

Lecture Notes in Computer Science 6132
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mitsuhisa Sato Toshihiro Hanawa
Matthias S. Müller Barbara M. Chapman
Bronis R. de Supinski (Eds.)

Beyond Loop Level
Parallelism in OpenMP:
Accelerators, Tasking
and More

6th International Workshop on OpenMP, IWOMP 2010
Tsukuba, Japan, June 14-16, 2010
Proceedings

13

Volume Editors

Mitsuhisa Sato
Toshihiro Hanawa
E-mail: msato@cs.tsukuba.ac.jp, hanawa@ccs.tsukuba.ac.jp

Matthias S. Müller
E-mail: matthias.mueller@tu-dresden.de

Barbara M. Chapman
E-mail: chapman@cs.uh.edu

Bronis R. de Supinski
E-mail: bronis@llnl.gov

Library of Congress Control Number: 2010927500

CR Subject Classification (1998): C.1, D.2, F.2, D.4, C.3, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-13216-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13216-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This book contains the proceedings of the 6th International Workshop on
OpenMP held in Tsukuba City, Japan, in June 2010. The International Work-
shop on OpenMP is an annual series of workshops dedicated to the promotion
and advancement of all aspects focusing on parallel programming with OpenMP.

OpenMP is now a major programming model for shared memory systems
from multi-core machines to large-scale servers. Recently, new ideas and chal-
lenges have been proposed to extend OpenMP framework to support accelerators
and also to exploit other forms of parallelism beyond loop-level parallelism.

The workshop serves as a forum to present the latest research ideas and
results related to this shared memory programming model. It also offers the
opportunity to interact with OpenMP users, developers and the people working
on the next release of the specification.

In response to the Call-for-Papers for the technical program, the Program
Committee received a total of 23 submissions from all over the world including
Asia, USA and Europe, and all submissions were carefully refereed in a rigorous
process which required at least three reviews for each paper, using the EasyChair
conference system. The final decisions were collectively made in March 2010. Due
to time and space limitations for the workshop and proceedings, only 13 papers
could be selected for presentation and inclusion in the proceedings. We believe
we have chosen a diverse, high-quality set of papers, reflecting a stimulating and
enjoyable workshop.

Finally, we would like to thank all authors, referees, and committee members
for their outstanding contributions which have ensured a continuation of the
high quality of IWOMP workshops.

June 2010 Mitsuhisa Sato
Toshihiro Hanawa

Matthias Müller
Barbara Chapman

Bronis R. de Supinski

Organization

IWOMP 2010 Committee

Program and Organizing Chair

Mitsuhisa Sato University of Tsukuba, Japan

Poster and Vice Organizing Chair

Toshihiro Hanawa University of Tsukuba, Japan

Sponsors Contact Chair

Barbara Chapman University of Houston, USA

Tutorials Chair

Ruud van der Pas Sun Microsystems

Organizing Committee

Mitsuhisa Sato University of Tsukuba, Japan
Toshihiro Hanawa University of Tsukuba, Japan
Taisuke Boku University of Tsukuba, Japan
Daisuke Takahashi University of Tsukuba, Japan

Program Committee

Mitsuhisa Sato University of Tsukuba, Japan
Matthias Müller ZIH, TU Dresden, Germany
Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé Barcelona Supercomputing Center (BSC),

Spain
Mark Bull EPCC, UK
Barbara Chapman University of Houston, USA
Bronis R. de Supinski NNSA ASC, LLNL, USA
Guang R. Gao University of Delaware, USA
Rick Kufrin NCSA/University of Illinois, USA
Federico Massaioli CASPUR, Italy
Larry Meadows Intel, OpenMP CEO
Ruud van der Pas Sun Microsystems
Michael Wong IBM
Alistair Rendell ANU, Australia
Wenguang Chen Tsinghua University, China

VIII Organization

Sik Lee KISTI, Korea
Hidetoshi Iwashita Fujitsu, Japan
Raymond Namyst University of Bordeaux 1, France
Toshihiro Hanawa University of Tsukuba, Japan

Steering Committee Chair

Matthias S. Müller University of Dresden, ZIH, Germany

Steering Committee

Bronis R. de Supinski NNSA ASC, LLNL, USA
Dieter an Mey CCC, RWTH Aachen University, Germany
Eduard Ayguadé Barcelona Supercomputing Center (BSC), Spain
Mark Bull EPCC, UK
Barbara Chapman CEO of cOMPunity, Houston, USA
Rudolf Eigenmann Purdue University, USA
Guang Gao University of Delaware, USA
Ricky Kendall ORNL, USA
Michaël Krajecki University of Reims, France
Rick Kufrin NCSA, USA
Federico Massaioli CASPUR, Rome, Italy
Lawrence Meadows KSL Intel, USA
Arnaud Renard University of Reims, France
Mitsuhisa Sato University of Tsukuba, Japan
Sanjiv Shah Intel, USA
Ruud van der Pas Sun Microsystems, Geneva, Switzerland
Matthijs van Waveren Fujitsu, France
Michael Wong IBM, Canada
Weimin Zheng Tsinghua University, China

Table of Contents

Sixth International Workshop on OpenMP IWOMP 2010

Runtime and Optimization

Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with
MPC . 1

Patrick Carribault, Marc Pérache, and Hervé Jourdren

A ROSE-Based OpenMP 3.0 Research Compiler Supporting Multiple
Runtime Libraries . 15

Chunhua Liao, Daniel J. Quinlan, Thomas Panas, and
Bronis R. de Supinski

Binding Nested OpenMP Programs on Hierarchical Memory
Architectures . 29

Dirk Schmidl, Christian Terboven, Dieter an Mey, and
Martin Bücker

Proposed Extensions to OpenMP

A Proposal for User-Defined Reductions in OpenMP 43
Alejandro Duran, Roger Ferrer, Michael Klemm,
Bronis R. de Supinski, and Eduard Ayguadé

An Extension to Improve OpenMP Tasking Control 56
Eduard Ayguadé, James Beyer, Alejandro Duran, Roger Ferrer,
Grant Haab, Kelvin Li, and Federico Massaioli

Towards an Error Model for OpenMP . 70
Michael Wong, Michael Klemm, Alejandro Duran, Tim Mattson,
Grant Haab, Bronis R. de Supinski, and Andrey Churbanov

Scheduling and Performance

How OpenMP Applications Get More Benefit from Many-Core Era 83
Jianian Yan, Jiangzhou He, Wentao Han, Wenguang Chen, and
Weimin Zheng

X Table of Contents

Topology-Aware OpenMP Process Scheduling . 96
Peter Thoman, Hans Moritsch, and Thomas Fahringer

How to Reconcile Event-Based Performance Analysis with Tasking in
OpenMP . 109

Daniel Lorenz, Bernd Mohr, Christian Rössel, Dirk Schmidl, and
Felix Wolf

Fuzzy Application Parallelization Using OpenMP . 122
Chantana Chantrapornchai (Phongpensri) and J. Pipatpaisan

Hybrid Programming and Accelerators with OpenMP

Hybrid Parallel Programming on SMP Clusters using XPFortran and
OpenMP . 133

Yuanyuan Zhang, Hidetoshi Iwashita, Kuninori Ishii,
Masanori Kaneko, Tomotake Nakamura, and Kohichiro Hotta

A Case for Including Transactions in OpenMP . 149
Michael Wong, Barna L. Bihari, Bronis R. de Supinski, Peng Wu,
Maged Michael, Yan Liu, and Wang Chen

OMPCUDA : OpenMP Execution Framework for CUDA Based on
Omni OpenMP Compiler . 161

Satoshi Ohshima, Shoichi Hirasawa, and Hiroki Honda

Author Index . 175

Enabling Low-Overhead Hybrid MPI/OpenMP
Parallelism with MPC

Patrick Carribault, Marc Pérache, and Hervé Jourdren

CEA, DAM, DIF, F-91297 Arpajon, France
{patrick.carribault,marc.perache,herve.jourdren}@cea.fr

Abstract. With the advent of multicore- and manycore-based super-
computers, parallel programming models like MPI and OpenMP become
more widely used to express various levels of parallelism in applications.
But even though combining multiple models is possible, the resulting
performance may not reach expected results. This is mainly due to col-
laboration issues between the runtime implementations. In this paper, we
introduce an extended taxonomy of hybrid MPI/OpenMP programming
and a new module to the MPC framework handling a fully 2.5-compliant
OpenMP runtime completely integrated to an MPI 1.3 implementation.
The design and implementation guidelines enable two features: (i) built-
in oversubscribing capabilities with performance comparable to state-of-
the-art implementations on pure OpenMP benchmarks and programs,
and (ii) the possibility to run hybrid MPI/OpenMP applications with a
limited overhead due to the mix of two different programming models.

1 Introduction

The advent of multicore processors as basic-blocks of cc-NUMA (cache-coherent
Non-Uniform Memory Access) architectures leads to the necessity to extract a
large amount of parallelism. Parallel programming models have emerged to help
programmers expressing several kinds of parallelism (task, data, etc.) at multiple
granularity levels. One of the most commonly-used model is MPI [1], represent-
ing every task as process and using message-passing methods to communicate
through explicit function calls (distributed memory paradigm). Another parallel
programming model is OpenMP [2]: it enables multithreaded parallelization of
any part of the program by adding directives to the sequential source code.

Hybrid programming with MPI and OpenMP (or mixed-mode programming)
is a promising solution taking advantage of both models: for example, exploiting
intra-node shared-memory with OpenMP and inter-node network with MPI.
The MPI model allows to exploit a large number of cluster nodes. Furthermore,
the intra-node communications are usually optimized thanks to shared memory.
On a NUMA architecture, this programming model implicitly creates a well-
balanced data locality because every task allocates its own set of data inside
its private memory. On the other hand, OpenMP fully benefits from the shared
memory available inside a node by avoiding any kind of communications: data
are shared by default and the programmer has to guarantee the determinism of

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 P. Carribault, M. Pérache, and H. Jourdren

data races (with locks or any sort of synchronization mechanisms). This leads
to a gain in memory and sometimes in performance but the main drawback
is the data locality on a NUMA architecture: the OpenMP standard gives no
rules about parallel memory allocation. Moreover, multithreading with OpenMP
enables a lightweight load-balancing mechanism within a node. But even if these
two models are relying on different paradigms, mixing them does not always
lead to a performance gain. Side effects appear not only because of application
semantics but because of the separate implementations resulting in some extra
overhead. Several studies try to analyze their corresponding behavior but none
of them proposed a unified representation of both models.

This paper presents an extension to the MPC framework [3] to create a uni-
fied representation of hybrid MPI/OpenMP parallelism. MPC is a thread-based
framework unifying parallel programming models for HPC. It already provides
its own thread-based MPI implementation [4]. To enable hybrid parallelism,
we added an OpenMP runtime and optimized it to lower the overhead due to
programming-model mixing. This paper makes the following contributions: (i)
the implementation of a full OpenMP runtime with oversubscribing capabilities,
(ii) an extended taxonomy about approaches to adopt hybrid parallelism and
(iii) a unified runtime for low-overhead hybrid MPI/OpenMP parallelism.

This paper is organized as follows: Section 2 describes the related work for
these parallel programming models. Section 3 exposes an extended taxonomy of
the hybrid MPI/OpenMP programming model. It details the different ways to
combine these two models and their issues. Section 4 depicts the implementation
of hybrid parallelism in MPC, including the design and implementation of the
OpenMP runtime. Finally, Section 5 proposes some experimental results on both
OpenMP and hybrid benchmarks, before concluding in Section 6.

2 Related Work

Hybridization of parallel programming models has already been explored and
tested to exploit current architectures. Some applications benefit from combin-
ing MPI and OpenMP programming models [5] while some work concludes that
the MPI everywhere or Pure MPI mode is the best solution [6]. This is because
several issues appear when dealing with these programming models. For example,
the mandatory thread-safety of the underlying MPI implementation might lead
to an additional overhead [7,8]. Furthermore, the way the application combines
MPI and OpenMP directly influence the resulting performance. For example,
the inter-node network bandwidth may not be fully used if only a small num-
ber of threads or tasks are dealing with message-passing communications [9]. To
avoid this limitation, Viet et al. studied the use of thread-to-thread communica-
tions [10]. The OpenMP model can be as well extended to increase the support
of other programming models. Jin et al. explored the notion of subteams with
different ways of using OpenMP to increase hybrid performance [11].

To the best of our knowledge, one of the most advanced study on hybridization
has been proposed by Hager et al. [12]. They designed a taxonomy on the ways

Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC 3

to combine MPI and OpenMP inside the same scientific application. But all
these approaches and tests only deal with simple hybrid parallelism. Indeed,
they hardly explored the potential benefit of using MPI and OpenMP with
oversubscribing.

3 Hybrid Programming MPI/OpenMP

This section describes the multiple ways to mix these two programming models
by extending the taxonomy introduced in [12] and details some issues related to
the implementation of such models.

Fig. 1. Extended Taxonomy of Hybrid MPI/OpenMP Programming Models

3.1 Taxonomy of Hybrid Applications

Figure 1 proposes an extended taxonomy of hybrid parallelism [12]. We consider
nodes with P cores. The classification is related to the number of MPI tasks N
located on each node, the number of OpenMP threads Ti for the ith process and
the number of cores allocated for the ith process Ci i.e., the cores on which the
OpenMP threads will be spawned during the parallel regions of the ith process.

Starting from the root, the first level of this tree illustrates the basic ap-
proaches: the Pure MPI mode uses the MPI programming model (N > 0) and
creates no OpenMP thread at all (Ti = 0). On the other hand, the Pure OpenMP
mode only spawns OpenMP threads to parallelize the application. This mode
can be extended to multiple nodes [13]. The Hybrid subtree represents the com-
bination of MPI and OpenMP inside the same application. The Fully Hybrid
approach exploits the node with OpenMP threads (Ti > 0) and uses message-
passing functions to communicate over the whole cluster (N = 1). The overall
performance mainly relies on OpenMP parallelization on each node and might
therefore be limited by Amdahl’s law both because of the remaining sequential

4 P. Carribault, M. Pérache, and H. Jourdren

parts (related to the fork-join model of OpenMP) and the serialized MPI com-
munications. Deploying more than one MPI task on the node is called Mixed
Hybrid. In this mode, it is possible to either exploit each core with one execution
flow (Simple Mixed where the total number of allocated cores is at most P)
or oversubscribe the cores to recover latencies (Oversubscribed Mixed subtree).
The first solution is commonly used when dealing with hybrid parallelism. For
example, each multicore processor can be exploited with one MPI task spawning
OpenMP threads on it. The oversubscribed approaches are less explored: one
advantage is the ability to recover different kinds of latencies (load-balancing,
MPI communications, system calls, etc.) within the application.

This paper introduces the Oversubscribed Mixed subtree with two approaches:
the Alternating mode where the application alternatively uses MPI and OpenMP
parallelization, and the Fully Mixed mode where one MPI task is placed by core
and all tasks might exploit the entire node when entering a parallel region.
These approaches advocate for a solid and coherent implementation of MPI and
OpenMP handling oversubscription.

3.2 Programming Model Interleaving

The taxonomy depicted in Figure 1 sorts several functional approaches to mix
OpenMP threads and MPI tasks. But even if these models are not relying on
the same paradigms, combining them in practice can be very tricky. First of all,
the MPI library has to handle multiple concurrent control flows. For this pur-
pose the MPI 2.0 standard introduces several levels of thread support: to fully
use any of the approaches described in Figure 1, the underlying library has to
support the MPI THREAD MULTIPLE level. Moreover, the task/thread placement
is a real issue. Deciding where to pin such MPI task or such OpenMP thread
mainly depends on the use of these models. If the application spends almost
100% of its consumed time in OpenMP parallel regions, the right solution is
probably to span the OpenMP threads on each socket and use, for example, one
MPI task per multicore processor (Simple Mixed mode). But this is not always
the best approach to use hybrid programming. If one wants to use OpenMP
threads to balance the load among the MPI tasks, spanning the threads every-
where and overlapping the OpenMP instances might be one approach to reach
higher performance (Oversubscribed Mixed subtree in Figure 1). Because of this
last point, the MPI and OpenMP runtimes must cooperate to establish some
placement and oversubscribing policies. Indeed, load balancing can be obtained
only if the corresponding runtimes allow the scheduling of one task and several
threads on each core without a too large overhead. For example, if both run-
time implementations use busy waiting to increase the reactivity and the per-
formance of one programming model, the combination of several models might
lead to an extremely large overhead, disabling the potential performance gain. All
these issues are highlighted and evaluated on MPI/OpenMP implementations in
Section 5.

Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC 5

4 MPC-OpenMP: MPC’s OpenMP Runtime

To enable hybrid parallelism in MPC [3,4], we add a complete OpenMP runtime
through a new module called MPC-OpenMP supporting the 2.5 standard.1 This
section details the design and implementation of the MPC-OpenMP module and
its integration with the other programming models supported in MPC (Pthread,
MPI).

4.1 Runtime Design and Implementation

MPC already provides a thread-based implementation of the MPI 1.3 stan-
dard [4]: it represents every MPI task/process with user-level threads (called
MPC tasks). Thanks to process virtualization, every MPI task is a thread in-
stead of being a UNIX process. The main guideline to support the OpenMP
standard is to model the threads like MPI tasks. In such way, the main sched-
uler would see every thread and task the same way. Another constraint is the
weight of OpenMP threads: it is possible to often enter and exit parallel re-
gions with the OpenMP model. Therefore, each thread has to be very light
and to be ready within a short period of time. For this purpose, we intro-
duce in MPC a new kind of thread called microVP (micro Virtual Processor)
scheduling its own microthreads. Microthreads can be seen as some sort of fil-
aments [14] or lazy threads [15]: entering the parallel region, OpenMP threads
are distributed as microthreads among microVPs. At the very beginning, mi-
crothreads do not have their own stack, they use the microVP’s one when they
are scheduled. This accelerates the context switches. Stacks are created on-the-fly
if one thread encounters a scheduling point (e.g., any synchronization point like a
barrier).

Figure 2 depicts an example of the MPC execution model when using the
OpenMP programming model in the Pure OpenMP mode. In this example, the
underlying architecture has 4 cores modeled in MPC through Virtual Processors.
The main sequential control flow is managed by the MPC task on the left of the
figure. This task is scheduled on the first core. When starting the application, the
MPC-OpenMP module creates microVPs for each task. In this example, because
there is one control flow (one task on the first core), 4 microVPs are created,
one on each core. When entering an OpenMP parallel region, the MPC task
distributes microthreads on the microVPs. The figure illustrates the execution
model after entering a parallel region with 6 OpenMP threads. The first and
second cores have to schedule 2 microthreads while the other ones only have 1
microthread to execute.

The MPC-OpenMP runtime contains optimizations related to oversubscrib-
tion (i.e., more than on microthread per microVP). For example, every barrier
among microthreads on the same microVP can be resolved without any synchro-
nization mechanism.

1 MPC 2.0 including the MPC-OpenMP module is available at
http://mpc.sourceforge.net

6 P. Carribault, M. Pérache, and H. Jourdren

MicroVP
Microthread

Memory Memory

MPC inter-tasks communications

MPC thread/NUMA-aware allocator

MPC user-space scheduler

MPC task

MPC process

CPU core CPU core CPU core CPU core

MPC

Virtual processor

MPC

Virtual processor

MPC

Virtual processor

MPC

Virtual processor

Fig. 2. MPC Execution Model of Pure OpenMP mode (6 OpenMP Threads on 4 Cores)
adapted from [3]

4.2 Compiler Part

A compliant OpenMP implementation relies on a compiler to lower the source-
code directives (e.g., #pragma). We modified the GCC compiler chain: instead
of generating code for the GCC OpenMP library (called GOMP), the OpenMP
directives are transformed into MPC internal calls (functions + Thread Local
Storage). This patched GCC, called MPC-GCC, is available for versions 4.3.0 and
4.4.0. Thanks to these modifications, MPC supports the OpenMP 2.5 standard
for C, C++ and Fortran languages.

4.3 Hybrid Execution Model

Hybrid programming is a combination of MPC tasks and threads. Each MPI
task is modeled through an MPC task (user-level thread) and each instance
of OpenMP is controlled by a set of microVPs scheduling microthreads when
entering a parallel region. Each MPI task has its own set of microVPs to span
the OpenMP threads on the node. The way these microVPs are initially created
directly influences the mixing depth of the programming models. If every MPI
task creates microVPs on the cores located on the same CPU socket, every
OpenMP parallel region will span on the same multicore processor (Simple Mixed
mode). This feature allows to limit the oversubscribing factor and maximizes
locality. Figure 2 can be seen as an example of Fully Hybrid approach if the
MPC task is actually an MPI task.

To enable hybrid parallelism with low overhead, some optimizations have been
performed on the OpenMP and MPI parts of MPC. First of all, MPC has been

Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC 7

extended with MPI THREAD MULTIPLE features. The MPI standard requires to re-
spect the message posting order. Nevertheless, once the matching phase is done,
the message copies from the send buffer into the receive buffer can be performed
concurrently. MPC-MPI has been optimized to parallelize the copy phase allow-
ing multiple message copies in parallel of matching. Communications involving
small messages were optimized using an additional copy into a temporary buffer
to immediately release the sender. Initially, there was a unique buffer for each
MPI task. This buffer has been duplicated for each microVP and the lock has
been removed. MPC-OpenMP has also been optimized to deal with MPC-MPI.
Busy waiting (e.g., when spawning parallel region) has been replaced by a polling
method integrated in the MPC user-space scheduler leading to more reactivity
without disturbing the other tasks.

5 Experimental Results

This sections describes the experiments to evaluate and validate the hybrid ca-
pabilities of MPC according to the taxonomy Figure 1. We first present the
performance of the OpenMP runtime and the MPC-GCC compiler. Then, we
detail the results of combining the MPI and OpenMP models on several repre-
sentative benchmarks.

5.1 Experimental Environment

The experimental results detailed in this paper were obtained on a dual-socket
quad-core Nehalem EP node2 (8 cores) with 24GB of memory running under a
Linux operating system. For lack of space, we only present the results on this
architecture. We conducted the same experiments on Core2Duo and Core2Quad
architectures and observed similar behaviors. For every benchmark, we bind the
MPI tasks through the schedaffinity interface or other options (e.g., environ-
ment variables for IntelMPI). For example, IntelMPI provides several environ-
ment variables to place the tasks on the node and to reserve some cores for every
task according to the topology of the underlying architecture.

5.2 Performance of MPC-OpenMP and MPC-GCC

This section describes the results of the OpenMP runtime implemented in MPC
in Pure OpenMP mode. The compiler part is done through MPC-GCC version
4.3.0 and 4.4.0. Our implementation is measured against state-of-the-art compil-
ers with their associated OpenMP runtime: Intel ICC version 11.1, GCC version
4.3.0 and 4.4.0, and Sun Compiler version 5.1.

EPCCMicro-Benchmarks: EPCC is a benchmark suite to measure the overhead of
every OpenMP construct [16]. For each implementation, we tried the best

2 Hyper-Threading and Turbo Boost are disabled.

8 P. Carribault, M. Pérache, and H. Jourdren

-a- From 1 to 8 threads -b- From 8 to 64 threads

Fig. 3. Overhead of OpenMP Parallel Construct on 8-core Nehalem Architecture

option combination (CPU affinity, waiting mode, . . .). Figure 3 shows the over-
head of opening and closing a parallel region (#pragma omp parallel) according
to the total number ofOpenMP threads. Figure 3-a depicts the overhead from 1 to 8
threads. Performance of MPC-GCC 4.3.0 and MPC-GCC 4.4.0 are similar: for this
benchmark, only the OpenMP runtime shapes the performance, not the compiler.
The performance of MPC are slightly better than the OpenMP implementation of
ICC 11.1, GCC 4.4.0 and SunCC 5.1 though. GCC 4.3.0 gets some very surpris-
ing results: the overhead of almost every OpenMP construct is far behind the other
implementations we tested. Thus, it does not appear on Figure 3-b. This figure de-
scribes the oversubscribing performance of the OpenMP runtimes. We tested up to
an oversubscribing factor of 8 (i.e., 64 threads on 8 cores). The overhead of the par-
allel construct in the GCC 4.4.0 and SunCC implementations become very large
compare to MPC, ICC. MPC implementation stays linear while ICC OpenMP re-
sults in an exponential overhead. Note these figures depict results with the best
option combination. For example, we use the SUNW MP THR IDLE option to specify
the waiting mode of SunCC and the passive mode (OMP WAIT POLICY environment
variable) for GCC 4.4.0 for the oversubscribing mode. This is the most suitable
behavior for hybrid parallelism but this adaptation has a huge impact on the raw
OpenMP performance: the overhead of entering and exiting parallel regions is 10
times larger in the passive mode without oversubscribing.

Figure 4 depicts the time consumed (in micro-seconds) by an explicit barrier
(#pragma omp barrier) according to the number of threads. The same remarks
can be made on the performance of GCC 4.3.0. The MPC-OpenMP runtime has
a larger overhead on 8 cores than ICC, GCC 4.4 and SunCC. This is probably
due to the NUMA aspect of the architecture. Even though the MPC runtime has
NUMA-aware features, the barrier implementation does not fully exploit them. It
might be interesting to implement a more efficient algorithm [17]. Nevertheless,
the MPC-OpenMP oversubscribing performance depicted in Figure 4-b shows
strong improvements compared to ICC, GCC and SunCC.

Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC 9

-a- From 1 to 8 threads -b- From 8 to 64 threads

Fig. 4. Overhead of OpenMP Barrier Construct on 8-core Nehalem Architecture

Fig. 5. BT Benchmark Results on 8-core Nehalem Architecture

NAS Benchmarks: Figure 5 shows the speed-ups obtained for the BT benchmark
of the NAS 3.3 OpenMP suite [18]. Each acceleration is related to the correspond-
ing single-threaded OpenMP version. MPC-GCC 4.4.0 obtains the same perfor-
mance as MPC-GCC4.3.0. The oversubscribing performance ofMPC (with a num-
ber of threads larger than 8) are stable compared to other OpenMP implementa-
tions (ICC and GCC). Running this benchmark with 16 threads (i.e., 2 OpenMP
threads per core) leads to slightly better performance than 8 with MPC. Indeed,
the overall best speed-up is 7 reached by MPC with an oversubscribing factor of 2.

5.3 Overhead of Hybrid Parallelism

To evaluate the overhead of hybrid MPI/OpenMP parallelism, we designed a
set of benchmarks related to the taxonomy depicted in Figure 1. Parts of these

10 P. Carribault, M. Pérache, and H. Jourdren

benchmarks are directly extracted from [19]. We compare combinations of MPI
libraries and OpenMP runtimes/compilers: IntelMPI, MPICH2 1.1 and OPEN-
MPI 1.3.3 with ICC 11.1 and GCC 4.4.0. The target architecture is the one
defined in Section 5.1.

-a- 1KB messages -b- 1MB messages

Fig. 6. Overhead of Funneled Hybrid Ping-Pong on Nehalem Architecture

Funneled Hybrid Ping-Pong: Figures 6-a and 6-b depict the overhead of hybrid
MPI/OpenMP parallelism for an hybrid Ping-Pong benchmark [19] with MPI
communications made by the master thread of the OpenMP region. The MPI
library is required to be initialized with the MPI THREAD FUNNELED level. These
plots illustrate the ratio of running a funneled ping-pong according to the per-
formance of the single threaded version. OpenMP regions are used to read and
write a buffer while the MPI communications are done by the master thread
after an OpenMP barrier. Figure 6-a depicts the ratio (overhead) for messages
of 1KB length. MPC has a low overhead compared to other MPI/OpenMP com-
binations: with 2 or 4 threads (Simple Mixed mode) the performance remains
stable while it only increases a little with 8 threads (Fully Mixed mode).

Figure 6-b illustrates the same results for 1MB messages. Several implemen-
tations are able to reach better performance thanks to hybrid programming
(ratio below 1). Runs with GCC OpenMP obtain decent speed-up but this is
partly because it uses a passive waiting mode (for OpenMP) leading to low per-
formance for OpenMP worksharing constructs. Nevertheless, MPC is the only
hybrid implementation to reach speed-ups for all number of threads.

Multiple Hybrid Ping-Pong: The second benchmark is an hybrid ping-pong [19]
with communications done by every thread inside the OpenMP parallel region.
The MPI library is required to be initialized with the MPI THREAD MULTIPLE
level. Figure 7-a depicts the ratio for 1KB messages compared to the single-
threaded version. Note OPENMPI is not represented on this plot because we
had some issues with its thread safety. The overhead of MPC is low compared

Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC 11

-a- 1KB messages -b- 1MB messages

Fig. 7. Overhead of Multiple Hybrid Ping-Pong on Nehalem Architecture

to combinations including MPICH2 and IntelMPI. Indeed, it does not exceed
12 with 8 threads per MPI task while it reaches up to 50 for some implemen-
tations. Figure 7-b shows the overhead for 1MB messages. Most of the combi-
nations benefit from hybrid parallelism to accelerate the ping-pong benchmark
(ratio < 1). But MPC reaches the best performance with 8 threads per MPI
task while MPICH2 and OPENMPI degrade their performance (Oversubscribed
Mixed mode).

Alternating Benchmark: The last benchmark illustrates the Alternating mode
depicted in the taxonomy tree Figure 1. Figure 8-a pictures the overhead ratio
of one MPI task entering a parallel region (the threads performing independent
computations) while the other 7 tasks are waiting on a barrier. While the MPC
overhead is almost null up to 8 threads, other MPI/OpenMP combinations in-
volve an overhead. Especially IntelMPI with the best performance options may
degrade the execution time by a factor of 8, just because some MPI tasks are
waiting on a barrier during the computational part of the single OpenMP par-
allel region. On the other hand, Figure 8-b shows the overhead of OpenMP
computations done by the master thread of every MPI task at the same time.
The overall ratio is smaller than for the previous Alternating benchmark except
for the IntelMPI library (with ICC OpenMP) which reaches a slowdown of 8.

NAS-MZ Benchmark: Figure 9 depicts the results of running the hybrid ver-
sion BT: BT-MZ version 3.2 with class B. These figures represent a total of
8 threads and a total of 16 threads (number of MPI tasks times number of
OpenMP threads per task). Even though some versions reach speed-ups, the
best acceleration is done thanks to 8 MPI tasks with one (Pure MPI mode) or 2
threads per task (Oversubscribed Mixed mode). Performance of MPC combining
MPI and OpenMP is comparable to state-of-the-art implementations even on
non-intensive hybrid benchmarks.

12 P. Carribault, M. Pérache, and H. Jourdren

-a- MPI Tasks Waiting -b- OpenMP Threads Waiting

Fig. 8. Overhead of Alternating Benchmark on 8-core Nehalem Architecture

-a- Total of 8 threads -b- Total of 16 threads

Fig. 9. Speed-up of BT-MZ on Nehalem Architecture

6 Conclusion and Future Work

This article introduces an extension to the MPC framework to enable a unified
representation of hybrid MPI/OpenMP parallelism. The new OpenMP imple-
mentation shows performance comparable to state-of-the-art implementations
on current architecture (Nehalem) with efficient support of oversubscribing. This
feature might be one key for future-generation hybrid applications. Moreover,
we propose an extended taxonomy to explore new ways to hybridize applica-
tions and we test them on different benchmarks. The results show that MPC
enables a low-overhead combination of MPI and OpenMP. MPC 2.0 including
these hybrid capabilities is available at http://mpc.sourceforge.net

For future work, several optimizations can be done on the OpenMP run-
time. For example, the barrier algorithm might be improved [17]. Other ap-
proaches can be tested inside the MPC framework like dynamic load-balancing of
MPI applications with OpenMP [20] or subteam utilization [11]. OpenMP 3.0 is

Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC 13

becoming a new standard introducing the notion of OpenMP task and the ability
to easily balance an application. Supporting OpenMP 3.0 is a future direction.
Finally, hybrid performances have to be evaluated on large-scale applications.

References

1. MPI Forum: MPI: A message passing interface standard (March 1994)
2. OpenMP Architectural Board: OpenMP API (2.5 and 3.0) (May 2008)
3. Pérache, M., Jourdren, H., Namyst, R.: MPC: A unified parallel runtime for clusters

of NUMA machines. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008)

4. Pérache, M., Carribault, P., Jourdren, H.: MPC-MPI: An MPI implementation
reducing the overall memory consumption. In: Ropo, M., Westerholm, J., Dongarra,
J. (eds.) PVM/PVI 2009. LNCS, vol. 5759, pp. 94–103. Springer, Heidelberg (2009)

5. Chen, L., Fujishiro, I.: Optimization strategies using hybrid MPI+OpenMP par-
allelization for large-scale data visualization on earth simulator. In: Chapman, B.,
Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 112–124. Springer, Heidelberg (2008)

6. Lusk, E.L., Chan, A.: Early experiments with the OpenMP/MPI hybrid program-
ming model. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS,
vol. 5004, pp. 36–47. Springer, Heidelberg (2008)

7. Thakur, R., Gropp, W.: Test suite for evaluating performance of MPI imple-
mentations that support MPI THREAD MULTIPLE. In: Cappello, F., Herault,
T., Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757, pp. 46–55. Springer,
Heidelberg (2007)

8. Gropp, W.D., Thakur, R.: Issues in developing a thread-safe MPI implementation.
In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS,
vol. 4192, pp. 12–21. Springer, Heidelberg (2006)

9. Rabenseifner, R.: Hybrid parallel programming: Performance problems and
chances. In: Proceedings of the 45th CUG (Cray User Group) Conference (2003)

10. Viet, T.Q., Yoshinaga, T., Sowa, M.: Optimization for hybrid MPI-OpenMP pro-
grams with thread-to-thread communication. Institute of Electronics, Information
and Communication Engineers (IEICE) Technical Eeport, 19–24 (2004)

11. Jin, H., Chapman, B., Huang, L., an Mey, D., Reichstein, T.: Performance evalu-
ation of a multi-zone application in different openmp approaches. Int. J. Parallel
Program. 36(3), 312–325 (2008)

12. Hager, G., Jost, G., Rabenseifner, R.: Communication characteristics and hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP nodes. In: Pro-
ceedings of Cray User Group (2009)

13. Hoeflinger, J.: Extending openmp to clusters (2006)
14. Engler, D.R., Andrews, G.R., Lowenthal, D.K.: Filaments: Efficient support for

fine-grain parallelism. Technical report (1994)
15. Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy threads: implementing a fast

parallel call. J. Parallel Distrib. Comput. 37(1), 5–20 (1996)
16. Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. SIGARCH Com-

put. Archit. News 29(5), 41–48 (2001)
17. Nanjegowda, R., Hernandez, O., Chapman, B.M., Jin, H.: Scalability evaluation

of barrier algorithms for OpenMP. In: Müller, M.S., de Supinski, B.R., Chapman,
B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 42–52. Springer, Heidelberg (2009)

14 P. Carribault, M. Pérache, and H. Jourdren

18. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel bench-
marks and its performance. Technical Report: NAS-99-011 (1999)

19. Bull, J.M., Enright, J.P., Ameer, N.: A microbenchmark suite for mixed-mode
OpenMP/MPI. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 118–131. Springer, Heidelberg (2009)

20. Corbalán, J., Duran, A., Labarta, J.: Dynamic load balancing of MPI+OpenMP
applications. In: ICPP, pp. 195–202. IEEE Computer Society, Los Alamitos (2004)

A ROSE-Based OpenMP 3.0 Research Compiler
Supporting Multiple Runtime Libraries�

Chunhua Liao, Daniel J. Quinlan, Thomas Panas, and Bronis R. de Supinski

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{liao6,dquinlan,panas2,desupinski1}@llnl.gov

Abstract. OpenMP is a popular and evolving programming model for
shared-memory platforms. It relies on compilers to target modern hard-
ware architectures for optimal performance. A variety of extensible and
robust research compilers are key to OpenMP’s sustainable success in
the future. In this paper, we present our efforts to build an OpenMP 3.0
research compiler for C, C++, and Fortran using the ROSE source-to-
source compiler framework. Our goal is to support OpenMP research for
ourselves and others. We have extended ROSE’s internal representation
to handle all OpenMP 3.0 constructs, thus facilitating experimenting
with them. Since OpenMP research is often complicated by the tight
coupling of the compiler translation and the runtime system, we present
a set of rules to define a common OpenMP runtime library (XOMP) on
top of multiple runtime libraries. These rules additionally define how to
build a set of translations targeting XOMP. Our work demonstrates how
to reuse OpenMP translations across different runtime libraries. This
work simplifies OpenMP research by decoupling the problematic depen-
dence between the compiler translations and the runtime libraries. We
present an evaluation of our work by demonstrating an analysis tool for
OpenMP correctness. We also show how XOMP can be defined using
both GOMP and Omni. Our comparative performance results against
other OpenMP compilers demonstrate that our flexible runtime support
does not incur additional overhead.

1 Introduction

OpenMP [1] is a popular parallel programming model for shared memory plat-
forms. By providing a set of compiler directives, user level runtime routines and
environment variables, it allows programmers to express parallelization oppor-
tunities and strategies on top of existing programming languages like C/C++
and Fortran. As a proliferation of new hardware architectures becomes available,
OpenMP has become a rapidly evolving programming model; numerous improve-
ments are being proposed to broaden the range of hardware architectures that it
� This work performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 15–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

16 C. Liao et al.

can accommodate. A variety of robust and extensible compiler implementations
are the key to OpenMP’s sustainable success in the future since an OpenMP
compiler should deliver portable performance. Open source OpenMP compilers
permit active research for this rapidly evolving programming model.

Developed at Lawrence Livermore National Laboratory, the ROSE compiler [2]
is an open source compiler infrastructure to build source-to-source program
translation and analysis tools for large-scale C/C++ and Fortran applications.
Given its stable support for multiple languages and user-friendly interface to
build arbitrary translations, ROSE is particularly well suited to build reference
implementations for parallel programming languages and extensions. It also en-
ables average users to create customized analysis and transformation tools for
parallel applications. In this paper, we present our efforts to build an OpenMP
research compiler using ROSE. Our goal is to support OpenMP research for
ourselves and others. For example, we have extended ROSE’s internal represen-
tation to represent the latest OpenMP 3.0 constructs faithfully and to facilitate
their manipulation; allowing the construction of custom OpenMP analysis tools.

More generally, the tight coupling of the compiler translations and the runtime
system upon which they depend often complicate OpenMP research. Changing
the existing compiler translations to utilize a new runtime library (RTL) usu-
ally requires significant effort. Conversely, changing the RTL when new features
require support from compiler translations can be difficult. This tight coupling
impedes research work on the OpenMP programing model. We seek to use ROSE
as a testbed to decouple compiler translations from the OpenMP runtime li-
braries. We have designed and developed a common RTL interface and a set
of corresponding compiler translations within ROSE. As a preliminary evalua-
tion, we demonstrate an OpenMP analysis tool built using ROSE and the initial
performance results of ROSE’s OpenMP implementation targeting the OpenMP
RTLs of both GCC 4.4 and Omni [3] 1.6.

The remainder of this paper is organized as follows. In the next section, we
introduce the design goal of ROSE and its major features as a source-to-source
compiler framework. Section 3 describes the OpenMP support within ROSE,
including internal representation, a common RTL, and translation support. Sec-
tion 4 presents a preliminary evaluation of ROSE’s OpenMP support. We discuss
related work in Section 5 while we present our conclusions and discuss future
work in Section 6.

2 The ROSE Compiler

ROSE [4,2] is an open source compiler infrastructure to build source-to-source
program transformation and analysis tools for large-scale C/C++ and For-
tran applications. It also has increasing support for parallel applications using
OpenMP, UPC and MPI. Similar to other source-to-source compilers, ROSE
consists of frontends, a midend, and a backend, along with a set of analyses and

A ROSE-Based OpenMP 3.0 Research Compiler 17

optimizations. Essentially, it provides an object-oriented intermediate represen-
tation (IR) with a set of analysis and transformation interfaces allowing users
to build translators, analyzers, optimizers, and specialized tools quickly. The
intended users of ROSE are experienced compiler researchers as well as library
and tool developers who may have minimal compiler experience.

A representative translator built using ROSE works as follows (shown in
Fig. 1). ROSE uses the EDG [5] front-end to parse C (also UPC) and C++
applications. Language support for Fortran 2003 (and earlier versions) is based
on the open source Open Fortran Parser (OFP) [6]. ROSE converts the in-
termediate representations (IRs) produced by the front-ends into an intuitive,
object-oriented abstract syntax tree (AST). The AST exposes interface func-
tions to support transformations, optimizations, and analyses via simple func-
tion calls. Our object oriented AST includes analysis support for call graphs,
control flow, data flow (e.g., live variables, def-use chain, reaching definition,
and alias analysis), class hierarchies, data dependence and system dependence.
Representative program optimization and translation interfaces cover partial
redundancy elimination, constant folding, inlining, outlining [7], and loop trans-
formations [8]. The ROSE AST also allows user-defined data to be attached to
any node through a mechanism called persistent attributes as a way to extend
the IR to store additional information. The ROSE backend generates source
code in the original source language from the transformed AST, with all origi-
nal comments and C preprocessor control structures preserved. Finally, ROSE
can call a vendor compiler to continue the compilation of the generated (trans-
formed) source code; generating a final executable. ROSE is released under a
BSD-style license and is portable to Linux and Mac OS X on IA-32 and x86-64
platforms.

Fig. 1. A source-to-source translator built using ROSE

C/C++/Fortran/
OpenMP/UPC

Transformed
Source Code

EDG Front-end/
Open Fortran Parser

IR
(AST)

EDG/Fortran-to-
ROSE Connector

Program
Analysis

Program
Transformation

ROSE Unparser

Vendor
Compiler

USER

ROSE

18 C. Liao et al.

3 OpenMP Support in ROSE

As Fig. 2 shows, ROSE supports parsing OpenMP 3.0 constructs for C/C++
and Fortran1, creating their internal representation as part of the AST, and
regenerating source code from the AST. Additional support includes a set of
translations targeting multiple OpenMP 2.5/3.0 RTLs based on XOMP, our
common OpenMP RTL that abstracts the details of any specific RTL (such
as GCC’s OpenMP RTL GOMP [9] and the Omni [3] compiler’s RTL). An
automatic parallelization module is also available in ROSE [10].

C/C++/Fortran*
OpenMP

Multithreaded
Code

Parsing
3.0 spec.

AST
Generation

XOMP

Translation

GOMP

OMNI

Binary
Executable

Sequential
C/C+ Code

Automatic
Parallelization

Fig. 2. OpenMP support in ROSE

3.1 Parsing and Representing OpenMP

Neither EDG (version 4.0 or earlier) nor OFP recognize OpenMP constructs.
The raw directive strings exist in the ROSE AST as pragma strings for C/C++
and source comments for Fortran. Thus, we had to develop two OpenMP 3.0
directive parsers within ROSE, one for C/C++ and the other for Fortran. This,
however, has significant advantages for users since they can easily change our
parsers to test new OpenMP extensions without dealing with EDG or OFP.

ROSE’s OpenMP parsers process OpenMP directive strings and generate a
set of data structures representing OpenMP constructs. These data structures
are attached to relevant AST nodes as persistent AST attributes. Using per-
sistent AST attributes as the output of the parsers simplifies the work for
parsing since we only make minimal changes to the existing ROSE AST. In
fact, this light-weight representation for OpenMP is also used as the output
of ROSE’s automatic parallelization module [10]. As a result, the remaining
OpenMP-related processing can work on the same input generated either from
user-defined OpenMP programs or automatically generated OpenMP codes.
1 Translation of Fortran OpenMP applications is still ongoing work.

A ROSE-Based OpenMP 3.0 Research Compiler 19

After that, a conversion phase converts the ROSE AST with persistent at-
tributes for OpenMP into an AST with OpenMP-specific AST nodes, which in-
clude statement-style nodes for OpenMP directives and supporting nodes (with
file location information) for OpenMP clauses. Compared to the auxiliary per-
sistent attributes attached to AST nodes, the newly-introduced AST nodes for
OpenMP directives and clauses are inherently part of the ROSE AST. Thus, we
can directly resuse most existing AST traversal, query, scope comparison, and
other manipulation interfaces developed within ROSE to manipulate OpenMP
nodes. For instance, a regular AST traversal is able to access all variables used
within the AST node for an OpenMP clause with a variable list. This signifi-
cantly simplifies the analysis and translation of OpenMP programs.

3.2 OpenMP Translation and Runtime Support

An OpenMP implementation must translate OpenMP applications into multi-
threaded code with calls to a supporting runtime library. To offer maximal free-
dom and optimization opportunities to OpenMP implementations, the OpenMP
specification does not mandate the interface between a compiler and a runtime
library. The implementation must decide what work to defer to the runtime li-
brary and how the compiler translation interacts with the library. Therefore,
an OpenMP compiler’s translation is traditionally tightly coupled with a given
runtime library’s interface. It is often a major effort to change the existing com-
piler translation to utilize a new runtime library. However, different runtime
library choices and changes in the interactions between the compiler can signif-
icantly impact OpenMP performance. Thus, it would be especially desirable for
an OpenMP research compiler to support multiple OpenMP runtime libraries.

Fortunately, although OpenMP runtime library interfaces vary, they usually
include many similar or overlapped runtime library functions. For example,
most portable OpenMP runtime libraries rely on the Pthreads API to create
and to manipulate threads. Such a library usually provides a function that ac-
cepts a function pointer and a parameter to start multiple threads. Similalry,
the OpenMP specification prescriptively defines some aspects of loop scheduling
policies so runtime support for them often significantly overlaps.

We have introduced a common OpenMP RTL, XOMP, so that ROSE re-
quires minimal changes to support multiple OpenMP RTLs. Depending on the
similarity among RTLs, we use three rules in order to define XOMP and the
corresponding compiler transformations.

– Rule 1. Target RTLs have some functions with similar functionalities. Those
functions often differ by names and/or parameter lists. For each of the func-
tions, we define a common function name and a union set of parameters in
XOMP. The implementation of the common function will handle possible
type conversion, parameter dispatch, inclusions/exclusions of functionality
(to compensate for minor differences) before calling different the target RTL
internally. By doing this, we can use one translation targeting XOMP’s func-
tions across multiple RTLs.

20 C. Liao et al.

– Rule 2. Compared to other RTLs, a target RTL, libA, has an extra function,
funcA().
1. libA needs to call funcA() explicitly while other libraries do not have a sim-

ilar need or meet the need transparently. We define an interface function
in XOMP for funcA(). The implementation of the XOMP function is con-
ditional based on the target RTL, either calling funcA() for libA or doing
nothing for all others. Compiler translation targets the same XOMP
interface as if all RTLs had the explicit need.

2. funcA() implements some common functionality that is indeed suitable to
be put into an RTL. Other libraries lack the similar support and rely
on compiler translation too much. We define an XOMP function for the
common functionality. The XOMP function either calls funcA() for libA

or implements the functionality that is absent in other RTLs. Compiler
translation targets the XOMP function.

3. funcA() implements some functionality that is better suited to direct im-
plementation by compiler translation. We develop the compiler trans-
lation to generate statements to implement the functionality without
leveraging any runtime support. Still, the compiler translation can work
with all RTLs.

– Rule 3. Occasionally, none of the above options may apply nicely. For exam-
ple, the translation methods and the corresponding runtime support for an
OpenMP construct can be dramatically different. In this case, we expose all
the runtime functions in XOMP and have different translations for different
XOMP support depending on the choice of implementation.

Finally, OpenMP translations share many similar tasks regardless of their tar-
get RTLs. These tasks include generating an outlined function to be passed to
each thread, variable handling for shared and private data, and replacing direc-
tives with a function call. We have developed a set of AST transformations to
support these common tasks. For example, the ROSE outliner [7] is a general-
purpose tool to extract code portions from both C and C++ to create functions.
It automatically handles variable passing according to variable scope and use
information.

3.3 Translation Algorithm

We use the following translation algorithm for each input source file that uses
OpenMP:

1. Use a top-down AST traversal to make implicit data-sharing attributes ex-
plicit, including implicit private loop index variables for loop constructs and
implicit firstprivate variables for task constructs.

2. Use a bottom-up AST traversal to locate OpenMP nodes and to perform
necessary translations.
(a) Handle variables if they are listed within any of private, firstprivate,

lastprivate and reduction clauses of a node.

A ROSE-Based OpenMP 3.0 Research Compiler 21

(b) For (omp parallel) and (omp task) constructs, generate outlined functions
as tasks and replace the original code block with XOMP runtime calls.

(c) For loop constructs, normalize target loops and generate code to calcu-
late iteration chunks for each thread, with the help from XOMP loop
scheduling functions.

(d) Translation for other constructs, such as barrier, single, and critical, are
relatively straightforward [11].

