ciolkowski, M., Soto, M.: Defining software
evolvability from a free/open-source software. In: Proceedings of the Third Inter-
national IEEE Workshop on Software Evolvability, October 2007, pp. 29–35. IEEE
Press, Los Alamitos (2007)

3. Deprez, J.-C., Ruiz, J., Herraiz, I.: Evaluation report on existing tools and existing
f/oss repositories. Technical report, QualOSS Consortium (2007)

4. González-Barahona, J.M., López-Fernández, L., Robles, G.: Community structure
of modules in the apache project. In: Proceedings of the 4th Workshop on Open
Source Software Engineering, Edinburg, Scotland, UK (2004)

5. Herraiz, I., Izquierdo-Cortazar, D., Rivas-Hernández, F.: Flossmetrics:
Free/libre/open source software metrics. In: CSMR, pp. 281–284 (2009)

6. Izquierdo-Cortazar, D., Robles, G., González-Barahona, J.M., Deprez, J.-C.: As-
sessing floss communities: An experience report from the qualoss project. In: OSS,
p. 364 (2009)

7. Madey, G., Freeh, V., Tynan, R.: Modeling the Free/Open Source software com-
munity: A quantitative investigation. In: Koch, S. (ed.) Free/Open Source Software
Development, pp. 203–221. Idea Group Publishing, Hershey (2004)

8. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of Open Source soft-
ware development: Apache and Mozilla. ACM Transactions on Software Engineering
and Methodology 11(3), 309–346 (2002)

5 http://melquiades.flossmetrics.org
6 http://ossmole.sourceforge.net/
7 http://www.ohloh.net/

http://melquiades.flossmetrics.org
http://ossmole.sourceforge.net/
http://www.ohloh.net/

BULB: Onion-Based Measuring of OSS
Communities

Terhi Kilamo, Timo Aaltonen, and Teemu J. Heinimäki

Tampere University of Technology
firstname.lastname@tut.fi

Abstract. Up to date information on the associated developer commu-
nity plays a key role when a company working with open source software
makes business decisions. Although methods for getting such information
have been developed, decisions are often based on scarce information. In
this paper a measuring model for open source communities, BULB, is
introduced. BULB provides a way of collecting relevant information and
relates it to the well-known onion model of open source communities.

1 Introduction

A company working with open source software (OSS) is often dependent on
the developing community. Especially, when a product or service is sold the
connection is obvious. In order to make business decisions, the need for up to
date information about the community is clear. For example, the size of the
community should be known, the activity of developers is interesting, and how
easy penetrating into the community is should be found out.

Currently getting this kind of information is hard. Precise models for such
have been developed. For example, social network analysis (SNA) [3] has been
suggested to get a strict view to the community. SNA analyses a mathematical
graph, where nodes are the members of the community and arcs model relation-
ships between them. Different kinds of surveys can be given as another example
of community information digging.

The industry does not seem to use such advanced methods today. On the
contrary, to our knowlegde the business decisions are often based on simple
models, and, it is not unusual that the only two sources of information are the
number of messages in discussion forums and the number of downloads.

In order to be adopted in the industry, metrics need to be instantly meaning-
ful. We propose is a measuring model BULB, which relates the measurements
to the well-known onion model [7] of OSS communities. The onion model is
commonly accepted and it is easy to grasp, so BULB conforms to the prerequi-
sites. The measurements are based on robots digging continuously information
from various sources, like the discussion forum, the version control and the bug
repository, i.e. the framework conforms to the rest of the conditions.

The rest of the paper is structured as follows. In Section 2 ways to measure
open source communities are discussed. The BULB model for measuring open

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 342–347, 2010.
c© IFIP International Federation for Information Processing 2010

BULB: Onion-Based Measuring of OSS Communities 343

source communities is introduced Section 3 and applying it to an industrial
community is given Section 4. The paper in concluded in section 5

2 Measuring Open Source Communities

The community behind an open source project is a key component that effects
the success of the project. Information on the nature of the community is needed
in order to make informed decisions on adopting open source software and to
aid running a successful business based on open source components. Several
different approaches have been suggested to provide support in the decision
making ranging from easy to get to more extensive analysis.

Social Network Analysis. Any open source project can be seen as a social
network of developers. The developers are linked to each other through different
kinds of relationships that are created and maintained in OSS projects mainly
by computer-enabled channels. The OSS community is thus seen as a graph
with the developers as the nodes and the social relationships between developers
as the edges. Social network analysis (SNA) [3,10] can be used to study the
community and its structure.

Business Readiness Rating. Business Readiness Rating (BRR) [2] proposes
a method for assessing open source software. The goal is to get a rating on the
open source software through four steps (1. quick assessment, 2. target usage
assessment, 3. data collection and processing and 4. data translation) As BRR
itself admits that phase three is the most time consuming and yields best results
for mature projects, its value is somewhat limited to eliminating bad candidates.
It also seems apparent that BRR is no longer being developed further at the
moment.

Simple metrics. One way to evaluate the open source project is to measure
some publicly available data that are easy to access and measure. Very simple
metrics, such as the amount of downloads or the daily amount of discussion
on email lists or the project discussion forum are used. Naturally the level of
activity in the community shows if the community is still alive, but says very
little on the product or the sustainability of the community on the whole.

Software use. Software use is naturally a popular metric albeit one that is
difficult to measure reliably in the case of open source software. Numbers of
downloads alone do not reliably tell about adoption [1]. Moreover from the busi-
ness decision point of view, the community as a whole is interesting, not just the
usage.

Surveys. Surveying community members is a suitable method for gaining infor-
mation from different interest groups within the community [9,4,11]. However,
surveys don’t necessarily reach people, whose input would be most valuable.
In addition, surveys cannot be used as a mean of continuous analysis as the
likelihood of people answering them decreases over time.

344 T. Kilamo, T. Aaltonen, and T.J. Heinimäki

Appearance. A common method of comparing projects and making decisions
on the project to use is not based on any kind of measuring as there often is
no time to undergo a vast analysis. The appearance of and the feeling one gets
from the community are the driving factors instead of a more formal approach.
Results beyond a blatant guess are needed, and therefore the need to evaluate
the community further is apparent.

Onion-Based Measuring. Open source communities can be modeled with an
onion model introduced in [7]. In the model each member of the community has a
distinct role. The community is seen as an onion-like structure, where the most
influential community members occupy the core layers, while the outer layers
hold the less influential ones.

3 Constructing an Onion-Based Model: BULB

In this section a measuring model for onion-based measuring of open source
communities, BULB, is given. The structure of the community and how the
community members fall on layers in the onion is valuable information about
the community and its current state in making business decisions. BULB has
been developed for this very purpose. The theoretical base of the model has
already been introduced in [6]. In it, the traditional onion model for open source
communities is substituted with two onions, one for the size of the community
and another for the amount of activity on the onion layers. The traditional size
onion is produced by simply assessing the number of people on each layer of
the onion. Data from several data sources is combined to get a picture of the
structure of the community according to the onion model. Data used at this

Fig. 1. The data sources on the onion

BULB: Onion-Based Measuring of OSS Communities 345

point range from the version control system information to the number of web
hits for relevant sites. Some of the data sources have more effect on the onion
built out of the data than others. This is taken into account when constructing
the onion model for the community. The data sources used and the onion layers
affected by each source are depicted in Figure 1.

The onion is seen as a vector, where each element contains the relevant infor-
mation about the layer, for example in the size onion the number of people on
the corresponding onion layer. Each metric used is measured daily and a vector
representing its distribution on the onion layers is created by multiplying it with
a coefficient vector that indicates how influential the metric is on each layer. The
coefficient values of the layers add up to 1.0. If we denote the set of metrics used
with M the distribution vector di of each metric is calculated:

∀mi ∈ M : di = mivi (1)

where vi is the coefficient vector of mi. The example vectors used in the case
studyfor distributing the numbers of bug reports and feature requests over the
onion are shown in Figure 2. The different data sources can have significant

Bug reports:

0.2 0.3 0.20.3 0.0 0.0

Feature requests:

0.250.0 0.25 0.25 0.25 0.0

Fig. 2. Example coefficient vectors

differences in their relative values as one can be very large while the other occurs
more rarely and is thus smaller. To compensate this the distribution vector of
each metric is multiplied with a balancing coefficient bi. We get a partial onion
vector:

pi = bidi (2)

The significance of the metric on the onion can also be scaled through this
coefficient. In the example measurements, the balancing coefficients used were
7.0 for bug reports and 9.0 for feature requests.

After the balancing the complete onion is created by simply adding the values
on each onion layer in the partial onion vectors together in order to create the
final onion, i.e.

o =
∑

pi (3)

The traditional onion alone is not able to accurately depict how active the com-
munity members on the different layers of the onion are but is simply focused
on the size and structure of the community. The activity may vary over time
although the size of the community has not changed. Thus the variation in ac-
tivity on the different layers should be taken into account in addition to the
development of the size of the community. As some of the metrics used may give
information about the current level of activity on a given layer BULB suggests a

346 T. Kilamo, T. Aaltonen, and T.J. Heinimäki

second onion similar to the size onion to be used for depicting layer activity. The
activity onion is built like the size onion only based on the metrics that measure
activity. The distribution vectors and the balancing coefficients are naturally ad-
justed suitably. In the example case, the balancing coefficients change to 100.0
for bug reports and 140.0 for feature requests as they are clear indications on
activity.

4 Experimenting BULB with the Vaadin Community

The BULB model is in fact a generic method of depicting the evolution of an
open source community. The data values in the onion vectors can be changed
to a new community characteristic and the model is still applicable. To study
the applicability of the framework, we have experimented it with the developer
community of Vaadin [8]. The measurements were carried out from May 1 2009
to Nov 30 2009. The onion model was instantiated to the Vaadin community as
shown in Figure 1.

Vaadin is a server-side AJAX web application development framework devel-
oped by Oy IT Mill Ltd [5]. The framework is used for developing rich Internet
applications with the Java programming language. Vaadin framework was re-
leased as open source in December 2007. The business model of the company
is based on consulting services and the development of Vaadin. As Vaadin is
open source, IT Mill needs up to date information about the Vaadin community.
So far the main source of information has been the number of downloads and
the number of messages post to the discussion forum. Figure 3 illustrates the
measured activity in the Vaadin community over the measurement window. It
visualizes the effect of events that have impact in the community. The size data
however needs to be filtered to lessen the weekly variation in the raw measures.
The size onion of the Vaadin community after filtering the data with a Gaus-
sian filter is shown in Figure 4. The window size of the filter was 31, μ = 0,
σ = 31/4 = 7.75.

Fig. 3. The activity onion of the Vaadin
community

Fig. 4. Size onion of the Vaadin
community

BULB: Onion-Based Measuring of OSS Communities 347

5 Conclusions

We have developed a new onion-based model, BULB, for measuring open source
communities. We applied the model in an industrial case to measure the layer
sizes in the Vaadin community onion and the activity on the layers. The model
was developed in cooperation with industry to make an easy-to-use and fast
way for digging valuable information on an open source community out of the
available data.

The board and other stakeholders of an open-source company or of companies
thinking of adopting an open source product often base their decision to a limited
amount of information. With BULB these decisions can be based on more fresh
and divergent information than before. We have shown that the described model
works and produces sufficiently precise information fast enough to be useful and
support decision making.

References

1. Wiggins, A., Howison, J., Crowston, K.: Heartbeat: Measuring Active User Base
and Potential User Interes in FLOSS Projects. In: Open Source Ecosystems: Di-
verse Communities Interacting. IFIP Advances in Information and Communication
Technology, vol. 299, pp. 94–104. Springer, Heidelberg (2009)

2. BRR, http://www.openbrr.org/ (Last visited December 2009)
3. Del Rosso, C.: Comprehend and analyze knowledge networks to improve softaware

evolution. Journal of Software Maintenance and Evolution: Research and Prac-
tice 21(3), 189–215 (2009)

4. Capra, E., Fancalanci, C., Merlo, F., Rossi Lamastra, C.: A Survey on Firms’
Participation in Open Source Community Projects. In: Open Source Ecosystems:
Diverse Communities Interacting. IFIP Advances in Information and Communica-
tion Technology, vol. 299, pp. 225–236. Springer, Heidelberg (2009)

5. Oy IT Mill Ltd., http://www.itmill.com/ (Last visited December 2009)
6. Heinimäki, T.J., Aaltonen, T.: An onion is not enough: Living in the multi-onion

world. In: Proceedings of the Open Source Workshop - OSW 2009 In conjunction
with the 4th IEEE Systems and Software Week (SASW 2009), Skövde (October
2009)

7. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution Pat-
tern of Open-Source Software Systems and Communities. In: IWPSE 2002: Pro-
ceedings of the International Workshop on Principles of Software Evolution (2002),
pp. 76–85. ACM Press, New York (2002)

8. Grönroos, M.: Book of Vaadin: Vaadin 6. Oy IT Mill Ltd. (2009)
9. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/Libre and Open Source Soft-

ware: Survey and Study. In: International Institute of Infonomics (2002)
10. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.

Cambridge University Press, Cambridge (1994)
11. Mikkonen, T., Vainio, N., Vadén, T.: Survey on four oss communities: description,

analysis and typology. Empirical insights on open source software business (2006)

http://www.openbrr.org/
http://www.itmill.com/

A Network of FLOSS Competence Centres

Jean-Pierre Laisné1, Nelson Lago2, Fabio Kon3, and Pedro Coca4

1 Open Source Strategy Director for Bull, President of OW2 Consortium
Coordinator of Qualipso Competence Centres, Coordinator of 2020 Floss Roadmap

http://www.ow2.org/

http://www.qualipso.org

http://2020Flossroadmap.org
2 Techical director at the Centro de Competência em Software Livre Qualipso at

University of São Paulo
http://ccsl.ime.usp.br

3 Professor at the Department of Computer Science at, University of São Paulo
Head of Centro de Competência em Software Livre Qualipso at

University of São Paulo
http://www.ime.usp.br

http://ccsl.ime.usp.br
4 Univeristy Rey Juan Carlos at Madrid, Morfeo Qualipso Competence Centre

http://www.urjc.es/

http://cc.libresoft.es/

Abstract. The goal of a Network of Competence Centers is to provide
to FLOSS users, developers, and consumers, high-quality resources and
expertise on the various topics related to FLOSS. This may be achieved
via education, training, consulting, hosting, and certification not only in
terms of tools and platforms but also methodologies, studies, and best
practices. Based on the experience of QualiPSo Competence Centres, we
observe how such a Network is working as a mechanism for sharing success
stories, failures, questions, recommendations, best practices, and any kind
of information that could help the establishment of a solid international
collaborative environment for supporting quality in FLOSS. New Com-
petence Centres are invited to the QualiPSo Network after their propos-
als are evaluated by the QualiPSo Competence Centres Board to ensure
that the prospective Competence Centre is compliant with the QualiPSo
Network Agreement, sharing a common vision and ethics. Each Compe-
tence Centre acts in its geographical region to increase the awareness of
FLOSS and to better prepare the IT workforce for developing and using
FLOSS based solutions. As of 2009, the process for Competence Centre
creation is sustainable and reusable; guidelines for establishing proposals
and opening new Competence Centres have been created, and promotion
of Qualipso Competence Centres is done world wide from India to USA
thanks to key initiatives such as the Open World Forum and the FLOSS
Competence Centre Summit. This lecture will expose how these Compe-
tence Centres relate to each other, which governance model is used and,
based on existing experiences, will describe how they currently operate
in Europe and Brazil and what is planned in Italy, Belgium, Japan, and
China for 2010.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 348–353, 2010.
c© IFIP International Federation for Information Processing 2010

http://www.ow2.org/
http://www.qualipso.org
http://2020Flossroadmap.org
http://ccsl.ime.usp.br
http://www.ime.usp.br
http://ccsl.ime.usp.br
http://www.urjc.es/
http://cc.libresoft.es/

A Network of FLOSS Competence Centres 349

1 FLOSS Adoption: It’s All about TRUST

There are significant signs of broad dissemination of FLOSS concepts both within
industries and within governments. Nevertheless, there is still reluctance to mas-
sive adoption of FLOSS development, mainly due to lack of confidence. Several
“grey areas” around FLOSS cause concerns: legal uncertainties, such as IP pro-
tection and indemnification; quality guarantees, such as development life cycle,
documentation, support, reliability, and performance; and, finally, business is-
sues such as business models capable of maintaining sustainability.

All these concerns can be summarised in one word: trust. And trust is not a
quality that can be claimed without being proved. It also relies on perception, on
non technical questions such as “Who is behind FLOSS?”, “Why be confident
in FLOSS?”, or even “How to be confident in FLOSS?”.

1.1 A Distributed Network of Trustworthy and Highly Skilled
Resources

It is commonly known that “people talk to people”. We want to make use of this
fact to establish confidence in FLOSS by offering independent and qualified sup-
port and services by means of Competence Centres disseminated around Europe,
Brazil, and China. Interconnected among them, these Competence Centres rep-
resent a network that openly offers access to skilled resources and promotes trust
in FLOSS: It enables end users, ISVs (Independent Software Vendors), develop-
ers, etc. to find answers to their questions and use FLOSS in their operations in
a reliable and trusted manner.

These services are delivered thanks to collaborative platforms, tools, and pro-
cess developed mainly by the QualiPSo project1. Each Qualipso Competence
Centre, having a basic set of functionalities, represents an aggregation point of
technologies, skills, and policies. While these competence centres may differ one
from the other by their level of expertise on specific domains, all together the
Qualipso competence centres form a network of expertise sharing the same ethics
and values.

1.2 In FLOSS We Trust

Each competence centre is a set of physical resources (bricks & mortar) and vir-
tual sites dedicated to maximize the reusability of tools, processes, and shared
knowledge by offering services and training. These services will make documents,
tools and platforms openly available to organizations needing to assess the legal-
ity, sustainability, robustness, and interoperability of their critical applications
running on top of FLOSS.

Qualipso Competence Centres will also favor the reusability of the results of
the R&D effort of the Qualipso Project not only in terms of tools and platforms

1 A research project that aims to work on several issues related to FLOSS in order to
foster its adoption by the industry at large.

350 J.-P. Laisné et al.

but also of studies, best practices, and other miscellaneous information. They will
make these results available to both Community and Industry and will promote
them at large through communication programs (public and press relations,
white papers, seminars, courses, workshops, conferences, etc.).

The Qualipso Competence Centres are designed to be replicable but replica-
tion can only work if all components of the competence centre are reusable from
legal to technical aspects. Therefore, all information concerning competence cen-
tres is documented and this documentation is freely available to anyone. Trans-
parency of the process must insure that there is neither hidden agendas nor
Trojan horses in the competence centre model. The replication aims to provide
in each country the same level of information, the same homogeneous tools and
processes, and also some dedicated local resources which act as national FLOSS
experts specialized on identified specific topics.

QualiPSo competence centres are to be distributed worldwide, and may be
instantiated by geographical location, e.g., Paris, Berlin, Madrid, São Paulo,
Tokyo, Guangzhou; or by organizations, such as OW2, Morfeo; or even by
large companies, such as Telefonica or eGovernment-oriented companies such
as SERPRO in Brazil.

2 General Description

The goal of the Qualipso Network is to federate all Qualipso Competence Centres
sharing the same vision, goal, ethics, methods, and tools. So, at the heart of
the Network, stands the Qualipso Network Agreement. This document describes
how these principles are implemented and how all components of the Qualipso
Network are governed.

Each Competence Centre has to define its policy concerning aspects such
as its mission statement and scope, market and geographical area of interest,
technological specialization, legal and funding model, communication plan etc.
A more detailed description will be given during the lecture for attendees to
evaluate the compliance of these elements with the FLOSS culture. This de-
scription is based on the content of Qualipso Network Agreement avilable at
http://www.qualipso.org/sites/default/files/Qualipso— D8.2 Network
Agreement V1.17.pdf.

2.1 Structure of the Network and Its Components

At the most basic level, the Qualipso Network represents the network of Qualipso
Competence Centres. It is a distributed network of trustworthy and highly skilled
resources that reuse technologies, procedures, and policies produced by the
Qualipso Project. The Qualipso Network federates all Competence Centres and
its goal is to protect Qualipso commonly produced assets, intellectual property,
and brands. At its head, we find the Qualipso Network Board, which is composed
of representatives of all Qualipso Competence Centres. This board manages con-
flicts of interest and decides on matters related to: registration/cancellation of

http://www.qualipso.org/sites/default/files/Qualipso

A Network of FLOSS Competence Centres 351

Fig. 1. Qualipso competence centres network architecture

Competence Centres, protection of common assets, approval of new Qualipso
services, and updates of the Qualipso Network Agreement.

At the next level, Qualipso Competence Centres facilitate reusability of the
results of the Qualipso project. Competence Centres provide expertise and ser-
vices in the form of a set of independent and vendor neutral basic services, tools,
and methods on topics addressed by the Qualipso Project from legal advice to
benchmark results. Specific services may also be created. Each Competence Cen-
tre shall have its own legal model in compliance with defined principles, in order
to ensure sustainability of the activities, fairness among partners, openness to
new partners, and to define liabilities, responsibilities, and territory. Each Com-
petence Centre shall also comply with the Qualipso Network Agreement and
be self-sustainable, i.e., manage its own revenues, define its own funding model,
and ensure its efficiency. In short, Competence Centres act locally and cooperate
globally.

Finally, Partners are organizations that decide to create a Competence Centre
according to some common interest (geography, language, technology, etc.). Part-
ners are committed to provide the necessary resources for each Competence Cen-
tre to achieve its goals. There are two types of Partners: Active Partners, which
contribute to daily activities, and Associate Partners, which act as sponsors.

2.2 Benefits of Belonging to the Qualipso Network

As part of the Qualipso Network, Competence Centres are able to share suc-
cess stories, failures, questions, recommendations, best practices, and any kind
of information that could help the establishment of a solid international collab-
orative environment for supporting quality Open Source Software. Therefore,
Competence Centres and their worldwide network will support the continuing
development of the Qualipso vision, helping to provide a sustainable quality
platform for Open Source Software.

To summarize, the key benefits of the Qualipso Network of Competence Cen-
tres are:

352 J.-P. Laisné et al.

Fig. 2. Interaction between FLOSS comunities, the QualiPSo research project, indus-
try, and competence centres

– Global synergies on marketing and communication.
– Multinational shared expertise and knowledge base.
– Local presence through a global network and access to different markets.

3 Competence Centres at Work

The Qualipso Competence Centre in Spain (http://cc.libresoft.es/) is a
joint effort of the GSyC/LibreSoft research group at the Universidad Rey Juan
Carlos (URJC), the CETTICO research group at the Universidad Politécnica
de Madrid (UPM) and Telefonica R&D. These are founding members of the
MORFEO community, with which the Competence Centre shares a close link.
Teófilo Romera Otero, from the GSyC/LibreSoft group, states: “The creation of
the Competence Centre is an opportunity to uplift our activities to a higher and
institutionalized level, allowing a better impact for the creation of knowledge
and the services we have been already offering for years”.

The Qualipso Competence Centre in Brazil (http://ccsl.ime.usp.br) is
located at the University of São Paulo and started its activities in December,
2008. According to Prof. Fabio Kon, the São Paulo Competence Centre director,
“the Competence Centre is an excellent means for the university to communicate
with the Brazilian society and software industry; it contributes not only sharing
the knowledge developed by our research groups but also working as a meeting
point for students, researchers, and practitioners from our region and abroad; we
also expect to benefit from being part of an international collaborative network
focusing on the quality of Free and Open Source Software”.

The German Competence Centre is located at the Fraunhofer Institute for
Open Communication Systems (FOKUS) in Berlin and started its activities in
the first quarter of 2009. Its main emphasis is on providing a factory for FLOSS
projects and on Qualipso services in the context of technical, semantic, and or-
ganizational interoperability between Open Source systems as well as between
Free/Libre/Open Source systems and closed source systems. Governmental or-
ganizations as well as industry and research will benefit from these contributions
and the Qualipso network.

http://cc.libresoft.es/
http://ccsl.ime.usp.br

A Network of FLOSS Competence Centres 353

4 Beyond Qualipso Competence Centres: FLOSS CC
Manifesto

As a result of the First International FLOSS Competence Centres Summit, orga-
nized by Qualipso as part of the Open World Forum, 11 leading FLOSS promo-
tion organizations worldwide (Berlin, Chennai, Guangzhou, Madrid, Maribor,
Newry, Paris, Portadown, Raleigh, São Paulo, Tokyo) joined forces to create a
solid international network of FLOSS Competence centers to share experiences,
define best practices, strengthen synergies, and collaborate on the promotion of
FLOSS.

As a first step, this network provides a Manifesto for FLOSS Competence
Centres, written and signed by all network members, exposing the view described
in this text. The Manifesto is available at http://www.flosscc.org .

Michael Tiemann, President of the Open Source Initiative and Vice President
of Open Source Affairs at Red Hat, confirmed that: “This unique initiative will
further enhance FLOSS initiatives in a sustainable manner world wide. All to-
gether the Competence Centres will form a network which will enable to share
experiences about FLOSS acquired from different perspectives, different cultures
and different visions. And all final results will be made freely and openly avail-
able to the entire FLOSS community by people talking the same language and
sharing the same problems. This represents a notable step towards a true global
knowledge economy.”

