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Preface

These are the proceedings of Eurocrypt 2010, the 29th in the series of Euro-
pean conferences on the Theory and Application of Cryptographic Techniques.
The conference was sponsored by the International Association for Cryptologic
Research and held on the French Riviera, May 30-June 3, 2010.

A total of 191 papers were received of which 188 were retained as valid
submissions. These were each assigned to at least three Program Committee
members and a total of 606 review reports were produced. The printed record
of the reviews and extensive online discussions that followed would be almost as
voluminous as these proceedings. In the end 35 submissions were accepted with
two submission pairs being merged to give 33 papers presented at the conference.
The final papers in these proceedings were not subject to a second review before
publication and the authors are responsible for their contents.

The Program Committee, listed on the next page, deserves particular thanks
for all their hard work, their outstanding expertise, and their constant com-
mitment to all aspects of the evaluation process. These thanks are of course
extended to the very many external reviewers who took the time to help out
during the evaluation process. It was also a great pleasure to honor and welcome
Moti Yung who gave the 2010 TACR Distinguished Lecture.

It might be recalled that Eurocrypt 2010 took place under exceptionally
difficult circumstances. First, in the aftermath of the financial crisis, sponsorship
was a low priority for many companies. We are therefore grateful to 13S, Ingenico,
Microsoft, Nagravision, Oberthur, Orange Labs, Qualcomm, Sagem Sécurité, and
Technicolor for their support of Eurocrypt 2010. We specifically acknowledge the
kind efforts of Hervé Chabanne, Guillaume Dabosville, Jean-Bernard Fischer,
Paul Friedel, Marc Joye, Frangois Larbey, Kristin Lauter, Bruno Martin, David
Naccache, Jim Ostrich, and Greg Rose for making it happen. Second, long-
standing plans for Eurocrypt 2010 were disrupted by the sudden decision of the
French Government to hold an international summit at the same time and at
the same venue. For their help following this forced relocation, we would like to
extend our gratitude to our friends and family members who helped with wise
advice, good connections, and imaginative suggestions.

We would like to thank the TACR board for the honor of hosting Euro-
crypt 2010. Particular thanks are due to Shai Halevi for all his unseen work on
the submission, review, and registration sites, to Antoine Joux for sharing his
experience as Program Chair of Eurocrypt 2009, and to Helena Handschuh and
Bart Preneel for their constant advice, help, and support. Last, but not least,
we are grateful for the help and input of our colleagues Ryad Benadjila, Gilles
Macario-Rat, and Yannick Seurin, all at Orange Labs.

March 2010 Henri Gilbert (Program Chair)
Olivier Billet (General Chair)
Matthew Robshaw (General Chair)
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On Ideal Lattices and
Learning with Errors over Rings

Vadim Lyubashevsky!*, Chris Peikert?**, and Oded Regev'***

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
2 School of Computer Science, College of Computing, Georgia Institute of Technology
cpeikert@cc.gatech.edu

Abstract. The “learning with errors” (LWE) problem is to distinguish
random linear equations, which have been perturbed by a small amount
of noise, from truly uniform ones. The problem has been shown to be
as hard as worst-case lattice problems, and in recent years it has served
as the foundation for a plethora of cryptographic applications. Unfor-
tunately, these applications are rather inefficient due to an inherent
quadratic overhead in the use of LWE. A main open question was whether
LWE and its applications could be made truly efficient by exploiting ex-
tra algebraic structure, as was done for lattice-based hash functions (and
related primitives).

We resolve this question in the affirmative by introducing an algebraic
variant of LWE called ring-LWE, and proving that it too enjoys very strong
hardness guarantees. Specifically, we show that the ring-LWE distribution
is pseudorandom, assuming that worst-case problems on ideal lattices are
hard for polynomial-time quantum algorithms. Applications include the
first truly practical lattice-based public-key cryptosystem with an efficient
security reduction; moreover, many of the other applications of LWE can
be made much more efficient through the use of ring-LWE. Finally, the
algebraic structure of ring-LWE might lead to new cryptographic applica-
tions previously not known to be based on LWE.

1 Introduction

Over the last decade, lattices have emerged as a very attractive foundation for
cryptography. The appeal of lattice-based primitives stems from the fact that

* Supported by a European Research Council (ERC) Starting Grant. Part of this
work was performed while visiting Georgia Tech.

** This material is based upon work supported by the National Science Foundation
under Grant CNS-0716786. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

*** Supported by the Binational Science Foundation, by the Israel Science Foundation,
by the European Commission under the Integrated Project QAP funded by the
IST directorate as Contract Number 015848, by the Wolfson Family Charitable
Trust, and by a European Research Council (ERC) Starting Grant.

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 123, 2010.
© International Association for Cryptologic Research 2010



2 V. Lyubashevsky, C. Peikert, and O. Regev

their security can often be based on worst-case hardness assumptions, and that
they appear to remain secure even against quantum computers.

Many lattice-based cryptographic schemes are based directly upon two nat-
ural average-case problems that have been shown to enjoy worst-case hardness
guarantees. The short integer solution (SIS) problem was first shown in Ajtai’s
groundbreaking work [2] to be at least as hard as approximating several lattice
problems, such as the (gap) shortest vector problem, to within a polynomial
factor in the lattice dimension. More recently, Regev [31] defined the learning
with errors (LWE) problem and proved that it enjoys similar worst-case hard-
ness properties, under a quantum reduction. (That is, an efficient algorithm for
LWE would imply an efficient quantum algorithm for approximate lattice prob-
lems.) Peikert [26] subsequently proved the hardness of LWE under certain lattice
assumptions, via a classical reduction.

The SIS problem may be seen as a variant of subset-sum over a particular
additive group. In more detail, let n > 1 be an integer dimension and ¢ > 2
be an integer modulus; the problem is, given polynomially many random and
independent a; € Zy, to find a ‘small” integer combination of them that sums to
0 € Zy. The LWE problem is closely related to SIS, and can be stated succinctly
as the task of distinguishing ‘noisy linear equations’ from truly random ones.
More specifically, the goal is to distinguish polynomially many pairs of the form
(a;, bi ~ (a;,s)) € Zy x Zq from uniformly random and independent ones, where
s € Zy is a uniformly random secret (which is kept the same for all pairs), each
a; € Zy is uniformly random and independent, and each inner product (a;,s) €
Zq is perturbed by a fresh random error term that is relatively concentrated
around 0 (modulo ¢).

Inrecent years, amultitude of cryptographic schemes have been proposed around
the SIS and LWE problems. As a search problem (without unique solution), SIS
has been the foundation for one-way [2] and collision-resistant hash functions [I5],
identification schemes [25] [I8], [I7], and digital signatures [I3, [§]. The LWE prob-
lem has proved to be amazingly versatile for encryption schemes, serving as the
basis for secure public-key encryption under both chosen-plaintext [31, [29] and
chosen-ciphertext [30}, 26] attacks, oblivious transfer [29], identity-based encryp-
tion [T3} 8, 1], various forms of leakage-resilient encryption (e.g., [4,[6]), and more.

One drawback of schemes based on the SIS and LWE problems, however, is
that they tend not to be efficient enough for practical applications. Even the
simplest primitives, such as one-way functions, have key sizes at least quadratic
in the primary security parameter, which needs to be in the several hundreds for
sufficient security against the best known attacks.

A promising approach for avoiding this intrinsic inefficiency is to use lattices
that possess extra algebraic structure. Influenced by the heuristic design of the
NTRU cryptosystem [16], Micciancio [23] proposed a “compact,” efficient one-way
function using a ring-based variant of SIS that he showed to be at least as hard as
worst-case problems on cyclic lattices. Later, Peikert and Rosen [27] and Lyuba-
shevsky and Micciancio [20] independently constructed collision-resistant hash
functions based on ideal lattices (a generalization of cyclic lattices), and provided
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a fast and practical implementation [22]. These results paved the way for other ef-
ficient cryptographic constructions, including identification schemes [19] and sig-
natures [2I) 19]. (The recent fully homomorphic cryptosystem of Gentry [12] is
also based on ideal lattices, but it relies on new assumptions that are not related
to SIS or LWE.)

Despite its expected utility, a compact analogue of LWE with comparable
security properties has not yet appeared in the literature (though see Section [LH]
for discussion of a recent related work). Indeed, the perspectives and techniques
that have so far been employed for the ring-SIS problem appear insufficient for
adapting the more involved hardness proofs for LWE to the ring setting. Our
main contributions in this paper are to define an appropriate version of the
learning with errors problem in a wide class of rings, and to prove its hardness
under worst-case assumptions on ideal lattices in these rings.

1.1 Informal Description of Results

Here we give an informal overview of the ring-LWE problem and our hardness
results for it. For concreteness, this summary deals with one particular ‘nice’
ring, and deliberately omits the exact error distribution for which we can prove
hardness. Our results actually apply much more generally to rings of algebraic
integers in number fields, and the error distribution is defined precisely using
concepts from algebraic number theory.

Let f(x) = 2™ + 1 € Z|x], where the security parameter n is a power of 2,
making f(x) irreducible over the rationals. (This particular f(z) comes from
the family of cyclotomic polynomials, which play a special role in this work.)
Let R = Z[z]/ (f(z)) be the ring of integer polynomials modulo f(z). Elements
of R (i.e., residues mod f(z)) are typically represented by integer polynomials
of degree less than n. Let ¢ = 1 mod 2n be a sufficiently large public prime
modulus (bounded by a polynomial in n), and let R, = R/ (q) = Z,[z]/ (f(x))
be the ring of integer polynomials modulo both f(x) and ¢. Elements of R, may
be represented by polynomials of degree less than n -whose coefficients are from
{0,...,¢ —1}.

In the above-described ring, the R-LWE problem may be described as follows.
Let s = s(z) € R, be a uniformly random ring element, which is kept secret.
Analogously to standard LWE, the goal of the attacker is to distinguish arbitrar-
ily many (independent) ‘random noisy ring equations’ from truly uniform ones.
More specifically, the noisy equations are of the form (a,b =~ a-s) € Ry x Ry,
where @ is uniformly random and the product a - s is perturbed by some ‘small’
random error term, chosen from a certain distribution over R.

Main Theorem 1 (Informal). Suppose that it is hard for polynomial-time quan-
tum algorithms to approzimate the shortest vector problem (SVP ) in the worst case
on ideal latticed] in R to within a fized poly(n) factor. Then any poly(n) number of

! Briefly, an ideal lattice in R is just an ideal under some appropriate geometric embed-
ding. See Section for a precise definition and discussion.
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samples drawn from the R-LWE distribution are pseudorandom to any polynomial-
time (even quantum) attacker.

Our main theorem follows from two component results, which are each of inde-
pendent interest.

Worst-case hardness of the search problem. We give a quantum reduction from
approximate SVP (in the worst case) on ideal lattices in R to the search version
of ring-LWE, where the goal is to recover the secret s € R, (with high probability,
for any s) from arbitrarily many noisy products. This result follows the general
outline of Regev’s iterative quantum reduction for general lattices [3], but ideal
lattices introduce several new technical roadblocks in both the ‘algebraic’ and
‘geometric’ components of the reduction. We overcome these obstacles using
perspectives and tools from algebraic number theory, in particular, the canonical
embedding of a number field and the Chinese remainder theorem. Our result is
stated formally as Theorem [I and is proved throughout Section [3

We point out that in contrast with standard LWE, the precise error distribu-
tion for which we can prove worst-case hardness is somewhat subtle: the distri-
bution has up to n independent parameters (one for each direction in a certain
orthogonal basis) which themselves are chosen at random and kept secret. Most
cryptographic applications only require (for correctness) that the error distri-
bution be relatively concentrated, so this form of noise generally presents no
problem. (It is also possible show hardness for a fixed spherical distribution,
but for a slightly super-polynomial approximation factor, modulus ¢, and reduc-
tion runtime.) The non-spherical error distribution is an artifact of our proof
technique, and can perhaps be avoided using additional ideas.

Search / decision equivalence. We then show that the R-LWE distribution is in
fact pseudorandom if the search problem is hard (given arbitrarily many sam-
ples). This result is also inspired by analogous reductions for the standard LWE
problem [7], B1], but again the ring context presents new obstacles, primarily re-
lated to proving that the entire n-dimensional quantity b ~ a-s is simultaneously
pseudorandom. Here again, the solution seems to rely inherently on tools from
algebraic number theory. The full result is stated as Theorem [ and is proved
throughout Section @l

We stress that our search/decision equivalence works for a wide class of natural
noise distributions, and is entirely classical (no quantum). Therefore, it is of value
even without our worst-case reduction, and can be understood independently of
it. For example, if one makes the plausible conjecture that the search version of
R-LWE is hard for a fixed spherical error distribution and small modulus ¢, then
our proof demonstrates that the same R-LWE distribution is also pseudorandom.

1.2 Discussion and Applications

For cryptographic applications, the R-LWE problem has many attractive features.
First note the cryptographic strength of R-LWE versus standard LWE (or, for
that matter, any other common number-theoretic function): each noisy product
b~ a-sis a pseudorandom n-dimensional vector over Z,, rather than just a



On Ideal Lattices and Learning with Errors over Rings 5

scalar, and we can generate as many of these values as we like. Yet the cost of
generating them is quite small: polynomial multiplication can be performed in
O(nlogn) scalar operations using the Fast Fourier Transform (FFT). Moreover,
the specific choice of polynomial f(z) = 2™ + 1 and modulus ¢ = 1 mod 2n
(among others) admits an optimized implementation that works entirely over
the field Z,, and is very fast on modern architectures (see [22]). Finally, in most
applications each sample (a,b) € R, X R, from the R-LWE distribution can
replace n samples (a,b) € Zy x Z, from the standard LWE distribution, thus
reducing the size of the public key (and often the secret key as well) by a ©(n)
factor. This is especially beneficial because key size has probably been the main
barrier to practical lattice-based cryptosystems with rigorous security analysis.

Sample cryptosystem. As an example application, we exploit the pseudoran-
domness of the R-LWE distribution (e.g., over the ring R = Z[z]/ (2" + 1) de-
scribed above) to construct a simple semantically secure public-key cryptosystem.
This scheme and its security proof are a direct translation of the ‘dual’ scheme
from [I3] based on the standard LWE problem, and similarly direct adaptations
are possible for most other LWE-based schemes, including Regev’s original ‘pri-
mal’ cryptosystem [31], Peikert’s CCA-secure cryptosystem [26], and at least the
identity-based encryption schemes of [13 8]

In our example cryptosystem, the key generation algorithm chooses m =
lgg = O(logn) uniformly random and independent elements a; € Ry, along
with m random ‘small’ ring elements r; € R (e.g., having uniformly random and
independent 0-1 coefficients when viewed as polynomials). The element a,,+1 €
R, is computed as ami1 = Y, -a;. The public and secret keys, respectively,
are the tuples

1€[m] T

(a1y...,am+1) € R:I"H and  (r1,...,"m,"m+1 = —1) € R™TL,

This key generation procedure has two main properties: first, the public key is
essentially uniform (statistically) over R;**!, which can be shown by a variant
of the leftover hash lemma for the ring R, [23]. Second, the public and secret
keys satisfy >, r;-a;, =0 € Ry.