Our algorithm handles variables with OpenMP data-sharing attributes in a sep-
arate phase before other translation activities. Thus, we eliminate OpenMP se-
mantics from a code segment as much as possible so the general-purpose ROSE
outliner can easily handle the code segment. Combined OpenMP variable han-
dling and outlining would otherwise force us to tweak the outliner to handle
OpenMP data-sharing variables specially during outlining.

3.4 Examples

We take the GCC 4.4.1’s GOMP [9] and Omni Compiler [3] (v1.6) RTLs as
two examples to demonstrate the definition of XOMP and the corresponding
reusable compiler translations. GOMP is a widely available OpenMP runtime
library and has recently added support for the task features of OpenMP 3.0.
The Omni compiler is a classic reference research compiler for OpenMP 2.0/2.5
features. Supporting these two representative RTLs within a single compiler is
a good indication of extensibility of a research compiler.

Fig. 3 and Fig. 4 give an example OpenMP program that uses tasks and
ROSE’s OpenMP translation that targets XOMP. ROSE uses a bottom-up
traversal to find OpenMP parallel and task nodes and generates three outlined
functions with the help from the outliner. These outlined functions are passed
to either XOMP parallel start() or XOMP task() to start multithreaded execution.

Some XOMP functions, such as XOMP parallel start(), XOMP barrier() and
XOMP single(), are defined based on Rule 1 as common interfaces on top
of both GOMP and Omni’s interfaces. Rule 2.1 applies to XOMP init() and
XOMP terminate(), which are introduced by Omni to initialize and to terminate
runtime support explicitly while GOMP does not need them. In another case,
GOMP does not provide runtime support for some simple static scheduling
while Omni does. We decided to use Rule 2.3, letting the translation gener-
ate statements calculating loop chunks for each thread and totally ignore any
runtime support. Rule 3 applies to the implementation for threadprivate. GCC
uses Thread-Local Storage (TLS) to implement threadprivate variables. The cor-
responding translation is simple: mostly by adding the keyword thread in front
of the original declaration for a variable declared as threadprivate. On the other
hand, Omni uses heap storage to manage threadprivate variables and relies on
more complex translation and runtime support to initialize and to access the
right heap location as a private storage for each thread. These two implemen-
tations represent two common methods to support threadprivate that each has
well-known advantages and disadvantages. As a result, we decided to support

22 C. Liao et al.

1 int main ()
2 {
3 #pragma omp paral lel
4 {
5 #pragma omp single
6 {
7 int i ;
8 #pragma omp task unt i ed
9 {

10 for (i = 0 ; i < 5000 ; i++)
11 {
12 #pragma omp task i f (1)
13 p roc e s s (item [i]) ;
14 }
15 }
16 }
17 }
18 return 0 ;
19 }

Fig. 3. An example using tasks

both methods and to use different translation and/or runtime support condition-
ally depending on the choice of the final target RTL. XOMP task is an exceptional
case since Omni does not have corresponding support and we defined it based on
GOMP’s interface. In summary, less than 20% of the XOMP functions are de-
fined using Rule 3. This means that more than 80% of the OpenMP translation
can be reused across multiple RTLs.

Leveraging ROSE’s robust C++ support, we are also able to implement
OpenMP translation for C++ applications. Fig. 6 shows the translation result of
an example C++ program shown in Fig. 5. The ROSE outliner supports gener-
ating an outlined function with C-bindings at global scope from a code segment
within a C++ member function. This binding choice is helpful since the thread
handling functions of most OpenMP RTLs expect a pointer to a C function, not
a C++ one. The outlined function at line 22 is also declared as a friend (at line
11) in the host class to access all class members legally.

4 Evaluation

We evaluate ROSE’s support for both OpenMP analysis and translation.

4.1 OpenMP Analysis

We have used ROSE to build a simple analysis tool that can detect a common
mistake of using OpenMP locks. As Fig. 7 shows, a lock variable (at line 3) is
declared within a parallel region and then used within that same parallel region,
which is incorrect since a lock must be shared to be effective. A locally declared
lock is private to each thread.

Fig. 8 shows the ROSE AST analysis code (slightly simplified) that can find
this error in using locks. Programmers only need to create a class(OmpPrivateLock)
by inheriting a builtin AST traverse class in ROSE and to provide a visitor

A ROSE-Based OpenMP 3.0 Research Compiler 23

1 #include ” libxomp . h”
2 struct OUT 1 1527 data { int i ; } ;
3 struct OUT 2 1527 data { int i ; } ;
4
5 stat ic void OUT 1 1527 (void ∗ ou t a r gv)
6 {
7 int i = (int) (((struct OUT 1 1527 data ∗) ou t a r gv) −> i) ;
8 int p i = i ;
9 p roce s s ((item [p i])) ;

10 }
11
12 stat ic void OUT 2 1527 (void ∗ ou t a r gv)
13 {
14 int i = (int) (((struct OUT 2 1527 data ∗) ou t a r gv) −> i) ;
15 int p i = i ;
16 for (p i = 0 ; p i < 5000 ; p i++) {
17 struct OUT 1 1527 data ou t a r g v 1 1 5 2 7 ;
18 ou t a r g v 1 1 5 2 7 . i = p i ;
19 /∗ void XOMP task (
20 ∗ void (∗ fn) (void ∗) , void ∗data , void (∗ cpyfn) (void ∗ , void ∗) ,
21 ∗ long arg s i ze , long arg a l i gn , boo l i f c l au s e , boo l untied)∗/
22 XOMP task(OUT 1 1527 ,& ou t a r gv1 1527 , 0 , 4 , 4 , 1 , 0) ;
23 }
24 }
25
26 stat ic void OUT 3 1527 (void ∗ ou t a r gv)
27 {
28 i f (XOMP single ()) {
29 int i ;
30 struct OUT 2 1527 data ou t a r g v 2 1 5 2 7 ;
31 ou t a r g v 2 1 5 2 7 . i = i ;
32 XOMP task(OUT 2 1527 ,& ou t a r gv2 1527 , 0 , 4 , 4 , 1 , 1) ;
33 }
34 XOMP barrier () ;
35 }
36
37 int main (int argc , int argv)
38 {
39 int s t a tu s = 0 ;
40 XOMP init (argc , argv) ;
41 /∗ void XOMP paral le l start (
42 ∗ void (∗ func) (void ∗) , void ∗data , unsigned num threads)∗/
43 XOMP paral le l start (OUT 3 1527 , 0 , 0) ;
44 XOMP parallel end () ;
45 XOMP terminate (s t a tu s) ;
46 return 0 ;
47 }

Fig. 4. Translated example using tasks

function implementation. The traversal visits all AST nodes to find a use of
an OpenMP lock within any of OpenMP lock routines (line 4-13). The code
then detects if the use of the lock is lexically enclosed inside a parallel region
(line 16-18) and if the declaration of the lock is also inside the same parallel
region (line 21-22). The statement style OpenMP node(SgOmpParallelStatement)
for a parallel region enables users to directly reuse AST interface functions,
such as the function to find a lexically enclosing node of a given type
(SageInterface :: getEnclosingNode<ParentType>(node)) and another function to tell if
a node is another node’s ancestor (SageInterface :: isAncestor(a node, c node)). This

24 C. Liao et al.

1 class A
2 {
3 private :
4 int i ;
5 public :
6 void pararun ()
7 {
8 #pragma omp paral lel
9 {

10 #pragma omp cr i t i c a l
11 cout<<” i= ”<< i <<endl ;
12 }
13 }
14 } ;

Fig. 5. A C++ example

1 #include ” libxomp . h”
2 struct OUT 1 1527 data { void ∗ t h i s p t r p ; } ;
3 stat ic void OUT 1 1527 (void ∗ ou t a r gv) ;
4 stat ic void ∗ x omp c r i t i c a l u s e r ;
5
6 class A
7 {
8 private :
9 int i ;

10 public :
11 friend void : : OUT 1 1527 (void ∗ ou t a r gv) ;
12 void pararun ()
13 {
14 class A ∗ t h i s p t r = this ;
15 struct OUT 1 1527 data ou t a r g v 1 1 5 2 7 ;
16 ou t a r g v 1 1 5 2 7 . t h i s p t r p = (void ∗) t h i s p t r ;
17 XOMP paral le l start (OUT 1 1527 ,& ou t a r gv1 1527 , 0) ;
18 XOMP parallel end () ;
19 }
20 } ;
21
22 stat ic void OUT 1 1527 (void ∗ ou t a r gv)
23 {
24 class A ∗ t h i s p t r =
25 (class A ∗) (((struct OUT 1 1527 data ∗) ou t a r gv) −> t h i s p t r p) ;
26 XOMP cr i t i ca l s tar t (& xomp c r i t i c a l u s e r) ;
27 std : : cout<<” i= ”<<(∗ t h i s p t r) . i<<std : : endl ;
28 XOMP critical end(&xomp c r i t i c a l u s e r) ;
29 }

Fig. 6. Translated C++ example

1 #pragma omp paral lel
2 {
3 omp lock t l c k ;
4 omp set lock(& l ck) ;
5 p r i n t f (”Thread = %d\n” , omp get thread num ()) ;
6 omp unset lock(& l ck) ;
7 }

Fig. 7. Using a private lock

example demonstrates that writing analysis tools using ROSE is straightforward
since OpenMP constructs are represented as nodes that are inherently part of
the ROSE AST.

A ROSE-Based OpenMP 3.0 Research Compiler 25

1 void OmpPrivateLock : : v i s i t (SgNode∗ node)
2 {
3 // 1. Find an OpenMP lock rout ine
4 SgFunctionCallExp ∗ f u n c c a l l = isSgFunct ionCal lExp (node) ;
5 i f (! f u n c c a l l) return ;
6 std : : s t r i n g f name = fun c c a l l −>get name () ;
7 i f (f name != ” omp unset lock ” && f name != ” omp set lock ”
8 && f name != ” omp tes t l ock ”) return ;
9

10 // 2. Grab the only rout ine parameter as the use of a lock
11 std : : vector<SgVarRefExp∗> exp vec =
12 Sage In t e r f a c e : : querySubTree<SgVarRefExp>(f u n c c a l l , V SgVarRefExp) ;
13 ROSE ASSERT(exp vec . s i z e () ==1);
14
15 // 3. I f the lock ’ s use i s ins ide a p a r a l l e l region
16 SgOmpParallelStatement∗ l o c k r e g i o n =
17 Sage In t e r f a c e : : getEnclosingNode<SgOmpParallelStatement >(exp vec [0]) ;
18 i f (l o c k r e g i o n)
19 {
20 // 4. Check i f the lock dec lara t ion i s a l so ins ide the same region
21 SgVar iab l eDec la rat ion ∗ l o c k d e c l = exp vec [0]−> g e t d e c l a r a t i o n () ;
22 i f (Sage In t e r f a c e : : i sAnce s to r (l o ck r eg i on , l o c k d e c l))
23 cerr<<”Found a pr i va t e lock with in a p a r a l l e l r eg i on ”<<endl ;
24 }
25 }

Fig. 8. A ROSE-based tool to find private locks

4.2 OpenMP Translation

We have evaluated ROSE’s OpenMP translations and the corresponding XOMP
interface through a set of OpenMP benchmarks, including the NAS Parallel
Benchmarks(NPB)[12] and the Barcelona OpenMP Task Suite (BOTS) [13],
Those benchmarks have builtin correctness verification so they also test the
correctness of our compiler implementations. We ran all experiments on a Dell
T5400 workstation with dual processors and 8 GB of memory. Each of the pro-
cessors is a 3.16 GHz quad-core Intel Xeon X5460 processor. We used several
other OpenMP compilers in addition to ROSE, including GCC 4.4.1, Intel Com-
pilers 11.1.059, and the Mercurium 1.3.3 compiler with the Nanos 4.1.4 runtime.
We used GCC 4.4.1 as the backend compiler for all source-to-source implemen-
tations. We used compiler option -O3 whenever possible.

Fig. 9 shows the speedup of a subset of NPB (V 2.3 C version [14]) and BOTS
V 1.0 using up to 8 threads by different compiler/runtime configurations. Re-
sults for the remaining benchmarks had similar patterns and are not shown for
brevity. ROSE-Omni’s speedup for the BOTS benchmarks (NQUEEN, SORT,
and STRASSEN) is not available since the Omni runtime library does not sup-
port OpenMP tasking. In general, all implementations had comparable perfor-
mance. ROSE’s source-to-source translation and extra layer of runtime support
do not incur any significant performance overhead compared to other compilers.

5 Related Work

Some other OpenMP research compilers exist. Representative examples include
Omni [3], OdinMP [15] and OpenUH [11]. Most research compilers adopt the

26 C. Liao et al.

0

1

2

3

4

5

6

7

8

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

CG FT MG NQUEEN SORT STRASSEN

Intel

Mercurium

GCC

ROSE-GOMP

ROSE-Omni

Fig. 9. Speedup of some NPB 2.3 and BOTS 1.0 benchmarks

source-to-source translation approach. Based on Open64, OpenUH supports
both source-to-source translation and generating the final binary code by itself.
The Nanos Mercurium compiler [16] is another source-to-source compiler aimed
at fast prototyping for OpenMP. It was among the first to support OpenMP
3.0’s task feature and was used to evaluate the expressiveness and flexibility
of OpenMP task directives compared to using nested parallelism and Intel’s
taskqueues. More recently, Addison et. al. [17] presented the OpenMP 3.0 imple-
mentation in OpenUH [11] with an extended runtime system supporting tasking.
However, the corresponding compiler translation was done manually, as reported
in their paper. Leveraging GCC 4.4’s runtime library, ROSE is one of the few
OpenMP compilers supporting OpenMP 3.0. It might be the only OpenMP
research compiler with stable C++ source-to-source support, although both
OpenUH and Mercurium have a similar goal. Finally, ROSE’s XOMP transla-
tion interface enables ROSE to implement translations targeting different RTLs
quickly as demonstrated in this paper. Other compilers usually target only a
single RTL.

6 Conclusion

In this paper, we have presented ROSE as an OpenMP 3.0 research compiler for
C/C++ and Fortran. ROSE’s OpenMP support includes extensions to ROSE’s
AST to represent OpenMP constructs, a common runtime support interface
(XOMP), and a set of reusable translations that can target multiple OpenMP
runtime libraries. An automatic parallelization module is also available in ROSE.
Our AST representation for OpenMP is inherently part of the ROSE AST so

A ROSE-Based OpenMP 3.0 Research Compiler 27

most existing AST manipulation, analysis, and transformation interface func-
tions can be easily reused to handle OpenMP applications. Preliminary eval-
uation demonstrates that it is straightforward to write static analysis tools for
OpenMP. Also, ROSE’s OpenMP translation targeting two mainstream OpenMP
RTLs has competitive performance compared to other OpenMP implementa-
tions. The latest ROSE OpenMP support has been released as part of the ROSE
distribution (downloadable from our website [2]).

In the future, we plan to add the OpenMP Fortran support and to complete
the OpenMP 3.0 implementation, such as loop collapse. We will build more static
analysis tools to help users write correct OpenMP applications. With ROSE’s
unique C++ support, we are interested in exploring more C++-related issues
within OpenMP. The introduction of explicit tasks in OpenMP 3.0 gives imple-
mentations and users more choices to optimize parameters related to tasks, such
as the cut-off depth of tasks, tied or untied tasks, or task scheduling policies
(including task aggregation granularity). We expect that empirical tuning can
play an important role in finding the best OpenMP compilation and execution
parameters for a given application on a particular platform. Finally, we espe-
cially welcome external collaborations using ROSE for research specific to the
requirements of the OpenMP research community.

References

1. OpenMP Architecture Review Board: OpenMP application program interface, ver-
sion 3.0 (2008), http://www.openmp.org/mp-documents/spec30.pdf

2. Quinlan, D.J., et al.: ROSE compiler project, http://www.rosecompiler.org/
3. Sato, M., Satoh, S., Kusano, K., Tanaka, Y.: Design of OpenMP compiler for an

SMP cluster. In: The 1st European Workshop on OpenMP (EWOMP’99), Septem-
ber 1999, pp. 32–39 (1999)

4. Quinlan, D.: ROSE: Compiler support for object-oriented frameworks. In: Proceed-
ings of Conference on Parallel Compilers, CPC (2000)

5. Edison Design Group: C++ Front End, http://www.edg.com
6. Rasmussen, C., et al.: Open Fortran Parser,

http://fortran-parser.sourceforge.net/

7. Liao, C., Quinlan, D.J., Vuduc, R., Panas, T.: Effective source-to-source outlin-
ing to support whole program empirical optimization. In: The 22th International
Workshop on Languages and Compilers for Parallel Computing (LCPC), Newark,
Delaware, USA (2009)

8. Yi, Q., Quinlan, D.: Applying loop optimizations to object-oriented abstrac-
tions through general classification of array semantics. In: Eigenmann, R., Li, Z.,
Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602, pp. 253–267. Springer, Heidelberg
(2005)

9. GOMP - an OpenMP implementation for GCC (2005), http://gcc.gnu.org/

projects/gomp

10. Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Extending automatic paralleliza-
tion to optimize high-level abstractions for multicore. In: Müller, M.S., de Supinski,
B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 28–41. Springer,
Heidelberg (2009)

http://www.openmp.org/mp-documents/spec30.pdf
http://www.rosecompiler.org/
http://www.edg.com
http://fortran-parser.sourceforge.net/
http://gcc.gnu.org/projects/gomp
http://gcc.gnu.org/projects/gomp

28 C. Liao et al.

11. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: an opti-
mizing, portable OpenMP compiler. Concurrency and Computation: Practice and
Experience 19(18), 2317–2332 (2007)

12. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel bench-
marks and its performance. Technical Report NAS-99-011, NASA Ames Research
Center (1999)

13. Barcelona OpenMP task suite,
http://nanos.ac.upc.edu/content/barcelona-openmp-task-suite

14. C version NPB 2.3 in OpenMP,
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/

download-benchmarks.html

15. Brunschen, C., Brorsson, M.: OdinMP/CCp - a portable implementation of
OpenMP for C. Concurrency - Practice and Experience 12(12), 1193–1203 (2000)

16. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimental
evaluation of the new OpenMP tasking model, pp. 63–77 (2008)

17. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 tasking imple-
mentation in OpenUH. In: Open64 Workshop at CGO 2009 (2009)

http://nanos.ac.upc.edu/content/barcelona-openmp-task-suite
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-benchmarks.html

Binding Nested OpenMP Programs on Hierarchical
Memory Architectures�

Dirk Schmidl1, Christian Terboven1, Dieter an Mey1, and Martin Bücker2

1 JARA, RWTH Aachen University, Germany
Center for Computing and Communication

{schmidl,terboven,anmey}@rz.rwth-aachen.de
2 JARA, RWTH Aachen University, Germany

Institute for Scientific Computing
buecker@sc.rwth-aachen.de

Abstract. In this work we discuss the performance problems of nested OpenMP
programs concerning thread and data locality particularly on cc-NUMA archi-
tectures. We provide a user friendly solution and demonstrate its benefits by
comparing the performance of some kernel benchmarks and some real-world
applications with and without applying our affinity optimizations.

1 Introduction

The memory hierarchy of modern HPC architectures is becoming more and more com-
plex. As of today, most processors employ three levels of caches and multiprocessor
systems are revealing their non uniform memory access (cc-NUMA) behavior. In order
to exploit the potential of these architectures fully, the programmer has to be aware of
these characteristics. Shared-memory parallel programs have to be optimized for data-
to-processor affinity.

There are some mechanisms helping the programmer to take care of data locality on
cc-NUMA architectures for OpenMP programs [9]. However, problems arise if these
mechanisms are applied to nested OpenMP programs, which are programs employing
two or more OpenMP parallel regions, one nested inside the other. The main problem
is the way in which compilers manage OpenMP threads for these programs. Current
OpenMP runtime environments organize the threads in a thread pool. When a parallel
region is encountered the team is formed by taking some threads out of the pool. Unfor-
tunately, it is neither guaranteed by the standard nor usually the case that whenever an
inner nested parallel region is encountered multiple times the team consists of the same
threads. If the set of system threads an OpenMP team consists of changes, data affinity
is lost.

For OpenMP programs employing only a single level of parallelism it is common
practice to use the first touch mechanism provided by modern operating systems to

� This research is partially supported by the German Federal Ministry of Education and Re-
search (BMBF) under the contract 03SF0326A “MeProRisk: Novel methods for exploration,
development, and exploitation of geothermal reservoirs - a toolbox for prognosis and risk
assessment.”

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 29–42, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 D. Schmidl et al.

place the data next to the thread working on it. This is achieved by initializing the data
in parallel, so that every thread initializes the data it is going to use later on. This is
not applicable in the case of nested OpenMP because the set of system threads an inner
team consists of is not persistent. We propose a set of strategies to be specified by the
user advising the OpenMP runtime how threads in nested OpenMP programs have to be
bound to preserve data locality. We provide a reference implementation in the form of
a thread binding library. We also propose how to extend the OpenMP standard to offer
this functionality.

This paper is structured as follows: Section 3 describes our affinity optimizations as
offered by our binding library. Section 4 gives an overview of the hardware we used
for evaluating our approach. We then demonstrate the feasibility of our approach using
kernel benchmarks in Section 5 and two real-world applications arising from different
scientific disciplines in Section 6. Finally, we draw our conclusions in section 7.

2 Related Work

There are different approaches in this field of research. [6] introduced the idea of sub-
teams to manage the grouping of OpenMP threads. An extension to OpenMP is pre-
sented which forms subteams of threads and maps worksharing constructs on these
subteams using the ONTHREADS clause. This idea allows to map different work pack-
ages on different subteams, thus it is an explicit alternative to nested parallel regions.
It does not consider the mapping between threads and cores or processes to the hard-
ware. The main difference to our approach is, that we want to propose an extension to
the nesting concept in OpenMP, which handles the mapping between threads and the
underlying hardware.

[1] and [11] both present a method to bind threads on a specific core of the hardware.
In both approaches a group of processors can be assigned to a team of threads, using a
new clause to extend OpenMP. In the first approach the groups must be specified using a
special GROUPS clause. Afterwards the work can be assigned to the master of a group
using an ONTO clause. The slave threads of a group can later on be used inside of a
nested parallel construct, when the master spawns a new team. This approach is useful,
when sections are used on the outer level, or when the number of threads to be used on
this level is constant, because the groups are specified with a string at compile time. A
varying number of threads on the outer level is not supported.

[11] uses a default processor group, which is a linear array of all processors in the
system, but it is also possible to build more complex structures, which can represent
nearly all hierarchical memory architectures. The programmer is responsible to assign
work to these groups. The programmer can specify a start point and a stride to specify
which processors to use. One downside of this approach is, that the programmer is
required to have detailed hardware knowledge to achieve a good placement of threads.
Especially for nested OpenMP programs finding the array slice to use for every team
might become quite complicated.

A different approach is presented in ForestGOMP[10]. Here threads can be put to-
gether in groups called bubbles. These bubbles can have a hierarchical structure to de-
scribe a nesting relation. A scheduler called bubble sched is used to schedule the threads

Binding Nested OpenMP Programs on Hierarchical Memory Architectures 31

to specific cores of the system. A thread stealing mechanism allows to change the map-
ping and threads can be migrated during a run if necessary. This mechanism is useful,
when the load changes in a dynamic manner. The scheduler should take NUMA criteria
into account for his scheduling decisions. A disadvantage of this approach is, that it is
hard for the programmer to understand what the scheduler does.

In many cases the programmer might not have a detailed hardware knowledge, but
usually detailed knowledge of the program. Out approach tries to abstract from the
hardware details, while allowing the programmer to bring in some knowledge about the
specific program. The strategies we ask the programmer to select from are platform-
independent and are mapped to the actual machine at runtime. Furthermore we per-
form our investigations with different kernels and applications on a machine with a flat
memory hierarchy on a cc-NUMA machine and on a special machine from the vendor
ScaleMP to show that thread placement is of varying interest on different machines and
that the interest will most likely grow in the near future.

3 Thread Binding Library

Exploiting thread-to-core binding facilities and the first-touch strategy of current op-
erating systems is the standard approach to address data locality in shared-memory
parallel programs [9]. Since for nested OpenMP parallel regions it is not guaranteed
that any two active parallel regions with identical ancestry will be executed by the same
set of system threads, this approach may fail. We provide a library that binds OpenMP
threads on specific cores of the machine and ensures a persistent mapping of OpenMP
threads to cores, even if the underlying system threads change.

With two or more nested levels of parallelism, possibly exhibiting different charac-
teristics concerning core, cache and memory utilization, the selection of a core to bind
a thread to has a significant influence on the application performance. We need detailed
hardware knowledge in order to place threads on specific cores appropriately. For ex-
ample it is necessary to know the number of sockets, cores and hardware-threads of a
machine as well as information on the numbering scheme for threads used by the op-
erating system. Many programmers do not have this knowledge, nor do they want to
care about these details every time a new architecture is deployed. Our library detects
these details automatically by examining the system architecture as will be described
below. The user’s task is reduced to specifying a strategy for thread placement and
the library takes care of mapping the threads to specific cores, according to the given
strategy. The concept of asking the programmer to specify a strategy that is related to
certain application characteristics, as will be described below, intends to enable some
level of performance portability as the strategies also may fit on a new machine; only
the runtime has to be adapted. The binding library consists of the following three parts.

1. Hardware information: As described above, our approach requires detailed system
information to process the mapping of threads to cores in the desired way. We provide
two ways for the library to get this information. The first one is to query information
about the system architecture and generate a tree structure with hardware information.
This is the default way and is done automatically by the library. On Linux parsing

32 D. Schmidl et al.

board

socket

core

hardware-
thread

Fig. 1. Hardware tree of the Tigerton machine
using /proc/cpuinfo

board

socket

core

hardware-
thread

shared L2

Fig. 2. Hardware tree of the Tigerton machine
using a user-specified file

/proc/cpuinfo can distinguish between sockets, cores on a socket and hardware-
threads running on a core. An example of such a tree structure is illustrated in Fig. 1. It
represents the Tigerton machine used in our experiments throughout this article.

In many cases this information is sufficient to perform the placement, but for some
special cases more detailed information may be advantageous. For example on the
Tigerton machine, there are four cores on one socket with two cores sharing a sin-
gle L2 cache. If the user wants the library to take this into account, he creates a file
containing hardware information and sets the environment variable OMP CORE LIST
to point to that file. This way a hardware tree for our library is created that recognizes
cache sharing. The resulting tree, consisting of an additional level grouping together the
cores sharing an L2 cache, is depicted in Fig. 2. Building the tree structure is carried
out once at program startup. The corresponding overhead does not influence the total
runtime significantly, in particular for large-scale applications.

2. Thread information: To support mapping the threads of nested OpenMP parallel
regions to the hardware tree, the library needs to collect information about the com-
plete thread hierarchy. This is done at program startup, avoiding too much overhead. A
remapping at runtime is also possible by calling a suitable library function, as described
below. The library supports the following strategies:

– scatter: Places the threads as far away from each other as possible. This is in-
tended to maximize the memory bandwidth, but may lead to higher synchronization
overhead.

– compact: Places the threads near each other. This minimizes synchronization times,
but reduces the achievable memory bandwidth, especially on cc-NUMA architec-
tures.

– subcompact/subscatter: These strategies behave like scatter and compact with one
exception: In a nested parallel region, the new threads are placed nearer to their
own master thread than to the master thread of another inner team. On cc-NUMA
machines, this strategy aims at enforcing the team to run on the same socket as the
master. So, the team might find shared data the master has initialized in its the local
memory.

Binding Nested OpenMP Programs on Hierarchical Memory Architectures 33

The number of threads to be used along with the strategy can be specified in two differ-
ent ways:

1. Using the environment variable OMP NESTING TEAM SIZE. If this variable is
set the value is expected to be a list of the sizes of the teams to be used in the
parallel regions encountered in the program flow. This approach incurs the re-
striction to use the same number of threads for all teams on the same nesting
level. OMP NESTING TEAM SIZE=2,scatter,4,subcompact means that,
the outer parallel region is started with two threads that are placed according to the
scatter strategy and both threads will start an inner team with four threads. For
the inner teams the subcompact strategy will be used.

2. Using the function call omp set nesting info(s). This function expects a
string s as an argument build in the same way as for OMP NESTING TEAM SIZE.
The function sets the strategy for the following parallel regions. If called in the
serial part of the program the effect is the same as of OMP NESTING TEAM SIZE.
However, if it is called inside a parallel region, it changes the strategy for the calling
thread (and all its descendents). Using this functionality it is also possible to have
different teams of different sizes on the same nesting level. If the number of threads
used inside the parallel regions changes over runtime, the environment variable is
not sufficient again, instead omp set nesting info(s) has to be used and the
programmer has to specify the strategy to use for the next parallel regions before
they are encountered.

The library takes this information to map the threads to cores using the hardware in-
formation. Since the intended core for every thread is stored with the thread hierarchy,
the mapping has to be done only once at program startup and every time the func-
tion omp set nesting info(s) is called, but not every time a parallel region is
entered.

3. Thread placement: As described before, the problem of nested OpenMP is that it
cannot be predicted which system threads are used to build a team. But only system
threads can be bound to processors. The only way for a library (other than the OpenMP
runtime) to find out which system threads are used inside a parallel region is to start the
parallel region. Afterwards the threads can still be bound according to the strategy. This
step has to be repeated every time a parallel region is entered. In order to enable this
functionality a function call to our library has to occur at the beginning of every parallel
region to find out which threads are used. It will also perform the look-up in the thread
hierarchy table and perform the binding.

Instead of placing the burden of modifying all parallel regions in a given code on the
programmer, we use the Opari tool [8] to instrument the source code. It inserts function
calls before and after OpenMP constructs. It is designed and used for performance
measurement tools. It inserts the function pomp parallel begin at the beginning
of every parallel region and we use this function call to transfer the program flow to
our library. Thereby the only elements of our approach visible to the programmer are
the environment variable and API functions, which we propose to add to the OpenMP
standard.

34 D. Schmidl et al.

4 Computing Platforms for Experiments

We used three different platforms for our experiments, all running CentOS Linux with
kernel 2.6.18 on the Tigerton and Barcelona and kernel 2.6.21 on the ScaleMP:

Tigerton (Fujitsu-Siemens RX600): This machine is equipped with 4 Intel Xeon
X7350 processors with a clock rate of 2.93 GHz and 64 GB of memory. All proces-
sors access the whole main memory via Intel’s north bridge, therefore this is an SMP
system with a flat memory architecture.

Barcelona (IBM eServer LS42): This is a 4 socket machine as well, equipped with
AMD Opteron 8356 processors. Every processor runs at a clock rate of 2.3 GHz and is
connected to 8 GB of local memory. Remote access to the memory of other processors
is accomplished via the Hyper-Transport interconnect. This machine offers a cc-NUMA
architecture.

ScaleMP: From a hardware point of view, this machine is not a single node, but a small
Infiniband cluster. All 13 nodes are equipped with two Intel Xeon E5420 processors (2.5
GHz) and 16 GB of memory. What makes this machine interesting for shared-memory
programs is the vSMP Foundation software. This software implements a cache coher-
ence protocol over the InfiniBand network and makes the machine look like a single
shared memory machine with 104 cores and 170 GB of memory, from the perspective
of a standard Linux operating system. In total the machine has 208 GB of memory, but
roughly 38 GB are used for caching and prefetching mechanisms by the vSMP Foun-
dation software and are not visible to the user. Every processor in the system can access
all the memory of other boards, but of course getting data from other boards generates
some overhead and is more expensive than working on local data. Therefore, we con-
sider this to be a cc-NUMA machine as well, but with a much higher NUMA ratio (ratio
of remote latency to local latency) than the Barcelona machine.

5 Kernel Benchmarks

To make sure that the library works as designed, we first used some kernel bench-
marks for verification purposes. In summary, we find that placing threads apart over
the respective machine increases memory bandwidth as well as synchronization time,
independent of whether the threads belong to an outer or inner parallel level.

5.1 Nested Stream Benchmark

As the first test program, we choose a Stream-like benchmark to measure the obtained
memory bandwidth of a system. We start with the original Stream [7] benchmark and
change the program to use nested OpenMP on two levels. The original benchmark with
one level of parallelism uses three arrays a, b and c. The initialization of the data
is done in parallel using the same loop schedule to achieve a good placement of the
data. On these arrays, a DAXPY operation is computed in parallel. The code for this
operation is shown in code 1. The time to compute this vector operation is measured
and the memory bandwidth is derived. In order to use nested OpenMP, we change the

Binding Nested OpenMP Programs on Hierarchical Memory Architectures 35

Code 1. Parallel loop computing the DAXPY operation in the Stream benchmark.

C$omp do s c h e d u l e (s t a t i c)
DO 60 j = 1 , n

a (j) = b (j) + s c a l a r ∗c (j)
60 CONTINUE

C$omp end do

benchmark to start an outer team of threads and all these threads run the original Stream
benchmark. So every inner team gets its own arrays a, b and c, but they are shared
inside the inner teams. We use the scatter strategy to distribute the threads of the
outer parallel region over different sockets/boards of the machines. The inner threads
are bound in such a way that they fill up the sockets/boards of the master thread using
the subcompact strategy. Using this strategy we expected to get the best memory
bandwidth, especially on the cc-NUMA machines.

Table 1 shows the achieved memory bandwidth on the three different machines. The
bound values denote the measurements employing our library with the aforementioned
strategy settings; the unbound values were obtained by deferring control of the thread
placement solely to the operating system and the OpenMP runtime system. The columns
labeled by oxi denote a nested parallelization strategy with o threads in the outer level
and i threads in the inner level, resulting in a total number of o*i threads. In the first
column, where just one thread is used, it is no surprise that the memory bandwidth does
not depend on whether binding is used or not.

With 1x4 threads, we see the first differences between the machines. On the cc-
NUMA machine (Barcelona) we can profit from binding as expected, but on the SMP
machine (Tigerton) the memory bandwidth drops down in the bound case. Binding with
our strategy makes all four inner threads run on the same socket on both machines. On
the Barcelona machine, this is an advantage, because all the data is in the memory of
this socket and so we just have local memory accesses. On the Tigerton machine, there
is just one path to the memory. One socket cannot consume the total memory bandwidth
on this machine, thus the unbound case profits from using four sockets.

Table 1. Memory bandwidth in GB/s of the nested Stream benchmark

threads 1x1 1x4 4x1 4x4 6x1 6x4 13x1 13x4
Barcelona
unbound 4.4 4.9 15.0 10.7
bound 4.4 7.6 15.8 13.1
Tigerton
unbound 2.3 6.0 4.8 8.7
bound 2.3 3.0 8.2 8.5
ScaleMP
unbound 3.8 10.7 11.2 1.7 9.0 1.6 3.4 2.4
bound 3.8 5.9 14.4 18.8 20.4 15.8 43.0 27.8

36 D. Schmidl et al.

In the case with four outer and one inner threads, we have the same total number of
threads, but now every outer thread initializes its own arraysa,b andc. On the Barcelona
machine this leads to a much higher total memory bandwidth, because now the memory
of all four sockets is used. Even in the unbound case, we see nearly the same bandwidth.
It seems that the scheduler is smart enough to use all the four sockets. On the Tigerton
machine, the bound case delivers good memory bandwidth as well, but in the unbound
case the result is worse. We suspect that the scheduler moves threads around.

Using four inner and four outer threads (all cores are busy on the Barcelona and
Tigerton machine), probably the most relevant case for most applications, we can see
on the Barcelona machine that binding clearly pays off. We reach a memory bandwidth
of 13.1 GB/s in the bound and only 10.7 GB/s in the unbound case, an improvement of
about 25%. On the Tigerton machine it does not matter whether we use binding or not,
since it is an SMP system with a flat memory architecture.

On the ScaleMP machine the behavior for small numbers of threads looks similar to
the Tigerton machine: for 1x4 threads the unbound case is better than the bound one
and with 4x1 threads the bound case is better. This is because one board of the machine
is an SMP system and Linux schedules up to eight threads all on the first board. For
a larger number of threads the behavior resembles the Barcelona cc-NUMA machine:
The bound cases outperform the unbound cases as soon as more than four threads are
used. When the whole machine is used the bound case is more than 10 times faster than
the unbound one. Another interesting point is, that we get a better result for 13x1 and
6x1 than for 13x4 and 6x4. Normaly we would expect that we can profit from more than
one thread per board, but it seems that the overhead of the vSMP software grows with
the number of total threads and therefore the maximum memory bandwidth is reached
for one thread per board for a larger number of boards.

5.2 Nested EPCC Syncbench Benchmark

The second kernel benchmark is a modification of the syncbench benchmark from
the EPCC microbenchmarks [2]. It measures the overhead of OpenMP synchronisation
constructs. We want to investigate the overhead of nested OpenMP constructs, so we
modify the benchmark in the same way we modify the stream benchmark. Our bench-
mark opens a parallel region and starts the EPCC syncbench for each of the inner teams.

Our assumption is that synchronization is more efficient when the inner teams run
close together. When all threads of an inner team run on the same socket for exam-
ple, they can communicate using a shared cache. Table 2 shows the overhead of a few
OpenMP constructs in the nested case. Again we use the scatter strategy on the
outer level and the subcompact strategy on the inner level.

For 1x2 threads, we see slight differences on the different machines. On the Tigerton
and the ScaleMP machine, we can reduce the overhead of all constructs significantly by
binding the threads closely together using the subcompact strategy. On the Barcelona
machine, binding increases the measured overhead slightly. The reason for this behav-
ior is that the Intel Xeon processors (of both, Tigerton and ScaleMP) have a shared L2
cache for two of the cores. When the team runs on these two cores, the communication
is very fast. On the Barcelona machines the L2 cache is not shared, but the L3 cache is.

Binding Nested OpenMP Programs on Hierarchical Memory Architectures 37

Table 2. Overhead of nested OpenMP constructs in µs

parallel barrier reduction parallel barrier reduction
Barcelona 1 x 2 4 x 4
unbound 19.25 18.12 19.80 117.90 100.27 119.35
bound 23.53 20.97 24.14 70.05 69.26 69.29
Tigerton 1 x 2 4 x 4
unbound 23.88 20.84 24.17 74.15 54.90 77.00
bound 9.48 7.35 9.77 58.96 34.75 58.24
ScaleMP 1 x 2 2 x 8
unbound 63.53 65.00 42.74 2655.09 2197.42 2642.03
bound 34.11 33.47 41.99 425.63 323.71 444.77

Communication using the L3 cache is slower resulting in a higher syncronisation time
compared to the Xeon-based systems.

When 4x4 threads are used, the results look quite different. We do not see the cache
effects anymore, because only two threads can share an L2 cache and all four threads are
involved in a synchronization operation. But we see that binding has a positive effect on
all machines. When all threads of the inner teams run on one socket on the Barcelona
and Tigerton machine and on one board for the ScaleMP machine, the communica-
tion is faster. In the unbound case the system scheduler seems to schedule them over
the whole machine, this causes higher synchronisation overhead. On the ScaleMP ma-
chine, where the InfiniBand network is used to communicate between different boards,
the overhead is significant. A barrier operation for example takes 2197.4 μs when the
threads are scheduled by the operating system scheduler and just 323.7 μs when the
binding is done in an appropriate way. On the other machines, the difference is smaller,
but still noticeable and relevant as synchronization constructs limit the scalability of
many applications.

6 Applications

With the kernel benchmarks, we have shown that our binding improves the performance
of synchronization constructs and the achievable memory bandwidth in most well un-
derstood cases. To analyze the influence on real-world applications we consider two
codes with different performance characteristics.

6.1 TFS

The first code is a multiblock Navier-Stokes solver called TFS [4]. It is developed by
the Institute of Aerodynamics at RWTH Aachen University. The package is used to
simulate the airflow through a human nose. The code consists of 17,000 lines of Fortran
code and it is parallelized using OpenMP on two levels [5]. At the outer level the code is
parallelized by a domain decomposition approach characterized by different blocks of
the computational grid. Depending on the dataset the number of threads that can be used

38 D. Schmidl et al.

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16

S
p
ee
d
u
p

#Threads

Tigerton, bound
Tigerton, unbound
Barcelona, bound

Barcelona, unbound
ScaleMP, bound

ScaleMP, unbound

Fig. 3. Best speedup for different total thread numbers of the TFS code

is limited, because the data cannot be split into an arbitrary number of blocks. The nose
dataset provides 16 blocks of different sizes. On the inner nested level of parallelization
the do-loops inside the solver are parallelized, allowing the use of more threads than
there are blocks in the dataset.

We test the application on the three machines with and without binding and compare
the results. We use a scatter binding strategy on the outer level and a subscatter
strategy on the inner one. This strategy should optimize the total memory bandwidth
and reduce the synchronization time of the inner teams. Fig. 3 shows the best results for
a fixed number of total threads. This means, for example, the speedup for 4 threads is
actually the maximum of the speedups obtained from the cases 4x1, 2x2, and 4x1.

We see different behaviors on the three different machines. On the Tigerton machine
the application shows a speedup of about 6 using 16 threads. It does not make a big
difference whether binding is used or not. On the Barcelona machine we see a similar
speedup in the bound case, but here the unbound case is worse. It is just around 5.5. So,
binding results in a performance improvement of roughly 15 % on this machine. On the
ScaleMP machine, the results look completely different. The unbound version of the
code scales up to 8 threads and then drops down. Taking a closer look at the machine
while the program is executing, we see that 8 threads still run on one board and if more
threads are used, the threads get automatically migrated to other boards, resulting in
a performance loss. In the bound case we force the threads to run on different boards.
Because of that we do not gain any advantage from the parallelization. We could change
the strategy for our binding library to stay on one board as long as we do not use more
than eight threads, but in doing so we do not employ the ScaleMP advantages.

In summary, we assess that the TFS code is not well-suited for the ScaleMP ma-
chine. With and without binding we cannot profit from the special characteristics of the
system. On the Tigerton machine binding is not advantageous, but on the Barcelona
machine we can improve the performance by 15%.

Binding Nested OpenMP Programs on Hierarchical Memory Architectures 39

 0

 1

 2

 3

 4

 5

 6

 7

 8

1x1 1x2 2x1 1x4 2x2 4x1 1x8 2x4 4x2 8x1 1x16 2x8 4x4 8x2 16x1

S
p
ee
d
u
p

#Threads

Tigerton, bound
Tigerton, unbound

Fig. 4. Best speedup for the SHEMAT-Suite code on the Tigerton machine

6.2 SHEMAT-Suite

The second application is called SHEMAT-Suite, the successor of the code named
SHEMAT [3] and is still being developed by the Institute for Applied Geophysics and
Geothermal Energy at RWTH Aachen University. It solves the coupled transient equa-
tions for groundwater flow, heat transport, and the transport of reactive solutes in porous
media in three space dimensions. The program is written in Fortran and parallelized
with OpenMP on two levels. The outer parallel level computes different directional
derivatives needed for the computation. In the inner level for each derivative a linear
system of equations is assembled and solved in parallel. We used a big dataset comput-
ing up to 16 directional derivatives, thus limiting the outer parallel level to 16 threads.

We run tests with and without using our binding library, using a scatter strategy
on the outer level and a subscatter strategy on the inner one. The performance
results for the Tigerton machine with different numbers of inner and outer threads is
given in Fig. 4. The results for the bound and the unbound case do not differ very much.

When 1x4, 1x8 and 2x4 threads are used the unbound case is better than the bound
case. The reason for this behavior is the strategy we use. When the threads are placed
by our library one socket for the 1x4 case and two sockets for the 1x8 and 2x4 cases
are used. In the unbound case the threads can run on all four sockets, which leads to
a slightly better performance. We could change the strategy for these cases, but then
we would have to use different strategies for the different thread numbers. This would
oppose our aims for ease of use and performance portability. Furthermore, the cases
which are most interesting for the user are of course the cases with the best performance.
Starting 1x4 threads and leaving the rest of the machine empty does not make much
sense when a better performance could be achieved with 1x16 threads. For the cases
where the whole machine is used, the differences between the bound and unbound cases
are marginal.

The results for the Barcelona machine are shown in Fig. 5 and display a different
behavior. Large differences for smaller thread numbers are not observed, even the runs
with 1x4, 1x8 and 2x4 threads do not show significant differences in the speedup, as
they did on the Tigerton machine. On the Tigerton machine, the application profits in the
unbound case from using four sockets whereas just two sockets are used in the bound
case. Here we use the same strategy, so again we use two sockets with our library instead

40 D. Schmidl et al.

 0

 2

 4

 6

 8

 10

 12

1x1 1x2 2x1 1x4 2x2 4x1 1x8 2x4 4x2 8x1 1x16 2x8 4x4 8x2 16x1

S
p
ee
d
u
p

#Threads

Barcelona, bound
Barcelona, unbound

Fig. 5. Best speedup for the SHEMAT-Suite code on the Barcelona machine

of four sockets without it. But most of the data is initialized before the inner regions are
opened. On the Barcelona machine the data is initialized in the local memory of one
processor in the 1x4 and 1x8 cases. In the 2x4 case we observed Linux placing the outer
threads on one or two processors. Therefore, we do not profit from using four sockets
in the unbound case. The data is accessed and loaded from remote memory. This does
not improve when using four sockets. On the Tigerton machine the initialization is not
important, because it is an SMP machine, achieving a higher total memory bandwidth
when all sockets are used. On the other hand, for 16 threads we see, on the Barcelona
machine, that the placement of threads is important. For the cases where just one parallel
level is used, i.e. 1x16 and 16x1, the difference is not as high as for the other cases. We
observe an advantage of 50% - 70% in the nested cases 2x8, 4x4 and 8x2. Even for the
case with the largest speedup (16x1), we can see a benefit of about 6%.

As described in Section 1, the binding problems are much more important for nested
OpenMP. When we use just one thread on the outer level or one thread on the inner
level, the program behaves nearly as if there would be no other level, so we do not
profit from our binding strategies significantly.

We also perform experiments on the ScaleMP machine; the results are shown in
Fig. 6. Here, we see a large difference between the cases with and without binding.
For small numbers of threads, the behavior is nearly the same. This is because the first
threads can run on the same board and then we have the same behavior as on an SMP
system. But with a growing number of threads, binding really pays off. Without binding
the best speedup is less than 8.5 and with the use of our library we achieve a speedup of
20.33 for 10x8 threads. So, the performance improvement is more than 140%. Another
interesting point is that the total speedup is above 20 which is much more than we
obtain on the other machines. In summary, the SHEMAT-Suite code scales better on the
ScaleMP machine than on the other two machines, provided that an appropriate binding
is used.

7 Conclusion

Looking at benchmark kernels and real-world applications we demonstrate that the
placement of threads for nested OpenMP programs is an important issue for perfor-

Binding Nested OpenMP Programs on Hierarchical Memory Architectures 41

 0

 5

 10

 15

 20

 25

1x1 1x2 2x1 1x4 2x2 4x1 1x8 2x4 4x2 8x1 2x8 4x4 8x2 10x2 10x4 10x8

S
p
ee
d
u
p

#Threads

ScaleMP, bound
ScaleMP, unbound

Fig. 6. Best speedup for the SHEMAT-Suite code on the ScaleMP machine

mance. On systems with a flat memory (traditional SMP), like the Tigerton machine,
it turns out that thread placement is of less importance for the application codes. But
on cc-NUMA machine (like Barcelona), we improve the performance with little extra
work for the programmer by employing our novel binding library.

Given that all major system vendors currently build cc-NUMA architectures, we stress
that it will be increasingly important to take care of these characteristics in the near future.

For the ScaleMP machine it is even more important to place the threads in a suitable
way because the remote accesses are more expensive than on the Barcelona machine.

Our experiments reveal that a particular real-world application indeed profits from
the characteristics of this special machine. Furthermore, the results gathered on this ma-
chine are of special interest as they clearly indicate that with a growing number of cores
and memory hierarchies getting deeper the optimization opportunities of multi-level
parallel programs are not sufficiently supported by the current OpenMP 3.0 standard.

Our proposal based on thread binding strategies for each parallelization level or even
for each parallel region is easy to use and still exploits the performance potential of these
machines.

Acknowledgments

The authors would like to thank our colleagues at the Institute of Aerodynamics and at
the Institute for Applied Geophysics for making available their computer codes.

