
Plaintext-Dependent Decryption:

A Formal Security Treatment of SSH-CTR�

Kenneth G. Paterson�� and Gaven J. Watson���

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, U.K.
{kenny.paterson,g.watson}@rhul.ac.uk

Abstract. This paper presents a formal security analysis of SSH in
counter mode in a security model that accurately captures the capa-
bilities of real-world attackers, as well as security-relevant features of
the SSH specifications and the OpenSSH implementation of SSH. Un-
der reasonable assumptions on the block cipher and MAC algorithms
used to construct the SSH Binary Packet Protocol (BPP), we are able
to show that the SSH BPP meets a strong and appropriate notion of
security: indistinguishability under buffered, stateful chosen-ciphertext
attacks. This result helps to bridge the gap between the existing security
analysis of the SSH BPP by Bellare et al. and the recently discovered at-
tacks against the SSH BPP by Albrecht et al. which partially invalidate
that analysis.

Keywords: SSH; counter mode; security proof.

1 Introduction

SSH is one of the most widely used secure network protocols. Originally designed
as a replacement for insecure remote login procedures which sent information in
plaintext, it has since become a general purpose tool for securing Internet traffic.
The current version of SSH, SSHv2, was designed in 1996, and it is this version
to which we refer throughout this paper. The SSHv2 protocols are defined in a
collection of RFCs [4,11,12,13,14].

The SSH Binary Packet Protocol (BPP), as specified in [13], is the component
of SSH that is responsible for providing confidentiality and integrity services to
all messages exchanged over an SSH connection. It was subjected to a formal
cryptographic security analysis using the methods of provable security by Bel-
lare et al. [3]. Bellare et al. introduced a stateful security model and notion for
SSH-style protocols. They also proved that several minor variants of the SSH

� This research was supported in part by the European Commission under contract
ICT-2007-216676 (ECRYPT-II).

�� This author supported by an EPSRC Leadership Fellowship, EP/H005455/1.
��� This author supported by an EPSRC Industrial CASE studentship sponsored by

BT Research Laboratories.

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 345–361, 2010.
c© International Association for Cryptologic Research 2010

346 K.G. Paterson and G.J. Watson

BPP meet their security notion, given reasonable assumptions about the cryp-
tographic primitives. In particular, they showed that, while the SSH BPP using
CBC mode encryption with IV chaining (SSH-IPC) is insecure, the SSH BPP us-
ing either CBC mode encryption with explicit random IVs and random padding
(SSH-$NPC), or counter mode encryption (SSH-CTR), is secure in their model.

However, the recent work of Albrecht et al. [1] has demonstrated plaintext
recovery attacks against both SSH-IPC and SSH-$NPC, despite the proof of
security for SSH-$NPC in [3]. The attacks in [1] exploit several features that
are intrinsic to the SSH specification and to implementations, but that are not
captured in the security model of [3]: firstly, the decryption process depends on
the packet length field, which itself forms part of the plaintext data; secondly,
data can be delivered to the decrypting party in a byte-by-byte manner by an
attacker, allowing the attacker to observe the behaviour of the decrypting party
after each byte is received; and, thirdly, the attacker can distinguish various
kinds of decryption failure (most importantly, the attacker can tell exactly when
a MAC fails to verify). As a consequence of these attacks, versions 5.2 and higher
of OpenSSH, the leading implementation of SSH, now negotiate the selection of
counter mode in preference to CBC mode. This follows the recommendation of
the CPNI vulnerability announcement [7]. OpenSSH versions 5.2 and higher also
include specific counter-measures for CBC mode to frustrate the CBC-specific
attacks of [1].

No attacks are known against the SSH BPP using counter mode, and the
security model and proof for the relevant scheme SSH-CTR provided in [3] does
rule out many classes of attack. Yet it is evident, in view of the attacks in
[1], that the current formal security analysis of SSH-CTR in [3] is inadequate.
In particular, the current analysis of SSH-CTR does not take into account the
plaintext-dependent nature of the decryption process, nor the ability of the at-
tacker to interact in a byte-by-byte manner with the decryption process. Indeed,
the length field which turns out to be so critical to breaking SSH in [1] is ignored
in the security analysis of [3], while it is assumed in [3] that ciphertexts are pro-
cessed in an atomic fashion. Moreover, while the model of [3] does include errors
arising from cryptographic processing, it does not do so in a way that accurately
reflects the reality of SSH implementations such as OpenSSH – in the model
of [3], any error condition leads to an identical error message, while in reality,
the error type and the timing of the error can both leak to the adversary. This
additional information was also exploited in the attacks of [1].

1.1 Our Contribution

This paper aims to bridge the gap between the current security analysis of the
SSH-CTR in [3] on the one hand, and the reality of the SSH specifications in the
RFCs and the OpenSSH implementation of the SSH BPP using counter mode
on the other. We develop a security model for the SSH BPP that extends the
stateful model introduced in [3] and that is driven by our desire to more closely
align the security model with the SSH specifications and the OpenSSH imple-
mentation. We focus on the OpenSSH implementation in preference to any of the

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 347

many other SSH implementations available because of its widespread use [10]. A
novel aspect of our security model is its ability to allow the attacker to interact
with the decryption oracle in a byte-by-byte fashion, with ciphertext bytes being
buffered until they can be processed. Novel aspects of our description of the SSH
BPP using counter mode include its provision for plaintext-dependent decryp-
tion, and accurate modeling of all the error events that arise during decryption
in the OpenSSH implementation of the SSH BPP in counter mode. We prove
that the SSH BPP using counter mode is secure in our model, under standard
assumptions concerning the cryptographic components used in the construction.
This requires significant reworking of the security analysis for counter mode in
[3] to take account of the new features of our model and our description of the
SSH BPP. Our analysis is sufficient to show that the SSH BPP using counter
mode is immune to the type of attacks reported in [1].