5 Conclusion

By sharing a common ethics and culture of collaboration, Competence Cen-
tres promote synergies among educational institutions, industry, government,
and communities, helping the dissemination and application of knowledge on
open standards and technologies, and promoting the development of Informa-
tion Technology in a way that benefits the entire human society. Furthermore,
Competence Centres aim to stay one step ahead in FLOSS market and trends,
providing a point of contact among the industrial, academic, and community
parts of the FLOSS movement, encouraging the effective use of FLOSS technolo-
gies. In short, Competence Centres have the ambition to be significant players
of an Information Society based on knowledge sharing.

http://www.flosscc.org

Profiling F/OSS Adoption Modes: An
Interpretive Approach

David López1, Carmen de Pablos2, and Roberto Santos3

1 University of León, Spain
david.lopez@unileon.es

2 Rey Juan Carlos University, Spain
carmen.depablos@urjc.es

3 Telefónica de España, Spain
roberto.santossantos@telefonica.es

Abstract. This article presents the findings of a research aimed at char-
acterizing F/OSS migration initiatives, in total 30 experiences have been
considered, 19 of which have been conducted by public administrations
and the rest by private firms, operating different industries in eight dif-
ferent countries.

Open source migration projects is a recent research topic, more so
when considering it from a managerial perspective. To overcome the lack
of theoretical models an empirical approach relying on grounded theory
has been adopted as this inductive approach allows theory building and
hypothesis formulation.

According to the results, migrating from proprietary into open source
is dependent on contextual and organizational factors, as for example,
the need of the change itself, the political support for the change, the
suitability of IT, the organizational climate, the motivation of the human
resources, the kind of leadership for the project or the firm complex-
ity. Besides, migration efforts imply strategic and organizational conse-
quences that the organization must evaluate well in advance.

1 Introduction

F/OSS as a radical approach to software development started in the early sev-
enties consolidating itself as an alternative business model in the nineties. Since
then F/OSS has been thoroughly studied from a technical perspective [1],[2] and
as an emerging economic market [4],[5].

F/OSS is arguably a cost-effective solution in public administrations or edu-
cation in which large investments in hardware are often required [3],[6] moreover
the application of F/OSS tools promotes innovation and industry development
worldwide [7],[8],[9]. F/OSS migration initiatives are gaining momentum in the
international arena as many developing countries are embracing this model for
their ICT policies [10],[11].

Notwithstanding the benefits that F/OSS poses for administrations and large
companies, there is still some reluctance among organizations. Migrating into

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 354–360, 2010.
c© IFIP International Federation for Information Processing 2010

Profiling F/OSS Adoption Modes: An Interpretive Approach 355

F/OSS is, as Mr. Schiel technical leader at Munich city hall claims: ”LiMux is
not a technical project”, he says. “Initially, the team approached the migration
as a classical IT problem, but the real issues turned out to be different. ”It’s
all about managing change for and with people.” At this point we are able to
confirm this quote as some of our interviewees do agree with Mr Schiel.

The purposes of this paper are twofold. In the first place presenting results
regarding international F/OSS migration experiences. In the second place pro-
viding insights into open source adoption by organizations.

The latter goal is paramount to define adequate public policies aimed at foster-
ing F/OSS adoption whereas the former goal provides practitioners with guide-
lines to maximize value in migration initiatives.

2 Qualitative Inductive Research Approach

Grounded theory belongs to the set of qualitative research methods aimed at
developing theory grounded in existing data gathered from real scenarios [12].
Being grounded theory an inductive, discovery methodology it allows to produce
emergent theory in areas in which there is still knowledge gaps.

Grounded theory is specially suited in context-based, process-oriented descrip-
tions of organizational phenomena [13]. Initially applied in psychology [14],[15]
it has been successfully applied in the information systems area for some time
now [17] including open source research [18].

Some scholars have studied technology adoption processes [19], [20] notwith-
standing the usefulness of modeling user’s behavior to technology adoption for
our purposes a broader perspective is required. Adopting open source and subse-
quent migration of existing services is not a process conducted by a single person
not even by a single business unit.

According to the above mentioned purposes of this study a microanalysis
approach, that is organization centered, is mandatory. This approach departs
from quantitative, positivist approaches [21],[22] in the sense that no previous
hypothesis are formulated with regards to F/OSS adoption, on the contrary
theory is being developed incrementally according to revealed data. We believe
both micro -or firm level- and macro analysis complement each other reinforcing
together into a global perspective of F/OSS.

2.1 Data Collection

In total 30 migration projects have been collected. Following Glaser and Strauss’
technique of theoretical sampling, migration projects have been selected according
to maximum variability in terms of context, size, purpose, ICT intensity among
others. Having many several factors intervening at different intensity levels is key
to define concepts, categories and relationships i.e emergent theory [15].

Nineteen of the total documented experiences correspond to public admin-
istrations from eight different countries (Brazil, France, Germany, UK, Spain,

356 D. López, C. de Pablos, and R. Santos

Finland) and ten for-profit organizations from small medium companies to large
multinationals such as Audi or Peugeot. For every organization the following
aspects have been initially considered:

1. Migration objectives.
2. Migration timeframe
3. Type of software or service migrated.
4. Migration cost.
5. Migration critical success factors.
6. Migration critical failure factors.
7. Migration outcome.
8. Perceived benefits.

Data collection in grounded theory is conducted iteratively [14] starting with
a general exploratory character and later on more focused approaches towards
relevant topics and structured interviews.

Whenever possible personal contact were established with project leaders in
order to gather as much information as possible. This information was comple-
mented with existing information in journals, magazines and technical reports
in specialized repositories such as OSOR.eu or epractice.eu1.

Alongside this qualitative approach a survey among public administrations in
Spain and Spanish software providers was conducted to further inquire into how
market perceived open source as an alternative. Triangulating both qualitative
and quantitative data provides more robust conclusions[12].

2.2 Data Analysis

Inductive analysis aims at finding relevant concepts and relationships among
them. Initially in the so called open coding researchers thoroughly analyze exist-
ing data and summarize it into categories [15]. In a second stage, axial coding,
initial categories are further developed into subcategories representing variations
along dimensions (i.e. axial coding), these subcategories often match questions
such as: when, how, why, where and what for.

Given the intra-firm analysis perspective adopted in this research F/OSS mi-
gration experiences are considered as internal processes of change. We believe
this process-centered approach reflects real organizations’ structures therefore
facilitating its adoption in existing business units.

As figure 1 shows, F/OSS migration projects are consisted of three main
stages: -or main categories in Grounded theory parlance- Adoption Process, Mi-
gration Process and finally Migration Results. Then, for each category, several
subcategories representing intervening factors are identified.

1 Further information is available at:
http://cenatic.interoperabilidad.org:8080/web/guest/grandes-empresas

http://cenatic.interoperabilidad.org:8080/web/guest/

administraciones-publicas

http://cenatic.interoperabilidad.org:8080/web/guest/grandes-empresas
http://cenatic.interoperabilidad.org:8080/web/guest/
administraciones-publicas

Profiling F/OSS Adoption Modes: An Interpretive Approach 357

Fig. 1. F/OSS migration life cycle

3 Research Results

Three main modes of F/OSS adoption emerge from the analysis: Organizations
concerned with vendor independence which consider open source software as a
strategic asset. Organizations embracing open source as a better option than
privative one in terms of performance or new features. Finally, in the third
adoption mode, organizations striving for budget constrain consider open source
as a cost-effective option in terms of licensing and hardware obsolesce.

First mode: Strategic movers. In this adoption mode, organizations have
faced vendor issues such as forced migrations, ceasing product support or spi-
raling ICT costs. Removing vendor lock-ins is considered a priority by top exec-
utives who define strategic plans to evolve into the F/OSS paradigm.

These organizations tend to be large both in human resources and ICT budget.
They have specific staff dedicated to ICT development and support.

Being intensive users of ICT services, for instance public administrations, they
face interoperability issues with existing services as well as users’ resistance to
change established routines and procedures. They adopt a gradual approach to
software migration usually with schedules in the order of years to complete.
Sometimes rescheduling is mandatory.

Migration processes in this case often require external partners with technical
expertise and large scale deployment experience specially if the organization
has not previous experience or faces challenging scenarios of non-interoperable
technologies and information.

The outcome of migration initiatives in this case are positive in general with
positive results in terms of improved internal processes. Besides they usually
create positive externalities in other business units. Due to the large scale nature
of this initiatives often they impact society in general either by providing new
services or improved software publicly available. Clear examples of this adoption
mode are: Munich city hall, French police or USA postal service.

Second mode: Feature seekers. This category is consisted mainly of medium
to large organizations with intensive use of ICT in their business processes looking
for new opportunities to improve current existing IT capabilities, for instance su-
percomputing or embedded systems. Examples of this mode are Audi or Peugeot.

358 D. López, C. de Pablos, and R. Santos

Migration projects are initiated by internal experts taking advantage of recent
developments, either software or hardware. An IT expert working for a financial
institution claims that: ”We are not fans of F/OSS we stick to the best solution
given the context and existing options”

In spite of having technical expertise they usually collaborate with external
partners for specific expertise. Due to the non-core nature of affected services
interoperability is not a concern neither are end users who remain oblivious of
backend reengineering programs.

Contrary to the previous category, migration timeframes remain within months
with defined procedures well in advance. Success criteria are clearly determined.
The results of this initiative are seldom transformative in the sense of producing
impacts just on specific internal services.

Third mode: Budget optimizers. Small to medium companies often adopt
open source as the best option in terms of price performance ratio. They usually
implement new, non-core services, with open source as an inexpensive approach.
The typical profile is a local administration or SME operating in a non-intensive
ICT market.

4 Implications for F/OSS Migration Processes

As a general rule it seems a good practice to look for interoperable technologies
in existing or future software deployments in order to ensure optimal vendor
independence and flexibility to adapt to business requirements.

Some companies adopt a migration strategy relying on early adopters to test
prototypes adapting them according to received feedback. We consider this ap-
proach quite adequate for it ensures business continuity while involving users
from start, this reinforces the idea that F/OSS migration initiatives entail tech-
nical, organizational and business process reengineering [23].

According to our data most of the times large organizations hire external
companies providing technical expertise or migration experience. Furthermore
there exist some cases, mainly in very specialized areas such as mathematical
modeling or embedded hardware, in which several partners collaborate to come
up with an adequate solution.

No matter the F/OSS adoption mode -either strategic, functional or optimizing-
companies start considering open source as an alternative to specific issues and
gradually have it adopted in subsequent initiatives. This behavior based on rein-
forced trust is consistent with technology acceptance models [19].

5 Future Work

F/OSS adoption offers good opportunities for reaching efficiency, flexibility and
security in organizational processes, but it also poses challenging questions. Mod-
eling users’ response to technology changes is paramount to integrate new soft-
ware into already existing organizations, at this point recent results enhance

Profiling F/OSS Adoption Modes: An Interpretive Approach 359

former Technology Acceptance Models (TAM) by considering software as a so-
cial actor within the organization able to interact with employees at increasing
sophistication levels [20]. We believe that further research could provide interest-
ing results complementing this interaction-centric models with constructs valid
at a firm and intrafirm level.

In every migration project there is always an internal sponsor or a group of
people leading the initiative. Further research into leadership aspects of open
source projects may serve practitioners to identify best organizational patterns
to induce F/OSS adoption.

An interesting fact that emerged during the present research is that some orga-
nizations, mainly large multinationals, are able to generate positive externalities
in other units or even contribute with their own developments back to the open
source community. Being public administrations large ICT consumers providing
further insight into effective means to induce innovation, software reutilization
for instance, would be an interesting research topic.

There is international consensus on the importance that ICT has on educa-
tion and development, 10 percent of broadband penetration increases GDP in
developed economies up to 1.2 percent [24]. Being F/OSS capable of provisioning
computers at lower costs there may be incentives by governments to engage in
national initiatives to promote digital literacy relying on the F/OSS paradigm.
Documenting exemplary initiatives in this matter is encouraged.

Acknowledgment. The authors gratefully acknowledge the support of CE-
NATIC, the Spanish agency in charge of open source promotion and Telefónica.

References

1. Raymond: The Cathedral and the bazaar. Knowledge. Technology and Policy 12(3)
(1999)

2. Hunter: Open Source Data Base Driven Web Development. Chandos, Oxford
3. Lerner, Tirole: The simple economics of Open Source. Journal of Industrial Eco-

nomics 50(2), 197–234
4. Lerner, Tirole: The Economics of Technology Sharing: Open Source and Beyond.

Journal of Economic Perspectives 19(2), 99–120
5. Riehle: The Economic Motivation of Open Source: Stakeholder Perspectives. IEEE

Computer 40(4) (2007)
6. Lakhan, Jhunjhunwala: Open Source in Education. Educause Quarterly 31(2),

32–40
7. Shiff: The Economics of Open Source Software: a survey of the early literature.

Review of Network Economics 1(1), 66–74
8. Hippel, Krogh: Open source software and the private-collective innovation model:

Issues for organization science. Organization Science 14(2), 209–223
9. Osterloh, Rota: Open source software development, just another case of collective

invention. Research Policy 36(2), 157–171
10. Ahmed: Migrating from proprietary to Open Source: Learning Content Manage-

ment Systems, Doctoral Dissertation, Department of Systems and Computer En-
gineering, Carleton University, Ottawa, Ontario, Canada

360 D. López, C. de Pablos, and R. Santos

11. UOC Report: The use of open source in Public Administrations in Spain, Univer-
sitat Oberta de Calalunya, Report

12. Myers: Qualitative Research in Business and Management. Sage, Thousand Oaks
(2009)

13. Myers: Qualitative Research in information systems. MIS Quaterly 21(2), 241–242
(1997)

14. Glaser, Strauss: The discovery of Grounded Theory: Strategies for Qualitative Re-
search. Aldine Publishing Company, New York (1967)

15. Strauss, Corbin: Basics of Qualitative Research: Grounded theory, Procedures and
Techniques. Sage, Thousand Oaks (1990)

16. Orlikowski: Information Technology and the Structuring of Organizations. Re-
search Approaches and Assumptions. Information Systems Research 2(1) (1991)

17. Orlikowski: CASE Tools as Organizational Change: Investigating Incremental and
Radical Changes in Systems Development. MIS Quaterly (Septermber 1993)

18. Dedrick, West: Why Firms adopt Open Source Platforms: A grounded Theory
of Innovation and Standards Adoption. MIS Quaterly. Special Issue on Standard
Making (2005)

19. Venkatesh, V., et al.: User acceptance of information technology: Toward a unified
view. MIS Quarterly 27(3) (2003)

20. Sameh, Izak: The Adoption and Use of IT Artifacts: A New Interaction-Centric
Model for the Study of User-Artifact Relationships. Journal of the Association for
Information Systems 10662(9) (2009)

21. Gonzalez-Barahona: About free Software, Rey Juan Carlos University-Dykinson
(2004)

22. Wheeler: Why Open Source Software. Look at the Numbers
23. Hammer: Reengineering Work: Do not Automate, Obliterate. Harvard Business

Review (2000)
24. Berkman Center: Berkman Center for internet and society. Broadband study for

FCC (2009)

Introducing Automated Unit Testing
into Open Source Projects

Christopher Oezbek

Freie Universität Berlin
Institut für Informatik

Takustr. 9, 14195 Berlin, Germany
christopher.oezbek@fu-berlin.de

Abstract. To learn how to introduce automated unit testing into ex-
isting medium scale Open Source projects, a long-term field experiment
was performed with the Open Source project FreeCol. Results indicate
that (1) introducing testing is both beneficial to the project and fea-
sible for an outside innovator, (2) testing can enhance communication
between developers, (3) an active stance is important for engaging the
project participants to fill a newly vacant position left by a withdrawal
of the innovator.

1 Introduction

The Open Source development paradigm based on copyleft licenses, global dis-
tributed development and volunteer participation has become an alternative de-
velopment model for software, competing on par with proprietary solutions in
many areas. Open Source software especially has established a good track record
related to quality measures such as number of post-release defects or time to res-
olution for bug reports [8,10] based on its open access to source code, openness
to participation and use of peer review [13].

The present study originated in the question how to further improve a project’s
ability to produce high-quality software. From a software engineering perspec-
tive the answer proposed in previous work was to introduce innovative processes
and tools into Open Source projects [9]. But is such introduction feasible? How
must an innovator act to achieve adoption of the introduced innovation? The
present study is a first exploration on these questions.

Quality assurance was chosen as the area for improvement and automated
unit testing [14] as the innovation, because it represents a well-known and es-
tablished quality assurance practice from industry, which should easily provide
benefit to Open Source projects. Methodologically, an introduction conducted by
a researcher is in-between action research [1] and a field experiment [5], because
the researcher is interacting in the field but using his own agenda.

The study proceeded in four steps: First, a theoretical model was built of how
to introduce automated testing to make the process reproducible by others. This
model prescribes activities and goals for lurking [11], joining and acting [2,12],

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 361–366, 2010.
© IFIP International Federation for Information Processing 2010

362 C. Oezbek

collaborating and phase-out of the innovator and is shown in Figure 1. Second,
the project FreeCol was selected from the project hoster SourceForge.net based
on several criteria such as being medium-sized and open for outside participa-
tion to ensure interesting interaction and relevant results. FreeCol was started
in March 2002, trying to recreate the turn-based strategy game Colonization1.
FreeCol is a client-server application written in Java and regularly ranked in
the top 50 of Open Source projects at the SourceForge.net with on average
16,500 copies downloaded per month. The project has 60 members enlisted on
the project page2 of which 46 are designated as developers and 13 of which
are deemed active3. The project already had one test case using JUnit at the
beginning of this study. Third, testing was introduced into this project, which
took place in April and May 2007 following the phase model shown in Figure 1
and resulting in 57 test-cases. In September 2007 the test-suite was broken by
a large scale refactoring and the project maintainers asked for a repair, which
was performed as a last activity in the project. Fourth and last, the outcome of
the introduction was analyzed post-hoc in September 2009 by means of (1) data
mining the source code repository [6] of the project for test coverage and test
failures [15] and (2) qualitatively analyzing the mailing-list communication on
testing4.

2 wks 2 wks 2 wks 2 wks
1 wk 1 wk 1 wk 1 wk 1 wk 1 wk 1 wk 1 wk

Period: Lurking Activity Collaboration Phase-Out
Activities: Subscribe to mailing-list

Check-out project
Build project
Analyse power structure and
mission statement

Write test cases
Contribute tests on mailing-
list

Contribute tests for...
demonstrating current bug
tracker entries
recently checked-in code
test-first development

Improve test cases
Maintain infrastructure

Goals: Get to know the project
Establish infrastructure for
testing

Demonstrate value of testing
Understand code base
Gain commit access

Introduce innovation to
individual members
Build social network

Sustain usage of technology

Fig. 1. Phases in the introduction process

2 Results

Looking back from April 2007 to August 2009 we find the introduction a suc-
cess based on four quantitative indicators: (1) On average 9.9 test cases were
being added per month, raising their number from 73 at the departure of the
innovator to 277 in August 2009 (Figure 2) covering 23% of the source code (see
Figure 2); a respectable figure for a UI-oriented application such as FreeCol.
(2) The percentage of commits affecting test cases is stable between 10.0% to
15.1% per month with 95% confidence. (3) The source code passed the tests

1 http://www.freecol.org/history.html
2 http://sourceforge.net/project/memberlist.php?group_id=43225
3 http://www.freecol.org/team-and-credits.html
4 All scripts used for producing the results in this study as well as intermediate data

to reproduce the statistical analysis are available at
http://www.inf.fu-berlin.de/inst/ag-se/pubs/test-intro2009data.zip

http://www.sourceforge.net
http://www.freecol.org/history.html
http://sourceforge.net/project/memberlist.php?group_id=43225
http://www.freecol.org/team-and-credits.html
http://www.inf.fu-berlin.de/inst/ag-se/pubs/test-intro2009data.zip

Introducing Automated Unit Testing into Open Source Projects 363

Month

P
er

ce
nt

ag
e

of
 c

om
m

its
 b

ei
ng

 te
st

s

5

10

15

20

25

30

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Fig. 2. Percentage of test commits

Month

Te
st

s

50

100

150

200

250

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Failing test cases
Passing test cases

Fig. 3. Number of test cases

Month

LO
C

10000

20000

30000

40000

50000

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Covered Lines of Code
Total Lines of Code

Fig. 4. Lines covered

Month

P
er

ce
nt

ag
e

of
 L

O
C

 c
ov

er
ed

by
 te

st
s

pe
r

pa
ck

ag
e

10

20

30

40

50

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Business Model
Server
Artificial Intelligence
Other
User Interface

Fig. 5. Coverage per modules

in most months (Figure 2). (4) Of the 32 developers who have ever committed
to the FreeCol source code, 16 participated in testing. On the mailing-list sev-
eral developers voiced their positive attitude towards testing, e.g. [fc:2518]5 and
[fc:3351].

2.1 Insights into Automated Testing

The most interesting insight regarding the use of testing is that test-cases have
been used in FreeCol to enhance communication in two ways: (1) If facing a defect
without knowledge to repair or understand it, we have seen developers write fail-
ing test cases which reproduce the failure and use the test-case as a more concise
alternative for communicating the failure (for instance [fc:2606] [fc:2610] [fc:2640]
[fc:2696] [fc:3983]). (2) When facing ambiguity about how FreeCol should behave,
we have seen developers codify their opinion as test cases [fc:3276] [fc:3056] or
existing tests being the starting-point for discussions about how FreeCol should
behave [fc:1935]. This is a second major advantage beside the regression detect-
ing abilities of having a test suite (see for instance [fc:3961] or [fc:4431]).

As a second insight we found that testing varied largely by module. While the
business logic including the game objects attained more than 50% coverage, other
areas such as the server module at 40% and the artificial intelligence module
at 22% are less tested and UI testing is completely absent from FreeCol (see
Figure 2). How to expand the coverage of underrepresented modules remains an
open question.

5 Citations such as [fc:2518] are hyperlinks to e-mails from the Freecol Developer
Mailing-list and are numbered in the order they were posted.

http://sourceforge.net/mailarchive/message.php?msg_name=47903EDD.6010202%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0811261158y48e0705aj7204153ef737180c%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=47B8C20B.5080008%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=47BB21A0.9040903%40scarlet.be
http://sourceforge.net/mailarchive/message.php?msg_name=47C27A10.7090104%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=47DA2672.1070708%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0903220612y34f7e2e9rf175c8d77b692830%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=49192618.8040507%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=48D4AA16.8030703%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=46BD6819.2040002%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0903140955x32c695byab2e269afac22ef%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0907221159t1f9b9d26yde550524a27a199a%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=47903EDD.6010202%40gmx.de

364 C. Oezbek

2.2 Insights into Innovation Introduction

On introducing innovations two main results were found: (1) FreeCol excelled at
incrementally expanding innovation usage over a long time and maintaining the
existing code base. Yet, it required assistance by an innovator or particularly
skilled individual to achieve radical expansion of coverage. (2) When detaching
from FreeCol Open Source project, the innovator needed to signal this to release
ownership of responsibilities and code.

The first insight was deduced from the two notable expansions in coverage over
the last two years. The first was the expansion of coverage from 0.5% to 10% by
the innovator when introducing automated testing in 2007, and the second in
April and May of 2008 when one developer expanded coverage from 13% to 20%.
Otherwise coverage remained stable over the two years, in contrast to the num-
ber of test cases which increased constantly (see Figure 2). On the mailing-list
a hint can be found that this is due to the difficulty of constructing scaffolding
for new testing scenarios [fc:4147]. This leads to a question regarding our un-
derstanding of Open Source projects: If—as studies consistently show—learning
ranks highly among Open Source developers’ priorities for participation [3], then
why is it that coverage expansion was conducted by just two project partici-
pants? It seems that the innovator and the one developer both brought existing
knowledge about testing into the project and that project participants’ affinity
for testing and their knowledge about it expanded only very slowly. A similar
result was reported by Hahsler who studied adoption of design patterns. He
found for most projects that only one developer used patterns [4, p.121]. This
should strike us as strange, if sharing of best practices and knowledge did occur
frequently.

The second insight for innovation introduction resulted from phasing-out the
innovator’s involvement in May and September 2007. The first attempt in May
failed and the test suite was unmaintained during a large-scale refactoring and
soon “spectacularly broken”, as one maintainer put it. Comparing this with the
second more successful departure in September, which resulted in the tests being
maintained by one of the maintainers, we find that the primary difference in
behavior is one of signaling and ownership. When the innovator first detached,
ownership was neither considered nor was the withdrawal communicated to the
project. Yet, as Mockus et al. found in their case study of Apache and Mozilla,
code ownership is achieved implicitly for code the developer is “known to have
created or to have maintained consistently” [8, p.318]. And while such code
ownership “doesn’t give them [the owners] any special rights over change control”,
it stipulates a barrier for other developers to engage with the code.6

Only when the test suite broke completely after the refactoring, did it become
apparent that it was unmaintained. Thus, when phasing-out the innovator’s
engagement again after fixing the test suite in September 2007, one discussion
(see [fc:2182]) was sufficient to create an understanding of shared code ownership
in testing. When the innovator disengaged, one of the maintainers picked up the
6 See for instance [7] for a discussion on code ownership as an important part of the

mental model of developers.

http://sourceforge.net/mailarchive/message.php?msg_name=200905212057.08017.mpope%40computer.org
http://sourceforge.net/mailarchive/message.php?msg_name=op.tyjf0tu72817da%40thimphu.pcpool.mi.fu-berlin.de

Introducing Automated Unit Testing into Open Source Projects 365

role of maintaining the test cases successfully, keeping the percentage of test
affecting commits at around 10% of the total commits (see Figure 2), until
another developer assumed a more active role in testing.