To encrypt an n-bit message z € {0,1}", view it as an element of R by
using its bits as the 0-1 coefficients of a polynomial. Choose a uniformly random
s € Ry, and for each i € [m + 1] compute b; = a; - s € Ry, where each product
is perturbed by an independent ‘small’ error term e; € R from the prescribed
LWE error distribution. Lastly, subtract (modulo ¢) from b,,+1 the ring element
z-|q/2]. The ciphertext is the tuple (b1,...,bm41) € RJ*"!. Note that semantic
security is straightforward to prove, because the adversary’s view, i.e., the public
key and ciphertext, simply consists of m + 1 samples from the pseudorandom
R-LWE distribution, which hide the message.

To decrypt the ciphertext, simply compute

Zri-bizz-Lq/ﬂ—F(Zn-ai)-s:z-Lq/ﬂ—FO-seRq,

2 Some of these constructions also require an adaptation of the basis-generation pro-
cedure of [5] to the ring setting, which was done in [32].
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where the =~ symbol hides Zi r; - e; € R, the error terms accumulated by the
short elements from the secret key. For appropriate choices of parameters, the
coefficients of this sum have magnitudes much smaller than ¢/2, so the bits of z
can be recovered by rounding each coefficient back to either 0 or |¢/2], whichever
is closest (mod q).

Security. Given the utility, flexibility, and efficiency of the ring-LWE problem,
a natural question is: how plausible is the underlying assumption? All of the
algebraic and algorithmic tools (including quantum computation) that we em-
ploy in our hardness reductions can also be brought to bear against SVP and
other problems on ideal lattices. Yet despite much effort in this vein, we have
been unable to make any significant progress in attacking these problems. The
best known algorithms for ideal lattices perform essentially no better than their
generic counterparts, which require exponential time and space to achieve a
poly(n) approximation factor [3].

We also gain some confidence in the inherent hardness of ideal lattices from
the fact that they arise (under a suitable definition; see Section [[3] below) from
a deep and well-studied branch of mathematics, which has also been investigated
reasonably thoroughly from a computational point of view (see, e.g., [9]). Due
to their recent application in the design of cryptographic schemes, however, it is
probably still too early to say anything about their security with great confidence.
Further study is certainly a very important research direction.

1.3 1Ideal Lattices

Here we give a brief description of ideal lattices, survey their use in previous
work, and compare to our work. All of the definitions of ideal lattices from prior
work are instances of the following general notion: let R be a ring whose additive
group is isomorphic to Z™ (i.e., it is a free Z-module of rank n), and let o be
an additive isomorphism mapping R to some lattice o(R) in an n-dimensional
real vector space (e.g., R™). The family of ideal lattices for the ring R under the
embedding o is the set of all lattices o(Z), where Z is an ideal in R For instance,
taking R = Z[z]/ (™ — 1) and the naive “coefficient embedding” o, i.e., the one
that views the coefficients of a polynomial residue (modulo ™ — 1) as an integer
vector in Z", leads exactly to the family of (integer) cyclic lattices. Note that
under the coefficient embedding, addition of ring elements simply corresponds
to (coordinate-wise) addition of their vectors in Z", but multiplication does not
have such a nice geometrical interpretation, due to the reduction modulo ™ — 1.

The main difference between this work and almost all previous work is in the
choice of embedding o. Prior works [23], 27, 20] 21|, 12, 19, [32] used rings of the
form Z[x]/ (f(x)) with the coefficient embedding described above. In this work,
following Peikert and Rosen [28], we instead consider the so-called canonical
embedding from algebraic number theory. Strictly speaking, the coefficient and
canonical embeddings are equivalent up to a fixed linear transformation that

3 Anideal 7 in aring R is an additive subgroup of R that is closed under multiplication
by R.
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introduces some distortion. (In fact, this is true of any two fixed embeddings,
under our definition above.) Moreover, in many cases the distortion is small;
for example, in the ring Z[z]/ ("™ + 1) for n a power of 2, the transformation
is even an isometry (i.e., a scaled rotation). In such cases, lattice problems are
essentially equivalent under either embedding. Yet due to its central role in the
study of number fields and useful geometric properties (explained below), we
contend that the canonical embedding is the ‘right’ notion to use in the study
of ideal lattices.

First, unlike the coefficient embedding, under the canonical embedding both
addition and multiplication of ring elements are simply coordinate-wise. As a
result, both operations have simple geometric interpretations leading to tight
bounds, and probability distributions such as Gaussians behave very nicely un-
der multiplication by fixed elements. In contrast, understanding the behavior of
multiplication under the coefficient embedding required previous work to intro-
duce notions like the expansion factor, which implicitly measures the distortion
involved in going between the coefficient and canonical embeddings, but is not
of much help for analyzing probability distributions. Second, although for many
rings the two embeddings are nearly isometric, in many other rings of interest
the distortion can be quite large — even super-polynomial in the dimension for
some cyclotomic polynomial rings [I1]. This may explain why we can prove tight
hardness results for all such cyclotomic rings (as explained below), whereas pre-
vious work was mostly restricted to Z[z]/ (2™ + 1) for n a power of 2 (and a
few others). A third point in favor of the canonical embedding is that it also be-
haves very nicely under the automorphisms that we use in our search-to-decision
reductions for ring-LWE.

Moving now to the choice of ring R, in this work our main focus is on the rings
of integer polynomials modulo a cyclotomic polynomialH From an algebraic point
of view, it is more natural to view these rings as the rings of (algebraic) integers in
cyclotomic number fields, and this is indeed the perspective we adopt. Moreover,
our main theorem’s first component (hardness of the search version of ring-LWE)
applies generically to the ring of integers in any number field. Almost all previous
work applied to rings of the form Z[x]/ (f(x)) for a monic irreducible f(z) having
small “expansion” (under the coefficient embedding mentioned above). This set
of rings is incomparable to the set used in our work, although for some important
examples like cyclotomics, our set is larger.

Rings of integers in number fields have some nice algebraic properties that are
useful for our results. For instance, they have unique factorization of ideals, and
their fractional ideals form a multiplicative group; in general, neither property
holds in Z[z]/ {f(z)), even for monic and irreducible f(z) (as demonstrated by the
ring Z[z]/ (2? + 3)). Another useful property is that certain number fields, such as
the cyclotomic number fields used in our search/decision reduction, have automor-
phisms that ‘shuffle’ groups of related prime ideals while still preserving the LWE
error distribution (when appropriately defined using the canonical embedding).

* The mth cyclotomic polynomial in Z[x] is the polynomial of degree n = ¢(m) whose
roots are the primitive mth roots of unity (;, for i € Z;,, where (m = exp(27i/m).
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To summarize, while the number-theoretic perspective on ideal lattices re-
quires some investment in the mathematical background, we find that it delivers
many nice geometric and algebraic properties that pay dividends in the ease of
working with the objects, and in the strength and generality of results that can
be obtained.

1.4 Techniques

We introduce several new techniques for working with rings of integers and their
ideal lattices, which fall into two broad categories: first, those that work in
general number fields for reducing worst-case problems on ideal lattices to ring-
LWE (and related problems); second, those that work in cyclotomic number fields,
where we demonstrate a search/decision equivalence for ring-LWE and construct
cryptographic schemes. All of the new techniques are entirely classical, i.e., non-
quantum. (Our main reduction uses existing quantum technology essentially as
a black box.)

In the category of worst-case reductions for ideal lattices, we show how to use
the Chinese remainder theorem (CRT) for ‘clearing the ideal’ Z from an arbitrary
ideal lattice instance. This involves mapping the quotient ring Z/¢Z to the fixed
quotient ring R/qR in an ‘algebraically consistent’ way. Our CRT techniques
are also compatible with the ‘discrete Gaussian’ style of worst-to-average-case
reduction from [I3], which implies simpler and slightly tighter hardness proofs
for ring-SIS. We remark that prior reductions following [23] work by restricting
to a principal subideal of 7 with known generator; however, this technique does
not seem to be compatible with the approaches of [31 [13], where the reduction
must deal with Gaussian samples from the full ideal Z.

In our search/decision equivalence for ring-LWE, we also develop new tech-
niques that exploit special properties of cyclotomic number fields of degree n —
namely, that they are Galois (i.e., have n automorphisms) — and our particular
choice of modulus ¢ — namely, that it ‘splits completely’ into n prime ideals g;
each of norm ¢ = poly(n), which are permuted by the automorphisms. (Interest-
ingly, this complete splitting of ¢ is also useful for performing the ring operations
very efficiently in practice; see [22].)

The basic layout of our pseudorandomness proof is as follows: first, a hy-
brid argument shows that any distinguisher between the ring-LWE distribution
A,y and the uniform distribution must have some noticeable advantage relative
to some prime ideal factor g; of {q) (of the distinguisher’s choice); this advan-
tage can be amplified using standard self-reduction techniques. Next, an efficient
search-to-decision reduction finds the value of s modulo q;, using the fact that
the ring modulo g; is a field of order ¢ = poly(n). Then, because the automor-
phisms of the number field permute the q;s, we can find s modulo each q; by
applying an appropriate automorphism to the distribution A, . (Crucially, the
error distribution 1 also remains legal under this transformation). Finally, we
recover all of s mod ¢ using the Chinese remainder theorem.
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1.5 Related Work

In a concurrent and independent work, Stehlé, Steinfeld, Tanaka, and Xagawa [32]
also formulated a variant of LWE over certain polynomial rings and proved its
hardness under a worst-case (quantum) assumption. Their main application is a
public-key cryptosystem with logo(l) n encryption and decryption time per mes-
sage bit. Due to the close similarities between our works, we wish to give a detailed
comparison of the approaches and final outcomes.

Stehlé et al. [32] give a quantum reduction from the (average-case) ring-SIS
problem to (average-case) ring-LWE, by exploiting the duality between the two
problems and making new observations about Regev’s quantum machinery [31].
Then, invoking prior worst-case hardness results for ring-SIS [20], they conclude
that ring-LWE is hard under a worst-case quantum assumption. More precisely,
they show that the search version of ring-LWE is hard for an a priori bounded
number of samples with spherical Gaussian noise; however, the approach does
not seem to extend to the decision version (i.e., pseudorandomness), nor to an
unbounded number of samples.

The lack of pseudorandomness has some important drawbacks. For example, a
primary motivation for the use of ring-LWE is to encrypt and decrypt faster than
the most efficient cryptosystems based on standard LWE. In [32], achieving this
goal requires many simultaneous hard-core bits for the search variant of ring-LWE,
which are obtained via the efficient Goldreich-Levin construction using Toeplitz
matrices [T4, Section 2.5]. This approach, however, induces a security reduction
that runs in time ezxponential in the number of hard bits. Therefore, to encrypt
in amortized O(1) time per message bit induces the assumption that ideal-SVP
is hard for 2°(™-time quantum algorithms. In contrast, our scheme has the same
(actually somewhat better) running times under a fully polynomial assumption.

It is also worth noting that the main proof technique from [32], while quite
transparent and modular, requires an a priori bound on the number of LWE
samples consumed, and the modulus ¢ and underlying approximation factor for
ideal-SVP grow with this bound. This is suboptimal for cryptographic schemes
(such as those in [30} 26} [6, [8]) that use a large (or even unbounded) number
of samples in their security proofs. Moreover, having an unbounded number of
samples seems essential for proving a search/decision equivalence for any type
of LWE problem, because at the very least, the reduction needs to amplify the
adversary’s success probability.

2 Preliminaries

For a vector x in R™ or C" and p € [1,00], we define the ¢, norm as ||x|, =
(Zie[n]‘xi‘p)l/p when p < 00, and [|X||ec = max;epy)|z;| when p = oo.

When working with number fields and ideal lattices, it is convenient to work
with the space H C R%* x C2°2 for some numbers s; + 259 = n, defined as

H=A{(z1,...,z,) € R x C?s2 . Ty tsstj = Tsy+js V J E [s2]} € C".
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Tt is not difficult to verify that H (with the inner product induced on it by C™) is
isomorphic to R™ as an inner product space. This can seen via the orthonormal
basis {h;};e[n, defined as follows: for j € [n], let e; € C" be the vector with
1 in its jth (complex) coordinate, and 0 elsewhere. Then for j € [s1], the basis
vector h; = e; € C"; for 51 < j < 51 + s2, the vector h; = \}2 (ej +e€jts,) and

hj s, = ‘</721 (ej — €j4s,). Note that the complex conjugation operation (which
maps H to itself) acts in the {h;};c[,,) basis by flipping the sign of all coordinates
in{sy+s2+1,...,n}.

We will also equip H with the £, norm induced on it from C". We note that
for any p € [1,00], this norm is equal within a factor of v/2 to the ¢, norm
induced on H from the isomorphism with R™ described above, and that for the
¢5 norm we in fact have an equality. This (near) equivalence between H and R"
will allow us to use known definitions and results on lattices in our setting, the
only caveat being the v/2 factor when dealing with £, norms for p # 2.

2.1 Lattice Background

We define a lattice as a discrete additive subgroup of H. We deal here exclusively
with full-rank lattices, which are generated as the set of all integer linear combina-
tions of some set of n linearly independent basis vectors B = {by,...,b,} C H.

The minimum distance A1 (A) of a lattice A in some norm ||-|| is the length of
a shortest nonzero lattice vector: A\ (A) = mingxxel/x||. When left unspecified,
the norm is taken to be the Euclidean norm; for the minimum distance of A in
the £, norm, we write )\gp)(/l).

The dual lattice of A C H is defined as A* = {x € H : Vv € A, (x,v) € Z}.
It is easy to see that (A*)* = A.

Gaussian Measures. For r > 0, define the Gaussian function p, : H — (0, 1] as
pr(x) = exp(—7(x,x)/r?) = exp(—n||x||3/7?). By normalizing this function we
obtain the continuous Gaussian probability distribution D, of width r, whose
density is given by r~" - p,.(x). We extend this to elliptical (non-spherical) Gaus-
sian distributions (in the basis {h;};c}n)) as follows. Let r = (rq,...,r,) € (RT)"
be a vector of positive real numbers, such that rj;s, 45, = 745, for each j € [s2].
Then a sample from D, is given by Zie[n] z; - h;, where the x; are chosen inde-
pendently from the (one-dimensional) Gaussian distribution D,.; over R.

Micciancio and Regev [24] introduced a lattice quantity called the smoothing
parameter, and related it to various lattice quantities.

Definition 1. For a lattice A and positive real € > 0, the smoothing parameter
ne(A) is defined to be the smallest r such that py,,(A*\{0}) < e.

Lemma 1 ([24, Lemma 4.1] and [31, Claim 3.8]). For any lattice A, € > 0,

r > ne(A), and c € H, we have p,(A+c) € [%1271} - pr(A).

For a lattice A, point u € H, and real r > 0, define the discrete Gaussian
probability distribution over A+u with parameter r as the distribution assigning
probability proportional to p,(x) to each x € A+ u.
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We also need the following property of the smoothing parameter, which says
that continuous noise ‘smooths’ the discrete structure of a discrete Gaussian
distribution into a continuous one.

