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Preface

This proceedings volume contains the invited papers and the contributed papers
accepted for presentation at the 9th International Symposium on Experimental
Algorithms (SEA 2010), that was held at the Continental Terme Hotel, Ischia
(Naples), Italy, during May 20–22, 2010.

Previous symposia of the series were held in Riga (2001), Monte Verita (2003),
Rio de Janeiro (2004), Santorini (2005), Menorca (2006), Rome (2007), Cape Cod
(2008), and Dortmund (2009).

Seventy-three papers were submitted by researchers from 19 countries. Each
paper was reviewed by three experts among the Program Committee members
and some trusted external referees. At least two reviewers were from the same
or closely related discipline as the authors. The reviewers generally provided a
high-quality assessment of the papers and often gave extensive comments to the
authors for the possible improvement of the presentation. The submission and
review process was supported by the ConfTool conference management software
and we are thankful to Harald Weinreich for letting us use it.

The Program Committee selected 40 regular papers for presentation at the
conference. In addition to the 40 contributed papers, this volume includes two
invited papers related to corresponding keynote talks: Giuseppe F. Italiano (Uni-
versity of Rome “Tor Vergata,”Italy) spoke on “Experimental Study of Resilient
Algorithms and Data Structures” and Panos M. Pardalos (University of Florida,
USA) spoke on “Computational Challenges with Cliques, Quasi-Cliques and
Clique Partitions in Graphs.”

Many people and organizations contributed to SEA 2010. We are particu-
larly grateful for the patronage and financial support of the University of Naples
“Federico II” and the Department of Mathematics and Applications “R. Cacciop-
poli,”and for the financial support of GNCS (Gruppo Nazionale per il Calcolo
Scientifico) – INdAM (Istituto Nazionale di Alta Matematica).

We would like to thank all of the authors who responded to the call for
papers submitting their scientific work. We express our sincere thanks to the
invited speakers for their contributions to the program.

Our most sincere thanks go to the Program Committee members and the ad-
ditional reviewers whose cooperation in carrying out quality reviews was critical
for establishing a strong conference program.

We also sincerely thank Daniele Ferone for maintaining the symposium
website (http://www.sea2010.unina.it/) and for his help in the organizing
process.

I thank the SEA Steering Committee for giving me the opportunity to serve
as the Program Chair and the responsibility to select the conference program. I
am personally grateful to Jose Rolim, Giuseppe F. Italiano, Andrea Lodi, and
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Andrew V. Goldberg for their support from the beginning to the final stage of
the organization and for promptly answering my questions each time I needed
their advice.

Finally, we thank Springer for publishing these proceedings in their presti-
gious Lecture Notes in Computer Science series, and in particular we would like
to mention the fruitful and friendly cooperation with Alfred Hofmann and Anna
Kramer during the preparation of this volume.

May 2010 Paola Festa



Organization

SEA 2010 was organized by the Department of Mathematics and Applications
“R. Caccioppoli,”University of Naples “Federico II.”

Program Committee

David A. Bader Georgia Institure of Technology, USA
Massimo Benerecetti University of Naples “Federico II,”Italy
Mark de Berg Technische Universiteit Eindhoven,

The Netherlands
Massimiliano Caramia University of Rome “Tor Vergata,”Italy
Ioannis Chatzigiannakis Research and Academic Computer

Technology Institute, Greece
David Coudert Institut national de recherche en informatique

et automatique, France
Thomas Erlebach University of Leicester, United Kingdom
Paola Festa (Chair) University of Naples “Federico II,”Italy
Andrew Goldberg Microsoft Research, USA
Francesca Guerriero University of Calabria, Italy
Pierre Leone University of Geneva, Switzerland
Andrea Lodi University of Bologna, Italy
Catherine McGeoch Amherst College, USA
Ulrich Meyer Goethe University Frankfurt/Main, Germany
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Experimental Study of Resilient
Algorithms and Data Structures�

Umberto Ferraro-Petrillo1, Irene Finocchi2, and Giuseppe F. Italiano3

1 Dipartimento di Statistica, Probabilità e Statistiche Applicate, Università di Roma
“La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy

umberto.ferraro@uniroma1.it
2 Dipartimento di Informatica, Università di Roma “La Sapienza”, via Salaria 113,

00198, Roma, Italy
finocchi@di.uniroma1.it

3 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma
“Tor Vergata”, via del Politecnico 1, 00133 Roma, Italy

italiano@disp.uniroma2.it

Abstract. Large and inexpensive memory devices may suffer from
faults, where some bits may arbitrarily flip and corrupt the values of
the affected memory cells. The appearance of such faults may seriously
compromise the correctness and performance of computations. In recent
years, several algorithms for computing in the presence of memory faults
have been introduced in the literature: in particular, we say that an al-
gorithm or a data structure is resilient if it is able to work correctly on
the set of uncorrupted values. In this invited talk, we contribute care-
fully engineered implementations of recent resilient algorithms and data
structures and report the main results of a preliminary experimental
evaluation of our implementations.

1 Introduction

Many large-scale applications require to process massive data sets, which can eas-
ily reach the order of Terabytes. For instance, NASA’s Earth Observing System
generates Petabytes of data per year, while Google currently reports to be in-
dexing and searching several billions of Web pages. In all applications processing
massive data sets, there is an increasing demand for large, fast, and inexpensive
memories. Unfortunately, such memories are not fully safe, and sometimes the
contents of their cells may be corrupted. This may depend on manufacturing de-
fects, power failures, or environmental conditions such as cosmic radiation and
alpha particles [25,37,45,46]. As the memory size becomes larger, the mean time
between failures decreases considerably: assuming standard soft error rates for
the internal memories currently on the market [45], a system with Terabytes
� This work has been partially supported by the 7th Framework Programme of the EU

(Network of Excellence “EuroNF: Anticipating the Network of the Future - From
Theory to Design”) and by MIUR, the Italian Ministry of Education, University and
Research, under Project AlgoDEEP.

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of memory (e.g., a cluster of computers with a few Gigabytes per node) could
experience one bit error every few minutes.

A faulty memory may cause a variety of problems in most software applica-
tions, which in some cases can also pose very serious threats, such as breaking
cryptographic protocols [6,7,48], taking control over a Java Virtual Machine [24]
or breaking smart cards and other security processors [1,2,44]. Most of these
fault-based attacks work by manipulating the non-volatile memories of crypto-
graphic devices, so as to induce very timing-precise controlled faults on given
individual bits: this forces a cryptographic algorithm to output wrong ciphertexts
that may allow the attacker to recover the secret key used during the encryp-
tion. Differently from the almost random errors affecting the behavior of large
size memories, in this context the errors can be considered as introduced by a
malicious adversary, which can have some knowledge of the algorithm’s behavior.

We stress that even very few memory faults may jeopardize the correctness
of the underlying algorithms. Consider for example a simplified scenario, where
we are given a set of n keys, to be sorted with a classical sorting algorithm, say
mergesort. It is easy to see that the corruption of a single key during the merge
step is sufficient to make the algorithm output a sequence with Θ(n) keys in a
wrong position. Similar phenomena have been observed in practice [26,27].

The classical way to deal with memory faults is via error detection and cor-
rection mechanisms, such as redundancy, Hamming codes, etc. These traditional
approaches imply non-negligible costs in terms of performance and money, and
thus they do not provide a feasible solution when speed and cost are both at
prime concern. In the design of reliable systems, when specific hardware for fault
detection and correction is not available or it is too expensive, it makes sense
to look for a solution to these problems at the application level, i.e., to design
algorithms and data structures that are able to perform the tasks they were
designed for, even in the presence of unreliable or corrupted information.

Dealing with unreliable information has been addressed in the algorithmic com-
munity in a variety of different settings, including the liar model [3,8,17,31,39],
fault-tolerant sorting networks [4,34,49], resiliency of pointer-based data struc-
tures [5], and parallel models of computation with faulty memories [14,28].

In this paper we focus on the faulty-RAM model introduced in [20,23]. In this
model, an adaptive adversary can corrupt any memory word, at any time, by
overwriting its value. Corrupted values cannot be (directly) distinguished from
correct ones. An upper bound δ is given on the total number of memory faults
that can occur throughout the execution of an algorithm or during the lifetime
of a data structure. We remark that δ is not a constant, but a parameter of
the model. The adaptive adversary captures situations like cosmic-rays bursts,
memories with non-uniform fault-probability, and hackers’ attacks which would
be difficult to be modelled otherwise. The model has been extended to external
memories [12].

The faulty-RAM model assumes that there are O(1) safe memory words which
cannot be accessed by the adversary, and thus can never get corrupted. The safe
memory stores the code of the algorithms / data structures (which otherwise
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could be corrupted by the adversary), together with a small number of running
variables. This assumption is not very restrictive, since typically the space occu-
pied by the code is orders of magnitude smaller than the space required by data,
especially in case of large-scale applications: hence, one can usually afford the
cost of storing the code in a smaller, more expensive, and more reliable mem-
ory. We remark that a constant-size reliable memory may even not be sufficient
for a recursive algorithm to work properly: parameters, local variables, return
addresses in the recursion stack may indeed get corrupted.

A natural approach to the design of algorithms and data structures in the
faulty-RAM model is data replication. Informally, a resilient variable consists of
(2δ + 1) copies x1, x2,. . ., x2δ+1 of a standard variable. The value of a resilient
variable is given by the majority of its copies, which can be computed in linear
time and constant space [9]. Observe that the value of x is reliable, since the
adversary cannot corrupt the majority of its copies. The approach above, which
we call trivially resilient, induces a Θ(δ) multiplicative overhead in terms of
both space and running time. For example, a trivially-resilient implementation
of a standard dictionary based on balanced binary search trees would require
O(δn) space and O(δ log n) time for each search, insert, and delete operation.
Thus, it can tolerate only O(1) memory faults while maintaining asymptotically
optimal time and space bounds.

This type of overhead seems unavoidable for certain problems, especially if we
insist on computing a totally correct output (even on corrupted data). For exam-
ple, with less than 2δ + 1 copies of a key, we cannot avoid that its correct value
gets lost. Since a Θ(δ) multiplicative overhead could be unacceptable in several
applications even for small values of δ, it seems natural to relax the definition
of correctness and to require that algorithms/data structures be consistent only
with respect to the uncorrupted data. For example, we might accept that the
keys which get corrupted possibly occupy a wrong position in a sorted output se-
quence, provided that at least all the remaining keys are sorted correctly. In this
framework, we say that an algorithm or data structure is resilient to memory
faults if, despite the corruption of some memory location during its lifetime, it is
nevertheless able to operate correctly (at least) on the set of uncorrupted values.
Of course, every trivially-resilient algorithm is also resilient. However, there are
resilient algorithms for some natural problems which perform much better than
their trivially-resilient counterparts. It is worth mentioning that the algorithms
and data structures that we are going to present might not always be able to
detect faulty behaviors: nonetheless, they are able to operate correctly on the
uncorrupted data.

In this paper, we contribute carefully engineered implementations of recent
resilient algorithms and data structures and report the main results of a prelim-
inary experimental study based on those implementations.

2 Resilient Algorithms

Sorting and searching have been the first problems studied in the faulty RAM
model. More recently, the problem of counting in the presence of memory faults



4 U. Ferraro-Petrillo, I. Finocchi, and G.F. Italiano

has been addressed in [11], and the design of resilient dynamic programming
algorithms has been investigated in [13].

2.1 Resilient Sorting

The resilient sorting problem can be defined as follows. We are given a set K
of n keys, with each key being a real value. We call a key faithful if it is never
corrupted, and faulty otherwise. The problem is to compute a faithfully sorted
permutation of K, that is a permutation of K such that the subsequence induced
by the faithful keys is sorted. This is the best one can hope for, since an adversary
can corrupt a key at the very end of the algorithm execution, thus making
faulty keys occupy wrong positions. This problem can be trivially solved in
O(δ n logn) time. A resilient version of mergesort, referred to as ResMergeSort,
with O(n log n + δ2) running time is presented in [21]. In [23] it is proved that
ResMergeSort is essentially optimal, as any O(n log n) comparison-based sorting
algorithm can tolerate the corruption of at most O((n log n)1/2) keys. In the
special case of polynomially-bounded integer keys, an improved running time
O(n+δ2) can be achieved [21]. The space usage of all resilient sorting algorithms
in [21] is O(n). The interested reader is referred to [18] for an experimental
study of resilient sorting algorithms: in particular, the experiments carried out
in [18] show that a careful algorithmic design can have a great impact on the
performance and reliability achievable in practice for resilient sorting.

2.2 Resilient Searching

The resilient searching problem is investigated in [21,23]. Here, we are given a
search key κ and a faithfully sorted sequence K of n keys, i.e., a sequence in
which all faithful keys are correctly ordered. The problem is to return a key
(faulty or faithful) of value κ, if K contains a faithful key of that value. If there
is no faithful key equal to κ, one can either return no or return a (faulty) key
equal to κ. Note that, also in this case, this is the best possible: the adversary
may indeed introduce a corrupted key equal to κ at the very beginning of the
algorithm, such that this corrupted key cannot be distinguished from a faithful
one. Hence, the algorithm might return that corrupted key both when there is
a faithful key of value κ (rather than returning the faithful key), and when such
faithful key does not exist (rather than answering no). There is a trivial algorithm
which solves this problem in O(δ log n) time. A lower bound of Ω(log n + δ) is
described in [23] for deterministic algorithms, and later extended to randomized
algorithms in [21]. An optimal O(log n + δ) randomized algorithm ResSearch is
provided in [21], while an optimal O(log n + δ) deterministic algorithm is given
in [10]. The space usage of all resilient searching algorithms in [10,21] is O(n).

3 Resilient Data Structures

Besides the algorithms mentioned in Section 2, a variety of resilient data struc-
tures has been proposed in the literature, including resilient priority queues and
resilient dictionaries.
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3.1 Resilient Priority Queues

A resilient priority queue maintains a set of elements under the operations
insert and deletemin: insert adds an element and deletemin deletes and
returns either the minimum uncorrupted value or a corrupted value. Observe
that this is consistent with the resilient sorting problem discussed in Section 2.1:
given a sequence of n elements, inserting all of them into a resilient priority
queue and then performing n deletemin operations yields a sequence in which
uncorrupted elements are correctly sorted. In [30] Jørgensen et al. present a re-
silient priority queue that supports both insert and deletemin operations in
O(log n + δ) amortized time per operation. Thus, their priority queue matches
the performance of classical optimal priority queues in the RAM model when
the number of corruptions tolerated is O(log n). An essentially matching lower
bound is also proved in [30]: a resilient priority queue containing n elements,
with n > δ, must ask Ω(log n + δ) comparisons to answer an insert followed
by a deletemin. We are not aware of any implementation of the resilient pri-
ority queue of Jørgensen et al. [30]. One of the contribution of this paper is an
implementation of this data structure, called ResPQ, which will be discussed in
Section 4.

3.2 Resilient Dictionaries

A resilient dictionary is a dictionary where the insert and delete operations
are defined as usual, while the search operation must be resilient as described
in Section 2.2. In [10], Brodal et al. present a simple randomized algorithm Rand
achieving optimal O(log n + δ) time per operation. Using an alternative, more
sophisticated approach, they also obtain a deterministic resilient dictionary Det
with the same asymptotic performances. For all the mentioned implementations,
the space usage is O(n), which is optimal. The interested reader is referred to [19]
for an experimental study of the resilient dictionaries of Brodal et al. [10]. One
of the main findings from the experimental evalutaion of resilient dictionaries is
that they tend to have very large space overheads. This might not be acceptable
in practice since resilient data structures are meant for applications running on
very large data sets. The work in [19] contributes an alternative implementation
of resilient dictionaries, which we call ResDict. This implementation still guar-
antees optimal asymptotic time and space bounds, but performs much better in
terms of memory usage without compromising the overall time efficiency.

4 Experiments

In this section we summarize our main experimental findings on resilient dic-
tionaries, priority queues, and sorting. We restrict our experimental evaluation
to the following implementations, which appeared to be the most efficient in
practice according to previous experimental investigations and to our own ex-
periments:
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– ResMergeSort: resilient mergesort as described in [21] and implemented
in [18].

– ResPQ: resilient priority queues supporting insert and extractMin opera-
tions as described in [30] and implemented in this paper.

– ResDict: resilient randomized dictionaries implemented on top of AVL trees
as inspired from [10] and implemented in [19]. The implementation supports
insert, delete, search, and visit operations.

On the non-resilient side, we considered standard binary heaps and AVL trees.
We implemented all the algorithms in C++, within the same algorithmic and im-
plementation framework, and performed experiments in a software testbed that
simulates different fault injection strategies, as described in [18]. We performed
experiments both on random and non-random inputs, such as the English dictio-
nary and a few English books. For lack of space, in this paper we describe only
our experiments with random inputs and on faults that are evenly spread over
the entire algorithm execution and hit randomly chosen memory locations: our
experiments with non-random inputs and different fault-injection strategies pro-
vide similar results. For pointer-based data structures, we distinguish between
faults corrupting pointers and faults corrupting keys.

The experiments reported in this paper have been carried out on a workstation
equipped with two Quad-Core Xeon E5520 processors with 2,26 Ghz clock rate
and 48 GB RAM. The workstation runs Scientific Linux 4, kernel 2.6.18. All
programs have been compiled through the GNU gcc compiler version 4.1.2 with
optimization level O3.

4.1 Priority Queues

In order to operate correctly, resilient data structures must cope with memory
faults and be prepared to pay some overhead in their running times. In this
section we attempt to evaluate this overhead by comparing resilient priority
queues against non-resilient implementations of binary heaps. The outcome of
one such experiment is illustrated in Figure 1.

According to the theoretical analysis in [30], both insert and extractMin
operations in a resilient priority queue have a running time of O(log n + δ).
Figure 1 shows that in practice the performances of both operations degrade
substantially as δ increases. This is especially true for extractMin operations,
that in our experiments are consistently one order of magnitude slower than
insertions. This difference of performances may be explained with the following
argument. The ResPQ data structure of [30] makes use of O(log n) up and down
buffers of appropriate sizes. The keys in each buffer are faithfully ordered, i.e.,
all the uncorrupted elements in each buffer are correctly ordered with respect
to each other. Both insert and extractMin operations need to merge adjacent
buffers whenever the buffer size constraints are violated, but this expensive step
can be amortized over sequences of operations. In the case of extractMin, how-
ever, whenever the minimum key is extracted from the appropriate buffer, all the
elements from the beginning of the buffer up to the position of the minimum key
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Fig. 1. Time required by 5 · 106 insert and 5 · 106 extractMin operations in non-
resilient binary heaps and resilient priority queues for δ ∈ [22, 210]. Times are reported
using a logarithmic scale.

are right-shifted, so that elements in each buffer are always stored consecutively.
This requires time proportional to δ for each operation (and cannot be amor-
tized), resulting in larger running times in practice as δ increases. The resilient
priority queues of Jørgensen et al. [30] appear thus to be very sensitive to δ (the
upper bound on number of faults): in particular, whenever the actual number of
faults is not known in advance, a bad estimate of δ may result in a substantial
degradation in the performance of the data structure.

4.2 Looking at Resilient Data Structures from a Sorting Perspective

In order to get a feeling on the behavior of different resilient algorithms and
data structures in a possibly coherent framework, we implemented sorting algo-
rithms based on mergesort, on priority queues and on dictionaries. In the case
of priority queues, we clearly implemented heapsort: we start from an initially
empty (possibly resilient) priority queue, and perform n key insertions followed
by (n − 1) extractMin operations. In the case of dictionaries, we perform n key
insertions starting from an empty dictionary, and then visit the resulting tree
in order to produce the sorted output sequence: we refer to this algorithm as
AVL-sort.

Figure 2 shows the results of an experiment where we attempt to measure the
impact of memory faults on the correctness of non-resilient mergesort, heapsort,
and AVL-sort. In this experiment we assumed that faults do not affect pointers
of the AVL tree (otherwise, AVL-sort is very likely to crash often). After running
the algorithms, we measure the disorder in the output sequence produced by the
algorithm using the k-unordered metric: namely, we estimate how many (faithful)
keys need to be removed in order to obtain a (faithfully) sorted subsequence.
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Fig. 2. Disorder produced by random memory faults in the sequence output by heap-
sort, AVL-based sort, and mergesort. The measure of disorder (k) is reported using a
logarithmic scale.

The three algorithms considered exhibit rather different behaviors under this
metric. Indeed our experiments show a deep vulnerability of mergesort even in
the presence of very few random faults: when sorting 5 million elements, it is
enough to have only 1000 random faults (i.e., roughly only 0.02% of the input
size) to get a k-unordered output sequence for k ≈ 4 · 106: in other words,
only 0.02% faults in the input are able to produce errors in approximately 80%
of the output. The other two algorithms appear to be more resilient. Consider
first the case of AVL trees. Since the tree at the beginning is empty, the first
few faults that are injected are responsible of a rather large disorder in the
output: when δ = 16, about 20 · 103 elements out of 5 · 106 are disordered.
However, this number remains almost constant as δ increases: random faults
injected late during the execution are likely to hit the bottom part of the tree,
and thus do not introduce much additional disorder. Heapsort is substantially
more resilient than both mergesort and AVL-sort. The increasing trend of the
heapsort curve in Figure 2 appears to depend on the way heaps are restructured
when the minimum is deleted: faulty keys may be moved to the root of the tree,
introducing errors that may easily propagate. Hence, larger numbers of faults
result in larger disorder in the output.

We now analyze the performance of the sorting algorithms under examina-
tion. Figure 3 shows the outcome of experiments where each sorting algorithm
considered is required to sort inputs of size n = 5 · 106, for increasing values of
δ. We first note that resilient mergesort (ResMergeSort) is always the fastest
algorithm among the resilient (and even non-resilient) sorting implementations.
This comes at no surprise, since ResMergeSort is an ad hoc, carefully optimized
sorting algorithm. As it can be seen from Figure 3, the implementation based
on priority queues is preferable to dictionary-based sorting for small values of
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Fig. 3. Running times of non-resilient and resilient heapsort, non-resilient and resilient
AVL-sort, and resilient mergesort. In this experiment n = 5 · 106 and δ increases up to
1000. Times are reported using a logarithmic scale.

Fig. 4. Time required to carry out 5 · 106 insert operations followed by a visit

of non-resilient and resilient AVL trees for δ ∈ [22, 210]. Times are reported using a
logarithmic scale.

δ, but its performance degrades quickly as δ increases, in spite of the fact that
heapsort is more naturally resilient to memory faults than AVL-sort, as shown
in Figure 2. As already observed in Section 4.1, this phenomenon is mainly due
to the extractMin operations, which appear to be very inefficient in practice for
large values of δ.

In order to better understand the poor performance of AVL-sort for very small
values of δ, we experimented separately with insert and visit operations in



10 U. Ferraro-Petrillo, I. Finocchi, and G.F. Italiano

dictionaries: the outcome of one of those experiments is reported in Figure 4.
Although operations in dictionaries and priority queues have the same O(log n+
δ) asymptotic running time, a comparative analysis of Figure 1 and Figure 4
shows that for small values of δ insertions in priority queues are about twice as
fast as insertions in dictionaries: this is not surprising, since priority queues do
not need to maintain a total order between their keys, and thus they are likely to
implement insertions more efficiently than dictionaries. In resilient dictionaries,
nodes of the AVL tree maintain Θ(δ) keys: when δ is small, they may be often
restructured in order to keep the appropriate number of keys in each node. This
operation dominates the running time, making insertions slower than in the case
of priority queues.

On the other side, visiting a resilient AVL is even faster than visiting a non-
resilient AVL tree of the same size n, even if in the former case pointers are
stored reliably and their majority value needs to be computed during the visit.
This behavior can be explained by analyzing constants used in our ResDict im-
plementation: we store 2δ +1 copies of each pointer, but each tree node contains
about 64 δ faithfully ordered keys. Hence, the entire visit on a resilient AVL
requires to follow about (2δn)/(64δ) = n/32 pointers, which is less than the n
pointer jumps taken during a standard visit of a non-resilient AVL tree.
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Abstract. During the last decade, many problems in social, biological,
and financial networks require finding cliques, or quasi-cliques. Cliques or
clique partitions have also been used as clustering or classification tools
in data sets represented by networks. These networks can be very large
and often massive and therefore external (or semi-external) memory algo-
rithms are needed. We discuss four applications where we identify compu-
tational challenges which are both of practical and theoretical interest.

1 Introduction

An undirected graph G is a pair (V, E) consisting of a nonempty, finite node set
V , |V | < ∞, and a finite (possibly empty) edge set E ⊆ V ×V of unordered pairs
of distinct elements of V . Graphs without loops and multiple edges are so-called
simple graphs. In a multigraph, we allow a graph to have multiple edges but loops
are not allowed. As we mainly consider undirected simple graphs in this article
we shall call them from now on just graphs and mention it otherwise explicitly.
Two nodes u, v ∈ V of graph G = (V, E) are adjacent if (u, v) is an edge of G;
i.e., (u, v) ∈ E. A graph is said to be complete if there is an edge between any to
nodes. The complement G := (V, E) of a graph G = (V, E) is the graph with the
same node set as G and the complement edge set E, containing only the edges
which are not in E; i.e., E := {(i, j) | i, j ∈ V, i �= j ∧ (i, j) /∈ E}. A graph is
connected if there is a path between any two nodes of the graph, otherwise it is
disconnected. The connected components of a graph G are the connected non-
empty inclusion-maximal subgraphs of G. The length of the longest path among
all shortest paths between any two nodes in the graph is called the diameter. The
density of a graph is defined as the ration 2|E|

|V |2−|V | . Two graphs G1 = (V1, E1)
and G2 = (V2, E2) are called isomorphic, if there is a bijection φ: V1 → V2 such
that (u, v) ∈ E1 ⇔ (φ(u), φ(v)) ∈ E2. A common subgraph of two graphs G1
and G2 consists of subgraphs G1 and G2 of G1 and G2, respectively, such that
G1 is isomorphic to G2. For a given node set S ⊆ V , G(S) := (V, E ∩ S × S) is
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the subgraph induced by S. This shall be enough on general graph theoretical
definitions for this article; more details can be found, for instance, in [1,2].

A set of nodes S is called a clique if the subgraph G(S) is complete. We
distinguish between a maximal clique which is not a proper subset of any other
clique in G and a maximum clique which is a clique of maximum cardinality;
i.e., the largest clique in graph G. A set of nodes S in a graph G is a stable
set if any two nodes in S are not adjacent. A stable set is sometimes also called
independent set, vertex packing, co-clique or anticlique. The definition of cliques
can be generalized by the concept of quasi-cliques. A quasi-clique, or γ-clique,
Cγ of graph G = (V, E) is a subset of V such that the induced subgraph G(Cγ)
is connected and has at least ⌊

γ
q(q − 1)

2

⌋
(1)

edges; where q := |Cγ | and γ ∈ [0, 1]. In the extreme case of γ = 0, G(Cγ) may
have no edges and if γ = 1, then Cγ is a clique in G. A coloring of G is a partition
of V into disjoint stable sets, while a clique covering is a partition into disjoint
cliques. In the following, we call a clique covering a clique partition.

The maximum clique problem is to find a maximum clique in a given graph
G. We denote the cardinality of a maximum clique in graph G by ω(G) which
is also called the clique number. Analogously, the maximum stable set problem
asks to find a stable set of maximum cardinality. The cardinality of such a stable
set is denoted by α(G) and is called the stability number or stable set number.
The coloring number or chromatic number, which is denoted by χ(G), is the
smallest number of stable sets needed for a coloring of G. Similarly, the smallest
number of cliques for a clique partition of G is called clique covering number and
is abbreviated with χ(G). In this article, we are interested in finding a γ-clique of
maximum size for fixed density γ; there are several other optimization problems
for quasi-cliques, such as, maximize γq, or fix q and maximize γ.

As a clique in G corresponds to a stable set in the complement graph G, we
obtain the relation

α(G) = ω(G). (2)

Furthermore, the following relations hold true

χ(G) = χ(G), (3)
ω(G) ≤ χ(G), (4)
α(G) ≤ χ(G). (5)

Since the number of stable sets needed to cover a graph is equal to the number
needed to cover the complement with cliques, equality (3) is true. Hence, to find
the coloring number or the clique covering number are algorithmically equiva-
lent problems and we may discuss either of them depending on the application.
To partition the node set of a graph G into disjoint stable sets, one needs at least
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Fig. 1. A graph G and its complement G with ω(G) = α(G) = 4 and χ(G) = χ(G) = 5

Table 1. Maximum quasi-cliques for graph G corresponding to Figure 1 for different
values of γ

γ Maximum quasi-clique
Cardinality

1 4 {1,2,3,4}
[13/15, 1) 5 {1,2,3,4,5}

[17/21, 13/15) 6 {1,2,3,4,5,6}
[0, 17/21) 7 {1,2,3,4,5,6,7}

the size of a maximum clique in G. This is stated by inequality (4). Inequality
(5) is the consequence of (2), (3), (4) and the observation that the complement
of G is again G.

Let us now have a closer look at the graph G and its complement G in Figure 1.
Node sets {1, 2, 3, 4}, {1, 2, 3, 7}, {1, 3, 4, 5}, {1, 3, 5, 6} and {1, 3, 6, 7} define all
the maximum cliques in G (or maximum stable sets in G) leading to a clique
number of 4 for G. The clique covering number for G is 5 due to the nodes
2, 5, 7, 4 and 6 which form a so-called odd hole. This yields to the coloring
number of 5 for the original graph G, showing that the coloring number and
the clique number are not in general equal, confirming relation (4). A smaller
example is given when the graph itself is an odd hole with 5 nodes. In this case,
a maximum clique has size 2, but the coloring number is 3. Table 1 provides
maximum quasi-cliques for different values of γ. For instance, if γ < 17/21, then
the whole node set V defines a maximum quasi-clique Cγ . Increasing the γ value
steadily reduces the maximum cardinality of a quasi-clique.

The maximum clique problem and the clique covering problem are one of
Karp’s original 21 problems shown to be NP-complete [3,4]; i.e., unless P =
NP, exact algorithms are guaranteed to return a solution only in a time which
increases exponentially with the number of nodes in the graph. Furthermore,
Arora and Safra [5] proved that for some ε > 0 the approximation of the clique
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number within a factor of |V |ε is NP-hard. A similar result was proven by Lund
and Yanakakis [6] for the chromatic number. Computing a maximum quasi-
clique for an arbitrary γ is also NP-complete, as for γ = 1 the problem is
equivalent to the maximum clique problem. There is a large variety of exact and
heuristic algorithms available for the maximum clique problem [7,8,9] and the
clique partition problem [10]. Some recent work on quasi-clique algorithms can
be found in [11].

In this article, we focus on computational challenges related to cliques, quasi-
cliques as well as clique partitions arising from four applications: Call graphs
(Section 2), coding theory (Section 3), matching molecular structures (Section 4),
and Keller’s conjecture (Section 5).

2 Call Graphs

Phone companies are faced with enormous data sets; e.g., resulting from long
distance phone-calls. In 1999, AT&T had approximately 300 million phone calls
per day leading to a yearly storage space of 20 terabytes [12]. However, the
analysis of such data is of great importance for the companies to study customer
patterns and to be able to optimize their operations.

Given the data for phone calls over a specific time period (e.g., ranging from
days to months), one can construct a so-called call graph as follows. Each mobile
user represents one node of the graph and there is a directed edge for each
phone call. Hence, the resulting graph is a directed multigraph as one user may
call the same user multiple times. Of interest in these graphs are especially
undirected quasi-cliques as they provide information about highly interconnected
users [13,14].

Graphs having millions of nodes are often referred to as massive graphs. Even
the visualization of such graphs on a screen or basic statistical analysis are
challenging tasks [15]. As the graphs are very large, they typically do not fit
into the RAM of the computer or even into the main memory – hence, so-called
external memory algorithms have been developed.

The call graphs tend to have specific properties. The most important ones are
[16,17]

– the graphs are very large; i.e., they have millions of nodes;
– the graphs have a very low density; i.e., in the order of 0.0000001;
– the graphs are often disconnected, though connected components can be very

large; i.e., they may have millions of nodes;
– the undirected diameter of the graphs is low; i.e., in the order of log(n);
– the node indegree din and the node outdegree dout distributions follow a

power-law; i.e., P (din) ∼ d−γin

in with γin ∈ [2, 3] and P (dout) ∼ d−γout

out with
γout < 2 where P (d) equals the number of nodes having degree d divided by
the total number of nodes in the graph.

Abello et al. [16] studied a call graph corresponding to 1-day landline phone calls
at AT&T and derived a call graph with 53 million nodes and 170 million edges.
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To exploit the special structure mentioned above, the authors made extensive
use of preprocessing. The algorithmic analysis of such graphs is practically very
important. However, the known algorithms do not scale well on such graphs.
This leads us to our first challenge.

Challenge 1 (Algorithm for Massive Graphs with Very Low Density)
Design an efficient algorithm together with a data base for the maximum γ-clique
problem tailored to massive graphs characterized by very low density and by the
node degree distribution following a power-law. Real world call graphs serve as
an excellent test bed.

Graphs with similar properties as the call graphs are the internet graphs, mobile
graphs, graphs from social networks, SMS graphs, or www graphs [17,18,19,20].
Sometimes scale-free properties can be observed in these graphs due to self-
organizing processes making them so-called small-world networks [21]. Biological
networks lead to similar challenging problems with graphs [22].

3 Graphs in Coding Theory

A fundamental problem of interest is to send a message across a noisy channel
with a maximum possible reliability. In coding theory, one wishes to find a binary
code as large as possible that can correct a certain number of errors for a given
size of the binary words.

For a binary vector u ∈ {0, 1}n, representing the words, denote by Fe(u) the
set of all vectors which can be obtained from u resulting from a certain error e,
such as deletion or transposition of bits. Note that the elements in Fe(u) do not
necessarily have to have length n; e.g., due to the deletion of digits. A subset
C ⊆ {0, 1}n is said to be an e-correcting code if Fe(u)∩Fe(v) = ∅ for all u, v ∈ C
with u �= v. The problem of interest is to find the largest correcting codes; i.e., a
set C of maximum size. For this to be meaningful, one has to have an idea about
the nature of the error e. One may distinguish single deletion errors, two-deletion
errors, single transposition including or excluding the end-around transposition
errors, or one error on the Z-channel [23].

Consider a graph G having a node for every vector u ∈ {0, 1}n and having an
edge (u, v), if Fe(u)∩Fe(v) �= ∅. This way, an edge represents a conflict for an e-
correcting code. Such graphs are called conflict graphs. Due to the construction
of the graph, a correcting code corresponds to a stable set in G. Therefore, a
largest e-correcting code can be found by solving the maximum independent set
problem in the considered graph G.

Good lower bounds on the code size are especially interesting for asymmetric
codes, such as codes correcting one error on the Z-channel (non zero components
of any vector may change from 1 to 0). For that, several partition methods have
been proposed in the literature, using minimum stable set partitions on conflict
graphs. For the details of these methods, we refer the interested reader to [24,23].
The challenge for finding good lower bounds for code sizes is ongoing and tailored
stable set partition algorithms are needed.



18 P.M. Pardalos and S. Rebennack

Challenge 2 (Algorithm for Conflict Graphs in Coding Theory). De-
sign an efficient algorithm for the minimum stable set partition problem tailored
to conflict graphs resulting from applications in coding theory.

Another example where minimum clique partitions are used as lower bounds are
mandatory coverage problems, where a set of demand points has to be covered
by a set of potential sites. Examples are ambulance location problems [25] or
tiling problems [26], which have both to be solved in real-time, i.e., within 2
minutes. For the latter problem, real-world instances resulting from cytology
applications can have the size of the magnitude of tens of thousands of nodes.

4 Matching Molecular Structures

In the pharmaceutical and agrochemical industry, the problem of establishing
structural relationships between pairs of three-dimensional molecular structures
is an important problem. These three-dimensional molecular structures can be
represented using graphs. For a protein, for instance, the nodes of the graph
are given by the α-helix and β-strand secondary structure elements, whereas the
edges are defined through inter-secondary structure element angles and distances
[27]. In addition, both the nodes and the edges have labels, corresponding to the
atomic types and the interatomic distances, respectively [28].

Consider a pair of node and edge labeled graphs G1 = (V1, E1) and G2 =
(V2, E2). Then, one can construct the correspondence graph C as follows. When-
ever two nodes v1 ∈ V1 and v2 ∈ V2 have the same label, there is a node in
graph C. Hence, the nodes in C are pairs v1v2 and two nodes v1v2 and v′1v′2 are
connected in C if the labels of the edges (v1, v

′
1) ∈ E1 and (v2, v

′
2) ∈ E2 are

the same.
For a pair of three-dimensional chemical molecules, a maximum common sub-

graph in their corresponding graphs relates to the largest set of atoms that have
matching distances between atoms. Hence, a maximum common subgraph is an
obvious measure of structural similarity and gives important information about
the two molecules.

Due to the construction of the correspondence graph C for two graphs cor-
responding to a pair of such molecules, it is almost obvious that the maximum
common subgraphs in G1 and G2 correspond to cliques in their correspondence
graph C. Therefore, one can find the maximum common subgraph of two arbi-
trary graphs by finding a maximum clique in their correspondence graph.

These correspondence graphs are characterized by their low edge densities –
typically between 0.005 and 0.2 [29]. As suggested in the review by Raymond
and Willett [30], the maximum clique algorithms currently available are com-
putationally too expensive for these applications. This leads us to the follow-
ing challenge.

Challenge 3 (Algorithm for Correspondence Graphs with Low Den-
sity). Design an efficient algorithm for the maximum clique problem tailored
to correspondence graphs resulting from matching of three-dimensional chemical
molecules.
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Similar challenges occur when computing maximum cliques for the protein dock-
ing problem [31], where one wants to find out whether two proteins form a stable
complex or not, or for comparing protein structures [32].

5 Keller’s Conjecture

Keller’s conjecture [33] goes back to Minkowski’s conjecture [34] which stated
that in a lattice tiling of Rn by translates of a unit hypercube, there exists
two cubes that share (n − 1) dimensional face [35]. Minkowski’s theorem was
proven by Hajós [36] in 1950. Keller suggested that Minkowski’s theorem can
be generalized as the lattice assumption might not be necessary. Indeed, Perron
[37] showed that this is true for n ≤ 6. However, for n ≥ 8 the lattice assumption
is necessary, which was shown by Lagarias and Shor [38] and Mackey [39]. The
Keller conjecture remains open for n = 7.

After 80 years, the rally towards the Keller’s conjecture has not been ended.
Almost as a by-product, a very interesting class of graphs for the maximum
clique problem has been derived. For any given n ∈ N+, Corrádi and Szabó [40]
constructed the so-called Keller graph Γn. The nodes of Γn are vectors of length
n with values of 0, 1, 2 or 3. Any two vectors are adjacent, if and only if in some
of the n coordinates, they differ by precisely two (in absolute value). The Keller
graph Γn is a dense graphs where the clique size is bounded by 2n, [41]. Corrádi
and Szabó [40] proved that there is an counterexample to Keller’s conjecture, if
and only if Γn has a clique of size 2n.

With the help of these results, Lagarias and Shor [38] used a block substitution
method to construct an appropriate clique, providing a counterexample for 10
dimensions. In a similar way, Mackey [39] constructed such a clique for dimension
8, proving that the Keller’s conjecture does not hold true for n ≥ 8. However,
as the case of n = 7 remains open, we get the following challenge.

Challenge 4 (Open problem [40]). For the Keller graph Γ7, either find a
maximum (cardinality) clique of size 128 or prove that none such clique exists.

Hasselberg et al. [41] contributed several test case generators to the DIMACS
challenge on cliques, among them are the Keller graphs. It turned out that the
Keller graphs lead to challenging maximum clique problems and, to our best
knowledge, no computational algorithms could solve the problem for n ≥ 6. Es-
pecially as the maximum clique size for the Keller graphs are known (except
for the cases of n = 6, 7), the Keller graphs are very useful graphs when bench-
marking maximum clique algorithms with large graphs having high density. This
leads us to the next challenge.

Challenge 5 (Algorithm for Dense Graphs). Design an efficient algorithm
for the maximum clique problem which is tailored to dense graphs. The Keller
graphs should be used to benchmark its performance while the goal should be that
the algorithm computes optimal solutions for the graphs with 2 ≤ n ≤ 8.

Table 2 summarizes the Keller graphs and their clique numbers. For the case of
n ≥ 6, we also know a lower bound on the clique number, given by ω(Γn) ≥ 57

642n.
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Table 2. Keller graphs and their clique numbers

n # nodes # edges ω(Γn) reference

2 16 40 2 [40]
3 64 1,088 5 [40]
4 256 21,888 12 [40]
5 1,024 397,312 28 [40]
6 4,096 6,883,328 –
7 16,384 116,244,480 –

≥ 8 4n 1
2
4n(4n − 3n − n) 2n [39,38,41]

– open problem

6 Conclusions

We have seen four applications leading to large graphs for clique, quasi-clique and
clique partition problems. However, these graphs have different structural prop-
erties. Most significantly, the size of the graphs and their density vary greatly.
Tailored algorithms to each of these problems are required to be able to solve
these problems efficiently.
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Abstract. We study the problem of finding good alternative routes in
road networks. We look for routes that are substantially different from
the shortest path, have small stretch, and are locally optimal. We for-
mally define the problem of finding alternative routes with a single via
vertex, develop efficient algorithms for it, and evaluate them experimen-
tally. Our algorithms are efficient enough for practical use and compare
favorably with previous methods in both speed and solution quality.

1 Introduction

We use web-based and autonomous navigation systems in everyday life. These
systems produce driving directions by computing a shortest path (or an ap-
proximation) with respect to a length function based on various measures, such
as distance and travel time. However, optimal paths do not necessarily match
the personal preferences of individual users. These preferences may be based on
better local knowledge, a bias for or against a certain route segment, or other
factors. One can deal with this issue by presenting a small number of alternative
paths and hoping one of them will satisfy the user. The goal of an algorithm is
to offer alternative paths often, and for these alternatives to look reasonable.

Recent research on route planning focused on computing only a single (short-
est) path between two given vertices (see [4] for an overview). Much less work
has been done on finding multiple routes. Some commercial products (by compa-
nies such as Google and TomTom) suggest alternative routes using proprietary
algorithms. Among published results, a natural approach is to use k-shortest
path algorithms [8], but this is impractical because a reasonable alternative in a
road network is probably not among the first few thousand paths. Another ap-
proach is to use multi-criteria optimization [13,14], in which two or more length
functions are optimized at once, and several combinations are returned. Efficient
algorithms are presented in [5,9]. Our focus is on computing reasonable alterna-
tives with a single cost function. In this context, the best published results we
are aware of are produced by the choice routing algorithm [2], which we discuss
in Section 4. Although it produces reasonable paths, it is not fully documented
and is not fast enough for continental-sized networks.

In this work, we study the problem of finding “reasonable” alternative routes
in road networks. We start by defining in Section 3 a natural class of admissible
alternative paths. Obviously, an alternative route must be substantially different
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from the optimal path, and must not be much longer. But this is not enough:
alternatives must feel natural to the user, with no unnecessary detours (formally,
they must be locally optimal : every subpath up to a certain length must be a
shortest path). Even with these restrictions, the number of admissible paths
may be exponential, and computing the best one is hard. For efficiency, we focus
on a more limited (yet useful) subset. Given an origin s and a target t, we
restrict ourselves to single via paths, which are alternative routes obtained by
concatenating the shortest paths from s to v and from v to t, for some vertex v.
Section 4 discusses how the best such path can be computed in polynomial time
using the bidirectional version of Dijkstra’s algorithm (bd).

In practice, however, just polynomial time is not enough—we need sublinear
algorithms. Modern algorithms for computing (optimal) shortest paths in road
networks, such as those based on contraction hierarchies [10] and reach [11], are
often based on pruning Dijkstra’s search. After practical preprocessing steps,
they need to visit just a few hundred vertices to answer queries on continental-
sized graphs with tens of millions of vertices—orders of magnitude faster than
bd. In fact, as shown in [1], their performance is sublinear on graphs with small
highway dimension, such as road networks. Section 5 shows how to apply these
speedup techniques to the problem of finding alternative routes, and Section 6
proposes additional measures to make the resulting algorithms truly practical.

Finally, Section 7 evaluates various algorithms experimentally according to
several metrics, including path quality and running times. We show that finding
a good alternative path takes only five times as much as computing the shortest
path (with a pruning algorithm). Moreover, our pruning methods have similar
success rates to a variant of choice routing, but are orders of magnitude faster.

Summarizing, our contributions are twofold. First, we establish a rigorous
theoretical foundation for alternative paths, laying the ground for a systematic
study of the problem. Second, we present efficient algorithms (in theory and in
practice) for finding such routes.

2 Definitions and Background

Let G = (V, E) be a directed graph with nonnegative, integral weights on edges,
with |V | = n and |E| = m. Given any path P in G, let |P | be its number of
edges and �(P ) be the sum of the lengths of its edges. By extension �(P ∩ Q)
is the sum of the lengths of the edges shared by paths P and Q, and �(P \ Q)
is �(P ) − �(P ∩ Q). Given two vertices, s and t, the point-to-point shortest path
problem (P2P) is that of finding the shortest path (denoted by Opt) from s to
t. Dijkstra’s algorithm [7] computes dist(s, t) (the distance from s to t in G) by
scanning vertices in increasing order from s. Bidirectional Dijkstra (bd) runs a
second search from t as well, and stops when both search spaces meet [3].

The reach of v, denoted by r(v), is defined as the maximum, over all shortest
u–w paths containing v, of min{dist(u, v), dist(v, w)}. bd can be pruned at all
vertices v for which both dist(s, v) > r(v) and dist(v, t) > r(v) hold [12]. The
insertion of shortcuts (edges representing shortest paths in the original graph)
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may decrease the reach of some original vertices, thus significantly improving
the efficiency of this approach [11]. The resulting algorithm (called re) is three
orders of magnitude faster than plain bd on continental-sized road networks.

An even more efficient algorithm (by another order of magnitude) is contrac-
tion hierarchies (ch) [10]. During preprocessing, it sorts all vertices by impor-
tance (heuristically), then shortcuts them in this order. (To shortcut a vertex,
we remove it from the graph and add as few new edges as necessary to preserve
distances.) A query only follows an edge (u, v) if v is more important than u.

3 Admissible Alternative Paths

In this paper, we are interested in finding an alternative path P between s and
t. By definition, such a path must be significantly different from Opt : the total
length of the edges they share must be a small fraction of �(Opt).

This is not enough, however. The path must also be reasonable, with no un-
necessary detours. While driving along it, every local decision must make sense.
To formalize this notion, we require paths to be locally optimal. A first condition
for a path P to be T locally optimal (T -LO) is that every subpath P ′ of P with
�(P ′) ≤ T must be a shortest path. This would be enough if P were continuous,
but for actual (discrete) paths in graphs we must “round up” with a second
condition. If P ′ is a subpath of P with �(P ′) > T and �(P ′′) < T (P ′′ is the path
obtained by removing the endpoints of P ′), then P ′ must be a shortest path.
Note that a path that is not locally optimal includes a local detour, which in
general is not desirable. (Users who need a detour could specify it separately.)

s t
Opt

u

w

v

Fig. 1. Rationale for UBS.
The alternative through w
is a concatenation of two
shortest paths, s–w and w–
t. Although it has high
local optimality, it looks un-
natural because there is a
much shorter path between
u and v.

Although local optimality is necessary for a path
to be reasonable, it is arguably not sufficient (see
Figure 1). We also require alternative paths to have
limited stretch. We say that a path P has (1+ε) uni-
formly bounded stretch ((1+ε)-UBS) if every subpath
(including P itself) has stretch at most (1 + ε).

Given these definitions, we are now ready to define
formally the class of paths we are looking for. We
need three parameters: 0 < α < 1, ε ≥ 0, and 0 ≤
γ ≤ 1. Given a shortest path Opt between s and t, we
say that an s–t path P is an admissible alternative
if it satisfies the following conditions:

1. �(Opt ∩ P ) ≤ γ · �(Opt) (limited sharing);
2. P is T -locally optimal for T = α · �(Opt) (local optimality);
3. P is (1 + ε)-UBS (uniformly bounded stretch).

There may be zero, one, or multiple admissible alternatives, depending on the
input and the choice of parameters. If there are multiple alternatives, we can
sort them according to some objective function f(·), which may depend on any
number of parameters (possibly including α, ε, and γ). In our experiments, we
prefer admissible paths with low stretch, low sharing and high local optimality,
as explained in Section 6. Other objective functions could be used as well.
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Note that our definitions can be easily extended to report multiple alternative
paths. We just have to ensure that the ith alternative is sufficiently different
from the union of Opt and all i − 1 previous alternatives. The stretch and local
optimality conditions do not change, as they do not depend on other paths.

4 Single via Paths

Even with the restrictions we impose on admissible paths, they may still be too
numerous, making it hard to find the best one efficiently. This section defines a
subclass of admissible paths (called single via paths) that is more amenable to
theoretical analysis and practical implementation. Given any vertex v, the via
path through v, Pv, is the concatenation of two shortest paths, s–v and v–t (recall
that we are looking for s–t paths). We look for via paths that are admissible. As
we will see, these can be found efficiently and work well in practice.

Note that single via paths have interesting properties. Among all s–t paths
through v (for any v), Pv is the shortest, i.e., it has the lowest stretch. Moreover,
being a concatenation of two shortest paths, the local optimality of Pv can only
be violated around v. In this sense, via paths are close to being admissible.

Although all n − 2 via paths can be implicitly generated with a single run of
bd (in O(m + n log n) time), not all of them must be admissible. For each via
path Pv, we must check whether the three admissibility conditions are obeyed.

The easiest condition to check is sharing. Let σf (v) be the sharing amount
in the forward direction (i.e., how much s–v shares with Opt , which is known).
Set σf (s) ← 0 and for each vertex v (in forward scanning order), set σf (v) to
σf (pf (v)) + �(pf(v), v) if v ∈ Opt or to σf (pf (v)) otherwise (here pf denotes
the parent in the forward search). Computing σr(v), the sharing in the reverse
direction, is similar. The total sharing amount σ(v) = �(Opt∩Pv) is σf (v)+σr(v).
Note that this entire procedure takes O(n) time.

In contrast, stretch and local optimality are much harder to evaluate, requiring
quadratically many shortest path queries (on various pairs of vertices). Ideally,
we would like to verify whether a path P is locally optimal (or is (1 + ε)-UBS)
in time proportional to |P | and a few shortest-path queries. We do not know
how to do this. Instead, we present alternative tests that are efficient, have good
approximation guarantees, and work well in practice.

s t
Opt

v

v′

x y

x′ y′

Fig. 2. Example for two T -tests. The
T -test for v fails because the short-
est path from u to w, indicated as a
dashed spline, does not contain v. The
test for v′ succeeds because the short-
est path from u′ to w′ contains v′.

For local optimality, there is a quick 2-
approximation. Take a via path Pv and a
parameter T . Let P1 and P2 be the s–v and
v–t subpaths of Pv, respectively. Among all
vertices in P1 that are at least T away from
v, let x be the closest to v (and let x = s if
�(P1) < T ). Let y be the analogous vertex
in P2 (and let y = t if �(P2) < T ). We say
that Pv passes the T -test if the portion of
Pv between x and y is a shortest path. See
Figure 2 for an example.
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Lemma 1. If Pv passes the T -test, then Pv is T -LO.

Proof. Suppose Pv passes the test and consider a subpath P ′ of Pv as in the
definition of T -LO. If P ′ is a subpath of P1 or P2, then it is a shortest path.
Otherwise P ′ contains v and is a subpath of the portion of Pv between x and y
(as defined in the T -test), and therefore also a shortest path. ��
This test is very efficient: it traverses Pv at most once and runs a single point-to-
point shortest-path query. Although it may miss some admissible paths (a T -LO
path may fail the T -test), it can be off by at most a factor of two:

Lemma 2. If Pv fails the T -test, then Pv is not 2T -LO.

Proof. If Pv fails the test, then the x–y subpath in the definition of the test is
not a shortest path. Delete x and y from the subpath, creating a new path P ′′.
We know �(P ′′) < 2T (v divides it into two subpaths of length less than T ),
which means Pv is not 2T -LO. ��
We now consider how to find the smallest ε for which a given path is (1+ε)-UBS.
We cannot find the exact value efficiently, but we can approximate it:

Lemma 3. If a via path Pv has stretch (1 + ε) and passes the T -test for T =
β · dist(s, t) (with 0 < ε < β < 1), then Pv is a β

β−ε -UBS path.

Proof. Consider a subpath P ′ of Pv between vertices u and w. If v �∈ P ′, or both
u and w are within distance T of v, then P ′ is a shortest path (as a subpath of
a shortest path). Assume v is between u and w and at least one of these vertices
is at distance more than T from v. This implies �(P ′) ≥ T = β · dist(s, t).
Furthermore, we know that �(P ′) ≤ dist(u, w)+ ε ·dist(s, t) (the absolute stretch
of the subpath P ′ cannot be higher than in Pv). Combining these two inequalities,
we get that �(P ′) ≤ dist(u, w) + ε · �(P ′)/β. Rearranging the terms, we get that
�(P ′) ≤ β · dist(u, w)/(β − ε), which completes the proof. ��
BDV algorithm. We now consider a relatively fast bd-based algorithm, which
we call bdv. It grows shortest path trees from s and into t; each search stops
when it advances more that (1 + ε)�(Opt) from its origin. (This is the longest
an admissible path can be.) For each vertex v scanned in both directions, we
check whether the corresponding path Pv is approximately admissible: it shares
at most γ · �(Opt) with Opt , has limited stretch (�(Pv) ≤ (1 + ε)�(Opt)), and
passes the T -test for T = α · �(Opt). Finally, we output the best approximately
admissible via path according to the objective function.

The choice routing algorithm. A related method is the choice routing algorithm
(cr) [2]. It starts by building shortest path trees from s and to t. It then looks
at plateaus, i.e., maximal paths that appear in both trees simultaneously. In
general, a plateau u–w gives a natural s–t path: follow the out-tree from s to u,
then the plateau, then the in-tree from w to t. The algorithm selects paths cor-
responding to long plateaus, orders them according to some “goodness” criteria
(not explained in [2]), and outputs the best one (or more, if desired). Because
the paths found by cr have large plateaus, they have good local optimality:
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Lemma 4. If P corresponds to a plateau v–w, P is dist(v, w)-LO.

Proof. If P is not a shortest path, then there are vertices x, y on P such that
the length of P between these vertices exceeds dist(x, y). Then x must strictly
precede v on P , and y must strictly follow w. This implies the lemma. ��
Note that both cr and bdv are based on bd and only examine single-via paths.
While bdv must run one point-to-point query to evaluate each candidate path, all
plateaus can be detected in linear time. This means cr has the same complexity
as bd (ignoring the time for goodness evaluation), which is much faster than
bdv. It should be noted, however, that local optimality can be achieved even
in the absence of long plateaus. One can easily construct examples where bdv

succeeds and cr fails. Still, neither method is fast enough for continental-sized
road networks.

5 Pruning

A natural approach to accelerate bd is to prune it at unimportant vertices (as
done by re or ch, for example). In this section, we show how known pruning
algorithms can be extended to find admissible single-via paths. The results of
[1] suggest that pruning is unlikely to discard promising via vertices. Because
of local optimality, an admissible alternative path P contains a long shortest
subpath P ′ that shares little with Opt . Being a shortest path, P ′ must contain
an “important” (unpruned) vertex v.

For concreteness, we focus on an algorithm based on re; we call it rev. Like
bdv, rev builds two (now pruned) shortest paths trees, out of s and into t.
We then evaluate each vertex v scanned by both searches as follows. First, we
perform two P2P queries (s–v and v–t) to find Pv. (They are necessary because
some original tree paths may be suboptimal due to pruning.) We then perform
an approximate admissibility test on Pv, as in bdv. Among all candidate paths
that pass, we return the one minimizing the objective function f(·).

The main advantage of replacing bd by re is a significant reduction in the
number of via vertices we consider. Moreover, auxiliary P2P queries (including
T -tests) can also use re, making rev potentially much faster than bdv.

An issue we must still deal with is computing the sharing amount σ(v). re

adds shortcuts to the graph, each representing a path in the original graph. To
calculate σ(v) correctly, we must solve a partial unpacking subproblem: given
a shortcut (a, c), with a ∈ Opt and c �∈ Opt , find the vertex b ∈ Opt that
belongs to the a–c path and is farthest from a. Assuming each shortcut bypasses
exactly one vertex and the shortcut hierarchy is balanced (as is usually the case
in practice), this can be done in O(log n) time with binary search.

Running time. We can use the results of [1] to analyze rev. Our algorithms and
their implementations work for directed graphs, but to apply the results of [1]
we assume the input network is undirected in the analysis.
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Suppose we have a constant-degree network of diameter D and highway di-
mension h. The reach-based query algorithm scans O(k log D) vertices and runs
in time O((k log D)2), where k is either h or h logn, depending on whether
preprocessing must be polynomial or not. For each vertex v scanned in both
directions, rev needs a constant number of P2P queries and partial unpackings.
The total running time is therefore O((k log D)3 + k log D log n), which is sub-
linear (unlike bdv or cr). The same algorithm (and analysis) can be applied if
we use contraction hierarchies; we call the resulting algorithm chv.

Relaxed reaches. Pruning may cause rev and chv to miss candidate via vertices,
leading to suboptimal solutions. In rare cases, they may not find any admissible
path even when bdv would. For rev, we can fix this by trading off some effi-
ciency. If we multiply the reach values by an appropriate constant, the algorithm
is guaranteed to find all admissible single-via paths. The resulting algorithm is
as effective as bdv, but much more efficient. It exploits the fact that vertices in
the middle of locally optimal paths have high reach:

Lemma 5. If P is T -LO and v ∈ P , then r(v) ≥ min{T/2, dist(s, v), dist(v, t)}.

Proof. Let v be at least T/2 away from the endpoints of P . Let x and y be
the closest vertices to v that are at least T/2 away from v towards s and t,
respectively. Since P is T -LO, the subpath of P between x and y is a shortest
path, and v has reach at least T/2. ��

Corollary 1. If P passes the T -test and v ∈ P , then r(v) ≥ min{T/4, dist(s, v),
dist(v, t)}.

Let δ-rev be a version of rev that uses original reach values multiplied by δ ≥ 1
to prune the original trees from s and to t (i.e., it uses δ · r(v) instead of r(v)).
Auxiliary P2P computations to build and test via paths can still use the original
r(v) values. The algorithm clearly remains correct, but may prune fewer vertices.
The parameter δ gives a trade-off between efficiency and success rate:

Theorem 1. If δ ≥ 4(1+ε)/α, δ-rev finds the same admissible via paths as bdv.

Proof. Consider a via path Pv that passes the T -test for T = α · dist(s, t).
Then by Corollary 1 for every vertex u ∈ Pv, r(u) ≥ min{dist(s, v), dist(v, t), α ·
dist(s, t)/4}. When δ ≥ 4(1 + ε)/α, then δ · r(u) ≥ min{dist(s, v), dist(v, t), (1 +
ε)dist(s, t)}. Therefore no vertex on Pv is pruned, implying that dist(s, v) and
dist(v, t) are computed correctly. As a result Pv is considered as an admissible
via path. ��

The analysis of [1] implies that multiplying reach values by a constant increases
the query complexity by a constant multiplicative factor. Hence, the asymptotic
time bounds for rev also apply to δ-rev, for any constant δ ≥ 1. Note that
Theorem 1 assumes that δ-rev and bdv are applied on the same graph, with
no shortcuts.
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6 Practical Algorithms

The algorithms proposed so far produce a set of candidate via paths and explic-
itly check whether each is admissible. We introduced techniques to reduce the
number of candidates and to check (approximate) admissibility faster, with a
few point-to-point queries. Unfortunately, this is not enough in practice. Truly
practical algorithms can afford at most a (very small) constant number of point-
to-point queries in total to find an alternative path. Therefore, instead of actually
evaluating all candidate paths, in our experiments we settle for finding one that
is good enough. As we will see, we sort the candidate paths according to some
objective function, test the vertices in this order, and return the first admissible
path as our answer. We consider two versions of this algorithm, one using bd

and the other (the truly practical one) a pruned shortest path algorithm (re

or ch). Although based on the methods we introduced in previous sections, the
solutions they find do not have the same theoretical guarantees. In particular,
they may not return the best (or any) via path. As Section 7 will show, however,
the heuristics still have very high success rate in practice.

The practical algorithms sort the candidate paths Pv in nondecreasing order
according to the function f(v) = 2�(v)+σ(v)−pl (v), where �(v) is the length of
the via path Pv, σ(v) is how much Pv shares with Opt , and pl(v) is the length of
the longest plateau containing v. Note that pl(v) is a lower bound on the local
optimality of Pv (by Lemma 4); by preferring vertices with high pl (v), we tend
to find an admissible path sooner.

We are now ready to describe x-bdv, an experimental version of bdv that
incorporates elements of cr for efficiency. Although much slower than our prun-
ing algorithms, this version is fast enough to run experiments on. It runs bd,
with each search stopping when its radius is greater than (1 + ε)�(Opt); we also
prune any vertex u with dist(s, u) + dist(u, t) > (1 + ε)�(Opt). In linear time,
we compute �(v), σ(v), and pl(v) for each vertex v visited by both searches. We
use these values to (implicitly) sort the alternative paths Pv in nondecreasing
order according to f(v). We return the first path Pv in this order that satis-
fies three hard constraints: �(Pv \ Opt) < (1 + ε)�(Opt \ Pv) (the detour is not
much longer than the subpath it skips), σ(v) < γ · �(Opt) (sharing is limited),
and pl (v) > α · �(Pv \ Opt) (there is enough local optimality). Note that we
specify local optimality relative to the detour only (and not the entire path, as
in Section 3). Our rationale for doing so is as follows. In practice, alternatives
sharing up to 80% with Opt may still make sense. In such cases, the T -test will
always fail unless the (path-based) local optimality is set to 10% or less. This is
too low for alternatives that share nothing with Opt. Using detour-based local
optimality is a reasonable compromise. For consistency, ε is also used to bound
the stretch of the detour (as opposed to the entire path).

The second algorithm we tested, x-rev, is similar to x-bdv but grows reach-
pruned trees out of s and into t. The stopping criteria and the evaluation of each
via vertex v are the same as in x-bdv. As explained in Section 4, re trees may
give only upper bounds on dist(s, v) and dist(v, t) for any vertex v �∈ Opt . But
we can still use the approximate values (given by the re trees) of �(v), σ(v), and
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pl(v) to sort the candidate paths in nondecreasing order according to f(v). We
then evaluate each vertex v in this order as follows. We first compute the actual
via path Pv with two re queries, s–v and v–t (as an optimization, we reuse the
original forward tree from s and the backward tree from t). Then we compute the
exact values of �(v) and σ(v) and check whether �(Pv \Opt) < (1+ε)�(Opt \Pv),
whether σ(v) < γ · �(Opt), and run a T -test with T = α · �(Pv \ Opt). If Pv

passes all three tests, we pick it as our alternative. Otherwise, we discard v as
a candidate, penalize its descendants (in both search trees) and try the next
vertex in the list. We penalize a descendant u of v in the forward (backward)
search tree by increasing f(u) by dist(s, v) (dist(v, t)). This gives less priority to
vertices that are likely to fail, keeping the number of check queries small.

A third implementation we tested was x-chv, which is similar to x-rev but
uses contraction hierarchies (rather than reaches) for pruning.

7 Experiments

We implemented the algorithms from Section 6 in C++ and compiled them with
Microsoft Visual C++ 2008. Queries use a binary heap as priority queue. The
evaluation was conducted on a dual AMD Opteron 250 running Windows 2003
Server. It is clocked at 2.4 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache.
Our code is single-threaded and runs on a single processor at a time.

We use the European road network, with 18 million vertices and 42 million
edges, made available for the 9th DIMACS Implementation Challenge [6]. It uses
travel times as the length function. (We also experimented with TIGER/USA
data, but closer examination revealed that the data has errors, with missing arcs
on several major highways and bridges. This makes the results less meaningful,
so we do not include them.) We allow the detour to have maximum stretch
ε = 25%, set the maximum sharing value to γ = 80%, and set the minimum
detour-based local optimality to α = 25% (see Section 6).

x-rev and x-chv extend the point-to-point query algorithms re [11] and
ch [10]. Since preprocessing does not change, we use the preprocessed data given
in [10,11]. In particular, preprocessing takes 45 minutes for re and 25 for ch.

We compare the algorithms in terms of both query performance and path
quality. Performance is measured by the number of vertices scanned and by
query times (given in absolute terms and as a multiple of the corresponding P2P
method). Quality is given first by the success rate: how often the algorithm finds
as many alternatives as desired. Among the successful runs, we also compute
the average and worst uniformly-bounded stretch, sharing, and detour-based
local optimality (reporting these values requires O(|P |2) point-to-point queries
for each path P ; this evaluation is not included in the query times). Unless
otherwise stated, figures are based on 1 000 queries, with source s and target t
chosen uniformly at random.

In our first experiment, reported in Table 1, we vary p, the desired number of
alternatives to be computed by the algorithms. There is a clear trade-off between
success rates and query times. As expected, x-bdv is successful more often, while
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Table 1. Performance of various algorithms on the European road network as the
number of desired alternatives (p) changes. Column success rate reports how often the
algorithm achieves this goal. For the successful cases, we report the (average and worst-
case) quality of the p-th alternative in terms of UBS, sharing, and detour-based local
optimality. Finally, we report the average number of scanned vertices and query times
(both in milliseconds and as a multiple of the corresponding point-to-point variant).

path quality performance

success UBS[%] sharing[%] locality[%] #scanned time slow-
p algo rate[%] avg max avg max avg min vertices [ms] down
1 x-bdv 94.5 9.4 35.8 47.2 79.9 73.1 30.3 16 963 507 26 352.0 6.0

x-rev 91.3 9.9 41.8 46.9 79.9 71.8 30.7 16 111 20.4 5.6
x-chv 58.2 10.8 42.4 42.9 79.9 72.3 29.8 1 510 3.1 4.6

2 x-bdv 81.1 11.8 38.5 62.4 80.0 71.8 29.6 16 963 507 29 795.0 6.8
x-rev 70.3 12.2 38.1 60.3 80.0 71.3 29.6 25 322 33.6 9.2
x-chv 28.6 10.8 45.4 55.3 79.6 77.6 30.3 1 685 3.6 5.3

3 x-bdv 61.6 13.2 41.2 68.9 80.0 68.7 30.6 16 963 507 33 443.0 7.7
x-rev 43.0 12.8 41.2 66.6 80.0 74.9 33.3 30 736 42.6 11.7
x-chv 10.9 12.0 41.4 59.3 80.0 79.0 36.1 1 748 3.9 5.8

x-chv is fastest. Unfortunately, x-bdv takes more than half a minute for each
query and x-chv finds an alternative in only 58.2% of the cases (the numbers are
even worse with two or three alternatives). The reach-based algorithm, x-rev,
seems to be a good compromise between these extremes. Queries are still fast
enough to be practical, and it is almost as successful as x-bdv. In only 20.4 ms,
it finds a good alternative in 91.3% of the cases.

Alternative paths, when found, tend to have similar quality, regardless of the
algorithm. This may be because the number of admissible alternatives is small:
the algorithms are much more successful at finding a single alternative than at
finding three (see Table 1). On average, the first alternative has 10% stretch, is
72% locally optimal, and shares around 47% with the optimum. Depending on
the success rate and p, the alternative query algorithm is 4 to 12 times slower
than a simple P2P query with the same algorithm. This is acceptable, considering
how much work is required to identify good alternatives.

As observed in Section 5, we can increase the success rate of rev by multi-
plying reach values by a constant δ > 1. Our second experiment evaluates how
this multiplier affects x-rev, the practical variant of rev. Table 2 reports the
success rate and query times of δ-x-rev for several values of δ when p = 1. As
predicted, higher reach bounds do improve the success rate, eventually match-
ing that of x-bdv on average. The worst-case UBS is also reduced from almost
42% to around 30% when δ increases. Furthermore, most of the quality gains
are already obtained with δ = 2, when queries are still fast enough (less than 10
times slower than a comparable P2P query).

The original reach values used by x-rev are not exact: they are upper bounds
computed by a particular preprocessing algorithm [11]. On a smaller graph (of
the Netherlands, with n ≈ 0.9M and m ≈ 2.2M), we could actually afford to
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Table 2. Performance of x-rev when varying the multiplier (δ) for reach values

path quality performance

success UBS[%] sharing[%] locality[%] #scanned time slow-
algo δ rate[%] avg max avg max avg min vertices [ms] down
x-rev 1 91.3 9.9 41.8 46.9 79.9 71.8 30.7 16 111 20.4 5.6

2 94.2 9.7 31.6 46.6 79.9 71.3 27.6 31 263 34.3 9.4
3 94.2 9.5 29.2 46.7 79.9 71.9 31.2 53 464 55.3 15.2
4 94.3 9.5 29.3 46.7 79.9 71.8 31.2 80 593 83.2 22.8
5 94.4 9.5 29.3 46.7 79.9 71.8 31.4 111 444 116.6 31.9

10 94.6 9.5 30.2 46.8 79.9 71.7 31.4 289 965 344.3 94.3

x-bdv – 94.5 9.4 35.8 47.2 79.9 73.1 30.3 16 963 507 26 352.0 6.0

compute exact reaches on the shortcut-enriched graph output by the standard
re preprocessing. On this graph, the success rate drops from 83.4% with the
original upper bounds to 81.7% with exact reaches. Multiplying the exact reaches
by δ = 2 increases the success rate again to 83.6%. With δ = 5, we get 84.7%,
very close to the 84.9% obtained by x-bdv. Note that the Dutch subgraph tends
to have fewer alternatives than Europe as a whole.
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Fig. 3. Success rate for x-bdv, x-rev, 2-x-rev,
10-x-rev, and x-chv when varying the Dijkstra
rank of queries for p = 1

To examine this issue in de-
tail, Figure 3 reports the success
rate of our algorithms for p =
1 and various Dijkstra ranks on
Europe. The Dijkstra rank of v
with respect to s is i if v is the
ith vertex taken from the prior-
ity queue when running a Dijk-
stra query from s. The results are
based on 1 000 queries for each
rank. We observe that the suc-
cess rate is lower for local queries,
as expected. Still, for mid-range
queries we find an alternative in
60% to 80% of the cases, which
seems reasonable. (Recall that an
admissible alternative may not
exist.) Multiplying reach values helps all types of queries: 2-x-rev has almost the
same success rate as x-bdv for all ranks and number of alternatives examined.

8 Conclusion

By introducing the notion of admissibility, we have given the first formal treat-
ment to the problem of finding alternative paths. The natural concept of local
optimality allows us to prove properties of such paths. Moreover, we have given
theoretically efficient algorithms for an important subclass, that of single via
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paths. We concentrated on making the approach efficient for real-time applica-
tions by designing approximate admissibility tests and an optimization function
biased towards admissible paths. Our experiments have shown that these sim-
plified versions are practical for real, continental-sized road networks.

More generally, however, our techniques allow us to do optimization con-
strained to the (polynomially computable) set of admissible single via paths. We
could optimize other functions over this set, such as fuel consumption, time in
traffic, or tolls. This gives a (heuristic) alternative to multi-criteria optimization.

Our work leads to natural open questions. In particular, are there efficient
exact tests for local optimality and uniformly bounded stretch? Furthermore, can
one find admissible paths with multiple via vertices efficiently? This is especially
interesting because it helps computing arbitrary admissible paths, since any
admissible alternative with stretch 1+ε and local optimality α ·�(Opt) is defined
by at most �(1 + ε)/α� − 1 via points.
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Abstract. We introduce two new speed-up techniques for time-depen-
dent point-to-point shortest path problems with fully-dynamic updates
in a multi-criteria setting. Our first technique, called SUBITO, is based
on a specific substructure property of time-dependent paths which can
be lower bounded by their minimal possible travel time. It requires no
preprocessing, and the bounds can be computed on-the-fly for each query.
We also introduce k-flags, an extension of arc flags, which assigns to each
arc one of k levels for each region of a vertex partition. Intuitively, the
higher the level of an arc for a certain destination, the larger the detour
with respect to travel time. k-flags allow us to handle dynamic changes
without additional time-consuming preprocessing.

In an extensive computational study using the train network of Ger-
many we analyze these and other speed-up techniques with respect to
their robustness under high and realistic update rates. We show that
speed-up factors are conserved under different scenarios, namely a typ-
ical day of operation, distributed delays after “heavy snowfall”, and a
major disruption at a single station. In our experiments, k-flags com-
bined with SUBITO have led to the largest speed-up factors, but only
marginally better than SUBITO alone. These observations can be ex-
plained by studying the distribution of k-flags. It turns out that only a
small fraction of arcs can be excluded if one wants to guarantee exact
Pareto-optimal point-to-point queries.

Keywords: Shortest paths; dynamic graphs; speed-up technique.

1 Introduction

Up to now, route planning is usually based on a static road map or a pub-
lished schedule in public transport. Unfortunately, car traffic is affected by time-
dependent speed profiles (like every day rush hours) and unforeseeable events,
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like traffic jams, and blocked roads because of construction work. Likewise, public
transportation systems suffer from delays for various reasons. While speed pro-
files can be modelled quite well by time-dependent models, unforeseeable events
like traffic jams and train delays require in addition a truly dynamic model to
support on-trip routing.

The demands for an online tool are quite high: To give a concrete example, on
a typical day of operation of German Railways, an online system has to handle
about 6 million forecast messages about (mostly small) changes with respect
to the planned schedule and the latest prediction of the current situation. Ini-
tial primary train delays induce a whole cascade of secondary delays of other
trains which have to wait according to certain waiting policies between con-
necting trains. Thus, the graph model has to be updated at a rate of about 70
update operations per second [1]. From the traveler’s point of view, a navigation
or timetable information system should offer a choice of reasonable alternatives
subject to optimization criteria like earliest arrival time, travel costs, sustainabil-
ity, or traveler comfort. Hence, the task is to solve a multi-criteria optimization
problem, i.e., to find all Pareto-optimal itineraries. Since central timetable infor-
mation servers have to answer millions of queries per day, it is obvious that low
query times are crucial. The algorithmic challenge is to design speed-up tech-
niques which are provably correct and work in a multi-criteria fully-dynamic
scenario.

In recent years, a multitude of powerful speed-up techniques have been devel-
oped for point-to-point shortest path queries in static transportation networks.
These techniques work empirically extremely well for road networks, yielding
query times of a few microseconds in continental-sized networks, for a recent sur-
vey see [2]. Quite recently, Abraham et al. [3] complemented these observations
with the first rigorous proofs of efficiency for many of the speed-up techniques
suggested over the past decade. They introduced the notion of highway dimen-
sion and showed that networks with small highway dimension have good query
performance. In contrast, several empirical studies have shown that these speed-
up techniques work less well for public transportation networks (with scheduled
traffic for trains, buses, ferries, and airplanes) [4,5]. To understand this differ-
ence, it is helpful to consider time-expanded graph models where each arrival
or departure event corresponds to a vertex. These graphs are highly non-planar
and have relatively high highway dimension. A detailed explanation of further
reasons why timetable information in public transport is more challenging than
routing in road networks has been given by Bast [6].

Speed-up techniques in a dynamic context. The general challenge is to
design a speed-up technique based on preprocessing with the following features:
1. Even after many dynamic graph changes, we do not require a further time-

consuming preprocessing. Moreover, the speed-ups in a time-dependent sce-
nario with and without dynamic updates should be comparable.

2. The method should allow us to find all Pareto-optimal paths within a rea-
sonable range, not only one representative for each Pareto-optimal solution
vector.
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Related Work. The literature on point-to-point shortest path problems uses
the term dynamic in several different ways, leading to problem variants which
can be categorized as follows:

Problem version 1: (“static shortest path problem with cost updates”)
This model considers a static graph with cost updates. Static here refers to the
arc costs which are constant between two consecutive updates. This version can
be seen as a first step towards modelling traffic jams or blocked roads in road
networks. However, the shortcoming of this model is that it does not capture the
time dimension correctly. For example, if some bridge or road is blocked for half
an hour, it may or may not have an influence for a routing request, depending on
the point of time when one could reach this place. So at query time, the static
graph includes only one of these two possibilities.

Problem version 2: (“time-dependent earliest arrival problem with dy-
namic updates”) This model is built on a time-dependent graph, where each
arc has a discrete travel-time function. The travel functions can be used to
model speed profiles. These functions are dynamically updated at discrete time
points. Updates are unplanned changes of the speed profile, for example due to
a blocked bridge as above. This version is usually treated as a single-criterion
optimization problem with the objective to find a route with earliest arrival. A
standard approach is to look only for greedy paths. In road networks, this means
that the traveler immediately decides at a junction which road to take next (he
does not wait for better alternatives). In public transportation, greedy means
that the passenger takes the very first possibility on each line. Unfortunately,
optimal greedy paths can be sub-optimal in the set of all time-dependent paths
in a dynamic scenario. In road networks, it can now be reasonable to wait before
a blocked bridge for some minutes to get the faster path. Thus the problem is
closer to public transport where waiting times have to be considered already in
an undelayed scenario. These complications can be handled, but such queries
require a larger search effort for non-greedy paths [7].

Problem version 3: (“fully-dynamic multi-criteria on-trip problem”)
This version comprises discrete event-dependent multi-criteria search for all
shortest (s, t)-paths where one optimization criterion corresponds to the earliest
arrival time. If an additional optimization criterion depends on other attributes
than time, the problem becomes event-dependent (for example, on the specific
train). Fully dynamic here means that the travel time functions can be varied
freely, including arc deletions or temporarily blocked arcs.

Work on problem version 1 includes, for example, dynamic shortest path con-
tainers [8], dynamic highway node routing [9], landmark-based routing in dy-
namic graphs [10], dynamic arc flags [11], and contraction hierarchies [12].

Problem version 2 has found much less attention. Nannicini et al. [13] have
chosen a slightly different approach to handle a realistic dynamic situation in
road networks where traffic information data are updated each minute. They
relax the problem of finding shortest paths to determining paths which are
very close to an optimal solution. Their underlying graph model can be seen as
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time-dependent, the travel time functions are determined heuristically based on
real-time traffic data. Unfortunately, they cannot give a guarantee for the opti-
mality of a solution. Surprisingly, the proposed solution works well in practice,
with 0.55% average deviation from the optimal solution and a recorded max-
imum deviation of 17.59%. In another paper, Nannicini et al. [14] proposed a
two-phase polynomial time approximation scheme for the point to point shortest
path problem. In summary, there is no exact method available which has been
tested for problem version 2, and to the best of our knowledge, problem version 3
is first studied in this paper.

Our contribution. Our approach makes use of the following assumption which
is valid in a railroad scenario: the travel time on each time-dependent arc can
be lower-bounded by some positive value which we call the minimum-theoretical
travel time. Above this lower bound value, the travel time function can be freely
modified by dynamically changing delays. In particular, we allow the symbolic
value +∞ to model the unavailability of an arc. We only forbid dynamic updates
which insert new arcs into our model. This is no strong restriction since new rail-
road tracks will not be provided all of a sudden, they will usually be known right
in advance to be included into the preprocessing. Lower travel time bounds on
arcs extend to lower bounds on time- and event-dependent paths. This leads us
to the new notion of additive c-optimality for static and event-dependent paths.
Its properties are useful to restrict the search space with respect to a concrete
(s, t)-query. We introduce two new speed-up techniques which we call SUBITO
and k-flags. The speed-up technique SUBITO reduces the number of events in
a timetable and can be used on-the-fly without time-consuming preprocessing.
k-flags allow us to restrict the search to a subgraph after a preprocessing phase.
Both techniques can also be combined. For the first time, these techniques meet
all mentioned goals for a dynamic context.

The proposed techniques have been experimentally evaluated on the German
train networks with several realistic delay scenarios (a typical day of operation,
distributed delays due to bad weather like a “snow chaos”, and a major disrup-
tion at a single station). We observe a strong positive correlation of the observed
running time and the travel time. The best speed-ups are obtained for the most
difficult queries, i.e., those with large travel times. We also show that speed-up
factors are conserved under high update rates. In our experiments k-flags com-
bined with SUBITO have led to the largest speed-up factors, but only marginally
better than SUBITO alone. These observations can be explained by studying the
distribution of k-flags. It turns out that only a small fraction of arcs can be ex-
cluded if one wants to guarantee exact Pareto-optimal point-to-point queries.

Overview. The remainder of the paper is structured as follows. In Section 2, we
discuss the on-trip problem and briefly review our concept of time- and event-
dependent paths and provide basic definitions. Our main contribution — the
speed-up techniques SUBITO and k-flags — are introduced in Section 3. In
Section 4, we give the results of our experiments testing our speed up techniques
with real-time traffic data of German Railways.
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2 The On-Trip Problem

2.1 Graph Models

A timetable TT := (Z, S, C) consists of a tuple of sets. Let Z be the set of trains,
S the set of stations and C the set of elementary connections, that is

C :=
{

c = (z, s, s′, td, ta)
Train z ∈ Z leaves station s at time td.
The next stop of z is at station s′ at time ta.

}
.

A timetable TT is valid for a number of N traffic days. A timetable-valid func-
tion v : Z → {0, 1}N determines on which traffic days the train operates. We
denote a time value t in TT by t := a · 1440 + b with a ∈ [0, N ], b ∈ [0, 1439].
The actual time within a day is then tday = t mod 1440 and the actual day
d = � t

1440�. We define the station graph G = (V, A) with V := S and A :=
{(v, u)| v, u ∈ V, ∃c ∈ C(TT ) from v to u} . For several reasons it is useful to
construct an extended version of the station graph by splitting each arc of the
station graph G into parallel arcs. We denote a sequence (v1, . . . , vl) of pairwise
disjoint vertices vi ∈ V as a route r if there exists at least one train using ex-
actly these stations vi in the given order. This setting allows us to construct
the so-called station route graph Gr = (V, Ar) with Ar := {(v, u)r | (v, u) ∈
A, r is route in TT using arc (v, u)}.

Let T ⊂ N be a set of time points. With respect to the set of elementary
connections C we define a set of departure events Depv and arrival events Arrv

for all v ∈ V . Each event depv := (time, train, route) ∈ Depv and arrv :=
(time, train, route) represents exactly one departure or arrival event which con-
sists of the three attributes time, train and route. We assign to each arc a =
(v, u) ∈ Ar and departure event depv at v an arrival event arru which defines
the event that we reach vertex u if we depart in v with departure event depv

and traverse arc a on route r. This setting represents a corresponding elemen-
tary connection c ∈ C. Hence, the event depv departs at time depv(time) ∈ N

in v, travels on the arc a = (v, u) ∈ A and arrives at the corresponding event
arru at arru(time) ∈ T . Staying in any vertex can be limited to minimum and
maximum staying times minstay(arrv, depv), maxstay(arrv , depv) ∈ R+ which
have to be respected between different events in v. Staying times ensure the
possibility to transfer from one train to the next. The following definitions are
given with respect to an (s, t)-query for an earliest start time starts(time) at s.
For an (s, t)-query we ignore all arrival events at s, but introduce an artificial
“arrival event” starts with an earliest start time starts(time) ∈ N which can be
interpreted as an arrival time. Furthermore, we define one artificial “departure
event” endt which can be interpreted as a departure time in t.

Event-dependent vertices ve are 2-tuples which consist of an arrival event
arrv ∈ Arrv and a departure event depv ∈ Depv for a vertex v ∈ V , respecting
minimum and maximum staying times minstay, maxstay at v. Event-dependent
edges ae are tuples which consist of a departure event at v ∈ V and the corre-
sponding arrival event at u ∈ V by traversing the edge (v, u) ∈ Ar. These notions
have been introduced in [7]. We define a weighted discrete event-dependent graph
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G(Gr , s, t, starts) := (VE , AE , w) with respect to an (s, t)-query with an earli-
est start time starts(time) and underlying station route graph Gr. It is a tuple
consisting of the set of event-dependent vertices VE , the set of event-dependent
edges AE and a weight-function w ∈ (Rk)VE∪AE . The weight-function w assigns
to each event-dependent vertex vE a k-dimensional vector w(ve) ∈ Rk and to
each event-dependent edge ae a k-dimensional vector w(ae) ∈ Rk.

2.2 On-Trip Paths

Definition 1. An event-dependent path PE is an alternating sequence of event-
dependent vertices and edges with event-dependent vertices on its ends. The sta-
tions of the event-dependent vertices in PE are pairwise different. We call two
event-dependent paths comparable if their first event-dependent vertices possess
an identical arrival event and their last event-dependent vertices possess an iden-
tical departure event.

We distinguish between two notations for event-dependent paths. If we focus on
the origin v and the destination u of a path (“stations”), we call it event-dependent
(v, u)-path. On the other hand if we focus on starting and ending events of a path
we denote an event-dependent path which starts with the event-dependent vertex
vT = (arrv , depv) and ends with the event-dependent vertex uT = (arru, depu)
as Parrv,depu . Note that a single event-dependent vertex vT = (arrv, depv) is al-
ready an event-dependent path Parrv ,depv . All event-dependent (s, t)-paths in our
definition are comparable because they possess identical arrival events arrs :=
starts and identical departure-events dept := endt. Following Orda and Rom [15]
we define a function top which assigns to each event-dependent path PE its un-
derlying sequence p of vertices v ∈ V. We call p topological path of PE and denote
it by top(PE) =: p. Obviously, p is a simple path in the station-route-graph Gr,
because PE is vertex-disjoint due to Definition 1. For railway networks, we use
the following weight-function ontrip := (eatt, transfers) : VE ∪ AE → R+ for
all event-dependent vertices ve := (arrv, depv) ∈ VE and for all time-dependent
arcs ae := (depv, arru) ∈ AE .

eatt(ve) :=

⎧⎪⎨
⎪⎩

depv(time) − arrv(time), for all v ∈ V \ {s, t}
deps(time) − starts(time), for v = s

0, for v = t.

eatt(ae) :=
{

arru(time) − depv(time), for all v ∈ V.

transfers(ve) :=

{
1 for all v ∈ V \ {s, t} with depv(train) �= arrv(train)
0 otherwise.

transfers(ae) := 0

The first function eatt computes the earliest arrival travel time, it includes travel
times on arcs and staying times at stations. The second function transfers
counts the number of transfers between trains. For an event-dependent path
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PE we define ontrip(PE) :=
∑

ve∈VE
ontrip(ve) +

∑
ae∈AE

ontrip(ae). Pareto-
optimal on-trip paths can be computed by a Dijkstra-like labeling algorithm,
see [7] for details. We would like to point out that Pareto-optimal on-trip greedy
paths are not necessarily Pareto-optimal on-trip paths in the station graph.
Fortunately, one can show that the set of Pareto-optimal on-trip greedy paths
is a subset of all Pareto-optimal on-trip paths in the station route graph Gr.

3 Speed-Up Techniques SUBITO and k-Flags

3.1 c-Optimality and the SUBITO Technique

In this section we consider a dynamic timetable, i.e., one with dynamic changes
for departure and arrival events. In particular, departure times and arrival times
can change. Let Gr = (V, Ar) be the station route graph with a static weight g.
Let V ∗ := {V 1, . . . , V ν} be a partition of vertex set V, each element V j ∈ V ∗ is
called a region. Furthermore, we denote all vertices b ∈ V j as boundary vertices
of region V j if and only if there exists at least one arc (b, u), (u, b) ∈ Ar with
u /∈ V j . We define the arc-weight-function g : Ar → R+, denoting the minimal
theoretical travel time on arc a ∈ Ar on the station route graph Gr. Further-
more, we denote the minimal theoretical travel time on a topological path p by
g(p) :=

∑
a∈p g(a). We denote by dg(s, t) := minp∈pst g(p) the smallest minimal

theoretical travel time between two stations s and t. We call a topological (s, t)-
path p with dg(s, t) ≤ g(p) ≤ dg(s, t) + c a c-optimal topological path. These
definitions give us the desired substructure properties of c-optimality.

Theorem 1 (substructure property of c-optimal paths). Let p′ be a topo-
logical subpath of an (s, t)-topological path p in the station route graph Gr =
(V, Ar, g). Then we have: p is c-optimal ⇒ p′ is c-optimal.

Next we define a subset of event-dependent paths. We call an event-dependent
path Parru,depv with eatt(Parru,depv ) ≤ dg(v, v) + c and c ∈ R+ an event-
dependent c-optimal path. This definition relates static and event-dependent
paths. Similar to static c-optimal paths we also observe a substructure property
for c-optimal event-dependent paths.

Theorem 2 (event-dependent c-optimality and substructure property)
Let Pstarts,endt be an event-dependent c-optimal path in G(Gr , s, t, starts) with
eatt(Pstarts,endt) ≤ dg(s, t) + c. Then each subpath Pstarts,depu is an event-
dependent c-optimal path with eatt(Pstarts,depu) ≤ dg(s, u) + c.

Our goal is to find all on-trip paths arriving at most maxtime time after the
earliest possibility. In the first step of our algorithm we determine the small-
est minimum theoretical travel times dg(s, v) for all v ∈ V . In a next step we
determine the earliest arrival time at t with respect to the earliest start time
starts(time) in s. Then, we determine the maximum required value cmax by
computing cmax := eatt + maxtime − dg(s, t). Finally, we apply a Dijkstra-like
labeling algorithm where we now can ignore departure events depu which do
not fulfill depu(time) ≤ dg(s, u) + cmax. We denote these speed-up technique as
SUBITO-technique for substructure in t ime-dependent optimization.
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3.2 The Idea and Correctness of k-Flags

In this section we introduce the notion of k-flags which generalize classical
arc-flags.

Definition 2 (k-flags). Let Gr = (V, Ar, g) be the station route graph, V ∗ a
vertex partition of V , ci ∈ N+ ∪ {0} with c1 < · · · < ck, and i ∈ {1, · · · , k}. We
define for each a = (v, u) ∈ Ar the k-flag function fa ∈ {1, · · · , k}V ∗

with

fa(V j) = min{i | ∃ t ∈ V j and a ci-optimal path p = (v, u, · · · , t)}.
Note, that there may exist vertices v with dg(v, t) = ∞ for all t ∈ V j . In this
case all arcs (v, u) do not get a k-flag for region V j . We construct a sequence of
query graphs Gi

V j := (V i
V j , Ai

V j ), i ∈ {1, · · · , k} with respect to an (s, t)-query.
We define Ai

V j := {a ∈ Ar | fa(V j) ≤ i, t ∈ V j} and V i
V j := {v ∈ V | (v, u) ∈

Ai
V j ∨ (u, v) ∈ Ai

V j}. It follows Ai
V j ⊂ Ai+1

V j ⊂ Ar for all i ∈ {1, · · · , k − 1}.
The next theorem proves that we find all ci-optimal topological (s, t)-paths p in
query graph Gi

V j . This reduces the number of arcs in our station route graph
for the search of ci-paths with i < k.

Theorem 3 (consistence of c-optimality). Let Gr = (V, Ar, g) be the station
route graph and Gi

V j := (V i
V j , Ai

V j ) the query-graph from level i. Then it follows:
p is ci-optimal topological (s, t)-path in Gr = (V, Ar) ⇔ p is ci-optimal topological
(s, t)-path in Gi

V j := (V i
V j , Ai

V j ).

The next theorem shows that we are able to find all optimal on-trip paths (with
an arrival time at most ci time units after the fastest path) in the event-dependent
graph possessing as underlying station graph our reduced query graph.

Theorem 4 (arc reduced event-dependent query graph). Let Gr =(V, Ar)
be the station route graph, G(Gr , s, t, starts) the corresponding event-dependent
graph. Let Gi

V j = (V i
V j , Ai

V j ) the query graph, G(Gi
V j , s, t, starts) the correspond-

ing event-dependent graph. Then it follows: Parrv,depu is an event-dependent ci-
optimal path in G(Gr , s, t, starts)
⇒ Parrv,depu is an event-dependent ci-optimal path in G(Gi

V j , s, t, starts).

SUBITO and k-flags can be combined, that means, we search for event-dependent
ci-optimal paths in G(Gi

V j , s, t, starts) where we ignore all event-dependent
(s, u)-subpaths Pstarts,depu which are not ci-optimal. The correctness of this
approach follows by Theorems 2 and 4. See a pseudocode in Algorithm 1.

4 Experimental Study

Test instances and environment. Our computational study is based on the
German train schedule of 2008. This schedule consists of 8817 stations, 40034
trains on 15428 routes, 392 foot paths, and 1,135,479 elementary connections.
In our station route graph model we obtain a graph with 189,214 arcs. For our
tests, we used queries with randomly chosen start stations and destinations, and
different earliest start times (namely 0:00, 4:00, 8:00, 12:00, 16:00, 20:00).
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Algorithm 1. On-Trip-Algorithm with SUBITO k-flags
Input: Origin s, destination t ∈ V j , earliest start event starts, preprocessed schedule,

parameter maxtime ≥ 0.
Output: Set of ci-optimal on-trip paths for i = 1, . . . , imax ≤ k. //Let Pstarts,endt

be an event-dependent Pareto-optimal path with minimum eatt. We deter-
mine all Pareto-optimal on-trip paths P ′

starts,endt
with eatt(P ′

starts,endt
) ≤

eatt(Pstarts,endt) + maxtime ≤ dg(s, t) + cimax .
1: Compute the minimum theoretical travel time dg(s, v) for all v ∈ V in Gr.
2: Compute the minimal earliest arrival travel time (eatt) at t ∈ V. //Do a single-

criteria event-dependent Dijkstra search with respect to eatt level by level until t is
settled.

3: Compute the maximum required level imax with respect to maxtime.
4: Compute Pareto-optimal on-trip-paths with a label setting algorithm (see [7])

on the query graph Gimax

V j . Ignore departure events which do not possess cimax -
optimality (SUBITO).

We considered three types of delay scenarios:

1. We used the complete delay information of a typical day of operation in
Germany available at 8:00 a.m.

2. We simulated a number of considerable delays distributed over all Germany.
Our experiments are parameterized with the number x ∈ {10, 50, 100, 150}
of primary delays and the delay size s ∈ {5, 10, . . . , 60}.

3. We simulated a major disruption at a single station, more precisely, we
stopped all trains passing through this station by two hours. This scenario
models disruptions due to a power failure, the breakdown of a signal tower,
or the evacuation of a station after a bomb threat.

For the simulation of delays we used the prototype MOTIS (multi-objective traf-
fic information system) which provides a fully realistic model using the standard
waiting policies of German Railways to calculate secondary delays. MOTIS can
handle massive data streams [1]. All experiments were run on a standard PC
(Intel(R) Xeon(R), 2.93GHz, 4MB cache, 47GB main memory under ubuntu
linux version 8.10). Only one core has been used by our program. Our code is
written in C++ and has been compiled with g++ 4.4.1 and compile option -O3.

Algorithmic variants and combinations. We used the following variants:

– base: This variant is a reasonably tuned multi-criteria Dijkstra-like algo-
rithm which uses the speed-up technique dominance by results in combina-
tion with lower travel time bounds towards the destination (cf. [4]).

– goal: This version adds to base a version of goal-directed search.
– SUBITO refers to our new speed-up technique.
– kFlags refers to a version which combines all other techniques with k-flags.
– If we search only for greedy paths, we denote this by the attribute greedy.

Each variant is parameterized by maxtime, i.e., we search for paths which arrive
at most maxtime minutes after the earliest possibility at the destination.
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Fig. 1. Comparison of different speed-up techniques

Fig. 2. Experiment 1: Results of greedy k-flags with maxtime = 0. Each column cor-
responds to a class of queries with the same earliest start time.

Preprocessing. SUBITO either requires no preprocessing at all (the variant
used in our experiments) or a single all-pairs shortest path computation on
the station route graph which takes less than two minutes (and requires no
update after dynamic changes). The computation of k-flags is computationally
expensive, it requires about 3h 40 minutes for 128 regions.

Experiment 1: No delays. In our first experiment, we are interested in the
comparison of variants in a scenario without delays. In Figure 1, we display
the results of the base variant in comparison with goal-direction, SUBITO and
kFlags (with and without greedy heuristic), and maxtime ∈ {0, 30, 60}. The base-
line variant requires an average CPU time of 1.63s. Turning on goal-direction,
already reduces the average CPU time to 0.25s. For fixed parameter maxtime,
the kFlags variant is consistently the fastest method, but only marginally faster
than SUBITO (an explanation follows below). Searching for greedy paths al-
lows a significant speed-up over non-greedy paths. It is interesting to observe
that CPU times and speed-ups depend on the earliest start time and the ear-
liest arrival travel time (eatt). Figure 2 shows this dependency. The longer the
travel time, the more CPU time is needed, but speed-ups are also higher for
such queries.
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Experiment 2 (delays on an ordinary day of operation). We have run an
experiment with original delay data for a typical day of operation. Using several
thousands of passenger queries, we observed almost no measurable effect on the
running time. A corresponding table is therefore omitted.

Experiment 3 (distributed delays “snow chaos”). The purpose of our next
experiment is to analyze whether the speed-up techniques are robust against
an increasing number of update operations. We varied the number of primary
delays from 10 to 150, leading to 188 and 4978 graph update operations, re-
spectively. While several previous computational studies observed a major drop
down of speed-ups already after a few update operations [8,11], there is almost
no measurable effect on the CPU time and speed-up factors when we increase
the number of primary delays.

Experiment 4 (closing down a central station for two hours ). Next we
analyzed the effect of stopping all trains passing through some central station for
two hours (from 11:55 to 13:55). For that purpose, we selected three major Ger-
man railway stations (Frankfurt am Main Hbf, Hannover Hbf, and Leipzig Hbf).
For this experiment, we use a special set of 1000 queries each, designed such that
it is likely that the fastest route usually would pass the closed station. Indeed,
we observed a posteriori that a high percentage of passengers were affected and
had to suffer from an increased earliest arrival time. For example, in the case of
Frankfurt, even 98% of the passengers arrived later than without delays. As a
consequence, queries require slightly more CPU time, but the speed-up factors
over the baseline variant increase even slightly, see Table 1.

Table 1. Closing down a major station (Frankfurt a.M. Hbf, Hannover Hbf, Leipzig
Hbf) for two hours. Average query time in seconds and speed-up factors over base.

Variant Frankfurt a.M. Hbf Hannover Hbf Leipzig Hbf
CPU speed-up CPU speed-up CPU speed-up

base 2.21 1.00 2.69 1.00 2.49 1.00
goal 0.79 2.80 0.34 7.91 0.27 9.27
SUBITO, maxtime = 60 0.24 9.11 0.28 9.78 0.23 10.76
kFlags, maxtime = 60 0.24 9.32 0.27 9.96 0.23 10.92
greedy, kFlags, maxtime = 60 0.19 11.93 0.20 13.54 0.18 14.20
greedy, kFlags, maxtime = 0 0.13 17.39 0.15 17.93 0.13 19.18

Analysis of k-flag distribution. The distribution of k-flags sheds some light
on the potential speed-up which can be gained by techniques which try to thin
out the station route graph.

For train networks we observe that a multi-criteria search requires a large
fraction of arcs in order to guarantee exact solutions for point-to-point queries.
The average maximal required c-value cmax for our queries is cmax = 143, which
means that the underlying search subgraph for the k-flag technique consists of
about 72% of all arcs. About 25% of all arcs can be excluded since the destination
cannot be reached on simple paths.
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Abstract. Accelerating the computation of quickest paths in road networks has
been undergoing a rapid development during the last years. The breakthrough
idea for handling road networks with tens of millions of nodes was the concept
of shortcuts, i.e., additional arcs that represent long paths in the input. Very re-
cently, this concept has been transferred to time-dependent road networks where
travel times on arcs are given by functions. Unfortunately, the concept of short-
cuts is very space-consuming in time-dependent road networks since the travel
time functions assigned to the shortcuts may become quite complex.

In this work, we present how the space overhead induced by time-dependent
SHARC, a technique relying on shortcuts as well, can be reduced significantly.
We are able to reduce the overhead stemming from SHARC by a factor of up to
11.5 for the price of a loss in query performance of a factor of 4. The methods we
present allow a trade-off between space consumption and query performance.

1 Introduction

Route Planning is a prime example of algorithm engineering. Modeling the network as
graph G with arc weights depicting travel times, the shortest path in G equals the quick-
est connection in the transportation network. In general, DIJKSTRA’s algorithm [12]
solves this task, but unfortunately, the algorithm is way to slow to be used in transporta-
tion networks with tens of millions of nodes. Therefore, so called speed-up techniques
split the work into two parts. During an offline phase, called preprocessing, additional
data is computed that accelerates queries during the online phase. The main concept for
route planning in road networks was the introduction of so called shortcuts, i.e., arcs
representing long paths, to the graph. A speed-up technique then relaxes the shortcut
instead of the whole path if the target is “sufficiently far away”.

However, adapting the concept of shortcuts to time-dependent road networks yields
several problems. A travel time function assigned to the shortcut is as complex as all
arc functions the shortcut represents. The reason for this is that we need to link piece-
wise linear functions (cf. [8] for details). For example, a straightforward adaption of
Contraction Hierarchies [13], a technique relying solely on shortcuts yields an overhead
of ≈ 1000 bytes per node [1] in a time-dependent scenario whereas the overhead in a
time-independent scenario is almost negligible.
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[9] gives an overview over time-independent speed-up techniques, while [11] sum-
marizes the recent work on time-dependent speed-up techniques. As already mentioned,
all efficient speed-up techniques for road networks rely on adding shortcuts to the graph
making the usage of them in a limited time-dependent environment complicated. Mem-
ory efficient variants of time-independent speed-up techniques however exist. For ex-
ample, Contraction Hierarchies [13] have been implemented on a mobile device [21].
The straightfoward time-dependent variant [1] is very space-consuming. The ALT [14]
algorithm, which works in a time-dependent scenario as well [19], has been imple-
mented on an external device [15] as well. However, space consumption of ALT is
rather high and performance is clearly inferior to SHARC. Work on the compression
of time-independent graph data structures can also be found in [4,5]. To the best of
our knowledge, we were the first who studied the problem of compressing a high-
performance time-dependent speed-up technique [7]. However, since the publication
of [7], the memory consumption of time-dependent Contraction Hierarchies has been
reduced [2]. Still, our approach yields a factor of 1.6 less overhead.

In this work, we present how to compress the preprocessing of SHARC, introduced
in [3] and augmented to the time-dependent scenario in [8], without too high of a loss in
query performance. The key idea is to identify unimportant parts of the preprocessing
and remove them in such a way that correctness of SHARC can still be guaranteed.
After settling preliminaries and recalling SHARC in Section 2, we present our main
contribution in Section 3. There, we show how to reduce the overhead stemming from
arc-flags stored to the graph, by mapping unimportant arc-flag vectors to important
ones. The advantage of this approach over other compression schemes such as bloom
filters [6] is that we do not need to change the query algorithm of SHARC. Due to
this fact, we keep the additional computational effort limited. Moreover, we show that
we can remove shortcuts from SHARC, again without changing the query algorithm.
Finally, we may even remove the complex travel time functions from the shortcuts by
reproducing the length function on-the-fly. In Section 4 we run extensive tests in order to
show the feasibility of our compression schemes. It turns out that we can safely remove
40% of the arc-flag information without any loss in query performance. Moreover, about
30% of the shortcuts added by SHARC are of limited use as well. So, we may also
remove them. Finally, it turns out that by removing the travel time functions from the
remaining shortcuts, we can reduce the overall overhead of SHARC significantely. As
a result, we are able to reduce the overhead induced by SHARC by a factor of up to
11.5. The resulting memory efficient variant of SHARC yields an overhead of 13.5
(instead of 156) bytes per node combined with average query times of about 3 ms (on
the German road network with realistic time-dependent traffic), around 500 times faster
than DIJKSTRA’s algorithm.

2 Preliminaries

A (directed) graph G = (V,A) consists of a finite set V of nodes and a finite set E of
arcs. An arc is an ordered pair (u,v) of nodes u,v ∈ V , the node u is called the tail
of the arc, v the head. The number of nodes |V | is denoted by n, the number of arcs
by m. Throughout the whole work we restrict ourselves to directed graphs which are
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weighted by a piece-wise linear periodic travel time function len. A travel time function
len(e) is defined by several interpolation points, each consisting of a timestamp t and a
travel time w > 0, depicting the travel time on e at time t. The travel time between two
interpolation points is done by linear interpolation. The composition of two travel time
functions f ,g is defined by f ⊕g := f +(g ◦ ( f + id)).

A partition of V is a family C = {C0,C1, . . . ,Ck} of sets Ci ⊆ V such that each node
v ∈ V is contained in exactly one set Ci. An element of a partition is called a cell. A
multilevel partition of V is a family of partitions {C 0,C 1, . . . ,C l} such that for each
i < l and each Ci

n ∈ C i a cell Ci+1
m ∈ C i+1 exists with Ci

n ⊆ Ci+1
m . In that case the cell

Ci+1
m is called the supercell of Ci

n. The supercell of a level-l cell is V .
The original arc-flag approach [17,16] first computes a partition C of the graph and

then attaches a label AF to each arc e. A label contains, for each cell Ci ∈ C , a flag
AFCi(e) which is true if a shortest path to a node in Ci starts with e. A modified
DIJKSTRA then only considers those arcs for which the flag of the target node’s cell is
true. Given two arc-flag vectors AF1,AF2. The OR arc-flags vector AF1 ∨AF2 has all
arc-flags set to true that are true in AF1 or AF1. The AND of two arc-flags vectors is
defined analogously and is denoted by AF1 ∧AF2.

Note that more and more arcs have a flag set for the target’s cell when approaching
the target cell (called the coning effect) and finally, all arcs are considered as soon as
the search enters the target cell. Hence, [18] introduces a second layer of arc-flags for
each cell. Therefore, each cell is again partitioned into several subcells and arc-flags are
computed for each. This approach can be extended to a multi-level arc-flags scenario
easily. A multi-level arc-flags query then first uses the flags on the topmost level and as
soon as the query enters the target’s cell on the topmost level, the lower-level arc-flags
are used for pruning. In the following we denote by the level of an arc-flag the level of
layer it is responsible for.

SHARC [3]. The main disadvantage of a multi-level arc-flags approach is the time-
consuming preprocessing [16]. SHARC improves on this by the integrating of contrac-
tion, i.e., a routine iteratively removing unimportant nodes and adding shortcuts in order
to preserve distances between non-removed nodes. Preprocessing of SHARC is an iter-
ative process: during each iteration step i, we contract the graph and then compute the
level i arc-flags. One key observation of SHARC is that we are able to assign arc-flags
to all bypassed arcs during contraction. More precisely, any arc (u,v) outgoing from a
non-removed node and heading to a removed one gets only one flag set to true, namely,
for the region v is assigned to. Any other bypassed arc gets all flags set to true. By this
procedure, unimportant arcs are only relaxed at the beginning and end of a query. Al-
though these suboptimal arc-flags already yield a good query performance, SHARC
improves on this by a (very local) arc-flag refinement routine. The key observation here
is that bypassed arcs may inherit flags from arcs not bypassed during contraction (cf. [3]
for details). It should be noted SHARC integrates contraction in such a natural way that
the multi-level arc-flags query can be applied to SHARC without modification.

Due to its unidirectional query algorithm, SHARC was a natural choice for aug-
menting it to a time-dependent [8] and a multi-criteria scenario [10]. The idea is the
same for both augmentations: adapt the basic ingredients of the preprocessing, i.e.,
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arc-flags, contraction, and arc-flags refinement, such that correctness of them can still
be guaranteed and leave the basic concept untouched. It turns out that SHARC per-
forms pretty well in both augmented scenarios. However, a crucial problem for time-
dependent route planning are shortcuts representing paths in the original graph. While
this is “cheap” in time-independent networks, the travel time functions assigned to time-
dependent shortcuts may become quite complex. In fact, the number of interpolation
points defining the shortcut is approximately the sum of all interpolation points as-
signed to the arcs the shortcut represents. See [8] for details. In fact, the overhead of
SHARC increases by a factor of up to 10 when switching from a time-independent to
a time-dependent scenario exactly because of these complex travel time functions.

SHARC adds auxiliary data to the graph. More precisely, the overhead stems from
several ingredients: Region information, arc-flags, topological information of shortcuts,
the travel time functions of shortcuts and shortcut unpacking information. We call the
graph enriched by shortcuts and any other auxiliary data the output graph.

The first overhead, i.e., the region information, is used for determining which arc-flag
to evaluate during query times. This information is encoded by an integer and cannot
be compressed without a significant performance penalty. We have a arc-flags vector
for each arc. However, the number of unique arc-flags vectors is much smaller than
the number of arcs. So, instead of storing the arc-flags directly at each arc, we use a
separate table containing all possible unique arc-flags sets. In order to access the flags
efficiently, we assign an additional pointer to each arc indexing the correct arc-flags set
in the table. The main overhead, however, stems from the shortcuts we add to the graph.
For each added shortcut, we need to store the topological information, i.e., the head
and tail of the arc, and the travel time function depicting the travel time on the path the
shortcut represents. Moreover, we need to store the arcs the shortcut represents in order
to retrieve the complete description of a computed path.

3 Preprocessing Compression

In this section, we show how to reduce the space consumption of SHARC by removing
unimportant arc-flags, shortcuts, and functions without violating correctness.

Arc-Flags. The first source of overhead for SHARC is storing the arc-flags for each
arc. As already mentioned, our original SHARC implementation already compresses
the arc-flag information by storing each unique arc-flag set separately in a table (called
the arc-flags table) and each arc stores an index to the arc-flag table. Figure 3 gives a
small example.

Lemma 1. Given a correct SHARC preprocessing. Flipping (arbitrary) arc-flags from
false to true does not violate the correctness of SHARC.

Proof. Let P = (u1, . . . ,uk) be an arbitrary shortest path in G. Since SHARC-Routing
is correct, we know that each arc (ui,ui+1) has the arc-flag being responsible for t set to
true. Since we only flip bits from false to true, this also holds after bit-flipping. ��
This lemma allows us to flip bits in the arc-flag table from false to true. Hence, we
compress the arc-flag table by bit-flipping. Let AFr,AFm be two unique arc-flag vectors
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Fig. 1. Compression of Arc-Flags. The input is partitioned into three cells, indicated by coloring.
A set arc-flag is indicated by color and a one. Instead of storing the flags directly at the arcs (left
figure), we store each unique arc-flags vector in a separate table with arcs indexing the right arc-
flags vector (middle figure). We additionally compress the table by flipping bits from false to
true (right figure) and thus, we reduce the number of entries in the table. The remapped indices
are drawn thicker.

such that AFr ⊆ AFm, i.e., all arc-flags set in AFr are also set in AFm. Then, we may
remove AFr from our arc-flag table and all arcs indexing AFr are remapped to AFm.
Note that this compression scheme has no impact on the query algorithm.

The compression rate achieved by bit-flipping highly depends on which arc-flag
vectors to remove and to which arc-flag vectors they are mapped. We introduce an
arc-flag costs function cost assigning an importance value to each arc-flags vector.
The idea is as follows: for each layer i of the multi-level partition, we introduce a
value costi. Let |AFi| be the number of flags set to true on level i. Then we de-
fine cost(AF) = ∑l

i=0 costi ·|AFi|. The higher the costs of an arc-flags vector scores,
the more important it is. So, a good candidate for removing it from the table should
have low costs. The remaining question is what a good candidate for mapping is.
Therefore, we define the flipping costs between two arc-flag vectors AFr,AFm with
AFr ⊆ AFm as cost(AFr ∧AFm). A good mapping candidate AFm for a vector AFr to
be removed is the arc-flags vector with minimal flipping costs. It is easy to see that
cost(AFr ∧AFm) = cost(AFm)− cost(AFr) holds. We reduce the overhead induced by
arc-flags by iteratively removing arc-flags vectors from the table. Therefore, we order
the unique arc-flags vectors non-decreasing by their costs. Then, we remove the arc-
flags vector AFr with lowest costs from the table and remap all arcs indexing AFr to the
arc-flags vector AFm with minimal costs and for which AFr ⊆ AFm holds.

Shortcuts. In Section 2, we discussed that, at least in the time-dependent scenario,
the main source of overhead derives from the (time-dependent) shortcuts added to the
graph. In [3], we already presented a subroutine to remove all shortcuts from SHARC.
However, this yielded a high penalty in query performance. The following lemma recaps
the main idea.

Lemma 2. Given a correct SHARC preprocessing. Let (u,v) be an added shortcut dur-
ing preprocessing and let Puv = (u,u0, . . . ,uk,v) be the path it represents. By remov-
ing (u,v) from the graph and setting AF(u,u0) = AF(u,u0)∨AF(u,v), correctness of
SHARC is not violated.
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Proof. Let P = (s, . . . ,u,v, . . . ,t) be an arbitrary shortest path using shortcut (u,v) in
the output graph of SHARC. Let also (u,u0) be the first edge of the path (u,v) rep-
resents in the original graph. We need to show that after removing (u,v), the path
P′ = (s, . . . ,u,u0, . . . ,t) has all flags for t set to true. Since SHARC is correct, we
know that the subpath (s, . . . ,u) has correct flags set. Moreover, (u,u0) has proper flag
set as well, since we propagate all flags from (u,v) to (u,u0). We also know that the
shortest path from u0 to t must not contain (u,v) since we restrict ourselves to positive
length functions (cf. Section 2). Due to correctness of SHARC, the shortest path from
u0 to t must have proper flags set. Hence, P′ has proper flags set as well. ��

u v

u0 uk

010100

010111 010111000010

u v

u0 uk
010111 010111010110

Fig. 2. Example for removing
the shortcut (u,v), represent-
ing (u,u0,uk,v), by propagat-
ing flags from (u,v) to (u,u0)

In other words, we reroute any shortest path query using
a removed shortcut (u,v) to its path it represents, Figure 2
gives an example. The lemma allows us to remove arbi-
trary shortcuts from the output graph. Note that we may
again leave the SHARC query untouched. Some short-
cuts are more important than others and the ordering in
which we remove shortcuts has a high impact on the re-
sulting query performance. Generally, a removed short-
cut should only have low arc-flags costs (cf. Section 4).
Furthermore, let l(u) be the level of an arbitrary node
u, given by iteration u was removed during the original
preprocessing of SHARC (cf. Section 2). We define the
tail-level of a shortcut (u,v) by l(u), while l(v) is the
head-level. Presumably, shortcuts with low head and tail levels are less important than
those with high ones. A fourth indicator for the importance of a shortcut is the so-called
search space coning coefficient. Let (u,v) be a shortcut and let Puv = (u,u0, . . . ,uk,v)
be the path it represents. Then the search space coning coefficient of (u,v) is given
by sscc(u,v) = ∑ui∈Puv ∑(ui,w)∈E,w �=ui+1

cost
(
AF(u,v)∧AF(ui,w)

)
. In other words, the

search space coning coefficient depicts how many arcs may be relaxed additionally if
(u,v) was removed, i.e., the search cones. Therefore, the arc-flags of any outgoing arc
from ui ∈ Puv is examined and whenever a flag is set that is also set for the shortcut, the
search space coning coefficient increases.

Our shortcut-removal compression scheme iteratively removes shortcuts from the
graph and sets arc-flags according to Lemma 2. We use a priority queue to determine
which shortcut to remove next. The priority of a shortcut is given by a linear combi-
nation of its head level, its tail level, its arc-flag costs, and the search space coning
coefficient. We normalize these values by their maximal values during initialization.

Removing Travel Time Functions. Removing shortcuts from the output graph increases
the search space since unnecessary arcs may be relaxed during traversing the path the
shortcut represents. However, the main problem of time-dependent shortcuts are their
complex travel time functions. Another possibility to remedy this space consumption is
to remove the travel time functions but to keep the shortcut itself. Now, when a shortcut
is relaxed, we compute the weight of it by unpacking the shortcut on-the-fly. The ad-
vantage of this over complete removal of the shortcut is that the search space does not
increase. However, due to on-the-fly unpacking query times may increase.
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Again, like for removing shortcuts and arc-flags compression, we are able to remove
the travel time functions only from some of the shortcuts. On the one hand, we want
to remove a shortcut with a complex function, and on the other hand, it should not be
relaxed too frequentely. Hence, we use a priority queue in order to determine which
function to delete next. As key for (u,v) we use a linear combination of the number of
interpolation points of len(u,v) and the arc-flag costs of AF(u,v).

4 Experiments

Our experimental evaluation has been done on one core of an AMD Operon 2218 run-
ning SUSE Linux 11.1. The machine is clocked at 2.6 GHz, has 16 GB of RAM and
2 x 1 MB of L2 cache. The program was compiled with GCC 4.3, using optimization
level 3. Our implementation is written in C++. As priority queue we use a binary heap.

We use the German road network as input, it has approximately 4.7 million nodes
and 10.8 million arcs. We have access to five different traffic scenarios, generated from
realistic traffic simulations: Monday, midweek (Tuesday till Thursday), Friday, Satur-
day, and Sunday. All data has been provided by PTV AG [20] for scientific use.

For testing our compression schemes, we run a complete time-dependent SHARC
preprocessing (heuristic variant [8]) on our Monday instance, we use our default pa-
rameters from [8]. The input has a space consumption of 44.2 bytes per node. SHARC
adds about 2.7 million shortcuts and increases the number of interpolation points (for
time-dependent arcs) from 12.7 million to about 92.1 million, yielding a total over-
head of 156.94 additional bytes per node. Form those 156.94 bytes per node, 11.55 are
stemming from shortcuts (topology and unpacking information), 8.2 from the arc-flag
information, 2.0 from the region information, while 135.31 bytes per node stem from
the additional interpolation points added to the graph. Hence, the main overhead stems
from the latter. Note that the total overhead is slightly higher than reported in [8]. The
reason for this is a change (we now store no interpolation point for a time-independent
edge) to a more space-efficient graph data structure. Note that the heuristic variant of
SHARC may compute a path that is slightly longer than the shortest in very few occa-
sions [8]. However, all insights gained her also hold for any other variant.

In order to evaluate how well our schemes work, we evaluate the query performance
of this SHARC preprocessing after compression. Therefore, we run 100 000 s-t queries
for which we pick s, t, and the departure time uniformly at random. Then, we provide
the average query time. Note that we do not report the time for unpacking the whole
path. However, this can be done in less than 0.1 ms.

Arc-Flags. Figure 4 depicts the performance of time-dependent SHARC in our Mon-
day scenario after removing a varying amount of arc-flags vectors for different cost
functions. Note that we do not provide running times for compression since it takes less
than one minute to compress the arc-flags. This is only a small fraction of the time the
SHARC preprocessing takes (3-4 hours). We observe that the choice of the cost function
has a high impact on the success of our flag compression scheme. As expected, a cost
function that prefers flipping of low-level flags (cost function 1,3,9,27,243) performs
better than one that prefers high-level flags (cost function 16,8,4,2,1). Interestingly, we
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Fig. 3. Removing arc-flags (left) and shortcuts (right) from the output graph with cost functions.
For arc-flags, the entry on the left indicates the costs for flipping a low level flag, while the right
most entry shows the costs for flipping the highest level.

may remove up to 40% of the arc-flags vectors without any loss in performance. This
reduces the overhead induced by arc-flags from 8.2 bytes per node to 7.2. By removing
60% of the vectors (resulting overhead: 6.9), the query performance decreases only by
10%. However, removing more than 70% of the flags yields a significant penalty in per-
formance, although the overhead (for arc-flags) is only reduced to 6.3 bytes per node.
So, since arc-flags contribute only a small fraction to the overhead, it seems reasonable
to settle for a arc-flag compression rate of 40%.

Shortcuts. Figure 4 depicts the performance of SHARC after removing a varying
amount of shortcuts for different linear coefficients introduced in Section 3. Note again
that we do not report running times for compression since it takes less than one minute
to obtain the reduced preprocessed data. We observe that we can remove up to 45% of
the shortcuts yielding a mild increase in query performance (≈ 10%). This reduces the
overhead of the shortcuts from 11.55 bytes per node to 7.51. Moreover, the overhead
induced by travel time functions is reduced from 135.31 to 118.72 bytes per node since
some of the removed shortcuts are time-dependent. Up to 65%, the loss in query per-
formance is still acceptable (a factor of 2), especially when keeping the gain in mind:
the overhead for shortcuts reduces to 5.3 bytes per node and 97.7 bytes per node for
additional interpolation points. Analyzing the impact of ordering, we observe that the
level of head and tail seem to be the most important parameters. Interestingly, the head
level seems to be more important than the tail level. The reason for this is that short-
cuts from lower to higher levels are relaxed at the beginning of a query, while shortcuts
from higher to lower levels are relaxed at the end. Since removing shortcuts cones the
query (cf. Section 3), the latter shortcuts are less important. The influence of the search
space coning coefficient is minor and only observable for very low compression rates: at
20%, the loss in performance is almost negligible. In the following, we will use values
of 20%, 45%, and 65% as default parameters.
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Fig. 4. Removing travel time functions. The
x-axis indicates how many of the additional
interpolation points are removed by the com-
pression scheme. Coefficients not indicated are
set to zero.

Travel Time Functions. Figure 4 indi-
cates the query performance of SHARC
after removing travel time functions from
time-dependent shortcuts. We here evalu-
ate different orderings given by different
weights for the coefficients arc-flag costs
and number of interpolation points, as
explained in Section 3. We observe that
for low compression rates, the arc-flag
costs are more important than the number
of points on the shortcut. However, the
situation is vice versa between compres-
sion rates between 60% and 85%: here an
ordering based on the number of points
performs better than the order based on
arc-flag costs. However, the differences
are marginal, hence we use arc-flag costs
as default for determing the ordering. In
general, we may remove up to 40% of the
additional points for a loss of query performance of about 25%. This already reduces
the overhead induced by additional interpolation points to 81.2 bytes per node. The
corresponding figures for a compression rate of 60% are a query performance penalty
of factor 2 and a resulting overhead of 63.1. Most remarkably, we may even remove
all additional interpolation points from the output graph with paying “only” a loss of
performance of a factor of 3.2. This yields a total overhead of 21.6 bytes per node, a
reduction of factor of 7.5 over the uncompressed preprocessing. Still the average query
performance of 2.3 ms is still a speedup of a factor of 678 over DIJKSTRA’s algorithm.

Combinations. Up to now, we evaluated each compression scheme separately. Table 1
gives an overview if we combine all three schemes among each other. We here report
the overhead of the preprocessed data in terms of additional bytes per node. For eval-
uating the query performance, we not only provide query times but also the average
number of settled nodes and relaxed arcs for 100 000 random s-t queries. Moreover, we
report the speed-up over our (efficient) implementation of time-dependent Dijkstra. On
this input, the latter settles about 2.2 million arcs in about 1.5 seconds on average. We
observe that we may vary the compression rate yielding different total overhead and
query performance. A good trade-off seems to be achieved for compressing shortcuts
by 20%, interpolation points by 60%, and flags by 40%. This reduces space overhead
in total by a factor of 2 and yields a loss in query performance by a factor of 1.85. For
this is reason, we call these values a medium compression setup. Our high compression
setup removes 65% of all shortcuts, removes all interpolation points from remaining
time-dependent shortcuts and reduces the flag-table by 40%. This reduces the overhead
induced by SHARC by a factor of almost 11.5 while query performance is ≈ 4 times
slower than without compression. Any compression beyond this point yields a big per-
formance loss without a significant reduction in preprocessed data.
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Table 1. Query performance for different combinations of our compression schemes. As input,
we use the German road network with traffic scenario Monday.

SHORTCUTS POINTS FLAGS TOTAL QUERIES

rem. overhead rem. overhead rem. overhead overhead comp. #sett. #rel. time speed
[bytes/n] [%] [bytes/n] [%] [bytes/n] [bytes/n] [%] nodes arcs [ms] up

0 11.55 0 135.31 0 8.20 156.94 0.0 775 984 0.68 2 288
20 9.72 40 75.67 40 7.03 94.29 39.9 876 1 095 0.87 1 786
20 9.72 60 50.22 40 7.03 68.84 56.1 876 1 095 1.26 1 238
20 9.72 100 0.00 40 7.03 18.62 88.1 876 1 095 2.44 636
45 7.51 40 67.19 40 6.67 83.24 47.0 949 1 167 0.94 1 654
45 7.51 60 44.78 40 6.67 60.83 61.2 949 1 167 1.43 1 087
45 7.51 100 0.00 40 6.67 16.05 89.8 949 1 167 2.56 606
65 5.30 40 54.66 40 6.34 68.17 56.6 1 717 1 971 1.39 1 118
65 5.30 60 37.97 40 6.34 51.48 67.2 1 717 1 971 1.88 827
65 5.30 100 0.00 40 6.34 13.52 91.4 1 717 1 971 2.98 521
65 5.30 100 0.00 60 6.10 13.27 91.5 1 811 2 085 3.07 506

Traffic Scenarios. Our final testset evaluates the impact of different traffic scenarios
on our compression schemes. Besides our Monday scenario which we evaluated up
to this point, we now also apply a midweek (Tuesday to Thursday), Friday, Saturday,
Sunday, and “no traffic” scenario. Note that the latter is a time-independent network.
Our graph data structures occupy 44.2, 44.1, 41.0, 31.4, 27.8, and 22.4 bytes per node,
respectively. We here also report the additional overhead induced by SHARC, as well
as the total time of preprocessing (including compression). The resulting figures can be
found in Tab. 2.

We observe that for all time-dependent inputs, our medium compression setup re-
duces the space consumption by a factor of 2 combined with a performance penalty
between 1.5 and 1.9, depending on the degree of time-dependency in the network. Our
high compression rate yields an overhead of ≈ 13.5 bytes per node, independently of
the applied traffic scenario. This even holds for our “no traffic scenario”. The query
performance however, varies between 0.37 ms (no traffic) and 3.06 ms (midweek). The
reason for this is that in a high traffic scenario, more are arcs are time-dependent and
hence, more arcs need to be evaluated when unpacking a (time-dependent) shortcut on-
the-fly. Since the no traffic input contains no time-dependent arcs, no shortcut has a
travel time function assigned. Hence, the costly on-the-fly unpacking needs not to be
done during query times.

Comparison. Finally, we compare our memory-efficient version of SHARC (high
compression) with the most recent variant of Contraction Hierachies (CH) [2]. The
input is Germany midweek. CH achieves a speed-up of 714 over Dijkstra’s algorithm,
assembling 23 additional bytes per node in 37 minutes. SHARC yields a slightly lower
speed-up (491) with less overhead (13.5 bytes per node) for the price of a longer pre-
processing time (around 4 hours). However, our heuristic variant of SHARC (which
we use in this paper) drops correctness while CH is provably correct. Still, in (very)
space-limited time-dependent environment, SHARC seems to be the first choice.
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Table 2. Query performance of heuristic time-dependent SHARC applying different traffic sce-
narios for our German road network. Column compression rate indicates our default rates from
Section 4. Columns increase edges, points indicate the increase in number of edges and points
compared to the input.

PREPROCESSING QUERIES

comp. time inc. inc. space comp #sett. #rel. time speed
scenario rate [h:m] edges points [bytes/n] [%] nodes arcs [ms] up

none 3:52 25.2% 621.1% 156.94 0.0 775 984 0.68 2 288
Monday med 3:54 19.9% 230.5% 68.84 56.1 876 1 095 1.26 1 238

high 3:54 8.2% 0.0% 13.52 91.4 1 717 1 971 2.98 521
none 3:46 25.2% 621.8% 156.45 0.0 777 990 0.68 2 203

midweek med 3:48 20.0% 229.3% 68.35 56.3 880 1 102 1.28 1 177
high 3:48 8.2% 0.0% 13.54 91.3 1 715 1 971 3.06 491
none 3:22 25.1% 654.4% 142.90 0.0 733 930 0.63 2 400

Friday med 3:24 19.9% 240.4% 63.22 55.8 837 1 043 1.17 1 302
high 3:24 8.2% 0.0% 13.59 90.5 1 691 1 932 2.79 543
none 2:24 24.7% 784.2% 92.37 0.0 624 782 0.49 3 001

Saturday med 2:26 19.6% 286.8% 44.58 51.7 726 892 0.81 1 825
high 2:26 8.0% 0.0% 13.69 85.2 1 615 1 817 1.95 752
none 1:53 24.3% 859.4% 67.43 0.0 593 735 0.44 3 299

Sunday med 1:55 19.2% 317.8% 35.58 47.2 693 844 0.68 2 159
high 1:55 7.9% 0.0% 13.64 79.8 1 576 1 762 1.64 893
none 0:10 23.3% 0.0% 20.90 0.0 277 336 0.18 6 784

no med 0:12 18.4% 0.0% 17.80 14.8 327 390 0.20 5 990
high 0:12 7.5% 0.0% 13.12 37.2 758 838 0.37 3 332

5 Conclusion

In this work, we showed how to reduce the space consumption of SHARC without too
high of a loss in query performance. The key idea is to identify unimportant parts of
the preprocessing and remove them in such a way that correctness of SHARC can still
be guaranteed. More precisely, we showed how to reduce the overhead stemming from
arc-flags stored to the graph, how to remove shortcuts and how to remove complex
travel time functions assigned to shortcuts. As a result, we were able to reduce the
overhead induced by SHARC by a factor of up to 11. We thereby solved the problem
of high space consumption of time-dependent route planning: SHARC does not yield
a space-consumption penalty for switching from time-independent to time-dependent
route planning, making it an interesting candidate for mobile devices.

Regarding future work, it would be interesting to compress the time-dependent in-
put graphs. Techniques from [4,5,21] show how to compress the topology information
of a graph. The main challenge, however, seems to be the reduction of the space con-
sumption needed for storing the travel time functions. A possible approach could be the
following: Real-world networks often assign a so called delay-profile to each edge. So,
instead of storing the travel functions at the edges, one could use an index pointing to
the (small number of) delay profiles. Note that this approach is similar to the arc-flags
compression scheme.



58 E. Brunel et al.

References

1. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction Hierarchies. In:
ALENEX, pp. 97–105. SIAM, Philadelphia (2009)

2. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contraction Hier-
archies and Approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 166–177.
Springer, Heidelberg (2010)

3. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. ACM Journal of
Experimental Algorithmics 14, 2.4 (2009)

4. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact Representation of Separable Graphs.
In: SODA, pp. 679–688. SIAM, Philadelphia (2003)

5. Blandford, D.K., Blelloch, G.E., Kash, I.A.: An Experimental Analysis of a Compact Graph
Representation. In: ALENEX, pp. 49–61. SIAM, Philadelphia (2004)

6. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Communica-
tions of the ACM 13(7), 422–426 (1970)

7. Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-Efficient SHARC-Routing. Technical
Report 13, ITI Wagner, Faculty of Informatics, Universität Karlsruhe, TH (2009)

8. Delling, D.: Time-Dependent SHARC-Routing. Algorithmica (July 2009)
9. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms.

In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks.
LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

10. Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA 2009.
LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)

11. Delling, D., Wagner, D.: Time-Dependent Route Planning. In: Zaroliagis, C. (ed.) Robust
and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg
(2009)

12. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathe-
matik 1, 269–271 (1959)

13. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and
Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008.
LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

14. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets Graph Theory.
In: SODA, pp. 156–165 (2005)

15. Goldberg, A.V., Werneck, R.F.: Computing Point-to-Point Shortest Paths from External
Memory. In: ALENEX, pp. 26–40. SIAM, Philadelphia (2005)
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Abstract. In this paper we study the problem of dynamically update
all-pairs shortest paths in a distributed network while edge update op-
erations occur to the network. Most of the previous solutions for this
problem suffer of two main limitations: they work under the assump-
tion that before dealing with an edge update operation, the algorithm
for each previous operation has to be terminated, that is, they are not
able to update shortest paths concurrently ; they concurrently update
shortest paths, but their convergence can be very slow (possibly infinite)
due to the well-known looping and count-to-infinity phenomena; they
are not suitable to work in the realistic fully dynamic case, where an
arbitrary sequence of edge change operations can occur to the network
in an unpredictable way.

In this paper, we make a step forward in the area of shortest paths
routing, by providing a new fully dynamic solution that overcomes some
of the above limitations. In fact, our algorithm is able to concurrently up-
date shortest paths, it heuristically reduces the cases where the looping
and count-to-infinity phenomena occur and it is experimentally better
than the Bellman-Ford algorithm.

Keywords: Dynamic algorithms, shortest paths, distributed algorithms.

1 Introduction

The problem of updating efficiently all-pairs shortest paths in a distributed net-
work whose topology dynamically changes over the time, in the sense that links
can change status during the lifetime of the network, is considered crucial in
today’s practical applications.

The algorithms for computing shortest-paths used in computer networks are
classified as distance-vector and link-state algorithms. In a distance vector algo-
rithm, as for example the classical Bellman-Ford method (originally introduced
in the Arpanet [13]), a node knows the distance from each of its neighbors to
every destination and uses this information to compute the distance and the
next node in the shortest path to each destination. In a link-state algorithm,
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as for example the OSPF protocol widely used in the Internet (e.g., see [14]),
a node must know the entire network topology to compute its distance to any
network destination (usually running the centralized Dijkstra’s algorithm for
shortest paths).

The main drawbacks of distance-vector algorithms, when used in a dynamic
environment, are the well-known looping and count-to-infinity phenomena (see,
e.g., [4]) that lead in many cases to a very slow convergence. A loop is a path
induced by the routing table entries, such that the path visits the same node more
than once before reaching the intended destination. A node “counts to infinity”
when it increments its distance to a destination until it reaches a predefined
maximum distance value. Link-state algorithms are free of the looping and count-
to-infinity problems. However, each node needs to receive up-to-date information
on the entire network topology after a network change. This is achieved by
broadcasting each change of the network topology to all nodes [14,17]. In any
case, it is very important to find efficient dynamic distributed algorithms for
shortest paths, since real networks are inherently dynamic and the recomputation
from scratch can result very expensive in practice.

If the topology of a dynamic network is represented as a weighted undirected
graph, then the typical update operations on that network can be modelled as
insertions and deletions of edges and edge weight changes (weight decrease and
weight increase). When arbitrary sequences of the above operations are allowed,
we refer to the fully dynamic problem; if only insert and weight decrease (delete
and weight increase) operations are allowed, then we refer to the incremental
(decremental) problem.

A number of dynamic solutions for the distributed shortest paths problem
have been proposed in the literature (e.g., see [8,9,10,12,15,16]). Most of these
solutions are distance-vector algorithms that rely on the classical Bellman-Ford
method which has been shown to converge to the correct distances if the edge
weights stabilize and all cycles have positive lengths [4]. However, the conver-
gence can be very slow (possibly infinite) in the case of delete and weight increase
operations, due to the looping and count-to-infinity phenomena. Furthermore, if
the nodes of the network are not synchronized, even though no change occurs in
the network, the message complexity of the Bellman-Ford method is exponential
in the size of the network (e.g., see [3]).

In this paper, we are interested in the practical case of a dynamic network
in which an edge change can occur while another change is under processing. A
processor v could be affected by both these changes. As a consequence, v could
be involved in the concurrent executions related to both the changes. In general,
it is possible to classify the algorithms known in the literature for the dynamic
distributed shortest paths problem in the following two categories:

1. Algorithms which are not able to concurrently update shortest paths as
those in [8,9,12,16]. In particular, algorithms that work under the assumption
that before dealing with an edge operation, the algorithm for the previous
operation has to be terminated. This is a limitation in real networks, where
changes can occur in an unpredictable way.
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2. Algorithms which are able to concurrently update shortest paths as those
in [6,10], but they present one or more of the following drawbacks: they
suffer of the looping and count-to-infinity phenomena; their convergence is
very slow in the case of weight increase and delete operations; they are not
able to work in the realistic fully dynamic case, where an arbitrary sequence
of edge change operations can occur to the network in an unpredictable way.

In this paper, we make a step forward in the area of shortest paths routing by
proposing a new algorithm which falls in the second category, and overcomes
some of the limitations of the known solutions in this category. In fact, de-
spite our algorithm still suffer of the looping and count-to-infinity phenomena,
it heuristically reduces the cases where these phenomena occur, it is able to
work in the realistic fully dynamic case, and it is experimentally better than the
Bellman-Ford algorithm.

In order to experimentally evaluate our algorithm, we implemented it and the
classical Bellman-Ford method in the OMNeT++ simulation environment [1].
Then, we performed several tests both on real-world data [11] and randomly gen-
erated graphs and update sequences. These experiments show that our algorithm
performs better than the Bellman-Ford algorithm in terms of either number of
messages sent or space occupancy per node.

Structure of the paper. The paper is organized as follows. In Section 2 we
introduce some useful notation and the distributed asynchronous model used
in the paper. In Section 3 we describe our new fully dynamic algorithm. In
Section 4 we experimentally analize the algorithm and compare its performances
against the well-known Bellman-Ford algorithm. Finally, in Section 5 we give
some concluding remarks and outline possible future research directions.

2 Preliminaries

We consider a network made of processors linked through communication chan-
nels. Each processor can send messages only to its neighbors. We assume that
messages are delivered to their destination within a finite delay but they might
be delivered out of order. We consider an asynchronous system, that is, a sender
of a message does not wait for the receiver to be ready to receive the message.
Finally, there is no shared memory among the nodes of the network.

We represent the network by an undirected weighted graph G = (V, E, w),
where: V is a finite set of n nodes, one for each processor; E is a finite set
of m edges, one for each communication channel; and w is a weight function
w : E → R+ ∪{∞}. An edge in E that links nodes u, v ∈ V is denoted as u → v.
Given v ∈ V , N(v) denotes the set of neighbors of v and deg(v) the degree of
v. The maximum degree of the nodes in G is denoted by maxdeg. A path P in
G between nodes u and v is denoted as P = u � v. We define the length of
P as the number of edges of P and denote it by �(P ), and define the weight of
P as the sum of the weights of the edges in P and denote it by weight(P ). A
shortest path between nodes u and v is a path from u to v with the minimum



62 S. Cicerone et al.

weight. The distance from u to v is the weight of a shortest path from u to
v, and is denoted as d(u, v). Given two nodes u, v ∈ V , the via from u to v is
the set of neighbors of u that belong to a shortest path from u to v. Formally:
via(u, v) ≡ {z ∈ N(u) | d(u, v) = w(u, z) + d(z, v)}.

Given a graph G = (V, E, w), we suppose that a sequence C = {c1, c2, ..., ck}
of k operations is performed on edges (xi, yi) ∈ E, i ∈ {1, 2, ..., k}. The operation
ci either inserts a new edge in G, or deletes an edge of G, or modifies (either
increases or decreases) the weight of an existing edge in G. We consider the case
in which C = {c1, c2, ..., ck} is a sequence of weight increase and weight decrease
operations, that is operation ci either increases or decreases the weight of edge
(xi, yi) by a quantity εi > 0, i ∈ {1, 2, ..., k}. The extension to delete and insert
operations, respectively, is straightforward: deleting an edge (x, y) is equivalent
to increase w(x, y) to +∞, and inserting an edge (x, y) with weight α is equivalent
to decrease w(x, y) from +∞ to α.