While our analysis is quite specific to the SSH BPP in counter mode, we
believe that the modeling and proof techniques developed here should be much
more widely applicable: all reasonably complex secure communication protocols
involve handling of error and other management messages, and many such pro-
tocols allow for the adversary to interact with the decryption process in a fine-
grained manner (rather than in a “ciphertext-atomic” manner). More generally,
we hope that our practice-driven, provable security analysis of the SSH BPP will
serve as an example to show that provable security techniques have an important
role to play in analyzing protocols that are used in the real world, whilst taking
into account low-level, code-oriented behaviours of the cryptographic elements
of the protocols.

1.2 Paper Organisation

We begin by giving a description of the SSH Binary Packet Protocol in Section 2,
using this to identify the key features required in our modeling of the SSH BPP
and its security. In Section 3 we define the building blocks that we use to define
the SSH BPP’s Encode-then-Encrypt&MAC encryption scheme. Section 4 gives
the definitions of our new security models. Section 5 contains our proof of security
for SSH using counter mode encryption. Section 6 presents our conclusions.

2 SSH Binary Packet Protocol

The SSH Binary Packet Protocol (BPP) is defined in RFC 4253 [13]. The SSH
BPP provides both confidentiality and integrity of messages sent over an SSH con-
nection using an encode-then-encrypt&MAC construction. A message is first en-
coded by prepending a 4 byte packet length field and 1 byte padding length field
and appending a minimum of 4 bytes of random padding. The packet length field
specifies the total length of the encoded message excluding the packet length field
itself. This encoded message is then encrypted. There are various algorithms sup-
ported for encryption, but here, in the light of the attacks in [1], we only consider
stateful counter mode encryption, as specified for SSH in RFC 4344 [4]. Since the

348 K.G. Paterson and G.J. Watson

SSH BPP is specified in a blockwise manner, SSH still appends padding even when
using counter mode encryption. The final ciphertext is the concatenation of the
encoded-then-encrypted message and a MAC value. The MAC value is computed
over the concatenation of a 32-bit packet sequence number and the encoded (but
not encrypted) message. The sequence number is not sent over the channel but is
maintained separately by both communicating parties.

2.1 Modeling the SSH BPP and Its Security

We now give a high-level description of the main features of our model for the
SSH BPP and its security, explaining how these arise from features of the SSH
BPP specification and specific implementations.

As with the model of [3], our model for the SSH BPP is a stateful one, reflect-
ing the protocol’s use of per-packet sequence numbers. We also wish to give the
adversary access to encryption and decryption oracles in a left-or-right indistin-
guishability game. We next discuss how these oracles should be defined, with
further details to follow in the sections ahead. At this point, our model begins
to significantly diverge from the model of [3].

When decrypting a ciphertext, the receiver should first decrypt the first block
received and retrieve the packet length field in order to determine how much
more data must be received before the MAC tag is obtained. According to RFC
4253 [13]:

“Implementations SHOULD decrypt the length after receiving the first 8
(or cipher block size, whichever is larger) bytes of a packet.”

Thus we may expect that an SSH implementation will enter into a wait state,
awaiting further data, unless sufficient data has already arrived to complete the
packet. Informally speaking, this renders the entire decryption process plaintext-
dependent, in the sense that the number of ciphertext bytes required before the
decryption process can complete (possibly with an error message because of a
MAC verification failure) is determined by the initial bytes of the plaintext.
Moreover, because SSH is implemented over TCP, the attacker can deliver as
few or as many bytes of ciphertext at a time as he wishes to the decrypting party.
These facts are exploited in the attacks against the SSH BPP in CBC mode in
[1]. Thus our security analysis for the SSH BPP needs to consider the length
field and how its processing affects security, as well as allowing the adversary to
deliver data to the decryption oracle in a byte-by-byte manner in the security
model. However, it should be noted that the plaintext message is not made
available to the adversary in a byte-by-byte manner as it is decrypted. Instead,
in implementations, the plaintext is buffered until sufficient data has arrived
that the MAC can be checked. Our model, therefore, needs to allow byte-by-byte
delivery of ciphertext data, but also to include a buffered decryption process.

In fact, the situation is more complicated than this because implementations
of SSH also follow the advice in RFC 4253 [13] to perform sanity checking of the
length field as soon as it is obtained from the first block of ciphertext:

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 349

“. . . implementations SHOULD check that the packet length is reasonable
in order for the implementation to avoid denial of service and/or buffer
overflow attacks.”