Lemma 2 ([31]). Let A be a lattice, let u € H be any vector, and let r,s > 0
be reals. Assume that 1/1/1/r2 +1/s2 > ne(A) for some € < 5. Consider the
continuous distribution Y on H obtained by sampling from Dpju,r and then
adding an element drawn independently from Ds. Then the statistical distance
between Y and D ;.2 2 1s al most 4e.

2.2 Algebraic Number Theory Background

Due to space constraints, we assume familiarity with the standard concepts of
a number field K, its field trace Tr and norm N, and its ring of integers Ok,
discriminant Ak, and group of (fractional) ideals. Details may be found in the
full version or in any introductory book on the subject, e.g., [33].

Embeddings and Geometry. Here we describe the embeddings of a number field,
which induce a natural ‘canonical’ geometry on it.

A number field K = Q(({) of degree n has exactly n field homomorphisms
o; : K — C that fix every element of Q. Concretely, each embedding takes { to a
different one of its conjugates; it can be verified that these are the only such field
homomorphisms because the conjugates are the only roots of (’s minimal polyno-
mial f(z). An embedding whose image lies in R (corresponding to a real root of f)
is called a real embedding; otherwise (for a complex root of f) it is called a com-
plex embedding. Because complex roots of f(z) come in conjugate pairs, so too do
the complex embeddings. The number of real and complex pairs of embeddings
are denoted s; and so respectively, so we have n = s1 + 2s5. The pair (s1, s2) is
called the signature of K. By convention, we let {0} jc[s,] be the real embeddings,
and we order the complex embeddings so that o, 1s,+; = 0s,+; for j € [sa]. The
canonical embedding o : K — R®! x C?%2 is defined as o(z) = (01(2),...,0,()).
The canonical embedding ¢ is a field homomorphism from K to R®! x C2%2, where
multiplication and addition in R®* x €252 are both component-wise. Due to the
pairing of the complex embeddings, we have that ¢ maps into H.

By identifying elements K with their canonical embeddings in H, we can
speak of geometric norms (e.g., the Euclidean norm) on K. Recalling that we
define norms on H as those induced from C", we see that for any x € K and
any p € [1,00], the £, norm of z is simply ||z||, = ||o(2)]|, = (Zie[nﬂoi(m)\p)l/l’
for p < oo, and is max;e[y)|oi ()| for p = co. (As always, we assume the £, norm
when p is omitted.) Because multiplication of embedded elements is component-
wise (since o is a ring homomorphism), we have ||z - y||p < ||| - ||¥llp for any
xz,y € K and any p € [1,00]. Thus the o, norm acts as an ‘absolute value’ for
K that bounds how much an element ‘expands’ any other by multiplication.

Using the canonical embedding also allows us to think of the distribution
D, (for r € (R")™) over H as a distribution over K. Strictly speaking, the
distribution D, is not quite over K, but rather over the field kg = K ®qg R,
which, roughly speaking, is to K as R is to Q. Since multiplication of elements
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in the number field is mapped to coordinate-wise multiplication, we get that for
any element = € K, the distribution of « - Dy is Dy, where 7} = r; - |o;(x)| (this
uses the fact that our distributions have the same variance in the complex and
real components of each embedding).

Ideal Lattices. Here we recall how (fractional) ideals in K yield lattices un-
der the canonical embedding, and describe some of their properties. Recall
that a fractional ideal Z has a Z-basis U = {us,...,up}. Therefore, under
the canonical embedding o, the ideal yields a rank-n ideal lattice having ba-
sis {o(u1),...,0(u,)} C H. The fundamental volume of the ideal lattice o(Z7)
is |det(o(U))| = N(Z) - /Ak; as expected, this quantity is basis-invariant. For
convenience, we often identity an ideal with its embedded lattice, and speak of,
e.g., the minimum distance A\ (Z) of an ideal, etc.

We now recall the notion of a dual ideal and explain its close connection to
both the inverse ideal and the dual lattice. For more details, see, e.g., [10].

For a (fractional) ideal Z, its (fractional) dual ideal is defined as
7V = {z € K : Tr(zZ) C Z}. It is not difficult to see that, under the canon-
ical embedding into H, the dual ideal embeds exactly as the complex con-
jugate of the dual lattice, i.e., o(IY) = o(I)*. This is due to the fact that
Tr(ey) = ¥, 03(@)as(y) = (o), o(y)).

Except in the trivial number field K = Q, the ring of integers Ok is not
self-dual, nor are an ideal and its inverse dual to each other. Fortunately, a
useful and important fact is that an ideal and its inverse are equivalent up to
multiplication by the dual ideal of the entire ring. That is, for any fractional
ideal Z, its dual ideal is ZV = Z~! - O},. (Notice that for Z = O this holds by
definition, since Ox' = OF.) The dual ideal O}, is itself sometimes called the
codifferent ideal.

Chinese Remainder Theorem. Here we recall the Chinese remainder theorem
(CRT) for the ring of integers in a number field, and some of its important
consequences for this work. Let K be an arbitrary fixed number field and let
R = Ok be its ring of integers.

Lemma 3 (Chinese remainder theorem). Let 71,...,Z, be pairwise co-
prime ideals in R, and let T = HiE[T] Z;. The natural ring homomorphism
C: R — ®ic()(R/1;) induces a ring isomorphism R/T — @,c(, (R/Li).

We state the following important consequences of the CRT; proofs are given in
the full version.

Lemma 4. Let 7 and J be ideals in R. Then there exists t € I such that the
ideal t-T= C R is coprime to J. Moreover, sucht can be found efficiently given
T and the prime ideal factorization of J.

Lemma 5. Let T and J be ideals in R, let t € T be such that t-T~! is coprime
with J, and let M be any fractional ideal in K. Then the function 6; : K — K
defined as 0;(u) = t - u induces an isomorphism from M/JIM to TM/ITM,
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as R-modules. Moreover, this isomorphism may be inverted efficiently given T,

J, M, and t.

Other Properties of Cyclotomic Number Fields. Here we state a few more use-
ful facts about cyclotomic number fields, which are used only in our search-to-
decision reductions of Section [l

Letting K = Q(¢) for ¢ = (, be the mth cyclotomic number field, recall
that Ox = Z[(]. For an integer prime ¢ € Z, the factorization of the ideal (g)
is as follows. Let the factorization of @,,(x) modulo ¢ (i.e., in Z,[z]) into monic
irreducible polynomials be @,,(z) = [[;(fi(z))®. Then in O, the prime ideal
factorization of (¢) is (¢) = [[, q;", where each q; = (g, fi(¢)) is a prime ideal
with norm gdee(fi)

For an integer prime ¢ = 1 mod m, the field Z, has a primitive mth root of
unity r, because the multiplicative group of Z; is cyclic with order ¢ — 1. Indeed,
there are n = p(m) distinct such roots of unity r* € Z,, for i € Z,. Therefore,
the cyclotomic polynomial &@,,(z) factors in Z,[z] as &(z) = Hiern (x — rt).
The ideal (¢) C O then “splits completely” into n distinct prime ideals, as
(@) = [Ticz: 9i where q; = (g,¢ —r*) is prime and has norm ¢. (The fact that
the ideal {g) splits into distinct prime ideals with small norm will be crucial in
our search-to-decision for ring-LWE.)

We also need the fact that K has n = ¢(m) automorphisms 7, : K — K
indexed by k € Z,, which are defined by 7,(¢) = ¢*. The automorphisms ;
“act transitively” on the prime ideals q;, i.e., 7;(q;) = q;/;. This fact follows
directly from the fact that cyclotomic number fields are Galois extensions of Q.

Computation in Number Fields. All of the operations required by our reductions
can be performed in polynomial time given a suitable representation of the num-
ber field and its ring of integers. Due to space constraints, we defer the details
to the full version.

We now define some seemingly hard computational problems on ideal lattices
in number fields.

Definition 2. Let K be a number field endowed with some geometric norm (e.g.,
the {3 norm), and let v > 1. The K-SVP., problem (in the given norm) is: given
a (fractional) ideal T in K, find some nonzero x € T such that ||z|| <~ - A1 (Z).

Definition 3. Let K be a number field endowed with some geometric norm (e.g.,
the Lo norm), let T be a (fractional) ideal in K, and let d < \i(Z)/2. The K-
BDDz 4 problem (in the given norm) is: given I and y of the form y = x+e for
some x € T and ||e|| < d, find x.

Without loss of generality, both of the above problems may be restricted to
integral ideals T C Ok, by the following scaling argument: if 7 is a fractional
ideal with denominator d € Ok (such that dZ C Ok is an integral ideal), then
the scaled ideal N(d) - Z C Ok, because N(d) € (d).

5 In fact, this factorization holds in any ‘monogenic’ ring of integers Ok = Z[¢], with
@, (x) replaced by the minimal polynomial of .
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2.3 The Ring-LWE Problem

Let K be a number field, let R = Ok be its ring of integers, let RY be its dual
(codifferent) ideal, let ¢ > 2 be a (rational) integer modulus, and let Ry = R/¢R
and R/ = RY/qR. Let T = Kg/R".

For an s € R, and a distribution ¢ over Kg, the distribution A, over Ry x T
is generated by choosing a < R, uniformly at random, choosing e « 1, and
outputting (a, (a-s)/q+ e), where addition in the second component is in T (i.e.,
modulo RY).

Definition 4 (Learning with Errors in a Ring of Integers). Let ¢ > 2 be
a (rational) integer and let ¥ be a family of distributions over Kg. The ring-LWE
problem in R = Ok, denoted R-L\WE, ¢, is defined as follows: given access to

arbitrarily many independent samples from Ay for some arbitrary s € RZ and
Y eV, finds.

For an asymptotic treatment of the ring-LWE problem, we let K come from an
infinite sequence of number fields K = {K,,} of increasing dimension n.

A natural question at this point is, why is the secret s chosen from the domain
Rg rather than R, as the values a are? From a purely algebraic perspective, it is
possible to transform the ring-LWE distribution to make s come from the quotient
ring Z/¢Z for any desired fractional ideal Z, making the choice of domain appear
arbitrary. However, from a geometric perspective, such a transformation can in
general introduce some distortion in the noise distribution. Upon close inspection,
there are several reasons why R(\Z/ is the most natural “canonical” domain for s;
due to space constraints, we defer an explanation to the full version.

We now define the exact LWE error distributions for which our results apply.
Informally, they are elliptical Gaussians whose widths along each axis (in the
canonical embedding) are bounded by some parameter .

Definition 5. For a positive real o > 0, the family Y<,, is the set of all elliptical
Gaussian distributions Dy (over Kgr) where each parameter r; < «.

In Section 1] we exploit a particular closure property for the family W<, over
the mth cyclotomic number field K = Q(¢), where { = (,,. Let 7, : K — K be
an automorphism of K, which is of the form 7;(¢) = ¢/ for some j € Z,. Then
U<, is closed under 7;, i.e., for any ¢ = D, € ¥<,, we have 7;(Dy) = Dy € U<,
where the entries of r’ are merely a rearrangement of the entries of r and hence
are at most a.

3 Main Reduction

Since the results in this section apply to arbitrary number fields, we choose to
present them in their most general form. For concreteness, the reader may wish
to keep in mind the particular case of a cyclotomic number field.

Throughout this section, let K denote an arbitrary number field of degree
n. We prove that solving the search problem Og-LWE (for a certain family of
error distributions) is at least as hard as quantumly solving K-SVP.,, where the
approximation factor v depends on the parameters of the error distributions.
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3.1 Main Theorem and Proof Overview

The following is the main theorem of this section. Here, K-DGS,, denotes the
discrete Gaussian sampling problem [31], which asks, given an ideal Z and a
number r > v, to produce samples from the distribution Dz ,. It is easy to
show reductions from other more standard lattice problems such as SVP to DGS
(see [31] for some examples).

Theorem 1. Let K be an arbitrary number field of degree n. Let o = a(n) €
(0,1) be arbitrary, and let the (rational) integer modulus ¢ = q(n) > 2 be such
that o - q > w(y/logn). There is a probabilistic polynomial-time quantum reduc-
tion from K-DGS, to Ok -LWEy y_, where v = n(I) - w(y/logn)/c.

We prove the theorem by taking Regev’s iterative reduction for general lat-
tices [3I] and replacing its core component (namely, the reduction from the
bounded-distance decoding (BDD) problem to LWE) with an analogous state-
ment for the ideal case (Lemma [). It is here that we crucially apply algebraic
techniques such as the Chinese remainder theorem, and we view this as one of
our main contributions.

For self-containment, we describe now the main steps of the iterative reduction
of [31], making the necessary changes for our setting. The reduction works by
repeated application of an iterative step, which consists of the following two
components.

1. The first component, which forms the core of [31], is a reduction from BDD
on the dual lattice to LWE that uses Gaussian samples over the primal lattice.
In Section we show how to perform an analogous reduction in the ring
setting. Namely, we show that given an oracle that generates samples from
the discrete Gaussian distribution Dz, for some (not too small) r > 0,
using an Og-LWE, w__ oracle we can solve the BDD problem on the dual
ideal ZV to within distance d = « - q/r in the o, norm. From this it follows
that with probability negligibly close to 1, we can also solve BDD on IV
where the unknown offset vector e is drawn from the distribution Dy for
d =a-q/(r-w(y/logn)). The reason is that a sample from Dy has £+, norm
at most s - w(y/logn), except with negligible probability.

2. The second step is quantum, and is essentially identical to the corresponding
step in Regev’s reduction [31, Lemma 3.14]. This step uses an oracle that with
all but negligible probability solves the BDD problem on ZV, where the offset
vector e is chosen from the distribution Dy. Using a quantum procedure, it
is shown in [3I] how to use such an oracle to produce samples from the
discrete Gaussian distribution Dz, for v = 1/(2d’). The exact statement
of [31, Lemma 3.14] is more specialized; to get the above statement, one has
to observe that the procedure used to prove the lemma calls the oracle with
offset vectors e chosen from Dy, and that correctness is maintained even if
the oracle errs with negligible probability over the choice of e.

Notice that when « - ¢ > w(y/logn), we can choose ' < r/2 so that the output
distribution Dz, of Step [2 is half as wide as the input distribution Dz, of
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Step [l The value of r starts out exponentially large so that the samples for
the first execution of Step [l can be generated classically (see [31, Lemma 3.2]),
then in later phases of the iteration they are produced by the quantum part.
By iterating back and forth between the two procedures, we can sample from
a progressively tighter distribution until we obtain a sample from Dz , for the
(typically small) r given as input to the DGS problem.

3.2 Core Step: The BDD to LWE Reduction

We first observe that to solve BDD on an ideal 7, it suffices to find the solution
modulo ¢7. This is actually a special case of a lemma from [3I], which gives a
lattice-preserving reduction for BDD in general lattices. Because the reduction
is lattice-preserving, it also applies to ideal lattices.

Definition 6. The ¢-BDD s 4 problem (in any norm) is: given an instance y of
BDD g that has solution z € J, find x mod ¢J .

Lemma 6 (Special case of [31, Lemma 3.5]). For any q > 2, there is a
deterministic polynomial-time reduction from BDDy 4 (in any ¢, norm) to q-
BDD .4 (in the same norm).