References

1. Ayguad, E., Martorell, X., Labarta, J., Gonzlez, M., Navarro, N.: Exploiting Multiple Levels
of Parallelism in OpenMP: A Case Study. In: Proc. of the 1999 International Conference on
Parallel Processing, Ajzu, pp. 172–180 (1999)

2. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proceed-
ings of First European Workshop on OpenMP, pp. 99–105 (1999)

3. Clauser, C. (ed.): Shemat and Processing Shemat - Numerical simulation of reactive flow in
hot aquifers. Springer, Berlin (2002)

42 D. Schmidl et al.

4. Hörschler, I., Meinke, M., Schröder, W.: Numerical simulation of the flow field in a model
of the nasal cavity. Computers & Fluids 32(1), 39–45 (2003)

5. Johnson, S., Leggett, P., Ierotheou, C., Spiegel, A., an Mey, D., Hörschler, I.: Nested Par-
allelization of the Flow Solver TFS using the ParaWise Parallelization Environment. In:
Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005 and IWOMP 2006. LNCS, vol. 4315, pp. 217–229. Springer, Heidelberg (2008)

6. Huang, L., Chapman, B., Liao, C.: An Implementation and Evaluation of Thread Subteam
for OpenMP Extensions. In: Workshop on Programming Models for Ubiquitous Parallelism
(PMUP 06), Seattle (2006)

7. McCalpin, J.D.: Memory Bandwidth and Machine Balance in Current High Performance
Computers. In: IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, December 1995, pp. 19–25 (1995)

8. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and Prototype of a Performance Tool
Interface for OpenMP. J. Supercomput. 23(1), 105–128 (2002)

9. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and Thread Affinity in
OpenMP Programs. In: MAW ’08: Proceedings of the 2008 workshop on memory access on
future processors, pp. 377–384. ACM, New York (2008)

10. Thibault, S., Broquedis, F., Goglin, B., Namyst, R., Wacrenier, P.-A.: An efficient openmp
runtime system for hierarchical architectures. In: Chapman, B., Zheng, W., Gao, G.R.,
Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 161–172.
Springer, Heidelberg (2008)

11. Zhang, G.: Extending the OpenMP Standard for Thread Mapping and Grouping. In:
Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005 and IWOMP 2006. LNCS, vol. 4315, pp. 435–446. Springer, Heidelberg (2008)

A Proposal for User-Defined Reductions in OpenMP

Alejandro Duran1, Roger Ferrer1, Michael Klemm2,
Bronis R. de Supinski3, and Eduard Ayguadé1,4

1 Barcelona Supercomputing Center
{alex.duran,roger.ferrer,eduard}@bsc.es

2 Intel Corporation
michael.klemm@intel.com

3 Lawrence Livermore National Laboratory
bronis@llnl.gov

4 Universitat Politècnica de Catalunya

Abstract. Reductions are commonly used in parallel programs to produce a
global result from partial results computed in parallel. Currently, OpenMP only
supports reductions for primitive data types and a limited set of base language
operators. This is a significant limitation for those applications that employ user-
defined data types (e. g., objects). Implementing manual reduction algorithms
makes software development more complex and error-prone. Additionally, an
OpenMP runtime system cannot optimize a manual reduction algorithm in ways
typically applied to reductions on primitive types. In this paper, we propose
new mechanisms to allow the use of most pre-existing binary functions on user-
defined data types as User-Defined Reduction (UDR) operators. Our measure-
ments show that our UDR prototype implementation provides consistently good
performance across a range of thread counts without increasing general runtime
overheads.

1 Introduction

OpenMP [19] is a well-known and widespread programming model for the develop-
ment of parallel applications on shared-memory platforms. It allows parallel and se-
quential implementations to co-exist in a single code base by using directives that tell
the compiler which parts of the code to parallelize. Non-OpenMP compilers safely ig-
nore the parallelization hints and emit an executable for sequential execution. In prac-
tice, OpenMP does not always keep its single-source promise since programmers often
must modify their sequential code to overcome OpenMP’s limitations.

We focus on OpenMP’s lack of support for arbitrary reduction operators on arbi-
trary data types in this paper. Programmers use reductions to produce a global result
from partial results computed in parallel. OpenMP currently only supports reductions
for primitive data types and a limited set of base language operators. If the program
computes a reduction on a user-defined data type or with a more complex operator, the
programmer must implement the reduction algorithm manually. This limitation makes
errors likely and complicates program maintenance by requiring repeated implemen-
tation of a common design pattern. Performance may also suffer since the OpenMP

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 43–55, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

44 A. Duran et al.

implementation can no longer adapt the reduction algorithm to the specific aspects of
the execution (e. g., thread count or architecture).

In this paper, we propose extensions to OpenMP that eliminate this limitation. Our
solution provides an additional OpenMP declarative directive declare reduction
that specifies that a binary function (a UDR operator) can be used as a User-Defined
Reduction (UDR). We also extend OpenMP’s reduction clause to accept UDR oper-
ators in addition to built-in OpenMP operators. While our implementation is as efficient
as highly optimized manual idioms for user-defined reductions, it provides a more con-
cise and easy-to-use syntax to express user-defined reductions.

The remainder of the paper is organized as follows. The following section discusses
UDR mechanisms in other parallel programming languages. We then elaborate on the
limitations of the current OpenMP specification in Section 3. Section 4 details our pro-
posal for UDR support in OpenMP. Finally, we evaluate performance of our proposal
in Section 5. Overall, we show that our prototype implementation outperforms many
hand-coded UDRs, particularly with large thread counts, without implying other over-
heads.

2 Related Work

Parallel programming frequently requires aggregation of local (partial) results into a
global result. While low-level threading APIs such as POSIX threads [9], Windows
Threads [16], Java Threads [18], or C# Threads [15] allow programmers to implement
UDRs manually, other parallel programming languages provide a better, higher level
approach.

Google’s MapReduce API [4] provides a parallelization API that distributes work
and accepts user-supplied reducers. Although MapReduce supports object-oriented lan-
guages, it only processes key-value data. Our OpenMP UDR proposal reflects the phi-
losophy of OpenMP by using compiler directives to define UDRs, which supports all
OpenMP base languages. Further, we directly support the variety of data types available
in those languages.

MPI [17] includes UDR support. While our approach accepts a wide range of binary
functions, MPI UDRs are restricted to a special function signature. The programmer
must provide corresponding wrapper functions to reuse existing functions. Additionally,
we use a declarative syntax to define UDRs, whereas MPI requires special allocate and
free function calls to inform the runtime about UDRs.

ZPL [5] relies on overloading for the specification of associative and commutative
UDRs. One signature of the function returns the identity element while a second sig-
nature implements the actual reduction operator. OpenMP/Java [13] extends OpenMP
with a Reducer interface to define UDRs. Similarly to ZPL, the interface requires
separate methods to return the identity and to reduce two values. Cilk++ [7] follows a
similar approach that defines special classes that implement the reduction semantics.
Unlike these UDR approaches, we use explicit clauses of the UDR declaration to spec-
ify the identity element and the reduction operator and, thus, support all OpenMP base
languages.

TBB [20] parallelizes C++ programs through templates to which reductions can be
added as methods. PPL [14] also supports UDRs through combinable objects. While

A Proposal for User-Defined Reductions in OpenMP 45

1 vo id example (double ∗ a r r a y , s i z e t N) {
2 double sum = 0 . 0 ;
3 double prd = 1 . 0 ;
4 #pragma omp parallel f o r reduction (+ : sum) reduction (∗ : p rd)
5 f o r (s i z e t i = 0 ; i < N; i ++) {
6 sum += a r r a y [i] ;
7 p rd ∗= a r r a y [i] ;
8 }
9 }

Fig. 1. Simple reduction example with two reduction variables

TBB and PPL provide UDRs, they only cover C++ programs; our approach is more
generic in that it also targets C and Fortran. Our declaration syntax also provides better
separation of concerns as a UDR can be reused in any parallel region, whereas TBB and
PPL programmers must re-implement the reduction method in all functors, effectively
adding redundant code to the application.

Kambadur, et al. previously proposed a mechanism to support user-defined reduc-
tions in OpenMP [12]. Their proposal targets C++0x [6] programs and makes heavy
use of C++ concepts [8] outside of OpenMP pragmas. While this approach effectively
solves the problem of adding user-defined reductions to C++0x, our approach is more
generic as it extends also to C and Fortran. In addition, we rely on a pragma-only syn-
tax to supply all required information to employ user-defined reductions in OpenMP
applications.

3 Costs of the Lack of UDR Support in OpenMP 3.0

OpenMP 3.0 only provides a standard set of reduction operators (e. g., addition) that
operate on built-in primitive data types (e. g., double) of the corresponding base lan-
guage. Fig. 1 shows an example of an OpenMP parallel construct (line 4) that
performs simple sum and product reductions on the variables sum and prd.

In the example, the variables are of the primitive data type double. If we change
them to a user-defined data type such as complex t1 we can no longer use OpenMP
reductions. Instead, we must manually implement the reduction algorithms using one
of the many ways to write a parallel reduction. Fig. 2 presents an efficient reduction
algorithm that has little overhead for small thread counts.

The code in Fig. 2 first determines an upper bound of the possible number of partici-
pating threads (line 9). We then declare temporary arrays for each reduction variable to
hold the intermediate local results of each thread (lines 11–12).2

Each thread has a private copy of the reduction variables sum and prd. Since these
private copies are in different stacks, they cannot cause false sharing. Each thread must
initialize its copies with the appropriate identity values (lines 16 and 17). Each thread
then computes a local reduction for the array elements corresponding to its iterations

1 We use this type for explanatory purposes despite the Complex primitive type in C99.
2 For simplicity, the code shown could allocate more space than necessary since some OpenMP

threads may not participate in the parallel region.

46 A. Duran et al.

1 c o m p l e x t complex add (c o m p l e x t a , c o m p l e x t b) ;
2 c o m p l e x t complex mul (c o m p l e x t a , c o m p l e x t b) ;
3

4 vo id example (c o m p l e x t ∗ a r r a y , s i z e t N) {
5 i n t n t h r e a d s ;
6 c o m p l e x t sum = {0 . 0 , 0 . 0} , p rd = {1 . 0 , 0 . 0} ;
7 c o m p l e x t ∗pa r t s um , ∗ p a r t p r d ;
8

9 n t h r e a d s = o m p g e t m a x t h r e a d s () ;
10

11 c o m p l e x t p a r t s u m [n t h r e a d s] ;
12 c o m p l e x t p a r t p r d [n t h r e a d s] ;
13

14 #pragma omp parallel shared (pa r t s um , p a r t p r d) private (sum , p rd)
15 {
16 sum = {0 . 0 , 0 . 0} ;
17 p rd = {1 . 0 , 0 . 0} ;
18 #pragma omp f o r
19 f o r (s i z e t i = 0 ; i < N; i ++) {
20 sum = complex add (sum , a r r a y [i]) ;
21 p rd = complex mul (prd , a r r a y [i]) ;
22 }
23 p a r t s u m [omp ge t th read num ()] = sum ;
24 p a r t p r d [omp ge t th read num ()] = prd ;
25 }
26 f o r (i n t t h r = 0 ; t h r < n t h r e a d s ; t h r ++) {
27 sum = complex add (sum , p a r t s u m [t h r]) ;
28 p rd = complex mul (prd , p a r t p r d [t h r]) ;
29 }
30 }

Fig. 2. Programming pattern for user-defined reductions in OpenMP 3.0

of the for loop (lines 18–22). After executing the loop, each thread stores its partial
results in the temporary arrays (line 23 and 24). After the parallel region, the master
thread iterates over all partial results in the temporary arrays and produces the final
result of the computation (lines 26–29).

Although this implementation performs well for small thread counts, larger thread
counts might benefit from a tree-based reduction. Tree-based reductions are signifi-
cantly more complicated and require a much higher coding effort. Switching between
these implementations would require even more complex code, which must be repeated
for every UDR in the OpenMP application. Although the pattern could be provided
by a parametrized library function, direct OpenMP support for UDRs would be less
error-prone and more efficient.

Fig. 3 shows how our proposal simplifies this example. In lines 4 and 5, declaration
pragmas inform the OpenMP compiler about UDR operators on the type complex t
and supply the corresponding identity values. After definition, the reduction clause
can use these UDR operators (line 9), resulting in code almost identical to that for the
double primitive type of Fig. 1.

4 User-Defined Reductions for OpenMP

This section explores the design space for user-defined reductions and presents our
declare reduction directive and the modifications to the current reduction

A Proposal for User-Defined Reductions in OpenMP 47

1 c o m p l e x t complex add (c o m p l e x t a , c o m p l e x t b) ;
2 c o m p l e x t complex mul (c o m p l e x t a , c o m p l e x t b) ;
3

4 #pragma omp declare reduction (complex add : c o m p l e x t) identity ({ 0 . 0 , 0 . 0})
5 #pragma omp declare reduction (complex mul : c o m p l e x t) identity ({ 1 . 0 , 0 . 0})
6

7 vo id example (c o m p l e x t ∗ a r r a y , s i z e t N) {
8 c o m p l e x t sum = {0 . 0 , 0 . 0} , p rd = {1 . 0 , 0 . 0} ;
9 #pragma omp parallel f o r reduction (complex add : sum) reduction (complex mul : p rd)

10 f o r (s i z e t i = 0 ; i < N; i ++) {
11 sum = complex add (sum , a r r a y [i]) ;
12 p rd = complex mul (prd , a r r a y [i]) ;
13 }
14 }

Fig. 3. Example of Fig. 2 rewritten with user-defined reductions

clause. We then discuss extensions that support UDRs on array types and that more
tightly integrate them with object-oriented languages.

4.1 Design Rationale

The UDR language extension is subject to several crucial design requirements. First,
it must follow the OpenMP directive-based philosophy. Second, the UDR feature must
blend well with all OpenMP base languages and reflect their specifics while maintaining
a common syntax across them. Third, the mechanism must express UDRs without any
unnecessary syntax bloat. Fourth, the definition should allow for efficient implementa-
tions when used with any parallel loop schedule and support common optimizations.

The OpenMP compiler needs two pieces of information to implement a reduction:
the identity element and the implementation of the operator. It needs the operator’s
identity value to initialize temporary variables that hold intermediate results. The imple-
mentation must combine two input values into one output value. The compiler generates
code that invokes the reduction operator whenever the reduction algorithm aggregates
values from different threads. The OpenMP specification provides this information for
the reductions supported in OpenMP 3.0, while programmers must supply it for UDRs.

We could simply extend the existing reduction clause, which would not add new
any idioms to OpenMP. However, programmers would have to supply the above infor-
mation at every reduction clause that works on a user-defined data type. This un-
necessary repetition would increase the likelihood of errors at the reduction clauses.

Thus, we split the UDR definition into two parts: UDR declaration and UDR us-
age. At the declaration, programmers describe UDRs by specifying the UDR operator
and the identity value. OpenMP-enabled libraries can safely incorporate UDR declara-
tions for their data types in C or C++ header files or Fortran modules. At UDR usage,
programmers supply the declared UDR name in a reduction clause as the operator.

In contrast to designs for UDRs in other programming models, one of our main de-
sign principles is code reuse. We explicitly allow programmers to reuse existing binary
functions without the need for any wrapper mechanisms that adapt existing code in-
terfaces to UDR requirements. Most OpenMP programs stem from a sequential code
base with a set of operators on user-defined data types. These operators often include

48 A. Duran et al.

functions with two input values and one output value and that UDRs can reuse. Thus,
our mechanism blends well with OpenMP’s principle of incremental parallelization.

A sequential loop, such as that corresponding to the example in Fig. 1, combines
array elements in the sequential iteration order. If the OpenMP implementation assigns
a single chunk of iterations to each thread, then the reductions performed within each
thread will be subsequences of the sequential iteration order. If the compiler combines
these temporary values in the chunk order, the overall reduction order is simply a reas-
sociation of the original computation. Thus, we require UDR operator to be associative
so that the implementation can compute the reduction using multiple threads without
sequentializing (e. g., using a critical region).

OpenMP schedules allow different distributions of iterations to threads besides a sin-
gle chunk of consecutive iterations. These schedules reorder the operations. The origi-
nal OpenMP intrinsic reduction operators are all associative and commutative,3 which
allows the implementation to combine iterations into a partial reduction in each thread
and then combine them into the global result in any order, such as the order in which
the threads complete. While we could restrict the loop schedules or require the use of
the ordered clause, we require the UDR operators to be commutative in order to
maximize parallelism and to simplify the implementation of UDRs.

4.2 The Declare Reduction Directive

UDRs must be declared prior to their use in a reduction clause. We use thedeclare
reduction directive with the following syntax:4

1 #pragma omp declare reduction (op− l i s t : t ype− l i s t) [c l a u s e]

where op-list is a comma-separated list of UDR operators, and type-list is a comma-
separated list of defined data types. Clause can only be an identity clause.

Basic Syntax. The declare reduction directive instructs the compiler that the
operators in the list are valid UDR operators for the types specified in the type-list.
The directive can be specified for any type (primitive types and user-defined data types)
except functions and array types. Reductions on function types do not have any useful
semantics; arrays are handled differently (see Section 4.4).

A valid UDR operator op must exist for each type. As we strive to maximize code
reuse we define a set of minimum requirements for a possible UDR operator to be
valid instead of defining a fixed prototype to which all operators must conform. These
requirements are the following:
• op must be a binary function with both arguments of a type compatible with the

type in the UDR declaration;5

• op must be a commutative function;
• op must be an associative function;

3 Although the subtraction operator is non-commutative, it is mapped to the commutative addi-
tion operator by many OpenMP implementations.

4 We only present the C/C++ syntax and requirements, which are similar to those of Fortran.
5 With T being the type in the UDR declaration, compatible types in C or C++ include T, const

T, T *, T &, const T * and const T &.

A Proposal for User-Defined Reductions in OpenMP 49

1 s t r u c t T {
2 vo id a l p h a (c o n s t T &) ;
3 c o n s t T & o p e r a t o r + (c o n s t T &) ;
4 } ;
5

6 T& a l p h a (T &, T &) ;
7 T b e t a (T ∗ , T) ;
8 vo id gamma (T ∗ , T) ;
9 vo id d e l t a (T ∗ , T ∗) ;

10 vo id e p s i l o n (T , T ∗) ;
11

12 c o n s t T & o p e r a t o r ∗ (c o n s t T & , c o n s t T &) ;
13

14 #pragma omp declare reduction (+ ,∗ ,T : : a lpha , a lpha , be ta , gamma , d e l t a : T)

Fig. 4. C++ examples of valid UDR operators for data type T

• op must produce a result in its function return value or an argument; if op could
produce multiple results (e. g., both arguments are pointer types) then the leftmost
result is used (i. e., the precedence is return value, left argument, right argument).

For large data structures, it might prove inefficient to allocate a temporary copy of a
data structure to store the (partial) reduction result and then pass the temporary as the
return value of the UDR operator. Hence, we allow the UDR operator to place the
(partial) reduction result in one of its arguments to avoid these unnecessary copies of
large data structures. While this choice does not incur higher implementation overhead
in the OpenMP compiler, it provides additional flexibility to programmers to optimize
their user-defined reductions.

For C++, all standard and (correctly implemented) overloaded operators are valid
UDR operators; function members of that type are valid if they have a single argument
compatible with the type. In any case, the function must be accessible and unambiguous
in the scope where the reduction takes place as well as in the scope where the UDR is
declared.

Fig. 3 provided valid UDR declarations for our simple C example used in Section
3. Fig. 4 provides additional examples of valid UDR declarations in C++ for a user-
defined data type T. The operators + and * are overloaded C++ operators for T that
are visible in the scope that contains the UDR declaration. The UDR operator T::alpha
refers to the member function of T; alpha refers to the global function. The functions
gamma and delta are valid UDR operators since they take two input values of type T.
Both gamma and delta must store the reduction result in the left argument since they do
not have return values. Similarly, epsilon must store it in the right argument.

The identity clause. By default, we perform zero initialization for non-object types
and invoke the default constructor for object types in C++. The identity clause over-
rides the default with user-defined values. It takes either a constant expression, a brace
initializer, or the special keyword constructor and a list of constant expressions of
the form (expr1,...,exprN). In the first two cases, all temporaries are assigned the iden-
tity value initially. In the last case, the constructor for the specified type is invoked with
the listed arguments. Fig. 5 shows examples of these different cases.

50 A. Duran et al.

1 #pragma omp declare reduction (f i x e d m u l : f i x e d t) identity (1)
2 #pragma omp declare reduction (complex mul : c o m p l e x t) identity ({ 1 . 0 , 0 . 0})
3 #pragma omp declare reduction (∗ : Complex) identity (c o n s t r u c t o r (1 . 0 , 0 . 0))

Fig. 5. Examples of valid identity clauses

1 #pragma omp declare reduction (m a t r i x a d d : i n t [] [])
2

3 vo id example () {
4 i n t M[n] [n] ;
5

6 #pragma omp f o r reduction (m a t r i x a d d :M)
7 f o r (. . .) { . . . }
8 }

Fig. 6. Example of a UDR on a two-dimensional array

4.3 Extensions to the Reduction Clause

Our UDR proposal does not change the well-known syntax of the reduction clause.
We only require that it accepts declared UDR operators as well as the built-in reduction
operators (and intrinsic functions in Fortran). When a UDR operator is specified in a
reduction clause, the OpenMP compiler must determine the UDR declaration that
applies to the scope of that particular reduction clause. It then uses the information
from the UDR declaration to implement the reduction. First, the compiler initializes
any temporaries with the identity value. Second, it replaces occurrences of the original
variable with the corresponding private temporary variable. Finally, it uses the UDR
operator in its reduction algorithm to combine the temporaries into the overall result.
As all necessary information is specified at the UDR declaration, the compiler can im-
plement more sophisticated reduction approaches as well.

4.4 Array Reductions

OpenMP 3.0 supports array reductions on primitive types for Fortran but not for C or
C++ because the number of dimensions (and their size) may not be available to the
compiler at the reduction clause in those languages.

If the reduction variable is strictly an array, the compiler could infer the number of
dimensions and the size from the reduction variable. But, we require the programmer to
add square brackets to the data type in the UDR declaration to specify that the operator
will work for array types. This allows the compiler to check at the UDR declaration that
the operator is valid for the type. The actual size of the dimensions, which are needed
to create the correct private variables, is deduced by the compiler from the type of the
variable of the reduction clause.

Fig. 6 declares a UDR on a two-dimensional matrix of int values by specifying
int[][] as the UDR’s data type. A compiler allocates private arrays of n×n elements
(see line 4) and initializes each element with the identity value (i. e., in this case as no
identity clause is specified, with the value 0) for the UDR usage in line 6.

A Proposal for User-Defined Reductions in OpenMP 51

1 #pragma omp declare reduction (v e c t o r a d d : i n t [])
2

3 vo id example (i n t ∗a , i n t n) {
4 i n t (∗ v) [n] = (i n t (∗) [n]) a ;
5

6 #pragma omp f o r reduction (v e c t o r a d d : v)
7 f o r (. . .) { . . . }
8 }

Fig. 7. Example of UDR for arrays with pointer reshaping

2 #pragma omp declare reduction (t e m p l a t e <typename T > + : s t d : : v e c t o r<T >)

Fig. 8. UDR for adding std::vector objects

While this works well for variables that are strictly arrays, an issue in C and C++
is that arrays are implicitly converted to pointers across call boundaries [10,11]. To
improve the support of UDRs for arrays, our proposal considers pointers to arrays as if
they were arrays for the purpose of finding the corresponding UDR. As Fig. 7 shows,
programmers must often convert pointer to types to pointers to arrays that contain the
needed dimensionality information. Although this solution requires some modifications
to the sequential code, the sequential code remains valid and we avoid more extensive
shaping expression support for the UDR.

4.5 C++-Specific Extensions

Although our UDR design provides a common syntax for C, C++, and Fortran, we
extend the UDR syntax to make UDR declarations more concise and easier to use in
C++. The first extension targets C++ templates (i. e., partially instantiated types):

1 #pragma omp declare reduction (t e m p l a t e<t e m p l a t e−heade r> op− l i s t : t ype− l i s t) [c l a u s e]

After specifying a template-header, the different template parameters defined in the
header may appear in the operator-list, type-list, or the identity clause.

Template support is crucial for C++ to define UDRs for template types in a generic
way. For instance, the template std::vector<T_> of Fig. 8 defines reductions on
any possible vector. Otherwise, possible instantiations (e. g., std::vector<int>,
std::vector<float>) would require separate UDR declarations.

In addition to template support, we use the dot syntax to omit class qualifiers in both
the declare reduction directive and the reduction clause. Fig. 9 shows how
it simplifies the use of qualified C++ identifiers in UDRs. Qualifiers for identifiers can
be omitted if a dot prefixes UDR operator names. The compiler then automatically qual-
ifies the operator with the type(s) being declared (in UDR declaration directives) or of
variables of reduction clauses. This syntax can greatly simplify the declaration and
usage of UDR operators that have the same name on unrelated types but that implement
the same kind of reduction.

52 A. Duran et al.

1 namespace A { c l a s s T ; }
2 namespace B { c l a s s S ; }
3

4 / / dec lares UDRs A : : T : : foo , B : : S : : foo , A : : T : : bar , and B : : S : : bar
5 / / w i th the same i d e n t i t y
6 #pragma omp declare reduction (. foo , . b a r : A : : T , B : : S)
7

8 . . .
9

10 A : : T t ;
11 B : : S s ;
12

13 / / Uses UDR A : : T : : foo f o r t and B : : S : : foo f o r s
14 #pragma omp parallel f o r reduction (. foo : t , s)
15 . . .

Fig. 9. Example of the dot syntax to shorten UDR declarations of qualified identifiers

5 Evaluation

Although our proposed extensions to OpenMP simplify reduction operations for non-
basic types it remains to be seen if they can be implemented as efficiently as hand-made
reductions.

To this purpose we implemented a prototype of our proposal for user-defined reduc-
tions in the Mercurium source-to-source compiler [2]. The code generated for standard
OpenMP reductions and UDRs is the same except that it uses the identity and operator
that the UDR declaration specifies.

We have implemented five kinds of reductions that capture typical OpenMP reduc-
tion scenarios:

• Our standard reduction tests the existing reduction support with an int sum;
• Our manual critical version stores partial values of each thread in a temporary vari-

able, which it sums into a shared variable in a critical region at the end of the
parallel region;

• Our manual atomic variant is identical to our manual critical version except that it
performs the sum in an atomic construct, which generic UDRs cannot use—we
evaluated this reduction strategy for completeness;

• Our manual shared arrays test uses the reduction algorithm that Fig. 2 shows;
• Our UDR version uses a UDR operator that adds two int variables and returns the

result as the return value.

We use the statistical analysis of the EPCC OpenMP benchmark suite [1] but determine
the overhead of reductions directly. Specifically, we profile the time that each thread
spends in the reduction operation rather than indirectly measuring the overhead by sub-
tracting the overhead of a parallel region from the overhead of a parallel region
with a reduction clause. The indirect method has high variance since the reduction
overhead is relatively small compared to that of any parallel region.

We measure reduction execution times with the Itanium interval timer facilities [3]
of an SGI Altix 4700 (1.67 GHz). We vary the thread count from one to 64 and compute
the average of 2,000 overhead measurements for each kind of reduction. The maximum

A Proposal for User-Defined Reductions in OpenMP 53

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 12 16 20 24 32 36 40 44 48 52 56 60 64

O
ve

rh
ea

d
(μ

s)

of threads

REDUCTION
MANUAL REDUCTION (CRITICAL)
MANUAL REDUCTION (ATOMIC)
MANUAL REDUCTION (SHARED ARRAY)
USER DEFINED REDUCTION

Fig. 10. Performance comparison of reduction patterns and UDRs

deviation of the time measured is around 2%, which indicates that our methodology
provides a consistent measurement. Fig. 10 summarizes our microbenchmark results.

The manual critical test incurs higher reduction overheads with increasing thread
counts. As the thread count increases, more threads compete for the central lock that
protects the computation of the global result. With two threads, the overhead to enter
and to exit the critical region already exceeds the time spent within it. As the
threads reach the critical region at about the same time, the overhead increases
linearly with the thread count.

The manual atomic variant improves performance over the manual critical version
by roughly 50% but we still observe linear increases in overhead with thread count. The
manual atomic variant incurs smaller overhead since atomic uses atomic instructions
instead of acquiring and releasing a lock. The machine’s memory subsystem ensures
mutual exclusion for accesses to the global result, which still incurs increasing overhead
as the thread count increases. Each step of the reduction also incurs a cache fault.

The standard reduction, manual shared array, and UDR tests exhibit roughly the
same overhead. Mercurium implements standard OpenMP reductions with private tem-
porary variables on each threads’ stack. A for loop then retrieves each thread’s pri-
vate variable and adds them to the global result at the end of the parallel region.
Our manual shared arrays implementation uses the same approach except that it stores
the private variables in a shared array. Our UDR implementation extends Mercurium’s
standard reduction algorithm such that it invokes the UDR function when computing

54 A. Duran et al.

the global result. The native compiler inlines the UDR function so it incurs almost no
additional overhead compared to the standard reduction and manual shared array tests.

In summary, our performance evaluation shows that the UDR implementation of
our prototype exhibits the same level of performance as standard reductions and the
efficient manual UDR implementation of Fig. 2. Thus, we demonstrate that OpenMP
can remove the burden of error-prone and cumbersome manual idioms for reductions
of user-defined types from the programmer while providing high performance through
our UDR mechanism.

6 Conclusions and Future Work

OpenMP applications, like their sequential counterparts, often employ user-defined data
types. Typically, programmers must overcome OpenMP’s lack of support for reductions
on these types. Our new mechanism overcomes this limitation by concisely specifying
user-defined reductions in OpenMP programs. Our solution uses a declarative directive
that is consistent with existing OpenMP syntax and allows existing binary functions on
user-defined data types to serve as UDRs. UDRs support all OpenMP base languages
and blend well with potential future OpenMP base languages.

Our UDR mechanism allows the OpenMP runtime system to choose the most effi-
cient reduction algorithm for a parallel region. For example, the runtime can adapt the
reduction algorithm to the thread count, which would otherwise require complex user
programming. Our measurements have shown that our proposal introduces no addi-
tional overhead compared to manually implemented reductions (or regular OpenMP re-
ductions) while avoiding copy-and-paste duplication of reduction algorithms and
hard-to-find errors that stem from user-level reduction implementations.

Acknowledgments

The researchers at BSC-UPC were supported by the Spanish Ministry of Science and
Innovation (contracts no. TIN2007-60625 and CSD2007-00050), the Generalitat de
Catalunya (2009-SGR-980), the European Commission in the context of the SARC
project (contract no. 27648), the HiPEAC Network of Excellence (contract FP7/ICT
217068), and the MareIncognito project under the BSC-IBM collaboration agreement.

References

1. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proc. of
1st European Workshop on OpenMP, Lund, Sweden, October 1999, pp. 99–105 (1999)

2. Barcelona Supercomputing Center. The NANOS Group Site: The Mercurium Compiler,
http://nanos.ac.upc.edu/mcxx

3. Intel Corporation. Intel Itanium 2 Processor Reference Manual for Software Development
and Optimization (May 2004); Order number 251110-003

4. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Com-
munications of ACM 51(1), 107–113 (2008)

http://nanos.ac.upc.edu/mcxx

A Proposal for User-Defined Reductions in OpenMP 55

5. Deitz, S.J., Chamberlain, B.L., Snyder, L.: High-level Language Support for User-defined
Reductions. Journal of Supercomputing 23(1), 23–37 (2002)

6. Becker, P. (ed.): Working Draft: Standard for Programming Language C++ (November
2009); Document number N3000

7. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and Other Cilk++ Hy-
perobjects. In: Proc. of the 21st Ann. Symp. on Parallelism in Algorithms and Architectures,
Calgary, AB, Canada, August 2009, pp. 79–90 (2009)

8. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Lumsdaine, A., Dos Reis, G.: Concepts: Lin-
guistic Support for Generic Programming in C++. In: Proc. of the 2006 ACM SIGPLAN
Conf. on Object-oriented Programming, Systems, Languages, and Applications, Portland,
OR, October 2006, pp. 291–310 (2006)

9. IEEE. Threads Extension for Portable Operating Systems (Draft 6), Document P1003.4a/D6
(February 1992)

10. ISO/IEC. Programming Languages – C, ISO/IEC 9899:1999 (1999)
11. ISO/IEC. Programming Languages – C++, ISO/IEC 14882:2003 (2003)
12. Kambadur, P., Gregor, D., Lumsdaine, A.: OpenMP Extensions for Generic Libraries. In:

Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 123–133.
Springer, Heidelberg (2008)

13. Klemm, M., Veldema, R., Bezold, M., Philippsen, M.: Proposal for OpenMP for Java. In:
Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005 and IWOMP 2006. LNCS, vol. 4315, pp. 409–421. Springer, Heidelberg (2008)

14. McGrady, D.: Avoiding Contention using Combinable Objects (September 2008),
http://blogs.msdn.com/nativeconcurrency/archive/2008/09/25/
avoiding-contention-using-combinable-objects.aspx

15. Michaelis, M.: Essential C# 3.0: For.NET Framework 3.5 (Microsoft.Net Development), 2nd
edn. Addison-Wesley Longman, Amsterdam (September 2008)

16. Microsoft Developer Network. Process and Thread Functions (Windows), http://msdn.
microsoft.com/en-us/library/ms684847%28VS.85%29aspx

17. MPI Forum. MPI: Extensions to the Message-passing Interface, Version 2.2. Technical re-
port, MPI Forum (September 2009)

18. Oaks, S., Wong, H.: Java Threads, 3rd edn. O’Reilly, Sebastopol (2004)
19. OpenMP ARB. OpenMP Application Program Interface, v. 3.0 (May 2008)
20. Reinders, J.: Intel Threading Building Blocks. O’Reilly, Sebastopol (July 2007)

http://blogs.msdn.com/nativeconcurrency/archive/2008/09/25/avoiding-contention-using-combinable-objects.aspx
http://blogs.msdn.com/nativeconcurrency/archive/2008/09/25/avoiding-contention-using-combinable-objects.aspx
http://msdn.microsoft.com/en-us/library/ms684847%28VS.85%29aspx
http://msdn.microsoft.com/en-us/library/ms684847%28VS.85%29aspx

An Extension to Improve OpenMP Tasking Control

Eduard Ayguadé1, James Beyer4, Alejandro Duran1, Roger Ferrer1,
Grant Haab5, Kelvin Li3, and Federico Massaioli2

1 Barcelona Supercomputing Center
{alex.duran,roger.ferrer,eduard}@bsc.es

2 CASPUR.
federico.massaioli@caspur.it

3 IBM Canada Lab
kli@ca.ibm.com

4 Cray Inc.
beyerj@cray.com

5 Intel Corp.
grant.haab@intel.com

Abstract. OpenMP tasks were introduced in order to support irregular paral-
lelism. However, task runtime overhead is necessarily higher than for workshar-
ing constructs, and can hamper performance if the tasks are too finely grained.
In this paper, we address the common use case, of tasks generated in a tree-like
hierarchy, with task granularity decreasing with increasing depth, and propose a
new final clause to force coalescing of excessively fine grained tasks.

1 Introduction

The OpenMP Tasking Model is the most significant addition to OpenMP API V3.0 [7],
allowing irregular parallelism to be expressed in an OpenMP program. As a conse-
quence of the principles adopted during the design process [2], safety and correctness
was always preferred over performance. Moreover, many possibilities explored during
the design phase did not find their way into the 3.0 API. In particular, all features not
supported by clear use cases or experimental evidence from compiler developers or
end users, no matter how promising they might be, remained on the drawing board.
More than one year after OpenMP API 3.0 publication, sufficient experience has been
collected from the field to warrant readdressing some features.

Regular parallelism, as in OpenMP worksharing constructs, allows for limiting exe-
cution overhead. In particular, for a loop construct: i) number of iterations is known on
entrance, ii) a barrier will not be encountered before construct end, iii) static schedul-
ing allows execution to be planned in advance, and iv) all scheduling options allow
iterations to be scheduled in blocks.

Most interesting cases of irregular parallelism are not amenable to such optimiza-
tions. In general, the total number of generated tasks, number of children spawned by
a task, and synchronization points cannot be known in advance. Hence, irregular par-
allelism incurs higher runtime overheads, which can dominate execution if the tasks
are too fine grained. If task granularity is constant across an algorithm, it is quite easy

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 56–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Extension to Improve OpenMP Tasking Control 57

for programmers to coalesce fine grained tasks together until overhead is acceptable.
Unfortunately, coalescing is not that easy when tasks granularity changes dynamically,
as is common in problems like adaptive configuration space exploration, or hierarchical
grid or finite element discretization of mechanical systems [6], in which tasks are gen-
erated in an unbalanced tree-like hierarchy, and their granularity varies as a function of
branch and depth. In this paper we show experimental analysis of this class of problems,
and propose a final clause to control coalescing of child tasks.

2 Motivation

The task directive was added in the OpenMP API V3.0 [7] to support dynamic, irregu-
lar parallelism (e.g., while loops or recursive functions). A thread encountering a task
construct generates a unit of work, the execution of which can be deferred with respect
to the following code, or even handed to a different thread. For task-based application
to scale, it is very important that developers control the overhead of task creation [1].

The task directive provides an optional if clause, that forbids deferral when its
argument evaluates to false. Regardless of how the expression in the if clause eval-
uates, true or false, a new task data environment is always generated. When an if
clause expression evaluates to false, the associated task is not subject to all scheduling
possibilities, so some overhead could be avoided, at least in principle. Hence it would
seem that the if clause is the solution in situations, like recursive algorithms, where
computational cost shrinks as depth increases, and the benefit of generating a new task
diminishes due to overhead cost. However, for safety reasons [2], variables referenced
in a task construct are, in most cases, by default firstprivate, thus the overhead
of data environment setup may be the dominant component of task creation. It could be
thought that a clever and aggressively optimizing implementation could get rid of priva-
tization, and coalesce the task altogether. Unfortunately, this is not generally possible,
because variable privatization alters code semantics in very subtle ways, and proving
that it is not needed can be difficult for a compiler. In other words, the semantics of
the if clause do not allow effective control of task granularity. Moreover, as in the
following example, Fig. 1, a task may require additional steps that are not needed when
it is serialized. The only general approach is for users to avoid further task generation

1 vo id nqueens (i n t n , i n t j , char ∗b , i n t ∗ s o l , i n t d e p t h) {
2 . . .
3 f o r (i = 0 ; i < n ; i ++)
4 #pragma omp task untied i f (d e p t h < MAX DEPTH)
5 {
6 /∗ a l l o c a t e a temporary ar ray and copy <a> i n t o i t ∗ /
7 char ∗ b = a l l o c a ((j + 1) ∗ s i z e o f (char)) ;
8 memcpy (b , a , j ∗ s i z e o f (char)) ;
9 b [j] = i ;

10 i f (ok (j + 1 , b))
11 nqueens (n , j + 1 , b , &c s o l s [i] , d e p t h + 1) ;
12 }
13 . . .
14 }

Fig. 1. Avoiding fine granularity tasks with the if clause

58 E. Ayguadé et al.

manually by explicitly coding both parallel and serial versions of the algorithm, to be
called under proper conditions.

The example in Fig. 1 shows the if clause specified on the task directive to avoid
fine granularity tasks in the recursive routine nqueens. When the variable depth
is larger than or equal to MAX DEPTH, the granularity is too fine to benefit from task
parallelism; it is more beneficial to execute the task immediately after it is generated.
The problem is that there is overhead involved in complying with OpenMP semantics
when the if clause evaluates to false.

Fig. 2 shows a manually modified version of the example in Fig. 1 in which the
programmer provides a serial version of the nqueens routine (nqueens ser). If the
condition is satisfied, the serial code is executed. Hence, no task generation overhead
is incurred. Furthermore, the serial routine is optimized with the knowledge that it will
not spawn any new parallelism; in this particular case, the allocation and initialization
of temporary array b has been removed.

1 vo id nqueens (i n t n , i n t j , char ∗b , i n t ∗ s o l , i n t d e p t h) {
2 . . .
3 f o r (i = 0 ; i < n ; i ++)
4 i f (d e p t h < MAX DEPTH) {
5 #pragma omp task untied
6 {
7 /∗ a l l o c a t e a temporary ar ray and copy <a> i n t o i t ∗ /
8 char ∗ b = a l l o c a ((j + 1) ∗ s i z e o f (char)) ;
9 memcpy (b , a , j ∗ s i z e o f (char)) ;

10 b [j] = i ;
11 i f (ok (j + 1 , b))
12 nqueens (n , j + 1 , b ,& c s o l s [i] , d e p t h + 1) ;
13 }
14 } e l s e {
15 a [j] = i ;
16 i f (ok (j + 1 , a))
17 n q u e e n s s e r (n , j + 1 , a ,& c s o l s [i]) ;
18 }
19 . . .
20 }

Fig. 2. Avoiding fine granularity tasks manually

The performance benefit is shown in Fig. 3. The chart shows the speed-up for the
version with the if clause, and two possible manual versions (one where the serial
function has been optimized and one where it has not). The difference in performance
between the version with the if clause and the unoptimized manual version is due to
task generation overheads. While asking OpenMP to optimize the serial function is be-
yond today’s compiler capabilities, we think that OpenMP should provide performance
close to the unoptimized manual version.

The performance benefits above motivate the proposal of a new clause to the task
directive – final. The final clause provides a way for users to control whether any
child task should be generated and defines the appropriate semantics so it can be fully
optimized by an OpenMP implementation. Additionally, we propose an additional API
call that allows the user to specify parts of his code that do not need to be executed
when a task is not spawned.

An Extension to Improve OpenMP Tasking Control 59

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

of threads

if-clause
manual-unoptimized
manual-optimized

Fig. 3. Queens speed-ups controlling granularity

3 The Final Clause

In this section we propose the final clause with the appropriate semantics to effi-
ciently control the granularity of tasks, overcoming the shortcomings of the existing if
clause discussed in the previous section.

The syntax of this new clause is as follows:

1 final (e x p r e s s i o n)

When the final clause appears in a task construct the expression inside the clause
is evaluated at task creation. If the clause evaluates to true the task is considered a leaf
or final task. All task constructs that are closely nested in the dynamic extent of a final
task can be ignored by the implementation (either at compile or run time) and run in
the context of the encountering task. Note, that if all task constructs are ignored then
taskwait constructs can also be safely removed as they would effectively be no-ops.

There are two main differences between the if and the final clauses: the task
constructs it affects and the way those constructs are “ignored”.

While the if clause affects the task being defined by a task construct (and only
that one), the final clause affects all its descendant tasks (even if they do not have a
final clause themselves).

Compared to the if clause, where the task construct is only partially ignored (as
we have discussed, a new task and data environment is still created when it evaluates to
false), our proposed final clause semantics completely ignore the descendant task
constructs (i.e., no new task nor new data environment will be created). OpenMP locks,
critical and atomic constructs inside the dynamic extent of a final task still need
to be honored to maintain the correctness of the program.

This difference in semantics allows the implementation to devise better optimizations
to inline child tasks to increase the granularity in recursive patterns as the one shown

60 E. Ayguadé et al.

in Section 2. But, these semantics are a double-edged sword. The usage of the final
clause can generate side-effects and it is not as safe as that of the if clause. These
side-effects come because modifications of the data environment or internal control
variables[7] would happen differently, depending if the task is finalized or not. Fig. 4
shows a case where the value of the variable i would change depending on the value of
the expression expr inside the final clause.

This means the final clause is an optimization that users should only activate when
they are sure it will not generate any problems (which is the common case because it
follows the path of the serial execution).

1 vo id foo ()
2 {
3 i n t i = 3 ;
4 #pragma omp task final (expr) firstprivate (i)
5 i ++;
6 p r i n t f ("%d\n" , i) ; / / w i l l p r i n t 3 or 4 depending on expr
7 }

Fig. 4. Example of side-effects due to the final clause

For completeness, we suggest that the final clause should also be allowed on the
parallel and worksharing constructs. In this case, all task constructs in the region
will be ignored. This is useful mainly for debugging purposes (i.e., disabling all tasks),
but it could also be useful for performance reasons (e.g., in the presence of nested
parallelism).

In addition we propose an API call, omp in final, that will return whether the
current task is a final task or not. This call allows the programmer to check that a specific
portion of his code is not called from a final clause if that could cause correctness
problems. Also, it allows the programmer to optimize the code when task is final. For
example, the example presented in Section 2 would look as Fig. 5 shows using the
final clause and the omp in final call.

4 Implementation

The Mercurium C/C++ source-to-source compiler [4] was used to prototype the pro-
posed final clause. Mercurium implements a subset of OpenMP 3.0 on top of the
Nanos 4 runtime [8].

4.1 Implementation of Tasks

The Mercurium tasking implementation features a creation mode used when a task
is about to be created. This creation mode, which is set at runtime, defines whether the
task is actually created: if a task cannot be created it must run immediately. If no if
clause is present the Nanos 4 runtime sets the creation mode thus enforcing a runtime
task creation policy (e.g., to avoid overruns of runtime structures). Tasks with an if

An Extension to Improve OpenMP Tasking Control 61

1 vo id nqueens (i n t n , i n t j , char ∗b , i n t ∗ s o l , i n t d e p t h) {
2 . . .
3 f o r (i = 0 ; i < n ; i ++)
4 #pragma omp task untied final (d e p t h +1 >= MAX DEPTH)
5 {
6 char ∗b ;
7 i n t ∗ s o l s ;
8

9 i f (omp_in_final () && d e p t h >= MAX DEPTH) {
10 b = a ;
11 ∗ s o l s = s o l ;
12 } e l s e {
13 /∗ a l l o c a t e a temporary ar ray and copy <a> i n t o i t ∗ /
14 char ∗ b = a l l o c a ((j + 1) ∗ s i z e o f (char)) ;
15 memcpy (b , a , j ∗ s i z e o f (char)) ;
16 ∗ s o l s = &c s o l s [i] ;
17 }
18

19 b [j] = i ;
20 i f (ok (j + 1 , b))
21 nqueens (n , j + 1 , b , s o l s , d e p t h + 1) ;
22 }
23 . . .
24 }

Fig. 5. Avoiding fine granularity tasks with the if clause

clause whose expression evaluates to false have an immediate creation mode (effectively
implementing the semantics of the if clause).

Mercurium implements tasks using the common technique of the outline function [3]
where a new function is created containing the code of the task. The address of the
outline function, along with the arguments, is passed to the runtime so the task can be
enqueued for later execution.

Consider the listing in Fig. 6. The code generated by Mercurium to create the task
inside function f (line 16) is shown in Fig. 7.

As we can see in Fig. 7, two paths can be followed depending on the creation mode.
If the creation mode is immediate (this can happen because an if clause expression
evaluates to false or because the runtime denies the creation of the task) the transformed
code calls the outline function (line 23), effectively running the task code in the current
thread. If the creation mode allows the creation of the task, then a task is created by
means of a runtime call (line 11) (which could still be scheduled to run on the current
thread).

Fig. 7 also shows that even if the immediate path is much simpler than the creation
path, it is not as simple as just calling the outline function. Proper implementation of
OpenMP task semantics requires additional bookkeeping for firstprivate vari-
ables and for the context of inner tasks (lines 22 to 24). This bookkeeping becomes
noticeable when the if clause is used to control or aggregate fine grain tasks, like in
Fig. 1.

4.2 Adding Final Support

Adding support for the final clause to our existing implementation is straightforward.
When the expression in the final clause evaluates to true, the task is flagged as final.

62 E. Ayguadé et al.

1 f l o a t g1 (f l o a t) ;
2 f l o a t g2 (f l o a t) ;
3 f l o a t g (f l o a t b)
4 {
5 f l o a t b1 , b2 ;
6 #pragma omp task shared (b1)
7 b1 = g1 (b) ;
8 #pragma omp task shared (b2)
9 b2 = g2 (b) ;

10 #pragma omp taskwait
11 re turn b1 + b2 ;
12 }
13 f l o a t f (f l o a t a)
14 {
15 f l o a t b ;
16 #pragma omp task i f (i f e x p r) final (f i n a l e x p r) shared (b) firstprivate (a)
17 i f (a > 0)
18 b = a + g (a) + f (a − 1) ;
19

20 #pragma omp taskwait
21 re turn b ;
22 }

Fig. 6. Example of task code

1 n t h c r e a t i o n m o d e r e s t n t h c r e a t i o n m o d e = CREATION MODE IMMEDIATE ;
2 i f (i f e x p r)
3 n t h c r e a t i o n m o d e = n t h c r e a t i o n m o d e c r e a t e () ; / / Runtime c a l l
4 s wi tc h (n t h c r e a t i o n m o d e)
5 {
6 case CREATION MODE CREATE :
7 {
8 /∗ Create a task ∗ /
9 n t h d e s c ∗ n t h ;

10 . . . / / Code t h a t f i l l s arguments of the o u t l i n e
11 n t h = n t h c r e a t e t a s k c i ((vo id ∗) (n t h f 3) , &n t h t y p e , &n t h n d e p s ,
12 &nth vp , &n t h s u c c , NTH CI ALL , &n t h a r g a d d r p t r , &n t h n a r g s r e f ,
13 &n t h n a r g s v a l , &b , &n t h s i z e [1] , &a) ;
14 n t h s u b m i t (n t h) ;
15 break ;
16 }
17 case CREATION MODE IMMEDIATE :
18 {
19 /∗ Run the task immediately ∗ /
20 f l o a t c v a l a = a ; /∗ f i r s t p r i v a t e va r i ab l e ∗ /
21 n t h t a s k c t x t n t h c t x ;
22 n t h p u s h t a s k c t x (& n t h c t x) ;
23 n t h f 3 (&b , &c v a l a) ;
24 n t h p o p t a s k c t x () ;
25 break ;
26 }
27 d e f a u l t : { /∗ I n v a l i d c rea t i on mode ∗ / b u i l t i n a b o r t () ; break ; }
28 }

Fig. 7. Implementation of the task construct in Nanos 4

Once a task is marked as final, the creation mode of any other task created by the final
task will always be immediate.