What is “reasonable” is not defined in the RFCs, and specific implementations
adopt various practices. Version 5.2 of OpenSSH implements a particular set of
checks, and tries to tear down the SSH connection with an error message in the
event that these checks fail. This error condition is generally quite easy to dis-
tinguish from a MAC failure in an attack because an SSH implementation can
be made to pass through a wait state before the MAC failure. The distinguisha-
bility of these different error conditions is used in the attacks against OpenSSH
in CBC mode in [1]. So a security model for the SSH BPP should include errors
arising from length checking as well as from MAC failures, and should report
these errors in such a way that they can be distinguished by the adversary. Addi-
tional errors may arise after MAC checking, because of a failure of the decoding
algorithm applied to the recovered, encoded message. Again, the model should
reflect this possibility. To comply with the SSH specifications, all of these errors
should be “fatal”, leading to the destruction of the SSH connection. However,
note that an adversary may be able to prevent such error messages from reach-
ing the peer of party initiating the tear-down. We handle this aspect by having
separate states for the encryption and decryption oracles in our model, and with
an error arising during decryption leading to the loss of the decryption oracle,
but not the encryption oracle, and vice-versa.

It is notable that SSH attempts to hide the packet length field by encrypting
it. However, a simple extension of the attacks in [1] shows that this is futile:
an attacker who can detect the start of a new packet simply needs to flip a bit
somewhere in the ciphertext after the length field and wait for a MAC failure.
Simple arithmetic involving the number of ciphertext bytes delivered before the
MAC failure is seen then tells the attacker what the content of the packet length
field was. Of course, the cost of this attack is to lose the SSH connection. How-
ever, it shows that the length field cannot be hidden from an active attacker.
For this reason, we will insist that, in our left-or-right indistinguishability game,
all pairs of messages submitted to the encryption oracle should have the same
length when encoded, so that they cannot be trivially distinguished using the
above attack.

3 Definitions

3.1 Notation

First let us begin by defining some notation. For a string x, let |x| denote the
length of x in bytes, and let x[i] denote the i-th block of x, where, throughout,
blocks consist of L bytes. Let x[1. . .n] denote the concatenation of the blocks
x[1], x[2], . . ., x[n] of x and let x‖y denote the concatenation of strings x and y.
Let ε denote the empty string. Let 〈i〉t denote the t-byte binary representation
of integer i, where 0 ≤ i < 28t.

350 K.G. Paterson and G.J. Watson

3.2 Building Blocks

Based on the discussion in the previous section, we now define the primitives
which form the building blocks in our description of the SSH BBP’s encode-then-
encrypt&MAC construction. These building blocks are an encoding scheme EC,
an encryption scheme (we consider only counter mode encryption) and a message
authentication schemeMA.

Encoding Scheme: The encoding scheme EC = (enc, dec) used in SSH con-
sists of an encoding algorithm enc and a decoding algorithm dec. The encoding
algorithm enc is stateful and randomised, takes as input a message m and out-
puts two messages (me, mt). Here as in [3], me denotes the encoded message
which will be used by any future encryption process and mt denotes the en-
coded message which will be used by a MAC tagging algorithm. As required by
the SSH BPP, the encoding algorithm prepends some length information about
the message and appends some padding.

The decoding algorithm dec is stateful and deterministic. It takes as input the
full encoded message me = me[1. . .n], strips off all length fields and outputs the
decoded message m. However, if it is unable to parse the message correctly an
error message ⊥P is output. Note that our definition of dec is slightly different
to that in [3] which had two outputs m and mt. Note also that dec will only be
called during the decryption process for SSH if both length checking and MAC
checking have not returned errors. For correctness of the encoding scheme, we
require that for any m with enc(m) = (me, mt) �= (⊥,⊥), we have dec(me) �=⊥P .

Algorithm enc(m)
if ste =⊥ then

return (⊥,⊥)
end if
if SNe ≥ 232 or |m| ≥ 232 − 5 then

ste ←⊥
return (⊥,⊥)

else
PL← L− ((|m|+ 5) mod L)
if PL < 4 then

PL← PL + L
end if
PD

r← {0, 1}8·PL

LF ← (1 + |m|+ PL)
me ← 〈LF 〉4‖〈PL〉1‖m‖PD
mt ← SNe‖me

SNe ← SNe + 1
return (me, mt)

end if

Algorithm dec(me)
if std =⊥ then

return ⊥
end if
if SNd ≥ 232 then

std ←⊥
return ⊥

else
Attempt to parse me as:
〈LF 〉4‖〈PL〉1‖m‖PD where
PL ≥ 4, |PD| = PL and |m| ≥ 0.
if parsing fails then

std ←⊥
return ⊥P

else
SNd ← SNd + 1
return m

end if
end if

Fig. 1. Encoding Scheme for SSH

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 351

The specific encoding scheme used by the SSH BPP specification is shown
in Figure 1. Here, L denotes the block-size in bytes of the block cipher in use
(or the default value of 8 if a stream cipher such as ARCFOUR is being used),
LF denotes the length field, PL denotes the padding length and PD denotes
the padding bytes. The padding bytes are assumed to be random in our security
analysis, though our security results also hold for any distribution on the padding
bytes (including fixed bytes). We test that the message m submitted for encoding
contains at most 232−6 bytes, so that the length of the encoded message can be
recorded in the 4-byte length field. Each of the two algorithms enc, dec maintains
a separate state of the form (st, SN), initially set to (ε, 0). In each case, the first
component st maintains the status of the algorithm, i.e. if the algorithm is in
an error state or not. This is used to model the effect of an SSH connection
tear-down when an error occurs. The second component SN denotes a 32-bit
sequence number. Note that RFC 4344 [4] states that when the sequence number
SN wraps around, new keys must be negotiated. For simplicity in our analysis,
we model this by forcing ste (or std) to ⊥ when SNe (or SNd) reaches 232. In our
full model of the SSH BPP, this has the effect of removing the adversary’s access
to the encryption or decryption oracle. This ensures that each value of SNe or
SNd is used only once, and is equivalent to enforcing rekeying when the relevant
sequence number wraps around. Note that in [3], the equivalent state consists
of a single value which is “over-loaded” to carry both the algorithm status and
sequence number. For concreteness, Figure 1 shows the specific parsing steps
carried out by OpenSSH during decoding. Other implementations may perform
different checks here.