Lemma 7. Let o € (0,1), let ¢ > 2 be a (rational) integer with known factor-
ization, let T be an ideal in R = O, and let v > \/2q-n.(T) for some negligible
e = €(n). Given an oracle for the discrete Gaussian distribution Dz ., there is
a probabilistic polynomial-time (classical) reduction from q-BDDzv 4 (in the £oo
norm) to R-L\WE, y__, where d = aq/(v/2r).

Note that the hypothesis that Z is an integral ideal (in Of) is without loss of
generality, by the scaling argument at the end of Section

Proof. The high-level description of the reduction is as follows. Its input is a
¢-BDDzv 4 instance y = z + e (where z € ZV and |le|]|« < d), and it is given ac-
cess to an oracle that generates independent samples from the discrete Gaussian
distribution Dz ,, and an oracle £ that solves R-LWE. The reduction produces
samples from the LWE distribution A, where the secret s and the error distri-
bution v are related to x and e, respectively. Finally, given the solution s output
by L, the reduction recovers x mod ¢Z" from s.
In detail, the reduction does the following, given a ¢-BDDzv 4 instance y:

1. Compute an element ¢ € Z such that ¢ - Z~! and (g) are coprime.

(By Lemma [l such ¢ exists and can be found efficiently using the factoriza-
tion of (g).)

2. For each sample requested by L, get a fresh z « Dz, from the Gaussian
oracle and provide to £ the pair (a,b), computed as follows: let e’ < D V2
and

a=0;(2modq¢Z) € R, and b= (z-y)/q+¢e mod R".

(Recall that by Lemma Bl with 7 = (¢) and M = R, the function 6;(u) =
t - u induces a bijection from R, = R/qR to Z/qZ which may be inverted
efficiently given Z, ¢, and ¢.)
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3. When £ produces a solution s € R}/, output 0, (s) €TV /qT".
(Again, by Lemma [l with J = (¢) and M =ZV =Z~!. RV, the function 6,
induces a bijection from ZV/¢Z" to R/ = R /qR", which may be inverted
efficiently).

The correctness of the reduction follows from Lemma 8 below, which says that the
samples (a, b) are distributed according to A; 4 for s = 0;(z mod ¢Z") € R and
some ¢ € Y<,. By hypothesis, £ returns s, so the reduction outputs 6; L(s) =
x mod ¢Z", which is the correct solution to its ¢-BDDzv 4 input instance.

Lemma 8. Let y be the BDDzv 4 instance given to the reduction above, where
y =z +e for some z € IV and |le|l < d. Fach pair (a,b) produced by the
reduction has distribution As. (up to negligible statistical distance), for s =
0:(x mod ¢ZV) = t-x € R/ and some ¢ € U<,.

Proof. We first show that in each output pair (a,b), the component a € R, is
2e-uniform. Because r > ¢-1¢(Z), each sample z from Dz , is 2e-uniform in Z/¢Z
by Lemma [l Then because §; induces a bijection from R, = R/qR to Z/¢Z by
Lemma[5 a = 0, '(2 mod ¢Z) is 2e-uniform over R,,.

Now condition on any fixed value of a. We next analyze the component

b=(2-y)/q+¢€ =(2-2)/q+ (2/q) e +¢ mod R,

starting with (z - x)/q. By definition of a, we have z = 6;(a) = a -t € Z/qZ.
Because x € ZV =~ RV, we have

z-x=0/a)-x=a-(t-x) mod R,.

we have z -z = a - s mod RY

Then because s = t -  mod RY ¢

q )
(z2-x)/qg=(a-s)/qmod R.
To analyze the remaining (z/q) - e + €’ term, note that conditioned on the
value of a, the random variable z/q has distribution Dz, /q.,/q, Where Z + u/q

is a coset of T (specifically, u = 6;(a) mod ¢Z) and r/q > v/2 - 1.(T). Note that

which implies

(r/a) - llelloo < (r/q) - d = a/V2,

so we may apply Lemma [0 below, which implies that the distribution of (z/q) -
e+ ¢’ is within negligible statistical distance of the elliptical Gaussian D,., where
each

2= (r/q)? - |oi(e)]* + (a/V?2)? < (r/q)? - d* + a?/2 = o

We conclude that each (a,b) is distributed as A, for some ¢ € Y<,, as desired.

Lemma 9. Let T be a (fractional) ideal in K, and let r > /2 - n.(T) for some
e = negl(n). Let e € K be fized, let z be distributed as D14y for arbitraryv € K,
and let €' be distributed as D, for some r' > r - ||e|]lwo- Then the distribution
of z- e+ € is within negligible statistical distance of the elliptical Gaussian
distribution Dy over Kg, where 12 =12 -|o;(e)|* + (1')2.
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Proof. We can write z - e + ¢’ as (z + €’/e) - e. The distribution of €’/e is the
elliptical Gaussian Dy, where each t; = 1'/|o;(e)| > 7' /||e]|co > 7. Thus €’/e can
be written as the sum f 4 ¢ of independent f and g, where f has distribution
D, and g has distribution Dy where (t/)? = 2 — 2.

Now by Lemma [2 the distribution of z + f is negligibly close to D Jars SO
(z+¢€'/e) = (z+ f + g) has distribution Dy, where

(t)? =2 + 8] =1 =12+ (r')* /o e) |*.

We conclude that (z + €’/e) - e has distribution D,, as desired.

4 Pseudorandomness of Ring-LWE

In this section we show that for an appropriate choice of ring, modulus, and
error distribution, the ring-LWE distribution is pseudorandom. For concreteness
and simplicity, we specialize the discussion to cyclotomic fields (though our tech-
niques generalize somewhat to others). So throughout this section we assume
that ¢ = (,, € C is a primitive mth root of unity, K = Q(¢) is the mth cy-
clotomic number field, R = Ok is its ring of integers, RY = O, is its dual
(codifferent) ideal, and ¢ = 1 mod m is a poly(n)-bounded prime.

The main goal of this section is to show that the following average-case prob-
lem is hard. (Recall that R, = R/qR, R} = R"/qRY, and T = Kr/R".)

Definition 7 (Distinguishing LWE). For a distribution T over a family of
noise distributions (each over Kr), we say that an algorithm solves the DLWE, r
problem if its acceptance probability given samples from A, ., over the random
choice of (s,v) «— U(Rg) x T and all other randomness of the experiment, differs
by a non-negligible amount from its acceptance probability on uniformly random
samples from Ry x T.

The following is the main theorem of this section. It shows a reduction from the
worst-case search variant of LWE (which by Theorem [ is as hard as a worst-
case lattice problem) to the above average-case problem. This establishes the
hardness of the average-case problem, which means that the LWE distribution
As . is itself pseudorandom when both s and the error distribution 1 are both
chosen at random from appropriate distributions (and kept secret).

Theorem 2. Let R,m,q be as above, and let - q > 1> ny—n(RY). Then there
is a randomized polynomial-time reduction from L\WE, w_, to DLWE, 1, .

The proof of Theorem [2] goes through a chain of reductions, summarized in the
following diagram (the numbers refer to lemma numbers, and the definitions of
all intermediate problems are given later).

LWE,,» q:-LWEq, v 8t DecLWEfzy
Automorphisms Search to Decision
DecLlWE, » WE} y ———— DLWE,

DL
Worst to Average Amplification Hybrid
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This sequence of reductions is similar in spirit to the one given in previous work
on the (non-ideal) LWE problem [31]. However, there are a few important dif-
ferences, requiring the introduction of new tools. One fundamental issue arising
in the ring setting is that an oracle for DLWE might only let us deduce the
value of the secret s relative to one ideal factor q; of {g). In order to recover the
entire secret, we ‘shuffle’ the ideal factors using the field’s automorphisms (see
Lemma [IT0]) to recover s relative to every factor q;.

Another issue arises from the fact that the reduction in Section [3] only estab-
lishes the hardness of LWE, ¢ for a family of distributions ¥ that contains non-
spherical Gaussian distributions. As a result, the average-case problem requires
a distribution 7" over Gaussian noise distributions that are both non-spherical
and wider by a factor of y/n. Although this is somewhat undesirable, we do not
yet see any way to avoid it; luckily, this only has a minor effect on the result-
ing cryptographic applications, i.e., adding an extra step of choosing the noise
parameters. Let us mention, though, that if one is willing to assume that (the
search problem) LWE, ¢ is hard with spherical Gaussian noise distributions, then
we can fix the noise distribution in all the average-case problems (so there is no
need to use a distribution over noise distributions 7") and we do not need to lose
the factor y/n.

Due to space constraints, here we present only the first two steps of the chain
of reductions, which contain the bulk of the novel ideas. The rest can be found
in the full version.

4.1 Worst-Case Search to Worst-Case Decision

In this subsection we reduce the search version of LWE, ¢ to a certain decision
problem over just one arbitrary prime ideal q;. All of the problems considered
here are worst-case over the choice of s € R(\I/ and error distribution ¢ € ¥,
where ¥ is a family of allowed error distributions (though the actual error terms
drawn from 1 are still random), and require their solutions to be found with
overwhelming probability (over all the randomness of the experiment).

We first define some intermediate computational problems and probability dis-
tributions, then present two reductions. For notational convenience, we identify
the elements of Z}, with their integer representatives from the set {1,...,m — 1},
with the usual ordering. For i € Z;;, we let i— denote the largest element in Z,
less than ¢, defining 1— to be 0.

We define the notation Ry = RY/q;R", and note that by Lemmas [3] and [5]
there is an efficiently computable R-module isomorphism between R, and @, Ry, .

Definition 8 (LWE over q;). The q,-LWE, ¢ problem is: given access to As y
for some arbitrary s € R} and ¢ € ¥, find s € Ry,

Definition 9 (Hybrid LWE distribution). Fori € Z),, s € R/, and a distri-
bution 1 over K, the distribution A% o over Rg x T is deﬁned as follows: choose
(a,b) — Agy and output (a,b+ T/q) where r € R is uniformly random and
independent in Rvj forall j <1, and is 0 in all the remaining Rvj Also define

Ang simply as A .
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Definition 10 (Decision LWE relative to q;). For i € Zy, and a family of
distributions ¥, the DecLWE, 5 problem is defined as follows. Given access to

Ang for arbitrary s € R), ¢ € ¥, and j € {i—,i}, find j.

Claim. For any i € Z7, there exists an efficient procedure that transforms A};’w
(for any unknown k € Z¥ U {0}, s, and ¢) into A;nzx{i’k}.

Lemma 10 (LWE to q,-LWE). Suppose that the family ¥ is closed under all
the automorphisms of K, i.e., 9 € ¥ = 1,(¢p) € ¥ for every k € Z},. Then for
every i € 7, there is a deterministic polynomial-time reduction from LWE, v
to qi—LWEqu.

Proof. To compute s € quj7 we use the oracle for q;-LWE along with the field

automorphisms 7 to recover the value s € R;/j for all j € Z,. We can then
efficiently reconstruct s € R;.

The reduction that finds s € RVJ_ works as follows: transform each sample
(a,b) «— Agy into the sample (74(a), 7 (b)), where k = j/i € Z, and hence
Ti(q;) = qi. (Also note that because 75 is an automorphism on K and R is
the set of all its algebraic integers, 7x(R) = R and 74(RY) = R.) Give the
transformed samples to the q,-LWE, ¢ oracle, and when the oracle returns some
element ¢ € R, return o Ht) € Ry

We now prove that 7, ' () = s € Ry For each sample (a, b) from A, y, notice
that because b = as/q + e and 7;(¢) = ¢, we have

7 (b) = 7 (a)7i(5)/q + Ti(€).

Because 7 is an automorphism on R, 7x(a) € R, is uniformly random, and
because ¢ = 74(¢) € ¥, the pairs (7x(a), (b)) are distributed according to
A, (s),4- By hypothesis, the oracle returns t = 7 (s) € Ry,. Thus ot t) =s €
7 (RY) = RY..

Lemma 11 (Search to Decision). For any i € Ly, there is a probabilistic
polynomial-time reduction from q;-LWE, ¢ to DecLWEZ)‘I,.

Proof. The idea for recovering s € qui is to try each of its possible values,
modifying the samples we receive from A, so that on the correct value the
modified samples are distributed according to Aifw whereas on all the other
values the modified samples are distributed according to Ai,u We can then use

the DecLWEfw oracle to tell us which distribution was generated. Because there
are only N(q;) = ¢ = poly(n) possible values for s € quw we can enumerate over
all of them efficiently and discover the correct value.

First note that by Claim 1] we can transform our input distribution A, to
Aijw. We now give the transformation that takes some g € R; and maps A;‘w
to either Aifw or Ai,wv depending on whether or not g = s € qui (its values in
the other R are irrelevant). Given a sample (a,b) < Aifw, the transformation
produces a sample

(a',b') = (a+v,b+wvg/q) € Ry x T,
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where v € R, is uniformly random modulo ¢; and is 0 modulo the other g;. First,
notice that since a is uniformly distributed in Ry, so is a’. Next, condition on
any fixed value of a’. Then b’ can be written as

bV =b+wvg/q=(as+71)/q+e+vg/q
=(d's+v(g—s)+r)/q+e,

where e is chosen from v, and r is distributed as in the definition of Aijw, ie., it
is uniformly random and independent modulo g; for all j < 4, and is 0 modulo
all the remaining q;.

We consider two cases. First, assume that g = s € qui. Then by the Chinese
remainder theorem (Lemma [3), v(g — s) = 0 € R, and hence the distribution
of (a',V') is exactly Aiﬁ . Next, assume that g # s mod g;. Then since g; is a
maximal ideal (which in R is equivalent to being a prime ideal), R;/i is a field,
and hence v(g — s) is distributed uniformly in Ry, (and is zero in all other
R). From this it follows that v(g — s) + 7 is distributed uniformly random and

independently in REI/], for all 7 <1, and is 0 in all the remaining quj. Hence, the
distribution of (a’,d’) is exactly Ai,wa as promised.
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Fully Homomorphic Encryption over
the Integers
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1 MIT CSAIL
2 IBM Research

Abstract. We construct a simple fully homomorphic encryption scheme,
using only elementary modular arithmetic. We use Gentry’s technique to
construct a fully homomorphic scheme from a “bootstrappable” some-
what homomorphic scheme. However, instead of using ideal lattices over a
polynomial ring, our bootstrappable encryption scheme merely uses addi-
tion and multiplication over the integers. The main appeal of our scheme
is the conceptual simplicity.

We reduce the security of our scheme to finding an approximate inte-
ger ged — i.e., given a list of integers that are near-multiples of a hidden
integer, output that hidden integer. We investigate the hardness of this
task, building on earlier work of Howgrave-Graham.

1 Introduction

What is the simplest encryption scheme for which one can hope to achieve secu-
rity? The Caesar cipher is simple, but not secure. We believe that conventional
public-key encryption schemes with modular exponentiations are secure, but
modular exponentiation is not a very simple operation. If we were to forget our
current schemes and start from scratch, perhaps something like the following
scheme would be a good candidate for a simple symmetric encryption scheme:

KeyGen: The key is an odd integer, chosen from some interval p € [271, 27).
Encrypt(p,m): To encrypt a bit m € {0,1}, set the ciphertext as an integer
whose residue mod p has the same parity as the plaintext. Namely, set ¢ =
pq + 2r + m, where the integers ¢,r are chosen at random in some other
prescribed intervals, such that 27 is smaller than p/2 in absolute value.
Decrypt(p, ¢): Output (¢ mod p) mod 2.