This implementation, while fulfilling the semantics of the final clause, performs
unnecessary work. As shown in Fig. 7 (lines 22 to 24) the immediate path still requires

An Extension to Improve OpenMP Tasking Control 63

1 i f (NTH MYSELF−>t a s k c t x −>i s f i n a l)
2 {
3 / / F i na l c rea t i on mode path
4 n t h f 3 (&b , &a) ;
5 }
6 e l s e
7 {
8 n t h c r e a t i o n m o d e r e s t n t h c r e a t i o n m o d e = CREATION MODE IMMEDIATE ;
9 i f (expr)

10 n t h c r e a t i o n m o d e = n t h c r e a t i o n m o d e c r e a t e () ; / / Runtime c a l l
11

12 char t a s k i s f i n a l = (f i n a l e x p r) ;
13 s wi tc h (n t h c r e a t i o n m o d e)
14 {
15 case CREATION MODE CREATE :
16 {
17 /∗ Create a task ∗ /
18 n t h d e s c ∗ n t h ;
19 . . . / / Code t h a t f i l l s arguments of the o u t l i n e
20 n t h = n t h c r e a t e t a s k c i (. . .) ;
21 i f (t a s k i s f i n a l)
22 nth−>t a s k c t x −>i s f i n a l = 1 ;
23 n t h s u b m i t (n t h) ;
24 break ;
25 }
26 case CREATION MODE IMMEDIATE :
27 {
28 /∗ Run the task immediately ∗ /
29 f l o a t c v a l a = a ;
30 n t h t a s k c t x t n t h c t x ;
31 n t h p u s h t a s k c t x (& n t h c t x) ;
32 i f (t a s k i s f i n a l)
33 NTH MYSELF−>t a s k c t x −>i s f i n a l = 1 ;
34 n t h f 3 (&b , &c v a l a) ;
35 n t h p o p t a s k c t x () ;
36 break ;
37 }
38 d e f a u l t : { /∗ I n v a l i d c rea t i on mode ∗ / b u i l t i n a b o r t () ; break ; }
39 }
40 }

Fig. 8. Implementation of the task construct supporting the final clause

some bookkeeping. This bookkeeping is only needed if a task that runs immediately
creates new tasks. If one of these tasks does not run immediately, the task which created
them needs to properly synchronize to fulfill OpenMP semantics. As an example of such
case, consider the task in line 16 of Fig. 6. If the runtime chooses not to create that task,
running it immediately, the task code can call function g which creates two tasks. That
task in f needs to properly synchronize with those two tasks in case they do not run
immediately. This bookkeeping is unnecessary in final tasks: all tasks created by a final
task always run immediately.

So, we added an additional creation mode: final. When the creation mode is final the
task runs as if the creation mode is immediate but the bookkeeping is avoided. Since a
final task will never create tasks, regardless of the value of the if clause, we add an
early check to determine if the creating task is itself final, as is shown in Fig. 8. On line 1
the creating task first checks if it is final. If it is final, then the task runs immediately
(line 4). If it is not final, the task creation proceeds as it did previously (see Fig. 7).

64 E. Ayguadé et al.

We also protect the runtime calls that implement the taskwait construct with a
check to the final flag. If the task is final the call will be omitted (as it will have no
children tasks).

The implementation of the omp in final API call straightforwardly returns the
value of the final flag.

4.3 Advanced Final Support

While the approach in section 4.2 harnesses the properties of final tasks to improve
performance, we have not yet fully realized the benefits of final tasks. The handmade
transformation from Fig. 2 controls both task granularity and overhead. A similar solu-
tion can be implemented automatically.

Since final tasks do not create any tasks, final tasks can be implemented by rewrit-
ing their code where all the tasking constructs (i.e., task and taskwait) have been
removed. If we repeat this process recursively for all the functions called from the task
code we get what we call the serial closure. This serial closure is, basically, a copy
of all the code potentially called from a single task but without OpenMP tasking con-
structs and straightforwardly implements the final task semantics. We also substitute
the calls to omp in final by the constant 1 as the task will always be final in the
serial closure. This substitution enables further optimizations by the compiler backend
(e.g., constant propagation, dead code elimination).

Fig. 9 shows how the final clause can be implemented using the serial closure.
When the task is final (line 16), we invoke the serialized version of the task code. Since
functions f and g are directly or indirectly called by the created task, a serial version
of each without OpenMP (lines 1 and 8), is created and called instead of the original
functions inside the serial closure (line 12).

1 f l o a t s e r i a l g (f l o a t b)
2 {
3 f l o a t b1 , b2 ;
4 b1 = g1 (b) ;
5 b2 = g2 (b) ;
6 re turn b1 + b2 ;
7 }
8 f l o a t s e r i a l f (f l o a t a)
9 {

10 f l o a t b ;
11 i f (a > 0)
12 b = a + s e r i a l g (a) + s e r i a l f (a − 1) ;
13 re turn b ;
14 }
15 . . .
16 i f (NTH MYSELF−>t a s k c t x −>i s f i n a l)
17 {
18 / / f i n a l c losure path
19 / / task code i s i n l i n e d
20 i f (a > 0)
21 b = a + s e r i a l g (a) + s e r i a l f (a − 1) ;
22 }

Fig. 9. Implementation of the final clause under serial closure

An Extension to Improve OpenMP Tasking Control 65

Implementing the final clause using the serial closure has the benefit that the
overhead due to OpenMP runtime calls is minimized. This does not happen if we simply
call the outline function of a final task (like in Fig. 8). Any task created inside that final
task still has to check the final status.

Applicability of serial closure is limited by the availability of the code. Code in
libraries usually cannot benefit from serial closure because most of the time the code
is not available at compile time. In those cases, the tasks will have to resort to testing
the creation mode. In Fig. 9, functions g1 and g2 are called directly (lines 4 and 5)
because their code is not available. If these functions create tasks they will have to
check the creation mode.

Code size constraints can also pose a problem to the serial closure approach, since
depending on the program, a large amount of code may be duplicated, but that would
also happen if a user did it manually as in Fig. 2.

5 Evaluation

5.1 Methodology

To evaluate the possible benefits of the final clause we have used three applications
from the BOTS suite[5] that present fine grain parallelism: nqueens, floorplan and fi-
bonacci. For each application we have executed different versions:

if-clause. In this version the granularity control of tasks is done by means of an OpenMP
if, much as in Fig. 1.

manual-unoptimized. In this version the granularity control is manually introduced
by the programmer modifying the source code, as in Fig. 2, with the serial path
executing the same code as the parallel path.

manual-optimized. The same as the manual-unoptimized version but the unneeded
code has been removed from the serial path. For Fibonacci the serial path cannot
be optimized so we will refer to it just as manual.

final. In this version, the final clause controls the granularity of tasks using the first
simple implementation described in Section 4.

final-closure. In this version, we also used the final clause but with the serial closure
described in Section 4.

final-closure+api. In this version, we used the proposed omp in final API call in
addition to the final clause to optimize the final path.

Comparing the final versions with the if-clause version will show how much benefit can
be obtained by lifting some of the constraints of the if clause. By comparing the final
versions against the manual versions we can compare the performance we obtain and
the one programmer could obtain by modifying his code.

Finally, we compare the the final and final-closure implementations of the final
clause to quantify which are the benefits (if any) of the more complex implementation
of final-closure where there is also code replication (see Section 4).

All the benchmarks were compiled with an extended Mercurium C/C++ source-to-
source compiler that implements the final clause for tasks targetting the Nanos 4 [8]

66 E. Ayguadé et al.

runtime. The backend compiler used by the Mercurium source-to-source compiler was
gcc 4.1 with -O3 optimization level.

We executed the benchmarks on a SGI Altix 4700 with Itanium 2 processors using a
cpuset configuration that avoids interferences with other threads in the system. For the
purpose of this evaluation we used up to 32 processors.

For each experiment we have run 5 executions and we present in the next sections the
average speed-up (and the mean deviation). For nqueens and fibonacci the speed-up we
show is in execution time against the optimized serial version. In the case of floorplan,
because the execution is not deterministic, the speed-up is computed using the number
of tasks per second metric [5].

5.2 Results

NQueens. Fig. 10 shows the experimental results obtained with the four different ver-
sions to control granularity for the NQueens application with a 14x14 board size. As we
saw in Section 2 the if version obtains a very limited speed-up compared to the manual
versions. The results show that using the proposed final clause we see a significant
performance increase with the simple version and even more with the version using
the serial closures. While the final-closure version cannot achieve the performance of
the manual-optimized version because it cannot optimize the serial path, it obtains a
scalability on par with the manual-unoptimized version without modifying the original
source at all.But, by using the proposed API call the user can optimize the path and
obtain a performance on par with the manual-optimized version without having to split
his code manually.

Fibonacci. Fig. 11 shows the performance results, for all different versions, to com-
pute the 40th Fibonacci number. Fibonacci presents very fine grain tasks that make it
very difficult to scale without aggregating them efficiently. The results show the version
with if clause, because of its semantics, does not scale at all. The version using the

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

of threads

if-clause
final
final-closure
manual-unoptimized
final-closure+api
manual-optimized

Fig. 10. Speed-up results for NQueens with a 14x14 board

An Extension to Improve OpenMP Tasking Control 67

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

of threads

if-clause
final
final-closure
manual

Fig. 11. Speed-up results for Fibonacci with input 40

simple final implementation already is able to scale a bit but because tasks are so
fine grained even small overheads impacts the final performance. But, when we use the
final version using the serial closure we obtain performance as good as the manual
version, with a considerable gain over the simple final implementation.

Floorplan. Fig. 12 shows the results obtained for the floorplan benchmark with the in-
put of 20 cells. Floorplan is a search algorithm with pruning. As such, it is very irregular.
While the version with the if clause scales a bit, performance is far below the manual
versions. Implementing it with the proposed final clause (with or without the serial
closure) we obtain a version that performs as the manual without optimizatios. When
we use the final API we obtain results on par with the optimized manual version.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 12 16 20 24 28 32

S
pe

ed
-u

p

of threads

if-clause
final
final-closure
manual-unoptimized
final-closure+api
manual-optimized

Fig. 12. Speed-up results for Floorplan with 20 cells

68 E. Ayguadé et al.

Code size analysis. As we mentioned in Section 4.2, the use of a serial closure can
increase the size of the executable. Fig. 13 shows the size of the linked binary for each of
the versions of the different applications. We can see that although the final versions
with closures introduce a bit more of code than the manual version, these versions do
not result in a code explosion. Better analysis of the code that needs to go into the
closure could further reduce code duplication. So, overall the code increase does not
pose a problem.

 0

 10

 20

 30

 40

 50

 60

floorplan fib nqueens

B
in

ar
y

si
ze

 (
K

B
)

if-clause
final

final-closure
manual

Fig. 13. Binary size of different versions

6 Conclusions and Future Work

Our evaluation shows that the final clause we propose can improve scaling of algorithms
entailing a wide range of task granularity by reducing the overheads associated with ex-
ecution of fine-grained tasks (particularly if serial closures and the omp in finalAPI
call are used). The clause and API call enable these gains under programmer control to
a level that is very difficult to achieve by automated optimization.

The clause is a profound change to OpenMP in two respects. First, it affects whether
data-sharing attribute clauses are honored or not. Second, it does so not for the con-
struct it associates to, but for constructs encountered in its dynamic extent. Hence code
semantics can change depending on the dynamic context, with significant impact on
code development and programmer’s approach. We are confident the first change is not
harmful for predetermined or implicitly determined data-sharing attributes, but deeper
investigation is needed for explicitly-determined ones. Both aspects need more investi-
gations in terms of user experience.

Our proposal addresses recursively generated tasks for which the computational cost
shrinks as depth increases. More investigation is needed to address cases where task
generation is not recursive or cost is not related to generation depth.

Acknowledgements

The researchers at BSC-UPC were supported by the Spanish Ministry of Science and In-
novation (contracts no. TIN2007-60625 and CSD2007-00050), the Generalitat

An Extension to Improve OpenMP Tasking Control 69

de Catalunya (2009-SGR-980), the European Commission in the context of the SARC
project (contract no. 27648), the HiPEAC Network of Excellence (contract FP7/ICT
217068), and the MareIncognito project under the BSC-IBM collaboration agreement.
This material is based upon work supported by the Defense Advanced Research Projects
Agency under its Agreement No. HR0011-07-9-0001. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Defense Advanced Research Projects Agency.

References

1. Corbalán, A.J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling Strategies. In:
Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 100–110.
Springer, Heidelberg (2008)

2. Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Transactions on Parallel
and Distributed Systems 20, 404–418 (2008)

3. Brunschen, C., Brorsson, M.: Odin/CCp–A Portable Implementation of OpenMP for C. Con-
currency: Practice and Experience. Special issue on OpenMP 12(12), 1193–1203 (2000)

4. Barcelona Supercomputing Center. The NANOS Group Site: The Mercurium Compiler,
http://nanos.ac.upc.edu/mcxx

5. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP Tasks Suite:
A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In: 38th
International Conference on Parallel Processing (ICPP ’09), Vienna, Austria, September 2009,
pp. 124–131. IEEE Computer Society, Los Alamitos (2009)

6. Kapinos, P., an Mey, D.: Parallel simulation of bevel gear cutting processes with openMP
tasks. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS,
vol. 5568, pp. 1–14. Springer, Heidelberg (2009)

7. OpenMP ARB. OpenMP Application Program Interface, v. 3.0 (May 2008)
8. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP tasks in

Nanos v4. In: CASCON ’07: Proceedings of the 2007 conference of the center for advanced
studies on Collaborative research, pp. 256–259. ACM, New York (2007)

http://nanos.ac.upc.edu/mcxx

Towards an Error Model for OpenMP

Michael Wong1, Michael Klemm2, Alejandro Duran3, Tim Mattson2, Grant Haab2,
Bronis R. de Supinski4, and Andrey Churbanov2

1 IBM Corporation
2 Intel Corporation

3 Barcelona Supercomputing Center
4 Lawrence Livermore National Laboratory

michaelw@ca.ibm.com, alex.duran@bsc.es, bronis@llnl.gov,
{michael.klemm,timothy.g.mattson}@intel.com,

{grant.haab,andrey.churbanov}@intel.com

Abstract. OpenMP lacks essential features for developing mission-critical soft-
ware. In particular, it has no support for detecting and handling errors or even a
concept of them. In this paper, the OpenMP Error Model Subcommittee reports
on solutions under consideration for this major omission. We identify issues with
the current OpenMP specification and propose a path to extend OpenMP with
error-handling capabilities. We add a construct that cleanly shuts down paral-
lel regions as a first step. We then discuss two orthogonal proposals that extend
OpenMP with features to handle system-level and user-defined errors.

1 Introduction

OpenMP [14] is a wide-spread and well-known programming model for parallel pro-
gramming on shared memory platforms. OpenMP’s initial focus was to provide portable
parallel programming for High Performance Computing (HPC) platforms. OpenMP’s
expressive programming model, including support for incremental parallelization, has
led application programmers in other areas (e. g., enterprise software) to consider it
for their applications. However, OpenMP’s lack of any concept of errors or support to
handle them has prevented wide-spread adoption of OpenMP by industries.

OpenMP 3.0 only requires an implementation to provide best effort execution for
runtime errors. Application are often terminated and users must restart. While perhaps
tolerable even if undesirable for HPC users, it is clearly unacceptable to terminate en-
terprise applications. Thus, programmers must implement workarounds (such as those
in Section 2) that make development and maintenance more difficult and often prevent
key compiler optimizations.

In this paper, we present the current plans of the OpenMP Error Model Subcommit-
tee to provide error handling extensions. Clean semantics for errors raised in concurrent
code paths are non-trivial [8,18,20] so we do not focus on solutions to concurrent er-
rors. We instead consider mechanisms to detect and to respond to errors (both OpenMP
runtime and user code errors). We provide our criteria and limitations for OpenMP er-
ror proposals in Section 3. We then propose a two-phase process to add error support in

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 70–82, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards an Error Model for OpenMP 71

1 vo id f (f l o a t ∗x , i n t am , i n t p o i n t s) ;
2

3 vo id a (f l o a t ∗x , i n t np) {
4 i n t am , p o i n t s ;
5 omp_set_dynamic (0) ;
6 omp_set_num_threads (1 6) ;
7 #pragma omp parallel shared (x , np) private (am , p o i n t s)
8 {
9 i f (omp_get_num_threads () != 16)

10 a b o r t () ;
11 am = omp_get_thread_num () ;
12 . . .
13 f (x , am , p o i n t s) ;
14 }
15 }

Fig. 1. Setting and checking the threads count for parallel regions

Section 4. We plan to add a done construct that cleanly terminates an OpenMP region
to the next OpenMP version while our longer term strategy is considering two proposals
of catching and handling OpenMP runtime and user-defined errors.

2 Current State in OpenMP Error Handling

This section motivates the need for clean error handling semantics in OpenMP. We first
investigate the current OpenMP specification’s error handling requirements for errors
that arise within OpenMP implementations. We then turn to OpenMP’s features for
handling user-defined errors, i. e., C++ exceptions and return codes in C and Fortran.

2.1 OpenMP Runtime Errors

OpenMP has never offered clean semantics to handle errors that arise within OpenMP
runtime implementations. Fig. 1 shows a similar example to Example 40.1.c, which
we chose arbitrarily from the OpenMP 3.0 specification [14]. We use this example to
investigate potential errors that may arise and how OpenMP deals with them.

The code in Fig. 1 calls omp set dynamic (line 5) and omp set num threads
(line 6) to ensure that exactly 16 threads execute the following parallel region. OpenMP
does not prescribe how an OpenMP implementation should react if a programmer
passes inconsistent values (e. g., a negative thread count) to these functions. Any be-
havior, from terminating the application to using any (valid) value is compliant.

If the OpenMP runtime cannot supply the requested number of threads (e. g., due to
resource constraints) for the parallel region, OpenMP does not prescribe how the im-
plementation must react. For instance, it can terminate the program with (or without)
an error message or continue with an arbitrary thread count. Thus, programmers must
explicitly check the thread count by calling omp get num threads and take appro-
priate actions; in this example, the program explicitly aborts (line 10) if it does not get
exactly 16 threads.

Other errors can occur when the OpenMP runtime creates the threading environment
and allocates resources for the parallel region. The OpenMP specification allows the

72 M. Wong et al.

1 vo id example () {
2 t r y {
3 #pragma omp parallel
4 {
5 #pragma omp f o r
6 f o r (i n t i = 0 ; i < N; i ++) {
7 p o t e n t i a l l y c a u s e s a n e x c e p t i o n () ;
8 }
9 p h a s e 1 () ;

10 #pragma omp barrier
11 p h a s e 2 () ;
12 }
13 }
14 c a t c h (s t d : : e x c e p t i o n ∗ex) {
15 / / handle except ion po in ted to by ex
16 }
17 }

Fig. 2. Non-conforming OpenMP code

OpenMP implementation to define how it responds to these errors. Hence, programmers
cannot intercept potential errors in a portable way in order to take more appropriate
actions.

OpenMP runtime support routines also have no defined error semantics. The specifi-
cation does not prescribe actions for an OpenMP implementation if routines fail, which
is also true if users supply incorrect values for OpenMP environment variables. These
unspecified behaviors complicate the implementation of resilient applications, which
must continue functioning in the presence of errors or unexpected conditions.

2.2 User-Defined Errors

Most mission-critical applications cannot silently ignore errors and continue execution.
Thus, error handling consumes significant application development time [16]. We now
discuss how OpenMP applications must handle C++ exceptions; we cover C and Fortran
error handling patterns at the end of this sub-section.

Sequential C++ codes usually map errors to exceptions that are thrown where the
error arises and caught by error handling code. Fig. 2 shows a simple program skeleton
that does not conform to the OpenMP specification if an exception arises in the for
construct. Several threads that execute could raise an exception and concurrent excep-
tions could occur. Any exception would cause a premature termination of the parallel
region, which violates the Single-Entry Single-Exit (SESE) principle that is required
of all OpenMP parallel regions including those that use longjmp() or throw [14].
Exceptions also must not escape any worksharing region or critical or master section.
Thus, applications must catch all exceptions thrown within any structured block that is
associated with an OpenMP construct before the block is exited. A throw that is exe-
cuted inside an OpenMP region must cause execution to resume within the same region
and the same thread that threw the exception must catch it.

Fig. 3 shows how to handle exceptions in a parallel region correctly by catching
exceptions (line 19) so that they do not escape an OpenMP construct. For simplicity,
we assume that all potential exceptions inherit from the C++ standard exception class

Towards an Error Model for OpenMP 73

1 vo id example () {
2 s t d : : e x c e p t i o n ∗ex = NULL;
3 #pragma omp parallel shared (ex)
4 {
5 . . .
6 #pragma omp f o r
7 f o r (i n t i = 0 ; i < N; i ++) {
8 / / i f an except ion occurred , cease execut ion of the loop body
9 / / (the ’ i f ’ e f f e c t i v e l y p r o h i b i t s most compi ler op t i m i za t i ons)

10 #pragma omp flush
11 i f (! ex) {
12 / / catch a p o t e n t i a l except ion l o c a l l y
13 t r y {
14 p o t e n t i a l l y c a u s e s a n e x c e p t i o n () ;
15 }
16 c a t c h (c o n s t s t d : : e x c e p t i o n ∗e) {
17 / / remember to handle i t a f t e r the p a r a l l e l reg ion
18 #pragma omp critical
19 ex = e ;
20 }
21 }
22 }
23 #pragma omp flush
24 / / i f an except ion occurred , stop execut ing the p a r a l l e l reg ion
25 i f (ex) goto t e r m i n a t i o n ;
26 p h a s e 1 () ;
27 #pragma omp barrier
28 p h a s e 2 () ;
29 t e r m i n a t i o n :
30 ;
31 }
32 i f (ex) {
33 / / handle except ion po in ted to by ex
34 }
35 }

Fig. 3. Shutting down an OpenMP-parallel region in presence of an exception

std::exception. We use a shared variable to notify other threads that the exception
occurred. As we cannot prematurely terminate the for construct (the OpenMP speci-
fication prohibits changing the loop control variable or using a break statement), we
use the exception flag to skip the remaining loop body when an exception occurs; this
conditional if disables many standard compiler optimizations such as vectorization.
Thus, the compliant code will run slowly even if no exceptions arise. We check the flag
again before phase 1() is executed to ensure that we skip line 26 branching to the
termination label (line 29). We again check the flag (line 32) following the parallel
region to handle the exception consistently with the sequential semantics.

While Fig. 3 provides a method to terminate a parallel region, worksharing con-
structs and tasks require conditional tests to skip the remainder of the structured block.
Synchronization constructs such as critical can use the C++ RAII (Resource Acquisi-
tion is Initialization) idiom, which scopes locks to ensure they are properly released.
However, we know of no suitable workarounds for the sections and ordered con-
structs. As OpenMP section constructs are statically defined tasks that are executed
concurrently, intercepting execution of section constructs in a conforming way (e. g.,
by setting a shared variable) is impossible. An ordered construct serializes part of
a loop’s execution. While it is possible to terminate the current ordered construct,

74 M. Wong et al.

Fig. 4. Classification of error handling strategies

programmers cannot influence execution of other ordered constructs. Avoiding ex-
ecution of subsequent ordered constructs effectively leads to the loop-termination
pattern of Fig. 3.

Most applications in C and Fortran indicate errors with special return values or an
errno variable (e. g., POSIX return codes [19]) or through an additional function ar-
gument (e. g., MPI error codes [12]). Programmers must check these manually to de-
termine if an error has arisen and handle it similarly to the coding pattern shown in
Fig. 3. Nonetheless, OpenMP SESE requirements often cause substantial changes to
the sequential coding pattern in these languages.

3 Design Objectives

We now discuss the major requirements for the cleaner error handling semantics that
OpenMP clearly needs. First, the new error model must support all OpenMP base lan-
guages and allow for additional ones consistently with the OpenMP philosophy of in-
cremental parallelization. Thus, it must support the methods of exception-aware (e. g.,
C++) and exception-unaware (e. g., C and Fortran) languages. The error handling fa-
cilities must tightly integrate modern exception handling while supporting traditional
techniques based on status flags and return values in order to avoid significant changes
to the sequential code.

Second, the new error model must provide exception-aware support even for excep-
tion-unaware languages since they have cleaner, stronger semantics than classic mech-
anisms (e. g., error codes). Programs cannot ignore (or forget to detect) exceptions,
which always force the programmer to respond in some way. Return codes intermix
data and errors, while exceptions decouple error handling from the primary application
functionality. Finally, exceptions simplify the reuse of error handling code and elimi-
nate repetitive, error-prone code since programmers do not have to locate error handlers
where errors arise.

The new model must support system-level errors as well as user-defined ones. Ide-
ally, an OpenMP implementation must provide notification of errors that arise within the
runtime system without requiring special checks. Further, the model must not require
the programmer to distinguish between system-level and user-defined errors although it
should allow the user to react differently depending on the source of the error. However,
programmers should rely on a single, common framework that can handle errors from
either source.

Towards an Error Model for OpenMP 75

The model must be flexible and provide tools to implement different error handling
strategies. Fig. 4 classifies error-handling mechanisms into different categories. Our
goal is to support the extreme strategy and cooperative strategy. Intermediate strate-
gies are beyond the scope of our working group. However, they could be implemented
through transactional memory [10], which is a possible OpenMP extension [11].

Most importantly, the error handling features must provide backward compatibil-
ity. It cannot break existing codes that have adapted to the current “best effort” error-
handling requirements. It also must not require new applications to handle errors if they
do not involve mission-critical computations.

4 OpenMP Error Handling Proposals

We propose a two-phase plan to satisfy our error model requirements. Our first step
will provide a construct to terminate OpenMP regions, which directly supports the
abrupt termination pattern for user-defined errors of Fig. 4. Section 4.1 describes the
done construct that the OpenMP Error Model Subcommittee has proposed for the
OpenMP 3.1 specification.

Our second step will support the ignore and continue, retry and delegate to handlers
strategies. We describe the two orthogonal proposals that the OpenMP Error Model
Subcommittee is considering in Section 4.2 and Section 4.3. We discuss the implica-
tions of these mechanisms, for which we target OpenMP 4.0, with a specific focus on
backwards compatibility.

4.1 The done Construct

Our proposed done construct terminates innermost OpenMP regions, which provides
initial support for user-defined errors (particularly for C and Fortran). We build on prior
proposals to terminate parallel regions that were considered for the OpenMP 1.0 specifi-
cation. HP’s compiler still supports a limited pdone construct [1]. The done construct
reflects the OpenMP philosophy of incremental parallelization through compiler direc-
tives, unlike the alternative of a new runtime function, which would alter the underlying
sequential code or require conditional compilation guards.

The done construct has the syntax1

1 #pragma omp done [c l a u s e− l i s t]

with clause-list being one or more of if(expr),2 parallel, for (C/C++), do (For-
tran), sections, single, or task. The binding set of the done construct is the
current thread team. It applies to the innermost enclosing OpenMP construct(s) of the
types specified in the clause (i. e., parallel or task).

The done construct causes the encountering thread to terminate the subset of the in-
nermost parallel, worksharing and task regions that corresponds to the specified clause.
It conceptually sets a cancellation flag that the other team members must evaluate at no
later than the next cancellation point that they execute. Hence, other threads may not

1 We present the C/C++ syntax only; the Fortran syntax is similar.
2 The if clause has the same semantics as the if clauses of other constructs.

76 M. Wong et al.

1 vo id example () {
2 s t d : : e x c e p t i o n ∗ex = NULL;
3 #pragma omp parallel shared (ex)
4 {
5 . . .
6 #pragma omp f o r
7 f o r (i n t i = 0 ; i < N; i ++) {
8 / / no ’ i f ’ t h a t prevents compi ler op t i m i za t i ons
9 t r y {

10 c a u s e s a n e x c e p t i o n () ;
11 }
12 c a t c h (c o n s t s t d : : e x c e p t i o n ∗e) {
13 / / s t i l l must remember except ion f o r l a t e r hand l ing
14 #pragma omp critical
15 ex = e ;
16 #pragma omp done parallel f o r
17 }
18 }
19 p h a s e 1 () ;
20 #pragma omp barrier
21 p h a s e 2 () ;
22 }
23 / / cont inue here i f an except ion i s thrown i n the ’ f o r ’ loop
24 i f (ex) {
25 / / handle except ion s tored i n ex
26 }
27 }

Fig. 5. Shutting down an OpenMP parallel region with the done construct

immediately terminate execution when a thread encounters the done construct. This
delayed termination allows more efficient execution, as the mechanism does not require
interrupts or frequent polling of the cancellation flag.

We make the set of cancellation points implementation defined in order to avoid
restricting implementation choices although we are exploring a minimal set. Efficient
implementation of the done construct will likely require different cancellation points
under different OpenMP implementations. A minimal set of cancellation points could
be: entry and exit of regions, barriers, critical sections, completion of a loop chunk and
calls to runtime support routines.

The done construct supports elegant and robust termination of OpenMP parallel
execution, as Fig. 5 shows. If an exception is raised during execution of the workshar-
ing construct from lines 6–18, the catch handler can trigger a done parallel for
to shut down the worksharing construct safely. The for clause terminates the work-
sharing construct while the parallel clause terminates the parallel region. Execu-
tion continues at the if in line 24 after termination of the regions. While the done
construct cleanly terminates OpenMP regions, programmers must still track exceptions
through pointers and apply the sequential handler. However, there is no need for the
tricky flush as the exception pointer is not accessed within the parallel region.

4.2 Proposal Based on return Codes

In the long term, we must provide features that support the existing error-handling code
in exception-unaware languages. We also must ensure backwards compatibility for

Towards an Error Model for OpenMP 77

existing OpenMP programs, which limits the mechanisms and API choices for our
error-handling model.

Thus, we consider the minimal functionality that an error-handling system requires.
An OpenMP error-handling mechanism must:

• Communicate to the user program that an error has occurred;
• Provide sufficient information to identify the type and source of the error.
• Support execution after the error arises with well-defined program state so that the

program can respond and continue.

We now discuss a modest error-handling proposal based on return codes that meets
these requirements.

In order to support continued execution, we require that the program continues at the
first statement following the end of the innermost construct when an error occurs inside
any OpenMP construct. Any variables that are created or modified inside the construct
have an undefined value.

We communicate the error condition to the program through a variable that is shared
between the members of the thread team. The omp-error-var variable is of type
omp error t and stores an error code that identifies whether any thread that executed
the preceding OpenMP construct or runtime library routine encountered an error and, if
so, the error’s type. If concurrent errors occur, the runtime system may arbitrarily select
one error code and store it in the shared variable.

Programs can query the value of this variable by calling a new OpenMP runtime
support routine:

1 o m p e r r o r t o m p g e t e r r o r (char ∗ o m p e r r s t r i n g , i n t b u f s i z e)

This function can return any value of a set of constants that are defined in the standard
OpenMP include file. While implementations can support additional error codes, we
anticipate a standard set that may include values such as:

• OMP ERR NONE
• OMP ERR THREAD CREATION
• OMP ERR THREAD FAILURE
• OMP ERR STACK OVERFLOW
• OMP ERR RUNTIME LIB

The omp get error function in addition returns an implementation-defined, zero-
terminated string in the memory area pointed to by omp err string. In the string,
an implementation may provide more information about the type and source of the error.

Fig. 6 shows an example that uses our error code handling proposal. While the code is
less elegant than approaches based on exceptions and callbacks, we can add this solution
to any OpenMP base language and satisfy our backward compatibility requirement.
This error code approach is more straightforward in that it does not introduce complex
execution flows through error handlers. This solution is directly based on typical error
handling in C and Fortran.

78 M. Wong et al.

1 # i n c l u d e "omp.h"
2

3 # d e f i n e BUFSIZE . . .
4

5 vo id e r r o r r e s (o m p e r r o r t p e r r , char ∗ e r r s t r) {
6 / / User−w r i t t e n func t i on to clean up , repor t ,
7 / / and otherw ise respond to the e r r o r
8 }
9

10 i n t main {
11 o m p e r r o r t p e r r ;
12 char ∗ e r r s t r ;
13 i n t t e r m i n a t e = 0 , n t h s = 1 6 ;
14 whi le (! t e r m i n a t e) {
15 #pragma omp parallel numthreads (n t h s)
16 {
17 . . . / / The body of the reg ion
18 }
19 i f ((p e r r = o m p g e t e r r o r (e r r s t r , BUFSIZE)) != OMP ERR NONE) {
20 e r r o r r e s (p e r r , e r r s t r) ;
21 i f (p e r r == OMP ERR THREAD CREATE) {
22 n t h s = (n t h s > 1) ? (n t h s −1) : 1 ;
23 }
24 e l s e {
25 p r i n t f ("unrecoverable error\n") ;
26 #pragma omp critical
27 t e r m i n a t e = 1 ;
28 }
29 }
30 }
31 }

Fig. 6. Using the proposal based on error codes

4.3 The Callback Error Handling Mechanism

Our longer term proposal supports callbacks in the event of an error. It provides many
of the benefits of exception-aware languages to C and Fortran. This proposal, which
slightly extends a previous callback-based proposal by Duran et al. [3], achieves its
functionality by means of callback notifications and supports both exception-aware and
exception-unaware languages. Hence, it supports all OpenMP base languages.

The prior proposal extends OpenMP constructs with an onerror clause that over-
rides OpenMP’s default error-handling behavior, as line 8 of Fig. 7 shows. Programmers
specify a function that is invoked if any errors arise (lines 1–4) within the OpenMP
implementation (e. g., directives and API calls). The handler can take any necessary ac-
tions and notify the OpenMP runtime about how to proceed with execution (e. g., retry,
abort, or continue). The prior proposal also provided a set of default handlers that the
program can specify with the onerror clause to implement common error responses.
Also, the context directive associates error classes and error handlers with sequential
code regions to support errors that arise in OpenMP runtime routines. Users are not re-
quired to define any callbacks in which case the implementation will provide backward
compatibility with the current best effort approach.

Our callback proposal extends the onerror proposal to meet our OpenMP error-
handling model requirements. We add the error class OMP USER CANCEL to associate
error handlers with termination requests of done constructs, which supports voluntary

Towards an Error Model for OpenMP 79

1 o m p e r r o r a c t i o n t s a v e d a t a (omp_err_info_t ∗ e r r o r , m y d a t a t ∗ d a t a) {
2 /∗ save computed data ∗ /
3 re turn OMP ABORT; / / n o t i f y the r e s o l u t i o n to the e r r o r
4 }
5

6 vo id f () {
7 m y d a t a t d a t a ;
8 #pragma parallel o n e r r o r (OMP ERR SEVERE , OMP ERR FATAL : s a v e d a t a , &d a t a)
9 {

10 /∗ p a r a l l e l code ∗ /
11 }
12 }

Fig. 7. Example of OpenMP error handling using the callback proposal

region termination and, thus, user-defined error handling. We provide the error class
OMP EXCEPTION RAISED, so that error handlers can catch and handle C++ excep-
tions, either locally or globally by re-throwing. Thus, this mechanism supports the
exception-aware semantics of C++ that handle and re-throw exceptions. Finally, we are
exploring extensions such as specifying a default handler with an environment variable
so that applications can take appropriate actions for errors that occur during initializa-
tion of the OpenMP runtime or from invalid states of internal control variables.

5 Other Concurrent Programming Error Handling Models

POSIX threads (pthreads) [6] is one of the earliest concurrent programming models.
It specifies a binding for C, which all vendors have reused for C++ and Fortran. An
effort is currently underway to define a POSIX threads binding for C++ [17]. Four error
handling models [5] are commonly used for threads; two apply to pthreads.

The first, and the simplest pthreads model, stops a thread when an error occurs using
pthread kill or pthread cancel for asynchronous mode. This method uncon-
ditionally stops a thread and provides no mechanism to respond by calling cleanup ac-
tions. The JavaTM Thread API [13] includes a similar facility, Thread.destroy or
Thread.stop. This model was reasonable for exception-unaware languages but does
not support exception-aware languages. It could corrupt a running program because a
thread may be partially completed, leaving some object or data in an incomplete state.
Although incomplete, any programming model should support this simplest termination
error handling model, which is why we propose the done construct.

The second model allows the target thread to delay its response to a termination re-
quest. The many examples of this model all use the idea of an interruption or cancella-
tion point that is a well-defined point at which the target thread must respond. The full
list of pthreads interruption points include calls to wait(), sleep(), create()
and write(). In addition, cancellation points are usually encountered when a thread
is blocked while sleeping, joining another thread or task, or waiting for a mutex, sema-
phore signal or synchronization. When a thread requests another thread to cancel itself
(with pthreads cancel in pthreads), the request is mapped in the target thread to
an exception that is checked at cancellation points and can be rethrown or handled. With

80 M. Wong et al.

pthreads, a program can install a chain of cancellation handlers, which serve a similar
purpose as destructors in C++.

With pthreads, cancellation requests cannot be ignored or caught: the target must
stop at its next cancellation point and cancellation cannot be stopped once it has be-
gun. While acceptable for C or Fortran, which lack exceptions and object destructors,
exception-aware languages like C++ require the ability to catch and recover from errors
and to continue correct execution. Since an OpenMP error handling model must support
C++, OpenMP requires a richer model than pthreads.

The third model, a (partially) cooperative model, implements error interrupts as ex-
ceptions thrown by wait/join/sleep calls. Like pthreads, the target thread can let
destructors unwind the stack and exit. Unlike pthreads, the target thread can choose to
unwind its stack until it finds a handler that catches and handles the exception, and then
resume normal operation. Alternatively, it can catch the exception immediately and ig-
nore it. Thread.interrupt in Java and Thread.Interrupt in .NET provide a
partial cooperative model, while one is currently being prepared in C++0x [4].

The fourth model, a fully cooperative model, allows the target thread to check whether
it is the target of an interrupt anywhere, not just at cancellation points. This cooperative
model is planned for C++0x.

MPI supports error handling with a callback mechanism [12]. This mechanism pro-
vides a default behavior of aborting when errors occur within MPI as well as an addi-
tional predefined handler that allows errors to return an error code. MPI error support is
similar to our overall proposal although the issues are simpler since MPI defines error
handling as a local operation other than with the default abort behavior.

Michael Süß [15] proposes a cancellation proposal with a pragma-based user tech-
nique for stopping threads. This proposal does not define any cancellation points, and
is generally considered a cooperative exception approach. It is also limited to threads
and regions and cannot shutdown other constructs, e. g., tasks or subteams. Our done
construct is similar but simpler to use and covers all existing OpenMP constructs.

OpenMP for Java [9], JCilk [2], and TBB [7] support exception handling by setting
an internal flag. OpenMP for Java and JCilk check this flag at cancellation points, termi-
nate parallel execution, and rethrow exceptions to the sequential code. Both languages
arbitrarily select one exception if multiple ones arise. TBB registers the first exception
and cancels the task group; it ignores other concurrent exceptions. TBB supports excep-
tion propagation for C++0x to pass exceptions to other threads. All three models lack
a flexible mechanism to react to error situations other than terminating parallel execu-
tion. With our proposal we strive to provide a toolbox of error-handling mechanisms
that help programmers implement more sophisticated error-handling strategies.

6 Conclusions and Future Work

We have presented the current directions that the OpenMP Error Model Subcommittee
is pursuing. OpenMP currently has no concept of errors. We have identified the require-
ments of OpenMP error-handling models. The most important requirements are the
need to support all OpenMP base languages and to provide backward compatibility for
applications that assume no error-handling support is available. The first requirement

Towards an Error Model for OpenMP 81

means that the mechanism must not require significant changes to sequential code for
exception-unaware and exception-aware languages.

We have detailed planned error-handling extensions for future OpenMP specifica-
tions. Our plans include the standardization of a done construct that supports termi-
nation of OpenMP regions, which not only supports error handling but will also prove
useful for some task-based programs. We anticipate that OpenMP 3.1 will include this
construct while we target OpenMP 4.0 for more complete error handling capabilities.
For these more complete capabilities, we are investigating a proposal based on error
codes that follows typical error handling in C and Fortran and a callback proposal that
provides at least a partial cooperative model.

We still have issues to resolve for the 4.0 proposals. We are exploring a minimal set
of required cancellation points. We also must integrate the proposals into the overall
standard. For example, barriers can cause deadlocks in the presence of exceptions when
all threads besides the one that catches an exception wait at a barrier. This behavior is
technically non-conforming code; we must resolve this inconsistency, possibly through
the minimal cancellation point set. Overall, we will continue to explore these issues and
to design solutions that will provide a complete OpenMP error-handling model.

Acknowledgments

This work was performed in part under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344
(LLNL-CONF-426251).

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of Inter-
national Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies. A current
list of IBM trademarks is available on the Web at “Copyright and trademark informa-
tion” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in
the United States and other countries.

Other brands and names are the property of their respective owners.

References

1. Compaq Computer Corporation. Compaq Fortran – Language Reference Manual (September
1999); Order number AA-Q66SD-TK

2. Danaher, J.S., Angelina Lee, I.-T., Leiserson, C.E.: Programming with Exceptions in JCilk.
Science of Computer Programming 63(2), 147–171 (2006)

3. Duran, A., Ferrer, R., Costa, J.J., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.:
A Proposal for Error Handling in OpenMP. Intl. Journal of Parallel Programming 35(4),
393–416 (2007)

4. Becker, P. (ed.): Working Draft: Standard for Programming Language C++ (November
2009); Document number N3000

82 M. Wong et al.

5. Sutter, H.: Interrupt Politely. Technical report (April 2008)
6. IEEE. Threads Extension for Portable Operating Systems (Draft 6) (February 1992); Docu-

ment P1003.4a/D6
7. Intel Corporation. Intel Threading Building Blocks Reference Manual. Technical report,

Document number 315415-003US (July 2009)
8. Issarny, V.: An Exception Handling Model for Parallel Programming and its Verification. In:

Proc. of the Conf. on Software for Citical Systems, New Orleans, LA, USA, December 1991,
pp. 92–100 (1991)

9. Klemm, M., Veldema, R., Bezold, M., Philippsen, M.: A Proposal for OpenMP for Java. In:
Proc. of the Intl. Workshop on OpenMP, Reims, France (June 2006)

10. Larus, J.R., Rajwar, R.: Transactional Memory (Synthesis Lectures on Computer Architec-
ture). Morgan & Claypool Publishers, San Francisco (January 2007)

11. Milovanović, M., Ferrer, R., Unsal, O., Cristal, A., Martorell, X., Ayguadé, E., Labarta, J.,
Valero, M.: Transactional Memory and OpenMP. In: Chapman, B., Zheng, W., Gao, G.R.,
Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 37–53. Springer,
Heidelberg (2008)

12. Forum, M.P.I.: MPI: Extensions to the Message-passing Interface, Version 2.2. Technical
report, MPI Forum (September 2009)

13. Oaks, S., Wong, H.: Java Threads, 3rd edn. O’Reilly, Sebastopol (2004)
14. OpenMP ARB. OpenMP Application Program Interface, v. 3.0 (May 2008)
15. Süß, M., Leopold, C.: Implementing irregular parallel algorithms with openMP. In: Nagel,

W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 635–644.
Springer, Heidelberg (2006)

16. Sommerville, I.: Software Engineering, 8th edn. Pearson Education, Ltd., Harlow (April
2007)

17. Stoughton, N.: POSIX Liaison Report, Document number N2536 (February 2008)
18. Tazuneki, S., Yoshida, T.: Concurrent Exception Handling in a Distributed Object-Oriented

Computing Environment. In: Proc. of the 7th Intl. Conf. on Parallel and Distributed Systems
Workshops, Iwate, Japan, July 2000, pp. 75–82 (2000)

19. The Open Group. The Open Group Base Specifications Issue 7 (December 2008); IEEE Std
1003.1-2008 and POSIX.1

20. Xu, J., Romanovsky, A., Randell, B.: Concurrent Exception Handling and Resolution in
Distributed Object Systems. IEEE Transactions on Parallel and Distributed Systems 11(10),
1019–1032 (2000)

How OpenMP Applications Get More Benefit from
Many-Core Era

Jianian Yan, Jiangzhou He, Wentao Han, Wenguang Chen, and Weimin Zheng

Department of Computer Science and Technology,
Tsinghua University, China

{yanjn03,hejz07,hwt04}@mails.tsinghua.edu.cn,
{cwg,zwm-dcs}@tsinghua.edu.cn

Abstract. With the approaching of the many-core era, it becomes more and more
difficult for a single OpenMP application to efficiently utilize all the available
processor cores. On the other hand, the available cores become more than neces-
sary for some applications. We believe executing multiple OpenMP applications
concurrently will be a common usage model in the future. In this model, how
threads are scheduled on the cores are important as cores are asymmetric. We
have designed and implemented a prototype scheduler, SWOMPS, to help sched-
ule the threads of all the concurrent applications system-widely. The scheduler
makes its decision based on underlying hardware configuration as well as the
hints of scheduling preference of each application provided by users. Experiment
evaluation shows SWOMPS is quite efficient in improving the performance.

With the help of SWOMPS, we compared exclusive running one application
and concurrent running multiple applications in term of system throughput and
individual application performance. In various experimental comparisons, con-
current execution outperforms in throughput, meanwhile the performance slow-
down of individual applications in concurrent execution is reasonable.

1 Introduction

Restricted by heating and power consumption, hardware vendors stopped increasing
processor’s performance by introducing complex circuit and increasing frequency. In-
stead, multiple cores are put into one chip. The effect of Moore’s law has converted
from increasing the performance of a single-core processor to the number of cores in
a processor. Six-core general-purpose processor has been available in the market. Pro-
cessors with more and more cores are coming soon. In the near future, one can easily
have a computer with hundreds of cores by configuring multi-core processors in NUMA
architecture.

In the multi-core era, OpenMP applications face the challenge of how to efficiently
utilize the increasing computing power. Keeping the performance of OpenMP appli-
cations scaling with the number of processor cores is not trivial. Simply increasing the
number of threads in an OpenMP applications does not guarantee the performance scal-
ing. Figure 1 shows the result of scalability experiment with benchmarks in SpecOMP
2001. The experiment platform has 24 cores which detail configuration can be found
in Sect. 4. In the test, the performance speedup per thread continues decreasing as the

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 83–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

84 J. Yan et al.

number of threads grows, as showed in Fig. 1b. And for some benchmarks, for ex-
ample 314.mgrid, 318.galgel and 320.equake showed in Fig. 1a, performance with 24
threads is even worse than performance with 16 threads. Writing well scaling appli-
cations requires sophisticated techniques and wide range of knowledge from hardware
architecture to application domain. And theoretically, according to Amdahl’s law, even
for perfectly written applications, the existence of serialized portion in the application
limits the benefit that can be obtained by parallel execution, no matter how many cores
are available.

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads
24 Threads

 0

 2

 4

 6

 8

 10

 12

 14

 16

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

324.apsi

326.gafort

328.fma3d

330.art

332.ammp

Pe
rf

or
m

an
ce

 S
pe

ed
 U

p

(a) Performance Speed Up

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads
24 Threads

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

324.apsi

326.gafort

328.fma3d

330.art

332.ammp

Pe
rf

or
m

an
ce

 S
pe

ed
 U

p
pe

r
T

hr
ea

d

(b) Performance Speed Up per Thread

Fig. 1. Performance Scaling with Various OMP Threads

Single OpenMP application has difficulty to efficiently utilize the increasing proces-
sor cores. On the other side, for some applications, it is unnecessary to utilize as many as
the available cores. We believe multiple OpenMP applications executing concurrently
will be a common usage model in the future. In this model, which cores the threads
of an application are executing on will be an important factor to the performance. In a
computer with multi-core processors configured in NUMA architecture, the cores are
asymmetric. Cores in the same processor share the last level cache and have the same
local memory while cores in different processors do not. An improper scheduling of
threads on the cores will harm the performance of not only the application itself, but
also other applications concurrently running on the computer.