Assuming G0 ≡ G, we denote as Gi the graph obtained by applying the
operation ci to Gi−1. We denote as di() and viai() the distance and the via over
Gi, 0 ≤ i ≤ k, respectively. Given a path P in G, we denote as weight i(P ) the
weight of P in Gi, 0 ≤ i ≤ k.

Asynchronous model. Given an asynchronous system, the model summarized
below is based on that proposed in [2]. The state of a processor v is the content
of the data structure at node v. The network state is the set of states of all the
processors in the network plus the network topology and the edge weights. An
event is the reception of a message by a processor or a change to the network
state. When a processor p sends a message m to a processor q, m is stored in a
buffer in q. When q reads m from its buffer and processes it, the event “reception
of m” occurs. An execution is an alternate sequence (possibly infinite) of network
states and events. A non negative real number is associated to each event, the
time at which that event occurs. The time is a global parameter and is not
accessible to the processors of the network. The times must be non decreasing
and must increase without bound if the execution is infinite. Events are ordered
according to the times at which they occur. Several events can happen at the
same time as long as they do not occur on the same processor. This implies that
the times related to a single processor are strictly increasing.

Concurrent executions. We consider a dynamic network in which a weight
change can occur while another weight change is under processing. A processor v
could be affected by both these changes. As a consequence, v could be involved in
the executions related to both the changes. Hence, according to the asynchronous
model described above we need to define the notion of concurrent executions as
follows. Let us consider an algorithm A that maintains shortest paths on G after
a weight change operation in C. Given ci and cj in C, we denote as: ti and tj
the times at which ci and cj occur, respectively; Ai and Aj the executions of A
related to ci and cj , respectively; and tAi the time when Ai terminates. If ti ≤ tj
and tAi ≥ tj , then Ai and Aj are concurrent, otherwise they are sequential.
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3 The Fully Dynamic Algorithm

In this Section we describe our new fully dynamic solution for the concurrent
update of distributed all-pairs shortest paths. Without loss of generality, we
assume that operations in C = {c1, c2, ..., ck} occur at times t1 ≤ t2 ≤ ... ≤ tk,
respectively.

Data structures. Each node of G knows the identity of every other node
of G, the identity of all its neighbors and the weights of the edges incident to
it. The information on the shortest paths in G are stored in a data structure
called routing table RT distributed over all nodes. Each node v maintains its own
routing table RTv[·], that has one entry RTv[s], for each s ∈ V . The entry RTv[s]
consists of two fields:

– RTv[s].D, the estimated distance between nodes v and s in G;
– RTv[s].VIA ≡ {vi ∈ N(v) | RTv[s].D = w(v, vi) + RTvi [s].D}, the estimated via

from v to s.

For sake of simplicity, we write D[v, s] and VIA[v, s] instead of RTv[s].D and
RTv[s].VIA, respectively. Furthermore, in what follows we denote as Dt[v, s] and
VIAt[v, s] the value of the data structures at time t; we simply write D[v, s] and
VIA[v, s] when the time is clear by the context.

Given a destination s the set VIA[v, s] contains at most deg(v) elements. Hence,
each node v requires O (n · deg(v)) space and the space complexity is hence
O (maxdeg · n) per node.

Algorithm. The proposed fully dynamic algorithm is reported in Fig. 1, 2
and 3, and is described in what follows with respect to a source s ∈ V . Before
the algorithm starts, we assume that, for each v, s ∈ V and for each t < t1,
Dt[v, s] and VIAt[v, s] are correct, that is Dt[v, s] = d0(v, s) and VIAt[v, s] =
via0(v, s). The algorithm starts at each ti, i ∈ {1, 2, ..., k}. The event related
to operation ci on edge xi → yi is detected only by nodes xi and yi. As a
consequence, if ci is a weight increase (weight decrease) operation, xi sends the
message increase(xi, s) (decrease(xi, s, Dti [xi, s])) to yi and yi sends the message
increase(yi, s) (decrease(yi, s, Dti [yi, s])) to xi, for each s ∈ V .

If an arbitrary node v receives the message decrease(u, s, D[u, s]), then it per-
forms Procedure Decrease in Fig. 1. Basically, Decrease performs a relax-
ation of edge (u, v). In particular, if w(v, u) + D[u, s] < D[v, s] (Line 1), then
v needs to update its estimated distance to s. To this aim, v performs phase
improve-table, that updates the data structures D[v, s] and VIA[v, s] (Lines 3–
4), and propagates the updated values to the nodes in N(v) (Line 6). Otherwise,
if w(v, u) + D[u, s] = D[v, s] (Line 9), then u is a new estimated via for v wrt
destination s, and hence v performs phase extend-via, that simply adds u to
VIA[v, s] (Line 10).

If a node v receives the message increase(u, s), then it performs Procedure
Increase in Fig. 2. While performing Increase, v simply checks whether the
message comes from a node in VIA[v, s] (Line 1). In the affirmative case, v needs
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Event: node v receives the message decrease(u, s, D[u, s]) from u
Procedure Decrease

1. if w(v, u) + D[u, s] < D[v, s] then

2. begin Lines 2-7: phase improve-table

3. D[v, s] := w(v, u) + D[u, s]
4. VIA[v, s] := {u}
5. for each vi ∈ N(v) do
6. send decrease(v, s, D[v, s]) to vi

7. end
8. else
9. if D[v, s] = w(v, u) + D[u, s] then

10. VIA[v, s] := VIA[v, s] ∪ {u} Line 10: phase extend-via

Fig. 1.

Event: node v receives the message increase(u, s) from u
Procedure Increase

1. if u ∈ VIA[v, s] then
2. begin

3. VIA[v, s] := VIA[v, s] \ {u} Line 3: phase reduce-via

4. if VIA[v, s] ≡ ∅ then

5. begin Lines 5-17: phase rebuild-table

6. old distance := D[v, s]
7. for each vi ∈ N(v) do
8. receive D[vi, s] by sending get-dist(v, s) to vi

9. D[v, s] := min
vi∈N(v)

{w(v, vi) + D[vi, s]}
10. VIA[v, s] := {vi ∈ N(v) | w(v, vi) + D[vi, s] = D[v, s]}
11. for each vi ∈ N(v) do
12. begin
13. if D[v, s] > old distance then
14. send increase(v, s) to vi

15. send decrease(v, s,D[v, s]) to vi lrh2

16. end
17. end
18. end

Fig. 2.

to remove u from VIA[v, s]. To this aim, v performs phase reduce-via (Line 3).
As a consequence of this deletion, VIA[v, s] may become empty. In this case, v
performs phase rebuild-table, whose purpose is to compute the new estimated
distance and via of v to s. To do this, v asks to each node vi ∈ N(v) for its current
estimated distance, by sending vi message get-dist(v, s) (Lines 7–8).
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Event: node vi receives the message get-dist(v, s) from v
Procedure Dist

1. if (VIA[vi, s] ≡ {v}) lrt1 or

(vi is performing rebuild-table or improve-table wrt destination s) lrt2

2. then send ∞ to v lrh1

3. else send D[vi, s] to v

Fig. 3.

When vi receives message get-dist(v, s) by v, it performs Procedure Dist

in Fig. 3. While performing Dist, vi basically sends D[vi, s] to v, unless one
of the following two conditions holds: 1) VIA[vi, s] ≡ {v}; 2) vi is performing
rebuild-table or improve-table wrt destination s. The test of these two
conditions is part of our strategy to reduce the cases in which the looping and
count-to-infinity phenomena appear. The test is performed at Line 1 of Dist,
where the conditions are labelled as lrt1 and lrt2, respectively (the acronym
stands for Loop Reducing Test). If lrt1 or lrt2 are true, then vi sends ∞ to v.
This action is performed at Line 2, and is labelled as lrh1 (the acronym stands
for Loop Reducing Heuristic).

Once node v has received the answers to the get-dist messages by all its
neighbors, it computes the new estimated distance and via to s (Lines 9–10).
Now, if the estimated distance has been increased, v sends an increase message to
its neighbors (Line 14). In any case, v sends to its neighbors the message decrease
(Line 15), to communicate them D[v, s]. This action, that we call lrh2, is also
part of our strategy to reduce the looping and count-to-infinity phenomena. In
fact, at some point, as a consequence of lrh1, v could have sent ∞ to a neighbor
vj . Then, vj receives the message sent by v at Line 15, and it performs Procedure
Decrease to check whether D[v, s] can determine an improvement to the value
of D[vj , s].

The correctness of the algorithm is stated in the next theorem, whose proof
is given in [7].

Theorem 1. There exists tF such that, for each pair of nodes v, s ∈ V , and for
each time t ≥ tF , Dt[v, s] = dk(v, s) and VIAt[v, s] ≡ viak(v, s).

4 Experimental Analysis

Experimental environment. The experiments have been carried out on a
workstation equipped with a 2,66 GHz processor (Intel Core2 Duo E6700 Box)
and 8Gb RAM.

The experiments consist of simulations within the OMNeT++ environment,
version 4.0p1 [1]. OMNeT++ is an object-oriented modular discrete event
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network simulator, useful to model protocols, telecommunication networks, mul-
tiprocessors and other distributed systems. An OMNeT++ model consists of
hierarchically nested modules, that communicate through message passing.

In our model, we defined a basic module node to represent a node in the
network. A node v has a communication gate with each node in N(v). Each node
can send messages to a destination node through a channel which is a module
that connects gates of different nodes (both gate and channel are OMNeT++
predefined modules). In our model, a channel connects exactly two gates and
represents an edge between two nodes. We associate two parameters per channel:
a weight and a delay. The former represents the cost of the edge in the graph,
and the latter simulates a finite but not null transmission time.

Implemented algorithms. We implemented the algorithm described in Sec-
tion 3, denoted as ConFu. In order to compare its performances with respect to
algorithms used in practice, we also implemented the well known Bellman-Ford
algorithm [4] which is denoted as BF. In BF, a node v updates its estimated dis-
tance to a node s, by simply executing the iteration D[v, s] := minu∈N(v){w(v, u)+
D[u, s]}, using the last estimated distance D[u, s] received from a neighbor u ∈
N(v) and the latest status of its links. Eventually, node v transmits its new
estimated distance to nodes in N(v). BF requires O(n · maxdeg) space per node
to store the last estimated distance vector {D[u, s] | s ∈ V } received from each
neighbor u ∈ N(v).

Executed tests. For our experiments we used both real-world and artificial in-
stances of the problem. In detail, we used the CAIDA IPv4 topology dataset [11]
and Erdös-Rényi random graphs [5].

CAIDA (Cooperative Association for Internet Data Analysis) is an associa-
tion which provides data and tools for the analysis of the Internet infrastructure.
The CAIDA dataset is collected by a globally distributed set of monitors. The
monitors collect data by sending probe messages continuously to destination IP
addresses. Destinations are selected randomly from each routed IPv4/24 prefix
on the Internet such that a random address in each prefix is probed approxi-
mately every 48 hours. The current prefix list includes approximately 7.4 million
prefixes. For each destination selected, the path from the source monitor to the
destination is collected, in particular, data collected for each path probed in-
cludes the set of IP addresses of the hops which form the path and the Round
Trip Times (RTT) of both intermediate hops and the destination.

We parsed the files provided by CAIDA to obtain a weighted undirected graph
GIP where a node represents an IP address contained in the dataset (both
source/destination hosts and intermediate hops), edges represent links among
hops and weights are given by RTTs.

As the graph GIP consists of n ≈ 35000 nodes, we cannot use it for the
experiments, as the amount of memory required to store the routing tables of
all the nodes is O(n2 · maxdeg). Hence, we performed our tests on connected
subgraphs of GIP induced by the settled nodes of a breadth first search starting
from a node taken at random. We generated a set of different tests, each test
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consists of a dynamic graph characterized by: a subgraph of GIP of 5000 nodes,
a set of k concurrent edge updates, where k assumes values in {5, 10, . . . , 100}.
An edge update consists of multiplying the weight of a random selected edge by
a percentage value randomly chosen in [50%, 150%]. For each test configuration,
we performed 5 different experiments and we report average values.

The graph GIP turns out to be very sparse (i.e. m/n ≈ 1.3), so it is worth an-
alyzing also dense graphs. To this aim we generated Erdös-Rényi random graphs.
In detail, we randomly generated a set of different tests, where a test consists
of a dynamic graph characterized by: an Erdös-Rényi random graphs Grand of
1000 nodes; the density dens of the graph, computed as the ratio between m
and the number of the edges of the n-complete graph; and the number k of edge
update operations. We chosen different values of dens ranging from 0.01 to 0.41.
The number k assumes values in {30, 100, 1000}. Edge weights are non-negative
real numbers randomly chosen in [1, 10000]. Edge updates are randomly chosen
as in the CAIDA tests. For each test configuration, we performed 5 different
experiments and we report average values.

Analysis. The results of our experiments are shown in Fig. 4, 5, and 6.
In Fig. 4 (left), we report the number of messages sent by algorithms ConFu

and BF on subgraphs of GIP having 5000 nodes and an everage value of 6109
edges in the cases where the number k of modifications is in {5, 10, 15, 20}.
Fig. 4 (left) shows that ConFu always performs better than BF. In particular,
it always sends less messages than BF. The tests for k ∈ {25, 30, . . . , 100} are
not reported as in these cases we experimentally checked that BF always falls in
looping and then the number of messages is unbounded, while ConFu always
converges to the correct routing tables. Fig. 4 (right) shows the same results as
Fig. 4 (left) from a different point of view, that is, it shows the ratio between the
number of messages sent by BF and ConFu. It is worth noting that the ratio
is within 21 and 230.

To conclude our analysis on GIP , we experimentally analyze the space occu-
pancy per node of ConFu and BF. The latter requires a node v to store, for
each destination, the estimated distance given by each of its neighbors, while
ConFu only needs the estimated distance of v and the set VIA, for each des-
tination. Since in these sparse graphs it is not common to have more than one
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Fig. 4. Left: Number of messages sent by ConFu and BF on subgraphs of GIP . Right:
Ratio between the number of messages sent by BF and ConFu on subgraphs of GIP .
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Ratio between the number of messages sent by BF and ConFu on graphs Grand.

via to a destination, the memory requirement of ConFu is much smaller than
that of BF. In particular, ConFu requires in average 40000 bytes per node and
40084 bytes per node in the worst case. BF requires in average 44436 bytes per
node and 4M bytes per node in the worst case. This implies that ConFu is in
average 1.11 times more space efficient than BF and it is 99.79 times more space
efficient than BF in the worst case.

The good performances of ConFu are mainly due to the sparsity of GIP .
In fact, ConFu uses three kind of messages: decrease, increase and get-dist.
Messages decrease and increase are sent only when a node v changes its routing
table and they are used to propagate this change, while get-dist is used by v in
order to know the estimated distances of its neighbors. Hence, the number of
get-dist messages is proportional to the average node degree of a graph. Note
that, BF does not need to use get-dist messages as it stores, for each node, the
estimated distances of its neighbors. Hence, in sparse graphs, where the average
degree of a graph is small, the number of get-dist messages sent by ConFu is also
small and this implies that, in these cases, ConFu sends less messages than BF.

By the above discussion, it is worth investigating how the two algorithms
perform when the graph is dense. Fig. 5 (left) shows the number of messages
sent by algorithms ConFu and BF on dynamic Erdös-Rényi random graphs
with 1000 nodes, 1000 edge weight changes and dens ranging from 0.01 to 0.41
which leads to a number m of edges which ranges from about 5000 to about
200000. The number of messages sent by ConFu is less than the number of
messages sent by BF when the number of edges is less than 20000. In most
of the cases when the number of edges is more than 20000, BF is better than
ConFuṪhis is due to the fact that ConFu does not require a node to store
the estimated distances of its neighbors but it sends a get-dist message to each
neighbor (see Line 8 of Procedure Increase). Hence, the number of get-dist
messages is high when the average number of neighbors is high. Contrarily, BF

does not need to send such messages as it stores for each node v the estimated
distances of each neighbor of v. This implies an increase in the space occupancy
of BF as highlighted by Fig. 6. In detail, Fig. 6 (left) shows the ratio between the
average space occupancy per node required by BF and ConFu in Grand, while
Fig. 6 (right) shows the ratio between the worst case space occupancy per node
required by BF and ConFu. The average space occupancy ratio grows linearly
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Fig. 6. Ratio between the space required by BF and ConFu on graphs Grand in the
average case (left) and in the worst case (right)

with the number of edges as the space occupancy of ConFu remains almost
constant while the space occupancy of BF is proportional to the average node
degree. The worst case space occupancy of BF grows very fast as in the executed
tests where dens > 0.10 there exists at least a node v such that deg(v) = n − 1.

A different point of view is given in Fig. 5 (right) which shows the ratio
between the number of messages sent by BF and ConFu. Note that, the ratio
is about 1.5 in the sparse graphs and it decreases until it assumes a value of
smaller than 1 for dense graphs.

Fig. 5 and 6 refer to the case where k = 1000, as it is the case where ConFu

performs worse. In cases where k = 30, 100 ConFu performs better than BF

and hence they are not reported.

5 Conclusion and Future Work

Most of the solutions known in the literature for the dynamic distributed all-
pairs shortest paths problem suffer of three main drawbacks: they are not able
to update shortest paths concurrently; they suffer of the looping and counting-
to-infinity phenomena thus having a slow convergence; they are not suitable to
work in the realistic fully dynamic case. In this paper we provide a new fully
dynamic solution that overcomes most of the above problems and that behaves
better than the well-known Bellman-Ford algorithm in practical cases.

A research line that deserve investigation is the evaluation of the new al-
gorithm from an experimental point of view against other concurrent solution
known in the literature as for example that given in [9].
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Abstract. We contribute a fast routing algorithm for timetable net-
works with realistic transfer times. In this setting, our algorithm is the
first one that successfully applies precomputation based on node contrac-
tion: gradually removing nodes from the graph and adding shortcuts to
preserve shortest paths. This reduces query times to 0.5 ms with prepro-
cessing times below 4 minutes on all tested instances, even on continental
networks with 30 000 stations. We achieve this by an improved contrac-
tion algorithm and by using a station graph model. Every node in our
graph has a one-to-one correspondence to a station and every edge has
an assigned collection of connections. Also, our graph model does not
require parallel edges.

Keywords: route planning; public transit; algorithm engineering.

1 Introduction

Route planning is one of the showpieces of algorithm engineering. Many hierar-
chical route planning algorithms have been developed over the past years and are
very successful on static road networks (overview in [1]). Recently, Contraction
Hierarchies (CH) [2] provided a particularly simple approach with fast prepro-
cessing and query times. CH is solely based on the concept of node contraction:
removing “unimportant” nodes and adding shortcuts to preserve shortest path
distances. One year later, time-dependent CH (TCH) [3] was published and works
well for time-dependent road networks, but completely fails for timetable net-
works of public transportation systems. In this paper, we show how to adapt CH
successfully to timetable networks with realistic transfers, i. e. minimum trans-
fer times. The positive outcome is partly due to our station graph model, where
each station is a single node and no parallel edges between stations are neces-
sary. Additionally, we change the contraction algorithm significantly and deal
with special cases of timetable networks, e. g. loops.
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1.1 Related Work

Public transportation networks have always been time-dependent, i. e. travel
times depend on the availability of trains, buses or other vehicles. That makes
them naturally harder than road networks, where simple models can be indepen-
dent of the travel time and still achieve good results. There are two intensively
studied models for modeling timetable information: the time-expanded [4,5,6],
and the so-called time-dependent model1 [7,8,9,10]. Both models answer queries
by applying some shortest-path algorithm to a suitably constructed graph. In
the time-expanded model, each node corresponds to a specific time event (depar-
ture or arrival), and each edge has a constant travel time. In the time-dependent
model, each node corresponds to a station, and the costs on an edge are as-
signed depending on the time in which the particular edge will be used by the
shortest-path algorithm.

To model more realistic transfers in the time-dependent model, [7] propose
to model each platform as a separate station and add walking links between
them. [11] propose a similar extension for constant and variable transfer and
describe it in more detail. Basically, the stations are expanded to a train-route
graph where no one-to-one correspondence between nodes and stations exists
anymore. A train route is the maximal subset of trains that follow the exact
same route, at possibly different times and do not overtake each other. Each
train route has its own node at each station. Those are interconnected within a
station with the given transfer times. This results in a significant blowup in the
number of nodes and creates a lot of redundancy information that is collected
during a query. Recently, [12,13] independently proposed a model that is similar
to ours. They call it the station graph model and mainly use it to compute all
Pareto-optimal paths in a fully realistic scenario. For unification, we will give
our model the same name although there are some important differences in the
details. The most significant differences are that (1) they require parallel edges,
one for each train route and (2) their query algorithm computes connections per
incoming edge instead per node. Their improvement over the time-dependent
model was mainly that they compare all connections at a station and remove
dominated ones.

Speed-up techniques are very successful when it comes to routing in time-
dependent road networks, see [14] for an overview. However, timetable net-
works are very different from road networks [15] and there is only little work on
speed-up techniques for them. Goal-directed search (A*) brings basic speed-up
[16,17,11,18]. Time-dependent SHARC [19] brings better speed-up by using arc
flags in the same scenario as we do and achieves query times of 2 ms but with pre-
processing times of more than 5 hours2. Based on the station graph model, [13]
also applied some speed-up techniques, namely arc flags that are valid on time pe-
riods and route contraction. They could not use node contraction because there
1 Note that the time-dependent model is a special technique to model the time-

dependent information rather than an umbrella term for all these models.
2 We scaled timings by a factor of 0.42 compared to [14] based on plain Dijkstra

timings.
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were too many parallel edges between stations. Their preprocessing time is over
33 CPU hours resulting in a full day profile query time of more than 1 second
(speed-up factor 5.2). These times are 2-3 orders of magnitude slower than ours
but a comparison is not possible since they use a fully realistic bi-criteria scenario
with footpaths, traffic days and graphs that are not available to us.

2 Preliminaries

We propose a model that is similar to the realistic time-dependent model intro-
duced in [11], but we keep a one-to-one mapping between nodes in the graph
and real stations.

A timetable consists of data concerning: stations (or bus stops, ports, etc),
trains (or buses, ferries, etc), connecting stations, departure and arrival times of
trains at stations, and traffic days. More formally, we are given a set of stations B,
a set of stop events ZS per station S ∈ B, and a set of elementary connections C,
whose elements c are 6-tuples of the form c = (Z1, Z2, S1, S2, td, ta). Such a tuple
(elementary connection) is interpreted as train that leaves station S1 at time td
after stop Z1 and the immediately next stop is Z2 at station S2 at time ta. If x de-
notes a tuple’s field, then the notation of x(c) specifies the value of x in the elemen-
tary connection c. A stop even is the consecutive arrival and departure of a train
at a station, where no transfer is required. For the corresponding arriving elemen-
tary connection c1 and the departing one c2 holds Z2(c1) = Z1(c2). If a transfer
between some elementary connections c′1 and c′2 at station S2(c′1) = S1(c′2) is re-
quired, Z2(c′1) �= Z1(c′2) must hold. We introduce additional stop events for the
begin (no arrival) and the end (no departure) of a train.

The departure and arrival times td(c) and ta(c) of an elementary connection
c ∈ C within a day are integers in the interval [0, 1439] representing time in
minutes after midnight. Given two time values t and t′, t ≤ t′, the cyclediffer-
ence(t, t′) is the smallest nonnegative integer � such that � ≡ t′ − t (mod 1440).
The length of an elementary connection c, denoted by length(c), is cyclediffer-
ence(td(c), ta(c)). We generally assume that trains operate daily but our model
can be extended to work with traffic days. At a station S ∈ B, it is possible
to transfer from one train to another, if the time between the arrival and the
departure at the station S is larger than or equal to a given, station-specific,
minimum transfer time, denoted by transfer(S).

Let P = (c1, . . . , ck) be a sequence of elementary connections together with de-
parture times depi(P ) and arrival times arri(P ) for each elementary connection
ci, 1 ≤ i ≤ k. We assume that the times depi(P ) and arri(P ) also include day
information to model trips that last longer than a day. Define S1(P ) := S1(c1),
S2(P ) := S2(ck), Z1(P ) := Z1(c1), Z2(P ) := Z2(ck), dep(P ) := dep1(P ), and
arr(P ) := arrk(P ). Such a sequence P is called a consistent connection from sta-
tion S1(P ) to S2(P ) if it fulfills the following two consistency conditions: (1) the
departure station of ci+1 is the arrival station of ci; (2) the time values depi(P )
and arri(P ) correspond to the time values td and ta, resp., of the elementary
connections (modulo 1440) and respect the transfer times at stations.
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Given a timetable, we want to solve the earliest arrival problem (EAP), i.e.
to compute the earliest arriving consistent connection between given stations A
and B departing not earlier than a specified time t0. We refer to the algorithm
that solves the EAP as time query. In contrast, a profile query computes an
optimal set of all consistent connections independent of the departure time.

3 Station Graph Model

We introduce a model that represents a timetable as a directed graph G = (B, E)
with exactly one node per station. For a simplified model without transfer times,
this is like the time-dependent model. The novelty is that even with positive
transfer times, we keep one node per station and require no parallel edges. The
attribute of an edge e = (A, B) ∈ E is a set of consistent connections fn(e) that
depart at A and arrive at B, usually all elementary connections. Here and in the
following we assume that all connections are consistent. Previous models required
that all connections of a single edge fulfill the FIFO-property, i. e. they do not
overtake each other. In contrast, we do not require this property. So we can avoid
parallel edges, as this is important for CH preprocessing. However, even for time
queries, we need to consider multiple dominant arrival events per station.

We say that a connection P dominates a connection Q if we can replace
Q by P (Lemma 1). More formally, let Q be a connection. Define parr(Q) as
the (previous) arrival arrival time of the train at station S1(Q) before it de-
parts at time dep(Q), or ⊥ if this train begins there. If parr(Q) �=⊥ then we
call resd(Q) := dep(Q) − parr(Q) the residence time at departure. We call Q
a critical departure when parr(Q) �=⊥ and resd(Q) < transfer(S1(Q)). Sym-
metrically, we define ndep(Q) as the (next) departure time of the train at
station S2(Q), or ⊥ if the train ends there. When ndep(Q) �=⊥ then we call
resa(Q) := ndep(Q) − arr(Q) the residence time at arrival. And Q is a critical
arrival when ndep(Q) �=⊥ and resa(Q) < transfer(S2(Q)).

A connection P dominates Q iff all of the following conditions are fulfilled:
(1) S1(P ) = S1(Q) and S2(P ) = S2(Q)
(2) dep(Q) ≤ dep(P ) and arr(P ) ≤ arr(Q)
(3) Z1(P ) = Z1(Q), or Q is not a critical departure, or dep(P ) − parr(Q) ≥
transfer(S1(P ))
(4) Z2(P ) = Z2(Q), or Q is not a critical arrival, or ndep(Q) − arr(P ) ≥
transfer(S2(P ))

Conditions (1),(2) are elementary conditions. Conditions (3),(4) are necessary
to respect the minimum transfer times, when Q is a subconnection of a larger
connection.

Given connection R = (c1, . . . , ck), we call a connection (ci, . . . , cj) with 1 ≤
i ≤ j ≤ k a subconnection of R, we call it prefix iff i = 1 and suffix iff j = k.

Lemma 1. A consistent connection P dominates a consistent connection Q iff
for all consistent connections R with subconnection Q, we can replace Q by P
to get a consistent connection R′ with dep(R) ≤ dep(R′) ≤ arr(R′) ≤ arr(R).
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3.1 Time Query

In this section we describe our baseline algorithm to answer a time query (A, B, t0).
We use a Dijkstra-like algorithm on our station graph that stores labels with each
station and incrementally corrects them. A label is a connection P stored as a tuple
(Z2, arr)3, where Z2 is the arrival stop event and arr is the arrival time including
days. The source station is always A, the target station S2(P ) is implicitly given
by the station that stores this label. Furthermore, we only consider connections
departing not earlier than t0 at A and want to minimize the arrival time. As we do
not further care about the actual departure time at A, we call such a connection
arrival connection. We say that an arrival connection P dominates Q iff all of the
following conditions are fulfilled:
(1) S2(P ) = S2(Q)
(2) arr(P ) ≤ arr(Q)
(3) Z2(P ) = Z2(Q), or Q is not a critical arrival, or ndep(Q) − arr(P ) ≥
transfer(S2(P ))

Lemma 2 shows that dominant arrival connections are sufficient for a time
query.

Lemma 2. Let (A, B, t0) be a time query. A consistent arrival connection P
dominates a consistent arrival connection Q iff for all consistent arrival con-
nections R with prefix Q, we can replace Q by P to get a consistent arrival
connection R′ with arr(R′) ≤ arr(R).

Our algorithm manages a set of dominant arrival connections ac(S) for each
station S. The initialization of ac(A) at the departure station A is a special
case since we have no real connection to station A. That is why we introduce a
special stop event ⊥ and we start with the set {(⊥, t0)} at station A. Our query
algorithm then knows that we are able to board all trains that depart not earlier
than t0. We perform a label correcting query that uses the minimum arrival
time of the (new) connections as key of a priority queue. This algorithm needs
two elementary operations: (1) link : We need to traverse an edge e = (S, T ) by
linking a given set of arrival connections ac(S) with the connections fn(e) to get
a new set of arrival connections to station T . (2) minimum: We need to combine
the already existing arrival connections at T with the new ones to a dominant
set. We found a solution to the EAP once we extract a label of station B from
the priority queue, as Theorem 1 proves.

Theorem 1. The time query in the station graph model solves the EAP.

Proof. The query algorithm only creates consistent connections because link
and minimum do so. Lemma 2 ensures that there is never a connection with
earlier arrival time. The connections depart from station A not before t0 by
initialization. Since the length of any connection is non-negative, and by the
order in the priority queue, the first label of B extracted from the priority queue
represents a solution to the EAP.
3 Such a label does not uniquely describe a connection but stores all relevant informa-

tion for a time query.
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The link and minimum operation dominate the runtime of the query algorithm.
The most important part is a suitable order of the connections, primarily ordered
by arrival time. The minimum operation is then mainly a linear merge operation,
and the link operation uses precomputed intervals to look only at a small relevant
subset of fn(e). We gain additional speed-up by combining the link and minimum
operation.

3.2 Profile Query

A profile query (A, B) is similar to a time query. However, we compute dominant
connections con(S) instead of dominant arrival connections. Also we cannot just
stop the search when we remove a label of B from the priority queue for the
first time. We are only allowed to stop the search when we know that we have a
dominant set of all consistent connections between A and B. For daily operating
trains, we can compute a maximum length for a set of connections and can use
it to prune the search. The efficient implementations of the minimum and link
operation are also more complex. Similar to a time query, we use a suitable order
of the connections, primarily ordered by departure time. The minimum operation
is an almost linear merge: we merge the connections in descending order and
remove dominated ones. This is done with a sweep buffer that keeps all previous
dominant connections that are relevant for the current departure time. The link
operation, which links connections from station A to S with connections from
station S to T , is more complex: in a nutshell, we process the sorted connections
from A to S one by one, compute a relevant interval of connections from S to T
as for the time query, and remove dominated connections using a sweep buffer
like for the minimum operation.

4 Contraction Hierarchies (CH)

CH performs preprocessing based on node contraction to accelerate queries. Con-
tracting a node (= station) v in the station graph removes v and all its adjacent
edges from the graph and adds shortcut edges to preserve dominant connections
between the remaining nodes. A shortcut edge bypasses node v and represents
a set of whole connections. Practically, we contract one node at a time until
the graph is empty. All original edges together with the shortcut edges form the
result of the preprocessing, a CH.

4.1 Preprocessing

The most time consuming part of the contraction is the witness search: given a
node v and an incoming edge (u, v) and an outgoing edge (v, w), is a shortcut
between u and w necessary when we contract v? We answer this question usually
by a one-to-many profile search from u omitting v (witness search). If we find
for every connection of the path 〈u, v, w〉 a dominating connection (witness),
we can omit a shortcut, otherwise we add a shortcut with all the connections
that have not been dominated. To keep the number of profile searches small,
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we maintain a set of necessary shortcuts for each node v. They do not take
a lot of space since timetable networks are much smaller than road networks.
Then, the contraction of node v is reduced to just adding the stored shortcuts.
Initially, we perform a one-to-many profile search from each node u and store
with each neighbor v the necessary shortcuts (u, w) that bypass v. The search
can be limited by the length of the longest potential shortcut connection from u.
After the contraction, we need to update the stored shortcuts of the remaining
nodes. The newly added shortcuts (u, w) may induce other shortcuts for the
neighbors u and w. So we perform one forward profile search from u and add
to w the necessary shortcuts (u, x) bypassing w. A backward profile search from
w updates node u. To omit the case that two connections witness each other,
we add a shortcut when the witness has the same length and is not faster. So
at most two profile searches from each neighbor of v are necessary. When we
add a new shortcut (u, w), but there is already an edge (u, w), we merge both
edges using the minimum operation, so there are never parallel edges. Avoiding
these parallel edges is important for the contraction, which performs worse on
dense graphs. Thereby, we also ensure that we can uniquely identify an edge
with its endpoints.

We also limit the number of hops and the number of transfers of a witness
search. As observed in [2], this accelerates the witness search at the cost of
potentially more shortcuts.

We could omit loops in static and time-dependent road networks. But for
station graph timetable networks, loops are sometimes necessary when transfer
times differ between stations. For example, assume there is a train T 1: (station
sequence) A → B → C and another train T 2: C → B → D. A large minimum
transfer time at B and a small one at C can forbid the transfer from T 1 to T 2 at
B but make it possible at C. Contracting station C requires a loop at station B
to preserve the connection between A and D. These loops also make the witness
computation and the update of the stored shortcuts more complex. A shortcut
(u, w) for node v with loop (v, v) must not only represent the path 〈u, v, w〉,
but also 〈u, v, v, w〉. So when we add a shortcut (v, v) during the contraction of
another node, we need to recompute all stored shortcuts of node v.

The order in which the nodes are contracted is deduced from a node priority
consisting of: (a) The edge quotient, the quotient between the amount of short-
cuts added and the amount of edge removed from the remaining graph. (b) The
hierarchy depth, an upper bound on the amount of hops that can be performed
in the resulting hierarchy. Initially, we set depth(u) = 0 and when a node v is
contracted, we set depth(u) = max(depth(u),depth(v)+1) for all neighbors u.
We weight (a) with 10 and (b) with 1 in a linear combination to compute the
node priorities. Nodes with higher priority are more ‘important’ and get con-
tracted later. The nodes are contracted by computing independent node sets
with a 2-neighborhood [20]. Also note that [2,3] perform a simulated contraction
of a node to compute its edge quotient. [20] improves this by caching witnesses,
but still needs to perform a simulated contraction when a shortcut is necessary.
We can omit this due to our stored sets of necessary shortcuts.
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Interestingly, we cannot directly use the algorithms used for time-dependent
road networks [3]. We tried using the time-dependent model for the timetable net-
works, but too many shortcuts were added, especially a lot of shortcuts
between the different train-route nodes of the same station pair occur.4 Addition-
ally, [3] strongly base their algorithm on min-max search that only uses the time-
independent min./max. length of an edge to compute upper and lower bounds.
However, in timetable networks, the max. travel time for an edge is very high,
e. g. when there is no service during the night. So the computed upper bounds
are too high to bring any exploitable advantages. Without min-max search, the
algorithm of [3] is drastically less efficient, i. e. the preprocessing takes days in-
stead of minutes.

4.2 Query

Our query is a bidirectional Dijkstra-like query in the CH. A directed edge (v, w),
where w is contracted after v, is an upward edge, otherwise a downward edge.
Our forward search only relaxes upward edges and our backward search only
downward edges [2]. The node contraction ensures the correctness of the search.

For a CH time query, we do not know the arrival time at the target node.
We solve this by marking all downward edges that are reachable from the tar-
get node. The standard time query algorithm, using only upward edges and
the marked downward edges, solves the EAP. The CH profile query is based
on the standard profile query algorithm. Note that using further optimizations
that work for road networks (stall-on-demand, min-max search) [3] would even
slowdown our query.

5 Experiments

Environment. The experimental evaluation was done on one core of a Intel Xeon
X5550 processors (Quad-Core) clocked at 2.67 GHz with 48 GiB of RAM5 and
2x8MiB of Cache running SUSE Linux 11.1 (kernel 2.6.27). The program was
compiled by the GNU C++ compiler 4.3.2 using optimization level 3.

Test Instances. We have used real-world data from the European railways. The
network of the long distance connections of Europe (eur-longdist) is from the
winter period 1996/97. The network of the local traffic in Berlin/Brandenburg
(ger-local1) and of the Rhein/Main region in Germany (ger-local2) are from
the winter period 2000/01. The sizes of all networks are listed in Table 1.

Results. We selected 1 000 random queries and give average performance mea-
sures. We compare the time-dependent model and our new station model using
a simple unidirectional Dijkstra algorithm in Table 2. Time queries have a good
query time speed-up above 4.5 and even more when compared to the number of
4 We tried to merge train-route nodes but this brought just small improvements.
5 We never used more than 556 MiB of RAM, reported by the kernel.
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Table 1. Network sizes and number of nodes and edges in the graph for each model

trains/ elementary time-dependent station based
network stations buses connections nodes edges nodes edges
eur-longdist 30 517 167 299 1 669 666 550 975 1 488 978 30 517 88 091
ger-local1 12 069 33 227 680 176 228 874 599 406 12 069 33 473
ger-local2 9 902 60 889 1 128 465 167 213 464 472 9 902 26 678

Table 2. Performance of the station graph model compared to the time-dependent
model on plain Dijkstra queries. We report the total space, the #delete mins from the
priority queue, query times, and the speed-up compared to the time-dependent model.

time-queries profile-queries

space #delete spd time spd #delete spd time spd
network model [MiB] mins up [ms] up mins up [ms] up
eur- time-dep. 27.9 259 506 1.0 54.3 1.0 1 949 940 1.0 1 994 1.0
longdist station 48.3 14 504 17.9 9.4 5.8 48 216 40.4 242 8.2
ger- time-dep. 11.3 112 683 1.0 20.9 1.0 1 167 630 1.0 1 263 1.0
local1 station 19.6 5 969 18.9 4.0 5.2 33 592 34.8 215 5.9
ger- time-dep. 10.9 87 379 1.0 16.1 1.0 976 679 1.0 1 243 1.0
local2 station 29.3 5 091 17.2 3.5 4.6 27 675 35.3 258 4.8

delete mins. However, since we do more work per delete min, this difference is
expected. Profile queries have very good speed-up around 5 to 8 for all tested
instances. Interestingly, our speed-up of the number of delete mins is even better
than for time queries. We assume that more re-visits occur since there are often
parallel edges between a pair of stations represented by its train-route nodes.
Our model does not have this problem since we have no parallel edges and each
station is represented by just one node. It is not possible to compare the space
consumption per node since the number of nodes is in the different models dif-
ferent. So we give the absolute memory footprint: it is so small that we did not
even try to reduce it, altough there is some potential.

Before we present our results for CH, we would like to mention that we were
unable to contract the same networks in the time-dependent model. The contrac-
tion took days and the average degree in the remaining graph exploded. Even
when we contracted whole stations with all of its route nodes at once, it did not
work. It failed since the necessary shortcuts between all the train-route nodes
multiplied quickly. So we developed the station graph model to fix these prob-
lems. Table 3 shows the resulting preprocessing and query performance. We get
preprocessing times between 3 to 4 minutes using a hop limit of 7. The number
of transfers is limited to the maximal number of transfers of a potential shortcut
+ 2. These timings are exceptional low (minutes instead of hours) compared to
previous publications [19,13] and reduce time queries below 550μs for all tested
instances. CH work very well for eur-longdist where we get speed-ups of more
than 37 for time queries and 65 for profile queries. When we multiply the speed-
up of the comparison with the time-dependent model, we even get a speed-up
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Table 3. Performance of CH. We report the preprocessing time, the space overhead
and the increase in edge count. For query performance, we report the #delete mins
from the priority queue, query times, and the speed-up over a plain Dijkstra (Table 2).

preprocessing time-queries profile-queries

hop- time space edge #del. spd time spd #del. spd time spd
network limit [s] [MiB] inc. mins up [μs] up mins up [ms] up
eur- 7 210 45.7 88% 192 75.7 251 37.5 260 186 3.7 65.1
longdist 15 619 45.3 86% 183 79.3 216 43.5 251 192 3.4 71.4
ger- 7 216 27.9 135% 207 28.8 544 7.3 441 76 27.0 8.0
local1 15 685 26.9 128% 186 32.1 434 9.2 426 79 24.2 8.9
ger- 7 167 36.0 123% 154 33.1 249 14.0 237 117 9.5 27.1
local2 15 459 35.0 117% 147 34.6 217 16.1 228 121 8.2 31.3

of 218 (time) and 534 (profile) respectively. These speed-ups are one order of
magnitude larger than previous speed-ups [19]. The network ger-local2 is also
suited for CH, the ratio between elementary connections and stations is however
very high, so there is more work per settled node. More difficult is ger-local1;
in our opinion, this network is less hierarchically structured. We see that on the
effect of different hop limits for precomputation. (We chose 7 as a hop limit for
fast preprocessing and then selected 15 to show further tradeoff between pre-
processing and query time.) The smaller hop limit increases time query times
by about 25%, whereas the other two networks just suffer an increase of about
16%. So important witnesses in ger-local1 contain more edges, indicating a
lack of hierarchy.

We do not really have to worry about preprocessing space since those networks
are very small. The number of edges roughly doubles for all instances. We observe
similar results for static road networks [2], but there we can save space with
bidirectional edges. But in timetable networks, we do not have bidirectional
edges with the same weight, so we need to store them separately. CH on timetable
networks are inherently space efficient as they are event-based, they increase the
memory consumption by not more than a factor 2.4 (ger-local1: 19.6 MiB
→ 47.5 MiB). In contrast, CH time-dependent road networks are not event-
based and get very complex travel time functions on shortcuts, leading to an
increased memory consumption (Germany midweek: 0.4 GiB → 4.4 GiB). Recent
work reduces the space consumption by using approximations to answer queries
exactly [21].

6 Conclusions

Our work has two contributions. First of all the station graph model, which
has just one node per station, is clearly superior to the time-dependent model
for the given scenario. Although the link and minimum operations are more
expensive, we are still faster than in the time-dependent model since we need
to execute them less often. Also all known speed-up techniques that work for
the time-dependent model should work for our new model. Most likely, they
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even work better since the hierarchy of the network is more visible because of
the one-to-one mapping of stations to nodes and the absence of parallel edges.
Our second contribution is the combination of the CH algorithm and the station
graph model. With preprocessing times of a few minutes, we answer time queries
in half a millisecond. Our algorithm is therefore suitable for web services with
high load, where small query times are very important and can compensate for
our restricted scenario.

In our opinion, our presented ideas build the algorithmic core to develop
efficient algorithms in more realistic scenarios. Especially the successful demon-
stration of the contraction of timetable networks brings speed-up techniques to
a new level. It allows to reduce network sizes and to apply other speed-up tech-
niques only to a core of the hierarchy, even in case that the contraction of all
nodes is infeasible.
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S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg
(2009)

16. Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths. IEEE Transactions on Systems Science and Cyber-
netics 4, 100–107 (1968)

17. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards Realistic Modeling of
Time-Table Information through the Time-Dependent Approach. In: [22], pp. 85–
103

18. Disser, Y., Müller–Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in
Time-Dependent Train Networks. In: [22], pp. 347–361

19. Delling, D.: Time-Dependent SHARC-Routing. Algorithmica (July 2009); In:
Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 332–343.
Springer, Heidelberg (2008)

20. Vetter, C.: Parallel Time-Dependent Contraction Hierarchies (2009), Student Re-
search Project,
http://algo2.iti.kit.edu/documents/routeplanning/vetter_sa.pdf

21. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contrac-
tion Hierarchies and Approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 166–177. Springer, Heidelberg (2010)

22. McGeoch, C.C. (ed.): WEA 2008. LNCS, vol. 5038. Springer, Heidelberg (2008)
23. Proceedings of the 3rd Workshop on Algorithmic Methods and Models for Opti-

mization of Railways (ATMOS 2003). Electronic Notes in Theoretical Computer
Science, vol. 92 (2004)

http://algo2.iti.kit.edu/documents/routeplanning/vetter_sa.pdf


Distributed Time-Dependent Contraction
Hierarchies�

Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter

Karlsruher Institut für Technologie, Germany
{luxen,sanders}@kit.edu,

tim@kieritz.de, vetter@ira.uka.de

Abstract. Server based route planning in road networks is now pow-
erful enough to find quickest paths in a matter of milliseconds, even if
detailed information on time-dependent travel times is taken into ac-
count. However this requires huge amounts of memory on each query
server and hours of preprocessing even for a medium sized country like
Germany. This is a problem since global internet companies would like
to work with transcontinental networks, detailed models of intersections,
and regular re-preprocessing that takes the current traffic situation into
account. By giving a distributed memory parallelization of the arguably
best current technique – time-dependent contraction hierarchies, we re-
move these bottlenecks. For example, on a medium size network 64 pro-
cesses accelerate preprocessing by a factor of 28 to 160 seconds, reduce
per process memory consumption by a factor of 10.5 and increase query
throughput by a factor of 25.

Keywords: time-dependent shortest paths, distributed computation,
message passing, algorithm engineering.

1 Introduction

For planning routes in road networks, Dijkstra’s algorithm is too slow. There-
fore, there has been considerable work on accelerating route planning using pre-
processing. Refer to [4,7] for recent overview papers. For road networks with
ordinary, static edge weights this work has been very successful and leading to
methods that are several orders of magnitudes faster than Dijkstra’s classical
algorithm. Recent work shows that similarly fast routing is even possible when
the edge weights are time-dependent travel time functions defined by piece-wise
linear functions that allow no overtaking [5,1]. This is practically important since
it allows to take effects such as rush-hour congestion into account. While these
methods are already fast enough to be used in practice in a server based sce-
nario on “medium-sized” networks such as the road network of Germany they
leave several things to be desired. First, globally operating companies providing
routing services might want to offer a seamless service for transcontinental net-
works as for EurAsiAfrica or for the Americas. Second, we would like to move to
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more-and-more detailed network models with an ever increasing fraction of time-
dependent edges and multi-node models for every road intersection that allows
to model turn-penalties, traffic-light delays, etc. First studies indicate that such
models increase memory requirements by a factor of 3–4 [13]. On top of this,
we would like to recompute the preprocessing information frequently in order
to take information on current traffic (e.g., traffic jams) into account. Indeed,
in the future we may want to perform massive sub-real-time traffic simulations
that predict congestion patterns for the near future. These simulations put even
more stringent requirements on a route planner supporting them. Finally, even
when the preprocessed information fits on a single large machine with a lot of
expensive main memory, a large company may have to replicate this information
in order to be able the handle a large flow of queries.

In this paper we address all these issues by developing an approach that
distributes both preprocessing and query processing to a cluster of inexpen-
sive machines each equipped with limited main memory. The available large cu-
mulative memory allows large networks while the cumulative processing power
allows fast preprocessing and high query throughput. Our distributed imple-
mentation (DTCH) is based on time-dependent contraction hierarchies (TCH)
[1]. Among the techniques available for time-dependent route planning, TCHs
have several features that make its parallelization attractive: they are currently
the fastest approach available both with respect to preprocessing time and query
time. Storage requirements are critical because TCHs introduce many additional
edges which represent long paths with complex travel-time function. Further-
more, TCH queries have small search spaces mostly concentrated around source
and target node and hence exhibit a degree of locality that make it attractive
for a distributed implementation.

First, we give an overview over the relevant literature for the time-dependent
shortest path problem in Section 2. Then we introduce basic concepts in Sec-
tion 3. Sections 4 and 5 explain distributed approaches to preprocessing and
queries respectively. Section 6 gives results on a first implementation of our ap-
proach. The distributed preprocessing time in one of our test cases falls from
more than an hour to a little more than two and a half minutes while the
throughput of distributed batch queries almost benefits linearly from more pro-
cesses. Section 7 summarizes the results and outlines future improvements.

2 Related Work

For a survey on the rich literature on speedup techniques for static edge weights
we refer to [7,4]. Static contraction hierarchies [8] are a simple and efficient hier-
archical approach to fast route planning. The idea is to build an n-level hierarchy
by iteratively removing the “least important” node v from the network by con-
tracting it – shortest paths leading through v are bypassed using new shortcut
edges. For example, consider a graph consisting of three nodes a, b, c and two
direct edges (a, b) and (b, c). Node b is shortcutted by removing incoming edge
(a, b) as well as outgoing edge (b, c) and inserting a new edge (a, c) with cumula-
tive edge weights. Node ordering is done heuristically. The resulting contraction
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hierarchy (CH) consists of all original nodes and edges plus the shortcut edges
thus introduced. A bidirectional query can then restrict itself to edges leading
to more important nodes – resulting in very small search spaces. It was thought
that bidirectional query algorithms would not work for time-dependent networks
because it is not clear how to perform a backward search time-dependently with-
out knowing the arrival time. However, in [1] it was shown how CHs can be made
time-dependent. First, time-dependent forward search and non-time-dependent
backward search are combined to identify a small corridor network that has
to contain the shortest path. This path is then identified using time-dependent
forward search in the corridor.

Delling et al. [5,6] developed several successful time-dependent route plan-
ning techniques based on a combination of node contraction and goal-directed
techniques. The most promising of these methods rely on forward search. Since
they do not use long-range shortcuts, they need less memory than TCHs. How-
ever they exhibit slower query time and/or preprocessing time and distributed
memory parallelization looks more difficult since the query search space is less
localized around source and target.

Vetter [12] has developed a shared memory parallelization of the preprocess-
ing stage that is also the basis for our distributed memory parallelization. While
sequential CH techniques perform node ordering online using a priority queue,
Vetter contracts nodes in a batched fashion by identifying sets of nodes that
are both sufficiently unimportant and sufficiently far away of each other so
that their concurrent contraction does not lead to unfavorable hierarchies. Note
that a shared memory parallelization is much easier than using distributed mem-
ory since all data is available everywhere.

3 Preliminaries

We are considering a road network in the form of a directed graph G = (V, E)
with n nodes and m edges. We assume that the nodes V = 1, . . . , n are ordered
by some measurement of importance ≺ and that 1 is the least important node.
This numbering defines the so-called level of each node and u < v denotes that
the level of u is lower than the level of v.

Time-dependent networks do not have static edge weights, but rather a travel
time function. The weight function f(t) specifies the travel time at the endpoint
of an edge when the edge is entered at time t. We further assume that each edge
obeys the FIFO property: (∀τ < τ ′) : τ + f(τ) ≤ τ ′ + f(τ ′) and as mentioned
before, each travel time function is represented by a piece-wise linear function
defined by a number of supporting points. This allows us to use a time-dependent
and label correction variant of Dijkstra’s algorithm. For an explanation of the
inner workings of the edge weight data type see the paper of Batz et al. [1] where
it is explained in-depth.

A node u can be contracted by deleting it from the graph and replacing
paths of the form 〈v, u, w〉 by shortcut edges (v, w). Shortcuts that at no point
in time represent a shortest path can be omitted. To prove this property, so-
called witness searches have to be performed, which are profile searches to check
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whether there is a shorter path 〈u, w〉 not going over v that is valid at some
point in time.

We consider a system where p processes run on identical processors each with
their own local memory. Processes interact by exchanging messages, e.g., using
the message passing interface MPI.

4 Distributed Node Ordering and Contraction

The nodes of the input graph are partitioned into one piece Ni for each process
i ∈ {0, . . . , p − 1} using graph partitioning software that produces sets of about
equal size and few cut edges. See Section 6 for more details on the partitioning
software.

The goal of preprocessing is to move each node into its level of the hierarchy.
Initially, no node is in a level. The sequential node order is computed on the fly
while contracting nodes. Which node is to be contracted next is decided using a
priority function whose most important term among others is the edge difference
between the number of introduced shortcuts and the number of adjacent edges
that would be removed by a contraction step.

The distributed node ordering and contraction is an iterative algorithm. While
the remaining graph (containing the nodes not yet contracted) is nonempty,
we identify an independent set I of nodes to be contracted in each iteration.
Each process contracts the nodes under its authority independently of the other
processes. Furthermore, we define I to be the set of nodes whose contraction does
not depend on the contraction of any other node in the remaining graph. Thus
the nodes in I can be contracted in any order without changing the result. While
any independent set could be used in principle, we have to try to approximate
the ordering a sequential algorithm would use. We therefore use nodes that are
locally minimal with respect to a heuristic importance function within their local
2-hop neighborhood. In [12] this turned out to be a good compromise between a
low number of iterations and good approximation of the behavior of sequential
contraction.

As in static CHs [8], the search for witness paths is pruned heuristically by
a limit h on the number of edges in the witness (hop-limit). This feature helps
us to achieve an efficient distributed implementation. We maintain the invariant
that before contracting I, every process stores its local partition Ni plus the
nodes within a �-neighborhood1 (a halo) where � = �h/2�+ 1. It is easy to show
that all witness paths with at most h hops must lie inside this local node set
Li. When the halo information is available, each iteration of the node contrac-
tion can be performed completely independently of the other processes, possibly
using shared-memory parallelism locally. At the end of each iteration, all newly
generated shortcuts (u, v) are sent to the owners of nodes u and v which subse-
quently forward them to processes with a copy of u or v in their halo. Messages
between the same pair of processes can be joined into a single message to reduce
1 Node v is in the x-neighborhood of node set M if there is a path with ≤ x edges

from v to a node in M or a path with ≤ x edges from a node in M to v.
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the communication overhead. This way, two global communication phases suffice
to exchange information on new shortcuts generated. Then, the halo-invariant
has to be repaired since new shortcuts may result in new nodes reachable within
the hop limit. This can be done in two stages. First, a local search from the
border nodes in Ni (those nodes that have a neighbor outside Ni) establishes
the current distances of nodes in the halo. Then, nodes with hop distance < �
with neighbors outside Li requests information on these neighbors (using a single
global data exchange). This process is iterated until the full �-hop halo informa-
tion is available again at each process. Thus, this repair operation takes at most
� global communication phases.

5 Distributed Query

The query is easily distributable. The forward search is performed on the clus-
ter node that authoritative for the starting node. The temporary results are
communicated the authorative node for the backward search where the query is
completed.

We explain the method in more detail now. To distribute the query, we use the
same partitioning of the nodes that was previously used during the contraction
of the road network. Each process i is responsible for the search spaces of start
and target nodes that lie in Ni. We denote the authoritative process for node
v by p(v). In addition to the nodes, each process keeps track of the nodes that
do not lie in Ni but are reachable from the border nodes in Ni. To be more
precise, process i is the authority to the nodes in Ni and knows those nodes that
are reachable by a forward search in the graph G↑ and by a backward search
in G↓. Here, G↑ contains all edges or shortcuts of the form (u, v) where v was
contracted later than u. G↓ contains all edges or shortcuts of the form (u, v)
where u was contracted later than v.

To perform a shortest path query from s to t, a request enters the system
at possibly any process and is sent to the authoritative process for s. If that
process is the authority to node t as well, then the entire query is answered
locally. Otherwise a time-dependent forward search is conducted starting at node
s in Gs

↑. Note that this search can eliminate some nodes that cannot be on a
shortest path using the technique of stall-on-demand [8]. The arrival time at all
non-pruned nodes reached by this search is then sent to process p(t) which now
has all the information needed to complete the query. Same as the backward
search in the sequential algorithm, p(t) goes on to mark all edges leading to t
in G↓ pruning some edges than cannot be part of a shortest path at any time.
Finally, the forward search is resumed starting from those nodes reached by both
forward search and backward search and only exploring marked edges.

6 Experiments

We now report on experiments with a prototypical implementation using C++
and MPI. We use 1, 2, 4, . . . 128 nodes each equipped with 2 2 667MHz Quad-
Core Intel Xeon X5355 processors and 16 gigabytes of RAM. The nodes are
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connected by an InfiniBand 4xDDR switch. The resulting point-to-point peak
bandwidth between two nodes is more than 1 300MB/s. We use Intel C/C++
compiler version 10.1 with full optimization turned on and OpenMPI 1.3.3 for
communication. We used only a single process per node to simplify implementa-
tion. Using shared memory parallelism within the nodes should lead to significant
further reductions of execution time for a fixed number of nodes. For the parti-
tioning of the input graph we used the same partitioner as SHARC [3] which is
a locally optimized variant of SCOTCH [9] and was kindly provided by Daniel
Delling. The running time for graph partitioning is not included but negligible
in our setting.

We used the real-world road network of Germany with realistic traffic pat-
terns as well as a European network with synthetic time-dependent travel times
using the methodology of [6,5]. All networks were provided by PTV AG for
scientific use. The German road network has about 4.7 million nodes and 10
million edges and is augmented with time-dependent edge weights of two dis-
tinct traffic patterns. The first is strongly time-dependent and reflects midweek
(Tuesday till Thursday) traffic while the other reflects the more quiet Sunday
traffic patterns. Both data sets were collected from historical data. The German
midweek scenario has about 8% time-dependent edge weights while the sunday
scenario consists of about 3% time-dependent edges. The European graph is
highly time-dependent and has approximately 18 million nodes and 42.6 million
edges of which 6% are time-dependent with an average number of more than 26
supporting points each.

6.1 Distributed Contraction

Figure 1 shows the speedups and execution times obtained. We use relative
speedup compared to the sequential code of [1] Batz et al. . Since the European
road network cannot be contracted on less than 4 nodes we use the execution
time of our distributed algorithm on four cluster nodes as a baseline and mea-
sure speedups against this number in this case. For the German midweek road
network our systems scales well up to 16 processes. Indeed, we obtain a slight
superlinear speedup which we attribute to a larger overall capacity of cache
memory. More than 64 processes make no sense at all. For the German Sun-
day network, the behavior is similar although both overall execution times and
speedups are smaller. This is natural since the limited time-dependence incurs
less overall work. As to be expected for a larger network, scalability for the Eu-
ropean network is better, being quite good up to 32 processes and still improving
at 128 processes. However, a closer look shows that there is still potential for
improvement here. Our analysis indicates that the execution times per iteration
are fluctuating wildly for the European network. Closer inspection indicates that
this is due to partitions that are (at least in some iterations) much more diffi-
cult to contract than others. Therefore, in future versions we plan to try a more
adaptive contraction strategy: Once a significant percentage of all processes have
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Fig. 1. Running Times and speedup for the distributed contraction with a varying
number of processes

finished contracting the nodes alloted to them, we stop contraction everywhere.
If contracted nodes are spread uniformly (e.g. using randomization) this should
smooth out some of these fluctuations.

Next, we analyze the memory requirements for each process at query time2

As explained in Section 4 we get an overhead because every process holds the
complete search space for each node under its authority. In Figure 2 we plot
the memory consumption in two ways. First, we look at the maximum memory
requirements for any single process. Second, we analyze how this maximum m
compares to the sequential memory requirements s by looking at the ratio of
p·m/s which quantifies the blow-up of overall memory requirement. Although the
maximum m decreases, the memory blowup only remains in an acceptable range
for around 16–32 processes. Even then a blowup factor around 2 is common. This
is in sharp contrast to (unpublished) experiments we made in connection with a
mobile implementation of static CHs [11] where memory blowup was negligible.
The crucial difference here is that the relatively small number of important nodes
that show up on most processes have many incident nodes with highly complex
travel-time functions.

2 Memory requirements during contraction time are much lower in our implementation
since we write edges incident to contracted nodes out to disk.
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Fig. 2. Maximum Memory Requirements and Overheads of the Distributed search Data
Structure

6.2 Distributed Query

The query times are averaged over a test set of 100 000 queries that were pre-
computed using a plain time-dependent Dijkstra. For each randomly selected
start and destination node a random departure time was selected. The length
of a resulting shortest path was saved. The query and its running times can be
evaluated in two distinct settings.

Figure 3 shows the speedup obtained for performing all 100 000 queries. This
figure is relevant for measuring system thoughput and thus the cost of the servers.
Scalability for the German networks is even better than for the contraction time
with efficiency near 50 % for up to 32 PEs. It should also be noted that we mea-
sured average message lengths of only around 4 000 bytes for communicating the
results of the forward search space. This means that we could expect similar
performance also on machines with much slower interconnection network. For
the European network we even get superlinear speedup. This might again be
connected to cache effects. The reason why we do not have superlinear speedup
for the German networks might be that the smaller data set do not put that
heavy requirements on cache capacity anyway. Still, the amount of superlinear
speedup remains astonishing. We refrain from further attempts at an explana-
tion because we lack intuition on the nature of the synthetic data used. Before
claiming that this effect is interesting and useful we would prefer to wait for
realistic data for large networks.
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Fig. 3. Average time [ms] for a single query in a batch run of 100 000 with a given
number of processes on the German road networks
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Fig. 4. Rank plots for the various road networks
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Next, we analyze the single query behavior and measure how much time
each individual distributed shortest path query takes. We give a detailed look
into query time distribution in Figure 4 using the well-established methodol-
ogy of [10]. It shows a plot of the individual query times of 100 000 random
distributed queries on each of the road networks with the property that a
plain time-dependent bidirectional Dijkstra settles 2i nodes. We observed mean
query times of 1.12 ms (Germany midweek), 0.44 ms (Germany Sunday) aver-
age query times for the sequential query algorithm on the same hardware. In
the parallel system we observe somewhat larger times but these latencies are
still negligible compared to the latencies usual in the internet which are at least
an order of magnitude larger. We see considerably smaller query times for local
queries which might constitute a significant part of the queries seen in practice.
Again, the European network behaves differently. The overall query latencies of
about 2ms are good, but we do not see improvements for local queries.

7 Conclusions and Future Work

We successfully distributed time-dependent Contraction Hierarchies including
the necessary precomputation to a cluster of machines with medium sized main
memory. For large networks we approach two orders of magnitude in reduction
of preprocessing time and at least a considerable constant factor in required local
memory size. We believe that there is considerable room for further improvement:
reduce per-node memory requirements, use shared-memory parallelism on each
node and more adaptive node contraction.

Batz et al. [2] developed improved variants of TCHs that reduce space con-
sumption by storing only approximate travel-time functions for shortcuts. These
features should eventually be integrated into our distributed approach but by
themselves they do not solve the scalability issues stemming from larger net-
works, more detailed modelling, and stringent requirements on preprocessing
time for incorporating real-time information and for traffic simulation.

With respect to the targeted applications we can be quite sure that reduced
turnaround times for including upto-date traffic information are realistic. Re-
garding larger networks with more detailed modelling we are optimistic yet fur-
ther experiments with such large networks would be good to avoid bad surprises.
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Abstract. The suffix tree is an extremely important data structure
for stringology, with a wealth of applications in bioinformatics. Clas-
sical implementations require much space, which renders them useless
for large problems. Recent research has yielded two implementations of-
fering widely different space-time tradeoffs. However, each of them has
practicality problems regarding either space or time requirements. In this
paper we implement a recent theoretical proposal and show it yields an
extremely interesting structure that lies in between, offering both prac-
tical times and affordable space. The implementation is by no means
trivial and involves significant algorithm engineering.

1 Introduction

The suffix tree [18,30] is arguably the most important data structure for string
analysis. It has been said to have a myriad of virtues [2] and there are books dedi-
cated to its applications in areas like bioinformatics [12]. Many complex sequence
analysis problems are solved through sophisticated traversals over the suffix tree,
and thus a fully-functional implementation supports a variety of navigation op-
erations. These involve not only the classical tree navigation operations (parent,
child) but also specific ones such as suffix links and lowest common ancestors.

One serious problem of suffix trees is that they take much space. A naive
implementation can easily require 20 bytes per character, and a very optimized
one reaches 10 bytes [14]. A way to reduce this space to about 4 bytes per
character is to use a simplified structure called a suffix array [17], but it does
not contain sufficient information to carry out all the complex tasks suffix trees
are used for. Enhanced suffix arrays [1] extend suffix arrays so as to recover the
full suffix tree functionality, raising the space to about 6 bytes per character in
practice. Another heuristic space-saving methods [20] achieve about the same.

For example, on DNA, each character could be encoded with 2 bits, whereas
the alternatives we have considered require 32 to 160 bits per character (bpc).
Using suffix trees on secondary memory makes them orders of magnitude slower
as most traversals are non-local. This situation is also a heresy in terms of Infor-
mation Theory: whereas the information contained in a sequence of n symbols
over an alphabet of size σ is n log σ bits in the worst case, all the alternatives
above require Θ(n log n) bits. (Our logarithms are in base 2.)
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Recent research on compressed suffix trees (CSTs) has made much progress
in terms of reaching space requirements that approach not only the worst-case
space of the sequence, but even its information content. All these can be thought
of as a compressed suffix array (CSA) plus some extra information that encodes
the tree topology and longest common prefix (LCP) information.

The first such proposal was by Sadakane [27]. It requires 6n bits on top of
his CSA [26], which in turn requires nH0 + O(n log log σ) bits, where H0 is the
zero-order entropy of the sequence. This structure supports most of the tree
navigation operations in constant time (except, notably, going down to a child,
which is an important operation). A recent implementation [29] achieves a few
tens of microseconds per operation, but in practice the structure requires about
25–35 bpc (close to a suffix array), and thus its applicability is limited.

The second proposal was by Russo et al. [25]. It requires only o(n) bits on top
of a CSA. By using an FM-index [6] as the CSA, one achieves nHk + o(n log σ)
bits of space, where Hk is the k-th order empirical entropy of the sequence,
for sufficiently low k ≤ α logσ n, for any constant 0 < α < 1. The navigation
operations are supported in polylogarithmic time (at best Θ(log n log log n) in
their paper). This structure was implemented by Russo and shown to achieve
very little space, around 4–6 bpc, which makes it extremely attractive when the
sequence is large compared to the available main memory. On the other hand,
the structure is much slower than Sadakane’s. Each navigation operation takes
the order of milliseconds, which is comparable to disk operation times.

Both existing implementations are unsatisfactory in either time or space
(though certainly excell on the other aspect), and become very far extremes
of a tradeoff: Either one has sufficient main memory to spend 30 bpc, or one has
to spend milliseconds per navigation operation.

In this paper we present a third implementation, which offers a relevant
space/time tradeoff between these two extremes. One variant shows to be supe-
rior to the implementation of Sadakane’s CST in both space and time: it uses
13–16 bpc (i.e., half the space) and requires a few microseconds (i.e., several
times faster) per operation. A second alternative works within 8–12 bpc and
requires a few hundreds of microseconds per operation, that is, smaller than our
first variant and still several times faster than Russo’s implementation.

Our implementation is based on a third theoretical proposal, by Fischer et
al. [8], which achieves nHk(2 max(1, log(1/Hk))+1/ε+O(1))+o(n logσ) bpc (for
the same k as above and any constant ε > 0) and navigation times of the form
O(logε n). Their proposal involves several theoretical solutions, whose efficient
implementation was far from trivial, requiring significant algorithm engineering
that completely changed the original proposal in some cases. After experimental
study of several alternatives, we choose the two variants described above.

Our work opens the door to a number of practical suffix tree applications, par-
ticularly relevant to bioinformatics. Our implementation will be publicly avail-
able in the Pizza&Chili site (http://pizzachili.dcc.uchile.cl). We plan to
apply it to solve concrete bioinformatic problems on large instances.
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Table 1. Operations over the nodes and leaves of the suffix tree

Operation Description
Root() the of the suffix tree.
Locate(v) suffix position i if v is the leaf of suffix Ti,n, otherwise NULL.
Ancestor(v, w) true if v is an ancestor of w.
SDepth(v)/TDepth(v) string-depth/tree-depth of v.
Count(v) number of leaves in the subtree rooted at v.
Parent(v) parent node of v.
FChild(v) alphabetically first child of v.
NSibling(v) alphabetically next sibling of v.
SLink(v) suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σ.
SLinki(v) iterated suffix-link: the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σi.
LCA(v, w) lowest common ancestor of v and w.
Child(v, a) node w s.th. the first letter on edge (v, w) is a ∈ Σ.
Letter(v, i) ith letter of v’s path-label, π(v)[i].
LAQS(v, d)/LAQT (v, d) the hightest ancestor of v with string-depth/tree-depth ≤ d.

2 Compressed Suffix Trees

A suffix array over a text T [1, n] is an array A[1, n] of the positions in T , lex-
icographically sorted by the suffix starting at the corresponding position of T .
That is, T [A[i], n] < T [A[i + 1], n] for all 1 ≤ i < n. Note that every substring
of T is the prefix of a suffix, and that all suffixes starting with a given pattern
P appear consecutively in A, hence a couple of binary searches find the area
A[sp, ep] containing all the positions where P occurs in T .

There are several compressed suffix arrays (CSAs) [21,5], which offer essen-
tially the following functionality: (1) Given a pattern P [1, m], find the inter-
val A[sp, ep] of the suffixes starting with P ; (2) obtain A[i] given i; (3) ob-
tain A−1[j] given j. An important function the CSAs implement is Ψ(i) =
A−1[(A[i] mod n) + 1] and its inverse, usually much faster than computing A
and A−1. This function lets us move virtually in the text, from the suffix i that
points to text position j = A[i], to the one pointing to j + 1 = A[Ψ(i)].

A suffix tree is a compact trie (or digital tree) storing all the suffixes of T .
This is a labeled tree where each text suffix is read in a root-to-leaf path, and the
children of a node are labeled by different characters. Leaves are formed when
the prefix of the corresponding suffix is already unique. Here “compact” means
that unary paths are converted into a single edge, labeled by the string formed
by concatenating the involved character labels. If the children of each node are
ordered lexicographically by their string label, then the leaves of the suffix tree
form the suffix array of T . Several navigation operations over the nodes and
leaves of the suffix tree are of interest. Table 1 lists the most common ones.

In order to get a suffix tree from a suffix array, one needs at most two extra
pieces of information: (1) the tree topology; (2) the longest common prefix (LCP)
information, that is, LCP [i] is the length of the longest common prefix between
T [A[i − 1], n] and T [A[i], n] for i > 1 and LCP [1] = 0 (or, seen another way,
the length of the string labeling the path from the root to the lowest common
ancestor node of suffix tree leaves i and i − 1). Indeed, the suffix tree topology
can be implicit if we identify each suffix tree node with the suffix array interval
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containing the leaves that descend from it. This range uniquely identifies the
node because there are no unary nodes in a suffix tree.

Consequently, a compressed suffix tree (CST) is obtained by enriching the
CSA with some extra data. Sadakane [27] added the topology of the tree (using
4n extra bits) and the LCP data. The LCP was compressed to 2n bits by noticing
that, if sorted by text order rather than suffix array order, the LCP numbers
decrease by at most 1. Let LCP ′ be the permuted LCP array, then LCP ′[j +
1] ≥ LCP ′[j] − 1. Thus the numbers can be differentially encoded, h[j + 1] =
LCP ′[j + 1] − LCP ′[j] + 1 ≥ 0, and then represented in unary over a bitmap
H [1, 2n] = 0h[1]10h[2] . . . 10h[n]1. Then, to obtain LCP [i], we look for LCP ′[A[i]],
and this is extracted from H via rank/select operations. Here rankb(H, i) counts
the number of bits b in H [1, i] and selectb(H, i) is the position of the i-th b in
H . Both can be answered in constant time using o(n) extra bits of space [19].
Then LCP ′[j] = select1(H, j) − 2j, assuming LCP ′[0] = 0.

Russo et al. [25] get rid of the parentheses, by instead identifying suffix tree
nodes with their corresponding suffix array interval. By sampling some suffix tree
nodes, most operations can be carried out by moving, using suffix links, towards
a sampled node, finding the information stored in there, and transforming it as
we move back to the original node. The suffix link operation, defined in Table 1,
can be computed using Ψ and the lowest common ancestor operation [27].

A New Theoretical CST Proposal. Fischer et al. [8] prove that array
H in Sadakane’s CST is compressible as it has at most 2r ≤ 2(nHk + σk)
runs of 0s or 1s, for any k. Let z1, z2, . . . , zr the lengths of the runs of 0s and
o1, o2, . . . , or the same for the 1s. They create arrays Z = 10z1−110z2−1 . . . and
O = 10o1−110o2−1 . . ., with overall 2r 1s out of 2n, and thus can be compressed
to 2r log n

r + O(r) + o(n) bits and support constant-time rank and select [24].
Their other improvement over Sadakane’s CST is to get rid of the tree topology

and replace it with suffix array ranges. Fischer et al. show that all the navigation
can be simulated by means of three operations: (1) RMQ(i, j) gives the position
of the minimum in LCP [i, j]; (2) PSV (i) finds the last value smaller than LCP [i]
in LCP [1, i − 1]; and (3) NSV (i) finds the first value smaller than LCP [i] in
LCP [i + 1, n]. All these could easily be solved in constant time using O(n)
extra bits of space on top of the LCP representation, but Fischer et al. give
sublogarithmic-time algorithms to solve them with only o(n) extra bits.

As examples, the parent of node [i, j] is [PSV (i),NSV (i) − 1]; the LCA be-
tween nodes [i, j] and [i′, j′] is [PSV (p),NSV (p)−1], where p = RMQ(min(i, i′),
max(j, j′)); and the suffix link of [i, j] is [PSV (Ψ(i)),NSV (Ψ(j)) − 1].

Our Contribution. The challenge faced in this paper is to implement this CST.
This can be divided into (1) how to represent LCP efficiently in practice, and (2)
how to compute efficiently RMQ , PSV , and NSV over this LCP representation.
We study each subproblem and compare the resulting CST with previous ones.

Our experiments were performed on 100 MB of the protein, sources, XML
and DNA texts from Pizza&Chili. The computer is an Intel Core2 Duo at 3.16
GHz, with 8 GB of RAM and 6 MB cache, running Linux version 2.6.24-24.
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3 Representing Array LCP

The following alternatives were considered to represent LCP :

Sad-Gon: Encodes H in plain, using the rank/select implementation of González
[10], which takes 0.1n bits over the 2n used by H itself and answers select in
O(log n) time via binary search.

Sad-OS: Like the previous one, but using the dense array implementation of
Okanohara and Sadakane [22] for H . This requires about the same space as
the previous one and answers select in O(log4 r/ log n) time.

FMN-RRR: Encodes H in compressed form as in Fischer et al. [8], i.e., by
encoding bitmaps Z and O. We use the compressed representation by Raman
et al. [24] as implemented by Claude [4]. This costs 0.54n extra bits on top of
the entropy of the two bitmaps, 2r log n

r + O(r). Select takes O(log n) time.
FMN-OS: Like the previous one, but instead of Raman et al. technique, we

use the sparse array implementation by Okanohara and Sadakane [22]. This
requires 2r log n

r + O(r) bits and solves select in time O(log4 r/ log m).
PT: Inspired on an LCP construction algorithm [23], we store a particular sam-

pling of LCP values, and compute the others using the sampled ones. Given
a parameter v, the sampling requires n + O(n/

√
v + v) bytes of space and

computes any LCP [i] by comparing at most some T [j, j+v] and T [j′, j′+v].
As we must obtain these symbols using Ψ up to 2v times, the idea is slow.

PhiSpare: This is inspired in another construction [13]. For a parameter q, store
in text order an array LCP ′

q with the LCP values for all text positions q · k.
Now assume SA[i] = qk+b, with 0 ≤ b < k. If b = 0, then LCP [i] = LCP ′

q[k].
Otherwise, LCP [i] is computed by comparing at most q + LCP ′

q[k + 1] −
LCP ′

q[k] symbols of the suffixes T [SA[i− 1], n] and T [SA[i], n]. The space is
n/q integers and the computation requires O(q) applications of Ψ on average.

DAC: The directly addressable codes of Ladra et al. [3]. Most LCP values are
small (O(logσ n) on average), and thus require few bits. Yet, some can be
much longer. Thus we can fix a block length b and divide each number, of
� bits, into ��/b� blocks of b bits. Each block is stored using b + 1 bits, the
last one telling whether the number continues in the next block or finishes in
the current one. Those blocks are then rearranged to allow for fast random
access. There are two variants of this structure, both implemented by Ladra:
one with fixed b (DAC ), and another using different b values for the first,
second, etc. blocks, so as to minimize the total space (DAC -Var). Note we
represent LCP and not LCP ′, thus we do not need to compute A[i].

RP: Re-Pair [15] is a grammar-based compression method that factors out rep-
etitions in a sequence. It has been used [11] to compress the differentially
encoded suffix array, SA′[i] = SA[i] − SA[i − 1], which contains repetitions
because SA can be partitioned into r areas that appear elsewhere in SA with
the values shifted by 1 [16]. Note that LCP must then contain the same rep-
etitions shifted by 1, and therefore Re-Pair compression of the differential
LCP should perform similarly [8]. To obtain LCP [i] we store sampled abso-
lute LCP values and decompress the nonterminals since the last sample.
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Fig. 1. Space/time for accessing LCP array

Experimental Comparison. We tested the different LCP implementations
by accessing 100,000 random positions of the LCP array. Fig. 1 shows the
space/times achieved on two texts (the others gave similar results). Only PT
and PhiSpare display a space/time tradeoff; in the first we use v = 4, 6, 8 and
for the second q = 16, 32, 64.

As it can be seen, DAC/DAC -Var and the representations of H dominate the
space-time tradeoff map (PhiSpare and PT can use less space but they become
impractically slow). For the rest of the paper we will keep only DAC and DAC -
Var , which give the best time performance, and FMN -RRR and Sad -Gon , which
have the most robust performance at representing H .

4 Computing RMQ, PSV , and NSV

Once a representation for LCP is chosen, one must carry out operations RMQ ,
PSV , and NSV on top of it (as they require to access LCP ). We first imple-
mented verbatim the theoretical proposals of Fischer et al. [8]. For NSV , the
idea is akin to the recursive findclose solution for compressed trees [9]: the ar-
ray is divided into blocks and some values are chosen as pioneers so that, if a
position is not a pioneer, then its NSV answer is in the same block of that of
its preceding pioneer (and thus it can be found by scanning that block). Pio-
neers are marked in a bitmap so as to map them to a reduced array of pioneers,
where the problem is recursively solved. We experimentally verified that it is
convenient to continue the recursion until the end instead of storing the explicit
answers at some point. The block length L yields a space/time tradeoff since,
at each level of the recursion, we must obtain O(L) values from LCP . PSV is
symmetric, needing another similar structure.

For RMQ we apply an existing implementation [7] on the LCP array, remem-
bering that we do not have direct access to LCP but have to use any of the
access methods we have developed for it. This accesses at most 5 cells of LCP ,
yet it requires 3.25n bits. In the actual theoretical proposal [8] this is reduced to
o(n) but many more accesses to LCP would be necessary; we did not implement
that verbatim as it has little chances of being practical.
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The final data structure, that we call FMN -NPR, is composed of the structure
to answer NSV plus the one for PSV plus the structure to calculate RMQ .

4.1 A Novel Practical Solution

We propose now a different solution, inspired in Sadakane and Navarro’s succinct
tree representation [28]. We divide LCP into blocks of length L. Now we form
a hierarchy of blocks, where we store the minimum LCP value of each block i
in an array m[i]. The array uses n

L log n bits. On top of array m, we construct a
perfect L-ary tree Tm where the leaves are the elements of m and each internal
node stores the minimum of the values stored in its children. The total space for
Tm is n

L log n(1 + O(1/L)) bits, so if L = ω(log n), the space used is o(n) bits.
To answer NSV (i), we look for the first j > i such that LCP [j] < p = LCP [i],

using Tm to find it in time O(L log(n/L)). We first search sequentially for the
answer in the same block of i. If it is not there, we go up to the leaf that represents
the block and search the right siblings of this leaf. If some of these sibling leaves
contain a minimum value smaller than p, then the answer to NSV (i) is within
their block, so we go down to their block and find sequentially the leftmost
position j where LCP [j] < p. If, however, no sibling of the leaf contains a
minimum smaller than p, we continue going up the tree and considering the
right siblings of the parent of the current node. At some node we find a minimum
smaller than p and start traversing down the tree as before, finding at each level
the first child of the current node with a minimum smaller than p. PSV is
symmetric. As the minima in Tm are explicitly stored, the heaviest part of the
cost in practice is the O(L) accesses to LCP cells at the lowest levels.

To calculate RMQ(x, y) we use the same Tm and separate the search in three
parts: (a) We calculate sequentially the minimum value in the interval [x, L� x

L�−
1] and its leftmost position in the interval; (b) we do the same for the interval
[L� y

L�, y]; (c) we calculate RMQ(L� x
L�, L� y

L�−1) using Tm. Finally we compare
the results obtained in (a), (b) and (c) and the answer will be the one holding
the minimum value, choosing the leftmost to break ties. For each node in Tm we
also store the local position in the children where the minimum occurs, so we
do not need to scan the child blocks when we go down the tree. The extra space
incurred is just n

L log L(1+O(1/L)) bits. The final data structure, if L = ω(log n),
requires o(n) bits and can compute NSV , PSV and RMQ all using the same
auxiliary structure. We call it CN -NPR.

Experimental Comparison. We tested the performance of the different NPR
implementations by performing 100,000 NSV and RMQ queries at different ran-
dom positions in the LCP array. Fig. 2 shows the space/time achieved for each
implementation on two texts (the others gave very similar results). We used
the slower Sad -Gon implementation for LCP to enhance the differences in time
performance. We obtained space/time tradeoffs by using different block sizes
L = 8, 16, 32 (so the times for RMQ on FMN -NPR are not affected). Clearly
CN -NPR displays the best performance for NSV , both in space and time. For
RMQ , one can see that the best time obtained with CN -NPR dominates, in time
and space, the FMN -NPR curve. Thus CN -NPR is our chosen implementation.
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Fig. 2. Space/time for the operations NSV and RMQ

5 Our Compressed Suffix Tree

Our CST implementation applies our CN -NPR algorithms of Section 4 on top
of some LCP representation from those chosen in Section 3. This solves most
of the tree traversal operations by using the formulas provided by Fischer et
al. [8], which we do not repeat for lack of space. In some cases, however, we have
deviated from the theoretical algorithms for practical considerations.

TDepth: We proceed by brute force using Parent, as there is no practical so-
lution in the proposal.

NSib: There is a bug in the original formula [8] in the case v is the next-to-
last child of its parent. According to them, NSib([vl, vr]) first obtains its
parent [wl, wr], then checks whether vr = wr (in which case there is no next
sibling), then checks whether wr = vr + 1 (in which case the next sibling is
leaf [wr, wr]), and finally answers [vr +1, z−1], where z = RMQ(vr +2, wr).
This RMQ is aimed at finding the end of the next sibling of the next sibling,
but it fails if we are near the end. Instead, we replace it by the faster z =
NSV ′(vr + 1,LCP [vr + 1]). NSV ′(i, d) generalizes NSV by finding the next
value smaller or equal to d, and is implemented almost like NSV using Tm.

Child: The children are ordered by letter. We need to extract the children
sequentially using FChild and NSib, to find the one descending by the
correct letter, yet extracting the Letter of each is expensive. Thus we first
find all the children sequentially and then binary search the correct letter
among them, thus reducing the use of Letter as much as possible.

LAQS(v, d): Instead of the slow complex formula given in the original paper, we
use NSV ′ (and PSV ′): LAQS([vl, vr], d) = [PSV ′(vl +1, d),NSV ′(vr, d)−1].
This is a complex operation we are supporting with extreme simplicity.

LAQT (v, d): There is no practical solution in the original proposal. We proceed
as follows to achieve the cost of d Parent operations, plus sume LAQS ones,
all of which are reasonably cheap. Since SDepth(v) ≥ TDepth(v), we first try
v′ = LAQS(v, d), which is an ancestor of our answer; let d′ = TDepth(v′).
If d′ = d we are done; else d′ < d and we try v′′ = LAQS(v, d + (d − d′)).
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We compute d′′ = TDepth(v′′) (which is measured by using d′′ − d′ Parent
operations until reaching v′) and iterate until finding the right node.

6 Comparing the CST Implementations

We compare all the CST implementations: Välimäki et al.’s [29] implementation
of Sadakane’s compressed suffix tree [27] (CST-Sadakane); Russo’s implementa-
tion of Russo et al.’s “fully-compressed” suffix tree [25] (FCST); and our best
variants. These are called Our CST in the plots. Depending on their LCP rep-
resentation, they are suffixed with Sad -Gon, FMN -RRR, DAC , and DAC -Var .
We do not compare some operations like Root and Ancestor because they are
trivial in all implementations; Locate and Count because they depend only on the
underlying compressed suffix array (which is mostly orthogonal, thus Letter is
sufficient to study it); SLinki because it is usually better to do SLink i times; and
LAQS and LAQT because they are not implemented in the alternative CSTs.

We typically show space/time tradeoffs for all the structures, where the space
is measured in bpc (recall that these CSTs replace the text, so this is the overall
space required). The times are averaged over a number of queries on random
nodes. We use four types of node samplings, which make sense in different typ-
ical suffix tree traversal scenarios: (a) Collecting the nodes visited over 10,000
traversals from a random leaf to the root (used for Parent, SDepth, and Child
operations); (b) same but keeping only nodes of depth at least 5 (for Letter);
(c) collecting the nodes visited over 10,000 traversals from the parent of a ran-
dom leaf towards the root via suffix links (used for SLink and TDepth); and (d)
taking 10,000 random leaf pairs (for LCA). For space limitations, and because
the outcomes are consistent across texts, we show the results of each operation
over one text only, choosing in each case a different text. The standard deviation
divided by the average is in the range [0.21,2.56] for CST-Sadakane, [0.97,2.68]
for FCST, [0.65,1.78] for Our CST Sad-Gon, [0.64,2.50] for Our CST FMN -
RRR, [0.59,0.75] for Our CST DAC, and [0.63,0.91] for Our CST DAC-Var .
The standard deviation of the estimator is thus at most 1/100th of that.

Fig. 3 shows space/time tradeoffs for six operations. The general conclusion
is that our CST implementation does offer a relevant tradeoff between the two
rather extreme existing variants. Our CSTs can operate within 8–12 bpc (that
is, at most 50% larger than the plain byte-based representation of the text, and
replacing it) while requiring a few hundred microseconds for most operations
(the “small and slow” variants Sad -Gon and FMN -RRR); or within 13–16 bpc
and carry out most operations within a few microseconds (the “large and fast”
variants DAC/DAC -Var). In contrast, the FCST requires only 4–6 bpc (which is,
remarkably, as little as half the space required by the plain text representation),
but takes the order of milliseconds per operation; and Sadakane’s CST takes
usually a few tens of microseconds per operation but requires 25–35 bpc, which
is close to uncompressed suffix arrays (not uncompressed suffix trees, though).

We remark that, for many operations, our “fast and large” variant takes half
the space of Sadakane’s CST implementation and is many times faster. Excep-
tions are Parent and TDepth, where Sadakane’s CST stores the explicit tree
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topology, and thus takes a fraction of a microsecond. On the other hand, our
CST carries out LAQS (not shown) in the same time of Parent, whereas this is
much more complicated for the alternatives (they do not even implement it). For
Child, where we descend by a random letter from the current node, the times are
higher than for other operations as expected, yet the same happens to all the
implementations. We note that the FCST is more efficient on operations LCA
and SDepth, which are its kernel operations, yet it is still slower than our “small
and slow” variant. Finally, TDepth is an operation where all but Sadakane’s
CST are relatively slow, yet on most suffix tree algorithms the string depth is
much more relevant than the tree depth. Our LAQT (v, d) (not shown) would
cost about d times the time of our TDepth.

At the bottom of the figure we show Letter(i), as a function of i. It depends
only on the CSA structure, and requires either applying i−1 times Ψ , or applying
once SA and SA−1. The former choice is preferred for the FCST and the latter in
Sadakane’s CST. For our CST, using Ψ iteratively was better for these i values,
as the alternative requires around 70 microseconds.

The figure finishes with a basic suffix tree traversal algorithm: the classical one
to detect the longest repetition in a text. This traverses all of the internal nodes
using FChild and NSib and reports the maximum SDepth. Although Sadakane’s
CST takes advantage of locality, our “large and fast” variant is pretty close using
half the space. Our “small and slow” variant, instead, requires a few hundred
microseconds as expected, yet the FCST has a special implementation for full
traversals and, this time, it beats our slow variant in space and time.
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Abstract. Computing the similarity between two protein structures is a crucial
task in molecular biology, and has been extensively investigated. Many protein
structure comparison methods can be modeled as maximum clique problems in
specific k-partite graphs, referred here as alignment graphs. In this paper, we
propose a new protein structure comparison method based on internal distances
(DAST), which main characteristic is that it generates alignments having RMSD
smaller than any previously given threshold. DAST is posed as a maximum clique
problem in an alignment graph, and in order to compute DAST’s alignments,
we also design an algorithm (ACF) for solving such maximum clique problems.
We compare ACF with one of the fastest clique finder, recently conceived by
Östergȧrd. On a popular benchmark (the Skolnick set) we observe that ACF is
about 20 times faster in average than the Östergȧrd’s algorithm. We then suc-
cessfully use DAST’s alignments to obtain automatic classification in very good
agreement with SCOP.

Keywords: protein structure comparison, maximum clique problem, k-partite
graphs, combinatorial optimization, branch and bound.

1 Introduction

A fruitful assumption in molecular biology is that proteins of similar three-dimensional
(3D) structures are likely to share a common function and in most cases derive from a
same ancestor. Understanding and computing the protein structures similarities is one
of the keys for developing protein based medical treatments, and thus it has been exten-
sively investigated [1,2]. Evaluating the similarity of two protein structures can be done
by finding an optimal (according to some criterions) order-preserving matching (also
called alignment) between their components. In this paper, we propose a new protein
structure comparison method based on internal distances (DAST). Its main characteris-
tic is to generate alignments having RMSD smaller than any previously given thresh-
old. We show that finding such alignments is equivalent to solving maximum clique
problems in specific k-partite graphs referred here as alignment graphs. These graphs
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could be very large (more than 25000 vertices and 3×107 edges) when comparing real
proteins. Even very recent general clique finders [3,4] are oriented to notably smaller
instances and are not able to solve problems of such size (the available code of [4] is
limited to graphs with up to 1000 vertices).

For solving the maximum clique problem in this context we conceive an algorithm,
denoted by ACF (for Alignment Clique Finder), which profits from the particular struc-
ture of the alignment graphs. We furthermore compare ACF to an efficient general
clique solver [5] and the obtained results clearly demonstrate the usefulness of our
dedicated algorithm. In addition, we show that the scores obtained by DAST allow to
obtain an automatic classification in agreement with SCOP [6]. The main focus here is
on designing an algorithm able to generate alignments with guaranteed small RMSD.
Evaluating the quality of these alignments and its comparison with other structure align-
ment methods is beyond the scope of this paper and is a subject of our coming research.

Strickland et al. [7] also exploit the properties of the maximum cliques in protein-
based alignment graphs. However, their approach considerably differs from ours: the
alignment graphs are defined in a different manner (see section 1.3) and the authors
in [7] concentrate on specialized preprocessing techniques in order to accelerate the
solution of another optimization problem–Contact Map Overlap Maximization. The
maximum cliques instances that are solved in [7] are much smaller than ours.

1.1 The Maximum Clique Problem

We usually denote an undirected graph by G = (V,E), where V is the set of vertices and
E is the set of edges. Two vertices i and j are said to be adjacent if they are connected
by an edge of E . A clique of a graph is a subset of its vertex set, such that any two
vertices in it are adjacent.

Definition 1. The maximum clique problem (also called maximum cardinality clique
problem) is to find a largest, in terms of vertices, clique of an arbitrary undirected graph
G, which will be denoted by MCC(G).

The maximum clique problem is one of the first problem shown to be NP-complete [8]
and it has been studied extensively in literature. Interested readers can refer to [9] for a
detailed state of the art about the maximum clique problem. It can be easily proven that
solving this problem in the context of k-partite graphs does not reduce its complexity.

1.2 Alignment Graphs

In this paper, we focus on grid alike graphs, which we define as follows.

Definition 2. A m× n alignment graph G = (V,E) is a graph in which the vertex set
V is depicted by a (m-rows) × (n-columns) array T , where each cell T [i][k] contains at
most one vertex i.k from V (note that for both arrays and vertices, the first index stands
for the row number, and the second for the column number). Two vertices i.k and j.l
can be connected by an edge (i.k, j.l) ∈ E only if i < j and k < l. An example of such
alignment graph is given in Fig 2a.

It is easily seen that the m rows form a m-partition of the alignment graph G, and that
the n columns also form a n-partition. In the rest of this paper we will use the following
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notations. A successor of a vertex i.k ∈ V is an element of the set Γ+(i.k) = { j.l ∈ V
s.t. (i.k, j.l) ∈ E, i < j and k < l}. V i.k is the subset of V restricted to vertices in rows
j, i ≤ j ≤ m, and in columns l, k ≤ l ≤ n. Note that Γ+(i.k) ⊂ V i+1.k+1. Gi.k is the
subgraph of G induced by the vertices in V i.k. The cardinality of a vertex set U is |U |.
1.3 Relations with Protein Structure Similarity

In graph-theoretic language, two proteins P1 and P2 can be represented by two undi-
rected graphs G1 = (V1,E1) and G2 = (V2,E2) where the sets of vertices V1 and V2

stand for residues/SSE, while edges depict contacts/relationships between them. The
similarity between P1 and P2 can be estimated by finding the longest alignment be-
tween the elements of V1 and V2. In our approach, this is modeled by an alignment
graph G = (V,E) of size |V1|× |V2|, where each row corresponds to an element of V1

and each column corresponds to an element of V2. A vertex i.k is in V (i.e. matching
i ↔ k is possible), only if elements i ∈ V1 and k ∈ V2 are compatible. An edge (i.k, j.l)
is in E if and only if : (i) i < j and k < l, for order preserving, and (ii) matching i ↔ k
is compatible with matching j ↔ l. A feasible alignment of P1 and P2 is then a clique
in G, and the longest alignment corresponds to a maximum clique in G.

At least two protein structure similarity related problems from the literature can be
converted into clique problems in alignment graphs : the secondary structure alignment
in VAST[10], and the Contact Map Overlap Maximization problem (CMO)[11].

VAST, or Vector Alignment Search Tool, is a software for aligning protein 3D struc-
tures largely used in the National Center for Biotechnology Information1. In VAST, V1

and V2 contain 3D vectors representing the secondary structure elements (SSE) of P1

and P2. Matching i ↔ k is possible if vectors i and k have similar norms and correspond
either both to α-helices or both to β-strands. Finally, matching i ↔ k is compatible with
matching j ↔ l only if the couple of vectors (i, j) from P1 can be well superimposed in
3D-space with the couple of vectors (k, l) from P2.

CMO is one of the most reliable and robust measures of protein structure similarity.
Comparisons are done by aligning the residues (amino-acids) of two proteins in a way
that maximizes the number of common contacts (when two residues that are close in 3D
space are matched with two residues that are also close in 3D space). We have already
dealt with CMO, but not using cliques [12]. The above definition of the alignment graph
is inspired by the one we used and proved to be very successful in the case of CMO.
There is a multitude of other alignment methods and they differ mainly by the nature
of the elements of V1 and V2, and by the compatibility definitions between elements
and between pairs of matched elements. One essential difference between our approach
and the one used in [7] resides in the definition itself of the alignment graph. Every
vertex in the so-called specially defined graph from [7] corresponds to an overlap of an
edge/contact from P1 with an edge/contact from P2 and hence the graph size is |E1|×
|E2|, versus |V1|× |V2| in our definition.

1.4 DAST: An Improvement of CMO Based on Internal Distances

The objective in CMO is to maximize the number of common contacts. It has been shown
that this objective finds a good global similarity score which can be successfully used

1 http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
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for classification of structures [13,12]. However, such a strategy also introduces some
“errors” in the structure based alignment–like aligning two residues that are close in
3D space with two residues that are remote, as illustrated in Fig 1. These errors could
potentially yield alignments with big root mean square deviations (RMSD) which is
not desirable for structures comparison. To avoid such problems we propose DAST
(Distance-based Alignment Search Tool)–an alignment method based on internal dis-
tances which is modeled in an alignment graph. In DAST, two proteins P1 and P2 are
represented by their ordered sets of residues V1 and V2. Two residues i ∈ V1 and k ∈ V2

are compatible if they come from the same kind of secondary structure elements (i.e. i
and k both come from α-helices, or from β-strands) or if both come from loops. Let us
denote by di j (resp. dk.l) the euclidean distance between the α-carbons of residues i and j
(resp. k and l). Matching i ↔ k is compatible with matching j ↔ l only if |di j −dkl| ≤ τ,
where τ is a distance threshold. The longest alignment in terms of residues, in which each
couple of residues from P1 is matched with a couple of residues from P2 having simi-
lar distance relations, corresponds to a maximum clique in the alignment graph G. For
example the clique (2.1),(3.2),(4.3) in Fig 2a is generated by aligning residues 2,3,4
from P1 (rows) with residues 1,2,3 from P2 (columns).

Fig. 1. An optimal CMO matching

Two proteins ( P1 and P2) are represented by their contact map graphs where the vertices corre-
sponds to the residues and where edges connect residues in contacts (i.e. close). The matching
“1 ↔ 1′,2 ↔ 3′,4 ↔ 4′”, represented by the arrows, yields two common contacts which is the
maximum for the considered case. However, it also matches residues 1 and 4 from P1 which are
in contacts with residues 1′ and 4′ in P2 which are remote.

Given a set of n deviations S = {s1,s2, . . . ,sn}, its Root Mean Square Deviation

(RMSD) is : RMSD(S) =

√
1
n
×

n

∑
i=1

s2
i . For assessing the quality of an alignment, the

biologists use two different RMSD measures which differ on the deviations they take
into account. The first one is the RMSD of superimposed coordinates (RMSDc). After
superimposing the two protein structures, the measured deviations are the euclidean
distances between the matched amino-acid dik, for all matching pairs i ↔ k. The second
one is the RMSD of internal distances (RMSDd). The measured deviations are |di j −dkl|,
for all couples of matching pairs “i ↔ k, j ↔ l”. Let us denote by P the later set and by

Nm its cardinality. We therefore have that RMSDd =
√

1
Nm

× ∑
(i j, jk)∈P

(|di j −dkl |2) and
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Fig. 2. A 4×4 alignment graph and the visiting order of its array T

since |di j −dkl| ≤ τ holds for all matching pairs “i ↔ k, j ↔ l”, the alignments generated
by DAST are characterized by the desired property RMSDd ≤ τ.

2 Branch and Bound Approach

We have been inspired by [5] to propose our own algorithm which is more suitable
for solving the maximum clique problem in the previously defined m × n alignment
graph G = (V,E). Let Best be the biggest clique found so far (first it is set to /0), and
|MCC(G)| be an over-estimation of |MCC(G)|. By definition, V i+1.k+1 ⊂ V i.k+1 ⊂ V i.k,
and similarly V i+1.k+1 ⊂ V i+1.k ⊂ V i.k. >From these inclusions and from definition2, it
is easily seen that for any Gi.k, MCC(Gi.k) is the biggest clique among MCC(Gi+1.k),
MCC(Gi.k+1) and MCC(Gi+1.k+1)

⋃ {i.k}, but for the latter only if vertex i.k is adjacent
to all vertices in MCC(Gi+1.k+1). Let C be a (m + 1)× (n + 1) array where C[i][k] =
|MCC(Gi.k)| (values in row m+1 or column n+1 are equal to 0). For reasoning purpose,
let assume that the upper-bounds in C are exact. If a vertex i.k is adjacent to all vertices
in MCC(Gi+1.k+1), then C[i][k] = 1+C[i+1][k+1], else C[i][k] = max(C[i][k+1], C[i+
1][k]). We can deduce that a vertex i.k cannot be in a clique in Gi.k which is bigger than
Best if C[i + 1][k + 1] < |Best|, and this reasoning still holds if values in C are upper
estimations. Another important inclusion is Γ+(i.k)⊂V i+1.k+1. Even if C[i+1][k+1]≥
|Best|, if |MCC(Γ+(i.k))| < |Best| then i.k cannot be in a clique in Gi.k bigger than Best.

Our main clique cardinality estimator is constructed and used according to these
properties. A function, Find_clique(G), will visit the cells of T according to north-
west to south-est diagonals, from diagonal “i + k = m + n” to diagonal “i + k = 2”
as illustrated in Fig 2b. For each cell T [i][k] containing a vertex i.k ∈ V , it may call
Extend_clique({i.k}, Γ+(i.k)), a function which tries to extend the clique {i.k} with
vertices in Γ+(i.k) in order to obtain a clique bigger than Best (which cannot be bigger
than |Best| +1). If such a clique is found, Best is updated. However, Find_clique() will
call Extend_clique() only if two conditions are satisfied : (i) C[i+1][k +1] = |Best| and
(ii) |MCC(Γ+(i.k))| ≥ |Best|. After the call to Extend_clique(), C[i][k] is set to |Best|.
For all other cells T [i][k], C[i][k] is set to max(C[i][k + 1], C[i + 1][k]) if i.k /∈ V , or
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to 1 +C[i + 1][k + 1]) if i.k ∈ V . Note that the order used for visiting the cells in T
guaranties that when computing the value of C[i][k], the values of C[i+1][k], C[i][k +1]
and C[i+ 1][k + 1] are already computed.

Array C can also be used in function Extend_clique() to fasten the maximum clique
search. This function is a branch a bound (B&B) search using the following branch-
ing rules. Each node of the B&B tree is characterized by a couple (Cli, Cand) where
Cli is the clique under construction and Cand is the set of candidate vertices to be
added to Cli. Each call to Extend_clique({i.k}, Γ+(i.k)) create a new B&B tree which
root node is ({i.k}, Γ+(i.k)). The successors of a B&B node (Cli,Cand) are the nodes
(Cli
⋃{i′.k′}, Cand

⋂
Γ+(i′.k′)), for all vertices i′.k′ ∈ Cand. Branching follows lexi-

cographic increasing order (row first). According to the branching rules, for any given
B&B node (Cli, Cand) the following cutting rules holds : (i) if |Cli| + |Cand| ≤ |Best|
then the current branch cannot lead to a clique bigger than |Best| and can be fathomed,
(ii) if |MCC(Cand)| ≤ |Best|−|Cli|, then the current branch cannot lead to a clique big-
ger than |Best|, and (iii) if |MCC(Cand

⋂
Γ+(i.k))| ≤ |Best|− |Cli|−1, then branching

on i.k cannot lead to a clique bigger than |Best|. For any set Cand and any vertex i.k,
Cand

⋂
Γ+(i.k) ⊂ Γ+(i.k) , and Γ+(i.k) ⊂ Gi+1.k+1. From these inclusions we can de-

duce two way of over-estimating |MCC(Cand
⋂

Γ+(i.k))|. First, by using C[i+1][k+1]
which over-estimate |MCC(Gi+1.k+1)| and second, by over-estimating |MCC(Γ+(i.k))|.
All values |MCC(Γ+(i.k))| are computed once for all in Find_clique() and thus, only
|MCC(Cand)| needs to be computed in each B&B node.

3 Maximum Clique Cardinality Estimators

Even if the described functions depend on array C, they also use another upper-estimator
of the cardinality of a maximum clique in an alignment graph. By using the properties
of alignment graphs, we developed the following estimators.

3.1 Minimum Number of Rows and Columns

Definition 2 implies that there is no edge between vertices from the same row or the
same column. This means that in a m× n alignment graph, |MCC(G)| ≤ min(m,n). If
the numbers of rows and columns are not computed at the creation of the alignment
graph, they can be computed in O(|V |).
3.2 Longest Increasing Subset of Vertices

Definition 3. An increasing subset of vertices in an alignment graph G = {V,E} is an
ordered subset {i1.k1, i2.k2, . . ., it .kt } of V , such that ∀ j ∈ [1,t −1], i j < i j+1, k j < k j+1.
LIS(G) is the longest, in terms of vertices, increasing subset of vertices of G.

Since any two vertices in a clique are adjacent, definition 2 implies that a clique in
G is an increasing subset of vertices. However, an increasing subset of vertices is not
necessarily a clique (since vertices are not necessarily adjacent), and thus |MCC(G)| ≤
|LIS(G)|. In a m×n alignment graph G = (V,E), LIS(G) can be computed in O(n×m)
times by dynamic programming. However, it is possible by using the longest increasing
subsequence to solve LIS(G) in O(|V |× ln(|V |)) times which is more suited in the case
of sparse graph like in our protein structure comparison experiments.
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Definition 4. The longest increasing subsequence of an arbitrary finite sequence of
integers S = “ii, i2, . . . , in” is the longest subsequence S′ = “i′i, i′2, . . . , i

′
t” of S respecting

the original order of S, and such that for all j ∈ [1, t], i′j < i′j+1. By example, the longest
increasing subsequence of “1,5,2,3” is “1,2,3”.

For any given alignment graph G = {V,E}, we can easily reorder the vertex set V , first
by increasing order of columns, and second by decreasing order of rows. Let’s denote
by V ′ this reordered vertex set. Then we can create an integer sequence S corresponding
to the row indices of vertices in V ′. For example, by using the alignment graph presented
in Fig2a, the reordered vertex set V ′ is {4.1, 2.1, 1.1, 3.2, 4.3, 3.3, 2.3, 1.3, 4.4,
3.4, 1.4}, and the corresponding sequence of row indices S is “4, 2, 1, 3, 4, 3, 2, 1,
4, 3, 1”. An increasing subsequence of S will pick at most one number from a column,
and thus an increasing subsequence is longest if and only if it covers a maximal number
of increasing rows. This proves that solving the longest increasing subsequence in S is
equivalent to solving the longest increasing subset of vertices in G. Note that the longest
increasing subsequence problem is solvable in time O(l × ln(l)) [14], where l denotes
the length of the input sequence. In our case, this corresponds to O(|V |× ln(|V |)).

3.3 Longest Increasing Path

Definition 5. An increasing path in an alignment G = {V,E} is an increasing subset of
vertex {i1.k1, i2.k2, . . ., it .kt} such that ∀ j ∈ [1, t −1], (i j.k j, i j+1.k j+1) ∈ E. The longest
increasing path in G is denoted by LIP(G)

As the increasing path take into account edges between consecutive vertices, |LIP(G)|,
should better estimate MCC(G)|. |LIP(G)| can be computed in O(|V |2) by the following
recurrence. Let DP[i][k] be the length of the longest increasing path in Gi.k containing
vertex i.k. DP[i][k] = 1+ maxi′.k′∈Γ+i.k(DP[i′][k′]). The sum over all Γ+(i.k)) is done in
O(|E|) time complexity, and finding the maximum over all DP[i][k] is done in O(|V |).
This results in a O(|V |+ |E|) time complexity for computing |LIP(G)|.

Any of the previously defined estimators can be used as bound generator in our
B&B, and without them our algorithm is about 2.21 times slower than the Östergȧrd’s
one. Experimentally, the longest increasing subset of vertices (solved using the longest
increasing subsequence) exhibits the best performances, allowing our algorithm to be
about 20 times faster than the Östergȧrd’s one, and is the bound generator that we used
for obtaining the optimal alignments presented in the next section.

4 Results

All results presented in this section come from real protein structure comparison in-
stances. Our algorithm, denoted by ACF (for Alignment Clique Finder), has been im-
plemented in C and was tested in the context of DAST. ACF will be compared to the fast
clique finder (denoted by here Östergȧrd) which has been proposed in [5] and which
code is publicly available.
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4.1 Residues Alignment

In this section we compare ACF to Östergȧrd in the context of residue alignments in
DAST. Computations were done on a PC with an Intel Core2 processor at 3Ghz, and for
both algorithms the computation time was bounded to 5 hours per instance. Secondary
structures assignments were done by KAKSI [15], and the threshold distance τ was set
to 3Å. The protein structures come from the well known Skolnick set, described in [16].
It contains 40 protein chains having from 90 to 256 residues, classified in SCOP[6]
(v1.73) into five families. Amongst the 780 corresponding alignment instances, 164
align protein chains from the same family and will be called “similar”. The 616 other
instances align protein chains from different families and thus will be called “dissim-
ilar”. Characteristics of the corresponding alignment graphs are presented in table 1.

Table 1. DAST alignment graphs characteristics

array size |V| |E| density |MCC|
similar min 97×97 4018 106373 8.32% 45
instances max 256×255 25706 31726150 15.44% 233
dissimilar min 97×104 1581 77164 5.76% 12
instances max 256×191 21244 16839653 14.13% 48

All alignment graphs from DAST have small edge density (less than 16%). Similar instances are
characterized by bigger maximum cliques than the dissimilar instances.

Table 2. Number of solved instances comparison

Östergȧrd ACF
Similar instances (164) 128 155

Dissimilar instances (616) 545 616
Total (780) 673 771

On the Skolnick set ACF solves 21% more similar instances and 13% more dissimilar instances
than Östergȧrd when the running time was upper-bounded by 5 hours per instance.

Table 2 compares the number of instances solved by each algorithm on Skolnick set.
Note that when an instance is solved, the B&B algorithm finds both the optimal score
(maximum clique cardinality), as well as the corresponding residues alignment. ACF
solved 155 from 164 similar instances, while Östergȧrd solved 128 instances. ACF was
able to solve all 616 dissimilar instances, while Östergȧrd solved 545 instances only.
Thus, on this popular benchmark set, ACF clearly outperforms Östergȧrd in terms of
number of solved instances.

Figure 3 compares the running time of ACF to the one of Östergȧrd on the set of
673 instances solved by both algorithms (all instances solved by Östergȧrd were also
solved by ACF). For all but one instances, ACF is significantly faster than Östergȧrd.
More precisely, ACF needed 12 hs. 29 min. 56 sec. to solve all these 673 instances,
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Fig. 3. Running time comparison on Skolnick set

ACF versus Östergȧrd running time comparison on the set of the 673 Skolnick instances solved
by both algorithms. The ACF time is presented on the x-axis, while the one of Östergȧrd is on
the y-axis. For all instances except one, ACF is faster than Östergȧrd.

while Östergȧrd needed 260 hs. 10 min. 10 sec. Thus, on the Skolnick set, ACF is about
20 times faster in average than Östergȧrd, (up to 4029 times for some instances).

4.2 Comparison between DAST’s and CMO’s Alignments

In order to compare the alignments of DAST to the ones of CMO[12], we extracted
from the Skolnick set 10 instances that are optimally solved by both methods (see ta-
ble 3). The five “similar” instances compare protein structures coming from the same
SCOP family, while the five “dissimilar” instances compare protein structures coming
from different SCOP families. The distance threshold of DAST was set to 3 Å(which
corresponds to the desired RMSDd of alignments), while the contact threshold of CMO
was set to 7.5 Å(optimal value according to [13]).

Table 3 compares the obtained alignments, both in terms of length (percentage of
aligned amino-acids) and in terms of RMSDd . The alignments of CMO for similar pro-
teins are very good : they are both long and possess small RMSDd values. However,
for dissimilar proteins, the alignments of CMO possess very bad RMSDd values, which
means that they do not correspond to common substructures. On the other hand, for
both similar and dissimilar proteins, the alignments of DAST always possess small
RMSDd values (smaller than the perviously fixed threshold). DAST’s alignments are
shorter than the ones of CMO, but their lengths better reflect the similarity between two
proteins, since the alignments between similar proteins are always much longer than
the alignments between dissimilar proteins. Note that this property does not hold for
CMO’s alignments.
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Table 3. CMO vs DAST alignments

Length (AA %) RMSDd (Å)
Instance CMO DAST CMO DAST

1amkA–1aw2A 97.4 % 78.9 % 1.39 0.68
similar 1amkA–1htiA 99.0 % 81.8 % 1.24 0.74
instances 1qmpA–1qmpB 99.2 % 90.8 % 0.22 0.22

1ninA–1plaA 96.0 % 57.4 % 1.42 0.96
1tmhA–1treA 99.8 % 91.6 % 0.90 0.44

1amkA–1b00A 63.5 % 21.7 % 5.62 1.23
dissimilar 1amkA–1dpsA 78.0 % 15.3 % 13.01 1.06
instances 1b9bA–1dbwA 68.3 % 24.4 % 6.02 1.11

1qmpA–2pltA 83.3 % 15.0 % 7.36 1.18
1rn1A–1b71A 70.5 % 17.6 % 11.22 0.82

Similar instances compare proteins coming from the same SCOP family, while dissimilar in-
stances compare proteins coming from different SCOP families. The distance threshold of DAST
was set to 3 Å, while the contact threshold of CMO was set to 7.5 Å. Columns 3 and 4 com-
pare the length of the alignments (in percentage of aligned amino-acids), while columns 5 and 6
compare the RMSDd of the alignments. DAST’s alignments always possess good (small) RMSDd
values, but are shorter than CMO’s ones.

Table 4. DAST classification of the Skolnick set

DAST class SCOP Family Proteins
1 CheY-related 1b00A, 1dbwA, 1natA, 3chyA

1qmp(A,B,C,D), 4tmy(A,B)
2 CheY-related 1ntrA
3 Plastocyanin 1bawA, 1byo(A,B), 1kdiA, 1ninA

/azurin-like 1plaA, 2b3iA, 2pcyA, 2pltA
4 Triosephosphate 1amkA, 1aw2A, 1b9bA, 1btmA, 1htiA

isomerase (TIM) 1tmhA, 1treA, 1triA, 1ydvA, 3ypiA, 8timA
5 Ferritin 1b71A, 1bcfA, 1dpsA, 1fhaA, 1ierA, 1rcdA
6 Fungal ribonucleases 1rn1(A,B,C)

The classification returned by CHAVL based on similarity score found by DAST, is very similar
to the SCOP classification, except for the protein chain 1ntrA (class 2) which is not recognized
as a CheY-related protein.

4.3 Automatic Classification

In this section, we test the possibility to obtain good automatic classifications based on
DAST’s alignments. For this purpose we used the following protocol: on the Skolnick
set, the runs of DAST were limited to 5 hours per instance. The similarity score between
two proteins P1 and P2 (having respectively |V1| and |V2| amino-acids) was defined as

SIM(P1,P2) =
2×Nm

|V1|+ |V2| , where Nm is the number of aligned amino-acids (i.e. the size
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of the biggest clique found by DAST). These scores were given to CHAVL [17], an
unsupervised ascendant classification tool based on likelihood maximization, and the
obtained classification was compared to SCOP classification [6], which is a curated
classification of the protein structures.

Table 4 presents the obtained classification. It is very similar to the one of SCOP,
except that the protein chain “1ntrA” is not classified with the other members of its
SCOP family. We detected that this error was provoked by Kaksi’s secondary structure
assignment of 1ntrA, which is not in agreement with the one used in SCOP.

5 Conclusion and Future Work

In this paper we introduce a novel protein structure comparison approach DAST, for
Distance-based Alignment Search Tool. For any fixed threshold τ, it finds the longest
alignment in which each couple of pairs of matched residues shares the same distance
relation (+/- τ), and thus the RMSD of the alignment is ≤ τ. This property is not guar-
anteed by the CMO approach, which inspired initially DAST. From computation stand-
point, DAST requires solving the maximum clique problem in a specific k-partite graph.
By exploiting the peculiar structure of this graph, we design a new maximum clique
solver which significantly outperforms one of the best general maximum clique solver.
Our solver was successfully integrated into DAST and will be freely available soon. We
are currently studying the quality of DAST alignments from practical viewpoint and
compare the obtained results with other structure comparison methods.
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Abstract. A tanglegram consists of a pair of (not necessarily binary)
trees. Additional edges, called tangles, may connect the leaves of the
first with those of the second tree. The task is to draw a tanglegram
with a minimum number of tangle crossings while making sure that
the trees are drawn crossing-free. This problem has relevant applica-
tions in computational biology, e.g., for the comparison of phylogenetic
trees. Most existing approaches are only applicable for binary trees. In
this work, we show that the problem can be formulated as a quadratic
linear ordering problem (QLO) with side constraints. Buchheim et al.
(INFORMS J. Computing, to appear) showed that, appropriately refor-
mulated, the QLO polytope is a face of some cut polytope. It turns out
that the additional side constraints do not destroy this property. There-
fore, any polyhedral approach to max-cut can be used in our context.
We present experimental results for drawing random and real-world tan-
glegrams defined on both binary and general trees. We evaluate linear as
well as semidefinite programming techniques. By extensive experiments,
we show that our approach is very efficient in practice.

Keywords: tanglegram, graph drawing, computational biology, cross-
ing minimization, quadratic programming, maximum cut problem.

1 Introduction

A tanglegram [11] consists of a pair of trees T1, T2 and a correspondences between
the leaf sets L1 and L2 of T1 and T2, respectively. The correspondence is repre-
sented by edges between leaves in L1 and L2 called tangles. When visualizing a
tanglegram, it is natural to ask for a drawing in which no edge crossings occur
within either of the trees, while the number of tangle crossings is minimized. We
require that the leaves in L1 and L2 are drawn on two parallel lines, while the
trees are drawn outside the strip bounded by these lines.

The task of drawing tanglegrams arises in several relevant applications, e.g.,
in computational biology for the comparison of phylogenetic trees [11]. A phylo-
genetic tree represents a hypothesis of the evolutionary history of a set of species.
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These species are drawn as the leaves of the tree, their ancestors as inner nodes.
Different reconstruction methods may lead to a set of different candidate trees;
a tanglegram layout then allows to compare a pair of such trees visually.

As another application, consider a phylogenetic tree of some set of species that
serve as hosts for a certain set of parasites. The hypothesis that the evolution
of hosts and their parasites is strongly correlated can be tested by analyzing
a tanglegram layout. A tangle then specifies which host is affected by which
parasite. Whereas in the first application the number of tangles incident to a
leaf is always one, in the latter it can be higher, as shown below in a tanglegram
from Hafner et al. [6] (here the hypothesis seems to be true).
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Tanglegrams also occur in hierarchical clusterings, which can be visualized by
so-called dendrograms. Dendrograms consist of trees where the elements to be
clustered are identified with the leaves. Internal nodes determine clusters that
contain the elements or sub-clusters. A tanglegram layout helps comparing the
results of different clustering methods. Moreover, tanglegrams occur when an-
alyzing software projects in which a tree represents package, class and method
hierarchies. Hierarchy changes are analyzed over time, or automatically gen-
erated decompositions are compared with human-made ones. This application
yields tanglegrams on trees that are not binary in general [10].

In the next section, we review related work. In Section 3, we introduce an
exact model for tanglegrams that can be applied to pairs of general (not nec-
essarily binary) trees with arbitrary tangle density. To this end, we show that
the task is to optimize a quadratic function over the linear ordering polytope
intersected with further hyperplanes. We show that the corresponding polytope
is isomorphic to a face of a cut polytope. We compare and evaluate different
solution methods based on both linear and semidefinite approaches in Section 4.
We show results for random as well as real-world instances. The results prove
that our approach is very efficient in practice.

2 Related Work

Most of the literature is concerned with the case of binary trees and leaves that
are in one-to-one correspondence. Whereas several of the presented methods
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could easily be generalized to arbitrary tangle layers, an extension to non-binary
trees is usually not possible. When allowing general trees, one extreme case would
be a star, where all leaves are adjacent to the root node. If both T1 and T2 are
stars, there are no constraints on the orders of leaves on either shore, so that the
problem specializes to the bipartite crossing minimization problem [9, 2].

We are not aware of any implementation of an exact method for drawing
tanglegrams with non-binary trees. Fernau et al. [5] showed the NP-hardness
of tanglegram layout, even in the case of binary trees. They also presented a
fixed-parameter algorithm for binary tanglegrams. Recently, an improved fixed-
parameter algorithm was presented by Böcker et al. [1] which can solve large
binary instances quickly in practice, provided that the number of crossings is
not too large. Finally, while in the recent paper by Venkatachalam et al. [13] the
focus is on binary instances, a fixed-parameter algorithm for general tanglegram
instances is presented. According to our knowledge, this is the only algorithm
that could deal with non-binary trees; however, no implementation or running
times are provided making it impossible to evaluate its practical performance.

Besides analyzing the performance and quality of several heuristics in a com-
putational study for binary tanglegrams with one-to-one tangles, Nöllenburg
et al. [10] also implemented a branch-and-bound algorithm and an exact integer-
programming (IP) based approach for this case.

As we will compare our approach with the exact IP-approach of Nöllenburg
et al. [10], we describe it in more detail in the following. A feasible but not
necessarily optimal tanglegram layout is given as an input. For each inner node, a
binary variable xi is introduced. In the case of complete binary trees with n leaves
each, this gives rise to 2(n − 1) variables. If xi = 1, the subtree rooted in node i
is flipped with respect to the input drawing, otherwise it remains unchanged. As
by definition there are no crossings within the trees, the number of crossings can
be determined by counting the number of tangle crossings. Let (a, c) and (b, d) be
tangles with a, b ∈ L1 and c, d ∈ L2. Let i be the lowest common ancestor of a, b
in T1 and j that of c, d in T2. If the tangles cross each other in the input drawing,
then a crossing occurs in the output drawing if and only if either both subtrees
below i and j are flipped or both remain unchanged. This can be expressed
as xixj = 1 or (1−xi)(1−xj) = 1. Similarly, if the edges do not cross each other
in the input drawing, then there is a crossing in the output drawing if and only
if either (1 − xi)xj = 1 or xi(1 − xj) = 1.

Thus minimizing the number of tangle crossings reduces to minimizing the sum
of the given products. The latter is an instance of the unconstrained quadratic
binary optimization problem, which is well-known to be equivalent to a maximum
cut problem in some associated graph with an additional node [3]. In an undirected
graph G = (V, E), the cut δ(W ) induced by a set W ⊆ V is defined as the set of
edges (u, v) such that u ∈ W and v �∈ W . If edge weights are given, the weight of
a cut is the total weight of edges in the cut. Now the maximum cut problem asks
for a cut of maximal weight or cardinality.

While Nöllenburg et al. used this model only for instances with one-to-one
tangles, they briefly note that it could be extended to leaves of higher degree as
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well. However, their model cannot be generalized to instances with non-binary
trees in a straightforward way. In many applications, the trees are not necessarily
binary. In the next section we will present an exact model for tanglegrams that
neither restricts the degree of inner nodes in the trees nor the number of tangles
incident to a leaf.

3 An Exact Model for General Tanglegrams

The problem of drawing tanglegrams is closely related to bipartite crossing mini-
mization. As argued above, the latter problem can be considered a special case of
the former. Therefore, we first review approaches for drawing bipartite graphs.

3.1 Bipartite Crossing Minimization

Let G = (V1 ∪ V2, E) be a bipartite graph. The task is to draw G with straight
line edges. The nodes in V1 and V2 have to be placed on two parallel lines H1
and H2 such that the number of edge crossings is minimal. Both heuristic and
exact methods [9] exist for this problem.

Assume for a moment that the nodes on the first layer H1 are fixed, and only
the nodes on layer H2 are permuted. For each pair of nodes on H2, we introduce
a variable xuv such that xuv = 1 if u is drawn to the left of v and xuv = 0
otherwise. For edges (i, k) and (j, l) with i, j ∈ H1 and k, l ∈ H2, such that i is
left of j, a crossing exists if and only if l is left of k. We thus have to punish xlk

in the objective function. The task of minimizing the number of crossings is
now equivalent to determining a minimum linear ordering on the nodes of H2.
Exploiting xuv = 1 − xvu, we can eliminate half of the variables and only keep
those with u < v. Note that bipartite crossing minimization with one fixed layer
is already NP-hard [4].

If the nodes on both layers are allowed to permute, the number of crossings
depends on the order of the nodes on each layer. Therefore, the problem can be
modeled as a quadratic optimization problem over linear ordering variables. We
write the quadratic linear ordering problem (QLO) in its general form as

min
∑

(i,j,k,l)∈I cijklxijxkl

(QLO) s.t. x ∈ PLO

xij ∈ {0, 1} for all (i, j) ∈ J

where PLO is the linear ordering polytope, i.e. the convex hull of the incidence
vectors of all linear orderings. The index set I consists of all quadruples (i, j, k, l)
such that xijxkl occurs as a product in the objective function, while J is the
set of all pairs (i, j) for which a linear ordering variable xij is needed. For the
bipartite crossing minimization case, I and J are given as

I = {(i, j, k, l) | i, j ∈ H1, i < j, and k, l ∈ H2, k < l}
J = {(i, j) | i, j ∈ H1 or i, j ∈ H2, i < j}
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In order to linearize the objective function, we introduce a new binary variable yijkl

for each (i, j, k, l) ∈ I, modeling the product xijxkl. (Note that yijkl = yklij .) Ap-
plying the standard linearization, the corresponding linearized quadratic linear
ordering problem (LQLO) can be written as

min
∑

(i,j,k,l)∈I cijklyijkl

(LQLO) s.t. x ∈ PLO

xij ∈ {0, 1} for all (i, j) ∈ J
yijkl ≤ xij , xkl for all (i, j, k, l) ∈ I
yijkl ≥ xij + xkl − 1 for all (i, j, k, l) ∈ I
yijkl ∈ {0, 1} for all (i, j, k, l) ∈ I.

Buchheim et al. [2] introduced the above model for bipartite crossing mini-
mization. Additionally, a quadratic reformulation of the constraints defining PLO

was given: it was shown that a 0/1 vector (x, y) satisfying yijkl = xijxkl is con-
tained in (LQLO) if and only if

xik − yijik − yikjk + yijjk = 0 for all (i, j, k, l) ∈ I. (1)

Note that (LQLO) is a quadratic binary optimization problem where the feasible
solutions need to satisfy further side constraints, namely those restricting the set
of feasible solutions to linear orderings. As unconstrained binary quadratic opti-
mization is equivalent to the maximum cut problem [3], the task is to intersect
a cut polytope with a set of hyperplanes.

In general, the convex hull of the corresponding feasible incidence vectors
has a structure that is very different from that of a cut polytope. In the above
context, however, Buchheim et al. [2] showed that the hyperplanes (1) cut out
faces of the cut polytope.

3.2 Modeling Tanglegrams

Crossing minimization in tanglegrams can be seen as a generalization of bipartite
crossing minimization. The set of feasible orderings is implicitly restricted by
the given tree structures. Starting from the model discussed above, we formalize
these restrictions as follows: let us consider a triple of leaves a, b, c in one of the
trees, say T1. In case all pairwise lowest common ancestors coincide, all relative
orderings between a, b, and c are feasible. However, if the lowest common ancestor
of, say, a and b is on a lower level than that of, say, a and c (in this case, the
former is a descendant of the latter), then c must not be placed between a and b,
as an intra-tree crossing would be induced; see Figure 1.

Therefore, we derive a betweenness restriction for every triple of leaves such
that two of the leaf pairs have different lowest common ancestors. Each such
betweenness restriction of the form ‘c cannot be placed between a and b’ can
be written in linear ordering variables as xacxcb = 0 and xbcxca = 0. In the
linearized model (LQLO), the latter amounts to requiring

yaccb = 0 and ycabc = 0 . (2)
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a b c

Fig. 1. Leaf c is not allowed to lie
between a and b

a b c d

r

Fig. 2. Variables xac and xbd can
be identified

For binary trees with n leaves each, all triples of leaves have two different lowest
common ancestors, so in this case the number of additional equations is 2

(
n
3

)
.

In summary, we now obtain a quadratic linear ordering problem (QLO) on a
smaller number of variables, with additional constraints of the form (2), where

J = {(i, j) | i, j are leaves of the same tree, i < j}
I = {(i, j, k, l) | (i, j), (k, l) ∈ J belong to different trees} .

For complete binary trees with n leaves each, the total number of linear ordering
variables is 2

(
n
2

)
. The same number of variables is necessary in the corresponding

bipartite crossing minimization model [2].
As mentioned above, the polytope corresponding to the linearized problem

(LQLO) is isomorphic to a face of a cut polytope [2]. Since all y-variables are
binary, constraints of the form (2) are always face-inducing for (LQLO). In sum-
mary, we derive the following result:

Theorem 1. The problem of drawing tanglegrams with a minimum number of
edge crossings can be solved by optimizing over a face of a suitable cut polytope.

3.3 Binary Case

In the binary case, the model introduced in the preceding sections is closely
related to the model presented in [10]. To see this, first observe that the two
equations (2) can be written as

xac = xbc . (3)

This replacement does not affect the set of feasible solutions, even the corre-
sponding LP-relaxations of (LQLO) are equivalent. Note however that introduc-
ing the y-variables allows to strengthen the model, see Theorem 1.

When using the linear equations (3) instead of the quadratic equations (2),
we end up with a set of equivalence classes of linear ordering variables such
that all pairwise orderings corresponding to variables in the same class can only
be flipped simultaneously. Two variables xac and xbd belong to the same class if



124 F. Baumann, C. Buchheim, and F. Liers

and only if there is a node r such that a, b and c, d are descendants of different
children of r; see Figure 2. In the binary case, a class of linear ordering variables
thus corresponds to the decision of flipping the children of node r or not, which
is modeled explicitly by a single variable in the model of Nöllenburg et al. [10].

In the general case, however, where node r has k children, there are k! different
orderings. As these cannot be modeled by a single binary variable, the model of
Nöllenburg et al. [10] cannot be applied here.

4 Computational Results

We implemented the model detailed in Section 3.2. Instead of adding equa-
tions (3) explicitly, we used one variable for each equivalence class of linear
ordering variables, thereby significantly reducing the number of variables. For
evaluating the IP-based methods, we used CPLEX 11.2 [8]. The naive approach
is to solve the linearized model (LQLO) using a standard integer programming
solver. A more advanced approach is to solve the quadratic reformulation (1),
using separation of cutting planes for max-cut, both in the context of integer
and semidefinite programming. For the SDP approaches, we used a branch-and-
bound approach by Rendl et al. [12] employing the bundle method. For com-
parison, we also implemented the IP model by Nöllenburg et al. [10] that only
works for binary tanglegrams. For the tested binary instances, the running times
for solving the latter are very comparable to those for our model. This can be
expected since our model generalizes [10].

We generated random instances on general binary, ternary and quad trees.
I.e., the degree of each internal node is at most 2, 3 or 4, respectively. Each tree
has n leaves, either having one-to-one tangles or a certain tangle density d%.
Instances are generated following the description in [10], with obvious extensions
to the more general cases considered here. Finally, we solved real-world binary
tanglegram instances from [10] arising in applications in biology and general
real-world instances from visualizing software hierarchies [7].

Average results are always computed over 5 randomly generated instances.
For each instance, we imposed an upper limit of 10h of CPU time. Instances
that could not be solved within this limit count with 10h in the averages. Runs
were performed on Intel Xeon machines with 2.33GHz.

In Table 1, we present the average cpu time in seconds for real-world binary
instances. Table 2 shows results for random ternary and quad trees, respectively.
Figure 4 visualizes the results from Table 2 for n = 128. Running times for real-
world general tanglegram instances are presented in Table 3.

The first column SDP shows results obtained by semidefinite optimization,
whereas the remaining columns refer to IP-based approaches for solving the
model from Section 3. IP refers to solving the standard linearization using
CPLEX default, QP its quadratic reformulation (1). In the options IP+cyc
and QP+cyc, cycle inequalities for max-cut are additionally separated, and all
CPLEX cuts are switched off.

Clearly, for real-world binary trees with one-to-one tangles, the SDP approach
usually needs considerably more time than the IP-based methods. Furthermore,
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Table 1. Average cpu time in seconds for real-world one-to-one binary trees having n
leaves each [10]. Instances are grouped by their number of leaves. The second column
shows the number of instances in each group. The nine largest instances with up to
540 leaves could not all be computed within the time and memory constraints and are
omitted.

n # inst SDP IP QP IP+cyc QP+cyc
0–49 2988 <1 <1 <1 <1 14

50–99 717 3 <1 2 <1 428
100–149 102 31 <1 7 <1 1100
150–199 42 125 1 32 1 1282
200–249 18 437 1 66 2 2704
250–299 18 4786 2 2529 7 10602
300–349 9 6483 2 80 9 8862
400–449 3 20508 12 12067 69 14931

Table 2. Average cpu time in seconds for random general ternary (left) and quad trees
(right) having n leaves each, density d%

n d SDP IP QP IP+cyc QP+cyc
64 1 3 1 <1 <1 1

5 15 12 4 67 6
10 18 27 19 1301 17
15 78 54 23 3893 37
20 41 54 48 12508 66

128 1 165 16 32 78 63
5 362 448 280 22253 448

10 436 2179 791 36000 2746
15 4049 3247 1551 36000 5583
20 8293 2326 1408 36000 15426

SDP IP QP IP+cyc QP+cyc
<1 <1 <1 <1 <1

2 3 1 1 <1
3 8 2 5 1
4 16 6 57 3
4 19 7 65 3

32 19 3 2 4
80 59 35 1045 51
73 1406 119 10147 495
77 844 352 31582 1184

1420 1560 1908 36000 10111

memory requirements strongly increase with system size and so the largest in-
stances could not be solved. On average, the fastest approaches for solving the
largest instances are the pure standard linearization IP and the quadratic refor-
mulation QP.

In fact, we can optimize tanglegrams with more than 500 leaves in each tree.
This is the range of sizes arising in real-world applications. The real-world in-
stances can be solved particularly fast. Interestingly, cycle separation for max-
cut usually does not pay off for binary one-to-one tanglegrams: the running time
increases, although the dual bounds are usually considerably better when cycle
separation is included. Often, an optimum solution can be determined in the root
node. However, although the root bound is weak in the standard linearization,
after few branching steps the optimum LP solution is often feasible and the pro-
gram can stop. We found similar characteristics for random binary tanglegram
instances.
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Fig. 3. Plot showing results for n = 128 of Table 2 for ternary (left) and quad trees
(right)

Table 3. CPU time in seconds for real-world general tanglegram instances [7]. δ spec-
ifies the maximum node degree.

instance δ SDP IP QP IP+cyc QP+cyc
philips orig 4a 14 27618 4725 73 4321 32692
philips orig 4b 14 26093 4205 74 2756 23443
philips orig 4c 14 36000 2666 122 4030 36000
philips orig 4d 14 27891 3208 314 4178 28902
philips orig 4e 14 36000 2789 90 5665 36000
philips 4a 4b 9 5238 1395 4 420 5
philips 4a 4c 9 4769 1858 3 637 4
philips 4a 4d 9 2924 1467 4 494 3
philips 4a 4e 9 2575 827 2 338 3
philips 4b 4c 8 6526 1965 8 510 7
philips 4b 4d 8 4872 2070 5 577 5
philips 4b 4e 8 2127 649 4 124 36
philips 4c 4d 7 4611 804 3 217 5
philips 4c 4e 7 6403 1074 3 396 5
philips 4d 4e 7 3738 891 4 811 11

The picture changes when varying the density of the tangles: for big enough
tangle density the SDP approach usually outperforms the IP approaches. Mem-
ory requirements, however, usually prohibit solving instances with more than
500 leaf nodes and tangle density of 1%. On the IP side, reformulation is of-
ten preferable. Indeed, the best performance is observed when the problems are
quadratically reformulated. For n = 512 and 1% tangle density, the average
solution time is 2120.42 seconds. These instances cannot be solved within the
given time limits when using only the standard linearization, with or without
separation of cycle inequalities.
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The instances for ternary and quad trees are computationally slightly more
difficult. This is mainly due to the fact that the number of betweenness restric-
tions decreases in comparison to binary trees. Here again, the SDP approach
performs well for denser instances however memory requirements strongly in-
crease with system size. For larger instances, best performance is often found for
the quadratic reformulation.

Comparing IP with IP+cyc and QP with QP+cyc for not necessarily binary
trees, it turns out that the performance of separating cycle inequalities improves
for ternary and quad trees. The special case of a star, where the degree is max-
imal, is equivalent to the quadratic linear ordering problem, for which we know
that separation of cycle inequalities improves over IP [2].

The real-world general instances have 131 one-to-one tangles and between
371 and 414 nodes. The average degree of an internal node ranged between
2.71 and 3.38. We show the results in Table 3. Here, solving the reformulation
usually yields best performance. Note that these non-binary instances could not
be solved before by any other exact method.
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Abstract. We present three bit-parallel algorithms for exact searching
of long patterns. Two algorithms are modifications of the BNDM algo-
rithm and the third one is a filtration method which utilizes locations
of q-grams in the pattern. Two algorithms apply a condensed represen-
tation of q-grams. Practical experiments show that the new algorithms
are competitive with earlier algorithms with or without bit-parallelism.
The average time complexity of the algorithms is analyzed. Two of the
algorithms are shown to be optimal on average.
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1 Introduction

String matching [1,12] is a classical problem of computer science. The basic task
is to find all the occurrences of a pattern string in a text string, where both of
the strings are drawn from the same alphabet. There are several variations of
the problem. In this paper we concentrate on exact matching of long patterns,
which has recently gained attention [3,5,8,9,10,17].

BNDM (Backward Nondeterministic DAWG Matching) [11] is among the best
string matching algorithms. It implements a bit-parallel simulation of a nonde-
terministic automaton. BNDM is known to be efficient for patterns of at most
w characters, where w is the register size of the computer, typically 32 or 64.
It is straightforward to extend BNDM to handle longer patterns by simulating
a virtual long register with registers of size w, but the resulting algorithms are
not very efficient. Long BNDM [11], LBNDM [13], BLIM [8], and SABP [17] are
faster bit-parallel solutions than the trivial one. However these algorithms are
clearly slower than the best solutions (e.g. Lecroq’s algorithm [10]) which do not
apply bit-parallelism.

In this paper, we present three new bit-parallel algorithms BXS, BQL, and
QF, which are in most cases faster than the previous bit-parallel algorithms
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for patterns longer than the register size. Our algorithms are also competitive
with earlier algorithms without bit-parallelism. Our algorithms apply q-grams,
i.e. q consecutive characters together. Two of the algorithms are partly based
on recent q-gram variations [2] of BNDM for short patterns. The third one is
based on checking an alignment q-gram by q-gram introduced by Fredriksson and
Navarro [4]. Two of the algorithms, BQL and QF, use a condensed representation
of q-grams [10,15] that enables reasonable space requirements. We also analyze
the time complexity of the algorithms. BQL and QF are shown to be optimal
on average.

We use the following notations. Let T = t1t2 . . . tn and P = p1p2 . . . pm be
two strings over a finite alphabet Σ of size σ. The task of exact string matching
is to find all occurrences of the pattern P in the text T . Formally we search for
all positions i such that titi+1 . . . ti+m−1 = p1p2 . . . pm. In the algorithms we use
C notations: ‘|’, ‘&’, and ‘<<’ represent bitwise operations OR, AND, and left
shift, respectively.

2 Previous Algorithms

Because two of our algorithms are partly based on BNDM, we introduce the
code of BNDM. After that we will shortly explain the principles of five earlier
algorithms for long patterns.

2.1 BNDM

The key idea of BNDM [11] is to simulate a nondeterministic automaton rec-
ognizing all the prefixes of the pattern. The automaton is simulated with bit-
parallelism even without constructing it.

In BNDM (see Alg. 1) the precomputed table B associates each character with
a bit mask expressing its occurrences in the pattern. At each alignment of the
pattern, the algorithm reads the text from right to left until the whole pattern is
recognized or the processed text string is not any substring of the pattern. Be-
tween alignments, the algorithm shifts the pattern forward to the start position
of the longest found prefix of the pattern, or if no prefix is found, over the current
alignment. With the bit-parallel Shift-AND technique the algorithm maintains
a state vector D, which has one in each position where a substring of the pat-
tern starts such that the substring is a suffix of the processed text window. The
standard BNDM works only for patterns which are not longer than w.