When analyzing the contributions of developers to the testing effort, we find
that besides the innovator and the maintainer there were two individuals who
contributed extensively to testing. Interestingly, as their contribution increased
and waned over time, the maintainer who had already picked up the testing effort
initially seemed to adjust his own contribution accordingly. As contributions of
the other developers never exceeded five testing commits per month, it seems that
the project adopted a flexible code ownership strategy. In this approach, the role
of a “test master” exists who contributes heavily to testing and is pivotal to the
expansion of test coverage and development of knowledge regarding testing. This
role is not formally but rather implicitly assigned and acknowledged explicitly
in the project only for instance when a core developer — stumped by a difficulty
regarding testing — asked: “Any suggestions, particularly from the resident test
expert [name of developer]?” [fc:4446].

3 Limitations and Conclusion

This study presents a first exploration into the research area of actively im-
proving an Open Source project and, as a single case using unit testing as the
innovation, can not generalize far. Other projects might have different attitudes
towards testing, the domain of the software might make testing more difficult,
or the researcher as the innovator could have introduced a noticeable bias. For
future work, more projects, other innovations and more data source per project
should thus be studied, though an active approach like in this study can not be
scaled very far due to the effort associated with each case.

To conclude, this study has shown that the introduction of a code-centric
process innovation such as automated testing is feasible for an outside inno-
vator using a four-stage model. Regarding automated testing this study has
found (1) a number of episodes in which test cases were used for communi-
cating bug reports, and (2) a lack of the state of the practice regarding auto-
mated testing. The results for the innovator are that (1) external participants
are important for the radical expansion of innovation use, and (2) signaling
the departure of the innovator is important even for an innovation which has
an explicit signaling mechanisms such as test cases failures. Open questions
were raised about the extent to which participants are able to learn about new
innovations.

Acknowledgments. Dan Delorey provided the author with a list of all java
projects on Sourceforge.net that had more than 5 active developers over the
course of 2006. Many thanks also to Gesine Milde, Florian Thiel, Lutz Prechelt,
the FreeCol maintainers and test masters, and two anonymous reviewers who
read early versions of this paper.

http://sourceforge.net/mailarchive/message.php?msg_name=200907292106.51433.mpope%40computer.org

366 C. Oezbek

References

1. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun.
ACM 42(1), 94–97 (1999)

2. Ducheneaut, N.: Socialization in an Open Source Software community: A
socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14(4),
323–368 (2005)

3. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/Libre and Open Source Soft-
ware: Survey and study – FLOSS – Part 4: Survey of developers. Final Report,
International Institute of Infonomics, University of Maastricht, The Netherlands;
Berlecon Research GmbH Berlin, Germany (June 2002)

4. Hahsler, M.: A quantitative study of the adoption of design patterns by Open
Source software developers. In: Koch, S. (ed.) Free/Open Source Software Devel-
opment, ch. 5, pp. 103–123. Idea Group Publishing, USA (2005)

5. Harrison, G.W., List, J.A.: Field experiments. Journal of Economic Litera-
ture 42(4), 1009–1055 (2004)

6. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
Software Maintenance and Evolution: Research and Practice 19(2), 77–131 (2007)

7. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a study of
developer work habits. In: ICSE 2006: Proceedings of the 28th international con-
ference on Software engineering, pp. 492–501. ACM, New York (2006)

8. Mockus, A., Fielding, R.T., Herbsleb, J.: Two case studies of Open Source Software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11(3), 309–346 (2002)

9. Oezbek, C., Prechelt, L.: On understanding how to introduce an innovation to
an Open Source project. In: Proceedings of the 29th International Conference on
Software Engineering Workshops (ICSEW 2007), Washington, DC, USA. IEEE
Computer Society, Los Alamitos (2007); reprinted in UPGRADE, The European
Journal for the Informatics Professional 8(6), 40–44 (December 2007)

10. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. IEEE Transactions on Software Engineering 30(4),
246–256 (2004)

11. Preece, J., Nonnecke, B., Andrews, D.: The top five reasons for lurking: Improv-
ing community experiences for everyone. Computers in Human Behavior 20(2),
201–223 (2004); The Compass of Human-Computer Interaction

12. Quintela García, L.: Die Kontaktaufnahme mit Open Source Software-Projekten.
Eine Fallstudie. Bachelor thesis, Freie Universität Berlin (2006)

13. Raymond, E.S.: The cathedral and the bazaar. First Monday 3(3) (1998)
14. Whittaker, J.A.: What is software testing? And why is it so hard? IEEE Soft-

ware 17(1), 70–79 (2000)
15. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM

Comput. Surv. 29(4), 366–427 (1997)

A Case Study on the Transformation from
Proprietary to Open Source Software

Alma Oručević-Alagić and Martin Höst

Department of Computer Science, Lund University, Sweden
Alma.Orucevic-Alagic@cs.lth.se, Martin.Host@cs.lth.se

Abstract. This paper presents an extensive analysis of static software
quality metrics changes for an open source enterprise database manage-
ment system (DBMS), as the software was moved from the proprietary
into open source software development environment. The software qual-
ity metrics of special interest for the research are cyclomatic complexity,
effective lines of code, the degree of system modularity, and the amount
of comments in the code.

1 Introduction

Popularization of OSS has influenced the conventional way in which companies
perceive commercial value of software. The companies recognized that commer-
cial value of product can come from other sources rather than conventional sale
of software licenses. This research assesses the impact of source code changes
made by OSS community to software that was transitioned from proprietary
into open source, in terms of static software quality metrics. The case software
analyzed is the Ingres database management system (DBMS) [2], which, accord-
ing to many, has received a new breath of life after its release into the open
source community.

2 Background

Stemlos [3] conducted code quality analysis in open source development for 100
applications written for Linux. It was determined that some open source products
have lower quality of code produced in OSS environment then that which is
expected as an industry standard.

The very roots of the case software reach back to the 1970s and UC Barkley,
when the initial development of the software was started as open source. The
same code base was modified and spawned into Sybase and Microsoft SQL server
in 1980s. In 1994, the software was acquired by CA (Computer Associates) from
the ASK Group, the company that created a proprietary version of the Ingres
code. In order to increase the market share, CA decided to transform the product
to open source in 2004, by implementing loss-leader/market positioner business
model [4]. In November of 2005, Computer Associates and Garnett and Helfirch
capital created a new company, Ingres Corporation. The main role of Ingres

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 367–372, 2010.
c© IFIP International Federation for Information Processing 2010

368 A. Oručević-Alagić and M. Höst

Corporation is to oversee the open source development process. Today, Ingres
customer base includes 10,000 enterprise customers, among which 136 belong to
the Fortune 500 companies like 3M, Bea Systems, and Lufthansa [6].

The high level architecture of the case software is grouped into four major
components:

Front End: Functionality covers user interface facilities.
Back End: Functionality covers DBMS server functionality.
Common: Functionality covers connectivity and communications between the

front end the back end.
Utility: Functionality covers utility libraries that interactwith operating system.

3 Research Approach

The following research questions were investigated during the research:

1. What parts of the Ingres DBMS software components went through the most
source code changes in terms of source files added, changed, and deleted?

2. How did Ingres DBMS code base change under the OS community process
in terms of static source code metrics?

It is important to highlight the objective of this study, i.e. to understand what
changes that have been carried out, and not to assess or compare the case soft-
ware to any other software. The study is conducted as a case study [5].

3.1 Data Collection

In order to analyze and compare code metrics of the most recent proprietary
version, further referred as 2004v, and open source version, further referred as
2008v, of Ingres, the 2004v was obtained by directly contacting the Ingres Cor-
poration. The 2008v was downloaded from the Ingres Open Source community
web site in November of 2008.

A program that parses through the 2004v and 2008v code base was created,
or more specifically, the files and subdirectories under the main src directory
that contains all of the source files. The files were compared between the two
code bases in order classify all files according to the following:

– File type 0 : Source files that can be found only in 2004v
– File type 1 : Source files identical - unchanged between the 2004v and 2008v
– File type 2: Source files that were changed between the 2004v and 2008v
– File type 3: Source files that were added in 2008v

Metrics were measured in both versions are: lines of code (LOC), effective lines
of code (ELOC), comment lines (C), total cyclomatic complexity (TCC), and
file functions count (FFC). All metrics are calculated on file level.

For coding purposes developers often use braces or parenthesis to make code
more readable, but this practice can inflate LOC metrics [7]. The ELOC metric

A Case Study on the Transformation from Proprietary to OSS 369

takes into consideration all lines of code except blank only or comment only lines
as well as the lines containing only standalone braces or parenthesis ({, }, (,))
Thus, lines counted by the ELOC metric are a subset of the lines counted by
the LOC metric.

C denotes the number of comment lines. The comment lines can appear by
themselves on one physical line of code, or can be co-mingled.

The TCC or total cyclomatic complexity metric, also known as McCabe’s
cyclomatic complexity, is the degree of logical branching per source file.

FFC, or total number of file functions, within a source file determines the
modularity of the file. The FFC metric combined with ELOC metric produces
average number of effective lines of code, AELOC = ELOC/FFC. In the same
way, the average cyclomatic complexity is calculated as ACC = TCC/FFC.

In addition to the above metrics, the amount of comments are of interest.
Therefore a metric describing the relative number of comments in each file is
calculated as RC = C/(ELOC + C).

Metrics for each file were derived with a metrics tool and stored in a database
together with file type information for analysis.

3.2 Analysis

Analysis with respect to research question 1 was conducted by determining the
percentage changes in terms of file type 0, file type 1, file type 2, and file type 3
per major components of the source code.

When analysing research question 2, the differences between the different
versions of the case software were investigated with hypothesis tests. The null
hypotheses state that the code changes made to 2004v, resulting in 2008v, had
no impact on code metrics.

Let T = {0, 1, 2, 3} denote file types according to above and let M ={AELOC,
ACC, RC} denote the different metrics of interest, so that μm(v, Ts) represents
the expected mean of metric m ∈ M for all files of types Ts ⊆ T in version v.
Then the following null hypotheses have been defined:

H0m,changed : μm(2004v, {2}) = μm(2008v, {2})
H0m,new : μm(2004v, {0, 1, 2}) = μm(2008v, {3})
H0m,all : μm(2004v, {0, 1, 2}) = μm(2008v, {1, 2, 3})

That is, three null hypotheses have been formulated for each metric in M so that
there is one concerning only the changed files (H0m,changed), one concerning
all files from 2004v and only newly added files to 2008v (H0m,new), and one
concerning all the files in 2004v and 2008v (H0m,all). This means that |M |×3 =
3 × 3 = 9 null hypotheses and equally many alternative hypotheses have been
defined in total.

Analysis of data for distributions of metrics results for version 2004v and 2008v
were performed and it was determined that data for the metrics do not follow
normal distribution. Hence in order to compare distribution of the metrics, non
parametric tests, Mann-Whitney and Wilcoxon were performed. The Wilcoxon

370 A. Oručević-Alagić and M. Höst

Signed-Rank Test for matched pairs was used in order to compare paired data
sets (i.e., in analysis of H0m,changed), and the Mann-Whitney U test was used
to compare un-paired data (i.e., in analysis of H0m,all and H0m,new).

4 Results

Not all of the source code subdirectories will be analyzed in more detail, but only
front, back, common, gl, and cl, since these directories contain almost 95% of the
code. Hence, the most of the source files are located under /src/front directory
or 54.7% of all 2008v. In the second place is src/cl directory housing 15.40% of
source files in 2008v, followed by the src/back and src/common, housing 14.06%
and 10.44% of all 2008v source files, respectively. Thus, these four directories
contain 94.6% of 2008v source files.

Under the src/front directory the components that belong to the front end
layer of the software are stored. Over 50% of all changes in the front end layer
are due to the addition of the new source file components (type 3). Another
33% of changes are due to changes (file type 2). Thus, around 88% of front
end source files have been changed since the case software went open source.
Under src/cl library source files for Ingres Compatibility Library are housed. This
library grew 69% between 2004v and 2008v, that is it contains 69% of file type
3 files. The src/back end components are deemed very important as the proper
functioning of these components significantly affects database performance. The
back end components went through the least amount of source code changes
and additions, having 67.5% of code unchanged (file type 1) between the 2004v
and 2008v. It also contains the least number of file additions (file type 3), thus
only having 2.92% of the total number of the source files added (file type 3).
Finally the src/common contains components used by both, front and back end.
The common components contain 49.05% of file type 1, or almost half of its
components are same for 2004v and 2008v. It can be observed that 19.5% of its
file were of file type 3, or newly added components.

Table 1 displays code metric statistics summarized for the entire source code
base of 2004v and 2008v. Hence, it can be observed that the number of file
functions, lines of code and effective lines of code has increased. As one would
expect, the higher number of functions and lines of code produced higher values
for total cyclomatic complexity of 2008v code compared to 2004v.

The results of hypothesis testing for the stated hypotheses are presented in
Table 2 (significance level 0.05).

Concerning AELOC, this metric is somewhat increased for changed files,
meaning that when files are changed the functions in the files have become
somewhat larger. For new files the metric is much lower than for old files, meaning
that functions in new files are smaller than in older files. In total, looking at all
files, the metric is higher in the new version than in the older version. The
differences are statistically different for changed code and new code compared
to old code, but not for all code.

A Case Study on the Transformation from Proprietary to OSS 371

Table 1. Summary of source code metrics for the whole system

Code Metric 2004v 2008v
Total LOC 840,502 1,442,225
Total ELOC 650,055 1,110,261
Total C 484,349 630,635
Total TCC 167,753 300,493
Total FFC 15,588 45,216

Table 2. Mean values and results of hypothesis tests

H0 mean 2004 mean 2008 p reject H0
H0AELOC,changed 41.35 41.69 < 0.001 yes
H0ACC,changed 10.47 10.80 < 0.001 yes
H0RC,changed 0.53 0.54 1 no
H0AELOC,new 23.68 11.85 0.0042 yes
H0ACC,new 6.12 2.80 0.01 yes
H0RC,new 0.56 0.42 < 0.001 yes
H0AELOC,all 23.68 19.02 0.1383 no
H0ACC,all 6.12 4.85 0.1841 no
H0RC,all 0.56 0.50 < 0.001 yes

Concerning ACC the same type of observation as for AELOC can be made.
For changed files the complexity is slightly higher and for new files the complexity
is much lower. For RC there is no significant difference for changed code, but for
new code there are significantly less comments. In total there is relatively less
comments in the new version compared to the old version.

5 Conclusions

The conducted analysis have shown that over half of the changes made to the
case source code were made in the front end group of source code components,
while the least of the changes were seen in the back end components. There can
be many reasons for this, e.g. simply that more changes were needed in these
components, but another reason may be that these are nearer to the interest of
the new community that was formed during the open source transition process.

The results of comparison of code quality metrics between all files in 2004v
and new files in 2008v show significant and large decrease in ACC and AELOC,
that is, significant and large increase in quality metrics for code developed by the
OSS community. The code quality decrease in metrics smaller than the increase
of the changed files, and as a result the code quality metrics for 2008v are higher
than those of the 2004v, but this increase in code quality is not significant.
This means that the overall code quality metrics, in terms of average cyclomatic
complexity and the average effective lines of code per function has increased
somewhat for changed code, and decreased rather much for new code. This can

372 A. Oručević-Alagić and M. Höst

be interpreted as an improvement for added code. The number of comment lines
per effective lines of code ACC has decrased and there are significantly less
comments in newly added code. At the same time the number of comments per
effective lines of code (RC) has seen significant decrease between the 2004v and
2008v of source code base. Hence, while there was a small improvement in ACC
and AELOC, the lower number of comments per effective lines of code suggests
that code in OSS community was not documented as much as in closed source
environment.

The transition of the software was also accompanied by 100% increase in
customer base, out of which some 138 customers belong to the Fortune 500
group, and 32% revenue increase reported for the 2008.

For companies planning to go open source, this study can provide an example
on how the OSS community can impact static software quality metrics.

Acknowledgments

The authors would like to express their gratitude to the Ingres Corporation for
providing us with a last proprietary version of the software. This work was partly
funded by the Industrial Excellence Center EASE – Embedded Applications
Software Engineering, (http://ease.cs.lth.se).

References

1. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach,
Revised. PWS Publishing Company, ITP International Thomson Publishing Com-
pany (1998)

2. IngresWebSite. Official web site of ingres corporation (2009), http://ingres.com/
3. Oikonomou, A., Stamelos, I., Angelis, L.: Code quality analysis in open source de-

velopment. Information Systems Journal 12(1), 43–60 (2002)
4. Raymond, E.S.: The Cathedral and the Baazar. O’Reilly Media, Inc., Sebastopol

(2001)
5. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering 14, 131–164 (2008)
6. Assay, M.: Web server survey (February 2009),

http://news.cnet.com/8301-13505_3-10156188-16.html

7. RSM Effective lines of code eloc metrics for popular open source software linux
kernel 2.6.17, firefox, apache hppd, mysql, php using rsm (2008),
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics_narration.htm

http://ease.cs.lth.se
http://ingres.com/
http://news.cnet.com/8301-13505_3-10156188-16.html
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics_narration.htm

High-Level Debugging Facilities and Interfaces:
Design and Developement
of a Debug-Oriented I.D.E.

Nick Papoylias

Technical University of Crete, Chania, Greece
npapoylias@isc.tuc.gr

http://www.softnet.tuc.gr/~whoneedselta/misha

Abstract. While debugging in general is an essential part of the devel-
opment cycle, debuggers have not themselves evolved over the years as
other development tools have through the advancement of Integrated
Development Environments. In this free-software research project we
propose a way to overcome this problem by introducing, designing and
developing a high-level debugging system.

High-Level debugging systems are systems that integrate a source -
level debugger with other technologies as to extent both the facilities
and the interfaces of the debugging cycle. We designed and developed
such a system in a debugging-centric IDE, Misha. Misha, introduces
among other things: syntax-aware navigation, data-displaying and edit-
ing, reverse execution, debugging scripting and inter-language evaluation
through the integration of its source-level debugger (gdb) with a full-
fledged source parser, data visualisation tools and other free software
technologies.

1 Introduction

1.1 Problem Statement

Today’s advancement in IDEs although constantly offering new programming
tools and levels of sophistication, has left debuggers where they were a decade
or more ago, mainly giving the programmer the ability to pinpoint source-lines
of interest, stepping through subsequent lines of source-code, and monitoring
certain expressions as he goes along. Of course the underlying technologies in
the debugging backend often offer some additional number of tools - in the same
line of thinking - which are nevertheless rarely ”embedded” in IDEs and used by
the programmer, if - that is - any debugging tools are embedded or used at all.

Given the importance of software monitoring and debugging as it is expressed
in scientific publications concerning effort estimation[12] and project manage-
ment which on average assert that testing and debugging cover roughly 50 %
percent of the development time [5], we propose - both theoretically and techno-
logically - a possible route for the evolution of debuggers that would hopefully
meet the current needs of software engineering.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 373–379, 2010.
c© IFIP International Federation for Information Processing 2010

http://www.softnet.tuc.gr/~ whoneedselta/misha

374 N. Papoylias

2 Related Work

2.1 Published Work

As far as published work is concerned there are high-level debugging systems
that have been proposed and concern a domain-specific extension language that
leaves on top of legacy debugging systems. That is the case with Duel [11] and
Opium [8]. In the case of Duel we have a high-level debugging system targeting
the C language that during normal execution interacts with gdb providing new
expression evaluations through a domain specific query language. In the case of
Opium on the other hand the domain-specific query language (based on Prolog)
analyses traces of program execution for post-mortem analysis. But we believe
that there is a catch here given the fact that since their proposals debugging
technology didn’t catch up with these ideas even though for example Duel that
was developed in Princeton is now part of Microsoft Research bibliography.

In essence a domain-specific language for debugging no matter how powerful
and extensible, adds immensely to the complexity of the resulting development
environment, and learning such a new language may seem like the last thing
a programmer will want to do. In contrast maybe to a widely used and under-
stood general purpose language that provides the same functionality without the
burden of learning a debugging-specific one.

In addition there is the thriving field of reversible and replay debugging. We
regard the ability to debug backwards in time one of the key components of high-
level debugging systems, and so does the free software community [10]. In terms
of published work some of these approaches can be found in [16], [15] and [1].

Last but certainly not least for reasons that we will discuss below when
dealing with our syntax parser, our work is also related to the work of the
Harmonia Project in Berkeley (see [4] and [2]) which deals with high-level interac-
tive software development, Language-Aware programming tools and programmer-
computer interaction although to our knowledge their work has yet to be
expanded in debugging.

2.2 Technological Advancements

Besides expanding basic multi-threading support which appears in both major
source-level debuggers1, the gdb development team has lately taken a step fur-
ther giving a lot of attention in the aforementioned facilities of reverse/replay
debugging, and scripting extensibility [18], [19]. Our work relies heavily on some
experimental work done for gdb [20] for the first subject but we have taken a very
different architectural approach on the second. Nevertheless this convergence on
experimental choices strengthens our belief that we are on the right track.

We now turn our attention to advancement in debugging aids through IDEs.
Starting with industry standard environments, some related and interesting work
appears in Visual Studio’s data visualisers [6] were data in html, xml or image

1 Gdb and MVSD.

High-Level Debugging Facilities and Interfaces 375

form is according to semantics visualised for the programmer during debug-
ging. Then there is the high-level debugger of Mathematica [17] which supports
arbitrary computation at breakpoints in it’s own language, including some visu-
alisation of intermediate results, mainly mathematical formulae.

For the end an independent - but proprietary - project that we would like to
mention is the high-level debugger JBixbe [7] which has some advanced capabil-
ities in terms of call-graph visualisation and also a basic support for visualising
data, like the popular front-end DDD [22] does.

3 Our Approach

3.1 Rethinking the Debugging Information Flow

All features and facilities of debugging systems depend on the amount and nature
of information that is available in the debugger and concern the equivalency of
source code with the running process. In most such systems in current use today,
this kind of information is usually embedded by the compiler or interpreted in
the executable or intermediate byte-code respectively. This is done according to
some predefined standard such as the pdx stabs format [13] which anticipates
specific uses for the kind of information that it embeds.

In our work in order to support current development and future uses of de-
bugging systems other than the ones offered by today’s technology we expanded
the nature and amount of information available to the debugging system by pro-
viding it with direct access to a semantically annotated parse tree of the source
code. Our choice alters the classical debugging information flow as seen in Fig. 1
(grey area).

Now as seen in Fig. 1 in order to construct this semantically annotated pars-
ing tree and provide additional information to the debugger, we designed and

Fig. 1. Expanding the information available to the debugging system

376 N. Papoylias

developed a seperate parser as part of our debugging system. This parser pro-
vided us the means to develop and support features like syntax-aware navigation
among other things. To our knowledge this is the first time that debugging in-
formation is enhanced in such a way rather than simply being embedded in the
intermediate or machine code.

In addition such a parser can also be used as a crucial building block for a lot
of technologies that are in current use today in IDEs or have been proposed for
their development. Some examples include symbol-browsing, unit-testing, docu-
mentation extraction, syntax-completion and refactoring. To some extend these
other uses are the aim of the Harmonia Project in Berkeley [3]. Their architec-
tural approach also includes a seperate parser to support these facilities rather
than using the first pass of the compiler itself. This desicion seems mandatory
for the time being, due to the architectural structure of current compilers which
favors syntax-trees in intermediate languages for optimization purposes. In the
future we may be able to support these functions directly from the compiler
itself, see [21] and [14].

3.2 The Five Pillars of High-Level Debugging

Syntax-Aware Debugging: This first feature is intented to be the workhorse
of the overall effort, and is based directly on the afformentioned extention of
available debugging information. The implication here is that by using the
parser to analyze source code, debugging and execution navigation can take
place in terms of specific syntactic structures having different ”template”
information readily available to the user according to syntactic and semantic
information of the target language. The programer is thus able to pinpoint
structures of interest as a whole, and not just source-lines, while debugging
can take place both as stepping through a ”logical-unit” of evolution and as
watching the execution flow over time, freezing the program when needed.
The navigation through the syntax-tree operates in two modes breadth and
depth first besides the classical single-line mode. In addition, through the
general purpose extention language that we will examine later, conditional
debugging as well as user-defined in-structure information can be supported.
As we can see in Fig. 2 individual group statements, if, while and other
syntax structures are blocked together in Misha to form logical units of
execution that can accordingly be traversed.

Data Visualisation: Greatly inspired by the work on DDD, data visualisation
is an essential part of our high-level debugging system. Taking things a bit
further than conventional approaches we have used and integrated software
which is used for representing structural information as diagrams of abstract
graphs and networks [9], and on top of that we have provided a comprehen-
sive and generic API for visualising language-oriented datatypes (containers,
strings, integers, interlations). In addition we have developed from scratch
a graphical widget for interacting with these graphs, which supports editing
and updating graph values, infinite graph expansion via menus and depth
settings, layout capabilites and other features.