We have designed and implemented a prototype scheduler SWOMPS (System-Wide
OpenMP application Scheduler) to help schedule the threads of all concurrent applica-
tions system-widely. The scheduler makes its decision based on underlying hardware
configuration as well as the hints of scheduling preference of each application provided
by users. It will dynamically schedule the threads whenever an application comes to run
or exits.

With the help of SWOMPS, we compared exclusive running one application and
concurrent running multiple applications in term of system throughput and individual
application performance. We take two application concurrently running for example.
In various experimental comparisons, concurrent execution outperforms in throughput,
meanwhile the performance slowdown of individual application in concurrent execution
is reasonable.

The rest of the paper is organized as follows: Section 2 introduces two observa-
tions from the practical experience with OpenMP applications that guide the scheduler

How OpenMP Applications Get More Benefit from Many-Core Era 85

design. Section 3 introduces the design and implementation of SWOMPS scheduler.
Section 4 evaluates the scheduler and Sect. 5 compares the exclusive running model
and the concurrent running model. Related work is introduced in Sect. 6 and Sect. 7
concludes the paper.

2 Practical Observations

2.1 Binding a Thread to a Core Will Improve Application Performance

Modern operating systems provide system calls with which user can specify a core that
a thread is running on, which is also known as binding a thread to a core. OpenMP
programmer usually binds each thread to a distinct core which will results in a better
performance. Table 1 gives the execution time of the benchmarks with and without
thread binding. Each benchmark is compiled with Open64 at O3 optimizing level, and
running with 24 threads. The detail of the experiment environment can be found in
Sect. 4. The last column of Table 1 shows the performance improvement due to thread
binding. As we can see, the performance improvement ranging from 0.2% to 31.4%.
There are two major sources of the performance improvement. Binding a thread avoids
cache warming up when it is scheduled to a new core. And binding a thread keeps a
core close to the data that it operates in the NUMA architecture.

Table 1. Execution Time Comparison of
Thread Binding

Execution Time (s)
Benchmark No Binding Binding Perf. Impr.

310.wupwise 190.13 170.36 11.6%
312.swim 405.21 401.94 0.8%
314.mgrid 660.11 523.93 26.0%
316.applu 228.76 227.93 0.4%
318.galgel 1192.54 939.25 27.0%
320.equake 148.59 121.95 21.8%
324.apsi 118.91 112.86 5.4%
326.gafort 311.10 310.53 0.2%
328.fma3d 222.95 199.97 11.5%
330.art 179.70 136.79 31.4%
332.ammp 320.40 302.94 5.8%

Table 2. Scheduling Preference of Each
Benchmark

Execution Time (s)
Benchmark Scatter Gather Perf. Impr.

310.wupwise 259.15 324.8 25.33%
312.swim 363.75 780.18 114.48%
314.mgrid 482.39 908.16 88.26%
316.applu 254.71 395.16 55.14%
318.galgel 616.53 676.9 9.79%
320.equake 129.54 179.15 38.30%
324.apsi 194.48 179.64 8.26%
326.gafort 479.53 641.55 33.79%
328.fma3d 290.59 377.77 30.00%
330.art 206.66 244.03 18.08%
332.ammp 510.3 490.78 3.98%

2.2 Different Applications Have Different Scheduling Preferences

Nowadays, most shared memory computers are configured in NUMA architecture. A
processor can access its own local memory faster than non-local memory. A proces-
sor again contains several cores and cores in the same processor usually share the last
level cache. The processor cores are asymmetric. Different OpenMP applications may
have different thread scheduling preferences on the cores. Table 2 gives the results of a

86 J. Yan et al.

scheduling preference experiment. The experiment runs on a computer with four pro-
cessors, and each processor has six cores. A processor has 6M L3 cache that is shared
amoung the 6 cores. In the experiment, each benchmark runs with 12 threads. In the
Scatter scheduling, the 12 threads are scheduled onto 4 processors, each processor has
3 threads running on it. While in the Gather scheduling, the 12 threads are scheduled
onto 2 processors, each processor has 6 threads running on it. In the scatter scheduling,
the amount of shared cache per thread is larger and so are the memory bandwidth to lo-
cal memory. In the gather scheduling, communication has lower cost as more threads are
sharing the L3 cache, and more cores are sharing the same local memory that reduces
the chance to access remote memory. Data in the Perf. Impr. column in Tab. 2 gives the
performance improvements if an application is scheduled in favor of its preference ver-
sus against its preference. The observed performance improvements range from 3.98%
to 114.48%. The experiment results indicate that different applications have different
scheduling preferences. The performance improvement due to being properly scheduled
varies from application to application.

3 SWOMPS: Design and Implementation

3.1 Scheduling Requirements

Learning from the experience introduced in Sect. 2, we believe a scheduler is needed to
help improve application performance and the whole system’s efficiency. The scheduler
should fulfill the following requirements:

– The scheduler should be system-wide that it could schedule multiple applica-
tions running currently
General OpenMP applications could not perfectly scale with the increasing of pro-
cessor cores. When the number of available cores exceeds the requirements of a
single OpenMP application, it is necessary to share the computer among multiple
applications. A scheduler supporting multiple concurrently running applications is
needed.

– The scheduler should have respect for applications’ scheduling preferences
and resolve possible preference conflicts
Each OpenMP application has its specific scheduling preference. The scheduler
should be aware of it and perform scheduling accordingly. When the scheduling pref-
erences of concurrently running applications conflict, the scheduler should resolve
the conflicts in favor of specific optimizing goal. For example, one way to optimize
the system throughput is to weight each applications by the performance impact of
its preferred scheduling, and satisfy the applications in the descending order.

– Each thread should be bound to a core and this binding should be kept as long
as possible
Scheduler should bind each thread to a specific core to favor its memory access.
However, scheduler might need to reschedule the bindings when a new application
comes to run or an application terminates. Rebinding a thread to a new core will
need to warm up the cache again and may increase memory accesses to non-local
memory. When the scheduler needs to adjust its previous scheduling, it should find
a scheduling plan that rebinds previous threads as few as possible.

How OpenMP Applications Get More Benefit from Many-Core Era 87

Hardware Configuration SWOMPS

OpenMP Runtime Library

Operating System

Sched. Pref.OpenMP App. Sched. Pref.OpenMP App.

Fig. 2. SWOMPS Architecture

3.2 SWOMPS Work Flow

We have designed a prototype scheduler, SWOMPS (System-Wide OpenMP applica-
tion Scheduler) according to the observations introduced previously. Figure 2 shows
how SWOMPS cooperates with other parts in the system. And its work flow is as
following:

1. SWOMPS starts as a daemon. It inquiries the hardware configuration and initializes
internal system model.

2. An application reports its scheduling preference to a database when it starts exe-
cution. The scheduling preference is described as an integer. The negative value
indicates the application prefers scatter-scheduling, and the positive value indicates
the application prefers gather-scheduling. The absolute value of the integer indi-
cates the potential performance impact if the application is properly scheduled. The
preference may vary with underlying system, it should not be hard coded. In our
prototype implementation, the scheduling preference is stored in an environment
variable. Moreover, for many real world applications, the preference may vary due
to the alternation of different computational kernels. We use an overall preference
for each application for simplicity.

3. OpenMP runtime library inquiries the scheduling preference after creating threads
pool. It sends the preference as well as application process ID and thread IDs to
SWOMPS.

4. When the application terminates, OpenMP runtime library sends the process ID to
SWOMPS.

5. SWOMPS generates a scheduling plan whenever it receives a message. The schedul-
ing plan for each process is calculated according to the current states of the system
and the changes of the work load, either a group of threads start execution or they
terminate. And the plan is carried out with the help of operating system.

3.3 Scheduling Algorithm

There are two phases in the scheduling algorithm of SWOMPS. The first phase assigns
the core quota in each processor to the applications that they can bind their threads

88 J. Yan et al.

onto, which is described in Algo. 1. The second phase decides the actual thread-core
bindings, and it is described in Algo. 2.

Algorithm 1. Assign Core-Quota of Each Processor to Applications
Input: Pref (app) : scheduling preference of application app
Input: PrevCoreQuota(app, p) : In the previous scheduling, how many threads of application app had been

bound to cores in processor p
Result: CoreQuota(app, p) : In the new scheduling, how many threads of application app could be bound to

cores in processor p

m ←number of total processor cores;1
foreach application, app, in descending order of |Pref (app)| do2

CandidateCnt(app) ← min{m, number of threads in app};3
m ← m − CandidateCnt(app);4

foreach processor, p, do AvailCoreCnt(p) ← number of cores in p ;5
foreach application, app, in descending order of |Pref (app)| do6

foreach processor, p, do CoreQuota(app, p) ← 0 ;7
n ← CandidateCnt(app);8
while n > 0 do9

p0 ← arg max
p

〈AvailCoreCnt(p), PrevCoreQuota(app, p)〉;
10

if Pref (app) > 0 then11
t ← 1;12

else13
t ← min{n, AvailCoreCnt(p0)};14

AvailCoreCnt(p0) ← AvailCoreCnt(p0) − t;15
CoreQuota(app, p0) ← CoreQuota(app, p0) + t;16
n ← n − t;17

If the number of currently running threads in all applications is larger than the num-
ber of processor cores, SWOMPS will firstly satisfy applications with larger |Pref (app)|.
The rest threads are not bound to any processor core and left to OS for scheduling. This
is carried out by assigning CandidateCnt (app) in the first loop (line 2 to 4) in Algo. 1.
The loop iterates the applications from larger |Pref (app)| to smaller ones and assigns
core quota to each application. Next SWOMPS further assigns the core quota in each
processor to the applications to determine how threads of an application spread among
the processors. Again this assignment is carried out from larger |Pref (app)| to smaller
ones. For a specific application, as is described from line 9 to 17, SWOMPS will first
find a processor that has the most cores unassigned. If there are multiple candidates,
SWOMPS will choose one that the application has most thread bound to in the previous
scheduling. When SWOMPS recalculats the scheduling plan of a process due to starting
or terminating of other processes, it uses PrevCoreQuota(app, p) to avoid unnecessary
thread migration. Pseudo code in line 10 accomplishes this goal by finding the maximal
tuple 〈AvailCoreCnt(p),PrevCoreQuota(app, p)〉 and return the relative processor
p0. SWOMPS will assign either one core or as many as possible to the application app
according to the scheduling preference of the application and repeat until running out
the application’s core quota.

There are two steps in deciding the thread-core bindings. In the first step, as described
from line 3 to 13 in Algo. 2, if an application has its threads bound to some core in the
previous scheduling, these threads are bound to the same core as long as the application
has core quota in the processor. In the second step, the rest of the threads are bound to
cores where the application has core quota.

How OpenMP Applications Get More Benefit from Many-Core Era 89

Algorithm 2. Generate Thread-Core Bindings
Input: PrevThreadBind(t) : the core that thread t bound to in the previous scheduling
Input: CoreQuota(app, p) : In the new scheduling, how many threads of application app could be bound to

cores in processor p
Result: ThreadBind(t) : the core that thread t is bound to in the new scheduling

RestCoreQuota(., .) ← CoreQuota(., .);1
UnboundCores(.) ← Cores(.);2
foreach application, app, do3

UnboundThreads(app) ← {threads of app} ;4
foreach thread t of app do5

if PrevThreadBind(t) �= ∅ then6
c ← PrevThreadBind(t);7
p ← processor that core c belongs to;8
if RestCoreQuota(app, p) > 0 then9

RestCoreQuota(app, p) ← RestCoreQuota(app, p) − 1;10
UnboundThreads(app) ← UnboundThreads(app) − {t};11
UnboundCores(p) ← UnboundCores(p) − {c};12
ThreadBind(t) ← c;13

foreach application, app, do14
foreach processor, p, do15

for i ← 1 to RestCoreQuota(app, p) do16
t ← any element in UnboundThreads(app);17
c ← any element in UnboundCores(p);18
UnboundThreads(app) ← UnboundThreads(app) − {t};19
UnboundCores(p) ← UnboundCores(p) − {c};20
ThreadBind(t) ← c;21

4 SWOMPS Evaluation

We have implemented our prototype scheduler, SWOMPS, with Open64 compiler and
evaluated it on a SunFire X4440 server. The configuration of the server can be found
in Table 3. The server is equipped with four processors. Each processor has six cores.
Each core has separated L1 and L2 caches, and the 6 cores share the L3 cache. The
four processors are configured in NUMA architecture. Each processor has 12G local
memory. The operating system is Red Hat Enterprise Linux Server 5.4. The version of
the Linux kernel is 2.6.18. The operating system allocates new page on the node where
the task is running. The OpenMP runtime library is the default library used in Open64
of revision 2722.

We use benchmarks in SpecOMP 2001 test suite in our evaluation. Scheduling pref-
erence of each benchmark is set to the performance improvement when the applica-
tion is properly scheduled. For example, as showed in Tab. 2, 324.apsi prefers gather-
scheduling, the performance improvement is 8.26%, so its scheduling preference is
set to 8. While 312.swim prefers scatter-scheduling, the performance improvement is
114.48%, so its scheduling preference is set to −114. Here we assume that users know
application’s running characteristic well when it is run exclusively and the scheduler
can be guided by users.

4.1 Pairwise Execution

We firstly evaluate the scheduler by concurrently running two applications, each ap-
plication with 12 threads. We sum up the execution time of the two benchmarks and
compare it with the same test without SWOMPS’ scheduling. We tested every pair of

90 J. Yan et al.

Table 3. Experimenting Platform Configuration

Number of Sockets 4
Processor AMD Opteron 8431
Number of Cores 6-core×4
L1 Cache Configuration 64K×6
L2 Cache Configuration 512K×6
L3 Cache Configuration 6M, Shared
Memory Configuration 12G×4

the 11 benchmarks in SpecOMP 2001. Table 4 lists the performance comparison of
tests with and without SWOMPS’ scheduling. For each cell in the table, the benchmark
listed in the head of its row and its column are the benchmarks that are concurrently
executed.

Table 4. Performance Comparison of Tests with and without SWOMPS in Pairwise Execution

Benchmark 310.wupwise 312.swim 314.mgrid 316.applu 318.galgel 320.equake 324.apsi 326.gafort 328.fma3d 330.art
312.swim 1.24
314.mgrid 1.27 1.24
316.applu 1.11 1.15 1.23
318.galgel 1.15 1.08 1.24 1.04
320.equake 1.17 1.31 1.36 1.32 1.11
324.apsi 1.05 1.28 1.46 1.04 1.00 1.13
326.gafort 1.17 1.11 1.05 1.08 1.07 1.02 1.12
328.fma3d 1.15 1.11 1.31 1.13 1.09 1.26 1.06 1.19
330.art 1.28 1.29 1.41 1.03 1.01 1.22 1.13 1.23 1.15
332.ammp 1.12 1.40 1.13 1.16 1.11 1.13 1.07 1.11 1.04 1.17

Performance improvement can be observed in 54 out of the 55 testings, except the
testing of <324.apsi, 318.galgel>. The maximum performance improvement is 46.3%
(<324.apsi, 314.mgrid>). And the average improvement is 16.5%. SWOMPS showed
its efficiency for two concurrently running applications.

4.2 Task Queue Simulation

To further evaluate SWOMPS, we test it in a more complicated running circumstance.
We simulates a task queue. Benchmarks enter the queue in a random order, and the
time interval between two successively entered benchmarks yields to exponential dis-
tribution. The expected value of the distribution is set to 360 with the intent of the queue
being empty occasionally. There are at most three applications running currently. Each
application has a random number of threads, either 6, 8 or 10. The benchmarks are also
from SpecOMP 2001.

In addition to compare testing with and without SWOMPS’ scheduling we also
compare SWOMPS with a non system-wide scheduler implementation. We evaluate
whether the lightweight, non system-wide implementation could be an alternative of
SWOMPS. In the non system-wide implementation, the scheduler is linked to the ap-
plication and becomes a part of it. There is no coordination between different applica-
tions. The scheduler can only schedule the application it belongs to. It schedules the

How OpenMP Applications Get More Benefit from Many-Core Era 91

application according to the system state when the application starts execution. And
that scheduling will not change till the application terminates.

We run each task queue test three times under different scheduling schemas: no
scheduling, non system-wide scheduling and SWOMPS scheduling. We totally gen-
erated 10 task queue tests. Figure 3 shows the sum of execution time of the 11 bench-
marks in each task queue test. Bars labeled with No Scheduling are the results of tests
without any scheduling. Bars labeled with Non SysWide are the results of tests with non
system-wide scheduling. And bars labeled with SWOMPS are the results of tests with
SWOMPS scheduling.

No Scheduling
Non SysWide
SWOMPS

 0

 1e+03

 2e+03

 3e+03

 4e+03

 5e+03

 6e+03

 7e+03

 8e+03

1 2 3 4 5 6 7 8 9 10

Su
m

 o
f

ex
ec

ut
io

n
tim

e

Fig. 3. Sum of Benchmark Execution Time in 10 Random Tests

Both the Non SysWide and SWOMPS scheduling outperform No Scheduling in all the
10 tests. The maximum time reduction is 24%, observed in test 3, for both Non SysWide
and SWOMPS. The minimum time reduction is observed in test 10, 3% for Non SysWide
and 8% for SWOMPS. The average time reduction are 12% for Non SysWide and 16%
for SWOMPS. SWOMPS showed its efficiency in complicated circumstance too.

SWOMPS outperforms Non SysWide scheduling. Coordinating concurrently running
application system-widely can make better use of hardware resources. Deeper compar-
isons indicate that system-wide scheduling is necessary in two circumstances, 1) when
scheduling preferences of different application conflicts and 2) when an application
terminates and more cores are available.

5 Comparison of Exclusive and Concurrent Running Model

In this section, we study the impact of concurrently running multiple applications. There
are two concerns in our study, 1) throughput, measured by the reciprocal of the time
needed to finish a group of task, and 2) performance of individual application in the
concurrent execution.

We firstly enumerate every pair of the 11 benchmarks in SpecOMP 2001 as a task
group. The two benchmarks first run exclusively, one after the other. Benchmarks
312.swim, 314.mgrid, 318.galgel and 320.equake are executed with 12 threads as their
performances are better with 12 threads than with 24 threads. Then the two bench-
marks are executed concurrently under SWOMPS’ scheduling, each benchmark with

92 J. Yan et al.

Table 5. Throughput and Performance Study of Pairwise Execution

(a) Throughput comparison between exclusively execution and pairwise execution with 12 threads
for each application

Benchmark 310.wupwise 312.swim 314.mgrid 316.applu 318.galgel 320.equake 324.apsi 326.gafort 328.fma3d 330.art
312.swim 1.08
314.mgrid 1.18 1.07
316.applu 1.01 1.06 1.07
318.galgel 1.09 1.00 1.18 0.97
320.equake 1.02 1.13 1.13 1.07 0.91
324.apsi 1.07 1.25 1.20 1.14 0.92 1.07
326.gafort 0.99 1.01 1.04 0.96 1.11 0.81 0.94
328.fma3d 1.22 1.20 1.22 1.15 1.07 1.08 1.11 0.95
330.art 1.26 1.20 1.24 1.22 1.06 1.17 1.27 0.97 1.31
332.ammp 1.05 1.06 1.25 0.93 1.27 0.89 0.90 1.14 1.12 1.03

(b) Performance reduction of individual benchmark due to concurrent execution

Benchmark 310.wupwise 312.swim 314.mgrid 316.applu 318.galgel 320.equake 324.apsi 326.gafort 328.fma3d 330.art
312.swim 17, 65
314.mgrid 14, 58 40, 35
316.applu 30, 54 58, 33 49, 26
318.galgel 22, 42 45, 14 43, 16 35, 32
320.equake 28, 36 68, 12 53, 7 52, 28 38, 27
324.apsi 47, 34 61, 4 52, 3 55, 25 38, 27 45, 22
326.gafort 39, 54 56, 31 56, 35 45, 41 43, 33 41, 50 32, 50
328.fma3d 30, 44 57, 21 43, 15 43, 34 32, 27 28, 33 28, 44 44, 44
330.art 33, 35 63, 8 54, 8 46, 25 35, 23 28, 26 23, 38 35, 39 36, 27
332.ammp 34, 42 53, 1 52, 6 46, 21 34, 24 34, 36 34, 37 34, 44 34, 41 34, 30

12 threads. We normalize the throughput of the concurrent run with respect to the ex-
clusive run and the results are listed in Table 5a. In 43 of the 55 tests, concurrent run
achieves better throughput. The best throughput improvement is 31% and the average
throughput improvement is 9%.

We also tested concurrent run without SWOMPS’ scheduling. Due to space limit,
the detail of the result is not presented. In those tests, none of the concurrent run has
better throughput. The average throuughput decreases by 32%. Simply running multiple
applications concurrently does not guarantee throughput improvement.

We compare the performance of individual benchmark between exclusive run and
concurrent run. The results are listed in Table 5b. For example, “17, 65” in the second
row and second column indicates that, compared with exclusive run, when 312.swim

Benchmark sequence in the task queue N T
332, 316, 326, 314, 328, 320, 330, 324, 310, 318, 312 1.56
328, 330, 326, 312, 320, 316, 332, 324, 318, 310, 314 1.50
312, 314, 328, 318, 310, 330, 320, 316, 326, 332, 324 1.54
326, 332, 330, 320, 314, 312, 310, 318, 324, 316, 328 1.49
330, 332, 318, 324, 310, 312, 320, 316, 314, 326, 328 1.49
330, 310, 324, 332, 328, 312, 314, 326, 316, 320, 318 1.35
312, 314, 330, 310, 324, 328, 316, 332, 320, 326, 318 1.39
332, 316, 314, 324, 328, 326, 312, 318, 310, 320, 330 1.54
316, 312, 320, 332, 326, 324, 310, 318, 330, 328, 314 1.50
326, 316, 320, 310, 314, 332, 318, 324, 328, 330, 312 1.56

(a) Throughput comparison

Max
Min
Avg

 −40

 −20

 0

 20

 40

 60

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

324.apsi

326.gafort

328.fma3d

330.art

332.ammp

Pe
rf

or
m

an
ce

 v
ar

ia
tio

n

(b) Performance variation

Fig. 4. Throughput and Performance Study of Task Group with 11 Benchmarks

How OpenMP Applications Get More Benefit from Many-Core Era 93

and 310.wupwise run concurrently, performance of 312.swim decreases 15%, and per-
formance of 310.wupwise decreases 65%. In the 110 comparisons, 90 of them are less
than 50%, and the average performance decrease is 35.6%. This result is better than
expected considering only half of the threads running and the L3 cache and memory
bandwidth are shared among two benchmarks.

We next use all the 11 benchmarks as a task group. The 11 benchmarks enter a
task queue in a random order. In the exclusive run, benchmarks 312.swim, 314.mgrid,
318.galgel and 320.equake are executed with 12 threads, others are executed with 24
threads. At the same time, only one benchmark is running. In the concurrently run, each
benchmark runs with 12 threads. At the same time, there are two benchmarks running.
When a benchmark terminates, the next benchmark in the task queue starts execution
immediately. We tested 10 randomly generated testings and normalize the throughput
of the concurrent run with respect to the exclusive run. Figure 4a lists the order of the
11 benchmarks in the queue in the first column. The second column lists the normalized
throughput. On average, concurrently run has 49% improvement in throughput.

Figure 4b shows the performance variations of concurrent run compared with exclu-
sive run. Bars labeled with Max give the maximum performance decrease of concurrent
run in the 10 tests. Bars labeled with Min are the minimum performance decrease. Bars
labeled with Avg are the average performance decrease. A negative value means bench-
mark runs faster in the concurrent run. Significant performance improvements have
been observed in the concurrent run of benchmark 312.swim and 314.mgrid. A further
study shows the major source of the improvement is thread binding. As we can see
form the figure, the average performance decrease of the 11 benchmark are all less than
50%.

These experiments show that concurrent running model outperforms exclusive run-
ning model in throughput, especially if there are many tasks. Meanwhile, concurrent
running will slow down the applications but they are reasonable.

6 Related Work

Many researches [1,2,3,4,5,6] have been carried out to improve the performance of
OpenMP applications on multi-core system. Truong et al. [1] seek to improve scalability
from implementation aspect. Their work introduces thread subteams to overcome the
thread mapping problem and enhance modularity. Noronha et al. [2] study the benefits
from using large page support for OpenMP applications. Terboven et al. [4] improve
data and thread affinity of OpenMP programs on multi-core system by binding thread
to thread cores and allocate memory with next touch strategy. A series of papers [3,5,6]
from Broquedis et al. introduce a runtime system that transpose affinities of thread
teams into scheduling hints. With the help of the introduced BubbleSched platform,
they propose scheduling strategy suited to irregular and massive nested parallelism over
hierarchical architectures. They also propose a NUMA-aware memory management
subsystem to facilitate data affinity exploitation.

To the authors’ knowledge, there was no study about improving concurrently running
multiple OpenMP applications.

94 J. Yan et al.

7 Conclusion

Restrictions of heating and power consumption has converted the effect of Moore’s law
from increasing the performance of a single-core processor to the number of cores in a
processor. More and more cores will be available in one processor. However, a prelimi-
nary experimental study of the scalability of OpenMP applications shows that OpenMP
applications cannot efficiently utilize the increasing processor cores in general. Concur-
rently running multiple OpenMP applications will become a common usage model.

In the NUMA architecture with multi-core processors, the processor cores are asym-
metric. How the threads of the concurrently running OpenMP applications are
distributed on the processor cores is important to the performance of all the current
applications. In this paper, we proposed a system-wide scheduler, SWOMPS, to help
schedule the threads on the processor cores. The scheduler makes its decision based
on underlying hardware configuration as well as the hints of scheduling preference of
each application. Experiment results shows that SWOMPS is efficient in improving the
whole system performance. We also compared the exclusive running and concurrent
running with SWOMPS. In various experimental comparisons, concurrent execution
outperforms in throughput, meanwhile the performance slowdown of individual appli-
cation in concurrent execution is reasonable.

References

1. Chapman, B.M., Huang, L.: Enhancing OpenMP and its implementation for programming
multicore systems. In: Bischof, C.H., Bücker, H.M., Gibbon, P., Joubert, G.R., Lippert, T.,
Mohr, B., Peters, F.J. (eds.) PARCO. Advances in Parallel Computing, vol. 15, pp. 3–18.
IOS Press, Amsterdam (2007)

2. Noronha, R., Panda, D.K.: Improving scalability of OpenMP applications on multi-core sys-
tems using large page support. In: IPDPS, pp. 1–8. IEEE, Los Alamitos (2007)

3. Thibault, S., Broquedis, F., Goglin, B., Namyst, R., Wacrenier, P.A.: An efficient OpenMP
runtime system for hierarchical architectures. In: Chapman, B., Zheng, W., Gao, G.R.,
Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 161–172.
Springer, Heidelberg (2008)

4. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and thread affinity in
OpenMP programs. In: MAW ’08: Proceedings of the 2008 workshop on Memory access on
future processors, pp. 377–384. ACM, New York (2008)

5. Broquedis, F., Diakhaté, F., Thibault, S., Aumage, O., Namyst, R., Wacrenier, P.A.:
Scheduling dynamic OpenMP applications over multicore architectures. In: Eigenmann, R.,
de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 170–180. Springer, Heidelberg
(2008)

6. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.A.: Dynamic task and
data placement over numa architectures: An OpenMP runtime perspective. In: Müller, M.S.,
de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 79–92.
Springer, Heidelberg (2009)

7. Hanawa, T., Sato, M., Lee, J., Imada, T., Kimura, H., Boku, T.: Evaluation of multi-
core processors for embedded systems by parallel benchmark program using OpenMP. In:
Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568,
pp. 15–27. Springer, Heidelberg (2009)

How OpenMP Applications Get More Benefit from Many-Core Era 95

8. Terboven, C., an Mey, D., Sarholz, S.: OpenMP on multicore architectures. In: Chapman, B.,
Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS,
vol. 4935, pp. 54–64. Springer, Heidelberg (2008)

9. Curtis-Maury, M., Ding, X., Antonopoulos, C.D., Nikolopoulos, D.S.: An evaluation of
OpenMP on current and emerging multithreaded/multicore processors. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP
2006. LNCS, vol. 4315, pp. 133–144. Springer, Heidelberg (2008)

Topology-Aware OpenMP Process Scheduling�

Peter Thoman, Hans Moritsch, and Thomas Fahringer

University of Innsbruck
Distributed and Parallel Systems Group

A6020 Innsbruck, Austria
peter.thoman@uibk.ac.at

Abstract. Multi-core multi-processor machines provide parallelism at
multiple levels, including CPUs, cores and hardware multithreading. El-
ements at each level in this hierarchy potentially exhibit heterogeneous
memory access latencies. Due to these issues and the high degree of
hardware parallelism, existing OpenMP applications often fail to use
the whole system effectively. To increase throughput and decrease power
consumption of OpenMP systems employed in HPC settings we propose
and implement process-level scheduling of OpenMP parallel regions. We
present a number of scheduling optimizations based on system topology
information, and evaluate their effectiveness in terms of metrics calcu-
lated in simulations as well as experimentally obtained performance and
power consumption results. On 32 core machines our methods achieve
performance improvements of up to 33% as compared to standard OS-
level scheduling, and reduce power consumption by an average of 12%
for long-term tests.

1 Introduction

OpenMP [1] is one of the most widely used languages for programming shared
memory systems, particularly in the field of High Performance Computing (HPC)
[2]. Due to recent developments in hardware manufacturing, the number of cores
in shared memory systems is rising sharply. Nowadays it is not unusual to find
16 or more cores in a single multi-socket multi-core system, possibly with an
even larger number of hardware threads. The topology of these systems is often
complex, with hierarchies comprising multiple levels of cache and heterogeneous
access latencies in a non-uniform memory architecture (NUMA). Future many-
core architectures [3] are likely to further increase the architectural complexity.

This paper presents experiments demonstrating that many existing OpenMP
applications and implementations fail to scale fully on such shared-memory, mul-
tiprocess systems (SMMPs). They also do not take into account modern CPU
power saving technologies increasingly employed in the name of green computing,
which usually work on a per-socket basis [4]. As one possible way to overcome
these difficulties and enhance throughput we propose the centralized process-level
� The research described in this paper is partially funded by the Tiroler Zukunftss-

tiftung as part of the “Parallel Computing for Manycore Computers” project.

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 96–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Topology-Aware OpenMP Process Scheduling 97

scheduling of multiple OpenMP workloads (jobs), taking into account any avail-
able topology information. This approach is immediately applicable to existing
applications without any code-level changes, a significant advantage considering
the large number of OpenMP codes in active HPC use.

We have implemented such a system and evaluated its performance. Our con-
tributions are as follows:

– A client/server architecture for centralized mapping of all OpenMP parallel
workloads in a system to the available hardware resources.

– An implementation of this architecture in the Insieme OpenMP compiler
and runtime system [5].

– A topology-aware scheduling algorithm optimizing throughput and power
consumption of SMMPs processing OpenMP workloads.

– Evaluation and analysis of the actual performance of our architecture and
scheduling algorithm in terms of both execution time and power consump-
tion. We compare our results to the Insieme compiler without centralized
management as well as to results obtained using GCC’s GOMP [6].

The remainder of this paper is structured as follows: In the next section, we
present benchmarks and analysis serving to explicate the problem and moti-
vate our approach. Section 3 gathers some references to related work. Section
4 describes the architecture as well as the implementation of our client/server
OpenMP runtime system and scheduling algorithm. The results of simulations
and experimental evaluation are gathered in Section 5. Finally Section 6 presents
a conclusion, and an outlook on potential future improvements.

2 Motivation

We start our discussion by assuming a n-core SMMP system and m OpenMP
programs (jobs) that should be executed on this system. Additional jobs can be
added at any time. This situation corresponds to a realistic scenario in scientific
computing and is the basic assumption for the experimental setting adopted
throughout this paper. There are a number of natural options for executing
multiple OpenMP jobs:

– Sequentially execute the jobs, and have each job allocate n threads – the
default specified by the OpenMP standard. Standard queuing system in HPC
clusters use this method.

– Start all m jobs in parallel and leave thread scheduling to the OS. As we
will show, this option can have a severe detrimental impact on the resulting
performance (see Section 5.2).

– Run less than m jobs in parallel, each of them using less than or equal
n threads. A standard OpenMP implementation enables this option, does
however require some manual queuing. The thread scheduling is still left to
the OS.

98 P. Thoman, H. Moritsch, and T. Fahringer

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

To
ta

le
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of parallel jobs

(a) Set of 8 jobs, large problem sizes.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Parallel Jobs

No thread
count
adaptation

Conservative
thread count
adaptation

Full thread
count
adaptation

(b) Set of 16 jobs, various problem sizes.

Fig. 1. Initial Experiments

Figure 1 shows some initial benchmarking results. For a complete description
of the experimental setup and hardware used throughout this paper see Section
5.2. The three parallel execution strategies shown relate to the options presented
above as follows: No thread count adaptation simply uses n threads per job
ignoring the number of parallel jobs running in the system; Conservative thread
count adaptation uses min(n, �n/(0.5 ∗ m)�) threads; Full thread count adaptation
uses n

m threads. With the first option, many more threads are running on the
system than hardware cores are available, while for the third option the numbers
are equal. The conservative option presents a compromise between these two
strategies.

In both Figure 1(a) and 1(b), simple serial execution (1 parallel job) is clearly
shown to be far from ideal. For the batch of 8 large jobs featured in the first
experiment, an improvement in total runtime of 37% compared to serial can be
achieved by exploiting job parallelism, while for the second batch an impressive
5-fold increase in throughput was measured. This underutilized performance
potential is the motivation behind our approach of introducing a novel, job-level
OpenMP scheduling.

2.1 Scaling Behavior of Popular OpenMP Codes

In order to explain the performance improvements of job-parallel OpenMP exe-
cution demonstrated above we investigated the scalability of the OpenMP codes
contained in the NAS parallel benchmarks [7] (BT, LU, MG, CG, IS, FT and
EP) and two locally developed simple kernels (mmul and gauss, performing dense
matrix multiplication and Gaussian elimination respectively). While our initial
tests dealt with programs as monolithic units, we now determine the scalability
of each OpenMP parallel region separately, since the differences between e.g.
initialization code and actual computation or different phases of computation
make a per-region analysis more informative and effective.

Topology-Aware OpenMP Process Scheduling 99

0

4

8

12

16

20

24

28

32
Maximal scaling limit
Optimal scaling limit

N
um

be
r o

f T
hr

ea
ds

b
t.B

:b
t1

3
0

lu
.C

:lu
3
0
8
5

m
g
.A

:m
g
11

0
5

m
g

.A
:m

g
9

6
1

lu
.A

:lu
1
2
0

g
a
u
ss.sm

a
ll:4

0
m

g
.B

:m
g

9
6

1
m

g
.A

:m
g
2
3
6

g
a
u
ss.la

rg
e
:2

0
m

g
.C

:m
g

1
0

9
1

m
g

.C
:m

g
9

6
1

m
g

.B
:m

g
2

3
6

m
g
.A

:m
g
2
7
1

cg
.A

:cg
2

5
4

g
a
u
ss.sm

a
ll:2

0
m

g
.C

:m
g

2
3

6
m

g
.B

:m
g
1
0
9
1

cg
.B

:cg
2
5
4

is.A
:is6

3
8

cg
.C

:cg
2

5
4

m
g

.B
:m

g
2

7
1

is.B
:is6

3
8

cg
.A

:cg
7
4
0

g
a
u
ss.m

e
d
:4

0
m

m
u

l.la
rg

e
:1

8
m

g
.C

:m
g

2
7

1
m

g
.C

:m
g

11
0

5
cg

.B
:cg

7
4
0

cg
.A

:cg
7

8
5

m
m

u
l.m

e
d
:1

8
lu

.C
:lu

1
2

0
cg

.C
:cg

7
4
0

m
g
.B

:m
g
11

0
5

cg
.B

:cg
7

8
5

m
g
.A

:m
g
2
3
0

lu
.A

:lu
3
0
4
9

is.A
:is6

5
2

ft.A
:ft1

4
5

ft.A
:ft1

2
3

g
a
u
ss.m

e
d
:2

0
m

m
u

l.sm
a

ll:1
8

cg
.C

:cg
7

8
5

m
g
.B

:m
g
2
3
0

is.B
:is6

5
2

ft.B
:ft1

4
5

ft.B
:ft1

2
3

e
p
.B

:e
p
1
4
4

cg
.A

:cg
1

7
1

cg
.A

:cg
6

4
4

b
t.A

:b
t1

4
9

b
t.B

:b
t1

4
9

lu
.C

:lu
3
0
4
9

e
p

.C
:e

p
1
4

4
m

g
.C

:m
g

2
3

0
cg

.B
:cg

1
7
1

cg
.B

:cg
6

4
4

m
g
.A

:m
g
1
0
9
1

cg
.C

:cg
1

7
1

cg
.C

:cg
6

4
4

lu
.A

:lu
3
0
8
5

e
p
.A

:e
p
1
4
4

b
t.A

:b
t1

3
0

g
a
u
ss.la

rg
e
:4

0

Fig. 2. Per-region scaling of OpenMP codes. Regions are shown along the x-axis.

Figure 2 shows the scaling behavior of each parallel region contained in the test
programs. Regions in the chart are identified by the program name, program size
and line number of the first statement inside the region. As an example, bt.B:
bt130 identifies the parallel region starting at line 130 of the BT benchmark in
the NAS suite, when run at problem size B.

Note that, while this approach provides a relatively fine-grained view of the
performance characteristics of the parallel regions, it does not account for the
effects of external system load on region scalability. All test were performed on
an unloaded system.

Optimal scaling limit denotes the upper limit on the number of threads at
which the speedup obtained lies within 20% of ideal. The maximal scaling limit
is the number of threads with the largest absolute speedup. Using the latter
achieves the lowest execution time for a single job, while the former is more
power efficient and less wasteful if multiple jobs are to be run in parallel. Note
that, for many parallel regions, the default OpenMP behaviour of choosing the
same number of threads across all program regions as there are hardware cores
available is greatly inefficient on our 32 core target system.

3 Related Work

Enhancing OpenMP to make better use of locality and increase scalability, par-
ticularly on multicore architectures, is a topic that has been repeatedly investi-
gated over the past years [8,9]. Recently, particular attention has been paid to
scheduling tasks (as introduced by OpenMP 3) [10]. However, these efforts fo-
cus on improving the scalability and performance of single OpenMP programs.
Conversely, our system overcomes individual program’s scalability limitations
by scheduling additional programs, optimizing the whole system’s throughput.
In the existing literature, locality is often signaled by nested parallel regions,
which are still not widely used in practice. Our system simply improves locality
of subsequent threads of each process, but does so for multiple processes at a

100 P. Thoman, H. Moritsch, and T. Fahringer

time. A popular approach to developing scalable software for large machines is
hybrid OpenMP/MPI programming [11]. Since this method produces multiple
OpenMP processes, it is complementary to our process-level scheduling system.

One of the primary goals of multiprocessor scheduling at the OS level is fair-
ness [12], while our OpenMP scheduling system is intended to optimize through-
put. However, the defining difference between OS-level scheduling and OpenMP
process scheduling is that in the latter case the number of threads used can be
determined by the scheduler itself, while it is fixed by user-level applications in
the former. Also, when dealing only with OpenMP programs, some more use-
ful assumptions can be made, like data locality being most important between
subsequent threads (due to the default loop distribution strategies defined in
OpenMP).

4 Architecture

Our topology-aware OpenMP job scheduling system consists of three major
components:

– The Insieme compiler [5], a source to source compiler supporting OpenMP
which also enables per-region profiling (e.g. for OpenMP parallel regions) and
unique region identifiers.

– The Insieme OpenMP runtime library, which works like a standard
OpenMP library for most operations, but communicates with a central server
when opening and closing a parallel region.

– The Insieme OpenMP server, a management process that keeps track
of available CPU cores and outstanding requests for threads, and makes
mapping and scheduling decisions based on system topology and load.

4.1 Process Communication

Process communication is required to implement the centralized management of
system resources across OpenMP processes. In practice this means that multiple
OpenMP programs – upon encountering the start of a parallel region – request
hardware resources from the management process (server), including information
about the expected scalability of the related region. The server then decides
which and how many logical cores to dedicate to the requesting process and
sends a reply indicating them.

In our system this communication is achieved by means of UNIX V message
queues [13]. The message queue mechanism was chosen because of its good se-
mantic fit with the desired functionality and relatively low overhead of less than
6 microseconds for each paired send/receive operation on our hardware.

Figure 3 illustrates the typical communication operations associated with each
parallel region in the source program. PID stands for the unique process id of the
user program, optcount and maxcount refer to the scaling descriptors introduced
in Section 2.1 and grey arrows represent communication over a message queue.

Topology-Aware OpenMP Process Scheduling 101

'

...

Fig. 3. Process communication

When a new parallel region is encountered, its unique identifier (generated at
compile time) is lookedup in the table of available profiling information by the run-
time system. The retrieved data is included in a request dispatched to the central
OpenMP process, which additionally includes the process ID of the user program
making the request. Upon receiving this request, the server makes its mapping and
scheduling decisions (see next section for details). Unless the system is fully loaded
(in which case the request is postponed) a reply is sent immediately, containing the
number of threads/cores assigned (N) as well as a list of core ids to be used. The
runtime library on the client side then allocates and/or reuses the required number
of threads, and binds each of them to a specific core as specified by the list sent by
the server. After dispatching the reply the server flags the cores it indicated as in
use in its internal data structures.

4.2 Topology-Aware Scheduling

In multi-socket multi-core NUMA systems, there are multiple levels of memory
hierarchy to be aware of, with significant differences in terms of access latency
and bandwidth. An example of such a hierarchy, ordered from fastest to slowest:
L1 cache, L2 cache, shared L3 cache, node local RAM, RAM one hop distant,
RAM n hops distant. We call a scheduling process topology-aware if it seeks to
minimize memory accesses to slow, distant memories by explicitly making use
of information on the structure of a system.

One critical difference between scheduling as it is generally encountered in e.g.
OS-level schedulers and our OpenMP job scheduling is that, due to the flexibility
of most OpenMP programs, we can freely decide not just which threads to run
when and on which hardware, but also the number of threads to use for specific
regions of a program. This decision should be based on knowledge about the
scalability of the regions in question (currently gained through profiling) as well
as the current and expected future load of the system.

For the implementation of our system we use information gained from lib
numa [14] and the Linux /proc/cpuinfo mechanism to construct a distance
matrix with one distance value for each pair of logical cores. From here on, we
refer to the the entry at position i, j in this matrix as dist(i, j). Figure 4(a)

102 P. Thoman, H. Moritsch, and T. Fahringer

SMMP system

(a)

0 1 2 3 4 5 6 7 8 9 A B

0 0 0 1 1 10 10 10 10 20 20 20 20
1 0 0 1 1 10 10 10 10 20 20 20 20
2 1 1 0 0 10 10 10 10 20 20 20 20
3 1 1 0 0 10 10 10 10 20 20 20 20
4 10 10 10 10 0 0 1 1 10 10 10 10
5 10 10 10 10 0 0 1 1 10 10 10 10
6 10 10 10 10 1 1 0 0 10 10 10 10
7 10 10 10 10 1 1 0 0 10 10 10 10
8 20 20 20 20 10 10 10 10 0 0 1 1
9 20 20 20 20 10 10 10 10 0 0 1 1
A 20 20 20 20 10 10 10 10 1 1 0 0
B 20 20 20 20 10 10 10 10 1 1 0 0

(b)

Fig. 4. Topological core distance example

provides an example topology of a relatively small system, and Table 4(b) shows
the corresponding distance matrix. Note that the factor of distance amplification
for each higher level of hierarchy can be chosen arbitrarily, but should always be
larger than the maximum distance possible on the previous level. For clarity we
have chosen a value of 10 in the example.

Cores are selected based on a greedy algorithm that locally minimizes the
distance from the previously selected core to the next one. This is performed
rapidly via lookups in statically cached lists of close cores. While not always
resulting in a globally optimal core selection, the low overhead and importance
of local distances for many algorithms (see Section 5.1) make this method well
suited for our purpose.

Our OpenMP job server supports some flags to adjust the core selection and
mapping process, which will be described next. Fragmentation in this context
means that, over time, threads belonging to many different OpenMP processes
will be assigned to cores belonging to a single topological unit (e.g. a node),
due to earlier scheduling decisions. This has negative effects on locality and the
effectiveness of shared caches.

Locality. Turns on and off the use of topology information to improve locality.
Useful to check thebase assumption thathigher locality improves performance.

Clustering. Reduces fragmentation over longer running periods by preferen-
tially maintaining clusters of close resources as free or occupied. This ap-
proach can also reduce power consumption on systems with per-node power
management (see Section 5.2). Small overhead costs in processing time and
server memory requirements.

Enhanced Clustering. In conjunction with clustering, allows the server to
further reduce fragmentation by slightly decreasing the number of cores pro-
vided to a process in cases where a new, previously unused set of cores would
become fragmented.

Strict Thread Counts. If enabled, the Insieme OpenMP server may postpone
requests when highly loaded instead of starting them with a smaller number
of threads than ideal. Beneficial when there is a mixture of jobs with varying
scalability.

Topology-Aware OpenMP Process Scheduling 103

The impact of these options is examined in Section 5. Note that minimizing
distance by means of clustered scheduling is not always ideal on a NUMA system
which is not fully loaded, since memory bandwidth intensive applications may
benefit from threads being spread out across nodes. However, our algorithm is
optimized for the case of the full system being utilized by numerous threads from
multiple processes.

Figure 5 provides an overview of the decision algorithm performed by the
server when receiving a new request for threads from a client process. The close
core list is a list precomputed for each core that contains the core ids of all other
cores in the system, listed in order of topological distance. For clustering, a core
set is a set of cores which share some level of memory hierarchy. Consequently
there can be multiple levels of core sets, in which case the algorithm tries to find
suitable cores starting from the lowest level of hierarchy. In the example shown
in Fig. 1 there are 2 levels of core sets, the first sharing cache (e.g. cores 0 and
1) and the second sharing memory banks (e.g. cores 0 to 3).

When a client sends a message signaling the end of a parallel region, the cores
are marked as free and, if outstanding requests are in the FIFO queue, they are
processed as above.

CA number of cores available
RT target number of cores
C, PC core identifiers
LC list of core identifiers returned
optcount, maxcount request parameters (Sec. 4.1)
[strict], [local], [clustering], . . . scheduling flags (Sec. 4.2)
loadfactor, threshold ∈ [0, 1] depending on system state

RT = optcount + loadfactor ∗ (maxcount − optcount)
if CA < 0 or ([strict] and CA < optcount) then

put current request on FIFO queue
return {}

end if
while RT > 0 do

C = Free core
if [local] then

Choose C from close core list
if [clustering] and C from new set then

Prefer C from (in order):
↪→ Occupied core set containing exactly RT free cores
↪→ Occupied core set containing > RT free cores
↪→ Any free core set

end if
if [enhancedclustering] and dist(PC, C) > threshold ∗ |size(LC) − RT | then

return LC
end if
LC = LC ∩ {C}
PC = C
RT = RT − 1

end if
end while
return LC

Fig. 5. Core selection algorithm

104 P. Thoman, H. Moritsch, and T. Fahringer

5 Evaluation

In this section our system and algorithm are evaluated, first by performing sim-
ulations and calculating some theoretical metrics and second by performing ex-
periments and measuring runtimes and power usage. All experiments were per-
formed on Sun X4600 M2 servers with AMD Opteron 8356 processors. This is
an 8 socket architecture, with 4 cores each containing private L1 and L2 caches
and sharing 2 MB of L3 cache. The sockets have a distance of one to three hops
each [15]. The systems run CentOS version 5 (kernel 2.6.18) 64 bits. To com-
pile the reference version of the example programs, GCC version 4.3.3 was used
with the -O3 option to reflect a production environment. For our own version,
SVN revision 277 of the Insieme source-to-source compiler and runtime system
was employed, using the same GCC version and options as above to perform
back-end compilation.

To ensure statistical significance each experiment was repeated 10 times, and
the median result is reported. In charts vertical error bars are used to show the
standard deviation of a set of experiments.

5.1 Simulation

To evaluate the impact of the scheduling options presented in Section 4.2 we
performed a simulation of client requests and calculated the following metrics:

Overhead. The average amount of time required to make a scheduling decision,
in microseconds.

Target miss rate. The difference between the desired number of threads (RT)
and the number actually provided (N).

Three distance metrics. LC = {c1, ..., cN} denoting the set of cores provided:
– Total distance:

∑N
i=1

∑N
j=1 dist(ci, cj)

– Weighted distance:
∑N

i=1
∑N

j=1
dist(ci,cj)
|i−j|+1

– Local distance:
∑N−1

i=1 dist(ci, ci+1)

Which distance metric has the best predictive qualities depends on the access
patterns the code exhibits. Weighted and local distance are more significant than
total distance for many real-world OpenMP kernels which rely on the default
distribution of loop iterations, resulting in data access locality being higher in
subsequent (according to OpenMP numbering) threads.