The inner while loop of BNDM checks one alignment of the pattern from right
to left. In the same time the loop recognizes prefixes of the pattern. The leftmost
one of the found prefixes determines the next alignment of the algorithm.

2.2 Algorithms for Long Patterns

We consider five earlier algorithms. The first one is a modification of BNDM by
Navarro and Raffinot [11]. We call it Long BNDM. In this algorithm, a prefix of
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Algorithm 1. BNDM(P = p1p2 · · · pm, T = t1t2 · · · tn)
/* Preprocessing */

1: for all c ∈ Σ do B[c] ← 0
2: for j ← 1 to m do
3: B[pj ] ← B[pj ] | (1 << (m − j))

/* Searching */
4: i ← 0
5: while i ≤ n − m do
6: j ← m; last ← m; D ← (1 << m) − 1
7: while D 
= 0 do
8: D ← D & B[ti+j ]; j ← j − 1
9: if D & (1 << (m − 1)) 
= 0 then

10: if j > 0 then
11: last ← j
12: else
13: report occurrence at i + 1
14: D ← D << 1
15: i ← i + last

w characters is searched with the standard BNDM and in the case of a match of
that prefix, the rest of the alignment is verified in the BNDM manner in pieces
of w characters. The maximum shift is w.

In LBNDM by Peltola and Tarhio [13], the pattern of length m is partitioned
into �m

k � consecutive pieces, each consisting of k = �m−1
w � + 1 characters. This

division implies k subsequences of the pattern such that the ith sequence takes
the ith character of each piece. The idea is to search first the superimposed
pattern of these sequences so that only every kth character is examined. This
filtration phase is done with the standard BNDM. Each occurrence of the super-
imposed pattern is a potential match of the original pattern and thus must be
verified. The shift of LBNDM is a multiple of k and at most m. LBNDM works
efficiently only for large alphabets.

Külekci [8] introduced BLIM which checks w alignments simultaneously. Start-
ing with a vector of ones of length w, the vector is updated with the AND op-
eration with the mask of a text character in turn until the vector becomes zero.
The shifting is based on the character immediately following the window. The
maximum shift of BLIM is w+m. SABP by Zhang et al. [17] is related to BLIM.
In SABP, bitvectors are preprocessed in a so called matching matrix.

The Wide Window algorithm (WW) [5] applies two automata in a window
of size 2m − 1. WW is not a bit-parallel algorithm like the others in this sec-
tion. The search begins from the middle of the window. The window is moved
m positions forward until a character occurring in the pattern is found and
a forward suffix automaton can start. Then the rest of the match is verified
with a reverse prefix automaton. Finally the start position is moved past the
current window.
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3 New Algorithms

In this section we will present our new algorithms BXS, BQL, and QF. All the
algorithms use q-grams, and we present the pseudocodes for q = 3. The value
q = 3 has been selected only for the clarity of presentation. In the rest of the
paper the variable w′ holds the minimum of m and w.

3.1 BXS

Our first algorithm is BXS (BNDMq with eXtended Shift). We first cut the pat-
tern into �m/w′� consecutive pieces of length w′ except for the rightmost piece
which may be shorter. Then we superimpose these pieces getting a superimposed
pattern of length w′. In each position of the superimposed pattern a character
from any piece (in corresponding position) is accepted. We then use the following
modified version of BNDM to search for consecutive occurrences of the superim-
posed pattern using bit vectors of length w′ but still shifting the pattern by up

Algorithm 2. BXS3(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≥ q

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← 0 /* 0w */
2: w′ ← min(m, w); x ← m − (m mod w′) + w′

3: for j ← 1 to m do
4: B[pj ] ← B[pj ] | (1 << ((x − j) mod w′)) /* 0∗10(x−j) mod w′

*/
5: for c ∈ Σ do
6: B1[c] ← (B[c] << 1) | 1
7: B2[c] ← (B[c] << 2) | 3 /* (B << 2) | 0w−212 */

/* Searching */
8: i ← mq1 ← m − q + 1 /* now q = 3 */
9: while i ≤ n − q + 1 do

10: D ← B2[ti+2] & B1[ti+1] & B[ti]
11: if D 
= 0 then
12: j ← i; first ← i − mq1
13: repeat
14: j ← j − 1
15: if D ≥ (1 << (w′ − 1)) then /* is highest bit set */
16: if j > first then
17: i ← j /* possible prefix found; sliding backward */
18: else /* verify whole match */
19: if tfirst+1

tfirst+2
· · · tfirst+m

= p1p2 · · · pm then

20: report an occurrence at first + 1
21: D ← (D << 1 | 1) & B[tj ] /* rotating set highest bit */
22: else
23: D ← (D << 1) & B[tj ]
24: until D = 0 or j ≤ first
25: i ← i + mq1
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to m positions. We first initialize the B vectors as if we were searching with the
standard BNDM for the superimposed pattern. When searching we rotate the
bits in D rather than just shifting them to the left as in the standard BNDM.
In the standard BNDM the D vector is guaranteed to die (i.e. all bits are 0)
after at most m characters are read because the shift operation inserts zeroes to
the right. Now we no longer have this guarantee because of rotating bits in D.
Therefore we also need to check that we will not read more than m characters
in a window and exit the inner loop of BNDM if this is the case. We further
note that the w′:th bit of D is set whenever the processed suffix of the current
alignment matches a prefix of the original pattern. However, it is also set if the
suffix of the alignment matches a prefix of a power of the superimposed pattern
even if it does not match a prefix of the original pattern. Thus the shifts of
the alignment can be unnecessarily short, and if the w′:th bit in D is set after
reading m characters, we need to verify for an occurrence of the original pattern.

In practise BXS is faster if we utilize q-grams as in BNDMq [2]. In each
alignment we first read the last q characters and update D accordingly. To do
this efficiently we store shifted values of B into tables Bi. This reduces the
maximum shift length to m− q+1. Algorithm 2 shows the pseudo code for BXS
with this modification. The computation of D on line 10 is different for each q
as well as the computation of Bi tables on lines 5–7. Each B or Bi table needs
σ · w bits.

BXS does not work well when the superimposed pattern is not sensitive
enough, i.e. too many different characters are accepted at the same position.
This happens when the alphabet is too small or the pattern is too long. Increas-
ing the value of q can help, and another solution is to use only a substring of the
pattern when constructing the superimposed pattern. Of course this limits the
maximum shift length. It is also possible to relieve this problem by considering
a condensed representation of q-grams introduced in the next section.

3.2 BQL

BQL (BNDMq Long) is our second algorithm. BQL increases the effective al-
phabet size by using overlapping q-grams, e.g. when using 3-grams the pattern
“ACCTGGT” is processed as “ACC-CCT-CTG-TGG-GGT”. Thus we effec-
tively search for a pattern of m − q + 1 overlapping q-grams. Similar to BXS we
cut the q-gram pattern into �(m− q +1)/w′� pieces and superimpose them. The
B vectors of BNDM are then initialized for the superimposed q-gram pattern.

In the search phase we use a modification of Simplified BNDM [13], which
allows us to always shift by m− q +1 but still only use w′ bits for the bit vectors
B and D. We divide the text into nonoverlapping windows of length m − q + 1
and in each window we do a BNDM like scan from right to left. Whenever the
highest bit in D is set, we verify all such alignments of the pattern with the text
that the prefix of one of the superimposed pieces is aligned with the processed
suffix of the window. When the D vector dies, we shift always by m − q + 1
to move to the next text window. Algorithm 3 shows the pseudo code of the
algorithm. The computation of ch on line 12 is different for each q.
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Algorithm 3. BQL3,s(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m > q and theoretically q · s < w

/* Preprocessing */
1: for ch ← 0 to (2q·s − 1) do
2: B[ch] ← 0 /* 0w */
3: w′ ← min(m, w); mq1 ← m − q + 1; x ← m − (m mod w′) + w′

4: mask ← (1 << (q · s)) − 1 /* 0w′−q·s1q·s */
5: ch ← 0
6: for i ← m downto 1 do
7: ch ← ((ch << s) + pi) & mask
8: if i ≤ mq1 then
9: B[ch] ← B[ch] | (1 << ((x − i) mod w′))

/* Searching */
10: i ← mq1
11: while i ≤ n − q + 1 do
12: ch ← (((((ti+2) << s) + ti+1) << s) + ti) & mask
13: if (D ← B[ch]) 
= 0 then
14: j ← i
15: repeat
16: j ← j − 1
17: if D ≥ (1 << (w′ − 1)) then /* is highest bit set */
18: for k ← j step down w′ while k ≥ i − mq1 do
19: if tk+1tk+2 · · · tk+m = p1p2 · · · pm then /* verify match */
20: if k + m ≤ n then
21: report an occurrence at k + 1
22: ch ← ((ch << s) + tj) & mask
23: D ← (D << 1) & B[ch]
24: until D = 0
25: i ← i + mq1

We use the following condensed representation of q-grams to reduce the space
usage of the B vectors. The parameter s regulates the number of bits reserved
for each character in a q-gram, and q-grams are encoded as the s ·q lowest bits of
shifted sum of bit representations of ASCII characters, see line 12 of Algorithm 3.
The vector table B thus needs 2s·q · w bits. Roughly the value s = 1 is suitable
for the binary alphabet, s = 2 is good for DNA and natural language, and s ≥ 5
is good for random data of alphabet of 256 characters. A similar representation
has earlier been used by Lecroq [10] and in the code of agrep [15].

In the experiments of Section 5, we used the following modification of line 19
before entering the inner verification loop: We made a guard check of the last
2-gram of the pattern. This modification makes the algorithm faster especially
on small alphabets or with long patterns.

3.3 QF

Our third algorithm, QF (Q-gram Filtering), is similar to the approximate string
matching algorithm by Fredriksson and Navarro [4], which is not a BNDM based
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Algorithm 4. QF3,s(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m > q and theoretically q · s < w

/* Preprocessing */
1: for ch ← 0 to (2q·s − 1) do /* note that 2q·s = (1 << (q · s)) */
2: B[ch] ← 0 /* only 0q needed */
3: mq1 ← m − q + 1; ch ← 0; mask ← (1 << (q · s)) − 1 /* 0w−q·s1q·s */
4: for i ← m downto 1 do
5: ch ← ((ch << s) + pi) & mask
6: if i ≤ mq1 then
7: B[ch] ← B[ch] | (1 << ((m − i) mod q)) /* here q = 3 */

/* Searching */
8: i ← mq1
9: while i ≤ n − q + 1 do

10: D ← B[((((ti+2 << s) + ti+1) << s) + ti) & mask]
11: if D 
= 0 then
12: j ← i − mq1 + q /* end of the leftmost q-gram of an alignment */
13: repeat
14: i ← i − q
15: until i ≤ (j − q) or

(D ← (D & B[((((ti+2 << s) + ti+1) << s) + ti) & mask])) = 0
16: if i < j then
17: i ← j
18: for k ← j − q + 1 to j do
19: if tktk+1tk+2 · · · tk+m−1 = p1p2p3 · · · pm then
20: report an occurrence at k
21: i ← i + mq1

algorithm. As preprocessing we store for each phase i, 0 ≤ i < q, which q-grams
occur in the pattern in that phase, i.e. start at position i + j · q for any j. To
store this information we initialize a vector B for each q-gram where the i:th bit
is set if the q-gram occurs in phase i in the pattern.

During searching we read consecutive q-grams in a window and keep track
of active phases, i.e. such phases that all read q-grams occur in that phase in
the pattern. This can be done conveniently with bit parallelism. We maintain a
vector D where the i:th bit is set if the i:th phase is active. Initially all phases
are active and after reading a q-gram G the vector D can be updated using the
preprocessed B vectors: D = D & B[G]. If we have read all the q-grams of the
window and some phase is still active, we must verify for an occurrence of the
pattern. When the vector D becomes inactive or after verification, we can shift
the alignment past the last read q-gram.

To reduce space usage QF applies the same condensed representation of q-
grams as BQL. The pseudocode of QF is shown as Algorithm 4. The or operator
on line 15 is short-circuit OR. The computation of index expression of B on lines
10 and 15 is different for each q. The vector table B needs q · 2q·s bits. This can
be a considerably enhancement compared to BQL, especially if B becomes small
enough compared to the data cache.
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D actually contains the information describing which phases are potential, so
we would not need to check them all. Use of that information did not improve
performance in practice. If tests on line 15 could be made separately with gotos,
the test in the if statement on the next line would become unnecessary.

4 Analysis

The worst case complexity of our algorithms is O(mn), and the best case com-
plexity is O(nq/(m − q)).

When analyzing the average case complexity of the algorithms, we assume that
the characters are statistically independent of each other and the distribution
of characters is discrete uniform. Furthermore, we assume that the alphabet is
such that the condensed representation of q-grams in BQL and QF produces a
uniform distribution. For simplicity we assume in the analysis that w divides m.

When analyzing the average case complexity of BXS, we assume that q = 1.
The parameter q in BXS is used to gain a practical speedup but it does not
affect the asymptotic complexity of the algorithm. On the other hand, we will
see that in the BQL and QF algorithms the value of q has a crucial impact on
the average case complexity.

BXS. Let P = p1p2 . . . pm be the pattern. Let us then construct a pattern

P ′ = ([p1, p1+w, p1+2w, . . .][p2, p2+w, p2+2w, . . .] . . .)
m
w ,

where the square brackets denote a class of characters and exponentiation the
repetition of an element. If we now run the standard BNDM algorithm with the
pattern P ′ on a machine where the length of the computer word is long enough,
it will read exactly the same characters and perform exactly the same shifts as
BXS with the original pattern P run on a machine with word length w.

The average case complexity of BNDM with a pattern containing classes of
characters is O(n logσ̄ m/m) where σ̄ is the inverse of the probability of a class
of characters matching a random character. If there are at most m/w characters
in a class then this probability is bounded by m/(wσ). Note that this bound
should be smaller than 1 and thus m < wσ must hold. Now the average case
complexity of the algorithm becomes

O(n logwσ/m m/m) = O
(

n

m
· logσ m

1 − logσ
m
w

)
.

The above result holds for a random pattern and a random text. However, our
pattern P ′ has a repetitive structure with period m/w and is thus not completely
random. Still if the text is random, the algorithm actually cannot perform worse
with a repetitive pattern than with a random pattern because the probability of
a random text substring matching the pattern in any position is in fact lower for
the repetitive pattern as it contains fewer unique substrings. Thus the average
case complexity of BXS is

O
(

n

m
· logσ m

1 − logσ
m
w

)
.
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An optimal string matching algorithm has the average case time complexity
O(n logσ m/m) [16] so BXS is worse than optimal by a factor of 1/(1−logσ(m/w)).

BQL. BQL processes the text in windows. There are n/(m−q+1) windows. In
each window the algorithm first reads the last q-gram of the window. Let us call a
window good if the last q-gram of the window does not match the pattern in any
position and let all other windows be called bad. In a good window the algorithm
reads q characters and then moves on to the next window. Thus the work done
by the algorithm in a good window is O(q). In a bad window the highest bit of
the vector D can be set at most w times triggering m/w verifications each time.
Each verification can be performed in O(m) time. Thus the work done by the
algorithm in a bad window can be bounded by O(w · m/w · m) = O(m2). The
probability that a window is bad is at most m/2sq and therefore the average
complexity of the algorithm can be bounded by

O
(

n

m − q + 1

(
q +

m

2sq
· m2
))

= O
(

nq

m − q + 1
+

n

m − q + 1
· m3

2sq

)
.

Let us then choose q = 3 log2s m. Then

O
(

nq

m − q + 1
+

n

m − q + 1
· m3

2sq

)
= O
(

n log2s m

m

)
.

If we further choose s so that 2s =Θ(σ), then O (n log2s m/m) = O (n logσ m/m)
and therefore BQL is optimal on average for an appropriate choice of q and s.

QF. The algorithm by Fredriksson and Navarro [4] (FN for short) is designed
for multiple approximate string matching. FN is similar to our QF when we
set the number of differences k = 0 and the number of patterns r = 1. There
are two differences between the algorithms. QF counts the occurrences of the q
different phases of the pattern separately, while FN disregards the phases and
only counts how many differences are at least needed to align the read q-grams
with the pattern somehow. Secondly, QF uses a condensed representation of the
q-grams, while FN uses plain q-grams.

The condensed representation of the q-grams reduces the alphabet size to 2s.
If we assume that the alphabet size is 2s, then QF never reads more characters in
a window than FN. QF stops handling a window when the read q-grams do not
match the pattern q-grams in the same phase. FN cannot stop sooner than QF
because the read q-grams can be aligned with the pattern with 0 differences if
QF has not stopped reading. Both of the algorithms shift the pattern so that the
new window is shifted just past the last read q-gram. Because QF never reads
less q-grams in a window than FN, it always makes a shift that is at least as long
as in FN. Therefore, the average case complexity of QF cannot be worse than
the average case complexity of FN, O(n logσ m/m) for k = 0 and r = 1 when
q = Θ(logσ m). As the alphabet size in QF is 2s, the average complexity of QF is
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O(n log2s m/m) when q = Θ(log2s m). Thus the average complexity of QF is
O(n logσ m/m) if 2s = Θ(σ) and q = Θ(log2s m) = Θ(logσ m). This complexity
is optimal for exact matching of a single pattern, and thus the analysis gives a
tight bound.

5 Experimental Comparison

The tests were run on a 2.8 GHz Pentium D (dual core) CPU with 1 GB of
memory. Both cores have 16 KB L1 data cache and 1024 KB L2 cache. The
computer was running Fedora 8 Linux. All the algorithms were tested in the
testing framework of Hume and Sunday [7]. All programs were written in C and
compiled with the gcc compiler 4.1.2 producing x86 64 “32-bit” code and using
the optimization level -O3.

We used four texts of 2 MB in our tests: binary, DNA, English, and uniformly
random of 254 characters1. The English text is the beginning of the KJV bible.
The DNA text is from the genome of fruitfly (Drosophila Melanogaster). The
binary and random texts were generated randomly. For each text we have pattern
sets of lengths 25, 50, 100, 200, 400, 800, and 1600. The 200 patterns in each
pattern set are picked randomly from the same data source as the text. Roughly
more than half of the patterns appear in the text. The patterns in each pattern
set are from non-overlapping positions.

We compared our algorithms with the following algorithms: Long BNDM [11]
(the times for m = 25 were run with the standard BNDM), LBNDM [13] for
English and random, BLIM [8], WW [5], A4 [14] for DNA, Lecroq [10], and
EBOM [3]. We made also preliminary tests on SABP [17]. Its performance seems
to be similar to that of BLIM. Lecroq’s algorithm and A4 are q-gram variants
of the Boyer–Moore–Horspool algorithm [6]. EBOM is an efficient implementa-
tion of the oracle automaton utilizing 2-grams. Because Lecroq’s algorithm (as
described in [10]) has at most 256 values of shift, it is not competitive for long
patterns. Therefore we implemented another version called Lecroq2 which has
4096 values of shift. Obviously tests with long patterns were done with such a
version in [10].

Table 1 shows average times of 200 runs in milliseconds. (To get more accuracy
the runs with search times less than 10 ms were repeated 3000 times.) The best
times have been boxed. The best values of parameters for each algorithm are
given for each pattern set. Generally QF was the fastest and BQL was the
second best—especially on longer patterns. In most cases the best value of q for
BQL was bigger or equal than for QF. BLIM would work faster with w = 64
(i.e. using “64-bit” code) except on binaries and DNA for m = 25. Lecroq2 is
a considerable improvement compared to the basic version on other data sets
than binary when m ≥ 400. The relatively good performance of Long BNDM on
Random254 seems to be due to a skip loop. Also WW has a related structure.

1 Our testing environment allows an alphabet of at most 254 characters. So this is not
a limitation of the algorithms.
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Table 1. Search times for 200 patterns in milliseconds

Algorithm par. 25 par. 50 par. 100 par. 200 par. 400 par. 800 par. 1600

B
in

a
ry

d
a
ta

Long BNDM 786 526 526 529 529 531 532
BLIM 875 534 535 536 536 539 542
WW 1384 801 468 354 283 210 172
Lecroq 6 304 7 188 8 125 6 137 6 138 8 110 8 102
Lecroq2 6 313 6 201 8 143 6 139 6 140 8 116 8 111
EBOM 784 502 314 241 184 91 79
BXS 5 708 12 507 14 1022
BQL 9,1 322 9,1 173 11,1 117 9,1 148 12,1 69 15,1 16 15,1 8.8
QF 8,1 282 9,1 145 9,1 107 9,1 133 12,1 68 13,1 14 15,1 8.2

D
N

A
d
a
ta

Long BNDM 455 298 298 297 298 300 300
BLIM 518 356 357 359 357 359 363
WW 679 389 226 200 126 79 70
Lecroq 3 215 4 147 4 111 3 124 3 131 7 106 6 90
Lecroq2 4 223 4 149 5 110 4 164 8 89 8 18 8 9.8
A4 4 228 4 156 4 113 6 183 6 83 6 18 6 10
EBOM 411 262 160 132 80 44 47
BXS 4 348 7 225 8 211 14 273
BQL 5,3 219 5,3 135 7,2 108 7,2 126 7,2 44 8,2 13 8,2 8.0
QF 4,3 165 5,3 110 8,2 101 5,3 105 7,2 40 8,2 9.6 8,2 5.8

E
n
gl

is
h

d
a
ta

Long BNDM 309 247 248 249 249 251 253
LBNDM 389 238 168 144 123 113 138
BLIM 371 224 207 191 183 176 165
WW 406 242 162 152 91 47 44
Lecroq 3 189 3 135 3 106 3 174 4 135 4 85 3 54
Lecroq2 3 202 3 142 4 107 8 175 8 91 6 17 8 9.5
EBOM 213 163 126 101 60 33 28
BXS 3 211 4 129 6 119 3 145 5 70 9 34 12 31
BQL 4,3 207 4,3 133 7,2 109 4,3 112 7,2 49 7,2 14 14,1 8.5
QF 3,4 143 3,4 104 8,2 102 3,5 92 4,3 34 8,2 10 8,2 5.8

R
a
n
d
o
m

2
5
4

d
a
ta

Long BNDM 108 102 101 102 102 103 105
LBNDM 124 106 102 84 37 11 8.0
BLIM 164 114 104 135 138 120 120
WW 117 103 103 100 54 16 9.5
Lecroq 3 179 3 129 3 103 3 175 3 135 4 102 3 94
Lecroq2 3 192 3 136 3 104 3 174 5 75 4 12 5 8.5
EBOM 106 99 97 63 22 10 8.9
BXS 2 99 2 93 1 94 2 74 2 17 4 7.8 4 6.4
BQL 2,5 145 2,6 100 2,7 99 2,6 94 2,6 25 2,7 7.8 2,7 4.8
QF 2,6 98 3,4 95 2,8 96 2,8 70 2,6 16 2,8 5.0 2,8 3.1

The times in Table 1 do not include preprocessing based on the patterns.
The preprocessing times were unessential for all other algorithms except BLIM,
WW, and EBOM. E.g. for English, their preprocessing times grew (according
to pattern length) as follows: BLIM from 94 to 6512, WW from 3 to 675, and
EBOM from 15 to 214 milliseconds per pattern set.
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6 Concluding Remarks

We have presented three bit-parallel q-gram algorithms for searching long pat-
terns. The new algorithms are efficient—both in theory and practice. Our ex-
periments show that the new algorithms are in most cases faster than previous
bit-parallel algorithms for long patterns. Our algorithms are also competitive
with earlier algorithms without bit-parallelism. QF is the best of the algorithms.
We showed that QF and BQL are optimal on average.
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2. Ďurian, B., Holub, J., Peltola, H., Tarhio, J.: Tuning BNDM with q-grams. In: Proc.
ALENEX 2009, the Tenth Workshop on Algorithm Engineering and Experiments,
pp. 29–37 (2009)

3. Faro, S., Lecroq, T.: Efficient variants of the backward-oracle-matching algorithm.
In: Proc. PSC 2008, The 13th Prague Stringology Conference, pp. 146–160 (2008)

4. Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximate
string matching. ACM Journal of Experimental Algorithmics 9(1.4), 1–47 (2004)

5. He, L., Fang, B., Sui, J.: The wide window string matching algorithm. Theoretical
Computer Science 332(1-3), 391–404 (2005)

6. Horspool, R.N.: Practical fast searching in strings. Software – Practice and Expe-
rience 10(6), 501–506 (1980)

7. Hume, A., Sunday, D.M.: Fast string searching. Software – Practice and Experi-
ence 21(11), 1221–1248 (1991)
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Abstract. We improve on earlier FPT algorithms for computing a
rooted maximum agreement forest (MAF) or a maximum acyclic agree-
ment forest (MAAF) of a pair of phylogenetic trees. Their sizes give the
subtree-prune-and-regraft (SPR) distance and the hybridization num-
ber of the trees, respectively. We introduce new branching rules that
reduce the running time of the algorithms from O(3kn) and O(3kn log n)
to O(2.42kn) and O(2.42kn log n), respectively. In practice, the speed up
may be much more than predicted by the worst-case analysis. We confirm
this intuition experimentally by computing MAFs for simulated trees and
trees inferred from protein sequence data. We show that our algorithm
is orders of magnitude faster and can handle much larger trees and SPR
distances than the best previous methods, treeSAT and sprdist.

1 Introduction

Phylogenetic trees are used to represent the evolution of a set of species (taxa)
[13]. In addition to ’vertical’ inheritance from parent to offspring, genetic mate-
rial can be exchanged between contemporary organisms via lateral gene transfer,
recombination and hybridization. These processes enable the rapid spread of an-
tibiotic resistance and other harmful traits in pathogenic bacteria, and more
generally allow species to rapidly adapt to new environments. Untangling ver-
tical and lateral evolutionary histories requires the comparison of phylogenetic
trees, and metrics that model reticulation events using subtree prune-and-regraft
(SPR) [11] or hybridization [1] permutations are of particular interest, since the
resulting series of permutations has a direct evolutionary interpretation [14, 15].

Although these distance metrics are biologically meaningful, they are NP-hard
to compute [8, 10, 12]. This has led to significant effort to develop approxima-
tion [5, 7, 16] and fixed-parameter (FPT) algorithms [7, 9], as well as heuristic
approaches [3, 12], for computing these distances. The main tool of most such
algorithms is the notion of a maximum agreement forest [1, 8, 11]. Recently,
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Whidden and Zeh [18] presented a unified view of previous methods for com-
puting agreement forests and introduced improvements that led to the theo-
retically fastest approximation and FPT algorithms for computing such forests
so far. The FPT algorithms for SPR distance and hybridization number use a
bounded search tree approach and take O(3kn) and O(3kn logn) time, respec-
tively (O(3kk + n3) and O(3kk log k + n3) using standard kernelizations [8, 9].)

In this paper, we introduce improved branching rules to be used in the algo-
rithms of [18]. These branching rules reduce the running times of the algorithms
for SPR distance and hybridization number to O(2.42kn) and O(2.42kn log n),
respectively. Using the same kernelizations as before, the running times can be
reduced further to O(2.42kk + n3) and O(2.42kk log k + n3), respectively.

While these theoretical improvements are valuable in their own right, our main
contribution is to evaluate the practical performance of the algorithm of [18] and
the impact of our improved branching rules. An additional optimization we apply
is to use the linear-time 3-approximation algorithm for SPR distance of [16,18] to
prune branches in the search tree that are guaranteed to be unsuccessful. This
reduces the size of the search tree substantially and leads to a corresponding
decrease in running time. We demonstrate that each of the improved branch-
ing rules and the pruning of unsuccessful branches have a marked and distinct
effect on the performance of the algorithm. Our experiments confirm that our
algorithm is orders of magnitude faster than the currently best exact alterna-
tives [4,20] based on reductions to integer linear programming and satisfiability
testing, respectively. The largest distances reported using implementations of
previous methods are a hybridization number of 14 on 40 taxa [6] and an SPR
distance of 19 on 46 taxa [20]. In contrast, our method took less than 5 hours
to compute SPR distances of up to 46 on trees with 144 taxa and 99 on syn-
thetic 1000-leaf trees. This represents a major step forward towards tools that
can infer reticulation scenarios for the hundreds of genomes that have been fully
sequenced to date.

The rest of this paper is organized as follows. Section 2 introduces the nec-
essary terminology and notation. Section 3 presents our FPT algorithms using
the improved branching rules. Section 4 presents our experimental results.

2 Preliminaries

Throughout this paper, we mostly use the definitions and notation from [7,8, 9,
16,18]. A (rooted binary phylogenetic) X-tree is a rooted tree T whose leaves are
the elements of a label set X and whose non-root internal nodes have two children
each; see Figure 1(a). The root of T has label ρ and has one child. Throughout
this paper, we consider ρ to be a member of X . For a subset V of X , T (V ) is the
smallest subtree of T that connects all nodes in V ; see Figure 1(b). The V -tree
induced by T is the tree T |V obtained from T (V ) using forced contractions, each
of which removes an unlabelled node v with only one child and its incident edges.
If v was the root of the current tree, its child becomes the new root; otherwise
an edge is added between v’s parent and child. See Figure 1(c).
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Fig. 1. (a) An X-tree T . (b) The subtree T (V ) for V = {1, 2, 4}. (c) T |V . (d) Illustra-
tion of an SPR operation.
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Fig. 2. (a) SPR operations transforming T1 into T2. Each operation changes the top
endpoint of one of the dotted edges. (b) The corresponding agreement forest, which
can be obtained by cutting the dotted edges in both trees.

A subtree-prune-and-regraft (SPR) operation on an X-tree T cuts an edge
ex := xpx, where px denotes the parent of x. This divides T into subtrees Tx

and Tpx containing x and px, respectively. Then it introduces a node p′x into Tpx

by subdividing an edge of Tpx and adds an edge xp′x, making x a child of p′x.
Finally, px is removed using a forced contraction. See Figure 1(d).

The distance measure dspr(T1, T2) between X-trees is the minimum num-
ber of SPR operations required to transform T1 into T2. A related distance
measure is the hybridization number, hyb(T1, T2), which is defined in terms of
hybrid networks. A hybrid network of T1 and T2 is a directed acyclic graph
H such that both trees, with their edges directed away from the root, can
be obtained from H by forced contractions and edge deletions. For a node
x ∈ H , let degin(x) be its in-degree and deg−in(x) = max(0, degin(x) − 1). Then
hyb(T1, T2) = minH

∑
x∈H deg−in(x), taking the minimum over all hybrid net-

works H of T1 and T2. These metrics are related to the sizes of appropriately
defined agreement forests. To define these, we first introduce some terminology.

For a forest F whose components T1, T2, . . . , Tk have label sets X1, X2, . . . , Xk,
we say F yields the forest with components T1|X1, T2|X2, . . . , Tk|Xk; if Xi = ∅,
then Ti(Xi) = ∅ and, hence, Ti|Xi = ∅. For a subset E of edges of G, we use
F − E to denote the forest obtained by deleting the edges in E from F , and
F ÷E to denote the forest yielded by F −E. We say that F ÷E is a forest of F .

Given X-trees T1 and T2 and forests F1 of T1 and F2 of T2, a forest F is
an agreement forest (AF) of F1 and F2 if it is a forest of both F1 and F2; see
Figure 2. F is a maximum agreement forest (MAF) of F1 and F2 if there is no AF
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of F1 and F2 with fewer components. We denote the number of components in an
MAF of F1 and F2 by m(F1, F2), and the size of the smallest edge set E such that
F ÷E is an AF of F1 and F2 by e(F1, F2, F ), where F is a forest of F2. Bordewich
and Semple [8] showed that dspr(T1, T2) = e(T1, T2, T2) = m(T1, T2) − 1.

Hybridization numbers correspond to MAFs with an additional constraint.
For two forests F1 and F2 of T1 and T2 and an AF F of F1 and F2, each node
x in F can be mapped to nodes φ1(x) in T1 and φ2(y) in T2 by defining Xx to
be the set of labelled descendants of x in F and φi(x) to be the lowest common
ancestor in Ti of all nodes in Xx. We say that F contains a cycle if there exist
nodes x and y (a cycle pair (x, y)) that are roots of trees in F and such that φ1(x)
is an ancestor of φ1(y) and φ2(y) is an ancestor of φ2(x). Otherwise, F is an
acyclic agreement forest (AAF). A maximum acyclic agreement forest (MAAF)
of F1 and F2 is an AAF with the minimum number of components among all
AAFs of F1 and F2. We denote its size by m̃(F1, F2) and the number of edges in
a forest F of F2 that must be cut to obtain an AAF of F1 and F2 by ẽ(F1, F2, F ).
Baroni et al. [1] showed that hyb(T1, T2) = ẽ(T1, T2, T2) = m̃(T1, T2) − 1.

We write a ∼F b when there exists a path between two nodes a and b of
a forest F . For a node x ∈ F , F x denotes the subtree of F induced by all
descendants of x, inclusive. For forests F1 and F2 and nodes a, b ∈ F1 with a
common parent, we say (a, b) is a sibling pair of F1 if there exist nodes a′, b′ ∈ F2

such that F a
1 = F a′

2 and F b
1 = F b′

2 . We refer to a′ and b′ as a and b for simplicity.

3 The Algorithms

In this section, we present our improved FPT algorithms for computing an MAF
or MAAF of two phylogenies. As is customary for FPT algorithms, we focus on
the decision version of the problem: “Given two X-trees T1 and T2, a distance
measure d(·, ·), and a parameter k, is d(T1, T2) ≤ k?” To compute the distance
between two trees, we start with k = 0 and increase it until we receive an
affirmative answer. This does not asymptotically increase the running time of
the algorithm, as the dependence on k is exponential.

We begin with the MAF algorithm. The algorithm is recursive. Each invoca-
tion takes as input two forests F1 and F2 of T1 and T2 and a parameter k, and de-
cides whether e(T1, T2, F2) ≤ k. We denote such an invocation by Maf(F1, F2, k).
The forest F1 is the union of a tree Ṫ1 and a forest F , while F2 is the union
of the same forest F and another forest Ḟ2 with the same label set as Ṫ1. We
maintain two sets of labelled nodes: Rd contains the roots of F , and Rt contains
roots of subtrees that agree between Ṫ1 and Ḟ2. We refer to the nodes in these
sets by their labels. For the top-level invocation, F1 = Ṫ1 = T1, F2 = Ḟ2 = T2,
and F = ∅; Rd is empty, and Rt contains all leaves of F2.

Maf(F1, F2, k) identifies a small collection {E1, E2, . . . , Eq} of subsets of
edges of Ḟ2 such that e(T1, T2, F2) ≤ k if and only if e(T1, T2, F2 −Ei) ≤ k−|Ei|,
for at least one 1 ≤ i ≤ q. It makes a recursive call Maf(F1, F2 − Ei, k − |Ei|),
for each subset Ei, and returns “yes” if and only if one of these calls does. The
steps of this procedure are as follows.



Fast FPT Algorithms for Computing Rooted Agreement Forests 145
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Fig. 3. The cases in Step 6 of the rooted MAF algorithm. Only Ḟ2 is shown. Each box
represents a recursive call.

1. (Failure) If k < 0, there is no subset E of at most k edges of F2 such that
F2 − E yields an AF of T1 and T2. Return “no” in this case.

2. (Success) If |Rt| ≤ 2, then Ḟ2 ⊆ Ṫ1. Hence, Ḟ2 ∪ F is an AF of F1 and F2
and, thus, also of T1 and T2. Return “yes” in this case.

3. (Prune maximal agreeing subtrees) If there is no node r ∈ Rt that is a root
in Ḟ2, go to Step 4. Otherwise remove r from Rt and add it to Rd, thereby
moving the corresponding subtree of Ḟ2 to F . Cut the edge er in Ṫ1 and apply
a forced contraction to remove r’s parent from Ṫ1. This does not alter F2 and,
thus, neither e(T1, T2, F2). Return to Step 2.

4. Choose a sibling pair (a, c) in Ṫ1 such that a, c ∈ Rt.
5. (Grow agreeing subtrees) If (a, c) is not a sibling pair of Ḟ2, go to Step 6.

Otherwise remove a and c from Rt, label their parent in both trees with
(a, c), and add it to Rt. Return to Step 2.

6. (Cut edges) Distinguish three cases (see Figure 3).
6.1. If a �F2 c, make two recursive calls Maf(F1, F2 ÷ {ea}, k − 1) and

Maf(F1, F2 ÷ {ec}, k − 1).
6.2. If a ∼F2 c and the path from a to c in Ḟ2 has one pendant node b, make

one recursive call Maf(F1, F2 ÷ {eb}, k − 1).
6.3. If a ∼F2 c and the path from a to c in Ḟ2 has q ≥ 2 pendant nodes

b1, b2, . . . , bq, make three calls Maf(F1, F2 ÷ {eb1 , eb2 , . . . , ebq}, k − q),
Maf(F1, F2 ÷ {ea}, k − 1), and Maf(F1, F2 ÷ {ec}, k − 1).

Return “yes” if one of the recursive calls does; otherwise return “no”.

The above algorithm is identical to the one presented in [18], with the exception
of Step 6. In this step, the algorithm of [18] chooses a and c so that the distance
of a from the root of T2 is no less than that of c, identifies the sibling b of a in Ḟ2
and then makes three recursive calls Maf(F1, F2 ÷ {ea}, k − 1), Maf(F1, F2 ÷
{eb}, k−1), and Maf(F1, F2 ÷{ec}, k−1). Next we show that by distinguishing
between Cases 6.1–6.3 we achieve an improved running time.

Theorem 1. For two rooted X-trees T1 and T2 and a parameter k, it takes
O((1 +

√
2)kn) = O(2.42kn) time to decide whether e(T1, T2, T2) ≤ k.
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Using the same data structures as in the algorithm of [18], each recursive call
takes O(n) time. Thus, the running time claimed in Theorem 1 follows if we can
bound the number of recursive calls by O((1 +

√
2)k). The number of recursive

calls spawned by an invocation depends only on k with the following recurrence

I(k) =

⎧⎪⎨
⎪⎩

1 + 2I(k − 1) Case 6.1
1 + I(k − 1) Case 6.2
1 + 2I(k − 1) + I(k − q) Case 6.3

≤ 1 + 2I(k − 1) + I(k − 2)

because Case 6.3 dominates the other two cases and q ≥ 2 in this case. Simple
substitution shows that this recurrence solves to I(k) = O((1+

√
2)k). It remains

to prove the correctness of the algorithm. Our strategy is as follows. Consider
an edge set E of size e(T1, T2, F2) and such that F2 ÷ E is an AF of T1 and T2.
F2 ÷ E is also an AF of F1 and F2. Now we consider each of the three cases of
Step 6. We show that, in each case, there exists a set E as above and a recursive
call Maf(F1, F2 ÷Ei, k − |Ei|) made in this case such that Ei ⊆ E. This implies
by induction that (1) none of the other recursive calls we make returns “yes”
unless e(T1, T2, F2) ≤ k (because each recursive call Maf(F1, F2÷Ej, k

′) satisfies
k′ = k−|Ej |) and (2) the recursive call Maf(F1, F2 ÷Ei, k−|Ei|) returns “yes”
if and only if e(T1, T2, F2) = k. Thus, the current invocation gives the correct
answer. Each of the following three lemmas considers one case. Due to the lack
of space, proofs are omitted but can be found in [17].

Lemma 1 (Case 6.1). If a �F2 c, there exists an edge set E of size e(T1, T2, F2)
(resp. ẽ(T1, T2, F2)) such that F2 ÷ E is an AF (resp. AAF) of T1 and T2 and
E ∩ {ea, ec} �= ∅.
Lemma 2 (Case 6.2). If a ∼F2 c and the path from a to c in F2 has only one
pendant node b, there exists an edge set E of size e(T1, T2, F2) such that F2 ÷ E
is an AF of T1 and T2 and eb ∈ E.

Lemma 3 (Case 6.3). If a ∼F2 c and the path from a to c in F2 has q ≥ 2
pendant nodes b1, b2, . . . , bq, there exists an edge set E of size e(T1, T2, F2) (resp.
ẽ(T1, T2, F2)) such that F2 ÷E is an AF (resp. AAF) and either E∩{ea, ec} �= ∅
or {eb1 , eb2 , . . . , ebq} ⊆ E.

As shown in [18], an algorithm for deciding whether T1 and T2 have a maximum
acyclic agreement forest of size at most k+1 can be obtained using a two-phased
approach. In the first phase, we employ the MAF algorithm. Whenever the MAF
algorithm would return “yes” in Step 2, however, we invoke a second algorithm
that tests whether all cycles in the obtained agreement forest can be eliminated
by cutting at most k edges:

2′. If |Rt| ≤ 2, then F2 = Ḟ2∪F is an AF of T1 and T2. Now invoke an algorithm
Maaf(F2, k) that decides whether all cycles in F2 can be eliminated by
cutting at most k edges.
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Such an algorithm Maaf(F, k) with running time O(2kn log n) time is presented
in [18]. The correctness of this two-phased MAAF procedure follows if we can
show that in each of the three cases in Step 6, there exists a recursive call
Maf(F1, F2 ÷Ei, k−|Ei|) such that Ei is a subset of a set E of size ẽ(T1, T2, F2)
and such that F2 ÷E is an AAF of T1 and T2. For Cases 6.1 and 6.3, Lemmas 1
and 3 state that this is the case. In Case 6.2, however, edge eb may not belong
to such a set. To fix this, we replace it with the following case when computing
an MAAF:

6.2′. If the path from a to c in F2 has one pendant node b, make two recursive
calls Maf(F1, F2 ÷ {eb}, k − 1) and Maf(F1, F2 ÷ {ec}, k − 1).

Theorem 2. For two rooted X-trees T1 and T2 and a parameter k, it takes
O((1 +

√
2)kn log n) = O(2.42kn logn) time to decide whether ẽ(T1, T2, T2) ≤ k.

The correctness proof of the MAAF algorithm obtained from our MAF algorithm
using the above modifications is identical to the correctness proof of the MAF
algorithm; however, we use Lemma 4 below instead of Lemma 2 to show that
we cut the right edges in Case 6.2′. To bound the running time of the algorithm,
we observe that the recurrence for the number of recursive calls in Case 6.2′ is
I(k) = 1 + 2I(k − 1), which is still dominated by the recurrence for Case 6.3.
Using that the running time of the MAAF procedure is T (n, k) = O(2kn log n),
substitution yields the claimed bound. Again, a proof of this lemma can be found
in [17].

Lemma 4 (Case 6.2′). If a ∼F2 c and the path from a to c in F2 has only
one pendant node b, there exists an edge set E of size ẽ(T1, T2, F2) and such that
F2 ÷ E is an AAF of T1 and T2 and either eb ∈ E or ec ∈ E.

As in [18], Theorems 1 and 2 along with known kernelizations [8, 9] imply the
following corollary.

Corollary 1. For two rooted X-trees T1 and T2 and a parameter k, it takes
O(2.42kk+n3) time to decide whether e(T1, T2, T2) ≤ k and O(2.42kk log k+n3)
time to decide whether ẽ(T1, T2, T2) ≤ k.

4 Evaluation of SPR Distance Algorithms

In this section, we present an experimental evaluation of our MAF (SPR dis-
tance) algorithm that compares the algorithm’s performance to that of two com-
petitors using the protein tree data set examined in [2, 3] and using synthetic
trees. We also investigate the impact of the improved branching rules in Step 6
on the performance of the algorithm. Our competitors were sprdist [20] and
treeSAT [4], which reduce the problem of computing SPR distances to integer
linear programming and satisfiability testing, respectively. We do not provide a
comparison with EEEP [3] because sprdist outperformed it and other heuristics
at finding the exact SPR distance between binary rooted phylogenies [20].
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For sprdist and treeSAT, we used publicly available implementations of
these algorithms. For our own algorithm, we developed an implementation in
C++ that allowed us to individually turn the optimized branching rules in Step 6
on and off. When the optimized branching rule in one of the cases is turned off,
the algorithm uses the 3-way branching of [18] described on page 145 in this
case. In particular, with all optimizations off, the algorithm is the one of [18].
Source code for our algorithm is available at [19].

We also implemented the linear-time 3-approximation algorithm for MAF
of [18] and used it to implement two additional optimizations of our FPT al-
gorithm. The FPT algorithm searches for the correct value of e(T1, T2, T2) by
starting with a lower bound k of e(T1, T2, T2) and incrementing k until it deter-
mines that k = e(T1, T2, T2). If the 3-approximation algorithm returns a value
of k′, then e(T1, T2, T2) ≥ �k′/3�; by using this as the starting value of our
search, we can skip early iterations of the algorithm and thereby obtain a small
improvement in the running time. The same approach can be used in a branch-
and-bound strategy that prunes unsuccessful branches from the search tree. In
particular, we extended Step 1 of the FPT algorithm as follows:

1′. (Failure) If k < 0, return “no”. Otherwise compute a 3-approximation k′ of
e(T1, T2, F2). If k′ > 3k, then e(T1, T2, F2) > k; return “no” in this case.

We allowed this optimization of Step 1 to be turned on or off in our algorithm to
investigate its effect on the running time, but our implementation always uses
the 3-approximation algorithm to provide a starting guess of e(T1, T2, T2).

4.1 Data Sets

The protein tree data set of [2, 3] contains 5689 protein trees with 10 to 144
leaves (each corresponding to a different microbial genome); each of these was
compared in turn to a rooted reference tree covering all 144 genomes. The protein
trees were unrooted, so we selected a rooting for each tree that gave the minimum
SPR distance according to the 3-approximation algorithm of [18].

The synthetic tree pairs were created by first generating a random tree T1
and then transforming it into a second tree T2 using a known number of random
SPR operations. Note that the SPR distance may be lower because the sequence
of SPR operations we generated may not be the shortest such sequence. For n
taxa, the label set of T1 was represented using integers 1 through n, and T1
was generated by splitting the interval [1, n] into two sub-intervals uniformly
at random, recursively generating two trees with these two intervals as label
sets and then adding a root to merge these trees. Random SPR operations were
generated by choosing an edge xpx to cut uniformly at random and then choosing
the new parent p′x of x uniformly at random from among all valid locations
of p′x. We constructed pairs of 100-leaf trees with 1–20 SPR operations and with
25, 30, . . . , 50 SPR operations. We also constructed pairs of 1000-leaf trees with
1–20 SPR operations and with 25, 30, . . . , 100 SPR operations. For each tree size
and number of SPR operations we generated ten pairs of trees.
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4.2 Results

Our experiments were performed on a 3.16Ghz Xeon system with 4GB of RAM
and running CentOS 2.6 Linux in a Rocks 5.1 cluster. Our code was compiled
using gcc 4.4.3 and optimization -O2. Each run of an algorithm was limited to
5 hours of running time. If it did not produce an answer in this time limit,
we say the algorithm did not solve the given input instance in the following
discussion. We refer to the FPT algorithm with all optimizations off as fpt, and
with only the branch-and-bound optimization turned on as bb. The activation
of the improved branching rules in Step 6 is indicated using suffixes sc (Case 6.1:
separate components), cob (Case 6.2: cut only b), and cab (Case 6.3: cut a or b).
Thus, the algorithm with all optimizations on is labelled bb cob cab sc.

Number of instances solved. Figure 4 shows the number of solved protein
tree instances for the given ranges of tree sizes. Our experiments showed that the
average SPR distance for trees of the same size ranged between one sixth and one
third of the number of leaves. All of the algorithms solved all instances with 20 or
fewer leaves and only treeSAT did not solve all instances with 40 or fewer leaves.
sprdist solved most of the instances with 41-50 leaves, and half of the instances
with 51-100 leaves, but very few of the larger instances. fpt performed similarly
to sprdist but solved all of the instances with 41-50 leaves and more of the larger
instances than sprdist. bb improved upon this somewhat. However, adding our
new branching rules improved the results greatly. In particular, bb cob cab sc
solved all of the instances in this data set.
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defined in the text.

Figure 5 shows the number of protein trees found with a given SPR distance
from the reference tree. The “number solved” axis is a log3-scale to allow easy
comparison of the trees with small and large SPR distances, as the majority
had small SPR distances. treeSAT was unable to solve any instances with SPR
distance greater than 8. sprdist and fpt solved instances with a distance as large
as 20. Since bb cob cab sc solved all the instances in this data set, including
instances with an SPR distance of 46, we were able to verify that sprdist and
fpt solved all instances with SPR distance up to 15 and 18, respectively.
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Running time. Figure 6 shows the mean running time of the algorithms on
solved protein tree instances with the given SPR distance. The time axis here
and in the following figures is a log3-scale to highlight the exponential running
time of the algorithms and to allow easy comparison of the runs. The curves
for some of the algorithms ‘dip” for higher distance values, which is a result of
taking the average running time only over solved instances. The slope of the
curve for fpt is close to 1, indicating that the algorithm is close to its worst-
case running time of O(3kn). bb shows a marked improvement over fpt; however,
the improvement achieved using the new branching rules is much more dramatic.
treeSAT was much slower than all the other algorithms and although sprdist
solved a similar number of instances as fpt, as shown in Figure 5, it took much
longer to solve them on average. The two instances that sprdist solved with an
SPR distance of 19 and 20 are an exception to this, but that is likely an artifact
of considering only solved instances. bb cob cab sc solved all input instances
with SPR distance of up to 20 in 5.5 seconds or less, and solved instances with
SPR distance up to 46 in well under 2 hours, while none of the previous methods
was able to solve instances with SPR distance greater than 20 in under 5 hours.

Figure 7 shows the mean running time of the fixed-parameter algorithms
on the random data set. As expected, fpt took 10 times longer on average
for the 1000-leaf trees as for the 100-leaf trees, given the same SPR distance.
fpt cob cab sc did not show this difference, which suggests that the improved
branching rules have a more pronounced impact on larger trees. bb cob cab sc
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was able to solve instances with SPR distances up to 99 on the 1000-leaf trees,
while a distance of 42 was the limit on 100-leaf trees. We believe that, since the
proportion of SPR operations to the number of leaves is smaller for the bigger
trees, the randomly generated SPR operations are more likely to operate on in-
dependent subtrees, which brings the approximation ratio of the approximation
algorithm closer to its worst-case bound of 3 on these inputs. In our case, this
provides better lower bounds on the true SPR distance and, thus, allows us to
prune more branches in the search tree than is the case for the smaller trees.

Figure 8 shows the mean running time of the fixed-parameter algorithms with-
out branch-and-bound on the protein tree data set and using only some of the
improved branching rules. Case 6.1, Case 6.3, and Case 6.2 provide small, mod-
erate and large improvements, respectively. Using all of the cases gives another
large improvement, since each occurs under different conditions.

5 Conclusions

Our theoretical results improve on previous work, and our experiments confirm
that these improvements have a tremendous impact in practice. Our algorithm
efficiently solves problems with up to 144 leaves and an SPR distance of 20 in
less than a second on average; for distance values up to 46, the running time
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was less than two hours. Our branch-and-bound approach showed a marked
improvement on larger trees, allowing us to compute distance values up to 42
on 100-leaf synthetic trees and 99 on 1000-leaf synthetic trees.

We expect experimental results using an implementation of the hybridiza-
tion algorithm would be similar, as only Case 6.2 is more costly than in the
SPR algorithm. Thus, our hybridization algorithm should also be able to solve
instances beyond the reach of current hybridization approaches. Producing an
implementation of the hybridization algorithm is future work. Other open prob-
lems include extending our results to multifurcating trees or the related problem
of finding maximum agreement forests of multiple trees.
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Abstract. In this paper we consider a sorting problem from railway
optimization called train classification, which is NP-hard in general. We
introduce two new variants of an earlier developed 2-approximation as
well as a new heuristic for finding feasible classification schedules, i.e.
solutions for the train classification problem. We evaluate the four al-
gorithms experimentally using various synthetic and real-world traffic
instances and further compare them to an exact IP approach. It turns
out that the heuristic matches up to the basic approximation, but both
are clearly outperformed by our heuristically improved 2-approximations.
Finally, with an average objective value of only 5.4 % above optimal, the
best algorithm gets close to the real-world schedules of the IP approach,
so we obtain very satisfactory practical schedules extremely quickly.

Keywords: railway optimization, sorting, approximation algorithms,
heuristics, experimental evaluation.

1 Introduction

In everyday railway operation, freight trains are split up into their cars and
reassembled to build new trains, a procedure that is called train classification
and presents the optimization problem dealt with in this paper. The classifica-
tion process takes place in a special installation of tracks and switches called
classification yard. Inbound trains arrive on a hump track where their cars are
decoupled and pushed over a hump by a shunting engine. The cars then ac-
celerate by gravity and roll through a tree of switches by which every car can
be guided separately to some classification track ; we call this process a roll-in
operation. In a pull-out operation an engine pulls all the cars of some classifica-
tion track back over the hump to perform another roll-in. A pair of a pull-out
and subsequent roll-in is called a (sorting) step, an initial roll-in followed by a
sequence of h sorting steps a classification schedule, and h its length.

There are � inbound trains which, concatenated in the order they arrive at the
yard, form the inbound train sequence. Further, there are m order specifications
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for outbound trains. We search a feasible classification schedule, i.e. a schedule
which, if applied to the inbound sequence, yields the correctly ordered outbound
trains, each on a separate classification track. The number of steps h essentially
determines the time to perform the schedule. This is the main objective, while
the total number w of cars rolled in presents a secondary objective.
Related Work. The classification method above is known as multistage sort-
ing and is applied to accomplish tight sorting requirements for outbound trains.
In the field of railway engineering, Krell [10] analyzes different multistage meth-
ods with regard to several objectives and resource requirements without proving
optimality. There are earlier appearances of some of these methods with Flan-
dorffer [5] and Pentinga [14], while Siddiqee [15] and Daganzo et al. [2] give more
recent descriptions. For the practical case of classification tracks of bounded
length, minimizing the number of sorting steps is shown to be an NP-hard prob-
lem in [8] by introducing an efficient encoding of classification schedules. This
encoding is applied in [9] to obtain a 2-approximation for the same setting and in
[12] for an exact integer programming approach. A related algorithmic multistage
sorting problem is considered by Dahlhaus et al. [3], who also give a systematic
framework for order requirements of outbound trains. These requirements are
summarized by Hansmann et al. in [7], which also contains a wide framework
of multistage sorting schemes and the so-called single-stage method, which is a
related method suitable for simpler sorting specifications. Further overviews of
train classification can be found in [4] and recently [6].
Our Contribution. For the NP-hard optimization problem of train classifi-
cation with limited track capacities, we introduce two advanced variants of a
previous 2-approximation and a new heuristic algorithm (Sect. 3), and we fur-
ther implement the three new methods as well as the original approximation.
Using a large set of realistic instances from railway practice as well as more com-
plex synthetically derived problems (Sect. 4), we extensively evaluate the four
algorithms including a comparison to a previous exact IP approach (Sect. 5).
Analyzing the different algorithms and results yields interesting insights that
also indicate directions for future research (Sect. 6).

2 Encoding Classification Schedules

Terminology and Notation. In addition to the concepts of Sect. 1, we use
the notation of [8]: every car τ is represented by a positive integer τ ∈ IN, a train
is defined as an ordered sequence T = (τ1, . . . , τk) of cars τi, i = 1, . . . , k, and
the number of cars k of T is called the length of T . The total volume of cars is
denoted by n, and we assume the inbound train sequence to be a permutation
of (1, . . . , n). The number of outbound trains is denoted by m and the length
of the ith outbound train by ni, i = 1, . . . , m, so

∑m
i=1 ni = n. W.l.o.g. we

assume the specification of the first outbound train is (1, . . . , n1), the second
(n1+1, . . . , n1+n2), etc. (There is no implied order of the outbound trains as
explained in the next paragraph.) A pair of cars τ , τ+1 of the same outbound
train is called a break if the cars occur in reversed order in the inbound sequence.
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During the classification process the cars for different outbound trains are
sorted simultaneously on the same set of classification tracks, called the sorting
tracks. The number of available sorting tracks is unbounded, and the number ac-
tually used corresponds to the number of pull-out operations, i.e. to the schedule
length. Each sorting track is pulled out once; we will refer to the track pulled
out in the kth step by θk, k = 0, . . . , h − 1. The maximum number C of cars
that fit on any sorting track is called the capacity of the tracks. The outbound
trains are finally formed on a separate track each, called destination tracks.

Our optimization problem is now defined as follows: Given an inbound train
sequence of n cars and m order specifications of outbound trains, find a feasible
classification schedule of minimum length.

Representation. Any classification schedule of length h can be encoded by
an assignment of cars to bitstrings of length h: the course of the jth car is
represented by bj = bj

h−1 . . . bj
0 with bj

k = 1 iff the car visits track θk pulled in
step k, k = 0 . . . h−1. If this car is pulled in the kth pull-out, it is rolled in
to θ� with � = min{k < i ≤ h−1 | bj

i =1}. If bj
i = 0 for all i > k, it is sent to the

destination track of its outbound train. The bitstrings b1, . . . , bn form the rows
of a matrix B of width h, and b0, . . . , bh−1 denote its columns from right to left.

The total number of cars w(B) :=
∑h−1

i=0
∑n

j=1 bj
i rolled in is called the weight

of B, the number �(bi)=
∑n

j=1 bj
i rolled in in the ith step the load of bi; further,

if bi = 0 for all i = h′, . . . , h−1 and bh′−1 �= 0, then h′ is called the actual length
of B, i.e., removing all leading zero-columns gives the actual length.

The encoding can also be applied to construct feasible schedules as formalized
in Thrm. 1 below. (Note that the formulation differs from that of [9].) Equa-
tion (1) will be referred to by the order constraint and applies to all feasible
schedules independently of the respective yard size or layout.

Theorem 1 ([9], Thrm. 1). For a classification problem of n cars, let F ⊆ [n]
be the set of cars that are the first of their resp. outgoing trains, and let rev(i, j)
be an indicator function with rev(i, j)=1 iff the ith and jth car are in reversed
order in the inbound sequence. Then, a schedule B of length h is feasible iff:∑

0≤i<h

2ibj
i ≥ rev(j, j−1) +

∑
0≤i<h

2ibj−1
i for all j ∈ {1, . . . , n} \ F . (1)

Note that
∑

0≤i<h 2ibj
i is the integer represented by the bitstring bj . Basically,

if two consecutive cars j, j+1 of the same outbound train arrive at the yard in
reversed order, j must get a smaller bitstring than j+1. (See [9] for an example.)

3 Algorithms

3.1 Optimal Classification Schedules

As mentioned before, the train classification problem with limited track capac-
ities is NP-hard. To assess the algorithms of Sect. 3.2–3.4, we tried to derive
optimal schedules in Sect. 5 with the integer programming approach of [12].
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In the basic form of this IP model, the encoding of a schedule B is represented
by binary variables bj

i , j = 1, . . . , n, i = 0, . . . , h − 1, for the jth car in the ith
sorting step as explained in Sect. 2. Recall that the capacity of a track is denoted
by C. The IP constraints are given by (1) and the following equation for the
restricted capacity of the classification tracks, called the capacity constraint :∑

1≤j≤n

bj
i ≤ C for all i ∈ {0, . . . , h−1} . (2)

The model’s objective minimizes the weight w(B) of B for a fixed length h, which
presents a secondary objective as mentioned in Sect. 1. To minimize the primary
objective h, a short sequence of integer programs is solved with increasing values
for h, corresponding to the approach in [12] further explained in Sect. 4.

3.2 Basic 2-Approximation

A polynomial time 2-approximation was introduced in [9] as summarized in this
section. Consider the following constraint on the number of cars rolled in for a
schedule B of length h, which we will also call the weight constraint :

w(B) ≤ Ch . (3)

Every schedule satisfying (2) satisfies (3) as well, which is used in the following
algorithm to achieve the 2-approximation in two stages. First, a feasible schedule
B̃ satisfying (3) of minimum length h̃ is derived by dynamic programming ([9],
Lemma 6): for increasing values of h′ = 0, 1, 2, . . ., the algorithm iteratively
estimates the schedule B′ that has minimum weight among all schedules of this
length h′ until the first such schedule meets (3). In case of m outbound trains,
there is one dynamic programming table for every train, and these tables are
computed independently of each other while h′ is increased simultaneously for
all tables. Each iteration results in m schedules B′

1, . . . , B
′
m of the same length

h′, for which w(B′) ≤ h′C is checked for the “vertical” concatenation B′. We
will call a schedule produced by this 1st stage an intermediate schedule.

In the 2nd stage, every column of B̃ violating (2) is distributed over several
newly introduced columns meeting (2) without loosing feasibility ([9], Thrm. 8).
For every column of B̃, at most one column with load � < C is produced, and
the result has at most h̃ columns with load � = C by (3). Hence, the resulting
length h satisfies h ≤ 2h̃ ≤ 2h∗, where h∗ is the length of an optimal schedule.

3.3 Improved 2-Approximations

In the basic approximation algorithm base just described, there are m partial
schedules B̃1, . . . , B̃m of length h̃ at the end of the 1st stage, one for each out-
bound train. It may happen that the dynamic programming table of the jth train
found a feasible schedule B′

j with weight w(B′
j) = w(B̃j) in an earlier iteration

corresponding to some h′ < h̃. If (3) is not satisfied yet at this point, one reason
for which may be high weights of other partial schedules, the basic algorithm
continues with appending a leading zero-column bi−1 =0 to B′

j in all subsequent
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Fig. 1. Three different ways to combine the partial schedules to an intermediate sched-
ules at the end of the 1st stage of the approximation algorithms

steps i = h′+1, . . . , h̃, so that the actual length of B̃j is h′ < h̃. Besides, the
algorithm is designed in a way not to yield any zero-columns which are not lead-
ing. In this way, schedules derived by base tend to have many columns of low
index violating (2), while the load remains far behind C for higher indices.

The improved algorithms shift and ins are based on the following theorem:

Theorem 2. For any feasible schedule B = bh−1 . . . b0 of length h, inserting a
zero-column bk = 0 at any position k ∈ {0, . . . , h} of B yields a feasible schedule
of length h+1.

Consequently, inserting h̃−h′
j zero-columns between any columns of B′

j yields a
feasible (partial) schedule of length h̃. We now make use of this fact to obtain
two new variants of the basic approximation algorithm, called shift and ins,
that effectively reduce the scale and number of capacity violations. Both variants
apply the dynamic program like base but without adding leading zero-columns.
Instead, two heuristics are applied that distribute the columns of partial sched-
ules with a small actual length in more sophisticated ways, which we describe in
the following. The 2nd stage is the same again for all base, shift, and ins.

After the 1st stage, shift and ins continue with sorting the partial schedules
in decreasing order of their actual lengths. Let B′

1, . . . , B
′
m be the ordered partial

schedules with actual length values h′
1 ≥ . . . ≥ h′

m. Both variants start with an
empty schedule B̄0 of length h̃ and successively append the partial schedules to
obtain concatenations B̄j , j = 1, . . . , m, as shown in Fig. 1, where B̄m finally
presents the intermediate schedule B̃ satisfying (3) passed to the 2nd stage.

In the jth step of shift, j = 1, . . . , m, let Δj := h̃−h′
j. According to Thrm. 2,

for any k = 0, . . . , Δj , we can add k consecutive trailing zero-columns to B′
j and

Δj −k consecutive leading zero-columns to obtain a partial schedule of length h̃,
which can be appended “vertically” to B̄j−1 to obtain B̄j as shown in Fig. 1b.
Now, shift obtains B̄j by choosing the k ∈ {0, . . . , Δj} that minimizes the

value of
∑h̃−1

i=0 (C − (�(bi) mod C)), where bi is the ith column after appending
B′

j to B̄j−1. This objective is motivated as follows: if �(bi) > C for some col-
umn i, an additional column will certainly be introduced in the 2nd stage as
described above; hence, we try to further fill this column just below the value
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of 2C, which triggers no further columns in the 2nd stage. The number of “1”s
that can be added to bi until the next multiple of C is reached is given by
(C − (�(bi) mod C)), which explains the objective. In contrast, base implicitly
puts k = 0 in every step which yields the picture shown in Fig. 1a.

In the jth step of ins, j = 1, . . . , m, we determine (�(bi) mod C) for all
columns bi of B̄j−1 and append the columns of B′

j to the h′
j columns of B̃j−1

that have the smallest values of (�(bi) mod C), where here bi is the ith column of
B̄j−1. Then, appending zero-columns to the remaining h̃ − h′

j columns of B̄j−1

following Thrm. 2 yields B̄j for the next iteration as illustrated in Fig. 1c. This
choice of the h′

j columns is motivated similarly to the objective of shift.

3.4 Heuristic Schedules

In order to achieve their approximation factors, the algorithms just described all
calculate an intermediate schedule that is optimal w.r.t. (3). In contrast, our new
heuristic approach heur first calculates the shortest feasible schedule—without
regard to (2) or (3)—using the approach from [8]: if βk, k = 1, . . . , m, denotes
the number of breaks in the kth outbound train of a classification instance, we
assign the β+1 bitstrings representing the numbers 0, . . . , β to the cars such that
bj <bj+1 if j and j+1 form a break and bj =bj+1 otherwise. In this way, we obtain
m partial schedules of respective actual length h′

k = �log2 βk�, k = 1, . . . , m,
which are concatenated in the same way as for base. This yields an intermediate
schedule B̃ of length h̃ = maxk h′

k not necessarily satisfying (3).
Now, heur applies the 2nd stage of the approximation algorithm to B̃ to obtain

a schedule satisfying (2). This approach does not guarantee the approximation
factor but has a very simple implementation; with regard to the experimental
evaluation in Sect. 5, the more sophisticated approximation algorithms are thus
only useful if they perform significantly better than heur.

4 Experimental Setup

Test Instances. We extracted five real-world instances corresponding to five
days from the complete traffic data of a whole week in 2005 for the Swiss classifi-
cation yard Lausanne Triage. The instances have a total volume of cars ranging
from 310 to 486, between 24 and 27 outbound trains, and numbers of breaks be-
tween 24 and 28. This yard has a track capacity of about C = 40, and we chose
to combine our five instances with similar track capacities C ∈ {30, . . . , 50},
obtaining 105 classification problems in total.

To test the approaches for more complex sorting problems, we used the syn-
thetic instances of [13]: they have volumes of n ∈ {200, 400, 800}, outbound
train lengths uniformly drawn from the intervals [2 . . . 20], [2 . . . 40], or [2 . . . 60],
and numbers of breaks geometrically distributed with three different parameter
values; with four instances for every combination of parameters, there are 108 in-
stances in total. For the IP approach of the following section, we combined every
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such problem with C ∈ {10, 20, . . . , 60}, yielding 648 synthetic classification
problems. The quicker computation enabled us to evaluate the algorithmic ap-
proaches for a bigger set of problems: we combined the synthetic instances with
C ∈ {10, 20, 30, . . . , 10� n

30�}, obtaining 1’620 synthetic instances.
Schedule Computation. The IP model of Sect. 3.1 contains h as a parameter
and searches a schedule of minimum weight for fixed h. To minimize h, we solve
a sequence of IP models starting from h = 1 as mentioned before. We bound the
number of iterations by h = 8 and the time for each iteration by one hour.

Let now B be a computed feasible schedule of length h. If B has been proven
optimal for the IP model of the hth iteration and the same problem has been
shown infeasible for h−1, then B is called weight-optimal. If the problem is in-
feasible for h−1 but B could not be proven optimal, B is called length-optimal.
As a third possibility, the IP solver may find a feasible solution for some value
h but not h−1 within the time limit. Finally, no solution is found if the eighth
iteration ends with a timeout or infeasibility. We found weight-optimal schedules
for all real-world problems, and the longest such schedule had h = 8. All IP com-
putations presented in Sect. 5 were performed with ILOG Studio 3.7 featuring
CPLEX 9.0 on an Intel Xeon CPU with 2.80 GHz and 2 GB main memory.

For every classification problem we computed a schedule with each base,
shift, ins, and heur, resp., which we compare to each other and—wherever
possible—to the IP schedules in Sect. 5. In the evaluation we will refer to the
shortest of the schedules returned by base, shift, and ins for a problem by
min, which can be regarded as another variant. All approximations and heur

were implemented in C++, compiled with the GNU compiler g++ 4.1.2, and
run on an Intel Pentium IV CPU with 2.80 GHz and 1.5 GB RAM.
Measuring Objectives. The lengths of the approximate and heuristic sched-
ules apparently present the most important performance measure. In particular,
we want to know how far from optimal these schedules are, and the notion of rel-
ative excess relates the length of a schedule to the optimal length: let B be a fea-
sible schedule of length h and h∗ the length of a shortest feasible schedule, both
satisfying (2); then, the relative excess η(B) of B is defined as η(B) := h−h∗

h∗ .
Clearly, η(B∗) = 0 for every optimal schedule B∗.

In order to assess derived schedules for problems the optimal solution of which
is unknown, we establish an upper bound on the relative excess for approximate
schedules: if B̃ is optimal w.r.t. (3), h̃ denotes its length, and B is feasible and
satisfies (2), then the fraction �(B) := h−h̃

h̃
is called the relative extension of B.

Since h∗ ≥ h̃ and h̃ ≤ h, we obtain 0 ≤ η(B) ≤ �(B̃), so the extension of B̃
bounds the excess of B. Indeed, the relative extension yields a sufficient (yet not
necessary) optimality condition: if �(B̃) = 0, then η(B) = 0, so B is optimal.

5 Experimental Results and Discussion

Length Values. As mentioned before, the IP approach found weight-optimal
schedules for all real-world instances. Of all algorithms tested, base performed
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Fig. 2. Length distributions of the real-world schedules produced by the different ap-
proximation algorithms, heur, and IP; mean values in parentheses

worst with an average length of 6.09 for the real-world instances and was even
beaten by heur (Fig. 2). However, the improved approximations shift and ins

performed considerably better than heur. Schedules produced by ins were on
average 13.1 % longer than the optimum, and those produced by shift even only
5.4 %. Of the 105 classification problems, shift yielded the best result of the
three approximation algorithms in 102 cases, so shift and min basically yield
the same picture in Fig. 2. The approximate schedule of minimal length, i.e. min,
was on average only 4.8 % longer than the optimal IP schedule. Furthermore,
only twelve schedules of base were shorter than the corresponding ones of ins,
and shift was beaten by base in one case only.

These numbers already show that base is not on par even with the simple
heur, which emphasizes the demand for enhancement. Both shift and ins

indeed improved the basic algorithm, and the considerably shorter schedules
show that the ideas behind the two improvements were actually fruitful.

Comparing heur to the other approaches yields a similar result for real-world
instances (Tab. 1, upper block): heur got schedules of minimum length in 26
cases and shorter schedules than base for 50 problems. But, heur beat shift

and ins only three and seven times, resp., and min was beaten in only one case.
Surprisingly, the seemingly more sophisticated ins did not surpass shift

(Fig. 2 and Tab. 1). Thus, the strength of shift, i.e. taking into account resulting
column loads for the choices when merging the partial schedules, outpasses the
strength of ins, i.e. the higher flexibility in distributing the columns of partial
schedules to different positions in the intermediate schedule.

Table 1. Number of problems where heur yielded a shorter, equal, or higher length
than the other approaches for real-world (upper block) and synthetic problems (lower)

heur IP base shift ins min

shorter 0 (0.0 %) 50 (47.6 %) 3 (2.9 %) 7 (6.7 %) 1 (1.0 %)
same 26 (24.8 %) 41 (39.0 %) 39 (37.1 %) 55 (52.4 %) 40 (38.1 %)
longer 79 (75.2 %) 14 (13.3 %) 63 (60.0 %) 43 (41.0 %) 64 (61.0 %)
shorter 130 (8.0 %) 8 (0.5 %) 60 (3.7 %) 1 (0.1 %)
same 314 (19.4 %) 118 (7.3 %) 128 (7.9 %) 111 (6.9 %)
longer 1’176 (72.6 %) 1’494 (92.2 %) 1’432 (88.4 %) 1’508 (93.1 %)
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Since a feasible schedule for a specific instance satisfying (2) for some capacity
C also satisfies it for every C′ > C, the length h of schedules should be non-
increasing for growing C. This is mostly the case for the synthetic instances, yet
not always: where the lines plotted in Fig. 3 increase, it would be beneficial to
reuse a schedule of lower capacity instead of producing a new one.

In the case of the synthetic classification instances, the IP approach found
feasible schedules for 245 of the 648 classification problems; 165 of them were
weight-optimal, 49 length-optimal. The majority of feasible schedules, 153, was
found for smaller problems (n = 200). Because of the limited number of itera-
tions and the time limit (Sect. 4), we obtained no IP solutions for a big number
of problems. Hence a direct comparison of length values of IP and approximate
schedules would not be meaningful, and we compare the algorithms for the syn-
thetic instances in terms of their relative extension in the following section.

Extension Values. With a value of 0.28, the average extension of base sched-
ules for the synthetic problems was approximately the same as for the real-world
schedules. In contrast, heur performed markedly worse than base on the syn-
thetic instances (Fig. 4). The extensions of schedules produced by shift and
ins were half as large as for base, and min still performed slightly better. A
similar picture is given by Tab. 1 for the synthetic problems: ins was beaten by
heur in 3.7 % of the cases, shift in 0.5 %, and min in a single case only. All in
all, shift and ins improved on base significantly for the synthetic problems as
well, and heur was almost completely ruled out by min.

As explained in Sect. 4, if a schedule B has a relative extension �(B) = 0,
it has optimal length w.r.t. (2). Of the three approximation algorithms and the
heuristic, shift produced zero-extension schedules the most frequently, followed
by ins, both for the real-world and the synthetic classification problems (Tab. 2).
min found a zero-extension schedule for more than three quarters of all real-world
problems, whereas this was only the case for half of the synthetic problems. The
latter value increased when restricting the analysis to classification problems of
higher capacity, e.g. to 70 % for problems with C ≥ 100.

For the best approximation algorithm, shift, only 2.4 % of the schedules have
a relative extension of � > 0.5 (Fig. 5); they were all generated from a relatively
short intermediate schedule of length h̃ ≤ 20. On the other hand, all the 735
schedules with � = 0 are rather short (h ≤ 14) too.
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Fig. 4. Distributions of extension values for the schedules of the synthetic problems
generated by the different approximation algorithms. Mean values in parentheses.

Table 2. Numbers of provably optimal schedules (� = 0) for the different algorithms

#prob. base shift ins min heur

real-world 105 6 (5.7 %) 80 (76.2 %) 53 (50.5 %) 81 (77.1 %) 26 (24.8 %)
synthetic 1’620 333 (20.6 %) 735 (45.4 %) 713 (44.0 %) 810 (50.0 %) 79 (4.9 %)
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Fig. 5. Relative extension of schedules
produced by shift as a function of
the length of the intermediate sched-
ule h̃. ×: � = 0, •: � > 0. Intermediate
schedules of length h̃ > 40 were pro-
duced only for classification problems
with (n, C) = (800, 10). The plot looks
similar for the other variants of the
2-approximation.

Intermediate Schedule Lengths. With only one exception, for all real-world
and synthetic problems for which we found length- or weight-optimal IP solu-
tions, the length of the intermediate schedule of the approximation equalled the
length of the corresponding IP schedule. Thus, the relative excess length cor-
responds to the relative extension for these problems; in particular, this means
that the numbers of zero-extension real-world schedules in Tab. 2 are the exact
numbers of optimal schedules found by the different algorithms. As mentioned in
Sect. 3.2, an optimal schedule satisfying (2) is in general longer than the optimal
one for (3), so the above result was rather unexpected.

The DP algorithm for the intermediate schedule assigns the same bitstring to
consecutive cars of the same train unless they form a break ([9]). Hence, if the
intermediate schedule violates (2) but not (3) for its length h, it usually has long
sequences of consecutive cars without breaks. The IP solver, however, may very
well assign different bistrings to two consecutive cars that do not form a break.
Compared to the intermediate schedule, which uses between 2h−1+1 and 2h dif-
ferent bitstrings, the required number of different bitstrings thus increases. But,
the IP schedule length will not increase unless this number of needed bitstrings
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exceeds 2h. All in all, the IP approach makes up for the stronger constraint (2)
by more flexibility to assign the 2h bitstrings available at length h.
Running Times. For the 648 real-world problems, the IP solver calculated all
schedules in 103 seconds in total. This covers the 105 successful iterations but
not the 392 attempts proven infeasible. The approximation algorithms and heur

needed less than one second each for the complete set of real-world problems.
For the whole set of synthetic instances, the IP approach required more than

98 hours in total and did not find a feasible solution for 403 problems (cf. Sect. 4).
The three approximation algorithms and heur each needed less than one minute
to compute the complete set of 1’620 synthetic schedules.

6 Conclusion

We developed, implemented, and evaluated three new algorithms for the railway
optimization problem of train classification, including a thorough comparison
with a previous algorithm and an exact integer program. All in all, the results
of Sect. 5 show that all three approximation variants perform much better in
practice than their approximation ratio suggests. Even the basic algorithm base

from [9] quickly yielded a feasible schedule when the IP approach needed a big
number of iterations. However, the quality of base is not acceptable with an ex-
cess of 30.2 % for the real-world instances, and applying this involved algorithm
is not justified since our new, much simpler heuristic heur rarely yielded longer
schedules. This motivates refining base, and our heuristic improvements in 3.3
turned out to be very fruitful: as the best algorithm, shift yielded an average
excess of only 5.4 % over the optimum for the real-world instances, which was
even better than the 13.1 % of the seemingly more sophisticated ins. Moreover,
analyzing the approximation technique in Sect. 4 yielded an interesting opti-
mality condition inherent in all three approximations, which applied to 76.2 %
of the real-world problems for shift. Summarizing, our new approximation al-
gorithms present a fast approach to deriving capacity-restricted classification
schedules with a highly competitive solution quality.
Future Work. First of all, the tests with the synthetic instances suggest an
improvement also for higher volumes of traffic, so it would be interesting to
verify the results of Sect. 5 for larger real-world instances. Second, an exact
algorithm might improve over the approximation through greater freedom to
assign bitstrings to cars and may still yield acceptable running times for small
real-world instances; an improvement based on same idea might also be achieved
by a heuristic obtained by modifying the first phase of the approximation of
Sect. 3.2. We used the IP approach of [12] to asses the algorithms of Sect. 3.2, but
the IP approach may also be improved by the approximation: for an intermediate
schedule of length h̃ and weight w, the value of w is a sophisticated lower bound
for the IP objective of a solution attempt corresponding to h̃. Since the IP solver
usually found solutions of length h̃ for the basic IP model (Sect. 5), this lower
bound may significantly accelerate finding weight-optimal IP solutions. Finally,
as mentioned in [12], the approaches presented in Sect. 3 are based on complete
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knowledge of the order of the inbound car sequence. As trains may be delayed,
the actual order may differ from the expected order and invalidate a computed
schedule, which requires algorithms that are robust against realistic scenarios
of delay [11]. For the special case of unrestricted track capacities, a first such
attempt was made in [1].

Acknowledgments. Many thanks to S. Leber (SBB Infrastruktur) for the
valuable traffic data and to P. Widmayer for his support at several project stages.
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Abstract. Time-dependent Contraction Hierarchies provide fast and
exact route planning for time-dependent large scale road networks but
need lots of space. We solve this problem by the careful use of approxi-
mations of piecewise linear functions. This way we need about an order
of magnitude less space while preserving exactness and accepting only a
little slow down. Moreover, we use these approximations to compute an
exact travel time profile for an entire day very efficiently. In a German
road network, e.g., we compute exact time-dependent routes in less than
2ms. Exact travel time profiles need about 33ms and about 3 ms suffice
for an inexact travel time profile that is just 1% away from the exact
result. In particular, time-dependent routing and travel time profiles are
now within easy reach of web servers with massive request traffic.

1 Introduction

In recent years, there has been considerable work on routing in road networks
(see [1] for an overview). For the special case of constant edge weights (usually
highly correlated with travel time) it is now possible to compute optimal paths
orders of magnitude faster than with Dijkstra’s algorithm. Such algorithms are
now in wide-spread use in server based route-planning systems. There, 10ms
query time are acceptable but decreasing this to 1ms is still desirable.

Recently, the more realistic time-dependent edge weights, which can model
congestions during rush-hour and similar effects, have gained considerable in-
terest. For example, time-dependent contraction hierarchies [2,3] can compute
optimal earliest arrival1 (EA) routes in a German road network with midweek-
traffic in about a millisecond. However, it requires a lot of space – too much for
current low cost servers. Moreover, in a time-dependent setting, we may not only
be interested in the best route for a given departure time, but also in a travel
time profile over a long interval of potential departure times, e.g., in order to
choose a good departure time. We are not aware of previous solutions that allow
such profile queries in time suitable for current systems. In this paper, we address
both issues: the reduction of space requirements and the efficient computation of
� Partially supported by DFG grant SA 933/5-1 and the ‘Concept for the Future’ of

KIT within the framework of the German Excellence Initiative.
1 For start, destination, and departure time compute the earliest possible arrival time.

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 166–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Time-Dependent Contraction Hierarchies and Approximation 167

travel time profiles. It turns out that the key to the solution of both problems is
to approximate the piecewise linear functions used to describe time-dependent
edge weights. Interestingly, this can be done without sacrificing exactness.

Our Contributions in More Detail. Time-dependent contraction hierarchies
(TCHs) make intense use of shortcut edges. The time-dependent edge weights
of the shortcuts contain lots of redundant information. This is where we attack.

We reduce the memory usage of TCHs greatly while accepting only a mod-
erate slowdown of the runtime for the EA problem. Although we (partly) use
approximated data, the result of our computation is still exact. The main idea
behind this is that shortcuts get approximated and non-shortcuts get exact time-
dependent edge weights. A bidirectional search in such an approximated TCH
(ATCH) then yields a corridor of shortcuts. After unpacking these shortcuts, we
can perform a time-dependent search in the unpacked corridor (Section 3.1).

TCHs can be used to compute exact travel time profiles in a straightforward
but expensive way. However, computing a corridor of shortcuts based on upper
and lower bounds first brings better runtimes. Still, the result of our computation
remains exact (Section 3.2). But exact computations of this kind are also possible
with the space saving ATCHs: We again compute a corridor of shortcuts based
on upper and lower bounds. Now, we unpack this corridor completely. However,
a profile search in the unpacked corridor is straightforward but slow. Performing
a corridor contraction instead yields very good performance (Section 3.3).

Our techniques provide an accuracy that may not be necessary at all in prac-
tice. Using solely approximated edge weights yields only a small error but saves
lots of memory and provides nearly full runtime performance for the EA prob-
lem. Moreover, accepting a small error when computing travel time profiles we
get a great speedup compared to the exact computation (Section 3.4).

We have implemented all of the above techniques and performed several ex-
periments to support our claims (see Section 4).

More Related Work. Contraction hierarchies [4] are the basis of TCHs.
Time-dependent route planning itself started with classical results (e.g. [5])
showing that a generalization of Dijkstra’s unidirectional algorithm works for
time-dependent networks and that a small modification yields a (fairly expen-
sive) means of profile search. Some TomTom car navigation systems allow a
kind of time-dependent routing. However, the method used is unpublished and
probably not able to guarantee optimal routes. A successful approach to fast EA
routing is to combine a simpler form of contraction with goal directed techniques
[6,7,8]. In particular, a combination with the arc flag technique (TD-SHARC [7])
yields good speedups, yet has problems when time-dependence is strong – then,
either preprocessing becomes prohibitive or loses so much precision that query
times get fairly high. However, for inexact EA queries it runs very fast (though
preprocessing takes fairly long) [7,8]. A combination with landmark A∗ (ALT)
works surprisingly well (TD-CALT [6]). We take this as an indication, that a
combination with ALT could further improve the performance of TCHs.
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2 Preliminaries

2.1 Time-Dependent Road Networks

Given a directed graph G = (V, E) representing a road network2. Each edge
(u, v) ∈ E has a function f : R → R≥0 assigned as edge weight. This function
f specifies the time f(τ) needed to reach v from u via edge (u, v) when starting
at departure time τ . Such edge weights are called travel time functions (TTFs).

In road networks we usually do not arrive earlier when we start later. This
is reflected by the fact, that all TTFs f fulfill the FIFO-property: ∀τ ′ > τ :
τ ′ + f(τ ′) ≥ τ + f(τ). In this work all TTFs are piecewise linear functions.3

With |f | we denote the complexity (i.e., the number of points) of f .
For TTFs we need the three operations: (1) Evaluation: Given a TTF f and a

departure time τ we want to compute f(τ). Using a bucket structure this runs in
constant average time. (2) Linking: Given two adjacent edges (u, v), (v, w) with
TTFs f, g we want to compute the TTF of the whole path 〈u →f v →g w〉.
This is the TTF g ∗ f : τ 
→ g(f(τ) + τ) + f(τ) (meaning g “after” f). It can
be computed in O(|f |+ |g|) time and |g ∗ f | ∈ O(|f |+ |g|) holds. Linking is an
associative operation, i.e., f ∗ (g ∗h) = (f ∗ g)∗h for TTFs f, g, h. (3) Minimum:
Given two parallel edges e, e′ from u to v with TTFs f, f ′, we want to merge
these edges into one while preserving all shortest paths. The resulting single edge
e′′ from u to v gets the TTF min(f, f ′) defined by τ 
→ min{f(τ), f ′(τ)}. It can
be computed in O(|f |+ |f ′|) time and |min(f, f ′)| ∈ O(|f |+ |f ′|) holds.

In a time-dependent road network, shortest paths depend on the departure
time. For fixed start and destination nodes s and t and different departure times
there might be different shortest paths with different arrival times. The minimal
travel times from s to t for all departure times τ also form a TTF which we
call the travel time profile (TTP) from s to t. Each TTF f implicitly defines
an arrival time function arrf : τ 
→ f(τ) + τ that yields the arrival time for a
given departure time. Analogously, the departure time function depf := (arrf)−1

yields the departure time for a given arrival time – provided that arrf is a one-
to-one mapping. Otherwise, depf(τ) is the set of possible departure times.

2.2 Algorithmic Ingredients

In addition to TCHs three known modifications of Dijkstra’s algorithm are
crucial for this work: Time-dependent Dijkstra and and profile search are well
known. Interval search has already been used in the precomputation of TCHs [2].

Time-Dependent Dijkstra. The time-dependent version of Dijkstra’s algo-
rithm solves the EA problem. It works exactly like the original except for the
relaxation of edges (u, v) with TTFs fuv. Let the label of node u be ds(u). The
old label ds(v) of the node v is updated by min{ds(v), arrfuv(ds(u))}. The initial
node label of the start node is the departure time instead of 0.
2 Nodes represent junctions and edges represent road segments.
3 Here, all TTFs have period 24 h. Using non-periodic TTFs makes no real difference.
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Profile Search. A label correcting modification of Dijkstra’s algorithm. It com-
putes the TTPs of all reached nodes for a given start node. Thus, node labels are
TTPs. The initial node label of the start node is the TTP which is constant 0.
We relax an edge (u, v) with TTF fuv as follows: If fu is the label of node u, we
update the label fv of node v by computing the minimum TTP min(fv, fuv ∗fu).

Interval Search. Profile search is a very expensive algorithm. Interval search
runs much faster with a runtime similar to Dijkstra’s algorithm. Instead of TTPs
it computes intervals containing all possible arrival times. So, the labels are
intervals [a, b] ⊂ R≥0. The initial label of the start node is [0, 0]. We relax an
edge (u, v) with TTF fuv as follows: If [au, bu] is the label of node u, we update
the label [av, bv] of node v with [min{av, au + min fuv}, min{bv, bu + max fuv}].

Corridors. Given a start node s and a destination node t. A subgraph C
of G containing s and t where t is reachable from s is a corridor. Corridors
help to speed up profile searches very much: The expensive profile search is
performed only in the previously computed corridor (as applied very successfully
in the precomputation of TCHs [2]). Corridors can also be used to enable exact
computations in the presence of approximated data (see Section 3).

TCHs. In a time-dependent contraction hierarchy [2] all nodes of G are or-
dered by increasing importance. The TCH (as a structure) is constructed by
contracting the nodes in the above order. Contracting a node v means remov-
ing v from the graph without changing shortest path distances between the
remaining (more important) nodes. The shortest path distances are preserved
by introducing shortcut edges when necessary. This way we construct the next
higher level of the hierarchy from the current one. The node ordering and the
construction of the TCH are performed in a precomputation.

EA Queries on TCHs. To answer EA queries given by users we first per-
form a bidirectional search in the TCH. The forward search is a time-dependent
Dijkstra, the backward search is an interval search. Both searches go upward –
meaning that only edges leading to more important nodes are used. The meeting
points of the searches are called candidate nodes. The final step is the downward
search: a time-dependent Dijkstra that only uses edges touched by the backward
search. It starts from the candidate nodes where the arrival times computed by
the forward search are used as initial node labels. During the bidirectional search
we perform stall-on-demand [4,2]: The search stops at nodes when we already
found a better route coming from a higher level.

Unpacking Time-Dependent Shortcuts. A TCH contains two kinds of
edges: shortcut edges representing paths 〈u→ v → w〉 and original edges stem-
ming from the original road network. Usually a shortest path computed by TCHs
contains shortcuts which have to be unpacked. As the path represented by a
shortcut may again contain shortcuts, we do this in a recursive manner. In time-
dependent case a shortcut might represent different paths for different departure
times. For some departure times it might even represent an original edge.
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3 Applying Approximation

Approximation helps to save memory and to speed up computations. To save
memory we use an approximated version of the TCH structure.

Approximated TCHs. An approximated TCH (ATCH) with relative error
ε ∈ [0, 1] arises from a given TCH as follows: For all edges that represent an
original edge for at least one departure time nothing happens. For all other
edges the TTF f is replaced by an upper bound f↑ with ∀τ : f(τ) ≤ f↑(τ) ≤
(1 + ε)f(τ). Implicitly, f↑ also represents a lower bound f↓ : τ 
→ f↑(τ)/(1 +
ε). For edges e with exact TTF fe we have f↑

e = f↓
e = fe. Usually |f↑| is

considerably smaller than |f |. Thus, an ATCH needs considerably less memory
than the respective TCH (see Section 4). To compute f↑ from an exact TTF f
we use an implementation (see Neubauer [9]) of an efficient geometric algorithm
described by Imai and Iri [10]. It yields an f↑ of minimal |f↑| for ε in time O(|f |).
Min-Max-TCHs. An extreme case of an approximated TCH is a Min-Max-
TCH. For a shortcut, that never represents an original edge for any departure
time, we only store the pair of numbers (min f, max f) instead of the TTF f .
Min-Max-TCHs need even less memory than ATCHs (see Section 4).

3.1 Exact Earliest Arrival Queries with Approximated TCHs

Our method for exact EA queries with ATCHs uses the two following new algo-
rithmic ingredients. For their correctness the FIFO-property is required.

Arrival Interval Search. Is similar to interval search and computes an approx-
imated solution of the EA problem, i.e., an interval containing the exact value,
which is the best we can do for ATCHs. We relax an edge (u, v) with upper bound
f↑

uv and lower bound f↓
uv as follows: If [au, bu] is the label of u, we update the label

[av, bv] of v with [min{av, a}, min{bv, b}] where [a, b] := [arrf↓
uv(au), arrf↑

uv(bu)].
The initial label of the start node is [τ0, τ0] for the departure time τ0.

Backward Travel Time Interval Search. Is dual to arrival interval search.
Given a destination node t and an interval [σ, σ′] it computes intervals containing
the possible times needed for traveling to t if the arrival time lies in [σ, σ′]. The
algorithm runs backward starting from t with [0, 0] as initial node label. Consider
the (backward) relaxation of an edge (u, v) with upper bound f↑

uv and lower
bound f↓

uv. Let the label of node v be [pv, qv]. The old label [pu, qu] of node u is
updated with [min{pu, p}, min{qu, q}] where [p, q] := [pv+min f↓|I , qv+max f↑|I ]
and I := [maxdepf↑

uv(σ − qv), min depf↓
uv(σ′ − pv)].

Queries. Having defined all necessary ingredients, we are able to specify an
algorithm for exact EA queries on ATCHs and Min-Max-TCHs: Given a start
node s, a destination node t, and a departure time τ0 proceed as follows:

– Phase 1 (bidirectional upward search). Perform a bidirectional search using
solely upward edges with stall-on-demand. The forward search is an arrival
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interval search from s with initial label [τ0, τ0] that computes intervals con-
taining arrival times. The backward search is an interval search from t with
initial label [0, 0] that computes intervals containing travel times. The meet-
ing points of the searches are candidate nodes. For a candidate node c with
forward label [τ, τ ′] and backward label [σ, σ′] the interval [τ + σ, τ ′ + σ′]
contains an arrival time for traveling from s to t via c for departure time τ0.

– Phase 2 (forward/downward search). Perform a forward arrival interval
search starting from the candidates, that only uses edges touched by the
backward search of Phase 1. The initial node labels of the candidates are the
arrival time intervals computed by the forward search in Phase 1.

– Phase 3 (backward/upward search). Phase 2 yields an interval [at, bt] con-
taining the EA time for t. Now, we perform a backward travel time interval
search starting from t with initial label [at, bt]. The search runs backward and
uses only upward edges touched by Phase 2. When we reach a node, that
has also been reached by the forward search of Phase 1, the node is again a
candidate.

– Phase 4 (unpacking and Dijkstra). From the candidates provided by Phase 3
perform a forward and a backward BFS on the edges touched by Phases 3
and 1 respectively. Unpacking all shortcuts touched by these BFSs yields a
corridor C whose edges have only exact TTFs. A time-dependent Dijkstra in
C from s with departure time τ0 yields the sought-after exact arrival time.

As C contains rather few edges, the time-dependent Dijkstra in Phase 4 does
not need much time. As a result, the runtimes are only moderately worse than
with exact TCHs. Note, that we could perform Phase 4 directly after Phase 1.
But the Phases 2 to 3 help to reduce the candidate set and thus the corridor. An
improvement to Phase 4 is to unpack the shortcuts only when they are needed
by the time-dependent Dijkstra – this is to say “on demand”.

3.2 Exact Profile Queries with Exact TCHs

Computing TTPs using exact TCHs is straightforward: For a start node s and
a destination node t just perform a bidirectional profile search, that only uses
upward edges while using stall-on-demand based on global minima and maxima.
Again, the meeting points of the bidirectional search are candidate nodes, each
of them representing a TTP (though not necessary an optimal one). Now, merge
all these TTPs using the minimum operation, which yields the sought-after TTP.

As this is quite time consuming, we propose a great improvement: Perform a
bidirectional upward interval search first. Again, the meeting points are candi-
date nodes. Similar to Phase 4 in Section 3.1 perform a forward and a backward
BFS starting from the candidates – but do not unpack the shortcuts (all edges
have exact TTFs this time). Now, perform the bidirectional upward profile search
only in the resulting corridor C, which makes the search strongly directed. Again,
merge the candidate TTPs, which yields the sought-after TTP.
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3.3 Exact Profile Queries with ATCHs

Exact profile queries can also be answered using ATCHs. This is possible by
adapting the method described in Section 3.2 in a straightforward way: Unpack
all shortcuts in the corridor C and perform profile search in the resulting corridor
C′. However, this takes some time. The reason is, that C′ usually contains many
more edges than C. During a profile search the points of the TTFs of these
edges are processed again and again and again. Assume, for example, that C′ is
a path of � edges and that all TTFs have k points. Then, a profile search in C′

processes Θ(k�2) points in the worst case. Here, we propose corridor contraction
– a much faster algorithm reducing this to Θ(k� log �) points. It exploits the fact
that linking is an associative operation on TTFs, which enables us to alter the
order of link operations without altering the result.

Corridor Contraction. Our algorithm uses a priority queue (PQ) to control
the order of performed operations. The elements of the PQ are nodes. As key we
use the estimated effort needed to contract each node. First, we insert all nodes
in C′ except for s, t into the PQ. Then, we contract C′: While the PQ is not
empty, we delete the minimal node v from the PQ and contract it completely.
That is, for all paths 〈u →f v →g w〉 we add an edge (u, w) to C′ with TTF
h := g∗f and remove all edges incident to v from C′. Also we update the keys of
u and w. If an edge (u, w) already exists in C′, we merge its TTF with h. After
termination only an edge (s, t) is left in C′. Its TTF is the sought-after TTP.

As an optimization we thin out C′ by a preceding bidirectional approximate
upward profile search which computes approximate TTPs that are upper and
lower bounds of the exact ones. This makes our method even faster than the one
in Section 3.2. However, for Min-Max-TCHs this is not possible of course.

3.4 Inexact Earliest Arrival and Profile Queries

In practice exact results may be not necessary, or the accuracy of the TTFs may
be arguable. In such cases, small errors are allowed and all computations can be
performed using an inexact TCH, which can be obtained from an exact TCH by
replacing every TTF f by an inexact TTF f� with (1+ε)−1f(τ) ≤ f�(τ) ≤ (1+
ε)f(τ). Additionally, we store the conservative bounds min{min f, min f�} and
max{max f, max f�} with every edge. Inexact TCHs save lots of memory. But
when we compute TTPs they even gain an enormous speedup. This is because
the processed TTFs have much less points.

To preserve correctness we always perform a preceding bidirectional upward
interval search that employs stall-on-demand using only the conservative bounds.
All further passes of any query avoid stall-on-demand and only relax edges
touched by this initial phase. For EA queries we have two further passes: the
forward and the downward search as described in Section 2.2 (without backward
search this time). In this way we get a corridor-based variant of the original TCH
query which also works with exact TCHs. For profile queries the only further
pass is a bidirectional upward profile search. So, we actually have the method
from Section 3.2, but this time applied to inexact TCHs.
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4 Experiments

Inputs and Setup. As inputs we use two road networks of Germany and
Western Europe, both provided by PTV AG for scientific use. Germany has 4.7
million nodes, 10.8 million edges, and time-dependent edge weights reflecting
the midweek (Tuesday till Thursday) traffic collected from historical data, i.e.,
a high traffic scenario with about 8% time dependent edges. Western Europe
has about 18 million nodes and 42.6 million edges. It has been augmented with
synthetic time-dependent travel times as in [11] using a high amount of traffic
where all edges but local and rural roads have time-dependent edge weights.

The experimental evaluation was done on a machine with four Core i7 Quad-
Cores (2.67 Ghz) with 48 GiB of RAM running SUSE Linux 11.1. All programs
were compiled by GCC 4.3.2 with optimization level 3. Running times were
always measured using one single thread. All figures refer to the scenario that
only the EA times and the TTPs have to be determined, without outputting
complete path descriptions. However, when reporting memory consumption, we
include the space needed to allow fast path reporting. The memory usage is given
in terms of the average total space usage of a node (not the overhead) in byte per
node. We also report the growth factor of the memory usage compared to the
original graph, i.e., the graph used for time-dependent Dijkstra. For Germany
this graph needs 95 byte per node, for Europe 76 byte per node.

We measured the average performance of EA and profile queries for 1 000
randomly selected start and destination pairs. For EA queries the departure
time is randomly selected from [0h, 24h) each. To measure the errors we used
many more test cases: 1 000 000 EA queries and 10 000 profile queries, where the
error of profile queries was measured for 100 random departure times each.

We also measured the machine-independent behaviour of our algorithms: In
all cases we count the number of deleteMin-Operations and touched edges (which
is identical to the number of relaxed edges for time-dependent Dijkstra). For EA
queries we also count how often TTFs are evaluated (including similar operations
like, e.g., computing maxdepf↑

uv(σ − qv) in Section 3.1). For profile queries we
count the points of the TTFs processed by link and minimum operations.

Results. Table 1 evaluates EA queries for different approaches. Inexact TCHs
(Section 3.4) save space and are at most 2 times slower than exact TCHs. For
Germany there is no slow down for small ε. The maximum errors are small for
small ε, the average errors are even smaller. However, in theory one can easily
construct inputs where errors could get much larger than ε. ATCHs (Section 3.1)
run slower by a factor of 1.5–3.3 for Germany and 1.2–8.2 for Europe. However,
ATCHs save memory: 3.2–8.4 times less space than exact TCHs for Germany
and 2.3–6.0 for Europe. Note, that the speed difference would further decrease
when shortest paths were to be computed since this is done anyway for ATCHs.

For profile queries look at Table 2. Exact TCHs, using the straightforward
method (Section 3.2), take about 1.1 s for Germany and 4.2 s for Europe –
far too slow for a server scenario. Restricting profile search to a corridor (also
Section 3.2) helps, but ATCHs with corridor contraction (Section 3.3) work
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Table 1. Behaviour of EA queries using different methods. ATCH with ε = ∞ denotes
Min-Max-TCHs. TCH with ε 
= 0 denotes inexact queries on inexact TCHs, cor.=
corridor, UoD= shortcut Unpacking-on-Demand, spd= speedup of time-dependent
Dijkstra, gro= growth of space usage compared to the original graph, max and avg

are maximum and average relative errors.

ε space time delMin edges evals error [%]
method [%] [B/n] gro [ms] spd # spd # spd # spd max avg

Germany midweek
TCH – 994 10.4 0.72 1 440 520 4 616 5 813 951 1 269 162 0.00 0.00

TCH
(cor.)

0.0 994 10.4 0.74 1 401 639 3 756 7 092 780 76 2 704 0.00 0.00
0.1 286 3.0 0.71 1 460 642 3 739 7 128 770 77 2 669 0.10 0.02
1.0 214 2.3 0.72 1 440 654 3 670 7 262 762 84 2 446 1.01 0.27

10.0 113 1.2 1.03 1 006 897 2 676 10 096 548 223 921 9.75 3.84

ATCH
(UoD)

0.1 308 3.2 1.10 942 554 4 332 7 734 715 3 080 67 0.00 0.00
1.0 239 2.5 1.27 816 582 4 124 8 338 664 3 347 61 0.00 0.00

10.0 163 1.7 2.40 432 824 2 913 21 036 263 7 486 27 0.00 0.00
∞ 118 1.2 1.45 714 698 3 439 20 116 275 3 153 65 0.00 0.00

Europe high traffic
TCH – 589 7.8 1.89 1 807 986 9 161 13 003 1 665 2 370 289 0.00 0.00

TCH
(cor.)

0.0 589 7.8 3.19 1 071 1 653 5 464 23 031 929 1 412 484 0.00 0.00
0.1 237 3.1 3.67 931 1 661 5 438 23 142 924 1 427 479 0.14 0.02
1.0 193 2.5 2.85 1 199 1 716 5 264 24 036 890 1 544 443 1.46 0.20

10.0 143 1.9 2.68 1 275 1 726 5 233 24 221 883 1 583 432 15.34 2.85

ATCH
(UoD)

0.1 256 3.4 2.25 1 518 1 032 8 752 17 894 1 195 5 382 127 0.00 0.00
1.0 207 2.7 2.47 1 396 1 104 8 152 22 683 943 6 362 108 0.00 0.00

10.0 164 2.2 7.37 463 1 771 5 100 137 221 156 23 949 29 0.00 0.00
∞ 99 1.3 15.43 221 2 196 4 113 448 360 48 42 939 16 0.00 0.00

better. For Germany Min-Max-TCHs also work well. For Europe they do not
show acceptable running times. However, for really fast profile queries we need
inexact TCHs. This works especially well for Germany.

Figure 1 shows the distribution of running times of profile queries on Ger-
many: For i = 5..22 we look at 100 queries with the property that Dijkstra’s
Algorithm settles 2i nodes (2i is called the Dijkstra rank). A profile query in a
middle-sized German town (rank 212) needs less than 1ms on ATCHs with cor-
ridor contraction. Plain profile search (Section 2.2) is much slower. We stopped
when the average running time exceeded 10 s. In Section 3.3 we claim that cor-
ridor contraction brings a considerable additional speedup. Indeed, when we
replaced corridor contraction by a profile search in the precomputed corridor it
ran considerably slower (also Figure 1).

For the comparison with (the best) other techniques look at Table 3. For EA
queries we only compare speedups of time-dependent Dijkstra – absolute query
times would be unreliable as different machines are used. As plain profile search
takes too long, we are not able to report speedups for profile queries. Instead, we
also compare the running time of profile queries with time-dependent Dijkstra.
This way we get a relative speed. As our preprocessing works in two phases (node
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Table 2. Profile queries using different methods. CC= corridor contraction, the rest
of the nomenclature is the same as in Table 1.

ε space time delMin edges points error [%]
method [%] [B/n] gro [ms] # # # max avg

Germany midweek
TCH – 994 10.4 1 112.02 570 6 796 20 623 155 0.00 0.00

TCH
(cor.)

0.0 994 10.4 88.87 646 7 170 1 437 892 0.00 0.00
0.1 286 3.0 6.13 650 7 208 86 391 0.10 0.02
1.0 214 2.3 2.94 662 7 348 35 769 1.03 0.27

10.0 113 1.2 2.48 923 10 361 23 010 9.69 3.84

ATCH
(CC)

0.1 308 3.2 36.22 650 29 551 576 099 0.00 0.00
1.0 239 2.5 32.75 675 32 131 531 795 0.00 0.00

10.0 163 1.7 105.45 889 92 740 1 731 359 0.00 0.00
∞ 118 1.2 76.58 578 59 368 1 278 095 0.00 0.00

Europe high traffic
TCH – 589 7.8 4182.43 1 090 17 234 70 937 950 0.00 0.00

TCH
(cor.)

0.0 589 7.8 2 016.86 1 797 25 486 30 734 960 0.00 0.00
0.1 237 3.1 198.00 1 813 25 655 3 371 555 0.13 0.02
1.0 193 2.5 105.72 1 882 26 796 1 741 315 1.27 0.20

10.0 143 1.9 36.75 1 889 26 977 755 646 14.65 2.85

ATCH
(CC)

0.1 256 3.4 565.28 1 806 169 378 8 200 162 0.00 0.00
1.0 207 2.7 382.12 1 887 199 551 5 448 190 0.00 0.00

10.0 164 2.2 2 306.11 2 429 1 259 891 35 330 837 0.00 0.00
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Fig. 1. Profile query times over the Dijkstra rank for different methods. CC means
corridor contraction is used, otherwise a profile search in the corridor is performed.

ordering and contraction) there are preprocessing times like 0:28+0:09 for TCH
based techniques (28min node ordering and 9min contraction). Node orders can
be reused for different traffic scenarios, i.e., they need not to be recomputed.
However, this might slow down the query time a bit [2].

For exact queries ATCHs dominate TD-SHARC [7] in all respects. However,
TD-CALT [6,7] has much better preprocessing time. For Europe the advantage
of TCH based techniques over TD-CALT with respect to query time becomes
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Table 3. Comparison of different algorithms for exact and inexact time-dependent EA
and profile (TTP) queries. Memory usage is given as overhead, errors are max. rel. er-
rors. rel= relative speed of profile queries compared to time-dependent Dijkstra, SH=
SHARC, inex= inexact, app= approximate, heu= heuristic, spc eff= space efficient.

ε prepro. ovh. EA TTP err. prepro. ovh. EA TTP err.
method [%] [h:m] [B/n] spd rel [%] [h:m] [B/n] spd rel [%]

Germany midweek Europe high traffic
TCH – 0:28+0:09 899 1 440 11.66 0.00 3:45+0:59 513 1 807 1.69 0.00

ATCH 1 0:28+0:09 144 816 31.65 0.00 3:45+0:59 131 1 396 9.94 0.00
ATCH ∞ 0:28+0:09 23 714 13.49 0.00 3:45+0:59 23 221 – 0.00
CALT – 0:09 50 280 – 0.00 1:00 61 47 – 0.00

SH – 1:16 155 60 0.02 0.00 6:44 134 70 – 0.00
L-SH – 1:18 219 238 – 0.00 6:49 198 150 – 0.00

inex TCH 1 0:28+0:09 119 1 440 352.59 1.03 3:45+0:59 117 1 199 32.31 1.46
inex TCH 10 0:28+0:09 18 1 006 417.99 9.75 3:45+0:59 67 1 275 92.95 15.34

app CALT – 0:09 50 804 – 13.84 1:00 61 624 – 8.69
heu SH – 3:26 137 2 164 1.40 0.61 22:12 127 1 958 – 1.60

heu L-SH – 3:28 201 3 915 – 0.61 22:17 191 2 703 – 1.60
spc eff SH – 3:48 68 1 177 – 0.61 – – – – –
spc eff SH – 3:48 14 491 – 0.61 – – – – –

much larger. This is an indication that TCH combined with ALT will not scale
well with the input size. For inexact EA queries approximate TD-CALT works
much better. But again, it is outperformed by inexact TCHs except for pre-
processing. Heuristic TD-SHARC has better speedups for EA queries but worse
memory usage and preprocessing times than inexact TCHs. For space efficient
TD-SHARC [8] the memory usage is very good but the speedups are worse than
for inexact TCHs. Regarding profile search, TCH based techniques come off as
a clear winner as they run up to three orders of magnitude faster in the exact
and about 250–300 times faster in the in the inexact setting.

5 Conclusions and Future Work

We have demonstrated that using approximations of travel time functions greatly
reduces the space consumption of time-dependent contraction hierarchies. By
using these approximation only for obtaining a corridor of possibly useful roads,
we can still obtain exact results. We have also explained how travel time profiles
can be computed very efficiently – fast enough for current server systems.

The achieved space reduction by up to an order of magnitude may not be
the end of the story because we can possibly come up with much more com-
pact representations of the approximations than the piecewise linear functions
currently used. It might be possible to represent the TTFs with some tabulated
patterns and then just store references and scaling factors. This way (near exact)
time-dependent route planning may even be possible on mobile devices.
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Future work will have to allow even more realistic modelling, in particular,
incorporating traffic jams, and allowing additional objective functions.

Acknowledgements. We thank Christian Vetter for important contributions
to the TCH code. There were many fruitful discussions with Daniel Delling.
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Abstract. A new technique for combinational logic optimization is de-
scribed. The technique is a two-step process. In the first step, the non-
linearity of a circuit – as measured by the number of non-linear gates it
contains – is reduced. The second step reduces the number of gates in
the linear components of the already reduced circuit. The technique can
be applied to arbitrary combinational logic problems, and often yields
improvements even after optimization by standard methods has been
performed. In this paper we show the results of our technique when ap-
plied to the S-box of the Advanced Encryption Standard (AES [6]). This
is an experimental proof of concept, as opposed to a full-fledged circuit
optimization effort. Nevertheless the result is, as far as we know, the cir-
cuit with the smallest gate count yet constructed for this function. We
have also used the technique to improve the performance (in software) of
several candidates to the Cryptographic Hash Algorithm Competition.
Finally, we have experimentally verified that the second step of our tech-
nique yields significant improvements over conventional methods when
applied to randomly chosen linear transformations.

Keywords: Circuit complexity, multiplicative complexity, linear com-
ponent minimization, AES, S-box.

1 Introduction

Constructing optimal combinational circuits is an intractable problem under
almost any meaningful metric (gate count, depth, energy consumption, etc.). In
practice, no known techniques can reliably find optimal circuits for functions
with as few as eight Boolean inputs and one Boolean output.

For example, the multiplicative complexity1 of the Boolean function E8
4 , which

is true if and only if exactly four of its eight input bits are true, is unknown [2]. In
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1 The multiplicative complexity of a function is the number of GF(2) multiplications
necessary and sufficient to compute it.
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practice, we build circuit implementations of functions using a variety of heuris-
tics. Many of these heuristics have exponential time complexity and thus can
only be applied to small components of a circuit being built. This works rea-
sonably well for functions that naturally decompose into repeated use of small
components. Such functions include arithmetic functions (which we often build
using full adders), matrix multiplication (which decomposes into multiplication
of small submatrices), and more complex functions such as cryptographic func-
tions (which are commonly based on multiple iterations of an algorithm contain-
ing linear steps and one non-linear step).

This work presents a new technique for logic synthesis and circuit optimiza-
tion. The technique can be applied to arbitrary functions, and yields improve-
ments even on programs/circuits that have already been optimized by standard
methods. We apply our technique to the S-box of AES2, which, in addition to be-
ing used in AES, has been used in several proposals for a new hash function stan-
dard3. The result is, as far as we know, the smallest circuit yet constructed for
this function. The circuit contains 32 AND gates and 83 XOR/XNOR gates for
a total of 115 gates. We have also applied these techniques to the logic embedded
in the non-linear components of several candidates to the SHA-3 competition.
The improvements in software performance were significant.

Our circuits are over the basis {⊕,∧, 1}. This basis is logically complete:
any Boolean circuit can be transformed into this form using only local replace-
ments. The circuit operations can be viewed either as performing Boolean logic
or arithmetic modulo 2 (when viewing it the latter way, we will write outputs
to be computed as polynomials with multiplication replacing ∧ and addition
replacing ⊕). The number of ∧ gates is called the multiplicative complexity of
the circuit. Connected components of the circuit containing ∧ gates are called
non-linear. Components free of ∧ gates are called linear. Circuits and programs
for computing Boolean functions can be defined using straight-line programs,
where each statement defines the operation of a gate or a line in a program.
Consider the examples in Fig. 1, defining two different circuits for computing
the majority function of three inputs, a, b, and c:

t1 = a∧b; t2 = a⊕b; t3 = t2∧c; t4 = t1⊕t3;
u1 = a⊕b; u2 = b⊕c; u3 = u1∧u2; u4 = u3⊕b;

Fig. 1. Two circuit definitions for MAJ(a, b, c)

2 Combinational Circuit Optimization

The techniques described here would generally be applied to subcircuits of a
larger circuit, such as an S-box in a cryptographic application, which have
2 Our circuit for the AES S-box has already been used as the basis of a software

bitsliced implementation of AES in counter mode [8].
3 See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
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relatively few inputs and outputs connecting them to the remainder of the cir-
cuit. The key observation that led us to our techniques is that circuits with
low multiplicative complexity will naturally have large sections which are purely
linear (i.e. contain only ⊕ gates). Thus

it is plausible that a two-step process, which first reduces multiplicative
complexity and then optimizes linear components, leads to small circuits.

We have, of course, no way of proving this hypothesis. But the experiments
reported here support it.

First step: The first step of our technique consists of identifying non-linear
components of the subcircuit to be optimized and reducing the number of ∧
gates. This reduction is not easy to do. For example, it is not obvious how to
algorithmically transform one of the circuits defined in Fig. 1 into the other.
Finding circuits with minimum multiplicative complexity is, in all likelihood, a
highly intractable problem. However, recent work on multiplicative complexity
contains an arsenal of reduction techniques that in practice yield circuits with
small, and often optimal, multiplicative complexity [2]. That work focuses exclu-
sively on symmetric functions (those whose value depends only on the Hamming
weight of the input). In this paper we use ad-hoc heuristics to construct a circuit
with low multiplicative complexity for inversion in GF (24). (In general, GF (2n)
is the field with 2n elements.) The technique is partially described in Section 3.

Second step: The second step of our technique consists of finding maxi-
mal linear components of the circuit and then minimizing the number of XOR
gates needed to compute the target functions computed in these linear compo-
nents. A new heuristic for this computationally intractable problem is described
in Section 4.

3 AES’s S-Box

The non-linear operation in AES’s S-box is to compute an inverse in the field
GF (28). A recursive method for building a circuit for inverses in GF (2mn), given
a circuit for inverses in GF (2m), is due to Itoh and Tsujii [7]. The circuits pro-
duced by this method are said to have a tower fields architecture. Since there
are multiple possible representations for Galois fields, several authors have con-
centrated on finding representations that yield efficient circuits under the tower
fields architecture. We use the same general technique for the reduction from
inversion in GF (28) to GF (24) inversion, but we use a completely different tech-
nique for computing the inversion in GF (24). We then place the optimized circuit
for GF (24) inversion in its appropriate place in AES’s S-box and apply a novel
optimization technique on the linear parts of the resulting circuit.

GF (24) inversion – A Non-Linear Component. The tower fields architec-
ture for inversion in GF (28) has (non-trivial) easily identifiable non-linear com-
ponents corresponding to inversion in subfields. The first step in our method is
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to focus on one of these components and derive a circuit that uses few ∧ gates.
The component for inversion in GF (22) is too small for us to benefit significantly
from optimizing it. Instead we focus on inversion in GF (24). There are many
representations of GF (24). We construct

– GF (22) by adjoining a root W of x2 + x + 1 over GF (2);
– GF (24) by adjoining a root Z of x2 + x + W 2 over GF (22).

Following Canright [5], we represent GF (22) using the basis (W, W 2) and GF (24)
using the basis (Z2, Z8). Thus, an element δ ∈ GF (24) is written as δ1Z

2+δ2Z
8,

where δ1, δ2 ∈ GF (22). Similarly, an element γ in GF (22) is written as γ1W +
γ2W

2, where γ1, γ2 ∈ GF (2). Since Z satisfies x2 + x + W 2 = 0 and W satisfies
x2+x+1 = 0, one can calculate that Z4 = Z2+W , Z8 = Z2+1, Z10 = Z4+Z2,
Z16 = Z8 + W , W 3 = W 2 + W , W 4 = W , and W 5 = W 2. These equations can
be used to reduce expressions to check equalities.

Using this representation, an element of GF (24) can be written as Δ = (x1W+
x2W

2)Z2 + (x3W + x4W
2)Z8, where x1, x2, x3, x4 ∈ GF (2). The inverse of this

element, Δ′ = (y1W + y2W
2)Z2 + (y3W + y4W

2)Z8, can then be calculated
using the following polynomials over GF (2):

– y1 = x2x3x4 + x1x3 + x2x3 + x3 + x4
– y2 = x1x3x4 + x1x3 + x2x3 + x2x4 + x4
– y3 = x1x2x4 + x1x3 + x1x4 + x1 + x2
– y4 = x1x2x3 + x1x3 + x1x4 + x2x4 + x2

The fact that Δ′ is the inverse of Δ can be verified by multiplying the two
elements together and reducing using the equations mentioned above (along with
x2 = x and x+x = 0). The symbolic result is (QW +QW 2)Z2+(QW +QW 2)Z8,
where Q = x1x2x3x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x1x3 +
x1x4 + x2x3 +x2x4 +x3x4 + x1 + x2 + x3 +x4. The fact that the value of Q is 1
unless all four variables have the value 0, when it is 0, can be seen by observing
that it is the symmetric function Σ4

4 + Σ4
3 + Σ4

2 + Σ4
1 . If exactly four variables

are set, then the first term gives the value 1 (and the others 0); if three are set,
then the second, third and fourth terms give the value 1; if exactly two are set,
then only the third gives the value 1; and if only one is set, then only the last
gives the value 1. Hence, the result is 1, except for the zero input.4

Thus the task at hand is to construct a circuit with four inputs and four
outputs that calculates the above system of equations using as few ∧ gates as
possible. Currently, our heuristic search programs can handle functions with one
output and up to eight inputs. This means that we can directly construct optimal
circuits for each of the four equations individually, but not for the system itself.
For the full system we took the following approach:

4 A circuit for finite field inversion must have some output for the non-invertible zero
element. In the following constructions we follow the AES convention that the output
on input zero is zero.
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– pick an equation and construct an efficient circuit for it;
– store intermediate functions computed in the previous steps for possible use

in constructing a circuit for the next equation to be tackled;
– iterate until all equations have been computed.

The first step is non-trivial even for predicates on few inputs. The heuristic
we used is inspired by methods from automatic theorem proving. We omit its
description here due to space constraints5. We can report, however, that we
succeeded in determining the multiplicative complexity of all 216 predicates on
four bits. It turns out that 3 multiplications are enough to compute any predicate
on four variables.6 This is of interest to designers of cryptographic functions since
many constructions have been proposed which use 4x4 S-boxes. We have not yet
been able to do the same for all predicates on 5 bits.

We performed the three steps above for each of the twenty-four orderings of
{y1, y2, y3, y4}. The ordering (y4, y2, y1, y3) gave the best results. The resulting
circuit, expressed as a straight-line program over GF(2), is shown in Figure 2
(outputs are indicated by an (*) ).

t1 = x1 + x2 t2 = x1 × x3 t3 = x4 + t2
t4 = t1 × t3 y4 = x2 + t4 (∗) t5 = x3 + x4

t6 = x2 + t2 t7 = t6 × t5 y2 = x4 + t7 (∗)
t8 = x3 + y2 t9 = t3 + y2 t10 = x4 × t9
y1 = t10 + t8 (∗) t11 = t3 + t10 t12 = y4 × t11
y3 = t12 + t1 (∗)

Fig. 2. Inversion in GF (24)

This circuit contains 5 ∧ gates and 11 ⊕ gates. It is a significant improvement
over previous constructions, e.g. Paar’s construction [10] has a gate count of 10 ∧
gates and 15 ⊕ gates for the same function. It is harder to compare to Canright’s
construction [5]. In his original, he had 9 ∧ gates (and NAND gates) and 14 ⊕
gates (and XNOR gates), but he optimized, allowing NOR gates. After this, he
had 8 NAND gates, 2 NOR gates, and 9 XOR/XNOR gates.

The multiplicative complexity of a function is the number of GF(2) multipli-
cations necessary and sufficient to compute it. Under the given representation
for GF (24), the multiplicative complexity of inversion is 5. This can be argued
as follows: the upper bound is given by the construction. The four outputs that
have to be computed all have degree 3. One ∧ is needed to compute a polyno-
mial of degree 2. Then, an additional ∧ is necessary to produce each of the four
linearly independent polynomials, since each is of degree 3.
5 A description can be found in the patent application by NIST and the University of

Southern Denmark ([4]).
6 Lest the reader think this trivial, he/she may attempt to compute the function

f(x1, x2, x3, x4) = x1x2x3x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x2 + x1x3 + x1x4 +
x2x3 + x3x4 using only three multiplications.
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A View of the Structure of AES’s S-Box. In the previous section, using
the tower fields architecture, we identified and optimized (with respect to mul-
tiplicative complexity) a major non-linear component in an implementation of
the AES S-box. That completes the first step of our technique for circuit op-
timization, but in other circuits, one may be able to identify more non-linear
components with few enough inputs that they can also be optimized before con-
tinuing. For the AES S-box, after optimizing the non-linear portion of the circuit,
the resulting circuit contained large linear connected components. In fact, from
a cryptanalyst’s point of view, the topology of the resulting circuit is potentially
of interest: the S-box of AES consists of an initial linear expansion U from 8 to
22 bits, followed by a non-linear contraction F from 22 to 18 bits, and ending
with a linear contraction B from 18 to 8 bits. The U and B matrices are given
in [3]. AES’s S-box is S(x) = B · F (U · x) + [11000110]T , where · is matrix
multiplication and x is the 8-bit S-box input. Note that the initial linear expan-
sion and the linear contraction were defined to contain as much of the circuit as
possible while still being linear. Thus, the portion of the circuit defined by U ,
for example, overlaps with the GF (28) inversion. The next step was to minimize
the circuits for computing U and B.

4 Minimizing Linear Components

Gate optimization of circuits for linear functions has been extensively studied.
It has been shown that the problem of linear-circuit optimization is NP-hard [1].
That paper further shows that unless P=NP, this problem does not even have
efficient ε-approximation schemes. Thus, our goal in this research is restricted to
improving on known heuristics. As far as we know, the most successful heuristics
are variations on a greedy algorithm due to Paar [11]. We report significant
improvements over the latter methods.

A linear straight-line program over a field F is a variation on a straight-line
program which does not allow multiplication of variables. That is, every line
of the program is of the form u := λv + μw where λ, μ are in F and v, w are
variables. Constructing a linear circuit for a given function f is equivalent to
constructing a linear straight-line program over GF(2) which computes f . (Note
that, over GF(2) λ, and μ are always 1 and thus are never written explicitly.)

A linear straight-line program over GF(2) is said to be cancellation-free if, for
every line of the program u := v+w, none of the variables in the expression for v
are also present in the expression for w, i.e., there is no cancellation of variables
in the computation.

Previous work on circuit minimization for AES S-boxes (e.g. [10,12,5]) only
consider cancellation-free straight-line programs for producing a set of linear
forms over GF(2). Some authors appear to make the incorrect assumption that
there always exists a cancellation-free optimal linear program over GF(2). A
small counter-example showing this is not the case is the following:

x1 + x2; x1 + x2 + x3; x1 + x2 + x3 + x4; x2 + x3 + x4.
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It is not hard (although somewhat tedious) to see that the optimum cancellation-
free straight-line program has length 5. A solution of length 4 which allows
cancellations is

v1 = x1 + x2; v2 = v1 + x3; v3 = v2 + x4; v4 = v3 + x1.

In [1], we show that any algorithm for computing linear programs that is re-
stricted to cancellation-free programs is at most 3

2 -approximating. Thus, even
optimal cancellation-free circuits can be far from optimal in the unrestricted
model. The heuristic we present below is not restricted to producing cancellation-
free circuits. Furthermore, there appears to be little reason for restricting the
search to cancellation-free circuits, as we have shown that finding an optimal
cancellation-free circuit is NP-hard ([1]).

A New Heuristic. Let S be a set of linear functions. For any linear predicate f ,
we define the distance δ(S, f) as the minimum number of additions of elements
from S necessary to obtain f .

The problem is to find a short linear program that computes f(x) = Mx
where M is an m× n matrix over GF(2). The heuristic is as follows. We keep a
“base” S of “known” functions. Initially S is just the set of variables x1, . . . , xn.
We maintain the vector Dist[] of distances from S to the linear functions given by
the rows of M . That is, Dist[i] = δ(S, fi) where fi is the ith row of M multiplied
by the input vector x. Initially, Dist[i] is just one less than the Hamming weight
of row i. We then perform the following loop

– pick a new base element by adding two existing base elements;
– update Dist[];

until Dist[i] = 0 for all i.
The current criterion for picking the new base element is

– pick one that minimizes the sum of new distances;
– resolve ties by maximizing the Euclidean norm of the vector of new distances.

This tie resolution criterion, which we term “Norm”, may seem counter-intuitive.
The basic idea is that we prefer a distance vector like 0,0,3,1 to one like 1,1,1,1.
In the latter case, we would need 4 more gates to finish. In the former, 3 might
do it.

The bulk of the time of the heuristic is spent on picking the new base element.
Our experiments show that the following “pre-emptive” choice usually improves
running time without increasing the size of the output circuit:

– if any two bases S[i], S[j] are such that S[i]⊕S[j] is a row in M , then pick
this sum as the new base element.

The tie resolution criterion is a critical part of the heuristic. It does well on
most matrices we have tried, but we have found specific matrices for which
other decision rules do better. Intuitively, no one simple rule should work for all
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matrices. The effectiveness of the heuristic most likely depends on the topology
of the digraph represented by the input matrix. We have not pursued this line
of inquiry. We have, however tested our heuristic with various tie resolution
methods against Paar’s algorithm [11]. On random matrices, our heuristic gives
significant improvements under Norm as well as under three other tie-breaking
rules (see Section 6),

The distance vector in our heuristics is computed by exhaustive search. The
reason the heuristic is practical for moderate-size matrices is that the distance
can only decrease. In fact, it can only decrease by 1. So when a new base is being
considered, if a distance is d, then only combinations of exactly d − 1 old base
elements and the new base element need to be considered.

A Small Example Using the Heuristic. Suppose we need a circuit that
computes the system of equations defined in Fig. 3, which is equivalent to finding
a circuit for multiplication by the 6× 5 matrix, M , given in the figure.

y0 = x0 + x1 + x2

y1 = x1 + x3 + x4

y2 = x0 + x2 + x3 + x4

y3 = x1 + x2 + x3

y4 = x0 + x1 + x3

y5 = x1 + x2 + x3 + x4

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 3. Example sequence of equations and corresponding matrix

The target signals to be computed are simply the rows of M . The initial base
is {x0, x1, x2, x3, x4}, which corresponds to

S = {[1 0 0 0 0
]
,
[
0 1 0 0 0

]
,
[
0 0 1 0 0

]
,[

0 0 0 1 0
]
,
[
0 0 0 0 1

]}
The initial distance vector is D =

[
2 2 3 2 2 3

]
.

The heuristic must find two base vectors whose sum, when added to the base,
minimizes the sum of the new distances. It turns out the right choice is to
calculate x1 + x3. So the new base S is expanded to contain the signal[

0 1 0 1 0
]

=
[
0 1 0 0 0

]
+
[
0 0 0 1 0

]
The new distance vector is D =

[
2 1 3 1 1 2

]
.

The full run of the program is below. The tie breaking criteria is used in Step
2. If one had chosen x1 + x2 instead of x0 + t5, the new distance vector would
be [ 1 1 3 1 1 2 ], which has norm

√
17, while the one found has norm

√
19.

Note that there is cancellation in the last step.
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Step 1 : t5 = x1 + x3. New D : [2 1 3 1 1 2].
Step 2 : t6 = x0 + t5 (found target signal y4 = [1 1 0 1 0]). New D : [2 1 3 1 0 2].
Step 3 : t7 = x2 + t5 (found target signal y3 = [0 1 1 1 0]). New D : [2 1 3 0 0 1].
Step 4 : t8 = x4 + t5 (found target signal y1 = [0 1 0 1 1]). New D : [2 0 3 0 0 1].
Step 5 : t9 = x2 + t8 (found target signal y5 = [0 1 1 1 1]). New D : [2 0 2 0 0 0].
Step 6 : t10 = x0 + x1. New D : [1 0 1 0 0 0 ].
Step 7 : t11 = x2 + t10 (found target signal y0 = [1 1 1 0 0]) .

New D : [0 0 1 0 0 0].
Step 8 : t12 = t8 + t11 (found target signal y2 = [1 0 1 1 1]).

New D : [0 0 0 0 0 0]. (DONE!)
Thus, after the xi, which may be nonlinear functions of other variables, are
computed, the yi are computed by following the algorithm produced and, in this
case, letting y0 = t11, y1 = t8, y2 = t12, y3 = t7, y4 − t6, t5 = t9.

Note that the optimization mentioned above with the pre-emptive choice for
a new base element was not applied in this example. That optimization gives a
less interesting ordering from what is shown here, though one still gets a circuit
with eight gates.

5 A Circuit for the S-Box of AES

Our techniques yield a circuit for the AES S-box composed of three parts: a
“top” linear transformation, U ; a middle non-linear part; and a “bottom” linear
transformation, B. See [3] for a definition of the circuit. For the matrix U , the
smallest circuits we found had 23 ⊕ gates. Among the many such circuits, the
shortest ones have depth 7. It is worthwhile to note that if 24 ⊕ gates are allowed,
circuits with depth 4 exist for the matrix U . The non-linear middle part of the
S-box circuit is a function from 22 to 18 bits. It contains 32 ∧ gates and 30 ⊕
gates. For the matrix, B, the randomized version of our heuristic yields many
circuits with 30 ⊕ gates. The heuristic is fast enough that we are able to pick a
circuit which is both small and short, having depth 6.

6 Experiments with Different Tie–Breaking Methods

In order to compare the effects of using different tie-breakers, we tested our
heuristics on matrices generated as follows

– We first chose a size (for example, 10×20 matrices, which represent 10 linear
forms on 20 distinct variables);

– We then picked a bias ρ between 0 and 1;
– For each entry of the matrix, we set the bit to 1 with probability ρ and to

0 with probability 1 − ρ. Thus ρ is the expected fraction of variables that
appears in each linear form.

– Matrices with rows which are all zeros were discarded, as were matrices
containing duplicate rows.
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The testing was performed with a C++ program, compiled with g++ -O3, on a
quadcore x86 64, running Ubuntu 9.10, with Intel Xenon 5150 processors running
at 2.66 GHz, with 8 GB memory. There were no other users on the machine.
The programs and matrices used can be found at www.imada.sdu.dk/ joan/xor/,
though minor changes are necessary to run the programs with different files
as input or to change the matrix size and bias for the matrix generator. We
compared the different heuristics on sets of one hundred random matrices with
different sizes and densities. The experiment showed that the heuristics were
slower when the bias was larger. This was expected, since the initial “distances”
(number of operations on the base vectors to obtain the target vectors) were
then larger on average when there were more ones in the matrices.

The tie-breakers we compared were the following:

– Norm: maximizing the Euclidean norm
– Norm-largest: maximizing the square of the Euclidean norm minus the

largest distance
– Norm-diff: maximizing the square of the Euclidean norm minus the differ-

ence of the largest two distances
– Random: In processing the possible new base vectors, if the current possible

new base vector has the same sum of distances as the previous best (current
choice), then flip an unbiased coin. If heads, then keep the current choice.
If tails, then apply the Norm criterion. This heuristic may end up choosing
a pair with non-maximum Euclidean norm. On the other hand, it allows
substitution of one optimum (by sum-of-distances and Euclidean norm) pair
by another found later in the search.

In all cases, except the “Random” one, when there were still ties after applying
the “tie-breaker”, the first pair with both the minimum sum of distances and
the optimal value for the tie-breaker was chosen. This was the base pair with
lexicographically minimum indices (i, j). Randomized tie-breaking allows run-
ning the heuristic several times and picking the best result. In our tests we ran
the heuristic with “Random” tie-breaking three times.

We also compared these heuristics to Paar’s heuristic [11] on the same ma-
trices. Paar’s heuristic repeatedly finds the most frequently occurring base pair
and adds that as the next base pair. It is significantly faster than our heuristic,
but it produces only cancellation-free circuits. Its performance, relative to the
heuristics proposed here, decreases as the bias increases, using more than 30%
extra gates when the bias is 3/4 (when the number of rows is at least 15) and
40% extra when the bias is 9/10.

Among the biases tried, the number of gates in the circuits found by our
heuristics is similar with biases 1/2 and 3/4. It is not a strictly increasing function
of the bias, since when nearly all of the variables are used in nearly all of the
forms, the outputs from many of the gates can be reused for many targets. Thus,
circuits with fewer gates were found when the bias was 9/10 than when it was
1/2 or 3/4. This was also true for Paar’s heuristic, but less dramatically so.

All the tie resolution criteria performed fairly similarly, producing circuits of
nearly the same size, with Random apparently doing slightly better (more often
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producing smaller circuits), presumably because it tries three different circuits
and uses the best. Random also runs for about three times as long as the others.
The results of these tests are presented in tables in [3]. For each heuristic, and
all matrix sizes and biases, 100 randomly chosen matrices were tested.

For each tie-breaker rule and Paar’s heuristic, for each matrix size and bias,
the average number of gates in the circuits found and the number of matrices
where that heuristic did not obtain the minimum value of all of the heuristics
was computed, along with the running time in seconds. The Paar heuristic was
beaten by at least one of the other heuristics on all 700 matrices except for 17 of
the 100 with bias 1/4 (and there was only one matrix on which Paar’s heuristic
beat any of the other heuristics). In fact, for the tests with bias larger than 1/4,
Paar’s heuristic did worse than any of the other heuristic on every one of the
matrices; usually the values obtained for the newer heuristics were similar, with
Random possibly being marginally better, but with the value for Paar’s heuristic
being significantly larger.

Paar’s heuristic (and, for matrices between size 4 and 10, a variant which
does at most one gate better on average in the data presented) was tested [11]
on square matrices of sizes 4×4 through 16×16 and the average number of XOR
gates is presented, along with the relative improvement over the straightforward
implementation. These square matrices came from applying Mastrovito’s [9] ma-
trix description of multiplication in GF (2n) to constant multiplication. Paar tries
all possible constants in GF (2n) for n between 4 and 16, giving these square
matrices. Since our heuristics are so much slower and the matrices in the cryp-
tographic applications we are interested in do not necessarily have this form,
we have not tested on all of these restricted matrices of those sizes, but rather
on random matrices with different biases. For 15 × 15 matrices, Paar gets an
average of 52.9 gates. This is similar to our results for Paar’s algorithm with
15×15 matrices with biases 1/2 and 3/4, where the Paar heuristic gets averages
of 51.7 and 53.3 gates, respectively. For bias 1/2, our deterministic heuristics
get average gate counts between 44.21 and 44.28, while Random gets 43.81. For
bias 3/4, our deterministic heuristics all get average count 40.82, while Random
gets 40.38. Thus, our relative improvement over the Paar heuristic is between
17% and 32% for these types of matrices. Paar’s result of 52.9 gates for 15× 15
matrices is a relative improvement of 45.5% over the straightforward approach.

We also computed the sums of the values which are the minimum of those
calculated by the different heuristics for each matrix. The tables in [3] show that
for each of the tie-breakers, there are cases where it gets a worse result than at
least one of the others.

7 Conclusions and Work in Progress

We tested new techniques for decreasing circuit size. The techniques were ap-
plied to the extensively studied AES S-box. We obtained the smallest circuit
yet constructed for this function. The circuit contains 32 AND gates and 83
XOR/XNOR gates for a total of 115 gates. As by-products of the experiment,
we obtained very small circuits for inversion in GF (24) and GF (28).
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The experiments with linear circuit optimization indicate that our techniques
are likely to be superior to previous techniques which produced only cancellation-
free circuits. We expect this to be particularly useful for cryptographic ap-
plications, both hardware and software implementations, where many XOR
operations are used, along with some AND operations to introduce nonlinearity.

It would be interesting to determine how close to optimal the circuits found
by these techniques usually are and how much better they are than the op-
timal cancellation-free circuits. Finding even better techniques which are not
restricted to finding cancellation-free circuits would also be very interesting, as
would applying these techniques to other applications.
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Abstract. We investigate how the recently developed different approaches to
generate randomized roundings satisfying disjoint cardinality constraints behave
when used in two classical algorithmic problems, namely low-congestion routing
in networks and max-coverage problems in hypergraphs. Based on our experi-
ments, we also propose and investigate the following new ideas. For the low-
congestion routing problems, we suggest to solve a second LP, which yields the
same congestion, but aims at producing a solution that is easier to round. For the
max-coverage instances, observing that the greedy heuristic also performs very
good, we develop hybrid approaches, in the form of a strengthened method of
derandomized rounding, and a simple greedy/rounding hybrid using greedy and
LP-based rounding elements. Experiments show that these ideas significantly re-
duce the rounding errors.

For an important special case of max-coverage, namely unit disk max-
domination, we also develop a PTAS. However, experiments show it less compet-
itive than other approaches, except possibly for extremely high solution qualities.

1 Introduction

Randomized rounding is one of the core primitives in randomized algorithmics. In con-
trast to many deep theoretical results, only very little experimental knowledge exists,
and almost no fine-tuning and other implementation advice exists. Such results be-
came even more interesting, since in the last ten years two substantially different meth-
ods [20,6,7,4] extending the classical approach of Raghavan and Thompson [19,18]
were developed.

The only experimental work on either classical randomized rounding or the new
approaches seems to be [5]. It compares the different methods on randomly generated
rounding problems. The purpose of this work is to extend these results to two less
artificial problem classes, namely routing and covering problems. These problems are
among the first ones for which randomized rounding has been proven (by theoretical
means) to lead to good algorithms.

Randomized Rounding: Given an arbitrary real number x, we say that (the random
variable) y is a randomized rounding of x, if y equals �x�+ 1 with probability {x} :=
x − �x� and �x� otherwise. In simple words, the closer x is to the next larger integer,
the higher the chance of being rounded up.
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Randomized rounding builds on the simple observation that this keeps the expec-
tation unchanged, that is, E(y) = x. This naturally extends to linear expressions. If
y1, . . . , yn are randomized roundings of x1, . . . , xn and f : Rn → R is a linear func-
tion, then E(f(y1, . . . , yn)) = f(x1, . . . , xn). If, in addition, the yi are independent,
then Chernoff bounds allow strong quantitative statements showing that with high prob-
ability, f(y1, . . . , yn) is not far from its expectation. These two key facts allow to use
randomized rounding in connection with integer linear programming. Two examples of
this are given in the following sections.