Encryption Scheme: The construction of SSH that we consider uses counter
mode encryption of a block cipher, and is called SSH-CTR in [3]. When we come
to formally analyze the security of SSH-CTR, we will regard the block cipher
as being a pseudorandom function (prf) family rather than as a pseudorandom
permutation family. This allows us to directly use some of the results from [2].
Our definition for a prf family can be found in the full version of this paper [9].

We give a formal definition for counter mode encryption based on a prf family
F , CTR[F] = (K-CTR, E-CTR,D-CTR) in [9]. The key generation algorithm
K-CTR outputs a random k-bit key Ke for the underlying prf family F , therefore
specifying a function FKe having l-bit inputs and L-byte outputs. Note that in
practice we have l = 8L since all block ciphers have equal input and output size.
The key generation algorithm also outputs a random l-bit initial counter ctr,
which is used to initialise counters in the encryption and decryption algorithms
E-CTR, D-CTR.

We also define the scheme CTREC [F] to be a combination of counter mode
encryption and the encoding/decoding scheme from Figure 1. Full details of this
scheme appear in [9]. This construction is not used in SSH, but is needed as a
step in our security analysis in Section 5.

Message Authentication Scheme: A message authentication scheme (MAC)
MA = (Kt, T ,V) consists of three algorithms. The key generation algorithm Kt

352 K.G. Paterson and G.J. Watson

returns a key Kt. The tag algorithm T , which may be stateful and randomised,
takes as input the key Kt and an encoded message mt and returns a tag τ . The
verification algorithm V , which is deterministic and stateless, takes as finput
the key Kt and an encoded message mt and a candidate tag τ ′ and outputs
a bit. For any key Kt, message mt and internal state of TKt , we require that
VKt(mt, TKt(mt)) = 1.

3.3 Encode-then-Encrypt&MAC

With the above components defined, we are now ready to define SSH-CTR. Note
that our version is significantly different from that considered in [3] because of
the new features that we discussed in Section 2.1.

Our construction of SSH-CTR is an Encode-then-Encrypt&MAC construc-
tion with plaintext-dependent decryption. We define SSH-CTR = (K-SSH-CTR,
E-SSH-CTR,D-SSH-CTR) in Figure 2. This makes use of the encoding scheme
EC described in Section 3.2, the encryption scheme CTR[F] and a message au-
thentication scheme MA, where the length of the MAC tag is maclen. It also
makes use of a length checking algorithm len that we discuss below. Note that
this construction is stateful. The encryption state arises from the counter mode
state ctre combined with the state (ste, SNe) of the algorithm enc. The de-
cryption state arises from the counter mode state ctrd, the state (std, SNd) of
the algorithm dec, and the ciphertext buffer cbuff. We will refer to the scheme
SSH-CTR[F] whenever we wish to highlight the scheme’s reliance on a particular
function family F in the encryption component.

The key generation algorithm K-SSH-CTR selects keys for counter mode en-
cryption and the MAC algorithm uniformly at random from the relevant key-
spaces. This represents a significant abstraction from reality in our description
of SSH-CTR, since in practice these keys and the initial counter value ctr are
derived in a pseudorandom manner from the keying material established during
SSH’s key exchange protocol. The decryption algorithm D-SSH-CTR is con-
siderably more complex than one might expect. This complexity is required to
accurately model all the features of the SSH specification and the OpenSSH
implementation. D-SSH-CTR operates in 3 distinct stages.

In Stage 1, a sequence of ciphertext bytes c of arbitrary length is received and
appended to the ciphertext buffer cbuff.

In Stage 2 of D-SSH-CTR, once sufficient bytes have arrived to process the
first block of ciphertext, the packet length field is extracted, and length checking
is performed by making a call to the function len. This accords with our discus-
sion in Section 2.1. The function len is shown as part of Figure 2. It takes as input
a single block of plaintext, and returns either the content of the length field (as
an integer) or a failure symbol ⊥L. The exact details of length checking, and how
to behave if length checking fails, is implementation-specific and not specified
in the RFCs. Figure 2 shows the exact checks carried out by OpenSSH version
5.2 in counter mode; our subsequent analysis still holds so long as the algorithm
at a minimum checks that the total number of encrypted bytes (i.e. excluding
the MAC tag) indicated by the length field is a multiple of the block-size L,