Figure 6 shows the results of a simulation of 1000 requests to the OpenMP
server, with four different configurations corresponding to different settings of
the flags introduced in Section 4.2: none disables all flags; locality enables the use
of locality; clustering enables locality and clustering; clustering2 enables locality,
clustering and enhanced clustering; c2 + strict enables all flags. The simulation
uses the same system topology as the experimental setup described in Section
5.2, randomly simulating jobs with sizes normally distributed and ranging from
1 to 32 threads.

Topology-Aware OpenMP Process Scheduling 105

Distance
µs MR Total Weight Local

none 1.26 2.94 8003 2098 893
locality 1.28 2.94 6765 1537 485

clustering 1.3 2.94 6054 1289 340
clustering2 1.29 3.09 5760 1173 275
c2 + strict 1.3 2.07 7159 1340 327

(a)

0%

20%

40%

60%

80%

100%

120%

Overhead (μs)

Target miss rate

Total distance

Weighted distance

Local distance

(b)

Fig. 6. Metrics computed in simulation

Table 6(a) shows the raw values while Fig. 6(b) illustrates the relative impact
of the different scheduling options by normalizing the values. The columns con-
tain, in order from left to right: the amount of time, in microseconds, required
for the scheduling decision; the target miss rate; and the three distance metrics
described above.

The impact on response time and target miss rate of the locality and clustering
options is negligible, but they can reduce the weighted distance of the returned
set of cores by around 40% and the local distance by up to 64%. Enabling the
strict thread counts option significantly reduces the miss rate, but at the cost
of reduced locality. In the next section the practical impact of these options will
be evaluated.

5.2 Experiments

Figure 7 shows the results of a small-scale experiment performed to compare the
total runtime of a fixed set of benchmarks using traditional sequential execution,
OS-based parallel execution and our client/server scheduling system with various
options. The specific set of programs used was the following (randomly selected
from the set of test applications introduced in Section 2.1): mg.C, gauss.large,

0

100

200

300

400

500

600

700

800

900

Ti
m

e
in

 s
ec

on
ds

GOMP, sequential

GOMP/OS, optimal

Our server, no locality

Our server, locality

Our server, locality +
enhanced clustering

thread count

Fig. 7. Small-scale experiment

106 P. Thoman, H. Moritsch, and T. Fahringer

is.A, matrixmult.medium, cg.A, gauss.small, bt.B, mg.A, ep.B, ft.A, is.A, lu.A,
matrixmult.small.

The theoretical advantages of locality-based scheduling and clustering shown
previously are confirmed by an improvement of 28% by exploiting the former and
39% by additionally enhancing the latter, compared to using our system without
making use of topology information. The improvement compared to traditional
sequential execution is 40%, and 19% remain when comparing standard OS
parallel scheduling of the processes and statically forcing optimal thread counts.
In other words, in this experiment, a reduction in runtime of around 21% can
be achieved by improving the exploitation of hardware parallelism by selectively
using multiple parallel processes, and an additional 19% gain is possible by
enhancing the locality of thread sets via topology-aware scheduling.

Large-scale Experiments and Power Consumption. As a second step of
evaluation we performed a large scale experiment. Over 5 hours, a new OpenMP
process was randomly selected and started every 10 to 60 seconds. The programs
were again chosen from the set introduced in Section 2.1. The random number
generator seeds for program and interval selection were kept constant throughout
the experiment to guarantee repeatability and comparability.

During the runtime of the experiments, we continuously measured and logged
the system power consumption using the Sun ILOM service [15], which allows
for a resolution of several measurements per second.

Table 1. Performance results of 5 hour experiment

Scheduling type Total Time (s) % of sequential
Sequential 28356 100.00 %
OS parallel, no limit 121855 429.73 %
OS parallel, limit 8 82417 290.65 %
OS parallel, limit 2 23591 83.20 %
server, OS 21527 75.00 %
server, no locality 27959 98.60 %
server, locality 21240 74.91 %
server, clustering 18941 66.80 %

Table 1 lists the total runtime required to finish execution of all the programs
launched during the 5 hour testing period, for various scheduling methods. Se-
quential refers to standard sequential execution, OS parallel executes a number
(up to some limit) of processes in parallel without any explicit scheduling and
Server uses our system. Server, OS only assigns the amount of threads to use,
but leaves their placement up to the OS. The other options enable the corre-
sponding flags described in Section 5.1).

Fully parallel execution using standard OS scheduling leads to a very large
number of active threads and a performance collapse due to context switching
overhead. While this method can achieve good results in the small-scale ex-
periments shown in Section 2 care must be taken to select a suitable limit for
production use. In this experiment, a limit of two parallel processes leads to an
improvement of 17% compared to sequential execution.

Topology-Aware OpenMP Process Scheduling 107

800

900

1000

1100

m
p

ti
o

n
 (

W
at

ts
)

500

600

700

800

900

1000

1100

0 2500 5000 7500 10000 12500 15000 17500 20000

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
at

ts
)

Time (seconds)

Fig. 8. Power consumption over time during large-scale experiment for standard OS
scheduling and topology-aware, clustered scheduling using our system

Our client/server mapping system performs well, greatly improving through-
put compared to traditional sequential execution or non-managed parallel pro-
cesses. With locality information and clustering the best result is achieved, a
33% improvement compared to sequential execution.

However, there is another advantage to offered by clustered thread scheduling
and affinity mapping. By reducing inter-node communication and preferentially
keeping entire nodes and related core sets empty this technique allows hardware
power saving technologies to function more effectively. On our target system, and
most servers currently in use, power saving technologies like frequency scaling
only work on a per-node basis and not on the individual cores of a node. Clus-
tered, locality-aware scheduling preferentially keeps entire nodes free of work,
allowing them to enter an appropriate low-power state.

Figure 8 shows the measured power consumption, over the time period of the
experiment, of standard OS scheduling and clustered scheduling using our server.
The average power consumption of the former is 1014 Watts, which the latter
reduces by 12% to 904 Watts. Note that around 8 measurements per second are
taken, and that the black lines represent a central moving average over 25 data
points.

6 Conclusion

We presented an OpenMP process-level scheduling and mapping solution that
uses system topology information to improve thread locality. Additionally, a
suitable number of threads is automatically selected for each OpenMP parallel
region depending on scalability estimates and current system load. The imple-
mentation comprises a source-to-source compiler, a server process that manages
hardware resources and an OpenMP runtime library which communicates with
the server, allocates threads and performs affinity mapping as instructed. Sim-
ulation and both small- and large-scale benchmarks show consistent improve-

108 P. Thoman, H. Moritsch, and T. Fahringer

ments in throughput and, with clustering, a marked decrease in average power
consumption can be observed.

One drawback of our method we have not addressed yet is the need for reliable
per-region scaling data. This necessitates either developer-supplied information
or instrumented benchmarking runs. In the future we plan to alleviate this issue
using machine learning, with estimated scalability data gained by static analysis
during compile time and further refinement during runtime.

References

1. OpenMP Architecture Review Board: OpenMP Application Program Interface.
Version 3.0 (May 2008)

2. Karl-Filip, F. (ed.), Bengtsson, C., Brorsson, M., Grahn, H., Hagersten, E., Jons-
son, B., Kessler, C., Lisper, B., Stenström, P., Svensson, B.: Multicore computing
– the state of the art (2008), http://eprints.sics.se/3546/

3. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junk-
ins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: a many-core x86 architecture for visual computing. ACM
Trans. Graph 27(3), 1–15 (2008)

4. Herbert, S., Marculescu, D.: Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In: Proc. 2007 Int. Symp. on Low Power Electronics and Design
ISLPED ’07, pp. 38–43. ACM, New York (2007)

5. http://www.dps.uibk.ac.at/projects/insieme/

6. Novillo, D.: OpenMP and automatic parallelization in GCC. GCC developers sum-
mit (2006)

7. Bailey, D., Barton, J., Lasinski, T., Simon, H.: The NAS Parallel Benchmarks.
NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field,
CA (1991)

8. Chapman, B., Huang, L.: Enhancing OpenMP and Its Implementation for Pro-
gramming Multicore Systems. In: Advances in Parallel Computing, vol. 15. IOS
Press, Amsterdam (2008)

9. Noronha, R., Panda, D.K.: Improving Scalability of OpenMP Applications on
Multi-core Systems Using Large Page Support. In: Parallel and Distributed Pro-
cessing Symp., IPDPS 2007, March 26-30. IEEE International, Los Alamitos (2007)

10. Duran, A., Corbalan, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling
Strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS,
vol. 5004, pp. 100–110. Springer, Heidelberg (2008)

11. Krawezik, G., Cappello, F.: Performance Comparison of MPI and three OpenMP
Programming Styles on Shared Memory Multiprocessors. In: ACM SPAA 2003,
San Diego, USA (June 2003)

12. Li, T., Baumberger, D., Hahn, S.: Efficient and scalable multiprocessor fair schedul-
ing using distributed weighted round-robin. SIGPLAN Not. 44(4), 65–74 (2009)

13. Stevens, W.R.: Advanced Programming in the UNIX Environment. Addison Wes-
ley Longman Publishing Co., Inc., Amsterdam (1992)

14. Kleen, A.: A NUMA API for Linux (2004), http://halobates.de/numaapi3.pdf
15. Sun Microsystems, Inc.: Sun Fire X4600 M2 Server Architecture. White Paper

(2008), http://www.sun.com/servers/x64/x4600/arch-wp.pdf

http://eprints.sics.se/3546/
http://www.dps.uibk.ac.at/projects/insieme/
http://halobates.de/numaapi3.pdf
http://www.sun.com/servers/x64/x4600/arch-wp.pdf

How to Reconcile Event-Based Performance
Analysis with Tasking in OpenMP�

Daniel Lorenz1, Bernd Mohr1, Christian Rössel1,
Dirk Schmidl2, and Felix Wolf1,2,3

1 Forschungszentrum Jülich, Jülich Supercomputing Centre, Germany
2 RWTH Aachen University, Dept. of Computer Science, Germany

3 German Research School for Simulation Sciences, Aachen, Germany

Abstract. With version 3.0, the OpenMP specification introduced a
task construct and with it an additional dimension of concurrency. While
offering a convenient means to express task parallelism, the new construct
presents a serious challenge to event-based performance analysis. Since
tasking may disrupt the classic sequence of region entry and exit events,
essential analysis procedures such as reconstructing dynamic call paths
or correctly attributing performance metrics to individual task region in-
stances may become impossible. To overcome this limitation, we describe
a portable method to distinguish individual task instances and to track
their suspension and resumption with event-based instrumentation. Im-
plemented as an extension of the OPARI source-code instrumenter, our
portable solution supports C/C++ programs with tied tasks and with
untied tasks that are suspended only at implied scheduling points, while
introducing only negligible measurement overhead. Finally, we discuss
possible extensions of the OpenMP specification to provide general sup-
port for task identifiers with untied tasks.

1 Introduction

In parallel computing, a task denotes an independent unit of work that con-
tributes to the solution of a larger problem. A task is usually specified as a
sequence of instructions to process a given subproblem. Tasks can be assigned
to different threads and can be executed concurrently with other tasks, as long
as input and output dependencies between tasks are observed. To offer a more
convenient way of expressing task parallelism, version 3.0 of the OpenMP spec-
ification [1] introduced a task construct along with synchronization mechanisms
and task scheduling rules.

The OpenMP specification distinguishes between tied and untied tasks. Tied
tasks can be suspended only at special scheduling points such as creation, comple-
tion, taskwait regions, or barriers. In contrast, untied tasks can be suspended at

� This material is based upon work supported by the US Department of Energy under
Grant No. DE-SC0001621 and by the German Federal Ministry of Research and
Education (BMBF) under Grant No. 01IS07005C.

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 109–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

110 D. Lorenz et al.

any point. In addition, a tied task can be resumed only by the thread that started
its execution, whereas an untied task can be resumed by any thread of the team.

The task construct provides an additional concurrency dimension within
OpenMP programs, as threads can migrate between tasks and tasks can mi-
grate between threads, although the latter option is available only for untied
tasks. This creates a challenge for traditional event-based performance analysis,
which instruments certain code locations such as code region entries and exits.
Event-based analysis characterizes the control flow of a thread as a sequence of
code region enter and exit events, whose consistency may be disrupted by the
task scheduler. For example, tasking may violate the proper nesting of enter and
exit events, impeding the reconstruction of dynamic call paths or the distinction
between inclusive and exclusive performance metrics for a given code region.
Furthermore, the sudden suspension of one task in favor of another makes it
hard to correctly attribute performance metrics to the first task.

To monitor the missing events that can restore the consistency of the ob-
served sequence and properly expose this additional dimension of concurrency
to performance measurement, we have developed portable methods

– To track task suspension and resumption so that it becomes known when a
task region is left and reentered;

– To identify individual task instances so that different instances of the same
task construct can be properly distinguished; and

– To recognize parent-child relationships between tasks so that it can be de-
termined whether one task acts on behalf of another.

Implemented as an extension of the automatic source-code instrumenter
OPARI [10], our solution supports C/C++ programs with tied tasks and with
untied tasks that are suspended only at implied scheduling points, a restriction
that some OpenMP implementations (e.g., the current Sun compiler) still sat-
isfy. Introducing only negligible measurement overhead, the extra instrumenta-
tion inserted for tasking opens the door to a rich variety of performance-analysis
applications including the mapping of task instances onto threads.

The outline of the paper is as follows: We start with a survey of related work
in Section 2. Then, we present a detailed problem statement in Section 3. After
explaining how to obtain unique task identifiers in Section 4, we describe how
to establish parent-child relationships between tasks in Section 5. In Section 6,
we discuss possible extensions of the OpenMP specification to provide general
support for task identifiers with untied tasks. Automated instrumentation for
tracking task suspension and resumption with OPARI is the subject of Section 7,
followed by an experimental evaluation with respect to measurement dilation in
Section 8. The last section draws a conclusion and outlines future work.

2 Related Work

Unlike MPI, OpenMP does not specify a standard way of monitoring the dy-
namic behavior of OpenMP programs, although in the past various proposals
have been presented.

How to Reconcile Event-Based Performance Analysis 111

The first proposal for a portable OpenMP monitoring interface (named
POMP) was written by Mohr et. al [10]. Based on an abstract OpenMP ex-
ecution model, POMP specifies the names and properties of a set of callback
functions, including where and when they are invoked. The proposal also de-
scribes the reference implementation OPARI, a portable source-to-source trans-
lation tool that inserts POMP calls in Fortran, C, and C++ programs. OPARI
is widely used for OpenMP instrumentation, for example, in the performance
tools Scalasca [6] and TAU[11]. In an attempt to standardize an OpenMP mon-
itoring interface, a second and significantly enhanced version of POMP [9] was
developed by a larger group of people, taking into account experiences with
OPARI, the European INTONE project, and the GuideView performance tool
from KAI. A prototype tool based on binary instrumentation for this second
version of POMP was implemented by DeRose et al. [3]. However, the OpenMP
ARB decided to reject POMP 2 because it was seen as too complex and costly
to implement and also dropped the idea of standardizing an official monitor-
ing interface for OpenMP. The tools subgroup of the OpenMP ARB agreed on
publishing a whitepaper describing a much simpler and less powerful monitoring
interface based on a proposal by Sun [7]. OpenMP compiler vendors are encour-
aged to follow this specification if they want to provide tool support for their
OpenMP implementations. To our knowledge, only Sun and Intel include (un-
documented and incomplete) implementations of this interface in their compiler
offerings. Finally, the group around the OpenUH research compiler investigated
various ways of compiler-based instrumentation for OpenMP monitoring [2].

All this work was carried out before the introduction of tasks in OpenMP.
Very little has been done so far on tools supporting the monitoring of OpenMP
tasks. Fürlinger et al. [5] did initial work on instrumenting OpenMP tasks using
OPARI. However, their solution, which simply encloses task regions with enter
end exit calls, supports only tied tasks and lacks a task-identification mecha-
nism. In addition, Lin and Mazurov [8] extended the whitepaper API to support
tasking and presented a prototype implementation based on the Sun Studio
Performance Analyzer.

3 An Additional Concurrency Dimension

Before version 3.0, an OpenMP program had just one concurrency dimension –
threads. The latest version of the OpenMP specification added a second dimen-
sion. Similar to a thread, a task can be created, suspended, resumed, and carries
some state with it. This can have a serious impact on traditional event-based
performance analysis tools, which usually consider only the first concurrency
dimension.

Event-based performance analysis tools, which are also sometimes referred to as
direct-instrumentation tools, instrument certain points in the code, usually the en-
tries and exits of nested code regions, and trigger an event whenever such a point
is reached. At runtime, the execution of a thread then appears as a sequence of
events delineating nested code region instances. For each code region instance, per-
formance metrics can be individually calculated. Code region instances executed

112 D. Lorenz et al.

1 #pragma omp task // Task 1

2 {

3 f1();

4 }

5 #pragma omp task // Task 2

6 {

7 f2();

8 }

9 #pragma omp taskwait

10

11 void f1()

12 {

13 enter_event(f1);

14 #pragma omp task // Task 3

15 {

16 // do something

17 }

18 #pragma omp taskwait

19 exit_event(f1);

20 }

21

22 void f2()

23 {

24 enter_event(f2);

25 #pragma omp task // Task 4

26 {

27 // do something else

28 }

29 #pragma omp taskwait

30 exit_event(f2);

31 }

Fig. 1. Example OpenMP code with tasking

within one another are assumed to be executed on behalf of the enclosing code re-
gion instance, establishing the notion of inclusive and exclusive performance met-
rics (i.e., covering or not covering child region instances, respectively).

Tasking now disrupts this event sequence. A task can be suspended in the
middle, and another arbitrary task can be assigned to the executing thread in-
stead. As a consequence, a thread may switch between tasks potentially without
any parent-child relationship between them. However, since the OpenMP spec-
ification provides no method for identifying such relationships, it becomes very
hard to calculate meaningful inclusive metrics. Moreover, the execution of tasks
may not be properly nested so that call paths can no longer be calculated in
the traditional way. Even worse, defining call paths along the execution of tasks
without a parent-child relationship might not make sense at all.

How to Reconcile Event-Based Performance Analysis 113

Fig. 2. Timelines of tasks in the program from Figure 1 using a FIFO scheduler. Each
task is represented as a separate timeline. The continuous thick line indicates the task
currently being executed. The dashed thick lines indicate intervals during which tasks
are temporarily blocked. The numbers next to the continuous thick line correspond to
the source-line numbers in Figure 1.

This problem is illustrated by the example shown in Figure 1. A potential
scheduling order for this program when executed with a single thread is given in
Figure 2. The example assumes FIFO scheduling with tasks being immediately
suspended once they have been created. The code is supposed to be part of
an initial Task 0. Obviously, the order of enter and exit events in this scenario
violates the nesting property. Although executed by only a single thread, the
events appear in the following order:

enter f1() → enter f2() → exit f1() → exit f2()

In addition, we can observe that one task (Task 2) was suspended in favor of
another (Task 3) that was not a descendant of the previous one. It is clear that
the familiar notions of call paths and of inclusive and exclusive metric values
cannot be maintained in this type of event sequence.

If task identifiers were available and events were produced on every task
switch, we could correctly measure values which are exclusive for each single
task and consider call-path information separately for each task instance. How-
ever, a complex computation often contains many tasks, which potentially create

114 D. Lorenz et al.

child tasks. Having aggregate (inclusive) metrics for a computation including
the values of its child tasks eases the location of problem candidates. For this
reason, knowing the creation relationships is of importance as well.

4 Obtaining Task Identifiers for Tied Tasks

One way to provide unique task identifiers for tied tasks is to have a task-private
and globally accessible variable that is uniquely initialized on task creation and
remains unchanged and valid throughout the active lifetime of the task – whether
functions are called from within the task or whether the task is interrupted
during its lifetime.

Such a task-private variable can be emulated using a threadprivate global
variable that is constant during the execution of a task but changes its value
at task scheduling points. If we proceed with a newly created task, we set the
variable to the identifier of the new task, and if we resume a previously suspended
task, we set the variable to the corresponding previous value. For this purpose,
we need a mechanism to store and to restore task identifiers at scheduling points
as well as a method to obtain unique identifiers for new tasks.

This can be implemented by declaring a threadprivate variable
current task id in the global scope that will give us the valid task identifier
any time during program execution (see Figure 3). It is initialized with a
value corresponding to the initial, implicit task. A function to obtain fresh
task identifiers, get new task id(), can be implemented by concatenating the
32 bit OpenMP thread identifier with a 32 bit threadprivate variable that is
incremented everytime the function is called. The resulting 64-bit combination
will provide globally unique identifiers within every parallel region. Another
advantage of this combination is that we do not require any synchronization to
obtain new and unique task identifiers.

To store and to restore task identifiers, we place a local (i.e., automatic stor-
age) variable old task id before each scheduling point and initialize it with
the value of current task id. If a task is suspended and resumed later on,
the corresponding local variable is still valid and used to restore the value of
current task id.

To maintain task identifiers throughout the entire execution of an application,
instrumentation must be applied

– To parallel regions,
– To taskwait as well as implicit and explicit barrier constructs, and
– To task constructs.

Before we enter a parallel region (see Figure 4), we need to store the current
task identifier so that it can be restored afterwards. Therefore we add a local
variable old task id and assign to it the identifier of the current task. After
the completion of the parallel region, the local variable is still valid and we can
restore the original value by assigning old task id to current task id.

How to Reconcile Event-Based Performance Analysis 115

int64_t current_task_id = ROOT_TASK_ID;

#pragma omp threadprivate(current_task_id)

Fig. 3. Declaration and initialization of task identifiers

{

int64_t old_task_id = current_task_id;

#pragma omp parallel

{

current_task_id = get_new_task_id();

// do something

}

current_task_id = old_task_id;

}

Fig. 4. Maintaining task identifiers at parallel regions

{

int64_t old_task_id = current_task_id;

#pragma omp taskwait

current_task_id = old_task_id;

}

Fig. 5. Storing and resetting task identifiers at taskwait statements (applies also to
barrier constructs)

Inside the parallel region, each thread creates an implicit task and we need
to obtain a unique identifier for each of these tasks. This is done in parallel by
assigning the return values of calls to get new task id() to the threadprivate
variables current task id right at the beginning of the parallel region. Each
thread/task has now a unique current task id variable that is valid until we
reach the next scheduling point.

Scheduling points within parallel regions occur at taskwait and barrier
as well as at task constructs. Here we must maintain task identifiers because
the scheduler can suspend the current task and continue either with a newly
created or a resumed task. At taskwait and barrier constructs, we store the
current task id in a new local variable old task id immediately before reach-
ing the scheduling point and restore it afterwards, as shown in Figure 5. At
task creation points the situation is slightly different. In addition to storing and
restoring the identifier of the current task, we need to obtain a new task identi-
fier by calling get new task id() and assign it to current task id, similar to
the procedure used for parallel regions. This is demonstrated in Figure 6.

If applied to all parallel regions and scheduling points, the code sequences
in Figure 4, Figure 5 and Figure 6 are sufficient to maintain task identifiers
throughout the entire execution of a program.

116 D. Lorenz et al.

{

int64_t old_task_id = current_task_id;

#pragma omp task

{

current_task_id = get_new_task_id();

// do something

}

current_task_id = old_task_id;

}

Fig. 6. Maintaining task identifiers at task creation points

5 Tracking the Task Creation Hierarchy

With task identifiers available, a task creation hierarchy can be constructed. The
instrumentation presented in the previous section allows the identifier of the
parent task to be obtained at the task creation point. Subsequently, the direct
parent-child relationship can be easily extended to a full pedigree by appending
the new task as a child node of the parent task node to the tree of the creation
hierarchy.

{

int64_t old_task_id = current_task_id;

#pragma omp task firstprivate(old_task_id)

{

current_task_id = get_new_task_id();

add_child(current_task_id, old_task_id);

// do something

}

current_task_id = old_task_id;

}

Fig. 7. Tracking the task creation hierarchy

When a new task is created, the parent task must have stored its identifier in
the local variable old_task_id in order to restore the identifier when continuing
its execution. Making the value of old_task_id firstprivate in the child task
ensures that it is initialized with the parent’s identifier, establishing a connection
between the two. The instrumentation for task creation is shown in Figure 7,
assuming the creation tree is built using a function named add_child().

6 Untied Tasks

The mechanisms described so far assume that scheduling happens only at implied
scheduling points that can be easily instrumented. This assumption is always true
for tied tasks. Compared to tied tasks, the scheduling of untied tasks is more
flexible in two ways. An untied task

How to Reconcile Event-Based Performance Analysis 117

– May be resumed by a thread different from the one that executed the task
before it was suspended and

– May be suspended at any point, not only at implied scheduling points.

The first condition does not cause any problem as long as rescheduling occurs
only at scheduling points. Since a performance-analysis tool using our interface is
able to verify the identity of a thread, it can easily distinguish between different
threads. For this reason, our solution also works with OpenMP implementations
that reschedule untied tasks only at implied scheduling points. Although not
prescribed by the OpenMP specification, some implementations (e.g., the current
Sun compiler) still follow this rule because rescheduling at scheduling points,
where control is trivially transferred to the OpenMP runtime, is technically
simpler than it is at arbitrary points. However, untied tasks that are rescheduled
at arbitrary points may disrupt the whole measurement.

General support for untied tasks requires additional services from the run-
time system. At least, notification on task scheduling events is necessary so
that whenever a task is preempted performance metrics can be collected and
the task identifier can be set to the new task. One way of implementing such
a notification mechanism would be the option to register a callback function
cb_resume_task() with the OpenMP runtime that is called whenever the exe-
cution of a task is started or resumed. Inside cb_resume_task(), the environ-
ment of the task brought to execution should be visible. Furthermore, because
the runtime system must maintain task identifiers anyway, it would be helpful
and probably more efficient if the OpenMP runtime system offered a standard
way of obtaining task identifiers rather than having to maintain them on the user
level. While in our view an extension of the OpenMP specification would be the
ideal solution, the current situation leaves us with only the following options:

– Exploit the fact that some OpenMP implementations (e.g., Sun) suspend
untied tasks only at scheduling points.

– Let the instrumentation make all tasks tied. This changes the behavior of
the measured program, but in some cases still allows a few very limited
conclusions to be drawn (e.g., on the granularity of tasks).

7 Automated Instrumentation with OPARI

OPARI [10] is a source-to-source instrumentation tool for OpenMP programs.
To allow automated instrumentation of OpenMP C/C++ programs with task-
ing, OPARI was extended to instrument also the task and taskwait constructs.
Furthermore, the instrumentation of OpenMP directives that contain (implicit)
scheduling points or create implicit tasks was modified to maintain and to ex-
pose task identifiers and parent-child relationships based on the ideas presented
in Sections 4 and 5.

Access to current_task_id is encapsulated and provided via two functions:
POMP_Get_current_task() and POMP_Set_current_task(). The function

118 D. Lorenz et al.

Table 1. Examples of how OPARI instruments tasking-related constructs

OMP directive instrumented directive
#pragma omp task {
{ POMP_Task_create_begin(pomp_region_1);

// do something POMP Task handle pomp old task =

} POMP Get current task();

#pragma omp task firstprivate(pomp old task)

{
POMP Set current task(POMP Task begin(

pomp old task, pomp region 1));

{
// do something
}
POMP_Task_end(pomp_region_1);

}
POMP_Set_current_task(pomp_old_task);

POMP_Task_create_end(pomp_region_1);

}
#pragma omp taskwait {

POMP_Taskwait_begin(pomp_region_1);

POMP Task handle pomp old task =

POMP Get current task();

#pragma omp taskwait

POMP_Set_current_task(pomp_old_task);

POMP_Taskwait_end(pomp_region_1);

}

get_new_task_id() is not called directly, but inside the region-begin function
(e.g., in POMP_Task_begin()). Some examples of the instrumentation are shown
in Table 1.

8 Overhead

To evaluate the runtime dilation of our instrumentation, we performed two tests,
the first one based on an artificial benchmark, the second one based on a realistic
code example, the Flexible Image Retrieval Engine (FIRE) code [4]. The instru-
mented calls generated unique identifiers for each task, but did not measure any
further metrics.

8.1 Artificial Benchmark

Our benchmark program contained a parallel region in which 10,000,000 tasks
per thread were created. Every task just incremented an integer by one. Before
executing the program with four threads, it was instrumented using the extended
version of OPARI. The execution time was measured and compared against

How to Reconcile Event-Based Performance Analysis 119

Table 2. Comparison of the instrumented against the uninstrumented version of the
FIRE code

runtime overhead
threads not instrumented instrumented in % in seconds

1 522.57 s 527.56 s 0.96 % 4.99 s
2 259.55 s 262.64 s 1.19 % 3.09 s
4 129.52 s 129.93 s 0.32 % 0.41 s
6 86.42 s 86.43 s 0.01 % 0.01 s
8 64.86 s 65.13 s 0.41 % 0.27 s

12 43.13 s 43.00 s -0.30 % -0.13 s
16 32.12 s 32.43 s 0.95 % 0.31 s

the uninstrumented version. This test was run on an i686 Linux system with a
2.66GHz quadcore processor using four threads.

Running the uninstrumented program took 1.89 s, while running the in-
strumented program took 2.50 s. The difference was 0.61 s or 32.3%. Ignoring
program initialization and the increment instruction inside the tasks, the unin-
strumented benchmark spent its execution time almost exclusively managing the
tasks. This implies that our instrumentation adds approximately 32.3% of the
task management time to the overall runtime. An absolute overhead of 0.61 s
for an application with 10,000,000 tasks per thread doing real work is probably
negligible. However, acquisition of performance metrics upon the occurrence of
task scheduling events might incur additional overhead.

8.2 The FIRE Code

The Flexible Image Retrieval Engine (FIRE) [4] was developed at the Human
Language Technology and Pattern Recognition Group of RWTH Aachen Univer-
sity. The benchmark version subject to our study consists of more than 35,000
lines of C++ code. Given a query image and the number of desired matches k,
a score is calculated for every image in the database, and the k database entries
with the highest scores are returned. Shared-memory parallelization is obviously
more suitable than distributed-memory parallelization for the image retrieval
task, as the image database can be easily accessed by all threads and need not
be distributed.

The initial parallelization of the FIRE code used nested OpenMP threads on
two nesting levels [12]. This version was later modified to use OpenMP tasks
instead of nested threads. The task-based version creates one task per query
image and inside these tasks every comparison of a query picture with a database
entry is represented by another task. This approach offers more flexibility than
using nested threads because every thread can work on any task. With nested
threads, in contrast, we had to assign a fixed number of threads to the lower
nesting level.

120 D. Lorenz et al.

For our experiments, we used 18 query images and a database with 1000
elements. Since every comparison generates a task, 18000 tasks were created
in total. We ran the code on an IBM eServer LS42 equipped with four AMD
Opteron 8356 (Barcelona) processors. We conducted ten test runs with and
without instrumentation, while varying the number of threads. The average run-
times are shown in Table 2.

The results clearly show that the overhead generated by the instrumentation
is insignificant. The total absolute overhead when one thread is used is about
5 s. Compared to the total runtime of 527.56 s this is less than 1%. When more
threads are used, the overhead scales well with the number of threads. When 16
threads are used the overhead amounts to 0.31 s which is still less than 1 % of
the total runtime of 32.43 s. So even for larger numbers of threads, the instru-
mentation overhead is very low compared to the overall execution time.

9 Conclusion and Future Work

A portable method was presented that allows the execution and scheduling of
tied and untied OpenMP tasks to be tracked and exposed to performance mea-
surement. Our method can be applied as long as task scheduling occurs only
at the implied scheduling points defined in the OpenMP specification, which is
always the case for tied tasks and in some implementations (e.g., the current
Sun compiler) even for untied tasks.

Implemented as an extension of OPARI, the necessary instrumentation can
be automatically inserted into the source code of OpenMP programs written in
C/C++. In a next step, we plan to extend our solution to Fortran. The runtime
dilation caused by the instrumentation was shown to be negligible, although we
believe that the overhead could probably be further reduced if the task identi-
fier was provided by the runtime environment. Performance tools using OPARI
are now encouraged to implement a rich variety of analyses of the events deliv-
ered by our interface, taking advantage of the two concurrency dimensions (i.e.,
threads and tasks) being fully exposed – including the mapping between them.
Application candidates include analyzing the task synchronization overhead in
view of many small tasks, determining the granularity distribution among tasks,
studying the task creation hierarchy, and drawing execution timelines of par-
allel tasks. Code studies will have to show which ones are most relevant. Dis-
playing data related to the two concurrency dimensions in a meaningful way
and handling the potential non-determinism of task scheduling will pose major
challenges.

General support for untied tasks, which are in principle allowed to be sus-
pended at arbitrary points, cannot be provided unless the OpenMP runtime ex-
poses task scheduling events, which would require an extension of the OpenMP
specification. At a minimum, the user should be given the option to register a
function to be called whenever a task’s execution is started or resumed.

How to Reconcile Event-Based Performance Analysis 121

References

1. OpenMP Architecture Review Board. OpenMP application progam interface ver-
sion 3.0. Technical report, OpenMP Architecture Review Board (May 2008)

2. Bui, V., Hernandez, O., Chapman, B., Kufrin, R., Tafti, D., Gopalkrishnan, P.:
Towards an implementation of the OpenMP collector API. In: Parallel Comput-
ing: Architectures, Algorithms and Applications, Proceedings of the ParCo 2007
Conference, Jülich, Germany (September 2007)

3. DeRose, L.A., Mohr, B., Seelam, S.R.: Profiling and tracing OpenMP applica-
tions with POMP based monitoring libraries. In: Danelutto, M., Vanneschi, M.,
Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 47–54. Springer,
Heidelberg (2004)

4. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval - a quantitative
comparison. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.)
DAGM 2004. LNCS, vol. 3175, pp. 228–236. Springer, Heidelberg (2004)

5. Führlinger, K., Skinner, D.: Performance profiling for OpenMP tasks. In:
Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS,
vol. 5568, pp. 132–139. Springer, Heidelberg (2009)

6. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010)

7. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for
profiling. Technical report, Sun Microsystems, Inc. (2007)

8. Lin, Y., Mazurov, O.: Providing observability for OpenMP 3.0 applications. In:
Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS,
vol. 5568, pp. 104–117. Springer, Heidelberg (2009)

9. Mohr, B., Malony, A.D., Hoppe, H.-C., Schlimbach, F., Haab, G., Hoeflinger, J.,
Shah, S.: A performance monitoring interface for OpenMP. In: Proceedings of the
4th European Workshop on OpenMP (EWOMP’02), Rome, Italy (September 2002)

10. Mohr, B., Malony, A.D., Shende, S.S., Wolf, F.: Design and prototype of a perfor-
mance tool interface for OpenMP. The Journal of Supercomputing 23(1), 105–128
(2002)

11. Shende, S.S., Malony, A.D.: The TAU parallel performance system. International
Journal of High Performance Computing Applications 20(2), 287–331 (2006)

12. Terboven, C., Deselaers, T., Bischof, C., Ney, H.: Shared-memory parallelization for
content-based image retrieval. In: ECCV 2006 Workshop on Computation Intensive
Methods for Computer Vision (CIMCV), Graz, Austria (May 2006)

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 122–132, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Fuzzy Application Parallelization Using OpenMP

Chantana Chantrapornchai (Phongpensri) and J. Pipatpaisan

Dept. of Computing, Faculty of Science,
Silpakorn University, Thailand, 73000

ctana@su.ac.th

Abstract. Developing fuzzy applications contain many steps. Each part may
require lots of computation cycles depending on applications and target
platforms. In this work, we study the parallelism in fuzzy systems using
openMP and its possibility in embedded plaforms. Two versions of the
parallelization are mentioned: fine-grained and coarse-grained parallelism. In
our study, we found that the coarse-grained approach is more effective due to
the overhead of openMP which becomes more visible in the low-speed CPU.
Thus, the coarse-grained approach is suggested. Two versions using paralle-for
and section are proposed. Two versions give different speedup rate depending
on characteristics of the applications and fuzzy parameters. In general, the
experiments convey that as the system runs continuously the openMP
implementation can achieve a certain speedup, overcoming the openMP
overhead by the proposed parallelization schemes.

Keywords: Fuzzy Applications, Parallel Computing, OpenMP.

1 Introduction

Fuzzy systems are now being used in many consumer electronic devices such as air
conditions, washing machines, refrigerators etc. To perform fuzzy computation,
several phases are needed. The whole computational time depends on how
complications such a system is. For a small simple control system, the computation
time is not significant. However, most of cases, the computation is complex, i.e., there
exists several controls within one system. Also, among these computations,
parallelism is often inherent. Thus, to make the computation effective, parallel
implementation is necessary.

Since one of the common use of the fuzzy systems is in embedded devices, the
system must be implemented in a hardware. One may choose to implement using a
general-purpose processor, fuzzy processor, programmable devices etc. Most of these
implementations often consider the implicit parallelism in the applications by using
developing several parallel hardware units or employing pipeline processing.
Programming these devices often use C or VHDL for convenience. To implement a
fuzzy processor or specific application circuit which performs typical parallel fuzzy
computations, VHDL may be a choice. For general-purposed CPU, the
microcontroller is a choice. However, the microcontroller usually has limitations on
memory and CPU speed. Also, it is usually used for simple control applications. To

 Fuzzy Application Parallelization Using OpenMP 123

facilitate the complex and parallel controls, multiple microcontrollers may be needed.
Implementation on the microcontrollers is often based on C language.

In this paper, we are considering the parallelization approaches of fuzzy systems
based on OpenMP. We focus on the embedded platforms particularly FPGA where it
can handle complex systems. We expect that our implementation can be mapped to
embedded platforms using a multicore, each of which may be a low-cost CPU. The
hardware implementation can be based on FPGA. We study two versions of
the parallel approaches. It is shown that both of the implementations can achieve the
certain speedup when the systems run continuously. The studies also imply the
overhead of openMP and the application nature which limit the speedup rate.

Many previous work studied the implementation of openMP on the hardware
especially FPGA. Compilers and the optimization for openMP in FPGA were
studied[1,2,5]. Extensions to openMP to allow the hardware specification are proposed
in [6,10]. Kanaujia et. al. presented an approach to simulate the multicore platform[11].
Leoew et. al. showed the hardware generation from openMP pragma to a synthesizable
VHDL[8].

Several work has been done in fuzzy control hardware. Most fuzzy processors
often have limitation such as 2 inputs and 1 output rules [6], the shape of the
membership is triangular or trapezoid. Some work is based on analogue systems [12].
Some requires extra hardware supports and special instruction sets [13]. Many works
are based on VLSI systems such as [7]. A general purpose CPU is another choice
which is flexible but may be too much powerful. Microcontrollers often provide a
moderate solution since it is programmable and easy to create a prototype. However,
many computations in fuzzy systems are expensive, such as the use of floating point,
multiplication and division etc. They are not suitable to the 8-bit microcontroller
unless certain optimization is done. The example is the commercial work of
fuzzyTECH which is based on MCS51 and MCS96[14].

2 Backgrounds

In typical fuzzy systems, a given input is read and then fuzzified to be a fuzzy set.
This is called the fuzzification process. After that, the value is given to the inference
engine to find out which rules are fired. For each rule that is fired, the corresponding
output linguistic variable is marked. This step is called a fuzzy inference process.
Then, all the fired output linguistic values are concluded to be a crisp value which is
the actual output. This is called the defuzzification process. The output is given to the
feedback function which is a computation of some linear/nonlinear function and the
result becomes the input again.

Based on these steps, necessary parameters that one needs to come up with when
the system is designed are the input and output variables, linguistic variables for each
input and output and their membership functions , fuzzy rules, inference method and
defuzzification methods.

In the following, we briefly explain steps to establish a fuzzy system according to
the above components [9].

124 C. Chantrapornchai and J. Pipatpaisan

 1. Inputs and outputs: First designers need to define the number of inputs and
output. The universes of each input and output are defined. This defines the domain
for each fuzzy set.
 2. Linguistic variables and membership functions: For each input and output,
one needs to define the set of linguistic variables. Each linguistic variable corresponds
to a membership function which specifies a mapping from an element to a degree of
membership value ranged [0,1]. The membership function is typically defined by
triangular shape, trapezoidal shape, bell shape, etc.
 3. Rule set: From the given inputs and output and linguistic variables for
each one, the set of rules are defined. Typically, the rules are defined from all possible
combinations of input linguistic variables. After that, the rule optimization may be
done to minimize the number of rules, the number of inputs for each rule, and to
minimize the memory usage for the rule set. Most fuzzy systems require 2 inputs and
one output. Many fuzzy hardware implements the 2-dimensional associative memory
for the rule set.
 4. Inference method: Designers need to specify the fuzzy inference method
used to compute the output membership degree. Many operators are defined in the
literature [9]. The common one is max-min or max-product. The minimum value
between two membership values of the two inputs are used as the cut to the output
linguistic variable for each rule. Then the fuzzy set for each output linguistic variable
is unioned to become a final set and the final set is defuzzified. For max-product,
rather using min operation, the product operation is used.
 5. Defuzzification method: After all the inferences are done, the final set is
defuzzified to get a crisp output value y*. Several methods can be used to defuzzify
such as using the max value (means of max, smallest of max,largest of max),
computing a centriod value, using the approaches such as weighted-average, center of
sum.

3 Parallelization Using OpenMP

There are various ways of viewing parallelization in such applications. Typically, we
divide into fine-grained and coarse-grained parallelisms. For the fine-grained one, in
each step mentioned above, it is the parallelization that is implementation in each
function. For example, the membership function mapping can be parallelized using
for parallel for and similarly for the defuzzification method. For the rule inference,
each Max-min computation is parallelizable using parallel section. The similar
approach is considered in developing parallel fuzzy inference hardware.

For coarse-grained parallelization, based on the above five steps in the previous
sections, one may consider to pipeline the steps. This is done as software pipelining or
in pipelined fuzzy processors.

In this work, we target to implement the systems in embedded hardwares which
has limited speed. From previous experiments, we found that openMP has certain
overhead. If we consider to parallelize in fine-grained levels, the overheads are
invincible when the code is ported in the hardware. The overheads are also studied in
the experiments. Thus, we consider the coarse-grained parallelization.

 Fuzzy Application Parallelization Using OpenMP 125

The typical fuzzy computation is shown in Figure 1. In this figure, inputs are
given the fuzzy processing. The fuzzy processing contains steps as mentioned in
Section 2. In particular, there may be serveral fuzzy controls inside a fuzzy
processing. Each one may control different outputs. After the output is given, the new
inputs are read again. The new inputs may be affected by the outputs and some other
parameters. This is a closed-loop control. Normally, the loop is repeated forever.

Fig. 1. Original Multiple-output fuzzy controls

3.1 Parallel-Section Approach

The first approach is based on openMP “section” concept. This is depicted in
Figure 2. Each fuzzy output control is handled by a thread. At the end of the iteration,
the threads are joined together. Then the main thread is ready to compute for the next
iteration. This is because the new inputs are computed from the outputs from the
previous iteration. Note that dividing the job this way requires the number of outputs
be equal to the number threads. Also, the work for each thread may not be the same
since each thread performs each fuzzy control which is differed in terms of linguistic
variables, rules, etc.

Fig. 2. Parallelization using section

In Figure 2, each subsystem (by the purple region in Figure 2) is surrounded by
pragma section as shown in Figure 3(a). For thread mapping, each thread is mapped
to each section. Then, each core is assigned to each thread. If the computation time of
each thread is not the same, we can see that some threads would be faster and some
would be slower. The synchronization overheads are incurred by the blue region in
Figure 3(b).

126 C. Chantrapornchai and J. Pipatpaisan

 (a) (b)

Fig. 3. (a) Section pragma (b) Section distribution to threads

3.2 Parallel-for Approach

Figure 4 shows the parallelization using openMP “for”. The purple region shows
each loop body. For this kind, the loop is distributed to each thread. Inside the loop,
all fuzzy controls are performed. Using this way, we do not require that the number
of outputs be the same as the number of threads like in the above approach. Also, the
workload per thread is likely to be equal.

Fig. 4. Parallelization using parallel for

Figure 5(a) shows the parallel-for example. Inside the for loop, we perform all
fuzzy system computations. Figure 5(b) shows the distribution for each loop for each
thread. However, in the usual control, there is a dependency between each control
iteration. The new inputs are usually based on the outputs that control the systems.
Thus, in reality, this approach may not be possible.

 Fuzzy Application Parallelization Using OpenMP 127

(a) (b)

Fig 5. (a) Pragma parallel for (b) work load distribution

In the experiments, we measure the performance for each approach in terms of the
speedup gained as we run the system longer.

4 Experiments

In the experiments, we would like to measure the number of cycles used for both
parallel versions. We also measure would like to know openMP overhead in order to
exlore how the speedup is gained for each type of fuzzy applications. The results will
confirm that the parallel implementation using openMP will give benefits as well
when implemented in embedded platforms.

Table 1. Example characteristics

Example #
input

#output #mem
func.

#ele
per set

#rules Infer.
method

Defuzz.

1.Air condition[2] 3 4 21 51 96 Max-
min

Centroid

2.Automatic focusing
system[16]

3 3 51 51 27 Max-
min

Centroid

3.Reactor temp.
controller [16]

3 2 31 21 254 Max-
min

Centroid

4. Truck parking [17] 4 2 27 73 130 Max-
prod

Fuzzymean

We measure the number of cycles used for each approach. Also, we compared the

number of cycles to the serial one. The overheads of openMP pragma are also
measured. The experiments are run on the machine with Intel Core 2 Quad, Q8200,

128 C. Chantrapornchai and J. Pipatpaisan

2.33GHz, Core 45nm FSB 1333MHz, L2 Cache 4MB,4GB RAM, running WinXP
service pack 3. We use Intel OpenMP/C++ compiler.

In the experiments, we try the examples: air condition control [1], automatic
focusing system [16], reactor temperature control [16], and truck parking control [17].
These systems contain more than one output and a number of rules. The characteristics
of these examples are shown in Table 1. Column “#input” shows the number of inputs
for each system. Column “#output” shows the number of outputs for each system.
Columns “#mem func” and “rules” display the number of total membership functions
and rules for each system. Columns “Infer. methods” and “Defuzz” display the
inference method used and defuzzification method in the example respectively.

Fig. 5. Work load in percent for each thread

Figure 5 shows the average number of cycles used for each thread in the parallel
approaches. In the experiments, we use the number of threads equal to the number of
outputs for both versions. The number of threads are not more than the number of
available cores in the experiments. We assume that each thread has work about the
same size.

Figures 6-7 shows the comparison of the cycles used for the parallel version and
serial version for “omp section” and for “omp parallel for” for air conditioner and
reactor controller respectively. Figure 6(a) displays the cycles used for omp section
and Figure 6(b) shows the number of cycles for omp parallel for respectively. For
both examples, we can see that the openMP has fixed overheads. This overhead can
be hidden if the systems run long enough. The number of iterations runs to overcome
the overheads may be different depending on the complications of each system. For
example, for Figure 6, we can see that using the parallel section, it is better than the

 Fuzzy Application Parallelization Using OpenMP 129

parallel-for version. The overheads can be hidden faster. In Figure 7, for both
approaches, at least 200 iterations, are needed for hiding the overhead of openMP.
However, this measurement is subjective to the CPU clock speed as well. The results
only show that with the system running continuously, we can certainly gain benefits
from parallelization using openMP without considering the platform.

(a)

(b)

Fig. 6. The cycle measured for each approach for the air condition application (4 threads) (a)
omp section (b) omp for

Compared to the fine-grained implementation, for example, each for loop in the
defuzzfication may be parallel. The overhead of openMP becomes significant. It also
may be magnified when considering the low-speed embedded platform) compared to
the parallel speedup gained. The fine-grained approach with openMP is not suitable
for these applications.

Figure 8 shows the speedup for both cases. We can see that the parallel-for version
obtain better speedup rate that the section version in overall. In air conditioner
example, we can reach the speedup to 2.48 while the section version gives speedup
2.18 when running 700 iterations. For truck parking example, we obtain only 1.25
times since there are dependencies in output and input controls. For reactor control
and automatic focusing, the increase in the speedup is potential when more number of
iterations are run.

130 C. Chantrapornchai and J. Pipatpaisan

(a)

(b)

Fig. 7. The cycles measured for each approach for the reactor controller (2 threads) (a) omp
section (b) omp for

In summary, the computation time spent for each thread depends on the type of
application and fuzzy computation. From our experiments in Figure 9, we found that
most of the intensive computations lie on the inference engine (Rules and
Doinfer_Getmax which performs max-min inference and output summarization
respectively). Thus, if the system has the large number of rules, it spends more time
on the computation. Thus, for each subsystem, if the number of rules is about the
same, the workload per thread is about the same for the section approach. Otherwise,
the parallel-for approach may be a choice.