It is easy to see that when the noise r is sufficiently smaller than the secret
key p, this simple scheme is both additively and multiplicatively homomorphic
for shallow arithmetic circuits. Moreover, one can use Gentry’s techniques [0]
(i.e., “bootstrapping” and “squashing the decryption circuit”) to morph this
scheme into a fully homomorphic encryption scheme [20]. Amazingly, it seems
that with judicious choice of parameters (say r ~ 2V and q ~ 2’73)7 this simple
scheme may even be secure!!

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 24-E3] 2010.
© International Association for Cryptologic Research 2010
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So far we only described a symmetric scheme, but turning it into a public key
scheme is easy: The public key consists of many “encryptions of zero”, namely
integers z; = q;-p+2r; where g;, r; are chosen from the same prescribed intervals
as above. Then to encrypt a bit m, the ciphertext is essentially set as m plus a
subset sum of the z;’s.

We reduce the security of this scheme to approximate integer gcd — roughly,
that it is hard to recover p from the x;’s. This problem, for the case of two x;’s,
was analyzed by Howgrave-Graham [9]. Our parameters — in particular, the large
size of the g;’s — are designed to avoid a generalized version of his attack (as well
as other attack avenues, such as solving the associated simultaneous Diophantine
approximation problem).

We comment that our scheme is similar to Regev’s first encryption scheme
[19]. In fact, a slight variation of Regev’s scheme can be described by exactly
the same formula as ours, Enc(m, p) = gp+ 2r +m. The main difference between
the schemes is that in order to get the homomorphic properties, our choice of
parameters is much more aggressive than his. Another difference is that the
secret key p in our scheme is an integer, whereas in Regev’s scheme the secret
key is chosen as an integral fraction of the domain size (i.e., p = N/h for some
integer h). Unfortunately, Regev’s worst-to-average-case security reductions from
[19] do not seem to apply to our scheme.

2 Preliminaries

Below we usually denote parameters by Greek letters (e.g., 1,7, 7, etc.), with A
always denoting the security parameter. Real numbers and integers are denoted
by lowercase English letters (p, ¢, x, y, etc.). All logarithms in the text are base-2
unless stated otherwise.

For a real number z, we denote by [z], | 2], |z] the rounding of a up, down,
or to the nearest integer. Namely, these are the unique integers in the half open
intervals [z,2+ 1), (z — 1, 2], and (z — %,z + ;], respectively.

For a real number z and an integer p, we use gp(z) and 7,(2) to denote
the quotient and remainder of z with respect to p, namely g,(z) def |z/p] and
rp(2) e, qp(z) - p. (Note that r,(z) € (—p/2,p/2].) We also denote the
remainder by [z], or (z mod p), we use these three notations interchangeably
throughout the paper.

A family H of hash functions from X to Y, both finite sets, is said to be
2-universal if for all distinct z,2" € X, Pr, _ [h(z) = h(2)] = 1/|Y]. A distri-
bution D is e-uniform if its statistical distance from the uniform distribution is

at most €, where the statistical difference between two distributions D1, Dy over
a finite domain X is ) > |D1(z) — Da(z)|.

Lemma 1 (Simplified Leftover Hash Lemma [8]). Let H be a family of

2-universal hash functions from X to Y. Suppose that h E N andz & X are
chosen uniformly and independently. Then, (h, h(z)) is 3+/|Y|/|X|-uniform over
HxY.
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2.1 Homomorphic Encryption

Our definitions are adapted from Gentry [6]. Below we only consider encryption
schemes that are homomorphic with respect to boolean circuits consisting of gates
for addition and multiplication mod 2. (Considering only bit operations also means
that the plaintext space of the encryption schemes that we consider is limited to
{0,1}.) See the works of Ishai and Paskin [I0] for a more general definitional treat-
ment of homomorphic encryption with respect to other forms of “programs.”

A homomorphic public key encryption scheme £ has four algorithms: the usual
KeyGen, Encrypt, and Decrypt, and an additional algorithm Evaluate. The algo-
rithm Evaluate takes as input a public key pk, a circuit C, a tuple of ciphertexts
c={c1,...,c) (one for every input bit of C'), and outputs another ciphertext c.

Definition 1 (Correct Homomorphic Decryption). The scheme & =
(KeyGen, Encrypt, Decrypt, Evaluate) is correct for a given t-input circuit C if, for
any key-pair (sk, pk) output by KeyGen(\), any t plaintext bitsmq, . .., my, and any
ciphertexts ¢ = {(c1, ..., ct) with ¢; «— Encryptge(pk, m;), it is the case that:

Decrypt (sk, Evaluate(pk,C,c)) = C(mq,...,my)

Definition 2 (Homomorphic Encryption). The schemeE=(KeyGen, Encrypt,
Decrypt, Evaluate) is homomorphic for a class C of circuitd] if it is correct for all
circuits C € C. £ is fully homomorphic if it is correct for all boolean circuits.

The semantic security of a homomorphic encryption scheme is defined in the
usual way [7], without reference to the Evaluate algorithm. (Indeed Evaluate is a
public algorithm with no secrets.)

It is clear that as defined above, fully homomorphic encryption can be trivially
realized from any secure encryption scheme, by an algorithm Evaluate that simply
attaches a description of the circuit C' to the ciphertext tuple, and a Decrypt
procedure that first decrypts all the ciphertexts and then evaluates C' on the
corresponding plaintext bits. Two properties of homomorphic encryption that
rule out this trivial solution are circuit-privacy and compactness.

Circuit privacy roughly means that the ciphertext generated by Evaluate does
not reveal anything about the circuit that it evaluates beyond the output value
of that circuit, even for someone who knows the secret key. We discuss circuit pri-
vacy in the full version [21]. It is folklore that circuit-private fully-homomorphic
encryption can be realized using Yao’s “garbled circuits” [22I15] and a two-flow
oblivious transfer protocol. (This construction is similar to the trivial solution
from above, essentially it replaces the plaintext circuit with a garbled circuit.)
Hence the “real challenge” in constructing fully homomorphic encryption comes
from the compactness property, which essentially means that the size of the
ciphertext that Evaluate generates does not depend on the size of the circuit C.

Definition 3 (Compact Homomorphic Encryption). The scheme £ =
(KeyGen, Encrypt, Decrypt, Evaluate) is compact if there exists a fized polynomial

! Formally, C is an ensemble, parametrized by the security parameter.
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bound b(X) so that for any key-pair (sk, pk) output by KeyGen(\), any circuit C
and any sequence of ciphertext ¢ = {(c1,...,ct) that was generated with respect
to pk, the size of the ciphertext Evaluate(pk,C,c) is not more than b(\) bits
(independently of the size of C).

2.2 Bootstrappable Encryption

Following Gentry [6], we construct homomorphic encryption for circuits of any
depth from one that is capable of evaluating just a little more than its own
decryption circuit.

Definition 4 (Augmented Decryption Circuits). LetE = (KeyGen, Encrypt,
Decrypt, Evaluate) be an encryption scheme, where decryption is implemented by a
circuit that depends only on the security parameter

For a given value of the security parameter A, the set of augmented decryption
circuits consists of two circuits, both take as input a secret key and two cipher-
texts: One circuit decrypts both ciphertexts and adds the resulting plaintext bits
mod 2, the other decrypts both ciphertexts and multiplies the resulting plaintext
bits mod 2. We denote this set by Dg(A).

Definition 5 (Bootstrappable Encryption). Let £ = (KeyGen,Encrypt,
Decrypt, Evaluate) be a homomorphic encryption scheme, and for every value
of the security parameter X\ let Cg(\) be a set of circuits with respect to which &
is correct. We say that € is bootstrappable if Dg(X) C Ce(X) holds for every .

Theorem 1 ([6]). There is an (efficient, explicit) transformation that given a
description of a bootstrappable scheme € and a parameter d = d(\), outputs a
description of another encryption scheme E® such that:

1. €D 4s compact (in particular the Decrypt circuit in £P is identical to that
in &), and
2. €D is homomorphic for all circuits of depth up to d.

Moreover, £ is semantically secure if £ is: Any attack with advantage € against
EWD can be converted into an attack with similar complexity against £ with ad-
vantage at least €/0d , where £ is the length of the secret key in &.

We also note that if the bootstrappable scheme £ is “circular secure” then it
can be converted into a single compact fully-homomorphic encryption scheme
E'. See [0] for details.

3 A Somewhat Homomorphic Encryption Scheme

Parameters. The construction below has many parameters, controlling the num-
ber of integers in the public key and the bit-length of the various integers.

2 This in particular means that for a fixed value of the security parameter, the size
of the secret key is always the same, and similarly all the ciphertexts that can be
decrypted have the same size.
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Specifically, we use the following four parameters (all polynomial in the security
parameter \):

v is the bit-length of the integers in the public key,

7 is the bit-length of the secret key (which is the hidden approximate-ged of
all the public-key integers),

p is the bit-length of the noise (i.e., the distance between the public key ele-
ments and the nearest multiples of the secret key), and

7 is the number of integers in the public key.

These parameters must be set under the following constraints:

— p=w(log\), to protect against brute-force attacks on the noise;

— 1> p-O(Aog?\), in order to support homomorphism for deep enough cir-
cuits to evaluate the “squashed decryption circuit” (cf. Sections 32 and [6.2);

— v = w(n?log\), to thwart various lattice-based attacks on the underlying
approximate-ged problem (cf. Section B);

— 7 > v+ w(log)), in order to use the leftover hash lemma in the reduction
to approximate ged.

We also use a secondary noise parameter p’ = p+w(log ). A convenient param-
eter set to keep in mind is p = A, p’ = 2\, n = O(A\2), vy = O(\%) and 7 = v + \.
(This setting results in a scheme with complexity O(A19).)

For a specific (n-bit) odd positive integer p, we use the following distribution
over ~-bit integers:

D,y pp) = {choose q &zn [0, 27/p), r &zn (=27, 2°) : output z = pq + r}

This distribution is clearly efficiently sampleable.

3.1 The Construction

KeyGen()\). The secret key is an odd 7-bit integer: p & (2Z + 1) N [27=1 2m).
For the public key, sample x; & D, ,(p) for i =0,...,7. Relabel so that xg
is the largest. Restart unless z¢ is odd and 7,(z¢) is even. The public key is
pk = (0, Z1,...,Tr).

Encrypt(pk, m € {0,1}). Choose a random subset S C {1,2,...,7} and a ran-
dom integer r in (—2”/7 2"/), and output ¢ « [m +2r+2 g xi]wo.

Evaluate(pk, C, ¢y, ..., ¢:). Given the (binary) circuit Cg¢ with ¢ inputs, and ¢
ciphertexts ¢;, apply the (integer) addition and multiplication gates of C¢ to
the ciphertexts, performing all the operations over the integers, and return

the resulting integer.
Decrypt(sk, ¢). Output m’ « (¢ mod p) mod 2.

Remark 1. Recall that (¢ mod p) =c—p- |¢/p], and as p is odd we can instead
decrypt using the formula m’ «— ¢ — [¢/p]], = (c¢mod 2) @ (|¢/p] mod 2).

Remark 2. Originally, we described encryption as adding m to a random subset
sum of “encryptions of zero”. Indeed, the scheme can viewed this way. Let w; =
[22;]4, for i = 1,...,7. Each w;, and also x, is essentially an encryption of zero;
its noise is even. Moreover, ¢ = m + 2r + >, g w; — k - o for some integer k.
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3.2 Correctness

Permitted Circuits and Polynomials. For a mod-2 arithmetic circuit (composed
of mod-2 Add and Mult gates), we consider its generalization to the integers, i.e.,
the same circuits with the Add and Mult gates applied to integers rather than
to bits. Similar to Gentry [6], we define a permitted circuit as one where for any
a > 1 and any set of integer inputs all less than 22" +2) in absolute value, it
holds that the generalized circuit’s output has absolute value at most 2(71—4)
Let Cg¢ denote the set of permitted circuits. Clearly, we have:

Lemma 2. The scheme from above is correct for Cg. O

Remark 3. Since “fresh” ciphertexts output by Encrypt have noise at most 2"/4‘2,
the ciphertext output by Evaluate applied to a permitted circuit has noise at most
27=4 < p/8. The bound 272 < p/2 would suffice for correct decryption. But we
will later use the fact that the noise remains below p/8 in Section [@ to perform
the decryption operation using a very shallow arithmetic circuit.

The definition of the set Cg from above is rather indirect. In particular this
definition does not give a good picture of what Cg “looks like”. By the triangle
inequality, a k-fan-in Add gate clearly increases the magnitude of the integers by
at most a factor of k. However, a 2-fan-in Mult gate may square the magnitude of
the integers — i.e., double their bit-lengths. So, clearly, the main bottleneck is the
multiplicative depth of the circuit, or the degree of the multivariate polynomial
computed by the circuit. We have the following lemma.

Lemma 3. Let C be a boolean circuit with t inputs, and let CT be the associated
integer circuit (where boolean gates are replaced with integer operations). Let
f(z1,...,2¢) be the multivariate polynomial computed by C*; let d be its degree.
If|f| - (2°'F2)d < 21=4 (where | f| is the I, norm of the coefficient vector of f)
then C € Cg. a

In particular, £ can handle f as long as

n—4—loglf|

d <
= o+ 2

(1)

Below we refer to polynomials that satisfy Equation () as permitted polynomials
and we denote by Pg the set of permitted polynomials and by C(Pg) the set of
circuits that compute them. The discussion above implies that C(Pg) C Cg.

Remark 4. For our purposes, we consider settings where log | f| is small in rela-
tion to 1, p’ = w(log\) and t,7 < A’, and we need to support polynomials of
degree up to aXlog? A (for some constants a, ). Plugging these expressions in
Equation (), it is sufficient to set n = p’ - ©(Alog? \).
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3.3 Optimizations

Modular-reduction during Evaluate. Note that while Encrypt reduces the
ciphertext modulo the public key element x(, we cannot do the same in Evaluate.
The reason is that after just one multiplication the ciphertext becomes much
larger than z, so modular reduction will include a large multiple of zy hence
introducing intolerable error.

To reduce the ciphertext size during Evaluate, we can add to the public key
more elements of the form z; = ¢ip+ 2r, where the r.’s are chosen as usual from
the interval (—2°,2°) but the g;’s are chosen much larger than for the other
public key elements. Specifically, for ¢ =0, ..., we set:

¢ Sz p, 2 p), & TN (=20,20), & —2(d-p+rl),

thus getting 2/ € [277¢ 27T1]. During Evaluate, every time we have a cipher-
text that grows beyond 27, we reduce it first modulo mfy, then modulo xfy_l,
and so on all the way down to x{,, at which point we again have a ciphertext of
bit-length no more than ~.