High-Level Debugging Facilities and Interfaces 377

Fig. 2. Syntax Aware Navigation

Fig. 3. Data Displaying, Positioning and Editing in graphs

General-Purpose Extention Language: Our third step was to integrate a
general purpose extention language to our debugging system, which will be
able to control our parser, the visualisation subsystem, the symbolic debug-
ger as well as the ”high-level” debugging facilities. We chose python which is
a widely used and understood high-level language, distancing ourselves from
the domain specific approaches that we saw earlier in related work. Part of
what we have achieved here (controlling the symbolic debugger via python)
is also a goal for gdb, which aims to use it’s extention language as a separate
platform for writting usefull tools [19]. In our approach besides being able to
control all of the different subsystems (and not just the symbolic debugger)
from the debugging console and in-project python scripts, thus being able
to extend both the debugging system and the IDE, there is the ability to
directly and seamlessly call each project’s C functions from within python
as seen in Fig 4. This feature besides being usefull for unit testing and code
benchmarking purposes, encourages a multi-language approach in software
enginnering which is a critical aspect of our future intentions for Misha.

Reverse Debugging: Stepping backwards in time while debugging is a valu-
able tool that cannot be absent from our research effort. It is also a com-
munity proposal, listed in the high priority project list of the Free Software
Foundation. In responce to this interest and based upon the still expreri-
mental work done for i386 native reverse execution [18], we integrated and
enhanced the execution record facility of gdb with our syntax-aware naviga-
tion system so that it is able to execute back in terms of complete syntactic
structures, just as the programmer using the forward execution will have
expected.

378 N. Papoylias

Fig. 4. Python to C, seamless inter-language calls

Innovative Interfaces: Presenting the programmer with a lot of data and op-
tions all at the same time, is not always the best thing to do, but debuggers
and IDEs from the very nature tend to demand their share of the desktop.
In order to address these issues we developed new graphic widgets for the
gnome platform, for dealing with programming related issues.

4 Conclusion and Future Work

We will like to see our system expanding to the thrieving field of multi-threaded
debugging. As mentioned earlier the basic operations are already implemented for
such an expantion, but there are other posibilities as well. Static code analysis
for example that uses our versetile parser can be implement to automatically
deduce various race conditions between different threads.

In the same line of thinking, our data display system can be expanded to
incorporate call-graph representations from which a more intuitive interface for
setting breakpoints can emerge.

Finally the core implementation of our parser can be enhanced to read source
code incrementally, giving the possibility among other things to graphically mon-
itor source code changes as they happen.

Apart from the experience and knowledge gained in the course of this work,
a lot of new ideas that transent debugging systems have emerged. Especially
the multi-language testing and development facilities that we have developed,
made us think of the possibility of integrating more than two languages that
seamlessly interconnect (without the programmer’s intervention through glue-
code) in a single and unified environment. Without of course the need of a
common intermediate representation2.

References

1. Akgul, T., Mooney, V.J.: Instruction-level reverse execution for debugging (2002)
2. Begel, A., Graham, S.L.: An assessment of a speech-based programming environ-

ment. In: VLHCC 2006: Proceedings of the Visual Languages and Human-Centric
Computing, pp. 116–120. IEEE Computer Society, Los Alamitos (2006)

2 As in .net or jython environements for example where there is a common byte-code
backend.

High-Level Debugging Facilities and Interfaces 379

3. Berkeley. Harmonia project (2009),
http://harmonia.cs.berkeley.edu/harmonia/index.html

4. Boshernitsan, M., Graham, S.L., Hearst, M.A.: Aligning development tools with
the way programmers think about code changes. In: CHI 2007: Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 567–576. ACM,
New York (2007)

5. Brooks Jr., F.P.: The mythical man-month (anniversary ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston (1995)

6. Visual Studio Developer Center. Visualisers (2009),
http://msdn.microsoft.com/en-us/library/zayyhzts.aspx

7. Ds-emedia. Jbixle, high-level debugger (2006), http://www.jbixbe.com/
8. Ducassé, M., Emde, A.-M.: Opium: a debugging environment for prolog develop-

ment and debugging research. SIGSOFT Softw. Eng. Notes 16(1), 54–59 (1991)
9. Ellson, J.: Graphviz, graph visualization software (2009),

http://www.graphviz.org/

10. Free Software Foundation. High-priority projects (2009),
http://www.fsf.org/campaigns/priority.html

11. Golan, M., Hanson, D.R.: Duel - a very high-level debugging language (1993)
12. Gorla, N., Benander, A.C., Benander, B.A.: Debugging effort estimation using

software metrics. IEEE Trans. Software Eng. 16(2), 223–231 (1990)
13. Menapace, D.M.J., Kingdon, J.: The “stabs” debug format. Cygnus Support (2004)
14. Kitware, B.K.: Gcc xml, extention (2009),

http://www.gccxml.org/HTML/Index.html

15. Lewis, S.A.: Techniques for efficiently recording state changes of a computer envi-
ronment to support reversible debugging (2001)

16. Narayanasamy, S., Pokam, G., Calder, B.: Bugnet: Continuously recording program
execution for deterministic replay debugging. In: ISCA, pp. 284–295 (2005)

17. Wolfram Research. Instant high-level debugging (2009),
http://www.wolfram.com/technology/guide/InstantHighLevelDebugging/

18. Gdb Development Team. Gdbreversible. Debugging (2009),
http://sourceware.org/gdb/wiki/Reversible

19. Gdb Development Team. Pythongdb (2009),
http://sourceware.org/gdb/wiki/PythonGdb

20. Teawater. Gdb record patch (2009),
http://sourceforge.net/projects/record/

21. Tromey, T.: Interview: Gcc as an incremental compile server (2007),
http://spindazzle.org/greenblog/index.php?/archives/

74-Interview-GCC-as-an-incremental-compile-server.html

22. Zeller, A.: Debugging with DDD. Gnu Press (2004)

http://harmonia.cs.berkeley.edu/harmonia/index.html
http://msdn.microsoft.com/en-us/library/zayyhzts.aspx
http://www.jbixbe.com/
http://www.graphviz.org/
http://www.fsf.org/campaigns/priority.html
http://www.gccxml.org/HTML/Index.html
http://www.wolfram.com/technology/guide/InstantHighLevelDebugging/
http://sourceware.org/gdb/wiki/Reversible
http://sourceware.org/gdb/wiki/PythonGdb
http://sourceforge.net/projects/record/
http://spindazzle.org/greenblog/index.php?/archives/74-Interview-GCC-as-an-incremental-compile-server.html
http://spindazzle.org/greenblog/index.php?/archives/74-Interview-GCC-as-an-incremental-compile-server.html

To Rule and Be Ruled: Governance and
Participation in FOSS Projects

Zegaye Seifu1 and Prodromos Tsiavos2

1 University of Oslo, Norway
2 London School of Economics, UK

Abstract. Free and Open Source Software (FOSS) Development has
evoked images of full participation, emancipation and flat organization.
Despite such rhetoric, some recent studies and practices reveal the re-
emergence of hierarchical structures in one form or another as an almost
inevitable aspect of the software development process. The objective of
this paper is to investigate, both theoretically and empirically, the rea-
sons behind this reappearance of hierarchy and its impact on the partic-
ipation patterns of open source projects.

1 Introduction

Since its inception, Free and Open Source Software (FOSS) Development has
evoked images of full participation, emancipation and flat organization. How-
ever, despite the licensing framework and rhetoric surrounding FOSS projects
[7,10], recent analysis of the software development process reveals a more com-
plex picture: the vast majority of contributions come from a small group of core
developers who control the architecture and direction of development [5]. In ad-
dition, most participants typically contribute to just a single module, though
some modules may include patches or modifications contributed by hundreds of
contributors [8].

It seems, thus, that while FOSS as a philosophy and licensing practice invites
maximum participation in the development process, in practice, the hierarchical
structures re-emerge in one form or another as an almost inevitable aspect of
the software development process. The objective of this paper is to investigate,
both theoretically and empirically, the reasons behind this reappearance of hi-
erarchy and its impact on the participation patterns of open source projects.
More generally, it explores the ways in which governance mechanisms in differ-
ent FOSS projects play a role in the structuring of participation and contribute
to the openness of a project. Our effort is to explore the ways in which gover-
nance structures contribute to the deepening and widening of participation in
the FOSS context.

A multiple case study approach that links to the conceptual framework allows
us to offer the foundations for appreciating the role of participation and gover-
nance of FOSS projects. The three cases investigated here are complementary
and contribute differently to the different theoretical perspectives supporting our

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 380–388, 2010.
c© IFIP International Federation for Information Processing 2010

To Rule and Be Ruled: Governance and Participation in FOSS Projects 381

analysis. Data for the study was obtained from two main sources i) mailing list
archives ii) formal documents and websites of the projects.

2 Analytical Concepts

2.1 FOSS Governance

Markus [4] defined FOSS governance as the means of achieving the direction,
control, and coordination of wholly or partially autonomous individuals and or-
ganizations on behalf of a FOSS development project to which they jointly con-
tribute. She also indicated that FOSS governance can be informal (i.e., enacted
through shared norms and social control), formally documented (in written poli-
cies and constitutions) or encoded in technology (like mailing lists and version
control software).

Related studies so far have been interested in the question of participation in
FOSS projects from the perspective of motivational factors: why do talented de-
velopers voluntarily contribute? [3]. However, as indicated above, only a minority
of developers is responsible for the majority of the contributions. This could be
partly attributed to the governance mechanisms of the related projects. Gover-
nance structures directly affect motivation and participation of developers, as
well as the type and quality of their contributions [9]. The mere availability of
source code in open source projects practically doesn’t guarantee presence of
excess participation and participants. Making progress in analyzing and under-
standing the nature of collaboration in software development would lead us to
develop better understanding of on line and digital communities as participative
systems [6].

Markus suggested six elements of formal and informal structures and rules
as dimensions and analytical parameters of FOSS governance: ownership of
assets (includes intellectual property licenses and formal legal organizational
structures), chartering the project (like statements of vision, what the software
product should look like, etc.), community management (involves rules about
participation and participant), software development processes (including struc-
tures that address the important operational tasks of development), conflict
resolution and rule changing (including procedures for resolving conflict and for
creating new rules) and use of information and tools (which relates to rules about
how information will be communicated and managed and how tools and repos-
itories will be used). These categories provide an analytical base for comparing
the governance mechanisms displayed in the three projects here.

2.2 CBPP and Participation

Commons based peer production happens over the digitally networked environ-
ment as large and medium scale collaboration among individuals that are orga-
nized without markets or managerial hierarchies. This phenomenon is emerging
everywhere in a decentralized way in the information and cultural production
systems. The model was first brought in to light by Yochai Benkler [1,2]. The fact

382 Z. Seifu and P. Tsiavos

that CBPP takes place in the ubiquitous digital networks and the wide distri-
bution of low cost physical capital, results in a conducive situation for creativity
and mass participation.

Benkler lays out three characteristics of successful peer production and par-
ticipation: the project/artifact must be modular, the modules should be pre-
dominately finegrained or small size and there should be low cost integration
mechanisms. These properties determine the number of participants, the scope
of varied investments (heterogeneity), the minimal investment required to par-
ticipate and the simplicity level of integration. He stressed that a project that
is at its best with these features can potentially attract many users.

Another key element of Benklers CBPP model as complemented by the recent
work of Tsiavos [11] is that of excess capacity, both in the level of the artifact
and that of the peer. Excess capacity in the level of the artifact relates to the non
rivalerous nature of the artifact that is to be produced: the use of the produced
artifact by one user should not hinder the enjoyment of another. This feature
of the produced artifact allows maximum dissemination and parallel production
and hence contributes to the increasing of the user participation. However, it
needs to be complemented by what Tsiavos [11] describes as peer excess capac-
ity, i.e. whoever participates in the development needs to have the skills and the
time to do so and these skills and time need to persist over time. Besides the
motivational factors indicated in various FOSS related studies, Benkler empha-
sizes that the more excess time and skills a peer has the more she is likely to be
able to participate to a FOSS project.

The legal openness that the licenses ensure and the unrestricted access to
a non-rivalerous good, as the software is, are not enough for maintaining a flat
organizational structure. The nature of FOSS development is result oriented and
meritocratic: what is important is that running code is written and that the best
solution is preferred. As a result, the individuals that because of their experience
and knowledge are able to contribute the best code are more likely to acquire
greater power than individuals that lack such characteristics.

2.3 FOSS and Participation

According to general Intellectual Property Rights theory: in the classic copyright
exploitation model, the creator is granted by the law a monopoly right as an
incentive to produce a work. In the FOSS model, the focus is not on the work
as a whole but rather on the level of the individual contribution. Here, the
contributor is not attracted by a monopoly right but rather by other rewards
she is herself to define: the reasons why a developer contributes to a FOSS
project may be hedonistic, related to self-esteem, peer recognition or may relate
to other indirect rewards. In any case, since the rewards are to be identified
by the individual itself, the function of the legal regulatory instrument, i.e. the
FOSS license, is to reduce friction for such micro-rewards to smoothly function
as motivational factor.

It is also important to note that since from the perspective of producing a
final product it is not the individual contributions but rather the accumulative

To Rule and Be Ruled: Governance and Participation in FOSS Projects 383

result of all participants effort that is of interest, this sustained effort to reduce
frictions and maintain excess capacity does not necessarily focus on the indi-
vidual. In that sense, the operation of the regulatory means supporting FOSS
development can focus on the following three objectives: (a) allowing a single
individual to participate repetitively and to make contributions of increasingly
greater quantity and quality (deepening participation), (b) on increasing the
range and diversity of participants, allowing thus the project to scale, (widening
participation) (c) or, ideally, on both.

The principal pure FOSS model assumes that the contributions will be small
and resulting from a wide range of participants. Practice and more recent theo-
retical work however, indicate that such a model is the exception rather than the
rule. Small size projects or ecologies of such projects are more likely to be the
case. In addition, the emergence of hybrid proprietary and FOSS models are a
good indication that the result oriented nature of FOSS is its key characteristic
and the licensing model only a symptomatic feature of how such objectives may
be best achieved. Since the objective of producing high quality running code can
be achieved by deepening or widening participation, organizers of software pro-
duction are likely to encourage both types of participation in order to achieve
the best possible results depending on the specific circumstances surrounding
the development of a project.

3 Case Description

Skolelinux is a community-managed Custom Debian Distribution (CDD) aimed
at schools. It is by now a Debian sub project to make an overall computer solu-
tion and the best distribution for educational purposes. It was initiated in 2001
by a group of four programmers in Norway. For the project in Norway, there is a
board consisting of elected members from users and developers every two years.
The funding comes from private companies but the government had given most
of the project finance at the beginning.

GPL is the preferred license and new contributions are encouraged to stick
to it. However any solution that is being considered to be part of the system
must live up to the Debian Free Software Guideline (DFSG), which contains the
same ideals as in Open source Definition (OSI) and Free Software Foundation.
Skolelinux is used in more than 450 schools worldwide - mostly Europe but also
in Africa. Regarding the participation of users it is written on their WebPages
that the project is community driven, having an ongoing exchange between users
and developers.

Varnish is hybrid open source software released under the revised BSD (Berkley
Software Distribution) license. The project is handled by a company called Lin-
pro in Norway. Technically, the Varnish software is an HTTP accelerator on web
servers. Most web sites or content management systems (CMS) present dynamic
web pages consisting of a number of different elements. Combining these elements
is both time-consuming and CPU intensive, and the process is repeated for ev-
ery individual user, even though the content is often identical. Thus, Varnish

384 Z. Seifu and P. Tsiavos

temporarily stores the most frequently requested pages in cache memory and
effectively presents these pages from cache. As a consequence, users are offered
improved services, and server requirements are reduced by a huge percentage.

It was started in early 2006 and all the accompanying tools in the project are
open source Subversion, TRAC, Mailman and GNU author tools. Linpro run
its business by giving services to customers and through sponsorship. From the
mailing list it is possible to trace and tell that the community is comprised of
individuals all over the world. Currently, there are up to 200 people registered
in the mailing list of varnish.

HISP is a globally distributed open source software development which was
initiated in South Africa around 1994 and is based on collaboration between
academic institutions, health authorities, and private organizations. The goal
of the project is enabling south-south and also south-south-north collaboration.
The funding comes from various governmental and non governmental donors,
though mainly the Norwegian Agency for Development (NORAD) and the Eu-
ropean Commission (EC).

The project develops District Health Information System (DHIS), a for col-
lecting, processing, and analyzing health information for health administration
purposes. DHIS 2.0 (and upward versions) is a web-based software package re-
leased under the BSD license. It is developed using Java frameworks and sup-
ported by other open source tools. It has been implemented in many developing
countries in Africa and Asia. The HISP project in general involves academicians
from universities doing action research through development and implementa-
tion. Thus the DHIS software gets the benefits in terms of resources from the
academic environments.

4 Findings and Discussions

4.1 Overall Picture of Participation in the Three Projects

The development stage and history of the three projects obviously is different.
This also determines the amount of data available in their mailing lists and
even impacts the number of participants that each could have. We are aware of
the fact that the type and purpose of the software also determines the pool of
participants. Instead it is actually the trend that we wanted to show here and
that helps most to get a comparative view. Accordingly, we considered the data
of all the projects since their respective starting period. Table 1 summarizes the
period, number of messages, number of threads, the number of participants and
the size of data considered for each project.

4.2 Governance Mechanisms of the Three Projects

Based on the analytical framework discussed in section 2, the governance mech-
anisms of the three projects were analyzed. Table 2 presents their similarities

To Rule and Be Ruled: Governance and Participation in FOSS Projects 385

Table 1. Overall picture of participation in the three projects

Project Year #of
Messages

#of Threads Size(KB) #of
Participants

Varnish Feb 2006-Dec 2009 1224 340 908 82

Skolelinux Jan 2002-Dec 2009 15548 6344 66000 170

HISP Nov 2008-Dec 2009 3984 2018 9000 74

Table 2. Dimensions of OSS governance mechanisms

Rules Vanish Skolelinux HISP

Ownership of
assets

company-manageed; it is
BSD licensed

Community-managed; run by a
board of elected volunteers; any
OSS license

Developed by academic
institution supported
through action research;
BSD licensed

Chartering the
project

Governed by rules of the
owning company and share
its vision

The vision is promoting free-
dom and sharing, starting from
schools; governed by the Debian
charter

Intends to promote south-
south-north cooperation and
finding ways of supporting
the developing world

Community
management
and development
process

Open for anyone interested;
commit patches under the
supervision of the core
developers

Open for anyone with outright
privilege to make changes

Open for anyone with
outright privilege to make
changes

Conflict resolution No written rules; on discus-
sion in the mailing list with
lead of the core developers

Negotiation and voting Discussions through lists
and in person

Use of information
and tools

Information is openly acces-
sible; use open source tools

Information is openly accessible;
use open source tools

Information is openly acces-
sible; use open source tools

and differences. In all the three cases we notice a relevant consistency between
the different modalities of governance and regulation used in order to achieve
the desired modes of production. For instance, as in Benklers original model the
individual identification of incentives appears to be complemented with a licens-
ing scheme reducing barriers to participation. Thus the dispersed and minimal
excess capacity of multiple individuals may be collected and organized. The in-
vestigation of the social norms reveals some interesting patterns. In the Varnish
case, there are no clear procedural or decision taking rules. However, the deci-
sions are made and the guidance is provided de facto by the core developers who
are sponsored by the companies driving the development. In like manner, in the
HISP project a similar situation emerges: the core developers are Oslo Univer-
sity staff and research students and they are the ones driving the process and
taking the decisions in the absence of any clearly stated rules. In the Skolelinux
case, there is a flatter structure with more well defined procedures. Where a
kind of hierarchy emerges this is the result of the meritocratic process through
which contributions are made. It is not that in the case of HISP and Varnish
a meritocratic approach is not followed, but it is the sponsoring organizations
behind the development that influence the development direction and effectively
control the whole process.

This is a very important finding as it indicates that the control structures are
not to be found in a first but rather in a second layer. In the first layer all three
project resemble in terms of legal and technological structure and in that sense
they all appear as meritocratic. However, in a second layer, there are substantial

386 Z. Seifu and P. Tsiavos

differences related to the time and expertise sponsoring provided by extra-FOSS
organizations. This in turn has a direct effect in the formation of the social
norms that will then operate as the main day-to-day governance mechanism for
the FOSS projects.

4.3 Participation Patterns and Governance

In the cases of Varnish and HISP, we observe hybrid models and it is extremely
helpful to see where this imbroglio-like nature lies. In our opinion the hybridity
of the model is in the way excess capacity is handled: in these two cases, the
capacity of the core developers is sponsored in a traditional fashion, though
without using a copyright contract, since there is no reason to restrict access to
the source code. Linpro pays for the time of the core developers that make the
maximum contributions, while the rest of the participants play a complementary
role making contributions that require only minimal excess capacity and for
which the classic CBPP model is applicable. Similar is the situation in the case
of HISP. The core developers excess capacity is sponsored by Oslo University,
while the rest of the developers make marginal contributions requiring again
little excess capacity.

On the contrary, in the case of Skolelinux, there is no clearly seen equivalent
centralized and focused sponsoring and hence the contributions are more evenly
spread and the decision making process is much more democratic. This last ob-
servation brings us to the issue of social norms formation. In the former two
cases the prevailing social norms assign particular relevance to the core devel-
opers and there are no strong and detailed community norms. In the Skolelinux
case, on the contrary, the decision making process is much more democratic and
inclusive.

The interactions between different governance layers are partially only re-
flected in the participation patterns. In the Varnish and Skolelinux the partic-
ipation falls dramatically after an initial phase of wide participation, while in
the HISP case we see a different pattern. The changes in participation cannot
be attributed merely to the governance structures. The maturity of a project,
for instance, plays a crucial role: as the project matures, the original easy to
be identified and solved problems give their position to more difficult problems,
thus requiring greater levels of capacity and hence limiting participation only to
the more knowledgeable and dedicated participants.

The three cases, here, though superficially substantially differ between each
other, a second reading present some commonalities as to how the problem of
excess capacity is addressed. In the Varnish case, as the project matures, the
interest becomes not one of widening but rather of deepening the participation.
Since the core developers are being sponsored by Linpro the problem of excess
capacity is solved by ensuring that they will keep developing software seeing the
community participation as added value to work that is already being conducted
by the company. Here, the incentive of Linpro to widen participation is not big
enough to lead to any specific measures so that non-paid professionals are able
to increase or even maintain the quantity and quality of their contributions.

To Rule and Be Ruled: Governance and Participation in FOSS Projects 387

In the Skolelinux case, while there is an incentive to sustain quality and quantity
of contribution, there is no direct ability to sponsor the time and expertise of par-
ticipants and hence the project inevitably shrinks in size. However, the remaining
participants increase the depth of their participation by being able to make more
substantial contributions and sustaining a steady number of participants.

Finally, the HISP case is possibly the most interesting one, as it takes a series
of conscious steps in increasing the excess capacity of the participating individ-
uals in order to be able to contribute to the project and this is reflected in the
number of participants as the project matures. The main mechanism employed
by HISP is the use of an educational network that operates as an additional
overlay on the FOSS network that supports both financially and educationally
the participants. Also, by employing more a more modular and thus efficient
software architecture and bug reporting methods, it allows the capturing of even
finer granules of excess capacity, thus increasing the participation both in width
and depth.

5 Conclusion

Traditionally, FOSS has been associated with openness and participation. Or-
ganizational studies have indicated that there are hierarchical elements present
in the structuring of the FOSS development process, but have not provided a
comprehensive account of why this is the case. In this paper we have presented a
first account of why this is the case, indicating, however, that even where partic-
ipation seems to be reducing its scope, it may be increasing its depth. Wherever
hybrid models appear, these are the result of the need to sustain capacity that
could not be attracted using only the FOSS model and to achieve value added
corrections that could not have been achieved through a classic proprietary copy-
right management model. These models may lead to a reduction in participation,
where there is no provision for increasing the excess capacity of the peers. For
these reasons, hybrid network-CBPP models seem more likely to support both
widening and deepening of participation in FOSS project.

References

1. Benkler, Y.: Coase’s Penguin, or Linux and the Nature of the Firm. Yale Law
Journal 112, 369 (2002)

2. Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets
and Freedom. Yale University Press, New Haven (2006)

3. Lerner, J., Tirole, J.: Some simple economics of open source. Journal of Industrial
Economics 52 (2002)

4. Markus, M.: The governance of free/open source software projects: monolithic,
multidimensional, or configurational? Journal of Management Governance 11,
151–163 (2007)

5. Mockus, A., Fielding, R., Herbsleb, J.: Two Case Studies of Open Source Software
Development: Apache and Mozilla. ACM Trans. Soft. Eng. Methods 11, 309–346
(2002)

388 Z. Seifu and P. Tsiavos

6. Nakakoji, K., Yamada, K., Giaccardi, E.: Understanding the Nature of Collabora-
tion in Open-Source Software Development. In: Proceedings of Asia-Pacific Soft-
ware Engineering Conference. IEEE Computer Society, Los Alamitos (2005)

7. Raymond, E.: The cathedral and the bazaar: musings on linux and open source by
an accidental revolutionary (Rev. edn.). O’Reilly, Cambridge (2001)

8. Scacchi, W.: Free/Open Source Software Development: Recent Research Results
and Emerging Opportunities. In: Proc. European Software Engineering Confer-
ence and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(2007)

9. Shah, S.: Motivation, Governance, and the Viability of Hybrid Forms in Open
Source Software Development. Management Science 52, 1000–1014 (2006)

10. Stallman, R.: Why Software Should Not Have Owners. In: Richard, M., Stallman,
J. (eds.) Free Software, Free Society: Selected Essays. GNU Press (2002)

11. Tsiavos, P., Korn, N.: Case Studies Mapping the Flows of Content, Value and
Rights across the UK Public Sector. In: Joint Information Systems Committee,
London (2009)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 389–394, 2010.
© IFIP International Federation for Information Processing 2010

A Comparison Framework for Open Source
Software Evaluation Methods

Klaas-Jan Stol1 and Muhammad Ali Babar2

1 Lero—University of Limerick, Limerick, Ireland
2 IT University of Copenhagen, Denmark

klaas-jan.stol@lero.ie, malibaba@itu.dk
http://www.lero.ie, http://www.itu.dk

Abstract. The use of Open Source Software (OSS) components has become a
viable alternative to Commercial Off-The-Shelf (COTS) components in product
development. Since the quality of OSS products varies widely, both industry
and the research community have reported several OSS evaluation methods that
are tailored to the specific characteristics of OSS. We have performed a system-
atic identification of these methods, and present a comparison framework to
compare these methods.