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 353

Algorithm K-SSH-CTR(k)
Ke

r← Ke(k)
Kt

r← Kt(k)
ctr

r← {0, 1}l
return Ke, Kt

Algorithm E-SSH-CTRKe,Kt(m)
if ste =⊥ then

return ⊥
end if
(me, mt)← enc(m)
if me =⊥ then

ste ←⊥
return ⊥

else
c← E-CTRKe(me)
τ ← TKt(mt)
return c‖τ

end if

Algorithm len(m) (|m| = L)
Parse m as 〈LF 〉4‖R
if LF ≤ 5 or LF ≥ 218 then

return ⊥L

else if LF + 4 mod L 	= 0 then
return ⊥L

else
return LF

end if

Algorithm D-SSH-CTRKe,Kt(c)
if std =⊥ then

return ⊥
end if
{Stage 1}
cbuff← cbuff‖c
{Stage 2}
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A (where |c̃| = L)
me[1]← D-CTRKe(c̃)
LF ← len(me[1])
if LF =⊥L then

std ←⊥
return ⊥L

else
need = 4 + LF + maclen

end if
end if
{Stage 3}
if |cbuff| ≥ L then

if |cbuff| ≥ need then
Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ | = need,
and |τ | = maclen

me[2. . .n]← D-CTRKe(c̄[2. . .n])
me ← me[1]‖me[2. . .n]
mt ← SNd‖me

v ← VKt(mt, τ)
if v = 0 then

std ←⊥
return ⊥A

else
m← dec(me)
me ← ε, cbuff← B
return m

end if
end if

end if

Fig. 2. SSH-CTR, SSH using counter mode encryption

and fails if this is not the case. For further discussion, see the full version [9].
Note that when length checking fails in OpenSSH version 5.2 in counter mode,
an error message is sent and the SSH connection is torn down. We model this
by outputting a length error ⊥L and setting the state std to ⊥. Because the
first action of D-SSH-CTR is to simply return ⊥ if std is already equal to ⊥,
our description of SSH-CTR models the subsequent connection tear-down seen
in OpenSSH. If the length checks pass, then D-SSH-CTR proceeds to use the

354 K.G. Paterson and G.J. Watson

returned value of LF to determine the value of need, which is the number of
additional ciphertext bytes that are needed before the entire ciphertext (includ-
ing MAC tag) is adjudged to have arrived. This makes the decryption algorithm
plaintext-dependent and no further output is produced by D-SSH-CTR until the
complete ciphertext has arrived and its MAC has been checked.

In Stage 3 of D-SSH-CTR, ciphertext bytes that have been buffered in cbuff
during Stage 1 are processed. Note that our model allows the recipient to receive
more data than he expects; this data is denoted by B in Stage 3. This data is as-
sumed to be the start of the next ciphertext message and so we reinitialise cbuff
with this data at the end of Stage 3. Once the buffer contains sufficient data (as
determined by the variable need), the decryption algorithm uses counter mode
to obtain the encoded plaintext me and the message mt to be verified by the
MAC algorithm (this consists of me with the sequence number prepended). The
MAC tag is then checked, and, if it verifies successfully, the encoded plaintext me

is passed to the dec algorithm (as defined in Figure 1). Notice that three types
of error can arise during this stage: a failure of the MAC verification, resulting
in output ⊥A, a failure of parsing during decoding, resulting in output ⊥P , or a
wrap-around of the sequence number SNd during decoding, resulting in output
⊥. When any of these errors arises, the state std of the decryption algorithm is
set as ⊥. This state is checked at the start of every oracle query and if it equals
⊥, then an error message ⊥ is returned. In this way, our description of SSH-CTR
models the subsequent connection tear-down seen in OpenSSH.

This description of SSH-CTR faithfully models OpenSSH in counter mode,
in the sense of having buffered, plaintext-dependent decryption, and with errors
arising at exactly the same points during decryption and based on the same
failure conditions that are tested in OpenSSH. There are other ways in which
to implement SSH and still be RFC-compliant. For example, the full decoding
of the message, and hence parsing checks, could be performed before the MAC
verification, as is the case in the construction of SSH-CTR given in [3].

4 Security Models

4.1 Chosen Plaintext Security

We begin by extending the usual left-or-right (LOR) indistinguishability game
for a CPA adversary from [2] to handle stateful encryption and leakage of length
information. This extension is only needed at intermediate steps in our security
analysis, while we are primarily interested in the security of the SSH BPP under
chosen ciphertext attacks. For this reason, we content ourselves with chosen
plaintext security definitions that are tied to the particular schemes SSH-CTR[F]
and CTREC [F] that we need to analyze.

In the usual LOR-CPA model the adversary is given access to a left-or-right
encryption oracle E(LR(·, ·, b)), where b ∈ {0, 1}. This oracle takes as input two
messages m0 and m1. If b = 0 it outputs the encryption of m0 and if b = 1
it outputs the encryption of m1. It is the adversary’s challenge to determine
the bit b. The advantage of such an adversary is defined in the usual way. Our

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 355

extension of the LOR-CPA model makes it stateful and incorporates leakage of
a length field. To achieve the former, we incorporate explicit sequence numbers
in the model. To achieve the latter, we provide the adversary with access to a
length revealing oracle L(·) whose operation is specific to the particular scheme
under study. For the schemes SSH-CTR[F] and CTREC [F], the oracle takes as
input a block c which is treated as the first block of a new message; the oracle
decrypts this block to retrieve the length field and performs the required length
checking functions, and then outputs either the length field LF or the symbol
⊥L signifying an invalid length field. We require that L(·) maintains its own
view of any internal state of the underlying encryption scheme, according to
the queries it receives. For the schemes we consider, this is done by increasing
a counter value ctrl by a number that is determined by the length field, and
increasing a sequence number SNl by 1, each time the oracle is called; at the
start of the security game, ctrl and SNl are set to the corresponding values held
at the encryption oracle. The detailed operation of the length oracle associated
with the schemes SSH-CTR[F] and CTREC [F] can be found in the full version
[9]. We name our new model LOR-LLSF-CPA, where “LLSF” stands for “length
leaking stateful”.