The new aspect of the works [20,6,7,4] is that they allow to generate randomized
roundings that satisfy certain cardinality constraints with probability one. That is, for
certain sets I , we can prescribe that

∑
i∈I yi =

∑
i∈I xi, provided the right-hand side

is integral. This can be done without giving in with the other properties—both methods
generate randomized roundings that admit the same Chernoff bounds as independent
randomized rounding.

For reasons of space, we cannot describe these rounding algorithms here. However,
since in this paper we are mainly comparing them experimentally, the reader may treat
them as black-box, keeping in mind only that they generate randomized roundings that
look independent, but satisfy cardinality constraints.

We shall concentrate on disjoint cardinality constraints. This is the most common
form of cardinality constraints. Also, the comparison of the methods is more interesting
here, since all have the same time complexity.

Our Results: The aim of this work is to find out how well the different rounding
approaches are suited to solve classical problems that are often attacked with LP-based
methods, but also to try to find fine-tunings and alternative approaches.

As underlying problems we chose the classical low-congestion routing problem and
the max-coverage problem. They are different in flavor since in the first, randomized
rounding is used with a focus of exploiting Chernoff bounds in linear constraints and
objective function. In the second, since the right-hand side of the inequalities is one, we
cannot do so, but resort to accepting that a certain fraction of the vertices covered in the
relaxation are not covered after rounding.

All our results indicate that generally the derandomized algorithms yield superior
results. The increase run-time over the randomized versions usually is still negligible
compared to the complexity of solving the LPs involved.

For the low-congestion routing problem, we regard routing requests placed randomly
on a two-dimensional grid. We regard instances small enough to compute the optimum
solutions via solving an integer linear program. We observe that randomized round-
ing with cardinality constraints obtains reasonably good solutions. Surprisingly, unlike
in previous experiments [5], we observe that the bit-wise randomized approach of [4]
produces better results than the tree-based one of [20].

The gap to the optimum is roughly halved if we use a derandomization of randomized
rounding. Here, the derandomization of [20] obtained in [5] proved to be superior.

In an attempt to fine-tune randomized rounding, we propose solving a second LP
which gives the same congestion in the relaxation, but aims at making the solution
easier to round. While this naturally does not give improved theoretical guarantees, it
yields a good reduction of the rounding errors, in particular, in combination with the
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derandomization. This seems to be a fruitful approach whenever the additional cost of
solving a second LP is admissible.

Our analysis of max-coverage shows that both randomized rounding and the greedy
algorithm produce good results in general. However, for both there are instances show-
ing the other behave much better. Analyzing the data produced in our experiments, we
consider two paths to a hybrid approach. One way is to strengthen the derandomization
to include a greedy component, as a gradient-based rounding; the other, complemen-
tary, is to spend part of the budget greedily, and solve the remaining instance via an
LP- and randomized rounding-approach. Both hybrids perform better than either of the
plain approaches; the gradient-based rounding performs particularly well. We also give
a new way of rounding under weighted knapsack constraints, which is both significantly
more practical and theoretically cleaner than the previously known method.

For a natural planar Euclidian version of the problem, we also give a PTAS. However,
unlike for all other approaches used in this paper, the experimental results are not much
better than the theoretical guarantees. Therefore, this is an alternative useful only if very
good approximations are needed and if computation power is available plentiful.

2 Randomized Rounding for Low-Congestion Routing

The Low-Congestion Routing Problem in Networks. The low-congestion routing
problem is one of the classical applications of randomized rounding [19]. In its sim-
plest version, the objective is to route a number of requests through a given network,
minimizing the maximum usage of an edge (“congestion”). Problems of this type found
all kinds of applications, an early one being routing wires in gate arrays [9].

We regard the following basic variant, previously investigated in [19,18,11,20,7].
Given is a (directed) network G = (V, E), together with k routing requests. Each con-
sists of a source vertex si, a target vertex ti and a demand ri. The objective is to find,
for each i ∈ [k] := {1, . . . , k}, a flow from si to ti having flow value ri ∈ N, such that
the congestion, that is, the maximum total flow over an edge, is minimized. This prob-
lem is easily formulated as integer linear program (ILP): We minimize the congestion
C subject to the constraints

∀e ∈ E :
k∑

i=1

xie ≤ C (1)

∀i ∈ [k] :
∑

e=(si,v)∈E

xie −
∑

e=(v,si)∈E

xie = ri (2)

∀i ∈ [k] ∀v ∈ V \ {si, ti} :
∑

e=(w,v)∈E

xie =
∑

e=(v,w)∈E

xie (3)

∀i ∈ [k] ∀e ∈ E : xie ∈ {0, 1}. (4)

We should add that [19] only regard the special case of all demands ri being one, since
randomized rounding respecting cardinality constraints with right-hand side greater
than one was not available at that time. For an application with particular need for
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larger ri, see the failure restoration problem in optical networks described in [7]. Also,
we should add that other authors in addition have edge capacities ce and then minimize
the relative congestion, but it is easily seen that this just replaces the C in the first type
of constraints by ceC.

Since already the case of unit demands is NP-complete, optimal solutions seem dif-
ficult to obtain. The common solution concept is to (i) solve the linear relaxation of
the ILP and obtain a fractionally optimal solution (x∗, C∗); (ii) use path stripping to
decompose each flow fi encoded in x∗· into a weighted sum fi =

∑
P∈Pi

y∗
iP fP , where

Pi is a finite set of si–ti paths, for each P ∈ Pi, fP is the flow that has exactly one
unit on each eadge of P , and y∗

iP ∈ [0, 1]—note that all this implies
∑

P∈Pi
y∗

iP = ri;
(iii) use randomized rounding to round all y∗

iP to yiP ∈ {0, 1} in such a way that the
cardinality constraints

∑
P∈Pi

yiP = ri are maintained. Now
∑

P∈Pi
yiP fP is a flow

from si to ti with flow value ri. These flows form a solution having a congestion of
C = maxe∈E

∑k
i=1
∑

P∈Pi,e∈P yiP . Large deviation bounds show that this conges-
tion is not far from the value C∗ given by the relaxation [19,11]:

C = O

(
log m

log(2 logm/C∗)

)
, if C∗ ≤ log m;

C = C∗ + O(
√

C∗ log m), if C∗ > log m.

Recall that C∗ is a lower bound for the optimal solution. Hence if C∗ is not too small
compared to m, then this approach gives very good approximation factors.

Algorithms Used. To approximately or exactly solve our test instances, we used the
following algorithms. Whenever run-times permitted, we used the exact ILP-Solver
ILOG CPLEX 11.0 to directly solve the ILP given by (1) to (4). All other approaches
involve solving the linear relaxation of the ILP (for which again we used CPLEX) and
then different rounding methods.

Since the ILP contains hard cardinality constraints, we cannot use the classical in-
dependent approach of Raghavan and Thompson (we did so, though, ignoring the car-
dinality constraints, to see if the cardinality constraints make rounding more difficult).
There are two approaches to generate randomized roundings respecting cardinality con-
straints due to Srinivasan [20] and the first author [4]. Both can be derandomized [5,4],
so that in total we have four rounding methods available. See the original papers or [5]
for a more detailed discussion of these methods. All algorithms different from CPLEX
were implemented in C/C++.

Experimental Set-up. To analyze the questions discussed in the introduction, we re-
garded the following type of instances. Motivated by the fact that many routing prob-
lems have a two-dimensional flavor (e.g., the wire routing problem of [9]), we chose a
finite two-dimensional bi-directed grid. Note that this simple graph is far from trivial
for routing, see, e.g., the thrilling one-turn routing conjecture in [9], which is, to the
best of our knowledge still open.

We choose routing requests randomly as follows. Both si and ti are chosen uniformly
at random from V . To reduce otherwise the influence of randomness, we choose all
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Table 1. Congestions achieved by the 7 different approaches for a selection of 6 instances. The
optimum was computed by solving the IP via CPLEX (not feasible for larger instances). For the
other algorithms we state the relative increase of the congestion over the optimum.

5× 5, 10 10× 10, 10 15× 15, 10 5× 5, 75 10× 10, 75 15× 15, 75
Optimum 3.37 2.19 1.98 14.76 7.76 5.39
RR [20] +9.23% +32.17% +42.29% +5.96% +24.48% +45.45%
RR [4] +7.13% +30.43% +40.31% +4.13% +19.07% +38.78%
RR+ +6.35% +31.85% +40.26% +2.64% +12.50% +31.91%
DeRR [4] +3.77% +22.33% +23.42% +1.90% +10.95% +25.97%
DeRR [5] +2.76% +16.38% +13.76% +0.88% +8.38% +17.07%
DeRR+ +1.19% +11.81% +16.59% +0.47% +4.25% +14.84%

Table 2. Run-times of the 5 algorithms in seconds. Given is the time for this particular step. For
example, the run-time of what is called “DeRR+” in Table 1 is the sum of the values in lines
“LP”, “DeRR” and “Heur.”.

5× 5, 10 10× 10, 10 15× 15, 10 5× 5, 75 10× 10, 75 15× 15, 75
IP (CPLEX) 0.0270 0.368 5.72 0.776 61.52 7977

LP (CPLEX) 0.0227 0.235 1.61 0.697 34.02 2004
Heur. 0.0129 0.612 9.42 0.096 51.31 1755

DeRR [5] 0.0009 0.0061 0.0178 0.0028 0.018 0.07
DeRR [4] 0.0126 0.1062 0.3332 0.0589 0.459 1.61

demands as ri = 3. We also tried placing the si, ti uniformly at random on the outer
border of the grid, but saw no significant differences.

The size n of the grid and the number of demands k was varied to create different
instance sizes and densities. All numerical values reported are the averages over 100
runs. The times were measured on AMD dual processor 2.4 GHZ Opteron machines.

Analysis. A small subset of our results is presented in Table 1. For the grid sizes 5× 5,
10 × 10 and 15 × 15 together with 10 and 75 demands, we state the average values of
the congestion of an optimal solution (line 1 of the table) and the amounts by which a
solution computed by one of the four randomized rounding approaches (lines 2, 3, 5,
and 6) is worse (in percent). Line 4 and 7 of the table refer to an improvement discussed
in the subsequent subsection.

Particularly for instances that do show some congestion, we see that randomized
rounding yields quite good solutions, much better than what the theoretical bounds
would predict. Derandomization is clearly worth the small extra effort (cf. the run-times
in Table 2), reducing the gap to the optimum by roughly a half.

Comparing the different methods, surprisingly, our experiments generally show that
the bit-wise randomized rounding approach of [4] (line 3) produced slightly better
rounding errors than the tree-based one of [20] (line 2). We do not understand this
phenomenon currently. Among the derandomizations, as expected and similarly as for
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random instances [5], the derandomization of the tree-based approach of [20] given
in [5] is superior to the derandomization of the bit-wise one in [4]. This is due to the
iterative nature of the latter, see again [5].

We also used classical independent randomized rounding. Clearly, this does not pro-
duce feasible solutions in most cases. However, even ignoring this issue, we also ob-
served that we typically have slightly larger congestions (e.g. in the sparse instance of
10 demands in a 15× 15 grid, independent rounding lead to a congestion of 3.19 com-
pared to congestions of 2.80 and 2.85 for the randomized approaches of [4] and [20]).

Run-times consumed by the different stages are mainly given in Table 2. All random-
ized rounding stages for each instance took less than 0.02 seconds. Less than a tenth of
this is the time needed for the path-stripping in each instance. Hence these numbers are
not given in the table. From the table, we see that the bit-wise derandomization takes
about 20 times longer than the tree-based one, but both numbers are greatly dominated
by the times for solving the LP (ignore the “Heur.” line for the moment).

A Heuristic Making Life Easier for Randomized Rounding. As can be seen from
the results presented so far, the different randomized rounding approaches usually find
solutions that are not far from the optimum. We now propose and analyze a heuristic
way to improve the performance.

The rough idea is simple. Having solved the linear relaxation of the ILP, we know the
optimal (relaxed) congestion C∗ that can be achieved. The congestion we end up with
stems from this C∗ plus possible rounding errors inflicted in the congestion constraints
(1). It is clear that randomized rounding has a higher change to increase the congestion
if there are many congestion constraints satisfied with equality in the relaxation.

Therefore, the heuristic we suggest is to resolve the LP with the following modifica-
tions. Let δ ∈ [0, C∗] be a parameter open for fine-tuning. We replace the congestion
constraints (1) by ∀e ∈ E :

∑k
i=1 xie ≤ C∗ − δ + ze, where C∗ is the (fixed) optimal

congestion obtained from the first LP and ze ∈ [0, δ] are new variables. The new objec-
tive is to minimize

∑
e∈E ze. Since the ze are at most δ, the flow given by a solution of

this new LP also yields a congestion of at most C∗. However, the new objective pun-
ishes edges with total flow exceeding C∗ − δ. In consequence, the solution we obtain
is also a solution for the original LP, but one that in addition tries to keep some room in
the congestion constraints.

For the few instances that space permits do give data, the experimental results are
again presented in Table 1. Line 4 contains the results obtained by using randomized
rounding as in [4] after applying the heuristic and line 7 does so with the derandom-
ization of [20,5]. We did the same experiments with the other two rounding algorithms.
Since the results were mainly inferior (to a similar extent as without the improvement),
we omitted these numbers in the table. In all experiments, we chose δ = 1.

The results clearly show that using this heuristic can be worth the extra effort of
solving a second LP. Apart from two instances with very small objective values 1.98
and 2.19, the heuristic always gains us a significant improvement. Surprisingly, these
gains tend to be higher when using the derandomized rounding algorithm.

It should be noted, though, that solving the second LP can be costly, as the numbers
in the last line of Table 2 indicate.
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3 Max Coverage: Greedy, Rounding, and Hybrid Approaches

Another problem where dependent rounding has found application is the max-coverage
problem. In this problem, the input is a set {S1, . . . , Sn} of sets and a budget bound L.
The task is to select a set of L sets to maximize the size of their union. Additionally,
there can be costs ci associated with the sets, and weights or profits wi associated with
the elements. In this case the task is to maximize the weighted sum of the covered ele-
ments, subject to the constraint that the total cost of the sets is at most L. Approximation
algorithms for max-coverage have been devised using both greedy and rounding-based
approaches; see [3,10,20,1] for details.

The rounding-based approximations start from the following LP-relaxation of the
problem. Let n be the number of sets, and m the number of elements in the instance.
Use variables x ∈ [0, 1]m and y ∈ [0, 1]n; we maximize

∑m
i=1 wixi subject to (i)∑n

i=1 ciyi ≤ L, and (ii) xi ≤
∑

j:i∈Sj
yj for every i ∈ [m]. Let (x∗, y∗) be an optimal

solution to this, of value W ∗, and consider the expected outcome of independently
rounding the variables y∗:

F (y∗) =
m∑

i=1

wi(1 −
∏

j:i∈Sj

(1 − y∗
j )). (5)

In the unit-cost case, applying randomized rounding to y∗ with a cardinality constraint
preserving the sum

∑
i y∗

i produces a rounding with expected value F (y∗), due to the
negative correlation properties of the rounding [20]; since F (y∗) ≥ (1 − 1/e)W ∗, we
get a randomized (1 − 1/e)-approximation. The derandomized version works via the
method of conditional expectation. As shown by Ageev and Sviridenko [1], we can
use F (y) directly as a guide for the derandomization, and produce a rounding y ∈
{0, 1}n of y∗, such that F (y) ≥ F (y∗) with certainty.

For the case of weighted (knapsack) budget constraints, Srinivasan gives a rounding
procedure (Lemma 3.1 in [20]) that approximately preserves the value of a weighted
sum of the rounded variables, while guaranteeing negative correlation properties as in
the unit-cost case. Combined with an enumeration and guessing phase, this provides a
(1− 1/e + ε)-approximation for any ε > 0 [20]. Unfortunately, due to the inexactness
of the budget bound, this phase becomes very expensive; we complement this by a
budget-preserving rounding procedure, described below.

Algorithms and Improvements. The algorithms we mainly compare will be the greedy
algorithm, and variations on the rounding-based algorithms. The greedy algorithm re-
peatedly selects a set fitting in the budget that maximizes the ratio of the profit of the
newly covered elements to the cost of the set. The rounding-based approach is outlined
above. Recall that the expected value of a single randomized rounding equals F (y∗),
and can thus (unlike in Section 2) be computed exactly. We consider three ways of
boosting this value. The first, random-1000, is to simply apply randomized rounding
1000 times and pick the best result; the second is derandomization, using Srinivasan-
type rounding directly on F (y), with arbitrary order of variable comparison. The third
is gradient-based rounding which works as follows.

Recall that cardinality-preserving randomized rounding works by repeatedly consid-
ering pairs of non-integral variables and readjusting their values, maintaining the sum,
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such that one of them becomes integral (see e.g. [5]). By gradient-based rounding, we
attempt to identify the best pair of variables to select for adjustment in each step. To
truly find this pair would require O(n2) comparisons, each with cost O(m), but we can
approximate the selection by considering the gradient of F (y). It is easy to show that
if yi and yj are non-integral, and if ∂F (y)

∂yi
≥ ∂F (y)

∂yj
, then moving mass from yj to yi will

keep the value of F (y) non-decreasing. Thus we only need to compute and update the
partial derivatives ∂F (y)

∂yi
, which can be done analytically at a cost of O(nm) per step,

and we can in every step pair off the variables with largest and smallest values of partial
derivative. While the total complexity of the rounding process becomes O(n2m), as
opposed to O(nm) for standard derandomized rounding, the time requirement is small
in practice (see experiments below).

Finally, we introduce the following budget-preserving rounding.

Theorem 1. Let y ∈ [0, 1]n such that
∑

i ciyi = L. In polynomial time, one can com-
pute a rounding ỹ ∈ {0, 1}n such that

∑
i ciỹi ≤ L + maxi ci and F (ỹ) ≥ F (y).

Proof sketch. Instead of maintaining the cardinality in each rounding step, change the
variables to be rounded by unequal amounts, maintaining the weighted budget. It is easy
to show that the convexity property used in [1] to derandomize the unit-cost case still
holds for F (y) over the new operation.

For problems with a weighted budget, we use the same three rounding methods as for
the unweighted case, with the random-1000 and the derandomized roundings using
Lemma 3.1 of [20], and the gradient-based rounding using Theorem 1. Should a round-
ing exceed the budget constraint, we will greedily discard sets until the budget bound is
reached.

A Unit Disk Maximum Domination PTAS. As a source of real-world instances, we
consider a type of max-coverage instances derived from planar point set data. Given a
set of points P = {p1, . . . , pn} in the plane and a diameter d, we define a graph (the
unit disk intersection graph) by letting two points pi, pj be connected if and only if the
Euclidean distance between them is at most d. In this graph, we consider the problem of
max-domination, where selecting a vertex v covers v and all its neighbours. Interpreted
as max-coverage, we thus get an instance where every vertex corresponds to one set and
one element. All sets will have unit cost; the elements may have weights, interpreted as
the profit of covering them.

This problem is NP-hard, as follows from the hardness of Minimum Dominating
Set in unit disk graphs [15]. However, it has good approximation properties—using
the grid-based shifting strategy of Arora [2], we are able to provide a polynomial-time
approximation scheme (PTAS). This strategy was also applied to a related problem on
the placement of wireless base stations by Glaßer et al. [8]. The proof is omitted for
lack of space.

Theorem 2. For any � > 1, the Max Domination problem on unit disk graphs with
weighted vertices and unit costs admits a (1− 2/�)-approximation in time nO(�2).

In our implementation, we replace certain steps by an MIP solver, specifically the
exhaustive enumeration phase for the subproblems, and the dynamic programming
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knapsack step. With these modifications, execution of the algorithm for non-trivial ap-
proximation ratios becomes possible. Unfortunately, we will see that even with these
modifications, the PTAS approach is inferior to the greedy and rounding algorithms for
realistic approximation settings.

Experimental Setup. Our instances are of two types. For the unit disk max-domination
problem, we use benchmark instances stemming from a real-world facility location
problem, previously used in [17] and available at [14]. For these instances, a demand
is provided with every point; we use these demands as profit values. To complement
this, we use instances converted from facility location problems; all such instances are
downloaded from UflLib [21]. In both cases, we convert the instances to max-coverage
by selecting an appropriate distance threshold for membership. Though some instances
are weighted, in all tests the individual set costs will be much smaller than our allocated
budget, avoiding potential issues with approximations.

We use CPLEX for LP- and ILP-solving; all other algorithms were implemented by
the authors in C.

Experiments. We now report the results of our experiments. To begin with, we show
the running times of the different methods on various instances in Table 3. Note that
the LP solver once again uses a significant fraction of our running time, and that per-
forming many random roundings becomes more costly than derandomization, due to
the need to evaluate the objective value for each solution. The low numbers for the
gradient-based rounding, as compared to the derandomization, can partly be explained
by the gradient-based rounding being problem-specific, while the derandomization uses
general-purpose code.

Table 3. Running times for various instances and algorithms; the times for the rounding methods
exclude the time for solving the relaxation

Instance n LP Random-1000 Derand. Grad. rounding Greedy IP
br818-400-30 818 0.36s 0.80s 0.11s 0.09s 0.33s 25s
kmed1-1k-37 1000 0.97s 1.46s 0.22s 0.25s 0.90s > 3600s

MR1-060-16.5 500 0.36s 0.74s 0.05s 0.04s 0.14s > 3600s

Table 4. Experiments on single instances. The data is averaged over 100 runs where the input
data is randomly permuted. The column “LP: once” shows the expected outcome of a single ran-
domized rounding; the following three columns show our three rounding methods. The optimum
gives the best upper and lower bound achieved by an IP solver after one hour of running time.

Name Size Budget Greedy LP: once 1000 derand gradient Optimum
Chessboard 144 16 130 144 144 144 144 144
FPP (k = 17) 307 17 290 200 210 230 290 290
br818-400 818 30 28054 22157 26199 27397 28448 28709
kmed1-1k 1000 37 948 709 817 923 962 993–95
MR1-060 500 16500 1444 1179 1254 1402 1445 1462–94
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Table 4 shows results for some individual instances (described below). The first we
want to highlight are the Chessboard and Finite Projective Plane (FPP) instances [12],
which will serve to reveal the differences between the different approximation ap-
proaches. The Chessboard instances are instances on a chessboard with side 3k, and
essentially correspond to a planar packing problem; the FPP instances are similarly a
kind of packing problem, but on a graph with more complicated structure. Since all
instances of these classes have equivalent combinatorial structure, we use only instance
per class in our experiments. In both cases, the budget is set at the most difficult setting,
which turns out to be just where the LP-relaxation can cover all or almost all elements.

The results immediately show the reason to pursue hybrid greedy/rounding algo-
rithms. For the Chessboard instance, the LP-optimum is already integral, and thus every
LP-rounding-based algorithm discovers an optimal solution. On the other hand, these
instances are difficult for the greedy algorithm, as a few early mistakes, when all sets
seem equivalent, will hurt the end tiling. In the FPP instances, however, we see the op-
posite effect. Here, upon inspection, we find that the LP-optimum is a useless mix of
taking an equal, small amount of almost every variable, leaving all the work of finding a
good integral solution up to the rounding. On the other hand, the greedy algorithm per-
forms very well here; runs with an ILP-solver show that it is at most one step away from
the optimum. We find that our proposed hybrid, the gradient-based rounding, produces
consistent top-quality results in both test cases.

We now focus on the unit disk max-domination problem, with instances as de-
scribed previously. We select the largest instance, with 818 points inscribed in a box
of sides 6395 by 3975, and use a distance threshold of 400. This was chosen as a good
balance, as too small or too large values (e.g., 100 resp. 800) creates too simple in-
stances. Figure 1 shows the behaviour of the main algorithms (excluding the PTAS) for
this instance, as depending on the budget. Observe that the LP-rounding approach is
very powerful for small budgets (up to 20), while further guidance is needed for larger
budgets. The gradient-based LP-rounding, providing just such guidance, produces top
values throughout, frequently better than either the greedy or the standard rounding al-
gorithms. This instance also appears in Tables 4 and 3 under the name br818-400 or
br818-400-L, where L is the budget bound. Another instance class of the same type
is the k-median instances [21]. Here we use the one named 1000-10, with a threshold
of 1000, occurring in Tables 4 and 3 as kmed1-1k or kmed1-1k-L. For concerns of clut-
ter, the PTAS is not included in the figure, but its data is given separately in Table 5.
Note that for every feasible setting, the PTAS is both of lower quality and significantly
slower than the alternatives. The k-median-instance is omitted, since we lack point data.

Table 5. PTAS performance compared to the greedy algorithm and IP solver

Instance PTAS (� = 3) PTAS (� = 5) PTAS (� = 7) Greedy IP
Value Time Value Time Value Time Value Value Time

br818-400-20 20742 1.3s 22857 9s 24129 69s 25247 26192 0.5s
br818-400-25 23008 1.2s 24683 9s 25308 71s 26907 27670 9s
br818-400-30 23951 1.3s 24909 10s 27270 74s 28054 28709 25s
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Fig. 1. Results for unit disk max-coverage instance br818-400. The plot shows the value of the
LP-relaxation, the outcome of the three rounding methods, and the expected value of a single
rounding against the greedy algorithm. The approximation bound shows (1 − 1/e) times the LP
optimum.

Finally, we also consider an instance class with weighted budgets, namely the M*
instances proposed in [13]. These instances have facility costs scaled so that facilities
close to many customers are more expensive, a situation the authors of [13] propose
would arise in real-world situations. In the data from [21], the distances were pre-scaled
by demand values, making the distances inappropriate for our use; we remove this scal-
ing, and instead use the demands as profit values. Table 4 gives the results for instance
MR1 with distance threshold 0.6, under the name MR1-060. In general for this class,
we found that the greedy algorithm and the gradient-based rounding method produce
practically identical results, while the other methods are inferior to this.

A Greedy/LP Hybrid. Motivated by our results, we consider a different, more general
form of greedy/LP hybrid. Before we commence with the LP-rounding, we allocate
some portion of the budget to greedy pre-selection, and apply the LP-relaxation and
rounding using the remaining budget to the thus reduced problem. We find best results
with a pre-selection of between ten and forty percent, finding that this hybrid can pro-
duce results superior to either the greedy or the derandomized rounding algorithm on
their own. Combining greedy pre-selection with gradient-rounding can produce further
improvement on some instances (e.g., kmed1-1k), but for others (e.g., br818-400-30),
no clear benefit was found. This data has been omitted for lack of space. We further re-
port that with a pre-selection fraction of 0.3, both the Chessboard and the FPP instances
of Table 4 receive optimal solutions.

4 Conclusions

We tried different randomized rounding approaches for routing and covering problems.
We find that randomized rounding, in particular in derandomized versions, works well
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also for such non-artificial instances, yielding much better results in practice than what
the theoretical guarantees assure. In addition, relatively simple fine-tunings give addi-
tional gains. This indicates a fruitful direction for further research.
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Abstract. The Time Dependent Traveling Salesman Problem (TDTSP)
is a generalization of the classical Traveling Salesman Problem (TSP),
where arc costs depend on their position in the tour with respect to
the source node. While TSP instances with thousands of vertices can
be solved routinely, there are very challenging TDTSP instances with
less than 60 vertices. In this work, we study the polytope associated to
the TDTSP formulation by Picard and Queyranne, which can be viewed
as an extended formulation of the TSP. We determine the dimension
of the TDTSP polytope and identify several families of facet defining
cuts. In particular, we also show that some facet defining cuts for the
usual Asymmetric TSP formulation define low dimensional faces of the
TDTSP formulation and give a way to lift them. We obtain good com-
putational results with a branch-cut-and-price algorithm using the new
cuts, solving several instances of reasonable size at the root node.

Keywords: Traveling salesman problem, integer programming, branch-
cut-and-price.

1 Introduction

The Time-Dependent Traveling Salesman Problem (TDTSP) is a generalization
of the Traveling Salesman Problem (TSP) where arc costs depend on their posi-
tion in the tour. This work departs from a formulation by Picard and Queyranne
[1], used earlier in [2] for the TSP, to define and study the TDTSP polytope.
Our motivations are the following:

– The TDTSP itself is a rich problem, with a number of important applica-
tions. These include routing problems like the Traveling Deliveryman Prob-
lem (TDP), known also as the minimum latency problem, and scheduling
problems such as the 1|sij |

∑
Cj .
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– The formulation in [1], called here PQ, can be generalized to provide very ef-
fective formulations to be used in branch-cut-and-price algorithms for several
Vehicle Routing Problem (VRP) variants [3] (including “nasty” cases, like
the heterogenous fleet VRP [4]) and also complex single and multi-machine
scheduling problems [5]. The TDTSP facet-defining inequalities studied in
this paper can be readily generalized and used on those problems.

– The PQ formulation can be used for solving the TSP. Of course, every known
valid inequality for the TSP could still be added to the PQ formulation. How-
ever, we verified that inequalities known to define facets of the TSP polytope
[6] correspond to disappointingly low dimensional faces of the TDTSP poly-
tope and are usually dominated by the newly proposed TDTSP inequalities.
This means that adding TDTSP inequalities to the PQ formulation yields
a TSP formulation that is potentially stronger than those usually used, at
the expense of having n times more variables. Furthermore, we believe the
TDTSP inequalities may be projected into more complex, yet unknown, valid
inequalities for the TSP polytope. Our hope is supported by some prece-
dents. For example, [7] derived new Symmetric TSP (STSP) facets from
known Asymmetric TSP (ATSP) facets. Similarly, [8] provides another case
where relatively simple facets of an extended formulation are combined and
projected into new complex facets of the original formulation.

Polyhedral studies of the TSP have been very productive, both theoretically and
because of their algorithmic implications. Results for the STSP are surveyed in
[9] and for the ATSP in [6]. Formulations for the TDTSP have been proposed
or studied in [1,10,11,12,13]. Exact algorithms for the TDTSP are presented in
[10,14,15] and, for the special case of the TDP, in [16,17,18]. Different heuristic
methods for the TDTSP have been proposed in [13,19]. The study of the TDP
polytope was initiated in [18]. As far as we know, ours is the first investigation
of the TDTSP polytope.

This paper is organized as follows. The TDTSP polytope is defined in Section
2, where its dimension is also established. Section 3 presents Admissible Flow
Constraints, a family of strong inequalities, including an important subfamily
of inequalities proven to define facets of the TDTSP polytope and with nice
theoretical properties related to flow decomposition. Section 4 introduces Lifted
Subtour Elimination Constraints, which are a new family of facet-defining in-
equalities. Section 5 deals with Triangle Clique Constraints. Those inequalities
were already introduced in the VRP context [3], but now we show that some, and
perhaps all, define facets of the TDTSP polytope. Finally, Section 6 presents a
branch-cut-and-price algorithm for the TDTSP, separating the newly proposed
inequalities. Due to space limitations, proofs of the mathematical results are not
in this paper.

2 Preliminaries

Let N = {1, 2, . . . n} and let N0 = N ∪ {0}. For a set of nodes S, K(S)
shall denote the complete (loopless) digraph over S. It is known that there is a
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one-to-one correspondence between Hamiltonian tours of K(N0) and Hamilto-
nian paths (with free ends) of K(N).

The TDTSP on a complete graph K(N0) can be modeled as an optimization
problem over a layered graph (V, A), where V consists of a source node 0, a
terminal node T , and intermediate nodes (i, t) for i, t ∈ N . The first index of
an intermediate node (i, t) identifies vertex i of the graph K(N) and the second
index will represent the position of vertex i in a path between nodes 0 and T .
The arc set A is composed of three types of arcs. For i ∈ N , (0, i, 0) denotes an
arc from node 0 to node (i, 1) and (i, T, n) denotes an arc from node (i, n) to
node T . Given i, j ∈ N such that i �= j and 1 ≤ t ≤ n − 1, (i, j, t) will denote
an (intermediate) arc from node (i, t) to node (j, t + 1). The third index of an
arc is its layer. Likewise, the second index of an intermediate node identifies its
node layer.

It is convenient to define G(n) to be the subgraph of (V, A) induced by
V \ {0, T }. Thus, G(n) has n2 nodes {(i, t) : i, t ∈ N} and all the n(n − 1)2

intermediate arcs of A. A path with n vertices in G(n) is of the form {(vt, t) :
vt ∈ N, 1 ≤ t ≤ n}. Since consecutive nodes in the path are in consecutive
layers, we can describe such paths by an ordered array (vt : t ∈ N). Such a
path can be extended to a 0 − T path of (V, A) by appending nodes 0 and
T as first and last nodes, respectively. A path in G(n) with node sequence
(vt : t ∈ N, vi �= vj for i �= j), corresponds to a permutation of the elements
of N , will be called an s-path . A 0 − T path of (V, A) will be also be called an
s-path if it contains an s-path of G(n). Clearly, there is a one-to-one correspon-
dence between s-paths of G(n) and Hamiltonian paths of K(N). Similarly, an
s-path of (V, A) corresponds to a Hamiltonian tour of K(N0), where nodes 0 and
T both represent node 0 of K(N0).

Picard and Queyranne [1] formulated the TDTSP over (V, A) as a linear in-
teger program with the following set of constraints, where variable xt

i,j indicates
if arc (i, j, t) is used and Ni denotes N \ {i}.

∑
j∈N

x0
0,j = 1 (1a)

x0
0,j =

∑
k∈Nj

x1
j,k, j = 1 . . . n (1b)

∑
i∈Nj

xt
i,j =

∑
k∈Nj

xt+1
j,k , j = 1 . . . n, t = 1 . . . n− 2 (1c)

∑
i∈Nj

xn−1
i,j = xn

j,T , j = 1 . . . n (1d)

x0
0,j +

n−1∑
t=1

∑
i∈Nj

xt
i,j = 1, j = 1 . . . n (1e)

x ≥ 0 and integer (1f)

Lemma 1. The system of equations (1a, 1b, 1c, 1d, 1e) has rank n2 + n.

We can use equations (1a) and (1d) to eliminate the 2n variables corresponding
to arcs incident to nodes 0 and T , obtaining the following equivalent system of
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constraints whose solutions correspond to s-paths in G(n).∑
i∈N

∑
j∈Ni

x1
i,j = 1 (2a)

∑
i∈Nj

xt
i,j =

∑
k∈Nj

xt+1
j,k , j = 1 . . . n, t = 1 . . . n− 2 (2b)

∑
k∈Nj

x1
j,k +

n−1∑
t=1

∑
i∈Nj

xt
i,j = 1, j = 1 . . . n (2c)

x ≥ 0 and integer (2d)

Lemma 2 follows from Lemma 1. Also, the removal of any single equation from
(2), such as (2a), yields a full rank system of equations.

Lemma 2. The system of equations (2a, 2b, 2c) has rank n2 − n.

Definition 1. Let P (n) be the convex hull of the incidence vectors of s-paths of
G(n) and refer to it as the TDTSP polytope.

Clearly, P (n) and the convex hull of s-paths of (V, A) are equivalent polytopes
with the same dimension. By enumerating all integer vectors in P (n), one can
determine computationally that dim P (1) = 0, dim P (2) = 1, dim P (3) = 5,
dim P (4) = 22, and dim P (5) = 60. We establish the dimension of P (n) below.

Theorem 1. If n ≥ 5, then dimension of P (n) = n(n− 1)(n− 2).

3 Admissible Flow Constraints

Let p = (0, v1, v2, . . . , vn, T ) be a 0− T path in (V, A). We define a r-cycle in p
as a subpath (vi, . . . , vi+r) such that vi = vi+r. Note that no path p contains 1-
cycles, since A does not have arcs of type (j, j, t). Also note that integral solutions
of (1) are s-paths and do not contain r-cycles. A network flow in an acyclic
digraph can be decomposed as a sum of flows along paths [20]. In particular,
a fractional solution satisfying equalities (1a, 1b, 1c, 1d) can be decomposed
into a set of 0 − T paths. However, these paths may contain r-cycles, for some
r ≥ 2. The Admissible Flow Constraints are devised to improve the formulation
by restricting the occurrence of r-cycles.

Consider t such that 1 ≤ t ≤ n− 2. The flow on arc (i, j, t) should exit node
(j, t+1) using arcs other than (j, i, t+1) to avoid creating a 2-cycle. Constraints
below model this observation.

xt
i,j ≤

∑
k∈N\{i,j}

xt+1
j,k , (i, j, t) ∈ A, 1 ≤ t ≤ n− 2. (3)

Theorem 2. If n ≥ 6, then each constraint of (3) defines a facet of P (n).

The following lemma relies on a characterization of feasible network flow prob-
lems obtained by Gale [21] and Hoffman [22] which, if applied to balanced trans-
portation problems on incomplete bipartite graphs, yields a generalization of
Hall’s marriage theorem [23].
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Lemma 3. Let S and D be the set of supply and demand nodes of a balanced
transportation problem and suppose N(R) = D for every subset R ⊂ S such that
|R| = 2. Then the transportation problem is feasible if and only if b(v) ≤ b(N(v))
for each supply node v ∈ S.

Theorem 3. Let x ∈ RA
+ satisfy constraints (1a, 1b, 1c, 1d) and (3). Then x

can be decomposed into flows along 0−T paths such that none of them contains
a 2-cycle.

Inequalities (3) may be aptly called 2-cycle elimination constraints. The elimina-
tion of larger r-cycles by means of inequalities appears to be much more difficult,
even for r = 3. Nevertheless, the following generalization of those inequalities
proved to be a rich source of strong cuts.

Definition 2. Let X be a connected set of vertices of G = (V, A) not containing
vertices in {0, T }. If e ∈ δ−(X), define C(X, e) ⊆ δ+(X) as the set of leaving
arcs that are admissible for e with respect to X: those arcs f that belong to an s-
path entering X at e and leaving X for the first time at f . For a set E ⊆ δ−(X),
define C(X, E) ⊆ δ+(X) as ∪e∈EC(X, e). For a given X and E, the following
valid inequality is called an Admissible Flow Constraint (AFC):∑

e∈E

xe ≤
∑

f∈C(X,E)
xf (4)

Definition 3. Let ((i, t), (u1, t+1), . . . , (ur−1, t+ r− 1), (i, t+ r)) be a minimal
r-cycle in G. The AFCs where X = {(u1, t + 1), . . . , (ur−1, t + r − 1)} and
E = {(i, u1, t)} are called r-cycle elimination constraints.

Computational experiments and partial results not stated here support the con-
jecture that all r-cycle elimination constraints are facet-defining. The more gen-
eral AFCs are usually not facet-defining, but are still interesting because: (i)
there are AFCs that are not dominated by r-cycle elimination constraints; (ii)
for a fixed set X they can be separated (finding the best set E) in polynomial
time as a min-cut problem; and (iii) they proved to be very useful in practice.

4 Lifted Subtour Elimination Constraints

The classical Subtour Elimination Constraints (SECs) [24] are known to de-
fine facets of the STSP polytope [25] and also of the ATSP polytope [9]. SEC
inequalities can be expressed in terms of the TDTSP variables as follows:

∑
j∈S

x0
0,j +

n−1∑
t=1

∑
i/∈S

∑
j∈S

xt
i,j ≥ 1, S ⊂ N, |S| > 1. (5)

Eliminating the variables of arcs not in G(n), we obtain the equivalent inequal-
ities: ∑

i∈S

∑
j∈Nj

x1
i,j +

n−1∑
t=1

∑
i/∈S

∑
j∈S

xt
i,j ≥ 1, S ⊂ N, |S| > 1. (6)
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SECs may define quite low-dimensional faces of the TDTSP polytope. Lifting
them provides a much stronger family of valid TDTSP inequalities that we call
Lifted Subtour Elimination Constraints (LSECs):

∑
i∈S

∑
j∈Nj

x1
i,j +

n−|S|∑
t=1

∑
i/∈S

∑
j∈S

xt
i,j ≥ 1, S ⊂ N, |S| > 1. (7)

The above inequality states that an s-path {vt : t ∈ N} must satisfy v1 ∈ S or
{vk, vk+1 : vk �∈ S, vk+1 ∈ S, 1 ≤ k ≤ n− |S|}. That is, an s-path either starts at
a vertex in S or it must enter S no later than layer n − |S|. This constraint is
valid because an s-path entering S for the first time after layer n− |S| will not
be able to cover all elements of the set S. Similarly, the inequality below states
that an s-path either ends at a vertex in S or leaves S at layers greater or equal
to |S|. This is a valid constraint because an s-path that exits the set S before
arc layer |S| will not have covered the set S completely and, thus, must return
to it.

n−1∑
t=|S|

∑
i∈S

∑
j /∈S

xt
i,j +
∑
j∈S

∑
i∈Nj

xn−1
i,j ≥ 1, S ⊂ N, |S| > 1. (8)

Let Ḡ(n) be the graph obtained from G(n) by reversing all its arcs and the order
of the node layers. Clearly, each s-path in G(n) corresponds to a unique s-path
in Ḡ(n). Note that constraint (8) can be viewed as a constraint of type (7) for
the s-paths of the graph Ḡ(n), using the same set S in both inequalities. We can
conclude that inequality (7) for a fixed set S defines a facet of P (n) if and only
if inequality (8), for the same set S, defines a facet of P (n).

Lemma 4. Inequality (7) defines a facet of P (n) if and only if inequality (8)
also does.

Our main result for this section establishes that lifted subtour elimination con-
straints define facets. Its proof relies on a double induction.

Theorem 4. If n ≥ 6 and 3 ≤ |S| ≤ n− 3, then constraint (7) defines a facet
of P (n).

5 Triangle Clique Constraints

A well-known way of deriving strong cuts for binary integer programs is by
analyzing their variable incompatibility graph. This graph has a vertex for each
binary variable and an edge for each pair of variables that are incompatible,
i.e., they can not have both value 1 in any solution. As each solution must
induce an independent set in this graph, known facets of the independent set
polytope, like clique and odd-hole inequalities [26], yield potentially strong cuts.
This approach can not be used on the STSP, since any pair of edge variables can
appear in some tour. However, the arc variables in the ATSP define an interesting
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incompatibility graph. While no clique cuts exist, in fact they are dominated
by degree constraints or SECs, the facet-defining Odd Closed Alternating Trail
Constraints correspond to odd-holes in the incompatibility graph. The arc-time
variables in the TDTSP provide an even richer incompatibility graph, where
even simple cliques provide new families of facet-defining cuts.

Let S ⊂ N satisfy |S| = 3 and consider two arcs (i, j, t), (i′, j′, t′) of G(n)
such that (i, j), (i′, j′) ∈ A(S). Note that these two arcs are compatible if and
only if they are adjacent and do not form a 2-cycle. Since few such pairs of
arcs are compatible, it is more convenient to work over the compatibility graph,
the complement of the incompatibility graph. Given S = {i, j, k} ⊂ N , let
G(S) = (V , E) be the compatibility graph associated to S, where each vertex of
V is an arc (i, j, t) of G(n) with (i, j) ∈ A(S) and each edge of E is a compatible
pair {(i, j, t), (j, k, t+1)}. An independent set I ⊂ V is a maximal set of vertices
in G which are all pairwise incompatible. It is clear that the following inequality
is valid:

∑
(i,j,t)∈I

xt
i,j ≤ 1 (9)

These constraints were proposed in [3] for a more general setting and were
named Triangle Clique Constraints. In particular, [3] describes an efficient
pseudo-polynomial separation procedure (which is polynomial when restricted
to the TDTSP) and demonstrates the usefulness of these constraints for solving
heterogeneous vehicle routing problems with a branch-cut-and-price algorithm.
We prove here that constraints (9) define facets of the TDTSP polytope when I
has a certain regular structure, and conjecture that this result remains true for
all triangle clique inequalities.

The independence sets we consider here induce bipartite subgraphs on al-
ternating layers of G(n), where each subgraph is isomorphic to (S, A(S)). Let
A(S, t) = {(i, j, t) : (i, j) ∈ A(S)}, we call the following four cases of indepen-
dence sets alternating.

1. For n even, I =
⋃n/2

k=1 A(S, 2k − 1).
2. For n even, I =

⋃(n/2)−1
k=1 A(S, 2k).

3. For n odd, I =
⋃(n−1)/2

k=1 A(S, 2k − 1).
4. For n odd, I =

⋃(n−1)/2
k=1 A(S, 2k).

Lemma 5. Let n ≥ 7. Let S ⊂ N and |S| = 3. Let I be an alternating indepen-
dence set corresponding to S. Let a = (i, j, s) and b = (k, l, t) be two compatible
arcs such that k, l �∈ S and either |t−s| = 1 or {s, t} = {1, n−1}. Then there ex-
ists an s-path containing a = (i, j, s) and b = (k, l, t) which also contains exactly
one arc in I.

Theorem 5. If n ≥ 7 and I ⊂ V is an alternating independence set, then (9)
defines a facet of P (n).
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6 Branch-Cut-and-Price Algorithm

The main drawback of working directly with the PQ formulation is its large size,
O(n3) variables and O(n2) constraints. However, an equivalent reformulation in
terms of O − T paths in (V, A) can be handled in an effective way. Number all
possible O − T paths from 1 to p. Define qt,l

i,j as a binary coefficient indicating
whether arc (i, j, t) appears in l-th O − T path, and λl as the positive variable
associated to that path.

Minimize
p∑

l=1
(
∑

(i,j,t)∈A

qt,l
i,jc

t
i,j)λl (10a)

S.t.
p∑

l=1
(
∑

(i,j,t)∈A

qt,l
i,j)λl = 1 j = 1, . . . , n (10b)

λ ≥ 0 and integer (10c)

The linear relaxation of this formulation can be efficiently solved by column
generation, since the pricing subproblem consists in finding shortest O−T paths
in (V, A). This can be done in O(n3) time by dynamic programming. Stronger
linear relaxations can be obtained by only pricing paths without r-cycles, for
small values of r. Changing the dynamic programming procedure in order to
avoid paths with 2-cycles is simple and only adds a small factor to the pricing
time. On the other hand, pricing paths without larger r-cycles is much more
complex. The best known algorithm has a complexity of O(r!r2n3) [27]. Usually,
this is only practical for r ≤ 4.

A fractional solution of (10) can be translated into a fractional solution of
(1). Cuts, like those presented in the previous sections, can then be separated,
translated back to the space of the λ variables and added to the linear relaxation
of (10) (as explained, for example, in [3]). Embedding this column and cut
generation scheme within a branch-and-bound method yields a Branch-Cut-and-
Price (BCP) algorithm.

Bigras, Gamache and Savard [14] recently implemented a BCP algorithm for
the TDTSP that also uses formulation (10), pricing paths without 4-cycles. The
main difference between their BCP and the one presented here lies in the cut-
ting part. They separate families of TSP cuts (using procedures from Concorde
[28]) and also non-structured clique cuts obtained by explicitly building the
incompatibility graph and looking for maximum weighted cliques in it (using
the CLIQUER package [29]). In contrast, our BCP separates only the specific
TDTSP cuts presented in the previous section as follows:

– The proposed AFC separation is based on the flow decomposition of a frac-
tional solution into O−T paths. In a BCP context this decomposition comes
directly from the fractional solution of (10). For each path in the decom-
position, all minimal r-cycles are identified. For an r-cycle ((i, t), (u1, t +
1), . . . , (ur−1, t+ r− 1), (i, t+ r)), we try to separate AFCs in three different
ways:



210 H. Abeledo et al.

1. We check if the r-cycle elimination AFC for X = {(u1, t+1), . . . , (ur−1, t+
r − 1)} and E = {(i, u1, t)} is violated.

2. As mentioned in Section 3, for a fixed X we can find the set E ⊆ δ−(X)
leading to the most violated AFC or show that no AFC is violated by
solving a max-flow min-cut problem. This is done by setting a bipartite
network where one side has one vertex for each arc in δ−(X) and the
other side has one vertex for each arc in δ+(X). There is an arc joining
each e ∈ δ−(X) to each arc in C(X, E). All those arcs receive infinity
capacity. An additional source vertex s is linked to vertices e ∈ δ−(X)
by arcs with capacity equal to the fractional value of e. In a similar way,
arcs f ∈ δ+(X) are linked to a target vertex t by arcs with capacity
equal to the fractional value of f . It can checked that a violated AFC
over X exists only and only if the max s − t flow in that network has
value strictly lesser than one. The second AFC separation applies this
procedure to set X = {(u1, t + 1), . . . , (ur−1, t + r − 1)}.

3. The third AFC separation applies the above procedure to set X =
{(v, t) : v ∈ {u1, . . . , ur−1}, t = 1, . . . , n}.

– We do not know if LSECs can be separated in polynomial time. Our current
separation is based on a Mixed-Integer Program model that is reasonably
effective in practice.

– Triangle cliques are separated in O(n3) time by the dynamic programming
procedure proposed in [3].

An additional element of the proposed BCP is the use of reduced cost fixing
to eliminate arcs from formulation (1). The default parameter is pricing paths
without 4-cycles. The code is written in C++ and was implemented over the
Coin-Bcp framework, version 1.2.2, and used the Coin-LP solver, version 1.10.0
[30]. The experiments were conducted on a machine with an Intel Core 2 Duo
3.06Ghz processor.

Even tough the proposed algorithm is devised for general TDTSPs, all our
tests were performed in TDP instances taken from the TSPLIB [31]. In those in-
stances, the cost of an arc (i, j, t) is defined as (n−t)·d(i, j), where d(i, j) is taken
from a distance matrix. This allows direct comparisons with a larger literature,
as there are relatively few articles providing computational results for non-TDP
instances. Those TDP instances are much harder than their TSP counterparts
- the only algorithm able to obtain optimal solutions for instances with n > 50
is the combinatorial branch-and-bound proposed in 1993 by Fischetti, Laporte
and Martello [16]. Comparisons with the results published in that paper would
be meaningless, due to the disparity between machines after almost two decades
of computer hardware development. Fortunately, the authors kindly provided us
with their code, so we could compare its performance with that of the proposed
BCP on the same machine and on the same instances.

Table 1 reports the results of those comparisons. Columns Root LB, Nodes and
Time represent the lower bound at the root node (bold values are optimal), the
number of nodes and the total time to solve the instance for both our code and
Fischetti et al.[16]’s (column FLM93). The fast bound computations of Fischetti
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Table 1. Comparison with the branch-and-bound from [16]

Instance OPT Our BCP FLM93
Root LB Nodes Time Root LB Nodes Time

bayg29 22230 22230 1 85 20374 5535 0.5
bays29 26862 26862 1 3 24268 5194 0.5
berlin52 143721 143721 1 85 130292 585347 327.7

eil51 10178 10178 1 15 9658 526111 75.4
eil76 17976 17976 1 145 16894 ≈ 4M 3515.7

brazil58* 512361 512361 1 15655 435016 - -

Table 2. Comparison with the results in [14]

Instance OPT BGS08 BCP Our BCP
Time Nodes Time Nodes

gr17 12994 3 1 0.5 1
gr21 24345 10 1 1 1
gr24 13795 15 1 1.5 1

bays29 22230 76 16 4 1
bayg29 26862 191 51 85 1

Table 3. LB obtained using cuts versus eliminating more cycles in the column
generation

Instance r = 4, no cuts r = 4, all cuts r = 5, no cuts r = 6, no cuts
Time LB Time LB Time LB Time LB

bayg29 6 21824 85 22230 34 22230 1916 22230
bays29 3 26862 3 26862 35 26862 2215 26862
berlin52 48 141257 85 143721 353 142192 * *

eil51 15 10178 15 10178 138 10178 5989 10178
eil76 93 17949 145 17976 452 17956.62 * *

brazil58 178 468513 * * 3197 490153 * *

et al. are advantageous in smaller instances. However, as instances get larger,
our stronger lower bounds give our code an advantage (in fact all instances were
solved at the root). We include in our table the results of our code for instance
brazil58, for which FLM93 was unable to finish solving within a time limit of
21,000 seconds. Solving that harder instance within that time limit required
a special parameter setting (that is why this instance is marked with a star),
pricing routes without 5-cycles. We also compare our proposed BCP with the
best LP based method in the literature, the BCP described in [14].

Table 2 reports the results for all TSPLIB instances for which [14] ran their
experiments. Their times were obtained in an Intel Pentium 4 3.4 GHz machine.
It is worth noting that [14] also eliminate 4-cycles in the pricing, we are basically
comparing cut efficacy. We also performed experiments to analyze the effect of
using the proposed TDTSP cuts versus the effect of forbidding cycles of higher
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cardinality in the column generation phase. Notice that, as mentioned before,
total elimination of r-cycles by means of cuts seems hard to do, even for r =
3. In contrast, if such a restriction is done in the pricing phase, r-cycles are
eliminated in advance. In spite of this, our experiments show that, at least in
terms of bounds, our cuts can achieve the same (or better) bounds than r-
cycle elimination within a more reasonable time for larger values of r. Table 3
illustrates this effect (a star in the table represents that the run did not finish
running after 2h). In those instances, it is clear that the best times are achieved
by using 4-cycle elimination in the pricing phase combined with cuts.

The TDTSP families of cuts proposed in this article, strong from a polyhedral
point of view, appear to be also strong in practice. They were able to completely
close the integrality gap for all the TDP instances tested, with n up to 76.
However, making an effective use of those cuts to solve larger instances is still
a challenge.
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30. Ralphs, T.K., Ladányi, L.: COIN/BCP User’s Manual (2001),
http://www.coin-or.org/Presentations/bcp-man.pdf

31. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on
Computing 3(4), 376–384 (1991)

http://www.coin-or.org/Presentations/bcp-man.pdf


An Approximate ε-Constraint Method for the
Multi-objective Undirected Capacitated

Arc Routing Problem

Lucio Grandinetti, Francesca Guerriero,
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Abstract. The Undirected Capacitated Arc Routing Problem is a clas-
sical arc routing problem arising in practical situations (road mainte-
nance, garbage collection, mail delivery, school bus routing, etc.) with
the aim of minimizing the total transportation cost of a set of routes
that service a set of required edges under capacity constraints. Most of
logistic companies are interested in minimizing not only the total trans-
portation cost, they also are focused in managing the deliveries on the
edges, in such a way that the duration of the longest trip does not exceed
an upper time limit, to take into account the working day duration of the
drivers. Moreover, all the demands of the required edges are satisfied by
considering a limited number of vehicles at the depot. In this paper, the
Multi-objective Undirected Capacitated Arc Routing Problem where dif-
ferent and competitive objectives are taken into account simultaneously,
is defined and studied. Three objectives are considered in order to: mini-
mize the total transportation cost, the longest route (makespan) and the
number of vehicle used to service all the required edges (i.e., the total
number of routes). To find a set of solutions belonging to the optimal
pareto front, an optimization-based heuristic procedure is proposed and
its performance is evaluated on a set of benchmark instances.

Keywords: Multiobjective Optimization, Capacitated Arc Routing
Problem, ε-constraint method.

1 Introduction

The Undirected Capacitated Arc Routing Problem (UCARP) is defined on a
undirected graph G = (V, E), where V = {1, . . . , n} is the set of vertices and
E = {(i, j) : i ∈ V, j ∈ V, i < j} is the set of edges with a non-negative cost cij

associated to each edge, such that triangle inequalities are satisfied. Let R ⊆ E
be the set of required edges with a non-negative demand dij . A fleet of homoge-
neous vehicles, with capacity Q and located at the depot (vertex 1 of V ), is used
to service all the required edges by minimizing the total cost and such that: a)
each edge is serviced only by a vehicle; b) the total demand of edges serviced by

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 214–225, 2010.
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a route does not exceed Q. A route is defined by a set of vertices such that the
first and the last vertex correspond to the depot and each pairs of consecutive
vertices is linked only by one edge: r = {0, . . . , i, j, . . . , 0}, where (i, j) ∈ E,
∀ i, j ∈ r, and i �= j . Observe that each edge may be traversed many times in
a feasible UCARP solution, while in an optimal UCARP solution the so-called
deadhead edges (edges traversed without being serviced) are traversed not more
than twice ([14]). The number of vehicles is a decisional variable or a datum
of the problem. We assume to know the number of vehicles m to service all re-
quired edges. In general, a strongly lower bound m on m may be computed by
solving a one-dimensional bin packing problem, where the bins are the vehicles
with capacity Q, and the items correspond to the required edges. A lower bound
on m is represented by m =

⌈∑
(i,j)∈R dij/Q

⌉
. In many benchmark UCARP

instances m = m. The UCARP was introduced by Golden and Wong ([15]).
It is NP-hard since it includes as a special case the Undirected Rural Postman
Problem (URPP), shown to be NP-hard by Lenstra and Rinnooy Kan ([26]). In
addition, Golden and Wong ([15]) have shown that approximating the optimal
UCARP solution value by a factor of 1.5 is strongly NP-hard. Applications of the
UCARP arise in garbage collection, snow removal, street sweeping and gritting,
mail delivery, meter reading, school bus routing, etc. We refer the reader to [12],
[2], and [10], for a detailed description of early lower bounds. Polyhedral studies
of the UCARP and other arc routing problems are reviewed in [11] and in [4].
For surveys of recent research, see [1] and [30]. To address real size problems
many heuristic and metaheuristic approaches have been recently proposed in
the scientific literature. Efficient upper bounds for the UCARP have been ob-
tained through path scanning heuristics, based on ellipse rule criterion as in [29],
tabu search algorithms proposed by [18], [16] and [7], genetic and memetic al-
gorithms introduced by [21], [22], guided local search algorithm proposed by [6],
variable neighborhood search algorithm described in [17], ant colony optimiza-
tion algorithm proposed by [23], improved memetic algorithms presented by [20],
[31] and [32]. The Multi-objective Undirected Capacitated Arc Routing Prob-
lem (MUCARP) derives from practical applications, where companies manage a
fleet of vehicles used to offer a service on a logistic network. Companies negoti-
ate with the trade unions the hourly duration of drivers working day; therefore,
they are also interested in routing vehicles in order to minimize the longest route
and satisfy the requests by using the minimum number of vehicles. In general,
the goal of minimizing the total transportation cost with the minimum number
of vehicles is achieved by assuming m = m whereas m is feasible, while the
introduction of a second objective aiming to minimize the cost of the longest
route may generate a competition with the first objective, and consequentially
it may affect the number of vehicles to be used to service all required edges. A
bi-objective UCARP has been studied by Lacomme at al. ([24]). They proposed
a Non-dominated sorted genetic algorithm framework to face the UCARP with
the aim of minimizing the total cost of the trips and the cost of the longest
trip (BUCARP). The authors used good constructive heuristics to seed the ini-
tial population and improved the results by embedding a local search procedure
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inside the algorithm. A memetic algorithm for a bi-objective and stochastic
CARP has been proposed in [13]. They studied an efficient way to modify a
memetic algorithm for the CARP to face two other problems: a CARP with
stochastic demands and a bi-objective CARP, that aims at minimizing the total
cost and the makespan. The two new algorithms are finally combined for the bi-
objective case with stochastic demands. [33] proposed to solve a Multi-Objective
CARP application by performing a memetic algorithm with extended neighbor-
hood search to escape from local optimum solutions. Due to the complexity of
the UCARP and its multi-objective extension, our research activity is focused
on designing an efficient heuristic procedure to efficiently solve the benchmark
UCARP instances in which we want to minimize the three aforementioned objec-
tives. Our heuristic is based on a MUCARP integer programming model defined
by route variables and explained in the following. The multi-objective methodol-
ogy adopted for solving the MUCAP is the so-called ε-constraint method, already
introduced in [8]. The following definitions are needed to describe the MUCARP
model:

Ω = the set of feasible routes;
δ = the longest route cost;
r = a feasible route of Ω;

ar
ij =
{
1 if the required edge (i, j) ∈ R is serviced by route r ∈ Ω;
0 otherwise.

cr = the cost of route r ∈ Ω

Therefore, the MUCARP can be formulated as follows:
MUCARP

Minimize δ,
∑
r∈Ω

crxr,
∑
r∈Ω

xr (1a)

subject to∑
r∈Ω

ar
ijxr = 1, ∀ (i, j) ∈ R (1b)

δ ≥ crxr , ∀ r ∈ Ω (1c)

xr ∈ {0, 1}, ∀ r ∈ Ω (1d)

δ ∈ �+, (1e)

where constraints (1b) ensure that each required edge (i, j) is serviced only by
a route; constraints (1c) impose that, for each selected route r, the makespan
is greater than or equal to its cost. Finally, constraints (1d) and (1e) define the
domain of the decision variables. It is important to point out that a crucial is-
sue in the definition of model (1) is related to the strategy used to populate
the set Ω. This point will be detailed in the following section. The remain-
der of the paper is organized as follows. In Section 2, the ε-constraint method to
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approach the MUCARP is introduced. Section 3 illustrates some preliminary
computational experiments. A summary and a perspective on some implications
of the computational results are given in Section 4.

2 The Solution Approach

The MUCARP studied in this paper is focused on minimizing the total trans-
portation cost (first objective), the cost of the longest route (second objec-
tive) and finally the number of vehicle m. Note that an upper bound on m
may be easily obtained by m = |R| whenever a vehicle services only a re-
quired edge. Therefore, we can assume that m ≤ m ≤ m, or equivalently⌈∑

(i,j)∈R dij/Q
⌉
≤ m ≤ |R|. Consequently, a possible strategy to use differ-

ent numbers of vehicles is to range m from m to m, so that one BUCARP
problem is defined for each value of m (i.e., the number of routes is kept equal
to m), with the aim of minimizing both total transportation cost and makespan.

The solution strategy is described in the following:

– For each m = m, . . . , m execute the following operations:
• Solve the problem: BUCARP

Minimize δ,
∑
r∈Ω

crxr (2a)

subject to∑
r∈Ω

xr = m, (2b)

∑
r∈Ω

ar
ijxr = 1, ∀ (i, j) ∈ R (2c)

δ ≥ crxr, ∀ r ∈ Ω (2d)

xr ∈ {0, 1}, ∀ r ∈ Ω (2e)

δ ∈ �+, (2f)

• Let Fm denote the set of non-dominated BUCARP solutions represent-
ing the Pareto front obtained with m vehicles.

– Merge sets Fm, where m = m, . . . , m, by discarding all the dominated solu-
tions and so obtaining the MUCARP Pareto front.

In the following a brief description of the ε-constraint method is presented. The
aim of the method is to approximate the Pareto set by solving a sequence of
constrained single-objective problems. In the general case, a bj-objective opti-
mization problem (BOP) can be formulated as follows:

minimizef(x) = (f1(x), f2(x))

subject to : x ∈ X
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where X ⊆ �n is the set of feasible solutions (i.e., solution space). The main idea
of the ε-constraint method is to solve a sequence of ε-constraint problems Pk(ε),
that are defined by transforming one of the objectives into a constraint. In par-
ticular, the problems to be solved (i.e., P1(ε2) and P2(ε1)) can be mathematically
represented as follows:

minimize f1(x)
(P1(ε2)) s.t. f2(x) ≤ ε2

x ∈ X

minimize f2(x)
(P2(ε1)) s.t. f1(x) ≤ ε1

x ∈ X

It is possible to show (see, [5]) that the exact Pareto front can be determined
by solving ε-constraint problems, as long as one knows how to modify the value
of ε. This issue in the general case of the multiobjective optimization problems
has been addressed in [25] and [28]. The updating strategy of ε adopted in this
paper has been inspired by the application of the ε-constraint method to the
bi-objective traveling salesman problem with profits proposed by [5], and the
bi-objective covering tour problem as illustrated in [19]. More formally, let OS
denote the objective space, with OS = {f = (f1, f2) : fi = fi(x), ∀x ∈ X, i =
1, 2}, let f I = (f I

1 , f I
2 ) be the ideal point, where f I

1 = minf∈OSf1 and f I
2 =

minf∈OSf2, and fN = (fN
1 , fN

2 ) be the nadir point, where fN
1 = minf∈OS{f1 :

f2 = f I
2 } and fN

2 = minf∈OS{f2 : f1 = f I
1 }. Let F denote the Pareto front and

assuming that the value of ε is decreased by a constant value Δ, then the scheme
of the procedure aimed at defining a sequence of ε-constraint problems based on
a progressive reduction of the parameters ε1 and ε2, can be outlined as follows.

The ε−constraint Method
Step 1. Set i = 1, j = 2 or i = 2, j = 1;
Step 2. Compute the ideal point f I = (f I

1 , f I
2 ) and the nadir point fN =

(fN
1 , fN

2 );
Step 3. Set F = {(f I

i , fN
j )} and εj = fN

j −Δ with Δ = 1;
Step 4. While εj ≥ f I

j perform the following steps:

1. Solve Pi(εj) and add the optimal solution value f∗ = (f∗
i = fi(x∗), f∗

j =
fj(x∗)) to F .

2. Set εj = f∗
j −Δ

Step 5. Remove from set F all the dominated solutions.

In the context of the BUCARP, problems P1(ε2) and P2(ε1) assume the following
form:

P1(ε2)

Minimize
∑
r∈Ω

crxr (3a)
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subject to∑
r∈Ω

xr = m, (3b)

∑
r∈Ω

ar
ijxr = 1, ∀ (i, j) ∈ R (3c)

δ ≥ crxr , ∀ r ∈ Ω (3d)

δ ≤ ε2, (3e)

xr ∈ {0, 1}, ∀ r ∈ Ω (3f)

δ ∈ �+, (3g)

P2(ε1)

Minimize δ (4a)

subject to∑
r∈Ω

xr = m, (4b)

∑
r∈Ω

ar
ijxr = 1, ∀ (i, j) ∈ R (4c)

δ ≥ crxr , ∀ r ∈ Ω (4d)∑
r∈Ω

crxr ≤ ε1, (4e)

xr ∈ {0, 1}, ∀ r ∈ Ω (4f)

δ ∈ �+, (4g)

As mentioned above, an important issue to be addressed concerns the definition
of the set Ω. Set Ω contains all the feasible solutions generated by the path scan-
ning (PS) approach based on the ellipse rule, and proposed by Santos et al. ([29]).
Moreover, for all the instances not optimally solved, in terms of total transporta-
tion cost, the solutions returned from the deterministic Tabu Search Algorithm
(DTSA) presented in [7] and provided by the authors are inserted into Ω.

3 Preliminary Computational Results

The proposed approach has been coded in JAVA (version 1.5). The ε−constraint
problems have been solved by using ILOG CPLEX library, release 10.1. The
computational experiments have been carried on an Pentium, supported by In-
tel Xeon processor technology (X3220) and clocked at 2.4 GHz with four Gbyte



220 L. Grandinetti et al.

Table 1. Computational Results obtained on the First group

Problem E1 E2 ELacomme
1 ELacomme

2 ηl η
C δ uproutes C δ uproutes C δ C δ

First Class
dea7 325 69 5 389 59 7 325 68 381 61 3 4
dea17 58 17 4 64 11 6 58 15 60 13 2 4
dea19 91 19 5 94 14 6 91 15 91 15 1 2

Third Class
dea2 339 69 6 395 59 7 339 69 395 59 3 4
dea4 287 78 4 350 64 6 287 74 350 64 3 5
dea12 275 71 4 352 59 7 275 71 297 54 4 5
dea14 458 104 7 602 93 8 458 97 547 93 4 6
dea15 542 224 7 544 128 7 544 128 544 128 1 2
dea18 127 27 5 137 18 8 127 27 135 19 4 4

Fourth Class
dea21 55 21 3 65 18 4 55 21 63 17 2 2

Fifth Class
dea1 316 74 5 337 63 6 316 74 337 63 3 3
dea3 275 65 5 339 59 6 275 65 339 59 4 4
dea5 377 78 6 447 64 8 377 78 447 64 6 6
dea6 298 80 5 351 64 6 298 75 351 64 4 4
dea16 100 21 5 112 17 7 100 21 112 17 3 3
dea22 121 36 5 131 20 7 121 36 131 20 5 3

RAM. In literature, three sets of standard UCARP instances exist for generally
assessing the behavior of solution approaches for the single-objective version of
the problem. The first set consists of 23 problems introduced in [9], the second set
corresponds to 34 test problems introduced in [3], and the last set is composed
by 24 benchmark instances presented in [7]. The latter instances were extracted
from [27]. These instances are referred to as the DeArmon (Dea), Benavent (Val)
and Eglese (Egl) instances, respectively. All these benchmarks are downloaded
from the internet, at address http : //www.uv.es/belengue/carp.html. Prelimi-
nary results are showed below. Three subsets of benchmark instances have been
used to test the efficiency of the proposed approach. Each group is composed by
test problems selected on the basis of cardinality of E:

– First Group. It collects very simple benchmark instances defined by graphs
with a small number of edges (Dea1, . . . , Dea7, Dea12, Dea14, . . . , Dea19,
Dea21 and Dea22), more precisely 11 ≤ |E| ≤ 28.

– Second Group. It collects various DeArmon and Benavent instances with a
large number of edges (Dea20, Dea23, Val2c, Val3c); more precisely 33 ≤
|E| ≤ 36.

– Third Group. It collects DeArmon and Benavent benchmark instances with
a quite large number of edges (Dea10, Dea11, Dea13, Dea24, Dea25, Val1a,
Val1b, Val1c, Val4d, Val6c, Val7c); more precisely |E| > 36.

Computational results obtained for each group are compared to the solutions
presented in [24]. The number of vehicles is ranged in the interval [m, �m/2�].
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Fig. 1. Pareto Front for the instance Dearmon 14

Fig. 2. Pareto Front for the instance Dearmon 5

Set Ω is populated by inserting feasible solutions detected by PS and DTSA
(kindly provided by the authors). Results are presented below according to the
following classification:

– the first class is defined by the BUCARP solutions showing that the proposed
approach outperforms the heuristic algorithm presented in [24] in terms of
makespan and number of Pareto Front solutions;

– the second class groups the BUCARP solutions in which the makespan and
the total cost are better than in the solutions presented in [24], while the
number of Pareto Front solutions is equal to those in the solutions found
in [24];

– the third class is defined only by solutions where the number of Pareto Front
points is better than in the solutions presented in [24];

– the fourth class contains solutions that are not dominated by solutions pro-
posed in [24];

– the last class collects solutions where the makespan and the number of Pareto
Front solutions are equal to those in the solutions presented in [24].
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Table 2. Computational Results obtained on the Second Group

Problem E1 E2 ELacomme
1 ELacomme

2 ηl η
C δ uproutes C δ uproutes C δ C δ

First Class
dea23 156 28 7 174 18 10 156 30 160 22 4 5

Second Class
val2c 457 71 8 457 71 8 463 71 463 71 1 1

Third Class
val3c 138 28 7 141 27 8 138 27 138 27 1 3

Fourth Class
dea20 164 33 5 172 29 6 164 33 178 27 3 2

Fig. 3. Pareto Front for the instance Dearmon 23

Table 3. Computational Results obtained on the Third Group

Problem E1 E2 ELacomme
1 ELacomme

2 ηl η
C δ uproutes C δ uproutes C δ C δ

First Class
val1b 173 65 3 410 40 16 173 61 204 42 6 7

Second Class
val7c 334 50 9 410 39 11 335 50 352 40 5 5

Third Class
val1a 173 87 2 173 81 3 173 58 173 58 1 2
val1c 245 49 9 269 40 9 245 41 248 40 2 4
val4d 530 90 9 624 80 9 539 80 539 80 1 3

Fourth Class
dea13 395 121 5 414 85 5 395 81 421 64 5 5
dea24 200 25 8 200 25 8 200 26 207 20 4 1
dea25 237 28 11 244 25 11 235 23 241 20 4 4

Fifth Class
dea10 350 49 10 390 38 11 350 44 390 38 4 4
dea11 303 51 10 328 37 10 309 43 333 37 3 3
val6c 317 56 10 379 45 10 317 55 329 45 5 5
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Fig. 4. Pareto Front for the instance Val7c

In the following tables, we report: the total transportation cost (first objective):
C; the number of Pareto Front solutions found by [24], named by ηl, and the
number of Pareto Front solutions found by the ε-constraint method and rep-
resented by η; the two extremes points of the Pareto domain found by [24],
and referred to as ELacomme

1 , ELacomme
2 ; the two extremes points of our Pareto

domain, referred to as E1, E2.
Computational results show the potentiality of the proposed approach. The

ε−constraint Method developed for the MUCARP is able to reproduce the Pareto
front solutions found by [24] for a quite large number of benchmark instances.
For a small number of instances it improves the Pareto front obtained by [24],
and shows a promising behavior for the remaining instances. We are confident
we achieve good quality solutions, by improving the set Ω of feasible routes se-
lected by the ε−constraint model. Figures 1-4 represent the two-objective Pareto
frontier for some instances. Each point represents the makespan and the total cost
obtained by using a number of vehicles depicted near the point. They show a good
distribution of non-dominated solutions along the Pareto front, by confirming the
goodness of the proposed methodology.

4 Conclusions

In this work the multiobjective undirected capacitated arc routing problem has
been addressed. In particular, a procedure to determine an approximation of the
Pareto front, when the total cost, the makespan and the fleet size are minimized,
is proposed and evaluated on a set of benchmarking instances. The computa-
tional results have shown that the proposed approach outperforms the genetic
algorithm presented in [24], that represents the state of art approach to address
the problem under investigation. Future efforts will be focused on developing an
optimization-based heuristic to generate feasible routes diversifying and enlarg-
ing the search space of the MUCARP, in order to address the model to select
the best solutions for each of the three objectives.
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Abstract. Resource leveling is a variant of resource-constrained project
scheduling in which a non-regular objective function, the resource avail-
ability cost, is to be minimized. We present a branch-and-price approach
together with a new heuristic to solve the more general turnaround
scheduling problem. Besides precedence and resource constraints, also
availability periods and multiple modes per job have to be taken into ac-
count. Time-indexed mixed integer programming formulations for similar
problems quite often fail already on instances with only 30 jobs, depend-
ing on the network complexity and the total freedom of arranging jobs. A
reason is the typically very weak linear programming relaxation. In par-
ticular for larger instances, our approach gives tighter bounds, enabling
us to optimally solve instances with 50 multi-mode jobs.

1 Introduction

Motivated by an industrial application from chemical engineering, we study a
resource leveling problem, which was recently introduced as turnaround schedul-
ing problem [MMS10]. In turnaround scheduling, for inspection and renewal of
parts, plants are shut down, disassembled, and rebuilt, so there is a partial or-
dering of jobs to be done. The time horizon and the number of workers hired
for each job determine production downtime and working cost, the two of which
are conflicting in a time-cost tradeoff manner. Once a time horizon is fixed, the
problem turns into a resource leveling problem, on which we focus in this paper.

Different types of renewable resources are given, each associated with avail-
ability periods which can be thought of as working shifts. Besides the actual
scheduling of jobs, the task is to decide how many workers need to be assigned
to each job such that working costs are minimized, that is, we must determine a
minimum amount of resources needed. We break down the granularity of plan-
ning, so that each job needs exactly one resource, possibly several units of which.

Heuristics, rather than exact methods, are prominent for solving such complex
scheduling problems. This is also due to the fact that mixed integer programming
formulations for scheduling problems in general, and for ours in particular, often
yield very weak bounds from the linear programming relaxation.

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 226–238, 2010.
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Our Contribution. We approach the turnaround scheduling from both ends.
Besides presenting a heuristic which improves on the results reported in [MMS10],
we formulate a mixed integer program which is based on working shifts, and thus
has an exponential number of variables. A branch-and-price algorithm to solve
this model computes optimal schedules for instances with up to 50 jobs, which is
a large number in this area of scheduling. In particular the derived lower bounds
demonstrate that our heuristic solutions are mostly near the optimum or at least
near the best solution found by exact methods within half an hour.

2 Formal Problem Description

For a recent survey on resource-constrained project scheduling (RCPSP) we
refer to [HB09]. We are given a set J of non-preemptable jobs and a set R of
renewable resources. Precedence constraints between jobs are given as an acyclic
digraph G = (J , E) with ij ∈ E iff job i has to be finished before job j starts.
Each job j may be run in exactly one out of a setMj of modes. Processing job j
in mode m ∈ Mj takes pjm time units and requires rjmk units of resource k ∈ R.
Due to a fine granularity of planning, in our setting each job needs exactly one
resource for execution, so we write rjm if the resource is clear from the context.

All jobs have to finish before T , the time horizon. Each resource k ∈ R has a
set Ik := {[a1, b1], . . . , [aki , bki ]} of ki ∈ N availability periods, also called shifts,
where a1 < b1 < . . . < aki < bki . A job requiring resource k can only be executed
during a time interval I ∈ Ik, see Fig. 1. We use a parameter δkt which is one if
resource k is available at time t, i.e., t ∈ I for some I ∈ Ik, and zero otherwise.
Each resource k ∈ R is associated with a per unit cost ck. For each resource k
we have to determine the available capacity Rk such that at any time the total
resource requirement of all the jobs does not exceed Rk.

We denote by S = (S1, . . . , Sn) the vector of start times of jobs, and by M =
(m1, . . . , mn) the vector of modes in which jobs are executed. For a given sched-
ule (S, M), denote by A(S, M, t) :=

{
j ∈ J : Sj ≤ t < Sj + pjmj

}
the set of jobs

active at time t. The amount rk(S, M, t) :=
∑

j∈A(S,M,t) rjmjk of resource k used
at time t must never exceed the provided capacity. Thus, we obtain resource con-
straints with calendars: rk(S, M, t) ≤ Rk · δkt, ∀k ∈ R, ∀t. Besides this resource
feasibility a feasible schedule must obey precedence feasibility, i.e., Si + pimi ≤ Sj

for all ij ∈ E.

R2

R1

Fig. 1. Schematic representation of turnaround scheduling with two resources
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Following the extended α|β|γ-classification scheme [BDM+99], we consider
MPSm,∞|prec, shifts|∑ ck ·max rk(S, M, t) for multi-mode project scheduling
with m renewable resources of unbounded capacity, with precedence constraints
and working shifts, with the objective to minimize the total resource availability
cost, i.e., minimizing

∑
k∈R ck ·Rk.

Related Work. Turnaround scheduling comprises project scheduling with cal-
endars, multi-mode scheduling, and resource leveling; see [MMS10] for an indus-
trial application. The zoo of scheduling problems is large, and we give an idea
only of the most related problems. Makespan minimization is a classical schedu-
ling goal. Lower bound schemes for this objective are presented in [BK00], where
column generation is employed to solve a relaxed problem, allowing preemption
and precedence constraints formulated as disjunctions. A variable represents a
set of jobs selected to run at a certain point in time. For the case of gener-
alized precedence constraints, [BC09] derive lower bounds by relaxing resource
constraints for jobs which are not precedence related. This allows a dynamic
programming approach on a modified activity-on-nodes network. In contrast to
this regular objective function, i.e., being non-decreasing in the completion time
of the jobs, a measure of the variation of resource utilization, e.g., f(rk(S, t)) is
not regular; see e.g., [NSZ03].

The resource leveling problem with single-modes per job, which is denoted
by PS|temp|∑ ck max rk(S, t) with general temporal constraints has been con-
sidered earlier under the name resource investment problem. The special case
without generalized precedence constraints PS|prec|∑ ck max rk(S, t) has been
considered e.g., by [Dem95] and [Möh84]. They competed on the same instance
set which contained about 16 jobs and four resources, with a time horizon be-
tween 47 and 70. Further computational studies were done containing 15 to 20
jobs and four resources. In the same setting, [DK01] propose lower bound com-
putations, one based on Lagrangian relaxation, and one based on a column gen-
eration procedure, where variables represent schedules as in our approach. Small
job sizes with 20 jobs can be handled; but for 30 jobs the Lagrangian relaxation
wins against the column generation approach.

Multi-mode jobs are a key feature of turnaround scheduling. Such problems
of the form MPS|prec|Cmax have been investigated with renewable and non-
renewable resources, with limited capacity, and makespan minimization, known
as multi-mode RCPSP, see e.g., [DH02, Har01].

Previous algorithms have also taken calendars into account. Scheduling prob-
lems with fixed processing times and calendars, but without resource capacities
were considered by [Zha92] who provides an exact pseudo-polynomial time al-
gorithm (turned into a polynomial one by [FNS01]) for computing earliest and
latest start times for preemptable as well as non-preemptable jobs.

For benchmarking, different problem sets are available in the PSPLib [PSP],
where several variants of the RCPSP and of resource investment problems can
be found. For the RCPSP single-mode case, test sets containing 60 jobs could
not be solved in total by a vast number of researchers. In the multi-mode case
instances with 30 jobs are not solved yet. For the resource investment problem,
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test sets containing 10, 20, or 30 jobs are available, but they do not contain
working shifts, are in single-mode or include time-lags. On the other hand a job
may need more than one resource. Even though none of these problems is suited
for a direct comparison, they are similar to ours, and the mentioned instances
inspired us when generating our own test set (see Sect. 5).

3 Integer Programming Formulations

For solving large-scale scheduling problems, mixed integer programming (MIP) is
not considered as primary choice since the linear programming (LP) relaxations
may be weak. Huge numbers of variables and constraints may result in high
computation times and memory failures for solving only the LP relaxation. For
the remainder of the paper, we need to assume the reader be familiar with MIP
solving [Ach09] and branch-and-price [DL05].

3.1 Obstacles of Integer Programming for RCPSP

One of the most prominent models for the RCPSP was introduced by [PWW69].
Their formulation adapted to resource leveling looks as follows:

min
∑

k

ck · R̄k (1)

s.t.
∑

t

xjt = 1 ∀ j ∈ J (2)

∑
t

t · xjt = Sj ∀ j ∈ J (3)

Si + pi ≤ Sj ∀ ij ∈ E (4)

∑
j∈J

t∑
τ=t−pj+1

τ≥0

rjk · xjτ ≤ R̄k ∀ k ∀ t (5)

xjt ∈ {0, 1} ∀ j ∀ t (6)

Binary variables xjt model whether job j starts at time t or not. Each job j
must start exactly once (2). The start times Sj are linked to the binary vari-
ables xjt in (3). Also precedence constraints (4), and resource capacity con-
straints (5) are linear. The integer program decides on the resource capacities R̄k

for each resource k, such that the total resource availability cost is minimized.
Depending on several factors, such as network complexity (the density of G) or

the time discretization considered, this formulation may yield good or poor lower
bounds. We show an example LP solution, where even an optimal assignment of
the start time variables Sj does not yield an optimum solution value.
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S1 = 3

S2 = 3

x1,0 = 0.5

x1,4 = 0.5

x2,2 = 0.5

x2,6 = 0.5

x1,2 = 0.5

x1,4 = 0.5

x2,0 = 0.5

x2,6 = 0.5

S1 = 2 S2 = 4

(a) (b)

0 4 8

80 0 8

840

4 4

Fig. 2. Two schedules where primal and dual bounds do not match, even though in (b)
the start times are optimal

Example. In Fig. 2 two jobs are given, each with processing time 2 and resource
demand 2. The integrality gap may be large depending on the jobs’ parameters.
In Fig. 2(a) the two jobs are running in parallel using as many resource units
as possible, according to their start times S1 = S2 = 3, but a corresponding LP
solution may only yield a lower bound of 1 since binary variables are maximally
fractional. Even for an optimal start time solution S1 = 2 and S2 = 4, as in
Fig. 2(b), the dual bound may not be tight. The convex combination (3) of start
times of a job which are far apart from each other to form Sj gives us irrelevant
information about the schedule and we lose all structure in the model.

Furthermore, branching on the binary variables leads to a confusing result. In
Fig. 2(b), when branching on x1,0, job 1 which starts at time S1 = 2 now would
be scheduled at t = 0 or not. Thus, a more sophisticated branching rule that is
aware of the linking of continuous variables Sj and binary variables xjt and that
prefers branching on the start time variables Sj is desirable. Therefore, natural
branching candidates are start time variables the corresponding binary variables
of which are fractional. This conforms branch-and-price theory.

3.2 Master Problem: A Model Based on Shift Configurations

In order to reduce the effects of “losing the timing information” just described,
we propose a model which exploits the problem structure by decomposing the
time horizon. Based on the calendar for each resource type, every working shift
represents a smaller subproblem for which sub-schedules are generated indepen-
dently. These sub-schedules are linked by constraints ensuring that exactly one
is chosen for each working shift. For each such sub-schedule, or configuration, we
introduce a binary variable xξ which indicates whether configuration ξ is chosen.
We abbreviate j ∈ ξ to express that job j is executed in the shift corresponding
to ξ. Every configuration ξ has an associated resource capacity Rξ and start
times Sjξ and completion times Cjξ for each j ∈ ξ. Note that the mode of each
job is determined by the start and completion times. The model reads:
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min
∑

k

ck · R̄k (7)

s.t. Ci ≤ Sj ∀ ij ∈ E (8)

Sj =
∑

ξ:j∈ξ

Sjξxξ ∀j ∈ J (9)

Cj =
∑

ξ:j∈ξ

Cjξxξ ∀j ∈ J (10)

∑
ξ:ξ∈I

Rξxξ ≤ R̄k ∀k ∀ I ∈ Ik (11)

∑
ξ:j∈ξ

xξ = 1 ∀j ∈ J (12)

xξ ∈ {0, 1} ∀ξ (13)

Each job is executed in exactly one configuration by (12). The start and com-
pletion times for each job are computed from the chosen configurations via the
linking constraints (9) and (10). Constraints (8) model the precedence relations
between jobs. These could be directly expressed by substituting Sj and Cj from
the linking constraints, but (9) and (10) are helpful in the upcoming pricing
problem where they penalize or encourage certain start or completion times of
jobs. Constraints (11) link resource consumptions to the capacities.

3.3 Column Generation: Pricing Problem

Since the number of feasible configurations is exponential in the number of jobs,
we solve the relaxation by column generation embedded into a branch-and-bound
scheme [DL05]. By defining dual variables sj , cj , ρ, πj for constraints (9), (10),
(11), and (12), respectively, we obtain a pricing problem for each shift I.

max
∑

j

πjXj−
∑

j

cjCj +
∑

j

sjSj − ρR

s.t. Xj =
∑
m,t

xjmt ∀j ∈ J (14)

Sj =
∑
m,t

txjmt ∀j ∈ J (15)

Cj =
∑
m,t

(t + pjm)xjmt ∀j ∈ J (16)

∑
j∈J

∑
m

t∑
τ=t−pjm+1

t≥0

rjmxjmτ ≤ R ∀t ∈ I (17)

xjmt ∈ {0, 1} ∀j ∈ J, m, t (18)
Xj ∈ {0, 1} ∀j ∈ J (19)
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This is a scheduling problem with non-regular objective function where a new
configuration ξ for a specific shift I is generated. It must be decided, see con-
straint (14), whether a job corresponding to the binary decision variable Xj

is running in this shift or not, and if so, which mode m ∈ Mj is used. Con-
straints (15) and (16) fix the start and completion times of jobs according to the
chosen mode assignment. Resource capacity constraints (17) have to be satisfied
such that the total profit is maximized. The objective value is increased by πj

if a job is taken into the configuration and by multiples of sj and cj if it has
late start times and early completion times. With each unit increase of resource
capacity the objective value decreases by a factor of ρ.

The pricing problem is NP-hard as it contains a leveling problem. This can
be seen when all πj are set to a value large enough to ensure that each job must
be scheduled, and by setting sj and cj to zero for all j.

4 Branch-and-Price Algorithm

A solution to the original problem is given by the resource capacities Rk, and an
assignment of start times Sj and completion times Cj for each job j. The mode
is given by the closest resource allocation, such that pjmj ≤ Cj − Sj . We refer
to Rk, Sj , Cj as original variables since these correspond to original decisions.

The variables of the master problem xξ that symbolize configurations of dif-
ferent shifts are generated by the pricing problem and whenever a heuristic finds
a feasible solution. We refer to these variables as master variables.

4.1 Branching Scheme

Experiments revealed as branching order Rk, Sj , and then Cj . Start and com-
pletion time variables are considered as branching candidates, only if any corre-
sponding binary configuration variable is fractional. After the resource capacities
are fixed in the search tree, a start time variable Sj with LP solution value S�

j

is selected. Completion times are handled accordingly. The node is split into
two subnodes with Sj ≤ �S�

j �, and Sj ≥ �S�
j �, respectively. This scheme is used

together with some propagation rules to overcome the smeared LP solutions and
to create a more balanced branching tree.

4.2 Propagation

For scheduling problems a large variety of propagation algorithms is known.
Edge-finding is a constraint programming technique concerned with deriving
better bounds for earliest start and latest end times of jobs using energy argu-
ments. The first correct algorithm, proposed in [MVH08] can be adapted to the
multi-mode case, by using the minimum energy of all modes for each job, which
naturally seems to give weaker bounds. This is balanced by the fact that jobs
are not preemptive, may not cross shift-bounds and obey precedence constraints
which enables further propagation of start and completion times.

Furthermore, propagation serves the technical purpose of communicating the
branching decisions to the pricing problem.
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4.3 Primal Bounds

For the master problem rounding heuristics for LP solutions are not promising,
since values of binary variables may be smeared over the time horizon as in
Fig. 2. To improve upper bounds we extended a leveling heuristic from [MMS10]
and implemented a generic list scheduling algorithm which is used as a stand
alone heuristic during the branching process as well as in the leveling procedure.

Ready scheduling heuristic. The general idea of ready scheduling is similar
to that of list scheduling with jobs sorted by earliest start times. Jobs are divided
according to the resource they need, and scheduled as soon as their predeces-
sors are completed, if possible, thus increasing the chance to meet a given time
horizon. We say a job is “ready” if all its predecessors are scheduled.

For each resource k we maintain a set of jobs Jk = (jk1 , .., jk|Jk|) that use this
resource and have no unscheduled predecessors, together with a lower bound tk
on the next feasible start FSj of any job j ∈ Jk. If Jk is empty, we set tk to ∞.

Algorithm 1. Ready Scheduling

Input: Set of jobs J to be scheduled and max. total duration T
Output: Job start times and modes, or that no solution was found.
for k ∈ R do1

Let Jk ⊂ J be the set of jobs that use resource k, and are ready.2

Set tk to minj∈Jk
FSj .3

Set t := 04

while t < T do5

� := argmink tk, and t := tl .6

m := min(s, |J�|) with s a small constant and I := {j�1 , .., j�m}.7

Schedule jobs in I such that maxi∈I Ci is minimal. .8

Add all successors of jobs in I that become ready to their respective Jk.9

J� := J� \ I10

Update tk for all changed Jk as in Step 1.11

The heuristic loops over t, which increases to the minimal tk in each iteration.
A subset I ⊂ Jk of constant size s (we chose s = 6 in our computational studies)
is scheduled so that the overall completion time is kept small (line 1). This is
accomplished by trying all mode combinations for I recursively, and bounding
recursion using the currently shortest feasible solution found in this way. If s
is small, this can be done quickly. Finally, for each scheduled job in I, those
successors which become ready, are added to the corresponding set Jk, each tk
is updated, and the next iteration begins. This process continues until all jobs
are scheduled, or a makespan violation occurs.

Resource Leveling heuristic. We now describe the resource leveling heuris-
tic by [MMS10], and how the ready scheduler ties into the framework of the
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leveling procedure. This heuristic uses a binary search on the capacity bounds of
the resources, while greedily selecting the resource whose upper bound is to be
improved in each iteration. This selection is based on a parameter μk, measuring
how badly a resource k is leveled.

One iteration of the binary search consists of trying to find a feasible schedule
for the current bounds. These bounds for the selected resource k� are set to
(UBk� + LBk�)/2, UBk� and LBk� being the upper and lower bounds on the
capacity of resource k�, while all other resource bounds remain fixed. We try
list scheduling, and on failure fall back to ready scheduling to prove the bounds
feasible. If neither ready scheduling nor list scheduling yield a feasible schedule,
we consider the current upper bound for the selected resource as a new lower
bound, and the next iteration begins.

Algorithm 2. Resource Leveling

Input: Set R of resource types to be leveled, project duration T .
Output: Leveled resource utilization Rk for each resource type k ∈ R.
Set LBk and UBk to initial values for each resource type k ∈ R.1

while ∃ k ∈ R : LBk < UBk do2

Choose resource type k� ∈ R with LBk� < UBk� and μk� maximum.3

Perform binary search using list scheduling and ready scheduling in4

order to decrease the capacity bounds of k�.

LP solution and ready scheduling heuristics. In each node of the branch-
and-bound tree these heuristics set the maximal capacity of each resource to
the LP solution value rounded up, and fix the earliest and latest start and
completion times for each job to the global bounds of the corresponding variables.
We perform list scheduling using the LP solution with jobs sorted by earliest
completion times, and each job’s mode is chosen as the one matching Ci − Si

best. If no feasible solution is obtained we try ready scheduling. Both of these
heuristics produce solutions that are not necessarily feasible w.r.t. the current
primal bound, since resource capacities are rounded up. Regardless of this, if a
feasible schedule is found new columns representing that schedule are added to
the master problem, in order to reduce the total number of pricing steps.

5 Computational Study

5.1 Experimental Setup

As there is no publicly available set of instances reflecting the precise setup of our
problem, we needed to compile our own. The PSPLib [PSP] guided our design.
Our set is composed of three sets of job scenarios, with 10 instances each. Each
job can run in 3 different modes, using 1 to 3 units of its resource, with durations
ranging from 5 to 12. In the first scenario instances have 30 jobs and 60 edges,
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Fig. 3. Calendar configurations C1–C3 (top) and C4 and C5 (bottom) used in our test
set. Black bars symbolize the temporal location of shifts.

and in the second (third) scenario instances contain 50 jobs with 70 (100) edges,
respectively. The maximal width W of the precedence graph is 5 for scenario one,
and 6 for the other two. These width bounds are achieved by constructing W
chains of length |J |/W , and randomly choosing the remaining edges.

There are two different resources which come in 5 calendar configurations,
called C1 to C5. These calendars are described schematically in Fig. 3. In the
top row, calendars C1 to C3 are shown. In each of these, the length of the
shifts is 60. In C1 and C3 shift breaks are 60 units long, in C2 only 20. Both
resources are available at the same time in C1, while in C3 availability periods
are complementary. In C2 the second resource is offset at 40 units. Calendars C4
and C5 show shifts with length 20 and breaks having length 5. In C5 one of
the resources is offset by 10. All scenarios are tested with each of the 5 different
calendars. Time horizons were chosen by computing a minimal and maximal
makespan heuristically using simple list scheduling, and averaging these.

Our algorithm was tested on an Intel 2.66 GHz processor, and each test run
had a time-limit of 30 minutes. The implementation uses SCIP 1.2.0.6 [SCI], to
perform the branch-and-bound process, with custom plug-ins for the heuristics,
branching rules, and the pricer. For the standard MIP (1)–(6) we used CPLEX
12 with quad-core parallelization on a stronger machine.

Our empirical results can be seen in Tabs. 1 and 2. These tables show four
columns per algorithm. The first column contains the average time in seconds to
solve the instance with a limit of 1800. The second and third columns represent
the number of times the algorithm reached the best known lower and upper
bounds over all algorithms, denoted by “LB” and “UB.” The fourth column is
the number of timeouts, marked by “†.” An additional last column “RL” per
table shows the number of times the resource leveling heuristic reached the best
known upper bound for each set of instances. The rows in each table represent
the calendar configurations used.

Table 1. Comparison of the BP approach with the standard MIP (|J | = 30)

Branch-and-Price B&P w/o heur. CPLEX RL

Calendar time LB UB † time LB UB † time LB UB † UB

C1 446 9 9 1 435 10 10 0 1350 6 3 7 6
C2 326 9 10 1 360 9 9 1 435 9 9 2 5
C3 9 10 10 0 11 10 10 0 1 10 10 0 9
C4 81 10 10 0 81 10 10 0 494 9 10 1 8
C5 72 10 10 0 146 10 10 0 1631 3 4 7 6
Total 187 48 49 2 207 49 49 1 782 37 36 17 34
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Table 2. Comparison of the BP approach with the standard MIP (|J | = 50)

|J | = 50, |E| = 70

Branch-and-Price CPLEX RL

Calendar time LB UB † time LB UB † UB

C1 1660 10 9 7 1800 6 1 10 7
C2 1662 4 7 8 1361 7 6 7 5
C3 27 10 10 0 4 10 10 0 10
C4 719 10 10 2 1800 6 0 10 5
C5 1293 8 8 5 1335 7 6 7 5
Total 1072 42 44 22 1260 36 23 34 32

|J | = 50, |E| = 100

Calendar time LB UB † time LB UB † UB

C1 1137 9 10 3 1800 3 0 10 7
C2 1224 6 9 5 1622 5 4 9 6
C3 9 10 10 0 2 10 10 0 9
C4 254 10 10 0 1800 1 0 10 8
C5 365 10 10 0 1451 5 5 6 6
Total 598 45 49 8 1335 24 19 35 36

In the first table, three different algorithms are compared on the first scenario.
“Branch-and-price” refers to the general scheme presented here, while “B&P w/o
heur.” does not use the LP solution or ready scheduling heuristics during the
branch-and-bound process. However, it does start with the solution found by the
resource leveling heuristic. The “CPLEX” columns correspond to the results of
the standard MIP (1)–(6). The “Branch-and-price” algorithm, as well as CPLEX
and the resource leveling heuristic, are tested on the second and third scenarios
in Tab. 2.

Impact of calendars. Obviously, the calendar choice has a big influence on
running time. For 30 jobs we observe that with the one hour shifts the makespan
generally increases as the resources overlap less. Interestingly, for the short shifts
the makespan increases with more overlap (C4 instances generally have larger
makespan than those in C5), yet these instances can nevertheless be solved faster.
The “hardness” of a problem does not solely depend on the makespan though,
as CPLEX shows the worst behavior on instances with 50 jobs and calendars C1
and C4, where the shifts are overlapping completely. This is not the case for the
branch-and-price algorithm, which actually performs much better on C4 and C1,
see also Tab. 2. All approaches easily solve instances using C3, because many
jobs have a successor of a different resource, introducing long waiting times.

Usefulness of the heuristics. Our heuristics exploit problem specific knowledge
during the branch-and-bound process, however, this does not appear to have a
big impact on the number of problems solved, as can be seen in Tab. 1. Still, the
average solving time decreases noticeably across all instances with the heuristics
enabled. The running times of all our heuristics are negligible, and in contrast
to the exact methods, the resource leveling heuristic is able to handle instances
of practically relevant size, while still achieving the best found upper bound in
68% of all instances.
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Influence of the network complexity. When the number |E| of edges in G
is increased, the makespan typically increases as well, so that the time-indexed
MIP formulation grows fairly large and CPLEX generally fares better on the
instances with less edges. For 50 jobs and 70 edges CPLEX finds the best lower
bound 36 times and the best upper bound 23 times, in contrast to 24 best lower
and 19 best upper bounds for 100 edges (Tab. 2). In contrast the branch-and-
price algorithm does not suffer from this, and the computation times actually
decrease on the instances with more edges.

As expected, CPLEX has considerable problems as the instances get larger.
One of the main features of the turnaround scheduling problem is the presence of
availability periods, which motivated this branch-and-price approach. It achieves
the best results across all shift configurations, in the worst case 88% of the best
upper bounds are found. In most cases lower bounds computed by CPLEX are
of poor quality. Proving optimality succeeded in 80% of cases for branch-and-
price , whereas CPLEX only manages 43%. Summarizing, our branch-and-price
algorithm significantly outperforms the standard time-indexed MIP formulation
solved by the state-of-the-art solver CPLEX on large instances.

6 Summary

Our own experiments and instance sizes as reported e.g., in [DK01] or [PSP]
for scheduling problems of comparable complexity give good reasons to believe
that even today instances with only 30 jobs are hard to solve to optimality. We
are encouraged to further investigate branch-and-price algorithms for this type
of problem, as we do not only report better results on similarly sized instances,
but are also able to optimally solve some instances with up to 50 jobs.
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Abstract. We report on experiments with turning the branch-price-
and-cut framework SCIP into a generic branch-price-and-cut solver. That
is, given a mixed integer program (MIP), our code performs a Dantzig-
Wolfe decomposition according to the user’s specification, and solves the
resulting re-formulation via branch-and-price. We take care of the column
generation subproblems which are solved as MIPs themselves, branch
and cut on the original variables (when this is appropriate), aggregate
identical subproblems, etc. The charm of building on a well-maintained
framework lies in avoiding to re-implement state-of-the-art MIP solving
features like pseudo-cost branching, preprocessing, domain propagation,
primal heuristics, cutting plane separation etc.

1 Situation

Over the last 25 years, branch-and-price algorithms developed into a very power-
ful tool to optimally solve huge and extremely difficult combinatorial optimiza-
tion problems. Their success relies on exploiting problem structures in an integer
program (via a decomposition or re-formulation) to which standard branch-and-
cut algorithms are essentially “blind.” While both, commercial and open-source
solvers feature very effective generic implementations of branch-and-cut, almost
every application of branch-and-price is ad hoc, that is, problem specific. Even
though the situation improved considerably due to the availability of open-source
branch-price-and-cut frameworks, implementations are often started from scratch
or from previous projects. In addition, even though all concepts are reasonably
easy to understand, experience and expert knowledge is still indispensable to get
most out of the approach. In order to easily test new ideas, while using the current
state-of-the-art, it would be much more satisfactory to have a generic implemen-
tation. This—ideally—performs a decomposition if this is likely to be promising,
and takes care of branch-and-price (not to forget: -and-cut), without the user’s
notice and interaction—just as it is the case for generic branch-and-cut today. A
future solver could terminate with the message

Integer optimal solution found (1209.71 sec., 2 threads)

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 239–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Mixed integer rounding cuts applied: 65
Dantzig-Wolfe decomposition performed (3 subproblems)

While one may be sceptical about such a complete automatism (it requires at
least detecting decomposable structures, and deciding how to best exploit them),
a publicly available generic implementation which requires only a little user
interaction is rather a matter of months than years from now. Our work is a
contribution to this aim.

Related Work. There are several frameworks which support the implementa-
tion of branch-and-price algorithms like ABACUS [7], BCP [13], and MINTO [9], to
name only a few. We restrict attention to (non-commercial) codes which perform
a Dantzig-Wolfe decomposition of a general (mixed) integer program, and handle
the resulting column generation subproblems in a generic way. François Vander-
beck has been developing important features [16,18,19,20] for his own implemen-
tation called BaPCod [17] which is a “prototype code that solves mixed integer
programs (MIPs) by application of a Dantzig-Wolfe reformulation technique.”
Also the COIN-OR initiative (www.coin-or.org) hosts a generic decomposition
code, called DIP [12] (formerly known as DECOMP), which is a “framework for
implementing a variety of decomposition-based branch-and-bound algorithms
for solving mixed integer linear programs” as described in [11]. The constraint
programming G12 project develops “user-controlled mappings from a high-level
model to different solving methods,” one of which is branch-and-price [10]. As
of this writing, among these projects (including ours), only DIP is open to the
public (as trunk development, there is no release yet).

Our Approach. We witness a development towards generic, re-usable imple-
mentations, however, in a sense, again started from scratch each time, at least in
terms of standard MIP techniques like preprocessing and tree management etc.
This is why, in this paper, we follow the different approach in complementing an
existing, well-accepted, and well-maintained MIP solver, namely SCIP [1]. The
rationale behind this is, of course, to have the full range of MIP tools available in
one solver one future day, including a generic and automatic decomposition; so
we found it reasonable to start from the state-of-the-art in non-commercial MIP
solving [8]. The implementation is in such a way that it benefits from improve-
ments of the solver itself, e.g., when better branching or node selection rules
become available, preprocessing or propagation are getting more effective.

2 Decomposition of Integer Programs

We wish to solve an MIP, which is called the original (or compact) problem,

min{ctx | Ax ≥ b, Dx ≥ d, x ∈ Zn
+ ×Q

q
+} . (OP)

It exposes a structure in the sense that X = {x ∈ Zn
+×Q

q
+ | Dx ≥ d} is a mixed

integer set, optimization over which is considerably easier (computationally)

www.coin-or.org
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than solving (OP) itself. For many problems, D can be brought into a (bordered)
block-diagonal form, so that (OP) can be written as

min{
∑

k

ct
kxk |
∑

k

Akxk ≥ b, Dkxk ≥ dk ∀k, xk ∈ Znk
+ ×Q

qk
+ ∀k} . (OPk)

In this case X = X1 × · · · × XK (possibly permuting variables), that is, X
decomposes into Xk = {xk ∈ Znk

+ × Q
qk

+ | Dkx ≥ dk}, k = 1, . . . , K, with all
matrices and vectors of compatible dimensions and

∑
k nk = n,

∑
k qk = q. We

discuss two ways of exploiting this structure when solving (OP). A very thorough
exposition of advantages and disadvantages, possibilities, extensions, examples,
and much more context can be found in the most recent survey [22].

Convexification. By the Minkowski-Weyl theorem we express each xk ∈ conv(Xk)
as a convex combination of extreme points Pk of conv(Xk) plus a non-negative
combination of extreme rays Rk of conv(Xk), with Pk and Rk finite. For ease of
presentation, we assume Xk bounded, i.e., Rk = ∅. In analogy to a Dantzig-Wolfe
decomposition of linear programs, we introduce a variable λk

p for each p ∈ Pk and
require

∑
p∈Pk

λk
p = 1 (convexity constraints). Substituting xk =

∑
p∈Pk

pλk
p, we

obtain the extended formulation

min{
∑

k

∑
p∈Pk

ck
pλk

p |
∑

k

∑
p∈Pk

ak
pλk

p ≥ b,
∑
p∈Pk

λk
p = 1, xk =

∑
p∈Pk

pλk
p ∀k,

xk ∈ Znk
+ ×Q

qk

+ ∀k, λk ∈ Q
|Pk|
+ ∀k}

(EPC)

where ck
p = ckp and ak

p = Akp. Integrality is required on the original variables.

Discretization. For pure integer programs, i.e., qk = 0 for all k, one can implicitly
express xk as an integer convex combination of the integer points in Xk, i.e., xk =∑

p∈Xk
pλk

p, λk
p ∈ {0, 1} ∀k [16]. Unifying the notation with the convexification

approach, we denote the set Xk of points by Pk and obtain

min{
∑

k

∑
p∈Pk

ck
pλk

p |
∑

k

∑
p∈Pk

ak
pλk

p ≥ b,
∑
p∈Pk

λk
p = 1, λk ∈ Z

|Pk|
+ ∀k} . (EPD)

This can be generalized to MIPs, when continuous variables are convexified [21].
Often, some or all Xk are identical, e.g., for bin packing, vertex coloring, or
some vehicle routing problems. This introduces a symmetry which is avoided by
aggregating (summing up) the λk

p variables. We choose a representative P := P1,
substitute λp :=

∑
k λk

p, and add up the convexity constraints. This leads to the
aggregated extended formulation

min{
∑
p∈P

cpλp |
∑
p∈P

apλp ≥ b,
∑
p∈P

λp = K, λ ∈ Z
|P |
+ } . (EPDa)

Column Generation and Branch-and-Price. For the LP relaxation of the
extended problem, we drop the integrality constraints, and also omit the original
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variables in the convexification approach. We obtain the master problem

min{
∑

k

∑
p∈Pk

ck
pλk

p |
∑

k

∑
p∈Pk

ak
pλk

p ≥ b,
∑
p∈Pk

λk
p = 1, λk ∈ Q

|Pk|
+ ∀k} . (MP)

Since (MP) typically has an exponential number of variables, it is solved via
column generation. That is, we work with a restricted master problem (RMP)
that contains only a subset of the variables. In each node of the branch-and-
bound tree, the RMP is solved to optimality, and variables with negative reduced
cost are added. One iterates until no more variables are found. As the reduced
cost of a variable λk

p is given by c̄k
p = ct

kp − (πtAkp + γk) with (πt, γt)t being
the optimal dual solution to the RMP, we solve, for each block k ∈ [K], the
pricing problem c̄�

k = min
{(

ct
k − πtAk

)
x− γk | x ∈ Xk

}
. The LP relaxation can

be strengthened by additional valid inequalities (in different ways). If the solution
is still fractional, branching takes places, for convexification typically on the
original variables, but see e.g., [20] for a different generic rule which does not
interfere with the pricing problem and avoids symmetry.

3 Some Details on the Implementation in SCIP

Our implementation GCG (generic column generation) extends SCIP [1] which
was well received in the computational mathematical programming community.
While the flexible plugin-based architecture enables the user to easily implement
column generation in every node of the search tree, it neither provides methods
for decomposition nor does it work with original and extended problem formu-
lations simultaneously. Our work aims at complementing SCIP in this respect,
turning the branch-price-and-cut framework into a branch-price-and-cut solver.

3.1 Overview: Synchronizing Two Trees

We maintain two SCIP instances, one for the original, one for the extended prob-
lem (called original and extended instance, respectively). The original instance is
the primary one which coordinates the solving process, the extended instance is
controlled by a relaxation handler that is included into the original instance. At
the moment, information about the structure of the problem has to be provided
by an additional input file, that defines the relation between variables and blocks
and may explicitly force constraints as linking constraints, i.e., constraints that
will be transferred to the extended (master) problem.

After the original instance is presolved, the relaxator performes the Dantzig-
Wolfe decomposion and initializes the extended SCIP instance as well as the
SCIP instances representing the pricing problems. The extended instance ini-
tially contains no variables. Original variables that are labeled to be part of a
block, and constraints containing variables of just one block are copied into the
corresponding pricing problem unless explicitly forced otherwise. All remaining
constraints are transferred to the extended problem.
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During the solving process, the extended instance builds the branch-and-
bound tree in the same way as the original instance. There is a bijection
between nodes of the original instance and nodes of the extended instance;
two corresponding nodes are solved at the same time. When solving a node
of the original instance, the node lower bound is not computed by solving the
node’s LP relaxation, but the special relaxator is used for this purpose which
instructs the extended SCIP instance to solve the next node. A special node selec-
tor in the extended instance chooses as the next node to be processed the node
corresponding to the current node in the original instance. Branching restric-
tions are imposed by a branching rule included in the original instance, so they
have to be transferred to the node of the extended instance when it is activated.
The solving process of the node starts with domain propagation, i.e., tightening
the domains of the variables for the local problem, a concept that is also used for
the enforcement of branching decisions. The LP relaxation of the problem
corresponding to the node—the master problem—is then solved by column
generation.

After the master problem is solved, bounding is performed and branching is
performed if needed, creating two children without further problem restrictions.
The solving process of the extended problem is then halted and the relaxator
in the original instance transfers the local dual bound and the master problem’s
current solution as well as new primal solutions to the original instance. The
current node in the original instance is pruned if and only if the corresponding
node in the extended instance was pruned, since both nodes have the same dual
bound and both instances have the same primal bound—each solution of one
instance corresponds to a solution of the other instance with the same objective
function value. However, it is possible that the master solution is fractional but
leads to an integral solution to the original problem. In this case, the current
subproblem is solved to optimality, otherwise, branching is performed. Two chil-
dren are created and branching restrictions are imposed in the original instance,
that will be transferred to the corresponding nodes in the extended instance on
activation. After the branching, the original instance selects a next node and the
process is iterated. Fig. 1 shows GCG’s solving process.

We decided to work with both formulations simultaneously rather than trans-
forming the original problem into an extended problem and solving this problem
with a branch-price-and-cut algorithm, since it fits better into the SCIP frame-
work and makes better use of the functionalities already provided. The original
problem can be read in a variety of formats by the original instance using SCIP’s
default file reader plugins. If we do not read a file defining the structure of the
problem, the problem is solved by SCIP with a branch-and-cut algorithm. Oth-
erwise, the special relaxator is activated, creates the extended SCIP instance,
performs the Dantzig-Wolfe decomposition, and substitutes the LP relaxation
in the branch-and-bound process. Both problems are solved in parallel, so that
techniques that speed up the solving process, like presolving, domain propaga-
tion, and heuristics, can be used in both instances. For details see [6].
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original SCIP instance extended SCIP instance

Start Presolving

Decomposition

Node selection Stop

Domain propagation

Solve relaxation

Transfer solution

Constraint enforcement

Branching

Select corresponding node
and apply branching changes

Domain propagation

Solve master problem
with column generation

and cut separation

Constraint enforcement

Branching

Fig. 1. Solving process of GCG

3.2 Pricing

We structure the pricing implementation in variable pricer and a set of pricing
solvers. The former coordinates the pricing process, while the latter are called by
the variable pricer to solve a specific pricing problem. A variable pricer plugin
is added to the extended instance. These plugins have two essential callbacks
that are called during the pricing process, one for Farkas pricing, which is called
by SCIP whenever the RMP is infeasible, the other for the reduced cost pricing,
which is called in case the RMP is feasible.

We introduced the concept of pricing solvers, which are used by the pricer in
a black box fashion: Whenever a specific pricing problem should be solved, it is
given to the set of solvers, solved by one of the solvers, and a set of solutions
is returned. We chose this concept, which is similar to the way the LP solver is
handled in SCIP, in order to provide a possiblity to add further problem specific
solvers as external plugins without the need to modify the variable pricer.

We compute the intermediate Lagrangean dual bounds every time all pricing
problems were solved to optimality in a pricing round and update the dual
bound of the current node each time this leads to an improvement. We make use
of early termination, i.e., if all solutions have integral values—this is detected in
the presolving process of the original problem—we abort the pricing process at
a node whenever �LB� ≥ zRMP for the current local dual bound LB and the
optimal objective value zRMP of the RMP in this pricing iteration.
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When using the discretization approach, we identify identical subproblems
and automatically aggregate them. That is, if Xi = Xj for all i, j ∈ {1, . . . , k},
we define aggregate variables λp =

∑
k λk

p in the master problem.

3.3 Branching Rules

We provide two branching rules, one that branches on the variables of the original
problem and Ryan and Foster’s branching scheme [14] for problems with a set
partitioning master problem. When branching on original variables, the master
solution is transferred into a solution of the original problem, an integer variable
xk

i with fractional value v is identified and the domain of the variable is split
by adding constraints xk

i ≥ �v� and xk
i ≤ �v�, respectively, to the two child

nodes. These constraints can be enforced in the pricing problems as well as in
the extended problem. The latter leads to an additional constraint in the master
problem, its dual variable is respected in the objective function of the pricing
problem like it is done for the other master constraints. Enforcing the branching
decisions in the pricing problems can lead to better dual bounds at the expense
that all variables in the master problem have to be checked for their feasibility
w. r. t. the current pricing problems. This is done via domain propagation in the
extended instance; variables that are not compatible with branching decisions are
locally fixed to zero. It is well-known that the choice of the variable to branch on
has a big impact on the performance of the branch-and-bound process [2]. Hence,
apart from most infeasibility branching, we provide the possibility to make use of
pseudocosts of the variables in the original problem. This leads to a considerable
decrease of computational time for the class of capacitated p-median problems
(Sect. 4.1). The Ryan and Foster branching scheme is used for problems with a
set partitioning master structure and for problems with identical blocks.

3.4 Presolve and Propagation

We perform standard SCIP presolving on the original problem. Furthermore, at
each node, we perform domain propagation in the original instance as well as
the extended instance. In the extended instance, we use it primarily to remove
variables from the problem, that are not valid for the current pricing problem.
In the original instance, standard domain propagation methods are used that
lead to domain reductions especially when branching on the original variables.
These reductions can then be imposed on the variables of the pricing problems,
too. Variables that fulfill these bounds are called proper [21].

3.5 Cutting Plane Separators

A by now “standard” way to strengthen the dual bound it to derive valid inequal-
ities from the original variables. An original fractional solution can be separated
by SCIP’s default cut separation plugins. Note that xk =

∑
p∈Pk

pλk
p is not a ba-

sic solution in (OPk), thus we cannot use Gomory mixed integer cuts or strong
Chvátal-Gomory cuts. Nevertheless, we can use all kinds of cutting planes that
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do not need any further information besides the problem and the current so-
lution in their separation routine. This applies, for example, to knapsack cover
cuts, mixed integer rounding cuts, and flow cover cuts. An alternative is to de-
rive cuts from the extended formulation. This may lead to stronger cuts but has
the drawback that the dual variable of a cut has to be respected in the pricing
problems, which typically results in additional variables and constraints added
to the pricing problems, see [5] for a very recent unified view.

3.6 Primal Heuristics

The default primal heuristics of SCIP (including sophisticated ones) are applied
to the extended instance. Simple rounding heuristics are performed in each iter-
ation of the column generation process which often find feasible primal solutions.
Currently, most heuristics make use of the LP relaxation, so we cannot run them
on the original instance. This is to be changed in the future.

3.7 Customization and Extendibility

It is to be expected that a tailor-made approach will outperform a generic one,
so we keep the possibility to extend and customize the framework, in addition to
adding pricing solvers. SCIP’s interface for branching rules is extended in order
to give the possibility to define branching rules operating on both the original
as well as the extended formulation. This includes ways to enforce branching
decisions in the pricing problems and to store pseudocosts for branching on con-
straints. Finally, problem specific plugins for presolving, node selection, domain
propagation, separation and primal heuristics can be added to either one of the
two SCIP instances as usual.

4 Computational Study

We tested our solver GCG 0.7 on MIPs which expose various different structures
using SCIP 1.2.0.5 with CPLEX 12.1 as embedded LP solver. The computations
presented in Section 4.1 and 4.2 were performed on a 2.66 Ghz Core2 Quad with
4MB Cache and 4GB RAM, those of Section 4.3 on a 2.83 GHz Core2 Quad with
6MB cache and 16GB RAM. We compute averages using the shifted geometric
mean, i.e., for non-negative numbers a1, . . . , ak ∈ R+, e.g., the number of nodes,
the solving time, or the final gap of the individual instances of a test set, and a
shift s ∈ R+, the average is defined by

γs(a1, . . . , ak) =

(
k∏

i=1

(ai + s)

) 1
k

− s.

We use a shift of 10 for the runtime and the number of branch-and-bound nodes
and 100 for the final gap in percent. The average value of multiple test sets is
computed in the same way, using the shifted geometric means of the individual
test sets.
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Table 1. Comparison of GCG and SCIP for the capacitated p-median test sets. We
list the shifted geometric mean of the number of branch-and-bound nodes (top), and
the runtime (bottom) for SCIP (first column) and GCG (second column) with default
settings. The next columns illustrate the performance effect of disabling the pseudocost
branching rule and using the most fractional rule instead (third column) and of using a
specialized knapsack solver to solve the pricing problems (last column). Following the
runtime, in brackets, we list the absolute number of timeouts.

test set SCIP GCG no pseudocost knapsack

no
de

s

cpmp50s 896.2 44.9 82.5 42.1
cpmp100s 14234.2 587.1 1962.6 491.6
cpmp150s 15128.7 847.6 2211.7 1228.6
cpmp200s 26263.9 1753.3 5577.7 2338.0
sh. geom. mean 8454.9 461.8 1216.6 515.1

ti
m

e
(o

ut
s) cpmp50s 14.5 (0) 12.8 (0) 20.7 (0) 1.8 (0)

cpmp100s 234.8 (3) 184.7 (1) 469.5 (6) 37.8 (0)
cpmp150s 714.5 (9) 493.5 (5) 920.3 (10) 253.8 (1)
cpmp200s 1950.7 (7) 1243.9 (3) 2978.0 (10) 519.3 (0)
sh. geom. mean 294.0 (19) 220.1 (9) 439.7 (26) 84.3 (1)

4.1 Different Subproblems: The Capacitated p-Median Problem

In the capacitated p-median problem we are given a set N of nodes, each with a
demand qn ∈ Z+, n ∈ N . In each node n ∈ N , a facility with capacity C can
be opened; p of which have to opened in total. The distance between a node
n ∈ N and a facility placed at node m ∈ N is given as dn,m ∈ Z. Nodes are
assigned to opened facilities so that the total sum of connection distances is
minimized and the capacity constraints are respected. To solve large instances
by branch-and-price, so far an ad hoc implementation was necessary [4].

The problem can be decomposed by defining one block for each possible facility
location which contains the capacity constraint corresponding to this location.
The blocks are not identical since the objective function coefficients of the vari-
ables depend on the location represented by this block. Therefore, we branch
on the original variables. We used a subset of the instances used in [4] and de-
fined four test sets cpmpNs, each of which contains instances with N nodes,
N ∈ {50, 100, 150, 200}. In order to reduce the computational effort, we missed
out every second instance in the test sets with up to 150 nodes and selected only
12 instances for test set cpmp200s, three for each number of facilities.

Tab. 1 shows that the generic branch-and-price approach performs better than
plain SCIP. It particularly pays off to have a state-of-the-art branching rule at
hand: using most fractional branching instead of pseudocost branching doubles
the shifted geometric mean of the solution time. Furthermore, by using a dynamic
programming knapsack solver to solve the pricing problems and customizing the
code in this way, we are able to decrease the shifted geometric mean of the
solving time by more than 60% compared to GCG with default settings. More
detailed computational experiments are reported in [6].
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Table 2. Computational results for the 180 instances of each size in the bin packing
test set

nodes time
number of items total sh. geom. mean total sh. geom. mean

50 713 3.3 54.7 0.3
100 1617 6.7 254.4 1.4
200 5229 17.6 2186.8 11.7

4.2 Identical Subproblems: Bin Packing

Bin packing instances have identical blocks and a set partitioning master prob-
lem, so the variables were aggregated and Ryan and Foster’s branching scheme
was used. It is well-known that the Dantzig-Wolfe decomposition of the bin
packing problem leads to strong dual bounds, so we were able to solve all 540
instances (all 180 instances with 50, 100, and 200 items, respectively, of data
set 1 of [15]) in less than 90 minutes altogether, cf. Tab. 2. For each number of
items, GCG solves the whole test set faster than SCIP solves the first instance of
the set.

4.3 No Block Structure: A Resource Allocation Problem

The following generalized knapsack problem [3] does not have a block structure
(but staircase structure). Given a number of periods n ∈ N and items i ∈ I,
each item has a profit pi, a weight wi, and a starting and ending period. In each
period, the knapsack has capacity C and items consume capacity only during
their life time. The problem can be modelled in the following way:

max{
∑
j∈I

pixi |
∑

i∈I(n)

wixi ≤ C ∀n ∈ N, xi ∈ {0, 1} ∀i ∈ I} , (RAP)

where I(n) is the set of items that are alive in period n ∈ N . The matrix can
be transformed into block structure by splitting the capacity constraints into
groups of size M [3]. For each variable that appears in more than one group, we
create a copy of this variable for each group and link the values of these copies to
each other by additional constraints. These additional constraints will be part of
the extended formulation, the M capacity constraints corresponding to a block
are transferred to this block’s pricing problem.

We performed computational experiments (see Tab. 3) for the instances de-
scribed in [3]. We used SCIP 1.2.0.5 for solving formulation RAP explicitly, and
GCG 0.7 to solve the reformulation of the problem grouping 32 and 64 constraints
to form one block, respectively. The same grouping was used in [3]. SCIP was
able to solve five instances within the timelimit of one hour, the remaining 65
instances remained unsolved with a final gap between 0.1 and 3.0 percent. For
both numbers of constraints grouped per block, GCG was able to solve 56 in-
stances, the final gap of the remaining instances was typically lower than 0.3
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Table 3. Computational results for the test set of RAP instances. We list the final
gap, the number of branch-and-bound nodes and the runtime for SCIP, GCG with 32
constraints assigned to a block, and GCG with 64 constraints assigned to a block.

SCIP GCG (32) GCG (64)
instance gap nodes time gap nodes time gap nodes time

new1 1 1.3 >757186 >3600.0 0.0 29 201.2 0.0 3 111.4
new1 2 1.7 >589833 >3600.0 0.0 119 979.6 0.0 13 350.5
new1 3 1.6 >408635 >3600.0 0.0 23 359.7 0.0 9 529.5
new1 4 1.7 >296254 >3600.0 0.0 187 1888.9 0.0 7 473.3
new1 5 2.0 >262849 >3600.0 0.0 41 828.6 0.0 11 562.3
new1 6 1.4 >194120 >3600.0 0.0 17 468.5 0.0 39 1143.4
new1 7 1.5 >163145 >3600.0 0.0 27 460.6 0.0 1 478.7
new1 8 1.7 >161800 >3600.0 0.0 13 583.6 0.0 3 350.6
new1 9 1.8 >108307 >3600.0 0.0 87 1687.5 0.0 2 453.4
new1 10 2.2 >84190 >3600.0 0.0 35 1085.1 0.0 7 896.1
new2 1 2.0 >750775 >3600.0 0.0 7 109.5 0.0 3 140.0
new2 2 1.4 >580746 >3600.0 0.0 136 898.0 0.0 44 744.7
new2 3 1.1 >415357 >3600.0 0.0 23 299.5 0.0 2 135.9
new2 4 1.2 >428950 >3600.0 0.0 1 118.9 0.0 1 367.1
new2 5 1.9 >207493 >3600.0 0.0 161 1622.6 0.1 >154 >3600.0
new2 6 2.0 >198288 >3600.0 0.0 11 425.6 0.0 4 326.9
new2 7 1.6 >188555 >3600.0 0.0 36 642.2 0.0 13 740.3
new2 8 1.7 >142970 >3600.0 0.0 13 399.6 0.0 14 782.2
new2 9 1.8 >75900 >3600.0 0.0 31 702.4 0.0 1 293.5
new2 10 1.9 >131284 >3600.0 0.0 151 1489.0 0.0 41 1274.4
new3 1 1.3 >233708 >3600.0 0.0 31 1205.1 0.0 1 1205.8
new3 2 1.2 >89037 >3600.0 0.0 >119 >3600.0 0.0 >49 >3600.0
new3 3 1.3 >75770 >3600.0 0.0 13 1227.5 0.0 >7 >3600
new3 4 1.4 >84830 >3600.0 0.0 39 2596.2 0.0 9 1688.5
new3 5 1.7 >19150 >3600.0 0.0 33 1937.4 0.0 9 3039.5
new3 6 2.2 >8632 >3600.0 0.1 >55 >3600.0 0.0 >39 >3600.0
new3 7 1.8 >35455 >3600.0 0.0 >88 >3600.0 0.0 >62 >3600.0
new3 8 1.8 >30130 >3600.0 0.0 53 3535.1 0.0 5 3172.4
new3 9 2.4 >25500 >3600.0 0.1 >40 >3600.0 73.8 >1 >3600.0
new3 10 2.6 >864 >3600.0 0.0 >45 >3600.0 0.2 >27 >3600.0
new4 1 0.0 4907 16.1 0.0 1 26.1 0.0 1 15.6
new4 2 0.0 187 4.8 0.0 1 17.9 0.0 1 17.1
new4 3 0.0 132 6.0 0.0 1 24.6 0.0 1 28.4
new4 4 0.1 >1571331 >3600.0 0.0 1 73.0 0.0 1 44.5
new4 5 0.0 70140 342.6 0.0 13 86.4 0.0 13 106.3
new4 6 0.2 >792713 >3600.0 0.0 1 58.8 0.0 1 66.1
new4 7 0.0 670545 3406.9 0.0 1 57.0 0.0 1 54.1
new4 8 0.2 >535592 >3600.0 0.0 4 99.3 0.0 3 59.0
new4 9 0.2 >546140 >3600.0 0.0 3 92.6 0.0 3 93.6
new4 10 0.2 >507737 >3600.0 0.0 3 61.0 0.0 5 154.4
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Table 3. (continued)

SCIP GCG (32) GCG (64)
instance gap nodes time gap nodes time gap nodes time

new5 1 0.7 >640409 >3600.0 0.0 23 254.4 0.0 1 130.1
new5 2 1.3 >317663 >3600.0 0.0 11 248.6 0.0 1 230.7
new5 3 0.9 >318430 >3600.0 0.0 3 177.1 0.0 3 282.4
new5 4 1.4 >247945 >3600.0 0.0 75 1445.6 0.0 3 265.3
new5 5 1.4 >120474 >3600.0 0.0 42 871.3 0.0 17 887.4
new5 6 1.3 >147990 >3600.0 0.0 161 3570.1 0.0 >129 >3600.0
new5 7 1.0 >135050 >3600.0 0.0 133 2008.2 0.0 13 730.5
new5 8 1.3 >114213 >3600.0 0.0 15 554.7 0.0 1 564.4
new5 9 1.2 >78548 >3600.0 0.0 >124 >3600.0 0.0 >87 >3600.0
new5 10 1.7 >22990 >3600.0 0.0 85 2109.2 0.0 25 1799.1
new6 1 1.0 >215663 >3600.0 0.0 25 692.2 0.0 7 484.2
new6 2 1.2 >159970 >3600.0 0.0 7 518.3 0.0 3 686.3
new6 3 1.0 >92896 >3600.0 0.0 27 975.0 0.0 11 559.0
new6 4 1.0 >93850 >3600.0 0.0 17 1091.2 0.0 1 628.5
new6 5 1.1 >69570 >3600.0 0.0 29 1546.7 0.0 21 1826.8
new6 6 1.8 >14540 >3600.0 0.0 13 1094.0 0.0 7 1714.0
new6 7 2.3 >10384 >3600.0 0.0 >51 >3600.0 0.0 3 1368.9
new6 8 1.6 >6209 >3600.0 0.1 >77 >3600.0 0.0 >38 >3600.0
new6 9 1.7 >38634 >3600.0 0.0 >37 >3600.0 0.0 3 2030.4
new6 10 3.0 >772 >3600.0 0.0 >55 >3600.0 0.0 >35 >3600.0
new7 1 1.4 >537230 >3600.0 0.0 58 614.3 0.0 7 276.9
new7 2 1.5 >373513 >3600.0 0.0 31 624.5 0.0 41 1263.9
new7 3 1.4 >230756 >3600.0 0.0 46 823.1 0.0 11 545.2
new7 4 1.8 >164797 >3600.0 0.0 25 665.2 0.0 >37 >3600.0
new7 5 1.3 >147376 >3600.0 0.0 9 486.2 0.0 9 791.8
new7 6 1.7 >158523 >3600.0 0.0 >186 >3600.0 0.0 34 3032.1
new7 7 1.7 >95711 >3600.0 0.0 >140 >3600.0 0.1 >74 >3600.0
new7 8 2.2 >96525 >3600.0 0.1 >148 >3600.0 0.0 19 3205.4
new7 9 1.7 >80942 >3600.0 0.0 31 1051.1 0.0 11 1800.4
new7 10 2.4 >78398 >3600.0 0.0 >107 >3600.0 0.1 >42 >3600.0

total 97.1 16259k 237776.4 0.4 3484.0 98169.6 74.3 1305.0 95403.1
timeouts 65/70 14/70 14/70
sh. geom. mean 1.4 97564.0 2772.4 0.0 32.2 727.4 0.8 11.5 670.7

percent. For both sizes of blocks, GCG was about four times faster than SCIP in
the shifted geometric mean.

The relaxation given by the master problem is tighter the more constraints
are assigned to a block, so with 64 constraints per block, we need less nodes to
solve the problems. The shifted geometric mean of the number of nodes accounts
11.5 for the former variant, compared to 21 nodes when assigning 32 constraints
to each block. In return, more time is needed to solve the master problem, but
this pays off for this test set since the total time is reduced by 8%. The average
gap is higher when grouping 64 constraints, however, this is caused by one single
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instance for which the master problem at the root node could not be solved
within the time limit of one hour so that just a trivial dual bound is obtained,
leading to a gap of more than 70 percent.

5 Summary and Discussion

We report first computational experiments with a basic generic implementation
of a branch-price-and-cut algorithm within the non-commercial framework SCIP.
Given an MIP and information about which rows belong to which subproblem
(or the master problem), either a convexification or discretization style decom-
position is performed. For structured problems, the approach is very promising.

The modular design of SCIP allowed us to include the described functionality
in the form of plugins. A true integration would require a few extensions, some of
which have been incorporated into SCIP during this project already, but some are
still missing. Examples include per-row dual variable stabilization, column pool,
primal heuristics on original variables, LP basis of original variables for cutting
planes like Gomory cuts, etc. It is planned that our implementation becomes
part of a future release of SCIP. We hope that this enables researchers to play
with and quickly test ideas in decomposing mixed integer programs.

It remains to be demonstrated that there really is a significant share of prob-
lems on which decomposition methods are more effective than (or a reasonable
complement to) standard branch-and-cut, even when one does not know about
a possibly contained structure. This requires detecting whether it may pay to
decompose any given MIP, and if so, how this should be done. This is, of course,
a much more challenging question which is the subject of our current research.

Acknowledgment. We thank Alberto Ceselli and Enrico Malaguti for pro-
viding us with the p-median and RAP instances from Sections 4.1 and 4.3,
respectively.
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Abstract. This paper is devoted to a study of the impact of using
bound sets in biobjective optimization. This notion, introduced by Vil-
lareal and Karwan [19], has been independently revisited by Ehrgott and
Gandibleux [9], as well as by Sourd and Spanjaard [17]. The idea behind
it is very general, and can therefore be adapted to a wide range of biob-
jective combinatorial problem. We focus here on the biobjective binary
knapsack problem. We show that using bound sets in a two-phases ap-
proach [18] based on biobjective dynamic programming yields numerical
results that outperform previous ones, both in execution times and mem-
ory requirements.

Keywords: Multiobjective combinatorial optimization, bound sets,
biobjective binary knapsack problem.

1 Introduction

Multiobjective combinatorial optimization (MOCO) deals with combinatorial
problems where every solution is evaluated according to several objectives. In-
terest in this area has tremendously grown over the last two decades. A thorough
presentation of the field can be found for instance in a book by Ehrgott [7]. The
standard approach aims at generating the whole set of Pareto optimal solutions,
i.e. solutions that cannot be improved on one objective without being depreci-
ated on another one. Most of the classical exact and approximate methods for
finding an optimal solution in single objective discrete optimization have been
revisited for finding the Pareto set under multiple objectives, e.g. dynamic pro-
gramming [6,12], branch and bound [4,11,14], greedy algorithm [16], as well as
many heuristic and metaheuristic methods [8].

In order to perform implicit enumeration in multiobjective optimization prob-
lems, the formal notion of bound set needs to be introduced. This has been done
several times in the literature. Roughly speaking, bound sets are sets of bounds.
Indeed, due to the partial nature of the ordering relation between solutions, the
use of a set of bounds instead of a single bound makes it possible to more tightly
approximate the image set of the solutions in the objective space. To our knowl-
edge, one of the first work mentioning that notion was performed by Villareal

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 253–265, 2010.
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and Karwan [19], and deals with branch and bounds for multiobjective integer
linear programming problems. However, in this work and subsequent ones, no
operational way to compute bound sets has been devised where the bound set
does not reduce to a singleton. Very recently, based on the convex hull of the
image of the solutions in the objective space, new bound sets have been proposed
[9,17]. The use of these new bound sets has proved very efficient in the biob-
jective spanning tree problem [17]. The purpose of the present paper is to show
how these bound sets can be used to design efficient algorithms for the biobjec-
tive binary knapsack problem. Our contribution is twofold: we first explain how
to hybridize multiobjective dynamic programming with the fathoming criterion
provided by the bound sets, and then detail how multiobjective dynamic pro-
gramming can be embedded in a two-phases approach to further improve the
method. The hybridization we propose is in the spirit of the dominance relations
between states used in a work by Bazgan et al. [2,3], but enables huge savings
in memory requirements as well as improvements in execution times. The two-
phases version of the algorithm provides even better results thanks to a shaving
procedure [13] that makes use of the bound sets.

2 Preliminaries

2.1 Preliminary Definitions

We first recall some preliminary definitions concerning MOCO problems. They
differ from the standard single objective ones mainly in their cost structure, as
solutions are valued by m-vectors instead of scalars. Let us denote by X the set
of feasible solutions, and by Y its image in the objective space. The image of
solution x ∈ X is f(x) = (f1(x), . . . , fm(x)). Comparing solutions in X amounts
then to comparing m-vectors in Y. In this framework, the following notions prove
useful (in a maximisation setting):

Definition 1. The weak dominance relation on m-vectors of Zm
+ is defined,

for all y, y′ ∈ Zm
+ , by y � y′ ⇐⇒ [∀i ∈ {1, . . . , m}, yi ≥ y′

i)]. The dominance
relation is defined as the asymmetric part of �: y � y′ ⇐⇒ [y � y′ and y′ �� y].

Definition 2. Within a set Y ⊆ Y, an element y is said to be dominated (resp.
weakly dominated) when y′ � y (resp. y′ � y) for some y′ in Y , and non-
dominated when there is no y′ in Y such that y′ � y. The set of non-dominated
elements in Y is denoted by Y �.

By abuse of language, when f(x) � f(x′), we say that solution x dominates
solution x′. Similarly, we use the term of non-dominated solutions. The set
of non-dominated solution of X ⊆ X is denoted by X�. Following Bazgan et
al. [2,3], we say that a set of non-dominated solutions is reduced if it con-
tains one and only one solution for each non-dominated objective vector in
Y = f(X) = {f(x) : x ∈ X}. The aim of a multiobjective combinatorial problem
is to determine a reduced set of non-dominated solutions.
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2.2 Multiobjective Binary Knapsack Problem

An instance of the multiobjective binary knapsack problem (0-1 MOKP) con-
sists of a knapsack of integer capacity c, and a set of items N = {1, . . . , n}. Each
item j has a weight wj and a m-vector profit pj = (pj

1, . . . , p
j
m), variables wj , pj

k

(k ∈ {1, . . . , m}) being integers. A solution is characterized by a binary n-vector
x, where xj = 1 if item j is selected. Furthermore, a solution x is feasible if
it satisfies the constraint

∑n
j=1 wjxj ≤ c. The goal of the problem is to find a

reduced set of non-dominated solutions, which can be formally stated as follows:

maximize
n∑

j=1

pj
kxj k ∈ {1, . . . , m}

subject to
n∑

j=1

wjxj ≤ c

xj ∈ {0, 1} j ∈ {1, . . . , n}
The special case when k = 2 is named biobjective binary knapsack problem

(0-1 BOKP).

Example 1. Consider the following problem:

maximize
{

10x1 + 2x2 + 6x3 + 9x4 + 12x5 + x6
2x1 + 7x2 + 6x3 + 4x4 + x5 + 3x6

subject to 4x1 + 4x2 + 5x3 + 4x4 + 3x5 + 2x6 ≤ 6
xj ∈ {0, 1} j ∈ {1, . . . , 6}

The non-dominated solutions are: X � = {(0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 0, 1),
(0, 0, 0, 1, 0, 1), (0, 1, 0, 0, 0, 1)}, and their image set in the objective space is
Y� = {(13, 4), (11, 5), (10, 7), (3, 10)} (see Figure 1). Note that all solutions in
X � have distinct images in the objective space, therefore X � is a reduced set of
non-dominated solutions.