We need to consider the overhead of openMP. Thus, the longer the iterations is, the
more the overhead can be hidden. The speedup rate depends on factors such as
dependency between each fuzzy control, and the sharing of data among the threads. If
each fuzzy control can run independently, we would get an ideal speedup. Nevertheless,
most of the cases, each fuzzy control shares some data such as membership arrays and
possibly rules. Also, some control output may be inputs of another control. This will
slow down the speedup. The control dependency case is exhibited in the truck parking
application. We can see that the speedup is lower than others.

 Fuzzy Application Parallelization Using OpenMP 131

 (a) (b)

Fig. 8. Speedup measured for each approach (a) omp section (b) omp for

Fig. 9. Average computation for each fuzzy computation steps for Air conditioner

5 Conclusion

In this work, we study various parallelization of fuzzy computation using openMP.
The paper mentioned the fine-grained and coarse-grained approaches. The fine-grained
approach is not suitable since the overhead of openMP is large when scaled to the low-
speed CPU. Thus, the coarse-grained approach is suggested here. Two methods are
shown by using “omp section” and “omp parallel for”. The investigation shows that
using the parallel for approach can be more flexible for various number of threads.
However, the dependency between iterations may prohibit the iteration parallelization.
OpenMP threads may be considered as another choice for the application. Finally,
these threads can be mapped to the FPGA using various implementations such as
openUH and others. The mapping to FPGA will be studied further.

Acknowledgement

This work is supported in part by NECTEC (NSTDA) and Faculty of Science
funding, Silpakorn University, Thailand.

132 C. Chantrapornchai and J. Pipatpaisan

References

1. Addison, C.: OpenMP 3.0 Tasking Implementation in OpenUH. In: Workshop in Open64
workshop in conjunction with OCG’09 (2009)

2. Amiya, P.: Fuzzy Logic Control of Air Conditioners,
http://www.cybergeeks.co.in/projects/projects/
Fuzzy%20Logic%20Control%20of%20Air%20Conditioners.pdf (accessed
January 5, 2009)

3. Chandrasekaran, S., Hernandez, O., Maskell, D., Chapman, B., Bui, V.: Compilation and
Parallelization Techniques with Tool Support to Realize Sequence Alignment Algorithm
on FPGA and Multicore. In: Proc. Workshop on New Horizons in Compilers, India (2007)

4. Chapman, B., et al.: Implementing OpenMP on a High Performance Embedded Multicore
MPSoC. In: Proc. of Workshop on Multithreaded Architectures and Applications
(MTAAP’09) In conjunction with IPDPS 2009, Rome, Italy, May 25-29, pp. 1–8 (2009)

5. Cabrera, D., Martorell, X., Gaydadjiev, G., Ayguade, E.: OpenMP extensions for FPGA
Accelerators. In: International Symposium on Systems, Architectures, Modeling, and
Simulation (2009)

6. Falchieri, D., Gabrielli, A., Gandolfi, E.: A digital fuzzy processor for fuzzy-rule-based
systems. Hardware implementation of intelligent systems, 147–164

7. Gabrielli, A., Gandolfi, E., Masetti, M.: Design of a family of VLSI high speed fuzzy
processors. In: IEEE Fuzz’96, New Orleans, September 8-11 (1996)

8. Leow, Y.Y., Ng, C.Y., Wong, W.F.: Generating hardware from OpenMP programs. In:
IEEE International Conference on Field Programmable Technology (FPT 2006), pp. 73–80
(2006)

9. Ross, T.J.: Fuzzy Sets, Fuzzy Logic and Fuzzy Systems: Theory and Applications.
McGraw Hill, New York (1995)

10. Sima, V.-M., Panainte, E.M., Bertels, K.: Resource allocation algorithm and OpenMP
extensions for parallel execution on a heterogeneous reconfigurable platform. In:
International Conference on Field Programmable Logic and Applications 2008 (FPL
2008), pp. 651–654 (2008)

11. Kanaujia, S., Papazian, I.E., Chamberlain, J., Baxter, J.: FastMP: A Multi-core Simulation
Methodology. In: Workshop on Modeling, Benchmarking and Simulation (2006)

12. Song, C.T.P., Quigley, S.F., Pammu, S.: Novel analogue fuzzy inference processor. In:
IEEE International Symposium for Circuits and Systems, pp. 247–250

13. Tsutomu, M.: Fuzzy processor, European Patent EP0392494 (1990)
14. http://www.fuzzytech.com
15. http://www.micrium.com
16. http://www.aptronix.com/fuzzynet
17. http://www.imse-cnm.csic.es/Xfuzzy

Hybrid Parallel Programming on SMP Clusters
Using XPFortran and OpenMP

Yuanyuan Zhang, Hidetoshi Iwashita, Kuninori Ishii,
Masanori Kaneko, Tomotake Nakamura, and Kohichiro Hotta

Software Development Division,
Next Generation Technical Computing Unit,

Fujitsu Limited,
211-8588 Kawasaki, Japan

{zhang.yuanyuan,iwashita.hideto,ishii.kuninori,
mkaneko,tonakamura,hotta}@jp.fujitsu.com

Abstract. Process-thread hybrid programming paradigm is commonly
employed in SMP clusters. XPFortran, a parallel programming language
that specifies a set of compiler directives and library routines, can be
used to realize process-level parallelism in distributed memory systems.
In this paper, we introduce hybrid parallel programming by XPFor-
tran to SMP clusters, in which thread-level parallelism is realized by
OpenMP. We present the language support and compiler implementa-
tion of OpenMP directives in XPFortran, and show some of our expe-
riences in XPFortran-OpenMP hybrid programming. For nested loops
parallelized by process-thread hybrid programming, it’s common sense
to use process parallelization for outer loops and thread parallelization
for inner ones. However, we have found that in some cases it’s possi-
ble to write XPFortran-OpenMP hybrid program in a reverse way, i.e.,
OpenMP outside, XPFortran inside. Our evaluation results show that
this programming style sometimes delivers better performance than the
traditional one. We therefore recommend using the hybrid parallelization
flexibly.

1 Introduction

Most supercomputer systems currently functioning as High-Performance Com-
puting(HPC) platforms are SMP(Symmetric Multi-Processing) clusters which
are typically characterized with a hierarchical architecture. Each node is typi-
cally a shared memory SMP machine made up of multiple cores and these nodes
are connected via high-speed network with the inter-node architecture of dis-
tributed memory. To derive best performance from such clusters, users must
fully make use of such characteristics when writing parallel programs running
on such machines. Parallelization among nodes is usually realized by process-
level parallelism while that within one node can be realized by process-level
or thread-level parallelism, resulting in pure process-level parallelism and hybrid
parallelism respectively. Compared to process-level parallelism, thread-level par-
allelism is said to have the advantages of avoiding communication overhead and

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 133–148, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

134 Y. Zhang et al.

reducing memory consumption, and thus to often result in better performance
in shared-memory systems in many cases. However, because of the problems
such as cache conflict and false sharing in thread-level parallelism, process-level
parallelism can sometimes deliver better performance than thread-level one in
shared memory systems. Which programming paradigm is better depends on the
characteristics of application. In this paper, we focus on process-thread hybrid
programming in which thread-level parallelism is implemented by OpenMP, and
study how to easily write parallel programs with satisfying performance. Many
libraries and programming languages have been proposed to realize process-level
parallelism, such as MPI library, High Performance Fortran(HPF), Co-Array
Fortran(CAF), and Fujitsu’s proprietary language XPFortran. Here we have a
short overview on these approaches.

MPI[4] and OpenMP[5] are the current de-facto standards for process-level
and thread-level parallelism respectively, and many users use pure MPI or MPI-
OpenMP hybrid programming in writing parallel application programs to run
on SMP clusters[9]. However, MPI program is said to have some flaws, such as
explicit communication, error-proneness, and the difficulty of reading, writing
and debugging.

HPF, a high-level data-parallel programming language, adopts a global name-
space methodology. Consequently, users write programs from a global view. All
variables are located in the global space and users are responsible for specifying
how to distribute them on processors. To judge whether a loop can be paral-
lelized or not and in which way to parallelize is directed by user by using HPF
directives or left to compiler. Whether communication is necessary or not and
the implementation details are left to compiler.

In [10] hybrid programming using HPF is introduced. In this paper the spec-
ification of HPF is extended so that the data to be stored in shared memory
and accessed by multiple threads in a process are declared by users through
extended HPF directives. The compiler translates such declarations to OpenMP
directives.

CAF[1] is also an extension of Fortran. It can be used for both process and
thread parallelization, and its core features have been included in Fortran 2008
standard. Unlike HPF, CAF defines a local name-space and users manage ex-
plicitly locality, data and computation distribution. For process parallelization,
each process accesses off-process data explicitly by using an extension of Fortran
syntax.

Different from data-parallel languages, in CAF fine grain communication be-
tween processes might happen frequently inside computational loops. Because
of this, though it is possible to combine CAF and OpenMP to write hybrid pro-
grams, there might be frequent communication within thread parallelization, and
performance of a CAF-OpenMP hybrid program depends on the communication
library used and architecture.

XPFortran, whose predecessor is called VPP Fortran[7], is a data-parallel pro-
gramming language for process-level parallelism. Like HPF and CAF, XPFortran
is also an extension of Fortran. It uses global name-space model and the tedious

Hybrid Parallel Programming on SMP Clusters Using XPFortran 135

low-level details of translating from the global name space to the local ones
are left to the compiler. XPFortran defines both global and local memory space.
Compared with CAF, in XPFortran users declare data in the local memory space
from a global view, that is, before the data are distributed to processors. Dif-
ferent from HPF, in XPFortran users can declare both loop parallelization and
communication explicitly. Compared with MPI, the directive programming style
of XPFortran makes it easy for users to write parallel programs based on a se-
quential one step by step, and reduces the code-rewriting cost. On SMP clusters
we hope to make hybrid programming easier with XPFortran. Compared to the
method introduced in [10], hybrid programming in XPFortran is implemented
by realizing thread parallelism in automatic parallelization or permitting users
to describe OpenMP directives in XPFortran programs directly. In this paper,
we introduce hybrid programming using XPFortran and OpenMP, explain how
it’s implemented in XPFortran compiler, and show some of our experiences on
how XPFortran-OpenMP hybrid programming can be used. Since XPFortran is
a data-parallel language similar to HPF, we believe our results here can also be
used to HPF and its successors.

The rest of this paper is organized as follows. In Sec. 2, we introduce XPFor-
tran and its compiler implementation. In Sec. 3, we discuss hybrid programming
using XPFortran and OpenMP, and the implementation of XPFortran compiler
to support such hybrid programming. Sec. 4 presents our performance evaluation
results and Sec. 5 concludes the paper.

2 XPFortran Parallel Programming Language

XPFortran is a data-parallel language based on Fortran. It defines some compiler
directives and library routines to specify process-level parallelism in Fortran pro-
grams. Similar to OpenMP, XPFortran directives can be treated as comments
by Fortran compiler and programs written in XPFortran can usually be com-
piled and executed sequentially. An XPFortran program can also be executed
in parallel by multiple processes in Linux or Solaris operating system when it’s
compiled by XPFortran compiler.

A processing unit for parallel execution of XPFortran programs is called a pro-
cessor. A collection of processors is called a processor group, organized as an ar-
ray. XPFortran defines directives called SPREAD DO and SPREAD REGION for data
and task parallelism respectively. A communication directive, the SPREAD MOVE
directive, is used to transfer data between virtual global memory and local mem-
ory introduced below. Directives for synchronization and mutually exclusive ex-
ecution among processors are also defined.

2.1 Memory Model

As shown in Fig. 1, XPFortran defines both local memory address space and
virtual global address space. Local memory is the memory each processor phys-
ically owns. It’s specific to each processor and therefore always fast to access.

136 Y. Zhang et al.

 virtual global memory

local
memory

processor

．．．

．．．

local
memory

processor

local
memory

processor

Fig. 1. Memory model of XPFortran

Virtual global memory consists of the total of physical memory. All processors
can access data in the global memory, at the cost of communication implemented
by compiler implicitly or declared by users explicitly.

Every variable has either a global or local location attribute according to which
memory it is located in. Global variables are located in the global memory and
shared by all the processors. Local variables can be duplicated or partitioned.
As its name hints, duplicated local variable is duplicated in all processors, and
reference to such variables results in access to the local one a processor owns.
A partitioned local variable is distributed in the specified processors, and each
processor can access only the part it owns. By default a variable is a duplicated
local variable.

Figure 2 shows some examples to declare global and local variables.

INTEGER AG(100,100), AL(100,100), BL(100,100)

!XOCL PROCESSOR P(4) ! declare a 1-D processor group with 4 processors

!XOCL GLOBAL AG ! declare a global array

!XOCL LOCAL AL(/(P),:) ! declare a local array distributed in 1st-D

!XOCL LOCAL BL ! declare a duplicated local array

Fig. 2. Examples of declaration of global and local variables

2.2 Execution Process

XPFortran uses SPMD(Single Program Multiple Data) execution model. Mul-
tiple processes start redundant execution of an XPFortran program from the
beginning. SPREAD DO directive is used for parallel execution of computational
loops. Each iteration of a loop is called a region and these regions are executed
in parallel. SPREAD MOVE directive describes batch data transfer between global
and local memory spaces. Similar to SPREAD DO directive, it is followed by a
loop block, too. However, data transfer is done only once rather than for each
loop iteration. In other words, a unit of processing in SPREAD DO construct is
an iteration in the loop, and, while it’s the whole loop block in SPREAD MOVE
construct.

Hybrid Parallel Programming on SMP Clusters Using XPFortran 137

For the global and local variables declared in Fig. 2, the following code illus-
trates example of an XPFortran program. In this example, the outer loop in the
loop block immediately following SPREAD DO directive is divided and executed
by 4 processors in processor group P in parallel. For the loop block which follows
SPREAD MOVE directive, batch communication which transfers partitioned local
array AL to global array AG is executed between processors in P.

!XOCL SPREAD DO /(P)

DO I=1,100

DO J=1,100

AL(I,J)=I*J

END DO

END DO

!XOCL END SPREAD

!XOCL SPREAD MOVE /(P)

DO I=1,100

DO J=1,100

AG(I,J)=AL(I,J)

END DO

END DO

!XOCL END SPREAD

Fig. 3. Example of some XPFortran directives

2.3 Compilation and Execution of XPFortran Programs

We are developing a compiler for XPFortran, which is a source-to-source com-
piler. It translates an XPFortran program to a standard Fortran program with
calls to MPI library routines. The generated program is compiled by a Fortran
compiler and linked with other Fortran and MPI programs if necessary. The
machine code generated by Fortran compiler is then executed on target hard-
ware. This process is shown below in Fig. 4. The target hardware of XPFortran
is a distributed memory parallel system in which distributed memory nodes are
connected and communicate with each other by high-speed interconnect. Each
node is typically an SMP machine.

XPFortran compiler transforms global view XPFortran program to local view
Fortran-MPI program which describes the actions of each processor. It can be
divided into phases as shown in Fig. 5. In the parsing phase, XPFortran source
program is converted to intermediate code, on which all operations before code
generation are performed. Since the compiler supports the use of the OpenMP
directives in XPFortran programs, there are two phases called OpenMP pre-
processing and post-processing for the processing of OpenMP directives. The
OpenMP pre-processing phase executes syntax analysis, grammar checking, and
some pre-processing for OpenMP directives. The OpenMP post-processing phase
executes some post-processing operations for OpenMP directives. The details are
described in section 3.2. The normalization and optimization phases implement
some code optimization. Details of the normalization phase can be found in [6].

138 Y. Zhang et al.

output Fortran
compiler

 input output
 Fortran + MPI
 program

input

 XPFortran
compiler

XPFortran program

 target
 hardware

execute with process

parallelization
binary file

Fig. 4. Compilation and execution of XPFortran program

parsing

normalization

SPMD transformation

code generation

OpenMP pre-processing

OpenMP post-processing

optimization

Fig. 5. Processing flow of XPFortran compiler with OpenMP support

The SPMD transformation phase converts the intermediate code which describes
the behavior of the entire system into the code describing the behavior of each
processor. For example, the range of loop indices and the bounds of array vari-
ables are converted from the global name-space to the local name-space. The
code generation phase transforms the intermediate code into Fortran programs
and MPI calls. Since there is no call to special communication library, the output
of XPFortran compiler can be compiled by any Fortran compiler and run on any
SMP cluster platform as long as standard Fortran and MPI are supported.

2.4 SPMD Implementation of XPFortran Compiler

Our XPFortran compiler implements the SPMD transformation of XPFortran
program by compounding the following two transformations:

Hybrid Parallel Programming on SMP Clusters Using XPFortran 139

1. Index localization of variables.
The following procedures are executed for a partitioned local variable in the
partitioned axis:
1.1 Narrow down the declared size of the variable to that after partitioning.
1.2 Convert the subscripts in the reference of the variable to the local indices

using function gtol.
gtol is a function k=gtol(I[,p]), in which I and k are global and local
indices respectively. p is the process number.

2. Index localization of computational loops.
The following procedures are executed for the loops parallelized with
SPREAD DO directives:
2.1 Convert global loop indices to local loop indices using function gtol2 or

function gtol3. Loop indices can be pair of initial and final values, or
triplet of initial value, final value and increment.
gtol2 and gtol3 are functions of loop parameters and mapping of loop to
processors with rank of processor.

2.2 Convert the loop variables in a loop body to the global indices using
function ltog.
ltog is a function I=ltog(k,p), in which the meanings of I, k and p are
same as those in gtol.

Table 1 shows the transformations executed by functions gtol and ltog. In the
table, w is the chunk size. block means a variable or loop is divided equally and
cyclic means it’s divided in a round robin way with w=1. P is the number of
processes. N is the size of the variable or loop before distribution.

Table 1. Global-local transformation and size after distribution

Type of Distribution k=gtol(I[,p]) I=ltog(k,p) Size after Distribution
block I mod w k+p ∗ w w

cyclic � I
P
� k ∗ P+p � N

P
�

Fig. 6 illustrates an example of the above transformations. Please note that
the expression of AL(I) remains AL(k) after the transformations because of
the compound transformation gtol(ltog(k)). Here ltog(k,p) is (k+p*25), and
gtol(ltog(k,p)) is ((k+p*25) mod 25). Since the local index k is between 1 and
25, gtol(ltog(k,p)) becomes k.

The equations in Table 1 executed by functions gtol and ltog are integrated
into the SPMD Fortran code generated by XPFortran compiler. In most cases
it’s also possible to express functions gtol2 and gtol3 in several or tens of Fortran
statements, as shown in Fig. 6(b).

It’s also important to note that code generated for this SPMD transforma-
tion is local to each processor and thread-safe. Therefore we draw the following
conclusions:

140 Y. Zhang et al.

– For the hybrid parallelization of nested loops executed by SPREAD DO di-
rective and OpenMP DO directive, it’s possible to use DO directive for outer
loops and SPREAD DO for inner ones if there is no data dependence in the
variables of the loops parallelized by the directives.

– For the SPMD transformation of nested SPREAD DO constructs, the generated
code of gtol2 and gtol3 for all SPREAD DO constructs can be put just before
the outmost loop if there is no data dependence between variables of loops
the directives parallelize. Because of this, cost for the transformation of inner
SPREAD DO constructs can be much reduced.

...

INTEGER AL(25) ! 1.1
spmdX0=ORG_RANK ! start of 2.1
spmdX1=25*spmdX0

INTEGER AL(100) IF (spmdX0.LE.0) THEN

!XOCL PROCESSOR P(4) spmd_startX0=-spmdX1

!XOCL LOCAL AL(/(P)) ELSE

!XOCL SPREAD DO spmd_startX0=0

DO I=1,100 ENDIF

... I ... IF (spmdX0.LT.3) THEN

... AL(I) ... spmd_endX0=24

END DO ELSE

!XOCL END SPREAD spmd_endX0=99-spmdX1

ENDIF

DO k=spmd_startX0,spmd_endX0 ! end of 2.1
... k+25*ORG RANK ... ! 2.2
... AL(k) ... ! 1.2&2.2

END DO

(a) XPFortran program (b) Output SPMD program

Fig. 6. Example of SPMD transformation for SPREAD DO construct

3 Process-Thread Hybrid Programming with XPFortran
and OpenMP

XPFortran supports OpenMP as a way of thread parallelization. OpenMP direc-
tives can be used inside some XPFortran constructs, forming “process outside,
thread inside” hybrid programming style which is common sense to almost all
programmers of parallel programs. Moreover, we have also considered using some
XPFortran directives inside OpenMP constructs, which might beyond many peo-
ple’s expectation. Our motivation is as follows.

In XPFortran-OpenMP hybrid program, for nested loops which commonly
exist in scientific applications, it’s desired to use both XPFortran and OpenMP
directives to parallelize the outmost loop. However, when the number of proces-
sors is huge, as in nowadays peta-scale and near-future exa-scale systems, hun-
dreds of thousands or even millions of nodes exist, the grain of parallelization

Hybrid Parallel Programming on SMP Clusters Using XPFortran 141

is too fine to derive satisfying performance when all processes and threads are
used to parallelize a single loop, the outmost one. Therefore it’s necessary to
parallelize both the outmost loop and inner ones in nested loops.

When one considers using process-thread hybrid parallelization for such nested
loops, it’s common sense to choose process parallelization for outer loops and
threads for inner ones. However, because of problems such as the heavy overhead
of run-time library calls to initialize thread environment and memory access
discontinuity, it usually induces poor performance when thread parallelization is
used for inner loops. The overhead to initialize MPI environment is usually also
heavy. However, we have realized a light-weight implementation as introduced
in section 2.4.

Because of the above reasons, it’s necessary to think over how to deploy pro-
cesses and threads for hybrid execution on large scale systems. We have con-
sidered using OpenMP DO or PARALLEL DO directives for outer loops of nested
loops and XPFortran SPREAD DO for inner ones to improve performance. It’s sure
that they can’t be combined with full flexibility. At least, thread spawn can not
happen before the initialization of MPI environment. Also, for portability, we
consider MPI environment with the lowest level of thread safety support, that
is, MPI THREAD SINGLE in MPI standard. Because of this consideration, no MPI
library routine can be called from OpenMP thread parallel section.

In the following sections, we introduce our language support and compiler im-
plementation of OpenMP used in XPFortran program, and discuss some variants
of XPFortran-OpenMP hybrid programming.

3.1 Language Support

In XPFortran, thread parallelization is supported by using OpenMP or auto-
matic parallelization. For OpenMP, all OpenMP directives can be used in XP-
Fortran constructs in which there is no communication. For example, OpenMP
directives can be used in a SPREAD DO construct only if the construct doesn’t
contain any access to global variables, which causes communication between
processors. Some XPFortran directives such as SPREAD DO can also be used in
OpenMP constructs as long as no MPI communication happens. Because of this
flexibility to describe the hybrid programs, there are some variants of XPFortran-
OpenMP hybrid programming. For example, for the nested loops that can be
parallelized, there are some choices to which loop process or thread paralleliza-
tion is used for. It’s also possible to use both process and thread parallelization
for the same loop, as shown in Fig. 10(a).

Fig. 7 shows example of how to describe 2-D XPFortran and OpenMP hybrid
programming in different ways for nested loops.

In Fig. 7(b) and 7(c), process parallelism realized by XPFortran SPREAD DO di-
rectives is executed within thread parallelism realized by OpenMP PARALLEL DO
directive. There is no problem with this since there is no data dependence be-
tween the loop variables I, J, and K. Also, there is no MPI routine called from
the OpenMP construct. Code generated for the three cases is shown in Fig. 8.

142 Y. Zhang et al.

!XOCL PROCESSOR P(4,4) !XOCL PROCESSOR P(4,4) !XOCL PROCESSOR P(4,4)

!XOCL SPREAD DO /(P.1) !XOCL SPREAD DO /(P.1) !$OMP PARALLEL DO

DO K=1,KUB DO K=1,KUB DO K=1,KUB

!XOCL SPREAD DO /(P.2) !$OMP PARALLEL DO !XOCL SPREAD DO /(P.1)

DO J=1,JUB DO J=1,JUB DO J=1,JUB

!$OMP PARALLEL DO !XOCL SPREAD DO /(P.2) !XOCL SPREAD DO /(P.2)

DO I=1,IUB DO I=1,IUB DO I=1,IUB

A(I,J,K)=I A(I,J,K)=I A(I,J,K)=I

END DO END DO END DO

END DO !XOCL END SPREAD !XOCL END SPREAD

!XOCL END SPREAD END DO END DO

END DO END DO !XOCL END SPREAD

!XOCL END SPREAD !XOCL END SPREAD END DO

(a) (b) (c)

Fig. 7. Some variants of 2-D XPFortran and OpenMP hybrid programming

...

(K1,K2)=gtol2(1,KUB) (K1,K2)=gtol2(1,KUB) !$OMP PARALLEL DO

DO K=K1,K2 DO K=K1,K2 DO K=1,KUB

(J1,J2)=gtol2(1,JUB) !$OMP PARALLEL DO (J1,J2)=gtol2(1,JUB)

DO J=J1,J2 DO J=1,JUB DO J=J1,J2

!$OMP PARALLEL DO (I1,I2)=gtol2(1,IUB) (I1,I2)=gtol2(1,IUB)

DO I=1,IUB DO I=I1,I2 DO I=I1,I2

A(I,J,K)=ltog(I) A(I,J,K)=ltog(I) A(I,J,K)=ltog(I)

END DO END DO END DO

END DO END DO END DO

END DO END DO END DO

(a) (b) (c)

Fig. 8. Output of XPFortran compiler for Fig. 7

Note that all code for gtol2 transformation in all the three cases can actually be
put before loop K by using optimization introduced in the end of section 2.4.

3.2 Compiler Implementation

Compilation and execution process of XPFortran-OpenMP hybrid program is
shown in Fig. 9. Like Fortran compiler with OpenMP support, our XPFor-
tran compiler provides options -Kopenmp and -Knoopenmp to specify whether
OpenMP directives in XPFortran program are effective or not. If -Kopenmp is
specified, the directives will be compiled according to XPFortran and Fortran
grammars regarding OpenMP. If -Knoopenmp is specified, the directives will be
treated as comment lines. By default -Knoopenmp is effective.

Inside the XPFortran compiler, if -Kopenmp option is specified, the parser
transforms the OpenMP directives to a data structure called Comment block,
which is intermediate representation for comment lines, as shown in Fig. 10(b).
The parser only analyzes sentinels of OpenMP directives. By default comment

Hybrid Parallel Programming on SMP Clusters Using XPFortran 143

input output Fortran + OpenMP
 + MPI program

input

output execute with process-thread

hybrid parallelization
 Fortran compiler with

OpenMP-related option
specified

 XPFortran compiler with
-KOMP specified

 XPFortran + OpenMP

hybrid program

 binary file
 target

 hardware

Fig. 9. Compilation and execution of XPFortran-OpenMP hybrid program

code for index localization

(d) Output of other passes

Comment_block

"!$OMP PARALLEL DO"

Do_block

!XOCL SPREAD DO

!$OMP PARALLEL DO

 DO I = 1,1000

 A(I) = I

 END DO

(a) XPFortran + OpenMP
 source program

SPREAD DO Do_block

Comment_block

"!$OMP PARALLEL DO"

(c) Output of OpenMP
 pre-processing pass

SPREAD DO Do_block

(b) Output of parser

Comment_block

"!$OMP PARALLEL DO"

Do_block

Comment_block

"!$OMP PARALLEL DO"

(e) Output of OpenMP
 post-processing pass

code for index localization

Fig. 10. An example of processing of OpenMP directives in XPFortran compiler

lines are not output by the XPFortran compiler, so if the sentinels are the ones
of the OpenMP directives, the line is output by parser as Comment block. Oth-
erwise the line is deleted. The pass for OpenMP pre-processing analyzes what
kind of OpenMP directive the line is, and then check errors according to XP-
Fortran and OpenMP grammars. For example, in XPFortran no global variable
can be used in OpenMP construct. Error message is output if global variable
does appear in an OpenMP construct. Also, according to OpenMP specifica-
tion, OpenMP DO or PARALLEL DO directive must be followed by do loop. The
pass outputs error message if no do loop follows such directive. The pass also
executes some operations to ensure the following passes don’t exert side effects
to OpenMP directives. For example, if SPREAD DO and PARALLEL DO directives
are used for the same loop, as in Fig. 10(a), the pass for SPMD transformation

144 Y. Zhang et al.

will output codes for loop localization immediately before the loop, as shown in
Fig. 6(b) and Fig. 10(d). This will separate PARALLEL DO directive and the loop,
which violates OpenMP grammar. To avoid this, the pass will save the line of
OpenMP directive to the intermediate representation of the loop, the Do block,
as shown in Fig. 10(c). The pass for OpenMP post-processing will move the
OpenMP line out of the Do block, as shown in Fig. 10(e).

4 Performance Evaluation of XPFortran-OpenMP
Hybrid Programming

This section describes our performance evaluation results of XPFortran-OpenMP
hybrid programming. First we evaluate the overheads of some OpenMP and
XPFortran directives, and then evaluate the hybrid parallelization on the appli-
cation called Himeno benchmark program[2]. We use our XPFortran compiler
to compile XPFortran program, and Fujitsu Fortran compiler 8.1 to compile
OpenMP program and Fortran code generated by XPFortran compiler. Also we
use Fujitsu MPI-2 7.2 library.

We run the evaluations on Fujitsu FX1. Each node is SPARC64 VII with 4
cores and the nodes are connected by high-speed Infiniband network. Each node
has maximum 32GB memory and the memory bandwidth is 40Gbps.

4.1 Overheads of OpenMP and XPFortran Directives

We evaluate the overheads of OpenMP PARALLEL, DO, PARALLEL DO and XPFor-
tran SPREAD DO directives since they are the most commonly used directives in
hybrid execution. The overheads of the OpenMP directives are evaluated with
EPCC OpenMP Microbenchmarks[3]. The overhead of XPFortran SPREAD DO is
evaluated in a similar way. The number of threads and processes varies from 1,
2, to 4.

The results are shown in Table 2. Please note that in the table the result of
SPREAD DO is that of the directive with NOBARRIER clause specified. That is, the
cost of SPREAD DO is that when there is no barrier among processes. The barrier
at the entrance or the end of a SPREAD DO construct is often not necessary since in
XPFortran point-to-point communication other than one-sided communication
is used in most cases.

As is shown, the overhead of DO is much lower than that of PARALLEL DO.
This means that if thread parallelization is used for a nested loop, the PARALLEL
directive should be put as outer as possible to reduce the cost of the initialization
of thread environment. Also, from the evaluation we can see that with the same
number of threads and processes, the overhead of SPREAD DO is lower than that
of the OpenMP PARALLEL and PARALLLEL DO directives. Both the overhead of
SPREAD DO and that of OpenMP DO with NOWAIT clause specified are low enough
to be neglected.

Because of the low overhead of SPREAD DO, it’s possible to use it to parallelize
an inner loop in nested loops if either SPREAD DO or OpenMP (PARALLEL) DO

Hybrid Parallel Programming on SMP Clusters Using XPFortran 145

Table 2. Cost of some OpenMP and XPFortran directives

Number of threads or processes
Directive

1 2 4

OpenMP PARALLEL 0.18 s 0.51 s 0.76 s

OpenMP DO 0.02 s 0.21 s 0.39 s

OpenMP DO(NOWAIT clause specified) 0.02 s 0.02 s 0.04 s

OpenMP PARALLEL DO 0.19 s 0.56 s 0.83 s

XPFortran SPREAD DO

(NOBARRIER clause specified)
0.007 s 0.007 s 0.009 s

must be used to parallelize the loop. Certainly the directive overhead is not the
only factor that influences the performance of loops, therefore in the next section
we evaluate the overall performance of different combinations of XPFortran-
OpenMP hybrid parallelization.

Fig. 11. Performance comparison when XPFortran and OpenMP directives parallelize
different loops in the nested loops

4.2 Evaluation of Hybrid Execution on Himeno Benchmark
Program

Himeno benchmark program is a Poisson equation solver using Jacobi iteration
method. It measures the speed of main loops in the solver in MFLOPS. The char-
acteristic of Himeno benchmark is having shift communication between neighbor
nodes, which can often be found in data parallel programs, and 3-D nested loops
that can be parallelized. The numbers of iterations in the outermost, middle and
innermost loops of the 3-D nested loops are 256, 256, and 512 respectively.

We modified 1-D XPFortran version Himeno program downloaded from [2]
and made 2-D XPFortran-OpenMP hybrid version.

As shown in Fig. 7, there is a variety of ways for XPFortran-OpenMP hybrid
programming. In Fig. 11, we compared the performance of these methods. We
used 2-D XPFortran-OpenMP hybrid programs. The number of processes is 16
and that of threads is 4 for all three cases. These cases correspond to programs in
Fig. 7(a), (b), and (c) respectively, with the computation in the innermost loop

146 Y. Zhang et al.

Fig. 12. Performance comparison when OpenMP PARALLEL and DO directives are
used to parallelize different loops in the nested loops

being much more complex. For simplicity, we changed the unit of measurement
from MFLOPS to GFLOPS. As shown in Fig. 11, for Himeno the performance
is the best when the outermost loop is parallelized by OpenMP.

The difference in the overheads of SPREAD DO and PARALLEL DO is a reason for
the difference in performance. To find the other reasons, we fixed the loops that
SPREAD DO directives parallelize, and compared the performance when PARALLEL
and DO directives are used to parallelize different loops of nested loops in 2-D
XPFortran-OpenMP hybrid program, with varying number of processes. The
result is shown in Fig. 12. For the nested loops, SPREAD DO directives are used
to parallelize the outer two loops. For example, 2P*4P in the horizontal axis
means 2 and 4 processors are used to parallelize the outermost loop and the
middle loop respectively. With the number of processes fixed, loop(s) which
PARALLEL and DO directives parallelize varies. Number of threads used is 4.

As the figure shows, for the cases A, C, and D, the performance of C is the
best almost for any number of processes. This means that OpenMP PARALLEL DO
directive should be used for the outermost loop as much as possible. Compar-
ing case A with case B, we can see that their difference is not obvious. This
is because that as the number of processes increases, the number of iterations
executed by each process and parallelized by threads decreases, though there is
a difference in the overheads of DO and PARALLEL DO directives just before the
innermost loop, and the iterations in the outermost and middle loops aggravate
such difference. This shows that the difference in the overheads is not the main
reason of the difference in performance. Therefore performance depends mainly
on which loop the DO directive parallelizes. According to profiling information
for cases in Fig. 11, the data access cost ratio, which is the ratio of the data
access time to the execution time of application, is 28.8%, 11.1% and 10.0%
respectively for the three cases. The poor memory access efficiency in the first
case worsens its performance greatly. This is because there are lots of accesses

Hybrid Parallel Programming on SMP Clusters Using XPFortran 147

to multi-dimensional arrays in the equation in Himeno program. When the out-
ermost loop is thread parallelized, memory access is continuous, while it is not
in the other two cases.

From the above evaluations, we can see that in some cases to use SPREAD DO-
PARALLEL DO hybrid parallelization for nested loops, it’s better to use
PARALLEL DO outside and SPREAD DO inside to improve performance.

5 Conclusion

Because of the shared-distributed hybrid characteristic of memory in SMP clus-
ters, process-thread hybrid programming is commonly used to parallelize ap-
plications running on such systems to derive high performance. XPFortran, a
high-level programming language for process parallelism, is much easier to pro-
gram than MPI because of its global address space and directive programming
style. In this paper we introduced XPFortran-OpenMP hybrid programming.

As we have shown, XPFortran and OpenMP hybrid programming can be re-
alized in various ways. To use thread parallelism for nested loops that can be
parallelized, usually parallelization should be done for outer loop(s) to deploy
data continuity. Also, as we have shown, the overhead of XPFortran data-parallel
directive is lower than that of corresponding OpenMP directives, so in XPFortran
we made it possible to describe process parallelization inside thread paralleliza-
tion providing some conditions meet, namely to use some XPFortran directives
inside OpenMP constructs.

Acknowledgements

The authors would like to acknowledge Japan Aerospace Exploration Agency
(JAXA) for its contribution to performance evaluation in this paper. The authors
also would like to thank Dr. Larry Meadows and the reviewers for their valuable
advices and suggestions to improve the paper.

References

1. Co-Array Fortran, http://www.co-array.org/
2. Himeno Benchmark Program, http://accc.riken.jp/HPC_e/HimenoBMT_e.html
3. EPCC OpenMP Microbenchmarks, http://www2.epcc.ed.ac.uk/computing/

research_activities/openmpbench/openmp_index.html

4. Message Passing Interface Forum. MPI: A message-passing interface standard,
http://www.mpi-forum.org/

5. OpenMP, http://openmp.org/wp/
6. Iwashita, H., Aoki, M.: Mapping Normalization Technique on the HPF Compiler

fhpf. In: Labarta, J., Joe, K., Sato, T. (eds.) ISHPC 2005 and ALPS 2006. LNCS,
vol. 4759, pp. 315–329. Springer, Heidelberg (2008)

7. Iwashita, H., Sueyasu, N., Kamiya, S., van Waveren, M.: VPP Fortran and the
Design of HPF/JA Extensions. In: Concurrency and Computation: Practice and
Experience, vol. 14(8-9), pp. 575–588. John Wiley &Sons Ltd., Chichester (2002)

http://www.co-array.org/
http://accc.riken.jp/HPC_e/HimenoBMT_e.html
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html
http://www.mpi-forum.org/
http://openmp.org/wp/

148 Y. Zhang et al.

8. Iwashita, H., Aoki, M.: A Code Generation Technique Common to Distribution
Kinds on the HPF Translator. IPSJ Transactions on Advanced Computing Systems
(ACS) 0(15), 329–339 (2006) (in Japanese)

9. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP Parallel Program-
ming on Clusters of Multi-Core SMP Nodes. In: Proc. of the 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing,
pp. 427–436 (2009)

10. Benkner, S., Sipkova, V.: Language and Compiler Support for Hybrid-Parallel Pro-
gramming on SMP Clusters. In: Zima, H.P., Joe, K., Sato, M., Seo, Y., Shimasaki,
M. (eds.) ISHPC 2002. LNCS, vol. 2327, pp. 11–24. Springer, Heidelberg (2002)

A Case for Including Transactions in OpenMP

Michael Wong1, Barna L. Bihari2, Bronis R. de Supinski2,
Peng Wu1, Maged Michael1, Yan Liu1, and Wang Chen1

1 IBM Corporation
2 Lawrence Livermore National Laboratory

{michaelw,yanliu,wdchen}@ca.ibm.com,
{bihari1,bronis}@llnl.gov,
{pengwu,magedm}@us.ibm.com

Abstract. Transactional Memory (TM) has received significant attention recently
as a mechanism to reduce the complexity of shared memory programming. We
explore the potential of TM to improve OpenMP applications. We combine a
software TM (STM) system to support transactions with an OpenMP implemen-
tation to start thread teams and provide task and loop-level parallelization. We
apply this system to two application scenarios that reflect realistic TM use cases.
Our results with this system demonstrate that even with the relatively high over-
heads of STM, transactions can outperform OpenMP critical sections by 10%.
Overall, our study demonstrates that extending OpenMP to include transactions
would ease programming effort while allowing improved performance.

1 Introduction

Many have observed that Transactional Memory (TM) could simplify shared memory
programming substantially by simply marking a group of load and store instructions to
execute atomically, rather than using locks or other synchronization techniques. TM’s
promise of easier program understanding, along with composability and liveness guar-
antees has led to a fad status for TM. As a result, extensions to OpenMP [6] to include
transactions have received interest in the OpenMP community [5,8]. However, we must
first determine whether TM can be more than just a research toy before these extensions
can receive serious consideration.

Two implementation strategies are available for TM. Hardware TM (HTM) modifies
the memory system, typically through modifications to the L1 cache, to support atomic
execution of groups of memory instructions. Software Transactional Memory (TM)
provides similar functionality without using special hardware. In this paper, we combine
an STM system that provides the transaction primitive with an OpenMP implementation
that provides all other shared memory functionality. The combination is natural since
the TM system relies on compiler directives that are similar to OpenMP’s syntax.

The remainder of this paper is organized as follows. We present our STM system in
Section 2. We then review its integration with a production-quality OpenMP compiler
in Section 3. In Section 4, we present performance results for two application scenarios,
which demonstrate that transactions can improve performance by 10% over a produc-
tion quality critical section implementation even with the relatively high overhead of

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 149–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

150 M. Wong et al.

STM. Overall, we conclude that extending OpenMP to include transactions would re-
duce programming effort while supporting potential performance gains.

2 The IBM XL STM Compiler

Generally, an STM system uses a runtime system to manage all transactional states.
This runtime annotates reads and writes for version control and conflict detection. If two
transactions conflict, (i. e., the write set of one intersects with the read set of the other),
the system may delay or abort and retry one of them. The system validates the reads at
the end of the transaction (i. e., any loaded values have not changed). The system then
commits the writes (i. e., stores them to their actual memory locations) if it does not
detect any conflicts. Compared to HTM, STM does not require special hardware while
enabling scalability of inherently concurrent workloads at the cost of higher overhead,
particularly when no conflicts occur.

IBM released a freely downloadable STM compiler under alphaWorks R© site [7]
based on its production IBM R© XL C/C++ Enterprise Edition for AIX R©, Version 9.0,
called IBM XL C/C++ for Transactional Memory for AIX in 2008. This implementation
includes standard and debugging versions of the runtime libraries. Fig. 1 shows the TM
features [4] of our XL STM compiler.

Fig. 1. Transactional features of XL STM Fig. 2. Project Components of our STM that rely
on OpenMP

Our STM uses a block-based mapping of shared memory locations, which enables
support for different languages, unlike the alternative object-based mapping. The sys-
tem buffers writes, which are written to the global address space only when the transac-
tion is guaranteed to commit. When a transaction writes to a stack location or privately
allocated memory that has not yet escaped the thread (i.e., a memory location that is not
yet visible to other threads), the write does not induce any conflict. These contention-
free writes do not require write-barriers, but may need to be memory checkpointed if
the system must recover the overwritten values upon a retry [9].

Using data-flow analysis, the compiler can exclude writes to most contention-free
locations from memory checkpointing. Basically, the write requires no checkpointing if

A Case for Including Transactions in OpenMP 151

the variable or heap location is private to a transactional lexical scope (e.g., transactional
block or procedure), that is, the variable is not live upon entry and exit to the lexical
scope. However, contention-free writes often have uses after exiting the transaction. In
this case, we can still avoid checkpointing if the location is not live upon entry to the
transactional scope the write to the location dominates the transaction end. The latter
property guarantees that the location will always be re-defined upon retry and, thus,
we do not need to recover the original value. Finally, uninitialized locations upon a
transaction entry require no checkpointing. This also includes the case when a heap
location is allocated within the transaction.

The read barrier does not write to shared meta-data. The checkpoint barrier records
the original value for writes to contention-free locations. The compiler implements
retries with setjmp and longjmp. In addition, our STM system focuses on instru-
mentation statistics to identify STM bottlenecks in applications, thus avoiding time con-
suming and error-prone manual instrumentation.

We use C to implement the runtime system, the source code of which is freely avail-
able as part of an Open Source Amino project [2]. This runtime supports exploration
of a range of TM scenarios (HTM, STM and hardware accelerated STM) in multiple
languages including C, C++ and JavaTM as Fig. 2 shows. The current implementation
assumes weak isolation: accesses to a particular shared location always occur within
transactions (a transactional location) or never within them. Further, it assumes that
transactions only include any revocable operations without side effects (e. g., no file
I/O) and, hence, we can safely undo and retry them.

Our runtime uses metadata to synchronize transactional access to shared memory
locations. We associate a metadata entry with transactional location. This entry includes
a version number for tracking updates of the location and a lock to protect updates
of it. A thread can write to memory only if it holds the associated metadata lock. A
transaction increments the version number when it releases the metadata lock, which
guarantees that the data has not changed if the version number is unchanged. Thus, a
transaction can read a metadata version number and then the associated data and then
later check the version number to determine if the data is unchanged.

Our runtime maintains information for each thread that includes its read set, write
set, statistics, status, level of nesting, and lists of mallocs, frees and modified local
variables. The read set information is the metadata location and version number. The
write set information contains the address, value, size and metadata location.

When a thread begins a transaction, it sets its transactional status data. It also reads
some global data in some configurations. The thread then records the current version
number before it reads a transactional location. In some configurations, the thread also
checks the consistency of the read set. For transactional writes, the thread records the
target address and the value to be written. In some configurations, it acquires the cor-
responding metadata lock; otherwise, it acquires metadata locks for all locations in its
write set at the end of the transaction. When the transaction ends, the thread then val-
idates the consistency of its read set. If that fails, the thread aborts the transaction by
releasing the metadata locks and jumping to the beginning of the transaction. Other-
wise, the thread writes the values to the addresses in its write set, releases the metadata
locks and then resets its transactional status data.

152 M. Wong et al.

Table 1. STM runtime statistics

Statistic Description

READ ONLY COMMITS Number of committed transactions with no writes
READ WRITE COMMITS Number of committed transactions with writes
TOTAL COMMITS Number of successfully committed transactions
TOTAL RETRIES Number of retried transactions
AVG RETRIES PER TXN Average number of retries per committed transaction
MAX NESTING Maximum level of transaction nesting
READ SET SIZES Unique locations in read sets of committed transactions
WRITE SET SIZES Unique locations in write sets of committed transactions
AVG READ SET SIZE Average number of unique locations in read set per transaction
AVG WRITE SET SIZE: Average number of unique locations in write set per transaction
READ SET MAX SIZE Maximum number of unique locations in a read set
WRITE SET MAX SIZE Maximum number of unique locations in a write set
READ LIST MAX SIZE Maximum number of locations in a read list
WRITE LIST MAX SIZE Maximum number of locations in a write list
DUPLICATE READS Number of transactional reads of locations previously

read in the same transaction
PCT DUPLICATE READS Percentage of transactional reads of locations previously

read in the same transaction
DUPLICATE WRITES Number of transactional writes to locations previously

written in the same transaction
PCT DUPLICATE WRITES Percentage of transactional writes to locations previously

written in the same transaction
NUM SILENT WRITES Number of transactional writes of already stored value
PCT SILENT WRITES Percentage of transactional writes of already stored value
READ AFTER WRITE MATCHES Number of transactional reads that follow a transactional

write of the same location in the same transaction
PCT READ AFTER WRITE Percentage of transactional reads that follow a transactional

write to the same location in the same transaction
NUM MALLOCS Number of calls to malloc inside transactions
NUM FREES Number of calls to free inside transactions
NUM FREE PRIVATE Number of calls to free blocks allocated in that transaction

The STM runtime can collect statistics related to a program’s inherent transactional
characteristics (i. e., independent of our STM implementation), such as transaction sizes.
It can also track implementation specific data, such as metadata locks acquired. We col-
late these statistics by static transactions (i. e., source code file name and first line num-
ber). We also generate aggregate statistics. Collecting these statistics incurs a significant
performance cost but can guide optimization of TM programs.

The program must call stm stats out in order to generate the statistics files.
We allow multiple calls to stm stats out. The statistics can be inconsistent if the
call occurs while any transactions are active since the statistics can change during the
snapshot. We recommend only calling stm stats out when only the main thread is
active, which ensures the statistics are consistent. The stats.h file has a full list of
the statistics; we provide some of the most important ones in Table 1.

We have ported our STM runtime to several platforms including AIX and Linux R© on
IBM PowerPC R©, LinuxX86, and LinuxX86 64, in 32 or 64bit mode. IBM XL C/C++

A Case for Including Transactions in OpenMP 153

for Transactional Memory for AIX generates code for this interface for programs that
use the high-level interface that we discuss in the next section. Other compilers could
also use our open source STM runtime for this interface.

3 IBM STM Compiler Design

3.1 Syntax

Programs define transactions for our STM compiler [3] through a simple directive:

1 #pragma tm a tomic [d e f a u l t (t r a n s | n o t r a n s)]
2 {
3

4 }

in which default(trans|notrans) defines the default behavior of memory ref-
erenced in the lexical scope of the transactional region. If the user specifies default
(trans) then the compiler translates references to shared variables in the transac-
tional region to STM runtime calls, often referred to as STM read-write-barriers, that
ensure the correctness of the execution. If the user specifies default(notrans)
then the compiler does not translate any memory references in the region to STM read-
write-barriers. The default clause is optional; the default value is trans.