In [3], decryption queries are defined to be either “in-sync” or “out-of-sync”
with respect to the sequence number at the encryption oracle. We introduce a
similar concept for length oracle queries in our next definition:

Definition 1. [LOR-LLSF-CPA]
Consider the stateful encryption scheme SE = (K, E ,D) with an associated length
oracle L(·). Let b ∈ {0, 1} and k ∈ N. Let A be an attacker that has access to
the oracles EK(LR(·, ·, b)) and L(·) The game played is as follows:

Explor-llsf-cpa-b
E,A (k)

K
r← K(k)

b′ ← AEK(LR(·,·,b)),L(·)

return b′

For all queries (m0, m1) to EK(LR(·, ·, b)), we require that |enc(m0)| = |enc(m1)|.
In thismodel the adversary has the possibility ofmaking three different types of query
to L. Let SNe denote the sequence numbers at the encryption oracle and let SNl

denote the sequence numbers at the length oracle.

– A query c to L when the length oracle has sequence number SNl is said to be
in-sync if c is equal to the first block of ciphertext output by the encryption
oracle when it had sequence number SNe = SNl.

– A query c to L when the length oracle has sequence number SNl is said
to be an out-of-sync current state query if c is not equal to the first block
of ciphertext output by the encryption oracle when it had sequence number
SNe = SNl.

– A query to L when the length oracle has sequence number SNl is said to be
an out-of-sync future state query if SNl > SNe, where SNe is the sequence
number used by the encryption oracle when responding to its most recent
query.

356 K.G. Paterson and G.J. Watson

We require that the response to any further length oracle queries following the
first out-of-sync query is ⊥.

The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-llsf-cpa
SE,A (k) = Pr[Explor-llsf-cpa-1

SE,A (k) = 1]− Pr[Explor-llsf-cpa-0
SE,A (k) = 1].

The advantage function of the scheme is defined to be

Advlor-llsf-cpa
SE (k, t, qe, μe, ql) = max

A
{Advlor-llsf-cpa

SE,A (k)}

for any integers t, qe, μe, ql. The maximum is over all adversaries A with time
complexity t, making at most qe queries to the encryption oracle, totalling at
most μe bits in each of the left and right inputs, and ql queries to the length
revealing oracle.

4.2 Chosen Ciphertext Security

Now we consider chosen ciphertext attackers. We introduce a new security no-
tion for left-or-right indistinguishability against chosen-ciphertext attackers for
buffered, stateful decryption (LOR-BSF-CCA). In this model, which extends the
IND-SFCCA model of [3], the adversary is given access to an encryption ora-
cle and to a buffered decryption oracle. The model applies for any encryption
scheme in which the decryption oracle maintains a buffer of as-yet-unprocessed
ciphertext bytes cbuff and in which encryption and decryption states include
sequence numbers which are incremented after each successful operation. For
reasons explained in Section 2.1, we need to limit the attacker’s queries to the
encryption oracle to pairs of messages (m0, m1) having the same length when
encoded.

Definition 2. [LOR-BSF-CCA]
Consider the symmetric encryption scheme SE = (K, E ,D) with buffered, stateful
decryption. Let b ∈ {0, 1} and k ∈ N. Let A be an attacker that has access to the
oracles EK(LR(·, ·, b)) and DK(·). The game played is as follows:

Explor-bsf-cca-b
SE,A (k)

K
r← K(k)

b′ ← AEK(LR(·,·,b)),DK(·)(k)
return b′

We require that for all queries (m0, m1) to EK(LR(·, ·, b)), |enc(m0)| = |enc(m1)|.
In this model the adversary has the possibility of making three different types of
decryption query. Let SNe denote the sequence numbers at the encryption oracle
and let SNd denote the sequence numbers at the decryption oracle. Recall that,
since the adversary can deliver ciphertexts in a byte-wise fashion to the decryption
oracle, the same value of SNd may be involved in processing a sequence of ciphertext
queries.

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 357

– The sequence of decryption queries corresponding to the sequence number
SNd is said to be in-sync if, after input of the final query in the sequence,
the ciphertext buffer cbuff has as a prefix the output from the encryption
oracle for sequence number SNe = SNd. The response from an in-sync query
is not returned to the adversary.

– The sequence of decryption queries corresponding to the sequence number
SNd is said to be an out-of-sync current state query if, after input of the
final query in the sequence, the ciphertext buffer cbuff does not have the
output from the encryption oracle for sequence number SNe = SNd as a
prefix.

– The sequence of decryption queries corresponding to the sequence number
SNd is said to be an out-of-sync future state query if SNd > SNe, where
SNe is the sequence number used by the encryption oracle when responding
to its most recent query.

The response to any further decryption queries following an out-of-sync query is
the ⊥ symbol.

The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-bsf-cca
SE,A (k) = Pr[Explor-bsf-cca-1

SE,A (k) = 1]− Pr[Explor-bsf-cca-0
SE,A (k) = 1].

The advantage function of the scheme is defined to be

Advlor-bsf-cca
SE (k, t, qe, μe, qd, μd) = max

A
{Advlor-bsf-cca

SE,A (k)}

for any integers t, qe, μe, qd, μd. The maximum is over all adversaries A with
time complexity t, making at most qe queries to the encryption oracle, totalling
at most μe bits in each of the left and right inputs, and at most qd series of
queries to the decryption oracle, totalling at most μd bits.