2 4 6 8 10

2

4

6

8

10

12

o2

o1

Points in Y�

Other points in Y

Fig. 1. Objective space

Problem 0-1 MOKP can be solved by
using a dynamic programming (DP)
procedure. For the ease of presenta-
tion, we only detail here the way the
non-dominated points in the objective
space are computed. Note that the
non-dominated solutions themselves
can of course be recovered, by using
standard bookkeeping techniques that
do not impact on the computational
complexity of the algorithm. Let sub-
problem P (i, w) denote an instance
of 0-1 MOKP consisting of item set
{1, . . . , i}, and capacity w. Let Y (i, w) be the image set of the feasible solutions
in P (i, w). If all sets Y �(i − 1, w) are known, for w ∈ {0, . . . , c}, then Y �(i, w)
can be computed by the recursive formula:
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Y �(i, w) =
{

Y �(i− 1, w) if w < wi

ND
(
Y �(i− 1, w) ∪ {y + pi : y ∈ Y �(i− 1, w − wi)}) if w ≥ wi

Notation ND(·) stands for a set function returning the subset of non-dominated
points in a set of m-vectors. The complexity in time and space of the DP
procedure crucially depends on the cardinality of sets Y �(i, w). Any result en-
abling to discard elements in these sets is therefore worth investigating. Ob-
viously, an element y ∈ Y �(i, w) can be discarded if there exists an element
y′ ∈ Y �(i, w′) such that w′ < w and y′ � y . With the same goal in mind (dis-
carding elements in the dynamic programming procedure), Villareal and Karwan
presented a hybrid DP approach to solve multicriteria integer linear program-
ming problems [19]. They hybridize DP with fathoming criteria and relaxations,
so as to discard some elements that would not lead to non-dominated solutions.
Since we use a similar technique (by providing a more powerful fathoming cri-
terion), we are going to present and define the bound sets used to discard most
of the unwanted elements.

3 Bound Sets in MOCO Problems

3.1 Definition of Upper and Lower Bound Sets

Having good upper and lower bounds is very important in many implicit enu-
meration methods. It is well known that the tightness of these bounds is a key
parameter for the efficiency of the methods. In a multiobjective optimization
setting, since one handles sets of m-vectors, the very notion of upper and lower
bound has to be revisited. This work has been undertaken by Villareal and Kar-
wan [19], by introducing the notion of bound sets (in the terminology of Ehrgott
and Gandibleux [9]). Since the formalism used here slightly differs from the one
presented in these works, we give below our own definitions of upper and lower
bound sets.

Upper bound set. The simplest idea that comes to mind to upper bound a set Y of
vectors is to define a single vector yI such that yI

i = maxy∈Y yi for i = 1, . . . , m.
This point is called the ideal point of Y . However, this ideal point is usually very
“far” from the points in Y . For this reason, it is useful to define an upper bound
from a set of vectors instead of a singleton. Such a set is then called an upper
bound set [9].

Definition 3 (upper bound set). A set UB is an upper bound set of Y if
∀y ∈ Y, ∃u ∈ UB : u � y.

This is compatible with the definition of an upper bound in the single objective
case (UB reduces then to a singleton). As previously indicated, the upper bound
set defined by UB = {yI} is poor. In practice, a general family of good upper
bound sets of Y can be defined as UBΛ =

⋂
λ∈Λ{u ∈ Rm : 〈λ, u〉 ≤ UBλ},

where the λ ∈ Λ are weight vectors of the form (λ1, . . . , λm) ≥ 0, 〈., .〉 denotes
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the scalar product, and UBλ ∈ R is an upper bound for {〈λ, y〉 : y ∈ Y }. Of
course, the larger |Λ| is, the better the upper bound set becomes. Clearly, the
best upper bound set in this family is obtained for Λ = Λc(Y ) where Λc(Y )
characterizes the facets of the non-dominated boundary of the convex hull of
Y (see Example 2). Interestingly, we will see in the next subsection that this
boundary can be efficiently computed in the biobjective case, provided UBλ

can be determined within polynomial or pseudo-polynomial time.

Lower bound set. Similarly to the upper bound set, the simplest idea that comes
to mind to lower bound a set Y of vectors is to define a single vector yA such
that yA

i = miny∈Y yi for i = 1, . . . , m. This point is called the anti-ideal point
of Y . Here again, taking several points simultaneously into account in the lower
bound enables to bound more tightly set Y . Such a set is then called a lower
bound set [9].

Definition 4 (lower bound set). A set LB is a lower bound set of Y if
∀y ∈ Y, ∃l ∈ LB : y � l.

As above, the compatibility with the single objective case holds. In the biobjec-
tive case, when Y only includes mutually non-dominated points, we will show in
the next subsection a way to refine the lower bound set defined by LB = {yA}.

Comparing bound sets. Implicit enumeration is about eliminating entire subsets
of solutions by using simple rules. In order to perform the elimination, we need
to evaluate if a subset X ⊆ X of feasible solutions potentially includes non-
dominated solutions in X . To do this, one compares an upper bound set UB
of f(X) and a lower bound set LB of f(X �) = Y�. Unlike the single objective
case, the comparison is not trivial since one handles sets instead of scalars. We
introduce here two notions that make it possible to simply define this operation
in a multiobjective setting.

Definition 5 (upper and lower relaxations). Given an upper bound set UB,
the upper relaxation UB� is defined as: UB� = {x ∈ Rm

+ , ∃u ∈ UB, u � x}.
Similarly, given a lower bound set LB, the lower relaxation LB� is defined as:
LB� = {x ∈ Rm

+ , ∃l ∈ LB, x � l}.
Coming back to the comparison of UB and LB, it is clear that UB� ⊇ f(X)
and LB� ⊇ Y�. Consequently, UB� ∩ LB� = ∅ implies that f(X) ∩ Y� = ∅.
In this case, subset X can of course be safely pruned. Note that this pruning
condition can be refined by using the fact that one only looks for a reduced set of
non-dominated solutions as well as the fact that valuations are integers. Due to
space constraints, this refinement is not detailed here. The main point is now to
be able to efficiently compute good lower and upper bound sets. In the following
subsection, this issue will be answered for the 0-1 BOKP.

3.2 Computation of Bound Sets in 0-1 BOKP

We now detail the algorithms used in 0-1 BOKP to compute the bound sets and
perform their comparison.
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Computation of an upper bound set. Given a subset X ∈ X of feasible solutions,
upper bound set UBΛc(f(X)) can be compactly represented by storing the ex-
treme points of Y = f(X), i.e. the vertices of the non-dominated boundary of
the convex hull of Y (points y1, y2, y3, y4 in the left part of Figure 2). Aneja
and Nair’s method [1] enables to efficiently compute these vertices in biobjective
combinatorial problems whose single objective version is solvable within poly-
nomial or pseudo-polynomial time. It proceeds by launching a single objective
version of the problem for determining each extreme points. The number of times
the single objective solution method is launched is therefore linear in the number
of extreme points.

Example 2. Let us come back to Example 1. Assume that one wants to up-
per bound the set X6̄ of feasible solutions where item 6 is not selected. Aneja
and Nair’s method yields the following list L of extreme points, characterizing
UBΛc(f(X6̄)): L = ((12, 1), (9, 4), (6, 6), (2, 7)). The corresponding upper relax-
ation UB�

Λc(f(X6̄))
is represented in Figure 2.
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Fig. 2. Upper and lower bound sets in a biobjective setting

Computation of a lower bound set. Given a subset I ⊆ Y, a tight lower bound
set LB of I� can be computed as follows. When there are two objectives and
{(ij1, ij2) : 1 ≤ j ≤ k} are the points of I� maintained in lexicographical order
(i.e., in decreasing order of the first objective, and increasing order of the second
one), one can set LBN (I) = {nj = (i(j+1)

1 , ij2) : 0 ≤ j ≤ k}, where i02 = 0 and
i
(k+1)
1 = 0. The set LBN (I) can here be viewed as a generalization of the nadir

point of I (whose components are the worst possible value among the points of
I�). The points in LBN (I) are therefore sometimes called local nadir points [9].
One can note that LBN (I) is also a lower bound set for Y�.

Example 3. Let us come back to Example 1 once again, and consider the follow-
ing subset of points in Y: I = {(13, 4), (10, 7), (3, 10)}. The lower bound set is
then: N (I) = {(13, 0), (10, 4), (3, 7), (0, 10)}. This lower bound set is represented
in the middle part of Figure 2, as well as its lower relaxation LB�

N (I).

As described in the previous subsection, in order to know if one can prune a
subset X of solutions, one must compute the intersection of the relaxations
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of a lower bound set of Y� and an upper bound set of Y = f(X). Testing if
UB�

Λc(f(X)) ∩ LB�
N (I) = ∅ amounts to check whether one element of LBN (I) is

included in UB�
Λc(f(X)). It can be formally expressed by:

∀n ∈ LBN (I), ∃λ ∈ Λc(f(X)) : λ1n1 + λ2n2 > max
y∈f(X)

(λ1y1 + λ2y2)

Example 4. Continuing Example 2 and Example 3, we shall compare the two
obtained relaxations. Both sets are represented in the right part of Figure 2.
Their intersection is empty, meaning that subset X6̄ can be safely discarded.

4 A New Solution Algorithm for 0-1 BOKP

Unlike the single objective case, in an implicit enumeration procedure for biob-
jective optimization, there is not a single incumbent but a set of incumbents:
the set of non-dominated solutions among the solutions explored so far. For sim-
plicity, we only refer to its image set I ⊆ Y in the following. The idea is then
of course to discard subsets X of solutions such that UB�

Λc(f(X)) ∩LB�
N (I) = ∅.

We now detail the various parts of our solution method for 0-1 BOKP.

4.1 Shaving Procedure

The term “shaving” was introduced by Martin and Shmoys [13] for the job-shop
scheduling problem. It enables to reduce the size of a problem by making some
components forbidden or mandatory before starting the solution procedure. In
knapsack problems, it amounts to consider subsets of solutions of the following
form: for each item j, a subset Xj where item j is made mandatory, and a subset
Xj̄ where item j is made forbidden. For 0-1 BOKP, after initializing I with the
extreme points of Y (by Aneja and Nair’s method), the shaving procedure we
propose consists in checking whether UB�

Λc(f(Xj))
∩LB�

N (I) = ∅ or UB�
Λc(f(Xj̄))∩

LB�
N (I) = ∅. If Xj or Xj̄ grants no non-dominated solution in X , item j can be

excluded from the problem by permanently setting xj = 0 or xj = 1. Note that
the computation of the upper bound sets yields feasible solutions, possibly non-
dominated. Consequently, during the running of the shaving procedure, set I is
updated by inserting these possible new non-dominated elements. The shaving
procedure is therefore launched twice in order to exclude some additional items
during the second round of the procedure. Example 4 above shows that it is
possible to shave item 6 in Example 1, by setting x6 = 1.

4.2 Hybrid Dynamic Programming

During the dynamic programming (DP) procedure, the use of bound sets as
a fathoming criterion, makes it possible to considerably reduce the number of
stored elements in each set Y �(i, w). This is called hybridization. Given an ele-
ment y ∈ Y �(i, w), by abuse of notation, we denote by f -1(y) a feasible solution
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in P (i, w) such that f(f -1(y)) = y (if there are several solutions with the same
image in the objective space, f -1(y) is any of them), and we denote by Xy ⊆ X
the subset of feasible solutions in P (n, c) whose projection on P (i, w) is f -1(y).
When computing Y �(i, w) by DP, the fathoming criterion consists in discarding
any element y such that UB�

Λc(f(Xy)) ∩ LB�
N (I) = ∅. Finding UBΛc(f(Xy)) can

be done by applying Aneja and Nair’s method to find the extreme points of the
subproblem on {i + 1, . . . , n} with capacity c− w, that is denoted by P̄(i+1,w):

maximize
n∑

j=i+1

pj
kxj k ∈ {1, 2}

subject to
n∑

j=i+1

wjxj ≤ c− w xj ∈ {0, 1}

One can then obtain the vertices of UBΛc(f(Xy)) by simply translating the ex-
treme points of P̄(i+1,w) by y.

4.3 Two-Phases Method

Visée et al. [20] introduced a two-phases method to solve the biobjective binary
knapsack problem. They first calculate the set of extreme solutions (i.e., whose
images in the objective space are extreme points of Y), and second, by launching
several branch-and-bound procedures, they compute the set of non-extreme non-
dominated solutions located in the triangles generated in the objective space by
two successive extreme solutions. Since the work of Visée et al., other approaches
have been proposed that outperform the two-phases method: a labeling approach
developed by Captivo et al. [5], and the already mentioned DP approach by
Bazgan et al. [2,3]. We propose here a two-phases version of our DP procedure.
This technique is called two-phasification in the sequel. Instead of applying one
single DP procedure directly on the 0-1 BOKP instance, one first computes the
extreme solutions, and then applies one DP procedure for each triangle T in the
objective space. Let us denote by YT ⊆ Rm the subset of the objective space
corresponding to triangle T . When applying the DP procedure for finding feasible
solutions within T , one checks whether UB�

Λc(f(Xj))
∩ LB�

N (I) ∩ YT = ∅ during

the local shaving procedure, and one checks whether UB�
Λc(f(Xy)) ∩ LB�

N (I) ∩
YT = ∅ for the fathoming criterion. Clearly, these conditions will hold much
more frequently than if the problem is considered in its whole. Moreover, one
Example 5. In Figure 3 are repre-
sented the triangles that would be
obtained in the problem described in
Example 1. In a two-phases method,
the feasible solutions corresponding
to the extreme points (in black)
would be found during the first
phase, and the other non-dominated
solutions (grey points) would be
found during the second phase.
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can limit the computation of the upper bound sets to the area of the triangle
under consideration. By subdividing the problem in this way, both the shaving
procedure and the fathoming criterion are more efficient, since one focuses on
a restricted area of the objective space. This is confirmed by the numerical
experiments.

5 Numerical Experiments

All experiments presented here were performed on an Intel R© CoreTM 2 Duo CPU
E8400 @ 3.00GHz personal computer, endowed with 3.2GB of RAM memory.
All algorithms were written in C++. To solve the single objective knapsack
problems, we used the minknap algorithm [15] which proved to be one of the
quickest in the literature (see the book by Kellerer et al. [10]).

5.1 Instances

The types of instances considered here are the same as in [2,3], where the pa-
rameters are uniformly randomly generated and c = �0.5

∑n
j=1 wj�.

Type A: random instances, where pj
1, pj

2 and wj ∈ {1, . . . , 1000};
Type B: unconflicting instances, where pj

1 ∈ {101, . . . , 1000}, pj
2 ∈ {pj

1−100, . . . ,

pj
1 + 100} and wj ∈ {1, . . . , 1000} ;

Type C: conflicting instances, where pj
1 ∈ {1, . . . , 1000}, pj

2 ∈ {max{900 −
pj
1, 1}, . . . , min{1100− pj

1, 1000}} and wj ∈ {1, . . . , 1000} ;
Type D: conflicting instances with correlated weights, where pj

1 ∈ {1, . . . , 1000},
pj
2 ∈ {max{900 − pj

1, 1}, . . . , min{1100 − pj
1, 1000}} and wj ∈ {pj

1 + pj
2 − 200,

. . . , pj
1 + pj

2 + 200}.

5.2 Results

We compared our method (named S2H for Shaving, 2-phases, and Hybrid DP)
and the one of Bazgan et al. [2,3] (named BHV: initials of the authors) by run-
ning both methods on the same instances1. Table 1 shows the time and memory
spent to solve different types and sizes of instances. The first two columns in-
dicate the size and type of the instances solved. For each size and type, 30
randomly generated instances have been solved using different methods, and the
average and maximum times and memory requirements are indicated. Numbers
in bold represent the best value for a given type and size. Shaving, hybridiza-
tion and two-phasification are the three main parts of the algorithm presented
in this paper. We evaluated some variations of our method in order to measure
the importance of each part: 2H is a two-phases method using a hybridized DP
procedure, SH is a hybridized DP procedure applied to a shaved problem, and
finally S2 is a two-phases method using simple DP on problems reduced by shav-
ing. A time limit was set to 10000 seconds. Symbol “-” in the table denotes that
1 We wish to thank Hadrien Hugot who kindly sent us the code of the BHV method.
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Table 1. Computation times, and memory requirements of different methods for the
0-1 BOKP

Type Size Method Time (sec.) RAM (MB) Type Size Method Time (sec.) RAM (MB)
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

A 300 S2H 17 30 2.6 3.1 B 1000 S2H 7.0 11 2.0 2.3
BHV 51 103 80 113 BHV 4.1 10 11 15
2H 73 134 5.8 6.3 2H 17 40 15.2 16
SH 60 88 4.0 4.4 SH 10 16 2.5 2.8
S2 113 208 13.4 16 S2 10 15 2.3 3.6

500 S2H 73 109 3.1 3.7 2000 S2H 50 68 2.6 3.0
BHV 564 1031 401 449 BHV 132 272 132 272
2H 459 626 8.8 9.3 2H 195 334 30.1 31
SH 448 679 6.2 6.6 SH 109 181 3.8 4.3
S2 671 1045 38 56 S2 91 123 14 21

700 S2H 193 254 3.6 3.8 3000 S2H 160 211 3.1 3.4
BHV 2740 4184 1308 1800 BHV 874 1292 449 449
2H 1566 2038 11.1 12 2H 830 1227 44.6 45
SH 2209 3353 8.7 9.4 SH 517 699 4.9 5.2
S2 2820 3624 116 159 S2 344 468 45 74

1000 S2H 558 705 4.2 4.7 4000 S2H 358 435 3.7 3.9
BHV * * * * BHV 3017 4184 1307 1800
2H 5588 6981 15.7 16 2H 2292 3032 59.1 60
SH - - - - SH 1648 2097 6.1 6.4
S2 - - - - S2 970 1308 84 130

C 200 S2H 73 121 4.3 5.0 D 100 S2H 84 136 5.1 6.0
BHV 32 47 63 113 BHV 35 57 80 113
2H 112 172 4.8 5.3 2H 108 169 5.1 6.0
SH 147 239 3.1 3.4 SH 125 165 6.0 6.7
S2 1835 2307 107 163 S2 2138 3252 124 168

300 S2H 319 497 5.9 6.9 150 S2H 389 723 7.5 8.8
BHV 206 288 257 449 BHV 154 228 311 449
2H 539 832 6.7 7.3 2H 517 879 7.5 8.8
SH 788 1159 9.4 10 SH 698 1123 9.2 10
S2 - - - - S2 - - - -

400 S2H 946 1479 7.7 9.0 200 S2H 1143 2015 9.7 12
BHV 748 1006 782 897 BHV 770 897 897 897
2H 1756 2647 8.9 9.9 2H 1596 2796 9.5 12
SH 2806 3956 14.8 18 SH 2689 3747 13.1 16
S2 - - - - S2 - - - -

500 S2H 2138 3046 9.6 10 250 S2H 2555 3540 11.7 17
BHV 2014 2651 1458 1800 BHV 1989 1100 1730 1800
2H 4165 5952 10.4 11 2H 3585 4668 11.7 17
SH - - - - SH 6984 8516 18.1 21
S2 - - - - S2 - - - -

2H: method S2H without shaving SH: method S2H without two-phases
S2: method S2H without hybridization
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at least one instance of this type and size reached this limit. Symbol “*” indi-
cates that at least one instance couldn’t be solved due to insufficient memory.

Shaving. The shaving procedure is particularly effective on instances of type A
or B: there is indeed a lot of items that are not interesting, such as items with
low profits on both objectives, and high weights, and conversely items that have
high profits and low weights, which will be taken in all non-dominated solutions.
On the other hand, since all items in types C and D have conflicting profits, it
is more difficult to shave items.

Two-phases. Using a two-phases method makes it possible to divide the problem
into several smaller problems, but there can be a lot of them (for problems of type
A and size 1000, there are on average 155 subproblems to solve). The combination
with the shaving procedure is interesting, because it further reduces the sizes of
the subproblems. The memory space spared this way is not as important as that
of the shaving for type A and B; the opposite is observed for types C and D.

Hybridization. Hybridizing the DP is the main part of our algorithm. Not only
does it tremendously reduces the memory requirements, it also saves a lot of
computation time for larger, or more difficult instances. This can be seen by
looking at the results of method S2 on instances of types C and D, both in
terms of time and memory requirements.

We will now compare the S2H method to the BHV method. First, from a memory
consumption point of view, our method largely outperforms the BHV method
for all sizes and types of instances. From the computation time perspective, re-
sults depend on the sizes and types of instances. For types A and B the S2H
method is much faster than the BHV method, while for types C and D it is
slower, although when the size grows our method seems to become more and
more competitive (it is as good as method BHV for type C and size 500, and
within a factor two for type D and size 250). The reason for this behaviour is
that the fathoming criterion is rather time consuming, but this is compensated
for bigger instances by the fact that a lot of computation time is saved thanks
to the important number of elements that have been fathomed.

6 Conclusion

In this paper, we have presented a new solution algorithm for 0-1 BOKP, based
on the use of bound sets. It outperforms previous dynamic programming ap-
proaches from the viewpoint of memory requirements. Concerning the resolution
times, the performances are better than the best known algorithm for this prob-
lem on random and unconflicting instances, and slower on conflicting instances
(but within the same order of magnitude). A natural extension of this work
would be to investigate the impact of the use of bound sets on other MOCO
problems. Another extension would be to study how to improve the resolution
times on conflicting instances of 0-1 BOKP. For this purpose, an incremental
resolution of the single objective problems is worth investigating. Finally, note
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that our fathoming criterion has only been implemented in the biojective case
up to now. The study of its practical implementation in problems involving more
than two objectives is an interesting and potentially fruitful task in our opinion.

Acknowledgements. This work was supported by ANR project GUEPARD.
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Abstract. In cutting plane-based methods, the question of how to gen-
erate the “best possible” cuts is a central and critical issue. We propose
a bi-criteria separation problem for generating valid inequalities that si-
multaneously maximizes the cut violation and a measure of the diversity
between the new cut and the previously generated cut(s). We focus on
problems with cuts having 0-1 coefficients, and use the 1-norm as di-
versity measure. In this context, the bi-criteria separation amounts to
solving the standard single-criterion separation problem (maximizing vi-
olation) with different coefficients in the objective function. We assess the
impact of this general approach on two challenging combinatorial opti-
mization problems, namely the Min Steiner Tree problem and the Max
Clique problem. Computational experiments show that the cuts gener-
ated by the bi-criteria separation are much stronger than those obtained
by just maximizing the cut violation, and allow to close a larger fraction
of the gap in a smaller amount of time.

1 Introduction

Cutting planes are a central component of modern methods for solving Integer or
Mixed-Integer Linear Programs (IPs or MILPs). In theory, proofs of convergence
in a finite number of iterations are known for many important cases (e.g., for
Integer Programs when separating w.r.t. Fractional Gomory cuts). In practice,
however, convergence is difficult to achieve, often due to numerical issues. The
relaxation of the problem, which is iteratively enriched with newly found violated
inequalities and re-optimized, often becomes numerically ill-conditioned [5]. Cuts
which are not valid can also be found [11]. In practice, cutting planes are typically
used within a Branch-and-Cut framework.

A recurrent and important issue in cutting plane-based methods is the gen-
eration, at each iteration, of the “best possible” cut to be added to the cur-
rent relaxation. The fundamental underlying question is to define a quantitative
measure that favors (possibly strong) valid inequalities that are “better” than
others [13]. The usual criterion for cutting plane generation is the maximization
of the cut violation (or depth), i.e., the amount by which the cut is violated by
the optimal solution of the current relaxation. The advantage of this criterion
is that it leads to optimizing a linear objective function. Alternative criteria

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 266–275, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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have been proposed, e.g., the maximization of the Euclidean distance from the
optimal solution of the relaxation to the cut.

In several computational studies [3,2], a large number of cuts is first generated,
and then a subset is selected to be added to the current relaxation. Usually, cuts
are first ranked with respect to the Euclidean distance between the optimal
solution and the cut and then with respect to their pairwise angles. As pointed
out in [4], the purpose is to select, on the one hand, valid inequalities that cut
away as much as possible the feasible region of the relaxation and, on the other
hand, cuts that are as orthogonal as possible, typically to avoid similar cuts to
be added. In the same paper, it is observed that, for Lift-and-Project cuts, when
inequalities that cut the polyhedron of the relaxation from different angles are
introduced, new tighter cuts are likely to be found in the next cutting plane
iterations. In [6], when optimizing over the rank 1 Chvátal-Gomory closure, the
presence of multiple maximally violated cuts is exploited by solving a modified
separation problem, where an additional penalty term favors the generation of
undominated cuts. The resulting solution, though, is no longer optimal w.r.t.
the violation of the cut. In the same work, it is also observed that cuts which
are as diverse as possible turn out to be computationally beneficial. These ides
are systematically applied, for several families of cuts, in the solver SCIP [1].

In this work, we propose a bi-criteria separation problem for generating valid
inequalities with 0-1 coefficients. This problem amounts to finding, among all
maximally violated cuts, one that also maximizes a diversity measure between
this cut and the previously generated one(s). As diversity measure, we use the
1-norm of the difference between two successive cuts. This clearly differs from
what has been previously done in the literature, where a (fast) generation of a
large number of valid inequalities is followed by a cut selection phase. We show
that, whenever the cuts have 0-1 coefficients, the bi-criteria separation prob-
lem amounts to solving the standard single-criterion one (where the violation is
maximized) with different coefficients in the objective function. We assess the
impact of this general approach on two challenging combinatorial optimization
problems, namely the Min Steiner Tree problem and the Max Clique problem.

2 Preliminaries

Consider the general Mixed-Integer Linear Program

(P ) min cx : Ax ≤ b

s.t. xi ∈ R, for i = 1, . . . , p

xi ∈ Z, for i = p + 1, . . . , n

αx ≤ α0, for (α, α0) ∈ C,
where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and C is the set of valid inequalities w.r.t. we
want to separate. We suppose that C is known only implicitly, i.e., as the set of
feasible solutions to some combinatorial problem, possibly described as another
Mixed-Integer Linear Program.
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In this work, we assume that C only contains inequalities with 0-1 coefficients,
i.e. α ∈ {0, 1}n. This encompasses a number of families of inequalities that are
valid for many combinatoral optimization problems, e.g., cut, clique, stable set,
rank, cycle, and cover inequalities [10]. For the sake of simplicity, here we assume
α0 = 1, but the proposed approach is valid for any α0.

Let t be the index of the cutting plane generation iteration. Let

(P t) min{cx : Ax ≤ b, x ∈ Rn, αx ≤ 1 for (α, 1) ∈ Ct}
be the current relaxation of (P), where only a subset Ct ⊆ C of the inequalities
is considered, and the integrality constraints are neglected. Let x∗ be the cor-
responding optimal solution. The standard single-criterion separation problem,
where a maximally violated cut is found, is

(SEP) max{αx∗ − 1 : (α, 1) ∈ C}.

3 Bi-criteria Separation Problems

Let t be the iteration index of the current iteration, and let αtx ≤ 1 be the cut
generated at the previous iteration. Motivated by the considerations in Sec. 1, we
would like to generate a cut αx ≤ 1 that not only maximizes the violation w.r.t.
x∗ but that also, among all maximally violated cuts, is as diverse as possible
from αtx ≤ 1.

As diversity measure, we propose the 1-norm between successive cuts, namely
the function ||α− αt||1, where ||v||1 =

∑n
i=1 |vi| for any v ∈ Rn. Since all αi and

αt
i take 0-1 values, we clearly have

n∑
i=1

| αi−αt
i |=

n∑
i=1

αi(1−αt
i)+

n∑
i=1

(1−αi)αt
i =

n∑
i=1

αi−2
n∑

i=1

αiα
t
i +

n∑
i=1

αt
i. (1)

By letting e denote the all ones vector, and neglecting the last term, which is
constant, this diversity measure can be expressed as eα−2ααt. This is of practical
importance, since we aim at a separation problem which is, computationally, not
too hard to solve. From an empirical point of view, ||α− αt||1 also nicely captures
the differences between the angles of 0-1 vectors.

The cut violation αx∗ − 1 and the diversity measure ||α− αt||1 can be com-
bined into the following bi-criteria separation problem, where they are optimized
with priority:

(BC-SEP) max
{
αx∗ − 1 + ε(eα− 2ααt) : (α, 1) ∈ C} .

A small enough value of the proportionality parameter ε > 0 can always be found
so as to guarantee that the priority between αx∗−1 and eα−2ααt is respected.
It can be derived as follows. Let M := n be the maximum of eα − 2ααt, and
m := eαt its minimum. Let also δ := mini=1,...,n{x∗

i } be the smallest variation
in αx∗ − 1, corresponding to a variation in the variables α. Then, it suffices to
select ε such that ε(M −m) < δ.
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We also propose the variant of (BC-SEP) in which the diversity w.r.t. the
whole set of previously generated cuts is taken into account. This is achieved by
defining the multi-cut bi-criteria separation problem as

(MC-BC-SEP) max
{
αx∗ − 1 + ε(eα− 2αᾱt) : (α, 1) ∈ C} ,

where ᾱt := 1
t

∑t
l=1 αl is the average of all the previously generated cuts.

Since (1) also holds when ᾱt ∈ [0, 1]n, the objective function has the same
structure of that of (BC-SEP).

4 Solving the Bi-criteria Separation Problems

Since the objective functions of (BC-SEP) and (MC-BC-SEP) are linear func-
tions of the variable α, any of the two proposed separation problems is obtained
by just taking (SEP), and changing its objective function vector x∗ into a new
vector x̂∗. For (BC-SEP), x̂∗

i := x∗
i + ε(2αt

i − 1), for all i = 1, . . . , n. For (MC-
BC-SEP), x̂∗

i := x∗
i + ε(2ᾱt

i− 1), for all i = 1, . . . , n. In this sense, the bi-criteria
separation problem just amounts to solving the standard (SEP) to separate x̂∗

instead of x∗. Note, however, that even if x∗ ≥ 0, x̂∗ can be negative.
The bi-criteria separation problem is here adapted to two challenging com-

binatorial problems: Min Steiner Tree and Max Clique. For both of them, we
consider a single family C of facet defining valid inequalities.

Min Steiner Tree. Given a graph G = (V, E), a set T ⊂ V of terminals and a
cost function c : E → R+, find a Steiner tree of G, i.e., a tree that spans all
the nodes in T , of minimum total cost. Let G′ = (V, A) be the directed version
of G, with a pair of arcs (i, j), (j, i) for each edge {i, j} ∈ E. Let r ∈ T be an
arbitrary root node. As in [8], we consider the following directed formulation of
the problem, where the integrality constraints are relaxed:

min
∑

(ij)∈A

cijxij (2)

s.t.
∑

(ij)∈ν+(S)

xij ≥ 1, for S ⊂ V : r ∈ S, V \ S ∩ T �= ∅, (3)

0 ≤ xij ≤ 1, for (i, j) ∈ A. (4)

In this case, we take as C the set of all cut inequalities (3). The separation
problem amounts to finding, for each terminal t ∈ T \ {r}, a Min s − t Cut1

on G′ with s = r, where the values of the solution x∗
ij of the current relaxation

are used as arc capacities. This separation problem can be formulated as the
following Linear Program

1 To comply with the standard notation, in this subsection, the index t denotes a
terminal node in T , instead of the index of the cutting plane algorithm iteration.
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min
∑

(ij)∈A

x∗
ijαij (5)

s.t. αij ≥ πi − πj , for (ij) ∈ A, (6)
πr − πτ ≥ 1, (7)

αij ≥ 0, for (i, j) ∈ A, (8)

where α is the incidence vector of an s − t cut and π is the vector of node
potentials. Since the cut inequalities can be separated in polynomial time, due
to the equivalence between separation and optimization [12], (2)–(4) can be also
solved in polynomial time.

Max Clique. Given an undirected graph G = (V, E), find a maximum clique
of G, i.e., a largest set of nodes that are pairwise connected. We consider the
following formulation of the problem:

max
∑
i∈V

xi (9)

s.t.
∑
i∈S

xi ≤ 1, for S ∈ S, (10)

0 ≤ xij ≤ 1, for {i, j} ∈ E, (11)

where the integrality constraints are relaxed. In this case, we take as C the set
S of all maximal Stable Sets of G. The separation problem, which amounts to
finding a maximum weighted stable set in G, where the weights are given by the
components of x∗, and is formulated as the following 0-1 Integer Program

max {αx∗ − 1 : αi + αj ≤ 1, for {i, j} ∈ E, α ∈ {0, 1}n} ,
where α ∈ {0, 1}n is the incidence vector of a stable set. Note that, since this
separation problem is NP-hard again because of the equivalence between sepa-
ration and optimization, solving (9)-(11) to optimality is also NP-hard.

For the separation of cut inequalities, the following result holds. Remember
that, because of the Linear Programming duality, an s− t cut of minimum total
capacity can be found by solving the corresponding Max Flow problem.
Proposition 1. Solving (BC-SEP) or (MC-BC-SEP) for cut inequalities
amounts to solving a Max Flow problem where αij = 0 for all (ij) : x̂∗

ij < 0.

Proof. Consider the Linear Programming dual of (5)–(8), with the additional
upper bounds μij ≤ 1 for (ij) ∈ A. (BC-SEP) or (MC-BC-SEP) amounts to

max φ−
∑

(ij)∈A

hij (12)

s.t.
∑
ij

xij −
∑
ji

xij =

⎧⎨
⎩

φ if i = r
−φ if i = t
0 else

(13)

0 ≤ xij ≤ x̂∗
ij + hij , for (i, j) ∈ A, (14)

hij ≥ 0, for (i, j) ∈ A, (15)
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which is a Max Flow problem with the extra set of variables hij , where φ is
the value of the flow. If x̂∗

ij ≥ 0 for all (i, j) ∈ A, by letting any hij = q, the
resulting capacity on the arc (i, j) is increased by q, and q units of cost are
paid in the objective function, while φ is increased by q only if (i, j) belongs to
the unique optimal cut of the network. If it is the case, the objective function
value is unaltered and hence this solution is equivalent to the corresponding one
in which hij = 0. Otherwise, if the cut containing (i, j) is not unique or not
optimal, in any optimal solution, hij will be 0 for all (i, j) ∈ A. It follows that
an optimal solution can always be achieved by letting hij = 0 for all (i, j) ∈ A.
Whenever x̂∗

ij < 0 for any (i, j), hij ≥ −x̂∗
ij is implied, and (12)–(15) can be

reformulated by adding the term −∑(i,j)∈A:x̂∗
ij<0 x̂∗

ij to (12) and substituting 0
for every x̂∗

ij < 0, thus obtaining a problem with capacities x̂∗
ij ≥ 0, where the

hij variables can be set to 0. !"
For the separation of stable set inequalities, a similar results holds.

Fact 1. Solving (BC-SEP) or (MC-BC-SEP) for stable set inequalities amounts
to solving a Max Weighted Stable Set problem where αi = 0 for all i ∈ V : x̂∗

i < 0.

5 Computational Results

In this section, we assess the impact of the proposed bi-criteria separation prob-
lems (BC-SEP) and (MC-BC-SEP), in the context of a pure cutting plane algo-
rithm, when compared to (SEP). The experiments are carried out for the Min
Steiner Tree and Max Clique problems.

The algorithms are implemented in C++, using the gnu-g++-4.3 compiler.
For both problems, the relaxations are solved with CPLEX 11 (with default
parameters). The Boost Graph Library is used for the graph algorithms and
data structures. The experiments are carried out on a standard desktop computer
with an Intel Core2Duo processor and 2.0 GB of RAM.

5.1 Min Steiner Tree

We compare (SEP) and (BC-SEP) for the Min Steiner Tree problem on two set
of instances taken from the SteinLib [9]: I640 and PUC. Those sets are among
the hardest in the library. We consider the following setting. At each iteration,
we generate a round of cuts containing as many violated inequalities as they
are found, by solving a Max Flow problem for each pair (r, t) with t ∈ T \ {r}.
When solving (BC-SEP) for terminal t, we consider, as previous cut, the last
cut generated when solving (BC-SEP) w.r.t. the same terminal. The separation
problems are solved using the Edmonds-Karp’s algorithm that has complexity
O(|V | |E|2). The root node r ∈ T is chosen as the terminal with the largest node
degree, i.e. the number of neighbors in G. Experimentally, we observed that this
choice allows to close a much larger fraction of the gap when using both (SEP)
and (BC-SEP). For each instance, we derive an initial pool C0 of cuts by solving,
for each pair of source s = r and sink t ∈ T \ {r}, a Min s− t Cut problem with
unit capacity on every arc.
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Table 1. (SEP) vs. (BC-SEP), on the I640 SteinLib instances

(SEP) (BC-SEP)
Instance |V | |E| |T | Gap Time Rnds Avgκ Gap Time Rnds Avgκ

i640-001 640 1920 9 47.4 1000.0 1024 2.9E+5 100.0 0.5 75 5.1E+3
i640-011 640 8270 9 81.4 1000.0 1005 2.9E+6 100.0 5.7 146 1.2E+4
i640-031 640 2560 9 47.9 1000.0 943 6.9E+5 100.0 0.9 79 8.5E+3
i640-041 640 40896 9 78.7 1000.0 2228 9.0E+0 78.7 1000.0 1985 6.0E+0
i640-101 640 1920 25 48.4 1000.0 779 3.9E+5 100.0 4.0 57 1.1E+5
i640-131 640 2560 25 58.6 1000.0 729 3.9E+5 100.0 5.7 55 1.1E+5
i640-141 640 40896 25 91.1 1000.0 333 1.5E+5 97.5 1000.0 138 4.4E+3
i640-201 640 1920 50 48.2 1000.0 600 2.6E+6 100.0 2.6 48 1.5E+5
i640-211 640 4135 50 80.4 1000.0 515 2.5E+5 97.6 1000.0 114 4.7E+5
i640-231 640 2560 50 56.2 1000.0 588 2.0E+6 99.7 243.9 119 6.0E+5
i640-301 640 1920 160 55.7 1000.0 394 7.0E+4 100.0 10.1 28 7.8E+4
i640-311 640 8270 160 84.5 1000.0 1335 9.0E+0 86.4 1000.0 1376 1.2E+1
i640-331 640 2560 160 61.5 1000.0 2338 9.0E+0 62.6 1000.0 2482 9.0E+0
Aggregate 64.6 94.0 0.04 0.2 0.2

Table 2. (SEP) vs. (BC-SEP), on the PUC SteinLib instances

(SEP) (BC-SEP)
Instance |V | |E| |T | Gap Time Rnds Avgκ Gap Time Rnds Avgκ
cc3-4p 64 288 8 91.9 334.5 871 1.6E+5 91.2 10.6 148 4.7E+4
cc3-4u 64 288 8 79.5 1000.0 903 5.5E+4 90.5 31.7 240 5.1E+4
cc3-5p 125 750 13 30.5 1000.0 872 3.5E+5 91.8 374.6 352 6.2E+5
cc3-5u 125 750 13 29.9 1000.0 843 3.4E+5 90.3 1000.0 305 1.3E+5
cc5-3p 243 1215 27 8.5 1000.0 521 1.2E+5 97.9 1000.0 163 4.1E+5
cc5-3u 243 1215 27 8.2 1000.0 510 1.2E+5 97.3 1000.0 157 3.5E+5
cc6-2p 64 192 12 94.1 96.6 531 9.4E+4 93.7 1.5 61 2.3E+4
cc6-2u 64 192 12 66.6 1000.0 866 1.4E+5 92.7 2.5 74 5.3E+4
hc10p 1024 5120 512 0.6 1000.0 307 1.1E+5 97.4 1000.0 24 1.2E+6
hc10u 1024 5120 512 0.5 1000.0 409 2.5E+3 97.3 1000.0 19 6.1E+4
hc6p 64 192 32 96.6 188.2 431 7.7E+4 96.5 0.1 15 7.5E+2
hc6u 64 192 32 41.9 1000.0 497 4.2E+4 95.2 8.2 55 1.5E+4
hc7p 128 448 64 17.4 1000.0 346 9.6E+4 96.6 1.2 21 1.0E+4
hc7u 128 448 64 14.2 1000.0 399 1.2E+5 95.2 406.9 90 1.3E+5
hc8p 256 1024 128 3.7 1000.0 228 2.1E+5 98.6 30.9 33 2.6E+5
hc8u 256 1024 128 3.2 1000.0 459 1.1E+5 98.0 1000.0 47 1.5E+5
hc9p 512 2304 256 1.4 1000.0 261 2.2E+5 98.6 153.3 35 4.6E+5
hc9u 512 2304 256 1.0 1000.0 571 4.9E+4 98.2 1000.0 25 9.6E+4
Aggregate 32.8 95.4 0.1 0.1 0.9

For all the experiments, illustrated in Tab. 1 and Tab. 2, the time limit was
set to 1000 seconds. We report the fraction of gap closed (Gap), the CPU time in
seconds (Time), the number of rounds of cuts generated (Rnds), and the exact
condition number of the scaled basis matrix (see ExactKappa in CPLEX User
Guide), averaged of the over the last 20 iterations (Avgκ). The gap is evaluated
w.r.t. the value of an optimal solution, if known, or w.r.t. the best known upper
bound. The condition number is averaged to mitigate the oscillations that we
observed along the runs. The best values for (SEP) and (BC-SEP) are reported
in bold. For the columns Time, Cuts, and Avgκ of (BC-SEP), we computed
the ratios, over all instances, of the corresponding value and that obtained with
(SEP). The inverse of their geometric mean is reported in the last line (Aggre-
gate). In the same line, for the Gap column, we report the arithmetic mean for
both (SEP) and (BC-SEP).
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(a) Lower Bound (b) Condition Number κ

Fig. 1. Growth rate of the lower bound and the condition number as a function of the
CPU time for the instance i640-131. The vertical axis in (b) is in logarithmic scale.

Table 1 reports the results for the I640 instances. With (BC-SEP), we man-
aged to solve to optimality 7 instances out of 13. None is solved, within the time
limit, with (SEP). On average, with (BC-SEP) 94% of the gap was closed, as
opposed to the 64% closed with (SEP), generating only 20% of the cuts and in
just 4% of the CPU time. The average condition number is also 20% smaller.
Figure 1.a and 1.b show the relation between the improvement of the bounds
and the increase in the condition numbers for (SEP) and (BC-SEP), on two
I640 instances. Note that, although the growth rates of the condition number
are similar, the improvement in the bound for (BC-SEP), with respect to that
for (SEP), is substantial. Table 2 shows the computational results obtained for
the PUC instances. With (BC-SEP), 11 instances are solved to optimality out
of 18, while with (SEP) only 3 are solved. On average, with (BC-SEP) 95% of
the gap is closed, as opposed the 32.8% closed with (SEP), in 10% of the time,
and also generating 20% of the rounds of cuts.

5.2 Max Clique

We compare (SEP), (BC-SEP), and (MC-BC-SEP) for the Max Clique problem
on a set of instances taken from the Second DIMACS Implementation Chal-
lenge [7]. We consider a setting where the pool of cuts C0 is initialized as the
empty set. Therefore, the initial relaxation (P0) only contains the box constraints
(11). Since we consider a single family of inequalities, and solve each separation
problem to optimality, a single cut is added at each round. The separation prob-
lems are solved with CPLEX.

Table 3 reports, for each of (SEP), (BC-SEP), and (MC-BC-SEP) and for each
instance, the CPU time in seconds (Time), the number of cuts generated (Cuts)
and the condition (κ) of the basis matrix of the solution of the last relaxation,
as computed by CPLEX. The time limit is set to 1000 seconds. When (BC-
SEP) or (MC-BC-SEP) outperform (SEP), or (SEP) outperforms both, w.r.t.
either of the quantities that we report, the corresponding value is highlighted
in bold. The last line (Aggregate) reports, for each column of (BC-SEP) and
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Table 3. (SEP) vs. (BC-SEP) and (MC-BC-SEP), on DIMACS Max Clique instances

(SEP) (BC-SEP) (MC-BC-SEP)
Instance |V | |E| Time Cuts κ Time Cuts κ Time Cuts κ

c-fat200-1 200 1534 2.0 222 1314 1.6 183 1079 1.2 162 785
c-fat200-2 200 3235 0.5 79 103 0.8 77 73 0.5 45 2
c-fat200-5 200 8473 6.6 260 299 6.8 249 290 5.4 206 192
c-fat500-10 500 4459 50.2 410 194 59.1 409 330 34.9 249 2
c-fat500-1 500 46627 22.3 450 3976 11.9 329 2851 0.4 27 12
c-fat500-2 500 9139 59.4 544 4397 64.7 551 4626 7.2 182 1494
c-fat500-5 500 23191 12.8 247 401 18.3 258 418 8.7 127 69
hamming6-2 64 1824 0.6 89 35 1.2 101 30 0.7 62 12
hamming6-4 64 704 22.6 232 483 4.3 70 234 3.5 60 156
hamming8-2 256 31616 > 1000 57 233 189.5 497 75 73.2 236 40
johnson16-2-4 120 5460 97.4 515 993 31.6 49 38 12.8 22 11
johnson8-2-4 28 210 0.1 47 43 0.0 12 6 0.0 12 6
johnson8-4-4 70 1855 3.2 110 181 3.3 59 76 3.5 53 52
MANN a9 45 918 0.3 49 51 0.9 49 25 0.9 49 24
myciel3 11 20 0.0 23 28 0.1 16 19 0.1 16 19
myciel4 23 71 1.1 67 136 0.7 39 83 0.6 31 59
myciel5 47 236 21.9 228 782 8.2 90 564 4.9 71 298
queen10 10 100 2940 41.4 391 1524 41.1 339 1330 43.4 338 1365
queen11 11 121 3960 40.5 433 2194 32.9 351 3058 35.1 353 6804
queen12 12 144 5192 54.2 488 1999 46.3 407 1056 42.1 372 2974
queen13 13 169 6656 71.0 555 2651 62.0 456 2631 65.4 453 2527
queen14 14 196 8372 121.0 648 3553 120.4 538 3235 137.0 542 3106
queen15 15 225 10360 234.7 713 4211 217.1 608 4179 193.8 600 4080
queen16 16 256 12640 351.7 809 4910 335.6 673 4905 350.6 689 4887
Aggregate 0.9 0.7 0.7 0.6 0.5 0.3

(a) johnson8-4-4 (b) c-fat-500-1

Fig. 2. Growth rate of the condition number as a function of the CPU time for the
instances johnson8-4-4 and c-fat-500-1. The vertical axis is in logarithmic scale.

(MC-BC-SEP), the inverse of the geometric means of the ratios, over all in-
stances, of the corresponding column value and that obtained with (SEP). The
instance hamming8-2, reported in italics, is neglected, since with (SEP) the cut-
ting plane algorithm did not terminate within the time limit. Since, within the
time limit, all problems were solved to optimality, we omit the column Gap.
With (BC-SEP), when compared to (SEP), we solve all the instances in, on
average, 90% of the time, generating 70% of the cuts and yielding a final relax-
ation with 70% the condition number. (MC-BC-SEP) yields even better results.
When compared to (SEP), we manage, on average, to solve all the problem in
60% of the time, generating 50% of the cuts and yielding a final condition number
30% smaller.
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Figure 2 shows the growth rate of the condition number for (SEP), (BC-SEP),
and (MC-BC-SEP), plotted as a function of the CPU time, for two instances.

6 Concluding Remarks

We have proposed a bi-criteria separation problem for the generation of cutting
panes. This problem amounts to generating, by solving a single optimization
problem, a maximally violated cut which also maximizes, among all the max-
imally violated ones, a measure of the diversity between the new cut and the
previously generated one(s). For cuts with 0-1 coefficients, the bi-criteria sepa-
ration problem reduces to a standard single-criterion separation problem with a
different objective function vector.

Computational results for the Min Steiner Tree and Max Clique problems
show that, by solving the bi-criteria separation problem, not only tighter bounds
are obtained in a shorter time, but also significantly less cuts are generated.
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Abstract. This work deals with the Vehicle Routing Problem with Si-
multaneous Pickup and Delivery. We propose undirected and directed
two-commodity flow formulations, which are based on the one developed
by Baldacci, Hadjiconstantinou and Mingozzi for the Capacitated Vehi-
cle Routing Problem. These new formulations are theoretically compared
with the one-commodity flow formulation proposed by Dell’Amico, Righ-
ini and Salani. The three formulations were tested within a branch-and-
cut scheme and their practical performance was measured in well-known
benchmark problems. The undirected two-commodity flow formulation
obtained consistently better results. Several optimal solutions to open
problems with up to 100 customers and new improved lower bounds for
instances with up to 200 customers were found.

Keywords: Vehicle Routing, Simultaneous Pickup and Delivery, Com-
modity Flow Formulations.

1 Introduction

The Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRP-
SPD) is a variant of the Capacitated Vehicle Routing Problem (CVRP), in which
clients require both pickup and delivery services. This problem was first proposed
two decades ago by Min [1]. The VRPSPD is clearly NP-hard since it can be
reduced to the CVRP when all the pickup demands are equal to zero. Practi-
cal applications arise especially in the Reverse Logistics context. Companies are
increasingly faced with the task of managing the reverse flow of finished goods
or raw-materials. Thus, one should consider not only the Distribution Logistics,
but also the management of the reverse flow.

The VRPSPD can be defined as follows. Let G = (V, E) be a complete graph
with a set of vertices V = {0, ..., n}, where the vertex 0 represents the depot and
the remaining ones the customers. Each edge {i, j} ∈ E has a non-negative cost
cij and each client i ∈ V ′ = V − {0} has non-negative demands di for delivery
and pi for pickup. Let C = {1, ..., m} be a set of homogeneous vehicles with
capacity Q. The VRPSPD consists in constructing a set up to m routes in such
a way that: (i) every route starts and ends at the depot; (ii) all the pickup and
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delivery demands are accomplished; (iii) the vehicle’s capacity is not exceeded
in any part of a route; (iv) a customer is visited by only a single vehicle; (v) the
sum of costs is minimized.

Although heuristic strategies are by far the most employed to solve the VRP-
SPD, some exact algorithms were also explored in the literature. A branch-and-
price algorithm was developed by Dell’Amico et al. [2], in which two different
strategies were used to solve the subpricing problem: (i) exact dynamic pro-
gramming and (ii) state space relaxation. The authors managed to find optimal
solutions for instances with up to 40 clients. Angelelli and Manisini [3] also devel-
oped a branch-and-price approach based on the set covering formulation, but for
the VRPSPD with time-windows constraints. The subproblem was formulated
as a shortest-path with resource constraints but without the elementary condi-
tion and it was solved by applying a permanent labeling algorithm. The authors
were able find optimal solutions for instances with up to 20 clients. Three-index
formulations for the VRPSPD were proposed by Dethloff [4] and Montané and
Galvão [5], however only the last authors had tested it in practice. They ran
their formulation in CPLEX 9.0 within a time limit of 2 hours and had reported
the lower bounds produced for benchmark instances with 50-400 customers.

In this work we propose an undirected and a directed two-commodity flow
formulations for the VRPSPD. These formulations extend the one developed by
Baldacci et al. [6] for the CVRP. They were compared with the one-commodity
flow formulation presented by Dell’Amico et al. [2]. In addition, the three for-
mulations were implemented within a branch-and-cut algorithm, including cuts
from the CVRPSEP library [7], and they were tested in well-known benchmark
problems with up to 200 customers.

The remainder of this paper is organized as follows. Section 2 describes the
one-commodity flow formulation [2]. In Section 3 we present the undirected
and the directed two-commodity flow formulations for the VRPSPD and we
compare these formulations with the one developed in [2]. Section 4 contains the
experimental results obtained by means of a branch-and-cut algorithm. Section
5 presents the concluding remarks.

2 One-Commodity Flow Formulation

Reasonably simple and effective formulations for the CVRP can be defined only
over the natural edge variables (arc variables in the asymmetric case), see [8].
Similar formulations are not available for the VRPSPD. This difference between
these two problems can be explained as follows. In the CVRP, the feasibility of a
route can be determined by only checking whether the sum of its client demands
does not exceed the vehicle’s capacities. In contrast, the feasibility of a VRPSPD
route depends crucially on the sequence of visitation of the clients.

The following directed one-commodity flow formulation for the VRPSPD was
proposed by Dell’Amico et al. [2]. Define A as the set of arcs consisting of a pair
of opposite arcs (i, j) and (j, i) for each edge {i, j} ∈ E and let Dij and Pij

be the flow variables which indicate, respectively, the delivery and pickup loads



278 A. Subramanian, E. Uchoa, and L.S. Ochi

carried along the arc (i, j) ∈ A. Let xij be 1 if the arc (i, j) ∈ A is in the solution
and 0 otherwise. The formulation F1C is described next.

min
∑
i∈V

∑
j∈V

cijxij (1)

subject to ∑
j∈V

xij = 1 ∀i ∈ V ′ (2)

∑
j∈V

xji = 1 ∀i ∈ V ′ (3)

∑
j∈V ′

x0j ≤ m (4)

∑
j∈V

Dji −
∑
j∈V

Dij = di ∀i ∈ V ′ (5)

∑
j∈V

Pij −
∑
j∈V

Pji = pi ∀i ∈ V ′ (6)

Dij + Pij ≤ Qxij ∀(i, j) ∈ A (7)
Dij ≥ 0 ∀(i, j) ∈ A (8)
Pij ≥ 0 ∀(i, j) ∈ A (9)

xij ∈ {0, 1} ∀(i, j) ∈ A (10)

The objective function (1) minimizes the sum of the travel costs. Constraints
(2)-(3) impose that each client should be visited exactly once. Constraints (4)
refer to the number of vehicles available. Constraints (5)-(7) are the flow conser-
vation equalities. Constraints (8)-(10) define the domain of the decision variables.

Dell’Amico et al. [2] basically extended the one-commodity flow formulation
proposed by Gavish and Graves [9] for the CVRP by adding constraints (6) and
(9), and the term Pij in (7). Gouveia [10] showed that it is possible to obtain
stronger inequalities for Dij by using the tighter bounds (11) instead of (8) in
the Gavish and Graves formulation. Accordingly, we can apply the same idea to
develop stronger inequalities for Pij by replacing (9) with (12) and for Dij +Pij

by replacing (7) with (13).

djxij ≤ Dij ≤ (Q− di)xij ∀(i, j) ∈ A (11)
pixij ≤ Pij ≤ (Q− pj)xij ∀(i, j) ∈ A (12)

Dij + Pij ≤ (Q−max{0, pj − dj , di − pi})xij ∀(i, j) ∈ A (13)

It should be noticed that a lower bound for (13) is implicit in (11) and (12),
i.e, Dij + Pij ≥ djxij + pixij . Another valid inequality for F1C, given by (14),
is due to the fact that each edge not adjacent to the depot is traversed at most
once, i.e.

xij + xji ≤ 1 ∀i, j, i < j,∈ V ′ (14)
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3 Two-Commodity Flow Formulations

In this section we present both an undirected and a directed two-commodity flow
formulations for the VRPSPD which are based on the one proposed by Baldacci
et al. [6] for the CVRP.

3.1 Undirected Two-Commodity Flow Formulation

For the sake of convenience let vertex n+1 be a copy of the depot, V̄ = V ∪{n+1}
and Ē be the complete set of edges Ē, excepting {0, n + 1}. Let x′

ij be 1 if the
edge {i, j} ∈ Ē is in the solution and 0 otherwise. Let the variables D′

ij , P ′
ij and

SPDij denote, respectively, the delivery, pickup and simultaneous pickup and
delivery flows when a vehicle goes from i ∈ V̄ to j ∈ V̄ and let the same variables
denote, respectively, the associated residual capacities when a vehicle goes from
j ∈ V̄ to i ∈ V̄ , in such a way that D′

ij + D′
ji = Qx′

ij , P ′
ij + P ′

ji = Qx′
ij and

SPDij + SPDji = Qx′
ij . Also, an integer variable v, which denotes the number

of vehicles utilized, is included with an upper bound m.
The undirected formulation F2C-U is as follows.

min
∑

{i,j}∈Ē

cijx
′
ij (15)

subject to ∑
i∈V̄ ,i<k

x′
ik +

∑
j∈V̄ ,j>k

x′
kj = 2 ∀k ∈ V ′ (16)

∑
j∈V̄

(D′
ji −D′

ij) = 2di ∀i ∈ V ′ (17)

∑
j∈V ′

D′
0j =
∑
i∈V ′

di (18)

∑
j∈V ′

D′
j0 = vQ−

∑
i∈V ′

di (19)

∑
j∈V̄

(P ′
ij − P ′

ji) = 2pi ∀i ∈ V ′ (20)

∑
j∈V ′

P ′
jn+1 =

∑
i∈V ′

pi (21)

∑
j∈V ′

P ′
n+1j = vQ−

∑
i∈V ′

pi (22)

∑
j∈V̄

(SPDji − SPDij) = 2(di − pi) ∀i ∈ V ′ (23)

SPD0j = D′
0j ∀j ∈ V ′ (24)

SPDj0 = D′
j0 ∀j ∈ V ′ (25)

SPDjn+1 = P ′
jn+1 ∀j ∈ V ′ (26)
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SPDn+1j = D′
n+1j ∀j ∈ V ′ (27)

D′
ij + D′

ji = Qx′
ij ∀{i, j} ∈ Ē (28)

P ′
ij + P ′

ji = Qx′
ij ∀{i, j} ∈ Ē (29)

SPDij + SPDji = Qx′
ij ∀{i, j} ∈ Ē (30)

D′
jn+1 = P ′

0j = 0 ∀j ∈ V ′ (31)∑
j∈V ′

D′
n+1j =

∑
j∈V ′

P ′
j0 = vQ (32)

∑
j∈V ′

x′
0j =
∑
j∈V ′

x′
jn+1 = v (33)

0 ≤ v ≤ m (34)
D′

ij ≥ 0, D′
ji ≥ 0 ∀{i, j} ∈ Ē (35)

P ′
ij ≥ 0, P ′

ji ≥ 0 ∀{i, j} ∈ Ē (36)

SPDij ≥ 0, SPDji ≥ 0 ∀{i, j} ∈ Ē (37)
x′

ij ∈ {0, 1} ∀(i, j) ∈ Ē (38)

The objective function (15) minimizes the sum of the travel costs. Constraints
(16) are the degree equations. Constraints (17) ensure that the delivery demands
are satisfied. Constraints (18) state that the sum of the vehicle loads leaving the
vertex 0 must be equal to the sum of the demand of all costumers. Constraints
(19) enforce that the sum of the vehicle loads arriving at the vertex 0 must be
equal to the sum of the residual capacity of all vehicles. Constraints (20)-(22)
are related to the pickup flow and their meaning are, respectively, analogous to
(17)-(19). Constraints (23) guarantee that the pickup and delivery demands are
simultaneously satisfied. Constraints (24)-(27) are self-explanatory. Constraints
(28)-(30) state, respectively, that the sum of the delivery, pickup and combined
loads arriving and leaving each customer must be equal to the vehicle capacity.
Constraints (31)-(32) are self-explanatory. Constraint (33) is related to the num-
ber of vehicles. Constraints (34)-(38) define the domain of the decision variables.

The formulation F2C-U was obtained by simply adding constraints (20)-(27),
(29)-(34) and (36)-(37) to the formulation presented in [6]. As in F1C, stronger
inequalities can be developed by tightening the bounds of the flow variables, i.e,
replacing (35)-(36) with (39)-(40) and (37) with (41).

D′
ij ≥ djx

′
ij ∀(i, j) ∈ Ē (39)

P ′
ij ≥ pix

′
ij ∀(i, j) ∈ Ē (40)

SPDij ≥ max{0, dj − pj , pi − di}x′
ij ∀(i, j) ∈ Ē (41)

Although the lower bounds of the flow variables are not explicit in (39)-(41)
it can be easily verified that they become inherent to the formulation when
these upper bound inequalities are combined with (28)-(30), resulting in D′

ij ≤
(Q− di)x′

ij , P ′
ij ≤ (Q− dj)x′

ij and SPDij ≤ (Q−max{0, di − pi, pj − dj})x′
ij .
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3.2 Directed Two-Commodity Flow Formulation

Let Ā be the set of arcs (i, j), ∀i, j ∈ V̄ and x̄ij be 1 if the arc (i, j) ∈ Ā is
in the solution and 0 otherwise. A directed version of the two-commodity flow
formulation (F2C-D) is as follows.

min
∑
i∈V̄

∑
j∈V̄

cij x̄ij (42)

subject to ∑
j∈V̄

x̄ij = 1 ∀i ∈ V ′ (43)

∑
j∈V̄

x̄ji = 1 ∀i ∈ V ′ (44)

x̄j0 = x̄n+1j = 0 ∀j ∈ V ′ (45)

D′
ij + D′

ji = Q(x̄ij + x̄ji) ∀(i, j), i < j,∈ A (46)

P ′
ij + P ′

ji = Q(x̄ij + x̄ji) ∀(i, j), i < j, i �= 0 ∈ Ā (47)

SPDij + SPDji = Q(x̄ij + x̄ji) ∀i, j, i < j,∈ V ′ (48)∑
j∈V ′

x̄0j =
∑
j∈V ′

x̄jn+1 = v (49)

x̄ij ∈ {0, 1} ∀(i, j) ∈ Ā (50)
(17)-(32) and (34)-(37)

Constraints (43)-(44) are the degree equations. Constraint (45) is self-
explanatory. Constraints (46)-(48) are the capacity equalities. Constraints (49)-
(50) have already been defined.

The stronger flow inequalities defined for the F2C-U also hold for the F2C-D
as can be observed in (51)-(53). Also, the arc inequalities (14) used in F1C can
be directly converted to F2C-D as shown in (54).

D′
ij ≥ dj(x̄ij + x̄ji) ∀(i, j) ∈ Ā (51)

P ′
ij ≥ pi(x̄ij + x̄ji) ∀(i, j) ∈ Ā (52)

SPDij ≥ (max{0, dj − pj , pi − di})(x̄ij + x̄ji) ∀(i, j) ∈ Ā (53)
x̄ij + x̄ji ≤ 1 ∀i, j, i < j,∈ V ′ (54)

Proposition 1. The linear relaxation of F1C with (11)-(14) is strictly stronger
than the one obtained by F2C-D with (51)-(54), which in turn is strictly stronger
than the the linear relaxation of F2C-U with (39)-(41).
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4 Computational Experiments with a Branch-and-Cut
Algorithm

We evaluated the practical performance of the formulations presented in this
work when used in a branch-and-cut (BC) algorithm. Traditional CVRP inequal-
ities were used, namely the rounded capacity, multistar and comb inequalities.
The cuts were separated using the CVRPSEP package [7]. The reader is referred
to [11] for details concerning the separation routines. At first, we try to separate
the cuts using the delivery demands. When no valid inequalities are found we
then use the pickup demands. All of the three kinds of cuts are generated at the
root node, but just the rounded capacity cuts are used throughout the tree up
to the 5th level. Preliminary tests have shown that the overhead of separating

Table 1. Results obtained by the F1C on Dethloff’s instances

Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

SCA3-0/50 4 551.14 613.38 41 73473 7200 583.77 627.66 622.73 635.62 2.03
SCA3-1/50 4 645.95 682.40 107 1712 1230 655.63 697.84 697.84 697.84 0.00
SCA3-2/50 4 592.56 658.35 19 1 19 627.12 659.34 659.34 659.34 0.00
SCA3-3/50 4 586.30 667.37 70 1083 415 633.56 680.04 680.04 680.04 0.00
SCA3-4/50 4 627.29 672.92 80 8718 1599 642.89 690.50 690.50 690.50 0.00
SCA3-5/50 4 604.31 646.14 83 15560 1901 603.06 659.90 659.90 659.90 0.00
SCA3-6/50 4 587.97 624.92 47 37655 7200 607.53 645.56 639.97 651.09 1.71
SCA3-7/50 4 584.69 654.30 82 26 103 616.40 659.17 659.17 659.17 0.00
SCA3-8/50 4 638.75 688.77 94 72785 7200 668.04 719.48 703.12 719.48 2.27
SCA3-9/50 4 597.02 668.09 82 1674 417 619.03 681.00 681.00 681.00 0.00
SCA8-0/50 9 849.35 922.36 96 8854 7200 877.55 936.89 933.12 961.50 2.95
SCA8-1/50 9 937.71 998.04 75 9948 7200 954.29 1020.28 1015.05 1049.65 3.30
SCA8-2/50 9 931.93 1008.83 78 10334 7200 950.74 1024.24 1019.99 1039.64 1.89
SCA8-3/50 9 874.31 954.55 74 11375 7200 905.29 975.87 970.88 983.34 1.27
SCA8-4/50 9 958.58 1022.44 72 12054 7200 972.62 1041.65 1036.45 1065.49 2.73
SCA8-5/50 9 923.50 996.01 79 9207 7200 940.60 1015.19 1011.57 1027.08 1.51
SCA8-6/50 9 870.58 933.57 133 6219 7200 885.34 959.91 944.53 971.82 2.81
SCA8-7/50 9 937.30 1013.86 65 12533 7200 955.86 1031.56 1029.97 1051.28 2.03
SCA8-8/50 9 962.50 1023.86 102 8510 7200 986.52 1048.93 1036.90 1071.18 3.20
SCA8-9/50 9 953.36 1012.73 89 9031 7200 978.90 1034.28 1031.51 1060.50 2.73
CON3-0/50 4 577.74 606.00 91 40753 4836 592.38 616.52 616.46 616.52 0.01
CON3-1/50 4 506.41 543.71 73 52033 6498 532.55 554.47 554.47 554.47 0.00
CON3-2/50 4 468.40 503.14 61 13874 7200 491.04 517.26 514.11 518.00 0.75
CON3-3/50 4 541.46 581.45 55 20044 1941 557.99 591.19 591.19 591.19 0.00
CON3-4/50 4 537.90 577.61 63 78398 7200 558.26 588.79 588.47 588.79 0.06
CON3-5/50 4 511.88 553.87 107 32652 5975 531.33 563.70 563.70 563.70 0.00
CON3-6/50 4 468.90 486.59 128 14248 7200 475.33 499.05 493.01 499.05 1.21
CON3-7/50 4 533.86 562.10 38 53629 5522 550.73 576.48 576.48 576.48 0.00
CON3-8/50 4 477.81 513.90 87 15317 1923 492.69 523.05 523.05 523.05 0.00
CON3-9/50 4 528.34 564.87 63 15461 5602 547.31 578.25 578.25 578.25 0.00
CON8-0/50 9 774.69 829.80 47 16498 7200 795.45 845.19 842.62 857.17 1.70
CON8-1/50 9 680.24 719.03 80 7552 7200 693.22 734.71 732.44 740.85 1.14
CON8-2/50 9 636.18 682.76 128 9856 7200 650.81 695.70 693.07 712.89 2.78
CON8-3/50 10 732.55 784.93 71 7536 7200 754.41 797.57 796.31 811.07 1.82
CON8-4/50 9 710.36 749.83 122 6374 7200 729.09 767.63 759.11 772.25 1.70
CON8-5/50 9 696.85 728.10 78 7901 7200 709.76 741.51 736.79 754.88 2.40
CON8-6/50 9 611.16 647.04 61 10400 7200 631.41 662.14 662.14 678.92 2.47
CON8-7/50 9 729.28 787.89 64 11861 7200 762.03 810.08 800.22 811.96 1.44
CON8-8/50 9 689.23 741.02 74 10324 7200 705.08 757.45 753.42 767.53 1.84
CON8-9/50 9 716.21 770.66 101 5435 7200 729.10 786.40 778.65 809.00 3.75

Avg. Gap (%) 1.34
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Table 2. Results obtained by the F2C-U on Dethloff’s instances

Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

SCA3-0/50 4 550.85 613.36 28 211456 7200 583.77 627.66 625.00 635.62 1.67
SCA3-1/50 4 645.59 682.33 42 1467 142 655.63 697.84 697.84 697.84 0.00
SCA3-2/50 4 592.44 658.89 12 1 12 627.12 659.34 659.34 659.34 0.00
SCA3-3/50 4 586.02 667.37 25 847 81 633.56 680.04 680.04 680.04 0.00
SCA3-4/50 4 626.93 673.28 50 2866 252 642.89 690.50 690.50 690.50 0.00
SCA3-5/50 4 603.95 646.29 38 19724 731 603.06 659.90 659.90 659.90 0.00
SCA3-6/50 4 587.85 624.89 27 176561 7200 607.53 645.56 644.37 651.09 1.03
SCA3-7/50 4 584.59 653.76 34 30 43 616.40 659.17 659.17 659.17 0.00
SCA3-8/50 4 638.41 693.71 42 108017 4899 668.04 719.48 719.48 719.48 0.00
SCA3-9/50 4 596.79 668.09 36 1452 96 619.03 681.00 681.00 681.00 0.00
SCA8-0/50 9 847.39 922.58 79 17695 7200 877.55 936.89 936.89 961.50 2.56
SCA8-1/50 9 933.44 997.07 56 18086 7200 954.29 1020.28 1020.28 1049.65 2.80
SCA8-2/50 9 931.34 1008.27 75 12789 7200 950.74 1024.24 1024.24 1039.64 1.48
SCA8-3/50 9 872.37 953.67 49 18487 7200 905.29 975.87 975.87 983.34 0.76
SCA8-4/50 9 955.74 1021.35 44 25853 7200 972.62 1041.65 1041.65 1065.49 2.24
SCA8-5/50 9 922.25 995.93 58 19464 7200 940.60 1015.19 1013.87 1027.08 1.29
SCA8-6/50 9 868.00 933.76 74 10467 7200 885.34 959.91 959.91 971.82 1.23
SCA8-7/50 9 935.55 1015.11 69 15193 7200 955.86 1031.56 1031.56 1051.28 1.88
SCA8-8/50 9 960.17 1023.60 87 8262 7200 986.52 1048.93 1048.93 1071.18 2.08
SCA8-9/50 9 952.34 1014.89 64 16262 7200 978.90 1034.28 1034.28 1060.50 2.47
CON3-0/50 4 577.52 606.82 46 3048 247 592.38 616.52 616.52 616.52 0.00
CON3-1/50 4 506.23 545.53 54 16039 823 532.55 554.47 554.47 554.47 0.00
CON3-2/50 4 468.22 504.44 59 22107 7200 491.04 517.26 516.23 518.00 0.34
CON3-3/50 4 541.40 582.83 35 6608 330 557.99 591.19 591.19 591.19 0.00
CON3-4/50 4 537.73 577.57 42 50663 3198 558.26 588.79 588.79 588.79 0.00
CON3-5/50 4 511.59 554.35 65 10191 729 531.33 563.70 563.70 563.70 0.00
CON3-6/50 4 468.75 486.61 100 48466 5230 475.33 499.05 499.05 499.05 0.00
CON3-7/50 4 533.73 561.87 37 9822 1141 550.73 576.48 576.48 576.48 0.00
CON3-8/50 4 477.45 514.13 71 5541 450 492.69 523.05 523.05 523.05 0.00
CON3-9/50 4 527.94 564.78 53 6372 790 547.31 578.25 578.25 578.25 0.00
CON8-0/50 9 773.46 827.14 74 13038 7200 795.45 845.19 845.19 857.17 1.40
CON8-1/50 9 678.95 719.09 67 13302 7200 693.22 734.71 734.71 740.85 0.83
CON8-2/50 9 635.23 682.37 127 9409 7200 650.81 695.70 695.70 712.89 2.41
CON8-3/50 10 731.55 785.00 71 18680 7200 754.41 797.57 797.57 811.07 1.66
CON8-4/50 9 708.64 751.32 60 15700 7200 729.09 767.63 767.63 772.25 0.60
CON8-5/50 9 696.08 727.26 66 9765 7200 709.76 741.51 741.51 754.88 1.77
CON8-6/50 9 610.20 646.78 94 11947 7200 631.41 662.14 661.36 678.92 2.59
CON8-7/50 9 726.55 788.64 74 5520 7200 762.03 810.08 810.08 811.96 0.23
CON8-8/50 9 688.25 741.76 81 13325 7200 705.08 757.45 757.45 767.53 1.31
CON8-9/50 9 713.85 770.85 109 12833 7200 729.10 786.40 786.40 809.00 2.79

Avg. Gap (%) 0.94

comb and multistar inequalities outside the root node was not worthwhile. For
each separation routine of the CVRPSEP package we have established a limit of
50 violated cuts per iteration.

The BC procedures were implemented using the CPLEX 11.2 callable library
and executed in an Intel Core 2 Quad with 2.4 GHz and 4 GB of RAM running
under Linux 64 bits (kernel 2.6.27-16). Only a single thread was used in our
experiments. Each BC is respectively associated with the formulations F1C,
F2C-U and F2C-D and they were tested on the set of instances proposed by
Dethloff [4], Salhi and Nagy [12] and Montané and Galvão [5]. The first group
contains 40 instances with 50 customers, the second contains 14 instances with
50-199 customers, while the third contains 12 instances with 100-200 customers.
The number of vehicles is not explicitly specified in these 66 instances. The
barrier algorithm was used to solve the initial linear relaxation of the last two
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Table 3. Results obtained by the F2C-D on Dethloff’s instances

Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

SCA3-0/50 4 550.93 613.35 25 132649 7200 583.77 627.66 627.66 635.62 1.25
SCA3-1/50 4 645.60 682.23 29 1262 114 655.63 697.84 697.84 697.84 0.00
SCA3-2/50 4 592.47 659.11 11 1 11 627.12 659.34 659.34 659.34 0.00
SCA3-3/50 4 586.02 667.35 21 374 50 633.56 680.04 680.04 680.04 0.00
SCA3-4/50 4 626.93 673.22 31 6156 334 642.89 690.50 690.50 690.50 0.00
SCA3-5/50 4 603.96 646.41 31 12594 330 603.06 659.90 659.90 659.90 0.00
SCA3-6/50 4 587.85 624.92 26 167625 7200 607.53 645.56 645.56 651.09 0.85
SCA3-7/50 4 584.59 654.30 33 23 40 616.40 659.17 659.17 659.17 0.00
SCA3-8/50 4 638.41 694.13 42 196322 7200 668.04 719.48 714.19 719.48 0.73
SCA3-9/50 4 596.79 668.09 38 1567 116 619.03 681.00 681.00 681.00 0.00
SCA8-0/50 9 847.73 922.85 107 3758 7200 877.55 936.89 933.89 961.50 2.87
SCA8-1/50 9 933.47 997.57 103 3661 7200 954.29 1020.28 1013.38 1049.65 3.46
SCA8-2/50 9 931.42 1008.87 147 2435 7200 950.74 1024.24 1019.31 1039.64 1.96
SCA8-3/50 9 872.45 953.21 98 3914 7200 905.29 975.87 968.55 983.34 1.50
SCA8-4/50 9 955.96 1022.13 134 4773 7200 972.62 1041.65 1032.49 1065.49 3.10
SCA8-5/50 9 922.32 996.33 184 14246 7200 940.60 1015.19 1015.19 1027.08 1.16
SCA8-6/50 9 868.05 933.74 143 1593 7200 885.34 959.91 943.47 971.82 2.92
SCA8-7/50 9 935.82 1013.12 102 3334 7200 955.86 1031.56 1028.04 1051.28 2.21
SCA8-8/50 9 960.27 1023.53 159 1559 7200 986.52 1048.93 1036.29 1071.18 3.26
SCA8-9/50 9 952.41 1013.82 111 7476 7200 978.90 1034.28 1031.54 1060.50 2.73
CON3-0/50 4 577.52 605.97 34 21249 1141 592.38 616.52 616.52 616.52 0.00
CON3-1/50 4 506.24 543.70 41 19638 1199 532.55 554.47 554.47 554.47 0.00
CON3-2/50 4 468.22 504.31 71 97732 7200 491.04 517.26 517.26 518.00 0.14
CON3-3/50 4 541.40 582.89 37 4116 213 557.99 591.19 591.19 591.19 0.00
CON3-4/50 4 537.73 577.59 28 78652 2932 558.26 588.79 588.79 588.79 0.00
CON3-5/50 4 511.60 554.43 50 16215 772 531.33 563.70 563.70 563.70 0.00
CON3-6/50 4 468.75 486.76 96 65792 6979 475.33 499.05 499.05 499.05 0.00
CON3-7/50 4 533.75 561.89 31 15895 1134 550.73 576.48 576.48 576.48 0.00
CON3-8/50 4 477.45 513.99 51 3833 269 492.69 523.05 523.05 523.05 0.00
CON3-9/50 4 527.95 564.77 48 4637 585 547.31 578.25 578.25 578.25 0.00
CON8-0/50 9 773.51 826.63 122 2526 7200 795.45 845.19 840.60 857.17 1.93
CON8-1/50 9 679.00 719.00 132 2885 7200 693.22 734.71 729.26 740.85 1.56
CON8-2/50 9 635.25 682.12 200 2416 7200 650.81 695.70 692.34 712.89 2.88
CON8-3/50 10 731.55 785.01 151 3406 7200 754.41 797.57 794.94 811.07 1.99
CON8-4/50 9 708.64 751.40 121 5468 7200 729.09 767.63 766.37 772.25 0.76
CON8-5/50 9 696.08 726.88 133 3688 7200 709.76 741.51 734.84 754.88 2.66
CON8-6/50 9 610.20 646.22 125 2458 7200 631.41 662.14 658.43 678.92 3.02
CON8-7/50 9 726.57 787.53 142 1995 7200 762.03 810.08 801.59 811.96 1.28
CON8-8/50 9 688.33 741.06 166 4021 7200 705.08 757.45 749.66 767.53 2.33
CON8-9/50 9 713.94 770.74 234 2307 7200 729.10 786.40 778.72 809.00 3.74

Avg. Gap (%) 1.26

group of instances. A time limit of 2 hours of execution was imposed for the BC
algorithms. In some very particular cases, the CPLEX run have slightly exceeded
this time limit, namely on few instances involving more than 100 customers. The
values of the best known solutions found in the literature were given as initial
primal bound for the BC, namely those reported in [13].

In the tables presented hereafter, #v represents the number of vehicles in the
best known solution, LP is the linear relaxation, Root LB indicates the root
lower bound, after CVRPSEP cuts are added, Root Time is the CPU time in
seconds spent at the root node, Tree size corresponds to the the number of nodes
opened, Total time is the total CPU time in seconds of the BC procedure, Prev.
LB is the lower bound obtained in [5], New LB is the best lower bound deter-
mined among the three flow formulations, F-LB is the lower bound found by
the respective formulation, UB is the upper bound reported in [13], and Gap
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Table 4. Results obtained by the F2C-U on Salhi and Nagy’s instances

Instance/ #v LP Root Root Tree Total New F-LB UB Gap
Customers LB Time (s) size Time (s) LB (%)

CMT1X/50 3 449.00 459.98 102 2282 300 466.77 466.77 466.77 0.00
CMT1Y/50 3 449.00 460.02 70 3205 213 466.77 466.77 466.77 0.00
CMT2X/75 6 632.11 652.85 346 2073 7200 655.88 655.21 684.21 4.24
CMT2Y/75 6 632.11 653.13 449 2610 7200 655.41 655.41 684.21 4.21
CMT3X/100 5 682.18 701.10 504 13820 7200 705.54 704.35 721.27 2.35
CMT3Y/100 5 682.18 701.12 612 19865 7200 705.62 705.28 721.27 2.22
CMT12X/100 5 564.08 628.59 813 991 7201 629.39 629.39 662.22 4.96
CMT12Y/100 5 564.08 628.58 923 118 7201 629.18 629.09 662.22 5.00
CMT11X/120 4 687.42 775.51 4835 42 7201 776.35 776.35 833.92 6.90
CMT11Y/120 4 687.42 775.40 6138 22 7200 775.74 775.74 833.92 6.98
CMT4X/150 7 796.48 817.11 7288 1 7292 817.11 817.11 852.46 4.15
CMT4Y/150 7 796.48 816.99 5747 1 7201 816.99 816.99 852.46 4.16
CMT5X/200 10 933.21 954.87 6939 1 7201 954.87 954.87 1029.25 7.23
CMT5Y/200 10 933.21 953.56 6600 1 7202 953.56 953.56 1029.25 7.35

Avg. Gap (%) 4.27

corresponds to the gap between the LB and the UB. Proven optimal solutions are
highlighted in boldface. If the F-LB is the one associated with the New LB (F-LB
= New LB), then its value is underlined only if New LB is not an optimal solution.

Tables 1, 2 and 3 contain, respectively, the results obtained by F1C, F2C-U
and F2C-D on the set of instances of Dethloff. It can be seen that the three for-
mulations were able to prove the optimality of almost all instances of 4 vehicles.
F2C-U appears to be the most effective under this aspect, being capable of prov-
ing the optimality of 17 instances. The performance of the three formulations on
the instances of 9 vehicles were inferior in terms of optimality proof, but their
LBs are significantly better than the previous values reported in [5]. F2C-U also
seems to be the most effective in terms of LBs, with an average gap of 0.94%,
against 1.34% and 1.26% of F1C and F2C-D, respectively.

In order to check if the values of the UB of the instances SCA3-0, SCA3-6,
SCA8-3, SCA8-6, CON3-2, CON8-1, CON8-4 and CON8-7 are optimal we ran
F2C-U with a time limit of 48 hours. The formulation was successful to prove
the optimality of each of these instances within up to 36 hours of execution.

As for the Salhi and Nagy and Montané and Galvão instances, we will present
only the results obtained by F2C-U, not only because it produced the best results
on average, but also due to lack of space. From Table 4 it can be observed that
optimality of the instances CMT1X and CMT1Y has been proven. In addition,
to our knowledge these are the first LBs presented for this set of instances.
Montané and Galvão [5] had reported LBs for the case where the demands were
rounded to the nearest integer. From Table 5 it can be noticed that optimality of
the instances r201, c201 and rc201 was proven. The main characteristic of these
three instances is the fact of having relatively very few vehicles.

Table 6 shows a summary of the results obtained by the three formulations in
all set of instances. In this table, G1 is the average gap between the linear relax-
ation and the UB, G2 is the average gap with respect to the root LB, including
the CVRPSEP cuts, and G3 is average gap for the LB, possibly after branch-
ing, found within the time limit established. Those results can be explained as
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Table 5. Results obtained by the F2C-U on Montané and Galvão’s instances

Instance/ #v LP Root Root Tree Total Prev. New F-LB UB Gap
Customers LB Time (s) size Time (s) LB LB (%)

r101/100 12 939.19 972.88 2910 122 7201 934.97 973.91 973.10 1009.95 3.65
r201/100 3 643.07 664.80 292 21 307 643.65 666.20 666.20 666.20 0.00
c101/100 16 1070.40 1195.53 1396 302 7201 1066.19 1196.70 1195.89 1220.18 1.99
c201/100 5 598.47 657.97 197 17 241 596.85 662.07 662.07 662.07 0.00
rc101/100 10 944.21 1028.15 2940 138 7201 937.41 1029.38 1029.38 1059.32 2.83
rc201/100 3 600.24 671.84 134 4 134 602.70 672.92 672.92 672.92 0.00
r1 2 1/200 23 3013.16 3084.97 6971 1 7200 2951.12 3084.97 3084.97 3360.02 8.19
r2 2 1/200 5 1549.60 1618.76 7869 1 7874 1501.82 1618.76 1618.76 1665.58 2.81
c1 2 1/200 28 3325.20 3475.03 7041 1 7202 3299.07 3475.03 3475.03 3629.89 4.27
c2 2 1/200 9 1560.22 1647.83 7370 1 7374 1542.96 1647.83 1647.83 1726.59 4.56
rc1 2 1/200 23 3015.44 3093.30 7064 1 7201 2939.98 3093.30 3093.30 3306.00 6.43
rc2 2 1/200 5 1438.91 1551.07 7301 1 7308 1396.95 1551.07 1551.07 1560.00 0.57

Avg. Gap (%) 2.94

Table 6. Summary of the results obtained by the three formulations

Formulation Dethloff Salhi and Nagy Montané and Galvão

G1 (%) G2 (%) G3 (%) G1 (%) G2 (%) G3 (%) G1 (%) G2 (%) G3 (%)

F1C 9.74 2.96 1.34 9.21 4.85 4.57 8.75 3.66 3.57
F2C-U 9.85 2.92 0.94 9.30 4.62 4.27 8.82 3.04 2.94
F2C-D 9.85 2.94 1.26 9.30 4.66 4.31 8.82 3.57 3.62

follows. The linear relaxation of is F1C is indeed a little better than the linear
relaxations of F2C-D and F2C-U. However, after the cuts, there is no signifi-
cant difference in the LB quality. This can be clearly seen in the column G2
under Dethloff instances. For those smaller instances, the cut separation in the
root node could always be completed within the time limit. In those cases, the
small gap differences (2.96%, 2.92% and 2.94%) are not significant and can be
attributed to the heuristic nature of the routines in the CVRPSEP library. The
consistent advantage of formulation F2C-U shown in columns G3 is explained
by the fact that CPLEX has a significantly better performance when reoptimiz-
ing its LPs. This means that more cuts can be separated and more nodes can
be explored within the same time limit.

5 Concluding Remarks

This work dealt with Mixed Integer Programming formulations for the the Vehi-
cle Routing Problem with Simultaneous Pickup and Delivery. An undirected and
a directed two-commodity flow formulations were proposed. They were tested
within a branch-and-cut scheme and their results were compared with the one-
commodity flow formulation of Dell’Amico et al. [2]. The optimal solutions of
30 open problems were proved, and new lower bounds were obtained for in-
stances with up to 200 customers. In addition, although we have shown that
the one-commodity flow formulation produces a stronger linear relaxation, the
two-commodity flow formulations have found, on average, better lower bounds
after 2 hours of execution time.
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Abstract. In this paper we consider the design problem of a two-echelon
freight distribution system. The aim is to define the structure of a sys-
tem optimizing the location and the number of two different kinds of
facilities, the size of two different vehicle fleets and the related routes on
each echelon. The problem has been modeled as a two-echelon location-
routing problem (2E-LRP). A tabu-search heuristic efficiently combining
the composing subproblems is presented. Results on small, medium and
large size instances are reported.

Keywords: tabu search, location-routing.

1 Introduction

Freight transportation to and from a city is generally performed through plat-
forms, called City Distribution Centers (CDC ), located on the outskirt of urban
areas. In the last years two-echelon freight distribution systems have been pro-
posed, based on the utilization of intermediate facilities between platforms and
customers (Crainic et al. [5]). In these facilities, referred as satellites, freights
coming from the CDC s are transferred and consolidated into vehicles of smaller
sizes. Satellites perform basically trans-dock operations and therefore already
existing infrastructures can be exploited (i.e. underground parking slots, bus
depots, etc.). This system contemplates the usage of two kinds of vehicles of
decreasing dimensions on the two echelons, referred respectively as urban-trucks
and city-freighters.

The design of a two-echelon freight distribution system is a strategical and
tactical decisional problem. Indeed strategical decisions concern the choice of
location and number of facilities and the assignment among consecutive levels,
whereas tactical decisions concern the size of two vehicle fleets and related rout-
ing. The problem has been modeled as a two-echelon location-routing problem
(2E-LRP). To the best of our knowledge, multi-level location-routing problems
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have been addressed, from the modeling point of view, only in the paper of
Ambrosino and Scutellá (2005).

The paper is structured as follows: a synthetic overview of location-routing
problems (Section 2); basic assumptions of the 2E-LRP (Section 3); tabu search
heuristic description (Section 4); results of the heuristic on several small, medium
and large instances (Section 5).

2 Location-Routing Problems: Literature Review

Papers on location-routing problems (LRP) appeared just from the ’80s. LRP
surveys have been proposed by Laporte [9] and Min et al. [15] and recently by
Nagy and Salhi [17]. The hardness of LRPs has been shown in Karp [8] and it
directed the research mainly towards heuristic approaches.

Laporte [9] introduced an expression to represent LRPs: λ/M1/.../Mλ−1,
where λ is the number of layers and M1/.../Mλ−1 are the kind of routes among
consecutive layers (R for direct routes and T for tours). The most treated case is
the 2/1/T problem. It has been approached with decomposition based heuristics
in Or and Pierskalla [18], Perl and Daskin [19], Hansen et al. [6], Srivastava [20],
Chien [4], Nagy and Salhi [16], Tuzun and Burke [22], Wu et al. [23], Albareda-
Sambola et al. [2], Melechovsky et al. [14], Barreto et al. [3]. Only few papers
propose exact approaches for this problem, i.e. Laporte et al. [10], [11], [12].
The 3/1/T/T problem has been addressed with decomposition approaches in
Jacobsen and Madsen [7] and Madsen [13]. Ambrosino and Scutellá [1] study
a 4/2/R/T/T problem. They propose different formulations and solve several
instances with CPLEX.

3 The Echelon Location-Routing Problem

The following basic assumptions are considered in the definition of our 2E-LRP:

– All freight starts from platforms. One representative freight is considered.
– Platforms and satellites are characterized by limited capacity.
– Customers are freight destinations. A demand is associated to each customer.
– Customers and satellites are single sourced by respectively satellites and

platforms. A single demand cannot be split among different vehicles, but
more demands can be loaded on the same vehicle.

– Direct shipping of freight from platforms to customers is not allowed, i.e.
freight must be distributed first to satellites and then to customers.

– Vehicles belonging to the same echelon have the same capacity. The capac-
ity of first echelon vehicles is much higher than capacity of second echelon
vehicles and of satellites. The capacity of second echelon vehicles is much
higher than the demand of customers.

– 1st echelon routes start from a platform, serve one or more satellites and
ends to the same platform; 2nd echelon routes start from a satellite, serve
one or more customers and ends to the same satellite.
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The problem consists in the following decisions: location decisions (define number
and locations of platforms and satellites); allocation decisions (assignment of
customers to open satellites and open satellites to open platforms, satisfying
capacity constraints); routing decisions (number of vehicles and related routes).
A three-index mixed-integer model derived by Ambrosino and Scutellá [1] has
been formulated in Sterle [21].

4 Tabu Search Heuristic

The proposed TS heuristic is based on the integration of the nested approach of
Nagy and Salhy [16] and the two-phase iterative approach of Tuzun and Burke
[22]. Hence it can be defined as an “iterative-nested approach”.

The problem is decomposed in its two main components, i.e. two location-
routing problems. Each component, in turn, is decomposed in a capacitated
facility location problem (CFLP) and a multi-depot vehicle routing problem
(MDVRP). A bottom-up approach is used, i.e. first echelon solution is built and
optimized on second echelon solution.

TS operates on each echelon in two coordinate and integrated phases (location
and routing). In the following the main issues of the proposed tabu search are
described: initialization and evaluation criteria; location and routing moves, tabu
attributes and stopping criteria; combination of subproblems solutions.

4.1 First Feasible Solution

The TS starts with a fast heuristic for the construction of a first feasible solution
of the two-echelon capacitated facility location problem (2E-FLP).

The aim is to open the minimum number of facilities on both echelons. At first
satellites are sorted in function of their capacity. Then we open the minimum
number of satellites, S∗, whose capacities are able to satisfy the total demand of
the customers. In particular, in order to have higher probability of determining
a feasible assignment, we impose that the total capacity of the open satellites,
decreased of a given percentage α (α ∈ [90% ÷ 95%]), has to exceed the total
customer demand. Then customers are assigned to the nearest satellite with
enough residual capacity, in decreasing order of their demand. Once determined
the demand assigned to each satellite, the procedure is repeated to find the
minimum number (P ∗) of platforms to open.

The application of this simple heuristic returns a solution to the 2E-LRP,
where dedicated routes are defined on the two echelons.

4.2 Evaluation Criteria

Two ways to evaluate a solution during the tabu search are considered: “esti-
mated cost” and “actual cost”. Both are given by the sum of two components,
location and routing (including also vehicle costs) on the two echelons. The dif-
ference is in the way routing costs are computed. In estimated costs, the routing
component is approximated with the double of direct distances among the nodes,
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whereas, in the actual cost, the routing component is given by the sum of trans-
portation costs of each route. The estimated cost is used to evaluate the first
feasible solution and the goodness of a location move, whereas the actual cost is
computed each time a routing move is performed.

4.3 Solution Neighborhood Definition

In the following, the TS moves will be presented. For sake of clarity location and
routing moves and the related parameters will be presented separately and then
we will focus on the combination of sub-problem solutions. Moreover for sake of
brevity the moves will be presented referring just to the second echelon, since
the extension to first echelon is straightforward. In the following we will use the
notation P and S for the set of all possible platform and satellite locations and
respectively with S∗ and P ∗ for the set of open satellites and platforms.

Location phase. The location phase of the heuristic affects the solution in
terms of number and location of facilities. Two simple moves are performed:
swap and add moves. The two moves are applied sequentially and iteratively
on each configuration. More precisely, for a given number of open facilities, we
try to change the configuration of the solution with swap moves, then, when
no improvements are obtained, we increase the number of facilities with an add
move and repeat swap moves for the increased number of open facilities.

- Swap moves. With this move the status of two facilities is exchanged, i.e.
an open facility is closed and a closed facility is opened. Hence the number of the
open facilities is kept constant. The key element of these moves is the selection
of the facilities to be swapped. With reference to second echelon, the satellite to
be removed from solution set S∗ is chosen with one of the following criteria:

1. Rand-sel-out : random selection of a node belonging to the solution set S∗;
2. Max-loc: node of S∗ associated with the highest location cost.

The set of possible satellites to be opened is defined considering just the nodes
able to satisfy the total demand of the customers. Once determined the set of
candidate satellites, the entering node is the one associated with the minimum
estimated total cost.

A move is performed only if it is not tabu. Then the two facilities are declared
tabu for a number of iteration depending on the number of open facilities. More
precisely tabu tenure is tabu-swap-loc-s = α |S∗|, α ∈ [αmin÷αmax]. Swap moves
are performed until a max number of not-improving iterations, max-swap-loc-s
is met.

For platforms tabu-swap-loc-p = α |P ∗|, α ∈ [αmin ÷ αmax] and max-swap-
loc-p is the fixed number of allowed iterations without improvement.

- Add move. Once the maximum number of swap moves without improve-
ment is met, we perform an add move, i.e. we increase the number of open
facilities. The node to be added to solution set is the one associated with the
minimum estimated total cost. A move is performed just if it is not tabu. The
added node is declared tabu for a number of iterations depending on the overall
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number of available locations of satellites and platforms (|P | and |S|). In par-
ticular tabu tenures are tabu-add-loc-s = α |S| for satellites and tabu-add-loc-p
= α |P | for platforms, α ∈ [αmin ÷ αmax]. Add moves are performed until max
number of not-improving iterations, max−add− loc−s and max−add− loc−p,
respectively for satellites and platforms, are met.

Routing phase. At this step, starting from the first feasible solution, we per-
form sequentially several operations to improve the routing cost component,
acting locally on each route and then on multiple routes. These operations can
be classified in three phases:

1. Define and improve multi-stop routes: sequential application of Clarke and
Wright (C&W) algorithm and 2-opt/3-opt algorithms.
2. Optimize multiple routes assigned to a single facility: insert and swap moves.
3. Optimize multiple routes assigned to multiple facilities: insert and swap moves.

The three phases have different effects on the global solution. Indeed first and
second phases do not affect the assignment of customer to satellites, i.e. they
do not affect the demand assigned to a satellite and consequently first echelon
routing cost does not change. On the contrary, third phase can provide signif-
icant changes of demand assigned to satellites and therefore the assignment of
satellites to platforms can change, affecting also first echelon routing cost. The
used approach to face this issue will be explained in the following.

We will first focus on the explanation of second and third phases. The main
issue for the used moves is the neighborhood definition. Two selection criteria
are used to restrict the sizes of neighborhoods:

1. One-select : select one node and evaluate the related neighborhood;
2. Perc-sel : select a percentage of all the nodes composing an echelon and

evaluate the related neighborhoods.

For second phase, the nodes to be selected are the ones assigned to a single
facility. Instead, for third phase, the nodes to be selected are the ones composing
an echelon. For both phases a simple aspiration criterion is used, i.e. a move is
performed, even if tabu, but it provides an improvement of the best solution.

Intra-routes improvements for a single facility. These moves are feasible
only if vehicle capacity constraints are satisfied.

- Insert move. a customer is deleted from one route and is assigned to
another route belonging to the same satellite. The neighborhood is defined eval-
uating the insertions of selected customer (customers) in all paths assigned to
the satellite under investigation. If a neighbor solution provides an improvement,
then the move is performed and added node is declared tabu, otherwise we choose
the best not-tabu deteriorating move and added node is declared tabu.

Tabu tenure tabu-r-ins-single-s is variable and depends on number of cus-
tomers assigned to a satellite. Being Zs the number of customers assigned to a
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satellite, then tabu-r-ins-single-s = �α Zs�, α ∈ [αmin÷αmax]. These moves are
performed until max number of not-improving moves, max-r-ins-single, is met.

The extension to platforms is straightforward. Being Sp the number of satel-
lites assigned to a platform , tabu-r-ins-single-p = �α Sp�, α ∈ [αmin ÷ αmax].

- Swap moves. The positions of two customers belonging to two routes
assigned to the same satellite are exchanged. The neighborhood is defined eval-
uating the exchanges of the selected customer (customers) with all the cus-
tomers assigned to the satellite under investigation. If the move is not-tabu and
it provides a saving on the routing cost, it is performed. Otherwise we perform
the best not-tabu deteriorating move. Then customers are both declared tabu.
Tabu tenure values are tabu-r-swap-single-s = �α Zs� and tabu-r-swap-single-p
= �α Sp� respectively for first and second echelon. These moves are performed
until the max number, max-r-swap-single, of not-improving moves is met.

Intra-routes improvements for multiple facilities. The moves presented
for a single facility are extended to multiple facilities. In this case, a move to be
feasible has to satisfy capacity constraints for both facilities and vehicles. Once
performed an insert or swap move, a local search is run to re-optimise locally
the routes of the involved facilities, performing 2-opt and 3-opt moves and insert
and swap moves for a single facility.

- Insert move. A customer is deleted from its route and inserted in an-
other route belonging to another open satellite. The neighborhood is defined
considering the insertions of the selected customer (customers) in all the routes
belonging to the “closest” open satellites. The closest satellites, near-ins-s, are a
percentage of the number of open satellites and is computed as follows: near-ins-
s = �β S∗�, β ∈ [0 ÷ 1]. If a move is not-tabu and it provides an improvement,
it is performed, otherwise, the best deteriorating not-tabu one is performed.

Tabu tenure value for this move depends on the total number of customers
Z. Hence tabu-r-ins-multi-s = �α Z�, α ∈ [αmin ÷ αmax].

The same relations can be extended to the first echelon for which we have near-
ins-p = �β P ∗�, β ∈ [0, 1] and, being S the total number of satellite locations,
tabu-r-ins-multi-p = �α S�, α ∈ [αmin ÷ αmax]. This move is performed until
the max number, max− r − ins−multi of not-improving moves is reached.

- Swap move. The position of two customers belonging to routes assigned to
different satellites are exchanged. The neighborhood is defined considering the
exchanges of the selected customer (customers) with all the “closest” customers.
The closest customers, near-swap-s, are a percentage of all customers and is
computed as follows: near-swap-s = �β Z�, β ∈ [0÷1]. If a move is not tabu and
it provides an improvement, then it is performed, otherwise the best deteriorating
not-tabu move is performed. Tabu tenure value for this move depends on the
total number of customers, i.e. tabu-r-swap-multi-s = �α Z�, α ∈ [αmin÷αmax].

The same relations are extended to the first echelon, for which we have near-
swap-p = �β S∗�, ,β ∈ [0 ÷ 1] and tabu-r-swap-multi-p = �α S∗�, α ∈ [αmin ÷
αmax]. This move is performed until the max number, max-r-swap-multi of not-
improving moves is met.
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4.4 Combining Sub-problems

The application of the previous location and routing moves on each echelon
locally optimise the four sub-components of the 2E-LRP. At this point the key
element is the way we combine location and routing solutions on each echelon
and location-routing solutions of the two echelons.

The four sub-problems are solved separately, but not in a pure sequential way.
Indeed our approach foresees their resolution several times, in order to explore
different location-routing solution combinations of first and second echelon. In
particular, concerning a single echelon, the idea proposed in Tuzun and Burke
[22] is adopted, i.e. each time a move is performed in the location phase, then the
routing phase is run for the new location configuration. Concerning instead the
two echelons, each time a change of the demand assigned to a set of open satellites
occurs, i.e. each time a routing move for multiple satellites is performed, then the
location-routing problem of the first echelon could be re-solved in order to find
the best location and routing solution to serve the new demand configuration.
Two criteria have been defined to control the return on the first echelon:

1. Imp-CR2 : each time a better solution for the second echelon routing problem
has been determined.

Fig. 1. TS scheme
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2. Violated-cap: each time an improvement of second echelon routing cost is
obtained and capacity constraints of the best determined first echelon routing
solution are violated by the new demand configuration.

The main steps of the Tabu Search can be summarized as follows (figure 1):

– Step 0 : determine the first feasible solution.
– Step 1 : define and optimize multi-stop routes on first echelon with C&W,

2-opt and 3-opt algorithms and go to Step 2.
– Step 2 : perform sequentially insert and swap moves for a single platform. If

max number of not improving moves is met, then update solution with the
best determined one and go to Step 4. Otherwise repeat Step 2.

– Step 3 : perform sequentially insert and swap moves for multiple platforms.
If max number of not improving moves is met, then update solution with
the best determined one and go to Step 4. Otherwise repeat Step 3.

– Step 4 : perform sequentially swap and add location moves for first echelon
and return to Step 2. If max number of not improving moves is met, then

Table 1. Tabu Search settings TS1 and TS2

Setting TS1 Setting TS2
Rand-sel-out true Rand-sel-out true
Perc-sel 0.10 Perc-sel 0.50
Violated-cap true Violated-cap true
tabu-swap-loc-s [25% ÷ 50%] tabu-swap-loc-s [30% ÷ 80%]
max-swap-loc-s 4 max-swap-loc-s 7
tabu-swap-loc-p [25% ÷ 50%] tabu-swap-loc-p [30% ÷ 50%]
max-swap-loc-p 2 max-swap-loc-p 5
tabu-add-loc-s [15% ÷ 30%] tabu-add-loc-s [10% ÷ 30%]
max-add-loc-s 3 max-add-loc-s 5
tabu-add-loc-p [15% ÷ 30%] tabu-add-loc-p [10% ÷ 30%]
max-add-loc-p 3 max-add-loc-p 5
tabu-r-ins-single-s [30% ÷ 80%] tabu-r-ins-single-s [20% ÷ 50%]
tabu-r-ins-single-p [30% ÷ 80%] tabu-r-ins-single-p [20% ÷ 50%]
max-r-ins-single 3 max-r-ins-single 5
tabu-r-swap-single-s [30% ÷ 80%] tabu-r-swap-single-s [30% ÷ 80%]
tabu-r-swap-single-p [30% ÷ 80%] tabu-r-swap-single-p [30% ÷ 80%]
max-r-swap-single 3 max-r-swap-single 5
near-ins-s 0.10 near-ins-s 0.50
tabu-r-ins-multi-s [10% ÷ 15%] tabu-r-ins-multi-s [5% ÷ 25%]
near-ins-p 0.10 near-ins-p 0.50
tabu-r-ins-multi-p [10% ÷ 15%] tabu-r-ins-multi-p [5% ÷ 25%]
max-r-ins-multi 5 max-r-ins-multi 7
near-swap-s 0.10 near-swap-s 0.25
tabu-r-swap-multi-s [10% ÷ 15%] tabu-r-swap-multi-s [5% ÷ 25%]
near-swap-p 0.10 near-swap-p 0.50
tabu-r-swap-multi-p [10% ÷ 15%] tabu-r-swap-multi-p [5% ÷ 25%]
max-r-swap-multi 3 max-r-swap-multi 7
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Table 2. Tabu Search vs. models on small instances I1

Instance MS CPU TS1 CPU-1 GAP-1 TS2 CPU-2 GAP-2
I1-238 591.83∗ 10.23 591.83 0.39 0.000 591.83 0.50 0.000
I1-239 878.69∗ 9.87 902.45 0.59 -0.027 878.69 1.08 0.000
I1-248 625.96∗ 175.60 625.96 0.85 0.000 625.96 1.67 0.000
I1-2410 862.91∗ 582.90 862.91 0.85 0.000 862.91 4.07 0.000
I1-2415 1105.67 1469.90 1121.50 1.92 -0.014 1105.67 4.15 0.000
I1-3510 829.25∗ 2194.70 952.86 1.25 -0.149 829.25 5.29 0.000
I1-3515 1019.57 3893.50 1068.00 2.21 -0.048 1019.57 6.16 0.000
I1-2820 1055.65 7200.00 1114.41 5.28 -0.056 1055.20 48.22 0.000
I1-2825 992.08 7200.00 1021.69 4.00 -0.030 979.85 35.91 0.012
I1-21015 732.48 7200.00 754.63 1.53 -0.030 732.48 10.81 0.000
I1-21020 951.01 7200.00 1008.17 3.40 -0.060 947.65 51.94 0.004
I1-21025 1170.72 7200.00 1085.67 6.81 0.073 1084.26 86.17 0.074
I1-3810 604.37 4982.30 604.37 1.24 0.000 604.37 11.26 0.000
I1-3815 730.36 7200.00 730.36 1.61 0.000 730.36 11.12 0.000
I1-3820 898.75 7200.00 968.59 5.54 -0.078 898.08 154.62 0.001
I1-3825 1141.26 7200.00 943.25 7.65 0.173 896.99 171.55 0.214
I1-31015 699.11 7200.00 744.57 2.35 -0.065 731.77 28.49 -0.047
I1-31020 810.26 7200.00 979.07 4.55 -0.208 851.18 189.97 -0.051
I1-31025 1291.68 7200.00 1131.59 3.94 0.124 1105.91 113.48 0.144
I1-41020 1208.72 7200.00 1287.14 9.49 -0.065 1158.92 243.36 0.041
I1-41025 1615.33 7200.00 1588.95 45.01 0.016 1582.01 308.68 0.021

update solution with the best determined one and go to Step 5. Otherwise
repeat Step 4.

– Step 5 : define and optimize multi-stop routes on the second echelon with
C&W, 2-opt and 3-opt algorithms and go to Step 6.

– Step 6 : perform sequentially insert and swap moves for a single open satellite.
If max number of not improving moves is met, then update solution with
the best determined one and go to Step 7. Otherwise repeat Step 6.

– Step 7 : perform sequentially insert and swap moves for multiple satellites.
If one of the criteria Imp-CR2 or Violated-cap is satisfied, return to Step 1,
otherwise repeat Step 7. If max number of not improving moves is met, then
update the solution with the best determined one and go to Step 8.

– Step 8 : perform sequentially swap and add location moves for the second
echelon and return to Step 1. If max number of not improving moves is met,
then update solution with the best determined one and STOP. Otherwise
return to Step 1.

5 Computational Results

TS heuristics require an important tuning phase to be effective. In the following,
for sake of brevity, we will not report the results obtained with all the experienced
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Table 3. Tabu Search vs. models on small instances I2

Instance MS CPU TS1 CPU-1 GAP-1 TS2 CPU-2 GAP-2
I2-238 589.38∗ 6.45 589.38 0.42 0.000 589.38 0.66 0.000
I2-239 413.54∗ 8.31 413.54 0.54 0.000 413.54 1.01 0.000
I2-248 605.40∗ 182.50 605.40 0.56 0.000 605.40 1.61 0.000
I2-2410 629.38∗ 834.30 629.38 0.91 0.000 629.38 2.34 0.000
I2-2415 912.73∗ 1525.30 943.35 1.76 -0.034 912.73 3.71 0.000
I2-3510 551.45∗ 2281.50 551.45 1.13 0.000 551.45 5.87 0.000
I2-3515 1170.83∗ 4365.50 1214.31 6.05 -0.037 1170.83 32.12 0.000
I2-2820 822.85 7200.00 867.41 2.67 -0.054 822.85 37.72 0.000
I2-2825 947.84 7200.00 959.13 6.07 -0.012 956.34 37.48 -0.009
I2-21015 727.77 7200.00 749.17 3.97 -0.029 727.77 39.36 0.000
I2-21020 801.28 7200.00 856.57 4.17 -0.069 790.57 54.55 0.013
I2-21025 1263.54 7200.00 1017.53 4.79 0.195 961.74 61.29 0.239
I2-3810 504.20 6412.23 583.73 1.06 -0.158 504.20 13.04 0.000
I2-3815 685.48 7200.00 688.68 1.74 -0.005 685.48 20.06 0.000
I2-3820 805.38 7200.00 769.04 4.57 0.045 765.01 82.03 0.050
I2-3825 1026.36 7200.00 1055.80 4.73 -0.029 1026.36 38.65 0.000
I2-31015 812.13 7200.00 813.52 2.15 -0.002 777.49 82.22 0.043
I2-31020 806.67 7200.00 843.23 5.39 -0.045 794.58 153.01 0.015
I2-31025 1254.62 7200.00 1015.10 6.56 0.191 1010.51 152.30 0.195
I2-41020 1093.34 7200.00 868.03 20.29 0.206 802.60 433.90 0.266
I2-41025 1380.86 7200.00 1193.23 20.35 0.136 1185.31 320.03 0.142

parameter settings, but we will concentrate on two of them, referred as TS1 and
TS2. The values used in the two settings are reported in Table 1. These settings
differ for the size of the explored neighborhood.

For small instances, TS results have been compared with those obtained by
the formulation proposed in Sterle [21] within 2 hours computation time.

For medium and large instances, the comparison has been done with the
results obtained with a decomposition approach, sequentially solving one 2E-
FLP and two MDVRP (one for each echelon). The evaluation of the gap Δ(z)
between TS and bounds, for a generic instance I, is computed as Δ(z) = [1 −
z(TSI)/z(BSI)], where z(TSI) and z(BSI) are respectively the solution value
obtained by the TS heuristic and the bound value. A positive gap value indicates
that TS solution improves available bound.

Exact models have been solved by Xpress-MP 7.0 solver. TS and models were
run on an Intel(R) Pentium(R) 4(2.40 GHz, RAM 4.00 GB) on three set of in-
stances. Instances have been generated through an instance generator developed
in C++. We just point out that the three sets of instances differ for the spa-
tial distribution of satellites. The notation, used to describe instances, refers to
instance set and the number of platforms, satellites and customers. Therefore
I1-51050 refers to an instance of set I1 with 5 platforms, 10 satellites and 50
customers.
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Table 4. Tabu Search vs. models on small instances I3

Instance MS CPU TS1 CPU-1 GAP-1 TS2 CPU-2 GAP-2
I3-238 589.80∗ 8.13 589.80 0.39 0.000 589.78 1.00 0.000
I3-239 454.63∗ 7.10 466.01 0.41 -0.025 454.63 1.01 0.000
I3-248 451.62∗ 164.70 451.62 1.61 0.000 451.62 1.61 0.000
I3-2410 546.36∗ 416.80 546.36 0.92 0.000 546.36 2.29 0.000
I3-2415 718.16∗ 1225.30 805.46 1.25 -0.122 718.16 4.73 0.000
I3-3510 745.85∗ 2674.20 747.37 1.76 -0.002 745.85 5.49 0.000
I3-3515 1033.79∗ 3065.50 1071.98 2.48 -0.037 1033.79 7.08 0.000
I3-2820 829.20 7200.00 893.36 2.59 -0.077 829.20 32.24 0.000
I3-2825 1100.31 7200.00 1004.86 4.89 0.087 959.97 41.69 0.128
I3-21015 620.86 7200.00 620.86 1.98 0.000 620.86 15.05 0.000
I3-21020 790.99 7200.00 757.21 2.54 0.043 756.51 38.06 0.044
I3-21025 944.84 7200.00 879.83 5.74 0.069 867.60 49.18 0.082
I3-3810 412.91∗ 3376.23 490.78 1.00 -0.189 412.91 14.88 0.000
I3-3815 624.55 7200.00 626.84 1.39 -0.004 624.55 22.35 0.000
I3-3820 707.57 7200.00 732.83 3.22 -0.036 707.57 187.18 0.000
I3-3825 977.10 7200.00 860.26 4.10 0.120 806.71 133.70 0.174
I3-31015 574.26 7200.00 624.73 1.70 -0.088 574.26 40.61 0.000
I3-31020 789.49 7200.00 781.39 3.69 0.010 745.85 256.91 0.055
I3-31025 1038.58 7200.00 913.31 2.70 0.121 860.805 91.11 0.171
I3-41020 1287.23 7200.00 1301.56 10.49 -0.011 1204.57 274.56 0.064
I3-41025 1089.40 7200.00 1141.80 20.28 -0.048 1089.40 467.69 0.000

Results on small instances are shown in Tables 2, 3, 4, reporting, for each
instance, the model solution value (MS ) and TS solution value (TS1 and TS2 )
with related CPU time and gap. From these tables we can observe that in all
cases, where the optimal solution for an instance was known (marked with ∗),
TS was able to determine it at least with one setting. More precisely, concerning
setting TS1, the gap varies between +0.206 and −0.208. In the worst cases it
is equal to −0.208 for set I1, −0.158 for set I2 and −0.189 for set I3. On the
other side computation time is always lower than 45 seconds. Concerning instead
setting TS2, the gap is, in the most of the cases, positive and it varies between
+0.256 and −0.051. Computation times increase with respect tosetting 1, but
they are significantly lower than the ones of the solver (less than 360 seconds).

Results on medium and large size instances are shown in Tables 5, 6 and 7. TS
solution values are compared with those of the decomposition approach (DA).
Concerning setting TS1 we can observe that TS results are very close to the ones
of the decomposition approach, but the saving in terms of computation time is
meaningful. The gap varies between +0.283 and −0.094 and computation times
are always lower than 600 seconds with the only exception of instance I2-41025.
Concerning instead setting TS2, it outperforms decomposition approach in most
of the instances, but the saving in terms of computation time is not so large as
for setting TS1. In particular the gap varies between +0.295 and −0.008 and
computation time varies between 390.62 and 7850.52 seconds.
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Table 5. Tabu Search vs. decomposition approach on medium-large instances I1

Instance DA CPU TS1 CPU-1 GAP-1 TS2 CPU-2 GAP-2
I1-5850 1226.24 4421.30 1236.65 15.57 -0.008 1210.27 521.72 0.013
I1-51050 1783.60 6134.90 1279.02 30.26 0.283 1256.59 853.57 0.295
I1-51075 1591.60 7512.60 1669.67 61.06 -0.049 1591.60 1026.12 0.000
I1-51575 1783.60 6134.90 1780.32 32.82 0.002 1708.79 2614.13 0.042
I1-510100 2247.32 8033.80 2458.50 121.66 -0.094 2257.35 1906.17 -0.004
I1-520100 2055.88 10218.10 2124.69 249.70 -0.033 2071.76 3780.61 -0.008
I1-510150 2177.77 8407.10 2220.47 345.53 -0.020 2097.81 3740.38 0.037
I1-520150 1933.82 7786.60 2098.87 538.99 -0.085 1919.35 3271.92 0.007
I1-510200 2625.11 10119.50 2761.73 440.27 -0.052 2601.33 2239.09 0.009
I1-520200 3140.17 12750.30 2546.74 473.41 0.189 2407.33 6037.38 0.233

Table 6. Tabu Search vs. decomposition approach on medium-large instances I2

Instance DA CPU TS1 CPU-1 GAP-1 TS2 CPU-2 GAP-2
I2-5850 1185.75 2023.34 1207.39 21.02 -0.018 1185.75 665.22 0.000
I2-51050 1325.61 5039.50 1350.55 18.08 -0.019 1335.81 390.624 -0.008
I2-51075 1768.88 7061.00 1813.01 68.34 -0.025 1756.13 1252.878 0.007
I2-51575 1644.79 9499.40 1710.38 53.43 -0.040 1644.79 944.352 0.000
I2-510100 2391.17 10379.60 2411.03 60.60 -0.008 2290.64 769.242 0.042
I2-520100 2051.39 12405.60 2051.39 257.63 0.000 2041.13 2608.404 0.005
I2-510150 2111.97 14060.90 2018.49 302.78 0.044 1907.71 4852.92 0.097
I2-520150 1800.89 10134.50 1772.90 631.48 0.016 1707.73 4540.74 0.052
I2-510200 2430.93 8871.80 2435.05 101.01 -0.002 2407.88 1078.866 0.009
I2-520200 2274.29 15602.10 2260.65 1237.99 0.006 2223.72 7850.52 0.022

Table 7. Tabu Search vs. decomposition approach on medium-large instances I3

Instance DA CPU TS1 CPU-1 GAP-1 TS2 CPU-2 GAP-2
I3-5850 1298.89 7741.90 1351.27 16.67 -0.040 1240.80 474.94 0.045
I3-51050 1256.68 4929.60 1297.51 24.68 -0.032 1243.87 919.53 0.010
I3-51075 1879.56 13720.00 1937.27 45.20 -0.031 1839.38 806.94 0.021
I3-51575 1704.65 12903.90 1602.72 42.19 0.060 1590.00 1910.94 0.067
I3-510100 2601.44 20599.60 2420.47 37.79 0.070 2294.44 546.61 0.118
I3-520100 2261.36 15724.50 2278.57 75.72 -0.008 2170.45 696.22 0.040
I3-510150 1470.77 243.90 1398.69 182.22 0.049 1342.18 2635.06 0.087
I3-520150 1508.07 21240.50 1454.31 232.34 0.036 1343.72 3379.30 0.109
I3-510200 2193.32 41145.10 2030.30 351.31 0.074 1893.68 2633.48 0.137
I3-520200 2784.47 23319.40 2737.23 343.97 0.017 2692.31 2765.42 0.033
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6 Conclusions

2E-LRP has been scarcely treated in literature with both exact and heuristic
methods. A Tabu Search heuristic has been proposed. It decomposes the prob-
lem in four subproblems, one CFLP and one MDVRP for each echelon. The four
sub-problems are sequentially and iteratively solved and their solutions are op-
portunely combined in order to determine a good global solution. Tabu Search
has been experienced on three set of small, medium and large instances and the
obtained results have been compared with bounds derived from exact models.
Experimental results prove that the proposed TS is effective in terms of qual-
ity of solutions and computation times in the most of the solved instances. The
proposed Tabu Search could be easily integrated with additional constraints and
adapted to the asymmetric case.
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Abstract. In this paper, we propose new and fast level-packing algo-
rithms to solve the two-dimensional strip rectangular packing problem
with guillotine constraints. Our methods are based on constructive and
destructive strategies. The computational results on many different in-
stances show that our method leads to the best results in many cases
among fast heuristics.

Keywords: strip packing, fast heuristic, level algorithms, construction
and destruction.

1 Introduction

Given a set I = {1, . . . , n} of rectangular items i, and a bin of fixed width and
infinitive height, the two-dimensional strip packing problem (2D-SPP) consists
in orthogonally packing all the items into the bin, without overlapping, with the
objective of minimizing the total height of the packing within the strip. The size
of the bin is denoted by W , and the width (resp. the height) of each item i is
denoted by wi (resp. hi).

In the typology of [20], 2D-SPP belongs to the class of two-dimensional open-
dimension packing problems. In many industrial applications, two constraints can
be added to the problem: (C1) Orientation constraint. In general, the rotating
of the items by 90 degrees is permitted. However, in some real applications,
the orientation of all items is fixed. (C2) Guillotine constraint. This constraint
requires that the layout can be obtained by a serie of guillotine cuts, i.e. edge-
to-edge cuts parallel to the edges of the bin.

There are several exact algorithms [8,13] and metaheuristic-based algorithms
[4,10,12] proposed for this problem. However, generally speaking, these algo-
rithms are more time consuming and are hence less practical for problems having
a large number of items. Moreover, in the nowadays shipping industry, the cus-
tomer demands must be satisfied austerely and rapidly. In this paper, we focus
on fast algorithms, whose running time is no more than a few seconds for the
large instances available (about 500 items).

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 302–313, 2010.
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Our methods belong to the class of so-called level heuristics (see [17]). In
this class of methods, items are packed side-by-side by horizontal levels. The
height of a level is determined by the tallest item it contains. We use classical
strategies to build levels into a construction/destruction scheme. At each step
of the algorithm, several different levels are built and only the ”best” is kept in
the solution. Several strategies for level construction and selection were tested.
Computational experiments show that our approach leads to high quality results
compared to those of the literature.

The remainder of the paper is organized as follows. Section 2 reintroduces
known level algorithms in the literature. In Section 3, we present an adaptation
of an existing heuristic for the case with rotation. Section 4 describes our Con-
struction and Destruction Heuristic algorithm denoted by CDH. Computational
results are reported and analyzed in Section 5. Finally, Section 6 summarizes
our conclusions.

2 Efficient Level Algorithms

Many level heuristics have been developed for strip packing without rotations.
The most basic ones are based on classical strategies: first-fit decreasing height
(FFDH) [9], next-fit decreasing height (NFDH) [9], and best-fit decreasing height
(BFDH) [16]. For these heuristics, the items are ordered according to non-
increasing height, and considered one by one following this initial ordering. The
current item i can be packed in an existing level, or in a newly created level.
The three variants only differ in the choice of the level. In NFDH, i is packed in
the highest level (if possible). In FFDH, i is packed in the first level in which
it fits. Finally, in BFDH, i is packed in the level with the minimum residual
horizontal space. Among these heuristics, NFDH is often the worst and BFDH
has shown to be useful for guillotineable problems.

Based on these basic level heuristics and exploiting the non-used spaces, some
other heuristics were introduced such as Split Fit (SF) [9], Size Alternating
Stack (SAS) [17], or Floor-Ceiling (FC) [15,14]. According to computational
results reported in [17], FCNR (that corresponds to the FC algorithm used for
the oriented case with guillotineable constraint) is the best one in terms of the
distance between the obtained height and an optimal solution, and in the number
of times the algorithm obtains the smallest strip height. According to this paper,
FCNR is followed by SAS. The reader is refered to [17] for more details.

In the case where rotations are allowed, Bortfeldt [4] introduced BFDH∗ im-
proved upon the BFDH algorithm by two modifications. The first modification
deals with the selection of an existing layer for the current item. As in BFDH
the layer with minimal remaining free width is sought to accommodate the item.
However during the search the orientation of the item is no longer fixed: for each
layer, both orientations of the item are tested. The second modification consists
in trying to utilize the remaining free space within levels above the items at the
level bottom by including the item with the largest surface in this space, which
is on the leftmost side of the available area.
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In 2006, Zhang et al. [21] proposed the so-called heuristic recursive (HR) algo-
rithm. After packing an item, the unpacked space is divided into two subspaces
according to two cases (See Figure 1 (a)). Then these subspaces are packed re-
cursively by the next item with the largest area. Local search is used when all
orderings of items are checked. HR obtains quickly good results on the bench-
marks of Hopper and Turton [10]. The computational results have shown that
the HR algorithm outperforms the best metaheuristic proposed so far [10] in
relative distance of best solution to optimum height and in running time.

3 Adaptation of BFDH to the Case with Rotation

In this section we introduce IBFDHR, a variant of BFDH [16] where the rotations
are allowed. Firstly, we reintroduce BFDHR that was adapted to use for non-
oriented case. This heuristic works as follows: first, the items are oriented such
that the width is greater than or equal to the height, and then they are ordered
by non-increasing height. After this, the items are processed one by one. Each
item is packed into a rectangular level, at the level bottom and left justified. The
width of a level is given by the bin width while its height is determined by the
height of the first item packed into the level. If at least one existing level can
contain the current item, the level with minimum residual horizontal space is
chosen. Otherwise, a new level is created above the existing levels and initialized
with the current item. The first modification that was introduced by Bortfeldt
[4] is reused (see Section 2).

As this traditional version of BFDH does not work when there exists an item
whose longer edge is larger than the width of the bin (i.e., li = max(wi, hi) > W )
(see ngcut04, ngcut05, ngcut06 [1,2], for example), a modification is added as
follows: the items are divided into two groups. Group 1 includes the items whose
longer edges are larger than the width of bin; all remaining items are put in group
2. First the items of group 1 are oriented vertically whereas the items of group
2 are oriented horizontally. Then items of group 1 are packed using the BFDHR

algorithm. Finally items of group 2 are packed using a slight modification of the
BFDHR algorithm: the existing levels that were created in the previous phase
(packing of group 1) are considered first. In this process, the current item is
oriented vertically and normally packed. The process is repeated until all items
are packed.

To improve this algorithm, especially for the non-zero waste instances, another
simple algorithm is used. In this algorithm, the items are first ordered by non-
increasing height. Then they are packed with BFDHR. The algorithm IBFDHR

is obtained by applying the previous two sub-algorithms, and by keeping the
best solution obtained.

4 Constructive and Destructive Heuristics(CDH)

In this section we propose a new algorithm based on the use of two phases. The
main idea of this algorithm is to construct a solution by generating iteratively



New Fast Heuristics for the 2D Strip Packing Problem 305

several solutions according to classical rules, and by keeping at every stage one
level of the best solution (the strategies used to choose this level are discussed
in Section 5). At the end of each iteration, the rest of the solution is destructed.
After each destructive phase, the items of the best strip are removed from the
instance, and the method is rerun until all items are packed. Note that this
construction / destruction methodology is an approach that has been successfully
applied to several other problems (under the name of iterated greedy [18] or ruin-
and-recreate [19]).

The overall method is described in Algorithm 1. The creation and the selection
of one strip are detailed in Algorithm 2.

In order to simplify the notations in the algorithms, for a given strip z, we will
respectively denote h(z) and I(z) the height of z and the set of items packed in z.

Algorithm 1. General method used in CDH
Input
I : the inital set of items;
W : the width of the strip;
h ← 0;
while I 
= ∅ do

z ← createOneStrip(W,I) ;
I ← I \ I(z);
h ← h + h(z);

return h;

Algorithm 2. CreateOneStrip
Input
I : the current set of items;
W : the width of the strip;
cpt ← 1;
//Let Z be a list of set of strips
forall combinations of ordering σ, versions v and parameters r do

Z[cpt] ← PackUnBounded(I , W , σ, v, r);
cpt ← cpt + 1;

Select a value of cpt such that Z[cpt] leads to the best height of strip;
Select the best strip z∗ in Z[cpt] following a given criterion;
return z∗;

After packing an item i into the original space S to initialize a new level,
we have an unbounded space S1 and a bounded space S2 as in HR (see Figure
1 (a)). The unbounded space is a vertical strip of infinite height, whereas the
bounded space is a strip of height hi. Here S1 is similar to S, so we can use the
same packing procedure to treat both.

To pack the remaining items in I in the two subspaces S1 and S2, we use
two algorithms: PackingUnBounded(I, S1, σ, v, r) and PackingBounded(I, S2,
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(a) Dividing the subspaces in HR (b) Dividing the bounded subspace in
CDH

Fig. 1. Two versions for dividing the subspaces

Algorithm 3. PackUnBounded
Input
I : the set of items to be packed;
W : the width of the bin;
σ: an ordering of I ;
v: the version used for dividing the space;
r: the rule used for choosing the next item;
Let Z be an empty list of strips;
Sort rectangles following order σ;
while I 
= ∅ do

Pack the first item i;
I ← I \ {i};
z ← PackBounded(I , (W − wi, hi), v, r);
append item i to the strip z;
Z ← Z ∪ {z};
I ← I \ I(z);

return Z;

v, r) respectively (see Algorithms 3 and 4), where σ is a given ordering of the
items, and parameters v and r stand for version (for dividing the space into
two subspaces when an item is packed) and rule (for choosing the next item to
be packed) respectively. Please note that S2 in the call of PackingBounded is
defined by a width and a height (see Algorithm 4).

In PackingUnBounded(I, S, σ, v, r), we use four different orderings σ of the
items: (i) decreasing height, then decreasing width; (ii) decreasing width, then
decreasing height; (iii) decreasing area; and (iv) decreasing perimeter.

In PackingBounded(I, S2, v, r) we used two rules to select an item: the tallest
item (r = 1) and the largest item (i.e. an item with the maximum area) (r = 2).
One can observe that when dividing S2 into S3 and S4 we use two versions: v = 1
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Algorithm 4. PackBounded
Input
I : the set of remaining items;
(w̄, h̄): the width and the height of the bounded subspace;
v: the version used for dividing the space;
r: the rule used for choosing the next item;
if no item of I can be packed in the current subspace then

return a strip of height 0 and with an empty item set;
Select an item i to be packed using the rule r;
Pack i and create the two corresponding bounded subspaces (w1, h1) and
(w2, h2) following rule v;
Z1 ← PackBounded(I, (w1, h1), v, r);
I ← I \ I(Z1);
Z2 ← PackBounded(I, (w2, h2), v, r);
I ← I \ I(Z2);
Assemble Z1, Z2 and item i to form one strip z;
return z

and v = 2 (see Figure 1 (a) for the version related to HR and Figure 1 (b) for
the version related to CDH).

Now we consider the time complexity of our method. For PackingUnBounded(I,
S, σ, v, r), we have to take into account the ordering of items, which is in O(n log n).
Then PackingBounded is called until all items are packed. PackingBounded al-
ways takes the next item following rule r (O(1) if the items are stored in a suit-
able data structure) and never consider an item twice. Thus the time complexity
of PackingBounded is O(n log n). Since the maximum levels created is n, the pro-
cedure createOneStripcannot be called more than n times. This gives the overall
time complexity of the CDH algorithm: T (n) = O(n2 log n).

We consider the cases with and without rotation, which respectively lead to
two versions: CDH non-oriented (CDHR) and CDH oriented (CDHO). To deal
with rotations, in the CDHR algorithm, n new items are added. Each item in the
new instance considered corresponds with an item in one of its two possible orien-
tations, similarly to [7]. Hence, there are 2n items and after selecting an item, its
double has to be deleted. The computational results showed that this additional
strategy is more effective than treating n items. For both cases, by combining
with two rules to select the item and two versions to divide bounded spaces, we
used 16 different sets of parameters for PackingUnbounded(I, S, σ, v, r).

5 Computational Experiments

In this section, we first study the practical effectiveness of several strategies for
choosing levels in our constructive-destructive heuristics. Then we compare our
new heuristics to those of the literature on a large set of classical instances.
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All new algorithms were implemented on a 1.6 GHz CPU with 1GB RAM.
The results of the HRR algorithm [21] were carried out on a 2.4 GHz CPU. The
results of all other algorithms in the literature are taken from [17]. We tested
our algorithms on 141 instances: ngcut01-12 and gcut01-13 [1,2], cgcut01-03 [6],
beng01-10 [3], N1-N12 [5], and C1-C7, H1-H7, T1-T7 [11,10]. Note that the
results of some algorithms are not available for some instances. We only report
the results for which all results are known. We respectively use 122 and 129
instances in Tables 3 and 4.

In the following tables, IBFDHR corresponds to our adaptation of the
algorithm in [16] and CDHO (resp. CDHR) corresponds to the constructive-
desctructive heuristics dedicated to the oriented (resp. non-oriented) case. Fi-
nally HRO denotes algorithm obtained from HR [21] where the orientation of
each item is determined.

5.1 Comparisons of Various Strategies

In our new heuristic CDH, the choice of the level to keep at each step is crucial.
First we report our experiments on this issue.

We tested the following four strategies: (i) first level (Strategy 1), (ii) minimum
wasted area (Strategy 2), (iii) minimum ratio between wasted area and height
of level (Strategy 3); and (iv) maximum number of items in level (Strategy 4).
We compare these strategies on the 141 instances listed above. The results are
reported in Tables 1 and 2. We used four criteria for the comparison:

– % improvement: this criterion is equal to (number of improved instances com-
pared to the original constructive heuristics) / (total number of instances).
The higher this ratio is, the more effective our strategy is;

– Average: the average value of solution;
– Number of times the best known solution is obtained;
– Number of times the algorithm is strictly better than the others.

Tables 1 and 2 underline that Strategy 3 is slightly better than the others for
the benchmarks we used, in particular for criteria 1 and 2. However, note that
Strategies 1 and 2 lead to more unique best solutions for the case with rotations.
We will use Strategy 3 for additional experiments in the remainder of the paper.
Note that our method clearly outperforms simple constructive algorithms.

5.2 Evaluation of CDH

In this subsection we distinguish two cases: (i) without rotations or (ii) with ro-
tations. In the first case, we compare HRO and CDHO with two algorithms from
the literature: SAS and FCNR. Table 3 provides the results obtained over 122 in-
stances. It shows that CDHO and HRO outperform the other methods. To com-
pare these two algorithms we consider two criteria (as in [17]): (i) the frequencies
with which each algorithm achieved the smallest strip height and (ii) how close
the strip heights obtained were to an optimal solution (if known, otherwise to the
continuous lower bound). The associated results are presented in Figure 2.
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Table 1. Comparing several strategies for the case without rotations (Heuristic CDHO)

Criterion Strategy 1 Strategy 2 Strategy 3 Strategy 4
% improvement 36.17 27.66 41.13 29.79
Average 575.64 574.47 574.10 575.66
Nb. best solutions 109 105 120 98
Nb. unique best solutions 7 5 9 4

Table 2. Comparing several strategies for the case with rotations (Heuristic CDHR)

Criterion Strategy 1 Strategy 2 Strategy 3 Strategy 4
% improvement 52.48 55.32 56.03 41.13
Average 544.29 541.97 540.18 547.84
Nb. best solutions 98 108 102 78
Nb. unique best solutions 13 14 8 6

Table 3. Results when rotations are not allowed

Data n OPT SAS FCNR HRO CDHO Data n OPT SAS FCNR HRO CDHO

NGCUT01 10 23 27 25 28 25 H1 17 200 259.4 242.6 247.6 237.6
NGCUT02 17 30 33 33 33 33 H2 25 200 269.4 244.8 242.2 237.8
NGCUT03 21 28 31 34 30 30 H3 29 200 259.6 246 246.6 236.8
NGCUT04 7 20 23 23 23 23 H4 49 200 244.8 237.6 221.6 224.8
NGCUT05 14 36 37 46 37 37 H5 73 200 238 227.8 226.2 222.2
NGCUT06 15 31 35 36 35 33 H6 97 200 235.4 230 220.2 214.6
NGCUT07 8 20 20 21 20 20 H7 197 200 229.4 221.2 210.4 210.4
NGCUT08 13 33 38 38 41 38 Mean 200 248 235.71 230.69 226.31
NGCUT09 18 - 60 64 62 62 T1 17 200 282.4 274.4 260.6 256
NGCUT10 13 80 85 85 86 85 T2 25 200 268.8 263.2 243 240
NGCUT11 15 52 75 63 64 60 T3 29 200 269.2 251.8 242.6 237.6
NGCUT12 22 87 91 96 87 87 T4 49 200 247.2 235 223.4 224.4
Mean 46.25 47 45.5 44.42 T5 73 200 234.8 228.2 227 221
CGCUT01 16 23 25 25 35 25 T6 97 200 233.6 233.2 218.8 214.8
CGCUT02 23 - 75 73 75 74 T7 199 200 224.6 226 210.2 210
CGCUT03 62 - 744 744 718 721 Mean 200 251.51 244.54 232.23 229.11
Mean 281.33 280.67 276 273.33 N1 10 40 60 46 40 40
GCUT01 10 1016 1016 1016 1016 1016 N2 20 50 65 61 53 54
GCUT02 20 1499 1349 1300 1329 N3 30 50 63 62 57 53
GCUT03 30 1803 2077 1810 1873 1812 N4 40 80 103 93 87 87
GCUT04 50 3396 3216 3143 3163 N5 50 100 115 111 111 108
Mean 1997 1847.75 1833 1830 N6 60 100 110 105 106 104
C1 16/17 20 25.7 22 21 21 N7 70 100 120 124 116 116
C2 25 15 19 17 16.3 16.7 N8 80 80 104 92 85 85
C3 28/29 30 36.3 35.3 33.7 33.3 N9 100 150 177 162 157 158
C4 49 60 68 69.0 65.3 66.3 N10 200 150 158 182 155 155
C5 72/73 90 102.3 98.3 95.7 94.3 N11 300 150 159 155 153 153
C6 97 120 135.3 128.7 126 126 N12 500 300 341 343 311 308
C7 196/197 240 266 252.7 250.3 249.3 Mean 112.5 131.25 128 119.25 118.42
Mean 82.14 93.23 89 86.90 86.70

Figure 2 indicates that CDHO is better in terms of both criteria. CDHO is also
faster: its average running time for these 122 instances is 0.046 seconds against
16.08 seconds for HRO. In addition with n = 500 (instance N12) the running
time of CDHO is 1.63 seconds while the running time of HRO is 1355.48 seconds.
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Table 4. Results when rotations are allowed

Data n OPT IBFDHR HRR CDHR Data n OPT IBFDHR HRR CDHR

NGCUT01 10 20 22 24 21 CGCUT01 16 23 27 26 23
NGCUT02 17 28 33 33 30 CGCUT02 23 - 74 67 72
NGCUT03 21 28 33 32 29 CGCUT03 62 - 695 692 682
NGCUT04 7 18 21 21 21 Mean 265.33 261.67 259
NGCUT05 14 36 37 38 37 GCUT01 10 - 795 852 791
NGCUT06 15 29 35 32 30 GCUT02 20 - 1328 1510 1266
NGCUT07 8 10 10 10 10 GCUT03 30 - 1867 1905 1765
NGCUT08 13 33 37 37 35 GCUT04 50 - 3259 3217 3100
NGCUT09 18 49 56 66 56 GCUT05 10 - 1267 1404 1267
NGCUT10 13 59 64 64 61 GCUT06 20 - 2842 3403 2773
NGCUT11 15 - 63 68 56 GCUT07 30 - 4537 4799 4356
NGCUT12 22 77 90 93 87 GCUT08 50 - 6286 6608 6058
Mean 41.75 43.17 39.42 GCUT09 10 - 2523 2459 2459
BENG01 20 30 37 32 32 GCUT10 20 - 6394 6877 5865
BENG02 40 57 64 59 59 GCUT11 30 - 8050 8646 7221
BENG03 60 84 89 85 85 GCUT12 50 - 14004 14792 13440
BENG04 80 107 113 108 108 GCUT13 32 - 5407 4950 5202
BENG05 100 134 139 134 135 Mean 4504.54 4724.77 4274.08
BENG06 40 36 39 37 36 H1 17 200 246 223.6 223
BENG07 80 67 72 68 68 H2 25 200 238.4 216.6 227
BENG08 120 101 106 102 101 H3 29 200 235.8 217.2 222.6
BENG09 160 126 130 126 126 H4 49 200 229.4 212.6 218.6
BENG10 200 156 160 156 156 H5 73 200 226.8 208.6 214.4
Mean 89.8 94.9 90.7 90.6 H6 97 200 222 207.4 210.8
C1 16/17 20 23.3 21.7 21.3 H7 197 200 216.6 202.8 205
C2 25 15 18 15.7 16.3 Mean 200 230.71 212.69 217.34
C3 28/29 30 36.3 32 32.7 T1 17 200 250.2 231 232.2
C4 49 60 68.3 61.3 62.3 T2 25 200 236.4 217.6 228.4
C5 72/73 90 99.7 91.7 92.3 T3 29 200 234.4 217.4 223.4
C6 97 120 132 123 122.7 T4 49 200 229.2 212.8 218.4
C7 196/197 240 255.3 244.7 244.7 T5 73 200 225 209.8 214.4
Mean 82.14 90.41 84.3 84.61 T6 97 200 222.4 207 210.4

T7 199 200 218.4 204.4 205.4
Mean 200 230.86 214.29 218.97

Fig. 2. Statistical results for HRO and CDHO over the 122 benchmark data sets in
Table 3

For the case with rotations, we compare three algorithms: IBFDHR, HRR and
CDHR. The results reported in Table 4 show that our algorithm outperforms the
HR algorithm for non-zero waste instances (i.e., ngcut01-12, cgcut01-03, gcut01-
13, and beng01-10). It seems that the HR algorithm is not effective for this class
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Fig. 3. Statistical results for HRR and CDHR over the 38 non-zero waste instances
(left) and the 91 zero waste instances (right)

Fig. 4. Packing result of ngcut11 (n=15) for CDH

of instances since the corresponding results are even less than the results of
IBFDHR for the instances of Beasley. These results are confirmed by the Figure
3. Finally CDHR is also faster than HRR: its average running time for the 129
instances used in Table 4 is 0.097 seconds against 6.43 seconds for HRR.