The code region encapsulated within our transactional construct is basically a struc-
tured block although the block cannot include any OpenMP constructs. We impose this
restriction since otherwise an aborted transaction could lead to an inconsistent state for
the OpenMP runtime library, such as acquiring a lock that it will never release.

Fig. 3 shows an example transactional region within an OpenMP parallel region.
The compiler inserts stm begin() and stm end() around the transactional region.
These calls allow our STM runtime to monitor all shared memory access within the
transactional region in order to ensure the transaction executes correctly.

3.2 Special Transactional Function Attributes

Users must annotate functions that are called within transactional regions so that the
compiler can correctly transform memory references within the function to STM run-
time barrier calls. We provide two function attributes for this purpose: tm func and
tm func notrans. The user specifies attribute ((tm func)) with a func-
tion declaration to indicate that a transactional region can call the function so the com-
piler must transform its memory references to STM runtime calls. The user specifies
attribute ((tm func notrans))with a function declaration to indicate that

transactional region can call the function but the compiler should not transform its mem-
ory accesses to STM runtime calls. Neither attribute is required if transactional regions
cannot call the function. Fig. 4 shows an annotated function declaration.

Our transactional function attributes reflect two key design factors. First, they al-
low function calls within transactions without requiring the user to make major code
modifications. Second, the attributes allow the compiler to check that the function call

154 M. Wong et al.

1 i n t b [2 5] , j ;
2 i n t i n d e x [5] = {4 , 5 , 675 , 22 , 34} ;
3

4 f o r (j = 0 ; j <25; j ++)
5 b [j] = 0 ;
6

7 #pragma omp parallel f o r
8 {
9 f o r (j =0 ; j <25; j ++)

10 {
11 . . .
12

13 #pragma tm a tomic
14 {
15 b [i n d e x [j]] = . . . ;
16 }
17 }
18 }
19 }

Fig. 3. Sample code of using #pragma tm atomic

1 i n t foo (i n t sum) a t t r i b u t e ((tm func)) ;
2 i n t foo (i n t sum)
3 {
4 re turn ++sum ;
5 }

Fig. 4. Sample code of annotating function attribute to a function

conforms to our restriction that transactional regions cannot include any OpenMP con-
structs. The compiler issues a warning for any unannotated functions that are called
within a transactional region. The programmer must ensure that the call is safe with
the default behavior that does not transform memory references to STM runtime calls.
These attributes are only needed for STM; HTM implementations do not require them.

4 Experimental Results

We provide results that evaluate the potential for TM to benefit scientific computing.
In particular, we consider the opportunities to use transactions in unstructured-mesh
multi-physics simulation applications, which are widely used because of their geometric
and architectural flexibility. These applications typically have many compute-intensive
loops with complicated memory referencing patterns. Although these applications usu-
ally exhibit good scalability with MPI-based domain-decomposition, the trend toward
systems built with multicore nodes motivates explorations of moving them to a hy-
brid OpenMP/MPI programming model. However, many users view the complexity of
shared memory programming in general, and of ensuring data race freedom in particu-
lar, as a significant barrier. Transactions directly address this concern.

While no production HTM implementations currently exist, STM provides a mecha-
nism to experiment with using transactions within these applications. Thus, we have im-
plemented a Benchmark for Unstructured-mesh Software Transactional Memory

A Case for Including Transactions in OpenMP 155

1 #pragma tm a tomic d e f a u l t (t r a n s)
2 {
3 g r a d i e n t [c e l l n o 1] += i n c r ;
4 g r a d i e n t [c e l l n o 2] −= i n c r ;
5 }

Fig. 5. Gradients accumulated within transaction in compute cell

(BUSTM). BUSTM provides a simple code in which to explore the programming ben-
efits of transactions and any performance implications as it mimics the algorithms and
behavior of real unstructured mesh applications.

When we construct a benchmark of an application scenario, we must ensure that it
captures the salient features of the target application space. Since we primarily focus on
race conditions and the potential benefits of TM, we artificially generate memory con-
flicts in either a deterministic or random yet still controllable manner. That is, even with
random conflicts, we can configure their probabilities indirectly through input param-
eters. The benchmark also must include rigorous error checking for example problems
with known or independently computable answers to ensure that the threaded experi-
ments (with or without transactions) execute correctly.

BUSTM meets these requirements and uses realistic unstructured mesh connectivity.
It mimics the complex and flexible bookkeeping common to unstructured mesh appli-
cations. BUSTM can handle unstructured cells with an arbitrary number of faces. We
have already used a wide range of cell types, including triangular prisms, hexahedra,
tetrahedra and pyramids. Like real unstructures mesh applications, BUSTM cross ref-
erences the basic unstructured mesh building blocks of nodes, faces and cells in almost
all combinations, so that indirect indexing pervades the code. This indirect addressing
leads to extensive synchronization requirements to use shared memory programming,
which is exactly when TM should provide benefits. The remainder of this section ex-
plores the benefits of our STM implementation with both deterministic and probabilistic
conflicts.

4.1 Deterministic Conflicts

Domain decomposition based on MPI message passing has provided successful par-
allelization of conservative finite volume schemes on unstructured grids. Our careful
evaluation of their typical memory access patterns, however, found that conflicts may
occur as cells are updated during the traversal of face-based loops. Although these con-
flicts rarely occur in practice, we cannot assume they do not occur. Since ignoring
them would lead to incorrect results, we must protect them with some synchroniza-
tion method. However, locks have relatively high overhead when conflicts are unlikely.
Thus, TM may provide substantial performance benefits for this scenario.

Short of a full-blown CFD solver, we simulate face-by-face flux computations with
the numerical divergence of a mesh-function that we define on an unstructured mesh in
a cell-centered sense. This emulation computes the gradient of a function. If the function
is constant, its gradient and, thus, divergence is zero. Fig. 5 shows the transaction.

156 M. Wong et al.

1 #pragma omp parallel f o r
2 f o r (i =0 ; i < max face ; i ++){
3 l e f t n e i g h b o r = l e f t c e l l s [i] ;
4 r i g h t n e i g h b o r = r i g h t c e l l s [i] ;
5 c o m p u t e c e l l (i n c r , l e f t n e i g h b o r) ; / / face increments l e f t c e l l
6 c o m p u t e c e l l (i n c r , r i g h t n e i g h b o r) ; / / face increments r i g h t c e l l
7 }

Fig. 6. Threaded face loop that calls compute cell

Since real finite-volume codes have significant computation per face, BUSTM loops
over the faces, as Fig. 6 shows. Memory conflicts can occur if different faces update the
same cell. They only actually occur, resulting in incorrect execution, if compute cell
does not use transactions or other synchronization such as a critical section, and
two updates happen at the same physical time. Thus, the probability of conflicts is ex-
tremely low and many of our experimental runs had no conflicts.

Our experiements use a mesh of 119893 triangular prism cells arranged as a 2-D
layer of 3-D cells. This mesh has 420060 faces (some quadrilateral, others triangular)
and 123132 nodes. The total number of potential conflicts is fixed with this mesh al-
though the actual number of conflicts varies between runs. We observe the number of
resolved conflicts from the statistics available with our STM implementations.

Fig. 7 shows the number of conflicts resolved in each of 1000 runs is always less than
ten and frequently zero. Fig. 8 shows the sum of the number of conflicts that our STM
implementation resolves over 1000 runs versus the total number of errors committed
(without STM) over 1000 runs for a range of thread counts. We observe many fewer
STM retries than errors with the unsynchronized code. However, both exhibit similar
trends with increasing thread counts and rarely occur relative to the number of potential
conflicts. Despite the relatively small mesh (which increases the conflict probability),
only 0.00042% of all cell updates incurred conflicts on 16 threads. No conflicts occur
with just two threads (or one, which is clearly expected), which makes debugging the
unsynchronized code more difficult. The number of conflicts increases significantly
with the number of threads, with conflicts being fairly likely with 16 threads.

0 500 1000
0

5

10

Run number

N
um

be
r

of
 c

on
fli

ct
s

Conflicts detected

 1 thread
2 threads
4 threads
8 threads
16 threads

Fig. 7. Resovled deterministic conflicts

0 10 20
0

500

1000

1500

2000

Number of threads

N
um

be
r

of
 c

on
fli

ct
s/

er
ro

rs

Conflicts and errors

without STM
with STM

Fig. 8. Total conflicts or errors

A Case for Including Transactions in OpenMP 157

1 #pragma tm a tomic d e f a u l t (t r a n s)
2 {
3 c e l l c o u n t e r [c e l l n o] ++;
4 }

Fig. 9. Cell counter incremented within transaction of mark cell

4.2 Probabilistic Conflicts

Monte Carlo applications are another common type of scientific application in which
memory conflicts potentially occur with threaded implementations. In these applica-
tions, randomly released particles travel through a computational mesh and increment a
cell-based physical quantity each time they touch a cell. Parallelizing over the particles
results in almost embarassingly parallel loops, except for the race condition produced
by two particles (belonging to two different threads) trying to update the same cell at the
same time. Although these memory conflicts are unlikely, some will occur with enough
particles and threads.

We exploit the unstructured bookkeeping in BUSTM in order to emulate the behavior
of particles without implementing a real Monte Carlo application. Instead of particles
that travel along a straight line through space, they travel from cell to cell via the neigh-
bor information available for each adjacent cell. Thus, our benchmark has two levels of
randomness. First, we randomly select the cell in which the particle is “born”. Second,
we randomly choose the face that the particle exits the current cell.

We make sure the number of particles is independent of the number of cells. After
being created, or “born,” each particle is “alive” as long as it stays within the computa-
tional domain (i. e., the face through which it exits the current cell is an interior face).
If that randomly selected face is a boundary face, it exits the domain and completes
its path. This scheme results in a wide variance in the particle path lengths; some will
have a short lifespan while others stay active within the domain for a long time. This
property, which is consistent with real Monte Carlo simulations, limits scalability.

Fig. 9 shows the simple transaction that safely increments a single cell-based in-
teger. Fig. 10 shows the loop that distributes the particles across the threads. As dis-
cussed above, each randomly generated particle moves through the mesh until it ex-
its the domain. We also increment a separate counter for each particle so that we
can compute the total number of touches without concern for potential conflicts as
cell counter∗particle counter. This check usually fails if we do not use
any synchronization for the mark cell calls.

Our probabilistic experiments use the same triangular prism mesh as the determin-
istics ones and we report conflict statistics observed by our STM implementation. We
performed 100 runs, using 12000 random particles (10% of the number of cells) during
each run. Fig. 11 shows a much higher number of conflicts than in the deterministic
case. The conflicts are fairly consistent for a given thread count and appear almost lin-
early proportional to that count. We observe the opposite trend from the deterministic
case between the total number of STM resolved conflicts and the total number of unsyn-
chronized errors for this probabilistic test, as Fig. 12 shows. We find that STM incurs
many more conflicts, sometimes by an order of magnitude. While we are still investi-

158 M. Wong et al.

1 #pragma omp parallel f o r
2 f o r (i =0 ; i<m a x p a r t i c l e s ; i ++){
3 n e x t c e l l = rand () ;
4 whi le (i n s i d e){
5 m a r k c e l l (n e x t c e l l) ; / / p a r t i c l e increments c e l l s
6 n e x t f a c e = rand () ;
7 n e x t c e l l = n e i g h b o r (n e x t f a c e) ;
8 i f (n e x t c e l l < 0) i n s i d e = 0 ;
9 }

10 }

Fig. 10. Threaded particle loop that calls mark cell

0 50 100 150
0

0.5

1

1.5

2

2.5x 10
4

Run number

N
um

be
r

of
 c

on
fli

ct
s

Conflicts detected

1 thread
2 threads
4 threads
8 threads
16 threads

Fig. 11. Resolved probabilistic conflicts

0 5 10 15 20
0

0.5

1

1.5

2

2.5x 10
6

Number of threads

N
um

be
r

of
 c

on
fli

ct
s/

er
ro

rs

Conflicts and errors

without STM
with STM

Fig. 12. Total conflicts or errors

gating this discrepancy, the much heavier computational load imposed by the frequent
invocation of a random number generator may cause it. Nonetheless, the total number
of resolved conflicts and committed errors is still small compared to the number of up-
dates. For example, the conflict probability is only 0.009% on this relatively small mesh
with 16 threads.

While the deterministic and probabilistic algorithms represent very different numer-
ical algorithms and in their relationships of resolved conflicts to errors, they also have
similarities. In both cases we have low conflict probabilities (much less than 0.01%)
and both use the same unstructured mesh. Indeed, the results confirm our conjecture
that the algorithms are well suited to transactions since conflicts rarely occur. We can
observe reasonably good performance even with STM and expect higher performance
with HTM since conflict resolution is generally the dominant cost with TM. Lock based
implementations, on the other hand, would suffer much more overhead. Preliminary
timing results that compare our STM implementations to ones that use the OpenMP
critical construct indicate that STM provides about a 10% performance advantage
despite the relatively large overheads of STM [1].

5 Conclusions and Future Work

We have presented the design and implementation of a software transactional memory
system. Our system combines an open source runtime with modifications to the pro-

A Case for Including Transactions in OpenMP 159

duction IBM R© XL C/C++ Enterprise Edition for AIX R©, Version 9.0 compiler. This
system uses OpenMP to generate threads and parallelize applications. Transactions de-
noted by a simple directive serve as an alternative to OpenMP synchronization. Users
also must annotate declarations of any functions accessed within a transaction. These
annotations would be unnecessary with HTM support since they direct the compiler to
transform memory accesses to STM primitives.

We evaluate the efficacy of TM for scientific computing. In particular, we develop
a new TM benchmark, BUSTM, that explores the use of transactions for unstructured
mesh applications. We present two distinct scenarios that BUSTM can emulate: CFD
applications and Monte Carlo applications. In both cases, we find that conflicts for
the transactions are infrequent; however, correct execution requires synchronization of
some sort. Our initial performance results found that the STM implementation outper-
formed the equivalent OpenMP implementation with critical regions by 10%, a
significant result considering that STM has relatively high overhead. Although we are
continuing to explore these performance results with different meshes, we expect that
the emulated scientific applications will benefit substantially from HTM support.

Acknowledgements

The authors wish to thank John Gyllenhaal and Scott Futral of LLNL for numerous
fruitful discussions on this subject and for support of this work. The second author also
acknowledges past financial support from Rockwell International, Boeing, and Hyper-
comp, Inc. in developing the unstructured mesh bookkeeping used in the experiments,
and from Icon Consulting and IBM in writing the BUSTM code.

Part of this work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344
(LLNL-CONF-422888).

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of Inter-
national Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies. A current
list of IBM trademarks is available on the Web at ”Copyright and trademark informa-
tion” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other coun-
tries, or both.

Other brands and names are the property of their respective owners.

References

1. Bihari, B.L.: Experiments Using IBM’s Software Transactional Memory Compiler (May
2009), http://spscicomp.org/ScicomP15/slides/user/bihari.pdf

2. IBM. Concurrent Building Block (May 2008), http://sourceforge.net/
projects/amino-cbbs/

http://spscicomp.org/ScicomP15/slides/user/bihari.pdf
http://sourceforge.net/projects/amino-cbbs/
http://sourceforge.net/projects/amino-cbbs/

160 M. Wong et al.

3. IBM. IBM XL C/C++ for Transactional Memory for AIX, V0.9 Language Extensions
and Users Guide (May 2008), http://dl.alphaworks.ibm.com/technologies/
xlcstm/xlcstm-whitepaper.pdf

4. Larus, J.R., Rajwar, R.: Transactional Memory (Synthesis Lectures on Computer Architec-
ture). Morgan & Claypool Publishers, San Francisco (January 2007)

5. Milovanović, M., Ferrer, R., Unsal, O., Cristal, A., Martorell, X., Ayguadé, E., Labarta, J.,
Valero, M.: Transactional memory and openMP. In: Chapman, B., Zheng, W., Gao, G.R.,
Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 37–53. Springer,
Heidelberg (2008)

6. OpenMP ARB. OpenMP Application Program Interface, v. 3.0 (May 2008)
7. Wong, M.: IBM XL C/C++ for Transactional Memory for AIX (August 2009),

http://www-949.ibm.com/software/rational/cafe/
blogs/ccpp-parallel-multicore/2009/08/11/
ibms-alphaworks-software-transactional-memory-compiler

8. Woongki, B., Minh, C.C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The OpenTM Trans-
actional Application Programming Interface. In: PACT’07: Proceedings of the 16th Interna-
tional Conference on Parallel Architec-ture and Compilation Techniques, Washington, DC,
USA, June 2007, pp. 376–587. IEEE Computer Society, Los Alamitos (2007)

9. Wu, P., Michael, M., von Praun, C., Nakaike, T., Bordawekar, R., Cain, H., Cascaval, C.,
Chatterjee, S., Chiras, S., Hou, R., Mergen, M., Shen, X., Spear, M., Wang, H.Y., Wang, K.:
Compiler and Runtime Techniques for Software Transactional Memory Optimization. Journal
of Concurrency and Computation: Practice and Experience, 7–23 (July 2009)

 http://dl.alphaworks.ibm.com/technologies/xlcstm/xlcstm-whitepaper.pdf
 http://dl.alphaworks.ibm.com/technologies/xlcstm/xlcstm-whitepaper.pdf
http://www-949.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore/2009/08/11/ibms-alphaworks-software-transactional-memory-compiler
http://www-949.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore/2009/08/11/ibms-alphaworks-software-transactional-memory-compiler
http://www-949.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore/2009/08/11/ibms-alphaworks-software-transactional-memory-compiler

OMPCUDA : OpenMP Execution Framework
for CUDA Based on Omni OpenMP Compiler

Satoshi Ohshima1, Shoichi Hirasawa2, and Hiroki Honda2

1 The University of Tokyo/JST CREST, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, Japan
ohshima@cc.u-tokyo.ac.jp

2 The University of Electro-Communications/JST CREST, 1-5-1, Chofugaoka,
Chofu-shi, Tokyo, Japan

{hirasawa,honda}@is.uec.ac.jp

Abstract. Arithmetic performance with GPGPU attracts attention.
However, the difficulty of the programming poses a problem. We have
proposed GPGPU programming which used the existing parallel pro-
gramming technique. We are now developing OpenMP framework for
GPU as a concrete of our proposal. The framework is based on Omni
OpenMP Compiler and named “OMPCUDA”. In this paper we describe
a design and an implementation of OMPCUDA. We evaluated using test
programs, and validated that parallel improvement in the speed could
be easily carried out in the same code as the existing OpenMP.

1 Introduction

OpenMP attracts attention because of the tool of an inner node parallel program-
ing environment of large scale SMP cluster as well as a programing environment
for the shared memory parallel computers and multicore CPUs. On the other
hand, GPU (Graphics Processing Unit) attracts attention as a new highly par-
allel high performance computational hardware. But the programming of GPU
is difficult and complex because new parallel programing environments such as
CUDA (CUDA Unified Device Architecture)[1] is necessary to make parallel
programs running on GPU.

We aim at that more application programmers can use GPGPU simpler. Since
GPU is suitable for parallel processing, applications with high parallelism is ex-
pected to improve the performance with GPGPU (General-Purpose computing
on GPUs). We has proposed reduction of the time and effort for the applica-
tion programmers by enabling use of the existing parallelization programming
techniques at GPGPU programming [2].

As a concrete implementation of our aim, we are now developing an OpenMP
framework for CUDA. The framework is based on Omni OpenMP Compiler[3]
and named “OMPCUDA”. This paper describes the design, implementation,
and evaluation of OMPCUDA.

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 161–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 S. Ohshima, S. Hirasawa, and H. Honda

2 Omni OpenMP Compiler and CUDA

2.1 Omni OpenMP Compiler

Omni OpenMP Compiler (henceforth OMNI) is an OpenMP compiler which
developed in Tsukuba, JAPAN. OMNI does not support latest OpenMP specifi-
cations, but it has some useful features. Fig. 1 illustrates the overview of OMNI.
OMNI is a translator which takes OpenMP programs as input, and generates
the multithread C program with runtime library calls. The generated program
is compiled by the native back-end compiler such as gcc and output executable
file linked with the OMNI specific runtime library.

OMNI has a unique and useful intermediate code and a toolkit written in
JAVA for handling the intermediate code. The intermediate code is called Xob-
ject code. Also, OMNI has front-ends which convert from a program written
in normal programming language to the Xobject code. So if there are corre-
sponding front-ends, OMNI can handle various languages in Xobject code level
using the toolkit. OMNI version 1.6a (stable version) now has C/C++ (C++ is
incomplete) and Fortran77 front-ends.

Fig. 1. Overview of Omni OpenMP Compiler

The main rolls of runtime library of OMNI are as follows:

1. Thread management: Thread management such as creating threads and
destroying threads are the runtime library’s roll. Moreover, procedures in
threads such as reductions and barrier synchronizations are the runtime li-
brary’s rolls too.

2. Loop rewriting: In the OMNI’s simple loop parallelization, each thread ex-
ecutes a same function. But loop parameters – begin, end, and step – are
rewritten by runtime library, so each threads can execute its own part of
loop.

2.2 CUDA

CUDA is a framework for utilizing NVIDIA GPU as a data parallel computer de-
veloped by NVIDIA. It offers the GPGPU program development environment by
the extended programming language of C/C++ and a specific compiler named

OMPCUDA : OpenMP Execution Framework for CUDA 163

Fig. 2. Hardware model of CUDA-capable GPU

“nvcc”. There is not so much difference between C/C++ and CUDA in lan-
guage specification, but CUDA has unique specifications in a hardware model,
a memory model, and an execution model.

The hardware model of CUDA-capable GPU is shown in Fig. 2. GPU con-
tains operation units (computing-element group) called Streaming Multiproces-
sor (henceforth SM). The number of SMs is 1 to 30 in the current GPUs. SM has
eight computing elements called Scalar Processor (henceforth SP). And there are
Grid, Block, and Thread as a logical unit of parallel execution.

Grid is a unit at the time of CPU making GPU performs some operation.
Only 1 Grid can be assigned to GPU at the same time. Grid consists of one
or more Blocks (henceforth CUDA Block(s)). CUDA Block consists of one or
more Threads (henceforth CUDA Thread(s)). The number of CUDA Blocks and
the number of CUDA Threads per CUDA Block can be specified when Grid
is executed on GPU. On this occasion, number of CUDA Blocks × number of
CUDA Threads tasks are generated and they are assigned to SMs of CUDA
Blocks.

Parallel execution of CUDA Threads in each CUDA Block is done by SPs in
the same SM. The unique ID is assigned to each CUDA Block and each CUDA
Thread at the beginning of the Grid execution. When the number of CUDA
Blocks and CUDA Threads are more than the number of physical SMs and SPs,
they are scheduled in the time-sharing manner. Because a scheduler of CUDA
can switch the active CUDA Blocks and CUDA Threads in very low costs, the
number of CUDA Blocks and CUDA Threads should be more than the number
of physical processors to hide the latency of memory access. Parallel processing
with high parallelism is a very important point of CUDA.

CUDA has several kinds of memory on GPU (Fig. 3), and each memory have
specific features. In order to perform memory allocation and memory transfer
between a main memory and a GPU memory, programmers must use CUDA
specific API functions. In order to totally utilize GPU and get high performance,
it is necessary to utilize various GPU memory types. It is a burden for application
programmers.

In order to create high-performance programs using CUDA, programmers
have to understand the architecture of GPU, the execution model, and the code
method of a program. It has taken not a short time to learn CUDA, and time
and effort are large for application programmers.

164 S. Ohshima, S. Hirasawa, and H. Honda

Fig. 3. Memory model of CUDA-capable GPU

3 Design and Implementation of OMPCUDA

The typical parallel program using OpenMP is a loop parallelization program
using “for” specifier in C and “DO” specifier in Fortran. In SPEC OMP2001[4]
which is a major benchmark suite of OpenMP, all 20 benchmark programs have
“for” or “DO” specifier. Then, OMPCUDA is aimed at the typical loop paral-
lelization program which used OpenMP. It effectively utilizes much parallelism
in GPU.

3.1 CUDA and OpenMP

There are not a little difference between CUDA and OpenMP, so we have to pro-
pose how to assign OpenMP to CUDA. In this subsection, the idea of assignment
in OMPCUDA is shown.

In OpenMP, the being of some threads and a shared memory is supposed,
and threads carry out parallel processing using a shared memory. In CUDA,
there are two parallel execution entities in particular CUDA Blocks and CUDA
Threads, and there are hierarchical shared memories such as GlobalMemory and
SharedMemory. So, we discussed the way to assign between CUDA and OpenMP
as follows:

– Assign CUDA Threads to threads of OpenMP, and SharedMemory to shared
memory (Fig. 4-2, Parallelization in MP).

– Assign CUDA Blocks to threads of OpenMP, and GlobalMemory to shared
memory (Fig. 4-3, Parallelization in whole GPU).

– Assign CUDA Threads to threads of OpenMP, and GlobalMemory to shared
memory (Fig. 4-4, Parallelization in whole GPU).

We aim at getting high performance in large size loop utilizing a highly paral-
lelism of GPU. In this aim, it is necessary to utilize all CUDA Threads. In the
shared memories of CUDA, a memory which can be read and write accessed
by multiple CUDA Blocks is only GlobalMemory. Therefore OMPCUDA treat
CUDA Threads as threads of OpenMP and GlobalMemory as a shared memory
of OpenMP (Fig. 4-4).

In the parallel execution using OpenMP, only the portions which specified by
application programmers are executed in parallel. Other portions are executed in

OMPCUDA : OpenMP Execution Framework for CUDA 165

Fig. 4. Matching with parallelization programming and CUDA using OpenMP

serial. Therefore, the boundaries between serial execution portions and parallel
execution portions are clear. On the other hand, the CUDA’s parallel processing
on GPU is also clearly distinguished from the function executed on CPU. It
is possible to choose the portion in which parallel execution from the whole
programs and to carry out parallel execution on GPU.

In CUDA, CPU and GPU have independent memories. It is necessary to
send and receive data. On the other hand, serial execution portions and parallel
execution portions are not performed simultaneously in the execution model of
OpenMP. So correct result can be obtained by transfer all data on the boundary
of a serial execution portions and a parallel execution portions.

Fig. 5 shows the OMPCUDA’s assignment of OpenMP and GPGPU described
above.

3.2 Implementation of OMPCUDA

We are developing OMPCUDA following the descriptions in subsection3.1. In
this subsection, an implementation of OMPCUDA is described.

Fig. 5. Assignment of OpenMP to GPGPU

166 S. Ohshima, S. Hirasawa, and H. Honda

Implementation overview. Implementation of OMPCUDA is performed us-
ing OMNI version 1.6a. Since OMNI has multiple language front-ends, a toolkit,
and a runtime library described above, we decided to implement OMPCUDA
by using these features of OMNI. This implementation can reduce the burden
of making a processor performing OpenMP specifiers.

In OMNI, the parallel execution portions are separated as a function and
assigned to threads by the parallel execution start function of the runtime library.
And then the runtime library provides inner-thread special functions such as a
loop scheduling, a reduction, and a barrier synchronization. There are no memory
copy operations because threads have a common shared memory.

On the other hand, the parallel processing on GPU with CUDA uses functions
as the execution unit. By calling from CPU, the same programs are simultane-
ously executed with many computing elements on GPU. Data required in parallel
portions are transferred to GPU from CPU before calling a Grid. After the Grid
execution ends, the result is transferred from GPU to CPU.

There we developed a transformation mechanism and a runtime library. The
relation between OMNI and OMPCUDA and the whole image of OMPCUDA
are shown in Fig. 6. And the relation between a normal OpenMP program and
the OMPCUDA’s output source code are shown in Fig. 7.

Fig. 6. Relation between OMNI and OMPCUDA, and an outline of OMPCUDA

Implementation of the program transformation mechanism. The pro-
gram transformation mechanism of OMPCUDA rewrites parallel execution func-
tions of OMNI to OMPCUDA specific procedures which include data transfer
from CPU to GPU, the instruction execution start directions to GPU, and data
transfer from GPU to CPU. For this purpose OMPCUDA must know what vari-
ables have to be transferred between CPU and GPU. Then the OMPCUDA’s
program transformation mechanism analyzes the program and detects the vari-
ables which are used in both CPU and GPU. And then, the mechanism rewrites
runtime library calls in parallel execution portions to the OMPCUDA library
calls.

OMPCUDA : OpenMP Execution Framework for CUDA 167

Fig. 7. Procedure of a program transformation mechanism

The procedure of transformation is follows:

1. From the whole program written with intermediate code, the start function
of a runtime library is discovered. (Fig. 7-#1)

2. The variables used inside the parallel execution portions are validated. If
these variables are not function local variables, they are considered as the
variables which are needed to be transferred between CPU and GPU.
(Fig. 7-#2)

3. Parallel execution portions are written out to other files, and they are deleted
from the original source code. (Fig. 7-#3)

4. About the CPU code, the parallel execution start function call of OMNI is
rewritten to the execution start function and the data transfer procedures.
(Fig. 7-#4)

5. In accordance with the notation of CUDA, CUDA specifiers (global , etc.)
are added to the GPU code at functions and variables. (Fig. 7-#5)

Implementation of the runtime library. The runtime library of OMNI offers
thread creations, thread assignments, scheduling of parallel loops, functions of
a reduction, and a synchronous processing between threads. In these, thread
creations and thread assignments are performed by the translating mechanism.
So the OMPCUDA’s runtime library does remaining functions.

Scheduling of parallel loops. In OMNI, some scheduling methods in loop paral-
lelization are offered. Application programmers can choose one of the methods
using an OpenMP specifier. Only the simplest static scheduling is currently of-
fered in OMPCUDA. This scheduling evenly divides the target parallel loop and
simply assigns to CUDA Threads at runtime like as OMNI. An example is shown
in Fig. 8.

168 S. Ohshima, S. Hirasawa, and H. Honda

Fig. 8. Example of a scheduling of the parallel loop in OMPCUDA

In OMPCUDA, the usage number of CUDA Threads is 256 by default. 256
is the enough number which is said that CUDA can get high performance. The
usage number of CUDA Blocks is the number of the parallel loop divided by the
number of CUDA Threads. OMPCUDA experimentally has a changing mecha-
nism of these sizes by environment variables and API functions like as OMNI.

Reduction. A reduction specifier is used in order to collect the variables which
all the threads have at the end of parallel execution. There are already some
fast reduction implementations using GPU or CUDA [5,6]. In OMPCUDA, the
parallel reduction function which uses SharedMemory was implemented based
on the technique of Owens[7].

After performing reduction for every CUDA Block, CUDA Thread in each
CUDA Block has to perform final reduction. The simple and clearly way to
this reduction is using atomic function. In this way, if the number of CUDA
Blocks increases, the reduction time between CUDA Blocks will increase. Then
we implement another reduction function in which all of CUDA Blocks returns
the partial reduction data to CPU and CPU performs final reduction. This
function increases the data size which transferred between CPU and GPU, but
there are potentially to reduce execution time by reducing the number of atomic
functions.

Other implementations. Because OMPCUDA uses Xobject code, it is not
necessary to change the front-ends. But a few changes are needed to implement
OMPCUDA smoothly.

It is necessary to execute the initialization and cleanup of CUDA and OM-
PCUDA, so the initialization and cleanup procedures are inserted into the real
main function of OMNI.

4 Evaluation of OMPCUDA

In this section, OMPCUDA is evaluated as to whether the effect of parallel
execution is acquired. Evaluation environment is shown in Table 1.

OMPCUDA : OpenMP Execution Framework for CUDA 169

Table 1. Evaluation environment

CPU Intel Xeon E5345 (4 cores, 2.33GHz)
Main memory 4.0GB
GPU NVIDIA GeForce GTX 280 (240 SPs, core 602MHz / SP 1296MHz)
Video memory 1.0GB
connection PCI-Express x16 (Gen 2)
OS CentOS 5.0 (kernel 2.6.18)
Compiler GCC 3.4.6, nvcc 2.0 v0.2.1221, Omni OpenMP Compiler 1.6

4.1 Performance Evaluation Using Matrix Product

A matrix product is a problem which has much computational complexity to the
amount of data and the parallelism is high. It is widely known as a problem which
can carry out high speed execution using GPU. A length of one side of a matrix
will be called problem size. Comparison about each following implementation
was performed in evaluation.

1. OMPCUDA-loop3: Implementation of the matrix product by simple 3-fold
loop using OMPCUDA.

2. OMPCUDA-loop2: Implementation which two loops of the outside in
OMPCUDA-loop3 were merged.

3. SimpleCUDA: Implementation of CUDA, SharedMemory is not used.
4. UseSharedCUDA: Implementation of CUDA, SharedMemory is used (the

sample MatrixMul of CUDASDK2.0 itself).
5. OmniCPU-loop3: Loop parallelization using original OMNI, executed on

only CPU, one thread and four threads (OmniCPU-loop3-1 uses one thread,
OmniCPU-loop3-4 uses four threads, same source code with OMPCUDA-
loop3).

6. AtlasCPU-nothread, AtlasCPU-pthread: CPU execution using ATLAS, ex-
ecuted on only CPU (one thread and four threads).

Fig. 9 shows the execution time of each implementation. The problem size is
1024, and the number of a CUDA Threads number of OMPCUDA is 256.

OMPCUDA-loop3 and OMPCUDA-loop2 differs in the performance greatly
because the number of parallelism of OMPCUDA-loop3 is 1024/256=4, and it
is 1024*1024/256=4096 of OMPCUDA-loop2 at most. Because GeForce GTX
280 has 30 MPs and CUDA-capable GPU can obtain good performance with
high parallelism more than physical parallelism, so OMPCUDA-loop3 has not
enough parallelism and did not get enough performance. From the result of
OMPCUDA-loop2, OMPCUDA could accelerate the program which utilized the
high parallelism which GPU has.

OMPCUDA is sure slower than optimized implements of both CPU and GPU,
but it is important result that OMPCUDA could get good performance with a
very simple source code which is the same as existing OpenMP program. This
is a meaningful result in our purposes and motivation,

The experiment above is performed in C, also Fortran77 can get similar trends.

170 S. Ohshima, S. Hirasawa, and H. Honda

Fig. 9. Execution-time 1 of the matrix product (problem size 1024, single precision)

4.2 Evaluation Using pi Calculation (Gregory Series)

Gregory series is a program which is very simple and includes a reduction pro-
cedure. A reduction procedure is a very common-used procedure in real appli-
cations. The source code of the program used for evaluation is shown in Fig. 10.

float answer = 0.0f;

#pragma omp parallel for reduction(+:answer)

for(i=0;i<SIZE;i++){ answer += (4.0f / (4 * i + 1) - 4.0f / (4 * i + 3)); }

Fig. 10. Source code of the pi calculation

Comparison of the following implementation was performed in evaluation.

1. OMPCUDA: Implementation using OMPCUDA (Fig. 10).
2. SimpleCUDA: Implementation using CUDA, reductions are performed in

GPU.
3. OMPCUDA-CPUreduction: Same as OMPCUDA except that CPU performs

a part of reductions.
4. OMPCUDA-GLOBALreduction: Same as OMPCUDA except that GPU per-

forms all reductions using atomic function.

The execution time of each implementation is shown in Fig. 11. When OM-
PCUDA is compared with SimpleCUDA, the difference of the execution time is
only the time by rewriting of a loop. Execution time of CUDA-CPUreduction,
which executes a part of reductions in CPU, is about 40% shorter. CUDA-
GLOBALreduction is too slow.

Fig. 12 is the relative execution time of CUDA-CPUreduction when setting
the execution time of OMPCUDA to 1. When there are a many number of CUDA
Blocks, the difference has arisen. In the large size problem, OMPCUDA should
use CPU in the portion of reductions.

This result hints that OMPCUDA can much more good performance by as-
signing the typical OpenMP procedures to the procedure of OMPCUDA runtime
library.

OMPCUDA : OpenMP Execution Framework for CUDA 171

Fig. 11. Execution time of the pi calculation (problem size 0x10000000, single
precision)

Fig. 12. Relative execution time of the pi calculation (problem size 0x10000000, single
precision)

4.3 Experiment of SPEC OMP2001 Swim

We tried to execute SPEC OMP2001 swim (Fortran77 program, single source
code) as a test of more realistic program. Swim is one of the smallest and simplest
programs in SPEC OMP2001 benchmark, but it is a more realistic program than
a matrix product and a pi calculation. Swim uses double precision floating point
data.

As the result of execution, OMPCUDA could execute swim correctly, but took
a large amount of time. The execution time of CPU using small data set named
“test” with single thread is around 0.2 sec. The other hand, the execution time
of OMPCUDA with multi Threads and Blocks using “test” data set is around
20 sec. The data transfer between CPU and GPU and the data assignment
are the main reason. Swim program has large global array variables which are
used in more than one parallel region (Fig. 13). In a current implementation,
OMPCUDA transfers all the variables which are used in parallel portions when
the beginning and the end of parallel portions. So OMPCUDA took a long time in
transfer the variables. Current GPUs sure have low double precision performance
(one eight of single precision), but this is not a critical reason.

To shorten the execution time, OMPCUDA has to reduce the time of data
transfer. If the structure of target program is simple, the transfer time may be
shortened by merging parallel regions. But swim has a determination of the end
of benchmark between parallel portions, not a small-sized program changing

172 S. Ohshima, S. Hirasawa, and H. Honda

Fig. 13. Outline of swim benchmark program

is needed to shorten the execution time. If sequential portions between par-
allel portions don’t use the large array variables, it will cause a performance
improvement by omitting transfer and leave the array variables on GPU. But
OMPCUDA now does not have such analysis features and OpenMP specification
also does not have such data assignment specifiers.

It is important that OMPCUDA can execute OpenMP existing source codes
without rewriting but it is not always true that good performance will be gotten
with the same source codes as OpenMP program for CPUs.

5 Related Work

As mentioned before, CUDA programming is difficult and complex. Some studies
which make CUDA programming easy are conducted. There are some compilers
and execution frameworks which can make GPU program using pragma based
languages such as OpenMP.

Lee et al.[8] are developing OpenMP compiler for CUDA. The compiler
converts from OpenMP Input program to GPU specific Optimized OpenMP
programs and converts from Optimized OpenMP programs to CUDA GPU pro-
grams. It has OpenMP-level and CUDA-level optimization mechanisms and has
obtained high performance in some programs. Compared with its implementa-
tion, our OMPCUDA does not have good optimization mechanisms. But we will
able to get such good performance by bringing in their optimization techniques.

The latest PGI compiler supports pragma-based parallel programming for
CUDA in C/C++/Fortran languages [9]. But the language specification of
pragma is PGI’s own specification and not equal to OpenMP. Although we aim
at getting good performance with OpenMP’s standard pragma, we should dis-
cuss whether we should bring in non-standard pragma if the only OpenMP’s
non-standard pragma can describe something information which greatly affects
performance.

Compared with their studies, it is OMPCUDA’s specialty that OMPCUDA
supports OpenMP on existing multiple programming languages and based on
OMNI which is a known OpenMP compiler for CPU.

OMPCUDA : OpenMP Execution Framework for CUDA 173

6 Conclusion

In this paper, we introduced OMPCUDA which is an OpenMP framework for
CUDA based on Omni OpenMP Compiler. The choice of using OMNI has been a
good aspect for omitting the burden of implementations which is similar with an
OpenMP for CPU. In OMPCUDA, we assigned OpenMP to CUDA Threads and
GlobalMemory of CUDA by focusing the high parallelism of GPU. As the result,
we have gotten a good performance as planned in test programs. Moreover, while
we assigned parallel portions to GPU basically, we got better performance by
moving a part of runtime library from a parallel portion of GPU to a serial
portion of CPU in a reduction procedure.

OMPCUDA is under development and has room for improvement. For ex-
ample, moving data from GlobalMemory to SharedMemory and register is an
important issue for getting better performance. OMPCUDA now use CUDA
Threads flatly across CUDA Blocks, while shared memory of OpenMP is ac-
cessed by all threads, Therefore using SharedMemory as a shared memory of
CUDA Blocks may be difficult. Also, it is very difficult to fully reduce the access
to GlobalMemory by using SharedMemory and register, but it will be possi-
ble to get more performance. In other instances, other OpenMP specifier may
be considered. OMPCUDA now supported a few important OpenMP specifiers,
but there are some specifiers which are often used. The “sections” parallelization
may be suitable for parallelization of CUDA Blocks.

Acknowledgment. Authors thank Omni Compiler project for releasing OMNI.
And authors thank referees give helpful comments.

References

1. NVIDIA: CUDA Zone, http://www.nvidia.com/object/cuda_home.html
2. Ohshima, S., Hirasawa, S., Honda, H.: Proposal of GPGPU Programming Using

Existing Parallelizing Method. IPSJ Tech. Report(ARC-175), 7–10 (2007)
3. Sato, M., Satoh, S., Kusano, K., Tanaka, Y.: Design of OpenMP Compiler for an

SMP Cluster. In: EWOMP ’99, pp. 32–39 (1999)
4. Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones, W.B., Parady, B.:

SPEComp: A New Benchmark Suite for Measuring Parallel Computer Performance.
In: Eigenmann, R., Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104, pp. 1–10.
Springer, Heidelberg (2001)

5. Horn, D.: Stream Reduction Operations for GPGPU Applications. In: GPU Gems2.
Addison-Wesley, Reading (2005)

6. Roger, D., Assarsson, U., Holzschuch, N.: Efficient Stream Reduction on the GPU.
In: Workshop on General Purpose Processing on Graphics Processing Units (2007)

7. Owens, J., Davis, U.: Data-parallel algorithms and data structures. In: SUPER-
COMPUTING 2007 Tutorial: Hight Performance Computing with CUDA (2007)

8. Lee, S., Min, S.J., Eigenmann, R.: Openmp to gpgpu: a compiler framework for
automatic translation and optimization. In: PPoPP ’09: Proceedings of the 14th
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pp. 101–110. ACM, New York (2009)

9. The Portland Group: PGI Accelerator Compilers,
http://www.pgroup.com/resources/accel.htm

http://www.nvidia.com/object/cuda_home.html
http://www.pgroup.com/resources/accel.htm

Author Index

an Mey, Dieter 29
Ayguadé, Eduard 43, 56

Beyer, James 56
Bihari, Barna L. 149
Bücker, Martin 29

Carribault, Patrick 1
Chantrapornchai (Phongpensri),

Chantana 122
Chen, Wang 149
Chen, Wenguang 83
Churbanov, Andrey 70

de Supinski, Bronis R. 15, 43, 70, 149
Duran, Alejandro 43, 56, 70

Fahringer, Thomas 96
Ferrer, Roger 43, 56

Haab, Grant 56, 70
Han, Wentao 83
He, Jiangzhou 83
Hirasawa, Shoichi 161
Honda, Hiroki 161
Hotta, Kohichiro 133

Ishii, Kuninori 133
Iwashita, Hidetoshi 133

Jourdren, Hervé 1

Kaneko, Masanori 133
Klemm, Michael 43, 70

Liao, Chunhua 15
Li, Kelvin 56
Liu, Yan 149
Lorenz, Daniel 109

Massaioli, Federico 56
Mattson, Tim 70
Michael, Maged 149
Mohr, Bernd 109
Moritsch, Hans 96

Nakamura, Tomotake 133

Ohshima, Satoshi 161

Panas, Thomas 15
Pérache, Marc 1
Pipatpaisan, J. 122

Quinlan, Daniel J. 15

Rössel, Christian 109

Schmidl, Dirk 29, 109

Terboven, Christian 29
Thoman, Peter 96

Wolf, Felix 109
Wong, Michael 70, 149
Wu, Peng 149

Yan, Jianian 83

Zhang, Yuanyuan 133
Zheng, Weimin 83

	Title Page
	Preface
	Organization
	Table of Contents
	Enabling Low-Overhead Hybrid MPI/OpenMP Parallelism with MPC
	Introduction
	Related Work
	Hybrid Programming MPI/OpenMP
	Taxonomy of Hybrid Applications
	Programming Model Interleaving

	MPC-OpenMP: MPC’s OpenMP Runtime
	Runtime Design and Implementation
	Compiler Part
	Hybrid Execution Model

	Experimental Results
	Experimental Environment
	Performance of MPC-OpenMP and MPC-GCC
	Overhead of Hybrid Parallelism

	Conclusion and Future Work
	References

	A ROSE-Based OpenMP 3.0 Research Compiler Supporting Multiple Runtime Libraries
	Introduction
	The ROSE Compiler
	OpenMP Support in ROSE
	Parsing and Representing OpenMP
	OpenMP Translation and Runtime Support
	Translation Algorithm
	Examples

	Evaluation
	OpenMP Analysis
	OpenMP Translation

	Related Work
	Conclusion
	References

	Binding Nested OpenMP Programs on Hierarchical Memory Architectures
	Introduction
	Related Work
	Thread Binding Library
	Computing Platforms for Experiments
	Kernel Benchmarks
	Nested Stream Benchmark
	Nested EPCC Syncbench Benchmark

	Applications
	TFS
	SHEMAT-Suite

	Conclusion
	References

	A Proposal for User-Defined Reductions in OpenMP
	Introduction
	Related Work
	Costs of the Lack of UDR Support in OpenMP 3.0
	User-Defined Reductions for OpenMP
	Design Rationale
	The Declare Reduction Directive
	Extensions to the Reduction Clause
	Array Reductions
	C++-Specific Extensions

	Evaluation
	Conclusions and Future Work
	References

	An Extension to Improve OpenMP Tasking Control
	Introduction
	Motivation
	The Final Clause
	Implementation
	Implementation of Tasks
	Adding Final Support
	Advanced Final Support

	Evaluation
	Methodology
	Results

	Conclusions and Future Work
	References

	Towards an Error Model for OpenMP
	Introduction
	Current State in OpenMP Error Handling
	OpenMP Runtime Errors
	User-Defined Errors

	Design Objectives
	OpenMP Error Handling Proposals
	The done Construct
	Proposal Based on return Codes
	The Callback Error Handling Mechanism

	Other Concurrent Programming Error Handling Models
	Conclusions and Future Work
	References

	How OpenMP Applications Get More Benefit from Many-Core Era
	Introduction
	Practical Observations
	Binding a Thread to a CoreWill Improve Application Performance
	Different Applications Have Different Scheduling Preferences

	SWOMPS: Design and Implementation
	Scheduling Requirements
	SWOMPSWork Flow
	Scheduling Algorithm

	SWOMPS Evaluation
	Pairwise Execution
	Task Queue Simulation

	Comparison of Exclusive and Concurrent Running Model
	Related Work
	Conclusion
	References

	Topology-Aware OpenMP Process Scheduling
	Introduction
	Motivation
	Scaling Behavior of Popular OpenMP Codes

	Related Work
	Architecture
	Process Communication
	Topology-Aware Scheduling

	Evaluation
	Simulation
	Experiments

	Conclusion
	References

	How to Reconcile Event-Based Performance Analysis with Tasking in OpenMP
	Introduction
	Related Work
	An Additional Concurrency Dimension
	Obtaining Task Identifiers for Tied Tasks
	Tracking the Task Creation Hierarchy
	UntiedTasks
	Automated Instrumentation with OPARI
	Overhead
	Artificial Benchmark
	The FIRE Code

	Conclusion and Future Work
	References

	Fuzzy Application Parallelization Using OpenMP
	Introduction
	Backgrounds
	Parallelization Using OpenMP
	Parallel-Section Approach
	Parallel-for Approach

	Experiments
	Conclusion
	References

	Hybrid Parallel Programming on SMP Clusters Using XPFortran and OpenMP
	Introduction
	XPFortran Parallel Programming Language
	Memory Model
	Execution Process
	Compilation and Execution of XPFortran Programs
	SPMD Implementation of XPFortran Compiler

	Process-Thread Hybrid Programming with XPFortran and OpenMP
	Language Support
	Compiler Implementation

	Performance Evaluation of XPFortran-OpenMP Hybrid Programming
	Overheads of OpenMP and XPFortran Directives
	Evaluation of Hybrid Execution on Himeno Benchmark Program

	Conclusion
	References

	A Case for Including Transactions in OpenMP
	Introduction
	The IBM XL STM Compiler
	IBM STM Compiler Design
	Syntax
	Special Transactional Function Attributes

	Experimental Results
	Deterministic Conflicts
	Probabilistic Conflicts

	Conclusions and Future Work
	References

	OMPCUDA : OpenMP Execution Framework for CUDA Based on Omni OpenMP Compiler
	Introduction
	Omni OpenMP Compiler and CUDA
	Omni OpenMP Compiler
	CUDA

	Design and Implementation of OMPCUDA
	CUDA and OpenMP
	Implementation of OMPCUDA

	Evaluation of OMPCUDA
	Performance Evaluation Using Matrix Product
	Evaluation Using pi Calculation (Gregory Series)
	Experiment of SPEC OMP2001 Swim

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