Recall that a single operation at most doubles the bit-length of the ciphertext.
Hence after any one operation the ciphertext cannot be larger than 23@’7, and
therefore the sequence of modular reductions involves only small multiples of the
x}’s, which means that it only adds a small amount of noise. (We note that in
addition to smaller ciphertexts, this optimization also reduces the public key size
when we use the “decryption squashing” technique as described in Section [611)

It is not clear to what extent adding these larger integers to the public
key influences the security of the scheme. It does change the specifics of the
approximate-GCD assumption that we need to make, but the same decision-to-
search reduction from Section M still goes throughﬁ Also, we note that having
integers with these very large quotients does not seem to help in any of the
attacks on approximate-GCD that we considered.

Remark 5. Note that when using the original scheme without the optimization,
homomorphic evaluation of different circuits that compute the same polynomial
would result in the exact same output ciphertext (i.e., the polynomial applied to
the input ciphertexts over the integers). This is no longer true when using the
size-reduction optimization, because of the additional modular reduction steps.
For example, evaluating the circuit “xi(x2 + x3)” is likely to yield a different
ciphertext than the circuit “zixo + z123.”

In principle, it is plausible that evaluating one circuit would yield a ciphertext
with small enough noise to be decrypted, while evaluating another circuit for the
same polynomial will produce a ciphertext with too much noise. Adapting the
“bootstrappability analysis” from Section[6.2to the optimized scheme, one would
have to take into account not only the degree of the polynomial implementing
the decryption process but also the particular circuit that implements this poly-
nomial. It should not be hard to argue that the circuit in Section does not
introduce too much noise, but the analysis is quite tedious and is omitted here.
3 Allowing this reduction to go through is the reason that the z’s are set as even

integers.
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Ciphertext compression. Even though the optimization from above keeps
evaluated ciphertexts at the same length as original ciphertexts, the size of these
ciphertexts is still very large — 6(\°) bits under our suggested parameters. We
next show how to “compress”, or post-process the ciphertexts, down to (asymp-
totically) the size of an RSA modulus, reducing the communication complexity
of our scheme dramatically.

The price of this optimization, however, is that we cannot evaluate anything
on these compressed ciphertexts. Hence we can only use this compression tech-
nique on the final output ciphertexts, after all applications of the Evaluate al-
gorithm have been completed. (This technique also introduces another hardness
assumption, similar to the ¢-hiding assumption of Cachin et al. [3].)

Roughly, we supplement the public key with the description of a group G and
an element g € G whose order is a multiple of the secret key p. Then, given
the ciphertext ¢ from our scheme, the compressed ciphertext is simply ¢* «— ¢°.
Note that DLy(c*) = ¢ (mod p), so decrypting is done by first computing
y < DL4(c*) mod p, and then m < y mod 2. Correctness follows immediately
from the correctness of the original scheme.

To implement this idea, we need to choose the secret key p as a smooth number
so that we can compute (DL, (c*) mod p) on decryption. It seems sufficient to
choose the secret key as a product of random distinct A2/ log A small primes (say,
all smaller than A\®). Also, we need to ensure that publishing G, g does not violate
the security of the scheme. This can be accomplished by publishing an RSA
modulus N such that p|¢(N) (and log N sufficiently larger than 4 log p)E along
with a random element g €r Zy;, relying on a variant of the ¢-hiding assumption
[3]. Namely, we assume that given two smooth numbers py, p2 as above and given
N such that one of the p;’s divides ¢(N), it is hard to determine which of the
two p;’s divides ¢(N). In the full version we describe this optimization in more
details, and provide a proof of security for it under this ¢-hiding variant.

4 Security of the Somewhat Homomorphic Scheme

We reduce the security of the scheme from Section [ to the hardness of the
approximate-gcd problem. Namely, given a set of integers xg, x1, . .., Z,, all ran-
domly chosen close to multiples of a large integer p, find this “common near
divisor” p.

On a high level, our reduction resembles classical hard-core-bit proofs in
factoring-based cryptography (e.g., Alexi et al. [I]): Fixing a randomly-chosen
public key, we roughly show that an adversary who can predict the encrypted
bit in a random ciphertext under this public key can be used to find the secret
key (for this fixed public key). As in [I], we describe a random-self-reduction and
accuracy-amplification step that uses the promised adversary to get a reliable
oracle for the least-significant bit, and then a binary-GCD algorithm that uses
that reliable oracle to find p.

4 The condition log N > 4logp is needed, since otherwise we can use Coppersmith’s
method [4] to break the corresponding ¢-hiding assumption.
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The technical details, of course, are very different than in factoring-based
cryptography. Perhaps the main difference is that our random self-reduction
entails a loss in parameters. Specifically, we show that a noticeable advantage
in guessing the encrypted bit in a random “high noise ciphertext” — where the
noise is p’ bits — can be converted into the ability to predict reliably the parity
bit of the quotient in an arbitrary “low noise integer” — where the noise is p bits.
(Roughly, the reason for this is that we need to add extra noise to “wipe out the
traces” of the non-random noise in the arbitrary input integer.)

The implication is that we can only reduce the security of our cryptosystem
in the “high-noise regime” to the hardness of approximate-gcd in the “low-noise
regime.” Note that the difference between “high noise” and “low noise” is rather
small: only w(log A) bits.

4.1 Reduction to Approximate-GCD
The approximate-gcd problem is defined as follows:

Definition 6 (Approximate GCD). The (p,n,v)-approximate-ged problem
is: given polynomially many samples from D ,(p) for a randomly chosen n-bit
odd integer p, output p.

Theorem 2. Fiz the parameters (p,p',n,v,7) as in the Somewhat Homomor-
phic Scheme from Section[3 (all polynomial in the security parameter \).

Any attack A with advantage £ on the encryption scheme can be converted
into an algorithm B for solving (p,n,y)-approzimate-ged with success probability
at least /2. The running time of B is polynomial in the running time of A, and
in A and 1/e.

Proof. Recall that we use gp(z) and r,(2) to denote the quotient and remainder
of z with respect to p, hence z = g,(2) - p + rp(2). Let A be an attacker against
the scheme. Namely, .4 takes as input a public key and a ciphertext (as produced
by KeyGen and Encrypt of our scheme), and outputs the correct plaintext bit with
probability é e for some noticeable €. (The probability is over KeyGen and Encrypt,
as well as the choice of the plaintext bit and the internal randomness of A.)

We use A to construct a solver B for approximate-ged with parameters p, 7, 7.
For a randomly chosen n-bit odd integer p, the solver B has access to as many
samples from D, ,(p) as it needs, and the goal is to find p.

Step 1: Creating a public key. The solver B begins by constructing a public

key for the scheme. B draws 7 4+ 1 samples g, ..., 2, & D, p(p). It relabels so
that x( is the largest. It restarts unless x( is odd. B then outputs a public key
pk = (zo, 21, ..., 2.). Clearly, if r,(zo) happens to be even then the distribution
induced on the public key is identical to that of the scheme.

Step 2: A subroutine for high-accuracy LSB predictor. Next, B produces a se-
quence of integers, and attempts to recover p by utilizing A to learn the least-
significant bit of the quotients of these integers with respect to p. For this, B
uses the following subroutine:
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Subroutine Learn-LSB(z, pk):
Input: z € [0,27) with |r,(z)| < 27, a public key pk = (x¢, z1,..., %)
Output: The least-significant-bit of g, (2)

1. For j =1 to poly(A\)/e do: // € is the overall advantage of A
2. Choose noise r; & (—29'72#)7 a bit m; & {0,1},
and a random subset S; Cr {1,...,7}

3. Set cj «— |z +m;+2r; +23 0. xk]
o

4. Call A to get a prediction a; — A(pk, ¢;)
5. Set b; «— a; & parity(z) & m; // b; should be the parity of g,(z)

6. Output the majority vote among the b;’s.

In the full version [2I] we show that for all but a negligible fraction of the
public keys generated by the scheme, the “ciphertext” ¢; in line 3 is distributed
almost identically to a valid encryption of the bit [r,(z)]2 @ m;. Note also that
since p is odd, we always have [g,(2)]2 = [rp(2)]2 ® parity(z). It follows that
if A has a noticeable advantage in guessing the encrypted bit under pk then
Learn-LSB(z, pk) will return [g,(z)]2 with overwhelming probability.

Step 3: Binary GCD. Once we turned A into an oracle for the least-significant-
bit of gp(2), recovering p is rather straightforward. Perhaps the simplest way
of doing it is using the binary GCD algorithm [12]: Given any two integers
21 =qp(z1) - p+rp(21) and 2o = qp(22) - p+ 1rp(22) (with 7,(2;) < p), repeatedly
apply the following process to them:

1. If 2z > 21 then swap them, z; < 25.

2. Use the oracle to learn the parity bit of both ¢,(z1) and g¢,(z2), denote
bi = lap(2i)]2-

3. If both gp(2;) are odd then replace z; by z1 < 21 — 22 and set by « 0.

4. For each z with b; = 0, replace z; by z; < (z; — parity(z;))/2. (Note that
z; — parity(z;) is even, so the new z; is an integer.)

Observe that when p > r,(z;), subtracting the parity bit does not change the
quotient with respect to p, only the remainder. That is, g,(z; — parity(z;)) =
gp(#i). It follows that when we set z « (z; — parity(z;))/2 in line 4 (where we
know that ¢,(z;) is even), we get

tp(2) = 4p(2:)/2 and 1y(2]) = (rp(2i) — parity(z:)) /2.

We now show that the noise in z1, 29 never grows too large in this process. Clearly,
setting 2z « (z; — parity(z;))/2 in line 4 we have |r,(2))| < (|rp(z:)] +1)/2 <
|rp(2i)|. Moreover, when we replace z; by 2] < 21 — 22 in line 3 and then by
21« (21 — parity(z}))/2 in line 4, we have

rp ()] = (Irp(21) — rp(22) — parity(21)[) /2 < max {|rp(21)], [rp(22)[ }

Hence the r,(2;)’s never grow beyond the largest of the initial two, so we always
have p > r,(z;).
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This implies that the operations above correspond to the usual operations of
the binary GCD algorithm, applied to the ¢,(z;)’s. Hence after O(v) iterations
we will finally get two integers 2, 25 with z5 = 0 and g,(2]) being the odd part
of GCD(qp(#1),qp(22)) (for the two initial integers).

Step 4: Recovering p. To recover p, the solver B draws a pair of elements z7, 25 &
D, ,(p) and applies the binary-GCD algorithm to them. With probability at least
72/6 ~ 0.6, the odd part of GCD(q,(27),qy(23)) is one, which means that the
procedure will output an element 2 = 1 - p + r with |r| < 2°. (If this does not
happen then B draws two new integers and tries again.)

Lastly B repeats the binary-GCD procedure from above using z; = 27 and
z9 = Z, and the sequence of parity bits of the g,(z1)’s in all the iterations spell
out the binary representation of g,(z7). Now B recovers p = |21 /qp(%7)].

Summary. We have shown that B can recover p given access to a reliable oracle
for computing [g,(z)]2 (for z’s with noise much smaller than p). It is left to
analyze the probability (over B’s choice of public key) with which the procedure
Learn-LSB(z, pk) from above is indeed such a reliable oracle.

The Success Probability of B. In the full version we prove a simple tech-
nical lemma about the distribution of ciphertexts in our scheme. Recall that
conditioned on some probability-3 event in our reduction (i.e., g,(z0) is odd),
the distribution of the public key that B generates is identical to the correct dis-
tribution from the scheme. Let us denote this probability—% “good event” by G.
In the full version we prove that for every secret key p and for all but a negli-
gible fraction of the public keys (as generated by KeyGen for the secret key p),
the procedure that B uses to generate ciphertexts in line 3 of the subroutine
Learn-LSB produces a distribution which is statistically close to the ciphertext
distribution of the scheme. This lets us analyze the success probability of B, as
follows: Let P be the set of odd integers in [27~1, 2") for which A has more than
€/2 advantage

P ipe [271,27) : advantage(A) conditioned on sk = p is at least £/2}
A counting argument shows that the fraction of odd integers from [2771,27) that
are in P is at least /2. For a given p € P, we similarly denote by P, the set
of public keys for which 4 has advantage at least /4:

P, ef {pk for p : advantage(A) conditioned on pk is at least /4}

Again, for every p € P, the KeyGen algorithm (when using the secret key sk = p)
must output pk € PK, with probability at least £/4.

Consider now a single run of B when it is given access to D, ,(p) for some
p € P. With probability 1/2 the “good event” G happens, in which case the
public key that B produces is negligibly close to the right distribution. Hence
conditioned on G, B generates some pk € PK, with probability ¢’ > /4 —
negl. Moreover, with probability &' — negl not only is the public key in PKC,,
but also the ciphertext-generation that B uses in line 3 of Learn-LSB “works” for
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this public key (meaning that the ciphertexts that it generates are chosen from
almost the right distribution). If that happens then A returns the right answer
in line 4 of Learn-LSB with probability /4 — negl. As that subroutine calls A
for poly(\)/e times and takes majority vote, it will return the right answer with
overwhelming probability, and B will recover the approximate-ged p.

Thus, when the hidden secret is p € P then B has probability at least 1/2 -
(/4 — negl) of recovering it in a single run. Repeating the algorithm B for (8/¢) -
w(log \) times will therefore recover such p’s with overwhelming probability.
Hence we have a solver of complexity poly(A, 1/¢) that works with overwhelming
probability for every p € P, so the overall success probability of this solver is
at least the density of P, which is at least £/2. This completes the proof of
Theorem O

5 Known Attacks

Consider the approximate-ged instance {zo, ..., x:} where x; = pg; + r;. In this
section, we first review known attacks on the approximate-gcd problem for two
numbers (i.e., when ¢ = 1) — including brute-forcing the remainders, contin-
ued fractions, and Howgrave-Graham’s approximate ged algorithm [9]. Later,
we consider attacks for arbitrarily large values of ¢ — including lattice-based al-
gorithms for simultaneous Diophantine approximation [I3], Nguyen and Stern’s
orthogonal lattice [I7], and extensions of Coppersmith’s method to multivariate
polynomials [4].

5.1 The Approximate GCD of Two Numbers

A simple brute-force attack is to try to guess r; and r9, and verify the guess
with a ged computation. Specifically, for r}, 5 € (=27, 2°), set

/ ! / ! / / A
Ty =T =T, Ty xp—Ty, P ged(wy,wy)

If p’ has 7 bits, output p’ as a possible solution. The solution p will definitely be
found by this technique, and for our parameter choices, where p is much smaller
than 7, the solution is likely to be unique. The running time of the attack is
approximately 22°.

A variant of the brute-force attack is to set o} as above, factor ], and, if there
is an 7-bit factor p’, see whether p’ is an approximate divisor of x}. Since in our
parameters 7y is substantially greater than 7, the attack should use a factoring
algorithm whose performance depends primarily on the size of the target factor
rather than the size of the entire number being factored. For example, Lenstra’s
elliptic curve factoring algorithm [I4] runs in time roughly exp(O(,/n)) (with
only polynomial dependence on ), thus resulting in overall attack complexity
~ 2tV The attack time is less if the approximate ged is known to be smooth,
but still exponential in p.