Keywords: open source software, evaluation method, comparison framework.

1 Introduction

Open Source Software (OSS) is increasingly being integrated into commercial prod-
ucts [1]. Much cited reasons for using OSS are cost savings, fast time-to-market and
high-quality software [2]. OSS products can be used as components as an alternative
to Commercial Off-The-Shelf (COTS) components. Like COTS evaluation and selec-
tion, one of the main challenges of using OSS is evaluation and selection [3]. For that
reason, both the research community and industry have proposed evaluation and se-
lection approaches to help practitioners to select appropriate OSS products. However,
research has shown that practitioners rarely use formal selection procedures [4]. In-
stead, OSS products are often selected based on familiarity or recommendations by
colleagues [5]. For practitioners it is difficult to choose a suitable evaluation method.
We assert that the lack of adoption of these evaluation approaches by practitioners
may be a result of a lack of clarity of the OSS evaluation methods landscape. There
has been no systematic comparison of the existing OSS evaluation methods. David A.
Wheeler lists a number of evaluation methods in [6], but does not provide a thorough
comparison of existing evaluation methods. We are aware of only one paper by De-
prez and Alexandre [7] that provides an in-depth comparison of two methods, namely
QSOS and OpenBRR. However, it is not feasible to extend their approach to compare
a large number of methods. In order to improve the state of practice, we decided to
systematically identify proposed OSS evaluation methods. Furthermore, we present a
comparison framework that can be used to do a systematic comparison of these OSS
evaluation methods.

390 K. Stol and M. Ali Babar

2 Identification of Evaluation Methods

For the identification of the various OSS evaluation methods, we relied on four
different sources. Firstly, we selected a large number of publications following a sys-
tematic and rigorous search methodology as part of our ongoing extension of a sys-
tematic literature review reported in [8]. The search phase of this extension resulted in
a repository of approximately 550 papers related to OSS. We screened these papers to
identify any OSS evaluation method. We included all papers reporting a method,
framework or any other proposed way of evaluating an OSS product. Papers present-
ing an approach for selecting COTS (as opposed to OSS components only) were also
excluded. Secondly, we inspected the “related work” sections of the selected papers.
We also noticed that a number of OSS evaluation methods were not reported in re-
search publications, rather only appeared in books or white papers. Since those meth-
ods were often referenced in the “related work” sections of many papers, we decided
to include those methods in this research. Thirdly, we manually selected publications
reported in the proceedings of the five International Conferences on Open Source
Systems (2005 to 2009). Lastly, we used the authors’ knowledge of the field in order

Table 1. Identified OSS evaluation methods, frameworks and approaches

No. Name Year Source Orig. Method
1 Capgemini Open Source Maturity Model 2003 [9] I Yes
2 Evaluation Framework for Open Source Software 2004 [10] R No
3 A Model for Comparative Assessment of Open

Source Products
2004 [11, 12] R Yes

4 Navica Open Source Maturity Model 2004 [13] I Yes
5 Woods and Guliani’s OSMM 2005 [14] I No
6 Open Business Readiness Rating (OpenBRR) 2005 [15, 16] R/I Yes
7 Atos Origin Method for Qualification and

Selection of Open Source Software (QSOS)
2006 [17] I Yes

8 Evaluation Criteria for Free/Open Source
Software Products

2006 [18] R No

9 A Quality Model for OSS Selection 2007 [19] R No
10 Selection Process of Open Source Software 2007 [20] R Yes
11 Observatory for Innovation and Technological

transfer on Open Source software (OITOS)
2007 [21],

[22]
R Yes

12 Framework for OS Critical Systems Evaluation
(FOCSE)

2007 [23] R No

13 Balanced Scorecards for OSS 2007 [24] R No
14 Open Business Quality Rating (OpenBQR) 2007 [25] R Yes
15 Evaluating OSS through Prototyping 2007 [26] R Yes
16 A Comprehensive Approach for Assessing Open

Source Projects
2008 [27] R No

17 Software Quality Observatory for Open Source
Software (SQO-OSS)

2008 [28] R Yes

18 An operational approach for selecting open source
components in a software development project

2008 [29] R No

19 QualiPSo trustworthiness model 2008 [30, 31] R No
20 OpenSource Maturity Model (OMM) 2009 [32] R No

 A Comparison Framework for Open Source Software Evaluation Methods 391

to identify some approaches. We note that we deliberately did not consider any web-
sites (such as web logs) presenting pragmatic “tips for selecting OSS”.

Following the abovementioned search process, we identified 20 approaches for OSS
evaluation. Table 1 lists the identified OSS evaluation approaches in chronological
order of publication. The column “Source” lists references to papers and reports that
reported the method, and can be used by interested readers for further investigation.
The column “Orig.” indicates whether the initiative came from (I)ndustry or from a
(R)esearch setting. We considered it to be an industry initiative if it was associated
with a company name; otherwise we considered it to be a researchers’ initiative. The
column “Method” indicates whether it is a well-defined method outlining the required
activities, tasks, inputs, and outputs, as opposed to a mere set of evaluation criteria. As
can be seen from the table, only half of the approaches that we identified are methods.

3 A Comparison Framework

In order to perform a systematic comparison of the selected OSS evaluation methods,
we designed a comparison framework called Framework fOr Comparing Open Source
software Evaluation Methods (FOCOSEM), which is presented in Table 2.

Table 2. FOCOSEM: a comparison framework for OSS evaluation approaches

Component Element Brief description
Specific goal What is the particular goal of the method?
Functionality
evaluation

Is functionality compliance part of the evaluation
method?

Results publicly
available

Are evaluations of OSS products stored in a publicly
accessible repository?

Method
Context

Relation to other
methods

How does the method relate to other methods? I.e.
what methods was this method based on?

Required skills What skills does the user need to use the method? Method
User Intended users Who are the intended users of the method?

Method’s activities What are the evaluation method’s activities and steps?
Number of criteria How many criteria are used in the evaluation?
Evaluation
categories

What are the method’s categories of criteria based on
which the OSS product is evaluated?

Output What are the outputs of the evaluation method?

Method
Process

Tool support Is the evaluation method supported by a tool?
Validation Has the evaluation method been validated? Method

Evaluation Maturity stage What is the maturity stage of the evaluation method?

FOCOSEM is based on four different sources to justify the selection and formation

of its components and elements. The first source is the NIMSAD framework, which is
a general framework for understanding and evaluating any methodology [33]. NIM-
SAD defines four components to evaluate a methodology: the problem context, the
problem solver (user), the problem-solving process, and the method’s evaluation. Pre-
viously, NIMSAD has been used for the development of a number of other comparison

392 K. Stol and M. Ali Babar

frameworks in software engineering [34-36]. Hence, we are quite confident about
NIMSAD’s ability to provide a solid foundation for building an instrument for compar-
ing and evaluating software engineering methods and tools. The second source for
FOCOSEM is FOCSAAM, which is a comparison framework for software architecture
analysis methods [34]. The third source is a comparison framework for software prod-
uct line architecture design methods [36]. As a fourth source, we identified differences
and commonalities among various OSS evaluation methods. We note that the objective
of FOCOSEM is not to make any judgments about different OSS evaluation methods.
Instead, we aim to provide insights that may help practitioners to select a suitable OSS
evaluation method.

4 Conclusion and Future Work

Open Source Software (OSS) products are increasingly being used in software devel-
opment. In order to select the most suitable OSS product, various evaluation methods
have been proposed. Following a systematic and rigorous search of the literature, we
identified 20 different initiatives for OSS product evaluation. Furthermore, we have
proposed a Framework fOr Comparing Open Source software Evaluation Methods
(FOCOSEM). We emphasize that the framework is not intended to make any judg-
ments about the quality of the studied OSS evaluation methods. In future work, we
will demonstrate the application of FOCOSEM by comparing the OSS evaluation
methods identified in our review. Furthermore, we do not claim our framework is
complete; rather, we consider it as a first step towards systematically providing a
comparative analysis of OSS evaluation methods. Additional elements can be added
to our framework to compare other aspects of the evaluation methods.

Acknowledgements

This work is partially funded by IRCSET under grant no. RS/2008/134 and by
Science Foundation Ireland grant 03/CE2/I303_1 to Lero—The Irish Software Engi-
neering Research Centre (www.lero.ie).

References

[1] Hauge, Ø., Sørensen, C.-F., Conradi, R.: Adoption of Open Source in the Software Indus-
try. In: Proc. Fourth IFIP WG 2.13 International Conference on Open Source Systems
(OSS 2008), Milano, Italy, September 7-10, pp. 211–221 (2008)

[2] Fitzgerald, B.: A Critical Look at Open Source. Computer 37(7), 92–94 (2004)
[3] Maki-Asiala, P., Matinlassi, M.: Quality Assurance of Open Source Components: Inte-

grator Point of View. In: 30th Annual International Computer Software and Applications
Conference, 2006. COMPSAC 2006, pp. 189–194 (2006)

[4] Li, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Torchiano, M., Morisio, M.: Develop-
ment with Off-the-Shelf Components: 10 Facts. IEEE Software 26(2) (2009)

 A Comparison Framework for Open Source Software Evaluation Methods 393

[5] Hauge, Ø., Osterlie, T., Sorensen, C.-F., Gerea, M.: An Empirical Study on Selection of
Open Source Software - Preliminary Results. In: Proc. ICSE Workshop on Emerging
Trends in FLOSS Research (FLOSS 2009), Vancouver, Canada (2009)

[6] Wheeler, D.A.: How to Evaluate Open Source Software / Free Software (OSS/FS) Pro-
grams, http://www.dwheeler.com/oss_fs_eval.html (accessed September
8, 2009)

[7] Deprez, J.C., Alexandre, S.: Comparing assessment methodologies for free/open source
software: OpenBRR and QSOS. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008.
LNCS, vol. 5089, pp. 189–203. Springer, Heidelberg (2008)

[8] Stol, K., Ali Babar, M.: Reporting Empirical Research in Open Source Software: The
State of Practice. In: Proc. 5th IFIP WG 2.13 International Conference on Open Source
Systems, Skövde, Sweden, June 3-6, pp. 156–169 (2009)

[9] Duijnhouwer, F., Widdows, C.: Open Source Maturity Model. Capgemini Expert Letter
(2003)

[10] Koponen, T., Hotti, V.: Evaluation framework for open source software. In: Proc. Soft-
ware Engineering and Practice (SERP), Las Vegas, Nevada, USA, June 21-24 (2004)

[11] Polančič, G., Horvat, R.V.: A Model for Comparative Assessment Of Open Source Prod-
ucts. In: Proc. The 8th World Multi-Conference on Systemics, Cybernetics and Informat-
ics, Orlando, USA (2004)

[12] Polančič, G., Horvat, R.V., Rozman, T.: Comparative assessment of open source software
using easy accessible data. In: Proc. 26th International Conference on Information Tech-
nology Interfaces, Cavtat, Croatia, June 7-10, pp. 673–678 (2004)

[13] Golden, B.: Succeeding with Open Source. Addison-Wesley, Reading (2004)
[14] Woods, D., Guliani, G.: Open Source for the Enterprise: Managing Risks Reaping Re-

wards. O’Reilly Media, Inc., Sebastopol (2005)
[15] Business Readiness Rating for Open Source, RFC 1 (2005),

 http://www.openbrr.org
[16] Wasserman, A.I., Pal, M., Chan, C.: The Business Readiness Rating: a Framework for

Evaluating Open Source, Technical Report (2006)
[17] Atos Origin: Method for Qualification and Selection of Open Source software (QSOS)

version 1.6, Technical Report (2006)
[18] Cruz, D., Wieland, T., Ziegler, A.: Evaluation criteria for free/open source software prod-

ucts based on project analysis. Software Process: Improvement and Practice 11(2) (2006)
[19] Sung, W.J., Kim, J.H., Rhew, S.Y.: A Quality Model for Open Source Software Selec-

tion. In: Proc. Sixth International Conference on Advanced Language Processing and
Web Information Technology, Luoyang, Henan, China, pp. 515–519 (2007)

[20] Lee, Y.M., Kim, J.B., Choi, I.W., Rhew, S.Y.: A Study on Selection Process of Open
Source Software. In: Proc. Sixth International Conference on Advanced Language Proc-
essing and Web Information Technology (ALPIT), Luoyang, Henan, China (2007)

[21] Cabano, M., Monti, C., Piancastelli, G.: Context-Dependent Evaluation Methodology for
Open Source Software. In: Proc. Third IFIP WG 2.13 International Conference on Open
Source Systems (OSS 2007), Limerick, Ireland, pp. 301–306 (2007)

[22] Assessment of the degree of maturity of Open Source open source software,
 http://www.oitos.it/opencms/opencms/oitos/
 Valutazione_di_prodotti/Modello1.2.pdf

[23] Ardagna, C.A., Damiani, E., Frati, F.: FOCSE: An OWA-based Evaluation Framework
for OS Adoption in Critical Environments. In: Proc. Third IFIP WG 2.13 International
Conference on Open Source Systems, Limerick, Ireland, pp. 3–16 (2007)

394 K. Stol and M. Ali Babar

[24] Lavazza, L.: Beyond Total Cost of Ownership: Applying Balanced Scorecards to Open-
Source Software. In: Proc. International Conference on Software Engineering Advances
(ICSEA) Cap Esterel, French Riviera, France, p. 74 (2007)

[25] Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of OSS.
In: Proc. Third IFIP WG 2.13 International Conference on Open Source Systems
(OSS 2007), Limerick, Ireland, pp. 173–186 (2007)

[26] Carbon, R., Ciolkowski, M., Heidrich, J., John, I., Muthig, D.: Evaluating Open Source
Software through Prototyping. In: St.Amant, K., Still, B. (eds.) Handbook of Research on
Open Source Software: Technological, Economic, and Social Perspectives (Information
Science Reference, 2007), pp. 269–281 (2007)

[27] Ciolkowski, M., Soto, M.: Towards a Comprehensive Approach for Assessing Open
Source Projects. In: Software Process and Product Measurement. Springer, Heidelberg
(2008)

[28] Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS Quality Model:
Measurement Based Open Source Software Evaluation. In: Proc. Fourth IFIP WG 2.13
International Conference on Open Source Systems (OSS 2008), Milano, Italy (2008)

[29] Majchrowski, A., Deprez, J.: An operational approach for selecting open source compo-
nents in a software development project. In: Proc. 15th European Conference, Software
Process Improvement (EuroSPI), Dublin, Ireland, September 3-5 (2008)

[30] del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of Open Source Software:
The QualiPSo Trustworthiness Model. In: Proc. Fifth IFIP WG 2.13 International Con-
ference on Open Source Systems (OSS 2009), Skövde, Sweden, June 3-6 (2009)

[31] del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: The observed characteristics and
relevant factors used for assessing the trustworthiness of OSS products and artefacts,
Technical Report no. A5.D1.5.3 (2008)

[32] Petrinja, E., Nambakam, R., Sillitti, A.: Introducing the OpenSource Maturity Model. In:
Proc. ICSE Workshop on Emerging Trends in Free/Libre/Open Source Software Re-
search and Development (FLOSS 2009), Vancouver, Canada, pp. 37–41 (2009)

[33] Jayaratna, N.: Understanding and Evaluating Methodologies: NIMSAD, a Systematic
Framework. McGraw-Hill, Inc., New York (1994)

[34] Ali Babar, M., Gorton, I.: Comparison of Scenario-Based Software Architecture Evalua-
tion Methods. In: Proc. 11th Asia-Pacific Software Engineering Conference
(APSEC 2004), Busan, Korea, November 30-December 3, pp. 600–607 (2004)

[35] Forsell, M., Halttunen, V., Ahonen, J.: Evaluation of Component-Based Software Devel-
opment Methodologies. In: Proc. Fenno-Ugric Symposium on Software Technology, Tal-
lin, Estonia, pp. 53–63 (1999)

[36] Matinlassi, M.: Comparison of software product line architecture design methods: COPA,
FAST, FORM, KobrA and QADA. In: Proc. 26th International Conference on Software
Engineering (ICSE), Edingburgh, Scotland, United Kingdom, May 23-28 (2004)

An Exploratory Long-Term Open Source
Activity Analysis:

Implications from Empirical Findings
on Activity Statistics

Toshihiko Yamakami

ACCESS
Toshihiko.Yamakami@access-company.com

Abstract. Open source software (OSS) activities are diverse and difficult to cap-
ture. The author attempts a web service-based observation of OSS activities.
Small community factor is discussed from a social viewpoint.

1 Introduction

OSS is a multi-faceted process including code, license, community, tools, development
process, innovation methodology, philosophy, and best practices. The author attempts
an exploratory analysis of project mining of publicly available open source activities.
The author performs an analysis of open source activity pattern in a chorological di-
mension. The author provides a perspective for long-term observation of open source
software project activities and implications for social aspect of OSS.

2 Purpose and Related Works

The purpose of this research is to identify the patterns of open source software activities
and its implicationsfor social aspect of OSS.

Raymond discussed open source from the business model perspective in this famous
open source work series [4].

Ducheneaut discussed the social analysis on a particular open source project from a
dynamism viewpoint, how to retain and reproduce a community [3].

Bird analyzed the source code repository and mailing list archive for Postgress [1].
Bird also analyzed community structures of known successful open source projects [2]
with the autonomous subcommittee formation.

3 Patterns and Chasms

The patterns are described in Table 1. It should be noted that the many open source
projects do not reach the active state. In many projects, they even fail to launch the
project, therefore, no source code is available to public. It is an interesting research
topic how these different states of project have been derived.

The different states are identified with different chasms. The chasms patterns are
depicted in Table 2.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 395–400, 2010.
c© IFIP International Federation for Information Processing 2010

396 T. Yamakami

Table 1. Patterns

Stopped Never launched Initiated, but no real open source activity
took place.

Launched and dead Initiated, and no team was formed.
Launched, high activity and dead (or
complete)

An active team was formed and disbanded.

Active Launched and one-person Initiated, and one person keeps the activity.
Launched and one-company with
multiple persons

Multiple person team was formed and the
activity continues to be active.

Launched and multiple-company(or
individuals)

Multiple company committed and the activ-
ity continues to be active.

Table 2. Patterns

Type Description Contributing Factors
Launch Chasm Some projects cannot reach successful

launch
Lack of experience, enthusi-
asm, completeness. Competitive
components.

One-person
Chasm

Some projects may be never main-
tained by more than one person

Lack of universality, documentation,
use cases.

Use Chasm Some components may not obtain any
real users

Quality, lack of applicability, applica-
tion use cases.

One-company
Chasm

One company committed, but no other
organization committed.

Lack of ecosystem. No industry-wide
support.

4 Long-Term Observation

In order to further examine the current states of open source projects, the author uses
web services for long-term open source activity archives. There is a site “ohloh.net”
which provides web services interfaces for long-term monthly OSS activity observation.

Observation methodology is as follows:

– code size
– contributing member size

regular irregular
Patterns Synchronized release patterns No patterns
Code size steady growth frequently flat

The author analyzed the 77 open source projects automatically stored in the ohlor
(http://www.ohlor.net). They include Action Script to XSL Transformation. The ohlor
started tracking open source codes dated back to 1989. The mean results are shown in
Table 3. 1996.3 in year means 1996 + 3

10 (year).
Contributors per project are depicted in Fig. 1 (a). 53.3 % of projects show 1 <= x <

2. 32.5% of projects show in 2 <= x < 3. With further detailed analysis, 1.4 <= x < 2.4
includes 74.0 % of projects.

An Exploratory Long-Term Open Source Activity Analysis 397

Table 3. Statistics of open source projects

Description Average

Project 3755.7
Contributors per Project 2.2
Year 1996.3
Source lines per Contributor 8755.8
Commitments per Contributor 44.6
Source lines per Commitments 254.1

0 1 2 3 7 8 9 10 14 19

Contributors per Project

P
er

ce
nt

ag
e

0
10

20
30

40
50

1990 1995 2000 2005

0
20

00
0

40
00

0
60

00
0

Year

C
on

tr
ib

ut
or

s

(a) Contributors per project (b) Year x contributors

Fig. 1. Contributors per project

This follows the following two observations:

– The bazaar-style open source project follows the basic structure that the one con-
tributor per one project, and

– The bazaar-style open source project follows a main contributor with a sub
contributor.

This reveals the following social structure of open source projects:

– In the bazaar-style open source project, it is difficult to coordinate the collaborative
software development. Therefore, each contributor consists of a separate project.
When a project consists of only one contributor, collaboration is simple.

– Even though to minimize the collaboration effort, people cannot perform the soft-
ware development in an isolated manner. Social respect and attention is needed.
This is reflected in the average 1 + alpha contributors per project.

The year x contributors is plot in Fig. 1 (b). Many fresh projects have small number of
contributors. With the older projects, we can see a large fluctuations among projects.
The longer life does not directly contribute to the large number of contributors.

398 T. Yamakami

1990 1995 2000 2005

0
20

00
0

60
00

0

Year

Li
ne

s
pe

r
C

on
tr

ib
ut

or

1990 1995 2000 2005

0
50

10
0

15
0

20
0

25
0

Year

C
om

m
itm

en
ts

 p
er

 C
on

tr
ib

ut
or

(a) Year x Lines per Contributor (b) Commitments per Contributor

Fig. 2. Lines and Commitments per Contributor per project

The year x Lines per contributor is plot in Fig. 2 (a). The same results are obtained.
The younger projects have less lines, which is natural. With the older projects, we can
see diversity. The longer life does not contribute to the large number of codes. The adop-
tion of code and increase activity in code maintenance is a social process to overcome
the social chasms.

The year x Commitments per contributor is plot in Fig. 2 (b). The commitment per
contributor does not have the significant implication to the project age. The survival
of long years does not have a significant impact from a statistical viewpoint, which is
natural.

5 Discussion

5.1 Skill to Leverage Open Source Projects

The skills to leverage open source projects are illustrated in Fig. 3. Most projects are
considered to remain in the unskilled leadership domain. It needs a systematic manage-
ment and skill development to foster a productive OSS project. Considering one-man
and plus alpha status of many OSS projects, it is considered to be useful to provide case
studies of growing projects and skills to harness project growth.

5.2 Different Types of Software for Adoption

It should be noted that the type of open source software impacts the adoption. It is influ-
enced by the nature of the source code, whether it is an end user product or a platform
product. The success patterns depending on the two types of software are illustrated in
Table 4. From the current observation, these two types are not distinguished, but further
studies need to examine them.

An Exploratory Long-Term Open Source Activity Analysis 399

Structured
project

One-man
project

Skilled
leadership

Unskilled
leadership

Fig. 3. Skills to leverage open source projects

Table 4. Success Patterns

Application
Usage

Completeness Feature completeness.

Stability Stably usable.
Feature Advantage. Usability of features.

Middleware
Usage

Combinatorial usage. Middleware applicability in combination
of other components or applications.

Upstream open source ap-
plication popularity.

Component dependence on popular
applications.

5.3 Limitations

This study is based on the external observation of open source project archives. It ex-
hibits an interesting implication for awareness of small-sized fine-grained community
in the open source projects, leveraging social respect and self satisfaction. This study is
not based on any interviews or detailed motivation analysis, which is a limitation of this
study. This study is descriptive, and needs further quantitative analysis on micro-level
social adoption.

6 Conclusion

The influence of open source software on the software industry continues to increase.
In order to identify the open source activity patterns, the author performs a long-term
analysis of open source activities in a chorological dimension.

The author obtains the activity data from the publicly available web services to the
open source activity archive. The author presents some exploratory results from project
mining of publicly available data. Many open source projects consist of a small group
with a small number of human relations to maintain a certain level of social respects.
The study reveals the minimum level of social ties in many of the open source projects.

It is useful to leverage awareness of this small-society factor in many open source
activities. In order to harness many successful open source projects, it is important to
raise awareness for learning from successful projects and skills to depart from one-man
projects.