In the model above, the response from an in-sync decryption query is not re-
turned to the adversary. This is required in order to prevent the obvious and
trivial attack in which the adversary simply queries the decryption oracle with
the output from the encryption oracle. We include in-sync decryption queries in
order to permit the adversary to observe the system’s behaviour in encrypting
messages of its choice and to let the adversary advance the sequence numbers
maintained at the encryption and decryption oracles to values of its choice. We
make the restriction that only one out-of-sync query is allowed for the same
reason that this restriction is made in [3]: if the first out-of-sync query does not
decrypt successfully, the decryption oracle enters a halting state anyway, while
if it does, then our security analysis will show that the adversary has broken the
strong unforgeability of the MAC scheme. Our security model and analysis can
be extended to handle multiple out-of-sync decryption queries.

The specific decryption oracle we consider when analyzing the security of SSH-
CTR operates exactly as the decryption algorithmD-SSH-CTR in Section 3.3: the
oracle takes as input an arbitrary number of bytes which is then added to cbuff;
the decryption process uses the first plaintext block to determine how many bytes

358 K.G. Paterson and G.J. Watson

of ciphertext are needed to complete the packet; and the decryption process in-
volves length checking, MAC checking, and decoding, with each of these steps po-
tentially outputting a distinct error message. Also note that for SSH-CTR, the
decryption oracle acts as a “bomb” oracle: when an error of any type occurs this
oracle simply outputs⊥ in response to any further query. This models an attempt
by the decrypting party to initiate an SSH connection tear-down. However, note
that our model for SSH-CTR has separate states for encryption and decryption,
so that the encryption oracle is not “lost” if the decryption oracle is. This allows
us to model an adversary that outputs the relevant error messages. This descrip-
tion of SSH-CTR in the context of the LOR-BSF-CCA model is sufficiently rich to
give the attacker all the capabilities exploited in the attacks of Albrecht et al. [1].
Thus, if we can prove SSH-CTR to be secure in the LOR-BSF-CCA sense, then
attacks of the kind developed in [1] will be prevented.

4.3 Integrity of Ciphertexts

We next extend the INT-SFCTXT model from [3] to include buffered decryption.
We call our new model “integrity of ciphertexts for buffered, stateful decryption”
or INT-BSF-CTXT. The model again applies for any encryption scheme in which
the decryption oracle maintains a buffer of as-yet-unprocessed ciphertext bytes
cbuff and in which encryption and decryption states include sequence numbers
which are incremented after each successful operation.

In this INT-BSF-CTXT model, the adversary has access to encryption and
decryption oracles, and is considered successful if it is able to make an out-of-
sync sequence of decryption queries that results in an output from the decryption
oracle that is not a member of the set {⊥L,⊥A,⊥P ,⊥}. Again, the specific
decryption oracle that we consider when analyzing the security of SSH-CTR
operates exactly as the decryption algorithm D-SSH-CTR in Section 3.3. The
formal definition of the INT-BSF-CTXT model can be found in the full version
of this paper [9].

4.4 Security of Message Authentication Schemes

Finally, we define two security notions for MACs. We will use the LOR-DCPA
notion from [3], for distinct plaintext privacy of message authentication schemes.
We will also use the standard SUF-CMA model for strong unforgeability of
MACs. The formal definitions for these notions can also be found in the full
version [9].

5 Security Analysis

We will now present our main result, Theorem 1. This theorem provides a con-
crete security guarantee for the scheme SSH-CTR[F] in terms of security prop-
erties of the prf family F and MAC scheme MA used in its construction. The
structure of our proof follows that in [3], but with significant modifications being

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 359

needed to handle the new features of our security model and adversary. Our proof
is valid no matter what length checks are performed by the encoding scheme,
so long as the minimal length check described previously is included. Our proof
is also valid (and in fact can be tightened slightly) if the random padding bytes
in the encoding scheme are replaced by fixed bytes. It is also valid no matter
what specific parsing checks are carried out, provided that the encoding scheme
is correct. With the exception of our main result, the proofs are given in the full
version of this paper [9].

Theorem 1. Let SSH-CTR[F] be the combined encryption scheme for the en-
coding scheme EC, counter mode encryption CTR[F] and a message authentica-
tion schemeMA. Then for qe, qd ≤ 232, μe ≤ 8L2l−8qe(8+L) and any t, k, μd,
we have:

Advlor-bsf-cca
SSH-CTR[F](k, t, qe, μe, qd, μd)

≤ 2Advsuf-cma
MA (k, t, qt, μt, qv, μv) + 2Advprf

F (k, t′, qF) + 4Advprf
T (k, t′′, qt)

where qt = qe, μt ≤ μe +8(L+12)qe, qv = qd, μv ≤ μd +32qd, qF ≤ ql +μe/8L+
qe(1 + 8/L), t′ = O(t) and t′′ = O(t).

Proof of Theorem 1: This follows from Theorem 2 and Lemmas 1, 2, 3, 4 and 5.
�

The following is an extension of a result of Bellare and Namprempre [5]; here we
consider buffered, stateful decryption and include in our model potential errors
arising from length checking, MAC failures and parsing failures.

Theorem 2. Let SSH-CTR[F] be the combined encryption scheme for the en-
coding scheme EC, counter mode encryption CTR[F] and a message authentica-
tion scheme MA. Then for any k, t, qe, μe, qd, μd, we have:

Advlor-bsf-cca
SSH-CTR[F](k, t, qe, μe, qd, μd)
≤ 2Advint-bsf-ctxt

SSH-CTR[F](k, t, qe, μe, qd, μd) + Advlor-llsf-cpa
SSH-CTR[F](k, t, qe, μe, ql)

where ql = qd.