To illustrate the behaviour of our algorithm we provide the solution generated
by CDHO and CDHR for the instance ngcut11 in Figure 4.



312 M.H. Ha et al.

6 Final Remarks

In this paper, we introduced a new and fast algorithm for 2D strip packing
problem with guillotine constraints. We tested its performance on benchmarks
for the oriented and non-oriented cases. Our method outperforms all other fast
algorithms except HR of Zhang et al. [21]. When comparing with this method,
our algorithm performs better for oriented case. For the case with rotations, its
results are better only on non-zero waste instances. However in both cases, our
method is clearly faster.

The notion of construction/destruction can also be used in a metaheuristic
framework, were levels would be iteratively removed and added. We also plan to
apply this methodology to the three-dimensional case.
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Abstract. Different heuristics for the problem of determining stowage plans for 
containerships, that is the so called Master Bay Plan Problem (MBPP), are 
compared. The first approach is a tabu search (TS) heuristic and it has been  
recently presented in literature. Two new solution procedures are proposed in 
this paper: a fast simple constructive loading heuristic (LH) and an ant colony 
optimization (ACO) algorithm.  

An extensive computational experimentation performed on both random and 
real size instances is reported and conclusions on the appropriateness of the 
tested approaches for the MBPP are drawn. 

Keywords: heuristics, metaheuristics, stowage plans. 

1   Introduction and Problem Definition 

The stowage of containers on a ship, that is the so called master bay plan problem 
(MBPP), is faced daily by each terminal management. This problem can be defined as 
follows: given a set C of n containers of different types to load on a ship and a set S of 
m available locations within the ship, we have to determine the assignment of the 
containers to the ship locations in order to satisfy the given structural and operational 
constraints related to both the ship and the containers and to minimise the total  
loading time. 

Set C is partitioned into two subsets, namely T and F, consisting of 20 and 40 feet 
(20’ and 40’) containers, respectively. Each location is addressed by three indices, i, j 
and k, representing its bay (i), row (j) and tier (k) position in the ship; let I, J and K be, 
respectively, the corresponding set of bays, rows and tiers available for the stowage. 
Moreover, let E⊂I be the subset of even bays, that are used for stowing 40’containers, 
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and O⊂I the one of odd bays, that are used for stowing 20’containers. Tiers in the 
hold and on the deck are denoted by KH and KD, respectively. Finally, the locations 
having the same pair of bay and row identify a stack; let hence P be the set of all the 
available stacks in the ship. 

In this paper the MBPP involves only the loading decisions at the first port without 
taking into account possible loading operations at the next ports of the ship route. We 
assume that the container handling operations are performed by quay cranes, which 
are positioned on the quay side of the ship. In [12], the problem of defining stowage 
plans is split into a two-step process concerning first the shipping line and then the 
terminal management; the authors provide for each step a review of the corresponding 
optimization models. A relevant literature update is provided in [11]. 

In this work we also assume that the ship is empty and only one yard crane is available 
for handling the containers at the quay. In spite of such simplifying assumptions, the re-
sulting mathematical formulation is not simple. In fact, in order to model the MBPP we 
must deal with the assignment constraints (i.e., each container must be assigned to at most 
one location and each location must receive at most one container) and the knapsack con-
straint (i.e. the total weight of the containers loaded on the ship cannot exceed the ship 
capacity); furthermore, besides these basic combinatorial constraints, some constraints 
related to the size, weight and destination of the containers, together with others related to 
the ship stability, have to be taken into account. Stability conditions involve three different 
types of equilibrium: horizontal, cross and vertical. 

MBPP is NP-Hard [5]. Some Integer Programming models for MBPP are proposed 
in [6] and [10]. Unfortunately these papers deal with simplified version of problem so 
that the proposed models are not suitable for real life large scale applications. MBPP is 
described in details in [1] where a 0/1 Integer Programming (IP) model is presented. In 
that model the decision variables are related to the assignment of containers to locations 
of the ship; the model is used for solving up to optimality only very small instances. 
Successively, in [3] a new 0/1 IP model is proposed where variables correspond to the 
assignment of ship locations to groups of containers, each one characterized by range of 
weight (e.g., low, medium or high), type and destination; using that model the authors 
solve larger instances, even if not always integer feasible solutions are found within a 
reasonable CPU time, that is some hours. In [3] MBPP is solved by using a three step 
approach. First a bay assignment procedure is performed to assign subsets of containers 
with the same destination to predefined subsets of bays; successively for each partition 
of the ship a single destination 0/1 IP model is considered, where the ship stability con-
straints are relaxed. Finally, possible infeasibilities of the global solution due to the 
violation of either cross or horizontal stability conditions are removed by means of a 
tabu search procedure. The tabu search algorithm also tries to improve the global solu-
tion, i.e., to reduce the total loading time. The main features of the tabu search presented 
in [3] is that it is based on seven classes of moves which combine three kinds of items 
that can be moved, that is a single container, a stack of containers and a bay, with three 
kinds of position exchanges, that is anterior-posterior location exchange, left side-right 
side exchange, and cross exchange.  

By using such heuristic method it is possible to check and force feasibility up to 
small- medium sized instances, while for larger instances, it is not possible to use the 
0/1 IP model for obtaining an initial solution. For this reason we propose a simple 
constructive procedure that is described in Section 2. Moreover, in this paper we  
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present an Ant Colony Optimization (ACO) heuristic, described in Section 3, that is 
successfully applied to very large instances. Section 4 reports the performed experi-
mental analysis; finally, conclusions are drawn in Section 5.   

2    Simple Constructive Heuristic 

In this section we describe a new solution method, that is a simple constructive load-
ing heuristic (LH). LH determines a solution for MBPP that satisfies both the destina-
tion and the weight constraints in the following steps. 

 
1. Let C’={ C1 , C2 ,… Ch,…. CD} be a partition of C, where Ch denotes the set of 

containers having as destination port h. Split Ch according to the type of containers, 
that is 20’ and 40’, thus obtaining sets ChT  and ChF, respectively. 

2. Apply the bay partitioning procedure described before (see [3] for more details) to 
determine the subsets Ih⊆ I of bays assigned to destination h, h = 1, …,D. 

3. For each destination h, starting from the last one (D) back to 1, assign first contain-
ers belonging to ChT  and then containers belonging to ChF  as follows. 
3.1 Sort ChX (where X ∈{T,F}) in increasing order of weights. 
3.2 Repeat - Until ChX≠∅ or IhX=∅ 

1. Select i∈IhX  
2. For k=1 to K and j=1 to J assign container c∈ChX to location (i, j, k), start-
ing from the first container in the set (i.e., the heaviest one), then set ChX = 
ChX\{c} and  IhX = IhX\{i}  

3.3 If ChX ≠∅ and IhX = ∅ try to locate the remaining containers without violating 
the destination and weight constraints as follows 
1. If ChT ≠ ∅, the remaining containers are possibly located above 20’ con-
tainers having destination h ’> h without violating the weight constraints. 
2. If ChF ≠ ∅, the remaining containers are possibly located above 20’ con-
tainers if they have the same destination; otherwise, either above 40’ or 20’ 
containers having destination h’> h, provided that the weight constraints are 
satisfied. 

3   The Proposed ACO Approach for the MBPP 

In this section we describe the main aspects of an ant colony optimization (ACO) 
approach for MBPP. ACO is a population-based metaheuristic which tries to emulate 
the successful behaviour of real ants cooperating to find shortest paths to food for 
solving combinatorial problems ([7], [9]). Real ants have an effective indirect way to 
communicate each other which is the most promising trail towards food: ants produce 
a natural essence, called pheromone, which they leave on the followed trail to food in 
order to mark it. The pheromone trail evaporates with time and it disappears on the 
paths left by the ants; however, it can be reinforced by the passage of further ants: 
thus, effective (i.e., shortest) paths leading to food are finally characterized by a 
strong pheromone track, such that shortest paths are followed by most ants. The ACO 
metaheuristic has been both the subject of theoretical studies and successfully applied 
to many combinatorial optimization problems.  
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We consider a set of m artificial ants. At each iteration the ants progressively fix the 
destination, type and class of weight for the available ship locations; thus they con-
struct a solution by assigning the containers to the locations, accordingly. After that, a 
Local Search (LS) is executed starting from the best solution found in the current itera-
tion, a global pheromone update phase takes place and the whole process is iterated. 
The algorithm terminates when a maximum number of iterations is reached. 

The proposed ACO is the adaptation of the algorithm introduced in [4]. Such an ap-
proach is inspired by the Ant Colony System (ACS) [8] and Max-Min Ant System 
(MMAS) [13] and it includes a new local and global pheromone update mechanism. 
For the sake of brevity, hereinafter we focus only on the modelling aspects highlight-
ing how the ACO approach can be applied to MBPP. Details of the algorithm can be 
found in [4], while readers interested in a comprehensive presentation of the ACO 
metaheuristic can find a valuable and general reference in [7].  

Let CD={1,...,D} denote the set of destinations for the containers in C ordered ac-
cording to the ship route. At each iteration the ants take a sequence of decisions 
nested in two levels: stack decision level and location decision level. At the higher 
stack decision level the ants consider a stack at a time and fix the latest destination for 
the containers loaded in its locations (e.g., if dmax is the latest destination for a stack, 
then only containers bound for 1,...,dmax can be loaded in it). At the lower location 
decision level, the ants establish the type t∈{T, F} and class of weight g∈G for each 
location in the considered stack, finally assigning to it a container with a compatible 
destination, type and class of weight, which satisfy both destination and vertical equi-
librium constraints.  

Such decisions correspond to the search of a path from a start node (the ant colony 
nest) to an end node (the food) in a construction graph structured in two nested levels, 
as depicted in Figure 1.  

Figure 1.a shows the graph corresponding to the stack decision level; here the ants 
determine a path from the stack node 0 (the ant nest) to the stack node ns (associated 
with the last considered stack), selecting at each stage one destination in CD∪{0}, 
where 0 denotes that the stack is not assigned. The order according to which stacks 
are considered in the stack decision stages is heuristically fixed for both favouring the 
ship stability and reducing the loading time. In particular, we built a sorted list of 
rows in increasing order of the associated loading time tj, j∈J (computed as 

jk
Kk

j tt
∈

= max , being tjk, j∈J, k∈K, the loading time for row j and tier k) but alternating a 

left and a right row. Similarly, we build a sorted list of bays alternating a bay in the 
middle of the ship, one in the anterior and one in the posterior part with a procedure 
similar to the pre-assignment performed in [2]. Finally, the sequence of stacks defin-
ing the stack decision stages is produced by extracting the index i and the index j 
respectively from the sorted lists of bays and rows. 

After a stack level decision the ants proceed considering the locations in the stack. 
Figure 1.b details the location decision level for a generic stack h. Also in this case 
the ants’ decisions correspond to a path from the location node 0 to the location node 
nh (associated with the last available location in stack h), determining at each stage the 
type and class of weight (here G={G1, G2, G3}, where G1 stands for light, G2 for  
medium and G3 for heavy) for the location so that no vertical equilibrium constraint  
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Fig. 1. The construction graph of the ACO algorithm 

 
or type compatibility is violated. In the following, we denote by Ns, Nd, Nl and Ntw 
respectively the sets of stack, destination, locations and type-weight nodes. Note that 
(a) in the stack decision level of the construction graph the stage associated with a 
stack on deck immediately follows the corresponding stack in hold; (b) in the location 
decision level the location nodes are ordered from the lowest to the higher. Once both 
the latest destination and the type and class of weight for a location are fixed at a 
location decision stage, the ants actually assign to it a specific compatible container 
selected from the not yet loaded ones that do not violate any destination constraint 
(this is simply obtained sorting the available compatible containers in decreasing 
order of destination). 

Note that ns may be greater than the number of available stacks on the ship since 
the stacks with available locations may be reconsidered whenever there are not as-
signed containers. We must remark that the number of stages considered at the loca-
tion decision level may vary since the ants’ decisions at a stage force the available 
alternatives at the successive stages: in particular, a single type of container is allowed 
for a stack, and weight and destination constraints can prohibit certain assignment 
patterns. Therefore, assuming ns=|P|, we have 2⋅|I|⋅|J| stack decision stages and at 
most |KH| and |KD| location decision stages for the locations associated with a stack in 
the hold and on the deck respectively, which in turn consist of 3⋅|KH| and 3⋅|KD| pairs 
of type-weight nodes.  

The information about the ants state are (a) the sets of containers that remain to be 
located CR={(p, t, g, ncptg): p∈CD, t∈{20’, 40’}, g∈G}, where ncpgt is the number of 
containers to be loaded with destination p, type t and group of weight g; (b) the partial 
set of decisions for stow locations CA={(i, j, k, p, t, g): i∈I, j∈J, k∈K, p∈D, t∈{20’, 
40’}, g∈G }. A pheromone trail is associated with a subset U of the arcs of the con-
struction graph: U includes the arcs (s, d): s∈Ns, d∈Nd connecting stack nodes to 
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destination nodes at the stack decision level, and the arcs (l, z): l∈Nl, z∈Ntw connect-
ing location nodes to type-weigh nodes at the location decision level. 

The ant solution construction process outlined so far is quite flexible as it allows to 
locate containers with different destinations in the same stack or bay. The selection of 
a destination node and type-weigh node at each stage of the two decision levels is 
performed in two steps similarly to the ACS: first an ant determines the node selec-
tion rule between exploitation and exploration, then it actually selects the node. The 
ant extracts a random uniform number q∼[0,1] and chooses exploitation if q≤q0 
(where q0∈[0,1] is a fixed parameter), otherwise exploration. The exploitation rule at 
a generic decision node s such that (s, h)∈U selects the next node h* in a deterministic 
way as  

[ ] }),(),({maxarg
),(:

* βητ hshsh e
Uhsh

⋅=
∈

       (1) 

whereas the exploration rule according to a selection probability ),( hseπ  computed as

     [ ]
[ ]∑

∈
⋅

⋅
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Uzsz
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e
e
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),( β

β
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The subset of arcs (s, h)∈U identifies the solution components and ),( hseτ  is the 

pheromone trail associated with the component (s, h) at iteration e. The pheromone 
trails represent the ACO learning device and provide a measure of the appropriateness 
of selecting a component during the construction of “good” solutions. Following the 
same approach in [4], the pheromone values assigned to ),( hseτ  are independent of 

the objective function values associated with previously explored solutions including 
the component (s, h); pheromone values vary in an arbitrary range ],[ MaxMin ττ , with 

MaxMin ττ < , which is fixed independently of the specific problem or instance con-

sidered (actually the algorithm behaviour does not depend on the choice of Maxτ  and 

Minτ ). The pheromone trails are initialized as 2/)(),(0 MinMaxhs τττ +=  and their 

variation in the range ],[ MaxMin ττ  during the exploration process, i.e., the ant colony 

learning mechanism, is controlled by the same global pheromone update rule pro-
posed in [4] that allows a smooth variation of ),( hseτ within these bounds such that 

both extremes are asymptotically reached. The quantity ),( hsη , associated with the 

component (s, h), is a heuristic value that is used to direct the ants’ selections during 
the first iterations when the pheromone trails are almost the same for all the compo-
nents. We based the computation of ),( hsη  on a very simple rule which returns 

),(),(),( hshshs ct ηηη ⋅= , where ),( hstη  and ),( hscη  are the heuristic values rele-

vant to the choice of the type of containers (i.e., the use of an even bay or the two 
paired odd bays) and of the class of weight for the location associated with h respec-
tively. In order to minimize the loading time we favour the assignment of 20’ contain-
ers to the locations in the rows closer to the berth side, fixing 2),(20 =hsη  for the 

relevant nodes in the construction graph, as well as the assignment of the heaviest 
containers to the lowest tiers in the hold and on the deck, fixing 2),( =hstη  for the 
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relevant nodes, letting 1),(),( == hshs gt ηη in all the other cases. The quantity β in (1) 

and (2) is a parameter representing the importance of the heuristic value with respect 
to the pheromone trail in the ant selection rules. 

Whenever an ant reaches the final state node ns a tentative solution x for MBPP is 
build. Tentative solutions could not be feasible as some equilibrium constraints could 
be violated and some containers could be not loaded. Then, we compute the global 
cost for the solution as 

)()())()(()( 21 xLxMxxMxZ nls +++= μσσ                   (3) 

being μ(x) the number of not loaded containers and Ms and Mnl two penalties for the 
violation of stability constraints and for not loaded containers in x, respectively.  After 

all ants a=1,..., m have determined a solution a
ex at an iteration e, the best solution 

found in the iteration, i.e., )(minarg a
e

a

best
e xZx = , is determined and a LS step takes 

place. The purpose of this LS is that of perturbing best
ex  by means of a set of moves 

that change the locations of a subset of loaded containers in order to eliminate the 
possible violation of stability constraints and to improve the overall loading time. The 
LS procedure at each iteration performs the following sequence of three types of ran-
dom moves, whose details are provided in [3]: Anterior-Posterior exchange  
of containers (APC); Left-Right side exchange of containers (LRC); Cross exchange 
of containers (CEC). As regards the solution feasibility, we should note that the LS is 
devoted only to recover violations of stability which, emerging from the solutions 
considered as a whole, are difficult to avoid during the ACO solution construction 
process. Thus, the objective function minimized by the LS disregards the Mnlμ(x) 
component since, leaving in this way the task of loading all the required containers to 
the ACO solution construction process. The LS adopts the first improvement move 
acceptance rule and it terminates after a fixed maximum number of iterations. How-
ever, whenever the overall ACO algorithm reaches a maximum number of non im-
proving iterations, the LS maximum number of iterations is temporarily doubled until 
an improved solution is found.  

Finally, the pheromone trails associated with the solution components included in 
the best solution found so far are reinforced while the other components are evapo-
rated according to the global pheromone update rule introduced in [4], and the  
algorithm iterates. 

4    Experimental Results 

The proposed MBPP algorithms were coded in C++, using the commercial Cplex 9.0 
as 0/1 IP solver, and tested on a 1.5GHz, Intel Celeron PC with 1Gb RAM. The tests 
were related to two containerships of different sizes. The first containership is the 
medium size European Senator, whose data have been provided by the SECH Termi-
nal of Genova, Italy. The European Senator has a 2124 TEU capacity and is com-
posed by 17 odd bays, 10 rows and 6 tiers in the hold and 21 odd bays, 12 rows and 5 
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tiers in the upper deck. Then we consider a larger containership with a capacity of 
5632 TEUs.  
The considered instances are characterized by different level of occupancy of the ship 
and different type of containers to load:   
 

− the total number of containers (TEU and absolute number) ranges from 945 to 
1800 (TEUs) and 715 to 1413 containers for instances with 2 or 3 destinations, and 
from 4920 to 5510 (TEUs) and 3800 to 4110 containers for instances with 4 or 5 
destinations. The level of occupancy ranges from 50% to 97%; 

− the percentage of 20’ and 40’ containers are 70% - 30% and 60% - 40%,  respec-
tively, for instances with 2/4 and 3/5 destinations;  

− the percentage of containers for three groups of weight ranges from 30% - 60% - 
10% to  40% - 35% - 15%; 

− the partition of containers for each destination is 50% - 50% and 30 % 35%  25%, 
respectively, for instances with 2 or 3 destinations, whilst containers are unifor-
mally distributed in case of  4 and 5 destinations. 

The loading times depend on the row and tier and grow from left side rows to the 
right ones and from highest tiers on the deck to the lowest ones in the hold; times are 
expressed in 1/100 of minute and range from 120 to 330. We first tried to find a 
global optimal solution using the exact 0/1 IP model given in [3]. We fixed as termi-
nation conditions for the solver an absolute gap = 5⋅Nd minutes, where Nd is the 
number of destinations of the considered instance, and a maximum time limit of 1 
hour, and we obtained the following results. Medium size ship: 
 

− no integer solution was found in one hour of computation for all the 4 instances 
with 3 destinations;  

− the solver stopped with a feasible solution after reaching the maximum time limit 
for 5 instances out of 10 with 2 destinations;  

− the solver required on the average after 16m and 47s to terminate for the remaining 
5 instances with 2 destinations.  

Large size ship: no integer solution was found even extending the maximum compu-
tation time to two hours.  

Note that finding an exact solution for the instances with more than two destina-
tions was significantly hard; therefore, the need of an effective heuristic for medium 
and large containerships is apparent.  

We tested the TS and the ACO approaches comparing the obtained results also 
with the ones produced by the exact 0/1 IP model for medium size instances and by 
the simple constructive LH followed by the TS (LH-TS) for large size instances. 

We performed some preliminary tests to select suitable values for the TS and the 
ACO parameters, identifying the following configurations: for the TS we fixed tenure 
= 80, diversification after 30 non improving iterations, diversification length = 35 
iterations, termination conditions corresponding to maximum number of iterations = 
500 and maximum not improving iterations = 50. For the ACO we used 80 ants, the 
pheromone evaporation factor α=0.05, q0=0.95, β=1, maximum number of non im-
proving iterations = 8 and maximum number of iterations =1000. Since random 
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choices are used in both TS and ACO, five independent runs were performed for each 
instance and the average results were considered. 

Table 1 shows the results for the medium size test instances. We report in the first 
group of columns (Exact 0/1 IP) the results produced by the exact 0/1 IP model, fol-
lowed by three groups of columns showing respectively the starting solutions of the 
TS obtained by solving the 0/1 IP model for the single destination MBPP (SD-
MBPP), the final solutions yielded by the TS (Tabu Search) and the final solutions 
produced by the ACO. An absolute gap of 5m was fixed as the termination condition 
for the SD-MBPP 0/1 IP model and the loading times shown in the columns Obj are 
expressed as 1/100 of a minute. Note that Time (a) and Time (b) columns report the 
CPU times in seconds needed by the 0/1 IP solver respectively for the exact model 
and the single destination model, whereas the Avg Time columns for the TS and ACO 
show the total CPU times needed by the two heuristic approaches. The last table row 
finally shows the overall average CPU times for this set of instances. 

First, we must remark that both the TS and the ACO approaches were able to find 
solutions satisfying both the cross and the horizontal stability conditions on every run 
for each instance. The average CPU times in Table 1 show that both heuristics were 
able to find feasible solutions in a fraction of the time needed by the exact 0/1 IP  
 

Table 1. The results for the medium size ship 

  

Exact 0/1 IP 
(max time=1h, 

absolute gap=5×Nd 
m) 

SD-MBPP 
(absolute gap=5m) 

Tabu 
Search 

(average over 
5 runs) 

ACO 
(average over 

5 runs) 

Ist. Nd Obj (a) Time 
(a) 

Obj 
(b) σ1 σ2 

Time 
(b) 

Avg 
obj 

Avg 
Time 

Avg 
obj 

Avg 
Time 

1 2 139530 1300.8 150570 15 5380 68.4 142990 101.1 144162 142.0 

2 2 149440 1606.4 155100 20 1065 11.6 151700 43.8 154918 158.6 

3 2 161670 1876.7 168310 0 1225 7.4 164444 40.5 167780 180.1 

4 2 178320 1613.3 186310 0 1435 21.8 180906 54.3 183336 174.0 

5 2 219650 3698.6 225510 0 1115 17.6 222600 58.1 227486 189.2 

6 2 197410 1999.8 203040 0 1555 18.0 200072 49.7 203566 191.6 

7 2 213520 3698.5 219330 0 1235 12.1 216036 52.0 221572 154.9 

8 2 244660 3698.4 252640 0 1495 21.3 247810 63.5 254168 141.8 

9 2 248050 3295.0 253640 5 1010 212.3 250128 243.4 258578 137.9 

10 2 293150 3704.7 293310 0 1960 17.0 293530 41.5 305228 115.7 

11 3 - 3600.0 206590 20 5685 65.0 200140 119.6 204452 168.2 

12 3 - 3600.0 220210 15 1300 7.5 217660 45.5 224822 181.2 

13 3 - 3600.0 237050 0 1625 19.8 233608 65.9 239912 183.7 

14 3 - 3600.0 278780 0 470 30.8 275964 66.7 285948 176.3 

  Averages 2953.4    37.9  74.7  167.7 
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model to find the optimal; note that the CPU time consumed by the exact 0/1 model for 
obtaining for each instance the first suboptimal solution not worse than the average one 
produced by the TS is more than 10 times the CPU of the TS (in particular, an average 
of 846s compared to 74.8s). We compare the results of instances 1-10 in Table 1 by 
computing the percentage deviations of the solutions yield by the SD-MBPP model and 
the TS and ACO approaches from the ones found by the exact 0/1 IP model. The solu-
tions obtained by the SD-MBPP model are worse but not very far from the ones yielded 
by the exact 0/1 IP model: the average percentage deviation of 3.41%, which corre-
sponds to an average difference in the total loading time = 1h 2m 21s, was obtained 
with a very short average CPU time (37.9s); however, we must remark that the SD-
MBPP was never able to satisfy the stability conditions (i.e., σ1,σ2 > 0), especially the 
horizontal one. The best results are apparently due to the TS approach that was only 
1.33% worse (corresponding to an average difference in the total loading time = 24m 
49s) than the exact 0/1 IP model that needed a very much longer computation. Com-
pared to TS, the designed ACO algorithm presents worse performances with respect to 
average loading times and computation requirements.  

For the instances with 3 destinations (11-14 of Table 1) we compared results ob-
tained by TS and ACO, observing that the loading times produced by the ACO were 
worse on average of 2.94% than the ones obtained by the TS.   

The results obtained for the large size instances are reported in Tables 2 and 3. As 
for large instances with more than 3 destinations, the ACO algorithm turned out to be 
the best one, and in some cases it was the only approach able to generate a solution.  
Note that for these instances the exact 0/1LP model never was able to determine a 
feasible integer solution. Since also the SD-MBPP model failed to find a feasible 
solution for some of the instances with a larger number of containers, we were not 
able to initialize the TS (in particular, is true for the instances 4 and 6 denoted with 
(*) in Table 2). For this reason we decided to implement the LH described in Section 
2. Tables 2 and 3 show the results produced by the two steps of the TS, LH-TS and 
those produced by the ACO algorithm. In both tables, the first group of columns re-
ports the characteristics of the initial solutions obtained, respectively, by the SD-
MBPP model (SD-MBPP) in Table 2 and by the LH (LH) in Table 3; then, the second 
group of columns shows the final average results, respectively, for the TS approach 
(TS) in Table 2 and the LH-TS one (LH-TS) in Table 3. Note that, as the tabu search is 
only able to improve the stability and the loading time of a solution, the number of 
non loaded containers (NLC) in the initial solutions found by the SD-MBPP model 
and LH is not modified in the final TS and LH-TS solutions. The last column of Table 
5 shows the non loaded containers (NLC) in the final ACO solution together with the 
loading time and the CPU time. Tables 2 and 3 report the stability violations (σ1 and 
σ2) only for the initial solutions as no stability violation was found in the final solu-
tions; this is true also for the ACO solutions.The LT (i) and LT (f) columns show the 
loading times, respectively, for the initial and final solutions, and the LT %var col-
umn reports the percentage variation of the loading time in the final solutions with 
respect to the initial ones. Finally, Table 2 and 3 include three CPU times expressed in 
seconds: the one needed by the SD-MBPP model (CPU), the time required by the tabu 
search (CPU TS) and the overall (initialization plus search) cumulative time (CPU 
TOT). Note that the averages in the last row of Table 2 are computed without  
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instances 4 and 6. The ACO needed less CPU time than the TS procedure, always 
being able to find a feasible solution. However, the ACO approach was also able to 
completely locate all the containers only in one case out of 11. The number of non 
loaded containers is lower than those obtained by TS.   

Table 2. Tabu Search solutions for the large size tests 

   SD-MBPP TS (average over 5 runs) 

Ist. Nd NLC LT (i) σ1 σ2 CPU LT (f) LT 
%var 

CPU 
TS 

CPU 
TOT 

1 4 5 868400 0 40 14400.0 868388 0.00 25.9 14425.9 
2 4 0 852590 0 735 14400.0 853002 0.05 100.4 14500.4 
3 4 100 850070 0 335 14400.0 850194 0.01 33.0 14500.4 

4(*) 4 84  896760 - - - - - - - 
5 4 92 906310 5 300 11099.3 906288 0.00 22.3 11121.7 

6(*) 4 85  915329 - - - - - - - 
7 5 112 918920 20 425 7325.2 918996 0.01 48.5 7373.7 
8 5 47 901750 0 270 4181.7 901760 0.00 30.5 4212.2 
9 5 194 733240 35 150 10187.8 732640 -0.08 37.4 10225.1 
10 5 213 727830 20 85 14953.3 727510 -0.04 40.2 14993.5 
11 5 91 842650 5 60 157.3 842616 0.00 25.3 182.6 

Avg.  95 844640   10122.7 844599  40.38 10163.2 

Table 3. LH-TS and ACO solutions for the large size tests 

LH LH-TS ACO
ist NLC LT (i) σσσσ1111 σσσσ2222

CPU LT (f) LT %var CPU 
TS 

CPU 
TOT 

NLC LT CPU 

1 240 897400 140 175 10 833640 -7.10 91.99 102.0 102.0 879162 154.8 

2 188 896860 50 425 14 841420 -6.18 144.8 158.8 77.4 896676 123.4 

3 424 855200 140 435 10 792606 -7.32 94.7 104.7 321.0 851946 100.9 

4 106 972000 90 695 12 926130 -4.72 92.0 104.0 55.6 964970 73.1 

5 44 991190 395 4080 15 969842 -2.15 80.5 95.5 0.0 986150 195.9 

6 95 993200 25 4100 12 965824 -2.76 85.5 97.5 65.2 978940 130.1 

7 100 996540 360 2975 14 946722 -5.00 160.8 174.8 19.6 999440 201.4 

8 90 966160 230 515 10 935508 -3.17 94.7 104.7 1.4 979046 109.1 

9 195 820640 80 1425 12 765732 -6.69 107.3 119.3 162.6 787590 166.7 
10 219 815170 130 2315 11 758280 -6.98 107.5 118.5 152.6 799750 169.9 

11 123 907340 625 660 10 882852 -2.70 95.6 105.6 40.0 918210 78.7 

Avg 165.8 919245   11.8 874414.8  105.0 116.8 90.67 912898 139.4  

 
Finally, comparing the results obtained by applying the proposed approaches to 

large size instances, in term of percentage number of non loaded containers (NLC) 
and CPU time, we noted that none of the proposed approaches was able to load on 
board all containers: as the large ship test instances were randomly generated with 
occupancy level between about 87% and 97% to stress the solution capacity of the 
compared algorithms, we cannot claim that a solution where all the containers are 
loaded exists for this benchmark. What we can observe for the large size tests is that 
all the proposed methods produced feasible solutions in terms of stability conditions, 
and the ACO approach behaved better since it required lower CPU time and produced 
a lower average NLC. 



 An Experimental Comparison of Different Heuristics for the MBPP 325 

5   Conclusions 

In this paper different solution methods for the NP-hard MBPP are presented and com-
pared. The results obtained from an extensive computational experimentation, based on 
both real size instances and random ones, enable us to derive two main conclusions. 
First, for very large size instances the ACO approach is recommended among the pro-
posed ones. Second, the performance of the TS based approaches is strongly depending 
on the quality of the initial solution. In particular, for medium size instances, where it 
is possible to apply the TS to a good initial solution, the resulting final solutions got by 
the TS are very good; this is not the case for large size instances. 

Starting from the results discussed in this paper, the authors intend to extend their 
analysis to the multi-port MBPP. Finally, in this future development the assumption 
about the availability of only one quay crane will be removed. 
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Abstract. Several heuristics have been presented in the literature for
finding a proper colouring of the vertices of a graph using the least
number of colours. These heuristics are commonly compared on a set
of graphs that served two DIMACS competitions. This set does not per-
mit the statistical study of relations between algorithm performance and
structural features of graphs. We generate a new set of random graphs
controlling their structural features and advance the knowledge of heuris-
tics for graph colouring. We maintain and make all algorithms described
here publically available in order to facilitate future comparisons.

Keywords: graph coloring, heuristics, experimental analysis.

1 The Graph Colouring Problem

The graph-vertex colouring problem (GCP) is a central problem in graph theory
[1]. It consists in finding an assignment of colours to vertices of a graph in
such a way that no adjacent vertices receive the same colour. Graph colouring
problems arise in many real life applications like register allocation, air traffic
flow management, frequency assignment, light wavelengths assignment in optical
networks, and timetabling [4].

In the GCP, one is given an undirected graph G = (V, E), with V being the
set of |V | = n vertices and E being the set of |E| = m edges. A k-colouring of
G is a mapping φ : V 
→ Γ , where Γ = {1, 2, . . . , k} is a set of |Γ | = k integers,
representing the colours. A k-colouring is proper if for all [u, v] ∈ E it holds that
ϕ(u) �= ϕ(v); otherwise it is improper. If for some [u, v] ∈ E it is ϕ(u) = ϕ(v),
the vertices u and v are said to be in conflict. A k-colouring can also be seen as a
partitioning of the set of vertices into k disjoint sets, called colour classes. In the
decision version of the GCP, also called the (vertex) k-colouring problem, we are
asked whether for some given k a proper k-colouring exists. In the optimisation
version, we are asked for the smallest number k, called the chromatic number
χ(G), for which a proper k-colouring exists. For general graphs, the decision
version of the GCP problem is NP-complete.

In this work, we consider algorithms for solving the optimisation version of
the GCP on general graphs. This version can be algorithmically approached by
solving a sequence of k-colouring problems: an initial value of k is considered and

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 326–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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each time a proper k-colouring is found, the value of k is decreased by one. The
chromatic number is found when for some k the answer to the decision version
is no. In this case, χ(G) = k + 1. If a proper colouring cannot be found but
no proof of its non-existence is given, as it is typically the case with heuristic
algorithms, k + 1 is an upper bound on the chromatic number. For reviews of
heuristic approaches to the GCP we refer to [3,4,9,15].

New heuristic and exact algorithms are commonly tested on a set of graphs
maintained by M. Trick [19] and used for the two DIMCAS challenges on the
GCP in 1996 and 2002 [12,13]. The results of algorithm comparisons, above
all those concerning heuristics, are often hard to interpret. Apparently, in most
articles on the GCP published in major journals [4], a newly presented heuris-
tic outperforms some others on some instances. Nevertheless, generally, no in-
sight is given on which instance features are separators of algorithm perfor-
mance. Culberson et al. [7] provided an interesting analysis about what makes
a graph hard to colour. The aim of our research is to exploit the insights on
instance hardness from Culberson’s work, to extend the analysis to some of the
best known and best performing algorithms for the GCP, and to give indica-
tions on which algorithms perform best for specific classes of graphs. In this
way we hope to advance both the understanding of algorithm behaviour and
the dependence of algorithmic performance on structural properties of graphs.
We use Culberson’s generator [7] to produce new random graphs. We make
the code of most of the algorithms studied available in an online compendium
http://www.imada.sdu.dk/~marco/gcp-study. All experiments were run on a
2 GHz AMD Athlon MP 2400+ Processor with 256 KB cache and 1 GB of RAM.

2 Instance Generation

Culberson’s random generator [7] allows us to create families of graphs of dif-
ferent structure and size. Structure may be induced by (i) imposing a graph to
have a given number of independent sets (i.e., hiding a k-colouring) and by (ii)
influencing the variability of the size of these independent sets. In our analysis,
we control these two structural aspects of graphs together with the edge distri-
bution. In future studies it might be possible to control also the limit of the size
of an induced clique or the girth of the graph.

Hidden colour classes and variability of their size. In its smooth k-
colourable modality, the generator controls the variability of the size of the colour
classes. A graph is generated by assigning each vertex to the independent set
with label �kx(ax + 1 − a)�, where a ∈ [0, 1] is a parameter and x is a random
number from the interval [0, 1). For a = 0, the size of the independent sets tends
to be nearly equal and the graph be quasi equi-partite, while for a = 1 the size
tends to vary considerably. This structural feature of the graph was shown to be
relevant for understanding differences in the instance hardness for algorithms [7].
We generated graphs using variability ∈ {0, 1, no}, where 0 and 1 are the val-
ues assigned to a and no indicates that no hidden colouring and biased size of
colour classes is enforced.

http://www.imada.sdu.dk/~marco/gcp-study
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Edge distribution. We considered the following three types. (i) Uniform
graphs. An edge between a pair of vertices (u, v) is included with a fixed proba-
bility p. These graphs are denoted by Gnp, and by Gknp if a k-colouring is hidden.
(ii) Geometric Graphs. These graphs are created by disposing n points uni-
formly at random in a two dimensional square with coordinates 0 ≤ x, y < 1.
Vertices in the graph correspond to the n points and an edge is associated to a
pair of vertices (u, v) if their Euclidean distance, d(u, v) is smaller or equal to a
value r. We denote these graphs by Unr, and by Uknr if a k-colouring is hidden.
(The use of the letter G for uniform graphs and U for geometric graphs, instead
of the viceversa, is common in the literature, see for example [11].) According to
[11], geometric graphs have “inherent structure and clustering”. (iii) Weight
Biased Graphs. These graphs are generated by first assigning vertices to in-
dependent sets. Then, a weight w is assigned to all

(
n
2

)
pairs of vertices, except

those in the same hidden independent set, which are assigned weight zero. Vertex
pairs are selected as edges with a probability proportional to their weight. When
an edge is added to the graph, weights are decreased in such a way that the
formation of large cliques becomes unlikely. This procedure is controlled by two
parameters, α and γ, that we set equal to 0 and 1, respectively, as recommended
in [7]. The process terminates when either all weights are zero, or when �p(n2)�
edges have been selected. As a side effect, the vertices may have small variability
in vertex degree. These graphs are among the hardest to colour [7]. The edge
density of the resulting graph, measured as the ratio between number of present
edges and the number of edges in the corresponding complete graph, depends on
the parameters p and w. In order to attain graphs of edge density {0.1, 0.5, 0.9},
we set p equal to {0.1, 0.5, 0.9} and w equal to {2, 114, 404} if n = 500 and equal
to {4, 230, 804} if n = 1000 (see [7] for details on the choice of these values). We
denote these graphs by Wnp, and by Wknp if a k-colouring is hidden.

We generated 1260 graphs of size 500 and 1000. We summarise the character-
istics of the graphs in Table 1a, organised by five factors: size, type, edge density,
variability and hidden colouring. These factors are parameters of the instances
and, using a statistical terminology, stratify the experimental units in subgroups.
In each subgroup, corresponding to specific combinations of the five factors, we
have 5 graphs constructed with different random seeds in the generator. Table
1b gives aggregate statistics on the number of graphs considered. Note that due
to random decisions in the generation of the edges, the value of k in a hidden
colouring is only an upper bound to the chromatic number of the graph.

Selection of a time limit. For a comparison of heuristic algorithms, stopping
criteria need to be fairly defined. We decided to use a classical local search
algorithm as benchmark: our implementation of TabuCol by de Werra (1990)
[20] that we refer to as TSN1 . It uses the improved dynamic tabu list by [8].
In our implementation, this algorithm performs the evaluation of a neighbour
in O(1) by means of an auxiliary matrix that stores delta values and that can
be updated in O(n) by a simple scan of the vertices adjacent to the vertex
that changed colour. In addition, we maintain both an adjacency matrix and
an adjacency list for the representation of the graph, using either of the two at
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Table 1. Table (a) shows how the 1260 graphs generated are distributed over the
features. The number of graphs of size 500 is 520 and those of size 1000 is 740. Table
(b) and (c) show the number of graphs per class given by size, edge density and graph
type. Table (d) gives the time limits in seconds for the instances differentiated by size
(rows) and density (columns).

Tot.
Size Type Density Variability Hidden colouring graphs
1000 G 0.1 0 {5, 10, 20} 15

1 {5, 10, 20} 15
no – 10

0.5 0 {10i : i = 2, . . . , 14} 75
1 {10i : i = 2, . . . , 14} 75
no – 10

0.9 0 {20, 50i : i = 1, . . . , 5} 30
1 {20, 50i : i = 1, . . . , 5} 30
no – 10

U 0.1 0 {10i : i = 2, . . . , 5} 20
1 {10i : i = 2, . . . , 5} 20
no – 10

0.5 0 {10i : i = 2, . . . , 20} 95
1 {10i : i = 2, . . . , 20} 95
no – 10

0.9 0 {100i : i = 1, . . . , 6} 30
1 {100i : i = 1, . . . , 6} 30
no – 10

W 0.1 0 {10, 20} 10
1 {10, 20} 10
no – 10

0.5 0 {10i : i = 2, . . . , 9} 40
1 {10i : i = 2, . . . , 9} 40
no – 10

0.9 0 {30, 90, 150, 220} 20
1 {30, 90, 150, 220} 20
no – 10

(a)

n = 500 ρ = 0.1 ρ = 0.5 ρ = 0.9
G 60 90 90
U 60 150 150
W 30 75 60

(b)

n = 1000 ρ = 0.1 ρ = 0.5 ρ = 0.9
G 90 180 180
U 120 150 180
W 30 120 60

(c)

ρ = 0.1 ρ = 0.5 ρ = 0.9
n = 500 60 120 180
n = 1000 155 465 720

(d)

convenience. Similarly, we represent a colouring both as a mapping by means of
an array and as a collection of colour classes, each one being implemented by a
binary search tree. The other algorithms we implement use, as far as possible,
the same data structures.

A common stopping criterion for TSN1 is after Imax = 104n iterations [8],
which is also the one we used. In fact, we found this stopping criterion to be
large enough so that the algorithm obtains limiting behaviour and that further
improvements become unlikely. In particular, we found that setting the termi-
nation criterion to Imax corresponds to missing 26% of cases where a better
colouring could still be found. This empirical probability drops below 3% after
10×Imax and below 0.02% after 50Imax. However, 10×Imax implies an increase of
a factor of 10 in computation time. For more detailed results on this analysis we
refer to http://www.imada.sdu.dk/~marco/gcp-study. The actual time limits
used for the heuristic algorithms are given in Table 1d; we divided them accord-
ing to edge density since this property has a strong impact on computation time.
For each density we took the median time observed.

3 Experimental Analysis

Exact Algorithms. The famous Brelaz’s backtracking search algorithm with
forward checking [2,17], here denoted as Ex-DSATUR, was shown to be sub-
stantially competitive with a more involved column generation approach [16].

http://www.imada.sdu.dk/~marco/gcp-study
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last found proved exact

Fig. 1. The figure represents the exit status of Ex-DSATUR on the 1260 random graphs
when the computation is truncated at the time limits of Table 1d. For each graph, the
corresponding point indicates the computation time at which a last proper colouring
was found. If the solution is proved optimal, the point is black, otherwise it is grey. A
jitter effect is added to the y coordinates of the data to make points distinguishable.
The plots are logarithmic in the x-axis.

An implementation of Ex-DSATUR by Mehrotra and Trick [16] including clique
pre-colouring can be found online [18]. We tested this implementation of the
algorithm on the 1260 instances using the same time limit as reported in Table
1d. In Figure 1, we summarise the behaviour of Ex-DSATUR. The plots give an
account of the time at which the best proper colouring is found. If the colouring
is proved optimal, the corresponding point is plotted in black.

The first observation is that an exact solution is found either quickly (in less
than 10 sec.), or it is hardly found afterwards. Despite the large size, some graphs
are easily solvable by Ex-DSATUR. Chances to find solvable graphs are highest
for Geometric graphs and in particular for edge density equal to 0.5. Graphs of
type G and W are solvable exactly only for the high edge density and graphs
become harder to be solved exactly if the number of hidden colours increases. A
closer look at the data reveals that the graphs solved to optimality have ω(G),
the size of the largest clique, very close to χ(G). A graph for which ω(G) = χ(G)
is called perfect and can be recognised and coloured in polynomial time [5,10].
For perfect and quasi-perfect graphs, the large clique found heuristically by Ex-
DSATUR can be used to prune effectively the search tree.

Construction heuristics. Construction heuristics are fast single pass heuris-
tics that construct a proper colouring and finish. We compared the performance
in terms of run-time and solution quality of the two most famous ones: DSATUR
[2] and RLF [14], which we implemented to run in O(n(n+k)+m) and O(n2+km),
respectively. We include in the analysis also a random order greedy heuristic,
ROS, that runs in O(nk + m). Note that for dense graphs, like those in this
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work, and assuming k = O(n), the complexity of these algorithms becomes
O(n2), O(n3) and O(n2), respectively.

We run the three algorithms once on each instance. For run-times, we compute
the 95% confidence intervals of the mean value by means of the Tukey test for
all pairwise comparisons. For quality, we rank the results in terms of colours
within each instance and we compute the 95% confidence intervals of the mean
rank value by means of the Friedman test for unreplicated two-way designs with
Bonferrori correction [6].

On Uniform and Weight Biased graphs, RLF is clearly, and by a large margin,
the best algorithm in terms of solution quality. We do not show the results. This
indication is somehow interesting because we might expect to see differences
between RLF and DSATUR varying the size of the hidden colour classes, but this
is not the case. On Geometric graphs, instead, differences in solution quality
with respect to DSATUR are not always statistically significant. In Figure 2, we
report the all-pairwise comparisons with an indication of the computation time
on the y-axis. Only Geometric graphs of size 1000 are used to generate the plot
because differences in computation time are more pronounced in this setting
and no difference in solution quality due to size was observed. Interestingly,
there are classes of graphs in which DSATUR performs better than RLF, but a
clear pattern does not arise. Since Geometric graphs have a clique number close
to the chromatic number, this result may indicate that coloring looking at the
saturation number of vertices (DSATUR) may be a sufficiently good strategy
when cliques are relevant for the final result. In addition, we observe that the
performance of DSATUR with respect to RLF improves as edge density increases.
Finally, in terms of run-time, RLF exhibits a much stronger dependency on edge
density, as captured by the asymptotic analysis. This effect can be evinced in
Figure 2 observing the row-wise growth of computation time for RLF. The same
pattern is present also on Uniform and Weight Biased graphs thus trading off in
those graphs with the outperformance in quality terms.

Stochastic Local Search algorithms. We implemented heuristic algorithms
based on stochastic local search (SLS) concepts. Beside TSN1 , we include TSVLSN,
a tabu search on a very large scale neighbourhood [3], SAN6 , the simulated
annealing by Johnson et al. (1991) based on Kempe chains [11], MC-TSN1 , a
min-conflict heuristic [3], Nov+, inspired by Novelty algorithms for satisfiabil-
ity problems [3], HEA, the hybrid evolutionary algorithm by Galiner and Hao
(1999) [8], GLS, a guided local search algorithm [3] and ILS, an iterated local
search algorithm [3]. In addition, we include our reimplementation of XRLF [11],
a parametrised version of RLF that uses an exact colouring when the set of re-
maining colours is sufficiently small. In order to reduce the variance of the results
and to isolate the effect of these heuristics, we start all them, except XRLF, from
the same initial solution produced by RLF.

The influence of hidden colours. For several generated graphs, the SLS algo-
rithms were able to easily find much better colorings than the hidden colouring.
In a few cases the difference reached 200 colours while, with few exceptions,
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Fig. 2. All-pairwise comparisons in a run-time versus solution quality plot for con-
struction heuristics on Geometric Graphs. Two algorithms are statistically significantly
different in one of the two criteria if their intervals in the corresponding axis do not
overlap. A base-10 logarithm transformation is applied on the time axis.

the best SLS algorithms always reach the hidden upper bound. Hence, the at-
tempt to use hidden colourings to measure hardness of an instance is somehow
a failure, due to the difficulty of hiding colourings. One interesting phenomenon
is, however, worth reporting. On two of the 38 classes, we observed the phe-
nomenon depicted in Figure 3. The plot shows the error relative to the hidden
upper bound attained by the SLS heuristics on graphs of size 1000, density 0.5,
variability 0, and type G and W . Since a hidden colouring exists, it should be
possible to reach it on all those graphs, i.e., all curves should reach a zero error
or approximate it. Nevertheless, the curves peak for some values of the hidden
colourings, indicating that there are some values of k for which the instances are
much harder to solve than usual. The region, which exhibits this phenomenon,
arises at about 80 hidden colours for graphs of type G and between 70 and 80
colours for graphs of type W . It is interesting to note that this phenomenon
affects also algorithms such as SAN6 and XRLF, which do not solve sequences
of k-colouring problems. The same effect was not observed in the corresponding
graph classes of size 500 and it is unclear whether it exists for graphs of sizes
not considered here.

Interaction between algorithms and graph features. We visualize the interactions
between algorithms and graph features in Figure 4. Lines are added to emphasize
the trend and not to interpolate data. The less parallel these lines are the stronger
the interaction effect is. The strongest effect seems to be produced by edge
density. Note that we omit hidden colours from now since this feature cannot be
easily recognised a priori.



An Analysis of Heuristics for Vertex Colouring 333

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 109 117 121 124

   Algorithms

TSN1

HEA
ILS
MinConf
GLS
Nov+
SAN6
TSVLSN

XRLF

Size 1000; Type G; E. density 0.5; Var. 0
M

ed
ia

n 
er

r

Hidden Colours

0.0

0.1

0.2

0.3

0.4

0.5

20 30 40 50 60 70 80 90

   Algorithms

TSN1

HEA
ILS
MinConf
GLS
Nov+
SAN6
TSVLSN

XRLF

Size 1000; Type W; E. density 0.5; Var. 0

M
ed

ia
n 

er
r

Hidden colours
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Fig. 4. Interaction plots between algorithms and stratification variables. The worst
algorithms, XRLF and TSVLSN, are removed in order to gain a clearer insight on the
high performing algorithms.

Nonparametric analysis. We run all heuristics once on each graph until the cor-
responding time limit was exceeded. As a first step, we intended a parametric
analysis fitting a linear model on a relative error transformation of the response.
The analysis hinted at a strong significance of the interactions summarized in
Figure 4. However, the necessary assumptions for a parametric analysis were
found to be violated and therefore we proceeded with a nonparametric analysis
by means of a rank transformation as mentioned above. An analysis based on
permutation tests was also considered and results were in line with those pre-
sented below. Our preference for the rank-based analysis is due to its higher
power. Due to the situation depicted in Figure 4, we separated the analysis into
graph classes determined by the features: type, edge density, and variability.
Graphs of size 500 and 1000 were instead aggregated, since the influence on
the relative order of the algorithms is negligible. The results shown by means
of confidence intervals on ranks derived by the Friedman test are reported in
Figure 5. The following are the main conclusions from the analysis.

(i) On Uniform graphs, TSN1 is the best algorithm on four scenarios and,
except for one scenario, no other algorithm does significantly better. Therefore,
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Fig. 5. The diagrams show average ranks and corresponding confidence intervals for
the 9 algorithms considered. The analysis is divided into three main classes of graphs:
Uniform graphs, Geometric graphs and Weight Biased graphs. Inside each class, sub-
classes are determined by the combinations of the stratification variables: edge density
and independent set variability. Graphs of size 500 and 1000 are aggregated and the
number of instances considered is reported in the strip text of the plots. Two algorithms
are statistically significantly different if their intervals do not overlap.
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we indicate TSN1 as the preferable method for this class. It appears particularly
powerful with graphs of density 0.5. The second best is ILS, which outperforms
TSN1 in the scenarios with density 0.9 and variability 1.

(ii) On the Weight Biased graphs, results are very similar to Uniform graphs.
The best algorithm is TSN1 , which is significantly the best in 3 scenarios, while
ILS is the second best and again outperforms TSN1 on graphs with density 0.9
and variability 1.

(iii) On the Geometric graphs, the overall best algorithm is clearly GLS.
Differences from the second best are significant in 6 out of 9 scenarios, while in
the other 3 scenarios it is not significantly dominated. The second best algorithm
is HEA. The variability of the hidden colour classes and the edge density have a
weak impact on these graphs, at least for the performance of the best algorithms,
and results could be aggregated in a unique diagram, in which case GLS is
significantly the best algorithm.

(iv) Scenarios with variability 0 and 1 exhibit very similar performance of the
algorithms suggesting that this effect is not relevant.

Improvement over Ex-DSATUR. Ex-DSATUR is an exact algorithm with expo-
nential worst case, but it can be stopped at any time and it returns a feasible
solution. In Figure 6 we compare the approximate solutions returned by SLS
algorithms and Ex-DSATUR after the same run-time as that for TSN1 . There is
evidence that the SLS algorithms obtain colourings that are much better than
those of Ex-DSATUR, reaching improvements by even more than 150 colours.

Improvement over RLF. The use of SLS heuristics gives a significant improve-
ment over the initial solution of RLF. The results, reported in the online com-
pendium, show that on Uniform and Weight Biased graphs the improvement
increases considerably with size and edge density. In the case of Weight Bi-
ased graphs, the improvement can reach 105 colours. On Geometric graphs, the
improvement is smaller, above all on graphs with edge density 0.9; a possible
explanation is that RLF finds near-optimal solutions on these graphs.

4 Discussion

We reported our computational experience on algorithms for colouring large,
general graphs. We considered 1260 graphs that were constructed by controlling
several structural parameters in order to gain a better insight into the relation-
ship between algorithm performance and graph features. We took into account
graph size, edge density, type of graph, and characteristics of colour classes.
These are features that may be recognised a priori in practical contexts.

We showed that a straightforward backtracking algorithm can solve instances
of even 1000 vertices if these have the favourable property of being nearly per-
fect. The simple and fast construction heuristic RLF is considerably better than
DSATUR in terms of solution quality, although its running time is more strongly
affected by the number of edges in the graph. If a faster heuristic is needed and
the graph is Geometric, then probably DSATUR is the best choice. If we can
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Fig. 6. Box-plots of differences for each graph class between the best solutions found
by the SLS algorithms and the solution produced by the Ex-DSATUR heuristic

trade computation time for solutions quality, then SLS algorithms can lead to a
large improvement. Our comparison includes some well known, high performing
SLS algorithms for GCP. On the Uniform and Weight Biased random graphs,
TSN1 is the best algorithm with graphs of density 0.5 and it is not dominated at
edge density 0.1 and 0.9. This result is important because it indicates TSN1 as a
relevant benchmark to be used when new algorithms are introduced and there-
fore we make its implementation available online. On Geometric random graphs,
GLS is clearly the best algorithm. This class of graphs has the clique number
very close to the chromatic number and the result leads us to conjecture that
GLS works well for graphs with this property. Weight Biased graphs are, instead,
graphs in which large cliques are avoided and indeed GLS is performing poorly.
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Abstract. GRASP with path-relinking (GRASP+PR) is a metaheuris-
tic for finding optimal or near-optimal solutions of combinatorial op-
timization problems. This paper proposes a new automatic parameter
tuning procedure for GRASP+PR heuristics based on a biased random-
key genetic algorithm (BRKGA). Given a GRASP+PR heuristic with n
input parameters, the tuning procedure makes use of a BRKGA in a first
phase to explore the parameter space and set the parameters with which
the GRASP+PR heuristic will run in a second phase. The procedure is
illustrated with a GRASP+PR for the generalized quadratic assignment
problem with n = 30 parameters. Computational results show that the
resulting hybrid heuristic is robust.

1 Introduction

A commonly cited drawback of heuristics is the large number of parameters
that need to be tuned for good performance. These parameters are not limited
to those that are numerically valued but can also be logical parameters that
determine, for example, which sub-modules are activated in the heuristic and
which ones are not. Heuristic parameters can consequently run into the tens and
even hundreds and tuning them can be a labor intensive activity. Furthermore,
the performance of a heuristic depends on the instance being solved, so a tuned
set of parameters obtained for one instance may not result in a good performing
heuristic for another instance. When documenting a heuristic, a description of
the tuning process is often left out and therefore it is often difficult to reproduce
computational results. These are some of the factors that point to the need for
an algorithmic approach to parameter tuning.

In this paper we propose an automatic tuning procedure for GRASP with
path-relinking (GRASP+PR) heuristics. In the first phase of this two-phase
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solution strategy a biased random-key genetic algorithm searches the space of
parameters for a set of values that results in a good performance of the heuristic.
In the second phase, the GRASP+PR heuristic is run using the parameters found
in the first phase. We illustrate this procedure on a GRASP+PR heuristic for
the generalized quadratic assignment problem. This GRASP+PR has 30 tunable
parameters. Computational results show that the two-phase approach results in
a robust hybrid heuristic.

The paper is organized as follows. In Section 2 we briefly describe the genetic
algorithm. In Section 3 we summarize the solution strategy implemented in the
GRASP+PR heuristic. The two-phase strategy is described in Section 4. Finally,
computational experiments are reported in Section 5.

2 Biased Random-Key Genetic Algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean [1] for solving combinatorial optimization problems
involving sequencing. In a RKGA, chromosomes are represented as vectors of ran-
domly generated real numbers in the interval [0, 1]. A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a solution
of the combinatorial optimization problem for which an objective value or fitness
can be computed.

A RKGA evolves a population of random-key vectors over a number of it-
erations, called generations. The initial population is made up of p vectors of
random-keys. Each component of the solution vector is generated independently
at random in the real interval [0, 1]. After the fitness of each individual is com-
puted by the decoder in generation k, the population is partitioned into two
groups of individuals: a small group of pe = 0.3p elite individuals, i.e. those with
the best fitness values, and the remaining set of p−pe = 0.7p non-elite individu-
als. To evolve the population, a new generation of individuals must be produced.
All elite individual of the population of generation k are copied without modi-
fication to the population of generation k + 1. RKGAs implement mutation by
introducing mutants into the population. A mutant is simply a vector of random
keys generated in the same way that an element of the initial population is gen-
erated. At each generation, a small number (pm = 0.2p) of mutants is introduced
into the population. With the pe elite individuals and the pm mutants accounted
for in population k + 1, p− pe − pm additional individuals need to be produced
to complete the p individuals that make up the new population. This is done by
producing p− pe − pm offspring through the process of mating or crossover.

Bean [1] selects two parents at random from the entire population to imple-
ment mating in a RKGA. A biased random-key genetic algorithm (BRKGA) [2],
differs from a RKGA in the way parents are selected for mating. In a BRKGA,
each element is generated combining one element selected at random from the
elite partition in the current population and one from the non-elite partition.
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Repetition in the selection of a mate is allowed and therefore an individual can
produce more than one offspring in the same generation. Parameterized uniform
crossover [3] is used to implement mating in BRKGAs. Let ρe = 0.7 be the
probability that an offspring inherits the vector component of its elite parent.
Let n denote the number of components in the solution vector of an individual.
For i = 1, . . . , n, the i-th component c(i) of the offspring vector c takes on the
value of the i-th component e(i) of the elite parent e with probability ρe and
the value of the i-th component ē(i) of the non-elite parent ē with probability
1 − ρe. When the next population is complete, i.e. when it has p individuals,
fitness values are computed for all of the newly created random-key vectors and
the population is partitioned into elite and non-elite individuals to start a new
generation.

A BRKGA searches the solution space of the combinatorial optimization prob-
lem indirectly by searching the continuous n-dimensional hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of
the combinatorial optimization problem where the fitness is evaluated.

3 GRASP with Path-Relinking for the Generalized
Quadratic Assignment Problem

A GRASP [4,5] is a multi-start metaheuristic where at each iteration a greedy
randomized solution is constructed to be used as a starting solution for local
search. The best local minimum found over all GRASP iterations is output as
the solution. See [6,7,8,9] for recent surveys of GRASP.

GRASP iterations are independent, i.e. solutions found in previous GRASP
iterations do not influence the algorithm in the current iteration. The use of
previously found solutions to influence the procedure in the current iteration
can be thought of as a memory mechanism. One way to incorporate memory
into GRASP is with path-relinking [10,11,12]. In GRASP with path-relinking
(GRASP+PR) [13,14], an elite set of diverse good-quality solutions is maintained
to be used during each GRASP iteration. After a solution is produced with
greedy randomized construction and local search, that solution is combined with
a randomly selected solution from the elite set using the path-relinking operator.
The best of the combined solutions is a candidate for inclusion in the elite set
and is added to the elite set if it meets quality and diversity criteria.

Mateus, Resende, and Silva [15] propose a GRASP with path-relinking heuris-
tic for the generalized quadratic assignment problem (GQAP). In the GQAP,
we are given n facilities and m locations and want to feasibly assign each facil-
ity to a location. Each facility uses a portion of the capacity of a location and
each location has a fixed amount of capacity to distribute among facilities. An
assignment is feasible if each location has sufficient capacity to accommodate
the demands of all facilities assigned to it. Given nonnegative flows between all
pairs of facilities and nonnegative distances between all pairs of locations, the
GQAP seeks a feasible assignment that minimizes the sum of products of flows
and distances in addition to a linear assignment component.
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Algorithm 1 shows pseudo-code for the GRASP+PR heuristic proposed in
[15] for the GQAP. The algorithm takes as input the set N of facilities, the set
M of locations, the flow matrix A, the distance matrix B, the assignment cost
matrix C, the facility demands qi, i ∈ N , and the location capacities Qj , j ∈M ,
and outputs an assignment vector π∗ specifying the location of each facility in
the best solution found.

After initializing the elite set P as empty in line 1, the GRASP+PR iterations
are computed in lines 2 to 24 until a stopping criterion is satisfied. During each
iteration, a greedy randomized solution π′ is generated in line 3. If the elite set P
does not have at least ρ elements (ρ is an input parameter), then if π′ is feasible
and sufficiently different from all other elite set solutions, π′ is added to the
elite set in line 22. To define the term sufficiently different more precisely, let
Δ(π′, π) be defined as the minimum number of facility to location swaps needed
to transform π′ into π or vice-verse. For a given level of difference δ (δ is an
input parameter), we say π′ is sufficiently different from all elite solutions in P
if Δ(π′, π) > δ for all π ∈ P , which we indicate with the notation π′ �≈ P . If
the elite set P does have at least ρ elements, then the steps in lines 5 to 19
are computed.

The greedy randomized construction procedure is not guaranteed to generate
a feasible solution. If the greedy randomized procedure returns an infeasible so-
lution, a feasible solution π′ is selected uniformly at random from the elite set
in line 6 to be used as a surrogate for the greedy randomized solution. An ap-
proximate local search is applied using π′ as a starting point in line 8, resulting
in an approximate local minimum, which we denote by π′. Since elite solutions
are made up of approximate local minima, then applying an approximate lo-
cal search to an elite solution will, with high probability, result in a different
approximate local minimum.

The approximate local search is not guaranteed to find an exact local min-
imum. Since π′ is an approximate local minimum, the application of an
approximate local search to it will, with high probability, result in a different
approximate local minimum. Next, path-relinking is applied in line 10 between
π′ and an elite solution π+, randomly chosen in line 9. Solution π+ is selected
with probability proportional to Δ(π′, π+). In line 11, the approximate local
search is applied to π′. If the elite set is full (the maximum number of solutions
in the elite set is an input parameter), then if π′ is of better quality than the
worst elite solution and π′ �≈ P , then it will be added to the elite set in line 14
in place of some elite solution. Among all elite solutions having cost no better
than that of π′, a solution π most similar to π′, i.e. with the smallest Δ(π′, π)
value, is selected to be removed from the elite set. Ties are broken at random.
Otherwise, if the elite set is not full, π′ is simply added to the elite set in line
18 if π′ �≈ P .

We next summarize procedures GreedyRandomized, ApproxLocalSearch, and
PathRelinking. These procedures are described in detail in Mateus, Resende,
and Silva [15].
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procedure GRASP+PR

Data : N, M, A, B, C, qi, Qj .
Result : Solution π∗ ∈ χ.
P ← ∅;1

while stopping criterion not satisfied do2

π′ ← GreedyRandomized(·);3

if elite set P has at least ρ elements then4

if π′ is not feasible then5

Randomly select a new solution π′ ∈ P ;6

end7

π′ ← ApproxLocalSearch(π′);8

Randomly select a solution π+ ∈ P ;9

π′ ← PathRelinking(π′, π+);10

π′ ← ApproxLocalSearch(π′);11

if elite set P is full then12

if c(π′) ≤ max{c(π) | π ∈ P} and π′ 
≈ P then13

Replace the element most similar to π′ among all14

elements with cost worst than π′;
end15

16

else if π′ 
≈ P then17

P ← P ∪ {π′};18

end19

20

else if π′ is feasible and π′ 
≈ P then21

P ← P ∪ {π′};22

end23

end24

return π∗ = min{c(π) | π ∈ P};25

Algorithm 1. Pseudo-code for GRASP+PR: GRASP with path-relinking
heuristic

Procedure GreedyRandomized attempts to construct a greedy randomized
solution to serve at a starting solution for local search. It does so by attempting,
at most t̄ ∈ [1, 100] times, to construct a feasible solution. In the construction
process facilities and locations are selected at random with bias. To implement
the randomized selection three types of probabilities are computed:

– Probability of selecting new location j: Hj/
∑

l∈L Hl, where L is the set

of currently unused locations and Hj =
∑

l∈CL

Q
h1
j Q

h2
l

b
h3
jl

, where Qj is the

capacity of location j, bjl is the distance between locations j and l, CL is
the set of previously selected locations, and input parameters h1, h2, h3 are
real numbers in the interval [0, 1].

– Probability of selecting new facility i: Wi/
∑

t∈T Wt, where T is the subset
of currently unused facilities and Wi = qw1

i

∑
t∈N\{i} aw2

it , where qi is the
demand of facility i, ait is the flow between facilities i and t, N is the set of
facilities, and input parameters w1, w2 are real numbers in the interval [0, 1].
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– Probability of selecting a used location j: Zj/
∑

r∈R Zr, where R is a subset

of currently used locations and Zj =
∑

l∈CL\{j}
σ

z1
j Q

z2
l

dz3b
z4
jl

, where σj is the

available capacity of location j, d is the increase in the objective function
resulting from the assignment to it of the chosen facility in T , and input
parameters z1, z2, z3, z4 are real numbers in the interval [0, 1].

These probabilities are used in one of five heuristic-biased stochastic sampling
schemes of Bresina [16] determined by input parameter s ∈ {1, 2, 3, 4, 5}. If
Bresina’s polynomial bias is selected, parameter g ∈ {1, 2, . . . , 10} determines
the degree of the polynomial used. Consequently procedure GreedyRandomized
takes as input 12 parameters t̄, h1, h2, h3, w1, w2, z1, z2, z3, z4, s, and g.

Procedure ApproxLocalSearch applies an approximate local search
scheme from a given starting solution. Given a current solution, the method
samples solutions resulting from single and double facility-to-location moves
to create a set of candidate solutions (CLS ) to which to move to. At each
iteration the method samples at most MaxItr moves, some improving, some
not, and creates the set CLS with at most MaxCLS elements. The method ei-
ther chooses the solution π from CLS in a greedy fashion or it selects it with
probability

Gπ∑
π′∈CLS Gπ′ , where Gπ′ = 1/f(π′),

where f(·) is the objective function the GQAP. Input parameter CLChoice de-
termines which option is used. In the former case, parameters s ∈ {1, 2, 3, 4, 5}
and g ∈ {1, 2, . . . , 10} determine, as in construction procedure, which of Bresina’s
stochastic sampling schemes will be used. Consequently, procedure ApproxLocal-
Search uses as input 6 parameters: MaxItr ∈ {1, 2, . . . , 1000},
MaxCLS ∈ {1, 2, . . . , 100}, CLChoice ∈ {0, 1}, s∈{1, 2, 3, 4, 5}, g∈{1, 2, . . . , 10},
which determines if the greedy or which randomized selection will be used, and the
real-valued neighborhoodBalance ∈ [0, 1] which determines the proportion of sin-
gle and double facility-to-location moves sampled.

Procedure PathRelinking takes as input 8 parameters that determine, among
many options, whether forward-, backward-, or mixed-path-relinking is used,
whether truncated path-relinking is used (and if so, how many steps are car-
ried out), whether greedy or greedy randomized path-relinking is used, and the
maximum number of feasibility restoration steps that can be carried out.

In addition to the above 26 parameters, the main algorithm has the following
4 parameters: the maximum size of the elite set maxES ∈ {1, 2, . . . , 50}, the
minimum number of elements in the elite set required for path-relinking to be
used ρ ∈ {2, 3, . . . ,maxES}, the minimum difference parameter δ ∈ {0, 1, . . . , n},
and parameter selectFromES ∈ {0, 1} which determines whether in line 9 of
Algorithm 1 element π+ is selected uniformly at random or with bias. In total,
there are 30 user-defined parameters than need to be tuned.
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4 Two-Phase Hybrid Heuristic

The two-phase hybrid heuristic consists first of a tuning phase, where the
BRKGA explores the GRASP+PR parameter space, followed by a solution
phase, where the GRASP+PR heuristic using the parameters determined in
the first phase explores the GQAP solution space seeking an optimal or near
optimal assignment of facilities to locations. In the first phase, the BRKGA is
run for Y1 generations while in the second phase, the GRASP+PR heuristic is
run for Y2 iterations.

To describe the first phase of the two-phase hybrid heuristic, we first specify
the encoding of the parameter-space solutions as well as the decoding of these
solutions. The random-key solution vector x has n = 30 components, one for
each tunable parameter. Each component is a random key generated in the real
interval [0, 1]. If a parameter i = 1, . . . , n is in the real interval [l, u], its random-
key component x(i) is decoded as l+x(i)·(u−l). On the other hand, if parameter
i is in the discrete interval [l, u], its random-key component x(i) is decoded as
�l − 1

2 + x(i) · (u− l)�.
The fitness of a solution vector is obtained by carrying out V independent runs

of the GRASP+PR heuristic using the parameters decoded from the solution
vector, each run for U GRASP+PR iterations. The fitness is computed as the
average objective function value of the V runs.

5 Computational Results

In this section, we report on preliminary computational results with the au-
tomatic parameter tuning scheme introduced in this paper. All experiments
were done on a Dell PE1950 computer with dual quad core 2.66 GHz Intel
Xeon processors and 16 Gb of memory, running Red Hat Linux nesh version
5.1.19.6 (CentOS release 5.2, kernel 2.6.18-53.1.21.el5). The two-phase BRKGA
/ GRASP-PR heuristic was implemented in Java and compiled into bytecode
with javac version 1.6.0 05. The random-number generator is an implementa-
tion of the Mersenne Twister algorithm [17] from the COLT1 library.

The objective of the experiments was to compare the performance of the
GRASP+PR heuristic using the parameter obtained through manual tuning
in [15] with the same heuristic using parameters automatically tuned with the
BRKGA described in this paper. We consider five instances from Cordeau et al.
[18]: 20-15-35, 20-15-55, 20-15-75, 30-07-75, and 30-08-55. Instance f -l -t in this
class has f facilities and l locations. Parameter t controls the tightness of the
constraints. The higher the value of t, the greater the tightness of the constraints.
The tighter the constraints, the harder it is to find a feasible solution.

For each instance, we ran the first phase of the hybrid heuristic to automat-
ically tune the 30 parameters of the GRASP+PR heuristic for the GQAP. The
BRKGA used a population of 15 elements and ran for only 10 generations. The
1 COLT is a open source library for high performance scientific and technical comput-

ing in Java. See http://acs.lbl.gov/~hoschek/colt/

http://acs.lbl.gov/~hoschek/colt/
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Fig. 1. The plot on the left shows, for each iteration of the BRKGA tuning procedure,
the distribution of fitness values found for instance 20-15-75. The plot on the right
shows the solutions found by the GRASP+PR heuristic using the automatically tuned
parameters found by the tuning procedure. Both figures show deviations from the best
known solution (BKS) for 20-15-75.

fitness computation was done over V = 30 independent runs of the GRASP+PR
heuristic, each one for U = 100 iterations. With the automatically tuned param-
eters on hand, the heuristic found, in the second phase, the best solution for all
five instances. In addition, 200 independent runs of the GRASP+PR heuristic
(manually and automatically tuned variants) were carried out for each instance,
stopping each time only after the best known solution for the instance was found.
All 200 runs of each variant and for each instance found the best known solution.

The plots in Figure 1 show solutions found by the tuning procedure (on
the left) and the GRASP+PR with the automatically tuned parameters (on
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Table 1. Comparison of a GRASP+PR heuristic for the GQAP with manually and
automatically tuned parameters. For each instance and each heuristic variant, the ta-
ble lists minimum, maximum, and average times (in seconds) to find the best known
solution, as well as standard deviations.

Manually tuned Automatically tuned
problem min max avg sdev min max avg sdev
20-15-35 1.16 845.29 147.09 146.53 0.59 71.30 9.62 9.19
20-15-55 0.63 83.52 17.04 16.43 0.36 33.03 7.17 6.15
20-15-75 0.92 166.30 8.47 14.04 0.78 552.19 47.55 82.88
30-08-55 0.35 11.67 2.26 1.54 0.07 3.42 0.96 0.61
30-07-75 9.22 26914.03 716.08 2027.75 1.27 228.01 28.63 29.75
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Fig. 2. Runtime distributions for manually and automatically tuned GRASP+PR
heuristics for the GQAP on instances 20-15-35 and 20-15-55. 200 independent runs of
each variant were carried out and running times to find the best known solution for
the instances plotted.
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the right) on instance 20-15-75. As can be observed, the BRKGA finds a good
parameter setting in a few generations and the GRASP+PR using these param-
eters quickly reaches the best known solution for the instance.

Table 1 summarizes the experiments. For each instance, the table lists statistics
for both the manually and automatically tuned GRASP+PR heuristic. For each
variant, the table shows the minimum, maximum, and average running times (in
seconds) to find the best known solution for each instance, as well as the standard
deviation computed over 200 independent runs of the GRASP+PR heuristic.

Figures 2 and 3 show runtime distribution plots for the manually and automat-
ically tuned GRASP+PR heuristics for instances 20-15-35, 20-15-55, 20-15-75,
30-07-75, and 30-08-55.

Times on Table 1 as well as Figures 2 and 3 are limited to GRASP+PR
and do not include the time taken by the BRKGA to automatically tune the
parameters. Tuning times were, respectively, 10,739.2, 7,551.2, 3,690.3, 21,909.1,
and 14,386.5 seconds for instances 20-15-35, 20-15-55, 20-15-75, 30-07-75, and 30-
08-55. These times could be reduced considerably with a parallel implementation
of the BRKGA as well as with the imposition of a maximum running time for
the GRASP+PR heuristic run in the process of computing the fitness of the
parameter settings. Poor settings often lead to configurations that struggle to
find feasible assignments, thus leading to long running times. On the other hand,
the times for the manually tuned heuristic do not reflect the weeks that it took
for us to do the manual tuning.

The table as well as the figures clearly show that significant improvements can
be obtained with automatic tuning of the parameters. On all instances except
20-15-75, the automatically tuned variant proved to find the best known solution
in less time than the manually tuned variant. In the most difficult instance (30-
07-75), the automatically tuned variant was on average about 25 times faster
than the manually tuned variant. The ratio of maximum running times on this
instance was over 118, in favor of the automatically tuned variant.

6 Concluding Remarks

In this paper, we have studied a new two-phase automatic parameter tun-
ing procedure for GRASP+PR heuristics based on a biased random-key ge-
netic algorithm. The robustness of the procedure has been illustrated through
a GRASP+PR with n = 30 tunable parameters for the generalized quadratic
assignment problem (GQAP) on five difficult GQAP instances from Cordeau et
al. [18]. As future work, we intend to apply this automatic tuning procedure on
other NP-hard problems beyond GQAP.
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3 LIX, École Polytechnique, France
liberti@lix.polytechnique.fr

Abstract. We present a new Feasibility Pump algorithm tailored for
nonconvex Mixed Integer Nonlinear Programming problems. Differences
with the previously proposed Feasibility Pump algorithms and difficulties
arising from nonconvexities in the models are extensively discussed. The
main methodological innovations of this variant are: (a) the first subprob-
lem is a nonconvex continuous Nonlinear Program, which is solved using
global optimization techniques; (b) the solution method for the second
subproblem is complemented by a tabu list. We exhibit computational
results showing the good performance of the algorithm on instances taken
from the MINLPLib.

Keywords: Mixed-Integer Nonlinear Programming, nonconvex, heuris-
tic method, experiments.

1 Introduction

Heuristic algorithms have always played a fundamental role in optimization, both
as independent tools and as part of general-purpose solvers. Heuristics can be
classified into two broad categories: those which are based on a specific problem
structure (e.g., heuristics for Set Covering, or Knapsack, or Quadratic Assign-
ment problems) and those which target a large class of problems, such as Mixed
Integer Linear Programming (MILP), or Mixed Integer Nonlinear Programming
(MINLP). Far fewer heuristics (including the present one) belong to the second
class with respect to the first one because of the inherent difficulty of devis-
ing general-purpose methods. In the rest of the paper we focus on algorithms
belonging to the second class.

Starting from MILPs, different kinds of heuristics have been proposed: their
aim is finding a good feasible solution rapidly or improving the best solution
found so far. Within a MILP solver context, both types are used. Examples
are rounding heuristics, metaheuristics (e.g. [1]), Feasibility Pump (FP) [2,3,4],
Local Branching [5] and Relaxation Induced Neighborhoods Search [6]. Since
the early 1990’s, MINLP has attracted rising interest from the operations re-
search and the chemical engineering communities. Typically, MINLP solution

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 350–360, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Experiments with a Feasibility Pump Approach for Nonconvex MINLPs 351

techniques complement continuous Nonlinear Programming (NLP) algorithms
with combinatorial-type searches. Chemical plant design and operations are
amongst the early applications of this field. Special attention has been devoted
to convex MINLPs, a class of MINLP problems whose objective function and
constraints are convex (thus, any local optimum of the continuous relaxation is
also its global optimum). Furthermore, standard linearization inequalities such
as Outer Approximation (OA) cuts [7] are valid. OA cuts linearly approximate
each nonlinear convex constraint, say f(x) ≤ 0, at a given point x̄:

f(x̄) +∇f(x̄)T (x− x̄) ≤ 0. (1)

It is easy to show that (1) does not cut off any feasible point of the original
convex MINLP. Heuristics have been proposed recently also for convex MINLPs.
Basically the ideas originally tailored on MILP problems have been extended to
convex MINLPs, for example, Feasibility Pump [8,9,10] and diving heuristics [10].

This paper proposes a heuristic algorithm for nonconvex MINLPs. These prob-
lems are in general very difficult to solve to optimality and, often, also finding a
feasible solution is practically difficult (besides being NP-hard in theory, since they
generalize NLP feasibility [11]). For this reason, heuristic algorithms are a funda-
mental part of any solution process. General-purpose nonconvex MINLP heuris-
tics proposed so far are, for example, Variable Neighborhood Search [12] and Local
Branching [13]. All existing exact convex MINLP methods [7,8,14,15,16,17,18,19]
can be heuristically deployed on nonconvex MINLPs. This field, however, is still
relatively young and current heuristics leave a lot of room for improvement.

We already mentioned FP for 0-1 MILP, introduced by Fischetti et al. [2]. The
algorithm has been extended to general integer variables by Bertacco et al. [3]
and improved with respect to solution quality by Achterberg and Berthold [4].
The idea is to iteratively solve subproblems of the original (difficult) problem
with the aim of “pumping” the feasibility in the solution. More precisely, Feasi-
bility Pump iteratively solves the continous relaxation of the problem trying to
minimize the distance to a target (infeasible) integer solution, then rounding the
fractional solution obtained to become the next integer target. Few years later a
similar technique applied to convex MINLPs was proposed by Bonami et al. [8].
In that case the subproblems are a convex NLP and a MILP. The authors also
prove the convergence of the algorithm and extend the same result to MINLP
problems with nonconvex constraints, defining, however, a convex feasible region.
More recently Bonami and Gonçalves [10] proposed a more efficient version in
which the MILP solution process is replaced by a rounding phase similar to that
originally proposed by Fischetti et al. [2] for MILPs. Finally, an enhancement
for the MILP case has been recently studied by Fischetti and Salvagnin [20] by
using domain propagation during rounding.

In this paper, we propose a FP algorithm for general nonconvex MINLPs.
The remainder of the paper is organized as follows. In Section 2 we present the
structure of the algorithm. Details on implementation issues are given in Section
3. In Section 4 we present computational results on MINLPLib instances. Section
5 concludes the paper.
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2 The Algorithm

We address the following nonconvex MINLP:

(P ) min f(x, y) (2)
g(x, y) ≤ 0 (3)

x ∈ X ∩ Zn (4)
y ∈ Y, (5)

where X and Y are two polyhedra of appropriate dimension (possibly including
variable bounds), f : Rn+p → R is convex, but g : Rn+p → Rm is nonconvex. We
will denote by

P = { (x, y) | g(x, y) ≤ 0 ∧ x ∈ X ∧ y ∈ Y } ⊆ Rn+p

the (nonconvex) feasible region of the continuous relaxation of the problem,
by X the set {1, . . . , n} and by Y the set {1, . . . , p}. We will also denote by
N ⊆ {1, . . . , m} the subset of (indices of) nonconvex constraints, so that C =
{1, . . . , m}\N is the set of (indices of) convex constraints. Note that the convex-
ity assumption on the objective function f does not involve a loss of generality:
one can always introduce an additional variable v to be minimized, and add the
(m+1)−th constraint f(x, y)−v ≤ 0 to deal with the case where f is nonconvex.

Problem (P ) presents two sources of nonconvexities:

1. integrality requirements on x variables;
2. constraints gj(x, y) ≤ 0 with j ∈ N , defining a nonconvex feasible region.

The basic idea of FP is to decompose the original problem in two easier sub-
problems. One, called (P1), is obtained by relaxing the integrality requirements;
the other, called (P2), by relaxing the nonlinear constraints. Both problems are
solved at each iteration, yielding a pair of solutions (x̄, ȳ) and (x̂, ŷ) respectively.
The aim of the algorithm is to make the trajectories of the two solutions converge
to a unique point, satisfying all the constraints and the integrality requirements
(see Algorithm 1).

In the next two sections we discuss the general framework by specializing it
to our context, i.e., the nonconvex MINLP case.

Algorithm 1. The general scheme of Feasibility Pump
1. i = 0;
2. initialize (x̂0, ŷ0) and (x̄0, ȳ0);
3. while ((x̂i, ŷi) 
= (x̄i, ȳi) and CPU time < limit) do
4. increase i;
5. solve (P1) (minimize distance to (x̂i−1, ŷi−1) subject to (x, y) ∈ P) to yield

(x̄i, ȳi);
6. solve (P2) (minimize distance to (x̄i, ȳi) subject to (x, y) ∈ (X ∩ Zn) × Y ) to

yield (x̂i, ŷi);
7. end while
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2.1 Subproblem (P1)

At iteration i the subproblem (P1) is denoted by (P1)i and has the form

min
x∈X, y∈Y

||x− x̂i−1|| (6)

g(x, y) ≤ 0, (7)

where (x̂i−1, ŷi−1) is the solution of subproblem (P2)i−1 which satisfies the in-
tegrality requirements on x (see Section 2.2) and in (6) we used the 2-norm.
Either (a) the globally optimal objective function value of (P1)i is 0, implying
a feasible solution of (P ) with x = x̂i−1; or (b) no feasible point of (P ) exists
with x = x̂i−1. Unfortunately, solving (P1)i to global optimality is too computa-
tionally expensive to be considered as a viable option. Using a local NLP solver
to solve (P1)i is not a viable alternative either: if (x̄i, ȳi) is a local optimum
of (P1)i with value > 0, (b) no longer holds and there might exist a feasible
solution of (P ) with x = x̂i−1. We would then erroneously consider the solution
with x = x̂i−1 as infeasible and continue iterating. We therefore propose the
following strategy:

1. Solve (P1)i using a simple multistart heuristic [21] to maximize chances of
finding the global optimum.

2. If no solution yielding 0 as objective function value was found, solve the
following problem denoted as (P1fix)i:

min f(x̂i, y) (8)
g(x̂i, y) ≤ 0. (9)

Problem (P1fix)i differs with respect to problem (P1)i because the objective
(6) (constant if x is fixed to x̂i like in this case) is replaced by the original
objective f , and it is solved in the attempt of finding a MINLP feasible
solution with x̂i values of x variables.

The solution proposed does not give any guarantee that the global optimum will
be found and, consequentely, that no feasible solution of (P ) will be ignored,
but, since we propose a heuristic algorithm, we consider this simplification as a
good compromise. Our computational experiments show that for some classes of
nonconvex MINLP the approach is sound. Consider, for example, a problem (P )
that, once variables x are fixed, is convex: in this case solving problem (P1fix)i

would provide the global optimum.

2.2 Subproblem (P2)

At iteration i subproblem (P2), denoted as (P2)i, has the form

min ||x− x̄i|| (10)

gj(x̄k, ȳk) +∇gj(x̄k, ȳk)T

(
x− x̄k

y − ȳk

)
≤ 0 k = 1, . . . , i; j ∈Mk (11)

x ∈ X ∩ Zn (12)
y ∈ Y, (13)
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(x0, y0)

Fig. 1. Outer Approximation constraint cutting off part of the nonconvex feasible region

where (x̄i, ȳi) is the solution of subproblem (P1)i and Mk ⊆ {1, . . . , m} is the set
(possibly empty) of (indices of) constraints from which OA cuts are generated
at point (x̄k, ȳk). We remark that Mk will most usually be a proper subset of
{1, . . . , m} because, when nonconvex constraints are involved, not all the possible
OA cuts generated are “safe”, i.e., do not cut off feasible solutions of (P ) (see
Figure 1). We remark that the OA cut generated from a convex constraint g(z)
is valid for (P ). In order to model subproblem (P2)i as a MILP, in (10) we use
the 1-norm.

Generation of OA cuts involves essentially two issues, one stemming from
a practical consideration, the other from a theoretical point of view. The first
issue is that discriminating convex and nonconvex constraints is a hard task
in practice. We will describe in Section 4 how we simplified this step on the
implementation side. The second issue is that OA cuts play a fundamental role on
the convergence of the algorithm for convex MINLPs (see Bonami et al. [8]): if at
one iteration no OA cut can be added, the algorithm may cycle. However, in the
nonconvex case, even if an OA cut is added, there is no guarantee that it would
cut off the solution of the previous iteration, as shown by the following example.

Example 1. In Figure 2 a nonconvex feasible region and its current linear approx-
imation are depicted. Let us consider x̄ being the current solution of subproblem
(P1). In this case, only one Outer Approximation cut can be generated, the one
corresponding to convex constraint γ. However, this OA cut does not cut off
solution x̂, i.e., the solution of (P2) at the previous iteration. In this example,
the FP would not immediately cycle, because x̂ is not the solution of (P2) which
is closest to x̄. This shows that there is a distinction between cutting off and cy-
cling. However, in the long(er) term not cutting off previously generated integer
solutions might lead to cycling. �

A possible solution to this issue is using a tabu list for the last solutions obtained
from (P2): the MILP solver will discard integer feasible solutions in the tabu
list. The integer part of the solution is compared with the one of the solutions in
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x̂

x̄
x1

x2

OA cut from γ

γ

Fig. 2. The OA cut from γ does not cut off x̄

the tabu list and it is accepted only if its integer part is different from that of the
forbidden solutions. Otherwise it is discarded: this prevents algorithmic cycling
as long as the cycle length is shorter than the tabu list length. This simple idea
works with both binary and general integer variables.

Before ending Section 2, we discuss previous FP implementations with respect
to the general framework described above.

First, when the original problem (P ) is an MILP, (P1) is simply the LP
relaxation of the current problem and (P2) is the original MILP itself but with
a different objective function. However, because in such a case problem (P2)
is probably as difficult as (P ), Fischetti et al. [2] iteratively solved a trivial
relaxation in which all the constraints are relaxed, i.e., an integer solution is
obtained by rounding the fractional solution of (P1).

Moreover, when the original problem (P ) is a convex MINLP, i.e., N = ∅,
(P1) is the NLP relaxation of the problem and (P2) is a MILP relaxation of
(P ). In this case, we know that: (a) (P1) is convex as well and it can ideally
be solved to global optimality; and (b) (P2) can be defined as the OA of (P )
(see, e.g., Bonami et al. [8]) or replaced by a rounding phase (see Bonami and
Gonçalves [10]).

Finally, when N �= ∅, as previously discussed, things get much more compli-
cated because we have two different sources of nonconvexity. This is the main
difference with respect to the previous FP algorithms and both (P1) and (P2)
require specialized algorithmic techniques.
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3 Code Structure

The algorithm was implemented within the AMPL environment [22]. We chose to
use this framework to make it easy to change subsolver. In practice, the user can
select the preferred solver to solve NLPs or MILPs, exploiting their advantages.
In our case, problems (P1) and (P1fix) are solved using IPOPT [23]. Problem
(P2) is solved by CPLEX [24] modified by a tabu list hooked up to the solver via
the incumbent callback function. This allows the user to define a function which
is called during execution whenever CPLEX finds a new integer feasible solution.
The tabu list is stored in a text file which is then exchanged between AMPL and
CPLEX. Every time CPLEX finds an integer feasible solution, the specialized
incumbent callback checks whether the new solution appears in the tabu list.
If this is the case, the solution is rejected, otherwise the solution is accepted.
CPLEX continues executing until either the optimal solution (excluding those
forbidden) is found or a time limit is reached. In the case where an integer
solution (x′, y′) found by CPLEX at the root node appears in the tabu list,
CPLEX stops and no new integer feasible solution is passed to FP. In such a
case, we amended problem (P2) with a no-good cut [25] which excludes (x′, y′)
and we call CPLEX again.

We also use a new solver/reformulator called ROSE (Reformulation Optimi-
zation Software Engine, see [26]), of which we exploit the following features.

1. Model analysis: getting information about nonlinearity and convexity of the
constraints and integrality requirements of the variables (necessary to define
(P1) and (P2)).

2. Solution feasibility analysis: necessary to verify feasibility of the provided
solutions.

3. OA cut generation: necessary to update (P2).

We remark that some of the above features were added to ROSE within the
context of the present work. In order to determine whether a constraint is con-
vex, ROSE performs a recursive analysis of its expression tree [27] to determine
whether it is an affine combination of convex functions. We call such a func-
tion evidently convex [26]. Evident convexity is a stricter notion than convexity:
evidently convex functions are convex but the converse may not hold. Thus, it
might happen that a convex constraint is labelled nonconvex; the information
provided is in any case safe for our purposes, i.e., we generate OA cuts only from
constraints which are certified to be convex.

4 Computational Results

In this section we report the results of preliminary computational experiments
performed on an Intel Xeon 2.4 GHz with 8 GB RAM running Linux. We present
the results in Tables 1-3. The algorithm terminates after the first MINLP fea-
sible solution is found or a time limit is reached. The parameters are set in the
following way: time limit of 2 hours of user CPU time, the absolute feasibility
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Table 1. Instances for which a feasible solution was found within the time limit
(199/243). The solution found is also the best-known solution for the instances marked
in boldface.

instance time # iter value instance time # iter value instance time # iter value
alan 0 1 4.2222E+00 gear3 0 1 7.3226E-01 ortez 0 1 -3.9039E-01
batchdes 0 1 2.2840E+05 gear4 0 1 9.6154E+05 parallel 0 1 4.0000E+10
batch 0 1 3.5274E+05 gear 0 1 7.3226E-01 prob02 0 1 1.1224E+05
contvar 608 1 1.9442E+07 gkocis 0 1 -2.7840E-03 prob03 0 1 1.0000E+01
csched1a 0 1 -2.5153E+04 hmittelman 0 1 2.1000E+01 prob10 0 2 4.7854E+00
csched1 0 1 -2.1049E+04 johnall 615 1 -2.0129E+02 procsel 0 1 -6.7200E-04
csched2a 4 1 -1.0287E+05 m3 0 1 2.4000E+06 product 17 1 -1.7772E+03
csched2 203 1 -1.2007E+05 m6 0 1 6.4800E+06 qap 0 1 4.9951E+05
deb6 4 3 2.3710E+02 m7 ar2 1 1 1 7.8800E+06 qapw 610 1 4.6012E+05
deb7 13 2 3.6983E+02 m7 ar25 1 1 1 7.8800E+06 ravem 171 1 7.6441E+05
deb8 2 1 1.4515E+06 m7 ar3 1 0 1 7.8800E+06 ravempb 185 1 7.6441E+05
deb9 18 3 4.2657E+02 m7 ar4 1 0 1 7.8800E+06 risk2bpb 2 1 -1.0195E+01
detf1 128 1 1.5976E+04 m7 ar5 1 0 1 7.8800E+06 saa 2 169 1 1.5976E+04
du-opt5 0 1 9.7825E+03 m7 0 1 7.8800E+06 sep1 0 1 -3.6123E+02
du-opt 0 1 1.1988E+04 mbtd 5,058 1 9.8529E+01 space25a 134 17 6.5069E+02
eg all s 62 4 1.0000E+05 meanvarx 0 1 2.1362E+01 space25 446 17 6.5069E+02
eg disc2 s 7 1 1.0000E+05 no7 ar25 1 2,986 879 4.0000E+06 spectra2 0 1 3.0479E+02
eg disc s 9 1 1.0001E+05 no7 ar3 1 14 1 4.0000E+06 spring 1 2 1.3073E+00
elf 0 1 2.3992E+06 no7 ar4 1 138 162 4.0000E+06 st e13 0 1 2.6004E+00
eniplac 2 3 -1.0209E+05 no7 ar5 1 7 1 4.0000E+06 st e14 0 1 1.4555E+01
enpro48 609 1 1.6422E+06 nous1 0 1 2.1055E+00 st e15 0 1 8.4763E+00
enpro48pb 610 1 1.6422E+06 nous2 0 1 2.1328E+00 st e27 0 1 2.0020E+00
enpro56 607 1 7.0730E+05 nuclear14a 1,839 130 -1.1136E+00 st e29 0 1 -2.9550E-01
enpro56pb 607 1 7.0730E+05 nuclear14b 670 5 -1.1007E+00 st e31 1 1 -4.1766E-01
ex1221 0 1 8.4763E+00 nuclear14 647 3 -1.1213E+00 st e32 0 1 -1.4303E+00
ex1222 0 1 1.0800E+00 nuclear24a 1,826 130 -1.1136E+00 st e35 0 1 1.3270E+05
ex1223a 0 1 1.4556E+01 nuclear24b 668 5 -1.0979E+00 st e36 1 3 -1.6644E+02
ex1223b 0 1 1.4556E+01 nuclear24 830 15 -1.1145E+00 st e38 0 1 7.4478E+03
ex1223 0 1 1.4555E+01 nuclear25a 902 32 -1.0927E+00 st miqp1 0 1 2.8100E+02
ex1224 0 1 -2.9550E-01 nuclear25b 627 2 -1.0750E+00 st miqp2 0 1 7.0000E+00
ex1225 0 2 3.4000E+01 nuclear25 1,213 26 -1.1050E+00 st miqp3 0 1 -1.0900E-04
ex1226 0 1 -6.1179E+00 nuclearva 132 1 -1.0068E+00 st miqp4 0 1 -1.8889E-01
ex1233 1 1 2.5338E+05 nuclearvb 111 1 -1.0248E+00 st miqp5 0 1 1.6881E+03
ex1243 0 1 1.6850E+05 nuclearvc 119 3 -9.8701E-01 stockcycle 5 1 2.1821E+05
ex1244 0 1 1.3109E+05 nuclearvd 424 1 -1.0370E+00 st test1 0 1 -2.2230E-03
ex1263a 1 11 3.1000E+01 nuclearve 406 1 -1.0344E+00 st test2 0 1 4.5600E-04
ex1263 66 137 1.2100E+02 nuclearvf 373 1 -1.0195E+00 st test3 0 1 3.1900E-04
ex1264a 0 3 1.2000E+01 nvs01 0 1 4.9199E+02 st test4 0 1 7.0000E+00
ex1264 29 12 1.8300E+01 nvs02 0 3 7.0780E+00 st test5 0 1 -1.1000E+02
ex1265a 2 5 1.6500E+01 nvs03 0 2 1.6000E+01 st test6 0 1 5.6700E+02
ex1265 158 6 1.4305E+01 nvs04 0 1 1.0040E+10 st test8 0 1 2.4728E+04
ex1266a 0 1 1.6300E+01 nvs06 0 1 1.1596E+01 st testgr1 0 1 0.0000E+00
ex1266 628 36 3.4600E+01 nvs07 0 2 6.0000E+00 st testgr3 0 1 -6.1000E-05
ex3 0 1 1.1501E+02 nvs08 0 1 2.4119E+04 st testph4 1 1 -1.2820E-03
ex3pb 0 1 1.1501E+02 nvs09 0 1 1.2972E+01 synheat 0 1 2.4872E+05
ex4 0 1 2.5566E+06 nvs10 0 1 -1.0240E+02 synthes1 0 1 9.9980E+00
fac1 0 1 5.4299E+08 nvs11 0 1 -1.5300E+02 synthes2 0 1 1.3608E+02
fac2 1 1 1.9520E+09 nvs12 0 1 -1.8800E+02 synthes3 0 1 1.1074E+02
fac3 0 1 1.0497E+08 nvs13 0 1 -1.6640E+02 tln2 1 27 2.8300E+01
feedtray2 2 1 8.7100E-04 nvs14 0 3 -2.9220E+04 tln4 1 4 1.2000E+01
feedtray 0 1 -1.2414E+01 nvs15 0 1 1.0000E+00 tln5 0 6 1.6500E+01
fo7 2 11 28 1.2000E+06 nvs16 0 1 1.4203E+01 tln6 1 8 2.5100E+01
fo7 ar25 1 3,066 879 1.2000E+06 nvs17 0 1 -2.7900E+02 tln7 1,072 397 1.0780E+02
fo7 ar3 1 8 1 1.2000E+06 nvs18 0 1 -2.0900E+02 tloss 5 7 2.4100E+01
fo7 ar4 1 141 162 1.2000E+06 nvs19 0 1 -2.8240E+02 tls2 1 4 5.3000E+00
fo7 ar5 1 7 1 1.2000E+06 nvs20 0 1 1.3869E+08 tls4 22 7 1.0000E+01
fo8 ar4 1 430 237 1.4000E+06 nvs21 0 1 -2.0000E-05 tls5 60 20 2.2500E+01
fo8 ar5 1 13 11 1.4000E+06 nvs23 1 2 -4.5480E+02 tltr 0 1 4.8073E+01
fo8 1,330 532 1.4000E+06 nvs24 1 3 -5.3620E+02 uselinear 51 1 1.9514E+03
fo9 ar3 1 417 186 1.6000E+06 o7 2 10 28 4.8000E+06 util 1 1 4.3393E+03
fo9 ar4 1 3,986 698 1.6000E+06 o7 ar25 1 2,987 879 4.8000E+06 var con10 10 4 4.6317E+02
fo9 ar5 1 15 1 1.6000E+06 o7 ar3 1 7 1 4.8000E+06 var con5 7 2 3.1517E+02
fo9 196 152 1.6000E+06 o7 ar4 1 136 162 4.8000E+06 water4 5 6 3.3353E+06
fuel 0 1 1.5155E+04 o7 ar5 1 8 1 4.8000E+06 waterx 0 1 3.3362E+06
gasnet 62 1 1.0246E+07 o8 ar4 1 622 235 8.2000E+06 waterz 3 4 3.3555E+06
gbd 0 1 3.7264E+00 o9 ar4 1 3,953 697 8.2000E+06
gear2 0 1 7.3226E-01 oaer 0 1 -6.0000E-06

tolerance to evaluate constraints is 1e-6, and the relative feasibility tolerance is
1e-3 (used if absolute feasibility test fails). The tabu list length was set not to
a fixed value, but to a value which was inversely proportional to the number
of integer variables of the instance, i.e., the number of values to be stored for
each solution of the tabu list. The value was 60,000 divided by the number of
integer variables. The actual mean value of the solutions stored in the tabu list
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Table 2. Instances for which no feasible solution was found within the time limit
(19/243)

deb10 fo9 ar2 1 lop97icx nuclear49 tls12
ex1252 fo9 ar25 1 nuclear10a product2 tls6
fo8 ar25 1 gastrans nuclear49a space960 tls7
fo8 ar3 1 lop97ic nuclear49b tln12

Table 3. Instances with numerical problems during the execution (25/243)

4stufen fo 7 ar 2 1 nuclear104 o7 super2
beuster fo7 nuclear10b pump super3
cecil 13 fo 8 ar 2 1 nvs05 risk2b super3t
eg int s minlphix nvs22 st e40 waste
ex1252a no 7 ar 2 1 o 7 ar 2 1 super1 windfac

for the instances of the test bed was 35. The NLP solver used is IPOPT 3.5
trunk [23]. As a test set we use 243 instances taken from MINLPLib [28] (all
those used in [12] excluding oil and oil2 because the log10 function is not
supported by ROSE). We found an MINLP feasible solution for 199 of the in-
stances as reported in Table 1. For each instance we report the CPU time (in
seconds) and the number of iterations needed to find the (first) feasible solu-
tion (0 if it was found in less than 1 second) and the objective function value
of such a solution. For 15 of the 199 solved instances, the algorithm found a
feasible solution whose value is equal to the best-known solution reported in
http://www.gamsworld.org/minlp/minlplib/ within a 0.1% tolerance. The
names of these instances are marked in boldface in Table 1. The instances for
which the time limit is reached without finding any MINLP feasible solution
are 19 and their names are reported in Table 2. The remaining 25 instances en-
counter some numerical problems during the execution (see Table 3). In general,
finding a MINLP feasible solution for 199 of these 243 very difficult instances can
be considered a very good performance for our algorithm. Of course the algo-
rithm can be highly improved by taking into account the quality of the solution.
First of all there is the possibility of continuing the execution of the algorithm
instead of stopping it when the first feasible solution is found. Moreover, in most
of the subproblems we solve, the original objective function is completely ne-
glected. Using it in some way, i.e., combining it with the objective functions of
subproblems (P1) and (P2) or adding a constraint which limits the value of the
objective function, might lead to an improvement of the quality of the solutions
obtained with the proposed algorithm. That would be in the spirit of [4].

5 Conclusions

In this paper we presented a Feasibility Pump algorithm aimed at solving non-
convex Mixed Integer Nonlinear Programming problems. The proposed algo-
rithm is tailored to limit the impact of the nonconvexities in the MINLPs. These
difficulties are extensively discussed. The preliminary results show that the algo-
rithm behaves well with general problems on instances taken from MINLPLib.

http://www.gamsworld.org/minlp/minlplib/
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Abstract. Mobile users are roaming in a zone of cells in a cellular net-
work system. The probabilities of each user residing in each cell are
known, and all probabilities are independent. The task is to find any
one, or all, of the users, by paging the cells in a predetermined number
of rounds. In each round, any subset of the cells can be paged. When a
cell is paged, the list of users in it is returned. The paging process termi-
nates when the required user(s) are found. The objective is to minimize
the expected number of paged cells. Finding any one user is known as the
yellow page problem, and finding all users is known as the conference call
problem. The conference call problem has been proved NP-hard, and a
polynomial time approximation scheme exists. We study both problems
in a unified framework. We introduce three methods for computing the
paging cost. We give a hierarchical classification of users. For certain
classes of users, we either provide polynomial time optimal solutions, or
provide relatively efficient exponential time solutions. We design a family
of twelve fast greedy heuristics that generate competitive paging strate-
gies. We implement optimal algorithms and non-optimal heuristics. We
test the performance of our greedy heuristics on many patterns of input
data with different parameters. We select the best heuristics for both
problems based on our simulation. We evaluate their performances on
randomly generated Zipf and uniform data and on real user data.

Keywords: cellular networks, paging, location management, experimen-
tal analysis of algorithms, heuristics.

1 Introduction

In cellular network systems, when a call arrives for a user, the system must
know in which cell the user is located in order to establish a connection. Such a
locating process is usually conducted by paging.

Let a user roam in a set of N cells: {C1, . . . , CN}. With probability pn the
user is located in cell Cn. All pis are independent. The system pages the cells in
rounds. Once the cell that contains the user is paged, it reports to the system
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and the paging process terminates. To ensure the quality of service, the paging
process must be conducted in at most D rounds. In each round, any subset
of the cells could be paged. Thus, a paging strategy is an ordered D-partition
of the cells, such that, in the dth round, the cells in dth part are paged. The
cost of a paging strategy is the expected number of cells paged until the user
is located. Our objective is to design algorithms that compute paging strategies
that minimize paging costs.

In a variety of applications, e.g., to establish a conference call, we need to
mutually page multiple users in a cellular network system. Suppose M users
roam in a set of N cells, {C1, . . . , CN}. With probability pm,n, user m is located
in cell Cn. All probabilities pm,ns are independent. Our goal is find any one,
some, or all of the users in at most D rounds. When a cell is paged, we become
aware of the list of user(s) that reside in it. The paging process terminates as
soon as the desired user(s) are found. The same objective remains: to minimize
the expected number of paged cells.

In the multiple user paging problem, on one extreme, we want to find all the
users so that a conference call can be established. We call this the conference
call problem. On the other extreme, we only need to find any one of the users,
no matter who. This is similar to when we look for information in a yellow page
book: We stop after finding the first useful information in a category. We call
this the yellow page problem. In this paper, we study both the yellow page and
conference call problems, showing a kind of duality between the two problems.

Example: Suppose 2 users roam in 3 cells, C1, C2, C3, with probabilities 0.5, 0.3,
0.2 (user 1) and 0.4, 0.1, 0.5 (user 2), respectively. For the paging strategy that
pages C1 and C2 in the first round and C3 in the second round, if we only search
for user 1, by probability (0.5+0.3) we page 2 cells; by probability 0.2 that we fail
in the first round, we page 3 cells. The paging cost is (0.5+0.3) ·2+0.2 ·3 = 2.2.
For the same paging strategy, in the conference call problem, the probability that
both users are in cells C1, C2 (i.e., paging stops after the first round and only 2
cells are paged) is (0.5 + 0.3) · (0.4 + 0.1) = 0.4. Otherwise, all 3 cells are paged.
The expected cost is 0.4 · 2 + (1− 0.4) · 3 = 2.6. Again for the same strategy, in
the yellow page problem, both users are in C3 with probability 0.2 · 0.5 = 0.1, in
which case no user is found in the first round and we page all 3 cells. Otherwise,
we only page the first 2 cells. The expected cost is 0.1 · 3 + (1− 0.1) · 2 = 2.1.

Motivation: The cost of updating locations by users in Cellular Networks could
be very expensive if users update their location each time they move from cell to
cell. As a result, many systems partition the cells into zones where users report
their new locations only when they enter a different zone. To locate a user, the
system needs to page it in the zone of cells where it last reports its location. This
scheme is part of one of the location management solutions (see survey [1]) where
the paging step described above is a common task. It follows that any a priori
knowledge of user locations, that can either be provided by the users or can be
extracted from log files, will help the system to reduce the expected paging cost.
There are several other applications to the paging problem. In wireless sensor
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networks, the system collects information from sensors by probing them. Such
probes are costly (batteries of sensors) and therefore the system needs to arrange
efficient information collection strategy such that the number of probes is mini-
mized. Another application is the task of searching information on the Internet
where search engines consume computational resource by accessing Internet cache
databases. Since search request comes massively and frequently, the search en-
gine system needs to better schedule the resource accessing by processing multiple
search requests together, and arrange them in a good schedule.

Previous work: The problem of searching a single user in cellular networks
under delay constraint D has been studied in [10,13,12,3]. An efficient, O(ND)
time, algorithm computing the optimal cost solution exists based on dynamic
programming. The papers [14, 9] considered the task of searching multiple users
but as a collection of many single user search tasks that occur concurrently and
therefore finding each one of the users is a success.

The conference call problem was introduced in [4]. The authors proved NP-
hardness of the problem, and showed a natural greedy algorithm is an e

e−1 -
approximation. In [8], the authors introduced a PTAS to the conference call
problem for any constant number of paging rounds. In [5], the authors studied
the conference call problem with an additional bandwidth constraint, such that
in each round, a limited number of users in each cell can be paged. The NP-
hardness of the problem was shown, and a fast heuristic that minimized both
delay constraint and paging cost was presented.

In [7], the authors explored another version of the conference call problem:
instead of paging a cell and collecting all users in it, the system queries a cell by
asking if a specific user is in it, and gets a boolean answer. The authors showed
hardness and provided approximation algorithms in this setting.

The yellow page problem has not been studied to the best of our knowledge in
the context of partitioning and scheduling. In [11], the authors explored a more
general dynamic version of the problem. They showed it is NP-hard and provided
a 4-approximation algorithm. In [6], the authors studied a similar problem. The
problem differs from the yellow page problem in the parameter of number of
users M . They proved its NP-hardness and provided an efficient approximation
algorithm. In [15], the author discussed the yellow page problem in the context
of efficiently finding alternative investment and provided heuristical solutions in
a continuous model (in contrast to our discrete model).

Our contribution: In the problem of paging multiple users in a cellular net-
work, computing the paging cost itself becomes an important task and is es-
sential to understand the problem. We present three methods for computing
the paging cost: two of them will be used in proving lemmas and constructing
optimal algorithms, the other (the most efficient) one will be used in heuris-
tics. We conjecture that, in addition to the conference call problem, the yellow
page problem is also NP-hard, therefore we give a hierarchical classification of
users and provide efficient optimal algorithms for certain interesting classes of
users. When the delay constraint equals the number of cells, i.e., D = N , we
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present polynomial time algorithms for monotonic users and disjointed users,
which are very representative cases for some applications. The optimal solution
in the D = N case is a permutation of the cells and thus a naive optimal algo-
rithm has time complexity on the order of N !. However, by exploiting properties
of the optimal solution, we design instead a dynamic programming algorithm
of time complexity on the order of 2N . This algorithm will be later used as a
benchmark to evaluate our heuristics. In addition to optimal algorithms, we de-
sign a family of twelve greedy heuristics that belong to four groups. To evaluate
their performance, we test them on several types of data with many settings
and parameters. We also test them on real data with 171929 appearances of 996
users in 5625 cells in 31 consecutive days, acquired from a cell phone provider.
We find the best heuristic for each problem that outperform the other heuristics
on almost all instances. We also measure the running time of our algorithms on
a real machine in addition to the theoretical analysis.

Open problems: The NP-hardness proof of the yellow page problem is still
open. A natural generalization is to efficiently find k out of M users and re-
mains open. In this paper, we assume that the costs of paging cells are all the
same. However, they may vary from cell to cell due to different level of conges-
tions. Another generalization, is to compute good paging strategies when cells
have arbitrary paging costs. Finally, in the conference call problem, our pag-
ing strategies are static since they are predetermined before the paging process
starts. In a dynamic setting, we may select the cells to be paged in the next
round according to the users found in previous rounds.

2 Preliminaries

Let M users roam N cells and pm,n be the probability of user m being in cell Cn.
Given a bound D on the number of rounds (with 1 ≤ D ≤ N), a paging strategy
A = 〈A1, . . . , AD〉 is an ordered partition of the set of cells {C1 . . . CN}, such
that, in the dth round, cells in part Ad are paged. Given a paging strategy A =
〈A1, . . . , AD〉, let Pm,d be the probability of user m being in any cell in part Ad,
i.e., Pm,d =

∑
Cn∈Ad

pm,n. Denote the suffix probability by Rm,d =
∑N

i=d+1 Pm,i

and the prefix probability by Qm,d =
∑d

i=1 Pm,i. Let Sd be the number of cells
in the first d parts, A1, . . ., Ad. By convention, S0 = 0.

We describe three methods that compute the paging cost of the yellow page
problem and the conference call problem. The first two are used in our proofs
while the third is used by our simulations since it is computationally the most
efficient. Let YP(A) be the cost of the yellow page problem and CC(A) be the
cost of the conference call problem, on paging strategy A. Consider the vector
d = (d1, . . . , dM ) ∈ {1, . . . , D}M , which encodes in which part each user is (i.e.,
user m is in part dm, for 1 ≤ m ≤M).

Combinatorial Computation: For a part location vector (d1, . . . , dM ), which
occurs with probability

∏M
m=1 Pm,dm , the strategy pays a cost of Smin{d1,...,dM}

for the yellow page problem (i.e., it pages in parts until it finds the first part
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that contains some user) and therefore:

YP(A) =
∑

d∈{1,...,D}M

(
Smin{d1,...,dM} ·

M∏
m=1

Pm,dm

)
. (1)

Similarly, the cost of the conference call problem is:

CC(A) =
∑

d∈{1,...,D}M

(
Smax{d1,...,dM} ·

M∏
m=1

Pm,dm

)
, (2)

where the only difference is that for each part location vector, the strategy pays
a cost of Smax{d1,...,dM}, because it has to page also all cells in the last part that
contains a user.
Time Complexity: Θ(MN + (M + D)DM ).

Recursive computation: In the yellow page problem, we extend the defi-
nition of cost, so that YP(〈Ad, . . . , AD〉) is the expected cost of paging parts
〈Ad, . . . , AD〉 given the condition that no user is found in parts A1, . . . , Ad−1. If
no user has been found in the first (D− 1) rounds, we must page all the cells in
AD, i.e., YP(〈AD〉) = |AD|. The recursion step is

YP(〈Ad, . . . , AD〉) = |Ad|+
∏M

m=1 Rm,d∏M
m=1 Rm,d−1

YP(〈Ad+1, . . . , AD〉) , (3)

because to page users in Ad, . . . , AD given that no users are in A1, . . . , Ad−1,
we must page cells in Ad by paying a cost of |Ad| and if no user is found there
(an event with probability

∏M
m=1 Rm,d/

∏M
m=1 Rm,d−1) we pay an extra cost of

YP(〈Ad+1, . . . , AD〉).
Let CC(〈A1, . . . , Ad〉) be the conference call cost of paging all users in parts

A1, . . . , Ad. The recursion base is CC(〈A1〉) =
∏M

m=1 Qm,1|A1|, since if all users
are in cells of part A1, we page |A1| cells. The recursion step is

CC(〈A1, . . . , Ad〉) = CC(〈A1, . . . , Ad−1〉) +

(
M∏

m=1

Qm,d −
M∏

m=1

Qm,d−1

)
|Ad|,

(4)
because to page all users in parts A1, . . . , Ad, we must page parts A1, . . . , Ad−1
first and pay a cost of CC(〈A1, . . . , Ad−1〉), and with probability that at least
one user is in Ad, we pay an extra cost of |Ad|.
Time Complexity: Θ(MN + MD).

Exclusive Computation: With probability
∏M

m=1 Rm,d−1, all users are in parts
{Ad . . . AD}; with probability

∏M
m=1 Rm,d, all users are in parts {Ad+1 . . . AD}.

Thus, with the difference of the above probabilities, at least one user is in part Ad

but no user is in parts A1 . . . Ad−1, in which case we need to page exactly Sd cells.
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Summing through d = 1, . . . , D, we have the cost for the yellow page problem.

YP(A) =
D∑

d=1

(
Sd ·
(

M∏
m=1

Rm,d−1 −
M∏

m=1

Rm,d

))
(5)

Similarly, in the conference call problem, with probability
∏M

m=1 Qm,d, all
users are in parts {A1 . . . Ad} and with probability

∏M
m=1 Qm,d−1, all users are

in parts {A1 . . . Ad−1}. Thus, with the difference of the above probabilities, at
least one user is in part Ad and all users are in parts A1 . . . Ad, in which case we
need to page exactly Sd cells.

CC(A) =
D∑

d=1

(
Sd ·
(

M∏
m=1

Qm,d −
M∏

m=1

Qm,d−1

))
(6)

Time Complexity: Θ(MN + MD)

Types of Users: In [4], the authors proved that the conference call problem
is NP-hard. We conjecture that the yellow page problem is also NP-hard. In
Sec.3, we observe some “duality” between the two problems. Since the general
setting is hard to tackle, we study some interesting restricted classes of instances,
for which we provide more efficient optimal solutions – some have polynomial
running time and some have improved exponential running time. Toward that
goal, we present a hierarchical classification of types of users.

We define a few properties for a set of M users according to their probabilities
in the set of cells. A set of users is identical if for any cell Cn ∈ {C1, . . . , CN},
p1,n = · · · = pM,n. A set of users is uniform if for each user m = 1 . . .M , pm,n is
either 0 or 1/k, where k is the number of non-zero entries in {pm,1, . . . , pm,N}.
A set of users is similar, if for all users m = 2, . . . , M , {pm,1, . . . , pm,N} is some
permutation of user 1’s probabilities {p1,1, . . . , p1,N}. A set of users is disjoint
if for each cell Cn ∈ {C1, . . . , CN}, there is exactly one non-zero entry pm,n, for
some m = 1, . . . , M .

3 Optimal Solutions

In this section, we first present efficient algorithms for both problems to compute
the paging cost for a predetermined order of the cells. Based on these algorithms,
we describe relatively efficient optimal solutions to some types of users. The
proofs of our lemmas and theorems can be found in our technical report [2].

Given an order of the cells, say 〈C1, . . . , CN 〉 (without loss of generality), a
paging strategyA = 〈A1, . . . , AD〉 is said to respect the above order if for any cells
Ci, Cj with i < j, we have Ci ∈ Adi and Cj ∈ Adj with di ≤ dj . Given an order
of the cells, Algorithm 1 compute the optimal paging cost and corresponding
strategy that respects this order, in polynomial time.

In Algorithm 1, for the yellow page problem, let hyp
n,d denote the optimal cost

of paging cells {Cn, . . . , CN} in d rounds given the condition that no user locates
in cells {C1, . . . , Cn−1}. Our objective is to find hyp

1,D. It is not difficult to see



Paging Multiple Users in Cellular Network 367

that hyp
n,1 = N − n + 1. To compute hyp

n,d, we need to search through all possible
js with n + 1 ≤ j ≤ n − d + 1 for the strategy of minimum cost that pages
cells {Cj , . . . , CN} in the last (d − 1) rounds and pages cells {Cn, . . . , Cj−1} in
the previous round; the inner loop (∗) follows equation (3)). For the conference
call problem, let hcc

n,d denote the optimal cost of paging cells {C1, . . . , Cn} in d
rounds. Our objective is to find hcc

N,D. It is not difficult to see that hcc
n,1 = n. To

compute hcc
n,d, we need to search through all possible js with (d− 1) ≤ j < n for

the strategy of minimum cost that pages cells {C1, . . . , Cj} in the first (d − 1)
rounds and pages cells {Cj+1, . . . , Cn} in the dth round; the inner loop (∗) fol-
lows equation (4).

Algorithm 1. Dynamic programming algorithm, respect order 〈C1, . . . , CN 〉,
cost = DP(p[M ][N ], D)

for n = 1 . . . N do
YP: hyp

n,1 ← N − n + 1
CC: hcc

n,1 ← n
for d = 2 . . . D do

for n = 1 . . . (N − d) do
YP: hyp

n,d ← minn−d+1
j=n+1 |j−n|+(

∏M
m=1 Rm,n −∏M

m=1 Rm,j)/
∏M

m=1 Rm,n ·hyp
j,d−1

CC: hcc
n,d ← minn−1

j=d−1 hcc
j,d−1 +

(∏M
m=1 Qm,n −∏M

m=1 Qm,j

)
|n − j| (∗)

return YP:hyp
1,D / CC:hcc

N,D

The correctness of Algorithms 1 follows from the fact that, under the particular
order constraint, any sub-partition of an optimal paging strategy must be sub-
optimal within itself; otherwise, replacing the sub-partition with the alternative
sub-optimal paging strategy would gain a better paging strategy than optimal.
We omit details of a proof here, but a formal proof can be adapted from [12].

Lemma 1. The running time of Algorithm 1 is Θ(MDN2)

Monotonic Users: A set of users is called monotonic if there is a permutation
of cells, w.l.o.g., say 〈C1, . . . , CN 〉, such that pm,1 ≥ · · · ≥ pm,N for every m ∈
{1, . . . , M}. Let this permutation be the monotonic order of the cells for the
monotonic users.

Lemma 2. For monotonic users, the optimal paging strategies for both the yel-
low page and conference call problems follow the monotonic order of the cells.

Applying Algorithm 1 on the monotonic order yields:

Corollary 1. The optimal paging strategies for both the yellow page problem and
the conference call problem for monotonic users can be computed in polynomial
time for any D, M , and N .

D=N, Duality: An interesting case is when D = N , i.e., sequential searching,
in which a paging strategy is a permutation of the cells. The conference call
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problem has been proved NP-Hard in [4]. Although we have not yet proved the
NP-hardness for yellow page problem, we show that there is some kind of duality
between the two problems.

Lemma 3. Let A be a paging strategy that pages M users in N cells in D =
N rounds. Let an instance of yellow page with probabilities pm,n. Let another
instance for the conference problem with probabilities qm,n = pm,N+1−n. Then,
YP(A, pm,n) + CC(A, qm,n) = N + 1.

Corollary 2. When D = N , the maximization problem of yellow page is equiv-
alent to the minimization problem of conference call, and vice versa.

D=N, Arbitrary User: When D = N , a brute-force approach to find the opti-
mal strategy is to test all permutations of the cells. This method requires Θ(N !)
time. We present lemmas, which allow us to give instead a Θ(2N ) algorithm that
generates the optimal permutation.

Lemma 4. In the yellow page problem, if 〈Ci1 , . . . Cin〉 is an optimal paging
strategy of paging cells {Ci1 , . . . Cin} given the condition that no user is located
in the rest of cells, then any suffix of it, 〈Cik

, . . . Cin〉, for 1 ≤ k ≤ n, is an
optimal paging strategy that pages cells 〈Cik

, . . . Cin〉 given no user is located in
any other cells (except in {Cik

, . . . Cin}).

Similarly, we have the following lemma for the conference call problem:

Lemma 5. In the conference call problem, if 〈Ci1 , . . . Cin〉 is an optimal paging
strategy of paging cells {Ci1 , . . . Cin} in the first in rounds, then any prefix of it,
〈Ci1 , . . . Cik

〉, for 1 ≤ k ≤ n, is an optimal paging strategy that pages cells in
{Ci1 , . . . Cik

} in the first ik rounds.

In light of Lemmas 4 and 5, Algorithm 2 computes an optimal paging strategy.
A dedicated array Best[2N ] is used in the algorithm. Best[k] records the optimal
sub-strategy of paging cells {Ci1 , . . . , Cil

} where i1, . . . , il are the bits of 1 after
converting k into binary. For the yellow page problem, in the first for loop, we
initialize the optimal paging strategy of a single cell given no user is found in
other cells which is to page the cell itself in the only around. For paging l cells
in l rounds, we search through all possible cases that page one of the l cells in
the first round, and page the other (l−1) cells optimally in the remaining (l−1)
rounds. The data structure Best is set up for random access any optimal sub-
strategy that has been already computed. Similarly, we construct the optimal
algorithm for the conference call problem. The only difference with the yellow
page algorithm is the recursive computation of the cost according to (4).

Theorem 1. The time complexity of Algorithm 2 is Θ(MN · 2N ). The space
complexity is Θ(N · 2N ).



Paging Multiple Users in Cellular Network 369

Algorithm 2. D = N , arbitrary users: compute the optimal cost and strategy
using dynamic programming; opt = DP(A)

for ∀A, that |A| = 1 do
YP: Best[A]cost ← 1; Best[A]strategy ← 〈A〉
CC: Best[A]cost ← ∏M

m=1 Pm,A; Best[A]strategy ← 〈A〉
for ∀A that |A| = 2 . . . N do

YP: Best[A]cost ← minCi∈A{1 +
∏M

m=1
∑

Cn∈A\Ci
pm,i∏

M
m=1

∑
Cn∈A pm,i

· Best[A \ Ci]cost}
YP: Best[A]strategy ← 〈arg min{Ci|Best[A \ Ci]cost}, Best[A \ Ci]strategy〉
CC: Best[A]cost ← minCi∈A{Best[A \ Ci]cost +

(∏M
m=1 PA −∏M

m=1 PA\Ci

)
· |A|}

CC: Best[A]strategy ← 〈arg min{Best[A \ Ci]cost, Best[A \ Ci]strategy, Ci}〉
return {Best[A]| that |A| = N}

D=N, Disjoint users: For disjoint users we can reduce the running time of
optimal algorithm to O(NM ) based on the following lemma.

Lemma 6. For disjoint users, in an optimal strategy, for every user, the cells
where the user is located must be paged by order of non-increasing probability.

Based on the above partial order of optimal paging strategies, when D = N , we
can compute an optimal paging strategy for disjoint users in Θ(NMPoly(M, N))
time using dynamic programming techniques.

4 Experiments

We design a family of 12 heuristics that compute good paging strategies in
practice. All our heuristics are of the following form: First, we compute an order
of the cells (according to some greedy method) and then, we apply Algorithm 1
to find the best strategy that follows this order of the cells. We have four criteria
to order the cells. Define Xn =

∏M
m=1 pm,n (the probability all users are in

cell Cn). Define Yn =
∏M

m=1(1 − pm,n) (the probability no user is in cell Cn).
Define Sn =

∑M
m=1 pm,n (the sum of user probabilities being in cell Cn). Define

Zn = maxM
m=1 pm,n (the maximum user probability in cell Cn). Heuristics X ,

Y , S and Z page the cells in the orders X1 ≥ . . . ≥ XN , Y1 ≤ . . . ≤ YN ,
S1 ≥ . . . ≥ SN

1 and Z1 ≥ . . . ≥ ZN , respectively.
We use the above four basic heuristics to compute paging strategies for both

problems. For each basic greedy heuristic G ∈ {X, Y, Z, S}, we design two adap-
tive versions, BFG and WLG. In the Best First (BF) version, each time we
select a cell to form an order, we select the next available cell that has the best
value (max. for X , S, Z and min. for Y ), and then normalize the probabilities
among unselected cells. In the Worst Last (WL) version, we select the available
cell that has the worst value (min. for X , S, Z and max. for Y ) as the last cell
in the order, and then normalize probabilities among unselected cells.
1 [4] Showed Y is an e

e−1
-approximation for any D ≤ N .
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Select the Best Heuristics: We test our heuristics for both the yellow page
and the conference call problem. For each problem, we check regular users and
disjoint users. We also conduct our simulation on small instances and large in-
stances with respect to number of cells. For small instances, we try all possible
inputs (exhaustive search) up to some granularity (values of probabilities are
integer multiples of some small value), then we compute strategies for Zipf and
Uniform distributed user location data. We check the cases of D = 2 and D = N
(for efficient optimal algorithms). We compare the paging costs between different
greedy heuristics and between greedy heuristics and OPT. For large instances,
we test on Zipf and Uniform distributed data, for several values of D, and then
we compare the paging costs between the heuristics. We measure the average
and worst case ratio of costs on the instances that belongs to every setting and
parameter combination and on real data. We use a kind of “voting system” to
generate a ranking of heuristics. Details of the setup and results of our experi-
ments can be found at [2].

Our results show that the ranking of heuristics is the same for large and small in-
stances, when doing exhaustive search, for Zipf and uniform data, for average case
and worst case measurement, and when comparing heuristics among themselves or
when comparing heuristics with OPT. Table 1 shows the ranking of heuristics and
of the three versions of the best heuristic (Y , BFY , WLY ) for the two problems.

Table 1. Performance ranking of heuristics. G > H: G is consistently better than H;
G ≥ H: G is better than or comparable to H; G ∼ H: G is comparable to H.

Yellow Page Conference Call
Y ≥ S > Z ≥ X Y ≥ S > Z ≥ X

BFY > Y ≥ WLY Y > BFY ∼ WLY

Next we evaluate the performance of our best greedy heuristics. Our simula-
tion found some “bad” instances. Based on these instances, we are able to craft
some examples that show lower bounds on the competitiveness of our heuristics
for both problems [2].

Performances of Best Greedy Heuristics: We evaluate the performances
of the best heuristics (BFY for yellow page and Y for conference call) on small
instances, large instances. We measure their average case and worst case cost
ratios over OPT for small instances and real data. We measure the average and
worst case cost ratios of other heuristics over BFY or Y for large instances.

Tables 2(a), 2(c) and 2(d) show the results. We observe that our selected
heuristics perform well in the worst case and average performance for all types
of input data. We also present the results in bar chart in Fig. 7 in [2].

Simulation on Real Data: We obtain from a cellular phone company 996 users’
171929 appearances in 5625 cells in 31 consecutive days. For each user, we extract
(from the above real data) the number of appearances in every cell. We randomly
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Table 2. Cost Ratios of BFY for Yellow Page (YP) and Y for Conference Call (CC)

(a) Cost Ratios Over OPT:
Small Instances

Problem Average Worst
YP (BFY) 1.00638 1.19415
CC (Y) 1.00173 1.03609

(b) Cost Ratios Over OPT:
Real Data

Problem Average Worst
YP (BFY) 1.03352 1.54384
CC (Y) 1.00643 1.05930

(c) Cost Ratios Over BFY :
Large Instances, YP
Heuristic Average Worst

BFX 1.19102 2.23126
BFZ 1.28360 2.51777
BFS 1.00003 1.00961

(d) Cost Ratios Over Y :
Large Instances, CC
Heuristic Average Worst

X 1.15884 1.62346
Z 1.00626 1.03000
S 1.00000 1.00316

pick two (M = 2), three (M = 3), and four (M = 4) users and compute the
probabilities pm,ns. For each M = 2, 3, 4, we pick 10,000 instances as above. We
conduct the same simulations as in the non-real data. We observe that each real
user is close to Zipf distributed and users are almost disjoint. The results coincide
with the results from non-real data as shown in Tables. 1 and 2(b).

Running Time: We compare the running time of our greedy heuristics and
efficient optimal algorithms. For accurate time measurement, for each N , we run
our algorithms for many iterations and compute the average running times.

For D = 2 and D = N , we measure the running time of the static version
of the greedy heuristics G (i.e., Y ) of complexity Θ(MDN log N), the adap-
tive version of the greedy heuristics AG (i.e., BFY and WLY ) of complexity
Θ(MDN2 log N), and the DN optimal algorithm of complexity Θ(MNDN ).
The results are similar. We show the case of D = N in Fig. 1(a) In the two
experiments, we observe a complexity hierarchy of the algorithms and a tradeoff
between complexity and optimality. For D = N , we also compare the running
time of the straight forward optimal N ! algorithm and fast 2N algorithm. The
result is in Fig. 1(b). As expected, the N ! algorithm is super exponential and
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the 2N algorithm is comparably much faster, which allows us do experiments on
larger problem instances.
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Abstract. Classifying network flows by their application type is the
backbone of many crucial network monitoring and controlling tasks,
including billing, quality of service, security and trend analyzers. The
classical “port-based” and “payload-based” approaches to traffic clas-
sification have several shortcomings. These limitations have motivated
the study of classification techniques that build on the foundations of
learning theory and statistics. The current paper presents a new sta-
tistical classifier that allows real time classification of encrypted data.
Our method is based on a hybrid combination of the k-means and k-
nearest neighbor (or k-NN) geometrical classifiers. The proposed classi-
fier is both fast and accurate, as implied by our feasibility tests, which
included implementing and intergrading statistical classification into a
realtime embedded environment. The experimental results indicate that
our classifier is extremely robust to encryption.

1 Introduction

Classifying network flows by their application type is the backbone of many
crucial network monitoring and controlling tasks. Basic network management
functions such as billing, quality of service, network equipment optimization,
security and trend analyzers, are all based on the ability to accurately classify
network traffic into the right corresponding application.

Historically, one of the most common forms of traffic classification has been
the port-based classification, which makes use of the port numbers employed
by the application on the transport layer. However, many modern applications
use dynamic ports negotiation making port-based classification ineffective [10,17]
with accuracy ranges between 30% and 70%.

The next step in the evolution of classification techniques was Deep Packet
Inspection (DPI) or payload-based classification. DPI requires the inspection of
� Supported in part by The Open University of Israel’s Research Fund (grant no.
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the packets’ payload. The classifier extracts the application payload from the
TCP/UDP packet and searches for a signature that can identify the flow type.
Signatures usually include a sequence of bytes/strings and offsets that are unique
to the application and characterize it. DPI is widely used by today’s traffic clas-
sifier vendors. It is very accurate [11,17] but suffers from a number of drawbacks.

Recently, we have witnessed a dramatic growth in the variety of network ap-
plications. Some of these applications are transmitted in an encrypted manner,
posing a great challenge to the DPI paradigm. Such applications may choose to
use encryption both for security and to avoid detection. Common P2P applica-
tions such as BitTorrent and eMule have recently added encryption capabilities
(primarily to avoid detection). As a significant share of the total bandwidth is
occupied by P2P applications and since current DPI based classifiers must see
the packet’s payload, encryption may become a real threat for ISP’s in the near
future. The inability of port-based and payload-based analysis to deal with the
wide range of new applications and techniques used in order to avoid detection
has motivated the study of other classification techniques. Two examples in-
clude behavior based classification and classification based on a combination of
learning theory and statistics.

In the behavioral paradigm, traffic is classified by identifying a certain behav-
ior that is unique to the application at hand. In this setting, the signature is
not syntactic (as in DPI classification) but rather a combination of events. For
example, it is possible to identify encrypted BitTorrent by intercepting the tor-
rent file (a file used to start the downloading process in BitTorrent clients) [3].
The torrent file includes a list of BitTorrent hosts, each possessing certain parts
of the downloaded file. The classifier processes the file and saves these hosts.
Now, an encrypted flow that is destined to one of these hosts will be marked
immediately as BitTorrent. The drawback of such behavioral solutions is that
they are too specific, and it will not take long before the P2P community strikes
back by encrypting torrent files [3].

This paper presents a new method for statistical classification. Our method is
based on a hybrid combination of the well known k-means and k-nearest neigh-
bor geometrical classifiers. The proposed classifier is both fast and accurate, as
implied by our feasibility tests, which included implementing and intergrading
our classifier into a realtime embedded environment. The experimental results
indicate that our classifier is extremely robust to encryption and other DPI
flaws, such as asymmetric routing and packet ordering. Finally, we show how
to boost the performance of our classifier even further, by enhancing it with a
simple cache-based mechanism that combines elements of port-based and statis-
tical classification. In what follows, we elaborate on statistical classification in
general and specify our contribution.

Related work. The statistical approach to classification is based on collecting sta-
tistical data on properties of the network flow, such as the mean packet size, flow
duration, number of bytes, etc. The statistical paradigm relies on the assumption
that each application has a unique distribution of properties that represents it
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and can be used to identify it. This approach has been the subject of intensive
research in the recent years.

The work of Paxson [15] from 1994 established a relationship between flow
application type and flow properties (such as the number of bytes and flow
duration). A methodology for separating chat traffic from other Internet traffic,
which uses statistical properties such as packet sizes, number of bytes, duration
and inter arrival times of packets, was developed in [5]. Mcgregor et al. [12]
explored the possibility of forming clusters of flows based on flow properties
such as packet size statistics (e.g., minimum and maximum), byte count, and
idle times etc. Their study used an expectation maximization (EM) algorithm to
find the clusters’ distribution density functions.

A study focusing on identifying flow application categories rather than specific
individual applications was presented in [16]. While limited by a small dataset,
they showed that the k-nearest neighbor algorithm and other techniques can
achieve rather good results, correctly identifying around 95% of the flows. Zander
et al. [18], using an EM based clustering algorithm, obtained an average success
rate of 87% in the separation of individual applications. The basic Navie Bayes
algorithm, enhanced by certain refinements, was studied by Moore et al. [13]
and was shown to achieve an accuracy level of 95%.

Realtime classification, in which the flow is to be classified based mainly on its
first few packets’ size and direction, was addressed in [2,4,7]. It is important to
note that these algorithms were tested only against basic application protocols.
Encrypted BitTorrent and Gnuttela, for example, use packet padding in the
beginning of the flow start, to avoid such detection methods. For more details
on related work see [10,14].

Our contribution. The current paper introduces a hybrid statistical algorithm
that integrates two basic and well known machine learning algorithms, known
as k-nearest neighbors and k-means. The algorithm is fast, accurate and most
important it is insensitive to encrypted traffic. Moreover, the strength of our
algorithm is precisely in overcoming several weaknesses of the DPI approach,
which is the leading technology used by current network classifiers. In particular,
our algorithm overcomes asymmetric routing1 and packet ordering. To the best
of our knowledge, our study is the first to demonstrate the potential of statistical
methods on encrypted traffic in realtime classification.

To put our results in perspective, we note that most previous statistical clas-
sification methods were tested in an off-line environment [14]. The results on re-
altime classification [2,4,7] are all based on inspecting the first five initial packets
of the flow, and thus work well only when these packets represent the application
under study. Note that encrypted Bittorrent and EMule, which use padding on
their initial packets, cannot be classified using such techniques.

The strength of our algorithm is demonstrated on Encrypted BitTorrent, one
of the hardest applications to identify. The BitTorrent development community
puts a lot of effort into detection avoidance and uses port alternation, packet
padding (on initial flow packets) and encryption as part of this effort. Actually, as

1 Occurring when incoming and outgoing flows use different routers.
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our algorithm is insensitive to encryption, it turns out that it identifies encrypted
and non-encrypted BitTorrent flows with the exact same accuracy.

The data set used for the experiments reported in this paper was recorded in
2009 (full payload) on a real ISP network edge router on two different geographi-
cal locations, and contains millions of flows. The record is unique in its relevance
and reflects the distribution and behavior of contemporary application flows.
We integrated our statistical classifier into a realtime embedded environment.
The feasibility test included a full implementation of our algorithm on SCE2020,
which is one of the leading Cisco platforms specialized to classification. The al-
gorithm was tested in full line rate, and the experiment has demonstrated that
our algorithm can be implemented and integrated on platforms that are limited
on resources, memory and cpu, and require realtime responses.

In addition, we show that using a simple LRU cache drastically reduces clas-
sification time and memory of more than 50% of the flows, and also increases
the classification accuracy of some of the protocols.

2 Methodology

The general paradigm followed by our classifier is a machine learning one. Roughly
speaking, we first build a training set and use it to train our classifier; we then turn
to the task of classification. In what follows we briefly elaborate on the techniques
we use to obtain labeled traffic (for our training set), we then address some special
properties of the data sets we use.

Collecting labeled data. To train our classifier, we require a collection of reli-
ably classified traffic flows2. We were provided such a database generated using
Endace [6] for real-time traffic recording and injecting, and labeled using the
Cisco SCE 2020 box (a professional tool for classifying and controlling network
traffic) coupled with manual inspection and verification. The database included
12 million flows recorded in 2009 on ISP network edge routers on two different
geographical locations.

As mentioned earlier, one of the major challenges in flow classification is
identifying encrypted flows. In the current study we used two different sources to
obtain encrypted flows. Our first database, which was recorded in 2009, contains
some encrypted flows of BitTorrent and Skype. Our second source was a manual
recording of a BitTorrent application taken in a controlled environment.