Continued fractions seem like a natural way to recover p from x; and x5. Using
continued fractions, one obtains a sequence of integer pairs (a;,b;) such that
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|1 /22 —a;/bi] < 1/b?. Moreover, every pair (s, t) such that |z1/z2—s/t| < 1/2t?
is in the sequence. Since ¢1/¢2 is a good approximation of 1 /x2, one may hope
that it occurs as a pair in the sequence; if so, one recovers p = |1 /q1]. However,
in our scheme, |1 /22—q1/¢2| is not small enough to be recovered using continued
fractions. Specifically, we have

1

4

T q1

T2 q2

q27T1 — q172
q2(pg2 +12)

g2r1 — q172
p

where (g2r1 — g17r2)/p in the final term is likely to be much larger than 1. To de-
scribe the failure of continued fractions another way, the mere fact that an ap-
proximant a;/b; is close to z1/z2 does not mean that there exist r}, 75 < p such
that 1 = pa; + ] and 22 = pb; + 15 — i.e., the continued fractions method is not
constrained to output the kind of approximants that we need. See [9] for a more
detailed exposition of the continued fractions approach to approximate-ged.
Howgrave-Graham [9] also gives a lattice attack on the two-element
approximate-ged problem that is related to Coppersmith’s celebrated algorithm
for finding small solutions to univariate and bivariate modular equations [4]. For
the case where x; is exactly divisible by p, where his algorithm performs slightly
better, the attack recovers p when p/v is smaller than (1/v)2. The algorithm
does not degrade gracefully for p, 7,y that do not satisfy the constraint. Rather,
in this case, the relevant lattice may contain exponentially vectors unrelated to
the approximate-ged solution, so that lattice reduction yields nothing useful.

5.2 The Approximate GCD of Many Numbers

Now, let us consider attacks — specifically, lattice attacks — for arbitrary ¢. First,
note that the rational numbers y; = z;/x¢ are an instance of the simultaneous
Diophantine approximation (SDA) problem: indeed for all ¢ it holds that ;”0 =
qi;‘)‘”, where |s;| &~ 2°~". We can therefore try to use Lagarias’ algorithm for
SDA [13], namely apply LLL to the (¢4 1)-dimensional lattice L spanned by the

rows of the following matrix:

20 X1 ;o ... X
—0

M= —T0
-

Our target solution corresponds to a vector of length roughly 27F°=7/t + 1 —
specifically,

v = <QO7CI1, .. -,Qt> M = <CI02p7 qox1 — q1%o, ---, 0Tt — Qtl‘o>

x1 q1 €x q
= <CI02p7 zoqo(" " = )y ooty zoqo( ! — t)>7
Zo q0 xo qo
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where the first entry in v satisfies |go2°| < 2777 and all the other entries
satisfy [zogo(! — &) = |zosi| ~ VP,

However, the target solution is not necessarily the shortest nonzero vector
in the lattice, and therefore is not necessarily discovered by lattice reduction.
In particular, Minkowski tells us that L has a nonzero vector of length at
most det(L)V/ D/t 41 < 20e+N/@HD /4 41 = 27F(=2)/(+D/t 1 1. This
is shorter than our target solution when t+1 < ~/n. In fact, heuristically, L will
tend to have exponentially (in #) many vectors of length poly(t)det(L)/(t+1)
which obscure our target solution

On the other hand, when ¢ is large, v likely is the shortest vector in L, but
known lattice reductions algorithms will not be able to find it efficiently. Specif-
ically, as a rule of thumb, they require time roughly 2¢/* to output a 2* approx-
imation of the shortest vector. Since clearly there are exponentially (in ¢) many
vectors in L of length at most ||zo|vt+ 1 < 27/t + 1, which is about 2777
times longer than v, we need better than a 27~* approximation. For ¢ > ~/n,
the time needed to guarantee a 2" approximation (which is not even good enough
to recover ) is roughly 27/ "’ Thus setting v/n? = w(log \) foils this attack.

Other known attacks are described in the full version. These attacks do not
perform any better than the ones above, and our choice of parameters achieves
at least 2 security against all of them.

6 Making the Scheme Fully Homomorphic

We follow Gentry’s approach [6] for constructing a fully homomorphic encryp-
tion scheme from a somewhat homomorphic scheme £ that is bootstrappable as
per Definition [Bl For reasons similar to those in Gentry’s construction from [6],
computing the decryption equation m’ « [c — |¢/p]]2 seems to require boolean
circuits that are deeper (by a constant factor) than what our somewhat homo-
morphic scheme can handle. Hence we use Gentry’s transformation to “squash
the decryption circuit.” In this transformation, we add to the public key some
extra information about the secret key, and use this extra information to “post
process” the ciphertext. The post-processed ciphertext can be decrypted more
efficiently than the original ciphertext, thus making the scheme bootstrappable.
We pay for this saving by having a larger ciphertext, and also by introducing
another hardness assumption (basically assuming that the extra information in
the public key does not help an attacker break the scheme).

6.1 Squashing the Decryption Circuit

Let &, 6, © be three more parameters, which are functions of X\. Concretely, below
we use k = yn/p’, 8 = X\, and © = w(k - log )\)E For a secret key sk™ = p and

5 When ¢t is very small — e.g., t = 1 — the information that one obtains from the
two dimensional lattice is related to what one obtains from the continued fractions
approach.

5 When using the size-reduction optimization from Section B3l it is sufficient to use
Kk = v + 2, which would also make © smaller.
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public key pk* from the original somewhat homomorphic scheme £*, we add to
the public key a set y = {y1,...,yo} of rational numbers in [0,2) with x bits
of precision, such that there is a sparse subset S C {1,...,0} of size 6 with
Y icg¥i = 1/p (mod 2). We also replace the secret key by the indicator vector
of the subset S. In more details, we modify the encryption scheme from Section [3]
as follows:

KeyGen. Generate sk® = p and pk™ as before. Set z, «— |27/p], choose at

random a ©-bit vector with Hamming weight 6, s = (s1,...,s0), and let
S = {’L 1S = ].}

Choose at random integers u; € Z N [0,2%"1) i = 1,...,0, subject to
the condition that >, qu; = x, (mod 2°F1). Set y; = u;/2" and y =
{y1,-..,ye}. Hence each y; is a positive number smaller than two, with &

bits of precision after the binary point. Also, [},cq%il2 = (1/p) — 4, for
some |Ay| <277,
Output the secret key sk = s and public key pk = (pk™, y).

Encrypt and Evaluate. Generate a ciphertext ¢* as before (i.e., an integer). Then
for i € {1,...,0}, set z; — [c* - yi]2, keeping only n = [logf]| + 3 bits
of precision after the binary point for each z;. Output both ¢* and z =
<217 R Z@>’

Decrypt. Output m’ « [¢* — [ 3, sizi] ]2 .

Recall our definition of permitted polynomials from Section [3.21 We proved that

our somewhat homomorphic scheme was correct for the set C'(Pg) of circuit that

compute permitted polynomials, and we now show that this is true also of the
modified scheme.

Lemma 4. The modified scheme from above is correct for C(Pg ). Moreover, for
every ciphertext (¢*,z) that is generated by evaluating a permitted polynomial,
it holds that " s;z; is within 1/4 of an integer.

Proof. Fix public and secret keys, generated with respect to security parameter
A, with {y;}2, the rational numbers in the public key and {s;}2 ; the secret-
key bits. Recall that the y;’s were chosen so that [, s;y;]2 = (1/p) — A, with
14,] < 27",

Fix a permitted polynomial P(z1,...,2:) € Pg, an arithmetic circuit C' that
computes P, and ¢ ciphertexts {¢;}!_; that encrypt the inputs to C, and denote
¢* = Evaluate(pk, C, c1, ..., ct). We need to establish that

lc*/p] = {Z szz;‘ (mod 2)

where the z;’s are computed as [¢* - y;]o with only [log#] + 3 bits of precision
after the binary point, so [¢* - y;]2 = z; — A; with |4;] < 1/1660. We have
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{(C*/P) - Zsizi]z = _(C*/p) =) sile" - yila + ZSiAi]
= ( */p) —c” Zszyz +Zsz z}
= (/= (/= 2y + Y st

= :c* A, + ZsiAiL

We claim that the final quantity inside the brackets has magnitude at most 1/8.
By definition, since ¢* is a valid ciphertext output by a permitted polynomial,
the value ¢*/p is within 1/8 of an integer. Together, these facts imply the lemma.
To establish the claim, observe that | > s;4;] < 6 - 1(150 = 1/16. Regarding
c* - Ap, recall that the output ciphertext ¢* is obtained by evaluating the poly-
nomial P on the input ciphertexts ¢; (as if P was an integer polynomial). By the
definition of a permitted polynomial, for any « > 1, if P’s inputs have magni-
tude at most 20‘(”/"‘2), its output has magnitude at most 2*("=%) when its inputs
have magnitude. In particular, when P’s inputs are “fresh” ciphertexts, which
have magnitude at most 27, P’s output ciphertext ¢* has magnitude at most
21(1=0)/(r'+2) < 95=4 Thus, |¢* - Ay| < 1/16 and the claim follows.

6.2 Bootstrapping Achieved!

Theorem 3. Let £ be the scheme above, and let D¢ be the set of augmented
(squashed) decryption circuits. Then, Dg C C(Pg).

In other words, £ is bootstrappable. The proof is similar to Gentry’s [5l6]. By
Theorem[I] we obtain homomorphic encryption schemes for circuits of any depth.

Proof. The goal is to express the modified decryption equation

m’ — ¢ — LZSZZZ_‘ mod 2

as a permitted polynomial (i.e., one satisfying Equation (), and show that there
is a polynomial-size circuit that computes this polynomial. Recall that ¢* is an
integer, the s;’s are bits, and the z;’s are rational numbers in [0,2), in binary
representation with n = [log ] 4+ 3 bits of precision after the binary point. Also,
our parameter setting implies two promises — namely, that > s; - z; is within 1/4
of an integer, and that only 6 of the bits s1,...,sg are nonzero.

We split the computation up into three steps:

1. For i € {1,...,0}, set a; «— s; - z; (i.e,, a; = z; when s;, = 1 and a; =
0 otherwise). The a;’s are still rational numbers in [0,2), given in binary
representation with n bits of precision after the binary point.

2. From the O rational numbers {a;}? ;, generate other n+ 1 rational numbers
{w;}7_y, each with less than n bits of precision, such that 37, w; = 37, a;
(mod 2).

3. Output ¢* — (3, w;) mod 2.
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The first step can be performed with a 1-level sub-circuit of multiplication gates.
However, the second and third steps require more complicated sub-circuits.
The problem of using a shallow boolean circuit to compute the sum Zle T
of k rational numbers in binary representation is well-studied. A well-known
technique uses the three-for-two trick (see [I1]), whereby a constant-depth circuit
is used to transform three numbers of arbitrary bit-length into two numbers that
are at most 1 bit longer, such that the sum of the two output numbers is the same
as the sum of the three input numbers. (The output bits of the constant-depth
circuit are linear or quadratic expressions with 3 monomials in the input bits.)

By applying this trick at most [log3 /2 k—‘ + 2 times, one obtains two numbers
s1 and so such that s; + so = Zle r;. Hence the total depth that it takes to

reduce k numbers to two numbers is d’ < 9[logs/2 k]+2 - gp1/108(3/2) ~ gJ1.71
The depth of the circuit needed to compute the final sum of two numbers is
logarithmic in their bit-lengths, but if we are only interested in |s; + s3] mod 2
and have the promise that s; + so is within 1/4 of an integer, this value can be
computed by multivariate polynomial of degree 4 (and only nine terms). Overall,

the circuit for computing {Zf:l ri_‘ mod 2 corresponds to a polynomial of degree

at most d < 32k1/108(3/2) | with coefficient vector having l;-norm at most 274,
Unfortunately, this degree (with k = ©) is still too large for our scheme to
handle. Hence we use Gentry’s technique from [5] that takes advantage of the
fact that all but € of the a;’s are zero.

Denote the bit representation of each number a; by a;o,a; —10;—2...a; _n.
That is, a; = z;l:o Z*jai,,j. The heart of this procedure is a subroutine for
computing integers W_;, j = 0,1,...,n, where W_; is the Hamming weight of
the “column” of bits (a1,—j,a2 —j,...,a0,—;) (see an illustration in Figure [I]).
Since at most 6 of the a;’s are nonzero, then the W_;’s are no larger than ¢, and
hence can be represented by [log(6 + 1)] < n bits. By Lemma [B] below, every

a a a

10 1,-1 1,—n
a a a

2,0 2,-1 2,-n
a}’,0 a},—l a},ﬁn
a@,ﬂ a@;l ae,—n
W0 -1 —n

Fig. 1. The procedure for summing up the a;’s: The binary representation of the ra-
tional number a; is a,, a, ,a, ,...a,_,. The integer W_; is the Hamming weight
of the column of bits (a, _,,a, ;,...,ae _;).
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bit in the binary representation of W_; can be expressed as a polynomial of
degree at most ¢ in the © variables a; —;, i = 1,2,...,0. Moreover all of these
polynomials can be computed simultaneously by an arithmetic circuit of size
06 -0).

Once we have the W_;’s, the sum of the a;’s can be obtained by > . a; =
> 27IW_;. For j =0,1,...,n we set w; = (277 - W_;) mod 2, so the w;’s are
rational numbers with [log(f + 1)] < n bits of precision. We can now sum-up
the w;’s using the three-for-two trick as above, this time with k¥ = n + 1, thus
obtaining the sum of the a;’s mod 2.

We conclude that the degree of the polynomials in the first step is two, the
degree of polynomials in the second step is at most 6, and the degree of the
polynomial in the third step is at most

32(n+1)/186/2) < 32Mlogf 4+ 41" < 3210g%0

Therefore the total degree of the decryption circuit is bounded by 2-0-321og? 6 =
6461og” §, and since we are using # = A we have degree at most 64\ log? \.

It follows that the augmented decryption circuits D¢ (i.e., decryption fol-
lowed by a single multiplication or addition, cf. Definition H]) can be expressed
as polynomials of degree at most 128\log® X in the @ variables s;. Since the
logarithm of l3-norm of this polynomial is small in relation to 7, and since
6 =""-w(log)) < A" (and also 7 < A") the argument in Remark Hlat the end
of Section B2l (with o = 128 and = 7) indicates that we can get Dg C C(Pg),
making the scheme bootstrappable, by setting = p - ©(Alog? \).

It is left to show how to compute the W;’s using polynomials of degree no larger
than 6.

Lemma 5. Let ¢ = (01,02,...,0¢) be a binary vector, let W = W(o) be the
Hamming weight of o, and denote the binary representation of W by W, ... W1 Wj.
(That is, W = Y1, 2'W; and all the W;’s are bits.)

Then for every i < n, the bit W;(o) can be expressed as a binary polynomial of
degree exactly 2° in the variables o1, ..., 0y. Moreover, there is an arithmetic cir-
cuit of size 2°-t that simultaneously computes all the polynomials for Wy, ..., W;.

Proof. Tt is well known that the ¢’th bit in the binary representation of the
Hamming weight of bit-vector o is equal to e,i(o) modulo 2, where ey () is the
k’th elementary symmetric polynomial, see Lemma 4 of [2]. That is,

Wi(o) = ei(o) mod 2 = Z Haj mod 2
|S|=2¢ j€S

Clearly, the degree of eqi is exactly 2°.