Lemma 1. Let SSH-CTR[F] be the combined encryption scheme for the encod-
ing scheme EC, counter mode encryption CTR[F] and a message authentication
scheme MA. Then for qe, qd ≤ 232 and any k, t, μe, μd, we have:

Advint-bsf-ctxt
SSH-CTR[F](k, t, qe, μe, qd, μd) ≤ Advsuf-cma

MA (k, t, qt, μt, qv, μv)

where qt = qe, μt ≤ μe + 8(L + 12)qe, qv = qd, and μv ≤ μd + 32qd.

Lemma 2. Let SSH-CTR[F] be the combined encryption scheme for the encod-
ing scheme EC, counter mode encryption CTR[F] and a message authentication
scheme MA. Then for qe, ql ≤ 232 and any k, t, μe, we have:

Advlor-llsf-cpa
SSH-CTR[F](k, t, qe, μe, ql)
≤ Advlor-llsf-cpa

CTREC[F]
(k, t′, qe, μe, ql) + 2Advlor-dcpa

MA (k, t′′, qt, μt)

where qt = qe, t′ = O(t), t′′ = O(t), and μt ≤ μe + 16(L + 12)qe.

360 K.G. Paterson and G.J. Watson

Lemma 3. Suppose F is a prf family with input length l bits and output length
L bytes. Let R = Randl→L be the set of all functions mapping l-bit strings to
L-byte strings. Then for any k, t, qe, μe, ql, we have:

Advlor-llsf-cpa
CTREC[F]

(k, t, qe, μe, ql)

≤ 2Advprf
F (k, t′, qF) + Advlor-llsf-cpa

CTREC[R]
(k, t, qe, μe, ql)

where qF ≤ ql + μe/8L + qe(40 + 8(3 + L))/8L and t′ = O(t).

Lemma 4. For any k, t, ql, qe and μe ≤ 8L2l − 8qe(8 + L) we have:

Advlor-llsf-cpa
CTREC [R]

(k, t, qe, μe, ql) = 0.

Lemma 5. LetMA be a message authentication scheme. Then for any k, t and
qt, we have:

Advlor-dcpa
MA (k, t, qt, μt) ≤ 2Advprf

T (k, t′, qt)

where t′ = O(t).

6 Conclusion

We have extended the security model of Bellare et al. [3] to develop a model
suited to analyzing the SSH BPP. We gave a description of SSH-CTR that is
closely linked to the specification of SSH in the RFCs and the OpenSSH imple-
mentation of SSH. We then proved the security of SSH-CTR in the extended
model. Our approach is sufficiently powerful to incorporate the attacks of Al-
brecht et al. [1]. This helps to close the gap that exists between the formal se-
curity analysis of SSH and the way in which SSH should be (and is in practice)
implemented.

Our approach can be seen as an attempt to expand the scope of provable
security to incorporate the fine details of cryptographic implementations. We
grant the attacker a much wider and more realistic set of ways of interacting
with the SSH protocol than in the previous analysis of [3]. We believe that our
approach captures more of the cryptographically relevant features of the SSH
BPP, including plaintext-dependent, byte-wise decryption and detailed modeling
of the errors that can arise during cryptographic processing in the SSH BPP.

References

1. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against
SSH. In: IEEE Symposium on Security and Privacy, pp. 16–26. IEEE Computer
Society, Los Alamitos (2009)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Proceedings of 38th Annual Symposium on Foundations
of Computer Science (FOCS 1997), pp. 394–403. IEEE, Los Alamitos (1997)

Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 361

3. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Transactions on Information and Systems Security 7(2),
206–241 (2004)

4. Bellare, M., Kohno, T., Namprempre, C.: The Secure Shell (SSH) Transport Layer
Encryption Modes. RFC 4344 (January 2006),
http://www.ietf.org/rfc/rfc4344.txt

5. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

6. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

7. CPNI Vulnerability Advisory. Plaintext recovery attack against SSH (Novem-
ber 14, 2008), http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt
(revised November 17, 2008)

8. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

9. Paterson, K.G., Watson, G.J.: Plaintext-Dependent Decryption: A Formal Secu-
rity Treatment of SSH-CTR. Cryptology ePrint Archive, Report 2010/095 (2010),
http://eprint.iacr.org/2010/095

10. SSH usage profiling, http://www.openssh.org/usage/index.html
11. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251

(January 2006), http://www.ietf.org/rfc/rfc4251.txt
12. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Authentication Protocol. RFC

4252 (January 2006), http://www.ietf.org/rfc/rfc4252.txt
13. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. RFC

4253 (January 2006), http://www.ietf.org/rfc/rfc4253.txt
14. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Connection Protocol. RFC 4254

(January 2006), http://www.ietf.org/rfc/rfc4254.txt

http://www.ietf.org/rfc/rfc4344.txt
http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt
http://eprint.iacr.org/2010/095
http://www.openssh.org/usage/index.html
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4254.txt

	Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR
	Introduction
	Our Contribution
	Paper Organisation

	SSH Binary Packet Protocol
	Modeling the SSH BPP and Its Security

	Definitions
	Notation
	Building Blocks
	Encode-then-Encrypt&MAC

	Security Models
	Chosen Plaintext Security
	Chosen Ciphertext Security
	Integrity of Ciphertexts
	Security of Message Authentication Schemes

	Security Analysis
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