Special properties of the data set. Short flows, namely, flows with fewer than
15 payload packets, were removed from the dataset. The rational behind ig-
noring short flows is that we are using the statistical properties of the flow for
classification, and measuring such properties on short flows is unreliable. Hence
short flows require a different approach. Note that in many practical scenarios,
classifying short flows is of lower priority, as they account for an insignificant
2 The term flow refers to a single data flow connection between two hosts, defined

uniquely by its five-tuple (source IP address, source port, destination IP address,
destination port, protocol type TCP/UDP).
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fraction of the overall utilized bandwidth. We remark that flows with fewer than
15 packets account for 87% of the total flows but only 7% of the total bytes.
Using the algorithm refinement of an LRU cache for heavy hosts, we were able
to classify around fifty percent of the short flows as well, thus reducing the total
bytes that were actually ignored to approximately 3.5%.

Another property of the data set is that only applications with sufficiently
significant representation in the data traces were considered. Specifically, we
considered applications that had at least 4000 flow instances in our records. The
flow distribution was as follows: Http flows accounted for 59% of the flows, Bit-
Torrent for 17.1%, SMTP 13%, EDonkey for 8.5%, and POP3, Skype, Encrypted
BitTorrent, RTP and ICQ were each responsible for less than 1% of the flows.

3 The Classification Algorithm

We now specify our machine learning based classification algorithm. The host
initiating the flow is defined as the client and the host accepting the flow - as
the server. We consider only packets that contain payload.

Feature extraction. The use of classification algorithms based on machine learn-
ing requires us to parameterize the flow, turning each flow x into a vector of
features V̄x = 〈V1, . . . , Vd〉, where each coordinate Vi contains some statistical
parameter of the flow x (e.g., its packet mean size). Our study focused on real-
time classification, making it necessary to concentrate on features that are both
cheap to calculate and can be calculated in streaming mode (namely, inspecting
a single packet at a time and seeing each packet only once).

The feature extraction stage consists of two phases. In the first phase, we
consider basic traffic flow properties and collect the corresponding parameters
for each flow. The statistics are collected until we reach classification point (the
point in time upon we decide on the flow’s application type). All the experimental
results reported in this paper used an inspection length parameter of m = 100
packets, that is, all flows were classified upon seeing packet 100 (or earlier, if
the flow size was less than 100 packets). In the second phase, once the classifier
reaches classification point, it turns the statistics collected into a feature vector,
which is then used as the input for the classifier.

Feature Set. Our complete feature set included the following 17 different pa-
rameters: Client number of packets; Server number of packets; Total number of
packets; Client packet size expectation; Server packet size expectation; Client
average ‘packets per second’ rate; Server average ‘packet per second’ rate; Client
packet size variance; Server packet size variance; Total client bytes; Total server
bytes; Download to upload ratio; Server average number of bytes per bulk3;
Client average number of bytes for bulk; Server average number of packets for
bulk; Client average number of packets for bulk; and Transport protocol (TCP
or UDP). Note that in the asymmetric setting, some of our features take zero
value. Moreover, unidirectional flows exist in a symmetric routing as well, for
example during FTP download.
3 Contiguous parts of a flow, separated by idle periods of 1sec or more.
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The k-nearest neighbors algorithm. This is one of the simplest and most well-
known classification algorithms. It relies on the assumption that nearby data sets
have the same label with high probability. In its simplest form, the algorithm
classifies flows as follows. Upon receiving the feature vector V̄x of a new flow x,
the algorithm finds its k-nearest neighboring flows (in Euclidean distance) in the
training set. The flow x is then assigned the label associated with the majority
of those neighbors. In our experiments we used single neighbors (k = 1); we
discuss the use of multiple neighbors in the discussion section. Our preliminary
tests show a reasonably good classification rate of above 99% for k = 1.

The main problem with the k-nearest neighbors algorithm is that its time
complexity grows linearly with the training set size, which is problematic as the
training set may contain thousands of samples. Algorithm accuracy, learning
time and complexity are compared in [10]. To address this disadvantage, we
combined the k-nearest neighbors algorithm with the k-means algorithm.
The k-means algorithm. Another component in our classifier is the k-means al-
gorithm. In the training phase of k-means classification, the flows are divided
into k clusters (according to geometrical similarity of their corresponding vec-
tors). We then label each cluster based on the majority of flow types that have
been assigned to the cluster. Now, a new flow x is classified by finding the cluster
C whose center is nearest to x. The flow x is assigned with the label of C. The
algorithm’s accuracy is only 83%, but it requires considerably less computational
resources compared to the k-nearest neighbors algorithm.

An analysis of the distances between flows and their cluster centers4 reveals
that the distance distribution is Gaussian, so in each cluster most of the flows
are placed close the cluster center. This suggests that the flow’s nearest neighbor
is likely to fall in the same cluster with high probability, and only instances very
far from the cluster center can have their nearest neighbor placed in another
cluster. Our hybrid algorithm, presented next, relies on this fact. We start by
presenting the hybrid algorithm as a whole, and then discuss its properties.
Our hybrid algorithm. The core of our final classifier is a hybrid algorithm that
integrates the above two algorithms, thus combining the light-weight complexity
of the k-means algorithm, with the accuracy of the k-nearest neighbors algo-
rithm. The hybrid algorithm also features additional refinements in the k-means
clustering phase. As mentioned previously, our algorithm has two phases: the
training phase and the classification phase.

In the training phase, using the labeled data in our training set, we construct
a set of clusters in two stages. In the first stage, for each protocol (HTTP,
SKYPE, ...), we run the k-means algorithm on the flows in our training set that
are labeled as the protocol being considered. We note, that it is common that
a collection of flows all generated by the same protocol may have very diverse
behavior (and thus a diverse cluster structure). This follows by the fact that
certain protocols (such as HTTP) may behave in different manners depending on
the precise setting in which they are used (e.g., a HTTP flow carrying streaming
4 Omitted for space considerations; also noted independently in [2], although different

parameters were used.
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video might not look similar to one carrying text only). The result of our first
stage clustering, is a set of cluster centers (k centers for each protocol), where
each cluster is labeled naturally by the protocol in which it was constructed.

We now turn to the second stage of our clustering. After stage 1, clusters gen-
erated from different protocols might overlap, which might cause classification
errors. To overcome this, in our second clustering stage, we redistributes the
entire sample set of cluster centers defined in stage 1. Namely, using the same
cluster centers that were found in stage 1, each flow in our training set is asso-
ciated with the cluster center closest to it. Our two stage clustering is presented
as Algorithm 1 below. In what follows, Xi is the dataset of flows generated by
application i, Ci is the set of k cluster centers of application i, and C is the set
of centers after stage 1 of our clustering (k centers for each application).

Algorithm 1. Pseudo code for our two stage clustering
for-each Xi ∈ {X1, ..., Xl}

Ci = k-means(Xi, k)
C = C1

⋃
C2

⋃
....
⋃

Cl

X = X1

⋃
X2

⋃
....
⋃

Xl

for-each xi ∈ X
associate xi with the closest center from C.

This concludes the training phase of our algorithm. Now, for a given flow
x, the online classification is also done in two stages. First, we find the cluster
center c nearest to (the geometrical representation of) x. Note that this may
not be enough. Namely, recall that after the second stage of our training, the
clusters may not be homogeneous, and thus it is not clear how to label x given c.
For this reason, we use the second stage of our online classification, which runs
the k-nearest neighbors algorithm (for k = 1) over the members of the cluster
corresponding to c. The resulting Algorithm 2 is presented below.

Algorithm 2. Pseudo code for hybrid classification
j = argminj ‖x − cj‖, where cj ∈ C
nb = argminxi

‖xi − x‖, where xi is associated with cluster center cj

return label(nb)

Some remarks are in order. The design of our algorithm was guided by the ob-
servation that nearest neighbor classification is very accurate but slow in running
time, while k-means classification is fast but has relatively weak accuracy. This
naturally leads to the idea of combining the two algorithms. However, one may
first consider a seemingly more natural way of combining the two algorithms,
namely, for training take the entire training set and cluster it using the k means
algorithm (here, one would take a large k), and then perform the two-stage
classification suggested above. We have checked this simpler hybrid technique,
and indeed it yields very good results. Namely, on the one hand the accuracy
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remains almost identical to that of the k-nearest neighbor algorithm, while on
the other, the performance resembles that of the k-means algorithm. However,
we have noticed that our two-stage training technique improves the overall accu-
racy (without modifying the running time). This follows from the fact that in our
two-stage clustering, flows of the same protocol tend to be clustered together.
Thus in classification, using the nearest neighbor approach, we are able to ovoid
mislabelings. We also note that our two-stage training procedure is more efficient
in running time than the naive single stage training, despite the fact that we run
the k-means algorithm multiple times (once for each application type). This can
be explained by the use of a much smaller data set on each separate run.

Setting parameters and running time analysis. The complexity of the algorithm
highly depends on the clusters that were formed and on the distribution of
the inspected flows. In the worst case, the outcome could be an unbalanced
clustering, with few large clusters and many small ones. The hybrid algorithm
uses the nearest-neighbor procedure within the nearest cluster as the final stage
of classification, and therefore the complexity is directly affected by the cluster
size. It is not unreasonable to assume that the distribution of the inspected flows
correlates strongly with the cluster distribution, i.e., most of the flows will likely
be assigned to a large cluster. In this case we lose accuracy without achieving
the desired performance improvement.

We overcome this difficulty by setting a maximum size for each cluster. Then,
in the end of our training phase, we reduce the size of a large cluster by removing
random flows from it until reaching the desired size. We found it useful to bound
cluster sizes by 4n/c, where c is the number of clusters and n is the training
set size. Our experiments show that this restriction does not affect the overall
accuracy. On the other hand, the complexity of our classification can now be
bounded by 4n

c + c. Namely, it takes c comparisons to find the closest cluster
center, and then 4n

c comparisons to find the nearest neighbor in the cluster at
hand. We minimize the running time of 4n

c + c by setting c to 4
√

n.
The complexity of the hybrid algorithm is thus much better than that of the

nearest neighbors algorithm (which is n). In fact, this is just a worst-case upper
bound, and the actual experimental results are even better; as seen in Section
4, the practical complexity is almost as good as the complexity of k-means.
Leveraging Internet “heavy host” nature to save performance. Another useful
component of our hybrid classifier makes use of a simple and relatively small
cache in order to save more than 50% of the classification time and memory.
This component relies on the heavy host phenomenon. Heavy hosts are hosts that
consume considerably more network resources compared to other hosts. Both the
Web and P2P systems are known to have heavy hosts [1,8,9]. Inspecting P2P
and HTTP traffic usually reveals a small percentage of hosts that account for a
large percentage of the total flows and used bandwidth. In the Web, this behav-
ior is mainly driven by content popularity [8], as popular content is often held
at a small number of servers. In P2P systems, heavy hosts behavior is caused by
a different reason, namely, the distribution of P2P traffic, which is dominated by
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“free riders” (i.e., clients that do not contribute content and mainly consume)
and “benefactors” (i.e., clients that mainly contribute and do not consume) [1].

Our findings show that the top ranked host accounts for about 0.7% of the
total flows, and the same more or less goes for the second ranked host. The
third accounts for 0.5%, the tenth accounts for 0.3% and these figures continue
to drop sharply. All in all, we find that the 1000 top ranked hosts account for
more than 50% of the flows. This distribution suggests the use of an LRU cache
in our classification process. For each server stored in the LRU cache, the cache
keeps the host IP and port of the flow server as its key and the flow class as the
value. The classification works as follows. On receiving a new flow, first check
if its server’s host IP and port are stored in the LRU. If the information exists
in the cache, then classify the flow according to the LRU cache, else use the
classification algorithm and store the result in the LRU cache.

This classification caching scheme has a serious flaw: if the algorithm mis-
classifies one of our top ranked servers, then all flows destined to it would be
misclassified as well. To overcome this problem, we keep in the LRU cache the
last � classification results destined to a given server, for some parameter �. Once
we have � results concerning a given server in the LRU cache, we apply a ma-
jority vote to decide its class. This improves our accuracy, as the probability
of misclassification drops exponentially with �. Misclassification can be reduced
even further by adding checkpoints, and rerunning the classification algorithm
every ρ classifications, replacing the oldest classification in the last classification
list. This improves the overall accuracy of the LRU cache by an additional 1%-
2%. Our experiments indicate that using the LRU cache, more than half of the
flows are classified on the basis of their first packet, in O(1) time. Finally, we
remark that it is possible to use such LRU caching within any classifier to boost
both its performance and accuracy.

4 Results

In this section we present our evaluation methods and the experimental results
obtained by our algorithms. We also discuss a unique aspect of our work, namely,
the implementation and testing of our algorithm in line rate in the SCE 2020,
the network traffic controller box of Cisco.

Algorithm evaluation. We used two data sets in our validation process, one small
and the other much larger. For the small data set we extracted 4000 flows from
each application type (32k flows in total). On each test we partitioned the data
set into two: a training set consisting of 1000 randomly selected flows and a
validation set (to be classified) containing the rest of the flows. We repeated the
test several times and took the average result. For the large data set we used
the entire data set available, where again 1000 flows of each application type
were chosen randomly into the training set and the rest of the flows were taken
into the validation set (1.5M flows in total). The basic experiments were done
using the small data set, while some of the major experiments were repeated on
the large data set. The results were very consistent, and the main added value
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of the large data set turned out to be the ability to test one of our algorithm
refinements, namely, the use of the LRU cache.

Algorithm accuracy. Our results are presented in Table 1. BitTorrent (BT) and
Encrypted BitTorrent flows were grouped together, namely, classifying encrypted
BitTorrent into non-encrypted BitTorrent was counted as a success and the same
for the other way around. As mentioned, the k-means algorithm is somewhat less
accurate and achieves a modest average accuracy rate of 83%. The k-nearest
neighbors (k-NN) algorithm achieves the best results, with overall accuracy of
99.1%. Its accuracy on traditional applications is very close to 100%, but as men-
tioned, the algorithm is too expensive for realtime applications. The accuracy of
the hybrid algorithm is very similar to that of the k-nearest neighbors algorithm,
implying that very little accuracy is lost by combining the two approaches.

Table 1. Algorithm accuracy

Algorithm Http SMTP POP3 Skype EDonkey BT Encrypted BT RTP ICQ
k-means 0.78 0.93 0.93 0.85 0.80 0.75 0.74 0.93 0.71
k-NN 0.997 0.999 1.0 0.945 0.947 0.96 0.98 0.997 0.962
hybrid 0.997 0.999 0.998 0.94 0.94 0.963 0.974 0.992 0.954

One of the main purposes of this study was dealing with encrypted flows in re-
altime. Indeed, encrypted BitTorrent exhibited results similar to non-encrypted
BitTorrent. Also note that Skype (which is encrypted) exhibits an accuracy
similar to BitTorrent. These results look very promising and indicate that our
algorithm is insensitive to encryption and can classify encrypted traffic as eas-
ily as non-encrypted one. The experiments conducted using our own generated
records (recorded manually, see Section 2) yielded even a higher accuracy. We
note that this may be attributed in part to localization effects of the records.

Table 2. Complexity

Data Set Size k-means k-nearest neighbor hybrid
100 153 Sec 177 Sec 150 Sec
1000 153 Sec 900 Sec 151 Sec
9000 153 Sec 7300 Sec 172 Sec

Table 2 presents a comparison of the classification time. We ran the classifiers
on the same environment with the same data and similar configurations (cluster
numbers). The classification was done using the LRU cache refinement. The
results indicate that the k-nearest neighbors algorithm is by far the most time
consuming. The time requirements of our hybrid algorithm are almost as low as
those of the k-means algorithm, which is the most efficient.
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Realtime evaluation. We tested the feasibility of our algorithm in a realtime
embedded environment, by implementing the k-nearest neighbors and hybrid
algorithms on the SCE2020 platform, one of Cisco’s network traffic controllers.
More specifically, the algorithms were developed and implemented as a stand-
alone component (in C++, on a PPC dual core) on SCE 2020. We tested the
accuracy of the algorithms by injecting the records (flows) using the Endace tool
[6] and comparing the classification results.

The Endace tool injected the traffic in line rate as it was recorded, while the
SCE2020 was configured to send a report on each classified flow. The report
contained the flow five-tuple and the assigned application. The accuracy results
were similar to our off-line tests, as expected. We offer the following conclusions.
Technical Limitations. The algorithm employs basic mathematical calculations,
mostly simple additions and multiplications. Implementing such an algorithm
may be more challenging on a platform that does not support floating point
primitives, although this difficulty is of course solvable in software.
Memory. The algorithm used 76 bytes per flow on the statistics collection phase
and one Megabyte for the training set. Taking into account a concurrency level
of a few thousand flows (in the classification phase) and the use of an LRU table,
the classifier uses only 4-5Mb. This is a very low figure (for core classifiers) and
fits our realtime low memory usage requirement.
Performance. Running the algorithm did not appear to exert any stress on the
CPU. This is not surprising considering, by comparison, the amount of work
required by a DPI classifier. However, one must keep in mind that the SCE2020
box runs many tasks besides the classification, and hence it is expected of the
classifier not to load the CPUs. This should be tested further.

Summarizing, there appear to be no technical, memory or performance limita-
tions in implementing our algorithm in a real-world professional classifier. The
algorithm has some practical limitations, such as a somewhat high average clas-
sification point. For further discussion of usability issues see Sect. 5.

5 Discussion

Conclusions and directions for future study. This paper presents a statistical
algorithm enhancing and complementing traditional classification methods. Its
strength is in points where traditional methods are relatively weak, most impor-
tantly in handling encryption, but also in asymmetric routing and packet dis-
ordering. The proposed algorithm is shown to be fast and accurate, and has no
limitations to implementing it in professional realtime embedded devices. Hence
it can be implemented as a complementary method for dealing with encrypted
and other problematic flows.
Misclassification. Flow classification is usually employed by traffic controllers to
enforce some policy on the traffic flow. The result of imposing a wrong policy
may significantly affect the user experience. Thus, in some cases it is better to
classify flow as “unknown” than to misclassify it. We propose to label traffic
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as unknown based on the notion of homogeneous neighborhoods. Namely, define
the flow neighborhood (k-nearest neighbors, for k > 1) as homogeneous if all
neighbors have the same label. Then classify a given flow as follows. In case its
neighborhood is homogeneous, give it the neighborhood label; otherwise, mark it
as “unknown”. Our results show that this approach reduces misclassification lev-
els but results in many more “unknown” flows. This tradeoff poses an interesting
direction for further investigation.

Combining DPI and statistical approaches. Our algorithm has several advan-
tages over traditional methods but still, the fastest and most accurate way to
classify simple HTTP traffic is by using DPI, relying on a simple string signa-
ture. Yet, our algorithm can be used in situations where traditional methods fail.
Indeed, the strengths of the statistical approach correspond to the weaknesses
of DPI. For example, flows that were not identified by the traditional classifier
(such as encrypted flows), and were labeled as ‘unknown’, may now be clas-
sified correctly using our algorithm, with little additional computational cost.
Combining DPI and our proposed algorithm in such a way also allows a quick
and efficient way to cope with new applications (one of the major drawbacks of
DPI classification). Specifically, until a DPI signature is generated for the new
application, our algorithm may give the customer a quick solution.
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Abstract. In this paper, we consider wireless sensor networks where
nodes have random and changeable mobility patterns. We study the
problem where a particular node, called the base station, collects the
data generated by the sensors/nodes. The nodes deliver the data to
the base station at the time when they are close enough to the base
station to ensure a direct transmission. While the nodes are too far to
transmit to the base station, they store the data in a limited capacity
internal FIFO queue. In the case where the queue is full, the new gener-
ated data are inserted in the queue and the oldest data are lost. In order
to ensure, with a high probability, that the base station receives the gen-
erated data, the nodes disseminate the generated data in the network.
The dissemination process consists in transmitting the data to others
mobile nodes which are close enough to ensure a direct transmission.
The nodes must control the dissemination process. Indeed, if the nodes
send systematically the data to the neighbouring nodes then, the FIFO
queues are going to be quickly saturated and the data lost (the dissem-
ination process duplicate the generated data). On the other hand if the
nodes do not disseminate the data, the data queued first are prone to be
systematically lost if the capacity of the queue is too limited.

We propose a protocol based on the estimate of the delivery proba-
bilities of the data. Each node estimates the delivery probabilities of all
the queued data. These probabilities depend on the position of the data
in the queue and, on the dissemination process. The lower is the delivery
probability the more the nodes disseminate the data to increase the de-
livery guarantee to the base station. In that way, all the messages get a
high probability to be delivered to the base station (higher that some pre-
defined threshold). Experimental validations of the protocol show that
the protocol performs well and outperforms an existing protocol.

Keywords: Sensor networks, Mobility, Guaranteed delivery, Data
propagation.

1 Introduction

Wireless sensor networks (WSN) are composed of a large number of sensor nodes
with sensing, processing and wireless communication capabilities. Usually, the
nodes are spatially distributed in a given region that they monitor. They use their
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sensing capabilities to monitor the environment, collecting data like temperature,
pressure, vibration, sound, etc. The sensed data (that the nodes generate) have
to be delivered to a particular node called the base station.

Usually the nodes are battery powered and it is crucial to limit the energy
consumption due to the transmissions in order to increase the operability time
of the network (network lifetime). In some settings, the nodes are able to trans-
mit the messages directly to the base station by using wireless transmissions.
However, it is known that the energy required to transmit data over distance d
is proportional dα where α is usually in the interval [2, 4] (see [13]). Hence, long-
range transmissions are energy-costly. A way to reduce the energy consumption
is to use intermediate nodes to convey the data to the base station with multi-
hops. There is a large amount of research on energy aware data gathering in
wireless sensor networks with static nodes, see for instance [1,4,5,10,7,14] and
the references therein.

In this paper, we consider the case where the nodes are mobile. Many of the
routing protocols for wireless sensor networks with static nodes use information
about the network topology. One of the first works on data gathering with mobile
WSN is presented in [8] that considers the case where the nodes have a reduced
mobility pattern and the base station is mobile. The protocol presented in [15] is
similar to the one we present in the present paper: Each node locally calculates
a delivery probability and decides whether the data are forwarded. However, it
is hard to relate the computed estimate with ours and then to proceed to fair
comparison at this stage. In [11] the authors present a data gathering protocol for
networks where the position of each node is a known function of time. Finally, in
[9] the authors present a protocol for networks with randomly moving nodes with
different mobility patterns. The nodes are able to change their mobility patterns
during the time. The authors define a mobility level index that captures the
node speed, dislocation and mobility changes. Based on this index, the authors
suggest to evaluate the probability that a given node will deliver data to the
base station.

The main idea of the algorithm presented in this paper is to transmit (diffuse)
to many nodes a data m generated by the sensor nodes, in such a way that the
probability that at least one of the nodes will get close enough to the base station
and delivers the data is larger than a predefined threshold. We consider that the
nodes have a limited memory and after getting their memory full, they need to
drop data for saving newly generated ones. The nodes manage the memory as
a FIFO queue. The main advantage of our algorithm is that the nodes do not
use information about their positions; they also do not need to know where the
base station is located. The nodes take the decisions whether to forward the data
to another node or not by using only the count of the previously (successfully)
delivered and dropped data. We proceed to the simulation of the algorithm and,
we show the effectiveness of our protocol. We also compare the performance
with the algorithm presented in [9]. Both algorithms consider that the nodes
are randomly moving with varying mobility patterns and with limited memory.
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We compare the performance of both algorithms in terms of data delivery rate,
average data delivery delay and average number of sent messages per node.

The rest of the paper is organized as follows. We describe the proposed algo-
rithm in Section 2. The theoretical validation is described in Section 3 while we
present the experimental validation in Section 4.

2 Description of the Algorithm

We consider that the memory capacity of the nodes is limited. The nodes convey
data to the base station coming from two sources. The first type of data, called
generated data, are the data that the nodes acquire with their sensing devices.
The second type of data, called received data, are the data that are transmitted
by others nodes, i.e. disseminated. Thus, after spending some time away from
the base station the generated and received data might saturate the memory of
some nodes. In this case, the nodes no longer accept received data. However, the
node inserts the generated data in the FIFO queue and the data in the head of
the queue are lost.

Let us assume that each node i knows the probability pi(m) that the data
m will be successfully delivered to the base station. We point out that this
probability depends on the position in the queue where the data are first inserted.
Because the position of the data might change with time, we assume that this
information is attached to the data m. Then, qi(m) = 1−pi(m) is the probability
that the node i will not deliver the data m to the base station. If the data m in
some way appear on nodes j1, . . . , jk, the probability that at least one of those
nodes will deliver m to the base station is

Pm = 1−
k∏

i=1

qji(m). (1)

We call (1) the delivery probability of data m, and consequently

Qm =
k∏

i=1

qji(m), (2)

is the probability that the data m are not delivered.
The main goal of our algorithm is to diffuse the data in the network in such

a way that the delivery probability Pm satisfies Pm ≥ d for some predefined
threshold d (for example we put d = 0.993 in our simulations). Or equivalently,
Qm ≤ 1− d.

The discussion above shows that if we are able to compute the delivery prob-
ability pi(m), then the diffusion process ensures that the delivery probability is
larger than d.

The nodes manage the incoming data (generated or transmitted) in a FIFO
queue. The new accepted data are stored at the end of the queue. Once the
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memory is full, a node drops the data from the beginning of the queue to make
space for the new generated ones. In this case, no new forthcoming received
data are accepted. Data m have a supplementary field where the probability Qm

that the data will not be delivered by the nodes to the base station is stored.
Newly generated data before being saved to the node memory have Qm = 1.
When node i accepts (generated or received from other nodes) data and stores
it in the queue, the probability is updated with Qm · qi(m) to take into account
the probability that the data will be delivered. Although it is not explicitly
denoted, the probability qi(m) depends on the index where the data are inserted
in the queue.

In a second phase, the node i proceeds to the diffusion of the data in the
network to ensure that the probability of delivery is large enough. If the new
probability that m is not delivered satisfies Qm ≥ 1−d and the node encounters
another node j then it transmits the data to j. When node j accepts the data, i
marks the data as diffused and stops the diffusion process. Node j updates the
probability Qm by Qm · qj(m) and stores the data in its queue. Node j diffuses
the data further if Qm ≥ 1− d.

From the point of view of the node j that is requested to convey the data,
the diffusion process consists in: 1. j refuses the data if its queue is full 2. else,
accepts the data, updates the probability of delivery and diffuses the data further
if Qm ≥ 1− d.

Finally when a node meets the base station it forwards all the data from
its queue. The node does not remove the delivered data from the queue but,
simply keeps them to prevent the multiple acceptance of already delivered data.
However, the node inserts new data in the queue as if it was empty by ignoring
the already delivered data.

The algorithm that we present in the preceding section uses the probabilities
pi(m) that data m will be delivered to the base station. These probabilities
depend on many parameters such as: The index where the data are inserted in
the queue, the size of the queue, the mobility pattern and the size of the area
covered by the mobile nodes. In order to ensure the flexibility and robustness of
the protocol we suggest that the nodes estimate themselves these probabilities.
Basically, we propose that the nodes use two counters C1[k] and C2[k] per queue’s
entry k. The counter C1[k] counts the number of data inserted in position k that
are delivered by the node to the base station (the value of these counters depend
with the time t but we do not introduce this dependency in order to simplify
the notation). The counter C2[k] counts the total number of data inserted in the
queue at position k. We then suggest to estimate the probability of delivery with
the estimation

pi(m) ≈ C1[k]
C2[k]

. (3)

On the left side of Figure 1, we can observe the time the nodes needs to estimate
a suitable delivery probability. We observe that the nodes improve the estimates
in order to provide a nearly 100% data delivery rate.
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Although the purpose of this paper is to provide evidence that the protocol
is suitable and a full theoretical analysis of the performance is beyond the scope
of this paper, we provide some theoretical evidence here.

3 Theoretical Analysis of the Performance of the
Algorithm

We first notice that the mobility pattern of a node is independent of the data
generated and received. The random mobility patterns that we consider are pro-
posed in [9] in a similar setting that ours. In [3] the authors classify such random
mobility patterns as Random Direction Mobility Patterns since the nodes choose
a direction and a travel time repetitively. The aim of such mobility patterns is
to make the distribution of the nodes as even as possible in the covered area
as well as to ensure that the encounters between mobile nodes are as constant
as possible. Indeed, the mean number of neighboring nodes is rather constant,
compared, for instance, to the Random Waypoint Mobility Model, see [3].

We use this property and assume that for a given node the expected number
of received data on a time span T is μT . Alternatively, we may define μ =
limt→∞ E(#received data in [0, t])/t, and prove that the limit exists by using
the stationarity of the nodes’ motion. In particular it is independent of the
position of the nodes.

The expected number of generated data is also assumed to evolve linearly with
time and we denote λT this number. This corresponds to the situation where
the nodes collect data repetitively in a deterministic way or in a random but
stationary way.

In the following, we discuss how to prove that the estimates (3) converge (see
equation (5)). In order to ensure the convergence, it is necessary that that the
number of data generated and received by a node, denoted Mn, during the travel
time does not depend on the time (time homogeneous) [2]. Although this has to be
proved formally, the discussion above shows that this is a reasonable assumption.

Instead of considering the probability pi(m) that a node i delivers the data m,
we consider an averaged value p. This is equivalent to consider the complete set
of data and compute the average probability of delivery. Equivalently, we replace
the value pi(m) by an average value p given that the nodes’ encounters as well as
the index where the data are queued are random. Given the probability p, data
m are diffused an expected number α times, ensuring that (1 − p)α+1 < 1 − d
(α = α(p) = log(1−d)/log(1−p)−1). Notice that we implicitly assume that the
probabilities of delivery are independent of the nodes and the index of the queue.

Each time a node transmits the data to the base station, the node updates
the probability of delivery using (3). We denote by pn the n-th estimate. Let us
denote by Nn the total number of data received by the node at the time step
n. Nn is the value of C2 in (3) where we removed the dependencies in k and in
time. By the definition of pn (pn = C1/C2), C1 is then given by Nnpn. Between
the time steps n and n + 1 the node travels during a time T and has to convey
Mn generated and received data. Then, the new estimate pn+1 is given by
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pn+1 =
1

Nn + Mn

(
Nnpn + (M ∧Mn)

)
1.

The value Mn is the total number of data collected by the node between the
time steps n and n + 1, Nnpn is the expected total number of data delivered
at time step n and M ∧Mn is the total number of data delivered to the base
station at the time step n + 1.

After some algebraic manipulations using that Nn →∞ we get that

pn+1 ≈ pn − 1
Nn

(
Mnpn − (M ∧Mn)

)
. (4)

This last equation shows how the estimate of p = limn→∞ pn evolves. Consider
first that the queue is never full, i.e. M∧Mn = Mn, ∀n. In this case, pn increases
up to the time when pn = 1. The behaviour is correct since no data are lost and
then, the probability of delivery is 1. On the other case, if some data are lost, i.e.
M ∧Mn = M , pn might converge towards the value ensuring that pn+1 = pn.
One can prove that under some mild assumptions, we have

p = lim
n→∞ pn =

E
(
M ∧Mn

)
E
(
Mn

) . (5)

This last equation shows that the estimates pn are converging to the right limit
since the right side of the equation is the fraction of data that are delivered to
the total number of data received and generated by the node.

The rate of convergence of the estimate (3) is difficult to compute. However,
we observe on the left of Figure 1 that after a simulation period of 50′000 seconds
the estimate are good enough to provide nearly the maximum delivery guarantee.
In the conditions of the simulations, this is the time corresponding to going back
to the base station 25 times in average.

With the definition of the parameters λ and α provided in the beginning of
the section, we obtain that E(Mn) = T (λ + μ), with T is the expected travel
time. Notice that we depart from our implementation of the algorithm since the
expression for E(Mn) given here counts the received data even if the queue is full.
Using (5), we observe that once the convergence occurs, the nodes can estimate
the value of T by using only the statistics related to the queue occupation, λ
and μ with

T =
E
(
M ∧Mn

)
p(λ + μ)

. (6)

Notice that we also expect that λ+μ = λ(1+α) since the expected total number
of data diffused in the network is αλ, these data have to be carried by the nodes
and we assume that the diffusion process distribute the data uniformly among
the nodes.

The analysis we have proposed is likely to be rooted in some formal framework.
Indeed, we postulate the existence of the constant λ, μ and, we conjecture that
1 a ∧ b is the minimum of a and b, recall that M is the capacity of the queue.
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this existence can be asserted by using a renewal argument [6]. The renewal
theory framework is natural in our setting, since each time a node gets by the
base station corresponds to a renewal. In our short investigations, we assume
that the estimate pn is more or less similar for all nodes since we define α as a
function of pn. However, from the numerical experiments that we conducted, it
appears that the probability of delivery depends on the mobility pattern. The
’mean-field’ analysis that we propose here is prone to be more accurate in the
case where the mobility patterns of all the nodes are the same. On the other
case, the value we obtain is an averaged value. Moreover, the analysis of the
convergence of the estimate (3) can be conducted with the ODE method [12,2].

We point out that the estimate (6) counts the data received after the queue is
full. In our implementation of the algorithm we do not accept data from others
nodes while the queue is full, only generated data are inserted in the queue.

In the next section we validate experimentally our protocol where nodes use
(3) for the estimation of the delivery probability.

4 Experimental Validations

In Figure 1 we present the time evolution of some parameters. Under our simula-
tion conditions the average travel time is about 2000 seconds (not very dependent
on the simple or complex mobility pattern). The figure on the left shows how the
data delivery rate evolves. We observe that after a period of 50′000 seconds, the
behaviour stabilizes and the network delivers the data with the required guar-
antees. In the simulation conditions, the period of 50′000 seconds corresponds
to going back an average of 25 times. This means that by applying formula (3)
25 times, we obtain some estimates that are sufficiently accurate to ensure the
delivery guarantees. The figure on the center shows the average delay. We ob-
serve that the delay is much lower, about 1000 seconds. This means that the
diffusion process is really participating efficiently to convey the data to the base
station. On the right of Figure 1 we display the average total number of data

Fig. 1. Time evolution of the algorithm performance with the complex mobility pattern
and 20, 80, 300 and 400 nodes. From left to right: The data delivery probability, the
average message delay and the average number of messages sent per node. Axis X is a
time scale in 1000 seconds.
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sent by node. We first observe that this increases linearly with time. This sup-
ports our assumption that the network dynamics is stationary. Moreover, the
40′000 transmissions are due to an average of 10′000 generated data and the
diffusion of an average of 15′000 data. Because the average travel time is about
2000 seconds, each node delivers about 125 data to the base station. This shows
that on average the network can support the load of conveying the generated
data and, that the network is also able to adapt to the period where more data
are produced than in average. We suspect that the conditions of the simulations
are close to the limit, in the sense that increasing the rate of generated data
might lead to a decrease in the data delivery rate.

We proceed to a set of simulations with different network configurations in
order to evaluate the performance of the protocol that we propose in this arti-
cle. We also proceed to a set of simulations with the same set parameters to the
mobility level based protocol (local adapt with random neighbor selection) pre-
sented in [9] in order to compare the performance. Actually, both protocols are
comparable since they consider nodes with random motions and limited mem-
ories. To simplify the presentation, we use the well defined mobility patterns
introduced in [9]. The four simple mobility patterns defined are Working Mobil-
ity, Walking Mobility, Biking Mobility and Vehicular Mobility. These mobility
patterns are similar to the motion of a human who is working in his office, walk-
ing outside, biking or driving. Figure 3 presents some traces of the motions of
the above-defined simple mobility patterns. For each mobility pattern, a node
selects a direction and a speed and moves a random time in the direction at

Fig. 2. Network connectivity at random time. Left to right 20 nodes, 80 nodes, 300
nodes, 400 nodes.

Fig. 3. Motions of simple mobility patterns. Left to right Working Mobility, Walking
Mobility, Biking Mobility, Vehicular Mobility.
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Fig. 4. Transition graphs of complex mobility patterns used in our simulations (in
Mstop state node has no motion). On the left C1 Mobility on the right C2 Mobility.

Fig. 5. Transition graphs of complex mobility patterns used in our simulations (in
Mstop state node has no motion). On the left C3 Mobility on the right C4 Mobility.

the given speed. Basically, the speeds range makes the difference between the
various mobility patterns. Using these simple mobility patterns, we define more
complex ones where a node changes its mobility pattern by passing from one
pattern to another one with some probability. These complex mobility patterns
are easy to present with the transition graphs on the Figures 4 and 5. Each
vertex of a graph corresponds to a simple mobility pattern, and two vertices are
connected by a directed edge, on the top of which is written the probability of
passing from on pattern to the other one. C1 − C4 complex mobility patterns,
presented on Figures 4 and 5 are similar to the ones in [9] and detailed infor-
mation about the mobility patterns can be found therein. In our simulations all
the nodes have the same size of memory, which is enough to accommodate 128
messages, the transmission range of nodes and base station is 70m and network
is a 1000 × 1000m2 square. Also, each node in average generates one message
per 40 seconds (0.025msg/second).

We present two sets simulations. In the first, we assign each simple mobility
pattern to 1/4 of total number of nodes in network. In the second round, we use
the complex mobility patterns in the same portions. Every round contains four
simulations with different numbers of nodes in networks 20, 80, 300 and 400, in
total eight different simulations. In Figure 2 we show the network connectivity
at random time for different numbers of nodes. For each of eight simulations, we
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Fig. 6. Data delivery rate comparison. On the left simple mobility on the right complex
mobility.

simulate the protocol for 400.000 seconds (111 hours) and, we chose the required
delivery rate d = 0.993 and use (3) for the estimation of the delivery probability.

We compare the performance of our algorithm with the one presented in [9].
We consider three criteria. The first is the data delivery rate, which is the per-
cent of delivered data to the base station. The second is average data delivery
delay which is the average time the data are delivered to base station after being
generated. And as the main part of energy goes for data transmissions, we com-
pare the average number of sent data per node which will roughly represent the
energy consumption of the protocols. In Figure 6 the delivery rate comparison
of protocols are presented, respectively for networks where nodes have simple
and complex mobility patterns. We observe that both protocols have stable de-
livery rates, according to number of nodes in network. And in all eight cases our
protocol ensures the requested delivery rates. The comparisons of the average
data delivery delay of both protocols are presented in Figure 7. Here we observe
that as the number of nodes composing the network increases, the data delivery
delay tends to a constant. The delivery delay decreases as the number of nodes
increases. The algorithm proposed in [9] behaves similarly and the delivery de-
lay is shorter for this algorithm than for ours. It is the only criterion for which
that happens.

Figure 8 presents the protocol comparisons in terms of average sent data
per node, we observe that the success of mobility level based protocol in dense
networks in terms of average message delivery delay is due to the high number
of sent data (replication). However, this requires a larger amount of energy. We
observe that our algorithm ensures that the number of data sent does not increase
as the number of nodes becomes large. Indeed, we observe that the number of
data sent tends to a constant. We observe that if the number of nodes in the
network is not large enough, the diffusion process does not manage to provide
the guaranteed delivery of data. This is due to the fact that the nodes do not
encounter others nodes. However, our experimental validations show that with 20
nodes, see left of Figure 2, we do not manage to ensure that Qm < 1−d. However,
the performance are still valuable since the algorithm ensures 97.84% and 96.82%
of data delivery for respectively simple and complex mobility patterns. Figure 8
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Fig. 7. Average data delivery delay comparison. On the left simple mobility on the
right complex mobility.

Fig. 8. Average sent data per node comparison. On the left simple mobility on the
right complex mobility.

shows that with 20 nodes the number of data sent is small and, this confirms
that the nodes’ encounters are not sufficiently frequent. This has also an impact
on the data delivery delay that is larger than for networks with more nodes.
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Abstract. We address the problem of implementing data structures re-
silient to memory faults which may arbitrarily corrupt memory locations.
In this framework, we focus on the implementation of dictionaries, and
perform a thorough experimental study using a testbed that we designed
for this purpose. Our main discovery is that the best-known (asymptot-
ically optimal) resilient data structures have very large space overheads.
More precisely, most of the space used by these data structures is not due
to key storage. This might not be acceptable in practice since resilient
data structures are meant for applications where a huge amount of data
(often of the order of terabytes) has to be stored. Exploiting techniques
developed in the context of resilient (static) sorting and searching, in
combination with some new ideas, we designed and engineered an alter-
native implementation which, while still guaranteeing optimal asymp-
totic time and space bounds, performs much better in terms of memory
without compromising the time efficiency.

1 Introduction

Memories in modern computing platforms are not always fully reliable, and
sometimes the content of a memory word may be corrupted. This may depend
on manufacturing defects, power failures, or environmental conditions such as
cosmic radiation and alpha particles [14,19]. This type of phenomena can seri-
ously affect the computation, especially when the amount of data to be processed
is huge and the storage devices are inexpensive. This is for example the case for
Web search engines, that store and process terabytes of dynamic data sets, in-
cluding inverted indices which have to be maintained sorted for fast document
access. For such large data structures, even a small failure probability can result
in bit flips in the index, which may become responsible of erroneous answers to
keyword searches [15,16].

The classical way to deal with memory faults is via error detection and cor-
rection mechanisms, such as redundancy, Hamming codes, etc. These traditional
approaches imply non-negligible costs in terms of time and money, and thus
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they are not always adopted in large-scale clusters of PCs. Hence, it makes sense
to try to solve the problem at the application level, i.e., to design algorithms
and data structures which are resilient to memory faults. Dealing with unreli-
able information has been addressed in the algorithmic community in a variety
of different settings, including the liar model [1,4,8,17,20], fault-tolerant sorting
networks [2,18,21], resiliency of pointer-based data structures [3], and parallel
models of computation with faulty memories [7].

The Faulty-RAM Model. In this paper we focus on the faulty-RAM model
introduced in [12,13]1. In this model, an adaptive adversary can corrupt any
memory word, at any time, by overwriting its value. Corrupted values cannot
be (directly) distinguished from correct ones. An upper bound δ is given on the
total number of memory faults that can occur throughout the execution of an
algorithm or during the lifetime of a data structure. However, we can exploit
O(1) safe memory words, whose content never gets corrupted. The adaptive
adversary knows the algorithm and the state of safe and unsafe memory at
any time. Furthermore, it can react to the actions of the algorithm. In other
terms, corruptions do not need to be scheduled a priori (this is relevant for
randomized algorithms). However, the adversary cannot access the sequence of
random bits used by a randomized algorithm. Furthermore, read operations are
considered atomic, i.e., the adversary cannot corrupt a memory word right after
the algorithm starts to read it.

A natural approach to the design of algorithms and data structures in the
faulty-RAM model is data replication. Informally, a resilient variable consists of
(2δ + 1) copies x1, x2,. . ., x2δ+1 of a standard variable. The value of a resilient
variable is given by the majority of its copies (which can be computed in lin-
ear time and constant space [5]). Observe that the value of x is reliable, since
the adversary cannot corrupt the majority of its copies. The approach above
induces a Θ(δ) multiplicative overhead in terms of both space and running time.
For example, a trivially-resilient implementation of a standard dictionary based
on AVL trees would require O(δn) space and O(δ log n) time for each search,
insert and delete operation. Thus, it can tolerate only O(1) memory faults
while maintaining optimal time and space asymptotic bounds.

This type of overhead seems unavoidable if one wishes to operate correctly
in the faulty-RAM model. For example, with less than 2δ + 1 copies of a key,
we cannot avoid that its correct value gets lost. Since a Θ(δ) multiplicative
overhead could be unacceptable in several applications even for small values of
δ, the next natural thing to do is relaxing the notion of correctness. We say
that an algorithm or data structure is resilient to memory faults if, despite the
corruption of some memory location during its lifetime, it is nevertheless able to
operate correctly (at least) on the set of uncorrupted values.

In [10,13], the resilient sorting problem is considered. Here, we are given a
set K of n keys. A key is a (possibly negative) real value. We call a key faithful if it

1 Due to space constraints, we refer to [12,13] for a detailed description of the model.
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is never corrupted, and faulty otherwise. The problem is to compute a faithfully
sorted permutation of K, that is a permutation of K such that the subsequence
induced by the faithful keys is sorted. This is the best one can hope for, since
the adversary can corrupt a key at the very end of the algorithm execution,
thus making faulty keys occupy wrong positions. This problem can be trivially
solved in O(δ n log n) time. In [13], an O(n log n+δ3) time algorithm is described
together with a Ω(n log n + δ2) lower bound. A sorting algorithm ResSort with
optimal O(n log n+δ2) running time is later presented in [10]. In the special case
of polynomially-bounded integer keys, an improved running time of O(n + δ2)
can be achieved [10]. In [9] an experimental study of resilient sorting algorithms
is presented. The experiments show that a careful algorithmic design can have
a great impact on the performance and reliability achievable in practice.

The resilient searching problem is studied in [10,13]. Here we are given a
faithfully sorted sequence K of n keys, and a search key κ. The problem is to
return a key (faulty or faithful) of value κ, if K contains a faithful key of that
value. If there is no faithful key equal to κ, one can either return no or return a
(faulty) key equal to κ. Note that, also in this case, this is the best possible: the
adversary may indeed introduce a corrupted key equal to κ at the very beginning
of the algorithm, such that this corrupted key cannot be distinguished from a
faithful one. Hence, the algorithm might return that corrupted key both when
there is a faithful key of value κ (rather than returning the faithful key), and
when such faithful key does not exist (rather than answering no). There is a
trivial algorithm which solves this problem in O(δ log n) time. A lower bound of
Ω(log n+ δ) is described in [13] for deterministic algorithms, and later extended
to randomized algorithms in [10]. A O(log n+δ2) deterministic algorithm is given
in [13]. An optimal O(log n+ δ) randomized algorithm ResSearch is provided in
[10]. An optimal O(log n + δ) deterministic algorithm is eventually given in [6].
For both resilient sorting and searching, the space usage is O(n).

Resilient Dictionaries. More recently, the problem of implementing resilient
data structures has been addressed. A resilient dictionary is a dictionary where
the insert and delete operations are defined as usual, while the search op-
eration must be resilient as described before. In [11], Finocchi et al. present
a resilient dictionary using O(log n + δ2) amortized time per operation. In [6],
Brodal et al. present a simple randomized algorithm Rand achieving optimal
O(log n + δ) time per operation. Using an alternative, more sophisticated ap-
proach, they also obtain a deterministic resilient dictionary Det with the same
asymptotic performances. For all the mentioned implementations, the space us-
age is O(n), which is optimal. However, as we will see, the constant hidden in
the latter bound is not negligible in practice.

We next give some more details about Rand, since it will be at the heart of our
improved implementation RandMem, which is described in Section 3. The basic
idea is maintaining a dynamically evolving set of intervals spanning (−∞, +∞),
together with the corresponding keys. Intervals are merged and split so that
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at any time each interval contains Θ(δ) keys. More precisely, each interval is
implemented as a buffer of size 2δ, which contains between δ/2 and 2δ keys at
any time. Intervals are stored in a classical AVL tree, where standard variables
(pointers, interval boundaries, etc.) are replaced by resilient variables. The num-
ber of intervals is at most 1 + n

δ/2 . For each interval, we store a buffer of size
2δ plus a constant number of resilient variables, each one of size 2δ + 1. Hence,
the overall space usage is O(n + δ). A search is performed in the standard way,
where, instead of reading the 2δ + 1 copies of each relevant variable, the algo-
rithm only reads one of those copies uniformly at random. At the end of the
search, the algorithm reads reliably (in Θ(δ) time) the boundaries of the final
interval, in order to check whether they include the searched key. If not, the pro-
cess is started from scratch. Otherwise, the desired key is searched for by linearly
scanning the buffer associated to the interval considered. Operations insert and
delete are performed analogously. In particular, the insertion of a key already
present in the dictionary is forbidden (though duplicated keys might be inserted
by the adversary). When, after one insert, one interval contains 2δ keys, it is
split in two halves. When, after one delete, one interval contains δ/2 keys, it
is merged with a boundary interval. If the resulting interval contains more than
3δ/4 keys, it is split in two halves. The modifications of the interval set above
involve a modification of the search tree of cost O(δ log n + δ2). However, this
cost is amortized over sequences of Ω(δ) insert and delete operations. We
remark that, for δ > n, it is sufficient to maintain all the keys as an unsorted
sequence into a buffer of size O(n). In this case, each operation can be trivially
implemented in O(n) = O(δ) time. Hence, the space usage can be reduced to
O(n) without increasing the running time.

The Experimental Framework. In this paper we focus our attention on
resilient dictionaries. We perform an experimental evaluation of the optimal
dictionaries Det and Rand, together with an improved implementation RandMem
developed by ourselves. In order to evaluate the drawbacks and benefits of re-
silient implementations, we also consider a standard (non-resilient) implementa-
tion of a search tree. In particular, we implemented an AVL binary search tree
called Avl, in order to make a more direct comparison with Rand (which builds
upon the same data structure).

In order to test different data structures, we use the same testbed to simulate
the faulty-RAM model as in [9]2. Shortly, we model the data structure and the
adversary as two separate parallel threads. The adversary thread is responsible
for injecting α ≤ δ faults during the lifetime of the data structure. In order
to inject one fault, the adversary selects one unsafe memory word (among the
ones used by the data structure) uniformly at random, and overwrites it with
a random value. In order to inject α faults, the adversary samples α operations
uniformly at random over a given sequence of operations, and injects exactly one
random fault during each sampled operation. We performed experiments both

2 The reader is referred to [9] for a more detail description of the testbed.
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on random inputs and on real-world inputs3. In random inputs, the instances
consist of a sequence of random operations. A random insert simply inserts a
random value in a given range [�, r] (the actual range is not really relevant). In
a random search we search for a key κ, where, with probability 1/2, κ is chosen
uniformly at random among the keys currently in the dictionary, and otherwise
is set to a random value in [�, r]. In a random delete, we delete a random key
κ, where κ is generated as in the case of the random search. We also performed
experiments with non-random instances, involving the set of words in one English
dictionary and a few English books.

2 Evaluation of Existing Dictionaries

In this section we report the results of our experimental study on the asymptoti-
cally optimal resilient dictionaries Det and Rand, plus a standard (non-resilient)
implementation Avl of an AVL binary search tree. All the results reported here
are averaged over 20 (random) input instances. We observed that those results
do not change substantially by considering a larger number of instances. For
each experiment discussed here, we let δ = 2i for i = 2, 3, . . . , 10. This range
of values of δ includes both cases where the running time is dominated by the
O(log n) term and cases where the O(δ) term dominates.

The Importance of Being Resilient. First of all, we wish to test how much
the lack of resiliency affects the accuracy of a non-resilient dictionary. To that
aim, we measured the fraction of search operations which fail to provide a
correct answer in Avl (which is not resilient), for increasing values of δ. Since
Avl is affected only by the actual number of faults, in all the experiments we
assumed α = δ.

We observed experimentally that even a few memory faults make Avl crash
very soon, due to corrupted pointers. In order to make a more meaningful test,
we implemented a variant of Avl which halts the current operation without
crashing when that operation tries to follow a corrupted pointer. Even with this
(partially resilient) variant of Avl, very few faults make a large fraction of the
search operations fail. This is not surprising, since the corruption of a pointer
at top levels in the AVL tree causes the loss of a constant fraction of the keys.

In order to illustrate this phenomenon, let us consider the following input
sequence. First of all, we populate the dictionary via a sequence of 106 random
insert operations. Then we corrupt the data structure by injecting α = δ faults.
Finally, we generate a sequence of 105 random search operations, and count how
many operations fail because of a corrupted pointer.
3 Our experiments have been carried out on a workstation equipped with two Opteron

processors with 2 GHz clock rate and 64 bit address space, 2 GB RAM, 1 MB
L2 cache, and 64 KB L1 data/instruction cache. The workstation runs Linux
Kernel 2.6.11. All programs have been compiled through the GNU gcc com-
piler version 3.3.5 with optimization level O3. The full package, including algo-
rithm implementations, and a test program, is publicly available at the URL:
http://www.statistica.uniroma1.it/users/uferraro/experim/faultySearch/
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Our results for this case are shown in Figure 1(a). As expected, the number of
incorrect search operations grows with α = δ. More interestingly, the expected
number of wrong operations is roughly one order of magnitude larger than the
number of faults. For example, in the case δ = 1024 (i.e., δ is roughly 0.1% of
the number of keys), roughly 1100 search operations fail (i.e., roughly 1% of
the operations). This suggests that using resilient implementations can be really
worth the effort.

The Cost of Resiliency. In order to evaluate how expensive resiliency is, we
experimentally compared the time and space performance of Det, Rand and Avl.
In order to test the sensitivity of resilient algorithms to the actual number of
faults α (besides to δ), we considered different values of the ratio α/δ: we next
provide results only for the extreme cases α = 0 and α = δ. For Avl we only
considered α = 0, since in the presence of faults the space and time usage of this
non-resilient dictionary is not very meaningful (as shown in previous subsection).

The results obtained for the following input instance summarize the quali-
tative behaviors that we observed. We bulk-load the dictionary via a random
sequence of 106 random insert operations. Then we generate a sequence of 105

operations, where each operation is uniformly chosen to be a random insert,
random search, or random delete. The adversary injects α faults during the
last 105 operations. We consider the average time per operation of the latter
operations. The space usage is measured at the end of the process.

The results concerning the running time for the above instance are shown in
Figure 1(b)-(c). As expected, Avl is much faster than the resilient dictionaries.
This suggests that resilient implementations should be used only when the risk
of memory faults is concrete.

Interestingly enough, the time performance of Rand and Det is very sensitive
to δ, but it is almost not affected by α. This suggests that, in any practical
implementation, δ should be chosen very carefully: underestimating δ compro-
mises the resiliency of the dictionary while overestimating it might increase the
running time drammatically.

Rand is rather faster than Det for large values of δ, but it is much slower than
Det when δ is small. Not surprisingly, the running time of Det grows with δ.
More interestingly, the running time of Rand initially quickly decreases with δ
and then slowly increases. This behavior arises from the fact that, for small values
of δ, Rand often restructures the AVL search tree in order to keep the number
of keys in each interval within the range [δ/2, 2δ]: this operation dominates the
running time. This interpretation is confirmed in next section, where we consider
a variant of Rand which maintains intervals with a number of keys in [aδ/2, 2aδ],
for a proper constant a > 1. For example, in the case a = 32 the running time
of this variant of Rand is monotonically increasing in δ.

The results concerning the space usage for the mentioned case are shown in
Figure 1(d). The space usage in the figure are given as multiples of the total space
occupied by keys (which is a lower bound on the space needed). We first of all
observe that the space usage of Rand and Det is almost not affected by δ (this is
obvious in the case of Avl). In particular, the space usage initially decreases with
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. We use α = 0 in (b) and (d), and α = δ in the other cases. (a) Number of
failed search operations of Avl when processing a sequence of 105 random searches on a
dictionary containing 106 random keys. (b)+(c) Average running time per operation
of Rand, Det and Avl, when processing a sequence of 105 random operations on a
dictionary initially containing 106 random keys. (d)+(e) Average memory usage, as
multiples of the total size of the keys, and running time per operation of Rand, Det and
Avl, RandMem(32) and RandMem(32,1,1), when processing a sequence of 105 random
operations on a dictionary initially containing 106 random keys. (f) Average running
time per operation of RandMem(32,1,c), for different combinations of c, when processing a
sequence of 105 random operations on a dictionary initially containing 106 random keys.
(g)+(h) Average running time per operation of Rand, Det and RandMem(32,1,1), when
processing a sequence of 105 random operations on a dictionary initially containing 106

random keys, and when searching for all the 81965 words in “The Picture of Dorian
Gray” on a dictionary initially containing 234936 distinct English words.
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δ, and then reaches a stationary value rather quickly. This might seem surprising
at a first glance. The reason for this behavior is that both dictionaries exploit a
data structure containing Θ(n/δ) nodes, each one of size Θ(δ). Hence the space
usage is Θ(n), irrespectively of δ. The experiments show that even the constants
in the asymptotic notation are weakly related to δ.

Not surprisingly, Rand uses much more space than Avl. What is more surpris-
ing is that Det uses much less space than Avl (despite the fact that Avl does
not need to take care of faults). This behavior might be explained by the fact
that Det builds upon data structures developed in the context of algorithms for
external memory. In more detail, the combination of buffering techniques and
lazy updates in Det reduces the use of pointers with respect to Avl.

We remark that all dictionaries use much more space than the space occupied
by keys only. In particular, the space usage of Rand, Avl, and Det is roughly 16,
10, and 5 times the total size of the keys, respectively. This space overhead is
determined by the use of pointers for all those implementations. Furthermore,
in the case of Rand and Det part of the space is wasted due to buffers which
are partially empty. Such a large space overhead may not be acceptable in the
applications, where keys alone already occupy huge amounts of memory. This is
also the main motivation for the refined implementation RandMem described in
next section.

3 A Refined Resilient Dictionary

Motivated by the large space overhead of Rand, in this section we describe a
new randomized resilient dictionary RandMem, which is a (non-trivial) variant
of Rand. RandMem has optimal asymptotic time and space complexity, but it
performs better in practice. In particular, it uses an amount of space closer to
the lower bound given by the total space occupied by keys. Furthermore, it is
sometimes slightly slower and often even faster than Rand and Det.

Our refined data structure is based on a careful combination of the results de-
veloped in the context of static sorting and searching in faulty memories [10,13],
together with some new, simple ideas. This machinery is exploited to implement
more efficiently the part of each operation which involves the keys in a given
interval. The rest of the implementation is exactly as in Rand. In particular, the
structure of the AVL tree and the way it is explored and updated is the same as
before. Rather than describing directly RandMem, we illustrate the logical steps
which led us to its development.

Reducing Space Usage. A simple way to reduce the space overhead of Rand
is modifying the algorithm so that, for a proper parameter a > 1, the number of
keys in each interval is in the range [aδ/2, 2aδ] rather than [δ/2, 2δ] (adapting
the update operations consequently). Intuitively, the larger is a, the smaller is
the number of intervals and hence the space overhead. This allows one to reach
asymptotically a space usage of at most 4 times the total space occupied by keys,
the worst case being when all the intervals contain aδ/2 keys each (while the
space reserved is roughly 2aδ per interval). In practice, the space usage might
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even be smaller since we expect to see an intermediate number of keys in each
interval (rather than a number close to the lower bound).

We tested this variant of Rand, that we called RandMem(a), for growing values
of a. As expected, the space usage is a decreasing function of a. In Figure 1(d)
we report on the space usage of RandMem(32) on the same input instances used
in Section 2. The memory usage is much smaller than the one of Rand and Det,
and it is roughly twice the space occupied by keys. In our experiments, larger
values of a do not provide any substantial reduction of the space usage.

We remark that it is not hard to achieve a space usage arbitrarily close to the
total size of the keys (for growing values of a). The idea is requiring that each
interval contains between (1−ε)aδ and (1+ε)aδ keys, for a small constant ε > 0.
Of course, this alternative implementation implies a more frequent restructuring
of the search tree, which a consequent negative impact on the running time (in
particular, the running time is an increasing function of 1/ε). We do not discuss
here the experimental results for this alternative implementation due to space
constraints.

In the following A denotes the buffer (of size 2aδ) containing the keys asso-
ciated to the interval I under consideration. We implicitly assume that empty
positions of A (to the right of the buffer) are marked with a special value ∞,
which stands for a value larger than any feasible key. Note that the adversary is
allowed to write ∞ in a memory location. In the next paragraphs we show how
to speed up each operation.

Reducing Searching Time. The main drawback of the approach described
above is that, in each operation, RandMem(a) needs to linearly scan a buffer A of
size Θ(aδ): for large values of a this operation is very expensive. This is witnessed
by the experiment shown in Figure 1(e), where we report on the running time
of RandMem(32) for the same input instances as in Section 2.

One way to reduce the search time is keeping all the keys in A faithfully
sorted. Each time we insert or delete a key from A, we faithfully sort its keys with
a (static) resilient sorting algorithm: here we used the optimal resilient sorting
algorithm ResSort described in [10]. In order to search for a key, we exploit a
resilient (static) searching algorithm. In particular, we decided to implement the
simple randomized searching algorithm ResSearch in [10].

Reducing Insertion Time. Of course, keeping A faithfully sorted makes
insert and delete operations more expensive.

In order to reduce the insert time, without increasing substantially the time
needed for the other two operations, we introduce a secondary buffer B of size
bδ, for a proper constant a > b > 0. All the keys are initially stored in B (which
is maintained as an unsorted sequence of keys). Like for A, empty positions
of B are set to ∞. When B is full, buffers A and B are merged into A, so
that the resulting buffer A is faithfully sorted. In order to perform this merg-
ing, first of all we faithfully sort B by means of the classical SelectionSort
algorithm (which turns out to be a resilient sorting algorithm [10]). For small
enough b, SelectionSort is faster than ResSort. Then we apply to A and B
the procedure UnbalancedMerge, which is one of the key procedures used in
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ResSort. This procedure takes as input two faithfully sorted sequences, one of
which is much shorter than the other, and outputs a faithfully sorted sequence
containing all the keys of the original sequences. We remark that merging two
faithfully sorted sequences is faster than sorting everything from scratch (using,
e.g., ResSort). Of course, now search and delete operations have to take buffer
B into consideration. In particular, those operations involve a linear scan of B.

The main advantage of B is that it allows to spend O(bδ) time per inser-
tion, and only after Ω(bδ) insertions one needs to merge A and B, which costs
O((bδ)2 + aδ + δ2) time. However, this also introduces a Θ(bδ) overhead in each
search and delete operation. Henceforth, b has to be tuned carefully.

Reducing Deletion Time. It remains to reduce the delete time, without in-
creasing too much the time needed for the other operations. Deleting an element
in B is a cheap operation, therefore we focus on the deletion of an element in A.

A natural approach to delete an element is replacing it with the special value
∞ (recall that empty positions are set to∞ as well). When A and B are merged
after one insert, we can easily get rid of this extra values ∞. Note that the
∞ entries introduced by deletions are not correctly sorted despite the fact that
they are not faults introduced by the adversary. As a consequence, ResSearch is
not guaranteed to work correctly. However, we can solve the problem by letting
ResSearch run with respect to a number δ′ = x + δ of faults, where x is the
current number of deleted elements. In other terms, we can consider the x deleted
entries as faults introduced by the adversary. When x is large, the search (and
hence delete) operation becomes slower. Hence, we fix a threshold τ = cδ for
a proper constant c > 0. When x reaches τ , we compress A so that the values
different from∞ occupy the first positions in the buffer (while the final∞ entries
correspond to empty positions). The Θ(aδ) cost of this compression is amortized
over Ω(cδ) deletions.

It remains to explain how we keep track of x. One natural way to do that is
using a resilient variable (i.e., 2δ + 1 copies of one variable) as a counter. Each
time a new deletion occurs, we increment the counter and we reset it when it
reaches τ (this costs roughly 4δ per delete). Here we adopt an alternative, novel
approach, which is better for small values of c both in terms of time and of space.
We define an array C of size τ , which is used as a unary counter. In particular,
each time a new deletion occurs, we linearly scan C, searching for a 0 entry, and
we replace it with a 1. If no 0 entry exists, C is reset to 0 and A is compressed.
The number of 1’s in C, i.e. the number of deletions in A, is denoted by |C|.
Note that, differently from the case of the resilient counter, the adversary might
reset some entries of C: in that case |C| underestimates the actual number of
deletions in A. In principle, this might compromise the correctness of ResSearch.
However, running ResSearch with δ′ = |C| + δ is still correct. In fact, let αC

and αA be the total number of faults occurring in C and A, respectively. The
number of deletions in A is at most |C|+αC (each deletion in A not counted by C
corresponds to a fault in C). Hence, the total number of unsorted elements in A
(faults plus deletions) is at most |C|+αC +αA ≤ |C|+δ. Of course, the adversary
might as well set some 0 entries of C to 1, hence anticipating the compression of
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A. However, Ω(cδ) such faults are needed to force a compression of cost O(aδ).
Hence, this type of phenomenon does not affect the running time substantially.
We remark that unary counters were not used before in the literature on reliable
algorithms and data structures.

We next call RandMem(a,b,c) the variant of RandMem(a) which exploits the
secondary buffer B and the unary counter C. It is worth to remark that the
secondary buffer and the deletions might compromise the asymptotic optimality
of the dictionary. In particular, it might happen that the set of intervals (and
hence the AVL tree) is modified more often than every Ω(δ) operations. By a
simple computation, it turns out that b ≤ a/2 and c ≤ a/8 are sufficient condi-
tions to avoid this situation, hence maintaining optimal O(n) space complexity
and O(log n + δ) time per operation.

Experimental Evaluation. We tested RandMem(a,b,c) in different scenarios and
for different values of the triple (a, b, c). We next restrict our attention to the
input instances as considered in Section 2, with α = δ. Furthermore, we assume
a = 32, which minimizes the space usage.

We experimentally observed that, for a given value of a, the running time of
the data structure may vary greatly according to the choice of c while it is only
partially influenced by the choice of b. For fixed values of a and b, the running
time first decreases and then increases with c. This is the result of two opposite
phenomena. On one hand, small values of c imply more frequent compressions of
the primary buffer A, with a negative impact on the running time. On the other
hand, small values of c reduce the maximum and average value of δ′ = |C| + δ,
hence making the searches on A faster. This behavior is visible in Figure 1(f),
where we fixed a = 32 and b = 1, and considered different combinations of δ and
c. In most cases, the best choice for c is 1.

We next focus on the case (a, b, c) = (32, 1, 1). Figure 1(d) shows that that the
space usage of RandMem(32,1,1) is essentially the same as RandMem(32) (hence,
much better than both Rand and Det). Figure 1(g) shows that RandMem(32,1,1)
is much faster than Rand for small values of δ, and slightly slower for large
values of δ. The improvement of the performance for small values of δ is due
to the use of a larger primary buffer, as mentioned in previous section. The
fact that RandMem(32,1,1) becomes slower than Rand for large values of δ is not
surprising, since the first data structure is more complicated (in order to save
space). RandMem(32,1,1) is much faster than Det unless δ is very small.

Non-Random Data Sets. We tested resilient dictionaries also on non-random
data sets, observing the same qualitative phenomena as with random instances.
In particular, we considered the following experiment. First, we bulk-load the
resilient dictionary considered with all the words of one English dictionary, and
then we search for all the words in one English book. Figure 1(h) shows the av-
erage time per search of Rand, Det and RandMem(32,1,1), when searching for
the words in “The Picture of Dorian Gray”. The high-level behavior of the run-
ning time is the same as with random instances. The smaller running time with
respect to Figure 1(g) is due to the fact that in this experiment we considered
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search operations only: these operations turn out to be faster than insert and
delete operations (which contribute to the average running time in Figure 1(g)).

The above results suggest that RandMem is probably the data structure of
choice for practical applications.
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Abstract. The disjoint-set data structure is used to maintain a collec-
tion of non-overlapping sets of elements from a finite universe. Algorithms
that operate on this data structure are often referred to as Union-Find

algorithms. They are used in numerous practical applications and are
also available in several software libraries. This paper presents an ex-
tensive experimental study comparing the time required to execute 55
variations of Union-Find algorithms. The study includes all the classical
algorithms, several recently suggested enhancements, and also different
combinations and optimizations of these. Our results clearly show that
a somewhat forgotten simple algorithm developed by Rem in 1976 is the
fastest, in spite of the fact that its worst-case time complexity is inferior
to that of the commonly accepted “best” algorithms.

Keywords: Union-Find, Disjoint Set, Experimental Algorithms.

1 Introduction
Let U be a set of n distinct elements and let Si denote a subset of U . Two sets
S1 and S2 are disjoint if S1 ∩ S2 = ∅. A disjoint-set data structure maintains
a dynamic collection {S1, S2, . . . , Sk} of disjoint sets that together cover the
universe U . Each set is identified by a representative x, which is usually some
member of the set. The two main operations are to Find which set a given
element belongs to by locating its representative element and to replace two
existing sets with their Union. In addition, there is a Makeset operation which
adds a new element to U as a singleton set.

The underlying data structure of each set is typically a rooted tree represented
by a parent function p(x) ∈ Si for each x ∈ U ; the element in the root of a tree
satisfies p(x) = x and is the representative of the set. Then Makeset(x) is
achieved by setting p(x) ← x and the output of Find(x) is the root of the tree
containing x. This is found by following x’s find-path, which is the path of parent
pointers from x up to the root of x’s tree. A set of algorithms that operate on
this data structure is often referred to as a Union-Find algorithm.

This disjoint-set data structure is frequently used in practice, including in ap-
plication areas such as image decomposition, clustering, sparse matrix
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computations, and graph algorithms. It is also a standard subject taught in
most algorithms courses.

Early theoretical work established algorithms with worst-case time complex-
ity Θ(n + m · α(m, n)) for any combination of m Makeset, Union, and Find

operations on n elements [2,3,15,16,17,18], where α is the very slowly growing
inverse of Ackermann’s function. These theoretically best classical algorithms in-
clude a standard Union method using either Link-by-Rank or Link-by-Size

and a Find operation incorporating one of three standard compression tech-
niques: Path-Compression, Path-Splitting, or Path-Halving. Other early
algorithms either use a different compression technique like Collapsing or inter-
leave the two Find operations embedded in a Union operation, as was the case
with Rem’s algorithm and a variant of it designed by Tarjan and van Leeuwen.
The worst case time complexity of these variations are not optimal [18].

The current work presents an extensive experimental study comparing the
time required to execute a sequence of Union operations, each with two embed-
ded Find operations. Altogether, we consider 55 variations; 29 of these had been
well studied in the theoretical literature by 1984. We call these the classical algo-
rithms. The remaining 26 variations implement a number of improvements. Our
results clearly show that a somewhat forgotten simple algorithm developed by
Rem in 1976 [6] is the fastest, in spite of the fact that its worst-case complexity
is inferior to that of the commonly accepted “best” algorithms.

Related experimental studies have compared only a few Union-Find algo-
rithms, usually in the context of a specific software package. In particular, [10]
and [8] compared only two and six Union-Find algorithms, respectively, in the
context of sparse matrix factorization. The works in [19] and [20] compared eight
and three Union-Find algorithms, respectively, in the setting of image process-
ing. More recently, [13] compared a classic algorithm with a variation described
here in the ipc subsection of Section 2.2. The most extensive previous experi-
mental study was Hynes’ masters thesis [9] where he compared the performance
of 18 Union-Find algorithms used to find the connected components of a set of
Erdös-Rényi style random graphs.

2 Union-Find Algorithms

Algorithm 1. Use of Union-Find

1: S ← ∅
2: for each x ∈ V do
3: Makeset(x)
4: for each (x, y) ∈ E do
5: if Find(x) 
= Find(y) then
6: Union(x, y)
7: S ← S ∪ {(x, y)}

This section outlines, to the best of our
knowledge, the primary Union-Find al-
gorithms. We also include a number
of suggested enhancements designed to
speed up implementations of these al-
gorithms. Our presentation is from the
viewpoint of its use in finding con-
nected components of a graph G(V, E)
as shown in Algorithm 1. In this case,
the Union-Find algorithm computes a minimal subset S ⊆ E such that S is a
spanning forest of G.
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2.1 Classical Algorithms

Here we discuss the classical Union techniques and then present techniques
for compressing trees during a Find operation. Finally, we describe classical
algorithms that interleave the Find operations embedded in a Union along
with a compression technique that can only be used with this type of algorithm.

Union techniques. The Union(x, y) operation merges the two sets containing
x and y, typically by finding the roots of their respective trees and then linking
them together by setting the parent pointer of one root to point to the other.

Clearly storing the results of the two Find operations on line 5 and then using
these as input to the Union operation in line 6 will speed up Algorithm 1. This
replacement for lines 5–7 in Algorithm 1 is known as Quick-Union (Quick) in
[7]. Throughout the remainder of this paper we use Quick.

Three classic variations of the Union algorithm center around the method
used to Link the two roots. Let rx and ry be the roots of the two trees that are
to be merged. Then Union with Naive-Link (nl) arbitrarily chooses one of rx

and ry and sets it to point to the other. This can result in a tree of height O(n).
In Union with Link-by-Size (ls) we set the root of the tree containing the

fewest nodes to point to the root of the other tree, arbitrarily breaking ties. To
implement ls efficiently we maintain the size of the tree in the root. For the
Union with Link-by-Rank (lr) operation we associate a rank value, initially
set to 0, with each node. If two sets are to be merged and the roots have equal
rank, then the rank of the root of the combined tree is increased by one. In all
other lr operations the root with the lowest rank is set to point to the root
with higher rank and all ranks remain unchanged. Note that when using lr the
parent of a node x will always have higher rank than x. This is known as the
increasing rank property. The union algorithm presented in most textbooks uses
the Quick and lr enhancements to implement lines 5–7 of Algorithm 1.

Both ls and lr ensure that the find-path of an n vertex graph will never
be longer than log n. The alleged advantage of lr over ls is that a rank value
requires less storage than a size value, since the rank of a root in a set containing
n vertices will never be larger than log n [3]. Also, sizes must be updated with
every Union operation whereas ranks need only be updated when the two roots
have equal rank. On the other hand lr requires a test before each Link operation.

Compression techniques. Altogether we describe six classical compression
techniques used to compact the tree, thereby speeding up subsequent Find op-
erations. The term nf will represent a Find operation with no compression.

Using Path-Compression (pc) the find-path is traversed a second time after
the root is found, setting all parent pointers to point to the root. Two alterna-
tives to pc are Path-Splitting (ps) and Path-Halving (ph). With ps the
parent pointer of every node on the find-path is set to point to its grandparent.
This has the effect of partitioning the find-path nodes into two disjoint paths,
both hanging off the root. In ph this process of pointing to a grandparent is only
applied to every other node on the find-path. The advantage of ps and ph over
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pc is that they can be performed without traversing the find-path a second time.
On the other hand, pc compresses the tree more than either of the other two.

Note that when using ranks pc, ps, and ph all maintain the increasing rank
property. Furthermore, any one of the three combined with either lr or ls has
the same asymptotic time bound of O(m · α(m, n)) for any combination of m
Makeset, Union, and Find operations on n elements [3,16,18].

Other compression techniques include Reversal-of-Type-k. With this the
first node x on the find-path and the k last nodes are set to point to the root
while the remaining nodes are set to point to x. In a Reversal-of-Type-0

(r0) every node on the find-path from x, including the root, is set to point to
x and x becomes the new root, thus changing the representative element of the
set. Both r0 and Reversal-of-Type-1 (r1) can be implemented efficiently,
but for any values of k > 1 implementation is more elaborate and might require
a second pass over the find-path [18]. We limit k ≤ 1. Using either r0 or r1 with
any of nl, lr, or ls gives an asymptotic running time of O(n + m log n) [18].

In Collapsing (co) every node of a tree will point directly to the root so
that all find-paths are no more than two nodes long. When merging two trees in
a Union operation, nodes of one of the trees are changed to point to the root of
the other tree. To implement this efficiently the nodes are stored in a linked list
using a sibling pointer in addition to the parent pointer. The asymptotic running
time of co with either ls or lr is O(m + n log n); co with nl is O(m + n2) [18].

It is possible to combine any of the three different Union methods with any
of the seven compression techniques (including nf), thus giving rise to a to-
tal of 21 different algorithm combinations. We denote each of these algorithms
by combining the abbreviation of its Union method with the abbreviation of
its compression technique (e.g., lrpc). The asymptotic running times of these
classical algorithms are summarized in the tables on page 280 of [18].

Classical interleaved algorithms. Interleaved (Int) algorithms differ from
the Union-Find algorithms mentioned so far in that the two Find operations in
line 5 of Algorithm 1 are performed as one interleaved operation. The main idea
is to move two pointers rx and ry alternatively along their respective find-paths
such that if x and y are in the same component then p(rx) = p(ry) when they
reach their lowest common ancestor and processing can stop. Also, if x and y
are in different components, then in certain cases the two components are linked
together as soon as one of the pointers reaches a root. Thus, one root can be
linked into a non-root node of the other tree. The main advantage of the Int

algorithms is that they can avoid traversing portions of find-paths.
The first Int algorithm is Rem’s algorithm (rem) [6]. Here it is assumed that

each node has a unique identifier (id) that can be ordered (typically in the range
1 through n). In our presentation we let this identifier be the index of the node.

The constructed trees always have the property that a lower numbered node
either points to a higher numbered node or to itself (if it is a root). Instead of
performing Find(x) and Find(y) separately, these are executed simultaneously
by first setting rx ← x and ry ← y. Then whichever of rx and ry has the smaller
parent value is moved one step upward in its tree. In this way it follows that if x
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and y are in the same component then at some stage of the algorithm we will have
p(rx) = p(ry) = the lowest common proper ancestor of x and y. The algorithm
tests for this condition in each iteration and can, in this case immediately stop.

As originally presented, rem integrates the Union operation with a compres-
sion technique known as Splicing (sp). In the case when rx is to be moved to
p(rx) it works as follows: just before this operation, rx is stored in a temporary
variable z and then, just before moving rx up to its parent p(z), p(rx) is set to
p(ry), making the subtree rooted at rx a sibling of ry. This neither compromises
the increasing parent property (because p(rx) < p(ry)) nor invalidates the set
structures (because the two sets will have been merged when the operation ends.)
The effect of sp is that each new parent has a higher value than the value of the
old parent, thus compressing the tree. The full algorithm is given as Algorithm 2.
The running time of rem with sp (remsp) is O(m log(2+m/n) n) [18].

Algorithm 2. remsp(x, y)

1: rx ← x, ry ← y
2: while p(rx) 
= p(ry) do
3: if p(rx) < p(ry) then
4: if rx = p(rx) then
5: p(rx) ← p(ry), break
6: z ← rx, p(rx) ← p(ry), rx ← p(z)
7: else
8: if ry = p(ry) then
9: p(ry) ← p(rx), break

10: z ← ry, p(ry) ← p(rx), ry ← p(z)

Tarjan and van Leeuwen
present a variant of rem that
uses ranks rather than identi-
fiers. This algorithm is slightly
more complicated than rem, as
it also checks if two roots of
equal rank are being merged
and if so updates the rank val-
ues appropriately. Details are
given on page 279 of [18]. We la-
bel this algorithm as tvl. The
running time of tvl with sp

(tvlsp) is O(m · α(m, n)).
Note that sp can easily be replaced in either rem or tvl with either pc or

ps. However, it does not make sense to use ph with either because ph might
move one of rx and ry past the other without discovering that they are in fact in
the same tree. Also, since r0 and r1 would move a lower numbered (or ranked)
node above higher numbered (ranked) nodes, thus breaking the increasing (rank
or id) property, we will not combine an Int algorithm with either r0 or r1.

2.2 Implementation Enhancements

We now consider three different ways in which the classical algorithms can be
made to run faster by: i) making the algorithm terminate faster, ii) rewriting so
that the most likely case is checked first, and iii) reducing memory requirements.

Immediate parent check (ipc). This is a recent enhancement that checks
before beginning Quick if x and y have the same parent. If they do, Quick is
not executed, otherwise execution continues. This idea is motivated by the fact
that trees often have height one, and hence it is likely that two nodes in the
same tree will have the same parent. The method was introduced by Osipov et
al. [13] and used together with lr and pc in an algorithm to compute minimum
weight spanning trees. ipc can be combined with any classical algorithm except
rem, which already implements the ipc test.
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Better interleaved algorithms. The tvl algorithm, as presented in [18], can
be combined with the ipc enhancement. However, the tvl algorithm will already,
in each iteration of the main loop, check for p(rx) = p(ry) and break the current
loop iteration if this is the case. Still, three comparisons are needed before this
condition is discovered. We therefore move this test to the top of the main loop
so that the loop is only executed while p(rx) �= p(ry). (This is similar to the ipc

test.) In addition, it is possible to handle the remaining cases when rank(p(rx)) =
rank(p(ry)) together with the case when rank(p(rx)) < rank(p(ry)). For details
see [14]. This will, in most cases, either reduce or at least not increase the
number of comparisons; the only exception is when rank(p(rx)) < rank(p(ry)),
which requires either one or two more comparisons. We call this new enhanced
implementation etvl.

A different variation of the tvl algorithm, called the Zigzag (zz) algorithm
was used in [11] for designing a parallel Union-Find algorithm where each tree
could span across several processors on a distributed memory computer. The
main difference between the zz algorithm and etvl is that the zz algorithm
compares the ranks of rx and ry rather than the ranks of p(rx) and p(ry). Due
to this it does not make sense to combine the zz algorithm with sp.

Memory smart algorithms. We now look at ways to reduce the amount of
memory used by each algorithm. In the algorithms described so far each node
has a parent pointer and, for some algorithms, either a size or rank value. In
addition, for the co algorithm each node has a sibling pointer. It follows that we
will have between one and three fields in the record for each node. (Recall that
we use the corresponding node’s index into the array of records as its “name”).

It is well known, although as far as we know undocumented, that when the
parent pointer values are integers one can eliminate one of the fields for most
Union-Find implementations. The idea capitalizes on the fact that usually only
the root of a tree needs to have a rank or size value. Moreover, for the root the
parent pointer is only used to signal that the current node is in fact a root. Thus
it is possible to save one field by coding the size or rank of the root into its
parent pointer, while still maintaining the “root property.” This can be achieved
by setting the parent pointer of any root equal to its negated rank (or size) value.

This Memory-Smart (ms) enhancement of combining the rank/size field
with the parent pointer can be incorporated into any of the classical algorithms
except those using an Int algorithm (because they require maintaining the rank
at every node, not just the root) or ph (because ph changes parent pointers to
the grandparent value, which, if negative, will mess up the structure of the tree.)
ms can also be combined with the ipc enhancement. Because rem does not use
either size or rank, we will also classify it as an ms algorithm.

3 Experiments and Results

For the experiments we used a Dell PC with an Intel Core 2 Duo 2.4 GHz
processor and 4MB of shared level 2 cache, and running Fedora 10. All algorithms
were implemented in C++ and compiled with GCC using the -O3 flag.



Experiments on Union-Find Algorithms 417

We used three test sets. The first consists of nine real world graphs (rw) of
varying sizes drawn from different application areas such as linear programming,
medical science, structural engineering, civil engineering, and the automotive
industry [4]. The second includes five synthetic small world graphs (sw) and
the third contains six synthetic Erdös-Rényi style random graphs (er). For each
synthetic graph (sw or er), we generated five different random graphs with the
same number of vertices and with the same edge probability using the GTGraph
package [1]. Statistics reported here about these graphs are an average for the
five different random graphs of that type and size. For structural properties of
the test sets as well as additional figures see [14].

To compute the run-time of an algorithm for a given graph, we execute the
algorithm five times using each of five different random orderings of the edges,
taking the average time as the result. For test sets sw and er this is also done
for each graph. Hence we compute the average run-time of each graph in rw by
taking the average of 25 total runs and for sw and er by taking the average of
125 total runs. Algorithms stop if and when they find that the entire graph is a
single connected component. The time for all runs of reasonable algorithms (not
including the extremely slow algorithms nl with no compression and nl with
co) ranged from 0.0084 seconds to 28.7544 seconds.

We now present the results of experiments from 55 different algorithms. We
first consider the classical algorithms and then using the enhancements presented
in Section 2.2. Finally, we compare and discuss the 10 overall fastest algorithms.
For each type of algorithm we give a table in which each cell represents an
algorithm that combines the row’s union method with the column’s compression
technique. The combinations for crossed out cells are either not possible or non-
sensical. The rows with gray background are repeated from an earlier table.

Throughout we will say that an algorithm X dominates another algorithm Y if
X performs at least as well as Y (in terms of run-time) on every input graph. For
illustrative purposes we will pick four specific dominating algorithms numbered
according to the order in which they are first applied. These will be marked
in the tables with their number inside a colored circle, as in ➊. If algorithm X
dominates algorithm Y, an abbreviation for X with its number as a subscript will
appear in Y’s cell of the table, as in lrpc1. Algorithms that are not dominated
by any other algorithm are marked as undominated.

Classical Algorithms (Table 1). The two algorithms lrpc and lrph are
generally accepted as best, and so we begin by examining these. Although they
dominate a large majority, remsp dominates still more. This gives us the first
three dominating algorithms. lrpc1 dominates 14 algorithms. Three additional
algorithms are dominated by lrph2, including lrpc; hence, lrph also dominates
all algorithms dominated by lrpc. Figure 1(a) shows the relative performance of
the ten remaining algorithms dominated by remsp3. Note that remsp dominates
lrph. Because lrpc dominates both lspc and tvlpc, our experiments show
that lr is a better Union method to combine with pc. Only two algorithms are
undominated. In the following we do not report results for algorithms using nf,
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Table 1. Relative performance of the classical Union-Find algorithms

nf pc ph ps co r0 r1 sp

nl lrpc1 lrph2 remsp3 remsp3 lrpc1 lrpc1 lrpc1

lr lrpc1 ➊ lrph2 ➋ remsp3 remsp3 remsp3 lrpc1 lrpc1

ls lrpc1 lrpc1 remsp3 remsp3 remsp3 lrpc1 lrpc1

rem lrpc1 remsp3 undom. ➌ undom.

tvl lrpc1 lrpc1 remsp3 lrph2

r0, or r1 as these compression techniques consistently require several orders of
magnitude more time than the others.

IPC Algorithms (Table 2). The algorithms for which using ipc always per-
formed better than the corresponding non-ipc version are marked in the table
with an uparrow (↑). Note that rem is, by definition, an ipc algorithm, and
hence, there are no changes between its “ipc” version and its “non-ipc” version;
they are the same algorithm. In each of the other five cases, using ipc is some-
times better than not, and vice versa. No ipc version is consistently worse than
its non-ipc version.

Table 2. ipc relative performance

pc ph ps sp

ipc-lr ipc-lrps4↑ ipc-lrps4 ➍ remsp3

ipc-ls remsp3↑ remsp3 remsp3

rem remsp3 undom. ➌ undom.

ipc-tvl ipc-lrps4↑ remsp3 remsp3↑

One algorithm, ipc-

lrps4, dominates three
others. Also, remsp dom-
inates that algorithm and
others. Figure 1(b) shows
the performance of the
remaining six dominated
algorithms relative to
rem–sp. Among the ipc-
-lr algorithms, ps dom-
inates the other two
compression techniques.
Note also that unlike the results of the previous subsection where lrpc dom-
inated lspc, neither ipc-lrpc nor ipc-lspc dominates the other. In general
ipc-lspc performed better than ipc-lrpc.

Interleaved Algorithms (Table 3). remsp dominates the five new Int algo-
rithms. Figure 1(c) shows the performance of each of these relative to remsp.
The performance of the Int algorithms was impacted more by the compres-
sion technique than by the union method. Also, pc is considerably worse (by
approximately 50%) than either ps or sp.

Memory-smart Algorithms (Table 4). remsp dominates six of the ms al-
gorithms. Figure 1(d) shows the relative performance of these relative to remsp.
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Note that ms-ipc-lsps and ms-ipc-lspc come close to remsp, and, in fact, these
are the only two dominated algorithms that are among the 10 fastest algorithms
using the metric described next.

The Fastest Algorithms. We now compare all algorithms using a different
metric than the “dominates” technique. We begin by calculating, for each input
graph and each algorithm, its run-time relative to the best algorithm for that
graph (Global-Min). For each algorithm and each type of input (rw, sw, er) we
then compute the average relative time over all input of that type. The average
of these three averages is then used to rank order the algorithms.

Table 3. Int relative performance

pc ps sp

rem remsp3 undom. ➌ undom.

tvl lrpc1 remsp3 lrph2

ipc-tvl ipc-lrps4 remsp3 remsp3

etvl remsp3 remsp3 remsp3

zz remsp3 remsp3

The results for the top ten ranked
algorithms are given in Table 5.
Each cell contains both the algo-
rithm’s rank for the given type of
graph and its relative timing re-
ported as a percent. The last row
in the table is included to show how
far the last ranked algorithm is from
the algorithms that are not in the
top 10.

When considering rw, er, and “all
graphs,” the next best algorithm is
ranked 11 and is 8.68%, 10.68%, and
8.12% worse than the slowest algo-
rithm reported in the table, respectively. For the sw graphs, however, the fastest
algorithm not in the table is faster than four of the algorithms in the table and
only 2.66% slower than the algorithm ranked 6 (ms-lrco). For sw graphs five
algorithms not in the table were faster than the slowest of those reported in
the table.

Table 4. ms relative performance

pc ps co

ms-nl remsp3 remsp3

ms-lr remsp3↑ undom.↑ undom.↑

ms-ls remsp3↑ undom.↑ undom.↑

ms-ipc-lr undom.↑ undom.

ms-ipc-ls remsp3 remsp3

rem remsp3 undom.

The relative performance of the
five algorithms with ranks 1-5 on
the overall average is plotted in Fig-
ure 1(e). The figure clearly shows
remsp outperformed all other algo-
rithms. Notice that ls and lr with
all other variations on the algorithm
remaining constant tend to have
similar performance trends. Further-
more, neither ls nor lr consistently
outperformed the other. Of the top
10 algorithms all use the ms en-
hancement and out of these all but
ms-ipc-lrpc and ms-ipc-lspc are
one-pass algorithms. However, out of
the top five algorithms two use pc. We note that ps has the advantage over ph,
perhaps because it is easier to combine with ms.
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Fig. 1. Relative performance of Union-Find algorithms
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Table 5. Rank order(% of Global-Min) of the fastest algorithms based on graph type

All graphs Real-World Small-World Erdős-Rényi

remsp 1 (100.67) 1 (101.41) 1 (100.00) 1 (100.61)
remps 2 (108.07) 5 (111.16) 2 (107.67) 4 (105.36)
ms-ipc-lrpc 3 (114.28) 6 (114.17) 3 (116.73) 7 (111.94)
ms-lsps 4 (114.71) 2 (109.47) 10 (130.1) 2 (104.55)
ms-ipc-lspc 5 (115.73) 8 (115.17) 4 (117.92) 8 (114.09)
ms-lrps 6 (115.90) 4 (111.02) 13 (131.65) 3 (105.05)
ms-ipc-lrps 7 (116.90) 3 (111.00) 11 (131.22) 5 (108.48)
ms-lsco 8 (118.29) 9 (115.21) 6 (123.05) 9 (116.61)
ms-lrco 9 (118.91) 10 (115.47) 5 (123.04) 10 (118.22)
ms-ipc-lsps 10 (119.08) 7 (114.47) 15 (132.15) 6 (110.62)

Fastest not listed 11 (127.20) 11 (124.15) 7 (125.71) 11 (128.90)

Unlike the sparse matrix studies in [8,10,20] we found that using either lr or
ls does pay off. Hynes [9] and later Wassenberg et al. [19] found that co was
the best choice. Our results also show that co used with either lr or ls is one
of the faster algorithms, but only if used with the ms enhancement. However,
on average it is outperformed by several classical algorithms (such as lspc and
lrpc) if these are enhanced with ipc and ms.

The clear winner in our study was remsp. This was the fastest algorithm for
all types of graphs. On average it was 13.52% faster (with a range of −3.57%
to 22.18%) compared to the best non-Rem algorithm and 7.34% faster (with a
range of −2.75% to 19.05%) than the second best rem algorithm. We believe
that this is due to several factors: it has low memory overhead; Int algorithms
perform less operations than other classical algorithms; it incorporates the ipc

enhancement at every step of traversal, not only for the two initial nodes; and
even when integrated with sp the algorithm is relatively simple with few condi-
tional statements.

4 Concluding Remarks

This paper reports the findings of 1600 experiments on each of 53 different
Union-Find algorithms: 27 classical variations that were studied from a the-
oretical perspective up through the 1980s, nine ipc variations, five more Int

variations, and 12 additional ms variations. We also ran two experiments using
the very slow algorithms nlnf and nlco. In order to validate the results, we
reran the 84,800 experiments on the same machine. While the absolute times var-
ied somewhat, the same set of algorithms had the top five ranks as did the set of
algorithms with the top 10 ranks, and remsp remained the clear top performer.
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We have also constructed spanning forests using both dfs and bfs, finding that
use of the Union-Find algorithms are substantially more efficient.

The most significant result is that remsp substantially outperforms lrpc

even though remsp is theoretically inferior to lrpc. This is even more surpris-
ing because lrpc is both simple and elegant, is well studied in the literature,
is often implemented for real-world applications, and typically is taught as best
in standard algorithms courses. In spite of this remsp improved over lrpc by
an average of 52.88%, with a range from 38.53% to 66.05%. Furthermore, it im-
proved over lrph (which others have argued uses the best one-pass compression
technique) by an average of 28.60%, with a range from 15.15% to 45.44%.

Even when incorporating the ms and ipc enhancements, remsp still improved
over these other two classical algorithms on all inputs except one (rw1), where
ms-ipc-lrpc improved over remsp by only 3.57%. On average, remsp improves
over ms-ipc-lrpc by 11.91%, with a range from -3.70% to 18.15%. The savings
incurred over the ms-ipc-lrpc are illustrated in Figure 1(f) where the times for
the top two ranked algorithms are plotted relative to the time for ms-ipc-lrpc.

To verify that our results hold regardless of the cache size, we ran experiments
using twice, three times, and four times the memory for each node (simulating a
smaller cache). The relative times for the algorithms under each of these scenarios
were not significantly different than with the experiments reported here.

We believe that our results should have implications for developers of soft-
ware libraries like [5] and [12], which currently only implement lrpc and lrph

in the first case and lspc in the second. Initial profiling experiments show that
remsp gives both fewer cache misses and fewer parent jumps than the classi-
cal algorithms. We postpone discussion of these results until the full version of
the paper.

These Union-Find experiments were conducted under the guise of finding
the connected components of a graph. As such, the sequences of operations
tested were all Union operations as defined by the edges in graphs without
multiedges. It would be interesting to study the performances of these algorithms
for arbitrary sequences of intermixed Makeset, Union, and Find operations.
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Abstract. In this paper we describe an experimental study where we
evaluated the practical efficiency of three worst-case efficient priority
queues: 1) a weak heap that is a binary tree fulfilling half-heap ordering,
2) a weak queue that is a forest of perfect weak heaps, and 3) a run-
relaxed weak queue that extends a weak queue by allowing some nodes
to violate half-heap ordering. All these structures support delete and
delete-min in logarithmic worst-case time. A weak heap supports insert
and decrease in logarithmic worst-case time, whereas a weak queue re-
duces the worst-case running time of insert to O(1), and a run-relaxed
weak queue that of both insert and decrease to O(1). As competitors
to these structures, we considered a binary heap, a Fibonacci heap, and
a pairing heap. Generic programming techniques were heavily used in
the code development. For benchmarking purposes we developed several
component frameworks that could be instantiated with different policies.

1 Introduction

In this paper, we study addressable priority queues which store dynamic col-
lections of elements and support the operations find -min , insert , decrease (or
decrease-key), delete, delete-min, and meld . For addressable priority queues,
delete and decrease take a handle to an element as an argument, and find -min
and insert return a handle. These handles must be kept valid even though ele-
ments are moved around inside the data structures.

The most prominent priority queues described in textbooks (see, e.g. [7,25])
include binary heaps [31], binomial queues [29], Fibonacci heaps [16], and pairing
heaps [15]. Of these, a Fibonacci heap is important for many applications since
it supports decrease in O(1) amortized time. Also, it supports the other priority-
queue operations in optimal amortized bounds: find -min , insert , and meld in
O(1) time; and delete and delete-min in O(lg n) time, n being the number of
elements stored prior to the operation.
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Table 1. Worst-case number of element comparisons performed by the most important
operations on a weak heap and its variants (when find -min takes O(1) worst-case time).
Here n denotes the size of the data structure just prior to an operation.

Framework Structure delete insert decrease

single heap weak heap � lg n� � lg n� + 1 � lg n�
multiple heap weak queue 2 lg n + O(1) 2 � lg n�
relaxed heap run-relaxed weak queue 3 lg n + O(1) 2 4

After the publication of Fibonacci heaps, two questions were addressed: 1) Can
the same time bounds be achieved in the worst case? 2) Can the time bounds be
achieved by a simpler data structure? The first question was settled by Brodal [3]
in a practically unsatisfactorily manner since in his solution, when considering
the number of element comparisons performed, the constant factor involved in
the complexity of delete-min is much higher than lg n for all reasonable values of
n [18]. Relaxed heaps proposed by Driscoll et al. [9] are more practical, but they
support meld in logarithmic worst-case time, which is suboptimal. The second
question has been studied by several authors, but there does not seem to be an
agreement, whether the question has been settled or not. For more information
about this issue, consult any of the recent articles [6,13,17,26] and the references
mentioned therein.

The research reported in this paper is related to both of the foregoing ques-
tions. Our primary objective was to evaluate the usefulness of various implemen-
tation strategies when programming weak heaps [10] and their close relatives:
weak queues and relaxed weak queues [11,14]. Our secondary objective was to
get a complete picture of the field and compare the performance of these struc-
tures to that of some well-known competitors: binary heaps [31], Fibonacci heaps
[16], and pairing heaps [15,28]. Of the studied data structures, a weak heap has
the same asymptotic performance as a binary heap [31], a weak queue the same
as a binomial queue [29], and a rank/run-relaxed weak queue the same as a
rank/run-relaxed heap [9]. To get an insight of the performance characteristics
of the studied data structures, in Table 1 we list the number of element com-
parisons performed by the most important operations.

To make the experimental comparison as fair as possible, we relied on policy-
based design (see, for example, the book by Alexandrescu [2]). For similar priority
queues, a separate component framework was developed. Three parameterized
frameworks were written: 1) a single-heap framework that can realize a binary
heap, relying on top-down or bottom-up heapifying, and a weak heap (Section 3);
2) a multiple-heap framework that can realize a weak queue and a binomial queue
(Section 4); and 3) a relaxed-heap framework that can realize a run-relaxed and
rank-relaxed weak queue (Section 5).

In a popular-scientific form, our results could be summarized as follows:

1) Read the masters! The original implementation of a binomial queue [29], in
essence a weak queue, turned out to be one of the best performers mainly
because of the focus put on implementation details in its description.
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2) Priority queues that guarantee good performance in the worst-case setting
have difficulties in competing against solutions that guarantee good perfor-
mance in the amortized setting. Hence, worst-case efficient priority queues
should only be used in applications where worst-case efficiency is essential.

3) Memory management is expensive. In our early code many unnecessary mem-
ory allocations were performed. Micro benchmarking revealed that memory
management caused a significant performance slowdown.

4) In current computers, caching effects are significant. Memory-saving and
bit-packing techniques turned out to be effective.

5) For most practical values of n, the difference between lg n and O(1) is small!
Often in the literature, in particular in theoretical papers, the significance
of O(1)-time insert and decrease has been exaggerated. For heaps, for which
decrease requires logarithmic time, the loop sifting up an element is ex-
tremely tight. Unless we make element comparisons noticeable expensive, it
is difficult to come up with a faster solution.

6) For random data, the typical running time of insert , decrease , and delete
(but not delete-min) is O(1) for binary heaps, weak heaps, and weak queues.
Hence, more advanced data structures can only beat these data structures
for pathological input instances.

7) Generic component frameworks help algorithm engineers to carry out un-
biased experiments. Changing policies helped us to tune the programs sig-
nificantly while keeping the code base small.

2 Parameterized Design

The frameworks written for this study have been made part of the CPH STL
[8]. In this section we give a brief overview of the overall design of our programs.
As to the actual code, we refer to the CPH STL design documents [5,20,27].

When doing the implementation work, we followed the conventions set for the
CPH STL project. For example, the application programming interface (API) for
a meldable priority queue is specified in [19] (and corrected in [20]). All contain-
ers, as they are called in STL parlance, are interfaces that are decoupled from
their actual implementations. These interfaces are designed to be user friendly,
but to implement them only a smaller realizator is needed. There is a clear di-
vision of labour between the container and its realizator: 1) A client gives an
element to the container, which allocates a node and puts the element into that
node, and gives the node further to the realizator. When a realizator extracts a
node, it gives the node back to the container which takes care of the deallocation
of the node. 2) The container also provides (unidirectional) iterators to traverse
through the elements. Iterators can also be used as handles to elements.

As an example, the single-heap framework is parameterized to accept seven
type arguments: the type of the elements (or values) manipulated; the type of the
comparator used in element comparisons; the type of the allocator providing an
interface to allocate, construct, destroy, and deallocate objects; the type of the
nodes (or encapsulators) used for storing the elements; the type of the heapifier
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used when re-establishing heap order after an element update; the type of the
resizable array used for storing the heap; and the type of the surrogate proxy
used (by iterators) for referring to the realizator (this is needed for supporting
swap in O(1) worst-case time).

Our goal was to make the frameworks generic such that they only use the
methods provided by the policies given as type parameters and make as few as-
sumptions on their functionality as possible. The key point is that the implemen-
tation of priority-queue operations find-min, insert , decrease, delete, delete-min,
and meld is exactly the same for all realizators that a framework can create.

Our parameterized design has several advantages: a high level of code reuse,
and ease of maintenance and benchmarking. By changing the parameters, one
can easily see what the effect of a particular change is. The parameterized design
also has its disadvantages: component frameworks can be difficult to understand,
the design and development can be time consuming compared to quick-and-dirty
programming, and sometimes generic programming can be difficult because of
inadequate tool support. Moreover, a framework can become a hindrance for code
optimizations, even though we did not experience any performance slowdown
because of this type of design. However, we did experience that sometimes it was
a challenge to make a change to a framework; this required that the programmer
knew many data structures well and understood consequences of the change.

3 Single-Heap Framework

Recall that in a heap-ordered tree the element stored at a node is no smaller than
the element stored at the parent of that node. The main difference between a
binary heap [31] and a weak heap [10] is that the latter is only partially ordered.
A weak heap has the following properties: 1) The element stored at a node is
smaller than or equal to any element stored in the right subtree of that node
(half-heap ordering). 2) The root of the entire structure has no left child. 3) The
right subtree of the root is a complete binary tree (in the meaning defined in
[22, Section 2.3.4.5]). In a perfect weak heap, the right subtree of the root is a
perfect binary tree (i.e. a complete binary tree where even the last level is full).

A weak heap of size n has a clever array embedding that utilizes n auxiliary
bits ri, i ∈ {0, . . . , n−1}. For location i, the left child is found at location 2i+ ri

and the right child at location 2i + 1 − ri. For this purpose, ri is interpreted
as an integer in the range {0, 1}, initialized to 0. By flipping the bit, the status
of being a left or a right child can be exchanged, which is an essential property
to join two weak heaps in O(1) worst-case time. It is possible to construct a
weak heap of size n using n − 1 element comparisons, while for weak-heapsort
the number of element comparisons performed is at most n log n + 0.09n [12], a
value remarkably close to the lower bound of n log n−1.44n element comparisons
required by any sorting algorithm [23, Section 5.3.1].

Similar to binary heaps, array-embedded weak heaps can be extended to work
as priority queues. For delete-min, after exchanging the element stored at the
root with that stored at the last location, half-heap ordering is restored bottom-
up, joining the weak heaps that lie on the left spine of the subtree rooted at the
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right child of the root. For insert , we sift up the element until half-heap ordering
is re-established. Similarly, for decrease, we start at the node that has changed
its value, and propagate the change upwards. For delete we move the element
at the last location into the place of the deleted element, and sift that element
down as in delete-min and up as in decrease.

Framework engineering. Instead of using a linked representation, we decided
to use a resizable array. To keep the iterators valid at all times, we store the
elements indirectly and maintain pointers between the array and the elements
as proposed in [7, Chapter 6]. This does not destroy the worst-case complexity,
since for a resizable array the worst-case running time of the grow and shrinkage
operations can be kept constant (see, for example, [21]). By accepting different
heapifier policies, which provide methods for sifting down and up, we can easily
switch between weak heaps and different implementations of binary heaps. For
example, one may use an alternative bottom-up sift-down strategy (see [23,
Section 5.2.3, Exercise 18] or [30]).

4 Multiple-Heap Framework

The key idea behind an improved worst case of insert is to maintain a sequence of
perfect weak heaps instead of keeping all elements in a single heap. As this makes
relocation of subheaps frequent, we rely on a pointer-based representation. Recall
that a binomial queue is a collection of heap-ordered binomial trees [29], and that
a binomial tree is a multiary tree that stores 2h elements for some integer h ≥ 0.
A weak queue is just like a binomial queue, but each multiary tree is transformed
into a binary tree by applying the standard child-sibling transformation (see, e.g.
[22, Section 2.3.2]). A binary-tree variant of a binomial tree was already utilized
by Vuillemin [29] in his tuned implementation of binomial queues, even though
he did not give any name for the data structure.

For brevity, we call the perfect weak heaps maintained just heaps. Further-
more, we call the data structure used to keep track of the heaps a heap store.
The heaps are maintained in size order, starting from the smallest. The basic
operations to be supported include inject which inserts a new heap into the heap
store, and eject which removes the smallest heap from the heap store. For inject
it is essential that the size of the new heap is no greater than that of the smallest
heap currently in a weak queue.

After delete-min, when determining the root that contains the new minimum,
we have to iterate over the heaps. Therefore, the number of heaps has to be kept
low; the worst-case minimum for the number of heaps is �lg n� + 1. That is,
when new heaps arrive, occasional joins are necessary. A simple way to maintain
a heap store is to utilize the connection to binary numbers: If a weak queue
stores n elements and the binary representation of n is 〈b0, b1, . . . , b�lg n�〉, the
heap store contains a heap of size 2i if and only if bi = 1. The main problem
with this invariant is that sometimes inject has to perform a logarithmic number
of joins, each taking O(1) worst-case time.

There are several alternative strategies to implement the heap store such that
both inject and eject take O(1) time in the worst case still keeping the number of
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heaps logarithmic. One of the simplest approaches, mentioned already in [4], is
to rely on redundant numbers. If di denotes the number of heaps of height i and
di ∈ {0, 1, 2}, the heap store can keep the cardinality sequence 〈d0, d1, . . . , d�lg n�〉
regular, i.e. in the form

(
0 | 1 | 01∗2

)∗ using the normal syntax for regular
expressions (see, for example, [1]). If after each inject the first two heaps of the
same size are joined, the regularity of the cardinality sequence will be preserved
and the number of heaps will never be larger than �lg n�+ 1 [14]. For eject , the
smallest heap is extracted and the cardinality sequence is updated accordingly.

Framework engineering. There were several alternative ways of implementing
the nodes. In our baseline version, every node stores an element and pointers
to its left child, right child, and parent. To make swapping of nodes cheaper,
we also tried variants where elements were stored indirectly, but these versions
turned out to be slower than the baseline version. In an extreme case, only two
pointers per node would be necessary to cover the parent-child relationships, as
observed by Brown [4], but this space optimization did not pay off; the space
optimized versions were considerably slower than the baseline version.

The framework supports two types of heap stores: one that maintains a proxy
for each heap and keeps these proxies in a linked list, and another that main-
tains the roots in a linked list by reusing the pointers at the nodes. The latter
idea goes back to Vuillemin [29]. Also, following Vuillemin’s original proposal
the heights of the heaps are maintained in a bit vector, which can be stored in a
single word, since the heights are between 0 and � lg n� + 1. Both types of heap
stores could be equipped with the binary number system or redundant binary
number system. For the redundant system, different strategies for maintaining
the information about the pairs of heaps having the same size were tried. The
best alternative turned out to a preallocated stack storing pointers to the first
member of each pair. In general, all solutions relying on dynamic storage man-
agement were noticeable slower than the versions that avoided it. Overall, the
overhead incurred by the redundant system turned out to be negligible.

We observed that there was a huge difference in the typical running times
for the two known ways of dealing with delete. Brown [4] called the two strate-
gies top-down and bottom-up. The top-down strategy sifts up the node being
deleted to the root and removes the root, whereas the bottom-up strategy finds
a replacement node for the node being deleted, makes the replacement, and sifts
down or up the new node. In a typical case, assuming that we are not deleting
the minimum, the amount of work done by the bottom-up approach is O(1),
whereas the amount of work involved in the top-down approach is logarithmic.

5 Relaxed-Heap Framework

In relaxed weak queues the new ingredient is that the half-ordering violations
incurred by decrease operations are resolved by marking. When there are too
many marked nodes, the number of marked nodes is reduced. Driscoll et al. [9]
introduced this idea in their relaxed heaps, and Elmasry et al. [14] observed that
the idea carries over into the binary-tree setting. The other operations find -min ,
insert , delete, delete-min, and meld can be implemented as for weak queues.
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We call the data structure used to keep track of all markings a mark store.
The fundamental operations to be supported include mark which marks a node
to denote that a half-ordering violation may occur at that node, unmark which
removes a marking, and reduce which removes one or more unspecified markings.
A run is a maximal sequence of two or more marked nodes that are consecutive
on the left spine of a subtree. More formally, a node is a member of a run if it is
marked, a left child, and its parent is marked. A node is the leader of a run if it
is marked, its left child is marked, and it is either a right child or a left child of
a non-marked parent. A marked node that is neither a member nor a leader of
a run is called a singleton. If at some height there are more than one singleton,
these singletons form a team. To summarize, the set of all nodes is divided into
four disjoint categories: non-marked nodes, members, leaders, and singletons.

A pair (type, height) with type being either non-marked, member, leader, or
singleton; and height being a value in the range {0, 1, . . . , �lg n�} denotes the
state of a node. The states are stored explicitly at the nodes. Transformations
used when reducing the number of marked nodes induce a constant number of
state transitions. A simple example of such a transformation is a join, where the
height of the new root is increased by one.

Other transformations (see Fig. 1) are cleaning, parent, sibling, and pair trans-
formations. A cleaning transformation rotates a marked left child to a marked
right one, provided that its sibling and parent are non-marked. A parent trans-
formation reduces the number of marked nodes or pushes the marking one level
up. A sibling transformation reduces the number of markings by eliminating
two markings, while generating a new marking one level up. A pair transfor-
mation has a similar effect, but it operates on disconnected trees. These four
transformations are combined to perform a singleton or run transformation.

In a run-relaxed weak queue [14], which is similar to a run-relaxed heap [9], an
invariant is maintained that, after each priority-queue operation, the number of
markings is never larger than � lg n�. When this bound is exceeded, a singleton
or a run transformation is applied to restore the invariant. The running time of
decrease can be guaranteed to be O(1) in the worst case. In a rank-relaxed weak
queue [11], which is similar to a rank-relaxed heap [9], the transformations are
applied in an eager way by performing as many reduce operations as possible af-
ter each priority-queue operation that introduces new markings. The worst-case
cost of decrease can be logarithmic, but the amortized cost is a constant. From
a practical perspective, amortization leads to a slightly more efficient implemen-
tation, as verified in [11].

Framework engineering. The first implementation of a mark store that sup-
ports mark , unmark , and reduce in O(1) worst-case time was described in [9].
In this solution it was necessary to maintain a doubly-linked list of leaders, a
doubly-linked list of teams, a doubly-linked list of singletons at each height, and
a resizable array of pointers to the beginning of each singleton list. In our engi-
neered implementation we use no lists, but keep pointers to the marked nodes in
a preallocated array and maintain another preallocated array of bit vectors, each
occupying a single word, indicating which of the marked nodes are singletons of
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Fig. 1. Primitives used by reduce : a) cleaning transformation, b) parent transformation,
c) sibling transformation, and d) pair transformation

particular height. Additionally, we need one bit vector to denote which of the
marked nodes are leaders and another to indicate which of the singleton sets
have more than one node. To allow fast unmark , every marked node stores an
index referring to the pointer array maintained in the mark store. The bit-vector
class features the fast selection of the most significant 1-bit.

6 Experiments

In our benchmarks we compared priority queues from the weak-heap family
(weak heap, weak queue, and run-relaxed weak queue) to their closest competi-
tors (binary heap [31], Fibonacci heap [16], and pairing heap [28]). The last two
were taken from LEDA (version 6.2) [24]. The other data structures were the
engineered versions that we implemented for the CPH STL [8].

We carried out several experiments for different types of input data (worst-
case and randomly-generated instances) in different environments (compilers and
computers varied) considering different kinds of performance indicators (number



432 A. Bruun et al.

of element comparisons, clock cycles, and CPU time). The results obtained did
not vary much across the tested environments. Also, the results obtained by the
clock-cycle and CPU-time measurements were similar.

When engineering our implementations we carried out several micro-bench-
marks. Due to space limitations, we do not report any detailed results on them,
but refer to [5]. For randomly-generated data, the average running time of
insert , decrease, and delete (but not delete-min) is O(1) for binary and weak
heaps. Since these structures are simple, other more advanced structures have
difficulties in beating them. For the structures having good amortized time
bounds, insert and decrease are fast because most work is delayed till delete
and delete-min. Due to space limitations, we leave out the results for randomly-
generated input data, but present them in the full version of this paper.

We find the results of synthetic benchmarks involving the basic operations in-
teresting and report these results here. These benchmarks were conducted on a
laptop computer (model Intel R© CoreTM2 CPU T5600 @ 1.83GHz) under Ubuntu
9.10 operating system (Linux kernel 2.6.31-19-generic) using g++ C++ compiler
(gcc version 4.4.1 with options -DNDEBUG -Wall -std=c++0x -pedantic -x c++
-fno-strict-aliasing -O3). The size of L2 cache of this computer was about
2 MB and that of the main memory 1 GB. The input data was integers of
type long long and, for the LEDA data structures, pairs of type (long long,
struct empty) since in LEDA the elements are expected to be (priority, infor-
mation) pairs. Besides comparing integer elements with their built-in comparison
function, the comparator increased a global counter to gather comparison counts.

In order to avoid the problem caused by a bounded clock granularity, which in
the test computer was 10 milliseconds, for given n we repeated each experiment
	106/n
 times, each time with a new priority queue. The standard dual-loop
strategy was used to eliminate the time taken by all initializations. All running
times are reported in microseconds, and they are average times per operation.

In Fig. 2, 3, 4, and 5 we give the average running times used and the number
of element comparisons performed per insert , decrease, delete, and delete-min,
respectively. In the insert experiment, the integers between 0 and n − 1 were
inserted in reversed sorted order which forced binary and weak heaps to use
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logarithmic time for each operation. In spite of this, the running times were
competitive. In the decrease experiment, the integers were inserted in random
order, and thereafter the values were updated such that each new value became
the new minimum element; the time used by decrease operations was measured.
This arrangement guaranteed that decrease took logarithmic time on an average
for a binary heap, weak heap, and weak queue. Even in such extreme situation,
these three data structures were competitive against theoretically more robust
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solutions. In the delete experiment, the integers were inserted in random order
and extracted in their insertion order; the time used by delete operations was
measured. All our implementations relied on the bottom-up deletion strategy;
this experiment confirmed that this was a good choice. In the delete-min ex-
periment, the integers were inserted in random order, and the minimum was
extracted until the data structure became empty; the time used by delete-min
operations was measured. Even if a weak heap is optimal with respect to the
number of element comparisons, a weak queue was faster. For all problem sizes,
a Fibonacci heap used about 3 times more time than a weak queue.

The average running times reported can be used to estimate the overhead
caused by the worst-case behaviour. For data structures that do not provide good
performance in the worst-case setting, the running times of individual operations
can fluctuate considerably. For example, for binary and weak heaps the worst-
case running time of a single insert was linear since we relied on std::vector,
not on a worst-case efficient resizable array. For Fibonacci and pairing heaps
the worst-case running time of a single delete-min is linear. Even for Vuillemin’s
implementation of a weak queue the running times of insert and decrease can
vary between Θ(1) and Θ(lg n). In applications, where such fluctuations are
intolerable, only a run-relaxed weak queue can guarantee stable behaviour, but
as shown, this stability has its price.

In particular for randomly-generated input data, the performance of simple
data structures like binary and weak heaps is good. These simple data structures
fall in short only when melding has to be efficient. Namely, for our implementa-
tions, melding two weak heaps (or binary heaps) of size m and n, m ≤ n, takes
Θ(m lg n) time in the worst case. Even though more efficient implementations
are possible, one should consider using some of other data structures instead.
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Abstract. Maximizing the quality index modularity has become one of
the primary methods for identifying the clustering structure within a
graph. As contemporary networks are not static but evolve over time,
traditional static approaches can be inappropriate for specific tasks. In
this work we pioneer the NP-hard problem of online dynamic modu-
larity maximization. We develop scalable dynamizations of the currently
fastest and the most widespread static heuristics and engineer a heuristic
dynamization of an optimal static algorithm. Our algorithms efficiently
maintain a modularity-based clustering of a graph for which dynamic
changes arrive as a stream. For our quickest heuristic we prove a tight
bound on its number of operations. In an experimental evaluation on
both a real-world dynamic network and on dynamic clustered random
graphs, we show that the dynamic maintenance of a clustering of a chang-
ing graph yields higher modularity than recomputation, guarantees much
smoother clustering dynamics and requires much lower runtimes. We con-
clude with giving recommendations for the choice of an algorithm.

1 Introduction

Graph clustering is concerned with identifying and analyzing the group struc-
ture of networks. Generally, a partition (i.e., a clustering) of the set of nodes is
sought, and the size of the partition is a priori unknown. A plethora of formal-
izations for what a good clustering is exist, good overviews are, e.g., [21,3]. In
this work we set our focus on the quality function modularity, coined by Girvan
and Newman [4], which has proven itself feasible and reliable in practice, espe-
cially as a target function for maximization (see [2] for further references), which
follows the paradigm of parameter-free community discovery [5]. The foothold
of this work is that most networks in practice are not static. Iteratively clus-
tering snapshots of a dynamic graph from scratch with a static method has
several disadvantages: First, runtime cannot be neglected for large instances
� This work was partially supported by the DFG under grant WA 654/15-1. The full

version of this extended abstract is available as a technical report [1].
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or environments where computing power is limited [6], even though very fast
clustering methods have been proposed recently [7,8]. Second, heuristics for the
NP-hard [2] optimization of modularity suffer from local optima—this might

G G′Δ

C(G) C′(G′)A
TT

Fig. 1. Problem setting

be avoided by dynamically maintaining a good solu-
tion. Third, static heuristics are known not to react
in a continuous way to small changes in a graph. The
lefthand figure illustrates the general situation for up-
dating clusterings. A graph G is updated by some
change Δ, yielding G′. We investigate procedures A
that update the clustering C(G) to C′(G′) without re-
clustering from scratch, but work towards the same
aim as a static technique T does.

Related Work. Dynamic graph clustering has so far been a rather untrodden
field. Recent efforts [9] yielded a method that can provably dynamically maintain
a clustering that conforms to a specific bottleneck-quality requirement. Apart
from that, there have been attempts to track communities over time and interpret
their evolution, using static snapshots of the network, e.g. [10,11], besides an
array of case studies. In [12] a parameter-based dynamic graph clustering method
is proposed which allows user exploration. Parameters are avoided in [13] where
the minimum description length of a graph sequence is used to determine changes
in clusterings and the number of clusters. In [14] an explicitly bicriterial approach
for low-difference updates and a partial ILP are proposed, the latter of which
we also discuss. To the best of our knowledge no fast procedures for updating
modularity-based clustering in general dynamic graphs have been proposed yet.
Beyond graph theory, in data mining the issue of clustering an evolving data set
has been addressed in, e.g., [15], where the authors share our goal of finding a
smooth dynamic clustering. The literature on static modularity-maximization is
quite broad and we recommend [2,3,16] for further reading. Spectral methods,
e.g., [17], and techniques based on random walks [18,19], do not lend themselves
well to dynamization due to their non-continuous nature. Variants of greedy
agglomeration [20,7], however, work well, as we shall see.

Our Contribution. In this work we present, analyze and evaluate a num-
ber of concepts for efficiently updating modularity-driven clusterings. We prove
the NP-hardness of dynamic modularity optimization and develop heuristic dy-
namizations of the most widespread [20] and the fastest [7] static algorithms,
alongside apt strategies to determine the search space. For our fastest procedure,
we can prove a tight bound of Θ(log n) on the expected number of operations
required. We then evaluate these and a heuristic dynamization of an ILP. We
compare the algorithms with their static counterparts and evaluate them ex-
perimentally on random preclustered dynamic graphs and on large real-world
instances. We reveal that the dynamic maintenance of a clustering yields higher
quality than recomputation, smoother clustering dynamics and lower runtimes.

Notation. Throughout this paper, we will use the notation of [21]. We assume
that G = (V, E, ω) is an undirected, weighted, and simple graph with the edge
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weight function ω : E → R≥0. We set |V | =: n, |E| =: m and C = {C1, . . . , Ck}
to be a partition of V . We call C a clustering of G and sets Ci clusters. C(v) is
C  v. A clustering is trivial if either k = 1 (C1), or all clusters contain only one
element, i.e., are singletons (CV ). We identify a cluster Ci with its node-induced
subgraph of G. Then E(C) :=

⋃k
i=1 E(Ci) are intra-cluster edges and E \ E(C)

inter-cluster edges, with cardinalities m(C) and m(C), respectively. Further, we
generalize degree deg(v) to clusters as deg(C) :=

∑
v∈C deg(v). When using edge

weights, all the above definitions generalize naturally by using ω(e) instead of 1
when counting edge e. Weighted node degrees are called ω(v). A dynamic graph
G = (G0, . . . , Gtmax) is a sequence of graphs, with Gt = (Vt, Et, ωt) being the
state of the dynamic graph at time step t. The change Δ(Gt, Gt+1) between
timesteps comprises a sequence of b atomic events on Gt, which we detail later.
We have the sequence of changes arrive as a stream.

The Quality Index Modularity. In this work we set our focus on modular-
ity [4], a measure for the goodness of a clustering. Just like any other quality
index for clusterings (see, e.g., [21,3]), modularity does have certain drawbacks
such as non-locality and scaling behavior [2] or resolution limit [22]. However, be-
ing aware of these peculiarities, modularity can very well be considered a useful
measure that closely agrees with intuition on a wide range of real-world graphs,
as observed by myriad studies. Modularity can be formulated as

mod(C) :=
m(C)

m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

(weighted analogous) . (1)

Roughly speaking, modularity measures the fraction of edges which are covered
by a clustering and compares this value to its expected value, given a random
rewiring of the edges which, on average, respects node degrees. This definition
generalizes in a natural way as to take edge weights ω(e) into account, for a
discussion thereof see [23] and [24]. ModOpt, the problem of optimizing modu-
larity is NP-hard [2], but modularity can be computed in linear time and lends
itself to a number of greedy maximization strategies. For the dynamic setting,
the following corollary corroborates the use of heuristics (see [1] for a proof).

Corollary 1 (DynModOpt is NP-hard). Given graph G, a modularity-opti-
mal clustering Copt(G) and an atomic event Δ to G, yielding G′. It is NP-hard
to find a modularity-optimal clustering Copt(G′).

Measuring the Smoothness of a Dynamic Clustering. By comparing
consecutive clusterings, we quantify how smooth an algorithm manages the tran-
sition between two steps, an aspect which is crucial to both readability and ap-
plicability. An array of measures exist that quantify the (dis)similarity between
two partitions of a set; for an overview and further references, see [25]. Our
results strongly suggest that most of these widely accepted measures are qual-
itatively equivalent in all our (non-pathological) instances (see full version [1]).
We thus restrict our view to the (graph-structural) Rand index [25], being a
well known representative; it maps two clusterings into the interval [0, 1], i.e.,
from equality to maximum dissimilarity: Rg(C, C′) := 1−(|E11|+ |E00|)/m, with
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E11 = {{v, w} ∈ E : C(v) = C(w) ∧ C′(v) = C′(w)}}, and E00 the analog for in-
equality. We use the intersection of two graphs when comparing their clusterings.
Low distances correspond to smooth dynamics.

2 The Clustering Algorithms

Formally, a dynamic clustering algorithm is a procedure which, given the pre-
vious state of a dynamic graph Gt−1, a sequence of graph events Δ(Gt−1, Gt)
and a clustering C(Gt−1) of the previous state, returns a clustering C′(Gt) of
the current state. While the algorithm may discard C(Gt−1) and simply start
from scratch, a good dynamic algorithm will harness the results of its previous
work. A natural approach to dynamizing an agglomerative clustering algorithm
is to break up those local parts of its previous clustering, which are most likely
to require a reassessment after some changes to the graph. The half finished
instance is then given to the agglomerative algorithm for completion. A crucial
ingredient thus is a prep strategy S which decides on the search space which is to
be reassessed. We will discuss such strategies later, until then we simply assume
that S breaks up a reasonable part of C(Gt−1), yielding C̃(Gt−1) (or C̃(Gt) if
including the changes in the graph itself). We call C̃ the preclustering and nodes
that are chosen for individual reassessment free (can be viewed as singletons).

Formalization of Graph Events. We describe our test instances in more detail
later, but for a proper description of our algorithms, we now briefly formalize
the graph events we distinguish. Most commonly edge creations and removals
take place, and they require the incident nodes to be present before and after the
event. Given edge weights, changes require an edge’s presence. Node creations
and removals in turn only handle degree zero nodes, i.e., for an intuitive node
deletion we first have to remove all incident edges. To summarize such compound
events we use time step events, which indicate to an algorithm that an updated
clustering must now be supplied. Between time steps it is up to the algorithm
how it maintains its intermediate clustering. Additionally, batch updates allow
for only running an algorithm after a scalable number of b timesteps.

2.1 Algorithms for Dynamic Updates of Clusterings

Alg. 1. Global(G, C)

while ∃Ci, Cj ∈ C : dQ(Ci, Cj) ≥ 0 do1

(C1, C2) ← arg max
Ci,Cj∈C

dQ(Ci, Cj)
2

merge(C1, C2)3

The Global Greedy Algo-
rithm. The most prominent
algorithm for modularity maxi-
mization is a global greedy algo-
rithm [20], which we call Global
(Alg. 1). Starting with singletons,
for each pair of clusters, it determines the increase in modularity dQ that can
be achieved by merging the pair and performs the most beneficial merge. This is
repeated until no more improvement is possible. As the static (pseudo-dynamic)
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algorithm sGlobal1, we let this algorithm cluster from scratch at each timestep
for comparison. By passing a preclustering C̃(Gt) to Global we can define the
properly dynamic algorithm dGlobal. Starting from C̃(Gt) this algorithm lets
Global perform greedy agglomerations of clusters.

The Local Greedy Algorithm. In a recent work [7] the simple mechanism
of the aforementioned Global has been modified as to rely on local decisions (in
terms of graph locality), yielding an extremely fast and efficient maximization.
Instead of looking globally for the best merge of two clusters, Local, as sketched
out in Alg. 2, repeatedly lets each node consider moving to one of its neighbors’
clusters, if this improves modularity ; this potentially merges clusters, especially
when starting with singletons. As soon as no more nodes move, the current
clustering is contracted, i.e., each cluster is contracted to a single node, and
adjacencies and edge weights between them are summarized. Then, the process
is repeated on the resulting graph which constitutes a higher level of abstraction;
in the end, the highest level clustering is decisive about the returned clustering:
The operation unfurl assigns each elementary node to a cluster represented by the
highest level cluster it is contained in. We again sketch out an algorithm which
serves as the core for both a static and a dynamic variant of this approach, as
shown in Alg. 2. As the input, this algorithm takes a hierarchy of graphs and
clusterings and a search space policy P . Policy P affects the graph contractions,
in that P decides which nodes of the next level graph should be free to move.
Note that the input hierarchy can also be flat, i.e., hmax = 0, then line 11
creates all necessary higher levels. Again posing as a pseudo-dynamic algorithm,

Alg. 2. Local(G0...hmax , C0...hmax , P )

h ← 01

repeat2

(G, C) ← (Gh, Ch)3

repeat4

forall free v ∈ V do5

if max
v∈N(u)

dQuv ≥ 0 then
6

w ← arg max
v∈N(u)

dQuv7

move(u, C(w))8

until no more changes9

Ch ← C10

(Gh+1, C̃h+1)←11

contractP (Gh, Ch)
h ← h + 112

until no more real contractions13

C(G0) ← unfurl(Ch−1)14

the static variant (as in [7]), sLo-
cal, passes only (Gt,C̃V ) to Local,
such that it starts with singletons
and all nodes freed, instead of a
proper preclustering. Policy P is
set to tell the algorithm to start
from scratch on all higher levels
and to not work on previous re-
sults in line 11, i.e., in C̃h+1 again
all nodes in the contraction are
free singletons. The dynamic vari-
ant dLocal remembers its old re-
sults. It passes the changed graph,
a current preclustering of it and
all higher-level contracted structures
from its previous run to Local:
(Gt, G1,...,hmax

old , C̃, C1,...,hmax
old , P ). In

level 0, the preclustering C̃ defines
the set of free nodes. In levels

1 For historical reasons, sGlobal appears in plots as StaticNewman, dGlobal as Newman,
sLocal as StaticBlondel and dLocal as Blondel, based on the algorithms’ authors.
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beyond 0, policy P is set to have the contract-procedure free only those nodes of
the next level, that have been affected by lower level changes (or their neighbors
as well, tunable by policy P ). Roughly speaking, dLocal starts by letting all free
(elementary) nodes reconsider their cluster. Then it lets all those (super-)nodes
on higher levels reconsider their cluster, whose content has changed due to lower
level revisions.

ILP. While optimality is out of reach, the problem can be cast as an ILP [2].
A distance relation Xuv indicates whether elements u and v are in the same
cluster, and simple constraints keep these X-variables consistent. Since runtimes
for the full ILP reach days for more than 200 nodes, a promising idea pioneered
in [14] is to solve a partial ILP (pILP). Such a program takes a preclustering—of
much smaller complexity—as the input, and solves this instance, i.e., finishes the
clustering, optimally via an ILP; a singleton preclustering yields a full ILP. We
introduce two variants, (i) the argument noMerge prohibits merging pre-clusters,
and only allows free nodes to join clusters or form new ones, and (ii) merge allows
existing clusters to merge. For both variants we need to add constraints and
terms to the standard formulation using solely variables Xuv. Roughly speaking,
for (i), variables YuC indicating the distance of node u to cluster C are introduced
constraints ensure their consistency with the X-variables; for (ii), we additionally
need variables ZCC′ for the distance between clusters, constrained just as Xuv.
See the full paper [1] for details on all these ILP formulations. The dynamic
clustering algorithms which first solicit a preclustering and then call pILP are
called dILP. Note that they react on any edge event; accumulating events until
a timestep occurs can result in prohibitive runtimes.

Table 1. EOO operations, al-
lowed/disallowed via parameters

Operation Effect
merge(u,v) C(u) ∪ C(v)
shift(u,v) C(u) − u, C(v) + u
split(u) ({u}, C(u) \ u) ← C(u)

Elemental Optimizer. The elemental op-
erations optimizer, EOO, performs a limited
number of operations, trying to increase the
quality. Specifically, we allow moving or
splitting off nodes and merging clusters, as
listed in Table 1. Although rather limited
in its options, EOO or very similar tools for
local optimization are often used as post-
processing tools (see [26] for a discussion). Our algorithm dEOO simply calls
EOO at each time step.

2.2 Strategies for Building the Preclustering

We now describe prep strategies which generate a preclustering C̃, i.e., define
the search space. We distinguish the backtrack strategy, which refines a cluster-
ing, and subset strategies, which free nodes. The rationale behind the backtrack
strategy is that selectively backtracking the clustering produced by Global en-
ables it to respect changes to the graph. On the other hand, subset strategies are
based on the assumption that the effect of a change on the clustering structure
is necessarily local. Both output a half-finished preclustering.
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The backtrack strategy (BT) records the merge operations of Global and back-
tracks them if a graph modification suggests their reconsideration. We detail in
the full paper [1] what we mean by “suggests”, but for brevity we just state that
the actions listed for BT provably require very little asymptotic effort and offer
Global a good chance to find an improvement. Speaking intuitively, the reactions
to a change in (non-)edge {u, v} are as follows (weight changes are analogous):
For intra-cluster additions we backtrack those merge operations that led to u
and v being in the same cluster and allow Global to find a tighter cluster for
them, i.e., we separate them. For inter-cluster additions we track back u and v
individually, until we isolate them as singletons, such that Global can re-classify
and potentially merge them. Inter-cluster deletions are not reacted on. On intra-
cluster deletions we again isolate both u and v such that Global may have them
find separate clusters. Note that this strategy is only applicable to Global; con-
ferring it to Local is neither straightforward nor promising as Local is based on
node migrations in addition to agglomerations. Anticipating this strategy’s low
runtime, we can give a bound on the expected number of backtrack steps for a
single call of the crucial operation isolate (proven in the full paper [1]).

Theorem 1. Assume that a backtrack step divides a cluster randomly. Then,
for the number I of steps isolate(v) requires, it holds: E{I} ∈ Θ(ln n).

A subset strategy is applicable to all dynamic algorithms. It frees a subset Ṽ of
individual nodes that need reassessment and extracts them from their clusters.
We distinguish three variants which are all based on the hypothesis that local
reactions to graph changes are appropriate. Consider an edge event involving
{u, v}. The breakup strategy (BU) marks the affected clusters Ṽ = C(u)∪ C(v);
the neighborhood strategy (Nd) with parameter d marks Ṽ = Nd(u) ∪ Nd(v),
where Nd(w) is the d-hop neighborhood of w; the bounded neighborhood strat-
egy (BNs) with parameter s marks the first s nodes found by a breadth-first
search simultaneously starting from u and v.

3 Experimental Evaluation of Dynamic Algorithms2

Instances. We use both generated graphs and real-world instances. We briefly
describe them here, but for more details please see [27] and [14].

Random Graphs {ran}. Our Erdős-Rényi-type generator builds upon [28] and
adds to this dynamicity in all graph elements and in the clustering, i.e., nodes
and edges are inserted and removed and ground-truth clusters merged and split,
always complying with sound probabilities. The generator’s own clustering serves
as a reference to compare our algorithms to, see [27] for details. In later plots we
use selected random instances, however, descriptions apply to all such graphs.2

2 For many more experimental results and plots as well as for implementation
notes see the full paper [1], supplementary information is stored at i11www.iti.uni-
karlsruhe.de/projects/spp1307/dyneval
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EMail Graph Ge. The network of email contacts at the department of com-
puter science at KIT is an ever-changing graph with an inherent clustering:
Workgroups and projects cause increased communication. We weigh edges by
the number of exchanged emails during the past seven days, thus edges can
completely time out; degree-0 nodes are removed from the network. Ge has be-
tween 100 and 1500 nodes depending on the time of year, and about 700K events
spanning about 2.5 years. It features a strong power-law degree distribution.

arXiv Graphs {arx}. Since 1992 the arXiv.org e-Print archive3 is a popular
repository for scientific e-prints, stored in several categories alongside times-
tamped metadata. We extracted networks of collaboration between scientists
based on coauthorship. E-prints induce equally weighted clique-edges among the
contributors such that each author gains a total edge weight of 1.0 per e-print
contributed to. E-prints time out after two years and disconnected authors are
removed.5 As these networks are ill-natured for local updates, we use them as
tough trials. We show results on two categories with large connected components.

Fundamental Results. For the sake of readability, we use a moving average
in plots for distance and quality in order to smoothen the raw data. We con-
sider the criteria quality (modularity), smoothness (Rg) and runtime (ms), and
additionally |C| as a structural indicator.

Discarding dEOO. In a first feasibility test, dEOO immediately falls behind all
other algorithms in terms of quality (see full paper [1]), an observation substan-
tiated by the fact that dEOO works better if related to some base algorithm [26].
Moreover, runtimes for dEOO as the sole technique are infeasible for large graphs.

Local Parameters. It has been stated in [7] that the order in which Local
considers nodes is irrelevant. In terms of average runtime and quality we can
confirm this for sLocal, though a random order tends to be less smooth; for
dLocal the same observation holds (see full version [1]). However, since node
order does influence specific values, a random order can compensate the effects
this might have in pathological cases. Considering only affected nodes or also
their neighbors in higher levels, does not affect any criterion on average.

pILP Variants. Allowing the ILP to merge existing clusters takes longer, and
clusters coarser and with a slightly worse modularity; we therefore reject it.

Heuristics vs. dILP. A striking observation about dILP is the fact that it
yields worse quality than dLocal and sLocal with identical prep strategies. Being
locally optimal seems to overfit, a phenomenon that does not weaken over time
and persists throughout most instances. Together with its high runtime and only
small advantages in smoothness, dILP is ill-suited for updates on large graphs.

Static Algorithms. Briefly comparing sGlobal and sLocal we can state that
sLocal consistently yields better quality and a finer yet less smooth clustering
(see full version [1]). This generally applies to the corresponding dynamic algo-
rithms as well. In terms of speed, however, sGlobal hardly lags behind sLocal,
especially for small graphs with many connected components, where sLocal can-
not capitalize on its strength of quickly reducing the size of a large instance.

3 Website of e-print repository: arxiv.org



444 R. Görke et al.

0 500 1000 1500 2000

0.05

0.10

0.15

0.20

0.25

Fig. 2. Rg, {ran} (top to bottom at
right end): sGlobal (1st) and sLocal
(2nd) are less smooth (factor 100) than
dLocal@BN4, dGlobal@BN16 (bottom);
dGlobal@BT (3rd) competes well
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Fig. 3. Modularity, {ran} (top to bot-
tom at right end): dGlobal@BT (4th) and
dGlobal@BN16 (3rd) beat sGlobal (5th);
dLocal@BN4 (1st) beats sLocal (2nd)

For such instances, separately maintaining and handling connected components
could thus reasonably speed up sLocal, but would also do so for sGlobal.

Prep Strategies. We now determine the best choice of prep strategies and
their parameters for dGlobal and dLocal. In particular, we evaluate Nd for d ∈
{0, 1, 2, 3} and BNs for s ∈ {2, 4, 8, 16, 32}, alongside BU and BT. Throughout
our experiments d = 0 (or s = 2) proved insufficient, and is therefore ignored in
the following. For dLocal, increasing d has only a marginal effect on quality and
smoothness, while runtime grows sublinearly, which suggests d = 1. For dGlobal,
Nd risks high runtimes for depths d > 1, especially for dense graphs. In terms
of quality N1 is the best choice, higher depths seem to deteriorate quality—
a strong indication that large search spaces contain local optima. Smoothness
approaches the bad values of sGlobal for d > 2. For BN, increasing s is essen-
tially equivalent to increasing d, only on a finer scale. Consequently, we can
report similar observations. For dLocal, BN4 proved slightly superior. dGlobal’s
quality benefits from increasing s in this range, but again at the cost of speed
and smoothness, so that BN16 is a reasonable choice. BU clearly falls behind
in terms of all criteria compared to the other strategies, and often mimics the
static algorithms. dGlobal using BT is by far the fastest algorithm, confirming
our theoretical predictions from Sec. 2.2, but still produces competitive qual-
ity. However, it often yields a smoothness in the range of sGlobal. Summarizing,
our best dynamic candidates are the algorithms dGlobal@BT and dGlobal@BN16
(achieving a speedup over sGlobal of up to 1k and 20 at 1k nodes, respectively)
and algorithm dLocal@BN4(speedup of 5 over sLocal).

Comparison of the Best. As a general observation, as depicted in Fig. 3,
each dynamic candidate beats its static counterpart in terms of modularity.
On the generated graphs, dLocal is superior to dGlobal, and faster. In terms of
smoothness (Fig. 2), dynamics (except for dGlobal@BT) are superior to statics
by a factor of ca. 100, but even dGlobal@BT beats them.