400 T. Yamakami

References

1. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminatha, A.: Mining email social networks
in postgres. In: MSR 2006, pp. 185–186. ACM, New York (2006)

2. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure in open
source projects. In: SIGSOFT ’08/FSE-16, pp. 24–35. ACM, New York (2008)

3. Ducheneaut, N.: Socialization in an open source software community: A socio-technical anal-
ysis. Computers in Human Behavior 14(4), 323–368 (2005)

4. Raymond, E.S.: The magic cauldron (2000),
http://www.catb.org/ esr/writings/cathedral-bazaar/
magic-cauldron/

http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/
http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/

Challenges for Mobile Middleware Platform:
Issues for Embedded Open Source Software Integration

Toshihiko Yamakami

ACCESS
Toshihiko.Yamakami@access-company.com

Abstract. Linux is penetrating into mobile software as the basis for the mobile
middleware platform. It accelerates the increasing visibility of open source soft-
ware (OSS) components in the mobile middleware platform. Despite multiple
challenges in mobile embedded software engineering, it is crucial to promote
open source-aware development of the mobile software platform. The author
presents the challenges to open source software integration in embedded software
development. The author discusses the open source-aware software development
and identifies a path to transition for moving toward it.

1 Introduction

Linux has penetrated into a wide range of digital appliances, e.g. mobile handsets, dig-
ital TVs, game consoles and HD recorders. It facilitates the reuse of PC-based rich user
experience data service software with high speed network capabilities in an embedded
software environment. As Linux-based software is widely adopted in digital appliances,
the original weak points of Linux in an embedded environment have been addressed e.g.
real time processing and battery life capabilities. The author presents these challenges,
and suggests a path towards a more open source-aware development model. Then, the
author describes how open source-aware development can be deployed from the per-
spectives of organization and design.

2 Purpose and Related Work

The purpose of this research is to identify a path toward open source-aware software
development evolution and its implications for software development management.

OSS has been increasing its visibility in embedded softawre [5] [3] [1]. There are
several examples of emerging foundation engineering utilizing OSS in the mobile plat-
form software [4] [6] [2]. This has caught industry attention worldwide.

The originality of this paper lies in its discussion of impacts from OSS-based foun-
dation collaboration in the mobile industry.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 401–406, 2010.
c© IFIP International Federation for Information Processing 2010

402 T. Yamakami

3 Open Source-Related Landscape

3.1 Driving Forces for Embedded Open Source and Issues

There are multiple factors that drive embedded software engineering:

– Market pressure to shorten time to market,
– Market pressure to reduce software development and maintenance cost, and
– Device convergence.

As the many more devices become network-enabled, the size of network and applica-
tion software grows, which impacts the cost structure of digital appliances. Managing
the costs of maintaining this large-scale code base is a critical concern for embedded
software development.

Nowadays, advanced mobile handsets consist of (a) Linux kernel, (b) middleware
platform, and (c) application code. Each is 5–10 million lines of code.

This is causing a transition from constraint-based specialized software development
to OSS-based large-scale heterogeneous software development.

The amount of OSS code is increasing dramatically. Almost 10 million lines of code
are used for just the middleware of advanced mobile handsets, excluding the kernel
itself and higher level applications. The ratio of OSS code in relation to them is increas-
ing. It is estimated that 80–95 % of the Linux-based mobile middleware platform is
originated from OSS. The ratio is expected to increase in the future.

However, there are several constraints in the mobile middleware platform from (a)
embedded software, (b) mobile-specific service development, and (c) OSS-based soft-
ware management.

The combination of these issues provides a significant challenge for today’s embed-
ded software development.

3.2 Issues from Embedded Software Engineering

Mobile handsets require the inclusion of special hardware management for telephony,
which is device-specific.

– Customization for hardware integration: Embedded software depends on some hard-
ware components. These components need hardware-dependent coding.

– Stability for embedded integration: Generally, open source software is based on
bazaar-style development. Embedded software has inheritent constraints on soft-
ware updates after factory shipment. Since the software is written into ROM (read-
only memory), it cannot be amended. Embedded software development needs to
address this challenge.

– Real-time processing requirements: Mobile phone requires real-time processing of
incoming calls. OSS generally does not set performance as the top priority. Device
development needs to address device-specific performance requirements.

– Battery life duration requirement: Mobile phone and other battery-driven devices
require special consideration to the duration for battery life.

Challenges for Mobile Middleware Platform 403

3.3 Issues from Mobile-Specific Service Development

Mobile data services are hot issues in mobile business development. This leads to mul-
tiple issues that need in mobile middleware platform development.

– Wireless carrier customization: For differentiation, wireless carriers would like to
deploy carrier-specific services. Embedded software development needs to address
this carrier-specific customization.

– Synchronization for handset launch schedule with OSS roadmaps: Mobile handsets
have some seasonal cycle for shipment depending on each country for marketing
which is irrelevant to OSS roadmaps.

3.4 Issues from OSS Management

There are issues surrounding OSS management in general.

– Design and Customization
• Coordination among multiple OSS components: Each OSS component has a

different release cycle, major version updates and roadmap. In order to facili-
tate product commercialization, coordination and version selection are crucial.

• Coordination among multiple dependencies among OSS component sets: When
a large number of OSS components are used, different OSS components have
different dependencies on some common OSS components.

– Miscellaneous Non-coding Tasks requiring Resources
• Evaluation to choose components and versions: There are an emerging number

of OSS components with different version releases. Commercialization takes
care of evaluation and version selection.

• Synchronization for software development with upstream OSS project
roadmaps: When there is visibility of an upcoming a major version up of major
OSS component, commercialization needs to synchronize a future develop-
ment plans and future major version updates.

– Community Coordination and Management
• Granting back to the OSS community: As a good citizen of the OSS commu-

nity, general patches and modifications need to be granted back to the original
OSS community.

• Constraint to disclose handset commercialization schedule: During interactions
with the OSS community, there are some non-disclosable trade secrets.

– Legal issues
• GPL contamination: GPL code needs to be carefully managed in order not to

disclose any proprietary software in wrong use of GPL code.
• Export compliance: Some of encryption modules need to be managed in com-

pliance to appropriate import/export compliance procedures.
• Patent protection: As well as any proprietary software, OSS modules also need

to address patent protection.

404 T. Yamakami

4 An Open Source-Aware Software Development

The management of these issues is leading to a new software design and maintenance
paradigm. Open source-oriented embedded software engineering requires the following
special expertise and coordination:

– Interface design between OSS, customized, and proprietary components
– Professional service for code and packaging management, and evaluation

A three-stage model of software development transition towards open source-aware
development is depicted in Fig. 1. Most of the proprietary software development de-
pends on the assumption of in-house development. This influences the organization,
design process, and source control schemes. Considering the fact that the major part
of the software development is shifting towards an open source-based one, at least
for the middleware level, it is crucial to manage the transition. The transition starts
with proprietary development. In the proprietary development, the entire code base
is owned by the company. It does not require per-module code and license
management.

During OSS penetration, some of the modules may be replaced by OSS codes. How-
ever, this is a replacement-oriented process, not one that wholly replaces the develop-
ment process.

When OSS penetration reaches a certain point, the whole development process needs
to be revisited. Code and license management is done on a per-module basis. The OSS
professional service needs to be deployed in the development process.

Proprietary

Development
�

Partial
Open Source

Development

� Open Source-aware

Development

Fig. 1. A three-stage model of software development transition towards open source-aware devel-
opment

The software development team organization with open source awareness is illus-
trated in Fig. 2.

Proprietary

Development Team

Open Source

Customization Team

Open Source

Service Team

Fig. 2. Open source-aware development organization

The software design process with open source awareness is depicted in Fig. 3. It
is difficult to isolate customized OSS components from proprietary components post-
process. Therefore, a clear separation of design is necessary during the software design
process.

Challenges for Mobile Middleware Platform 405

Open Source

Territorial
Design

� Customization
Design

� Open source-aware

Integration

Fig. 3. Open source centric design principle

Multipel OSS components and their customization need to be integrated with aware-
ness of code control, version control and license control. When there are conflicting
OSS dependencies, it requires minor adjustments, e.g. back-porting et al. Also, the to-
tal code base including proprietary and OSS components needs to be integrated with
awareness of code control, version control and license control.

5 Transition Management

Software vendors are aware of the importance of OSS. However, the challenges posted
by less visibility and higher diversity of projects and codes make it difficult for software
vendors to make a best-fit blending of multiple OSS components.

Embedded software needs to cope with the time-dimensional issues of software man-
agement. There is a lot of hardware-dependent code in the embedded software. This
makes the transition from one software framework to another one difficult.

Also, this hardware-dependency puts an unavoidable portion of OSS components in
need of case-by-case customization. Transition management needs to address this type
of customization in the case of embedded software engineering.

In addition to the requirements to address multiple license terms in different OSS
components, each customization needs to be carefully separated from other code to
ensure the proper license management and grant back to the upstream OSS
versions.

This puts the fundamental heterogeneity into embedded software engineering. Tran-
sition management needs to give considerations to organization, process, architecture,
and source code management ahead of any transition management.

6 Conclusion

Since the major portion of the large-scale software platform consists of OSS compo-
nents, the software development process needs to revisit this reality in the long run.
The mobile industry is one of the areas where this transition is becoming increas-
ingly visible. The author describes the challenges for large-scale software project with a
large number of software components. The author proposes an open source-aware soft-
ware development process. This will bring the procedural and organizational impacts
on embedded software development. In the past, embedded software development fo-
cused on code-size-aware hardware-specific coding. There is ongoing radical transition
of software development towards tens of millions of lines of code in an embedded
environment.

406 T. Yamakami

Increasing involvement of OSS components leads to open source-aware develop-
ment. In-depth analysis reveals the new heterogeneity caused by multiple different OSS
components in an integrated embedded software context. This heterogeneity needs to
be addressed through the advanced design of the entire software development process
and its transitions.

References

1. Barr, M., Massa, A.: Programming Embedded Systems: With C and GNU Development Tools,
2nd edn. O’Reilly Media, Inc., Sebastopol (2006)

2. Google: Android - an open handset alliance project (2007),
http://code.google.com/android/

3. Hollabaugh, C.: Embedded Linux: Hardware, Software, and Interfacing. Addison-Wesley
Longman Publishing Co., Inc., Boston (2002)

4. LiMo Foundation: LiMo Foundation Home page (2007),
http://www.limofoundation.org/

5. Massa, A.J.: Embedded software development with eCos. Prentice-Hall, Englewood Cliffs
(2002)

6. Symbian Foundation: Symbian foundation web page (2008),
http://www.symbianfoundation.org/

http://code.google.com/android/
http://www.limofoundation.org/
http://www.symbianfoundation.org/

Open Source Software Developer and Project
Networks

Matthew Van Antwerp and Greg Madey

University of Notre Dame
{mvanantw,gmadey}@cse.nd.edu

Abstract. This paper outlines complex network concepts and how so-
cial networks are built from Open Source Software (OSS) data. We
present an initial study of the social networks of three different OSS
forges, BerliOS Developer, GNU Savannah, and SourceForge. Much re-
search has been done on snapshot or conflated views of these networks,
especially SourceForge, due to the size of the SourceForge community.
The degree distribution, connectedness, centrality, and scale-free nature
of SourceForge has been presented for the network at particular points
in time. However, very little research has been done on how the network
grows, how connections were made, especially during its infancy, and
how these metrics evolve over time.

1 Introduction to Complex Networks

The OSS network is defined as follows. Developers and projects are considered
nodes in the graph. If a developer works on a project, there is an edge between
the developer and that project. Since developers can only work on projects,
the resulting graph will be bipartite, with developers and projects being the
two groups having no edges within those groups. This bipartite graph can be
easily transformed into a developer network or a project network. From the CVS
database [8], users, groups, and timestamps were extracted. The timestamps are
the dates (in unix time) of the oldest and most recent commits to that particular
project. With this information, even if two users worked on the same project,
a tie was only created between them if they worked on the project at the same
time, i.e. their time frame windows overlapped.

1.1 Previous Work

Xu in her dissertation [13] analyzed many aspects of the developer and project
networks in the SourceForge community. Xu examined the SourceForge devel-
oper network over time and determined it to be scale-free [12]. Xu also exam-
ined the community structure of the SourceForge developer network in [11] using
metrics such as modularity [7,6], identifying the largest communities and their
populations. Gao examined the diameter, clustering coefficient, centrality, and
other metrics of the SourceForge developer network over a timespan of a year
and a half [3].

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 407–412, 2010.
c© IFIP International Federation for Information Processing 2010

408 M. Van Antwerp and G. Madey

In [4], the authors apply social network analysis to CVS data, graphing
network measurements such as degree distribution, clustering coefficient in mod-
ules, weighted clustering coefficient, and connection degree of modules for var-
ious projects at different time periods in the histories of Apache, Gnome, and
KDE. They concluded that both the module network and the developer network
exhibit small world behavior.

2 SourceForge, GNU Savannah, and BerliOS Developer

SourceForge was launched in November 1999. It is the world’s largest OSS host-
ing site, with over 2.3 million registered users and over 180,000 projects at time
of writing. It hosts numerous prominent and popular OSS projects. It is also the
most studied hosting platform for the purposes of OSS research. SourceForge data
is available at theSourceForgeResearchDataArchive (http://srda.cse.nd.edu) [9].

Many popular GNU/Linux utilities are or were at some time hosted at GNU
Savannah, including gcc, emacs, libc, autoconf, automake, and make. The site has
been up since around 1996, although many projects had their CVS logs imported
and many of them date back to the early 1980s. They are strict about only
hosting free software (SourceForge, for example, allows you to host a project that
does not have a free software license). Many prominent OSS figures contribute to
projects hosted here, including Richard Stallman, Ulrich Drepper, and Roland
McGrath. Despite having far fewer developers than SourceForge, it is a very
active community. Despite having not even 4000 developers, they have made
nearly 5 million code commits. SourceForge has about 65 million code commits
with orders of magnitude more members.

BerliOS Developer is a German website hosting 5,425 projects and 43,708
registered users at time of writing [2]. While difficult to tell exactly how old the
site is, the BerliOS project itself was registered in June 2000 and the earliest
CVS timestamp dates to 1996, although only a handful of projects have CVS
commits dating prior to June 2000 and all of those projects were registered on
BerliOS itself after June 2000. These projects likely had previously existing CVS
archives imported into the BerliOS hosting platform. It is similar in functionality
and services offered to SourceForge, but does not have the worldwide popularity
of it. It is about as old as SourceForge as well, so the two share some similarities
with BerliOS having a much smaller user base.

3 SourceForge Developer Network

73,829 users have made at least one CVS commit. Of those, 47,946 users are
connected to at least one other developer (in other words, they are not the sole
developer on all of the projects they work on), which is 64.94%. Of these con-
nected users, the largest connected component contains 19,269 users, which is
40.19%, or 26.10% of all users who have made at least one commit. A visualiza-
tion of a random sample of the developer network is found in figure 1. Just under
2/3 of the user-project ties were sampled to create this network. This resulted in

Open Source Software Developer and Project Networks 409

Fig. 1. Sample of the SourceForge developer network

37,811 vertices in the network with the largest connected component containing
4687 vertices. This largest connected component is what is displayed in figure 1.
There are many clusters of developers, but no central core in this sample. There
are many “rings” of developers and towards the outside of the graph, there are
linchpin developers where the graph would become disconnected without their
presence. Visualizations were developed with Pajek [1].

4 Savannah Developer and Project Networks

3889 users have made at least one CVS commit. Of those, 3042 users are con-
nected to at least one other developer (they are not the sole developer on all
of the projects they work on), which is 78.22%. Of these connected users, the
largest connected component contains 1747 users, which is 57.42%, or 44.92%
of all users who have made at least one commit. A visualization is provided in
figure 2. In that figure, developers who are the sole developer on all projects
they work on are excluded. They would be singletons in the network were they
included. The Savannah project network can also be seen in figure 2. The net-
work is well-connected with most projects in one large cluster. This is due to
the long life of most Savannah projects, the rarity of new projects hosted at
Savannah, and the fact that many developers here work on multiple Savannah
projects during their lifetime.

410 M. Van Antwerp and G. Madey

Fig. 2. (top) The largest connected component in the Savannah developer network
visualized with the Kamada-Kawai algorithm for drawing graphs [5], a force-based
algorithm. Distance between two nodes in the figure roughly corresponds with the
length of the shortest path between them in the graph. (bottom) The Savannah project
network.

5 BerliOS Developer and Project Networks

1582 users have made at least one CVS commit. Of those, 1113 users are con-
nected to at least one other developer (they are not the sole developer on all

Open Source Software Developer and Project Networks 411

of the projects they work on), which is 70.35%. Of these connected users, the
largest connected component contains only 100 users, which is 8.98%, or 6.32%
of all users who have made at least one commit. The BerliOS project network is
mostly disconnected. There are however a handful of interesting cliques present
in this network.

6 Repeat Network Connections

The SourceForge developer network, of 396,590 developer-developer ties, only
10,491 are duplicates or the original links that were later duplicated. This com-
prises only 2.65% of all developer pairs. However, for Savannah, of 46,937 de-
veloper pairs, there are 4620 pairs that are duplicates or links that were later
duplicated, nearly 10%. For BerliOS, there are 3349 developer ties and 84 of
them are repeats or the links that would later be duplicated. This is 2.51% of
all pairs, comparable to SourceForge. The phenomena of repeat network connec-
tions in developer networks has not been extensively studied. The abundance of
presumably fruitful developer ties in Savannah indicates that the projects here
were likely successful. This also likely indicates that the typical project on Sa-
vannah is more successful than the typical project at SourceForge or BerliOS.
This phenomena is examined further in [10].

7 Evaluation of the Communities

BerliOS is not a very globally connected developer community. While many
developers are connected to someone else, there does not seem to be any sort of
small-world effect in this network. SourceForge is a very large community and
is better connected than BerliOS. About one quarter of all developers (CVS
committers) in SourceForge are in the largest connected component. However,
Savannah has nearly half of all developers in the largest connected component,
an impressive aspect. A summary of the aforementioned statistics is available in
table 1.

Table 1. Size of largest connected component in the developer networks

Hosting Site Total Size Number
Connected

% Con-
nected

Largest CC % of total

SourceForge 73,829 47,946 64.94% 19,269 26.10%
Savannah 3889 3042 78.22% 1747 44.92%
BerliOS 1582 1113 70.35% 100 6.32%

8 Conclusions

We presented initial statistical analysis of the project and developer networks of
three different OSS forges. The evolutionary trends displayed by these networks
may offer crucial insight into OSS phenomena. Software versioning logs provide
a great resource for building and studying these networks.

412 M. Van Antwerp and G. Madey

Acknowledgments

Research reported in the paper was supported in part by the National Science
Foundation’s CISE IIS-Digital Society & Technology program under Grant ISS-
0222829 and by the National Science Foundation’s CISE Computing Research
Infrastructure program under Grant CNS-0751120

References

1. Batagelj, V., Mrvar, A.: Pajek - program for large network analysis. Connections 21,
47–57 (1998)

2. BerliOS Developer, http://developer.berlios.de
3. Gao, Y.: Computational Discovery in Evolving Complex Networks. PhD thesis,

University of Notre Dame (2007)
4. Gregorio, L.L.-F.: Applying social network analysis to the information in cvs repos-

itories. In: Proceedings of the First International Workshop on Mining Software
Repositories (MSR 2004), Edinburgh, UK (2004)

5. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7–15 (1989)

6. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.
Physical Review E 69, 066133 (2004)

7. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69, 026113 (2004)

8. Van Antwerp, M.: Studying open source versioning metadata. Master’s thesis, Uni-
versity of Notre Dame, Notre Dame, IN (April 2009)

9. Van Antwerp, M., Madey, G.: Advances in the sourceforge research data archive.
In: Workshop on Public Data about Software Development (WoPDaSD) at The
4th International Conference on Open Source Systems, Milan, Italy (2008)

10. Van Antwerp, M., Madey, G.: The importance of social network structure in the
open source software developer community. In: The 43rd Hawaii International Con-
ference on System Sciences (HICSS-43), Hawaii (January 2010)

11. Xu, J., Christley, S., Madey, G.: The open source software community structure.
In: NAACSOS 2005, Notre Dame, IN (June 2005)

12. Xu, J., Madey, G.: Exploration of the open source software community. In:
NAACSOS 2004, Pittsburgh, PA (June 2004)

13. Xu, J.: Mining and Modeling the Open Source Software Community. PhD thesis,
University of Notre Dame (2007)

http://developer.berlios.de

Warehousing and Studying Open Source
Versioning Metadata

Matthew Van Antwerp and Greg Madey

University of Notre Dame
{mvanantw,gmadey}@cse.nd.edu

Abstract. In this paper, we describe the downloading and warehousing
of Open Source Software (OSS) versioning metadata from SourceForge,
BerliOS Developer, and GNU Savannah. This data enables and supports
research in areas such as software engineering, open source phenomena,
social network analysis, data mining, and project management. This
newly-formed database containing Concurrent Versions System (CVS)
and Subversion (SVN) metadata offers new research opportunities for
large-scale OSS development analysis. The CVS and SVN data is juxta-
posed with the SourceForge.net Research Data Archive [5] for the pur-
pose of performing more powerful and interesting queries. We also present
an initial statistical analysis of some of the most active projects.

1 Introduction

Versioning programs have been in use by open source software projects for many
decades. Publicly available logs offer a development trail ripe for individual and
comparative studies. In this paper, we describe the downloading and warehousing
of such data. We also present some preliminary data analysis. The process is
similar to that done in [2] which described an approach to populating a database
with version control and bug tracking system data for individual project study.
At Notre Dame, Jin Xu also took an individual project approach to retrieving
and studying projects on SourceForge [6]. Xu built a similar retrieval framework
however for web pages to gather project statistics.

2 SourceForge.net Data

Most of SourceForge’s data is stored in a back-end database. The actual source
code is stored in a Concurrent Versions System (CVS) or Subversion (SVN)
repository. The data stored there includes who is making a change to the code,
how the new version of the code differs from the most recent version, the number
of removed and new lines of code, a revision number, a comment, and a times-
tamp. The entire history of a project can be reviewed by walking chronologically
through one or more CVS or SVN logs. The logs tell us what changes a project
has undergone, when those changes took place, and by whom. We have recently
obtained CVS and SVN metadata (everything except the actual code) and built
another database that is juxtaposed with the back-end database. This data is
available for scholarly research at http://srda.cse.nd.edu .

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 413–418, 2010.
c© IFIP International Federation for Information Processing 2010

414 M. Van Antwerp and G. Madey

3 Concurrent Versions System

Concurrent Versions System (CVS) is software developed for software version
control allowing simultaneous use by multiple users. It is built upon the Revision
Control System (RCS) software, which takes care of individual file versioning [4].
CVS provides a layer of abstraction allowing for concurrent access to a particular
RCS file with intelligent conflict mediation. CVS also groups files together into
a logical entity (a project) and allows tagging of particular file revisions as a
logical snapshot (a project release, for example) [1].

We downloaded log data from all projects on SourceForge.net that use CVS
for version management and also allow anonymous CVS access. To do so, the
following CVS command was used:
cvs -d:pserver:anonymous@PROJECT.cvs.sourceforge.net:/cvsroot/PROJECT rlog .

Using rlog instead of log allows the process to run without having to run a
time and space-consuming checkout command. The dot (.) at the end is used
in place of a module name to indicate that log data is being requested for all
modules.

Similarly, we downloaded CVS metadata for the projects on the open source
hosting platform BerliOS Developer and GNU Savannah.

cvs -d:pserver:anonymous@cvs.savannah.gnu.org:/sources/PROJECT rlog .

cvs -d:pserver:anonymous@cvs.berlios.de:/cvsroot/PROJECT rlog .

For obtaining SVN data, the following commands were used:

svn log --verbose http://PROJECT.svn.sourceforge.net/svnroot/PROJECT

svn log --verbose svn://svn.berlios.de/PROJECT

svn log --verbose svn://svn.savannah.gnu.org/PROJECT

4 Download Process

The method employed was to make one serial line of requests on multiple ma-
chines. Due to the lack of physical machines at our immediate disposal, and the
ease with which they can be set up, virtual machines were employed. In addi-
tion, if a machine were about to make a request to the same CVS server it just
contacted, a stall time was employed. When this occurs, the virtual machine
(VM) would sleep for 5 seconds before making the next request.

4.1 Job Distribution

We wrote a central server process to handle distributing jobs to each VM. This
process spawned a process for each VM which would submit a project name
that the VM would download and then return a signal for one of the following:
1) success, 2) initiation failure, or 3) progress failure. Upon return, the handler
process would then submit a new project name to the VM it handles and the
cycle continues. The information was tracked in a database on the central server.

Warehousing and Studying Open Source Versioning Metadata 415

Fig. 1. Diagram of the job distribution and download process. This can be easily
modified to retrieve other publicly available data or rsync the code instead of just
retrieving the metadata.

The database contained the name of the project, the name of the server (VM)
the job was deployed to, the timestamp of the submission, the returned signal,
the timestamp of the returned signal, and if applicable, the number of lines in the
downloaded CVS log. In order to monitor the download progress and be aware
of potential problems, a web frontend using AJAX was deployed to monitor the
database. A schematic of this process is shown in figure 1.

SourceForge.net CVS data was obtained over the span of about 7 days. Source-
Forge SVN data took about 2 days to download. Obtaining CVS and SVN data
for BerliOS and Savannah took about 48 hours total. The number of projects
successfully downloaded from each site is shown in table 1.