Modularity-Driven Clustering of Dynamic Graphs 445

Trials on arXiv Data. As an independent data set, we use our arXiv grahps
for testing our results from Ge and the random instances. These graphs consist
solely of glued cliques of authors (papers), established within single timesteps
where potentially many new nodes and edges are introduced. Together with
modularity’s resolution limit [22] and its fondness of balanced clusters and a
non-arbitrary number thereof in large graphs [30], these degenerate dynamics are
adequate for fooling local algorithms that cannot regroup cliques all over as to
modularity’s liking: Static algorithms constantly reassess a growing component,
while dynamics using N or BN will sometimes have no choice but to further
enlarge some growing cluster. Locally this is a good choice, but globally some
far-away cut might qualify as an improvement over pure componentwise growth.

However, we measured that dGlobal@BT easily keeps up with the static algo-
rithms’ modularity, being able to adapt its number of clusters appropriately. The
dynamic algorithms using other prep strategies do struggle to make up for their
inability to re-cluster; however, they still only lag behind by about 1%. Figures 4
and 5 show modularity for coarse and fine batches, respectively, using the arXiv
category Nuclear Theory (1992-2010, 33K e-prints, 200K elementary events, 14K
authors). As before, dynamics are faster and smoother. For the coarse batches,
speedups of 10 to 2K (BT) are attained; for fine batches, these are 100 to 2K.
In line with the above observations, their clusterings are slightly coarser (except
for dGlobal@BT) (see full paper [1] for further insights).

Summary of Insights. The outcomes of our evaluation are very favorable for
the dynamic approach in terms of all three criteria. Furthermore, the dynamics
exhibit the ability to react quickly and adequately to changes in the random
generator’s ground-truth clustering (see full paper [1]).

We observed that dLocal is less susceptible to an increase of the search space
than dGlobal. However, our results argue strongly for the locality assumption in
both cases—an increase in the search space beyond a very limited range is not

Fig. 4. Modularity, {arx}, batch size 50
e-prints (top to bottom at right end):
Backtracking (dGlobal@BT) (2nd) easily
follows the static algorithms (sLocal (1st)
and sGlobal (3rd)); even dLocal@BN4

(4th) and dGlobal@BN16 (5th) lag behind
by only ∼ 1%

Fig. 5. Modularity, {arx}, batch size
1 e-print, dynamics only (top to bot-
tom at right end): dGlobal@BT (1st)
excels, followed by dLocal@N1 (3rd)
and dLocal@BN4 (2nd) and then
dGlobal@BN16 (4th) and dGlobal@N1

(5th) whom finer batches don’t help
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justified when trading off runtime against quality. On the contrary, quality and
smoothness may even suffer for dLocal. Consequently, N and BN strategies with a
limited range are capable of producing high-quality clusterings while excelling at
smoothness. The BT strategy for dGlobal yields competitive quality at unrivaled
speed, but at the expense of smoothness. For dLocal a gradual improvement of
quality and smoothness over time is observable, which can be interpreted as an
effect reminiscent of simulated annealing, a technique that has been shown to
work well for modularity maximization [29]. Our data indicates that the best
choice for an algorithm in terms of quality may also depend on the nature of
the target graph. While dLocal surpasses dGlobal on almost all generated graphs,
dGlobal is superior on our real-world instance Ge. We speculate that this is due to
Ge featuring a power law degree distribution in contrast to the Erdős-Rényi-type
generated instances. In turn, our arXiv trial graphs, which grow and shrink in a
volatile but local manner, allow a for a small margin of quality improvement, if
the clustering is regularly adapted globally (re-balanced and coarsened/refined).
Only the statics and dGlobal@BT are able to do this, however, at the cost of
smoothness. Universally, the latter algorithm is the fastest. Concluding, some
dynamic algorithm always beats the static algorithms; backtracking is preferable
for locally concentrated or monotonic graph dynamics and a small search space
is to be used for randomly distributed changes in a graph.

4 Conclusion

As the first work on modularity-driven clustering of dynamic graphs, we deal
with the NP-hard problem of updating a modularity-optimal clustering after a
change in the graph. We developed dynamizations of the currently fastest and
the most widespread heuristics for modularity-maximization and evaluated them
and a dynamic partial ILP for local optimality. For our fastest update strategy,
we can prove a tight bound of Θ(log n) on the expected number of backtrack
steps required. Our experimental evaluation on real-world dynamic networks and
on dynamic clustered random graphs revealed that dynamically maintaining a
clustering of a changing graph does not only save time, but also yields higher
modularity than recomputation—except for degenerate graph dynamics—and
guarantees much smoother clustering dynamics. Moreover, heuristics are better
than being locally optimal at this task. Surprisingly small search spaces work
best, avoid trapping local optima well and adapt quickly and aptly to changes
in the ground-truth clustering, which strongly argues for the assumption that
changes in the graph ask for local updates on the clustering.
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Abstract. Given a directed graph whose vertices are labeled with propo-
sitional constraints, is there a variable assignment that connects two
given vertices by a path of vertices that evaluate to true? Constrained
reachability is a powerful generalization of reachability and satisfiability
problems and a cornerstone problem in program analysis. The key in-
gredient to tackle these computationally hard problems in large graphs
is the efficient construction of a short path condition: A formula whose
satisfiability is equivalent to constrained reachability and which can be
fed into a state-of-the-art constraint solver.

In this work, we introduce a new paradigm of decompositions of di-
graphs with a source and a target, called gateway decompositions. Based
on this paradigm, we provide a framework for the modular generation
of path conditions and an efficient algorithm to compute a fine-grained
gateway decomposition. In benchmarks, we show that especially the com-
bination of our decomposition and a novel arc filtering technique consid-
erably reduces the size of path conditions and the runtime of a standard
SAT solver on real-world program dependency graphs.

1 Introduction

Constrained reachability (CR) is a straightforward, yet powerful generalization
of the well-known satisfiability problem: Given a digraph with propositional
formulas as vertex or arc labels, it asks whether for some truth assignment there
is a path connecting two given vertices s and t such that all formulas along the
path evaluate to true.

CR problems are vital to Information Flow Control (IFC), a central problem
in program analysis. In particular, IFC aims at answering for a given piece of code
under which conditions the (confidential) outcome of a statement s can influence
the execution of an (observable) statement t. Since this problem is undecidable
in general, an approximation is sought that must report all such influences and
raises as few false alarms as possible. Recent works address this problem by for-
malizing execution conditions which are necessary conditions for the execution of
each statement [16]. These approaches then look for a path in the program depen-
dency graph modeling all immediate influences between statements by control
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Fig. 1. Acyclic graph with an expo-
nential number of s-t-paths

or data dependencies. The existence of
a variable assignment—including input
variables—such that all execution condi-
tions of such a path between s and t are
satisfied at the same time is a very strong
necessary condition for information flow.
Supporting alarms by a critical variable
assignment also tells under what conditions a security leak might occur.

Solvers for propositional formulas (e. g. MiniSat for Boolean logic [5,4]) have
been greatly improved during the last decade and made more and more complex
satisfiability problems feasible. Nevertheless the naive way of testing every single
s-t-path for satisfiability is far beyond inefficient since there can be an infinite
number of such paths in the presence of cycles. Restricting the tests to simple s-
t-paths is sufficient—every satisfiable path contains a simple s-t-path—but there
still can be an exponential number of simple s-t-paths even in acyclic digraphs.

A different approach that benefits from the development of SAT solvers is
to reduce constrained reachability problems to single propositional formulas,
for which the satisfiability problem is equivalent to the CR problem. Finding
a short such formula potentially reduces the runtime of the back-end solver.
However, since the smallest possible path condition are either PCOPT = �
(true) or PCOPT = ⊥ (false), optimizing such a condition’s length is obvi-
ously NP-hard. Also, to preserve the information about critical variable as-
signments, we look for formulas whose satisfying variable assignments also sat-
isfy the original CR problem. Such a formula is called a path condition (PC).
The efficient construction of short path conditions is a key to solving large
CR problems. For the above example, with cv denoting the label of vertex v,
cw1 ∧ (cv1 ∨ cu1) ∧ cw2 ∧ (cv2 ∨ cu2) ∧ · · · ∧ cwk

∧ (cvk
∨ cuk

) ∧ ct is such a path
condition. Unfortunately, not all graphs have such a straightforward path con-
dition. Snelting et al. were the first to use graph decompositions to exploit the
structure of program dependency graphs to find modular path conditions [16].
Although this idea has been applied to CR problems with great success, the issue
of tailoring decompositions to this task has hardly has been looked at. So far,
all decompositions considered have originally been designed for loop detection
and not even been proven to be a correct basis for PC generation.

Our contribution: We introduce a novel paradigm of decomposing digraphs with
designated source and target vertices into nested gateway subgraphs. Applied to
CR problems, they allow for the first characterization of provably correct mod-
ular PC generation. We give an efficient algorithm to compute a fine-grained
gateway decomposition based on connectivity and dominance relations. We fur-
ther introduce a novel technique to filter irrelevant vertices and arcs from the
input, which significantly improves the quality of decompositions. In combina-
tion these two techniques reduce the size of path conditions by almost 70% on
average and reduces the running time of a SAT solver by roughly a factor of 4 in
real-world program dependency graphs. All algorithms have been implemented
in C++ and decompose real-world instances within seconds.
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2 Preliminaries and Problem Statement

s
x1

x3

x2

x4

x2 t
x1

x4

x3 x3

Fig. 2. Instance of CR correspond-
ing to the 3Sat instance (x1 ∨ x2 ∨
x3)∧(x2∨x3∨x4)∧· · ·∧(x1∨x3∨x4)

Throughout this work, we assume a digraph
D = (V, A) with a start vertex s, a target
vertex t and propositional constraints cv for
all v ∈ V . For the sake of simplicity, we
assume the cv to be from truth-valued
propositional logics, although our ap-
proach naturally extends to other domains.
The problem ConstrainedReachability

(CR) is to decide whether there is an s-t-
path P such that there is a variable assignment f with f(cv) = � (true) for all
v ∈ P . As stated above, this is equivalent to deciding whether there is a simple
such s-t-path. Not surprisingly, CP is NP-hard, even if vertex constraints are re-
stricted to literals: It generalizes the classic 3Sat problem by drawing instances
of 3Sat as depicted in Fig. 2. NP-completeness is straightforward; a similar
proof for labeled arcs can be found in [10].

A path condition is a propositional formula PC that can be satisfied if and
only if the corresponding CR problem has a solution and a truth assignment
f with f(PC ) = � satisfies ∧v∈P cv for some s-t-path P . Since SAT solvers
typically take formulas in conjunctive normal form (CNF) as input, we focus on
the construction of such a formula φ and measure its complexity by the number
of variable occurrences, denoted by |φ|. We assume the cv to be in CNF, i. e., to
be of the form c1

v ∧ · · · ∧ cmv
v where each ci

v is a disjunction of literals.
We can assume that every vertex is on some s-t-path, possibly containing

a cycle. If this is not the case, all vertices violating this condition are missed
by either a forward search from s or a backward search from t. They can be
removed from the input without losing any s-t-path. This process is sometimes
referred to as “chopping”, and more generally, we will call a digraph D = (V, A)
an S-T -chop for some S, T ⊂ V if every v ∈ V is on some s-t-path with s ∈ S
and t ∈ T . In this sense, we assume the input to be an {s}-{t}-chop, or, in a
slight abuse of notation, an s-t-chop. From now on we deal with the following
problem:

Given an s-t-chop, find a path condition PC in CNF whose complexity is as
small as possible.

3 Linear Path Conditions and Acyclicity Constraints

In the introductory example (cf. Fig. 1), we have seen that linear-size path
conditions are possible in some cases. Notably, even in CNF, any acyclic digraph
has a path condition whose complexity is in O(n+m+k) for n := |V |, m := |A|
and k :=

∑
v∈V |cv|, i. e., linear in the input. It can be obtained by introducing

additional variables xv which can be read as “there is a true-valued path from s
to v”:

PCDAG := cs ∧ xt

∧
v∈V −s

(
(xv → cv) ∧ (xv → (∨uv∈Axu))

)
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Note that implications of the form (a1∧· · ·∧ai) → (b1∨· · ·∨bi) can be written in
CNF as (a1∨· · ·∨ai∨b1∨· · ·∨bi) with the same complexity. We use (xv → cv) as
a shorthand for adding xv to every clause in cv, yielding a complexity of at most
2|cv|. Hence, the whole formula can then be read as: “A valid truth assignment
must satisfy cs, and there must be a true-valued path to t. To have a valid path
to any node v other than s, it is necessary to satisfy cv and to have a path to
some of its predecessors.”

Unfortunately, this does not hold for arbitrary digraphs: If there is a cycle
C and a v-t-path P for some v ∈ C such that cs ∧v∈C∪P cv is satisfiable, we
can extend such a truth assignment to also satisfy PCDAG by setting xv to
true if and only if v ∈ C ∪ P ∪ {s}. We remedy this problem by modeling the
selection of certain acyclic subgraphs of D as an acyclicity condition, introducing
new variables yuv for every u, v ∈ V . For a later use, we generalize acyclicity
conditions to the case of multiple source and target vertices.

Definition 1. Let D = (V, A) be an S-T -chop. A boolean formula φ is called
an S-T -acyclicity condition if (a) for every truth assignment f that satisfies φ,
the set of arcs Af := {uv ∈ A | f(yuv)=�} is acyclic and (b) for every acyclic
S-T -chop (V ′, A′) ⊂ D, there is a truth assignment f satisfying φ with A′ ⊂ Af .

To give an example, the partial ordering constraint (antisymmetry+transitivity)

φPO :=
∧

u,v∈V

(yuv ∨ yvu)
∧

u,v,w∈V

(
(yuv ∧ yvw) → yuw

)
is an acyclicity condition for every S-T -chop, but with a cubic complexity. For
acyclic graphs on the other hand, φDAG := � is an acyclicity condition. The
following lemma integrates acyclicity conditions into PC generation for general
graphs. Due to a lack of space, we omit proofs.

Lemma 1. Let D = (V, A) be an s-t-chop and φ an s-t-acyclicity condition for
D. Then the following is a path condition for D:

PC φ := φ ∧ cs ∧ xt

∧
v∈V −s

(
xv → (cv ∧ ∨uv∈Axuv)

) ∧
uv∈A

(
xuv → (xu ∧ yuv)

)

Given an s-t-acyclicity condition φ, constructing PC φ adds only linear com-
plexity, i. e., |PC φ | ∈ O(|φ| + k + m). The complexity of PCφ can further be
decreased by the following observation: If for some uv ∈ A, the variable yuv

does not occur in φ, we can replace occurrences of xuv and yuv by xu and hence
remove clauses of the form (xuv ∨ xu) or (xuv ∨ yuv). If Aφ denotes the set of
uv ∈ A for which the variable yuv occurs in φ, we can hence use

φ ∧ cs ∧ xt

∧
v∈V −s

(
xv → (cv ∧ ∨uv∈A\Aφ

xu ∨uv∈Aφ
xuv)
) ∧
uv∈Aφ

(
xuv → (xu ∧ yuv)

)

instead of PC φ , which yields exactly PCDAG for an acyclic digraph D and φDAG.
Using φPO as suggested above yields a path condition with complexity in

Θ(k + n3). As a first step towards small acyclicity conditions and hence small
path conditions, we introduce a shorter acyclicity condition, φ�:
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Lemma 2. Let D = (V, A) be an S-T -chop. The following is an S-T -acyclicity
condition for D:

φ�
D :=

∧
uv∈A

(yuv ∨ yvu)
∧

uv∈A,w∈V \{u,v}
((ywu ∧ yuv) → ywv)

Using φ� := φ�
D instead of the partial ordering constraint as above yields a path

condition with complexity Θ(k + mn) for general digraphs.

4 Gateway Decompositions

So far, we only distinguish between acyclic graphs, which allow for a path con-
dition with linear complexity, and general digraphs, for which a path condition
takes possible cycles into account at the expense of their complexity. In this
section, we introduce a novel paradigm for the nested decomposition of digraphs
into subgraphs, “gateways”, with a special property. Among other possible ap-
plications, such gateway decompositions allow us to modularize the construction
of acyclicity constraints to critical portions of the graph. The motivating obser-
vation for this section is the following: Let D be an s-t-chop, and let D1, . . . , Dq

be its strongly connected components. Each possible cycle lies within one of the
Di, and every acyclic s-t-chop in D can be composed by taking all arcs not
covered by a component and picking some acyclic arc set within the Di. Even
stronger, any acyclic s-t-chop in D can be composed by taking all arcs not cov-
ered by a Di and Si-Ti-chops for each of the Di with Si and Ti denoting Di’s
entry and exit vertices, i. e., vertices with in- or out-neighbors not part of that
component, respectively. Applied to the problem of PC generation, this means
that φ�

D1
∧· · ·∧φ�

Dq
is an acyclicity condition for D. We will give the formal proof

for this observation as part of a much more powerful decomposition framework,
which focuses on the relevant function of strongly connected components in the
above observation:

Definition 2. Let D = (V, A) be an s-t-chop and let G be a node-induced sub-
graph. We call G a gateway if no simple s-t-path P enters G after leaving it.

Obviously, strongly connected components are gateways, but Fig. 3 shows an-
other example where a gateway can be found within a strongly connected com-
ponent. For a gateway G, we denote by SG := {v ∈ VG : ∃u �∈ VG, uv ∈ A} the
entry vertices and by TG := {u ∈ VG : ∃v �∈ VG, uv ∈ A} the exit vertices of G.

We now turn to the main theorem of this work, which will allow us later
to turn a hierarchy of nested gateways into a modular and compact acyclicity
condition. It considers how a subgraph D′ = (V ′, A′) of an s-t-chop D can be de-
composed into the result of contracting the vertices of a gateway G = (VG, AG),
denoted by D′/G and the intersection with G, denoted by D′∩G. It also consid-
ers the somehow reverse composition, which, given a subgraph C of D/G and a
subgraph G′ of G selects a subgraph C⊕G′ of D containing all vertices and arcs
of G′ plus all vertices and arcs in D mapped to vertices or arcs in C by contraction
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Fig. 3. A gateway G
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Fig. 4. Digraph D with acyclic s-t-chop D′ (black), decom-
posed into contracted chop D′/G and projected chop D′ ∩G
and re-composition D′/G ⊕ (D′ ∩ G)

of G. These two operations are not inverse in general, since contraction can map
different arcs of D to the same arc in D/G, see Fig. 4 for an example.

Theorem 1 (Composition Theorem). Let D = (V, A) be an s-t-chop and
let G a gateway.

1. The decomposition of any acyclic s-t-chop D′ with respect to G yields an
acyclic s-t-chop D′/G in D/G and an acyclic SG-TG-chop D′ ∩G in G and
D′ ⊆ (D′/G) ⊕ (D′ ∩ G).

2. The composition D∗⊕G′ of any acyclic s-t-chop D∗ in D/G and any acyclic
SG-TG-chop G′ in G is acyclic with (D∗⊕G′)/G = D∗, (D∗⊕G′)∩G = G′.

Its main contribution is the following: For every acyclic s-t-chop D′ in D, a super-
graph can be composed from an acyclic s-t-chop C in D/G and an acyclic SG-
TG-chop G′ in G, and any such composition is acyclic. This immediately allows
a modularization of acyclicity conditions with the help of additional variables to
model the identification of arcs mapped to the same image under contraction.

Corollary 1. Let D = (V, A) be an s-t-chop and let G be a gateway. Let φD/G

be an s-t-acyclicity condition for D/G and φG be an SG-TG-acyclicity condition
for G. Then the following is an s-t-acyclicity condition for D:

φD/G ∧ φG

∧
uv∈A:u�∈G,v∈G

(yuv
.= yuxG)

∧
uv∈A:u∈G,v �∈G

(yuv
.= yxGv)

A nested gateway decomposition of a digraph D is a rooted tree T such that the
vertices of T are gateways and (a) D is the root, (b) a gateway is a subgraph of all
ancestors, super-graph of all its descendants, and disjoint to any other gateway.
Given such a decomposition, Corollary 1 allows us to construct a path condition
bottom-up. Note that the resulting path condition is a conjunction not only of
disjunctive clauses, but also of the equivalences introduced in Corollary 1. Once
the construction is completed, variables aliased by these equivalences may be
replaced, e. g., an equivalence (x1

.= x2) can be used to replace each occurrence
of x1 by x2. When all equivalences are of the form (x .= x), they can be re-
moved from the formula, leaving a less complex path condition in pure CNF. In
fact, with nS and mS being the number of vertices and arcs of a gateway after
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contraction of inner gateways, respectively, the resulting path condition has a
complexity of less than

2k + n + m +
∑

S∈VT not acyclic

(6mS + 3mS(nS − 2)) ∈ O(k + m +
∑

S∈VT not acyclic

nSmS) .

5 Decomposition Paradigms

Finding a good hierarchy of gateways can dramatically reduce the complexity
of the acyclicity condition and hence of a path condition. Since only non-acyclic
nodes of such a decomposition contribute to the acyclicity condition, a good
hierarchy not only has to be fine-grained, but should foremost reduce the size
and number of the gateways containing cycles. Snelting et al. proposed to apply
loop decomposition in a very similar setting, where path conditions were con-
structed by enumerating simple paths in components that are not acyclic [16].
In this approach, components with cycles can contribute exponentially to the
resulting path condition’s complexity, and avoiding large such components is
even more important than with acyclicity constraints. Loop decompositions pri-
marily aim at the construction of a hierarchy of strongly connected subgraphs
and have a long tradition in program analysis. Robschink compares a variety of
loop decomposition algorithms on program dependency graphs [14] that extend
Tarjan’s interval analysis [19] to irreducible graphs. Among them, he compared
algorithms due to Havlak [9], Steensgaard [18], and Sreedhar, Gao, and Lee
(SGL) [17]. A good overview on loop decomposition algorithms and their im-
plementation is due to Ramalingam [13]. Currently, SGL is the state-of-the-art
decomposition applied to PC problems [14,16]. Although not explicitly proven,
the “loops” computed by the SGL algorithm are gateways. Hence, using SGL
as base for hierarchical acyclicity conditions is correct and—like any nontrivial
decomposition—improves the complexity of the resulting path condition. Since
SGL is designed to identify loops in programs, all subgraphs in the decomposi-
tion are strongly connected, i. e., SGL does not identify acyclic subgraphs within
strongly connected components.

The Connectivity-Dominance Decomposition

The identification of nested strongly connected subgraphs is not the only reason-
able way to compute a gateway decomposition. The following lemma provides
the basis for a much more natural recursive connectivity-dominance (CD) decom-
position paradigm: It extensively uses dominator and postdominator relations:
A vertex d dominates a vertex x, if any s-x-path must contain d. Analogously,
a vertex p postdominates a vertex x, if any x-t-path must contain p. We write
d dom x or p pdom x , respectively. The transitive reduction of both dominator
and postdominator relation in chopped digraphs are rooted trees. They can be
computed using the Lengauer-Tarjan algorithm [12], which is implemented in
most libraries for graph algorithms and runs in almost linear time, or the linear
time algorithm of Buchsbaum et al. [2].



456 B. Katz et al.

Algorithm 1. CDDecomposition(D, G)
G′ ← ⊥;1

if G is neither strongly connected nor acyclic then2

G′ ← any SCC of G;3

if G is strongly connected then4

if VG � V d
u (G) � {u} for some u ∈ VG then5

G′ ← D[V d
u (G)];6

else if VG � V p
u (G) � {u} for some u ∈ VG then7

G′ ← D[V p
u (G)];8

if G′ = ⊥ then return new Tree(G);9

tree ← CDDecomposition(D, G/G′);10

tree .appendToRoot(CDDecomposition(D, G′));11

return tree ;12

u

s

t

v

u

s

t

v

Fig. 5. Decomposition by
V d (top) and V p (bottom)

Lemma 3. Let D be an s-t-chop and G a gateway. (1) If G is not strongly
connected then all strongly connected subgraphs of G are gateways of D. (2) If G
is strongly connected, then for any u ∈ VG, the subgraphs induced by V d

u (G) :=
{v ∈ VG : u dom v}, V p

u (G) := {v ∈ VG : u pdom v}, or Vu(G) := V d
u ∪ V p

u are
gateways of D.

In other words, if some gateway is not a strongly connected component, we can
iteratively contract strongly connected components until the gateway becomes
acyclic. If a gateway is strongly connected, we can iteratively contract (nontriv-
ial) gateways induced by V d

u , V p
u , or Vu—those gateways may or may not be

strongly connected, until no two remaining vertices dominate or postdominate
each other. In either case, we can recursively process the identified gateways.
This process is depicted in Algorithm 1. Note that decomposition of strongly
connected components in Algorithm 1 is completely independent of the order in
which the components are identified and processed. In fact, it is safe to identify
them at once and process them subsequently. This is not true in general for
the identification of gateways in Algorithm 1: Figure 5 gives an example where
only two vertices u, v in a strongly connected component of five vertices define
non-trivial gateways. Only the gateways induced by V p

u and V p
v or V d

u and V d
v

are disjoint, such that contraction of one of them does not alter the other. This
is true in general: Decomposition of all V d

u for all vertices u which do not have
a dominator in D′ can be done independently, analogously the decomposition
of all V p

u for all vertices without a postdominator in D′. When mixing the rela-
tions or using the union Vu, contracting one subgraph may affect other induced
subgraphs and candidates need to be recomputed. We hence consider only the
two variants which either decompose strongly connected components along the
V d

u as long as possible and then along the V p
u , or vice versa. Figure 6 shows

an exemplary decomposition after applying an additional arc filtering step (cf.
next section).
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6 Filtering Techniques

An obvious step to further reduce the complexity of path conditions is a prepro-
cessing to remove irrelevant vertices and arcs. Unfortunately, it is NP-hard for
both vertices and arcs to decide whether they lie on any simple s-t-path: Given
two pairs s1, t1 and s2, t2, it is hard to decide whether there are two disjoint
paths connecting s1 to t1 and s2 to t2 [6]. Asking for a simple s1-t2-path in the
same graph augmented by an arc t1s2 also answers this question.

Nevertheless, we can efficiently identify sets of arcs and vertices that cannot
be part of a simple s-t-path. As a first step, we applied chopping to remove
vertices and arcs that do not belong to any s-t-path. Based on dominance and
postdominance, we can filter additional arcs from the input.

Lemma 4 (Arc Filtering). Let D = (V, A) be a digraph with start vertex s
and target vertex t. If for some uv ∈ A there is an x ∈ V with x dom u and
x pdom v, then every path condition for D − uv is also a path condition for D.

More generally, a path condition for D −A′ is a path condition for D if all arcs
in A′ are candidates according to Lemma 4. Using interval labeling [15] and
interval trees [3], all candidates for arc filtering can be found in O(m log n) time.

Unfortunately, removing arcs can change reachability and domination rela-
tions. Although in all experiments (cf. Section 7), repeating chopping and arc
filtering once was sufficient, it is possible to construct graphs that require a lin-
ear number of filtering steps to reach a fixpoint. Also, with the decision problem
being hard in general, we cannot hope to filter all irrelevant arcs.

Combining arc filtering with SGL can have ambivalent effects. Removing arcs
and vertices can decrease the size of strongly connected components, but at the
same time, breaking cycles within those components can hinder identification
of nested loops. For CD decomposition on the other hand, arc filtering has a
very helpful effect: When a gateway G′ is identified within a strongly connected
gateway G applying Lemma 3, G′ is never strongly connected. Thus, a CD
decomposition can nest acyclic gateways (after contraction of inner gateways)
and strongly connected gateways (cf. Fig 6).

s t
5

3

20 3 4

2

Fig. 6. CD decomposition after arc filtering applied to a small program dependency
graph (filtered arcs dotted): Resulting PC has 52 variables, 67 clauses, and a com-
plexity of 164 plus the complexity of the cv. Not applying a decomposition/applying
SGL after (without) arc filtering yields a formula with 1147(1158)/784(916) variables,
2005(2379)/1273(1765) clauses, and a complexity of 5833(6933)/3671(5105) plus the
complexity of the cv.
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7 Experiments

To evaluate our approach we compare the formula size generated by our domi-
nance-based decomposition with the formula sizes obtained from various decom-
position methods. Moreover, we also compare the running time a standard SAT
solver needs to solve the formulas generated by SGL and CD decompositions.
Decomposition and PC generation algorithms have been implemented in C++.
For SAT solving we use MiniSat2 [5,4], a standard reference in SAT solving. All
experiments were performed on an AMD Opteron@2.6Ghz with 16GB of RAM.

In the following we describe our experimental setup and data in detail. We
use several program dependency graphs (PDGs) of real world programs. Namely,
we use programs from The Java Grande Forum Benchmark Suite1 from the
University of Edinburgh and the PACAP study [1], two well-known benchmark
sets in program analysis. For the generation of the PDGs from the source files
we use the SDG generator of the JOANA project [7]. Details on the generation
process can be found in the literature on program analysis [11,8].

From each graph we pick 200 random s-t-pairs and compute their correspond-
ing chops. We then compare the reduction of PC-complexity resulting from CD
decomposition and SGL decomposition, both with and without arc-filtering. Al-
most all decompositions could be computed in less than 10 seconds, in all cases
the running time was negligible compared to PC generation and SAT solving.
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Fig. 7. Formula sizes for different decomposition techniques on benchmark sets
Crypt (left) and JavaCard (right)

Figure 7 shows the results for two of our benchmark sets as scatter plots.
The black line indicates the PC size if no decomposition is used at all. It can
be seen that SGL reduces the formula size only marginally in most cases. The
effect of applying arc filtering before SGL is almost negligible and is therefore
not shown in the plot. Clearly, CD yields an improvement of up to 50% in many
cases although sometimes it does not have any effect and the reduction has a
1 www2.epcc.ed.ac.uk/computing/research activities/java grande/

index 1.html

file:www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
file:www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
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Fig. 8. Formula sizes of the complete benchmark set of our technique and the best
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Fig. 9. Running times necessary to solve SAT-formulas generated for PDGs of the
benchmark sets Crypt (left) and JavaCard (right)

high variance. Using CD after arc filtering gives consistently good results with
an average reduction of almost 70% with a rather low variance; for 75% of the
instances the reduction is at least 62%. Especially the effect that arc filtering
improves CD, which was already justified theoretically in the previous section,
seems to have a strong effect for practical instances. The results are actually
prototypical for all our benchmark sets, see Fig. 8.

We further demonstrate that better decompositions and thus smaller PCs
lead to faster solving by a standard SAT solver. For this time-consuming task,
we restrict our test data to two of the PDGs aforementioned, namely to the PDGs
generated from the JGF Crypt Bench and from the JavaCard study. In smaller
samples, other PDGs showed a very similar behavior. For each we take the first
50 of the generated random chops and generate ten CR problems from each
of them by attaching to each vertex randomly 5 to 15 clauses each containing
3 literals over 0.05 ·n (or at least 6) variables. We then compare the MiniSat2
running times for solving using a cut-off time of 1200 seconds per instance.

Figure 9 shows the fraction of instances that can be solved individually within
a given time for different decompositions. Our experiments clearly show a corre-
lation between the formula size and the running time of a SAT solver. Especially
using CD with arc-filtering gives a significant improvement in running times over
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the SGL decomposition: CD solves 83% of all instances generated from the JGF
Crypt benchmark within 50 seconds each, whereas SGL solves only 51% of all
instances within this time and needs more than 160 seconds to solve the same
amount of instances. Similarly, CD solves 91% of all instances generated from
the JavaCard Benchmark within 50 seconds each, whereas SGL solves only 44%
within this time and needs 119 seconds to solve the same amount of instances.
Acknowledgements. We thank Jürgen Graf for providing us with test data and
Carsten Sinz for helpful discussions on SAT solving.
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Abstract. We propose two ways to compute the Delaunay triangulation
of points on a sphere, or of rounded points close to a sphere, both based on
the classic incremental algorithm initially designed for the plane. We use
the so-called space of circles as mathematical background for this work.
We present a fully robust implementation built upon existing generic
algorithms provided by the Cgal library. The efficiency of the imple-
mentation is established by benchmarks.

1 Introduction

The Cgal project [3] provides users with a public discussion mailing list, where
they are invited to post questions and express their needs. There are recurring
requests for a package computing the Delaunay triangulation of points on a
sphere or its dual, the Voronoi diagram. This is useful in many domains such
as geology, geographic information systems, information visualization, or struc-
tural molecular biology, to name a few. An easy and standard solution to the
problem of computing such a Delaunay triangulation consists in constructing
the 3D convex hull of the points: They are equivalent [13,38]. The convex hull is
one of the most popular structures in computational geometry [20,11]; optimal
algorithms and efficient implementations are available [1,2].

Another fruitful way to compute Delaunay on a sphere consists of reworking
known algorithms designed for computing triangulations in R2. Renka adapts
the distance in the plane to a geodesic distance on a sphere and triangulates
points on a sphere [37] through the well-known flipping algorithm for Delaunay
triangulations in R2 [30]. As a by-product of their algorithm for arrangements of
circular arcs, Fogel et al. can compute Voronoi diagrams of points lying exactly on
the sphere [26]. Using two inversions allows Na et al. to reduce the computation
of a Voronoi diagram of sites on a sphere to computing two Voronoi diagrams
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in R2 [33], but no implementation is available. Note that this method assumes
that data points are lying exactly on a sphere.

As we are motivated by applications, we take practical issues into account
carefully. While data points lying exactly on the sphere can be provided either
by using Cartesian coordinates represented by a number type capable of handling
algebraic numbers exactly, or by using spherical coordinates, in practice data-
sets in Cartesian coordinates with double precision are most common. In this
setting, the data consists of rounded points that do not exactly lie on the sphere,
but close to it.

In Section 4, we propose two different ways to handle such rounded data.
Both approaches adapt the well-known incremental algorithm [12] to the case
of points on, or close to the sphere. It is important to notice that, even though
data points are rounded, we follow the exact geometric computation paradigm
pioneered by C. K. Yap [39]. Indeed, it is now well understood that simply relying
on floating point arithmetic for algorithms of this type is bound to fail (see [29]
for instance).

The first approach (Section 4.1) considers as input the projections of the
rounded-data points onto the sphere. Their coordinates are algebraic numbers
of degree two. The approach computes the Delaunay triangulation of these points
exactly lying on the sphere.

The second approach (Section 4.2) considers circles on the sphere as input.
The radius of a circle (which can alternatively be seen as a weighted point)
depends on the distance of the corresponding point to the sphere. The approach
computes the weighted Delaunay triangulation of these circles on the sphere, also
known as the regular triangulation, which is the dual of the Laguerre Voronoi
diagram on the sphere [38] and the convex hull of the rounded-data points.

These interpretations of rounded data presented in this work are supported
by the space of circles [10,24] (Section 3).

We implemented both approaches, taking advantage of the genericity of Cgal.
In Section 5, we present experimental results on very large data-sets, showing
the efficiency of our approaches. We compare our code to software designed
for computing Delaunay triangulations on the sphere, and to convex-hull soft-
ware [28,35,1,6,2,37,25]. The performance, robustness, and scalability of our ap-
proaches express their added value.

2 Definitions and Notation

Let us first recall the definition of the regular triangulation in R2, also known
as weighted Delaunay triangulation. A circle c with center p ∈ R2 and squared
radius r2 is considered equivalently as a weighted point and is denoted by c =
(p, r2). The power product of c = (p, r2) and c′ = (p′, r′2) is defined as pow(c, c′) =
‖pp′‖2 − r2 − r′2, where ‖pp′‖ denotes the Euclidean distance between p and p′.
Circles c and c′ are orthogonal iff pow(c, c′) = 0. If pow(c, c′) > 0 (i.e., the disks
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π/2 < π/2 > π/2

Fig. 1. From left to right: orthogonal (pow(s0, s1) = 0), suborthogonal (pow(s0, s1) >
0), and superorthogonal (pow(s0, s1) < 0) circles in R2

defined by c and c′ do not intersect, or the circles intersect with an angle strictly
smaller than π

2 ), we say that c and c′ are suborthogonal. If pow(c, c′) < 0, then we
say that c and c′ are superorthogonal (see Figure 1). Three circles whose centers
are not collinear have a unique common orthogonal circle.

Let S be a set of circles. Given three circles of S, ci = (pi, r
2
i ), i = 1 . . . 3,

whose centers are not collinear, let T be the triangle whose vertices are the three
centers p1, p2, and p3. We define the orthogonal circle of T as the circle that is
orthogonal to the three circles c1, c2, and c3. T is said to be regular if for any
circle c ∈ S, the orthogonal circle of T and c are not superorthogonal. A regular
triangulation RT (S) is a partition of the convex hull of the centers of the circles
of S into regular triangles formed by these centers. See Figure 2 for an example.

Fig. 2. Regular triangulation
of a set of circles in the plane
(their power diagram is shown
dashed)

The dual of the regular triangulation is known as
the power diagram, weighted Voronoi diagram, or
Laguerre diagram.

If all radii are equal, then the power test re-
duces to testing whether a point lies inside, out-
side, or on the circle passing through three points;
the regular triangulation of the circles is the De-
launay triangulation DT of their centers.

More background can be found in [8]. We refer
the reader to standard textbooks for algorithms
computing Delaunay and regular triangulations
[20,11].

This definition generalizes in a natural manner
to the case of circles lying on a sphere S in R3:
Angles between circles are measured on the sphere, triangles are drawn on the
sphere, their edges being arcs of great circles. As can be seen in the next sec-
tion, the space of circles provides a geometric presentation showing without any
computation that the regular triangulation on S is a convex hull in R3 [38].

In the sequel, we assume that S is given by its center, having rational coordi-
nates (we take the origin O without loss of generality), and a rational squared
radius R2. This is also how spheres are represented in Cgal.1

1 We mention rational numbers to simplify the presentation. Cgal allows more general
number types that provide field operations: +,−,×, /.
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3 Space of Circles

Computational geometers are familiar with the classic idea of lifting up sites
from the Euclidean plane onto the unit paraboloid Π in R3 [9]. We quickly
recall the notion of space of circles here and refer to the literature for a more
detailed presentation [24]. In this lifting, points of R3 are viewed as circles of R2

in the space of circles: A circle c = (p, r2) in R2 is mapped by π to the point
π(c) = (xp, yp, x

2
p+y2

p−r2) ∈ R3. A point of R3 lying respectively outside, inside,
or on the paraboloid Π represents a circle with respectively positive, imaginary,
or null radius. The circle c in R2 corresponding to a point π(c) of R3 outside Π
is obtained as the projection onto R2 of the intersection between Π and the cone
formed by lines through π(c) that are tangent to Π ; this intersection is also the
intersection of the polar plane P (c) of π(c) with respect to the quadric Π .

Points lying respectively on, above, below P (c) correspond to circles in R2 that
are respectively orthogonal, suborthogonal, superorthogonal to c. The predicate
pow(c, c′) introduced above is thus equivalent to the orientation predicate in R3

that tests whether the point π(c′) lies on, above or below the plane P (c). If
c is the common orthogonal circle to three input circles c1, c2, and c3 (where
ci = (pi, r

2
i ) for each i), then pow(c, c′) is the orientation predicate of the four

points π(c1), π(c2), π(c3), π(c′) of R3. It can be expressed as

sign

∣∣∣∣∣∣∣∣
1 1 1 1

xp1 xp2 xp3 xp′

yp1 yp2 yp3 yp′

zp1 zp2 zp3 zp′

∣∣∣∣∣∣∣∣
, (1)

where zpi = x2
pi

+ y2
pi

− r2
i for each i and z2

p′ = x2
p′ + y2

p′ − r′2. It allows to
relate Delaunay or regular triangulations in R2 and convex hulls in R3 [9], while
Voronoi diagrams in R2 are related to upper envelopes of planes in R3.

Up to a projective transformation, a sphere in R3 can be used for the lifting
instead of the usual paraboloid [10]. In this representation the sphere has a pole2

S

c
p = πS(c)

O

PS(p)

c1

p1 = πS(c1)

p2 = πS(c2)

c2

Fig. 3. c1 is suborthogonal to c, c2

is superorthogonal to c

and can be identified to the Euclidean plane
R2. What we are interested in this paper is
the space of circles drawn on the sphere S

itself, without any pole. This space of circles
has a nice relation to the de Sitter space in
Minkowskian geometry [19].

We can still construct the circle c on S that
is associated to a point p = πS(c) of R3 as the
intersection between S and the polar plane
PS(p) of p with respect to the quadric S (Fig-
ure 3). Its center is the projection of p onto S

and as above, imaginary radii are possible.3
So, in the determinant in (1), xpi , ypi , and
zpi (respectively xp′ , yp′ , zp′) are precisely the

2 See the nice treatment of infinity in [10].
3 Remember that S is centered at O and has squared radius R2.
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coordinates of the points pi = πS(ci) (respectively p′ = πS(p)). This will be ex-
tensively used in Section 4. Again, we remark that Delaunay and regular trian-
gulations on S relate to convex hulls in 3D.

Interestingly, rather than using a convex hull algorithm to obtain the Delaunay
or regular triangulation on the surface as usually done for R2 [9], we will do the
converse in the next section.

4 Algorithm

The incremental algorithm for computing a regular triangulation of circles on
the sphere S is a direct adaptation of the algorithm in R2 [12]. Assume that
RT i−1 = RT ({cj ∈ S, j = 1, . . . , i − 1}) has been computed.4 The insertion of
ci = (pi, r

2
i ) works as follows:

• locate pi (i.e., find the triangle t containing pi),
• if t is hiding pi (i.e., if ci and the orthogonal circle of t are suborthogonal) then
stop; pi is not a vertex of RT i. Note that this case never occurs for Delaunay
triangulations.
• else (i) find all triangles whose orthogonal circles are superorthogonal to ci

and remove them; this forms a polygonal region that is star-shaped with respect
to pi;5 (ii) triangulate the polygonal region just created by constructing the
triangles formed by the boundary edges of the region and the point pi.

Two main predicates are used by this algorithm:

The orientation predicate allows to check the orientation of three points p, q,
and r on the sphere. (This predicate is used in particular to locate new points.)
It is equivalent to computing the side of the plane defined by O, p, and q on
which r is lying, i.e., the orientation of O, p, q, and r in R3.
The power test introduced in Section 2 boils down to an orientation predicate in
R3, as seen in Section 3. (This predicate is used to identify the triangles whose
orthogonal circles are superorthogonal to each new circle.)

The two approachesbriefly presented in the introduction fall into the general frame-
work of computing the regular triangulation of circles on the sphere. The next two
sections precisely show how these predicates are evaluated in each approach.

4.1 First Approach: Using Points on the Sphere

In this approach, input points for the computation are chosen to be the projec-
tions on S of the rounded points of the data-set with rational coordinates. The

4 For the sake of simplicity, we assume that the center O of S lies in the convex hull
of the data-set. This is likely to be the case in practical applications. So, we just
initialize the triangulation with four dummy points that contain O in their convex
hull and can optionally be removed in the end.

5 As previously noted for the edges of triangles, all usual terms referring to segments
are transposed to arcs of great circles on the sphere.
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three coordinates of an input point are thus algebraic numbers of degree two
lying in the same extension field of the rationals.

In this approach weights, or equivalently radii if circles, are null. The power
test consists in this case in answering whether a point s lies inside, outside,6 or
on the circle passing through p, q, and r on the sphere. Following Section 3, this
is given by the orientation of p, q, r, and s, since points on the sphere are mapped
to themselves by πS.

The difficulty comes from the fact that input points have algebraic coordi-
nates. The coordinates of two different input points on the sphere are in general
lying in different extensions. Then the 3D orientation predicate of p, q, r, and s
given by (1) is the sign of an expression lying in an algebraic extension of de-
gree 16 over the rationals, of the form a1

√
α1 + a2

√
α2 + a3

√
α3 + a4

√
α4 where

all a’s and α’s are rational. Evaluating this sign in an exact way allows to follow
the exact computation framework ensuring the robustness of the algorithm.

Though software packages offer exact operations on general algebraic numbers
[4,5], they are much slower than computing with rational numbers. The sign of
the above simple expression can be computed as follows:

–1– evaluate the signs of A1 = a1
√

α1 + a2
√

α2 and A2 = a3
√

α3 + a4
√

α4, by
comparing ai

√
αi with ai+1

√
αi+1 for i = 1, 3, which reduces after squaring to

comparing two rational numbers,
–2– the result follows if A1 and A2 have different signs,
–3– otherwise, compare A2

1 with A2
2, which is an easier instance of –1–.

To summarize, the predicate is given by the sign of polynomial expressions in the
rational coordinates of the rounded-data points, which can be computed exactly
using rational numbers only.

4.2 Second Approach: Using Weighted Points

In this approach, the regular triangulation of the weighted points is computed
as described above. As in the previous approach, both predicates (orientation on
the sphere and power test) reduce to orientation predicates on the data points
in R3. Note that Section 3 shows that the weight of a point p is implicit, as it
does not need to be explicitly computed throughout the entire algorithm.

Depending on the weights, some points can be hidden in a regular triangula-
tion. We prove now that under some sampling conditions on the rounded data,
there is actually no hidden point.

Lemma 1. Let us assume that all data points lie within a distance δ from S.
If the distance between any two points is larger than 2

√
Rδ, then no point is

hidden.

Proof. A point is hidden iff it is contained inside the 3D convex hull of the
set of data points S. Let p be a data point, at distance ρ from O. We have
6 On S, the interior (respectively exterior) of a circle c that is not a great circle of S

corresponds to the interior (respectively exterior) of the half-cone in 3D, whose apex
is the center of S and that intersects S along c.
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ρ ∈ [R − δ, R + δ]. Denote by dp the minimum distance between p and the
other points. If dp >

√
(R + δ)2 − ρ2, the set B(O, R + δ) \ B(p, dp) is included

in the half-space H+ = {q : 〈q − p, O − p〉 > 0}. Under these conditions, all
other points belong to H+ and p is not inside the convex hull of the other
points. It follows that if the distance between any two data points is larger than
supρ

√
(R + δ)2 − ρ2 = 2

√
Rδ, no point is hidden.

Let us now assume we use double precision floating point numbers as defined in
the IEEE standard 754 [7,27]. The mantissa is encoded using 52 bits. Let γ denote
the worst error, for each Cartesian coordinate, done while rounding a point on
S to the nearest point whose coordinates can be represented by double precision
floating point numbers. Let us use the standard term ulp(x) denoting the gap
between the two floating-point numbers closest to the real value x [32]. Assuming
again that the center of S is O, one has γ ≤ ulp(R) = 2−52+�log2(R)� ≤ 2−52R.
Then, δ in the previous lemma is such that δ ≤ √3/4γ < 2−52R. Using the
result of the lemma, no point is hidden in the regular triangulation as soon
as the distance between any two points is greater than 2−25R, which is highly
probable in practice.

Note that this approach can be used as well to compute the convex hull of
points that are not close to a sphere: The center of the sphere can be chosen at
any point inside a tetrahedron formed by any four non-coplanar data points.

5 Implementation and Experiments

Both approaches presented in Section 4 have been implemented in C++, based
on the Cgal package that computes triangulations in R2. The package intro-
duces an infinite vertex in the triangulation to compactify R2. Thus the underly-
ing combinatorial triangulation is a triangulation of the topological sphere. This
allows us to reuse the whole combinatorial part of Cgal 2D triangulations [36]
without any modification. However, the geometric embedding itself [40], bound
to R2, must be modified by removing any reference to the infinite vertex. A
similar work was done to compute triangulations in the 3D flat torus [16,15],
reusing the Cgal 3D triangulation package [34,35] as much as possible.

Also, the genericity offered in Cgal by the mechanism of traits classes, that
encapsulate the geometric predicates needed by the algorithms, allows us to
easily use exactly the same algorithm with two different traits classes for our
two approaches.

To display the triangulation and its dual, the code is interfaced with the
Cgal 3D spherical kernel [21,22], which provides primitives on circular arcs in
3D. The vertices of the triangulations shown are the projections on the sphere
of the rounded-data points. The circular arcs are drawn on the surface of the
sphere (see Figures 5 and 6).

We compare the running time of our approaches with several available soft-
ware packages on a MacBook Pro 3,1 equipped with a 2.6 GHz Intel Core 2
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Fig. 4. Comparative benchmarks. The programs were aborted when their running time
was above 10 minutes (HULL, SUG, QHULL) or in case of failure (STRIPACK)

processor and 2GB 667 MHz DDR2 SDRAM7 (see Figure 4). We consider large
sets of random data points8 (up to 223 points) on the sphere, rounded to double
coordinates. Figure 5 indicates running times on some real-life data.

Graph 1st of Figure 4 shows the results of our first approach. We coded a traits
class implementing the exact predicates presented in Section 4.1, together with
semi-static and dynamic filtering [31]. The non-linear behavior of the running
time is due to the fact that our semi-static filters hardly ever fail for less than
213 points, and almost always fail for more than 218 points.

Graph 2nd shows the results of the second approach. One of the predefined
kernels9 of Cgal provides us directly with an exact implementation of the pred-
icates, filtered both semi-statically and dynamically. In our experiments we have
observed that no point is hidden with such distributions, even when the data-set
is large, which confirms in practice the discussion of Section 4.2.

The Cgal 3D Delaunay triangulation (graph DT3) [35], with the same Cgal
kernel, also provides this convex hull as a by-product. We insert the center of
the sphere to avoid penalizing this code with too many predicate calls on five
cospherical points that would always cause filters to fail.

For these three approaches, 3D spatial sorting reduces the running time of
the location step of point insertion [23,14].

If the data points are lying exactly on a sphere, their Delaunay Triangulation
can be extracted from an arrangement of geodesic arcs as computed by the code
of Fogel and Setter [25,26]. Since it is not the main purpose of their algorithm,
the running times are not comparable: close to 600 seconds for 212 points. Note
however that the code is preliminary and has not been fully optimized yet. No
graph is shown.

7 Further details: MAC OS X version 10.5.7, 64 bits; compiler g++ 4.3.2 with -O3
and -DNDEBUG flags, g77 3.4.3 with -O3 for Fortran. All running times mentioned
exclude time used by input/output.

8 Generated by CGAL::Random_points_on_sphere_3
9 Precisely CGAL::Exact_predicates_inexact_constructions_kernel
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Fig. 5. Delaunay triangulation (left) and Voronoi diagram (right) of 20,950 weather
stations all around the world. Data and more information can be found at
http://www.locationidentifiers.org/. Our second approach computes the result
in 0.14 seconds, while Qhull needs 0.35 seconds, and the first approach 0.57 seconds.
STRIPACK fails on this data-set.

Fig. 6. Delaunay triangulation of S250 (left), Voronoi diagram of S100 (right). STRI-
PACK fails for e.g. n = 1, 500.

We consider the following two software packages computing a convex hull in
3D,10 for which the data points are first rounded to points with integer coordi-
nates. Predicates are evaluated exactly using single precision computations.

Graph HULL corresponds to the code [1] of Clarkson, who uses a randomized
incremental construction [18] with an exact arithmetic on integers [17].

Graph SUG shows the running times of Sugihara’s code in Fortran [6,38].
Graph QHULL shows the performance of the famous Qhull package of Barber

et al. [2] when computing the 3D convex hull of the points. The option we
use handles round-off errors from floating point arithmetic by merging facets of
the convex hull when necessary. The convex hull of points situated close to the
sphere contains in practice all the input points (see Lemma 1). In this situation
QHULL is clearly outperformed by the second approach. However, QHULL can

10 The plot does not show the results of the Cgal 3D convex hull package [28] because
it is much slower than all other methods (roughly 500 times slower than Qhull).
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be about twice faster than our second approach when almost all the input points
are hidden.

Renka computes the triangulation with an algorithm similar to our first ap-
proach, but his software STRIPACK, in Fortran, uses approximate computations
in double [37]. Consequently, it performs quite well on random points (better than
our implementations for small random data-sets), but it fails on some data-sets:
Using STRIPACK, we did not manage to compute a triangulation of more than 219

random points (it returns an error flag). The same occurred for the inputs used to
produce Figures 5 and 6. Our implementations handle arbitrary data sets.

To test for exactness we devised a point set that is especially hard to trian-
gulate because it yields many very flat triangles in the triangulation. This point
set is defined as

Sn =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ cos θ sin φ

sin θ sin φ

cos φ

⎞
⎟⎠
∣∣∣∣∣∣∣ θ∈{0, π

n ,..., (n−1)π
n ,π},φ= (θ2+1)

π2
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Table 1. Memory
usage

approach bppv
1st 113
2nd 113
DT3 174
QHULL 288

In Figure 6 we show the Delaunay triangulation of S250
and the Voronoi diagram of S100.

In Table 1, we compare the memory usage of our two ap-
proaches, the 3D Delaunay triangulation, and Qhull.11 The
given figures given in bytes per processed vertex (bppv)
and averaged over several data-sets of size larger than 216.

6 Conclusion

The results show that our second approach yields better timings and memory
usage than all the other tested software packages for large data-sets, while being
fully robust. This justifies a typical phenomenon: the well-designed specialized
solution outperforms the more general one. Here the specialized one is our second
approach, and the general one is the Delaunay triangulation 3D computation
from which the 3D convex hull is extracted.

The first approach is slower but still one of the most scalable. It exactly
computes the triangulation for input points with algebraic coordinates lying
on the sphere, and thus ensures that in any case all points will appear in the
triangulation. It is the only one to do so within reasonable time and thus being
useful for real-world applications.
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Abstract. Duplication of information allows distributed systems to re-
cover from data errors, or faults. If faults occur spontaneously, without
notification, and disguised incorrect data blends in with correct data,
their detection becomes non-trivial. Known solutions for fault recovery
use monitoring mechanisms that compare the data in multiple nodes to
infer the occurrence of faults. To this end, we propose a localized geo-
metric approach to fault recovery in wireless networks. We compare our
approach with a more traditional combinatorial approach that uses a
majority rule. Our experiments show that our geometric approach is an
improvement over the majority rule in some cases, whereas in the other
cases a hybrid method that combines the best of both strategies is supe-
rior to each individual method.

Keywords: fault recovery, recolouring, wireless networks, computational
geometry, experimental algorithms, localized algorithms.

1 Introduction

We consider fault recovery in networks consisting of disambiguating two-state
variables at the nodes. This can be achieved by using information duplicates
stored across the network. Our results easily generalize to multiple-state vari-
ables if applied independently to their constituent bits. We examine a geometric
technique that provides autonomous detection and recovery of faults. We com-
pare our technique with an existing non-geometric approach and demonstrate
its effectiveness. The geometric method we propose may not be the only effec-
tive one; so, with this work we hope to open the discussion and make progress
towards the best localized fault recovery strategy.

In what follows we refer to faulty and healthy nodes as red and blue, without
defining which colour is assigned to which state. Colouring the nodes will simplify
our presentation and will put our work in the same context as previous work.
Thus, the change of status of a node (from faulty to healthy, or vice versa) is
called a recolouring.
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The rest of this document is organized as follows. Section 2 reviews previous
work on fault recovery techniques for distributed systems and the origins of a
technique we propose for fault recovery, namely, geometric recolouring. Section 3
presents the details of fault recovery using our geometric approach. In Section 4
we present our experimental results and demonstrate the suitability of geometric
recolouring for fault recovery. Finally, we identify a set of open problems derived
from our work.

2 Previous Work

We first survey previous work on fault recovery in distributed systems. Then
we introduce the fundaments of a geometric recolouring technique as used for a
related problem, the red-blue separation problem.

Several studies on fault recovery have focused on distributed systems with reg-
ular topology. For example, Floccini et al. [2] consider fault recovery on toroidal
meshes and Luccio, Pagli, and Sanossian [5] study this problem on butterfly net-
works. Their work focuses on finding monopolies, that is, configurations of faulty
nodes that can cause the entire network to fail. As will be seen later on, we are
more concerned with the length of recolouring sequences. The underlying goal
of both efforts remains to study systems that can autonomously recover from
faults through localized algorithms.

It is often assumed that faults occur as a consequence of manufacturing defects
or other random, spontaneous causes. This is the case considered by Krishna-
machari and Iyengar [4]. To our knowledge, no previous work has considered the
occurrence of failures in correlation with the geometric location of the nodes.

It is widely accepted that the data collected by the nodes of a network, in the
case of sensor networks for instance, is correlated to their geographic location
(see [11,1] for example); thus, there is no reason not to believe that errors induced
on the network by the influence of the environment are also correlated to their
spatial distribution. Notice also that considering faulty areas is a generalization
to considering isolated errors. The latter can be seen as independent faults on
areas that are small enough to contain a single node.

It is assumed that a node does not know whether it is faulty or not just by
reading its data. It can however, compare its colour (state) with its neighbours’
colours. All the previously cited approaches to fault recovery and other studies
(see the survey by Peleg [8]) use a majority voting rule. The majority voting
rule recolours a node if it has more neighbours of the opposite colour. This
strategy can obviously turn healthy nodes to faulty as much as healing faulty
ones. However, based on the fact that faulty nodes should be a “non-dominant
minority”, we expect that the cooperative effort makes progress towards healing
the faulty nodes. On the other hand, we argue that the majority rule is not the
best approach if applied to geometric graphs involving areas of faulty nodes. We
propose a geometric recolouring approach to this end.

Geometric recolouring, as introduced by Reinbacher et al. [10], has been used
for assisting geographic data classification. Given a planar set of red and blue
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points, their goal is to separate the red from the blue by polygonal curves with
small perimeter. A reclassification method is performed as a preprocessing step
to correct misclassified points, as the input is assumed to possibly contain errors.
This reclassification technique is termed recolouring, which we call geometric re-
colouring for reasons that will become evident in what follows. Their experiments
show that the use of recolouring yields separating curves with smaller perimeters.

Reinbacher et al. use a Delaunay triangulation of the point set as the un-
derlying structure for recolouring, specifying a neighbour relation among the
points. They then define a point, p, as surrounded when there is a contiguous
set of oppositely coloured neighbours of p, in the triangulation, that span a
radial angle greater than 180◦ (see Figure 1). Points that are surrounded are
iteratively recoloured, in no particular order, until no point remains surrounded.
This strategy raises an interesting question concerning the finiteness of recolour-
ing sequences. It turns out that if one chooses the threshold angle to consider
a point as surrounded as any value smaller than 180◦, there may exist trivial
infinite recolouring sequences [10]. The problem is far less trivial for thresholds
greater than 180◦.

p p

Fig. 1. Recolouring surrounded point p

Using properties of the triangulation, Reinbacher et al. show that these re-
colouring sequences are finite and guaranteed to terminate in at most 2n − 1
iterations. They also show an example triangulation that yields O(n2) recolour-
ings. In a previous work [6], we proved that any triangulation can have at most
O(n2) recolourings, closing the gap between the lower and the upper bound.
Moreover, we extended our results to other geometric graphs and proved a set of
bounds for the length of recolouring sequences, ranging from linear for trees to
infinite for planar graphs. In the following section we use one of our polynomial
bounds for a convenient construction, the NIC graph.

3 Fault Recovery in Wireless Networks

Before presenting our geometric approach to fault recovery we propose a general
framework for recolouring in wireless networks. We review a more traditional
combinatorial approach to recolouring. Then we present the challenges of our
geometric approach, along with proposed solutions. Finally, we include a hybrid
method that combines the combinatorial and geometric approaches.

A node can be considered as surrounded or dominated by neighbours of the
opposite colour according to different criteria. For now, we assume that we are
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provided with a general function Surrounded that returns TRUE for a node
surrounded by neighbours of the opposite colour, or FALSE otherwise. Different
versions of Surrounded will be studied in what follows.

As pointed out earlier, a recolouring does not necessarily mean that a faulty
node is being fixed; on the contrary, sometimes a healthy node can become faulty
by the same mechanism. However, our experiments demonstrate that whenever
the cause of the fault affects a relatively small area, the number of nodes that are
recovered from faults is substantially larger than the number of nodes that turn
faulty. In fact, in many cases all faulty nodes are able to recover (see Section 4
for more details).

The fault recovery algorithm simply consists of the Recolouring Protocol, as
defined next, to be executed at all nodes. The protocol defines successive re-
colourings of a node, according to the function Surrounded, and a mechanism
to notify its neighbours whenever a change of colour occurs.

Algorithm 1. Recolouring Algorithm
input : Network G = (N, L) with bi-chromatic nodes.
output: Network G = (N, L) with a different node colouring such that no more

nodes can be recoloured.

Recolouring Protocol

Step 1. Broadcast a COLOUR message to all neighbours, with the node’s colour
information.

Step 2. If there is a COLOUR message in the node’s queue, the new colour of the
corresponding neighbour is considered for updating the node’s colour according
to the function Surrounded .

Step 2.1. If the node is recoloured, broadcast a message to all neighbours with the
new colour information.

Step 3. If there is no COLOUR message in the queue and no COLOUR message
has been received for T time units, go to Step 1.

Step 4. Go to Step 2.

Step 3 of the recolouring protocol ensures that if a node becomes faulty, the
neighbours are informed of its colour change. The parameter T can be adjusted
for an optimal tradeoff between fast response to faults and low network traffic.
The algorithm cycles idly (or terminates temporarily) once no more nodes can be
recoloured. However, it restarts itself after T time units of inactivity, to recover
from possible new faults.

Notice that the nodes do not necessarily wait until they know the colour
of all neighbours. The protocol is presented in a way that no synchronization
is required. In fact, asynchrony is one key aspect for the termination of the
algorithm.

On the other hand, if rounds of recolourings occur synchronously for all sur-
rounded nodes, the process may not terminate. Goles and Olivos [3] explain
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the behaviour of such systems and how they may fall into configurations that
oscillate infinitely.

We have used the concepts of synchrony and rounds in an intuitive, infor-
mal way; the reader is referred to Peleg’s book [9] for formal definitions. In the
following we define other matters of time and synchrony that are relevant to
our work. The recolouring time of a node p is the time it takes from the actual
recolouring, as defined by Step 2 of the algorithm, to the realization by its neigh-
bours that p has been recoloured. We define two recolourings to be simultaneous
if the corresponding recolouring times overlap. The sequential model is defined
as a hypothetical model in which no simultaneous recolourings occur, as if there
was a global scheduler controlling the network’s activity. Last, we define our
asynchronous model to be one in which the recolourings of nodes occur inde-
pendently from one another. Thus, simultaneous recolourings happen only as a
matter of chance. Next we establish that asynchronous systems behave like the
sequential model in the long run with high probability.

Lemma 1. Let G = (N, L) be a network in which nodes operate asynchronously.
The probability that any two nodes p, q ∈ N recolour simultaneously n times,
tends to zero as n tends to infinity.

Proof. As defined for our synchronous model, the chance that nodes p and q
are recoloured simultaneously for the i-th time has the associated probability
Pi(p, q) < 1. Without considering any particular probability distribution, we can
bound Pi(p, q) by P (p, q), the highest probability of simultaneous recolourings
of p and q over all colour configurations. Thus, Pi(p, q) ≤ P (p, q) < 1, ∀i. We can
conclude that the joint event consisting of an unbounded number of simultaneous
recolourings of p and q has infinitesimal probability, as stated in the following.

lim
n→∞

n∏
i=1

Pi(p, q) ≤ lim
n→∞

n∏
i=1

P (p, q) = 0

because P (p, q) < 1, which concludes our proof.

Note that the existence of P (p, q) < 1 is guaranteed by the perfect asynchrony
assumption. In practical scenarios, if the physical network implementation may
cause synchronized behaviour after certain colour configurations, random re-
sponse times can be introduced to further reinforce the network asynchrony.

The previous lemma proves that long sequences of simultaneous recolourings
are unlikely for two or more nodes. Thus, in the long run, a purely asynchronous
network behaves (with high probability) like the sequential model. This implies
that if the surrounded function of choice ensures finiteness for the recolouring
process in the sequential model, it also produces finite recolouring (with high
probability) for truly asynchronous environments. Therefore, in the sequel we
limit our study of recolouring strategies to the sequential model.

The Surrounded function can be implemented based on simple combinato-
rial properties of a node and its neighbours. In this case a majority rule is con-
sidered. Thus, we define a function Surrounded combinatorial that returns
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TRUE for nodes with more neighbours of the opposite colour than neighbours
of its colour and FALSE otherwise. The majority “voting” rule has been ap-
plied to a wide variety of dynamic systems, such as cellular automata and other
distributed computing systems [2,4].

In order to prove that this simple strategy terminates, we extend our colouring
convention to colour the links of the network. The links connecting either pairs
of blue or red nodes are coloured blue or red, respectively. For a connected pair
of differently coloured nodes, we mix the colours to obtain a magenta link.

Theorem 1. Let G = (N, L) be a network with bi-chromatic node set N . In
the sequential model, the Recolouring Algorithm with parameter T and the Sur-

rounded combinatorial function terminates after O(|L|) recolourings from
the time of the last fault plus T .

Proof. We use a simple counting argument on the number of magenta links. The
number of magenta links is obviously at most |L|. After T units of time from the
last fault, any notification of colour change (i.e., COLOUR message) is a conse-
quence of a recolouring, as opposed to a delayed broadcast from a node that has
become faulty due to environmental factors. Then, with every recolouring, the
number of magenta links incident to the recoloured node decreases. Because no
other recolouring occur simultaneously, according to our definition of the sequen-
tial model, the overall number of magenta links decreases with every recolouring.
Thus, at most O(|L|) recolourings can occur, which proves the theorem.

We assume that each node knows all its neighbours and the angle each neighbour
is from it. With the angle information at hand, a new technique can be developed
for implementing the Surrounded function of Algorithm 1. The geometric
criterion we use for fault recovery is geometric recolouring as presented in the
previous section. That is, the function Surrounded geometric is defined to
return TRUE if the angle defined by the oppositely coloured neighbours of the
node in question is greater than 180◦, and FALSE otherwise. Also, nodes with
one neighbour are never considered surrounded, and nodes with all (2 or more)
neighbours of the opposite colour are always surrounded, as the surrounding
angle is considered 360◦.

In order to guarantee the termination of the geometric recolouring approach
to fault recovery, some preprocessing of the network is required. In what follows
we provide a set of preliminary results required to introduce the preprocessing
algorithm and the geometric approach to fault recovery.

It is known that a geometric recolouring process can be infinite for general
(non-planar) networks (see [6]). Thus, the recolouring strategy cannot be directly
applied to any network, because it is crucial that the fault recovery process
terminates. Instead, it can be applied to a network that approximates the original
network as well as possible and guarantees finite recolouring. To this end we use
NIC networks, as defined next.

Definition 1 (convex node and convex links). A convex node p of a net-
work is a node with two consecutive incident links, the convex links with respect
to p, that define an angle greater than 180◦.
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p

q

p q

Fig. 2. Two cases of adjacent convex nodes p and q sharing a convex link

Theorem 2. Let G = (N, L) be a (not necessarily plane) network with set of
bi-chromatic nodes N and set of links L, such that every node p in G satisfies
one of the following three conditions:

– p has degree less than or equal to 1,
– p is not convex,
– p is convex and is adjacent to another convex node through a convex link

(i.e., p is not an isolated convex node).

The length of geometric recolouring sequences of G is O(|N ||L|).

This theorem is a generalization of our bound for geometric recolouring in tri-
angulations from [6]. The full proof can be found in [7].

We define a network that satisfies the conditions of Theorem 2 to be a NIC
network. One of the advantages of using NIC networks is that they can be de-
scribed using only local properties of the nodes and therefore, can be computed
in a localized manner.

Corollary 3. Let G = (N, L) be a NIC network with bi-chromatic node set
N . In the sequential model, the Recolouring Algorithm with parameter T and
the Surrounded geometric function terminates after O(|N ||L|) recolourings
from the time of the last fault plus T .

In what follows, we show how to compute a NIC network that represents, as
well as possible, the original structure of the network in a localized manner. The
idea is to start with the original network and either “add” or “remove” a small
number of links such that the resulting network is a NIC network. By adding
and removing links we mean that a node considers new nodes as neighbours or
disregards neighbours, only for recolouring purposes.

Through edge additions one could construct a NIC network or even a (non-
planar) superset of a triangulation, which is known to have at most a cubic
(O(N3)) number of recolourings (Theorem 13 [6]). However, adding links may
involve pairs of nodes that are multiple hops away from each other in the net-
work, which calls for non-localized algorithms and more communication intensive
distributed computation. The goal then is to remove the minimum number of
links so that the network satisfies the NIC conditions. This way the topology
of the original network is fairly well preserved. The next theorem states that
it is hard to find such optimal configuration, even if centralized computation is
allowed. We formally state the problem and the complexity of its decidability
version, which directly implies the hardness of its minimization version.
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Problem 1. Non-Isolated Convex (NIC)
Instance: (G, k), where G = (N, L) is a network with |N | = n and k is a numeric
constant.

Question: Is there a set of links L′ ⊂ L such that |L′| ≤ k and G′ = (V, L\L′)
satisfies the NIC conditions?

Theorem 4. The NIC problem (Problem 1) is NP-Complete.

We omit the proof of this theorem due to limited space. For details see [7].
Because the optimal solution is hard to find, we study heuristic algorithms

that eliminate a relatively small number of links. It is noteworthy that in the
worst case the optimal number of link removals may be linear in the number of
links and quadratic in the number of nodes. An example network that exhibits
this complexity consists of a complete bipartite network, where the nodes of each
partition lie on one of two parallel lines (see [7] for details).

The example we just described shows that optimal solutions, and heuristic
solutions alike, cannot always eliminate a small number of links in the worst
case. Therefore, we propose a simple heuristic algorithm that eliminates a small
number of links according to our experiments. The heuristic algorithm for con-
structing the NIC network, the NIC Algorithm (Algorithm 2), is described next.
The NIC Algorithm operates under the same assumptions as the geometric re-
colouring strategy: all nodes know their neighbours and the angle they define
with respect to them. The algorithm consists of a single protocol executed at
all nodes.

Link marks, as used in the protocol, are relative to the node, that is, a link
can be marked differently by each incident node. Notice that Step 3 of the
protocol assures that no isolated convex node will remain connected to a non-
convex node. The algorithm is guaranteed to terminate because links are always
removed and never replaced. Note that a network empty of links satisfies the
NIC conditions so, in the worst case the algorithm terminates when all the links
have been removed. Obviously, this is a very pessimistic analysis, as normally
only a small fraction of the links are removed (see Section 4). Furthermore, this
protocol does not fall into infinite loops because once a link is convex, it never
becomes non-convex.

We also propose a simple hybrid strategy that combines the combinatorial
and the geometric strategies and yields the best experimental results for certain
degrees of connectivity, as will be discussed in Section 4. The combination of
the combinatorial and geometric recolouring strategies requires some extra care;
otherwise the resulting strategy may not terminate, despite each separate strat-
egy does. For hybrid recolouring we define a Surrounded hybrid function that
uses the majority rule for the most part, except that when the number of neigh-
bours of the same and opposite colours are equal, the geometric (surrounding
angle) criterion is used to break the tie.

It is easy to see that this process yields a finite recolouring sequence if the
geometric component considers a NIC subnetwork: the number of magenta links
always decreases or remains the same (see the proof of Theorem 1). Also, while
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Algorithm 2. NIC Algorithm
input : Network G = (N, L) with bi-chromatic nodes.
output: Network G′ = (N, L′) such that L′ ⊆ L and G′ satisfies the NIC

conditions.

NIC Protocol (executed at node p)

Step 1. Mark all links incident to p as unknown.
Step 2. If there is no message in p’s message queue and there are still links marked

as unknown, then send a message to each neighbour. The type of the message
sent is either CONVEX or NON-CONVEX, depending on the convexity of the
link with respect to p.

Step 3. If there is a message in the node’s message queue, process the message
according to its type:

CONVEX: the link through which the message was received is marked as convex. If
the link was not marked as convex before, then a message is sent back to the
sender indicating the convexity with respect to p.

NON-CONVEX: the link through which the message was received, l, is marked as
non-convex. If l is convex with respect to p, and p is an isolated convex node,
then p removes l, sends a REMOVE message to the corresponding neighbour,
and sends CONVEX messages over any other link that may have become convex
after removing l.

REMOVE: the link through which the message was received, l, is removed.
Step 4. Go to Step 2.

recolourings that preserve the number of magenta links occur, geometric re-
colouring converges for the same reasons as Theorem 2. It then follows that the
number of recolourings is at most the multiplication of the maximum possible
number of recolourings for each method. This is stated in the following theorem.

Theorem 5. Let G = (N, L) be a network with bi-chromatic node set N . In
the sequential model, the Recolouring Algorithm with parameter T and the Sur-

rounded hybrid function terminates after O(|N ||L|2) recolourings from the
time of the last fault plus T .

4 Experiments

There are aspects of recolouring in networks that make an accurate probabilistic
analysis quite complicated; for example, small changes in the recolouring or-
der may produce completely different colour configurations. Thus, we turn to
experimentation for our analysis.

We coded our recolouring simulator using Java. The experimental test bed
consists of a set of connected networks generated at random with N = 100
nodes uniformly distributed over a 100 by 100 square grid with area A = 104.
Two nodes share a link if and only if the distance between them is at most
a certain unit Δ, to form what is known as a unit disk graph. We generate a
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Fig. 3. Results produced by the NIC Algorithm: (left) remaining links ratio, (right)
number of messages

set of 1000 random connected networks with unit distance Δ taking on values
15, 20, 25, and 30 times the width of a grid square. These distances have been
chosen so that the network is k-connected with high probability for values of k
ranging from 1 to 10: Δ = 15 approximately corresponds to k = 1 and Δ = 30 to
k = 10. The results plotted below are averaged over the 1000 randomly generated
networks. Notice that the network size (number of nodes) is not critical for our
results, as the phenomena we study affect only localized, relatively small areas
of the network. The density of the network, however, does play a crucial role.
For this reason, our experiments consider different degrees of connectivity, as
explained above.

We first present the experimental results for the NIC algorithm. The mean
ratio between number of links remaining and total number of links is plotted in
Figure 3 (left) for different transmission radii (Δ). It is noticeable that the results
improve as Δ and the network connectivity increase. Obviously, for higher values
of Δ the convex nodes tend to appear only at the boundary of the grid. According
to the NIC Algorithm these are the only nodes from which incident links are
removed. Another measure of interest is the number of messages incurred while
computing the NIC network. This result is plotted in Figure 3 (right). The graph
shows a super-linear growth in the number of messages with respect to Δ. This
is expected, as the connectivity of the network increases, at a nearly quadratic
rate with respect to the transmission radius (Δ), as presented by Wang and Yi
[12] (Theorem 2). Whether more efficient heuristics can be devised for locally
computing NIC networks remains an interesting question.

Next we present the results of the recolouring process for all the methods
described above. For our experiments we have induced faults on the nodes that
fall within a randomly chosen circular area within the grid. The circular area is
defined by radii E =10, 12, 14, 16, 18, and 20 times the width of a grid square,
and is placed such that it falls at least half its radius away from the border of
the grid area. The latter is meant to eliminate the “border effect”, that is, faulty
nodes at the border are more difficult to recover because of the smaller number
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Fig. 4. Results of the recolouring algorithm: (left) fraction of the nodes that remain
faulty, (right) number of recolouring and messages incurred

and angle span of neighbours around them. The expected number of faulty nodes
is πE2N/A in our examples.

From our experiments we conclude that for sparse graphs, Δ < 25, the com-
binatorial and hybrid methods outperform geometric recolouring, with slight
advantage to the hybrid method. This comes as no surprise, because on sparse
graphs there are not enough links, or angles defined by links, to perform an ac-
curate geometric recolouring. The most interesting results correspond to denser
networks, Δ > 25 (see Figure 4 (left) corresponding to Δ = 30). This graph
shows the mean ratio of nodes that remain (or become) faulty after the re-
colouring process terminates.

It is not surprising that geometric recolouring gives better results as the net-
work gets denser and the size of the affected area increases. In such scenarios, the
faulty neighbours of a node can sometimes outnumber the healthy ones, which
makes the fault spread out of the affected region if using the combinatorial or
hybrid methods. On the other hand, as the affected region is convex (a disk in
the experiments presented above), no healthy node can be surrounded by faulty
ones. This confines the faults to the region initially affected, if not heals the re-
gion altogether as it happens in most cases. Figure 4 (right) shows that, despite
the smaller number of nodes healed by the combinatorial method, the number of
recolourings (and broadcasts) is approximately the same for all methods. This
evidences that for large error sizes on dense networks the combinatorial crite-
rion spends many recolourings in turning healthy nodes into faulty, an obviously
undesirable effect.

We also conducted experiments where the induced error was defined by a
non-convex shape: we used the union of a pair of disks intersecting at a point
for our experiments. The results are remarkably similar to the results previously
presented for faults induced by single disks. Thus, we conclude that the effective-
ness of geometric recolouring is not limited to convexly-shaped affected areas,
but also to areas that are partly convex, at the very least.
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5 Open Problems

In the previous sections we have mentioned some open problems and conjectures.
We summarize a list of these and other problems of interest.

– Compute NIC networks as efficiently as possible, that is, using a small num-
ber of messages.

– Characterize networks that have finite geometric recolouring sequences
through local properties at the nodes, other than NIC networks.

– Find other recolouring strategies suitable for fault recovery.
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Abstract. Let P be a set of points in Rd. We propose GEOFILTERKRUSKAL, an
algorithm that computes the minimum spanning tree of P using well separated
pair decomposition in combination with a simple modification of Kruskal’s algo-
rithm. When P is sampled from uniform random distribution, we show that our
algorithm takes one parallel sort plus a linear number of additional steps, with
high probability, to compute the minimum spanning tree. Experiments show that
our algorithm works better in practice for most data distributions compared to the
current state of the art [31]. Our algorithm is easy to parallelize and to our knowl-
edge, is currently the best practical algorithm on multi-core machines for d > 2.

Keywords: Computational Geometry, Experimental Algorithmics, Minimum
spanning tree, Well separated pair decomposition, Morton ordering, multi-core.

1 Introduction

Computing the geometric minimum spanning tree (GMST) is a classic computational
geometry problem which arises in many applications including clustering and pat-
tern classification [38], surface reconstruction [28], cosmology [4,6], TSP approxima-
tions [2] and computer graphics [26]. Given a set of n points P in Rd, the GMST of P
is defined as the minimum weight spanning tree of the complete undirected weighted
graph of P , with edges weighted by the distance between their end points. In this paper,
we present a practical deterministic algorithm to solve this problem efficiently, and in a
manner that easily lends itself to parallelization.

It is well established that the GMST is a subset of edges in the Delaunay triangulation
of a point set [33]. It is well known that that this method is inefficient for any dimension
d > 2. It was shown by Agarwal et al. [1] that the GMST problem is related to solving
bichromatic closest pairs for some subsets of the input set. The bichromatic closest pair
problem is defined as follows: given two sets of points, one red and one green, find
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the red-green pair with minimum distance between them [25]. Callahan [8] used well
separated pair decomposition and bichromatic closest pairs to solve the same problem in
O(Td(n, n) log n), where Td(n, n) is the time required to solve the bichromatic closest
pairs problem for n red and n green points. It is also known that the GMST problem is
harder than bichromatic closest pair problem, and bichromatic closest pair is probably
harder than computing the GMST [17].

Clarkson [11] gave an algorithm that is particularly efficient for points that are in-
dependently and uniformly distributed in a unit d-cube. His algorithm has an expected
running time of O(nα(cn, n)), where c is a constant depending on the dimension and α
is an extremely slow growing inverse Ackermann function [14]. Bentley [5] also gave
an expected nearly linear time algorithm for computing GMSTs in Rd. Dwyer [16]
proved that if a set of points is generated uniformly at random from the unit ball in
Rd, its Delaunay triangulation has linear expected complexity and can be computed in
expected linear time. Since GMSTs are subsets of Euclidean Delaunay triangulations,
one can combine this result with linear time MST algorithms [23] to get an expected
O(n) time algorithm for GMSTs of uniformly distributed points in a unit ball. Ra-
jasekaran [35] proposed a simple expected linear time algorithm to compute GMSTs
for uniform distributions in Rd. All these approaches use bucketing techniques to exe-
cute a spiral search procedure for finding a supergraph of the GMST with O(n) edges.
Unfortunately, in our experiments, finding k-nearest neighbors for every point, even
when k =O(1), proved to be as expensive as finding the actual GMST. We discuss this
in Section 3, and show some experimental results in Section 5.

Narasimhan et al. [31] gave a practical algorithm that solves the GMST problem.
They prove that for uniformly distributed points, in fixed dimensions, an expected
O(n log n) steps suffice to compute the GMST using well separated pair decompo-
sition. Their algorithm, GeoMST2, mimics Kruskal’s algorithm [24] on well separated
pairs and eliminates the need to compute bichromatic closest pairs for many well sep-
arated pairs. To our knowledge, this implementation is the state of the art, for prac-
tically computing GMSTs in low dimensions (d > 2). Although, improvements to
GeoMST2 [31] have been announced [27], exhaustive experimental results are lacking
in this short announcement. Another problem with this claim is that even for uniform
distribution of points, there are no theoretical guarantees that the algorithm is indeed
any better than O(n2).

Brennan [7] presented a modification to Kruskal’s classic minimum spanning tree
(MST) algorithm [24] that operated in a manner similar to quicksort; splitting an edge
set into “light” and “heavy” subsets. Recently, Osipov et al. [32] further expanded this
idea by adding a multi-core friendly filtering step designed to eliminate edges that were
obviously not in the MST (Filter-Kruskal). Currently, this algorithm seems to be the
most practical algorithm for computing MSTs on multi-core machines.

The algorithm presented in this paper uses well separated pair decomposition in com-
bination with a modified version of Filter-Kruskal for computing GMSTs. We use a
compressed quad-tree to build a well separated pair decomposition, followed by a sort-
ing based algorithm similar to Filter-Kruskal. By using a sort based approach, we elimi-
nate the need to maintain a priority queue [31]. This opens up the possibility of filtering
out well separated pairs with a large number of points, before it becomes necessary to
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calculate their bichromatic closest pair. Additionally, we can compute the bichromatic
closest pair of well separated pairs of similar size in batches. This allows for parallel
execution of large portions of the algorithm.

Since GeoMST2 is the only known practical algorithm for computing GMSTs, all
our results, both experimental and theoretical, were compared against GeoMST2. The
theoretical running time of GeoMST2 was analyzed only for uniform distributions. In
this paper, when we talk about the theoretical running time of our algorithm, the under-
lying distribution should be assumed as uniform unless otherwise stated.

Our algorithm takes one parallel sort plus O(n) additional steps, with high prob-
ability, to compute the GMST. This result is an improvement over the original Filter-
Kruskal algorithm [32]. The expected running time for constructing the MST for
arbitrary graphs with random edge weights, using the original Filter-Kruskal algo-
rithm [32] is O(m + n logn log m/n), where m and n are the number of edges and
vertices of the graph respectively.

If the coordinates of the points in the input set are integers of size O(log n), and the
word size of the machine is greater than or equal to log n, the running time of our al-
gorithm is O(n) if we use radix sort [19,10]1.The running time of GeoMST2 is on the
contrary, O(n log n), irrespective of the data-type of the point coordinates. Thus, for
uniform distributions, we achieve the same runtime complexity as those algorithms de-
scribed above, but without suffering from the drawback of the bucketing technique that
makes them impractical to implement for other distributions. Assuming a CRCW PRAM
model with O(log n) processors, if sorting is allowed to be done in parallel (mergesort),
the running time is O(n) for both integer and floating point coordinates.

The main contributions of this paper are: ➀ our algorithm shows significant run-
time improvements over GeoMST2 for two and higher dimensions, ➁ the algorithm is
easy to parallelize unlike GeoMST2, ➂ in contrast with GeoMST2 which is inherently
O(n log n), our theoretical running time is upper bounded only by one sort which im-
proves to O(n) for integers under the assumptions mentioned above, ➃ our algorithm is
faster compared to Filter-Kruskal on geometric instances and ➄ a parallel implementa-
tion of the well separated pair decomposition on a compressed quadtree, which can be
computed in O(n) time [10,20]. The code is now a part of the STANN library [12] and
is available for download. At the time of submission of this paper we are not aware of
any other open source implementation of the well separated pair decomposition using
a compressed quadtree. For comparison purposes, we worked with the distributions on
which GeoMST2 was run [31].

This paper is organized as follows: In the remainder of this section, we define our
notation. In Section 2 we define and elaborate on tools that we use in our algorithm.
Section 3 presents our algorithm, and a theoretical analysis of the running time. Sec-
tion 4 describes our experimental setup, and Section 5 compares GeoMST2 with our
algorithm experimentally. Finally, Section 6 concludes the paper and presents future
research directions.

Notation: Points are denoted by lower-case Roman letters. Dist(p, q) denotes the dis-
tance between the points p and q in L2 metric. Upper-case Roman letters are reserved

1 If the integer size is superlogarithmic, we can still get o(n log n) running time by applying
known integer sorting algorithms on a word RAM model [10].
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for sets. Scalars except for c, d, m and n are represented by lower-case Greek letters.
We reserve i, j, k for indexing purposes. Vol() denotes the volume of an object. For a
given quadtree, Box(p, q) denotes the smallest quadtree box containing points p and q;
Fraktur letters (a) denote a quadtree node. MinDist(a, b) denotes the minimum distance
between the quadtree boxes of two nodes. Bccp(a, b) computes the bichromatic closest
pair of two nodes, and returns {u, v, δ}, where (u, v) is the edge defining the Bccp and
δ is the edge length. Left(a) and Right(a) denotes the left and right child of a node. |.|
denotes the cardinality of a set or the number of points in a quadtree node. α(n) is used
to denote inverse of the Ackermann function [14]. The Cartesian product of two sets X
and Y , is denoted X × Y = {(x, y) | x ∈ X and y ∈ Y }.

2 Preliminaries

Before we present our algorithm in detail, we need to describe a few tools which our
algorithm uses extensively. These include Morton ordering, quadtrees, well separated
pair decomposition, a practical algorithm for bichromatic closest pair computation and
the UnionFind data structure. We describe these tools below.

Morton ordering and Quadtrees: Morton order is a space filling curve with good lo-
cality preserving behavior [21]. Due to this behavior, it is used in data structures for
mapping multidimensional data into one dimension. The Morton order value of a point
can be obtained by interleaving the binary representations of its coordinate values. If
we recursively divide a d-dimensional hypercube into 2d hypercubes until there is only
one point in each, and then order those hypercubes using their Morton order value,
the Morton order curve is obtained. In 2 dimensions we refer to this decomposition
as a quadtree decomposition, since each square can be divided into four squares. We
will explain the algorithm using quadtrees, but this can be easily extended to higher
dimensions. Chan [9] showed that using a few binary operations for integer coordi-
nates, the relative Morton ordering can be calculated by, determining the dimension in
which corresponding coordinates have the first differing bit in the highest bit position.
This technique can be extended to work for floating point coordinates, with only a con-
stant amount of extra work [13]. In the next paragraph, we briefly state the quadtree
construction that we use in our algorithm [10,20].

Let p1, p2, ..., pn be a given set of points in Morton order. Let the index j be such
that Vol(Box{pj−1, pj}) is the largest. Then the compressed quadtree Q for the point
set consists of a root holding the Box(pj−1, pj) and two subtrees recursively built
for p1, ..., pj−1 and pj, .., pn. Note that this tree is simply the Cartesian tree [20] of
Vol(Box{p1, p2}), Vol(Box{p2, p3}), . . . , Vol(Box{pn−1, pn}). A Cartesian tree is a
binary tree constructed from a sequence of values which maintains three properties.
First, there is one node in the tree for each value in the sequence. Second, a symmet-
ric, in-order traversal of the tree returns the original sequence. Finally, the tree main-
tains a heap property, in which a parent node has a larger value than its child nodes.
The Cartesian tree can be computed using a standard incremental algorithm in linear
time [20], given the ordering p1, p2, ..., pn [10]. Hence, for both integer as well as float-
ing point coordinates, the compressed quadtree Q can be computed in O(n) excluding
the time for sorting the points in Morton order which takes O(n log n) [13] for floating
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point coordinates. We use a compressed quadtree, as opposed to the more common fair
split tree [8], because the later takes O(n log n) time for construction. If parallel quick-
sort [14] is used for the Morton ordering, the construction is O(n) for both integer and
floating point coordinates.

Well Separated Pair Decomposition [8]: We implemented well separated pair
decomposition on a compressed quadtree, which can be computed inO(n) time [10,20].
Assume that we are given a compressed quadtree Q, built on a set of points P in Rd.
Two nodes a and b ∈ Q are said to be an ε-well separated pair (ε-WSP) if the di-
ameter of a and the diameter of b are both at most ε∗MinDist(a, b). An ε-well sepa-
rated pair decomposition (ε-WSPD), of size m, for a quadtree Q, is a collection of
well separated pairs of nodes {(a1, b1), ..., (am, bm)}, such that every pair of points
(p, q) ∈ P × P (p �= q) lies in exactly one pair (ai, bi). In the following, we use WSP
and WSPD to mean well separated pairs and decompositions with an ε value of 1.

On the compressed quadtreeQ, one can execute Callahan’s [8] WSPD algorithm [10].
It takes O(n) time to compute the WSPD, given the compressed quadtree, thus result-
ing in an overall theoretical running time of O(n log n) for WSPD construction. The
number of well separated pairs produced by this approach is more than that produced by
the fair-split tree approach, although only by a constant factor. For example, for uniform
distributions, on an average, we produce 27% more WSPs but are 1.33 times faster.

Bichromatic Closest Pair Algorithm: Given a set of points in Rd, the Bichromatic
Closest Pair (Bccp) problem asks to find the closest red-green pair [25]. The computa-
tion of the bichromatic closest pairs is necessary due to the following Lemma from [8]:

Lemma 1. The set of all the Bccp edges of the WSPD contain the edges of the GMST.

Clearly, MinDist(a, b) is the lower bound on the bichromatic closest pair distance of A
and B (where A and B are the point sets contained in a and b respectively). We use a
simple Bccp algorithm proposed by Narsimhan and Zachariasen [31] .

The input to algorithm 1 are two nodes a, b ∈ Q, that contain sets A, B ⊆ P and
a positive real number δ, which is used by the recursive calls in the algorithm to keep
track of the last closest pair distance found. The output of the algorithm is the closest
pair of points (p, q), such that p ∈ A and q ∈ B with minimum distance δ = Dist(p, q).
Initially, the Bccp is equal to η, where η represents the WSP containing only the last
point in Morton order of A and the first point in the Morton order of B, assuming
without loss of generality, all points in A are smaller than all points in B, in Morton
order. If both A and B are singleton sets, then the distance between the two points is
trivially the Bccp distance. Otherwise, we compare Vol(a) and Vol(b) and compute the
distance between the lighter node and each of the children of the heavier node. If either
of these distances is less than the closest pair distance computed so far, we recurse on
the corresponding pair. If both of the distances are less, we recurse on both of the pairs.

UnionFind Data Structure: The UnionFind data structure maintains a set of par-
titions indicating the connectivity of points based on the edges already inserted into
the GMST. Given a UnionFind data structure G, and u, v ∈ P ⊆ Rd, G supports
the following two operations: G.Union(u, v) updates the structure to indicate the parti-
tions containing u and v belong to the same connected component; G.Find(u) returns
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Algorithm 1. Bccp Algorithm [31]: Compute {p′, q′, δ′} =BCCP(a, b[, {p, q, δ} = η])
Require: a, b ∈ Q,A, B ⊆ P, δ ∈ R+

Require: If {p, q, δ} is not specified, {p, q, δ} = η, an upper bound on Bccp(a, b).
1: procedure BCCP(a,b[, {p, q, δ} = η])
2: if (|A| = 1 and |B| = 1) then
3: Let p′ ∈ A, q′ ∈ B
4: if Dist(p′, q′) < δ then return {p′, q′, Dist(p′, q′)}
5: else
6: if Vol(a) < Vol(b) then Swap(a,b)
7: γ =MinDist(Left(a),b)
8: ζ =MinDist(Right(a),b)
9: if γ < δ then {p, q, δ} =BCCP(Left(a),b, {p, q, δ})

10: if ζ < δ then {p, q, δ} =BCCP(Right(a),b, {p, q, δ})
11: return {p, q, δ}
12: end procedure

the node number of the representative of the partition containing u. Our implementa-
tion also does union by rank and path compression. A sequence of τ G.Union() and
G.Find() operations on n elements takes O(τα(n)) time in the worst case. For all prac-
tical purposes, α(n) ≤ 4 (see [14]).

3 GEOFILTERKRUSKAL Algorithm

Our GEOFILTERKRUSKAL algorithm computes a GMST for P ⊆ Rd. Kruskal’s [24]
algorithm shows that given a set of edges, the MST can be constructed by considering
edges in increasing order of weight. Using Lemma 1, the GMST can be computed by
running Kruskal’s algorithm on the Bccp edges of the WSPD of P . When Kruskal’s
algorithm adds a Bccp edge (u, v) to the GMST, where u, v ∈ P , it uses the UnionFind
data structure to check whether u and v belong to the same connected component. If
they do, that edge is discarded. Otherwise, it is added to the GMST. Hence, before
testing for an edge (u, v) for inclusion into the GMST, it should always attempt to add
all Bccp edges (u′, v′), such that, Dist(u′, v′) < Dist(u, v). GeoMST2 [31] avoids the
computation of Bccp for many well separated pairs that already belong to the same
connected component. Our algorithm uses this crucial observation as well. Algorithm 2
describes the GEOFILTERKRUSKAL algorithm in more detail.

The input to the algorithm, is a WSPD of the point set P ⊆ Rd. All procedural vari-
ables are assumed to be passed by reference. The set of WSPs S is partitioned into set
El that contains WSPs with cardinality less than β (initially 2), and set Eu = S \ El.
We then compute the Bccp of all elements of set El, and compute ρ equal to the mini-
mum MinDist(a, b) for all (a, b) ∈ Eu. El is further partitioned into El1, containing all
elements with a Bccp distance less than ρ, and El2 = El \ El1. El1 is passed to the
KRUSKAL procedure, and El2 ∪ Eu is passed to the FILTER procedure. The KRUSKAL

procedure adds the edges to the GMST or discards them if they are connected. FILTER re-
moves all connected WSPs. The GEOFILTERKRUSKAL procedure is recursively called,
increasing the threshold value (β) by one each time, on the WSPs that survive the FILTER

procedure, until we have constructed the minimum spanning tree.
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Algorithm 2. GEOFILTERKRUSKAL Algorithm

Require: S = {(a1, b1), ..., (am, bm)} is a WSPD, constructed from P ⊆ Rd ; T = {}.
Ensure: Bccp Threshold β ≥ 2.
1: procedure GEOFILTERKRUSKAL(Sequence of WSPs : S, Sequence of Edges : T , UnionFind : G, Integer : β)
2: El = Eu = El1 = El2 = ∅
3: for all (ai, bi) ∈ S do
4: if (|ai| + |bi|) ≤ β then El = El ∪ {(ai, bi)} else Eu = Eu ∪ {(ai, bi)}
5: end for
6: ρ = min{MinDist{ai, bi} : (ai, bi) ∈ Eu, i = 1, 2, ..., m}
7: for all (ai, bi) ∈ El do
8: {u, v, δ} = Bccp(ai , bi)
9: if (δ ≤ ρ) then El1 = El1 ∪ {(u, v)} else El2 = El2 ∪ {(u, v)}

10: end for
11: KRUSKAL(El1, T,G)
12: Enew = El2 ∪ Eu

13: FILTER(Enew,G)
14: if ( |T | < (n − 1)) then GEOFILTERKRUSKAL(Enew, T,G, β + 1)
15: end procedure
16: procedure KRUSKAL(Sequence of WSPs : E, Sequence of Edges : T , UnionFind : G)
17: Sort(E): by increasing Bccp distance
18: for all (u, v) ∈ E do
19: if G.Find(u) 
= G.Find(v) then T = T ∪ {(u, v)} ; G.Union(u, v);
20: end for
21: end procedure
22: procedure FILTER(Sequence of WSPs : E, UnionFind : G)
23: for all (ai, bi) ∈ E do
24: if (G.Find(u) = G.Find(v) : u ∈ ai,v ∈ bi) then E = E \ {(ai, bi)}
25: end for
26: end procedure

3.1 Correctness

Given previous work by Kruskal [14] as well as Callahan [8], it is sufficient to show
two facts to ensure the correctness of our algorithm. First, we are considering WSPs
to be added to the GMST in the order of their Bccp distance. This is obviously true
considering WSPs are only passed to the KRUSKAL procedure if their Bccp distance
is less than the lower bound on the Bccp distance of the remaining WSPs. Second,
we must show that the FILTER procedure does not remove WSPs that should be added
to the GMST. Once again, it is clear that any edge removed by the FILTER procedure
would have been removed by the KRUSKAL procedure eventually, as they both use the
UnionFind structure to determine connectivity.

3.2 Analysis of the Running Time

The real bottleneck of this algorithm, as well as the one proposed by Narasimhan [31],
is the computation of the Bccp2. If |A| = |B| =O(n), the Bccp algorithm stated in
section 3 has a worst case time complexity of O(n2). Since we have to process O(n)
edges, naively, the computation time for GMST will be O(n3) in the worst case.

2 According to the algebraic decision tree model, the lower bound of the set intersection problem
can be shown to be Ω(n log n) [18]. We can solve the set intersection problem using Bccp.
If the Bccp distance between two sets is zero, we can infer that the sets intersect, otherwise
they do not. Since the set intersection problem is lower bounded by Ω(n log n), the Bccp
computation is also lower bounded by Ω(n log n).
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High Probability Bound Analysis: In this section we show that algorithm 2 takes
one sort plus O(n) additional steps, with high probability (WHP) [30], to compute
the GMST. Let Pr(E) denote the probability of occurrence of an event E , where E is a
function of n. An event E is said to occur WHP if given β > 1, Pr(E) > 1−1/nβ [30].
Let P be a set of n points chosen uniformly from a unit hypercube H in Rd. Given this,
we state the following lemma from [31].

Lemma 2. LetC1 andC2 beconvexregionsinHsuch thatα≤volume(C1)/volume(C2)
≤ 1/α for some constant 0 < α < 1. If |C1 ∩ P | is bounded by a constant, then with
high probability |C2 ∩ P | is also bounded by a constant.

We will use the above lemma to prove the following claims.

Lemma 3. Given a constant γ > 1, WHP, algorithm 2 filters out WSPs that have
more than γ points.

Proof. The proof of this lemma is similar to the one for GeoMST2. Consider a WSP
(a, b). If both |a| and |b| are less than or equal to γ then the time to compute their
Bccp distance is O(1). Let us now assume, w.lo.g., that |a| > γ. We will show that,
in this case, we do not need to compute the Bccp distance of (a, b) WHP. Let pq be
a line segment joining a and b such that the length of pq (let us denote this by |pq|) is
MinDist(a, b). Let C1 be a hypersphere centered at the midpoint of pq and radius |pq|/4.
Let C2 be another hypersphere with the same center but radius 3|pq|/2. Since a and b
are well separated, C2 will contain both a and b. Now, volume(C1)/volume(C2) =
6−d. Since C1 is a convex region, if |C1| is empty, then by Lemma 2, |C2| is bounded
by a constant WHP. But C2 contains a which has more than γ points. Hence C1 cannot
be empty WHP. Let a ∈ a, b ∈ b and c ∈ C1. Also, let the pair (a, c) and (b, c) belong
to WSPs (u1, v1) and (u2, v2) respectively. Note that Bccp(a, b) must be greater than
Bccp(u1, v1) and Bccp(u2, v2). Since our algorithm adds the Bccp edges by order
of their increasing distance, c and the points in a will be connected before the Bccp
edge between a and b is examined. The same is true for c and the points in b. This
causes a and b to belong to the same connected component WHP, and thus, our fil-
tering step will get rid of the well separated pair (a, b) before we need to compute its
Bccp edge.

Lemma 4. WHP, the total running time of the UnionFind operation is O(α(n)n).

Proof. Lemma 3 shows that, WHP, we only need to compute Bccp distances of WSPs
of constant size. Since we compute Bccp distances incrementally, WHP, the number
of calls to the GEOFILTERKRUSKAL procedure is also bounded above by O(1). In
each of such calls, the FILTER function is called once, which in turn calls the Find(u)
function of the UnionFind data structure O(n) times. Hence, there are in total O(n)
Find(u) operations done WHP. Thus the overall running time of the Union() and Find()
operations is O(α(n)n) WHP (see the paragraph on UnionFind in Section 2).

Theorem 1. Algorithm 2 takes one sort plus O(n) additional steps, WHP, to compute
the GMST.
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Proof. We partition the list of well separated pairs twice in the GEOFILTERKRUSKAL

method. The first time we do it based on the need to compute the Bccp of the well
separated pair. We have the sets El and Eu in the process. This takes O(n) time except
for the Bccp computation. In O(n) time we can find the pivot element of Eu for the
next partition. This partitioning also takes linear time. From Lemma 3, we can infer that
the recursive call on GEOFILTERKRUSKAL is performed O(1) times WHP. Thus the
total time spent in partitioning is O(n) WHP. Since the total number of Bccp edges
required to compute the GMST is O(n), by Lemma 3, the time spent in computing
all such edges is O(n) WHP. Total time spent in sorting the edges in the base case is
O(n log n). Including the time to compute the Morton order sort for the WSPD, the
total running time of the algorithm is one sort plus O(n) additional steps WHP.

Remark 1. As explained in Section 2, the Morton order sort required to construct the
compressed quadtree for the WSPD is O(n) if points in P have integer coordinates.
This is also applicable in case of sorting the edges inside the KRUSKAL procedure of
algorithm 2. Thus the whole algorithm runs in O(n) time in this case, WHP. On the
contrary, GeoMST2 will always take O(n log n) steps even if the points in the input
set have integer coordinates and the WSPD is constructed using a quadtree. This is
because it adds edges to the GMST one at a time and before each addition it has to
invoke an insertion and/or deletion procedure in a priority queue of WSPs [31]. Each
such operation is O(log n) [14]. Since there are O(n) WSPs, GeoMST2 will run in
O(n log n) steps.

Remark 2. Using a k-nearest neighbor graph, we can modify algorithm 2 such that
its running time is O(n) WHP, if points in P have integer coordinates. One can first
compute the minimum spanning forest of the k-nearest neighbor graph of the point set,
for some given constant k, using a randomized linear time algorithm [22]. In this forest,
let T ′ be the tree with the largest number of points. Rajasekaran [35] showed that there
are only nβ points left to be added to T ′ to get the GMST, where β ∈ (0, 1). In our
algorithm, if the set T is initialized to T ′, then our analysis shows that WHP, only
O(nβ) additional computations will be necessary to compute the GMST.

Remark 3. Computation of GMST from k-nearest neighbor graph can be parallelized
efficiently in a CRCW PRAM. From our analysis we can infer that in case of a uni-
formly randomly distributed set of points P , if we extract the O(1) nearest neighbors
for each point in the set, then these edges will contain the GMST of P WHP. Calla-
han [8] showed that it is possible to compute the k-nearest neighbors of all points in P
in O(log n) time using O(kn) processors. Hence, using O(n) processors, the minimum
spanning tree of P can then be computed in O(log n) time [37].

Remark 4. We did not pursue implementing the algorithms described in remarks
two and three because they are inherently Monte Carlo algorithms [29]. While they
can achieve a solution that is correct with high probability, they do not guarantee
a correct solution. One can design an exact GMST algorithm using k-nearest neigh-
bor graphs; however preliminary experiments using the best practical parallel nearest
neighbor codes [13,3] showed construction times that were slower than the GEOFIL-
TERKRUSKAL algorithm.
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3.3 Parallelization

Parallelization of the WSPD algorithm: In our sequential version of the algorithm,
each node of the compressed quadtree computes whether its children are well sepa-
rated or not. If the children are not well separated, we divide the larger child node, and
recurse. We parallelize this loop using OpenMP [15] with a dynamic load balancing
scheme. Since for each node there are O(1) candidates to be well separated [10], and
we are using dynamic load balancing, the total time taken in CRCW PRAM, given p
processors, to execute this algorithm is O(	(n log n)/p
+ log n) including the prepro-
cessing time for the Morton order sort.

Parallelization of the GEOFILTERKRUSKAL algorithm: Although the whole of al-
gorithm 2 is not parallelizable, we can parallelize most portions of the algorithm. The
parallel partition algorithm [34] is used in order to divide the set S into subsets El and
Eu (See Algorithm 2). ρ can be computed using parallel prefix computation. In our
actual implementation, we found it to be more efficient to wrap it inside the parallel
partition in the previous step, using the atomic compare-and-swap instruction. The fur-
ther subdivision of El, as well as the FILTER procedure, are just instances of parallel
partition. The sorting step used in the KRUSKAL procedure as well as the Morton order
sort used in the construction of the compressed quadtree can also be parallelized [34].
We use OpenMP to do this in our implementation. Our efforts to parallelize the linear
time quadtree construction showed that one can not use more processors on multi-core
machines to speed up this construction, because it is memory bound.

4 Experimental Setup

The GEOFILTERKRUSKAL algorithm was tested in practice against several other im-
plementations of geometric minimum spanning tree algorithms. We chose a subset of
the algorithms compared in [31], excluding some based on the availability of source
code and the clear advantage shown by some algorithms in the aforementioned work.
Table 1 lists the algorithms that will be referred to in the experimental section.

GEOFILTERKRUSKAL was written in C++ and compiled with g++ 4.3.2 with -O3
optimization. Parallel code was written using OpenMP [15] and the parallel mode ex-
tension to the STL [34]. C++ source code for GeoMST, GeoMST2, and Triangle were
provided by Narsimhan. In addition, Triangle used Shewchuk’s triangle library for De-
launay triangulation [36]. The machine used has 8 Quad-Core AMD Opteron(tm) Pro-
cessor 8378 with hyperthreading enabled. Each core has a L1 cache size of 512 KB, L2
of 2MB and L3 of 6MB with 128 GB total memory. The operating system was CentOS
5.3. All data was generated and stored as 64 bit C++ doubles.

In the next section there are two distinct series of graphs. The first set displays graphs
of total running time versus the number of input points, for two to five dimensional
points, with uniform random distribution in a unit hypercube. The L2 metric was used
for distances in all cases, and all algorithms were run on the same random data set. Each
algorithm was run on five data sets, and the results were averaged. As noted above,
Triangle was not used in dimensions greater than two.
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Table 1. Algorithm Descriptions
g p

Name Description
GeoFK# Our implementation of Algorithm 2. There are two important differences between the imple-

mentation and the theoretical version. First, the BCCP Threshold β in section 3 is incremented
in steps of size O(1) instead of size 1, because this change does not affect our analysis but helps
in practice. Second, for small well separated pairs (less than 32 total points) the BCCP is com-
puted by a brute force algorithm. In the experimental results, GeoFK1 refers to the algorithm
running with 1 thread. GeoFK8 refers to the algorithm using 8 threads.

GeoMST Described by Callahan and Kosaraju [8]. This algorithm computes a WSPD of the input data
followed by the BCCP of every pair. It then runs Kruskal’s algorithm to find the MST.

GeoMST2 Described in [31]. This algorithm improves on GeoMST by using marginal distances and a
priority queue to avoid many BCCP computations.

Triangle This algorithm first computes the Delaunay Triangulation of the input data, then applies
Kruskal’s algorithm. Triangle only works with two dimensional data.

Table 2. Point Distribution Info

Name Description
unif c1 to cd chosen from unit hypercube with uniform distribution (Ud)
annul c1 to c2 chosen from unit circle with uniform distribution, c3...cd chosen from Ud

arith c1 = 0, 1, 4, 9, 16... c2 to cd are 0
ball c1 to cd chosen from unit hypersphere with uniform distribution
clus c1 to cd chosen from 10 clusters of normal distribution centered at 10 points chosen from Ud

edge c1 chosen from Ud, c2 to cd equal to c1

diam c1 chosen from Ud, c2 to cd are 0
corn c1 to cd chosen from 2d unit hypercubes, each one centered at one of the 2d corners of a (0,2) hypercube
grid n points chosen uniformly at random from a grid with 1.3n points, the grid is housed in a unit hypercube
norm c1 to cd chosen from (−1, 1) with normal distribution
spok For each dimension d′ in d n

d
points chosen with cd′ chosen from U1 and all others equal to 1

2

The second set of graphs shows the mean total running times for two dimensional data
of various distributions, as well as the standard deviation. The distributions were taken
from [31] (given n d-dimensional points with coordinates c1...cd), shown in Table 2.

5 Experimental Results

As shown in Figure 1, GeoFK1 performs favorably in practice for almost all cases com-
pared to other algorithms (see Table 1). In two dimensions, only Triangle outperforms
GeoFK1. In higher dimensions, GeoFK1 is the clear winner when only one thread is used.

Our algorithm tends to slowdown as the dimension increases, primarily because of
the increase in the number of well separated pairs [31]. For example, the number of
well separated pairs generated for a two dimensional uniformly distributed data set
of size 106 was approximately 107, whereas a five dimensional data set of the same size
had 108 WSPs.

Figure 1, column 2, shows that in most cases, GeoFK1 performs better regardless
of the distribution of the input point set. Apart from the fact that Triangle maintains its
superiority in two dimensions, GeoFK1 performs better in all the distributions that we
have considered, except when the points are drawn from arith distribution. In the data
set from arith, the ordering of the WSPs based on the minimum distance is the same
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Fig. 1 . The series of graphs in column 1 shows the total running time for each algorithm for
varying sized data sets of uniformly random points, as the dimension increases. Data sets ranged
from 106 to 107 points for 2-d data, and 105 to 106 for other dimensions. The graphs in column
2 show mean run time and standard deviation to compute the GMST on data sets of various
distributions (see Table 2). The data set size was 106 points. For each data set size 5 tests were
done and the results averaged.
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as based on the Bccp distance. Hence the second partitioning step in GeoFK1 acts as
an overhead. The results from Figure 1, column 2 are for two dimensional data. The
same experiments for data sets of other dimensions did not give significantly different
results, and so were not included.

6 Conclusions and Future Work

This paper strives to demonstrate a practical GMST algorithm, that is theoretically
efficient on uniformly distributed point sets, works well on most distributions and is
multi-core friendly. To that effect we introduced the GEOFILTERKRUSKAL algorithm,
an efficient, parallelizable GMST algorithm that in both theory and practice accom-
plished our goals. We proved a running time of O(n log n), as well as provided exten-
sive experimental results.

This work raises many interesting open problems. Since the main parallel portions
of the algorithm rely on partitioning and sorting, the practical impact of other parallel
sort and partition algorithms should be explored. In addition, since the particular well
separated pair decomposition algorithm used is not relevant to the correctness of our
algorithm, the use of a tree that offers better clustering might make the algorithm more
efficient. Experiments were conducted only for L2 metric in this paper. As a part of
our future work, we plan to perform experiments on other metrics. We also plan to do
more extensive experiments on the k-nearest neighbor approach in higher dimensions,
for example d > 10.
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Abstract. This paper shows that using some very simple practical assumptions,
one can design an algorithm that finds the nearest neighbor of a given query point
in O(log n) time in theory and faster than the state of the art in practice. The al-
gorithm and proof are both simple and the experimental results clearly show that
we can beat the state of the art on most distributions in two dimensions.

Keywords: Nearest Neighbor Search, Delaunay Triangulation, Morton ordering,
Randomized algorithms.

1 Introduction

Nearest neighbor search is a fundamental geometric problem important in a variety of
applications including data mining, machine learning, pattern recognition, computer
vision, graphics, statistics, bioinformatics, and data compression [7, 1]. Applications
of the nearest neighbor problem in the plane are particularly motivated by problems in
Geographic Information Systems [17].

Linear space, O(n log n) pre-processing and O(log n) query time algorithms are
known but seem to have large constants [13, 9]. (1+ ε)-approximation algorithms seem
to be faster than the exact algorithms in practice [16]. When one requires exact answers,
one of the most practical algorithms available for this problem with provable guarantees
is due to Devillers [10, 4]. Very recently, Birn et al. [3] have announced a very practical
algorithm for this problem which beats the state of the art [16, 10] in query times but
unfortunately does not have any worst case query time guarantees better than linear.
In this paper, we present an algorithm which is faster in both pre-processing as well as
query times compared to [3] on most distributions. We also show that if the query comes
from a doubling metric, our queries are bounded by O(log n) query time in expectation.

For the nearest neighbor search problem, the seminal work of Arya et al. [2] is the de
facto standard for distribution independent approximate nearest neighbor search prob-
lems in fixed dimensions. Their C++ library ANN [16] is very carefully optimized both
for memory access and speed, and hence has been the choice of practitioners for many
years (in various areas). ANN’s optimized kd-tree implementation has only recently
been beaten by Birn et al. [3] in two dimensions. Birn et al. [3] also report that CGAL’s
recent kd-tree implementation is competitive with ANN’s.

Our work is strongly related to some previous algorithms on Morton ordering [5, 6,
8], compass routing [14] and Delaunay triangulations [3].
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One of the first properties we exploit in this paper is the following: We have shown
in previous work [8] that if a point cloud P is shifted using a random shift, one can
achieve an expected constant factor approximation for the nearest neighbor of a query
point q by just locating q using a Morton order binary search in P and checking O(1)
points around the location returned by the binary search.

Another interesting feature that we use is the fact that compass routing is supported
by Delaunay Triangulations [14, 3]. It was shown by Kranakis et al. [14] that if one
wants to travel between two vertices s and t of a Delaunay triangulation, one can only
use local information on the current node and the coordinates of t to reach t, starting
from s. The routing algorithm is simple, the next vertex visited is the one whose dis-
tance to t is minimum amongst the vertices connected to the current vertex. This type of
local greedy routing has also been studied as the ‘small-world phenomenon’ or the ‘six
degrees of separation’ [15]. Recently, this routing algorithm was successfully used for
nearest neighbor searching [3] and we base our algorithm on this observation as well.

The key contributions of this paper are:

1. Compared to previous compass routing nearest neighbor techniques, our pre-
processing speed on data sets is faster [3].

2. Compared to the state of the art, our query times are faster on most data sets [3, 16].
3. Our implementation has provable expected logarithmic query time.

The main drawbacks of our approach are:

1. The algorithm is randomized and the bounds are expected. To bound the query
time, we assume that the query point has an expansion constant γ =O(1). This is
described in depth in Section 3.

2. The algorithm is only suited for two dimensions because of its dependence on De-
launay Triangulations which have quadratic space complexity in dimensions greater
than two.

3. We assume that each coordinate of the input points fits in a word, and operations
on words like XOR and MSB can be performed in constant time [6, 11, 8].

The paper is organized as follows: In the remainder of this section, we define our nota-
tion. The next section gives the outline and description of our algorithm. It also briefly
describes some of the tools that we use in the algorithm. Section 3 analyzes the com-
putational complexity for our algorithm. Section 4 describes the experimental setup we
use. Section 5 presents our experimental results. Section 6 concludes the paper.

Notation: Points are denoted by lower-case Roman letters. Dist(p, q) denotes the dis-
tance between the points p and q in L2 metric. P is reserved to refer to a point set. n is
reserved to refer to the number of points in P .

We write p < q iff p precedes q in Morton order (> is used similarly). We use ps to
denote the shifted point p + (s, s, . . . , s). P s = {ps|p ∈ P}. pi is the i-th point in the
sorted Morton ordering of the point set.

Upper-case Roman letters are reserved for sets. Scalars except for c, d, m and n
are represented by lower-case Greek letters. We reserve i, j, k for indexing purposes.
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Ball(c, r) is used to denote a ball with center c and radius r. We also use Ball(p, q)
to represent the diametral ball of p and q. For point q, let N k

q be the k points in P ,
closest to q. |.| denotes the cardinality of a set or the number of points in P inside the
geometric entity enclosed in ||. Let, nn(p, {}) return the nearest neighbor of p in a given
set. Finally, rad(p, {}) returns the distance from point p to the farthest point in a set.

2 The Algorithm

Algorithm 1 describes both our nearest neighbor pre-processing as well as the query
algorithm. Our pre-processing algorithm essentially splits the input point set P into
three layers. First the Delaunay triangulation, G, of P is computed and a maximal
independent set computed on this graph. P ′ is the set P \ {Maximal Independent set
of G}. We construct Layer 1, with points P ′ sorted in Morton order, Layer 2, with the
Delaunay triangulation of points P ′, and Layer 3, with edges connecting the points in
Layer 2 to a maximal independant set of points. (see Figure 1).

Algorithm 1 Nearest Neighbor Algorithm
Require: Randomly shifted point set P of size n. Morton order compare operator <.

1: procedure PREPROCESS(P )
2: G = (P,E) ← Delaunay Triangulation of P
3: P ′ = P \ {Maximal Independent set of G}
4: P ′ ← Sort(P ′, <)
5: G′ = (P ′, E′) ← Delaunay Triangulation of P ′

6: for all p ∈ P ′ do:
7: H(p) ← {q|e = (p, q) ∈ G where q ∈ P \ P ′}.
8: for all F in {G′, H}
9: for all v ∈ F and degree(v) = Ω(1) do:

10: Pre-process VoronoiCell(v, F ) for fast lookups and jumps.
11: end procedure

12: procedure COMPASSROUTING(point v, point q, Graph G = (P,E))
13: Require: v ∈ G.
14: repeat
15: If degree(v) = Ω(1) then
16: If q ∈VoronoiCell(v, G) then return v
17: else: Update v using preprocessed VoronoiCell(v, G).
18: else:
19: for all v′ ∈ G incident on v do:
20: If Dist(v′, q) < Dist(v, q) then:
21: v ← v′ ; break
22: until No improvement found
23: end procedure

24: procedure QUERY(point q)
25: i′ ←BINARYSEARCH(P ′, q, <)
26: p′i ←nn(q, {pi′−η, . . . , pi′+η}) where η =O(1)
27: p′j ←COMPASSROUTING(p′i, q, G

′)
28: return nn(p′j , H(p′j)) // Uses preprocessed VoronoiCell(p′j , H) if |H(p′j)| = Ω(1)
29: end procedure

.



504 M. Connor and P. Kumar

(a) The first layer, consisting of
the non-maximal independent set
vertices sorted in Morton order.
Queries are processed using a bi-
nary search to find an approximate
nearest neighbor ball.

(b) The second layer, consisting of
the points in the first layer, and the
edges of their Delaunay triangula-
tion. The queries are processed by
using compass routing, starting at
the nearest point found in the previ-
ous layer, and ending at the nearest
neighbor in this layer.

(c) The final layer, consisting of
edges that connect the points in the
second layer to the points in the
maximal independent set. In this
layer, we refine the nearest neigh-
bor found in the previous step by
scanning those points adjacent to it
in this graph. This results in the fi-
nal answer.

Fig. 1. The three layers of the query algorithm

Our pre-processing is complete unless there is a point p in Layer 2 or 3 with large
degree (Ω(1)). In these cases, we compute the vertices of the Voronoi cell of the point
p along with the rays emanating from p and going through these vertices, partitioning
the space around p into sectors. In order to locate a point closer to our query, we locate
it in a sector, and compare the distance to a vertex found there (Figure 2). Note that any
point in the plane can be located in these sectors in O(log n) time using a binary search.

Our query algorithm starts by locating the query point q in the Morton ordering of
points in Layer 1 (P ′). Then it scans η =O(1) points around the location returned using
binary search and finds the closest point p′i to q among those points. COMPASSROUT-
ING, which we describe next is used to find the nearest neighbor of q in Layer 2 starting
from p′i. Let this point in Layer 2 be called p′j ∈ P ′. We then find the nearest neighbor
of q in Layer 3 and return the answer. We now describe how we do COMPASSROUTING

and give the details of handing large degree vertices in Layers 2 and 3.
Our COMPASSROUTING algorithm is simple. Assuming there are no high degree

vertices in Layer 2, it starts with a point v and selects the closest point to q that is
incident on v. If there are no such vertices, it declares v as the solution, or else it jumps
to the next point and repeats. In case it hits a point p that has large degree, it has access to
the Voronoi rays emanating from p. It first locates q in the ray system of p in O(log n)
time using a binary search and then tests whether q lies in the Voronoi cell of p. If
this is the case, p is returned as the answer. Otherwise the point opposite to p in the
sector containing q is nearer to q compared to p and hence we jump to that point and
continue routing.
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p

(a) Here we see the center vertex
p, and the sectors defined by rays
passing through the Voronoi ver-
tices. To find a nearer neighbor, we
locate which sector the query lies
in (via a binary search), then check
the distance to the adjacent point
that lies in that sector.

p
v1

v2

(b) In the first degenerate case, the
center vertex has an open Voronoi
cell. If the query point lies in this
sector, we check the distance to
the two points in the open sector
(v1, v2).

p
v2v1

(c) In the second degenerate case,
the center vertex is co-circular with
several adjacent vertices, and there
is only one Voronoi vertex. In this
case, we always check the near-
est co-circular points in the clock-
wise and counter-clockwise direc-
tions for a nearer neighbor (v1, v2),
and ignore the other co-circular
points.

Fig. 2. The three cases for linear degree vertices

One optimization we implemented in COMPASSROUTING was to jump to any neigh-
bor of v closer to q instead of jumping to the neighbor of v closest to q (also used by
Birn et al. [3]). This fortunately does not have any effect on either the correctness or
the running time analysis, but got us a slight improvement in the overall running time
of the query.

In case of a vertex in Layer 3 with large degree, we again jump to the preprocessed
Voronoi cell of p′j with respect to the points in H(p′j) and use the same trick as in Layer
2. The nice property that we use in this case is that, if q does not lie in the Voronoi cell
of p′j , then the point opposite to p′j in the sector containing q is the nearest neighbor of
q, as opposed to just being a nearer neighbor. Note that using the maximal independent
set does not actually improve the running time of the algorithm, it just reduces the total
number of distance calculations we must do in practice.

It should be noted that there are two degenerate cases when considering the Voronoi
cell of p, both of which can be resolved in constant time. The first case occurs when
a sector contains an open face of the Voronoi cell (Figure 2b). This sector will contain
two adjacent vertices, not one, and if q lies in such a sector, we simply compute the
distance to both.

The second degenerate case occurs when an edge of the Voronoi cell of p has length
0 (Figure 2c), implying that some or all of the points bordering p are co-circular with
p. In this case, we can identify in pre-processing the points immediately clockwise and
counter-clockwise to p on the circle. If q is determined to lie in a sector bordering an
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edge with 0 length, one of those two found points must be nearer to the actual nearest
neighbor than p.

3 Analysis of the Algorithm

Let P be a finite set of points in Rd such that |P | = n. For the purpose of this section,
we will assume that both the query point as well as P are randomly shifted using a
random point (s, s, . . . , s). Let μ be a counting measure on P . Let the measure of a
ball, μ(Ball(c, r)) be defined as the number of points in Ball(c, r)∩P . A point q is said
to have expansion constant γ if for all k ∈ (1, n):

μ(Ball(q, 2 × rad(q,N k
q ))) ≤ γk

This is a similar restriction to the doubling metric restriction on metric spaces [7, 12,
8]. Throughout the analysis, we will assume that our query point q has an expansion
constant γ =O(1). Note that for finding exact nearest neighbors in O(log n) time, the
queries with high γ are precisely the queries which drive provable (1 + ε)-approximate
nearest neighbor data structures to spend more time in computing the solution when ε
is close to zero [16].

We first begin by defining Compass Routing formally (our definition is slightly
different compared to [14]): Given a geometric graph G = (P, E), an initial vertex
s ∈ G and a destination q (may not be in the graph), let vi be the closest vertex in G to q.
We want to travel from s to vi, when the only information available to us at any point in
time is the coordinates of our destination, our current position, and the edges incident at
the vertex we are located at. Starting at s, we will traverse the edge (s, s′) ∈ E incident
on s that leads us closest to q. We assign s = s′ and repeat this procedure till we can
no longer continue decreasing the distance to q. In the next Lemma, we prove a simple
property of Compass Routing on Delaunay Graphs in d-dimensions.

Lemma 3.1. Let P ⊂ Rd and G = (P, E) be the graph output from its Delaunay
triangulation. Let q be a query point for which we want to compute the nearest neighbor
in P . Compass routing on G yields nearest neighbor of q in P .

Proof. Let the compass routing begin with a vertex v0 ∈ P . Let vi be the vertex on
which compass routing stops and can not improve the distance to q. Let Nbr(vi) be the
set of all vertices having an edge with vi in G.

This implies that Ball(q, Dist(q, vi)) is empty of vertices in Nbr(vi). For a contra-
diction, let v∗ �= vi in P be the nearest neighbor of q. Then v∗ ∈ Ball(q, Dist(q, vi))
and there is no edge between v∗ and vi in G.

We will now draw a ball with vi and v∗ on its boundary such that it lies inside
Ball(q, Dist(q, vi)). If this ball is empty, then v∗ ∈ Nbr(vi) which is a contradiction of
the Delaunay property of the graph. Otherwise, we shrink the ball keeping it hinged on
vi and inside Ball(q, Dist(q, vi)), till it contains only one point vj ∈ P . This again is a
contradiction since vj is closer to q than vi and (vi, vj) ∈ G (Compass routing should
not have terminated at vi). See Figure 3.
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Fig. 3. Proof of Lemma 3.1

The next Lemma proves that our query Algorithm re-
turns correct answers.

Lemma 3.2. The QUERY function in Algorithm 1 returns
the correct nearest neighbor of q in P .

Proof. We mainly need to prove that the correctness of
our query algorithm in not affected by separating P into
three layers. Lemma 3.1 ensures that we find the near-
est neighbor in Layer 2. Let this neighbor be p′j . Hence
Ball(q, Dist(q, p′j)) is empty of points in Layer 2. If

Ball(q, Dist(q, p′j)) is empty, then p′j will be returned as the nearest neighbor of q cor-
rectly by the QUERY function. Otherwise, |Ball(q, Dist(q, p′j))| = 1 because if there
were more points than 1 in this ball, there would exist a Delaunay edge between two
of these points contradicting the fact that they are a maximal independent set in the
Delaunay triangulation of P . Let v∗ in Layer 3 be inside Ball(q, Dist(q, p′j)) in this
case. Then we can draw an empty ball passing through p′j and v∗ keeping it inside
Ball(q, Dist(q, p′j)). This means there must be a Delaunay edge connecting p′j and v∗

implying that v∗ ∈ H(p′j) and hence the QUERY function must return v∗ correctly.

The following two observations help us bound the running time of our query, assuming
that q has expansion constant γ =O(1):

Lemma 3.3. In O(log n) time, Ball(q, r) can be computed such that, in expecation,
|Ball(q, r)| =O(1).

Proof. This follows from a lemma by Chan [6](and is explicitly proved in Lemmas 2.1-
2.3 of [8]) that shows the nearest neighbor to q chosen from O(1) points in P adjacent
to q in Morton order is contained in a box that has, in expectation, only a constant factor
more points than the box containing nn(q, P ).

Theorem 3.4. Given q, with expansion constant γ =O(1), nn(q,P) can be found in
O(log n) time in expectation.

Proof. Given that P is sorted in Morton order, a binary search for q obviously takes only
O(log n) time. This yields a ball to be refined with only expected O(1) vertices of the
Delaunay triangulation of P . Compass routing can therefore give us a path containing
only O(1) vertices. Given that any vertex can be processed in O(log n) time to find
a nearer neighbor by using the Voronoi cell, nn(q, P ) can be found in O(log n) time
in expectation. Note that splitting P in two layers, does not increase the running time
because the number of points visited is still expected O(1) (By Lemma 3.3).

The construction time of the algorithm is O(n log n), bounded by the sorting of the
input set in Morton order, as well as constructing the Delaunay graph and Voronoi
graph, all of which have O(n log n) running times. The maximal independent set is
found in O(n) time.

While this proof is independent of dimension, the practicality of the algorithm is ques-
tionable in dimensions higher than two, where the Delaunay graph is not constrained to
have a linear number of edges. It remains to be seen if there is a practical solution to
the nearest neighbor problem using this approach in dimensions higher than two.
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4 Experimental Setup

Our Delaunay nearest neighbor algorithm (DelaunayNN) was tested in practice against
two algorithms. The first was ANN, the kd-tree nearest neighbor implementation from
David Mount [16]. The second was our implementation of the full Delaunay hierar-
chy (FDH) algorithm presented by Birn et al. [3].

Experiments were conducted on a machine with dual 2.66 GHz Quad-core Intel
Xeon CPUs, using a total of 4 GB DDR memory. Each core had 2 MB of total cache.
The operating system used was SUSE Linux version 11.2, kernel 2.6.31.8-0.1. All
source code was compiled using g++ version 4.4.1, with -O3 enabled.

DelaunayNN was written using C++. It used the Triangle library by Shewchuk [18]
to construct the Delaunay triangulation in pre-processing. In our implementation the
constant η was set to the value 4, which we determined empirically to be a good value.
It should also be noted that the maximum degree of any vertex for all of the tested data
sets was 64, which was small enough that the Voronoi preprocessing of points was not
needed for any of the experiments (in line 8 and 27 of Algorithm 1, the lower bound Ω(1)
was replaced by 64). FDH was implemented using C++. It used the CGAL library [4] to
construct the Delaunay hierarchy in pre-processing. In both cases, exact predicates were
used to construct the Delaunay graphs. To keep a fair comparison with ANN, however,
both used inexact floating point arithmetic when computing distances for queries. In
all experimental cases this had no impact on the solution. For both DelaunayNN and
FDH, points were stored along with edges of the graph in order to take advantage of
spatial locality in the cache, at the cost of some storage efficiency. In all experiments,
the nearest neighbor to the query point was found exactly. ANN used ε = 0.

For comparison purposes, point distributions for the experiments were chosen to be
the same as those used by Birn et al. [3, 10]. To recap, there are four distributions used:

1. Data points chosen uniformly at random from the unit square. Query points chosen
uniformly at random from a square 5% larger than the unit square.

2. Data points chosen uniformly at random from the unit circle. Query points chosen
uniformly at random from the smallest containing square around the unit circle.

3. Data points chosen with 95% from the unit circle, 5% from the smallest square
containing the unit circle. Query points chosen at random from the unit circle.

4. Data points chosen with x = [−1000, 1000] and y = x2. Query points chosen
uniformly at random from the rectangle containing the parabola.

We chose to conduct our experiments using large data sets, to better understand the
asymptotic behavior of the algorithms. For each experiment, point sets were created
ranging in size from one million to 128 million points. 100,000 queries were used in
each experiment. To account for randomness in the algorithms and the system, each
experiment was run five times (with unique data and query sets for each), and the results
were averaged. The next section describes the results and shows graphs of the run time.
Note that all graphs use a base 2 logarithmic scale. At the end of the paper, we also
include tables with the discrete timing results.
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5 Experimental Results

As shown in Figure 4, our algorithm behaves very well in practice on point sets from
various distributions. For data sets of sufficient size, the DelaunayNN implementation
proves faster than FDH in all cases, and faster than ANN in almost all cases.

Figure 4(a) shows the results for uniform distribution, which most closely follows
the bounded expansion constant considered in the analysis. All implementations per-
formed very well, with low average query times even for very large data sets. Overall,
the increase in average query time was significantly less than log n for all three imple-
mentations.
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Fig. 5. Showing average time per point to pre-process data sets for queries. Data was taken uni-
formly at random from the unit square.

Table 1. Query Time for Uniform Dist

y
Data Size ANN FDH DelaunayNN
(millions) (μsecs) (μsecs) (μsecs)

1 0.25270 0.47128 0.17729
2 0.29390 0.52770 0.20186
4 0.32515 0.58120 0.22614
8 0.36260 0.60524 0.25335

16 0.39758 0.63178 0.27608
32 0.43566 0.68395 0.30011
64 0.46234 0.74034 0.33027
128 0.50375 0.76978 0.35981

Table 2. Query Time for Circle Dist

Data Size ANN FDH DelaunayNN
(millions) (μsecs) (μsecs) (μsecs)

1 8.63243 0.17260 0.21796
2 16.18790 0.30660 0.26801
4 26.42330 0.51370 0.32227
8 40.67710 1.42964 0.38098
16 59.25260 2.10402 0.42979
32 88.78520 6.26529 0.51216
64 132.12500 11.19470 0.57460

128 212.07100 25.28850 0.75866

Table 3. Query Time for Fuzzy Circle Dist

Data Size ANN FDH DelaunayNN
(millions) (μsecs) (μsecs) (μsecs)

1 0.16654 0.22836 0.16604
2 0.19873 0.32517 0.18411
4 0.22376 0.49217 0.20783
8 0.27521 0.61018 0.23853

16 0.31957 0.75705 0.26399
32 0.34461 0.92965 0.28739
64 0.37554 1.04076 0.29913
128 0.39424 1.25171 0.33284

Table 4. Query Time for Parabola Dist

Data Size ANN FDH DelaunayNN
(millions) (μsecs) (μsecs) (μsecs)

1 0.25818 0.23096 0.16939
2 0.36093 0.53571 0.24350
4 0.51931 1.09705 0.42040
8 0.77374 2.31555 0.73104
16 1.18471 5.35778 1.33284
32 1.84100 11.21760 2.52317
64 2.82095 27.85140 4.77147

128 4.49590 53.95780 9.48711

In Figure 4(b) we see that for data sets where points are distributed on a circle,
the DelaunayNN displays timing results that are very similar to it’s performance on
uniformly distributed data, where both ANN and FDH perform substantially worse than
on uniform data. This trend continues in Figure 4(d), with the exception of ANN’s
performance, which is again closer to its performance on uniform data.
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Table 5. Pre-Processing Time for Uniform Dist

Data Set Size ANN FDH DelaunayNN
(millions) (μsecs) (μsecs) (μsecs)

1 0.788120 12.569800 4.126410
2 1.019810 15.401650 4.278760
4 1.428278 17.975875 4.426575
8 1.804425 22.293875 4.581163

16 2.264475 24.980688 4.900006
32 2.736934 28.750000 5.159531
64 3.250344 33.437500 5.312781
128 3.829984 37.812500 5.625000

The one anomalous case we had is documented in Figure 4(c). In this case, ANN had
a marked edge in performance for larger point sets over DelaunayNN and FDH. It is
also worth noting that for this type of distribution, all implementations had significantly
worse scaling than on other distributions.

Figure 5 shows the difference in pre-processing time for the various implementa-
tions on uniform data. While ANN maintains a distinct advantage, DelaunayNN scales
much better as the data set size increases. It is also clear that using divide and conquer
approach allows for Delaunay triangulation with much more reasonable construction
times, whereas FDH is forced to use the practically less efficient, incremental construc-
tion. Tables 1 to 5 show the data corresponding to the graphs.

6 Conclusions and Future Work

We have presented an algorithm for finding the nearest neighbor for a query in two
dimensions that has both an expected run time bound of O(log n) and strong exper-
imental performance when compared to existing, state of the art implementations. It
remains to be seen if this approach can be applied in a reasonable manner to dimen-
sions higher than two, and if it can be extended to allow for efficient solutions to the
k-nearest neighbor problem.

Acknowledgements. We would like to thank Samidh Chatterjee for discussion and
suggestions regarding this paper. This research was partially supported by National
Science Foundation through CAREER Grant CCF-0643593, Florida State University
Committee on Faculty Research Support (COFRS) Summer Award and the Air Force
Young Investigator Program.

References

[1] Arya, S., Mount, D.: Computational geometry: Proximity and location. In: Mehta, D.,
Sahni, S. (eds.) Handbook of Data Structures and Applications, ch. 3, pp. 63–1, 63–22.
CRC Press, Boca Raton (2005)



512 M. Connor and P. Kumar

[2] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algorithm for
approximate nearest neighbor searching in fixed dimensions. J. ACM 45, 891–923 (1998)

[3] Birn, M., Holtgrewe, M., Sanders, P., Singler, J.: Simple and Fast Nearest Neighbor Search.
In: 2010 Proceedings of the Twelfth Workshop on Algorithm Engineering and Experi-
ments, January 16, pp. 43–54 (2010)

[4] Boissonnat, J.-D., Devillers, O., Teillaud, M., Yvinec, M.: Triangulations in cgal (extended
abstract). In: SCG 2000: Proceedings of the sixteenth annual symposium on Computational
geometry, pp. 11–18. ACM, New York (2000)

[5] Chan, T.M.: Closest-point problems simplified on the ram. In: SODA 2002: Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 472–473. Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2002)

[6] Chan, T.M.: Manuscript: A minimalist’s implementation of an approximate nearest neigh-
bor algorithm in fixed dimensions (2006)

[7] Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In:
Shakhnarovich, G., Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods for Learning
and Vision: Theory and Practice, pp. 15–59. MIT Press, Cambridge (2006)

[8] Connor, M., Kumar, P.: Fast construction of k-nearest neighbor graphs for point clouds.
IEEE Transactions on Visualization and Computer Graphics 99 (PrePrints) (2010)

[9] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

[10] Devillers, O.: The Delaunay Hierarchy. International Journal of Foundations of Computer
Science 13, 163–180 (2002)

[11] Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data struc-
ture for multidimensional data. In: Proc. of the twenty-first annual symposium on Compu-
tational geometry, pp. 296–305. ACM Press, New York (2005)

[12] Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: STOC
2002: Proceedings of the thirty-fourth annual ACM symposium on Theory of computing,
pp. 741–750. ACM, New York (2002)

[13] Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM Journal on Comput-
ing 12(1), 28–35 (1983)

[14] Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. of
11th Canadian Conference on Computational Geometry, pp. 51–54 (1999)

[15] Milgram, S.: The small world problem. Psychology Today 1(1), 60–67 (1967)
[16] Mount, D.: ANN: Library for Approximate Nearest Neighbor Searching (1998),

http://www.cs.umd.edu/˜mount/ANN/
[17] Samet, H.: Applications of spatial data structures: Computer graphics, image processing,

and GIS. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)
[18] Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Tri-

angulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS,
vol. 1148, pp. 203–222. Springer, Heidelberg (1996); From the First ACM Workshop on
Applied Computational Geometry

http://www.cs.umd.edu/~mount/ANN/


Author Index

Abeledo, Hernán 202
Abraham, Ittai 23
Amaldi, Edoardo 266
Ambrosino, Daniela 314
Andonov, Rumen 106
Anghinolfi, Davide 314
Aslanyan, Hakob 386

Bar-Noy, Amotz 361
Bar-Yanai, Roni 373
Batz, Gernot Veit 166
Baumann, Frank 118
Beiko, Robert G. 141
Berger, Annabell 35
Blair, Jean 411
Boccia, Maurizio 288
Boyar, Joan 178
Brunel, Edith 47
Bruun, Asger 424
Buchheim, Christoph 118

Cánovas, Rodrigo 94
Caroli, Manuel 462
Chatterjee, Samidh 486
Cheilaris, Panagiotis 361
Chiarandini, Marco 326
Cicerone, Serafino 59
Clautiaux, François 302
Coniglio, Stefano 266
Connor, Michael 486, 501
Coughlan, Eamonn T. 226
Crainic, Teodor G. 288

D’Ambrosio, Claudia 350
D’Angelo, Gianlorenzo 59
de Castro, Pedro M.M. 462
Delling, Daniel 23, 47
Delort, Charles 253
Di Stefano, Gabriele 59
Doerr, Benjamin 190
Ďurian, Branislav 129

Edelkamp, Stefan 424

Feng, Yi 361
Ferraro-Petrillo, Umberto 1, 398
Festa, Paola 338
Finocchi, Irene 1
Frangioni, Antonio 350
Frigioni, Daniele 59
Fukasawa, Ricardo 202

Gamrath, Gerald 239
Geisberger, Robert 71, 166
Gemsa, Andreas 47
Goldberg, Andrew V. 23
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