Any changes made to projects since the log files were downloaded are obvi-
ously not present in our database. Therefore, continuous updates to the data
are necessary, a data warehousing issue brought up in [3]. Two aspects of the
database and the log files make this relatively simple to do. CVS contains a filter
option to only return log information after a specified time. For each project, we
can search in our database to find the most recent timestamp, and then use that
as the range specifier and only new updates will be returned. SVN allows a user
to specify a range of revisions when running the log command. In this case, we
can simply retrieve the number of the latest revision and download all revisions
since that one.

Table 1. Number of logs downloaded from each hosting site, classified by versioning
software

Hosting Site CVS SVN

SourceForge 103869 24416
BerliOS 1252 1718
Savannah 1775 8

416 M. Van Antwerp and G. Madey

5 The Database

Due to space constraints, details on the log parsing and database design are
omitted. ER diagrams for the CVS and SVN database are provided in figure 2.

Fig. 2. Entity Relation (ER) diagrams for the new CVS and SVN database

6 Data Analysis

In this section, we present some quantitative data on gcc and emacs, two ex-
tremely mature and long-lived open source projects from GNU Savannah.

The GNU Savannah hosted project gcc is the GNU C compiler. The CVS log
begins in 1988 and had 345,723 file commits up until November 2005 when the
project was transferred elsewhere. Certain months had nearly 10,000 commits.
Nearly 300 people have contributed to the project in its 20 year history. The
CVS log file for gcc was the largest of all projects that were downloaded, with a
size of about 1.5 GB. The graph is found in figure 3.

Another mature project hosted on Savannah is emacs, the popular editor. 200
users have contributed since its initial CVS checkin in 1985. The most active
months had over 2500 file commits, with a total of 122,254 commits over all
time. The information is graphed in figure 4.

While these are relatively simple quantitative statistics, right away there are
interesting portions that warrant further investigation. Both gcc and emacs have
a slight, but noticeable lull in activity before a sustained increase in activity.

Warehousing and Studying Open Source Versioning Metadata 417

Fig. 3. Savannah project gcc

Fig. 4. Savannah project emacs

Comparing the cumulative line changes graphs for the projects, the lull occurs
for both approximately mid-2001, roughly coinciding the dot-com bubble burst.
Another trend noticed in some of the younger and less mature projects was
a distinct pattern in the cumulative line changes graphs. These graphs often
showed a period of positive acceleration, then an inflection point, then negative
acceleration. This would seem to indicate an increasing number of additions
to the software, a peak activity period, followed by a level of code maturity
where most of the fixes are minor (patches and bug fixes). The patterns in
development activity, and comparison of these patterns across different projects
will be examined more thoroughly in a future publication.

7 Conclusions

This large data set offers a multitude of open source software and social net-
working research opportunities. We can learn about project development trends
and group similar projects together by development similarity. We can examine
contribution trends by individual coders. We can see how they migrate from
project to project and how the amount and types of contributions differ over

418 M. Van Antwerp and G. Madey

time. This site has the potential to become a very important and valuable re-
search hub for researchers of various fields. It is likely that many of the users
of our SourceForge Research Data Archive will benefit from the CVS and SVN
database and site features.

Acknowledgments

Research reported in the paper was supported in part by the National Science
Foundation’s CISE IIS-Digital Society & Technology program under Grant ISS-
0222829 and by the National Science Foundation’s CISE Computing Research
Infrastructure program under Grant CNS-0751120.

References

1. Per Cederqvist. Version management with cvs (2002)
2. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from version

control and bug tracking systems. In: Proceedings of the International Conference
on Software Maintenance, pp. 23–32. IEEE Computer Society Press, Los Alamitos
(2003)

3. Rundensteiner, E.A., Koeller, A., Zhang, X.: Maintaining data warehouses over
changing information sources. Commun. ACM 43(6), 57–62 (2000)

4. Tichy, W.F.: Rcs—a system for version control. Softw. Pract. Exper. 15(7), 637–654
(1985)

5. Van Antwerp, M., Madey, G.: Advances in the sourceforge research data archive.
In: Workshop on Public Data about Software Development (WoPDaSD) at The 4th
International Conference on Open Source Systems, Milan, Italy (2008)

6. Xu, J., Huang, Y., Madey, G.: A research support system framework for web
datamining research: Workshop on applications, products and services of web-based
support systems. In: The Joint International Conference on Web Intelligence (2003
IEEE/WIC) and Intelligent Agent Technology, Halifax, Canada, October 2003, pp.
37–41 (2003)

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 419–420, 2010.
© IFIP International Federation for Information Processing 2010

Workshop – Open Source Software for
Computer Games and Virtual Worlds:

Practice and Future

Per Backlund1, Björn Lundell1, and Walt Scacchi2

1 University of Skövde, Sweden
2 University of California, Irvine, USA

{per.backlund,bjorn.lundell}@his.se, wscacchi@ics.uci.edu
http://www.his.se, http://cgvw.ics.uci.edu/

1 Introduction

Computer games and virtual worlds are increasingly used throughout our society with
people playing on the bus, at home and at work. Computer games thus affect larger
and larger number of people and areas in the society of today. There are even scholars
who advocate that games or virtual environments create better environments for learn-
ing than traditional classrooms. This situation motivates the use of games and game
technology for additional purposes, e.g. education, training, health care or marketing.

This new use distinguishes between entertainment games and games for other uses,
with the term Serious Games being the most common for the latter category. Al-
though the term itself is well established in both academia and industry, there is no
current single definition of the concept. However, a common component of these
definitions is that is the addition of pedagogy (activities that educate or instruct,
thereby imparting knowledge or skill) that makes games serious. For the purpose of
this workshop we define Serious Games as:

Serious Games are games that engage users in their pursuit, and contribute to the
achievement of a defined purpose other than pure entertainment (whether or not
the user is consciously aware of it).

A Serious Game can be achieved through a spectrum ranging from the mere utilisation
of game technology for non-entertainment purposes to development of specifically
designed games for some non-entertainment purpose or the use and/or adaptation of
commercial games for non-entertainment purposes. We also propose that any combina-
tion of the above would constitute a feasible way to achieve the desired effect.

There are numerous examples of serious games and virtual worlds from various
sectors. But what are the possible roles that Open Source Software can take in facili-
tating the development of a new generation of these technologies or applications?
Many new games and virtual worlds are being created through the use of open source
game engines and game asset creation tools. Game modding, itself an idea that often
relies on retail computer games that are packaged with software development kits to
create new game variants, are generally licensed for non-commercial redistribution
with game mod source code using a open source software license. But the intersection
of Open Source, Games and Virtual Worlds is perhaps just beginning. More ideas are

420 P. Backlund, B. Lundell, and W. Scacchi

being pursued, including how to facilitate games that rely on user-created content, or
that incorporate social media (e.g., YouTube videos, Flickr photos, audio recording
remixes), and social networking services to create new modes of game play. Games,
Virtual Worlds, and Open Source Software also help serve the needs of independent
game developers and virtual world developers who work with limited resources, out-
side large commercial enterprises.

2 Workshop Aim

The workshop aims to bring people from the Open Source and Serious Games com-
munities together to discuss the current status of the area and to find a common future
where the two areas can enrich each other.

Open Source Software for Computer Games and Virtual Worlds: Practice and
Futures will feature position statements and presentations which will be open for
discussion.

Suggested topics include, but are not limited to the following:
– Current examples of game or virtual world applications for learning, health, en-

ergy, environment, manufacturing or other areas
– Current examples of open source tools and techniques for creating games or vir-

tual world applications
– Practical and theoretical perspectives of open source in games or virtual worlds
– Open source approaches to game modding and user created content
– The intersection of game culture and free/open source software culture
– Innovative combinations of game play mechanics, social media, and social net-

working, and open source software
– Experience in developing games or virtual worlds using open source software

tools, techniques, concepts, or game engine, such as OGRE, OpenSim, Open
Croquet, Irrlicht, Doom/Quake, etc.

Program Committee

• Per Backlund, University of Skövde, Sweden (workshop co-organiser)
• Bjorn Lundell, University of Skövde, Sweden (workshop co-organiser)
• Walt Scacchi, University of California Irvine, USA (workshop co-organiser)
• Rosario de Chiara, University of Salerno, Italy
• Henrik Gustavsson, University of Skövde, Sweden
• Vittorio Scarano, University of Salerno, Italy
• Robert J. Stone University of Birmingham and HFI DTC, UK

WoPDaSD 2010: 5th Workshop on Public Data
about Software Development

Jesús M. González-Barahona1, Megan Squire2, and Daniel Izquierdo-Cortazar1

1 GSyC/LibreSoft, Universidad Rey Juan Carlos, Mostoles, Madrid
{jgb,dizquierdo}@libresoft.es

2 Elon University, North Carolina, The USA
msquire@elon.edu

1 Introduction

Projects such as FLOSSmole and FLOSSMetrics are compiling huge quantities
of data about libre (free, open source) software development. The availability
of these data in formats suitable for analysis by third parties are enabling re-
searchers to focus on the study of the data, and not on data retrieval activities.
This is fortunate, since data retrieval from software development repositories is
becoming more and more complex, especially when reliable and detailed infor-
mation from many projects is needed.

The use for research purposes of this kind of data compiled by teams external
to the researcher is posing new problems. Annotation of data, exchange formats,
traceability and privacy issues, are becoming issues to be addressed. In addition,
working with FLOSS projects to easy obtaining their data, and showing them
how that can benefit their activities is also of increasing importance.

Despite these open issues, the use of these open datasets is enabling researchers
in many ways: reproduction of results is easier; massive analysis (based on data
from hundreds or even thousands of projects) is possible; quick obtaining of
results is simplified; availability of data for research communities with little
experience in retrieving data from software repositories.

Studies and research results based on this kind of dataset have already been
presented in workshops, conferences and journals, but rarely the focus is on
how to benefit from the datasets, or on the problems derived from their use. In
addition, the details of how to use the datasets for different purposes, or specific
results from their analysis, are not published elsewhere.

This workshop is once again (for the fifth year in a row) a place to discuss all
these topics, and to present research results developed with these ideas in mind:
how these large datasets about FLOSS software development are retrieved, how
can they be analyzed and mined, how they can be published, exchanged and
extended, which lessons are we learning from their use, and which results are
being obtained from their analysis.

2 Goals

The goal of this workshop is to foster the production and analysis of publicly
available data sources about software development and the exchange of data

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 421–422, 2010.
c© IFIP International Federation for Information Processing 2010

422 J.M. González-Barahona, M. Squire, and D. Izquierdo-Cortazar

between different research groups. The workshop is aimed at the following kinds
of studies (although other related studies could also be considered):

– Results based on the analysis of large datasets about software develop-
ment.This refers mainly to research conducted on FLOSSmole or FLOSS-
Metrics data, but also on other similar open source datasets. The analysis
should show a methodology to explore the projects, but also it should show
explanations to ”odd” things that could appear in the data set. For instance,
a company-driven project can show different behavior than a community-
driven project. The study can be in the field of software engineering, eco-
nomics, sociology, human resources, and others.

– Retrieval process and exchange formats of publicly available data collections
about software development. The data collections presented should be pub-
licly available, based themselves on public data (so that other groups could
reproduce the data collection process), and be related to the field of soft-
ware development. This includes, but is not limited to, data from source
code control systems, but tracking systems, mailing lists, websites, source
and binary code, quality assurance systems, etc. Although any kind of data
collection can be considered, those including information about a large num-
ber of projects will be considered especially appropriate.

– Data mining activities and new retrieval tools. Working with a huge quantity
of data invites complexity in storage and analysis. Data mining techniques are
welcome in this section, provided that papers include some conclusions about
a specific set of projects. Again, this analysis should show a methodology to
explore the data and explanations about the whole process. Cross-analysis of
datasets, and specially of those provided by the organizers (FLOSSMole and
FLOSSMetrics databases) is especially welcome. Also, new tools developed
to obtain data from several data sources, such as forums, wikis, bug tracking
systems and others fit perfectly here.

– Usage of public datasets about software development by new research com-
munities, which until now did little empirical research in this area because
they lacked the expertise needed to retrieve information directly from the
repositories, but are now empowered by the availability of these datasets. Re-
search results produced by these communities, cases of use, problems found,
etc. are possible contributions to the workshop.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 423–424, 2010.
© IFIP International Federation for Information Processing 2010

Second International Workshop on Building
Sustainable Open Source Communities

OSCOMM 2010

Imed Hammouda1, Timo Aaltonen1, and Andrea Capiluppi2

1 Tampere University of Technology, Finland
{imed.hammouda,timo.aaltonen}@tut.fi

2 University of East London, UK
a.capiluppi@uel.ac.uk

Abstract. The Second International Workshop on Building Sustainable Open
Source Communities (OSCOMM 2010) aims at building a community of re-
searchers and practitioners to share experiences and discuss challenges involved
in building and maintaining open source communities.

1 Workshop Scope

Open source software is gaining momentum in several forms. In addition to the huge
increase in the number of open source projects started and the remarkable rise of
FLOSS adoption by companies, new models of participation in the movement are
emerging rapidly. For instance, companies are increasingly releasing some of their
proprietary software systems as open source on one hand and acquiring open source
software on the other hand. For all these forms of involvement, a central question is
how to build and maintain a sustainable community of users and developers around
the open source projects.

Research findings show that developing and maintaining online communities in
general is a complex activity. In the case of open source communities, the situation is
worsened as the problem is multi-facet (e.g. legal, social, technical, business) bringing
own kinds of challenges. We think that it is the right time for the research community
and the industry to discuss the community building problem from its various perspec-
tives by exchanging related experiences, sharing relevant concerns, and proposing
guidelines to manage the challenges highlighted earlier. This is vital as more and
more companies are moving towards community-driven development models.

2 Workshop Theme

Workshop topics include (but are not limited to):

• challenges of building and maintaining open source communities covering con-
cerns related to legal, socio-cultural, business, technical, etc. dimensions;

• organization and interaction schemes in open source communities;

424 I. Hammouda, T. Aaltonen, and A. Capiluppi

• models and classification schemes of communities: participation (e.g. volunteer,
mixed, company-based), origin (e.g. individual, company), host (e.g. academy,
company), scope (e.g. public, corporate);

• practical approaches, best practices, frameworks, methodologies, technologies,
tools, and environments to support community building and management;

• industrial involvement in building, managing and interfacing with communities:
opening up software platforms and acquiring open source software, motives and
cost-benefit models;

• building open source communities: the role of companies, academy, governments,
NGOs, and individuals;

• open source communities versus other kinds of communities such as firm-hosted
communities, corporate communities, social networks, global software teams;

• experience reports and lessons on building and maintaining open source communities.

3 Workshop Goals

The goal of the workshop is to bring together interested academics, practitioners, and
enthusiasts to discuss topics related to open source communities. The workshop will
offer an opportunity for the participants to share experiences and discuss challenges
involved in building and maintaining open source communities. The workshop will
also identify key research issues and challenges that lie ahead.

4 Further Information

Further information regarding organization and program of the workshop is available
at http://tutopen.cs.tut.fi/oscomm10/.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 425–426, 2010.
© IFIP International Federation for Information Processing 2010

Open Source Policy and Promotion of IT Industries in
East Asia

Tetsuo Noda1, Sangmook Yi2, and Dongbin Wang3

1 Shimane University, Faculty of Law and Literature
Matsue, Japan

nodat@soc.shimane-u.ac.jp
2 Duksung Women's University, Department of Business Administration

Seoul, Korea
endien@gmail.com

3 Tsinghua University, Canter of China Study
Beijing, China

wdb05@mails.tsinghua.edu.cn

Abstract. The development style of open source has a possibility to create new
business markets for Regional IT industries. Some local governments are trying
to promote their regional IT industries by adopting an open source in their elec-
tronic government systems. In this paper, we analyze the data of open source
application policy of the Japanese government and case studies of promotion
policy of local industries by local governments; for example, Nagasaki Prefec-
ture and Matsue City. And it aims to extract the issues in the open sources
application policy of local governments and the promotion policy of regional
industries in Japan.

1 Introduction

The term “Wikinomics” describes a style of business where companies accumulate
huge amounts of information to generate revenue, and is typified by multinationals
like Google or Amazon. These businesses maximize their high productivity and earn-
ings by leveraging Open Source Software (OSS), which is built on a cooperative de-
velopment model.

OSS originates from the West coast of the USA, and is still primarily developed
and enhanced by American multinationals. It could even be said that the current tech-
nical evolution of OSS is focused mainly on companies originating from the United
States. However, the inherent benefits of OSS extend beyond the boundaries of enter-
prises, organizations and even nations, and it has the potential to foster new business
markets in regions other than North America.

East Asia nations have made some progress with this technology, and started to in-
troduce OSS for e-government systems during the early part of this century. Many
countries granted it a central role in their policies. The reasons for this include adop-
tion of software based on standard specification, liberation from vender lock-in, or
opposition to the market control of proprietary software. However, the primary reason
is to reduce adoption costs for e-government systems.

426 T. Noda, S. Yi, and D. Wang

While this policy work is useful, there is a great deal more that needs to be done.
The OSS adoption policy in each nation of East Asia must be accompanied by techno-
logical progress in domestic IT service industries or US multinationals will expand at
the cost of local businesses. If this continues unchecked it will create a new form of
lock-in for East Asian nations.

Some Asian nations are trying to promote their domestic IT service industries, put-
ting their OSS adoption policy to practical use, and this workshop will provide case
studies of that work. It will also provide a forum for discussing current challenges and
opportunities around both policy and practical implementation issues across Asia.

- the history and the current stage of open source introduction policy
- the policy of the human resource development in the field of open source
- the IT solution market using open source and the ratio of public sectors
- the current state of open source technology of IT enterprises
- the existence and activity of open source communities
- the open source policy of each Local Government Unit and the appearance of the

introduction of open source
- the results that led to promotion of industry of home country

2 Workshop Goals

We intend to extract the issues of open source introduction policy not accompanied by
the technological progress of domestic IT service industry. And this will give an indi-
cation to the roles of governments not only in East Asia but also other developing
countries.

3 Program Committee

- Tetsuo Noda, Shimane University, Japan (workshop co- organizer)
- Sangmook Yi, Duksung Women's University, Korea (workshop co- organizer)
- Dongbin Wang, Tsinghua University, China (workshop co- organizer)
- Shane Coughlan, Regional Director Asia, Open Invention Network, Japan
- Jonathan Lewis, Hitotsubashi University, Japan
- Tomoko Yoshida, Kyoto Notre Dame University, Japan
- Terutaka Tansho, Shimane University, Japan

OSS 2010 Doctoral Consortium (OSS2010DC)

Walt Scacchi1, Kris Ven2, and Jan Verelst2

1 University of California, Irvine, USA
2 University of Antwerp, Belgium

http://www.ua.ac.be/oss2010dc

Goal

The goal of the Doctoral Consortium is to provide PhD students with an environment
in which they can share and discuss their goals, methods and results before completing
their research. Participants will be selected based on the quality of the proposed re-
search, its potential significance and contribution to the OSS domain, and the potential
benefit of the Doctoral Consortium to the PhD student’s research.

The Doctoral Consortium will take place on May 30, allowing participants to attend
the OSS 2010 conference after the Doctoral Consortium. This allows PhD students to
further discuss their research with other researchers in the following days.

As well, because of the diversity of the communities involved, the Doctoral Consor-
tium will allow PhD students to make connections beyond their own disciplines. As a
result, we expect that participation will allow PhD students to develop a better under-
standing of the different research communities, which we believe will facilitate their
participation in future inter-disciplinary research.

We will also invite other faculty members to attend the Doctoral Consortium to stim-
ulate discussion.

Scope

The scope of research topics of the Doctoral Consortium is the same as for the main con-
ference. We therefore invite submissions related to all aspects of open source software
including, but not limited to software engineering perspectives, emerging perspectives,
social science, and studies of OSS deployment.

We invite submissions from PhD students in the early stages of their research (e.g.,
those who are at the end of their first year or in their second year), as well as in the late
stages of their research (e.g., those who are close to graduating).

PhD students who apply for the Doctoral Consortium should at least have decided on
a research topic or topic area, and have a proposal for an appropriate research method.
Preferably, PhD students should still have the time to incorporate the feedback obtained
during the Doctoral Consortium in their dissertation.

Full Papers

All full papers submitted to the Doctoral Consortium will be peer reviewed by at least
two independent reviewers. PhD students that are accepted to the Doctoral Consortium,

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 427–428, 2010.
c© IFIP International Federation for Information Processing 2010

428 W. Scacchi, K. Ven, and J. Verelst

will give a presentation of their work. We aim to provide sufficient time for discussion
(at least 20 minutes) to ensure that PhD students obtain quality feedback from the Doc-
toral Consortium co-chairs, the members of the program committee, as well as other
PhD students. This feedback will allow them to enhance their own research proposal.
Subsequently, doctoral students whose advisory committee lacks sufficient expertise
with current OSS research may benefit in a number of ways from participating in the
Doctoral Consortium with attending faculty.

Lightning Talks

Similar to last year, we will be hosting a special session of “lightning talks” during
the OSS 2010 Doctoral Consortium. During this lightning talks session, multiple PhD
students will be able to briefly present their research proposal. Each presenter will be
provided with a 3-minute time slot and will have one slide available. The lightning talks
session allows PhD students to give a brief presentation of their research, to actively
participate in the Doctoral Consortium, and to generate awareness of their topic.

The lightning talks session is primarily targeted towards PhD students who are in
the early phases of their research. Attending the discussion on the research proposals of
other PhD students may also be beneficial for them, as it provides ideas on what future
reactions to their own research may be. In addition, by giving a lightning talk, they are
able to generate an interest in their research topic, which allows them to connect to
other researchers in related areas and to gain preliminary feedback on their proposal.

Doctoral Consortium Chairs

Walt Scacchi University of California, Irvine USA
Kris Ven University of Antwerp Belgium
Jan Verelst University of Antwerp Belgium

Program Committee

Kevin Crowston Syracuse University USA
Joseph Feller University College Cork Ireland
Daniel M. German University of Victoria Canada
Jesus Gonzalez-Barahona Universidad Rey Juan Carlos Spain
Björn Lundell University of Skövde Sweden
Maha Shaikh London School of Economics UK

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 429–430, 2010.
© IFIP International Federation for Information Processing 2010

Student Participation in OSS Projects

Gregory W. Hislop1, Heidi J.C. Ellis2, Greg DeKoenigsberg3, and Darius Jazayeri4

1 Drexel University
hislop@drexel.edu

2 Western New England College
hellis@wnec.edu

3 Red Hat Inc.
gdk@redhat.com

4 OpenMRS
djazayeri@pih.org

Abstract. Open Source Software (OSS) is undergoing extraordinary growth.
This rapid growth requires an increasing number of software developers work-
ing in a variety of areas. Computing education needs to provide students with
professional experience, preferably within the context of a large, distributed
software project. Educating students within OSS projects provides a solution to
both the need for both developers to work on OSS projects as well as the need
to provide computing students with professional experience. This panel will
discuss the issues involved with educating students using OSS.

1 Description

Student participation in Open Source Software has the potential to offer significant
benefit both to OSS communities and to educators. For OSS, students can make
meaningful contributions, and education that includes OSS experience will help to
insure that the number of developers with OSS skills continues to grow. From the
education perspective, OSS participation can provide students with exposure to large,
real-world projects and help students to understand how to handle the complexity of
large, long-lived projects, how to behave in a professional environment, how to com-
municate effectively in a distributed development environment, and much more.

However, there are a variety of roadblocks to involving students in OSS projects.
Instructors perceive high learning curves for projects and development environments,
difficulties in obtaining entree into OSS projects, and problems in fitting development
within an academic schedule. Students may be concerned with the complexity of the
project and being viewed negatively by the OSS community for their lack of experi-
ence. OSS participants may be concerned about student inexperience, and the limits
of academic term schedules.

This panel will discuss the impact of the growth in OSS on computing education.
Questions to be addressed include:

• What is the value of student participation in OSS projects?
• What does it take to involve students in OSS projects including on-ramp is-

sues, student-friendly projects and more?

430 G.W. Hislop et al.

• What are the variety of ways that students can participate in an OSS project?
Student involvement includes both software and services and can range from
coding to documentation to providing support for OSS applications.

• What are some examples of successful efforts within courses?
• What are some existing OSS efforts to involve students?

This panel hopes to encourage active discussion of the issues related to educating stu-
dents with respect to and in the environment of OSS.

2 Panelists and Perspectives

Greg Hislop (panel moderator), is an Associate Professor in the College of Information
Science and Technology, Drexel University. He is co-PI on the NSF project “SoftHum:
Student Participation in the Community of Open Source Software for Humanity,” which
is investigating the development of course materials to support student open source par-
ticipation within the classroom (xcitegroup.org/softhum). He is PI on the HumIT project
which is developing ways to have students provide infrastructure support for humanitar-
ian OSS projects (xcitegroup.org/humit). Greg will speak from the perspective of cur-
riculum development for incorporating students in OSS.

Heidi Ellis is Associate Professor and Chair of Department of Computer Science
and Information Technology, Western New England College. She is PI on the NSF
SoftHum project. She has been involved with the Humanitarian Free and Open Source
Software (HFOSS) project (hfoss.org). Heidi will speak from the perspective of in-
structional delivery and course materials for incorporating students in OSS.

Greg DeKoenigsberg is a Senior Community Architect for Red Hat. He is a former
chairman of the Fedora Project, an open source software development community
with over 10,000 volunteer contributors. He serves on the advisory boards of several
open source advocacy organizations, writes about open source issues, and speaks at
open source events worldwide. He has been with Red Hat Since 2001. Greg will dis-
cuss his experiences with Red Hat in building collaborative communities that support
student involvement in OSS.

Darius Jazayeri is the Lead Software Designer for OpenMRS, an OSS electronic
medical record system built by a collaborative that includes the Regenstrief Institute,
Inc. and Partners In Health. He has over eight years experience developing open
source medical records in developing countries. Darius recently won the 2009 Pizzi-
gati Prize for Public Interest Computing from the Tides Foundation. Darius will dis-
cuss his experiences with project management while mentoring students involved in
OpenMRS projects.

Open Source Software/Systems in Humanitarian
Applications (H-FOSS)

Greg Madey

Computer Science & Engineering
College of Engineering

University of Notre Dame
gmadey@nd.edu

In the past few years we’ve seen many catastrophic natural disasters, most re-
cently the Haitian and the Chilean Earthquakes. Others include the 2004 Indian
Ocean Earthquake and Tsunami, the 2005 Kashmir earthquake, the 2008 Sichuan
earthquake, and Cyclone Nargis that hit Myanmar in 2008. Because these events
are rare and often impact poor countries, the development of information sys-
tems that support humanitarian and crises response may not be profitable, and
thus rarely developed. Systems needed to track medical services to populations
of poor nations are often not developed nor deployed because there is no prof-
itable business model for such products. Commercially systems typically require
expensive training and hardware not practical in poor underserved places on the
planet.

Humanitarian Free and Open Source Software is FOSS developed to support
humanitarian, crises response and health care applications. Example H-FOSS
projects include the Sahana Disaster Management System, Open MRS Medical
Record System, and Crises Commons with its CrisesCamps. This panel will ex-
amine this emerging category of FOSS, its trends, challenges, and opportunities.
Panelists will come from these and other H-FOSS projects.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, p. 431, 2010.
c© IFIP International Federation for Information Processing 2010

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 432–433, 2010.
© IFIP International Federation for Information Processing 2010

The FOSS 2010 Community Report

Walt Scacchi1, Kevin Crowston2, Greg Madey3, and Megan Squire4

1 University of California, Irvine, Institute for Software Research,
Irvine, CA, USA

wscacchi@ics.uci.edu
http://www.ics.uci.edu/~wscacchi

2 Syracuse University, School of Information studies, Syracuse, NY, USA
crowston@syr.edu,

http://crowston.syr.edu/
3 University of Notre Dame, South Bend, IN, USA

gmadey@nd.edu
http://www.nd.edu/~gmadey/

4 Elon University, Department of Computing Sciences,
Elon, NC, USA

msquire@elon.edu
http://facstaff.elon.edu/msquire

Abstract. The purpose of this panel is to disseminate the findings from the re-
lated FOSS workshop, a CCC-sponsored exploratory workshop held at Univer-
sity of California, Irvine in February 2010. At the OSS conference we will give
first a report of what was learned at the FOSS workshop, and then we will glean
important feedback from community members who were unable to be at the
FOSS workshop. The four conveners of the FOSS workshop will be the panel-
ists at the OSS conference.

1 The Purpose of the Workshop

The purpose of the FOSS workshop at UC-Irvine was to generate ideas and perspec-
tives from within the free and open source research community about the future of
research in the field. To start the workshop, we solicited position papers from our fifty
North American attendees about the following subject areas:

• How does FOSS as a diverse socio-technical movement accomplish global
software development, without a traditional central authority or source of
funding/resources?

• How do distributed groups make decisions? What sort of conflicts are com-
mon, and how are conflicts settled?

• What are the differences and similarities between FOSS projects and proprie-
tary (non-FOSS) projects? Is there a taxonomy of characteristics of these two
types of projects? Are there hybrid projects, and how are these described?

• How do we measure "success" of a FOSS project? What are the various at-
tributes of a project that might help us measure success? Do we have all the
data we need, or are there additional measures that we need to collect?

 The FOSS 2010 Community Report 433

• What are the different ways that software developers are incentivized within
the various types of FOSS projects? How does this incentive structure com-
pare to proprietary projects? What do the developers themselves report are
the best and worst incentives?

• How can the benefits of FOSS be translated into a language technology deci-
sion-makers can understand? Are there "best practices" for FOSS technology
adoption or for rollovers from proprietary to FOSS models within businesses
or governments?

• What are the various techniques and technologies that help self-organized
groups to work effectively? How can these self-organizing techniques and
technologies be applied to other domains?

• What are the different roles in a FOSS project (e.g., core developer, active
user)? What levels of contribution is needed from members in various roles
are needed to sustain a project (e.g., how important are active users)?

• How long can such a movement be sustained?
• Are there conditions or events that constitute an inflection point that will

mark the decline of FOSS as a socio-technical movement?

2 Findings from the Workshop

Based on discussions, debate, and reflection at the FOSS workshop, we were able to
synthesize and change the list of questions and focus areas. At the end of the FOSS
workshop, our focus areas for the future of FOSS research included:

• Collaboration - how can studying FOSS help us understand how humans col-
laborate?

• Software Engineering Practice - how can FOSS help us understand the cur-
rent and future state-of-the-art in software development?

• Transfer, Ecosystem, and Society - what can we learn about other domains
from studying FOSS, and from what other domains is FOSS being influ-
enced?

• Learning and Education - can FOSS serve as an educational tool and what
are the implications of using FOSS in the classroom?

• Evolution - how do FOSS outcomes, activities, technologies, infrastructures,
etc. develop and change over time? Do these changes follow specific patterns
or principles, and what evolutionary trajectories are typical and or similar
within FOSS when compared to other forms of developing and evolving
software?

• Motivational Transformations - how does studying FOSS help us understand
the global IT infrastructure and the process of innovation?

• Research Infrastructures - what are the best ways to support the data and
analysis needs of the research community?

These interest areas represent what the community believes will be the best way to
focus and extend the FOSS research agenda in the coming years.

P. Ågerfalk et al. (Eds.): OSS 2010, IFIP AICT 319, pp. 434–435, 2010.
© IFIP International Federation for Information Processing 2010

The Present and Future of
FLOSS Data Archives

Megan Squire1, Jesús M. González-Barahona2, and Greg Madey3

1 Elon University, Department of Computing Sciences,
Elon, NC, USA

msquire@elon.edu
http://flossmole.org

2 Libre Software Engineering Lab (GSyC), Universidad Rey Juan Carlos, Madrid, Spain
jgb@gsyc.es

http://flossmetrics.org
3 University of Notre Dame, South Bend, IN, USA

gmadey@nd.edu
http://www.nd.edu/~gmadey/

Abstract. The purpose of this panel will be to discuss the features available in
current archives of data about open source projects. The panel will also discuss
possible future activities and features to be implemented into these data ar-
chives. Community feedback, requests, and questions will also be integrated
into this panel discussion.

1 Purpose

This panel is made up of some of the leaders of various open source data archiving
projects: Megan Squire, Elon University and the FLOSSmole project, Jesus Gon-
zalez-Barahona, Universidad Rey Juan Carlos and the FLOSSMetrics project, and
Greg Madey, University of Notre Dame, and the Sourceforge Research Data Archive.

Panelists will discuss the current and future needs of the research community, and
specifically how these needs can be met by existing data archives.

The topics for discussion on the panel will include:

• What are the salient features of each data archive project? What is the mis-
sion of each project? How does it differ from the other projects?

• What are the biggest challenges facing each data archive project?
• How has the project helped to address significant research questions or oth-

erwise helped the research community?
• What are some of the common requests from community members for the

projects, and how is the project addressing these requests?
• What are the future initiatives of each project?
• What are some ways that open source community members can get involved

with the project? Are there particular initiatives that the community can help
with?

 The Present and Future of FLOSS Data Archives 435

All of the data archiving projects represented on the panel have different answers to
these questions. We expect a lively and fruitful two-way conversation between the
panelists and the community members about the features and futures of data archiving
projects.

Author Index

Aaltonen, Timo 143, 342, 423
Ali Babar, Muhammad 389
Allen, Jonathan P. 308
Amrit, Chintan 314
Ardagna, Claudio A. 1
Auvray, Vincent 336

Backlund, Per 419
Baravalle, Andres 29
Bartol, Kathryn M. 239
Boldyreff, Cornelia 97

Capiluppi, Andrea 29, 423
Coca, Pedro 348
Conaldi, Guido 42
Conradi, Reidar 105
Crosetto, Paolo 53
Crowston, Kevin 294, 432
Cruzes, Daniela Soares 105

Dalle, Jean-Michel 73
Damiani, Ernesto 1
DeKoenigsberg, Greg 429
del Bianco, Vieri 15
den Besten, Matthijs 73
de Pablos, Carmen 354
Deprez, Jean-Christophe 336

Ellis, Heidi J.C. 429

Frati, Fulvio 1

Gamalielsson, Jonas 85
Garbett, Andrew 97
González-Barahona, Jesús M. 336,

421, 434

Hammouda, Imed 143, 423
Hardy, Jean-Lucien 322
Hauge, Øyvind 105
Heap, Nick W. 29
Heinimäki, Teemu J. 143, 342
Hislop, Gregory W. 429
Höst, Martin 367

Iio, Jun 330
Iivari, Netta 119
Izquierdo-Cortazar, Daniel 336, 421

Jazayeri, Darius 429
Jensen, Chris 130

Khansari, Mohammad 188
Kilamo, Terhi 143, 342
Kon, Fabio 348

Lago, Nelson 348
Laisné, Jean-Pierre 348
Lavazza, Luigi 15
Levine, Sheen S. 156
Lieser, Karl 97
Lings, Brian 85, 177
López, David 354
Lundell, Björn 85, 177, 419

Madey, Greg 407, 413, 431, 432, 434
Matsumoto, Akihiro 330
Mikkonen, Tommi 143
Moin, Amir H. 188
Morasca, Sandro 15, 200

Noda, Tetsuo 214, 425

Oezbek, Christopher 361
Oltolina, Sergio 1
Oručević-Alagić, Alma 367

Papoylias, Nick 373
Petrinja, Etiel 224
Prietula, Michael J. 156

Qiu, Yixin 239

Regoli, Mauro 1
Robles, Gregorio 336
Rossi, Bruno 252, 268
Ruffatti, Gabriele 1
Rullani, Francesco 42
Russo, Barbara 252, 268

438 Author Index

Santos, Roberto 354
Sasaki, Hisayoshi 330
Scacchi, Walt 130, 419, 427, 432
Seifu, Zegaye 380
Shimizu, Hiroyuki 330
Sillitti, Alberto 224
Skarpenes, Tron André 105
Squire, Megan 421, 432, 434
Stewart, Katherine J. 239
Stol, Klaas-Jan 389
Succi, Giancarlo 224, 252, 268

Taibi, Davide 15, 200
Tansho, Terutaka 214

Tosi, Davide 15, 200
Tsiavos, Prodromos 380

Van Antwerp, Matthew 407, 413
van Hillegersberg, Jos 314
Velle, Ketil Sandanger 105
Ven, Kris 281, 427
Verelst, Jan 281, 427

Wang, Dongbin 425
Wiggins, Andrea 294

Yamakami, Toshihiko 395, 401
Yi, Sangmook 425

	Title Page
	Foreword
	Organization
	Table of Contents
	Part I: Full Papers
	Spago4Q and the QEST nD Model: An Open Source Solution for Software Performance Measurement
	Introduction
	The Context: QEST nD and Spago4Q
	The QEST {\it n}D Model
	Spago4Q

	An Integrated Environment
	Step 1: Metrics and Model Definition
	Step 2: Weights and Threshold Definition
	Step 3: Measures Collection
	Step 4: Global Performance Computation
	Step 5: Reports

	Case Studies
	Conclusions
	References

	An Investigation of the Users’ Perception of OSS Quality
	Introduction
	The Investigation
	The Results of the Investigation
	The Popularity of the Products
	The Trustworthiness of the Products
	OSS vs. CSS (Closed-Source Software)
	The Quality of OSS Products
	Influence of the Implementation Language on the User-Perceivable Trustworthiness
	Which Factors Affect OSS Trustworthiness?

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Conclusions and Future Work
	References

	Engaging without Over-Powering: A Case Study of a FLOSS Project
	Introduction
	Moodle
	Business Model
	Commercial Stakeholders and Peripheral Development

	Moodle at the Open University
	Initial Selection
	Role of the Open University as Community Contributor
	The Open University and the Open Source Community

	The Catalyst Involvement
	Raw Data Extraction and Filtering
	Metrics Choice and Description
	Results

	Conclusions
	References

	The Meso-level Structure of F/OSS Collaboration Network: Local Communities and Their Innovativeness
	Introduction
	Background and Related Work
	Methods and Analysis
	Data
	The Overall Network Structure of F/OSS Collaboration
	Finding Communities in the F/OSS Collaboration Network

	Discussion and Conclusions: Community Structure and Innovativeness
	References

	To Patent or Not to Patent: A Pilot Experiment on Incentives to Copyright in a Sequential Innovation Setting
	Introduction
	The Model in Bessen and Maskin [1]
	Experimental Design
	The {\it Copyleft} Game

	Experimental Results
	General Results
	Session 1 {\it (low-fee)}: Copyright and {\it business as usual}
	Session 2 {\it (high-fee)}: Copyleft and Anticommons
	Session 3 {\it (low-fee): learning to cheat} and Copyleft
	Session 4 {\it (high-fee)}: Copyleft and Anticommons

	Conclusions
	References

	Voting for Bugs in Firefox: A Voice for Mom and Dad?
	Introduction
	Background
	Sampling Method
	Characterizing Voters
	Analyzing Bugs
	Conclusion
	References

	The Nagios Community: An Extended Quantitative Analysis
	Introduction
	The Nagios Project
	Research Approach
	Results
	Conclusion and Discussion
	References

	Collaborative Development for the XO Laptop: CODEX 2
	Introduction
	Project Aims
	Project Process and Accomplishments
	Comparison of Work
	Further Work
	Conclusions
	References

	Risks and Risk Mitigation in Open Source Software Adoption: Bridging the Gap between Literature and Practice
	Introduction
	Related Literature
	Possible Benefits of OSS
	Potential Risks of OSS Adoption
	Risk Mitigation in OSS Adoption

	Context and Research Method
	Results
	RQ1: Potential Benefits of OSS
	RQ2: Potential Risks and Drawbacks
	RQ3: Mitigating the Risks Related to OSS Adoption

	Risks and Risk Mitigation Strategies
	Limitations of This Study
	Conclusion and Future Work
	References

	Usability Innovations in OSS Development – Examining User Innovations in an OSS Usability Discussion Forum
	Introduction
	User and Usability Innovation
	User Innovation
	Usability Innovation

	Research Design
	Empirical Insights
	Concluding Discussion
	References

	Governance in Open Source Software Development Projects: A Comparative Multi-level Analysis
	Introduction and Overview
	Analytical Levels and Elements for Understanding Governance in OSS Projects
	Micro-level Analysis of OSS Governance Issues
	Meso-level Analysis of OSS Governance Issues
	Collaboration
	Leadership and Control
	Conflict Resolution

	Macro-level Analysis of OSS Governance Issues
	Coordination
	Leadership and Control
	Conflict Resolution

	Discussion
	Conclusions
	References

	Evaluating the Readiness of Proprietary Software for Open Source Development
	Introduction
	Background
	Open Source Maturity Models
	Opening Proprietary Software

	The Release Readiness Rating Framework
	Framework Overview
	Evaluation Criteria
	Evaluation Process
	Open Source Engineering

	Case Study
	The Wringer Case
	The Gurux Case

	Future Work
	Conclusions
	References

	Where and When Can Open Source Thrive? Towards a Theory of Robust Performance
	Introduction
	Literature Review
	Open Source Differs from Firm-Based Innovation
	A Lingering Puzzle of Performance

	From Qualitative Data to a Model of Open Source
	Specifying the Model: Building Blocks of Open Source
	Specifying the Model: Variables Related to Open Source Performance

	Computational Experiments and Results
	The Impact of Cooperative Types on Performance
	The Impact of Rivalry and Demand
	Typical Cooperation Type Ratios in the Population

	Discussion and Conclusion
	References

	How Open Are Local Government Documents in Sweden? A Case for Open Standards
	Introduction
	Open Standards for Document Formats
	Research Approach
	Quantitative Analysis
	Qualitative Analysis
	Discussion and Conclusions
	References

	Bug Localization Using Revision Log Analysis and Open Bug Repository Text Categorization
	Introduction
	Background
	Version Control Systems
	Open Bug Repositories
	Machine Learning

	The Proposed Approach
	Validation and Experimental Results
	Related Work
	Conclusion and Future Work
	References

	T-DOC: A Tool for the Automatic Generation of Testing Documentation for OSS Products
	Introduction
	The Lack of OSS Documentation
	Built-in Test in OSS
	TheT-DocTool
	Test Case Documentation
	Regression and Integration Testing Documentation
	Test Case Execution Report
	Validation Remarks

	Conclusions and Future Work
	References

	Open Source Introducing Policy and Promotion of Regional Industries in Japan
	Introduction
	Introduction of OSS and Promotion of Regional Industries
	The Method of Divided Orders by Using OSS in Nagasaki Prefecture
	Opening of Source Codes and Regional-Industry Promotion

	OSS Development Style and Regional-Industry Promotion
	Situation of Regional IT Industries in Shimane Prefecture
	OSS Ruby and Ruby City Matsue Project in Shimane Prefecture
	OSS Development Style and Promotion of Regional Industries

	Conclusions
	References

	Comparing OpenBRR, QSOS, and OMM Assessment Models
	Introduction
	Related Work
	Research Design
	Scope
	Methodology

	Results
	Threats to Validity
	Discussion and Conclusions
	References

	Joining and Socialization in Open Source Women’s Groups: An Exploratory Study of KDE-{\it Women}
	Introduction
	Theoretical Background
	Methodology
	Data Collection
	Data Analysis

	Findings
	Joining and Initial Socialization Activities on KDE {\it Women}
	Joining Activities across People at Different Participation Phases

	Discussions
	Conclusion and Future Research
	References

	Download Patterns and Releases in Open Source Software Projects: A Perfect Symbiosis?
	Introduction
	Background
	Problem Statement
	Method
	Experimental Results
	Filtering
	Interpolation
	Sensitivity Analysis
	Results
	Findings
	Limitations

	Conclusions and Future Works
	References

	Modelling Failures Occurrences of Open Source Software with Reliability Growth
	Introduction
	Background
	Candidate Software Reliability Growth Models
	The Measures of Accuracy and Prediction

	The Dataset
	Empirical Assumptions

	The Method
	Findings
	Limitations and Future Work
	Conclusions
	References

	A Field Study on the Barriers in the Assimilation of Open Source Server Software
	Introduction
	Methodology
	Findings
	Barriers to the Further Adoption of OSSS
	Relationship with Assimilation of OSSS
	Relationship with Extent of Linux Adoption

	Discussion and Conclusion
	Contributions
	Limitations and Future Research

	References

	Reclassifying Success and Tragedy in FLOSS Projects
	Introduction
	Theory: Assessing Project Success
	Propositions

	Methods
	Replication
	Extending Analysis

	Results
	Comparison to Original Published Results
	Comparison of Release Rate Criteria
	Comparison over Time

	Discussion
	Limitations
	Future Work

	Conclusions
	References

	Part II: Short Papers
	Three Strategies for Open Source Deployment: Substitution, Innovation, and Knowledge Reuse
	Introduction: Is Using Open Source Different?
	Open Source Deployment: Three Types of Outcomes
	Substitution
	Innovation
	Knowledge Reuse

	Three Strategies for Open Source Deployment
	Conclusion: The Promise of Open Source
	References

	Coordination Implications of Software Coupling in Open Source Projects
	Introduction
	Design Structure Matrix and Cost Metrics
	Case Study of JBoss
	Discussion and Conclusion
	References

	Industry Regulation through Open Source Software: A Strategic Ownership Proposal
	Introduction
	The Role of the OSS Scientific Community
	The Ownership of OSS Products
	The Absence of a Public Regulatory Role Concerning OSS
	The ATM Supply Chain

	Failure of OSS Adoption in ATM
	Seven Counter-Productive Scenarios for OSS Ownership
	OSS Owned by a Small Company
	OSS Owned by a Major Player in the Industry
	OSS Owned by an OSS Foundation
	OSS Owned by Cooperatives of Users
	OSS Owned by a National Public Administration
	OSS Owned by a Continental Public Organization
	OSS Owned by a Global Public Organization

	Attaching the OSS Ownership to an Industry Regulatory Role
	Conclusion and Future Perspectives
	References

	Proposal for Solving Incompatibility Problems between Open-Source and Proprietary Web Browsers
	Introduction
	Background
	Browser Dependency Problems
	Solutions for This Problem

	System Overview
	Overview of Pirka’r
	The Pirka’r Ecosystem
	Verification Script

	Related Works
	Conclusions
	References

	FLOSS Communities: Analyzing Evolvability and Robustness from an Industrial Perspective
	Introduction
	Related Research
	Methodology
	Threats to Validity
	Results for Illustration
	Conclusions and Further Work
	References

	BULB: Onion-Based Measuring of OSS Communities
	Introduction
	Measuring Open Source Communities
	Constructing an Onion-Based Model: BULB
	Experimenting BULB with the Vaadin Community
	Conclusions
	References

	A Network of FLOSS Competence Centres
	FLOSS Adoption: It’s All about TRUST
	A Distributed Network of Trustworthy and Highly Skilled Resources
	In FLOSS We Trust

	General Description
	Structure of the Network and Its Components
	Benefits of Belonging to the Qualipso Network

	Competence Centres at Work
	Beyond Qualipso Competence Centres: FLOSS CC Manifesto
	Conclusion

	Profiling F/OSS Adoption Modes: An Interpretive Approach
	Introduction
	Qualitative Inductive Research Approach
	Data Collection
	Data Analysis

	Research Results
	Implications for F/OSS Migration Processes
	Future Work
	References

	Introducing Automated Unit Testing into Open Source Projects
	Introduction
	Results
	Insights into Automated Testing
	Insights into Innovation Introduction

	Limitations and Conclusion
	References

	A Case Study on the Transformation from Proprietary to Open Source Software
	Introduction
	Background
	Research Approach
	Data Collection
	Analysis

	Results
	Conclusions
	References

	High-Level Debugging Facilities and Interfaces: Design and Developement of a Debug-Oriented I.D.E.
	Introduction
	Problem Statement

	Related Work
	Published Work
	Technological Advancements

	Our Approach
	Rethinking the Debugging Information Flow
	The Five Pillars of High-Level Debugging

	Conclusion and Future Work
	References

	To Rule and Be Ruled: Governance and Participation in FOSS Projects
	Introduction
	Analytical Concepts
	FOSS Governance
	CBPP and Participation
	FOSS and Participation

	CaseDescription
	Findings and Discussions
	Overall Picture of Participation in the Three Projects
	Governance Mechanisms of the Three Projects
	Participation Patterns and Governance

	Conclusion
	References

	A Comparison Framework for Open Source Software Evaluation Methods
	Introduction
	Identification of Evaluation Methods
	A Comparison Framework
	Conclusion and Future Work
	References

	An Exploratory Long-Term Open Source Activity Analysis: Implications from Empirical Findings on Activity Statistics
	Introduction
	Purpose and Related Works
	Patterns and Chasms
	Long-Term Observation
	Discussion
	Skill to Leverage Open Source Projects
	Different Types of Software for Adoption
	Limitations

	Conclusion
	References

	Challenges for Mobile Middleware Platform: Issues for Embedded Open Source Software Integration
	Introduction
	Purpose and Related Work
	Open Source-Related Landscape
	Driving Forces for Embedded Open Source and Issues
	Issues from Embedded Software Engineering
	Issues from Mobile-Specific Service Development
	Issues from OSS Management

	An Open Source-Aware Software Development
	Transition Management
	Conclusion
	References

	Open Source Software Developer and Project Networks
	Introduction to Complex Networks
	Previous Work

	SourceForge, GNU Savannah, and BerliOS Developer
	SourceForge Developer Network
	Savannah Developer and Project Networks
	BerliOS Developer and Project Networks
	Repeat Network Connections
	Evaluation of the Communities
	Conclusions
	References

	Warehousing and Studying Open Source Versioning Metadata
	Introduction
	SourceForge.net Data
	Concurrent Versions System
	Download Process
	Job Distribution

	The Database
	Data Analysis
	Conclusions
	References

	Part III: Workshops
	Workshop – Open Source Software for Computer Games and Virtual Worlds: Practice and Future
	Introduction
	Workshop Aim

	WoPDaSD 2010: 5th Workshop on Public Data about Software Development
	Introduction
	Goals

	Second International Workshop on Building Sustainable Open Source Communities OSCOMM 2010
	Workshop Scope
	Workshop Theme
	Workshop Goals
	Further Information

	Open Source Policy and Promotion of IT Industries in East Asia
	Introduction
	Workshop Goals
	Program Committee

	OSS 2010 Doctoral Consortium (OSS2010DC)

	Part IV: Panels
	Student Participation in OSS Projects
	Description
	Panelists and Perspectives

	Open Source Software/Systems in Humanitarian Applications (H-FOSS)
	The FOSS 2010 Community Report
	The Purpose of the Workshop
	Findings from the Workshop

	The Present and Future of FLOSS Data Archives
	Purpose

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