As for the “Moreover” part, we can compute the elementary symmetric poly-
nomials in the o;’s as the coefficients of the polynomial Py (2) = [['_, (2 — 0;) in
the auxiliary formal variable z, with e, (o) being the coefficient of 2*~*. Conve-
niently, to compute only the first few bits Wy, W1, ..., W;, we can simply discard
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the lower-order terms in P, (z) — i.e., we do not need the coefficients of 27 for
j<t—2%
For example, one “dynamic programming” procedure for computing Wy, W1,
.., W; (which can be trivially made into a circuit) would go as follows:

Input: bits o1, ..., 0y
0. Initialization: Set Py < 1 and Pjo < 0 for j =1,2,3,...,2
// Pjk is the j’th symmetric polynomial in o1 ...0%
1.For k=1,2,...,t // incorporate o
2. For j = 2¢ down to 1, set Pj—or x Pj_1 -1 + Pjr_1
3. Output Pl,t7 Pg’t7 P4’t7 ey P2i’t

We can do a little better by using fast Fourier transform multiplication of poly-
nomials. Using this technique, we can compute the entire polynomial P, (z) with
complexity ¢ - polylog(t).

Remark 6. Note that our first circuit implementation of the procedure from
above is not “shallow”. Nonetheless, since it computes only “low degree polyno-
mials” (i.e., up to degree 2*), then by Lemma [Blit is a permitted circuit.

6.3 Security of the Squashed Scheme

Putting the hint y in the public key induces another computational assumption,
related to the sparse subset sum problem (SSSP) used by Gentry [5], and studied
previously (sometimes under the name “low-weight” knapsack) in the context
of server-aided cryptography [I6] and in connection to the Chor-Rivest cryp-
tosystem [I8]. We can easily avoid known attacks on the problem by choosing 6
large enough to avoid brute-force attacks (and improvements using time-space
trade-offs) and choosing © to be larger than w(log A) times the bit-length of the
rational numbers in the public key (which have length H)E

7 Conclusion and Open Problems

We described a fully homomorphic encryption scheme that uses only simple
integer arithmetic. The primary open problem is to improve the efficiency of the
scheme, to the extent that it is possible while preserving the hardness of the
approximate-gcd problem.
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Abstract. We develop an abstract framework that encompasses the
key properties of bilinear groups of composite order that are required
to construct secure pairing-based cryptosystems, and we show how to
use prime-order elliptic curve groups to construct bilinear groups with
the same properties. In particular, we define a generalized version of
the subgroup decision problem and give explicit constructions of bilin-
ear groups in which the generalized subgroup decision assumption follows
from the decision Diffie-Hellman assumption, the decision linear assump-
tion, and/or related assumptions in prime-order groups.

We apply our framework and our prime-order group constructions to
create more efficient versions of cryptosystems that originally required
composite-order groups. Specifically, we consider the Boneh-Goh-Nissim
encryption scheme, the Boneh-Sahai-Waters traitor tracing system, and
the Katz-Sahai-Waters attribute-based encryption scheme. We give a
security theorem for the prime-order group instantiation of each sys-
tem, using assumptions of comparable complexity to those used in the
composite-order setting. Our conversion of the last two systems to prime-
order groups answers a problem posed by Groth and Sahai.

Keywords: pairing-based cryptography, composite-order groups, cryp-
tographic hardness assumptions.

1 Introduction

Bilinear groups of composite order are a tool that has been used in the last
few years to solve many problems in cryptography. The concept was introduced
by Boneh, Goh, and Nissim [3], who applied the technique to the problems of
private information retrieval, online voting, and universally verifiable computa-
tion. Subsequent authors have built on their work to create protocols such as
non-interactive zero-knowledge proofs [I314], ring and group signatures [6120],
attribute-based encryption [BJI6], traitor tracing schemes [4], and hierarchical
IBE [17.21].
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Bilinear groups of composite order are pairs of abelian groups (G, G;), each
of composite order N = pq, equipped with a nondegenerate bilinear map e :
G x G — Gy. Cryptosystems using bilinear groups of composite order usually
base their security on variants of the subgroup decision assumption. Informally,
this assumption says that given an element g € G, there is no efficient algorithm
to determine whether g has order p. In particular, the assumption implies that
it is infeasible to factor the group order V.

While the subgroup decision assumption is a useful tool for constructing se-
cure protocols, it presents significant obstacles to implementing these protocols
in practice. The only known instantiations of composite-order bilinear groups use
elliptic curves (or more generally, abelian varieties) over finite fields. Since the el-
liptic curve group order n must be infeasible to factor, it must be at least (say)
1024 bits. On the other hand, the size of a prime-order elliptic curve group that
provides an equivalent level of security is 160 bits [I]. As a result, group oper-
ations and especially pairing computations are prohibitively slow on composite-
order curves: a Tate pairing on a 1024-bit composite-order elliptic curve is roughly
50 times slower than the same pairing on a comparable prime-order curve [I8], and
this performance gap will only get worse at higher security levels.

In short, requiring that the group order be infeasible to factor negates the
principal advantage of elliptic curve cryptography over factoring-based systems,
namely, that there is no known subexponential-time algorithm for computing
discrete logarithms on an elliptic curve, while there is such an algorithm for
factoring. Thus for efficient implementations we seek versions of protocols that
use only prime-order elliptic curve groups. Developing these protocols is the main
goal of this paper. In particular, we do the following:

e We develop an abstract framework that encompasses the key properties
of bilinear groups of composite order, and we show how to use prime-order
elliptic curves to construct bilinear groups with the same properties.

e We apply our framework and our prime-order construction to create more
efficient versions of cryptosystems that originally used composite-order
groups. Specifically, we consider:

1. The Boneh-Goh-Nissim encryption scheme [3],
2. The Boneh-Sahai-Waters traitor tracing system [4], and
3. The Katz-Sahai-Waters attribute-based encryption scheme [16].

Our conversion of the last two systems to prime-order groups answers a problem
posed by Groth and Sahai [I4, Section 9], who themselves implicitly use our
framework to construct non-interactive proof systems using either composite-
order or prime-order groups.

Outline and Summary of Results. The starting point for our abstract frame-
work is the fact that the subgroup decision assumption defined by Boneh, Goh,
and Nissim depends only on the existence of a group G for which it is infeasi-
ble to determine if an element g € G lies in a given proper subgroup Gy of G.
This observation gives us a more general subgroup decision assumption in the
language of abstract groups (see Section [2]).
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Our construction using prime-order groups is based on the observation, used
implicitly by Cramer and Shoup [7] and articulated explicitly by Gjgsteen [12],
that the decision Diffie-Hellman (DDH) assumption is a generalized subgroup
decision assumption. Specifically, suppose we are given a cyclic group G and
elements g, g%, g%, g° € G. Then the DDH assumption for G says exactly that
it is infeasible to determine whether (g°, g¢) is in the cyclic subgroup of G x G
generated by (g,¢®). Thus any protocol that requires two groups Gi; C G in
which the generalized subgroup decision assumption holds can be instantiated
using G = G x G and G1 = ((¢1,92)), where G is a cyclic group in which the
DDH assumption holds and g7, g2 are random elements of G.

More generally, we can use G = G" for any n > 2 and let G; be a rank-k
subgroup for any 1 < k < n. In this case the subgroup decision assumption
in G follows from the k-Linear assumption in G, which generalizes the DDH
assumption. In particular, the 1-Linear assumption is DDH, while the 2-Linear
assumption is the decision linear assumption. This more general construction
makes explicit a relationship noticed by several previous authors (e.g., [T4121]),
namely, that functionality that can be achieved in composite-order groups under
the subgroup decision assumption can also be achieved in prime-order groups
under either the DDH or the decision linear assumption.

If the group G is equipped with a pairing é : G x G — Gy, then applying
é componentwise defines a pairing on G = G". However, such a “symmetric”
pairing (which only exists on supersingular elliptic curves) can be used to solve
DDH in G, so in this case our DDH-based construction is not secure. To get
around this problem we use the fact that on ordinary (i.e., non-supersingular)
elliptic curves there are two distinguished subgroups, denoted G; and Go, in
which DDH is believed to be infeasible for sufficiently large group orders. We
can thus apply our construction twice to produce groups G = G}, H = G,
Gy = G} (for some m), and an “asymmetric” pairing e : G x H — Gy. If the
DDH assumption holds in G; and Go, then the subgroup decision assumption
holds in G and H. (If using the d-Linear assumption with d > 2, we can remain
in the symmetric setting.)

While the security of composite-order group protocols depends on (variants
of) the subgroup decision assumption, the correctness of these protocols depends
on the groups having certain additional properties. In some cases, the groups
G, H, Gy must be equipped with projection maps 7y, w2, 7 that map them onto
proper subgroups and commute with the pairing. In other cases, the groups
must decompose into subgroups G = [[G; and H = [ H; such that the pairing
restricted to G; x Hj is trivial whenever ¢ # j. In Section [}l we define these
properties in our abstract framework and show how to instantiate them in the
product groups G, G3.

Sections 2] and [B] give us the framework and the tools necessary to convert
composite-order group protocols to prime-order groups. Section ] analyzes the
efficiency gains realized in terms of the number of bits needed to represent group
elements. For example, at a security level equivalent to 80-bit AES, ciphertexts
in the Boneh-Goh-Nissim cryptosystem can be up to three times smaller when
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instantiated using our prime-order construction than in the original composite-
order system. At the 256-bit security level the improvement can be as large as a
factor of 12.

In Section Bl we describe in detail the conversion procedure for the Boneh-
Goh-Nissim cryptosystem, and in Section [l we sketch the same for the Boneh-
Sahai-Waters traitor tracing system and the Katz-Sahai-Waters attribute-based
encryption scheme. (Details are in the full version of this paper [I0].) In each case
we describe the scheme in our general framework and convert the assumptions
used in the security proofs to our more general setting. We then consider the
system instantiated with our prime-order group construction and give security
theorems in this setting. If the original system is secure under a simple assump-
tion (e.g., subgroup decision) then the converted scheme is also secure under a
simple assumption (e.g., DDH); if the original system uses a complex assump-
tion (as in the Katz-Sahai-Waters system) then the corresponding assumption
in prime-order groups is also complex.

We note that our conversion process is not “black box”: the security proof for
each system must be analyzed to determine whether it carries over to our more
general setting. For example, the recent IBE scheme of Lewko and Waters [17]
uses explicitly in its security proof the fact that the group G has two subgroups
of relatively prime order, and thus our techniques do not apply. However, we do
expect that our framework can be used to convert to prime-order groups other
cryptosystems originally built using composite-order groups.

2 Subgroup Decision Problems

The problem of determining whether a given element g of a finite group G
lies in a specified proper subgroup G; was used as a hardness assumption for
constructing cryptosystems long before Boneh, Goh, and Nissim defined their
“subgroup decision problem.” Gjgsteen [12] has undertaken an extensive survey
of such problems, which he calls “subgroup membership problems.” For example,
the quadratic residuosity problem is a subgroup membership problem: if we let
N = pq be a product of two distinct primes and define the group G to be the
group of elements of Z} with Jacobi symbol 1, the problem is to determine
whether a given element in G lies in the subgroup of squares in G.

Boneh, Goh, and Nissim [3] defined their problem for pairs of groups (G, G;)
of composite order N = pq for which there exists a nondegenerate bilinear map,
or “pairing,” e : G x G — G;. The problem is to determine whether a given
element g € G is in the subgroup of order p. Note that if ¢’ generates G, then
e(g,g’) is a challenge element for the same problem in Gy; thus if the subgroup
decision problem is infeasible in G then it is in G; as well.

Our general notion of a subgroup decision problem extends Gjgsteen’s work
to the bilinear setting. We begin by defining an object that generates the groups
we will work with. We assume that the two groups input to the pairing are not
identical; this is known as an asymmetric pairing.
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Definition 2.1. A bilinear group generator is an algorithm G that takes as in-
put a security parameter A and outputs a description of five abelian groups
G,G1,H, H,Gy, with G; C G and H; C H. We assume that this description
permits efficient (i.e., polynomial-time in \) group operations and random sam-
pling in each group. The algorithm also outputs an efficiently computable map
(or “pairing”) e: G x H — Gy that is

e Bilinear: e(g192, h1ha) = e(g1, h1)e(g1, ha)e(gz, hi)e(gz, ha) for all g1, g2 € G,
hi,he € H; and

e Nondegenerate: for any g € G, if e(g,h) =1 for all h € H, then g = 1 (and
similarly with G, H reversed).

Our generalized subgroup decision assumption says that it is infeasible to dis-
tinguish an element in G; from a random element of G, and similarly for H.
More precisely, we have the following definition. (The notation & X means
is chosen uniformly at random from the set X.)

Definition 2.2. Let G be a bilinear group generator. We define the following
distribution:

G = (G,G1, H,H1,Gy,e) < G(\), Ty < G, Ty < G1.

We define the advantage of an algorithm A in solving the subgroup decision
problem on the left to be

SDPL—AdV[.A7 g} = PI‘[.A(G,TQ) = 1] — PI‘[A(G,Tl) = 1] .

We say that G satisfies the subgroup decision assumption on the left if
SDPy-Adv[A, G]()) is a negligible function of A for any polynomial-time algo-
rithm A. We define the subgroup decision problem/assumption on the right and
SDPgr-Adv[A, G] analogously, with Ty < H and T} < H;. We say G satisfies the
subgroup decision assumption if it satisfies both the left and right assumptions.

Example 2.3 ([3, Section 2.1]). Boneh, Goh, and Nissim construct a bilinear
group generator Gpan using supersingular elliptic curves of composite order. Let
E(N) be an algorithm that outputs a product N = pips of two distinct primes
greater than 2*, a prime ¢ = —1 (mod N), and a supersingular elliptic curve F
over the finite field Fy. Then #E(F,) is divisible by N, and we can construct
Gpen (A) by running £(A) and setting the output as follows:

e G = H is the order-N subgroup of E(F,);
G1 = H; is the order-p; subgroup of E(F,);
G\ is the order-N subgroup of Fyz; and
e: G x G — Gy is the modified N-Tate pairing on F [8], Sect. 2.1].
Each group is described by giving a generator.

It is believed that Gpan satisfies the subgroup decision assumption when N
is infeasible to factor. The construction can be extended to produce a group G
whose order is a product of three or more primes, and the subgroup decision
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assumption is believed to hold in any nontrivial proper subgroup G; of G. Using
the generic group analysis of Katz, Sahai, and Waters [16, Theorem A.2], one can
show that any efficient generic algorithm to solve the subgroup decision problem
for Gean can be used construct an efficient algorithm to factor N.

2.1 Product Groups, DDH, and d-Linear Assumptions

The primary motivation for our abstraction of composite-order group protocols
is the observation that the decision Diffie-Hellman problem is also a subgroup
decision problem [I2} Section 4.5].

Let G be a finite cyclic group, and let T = (g, g%, g°, g¢) be a 4-tuple of ele-
ments in G. The decision Diffie-Hellman (DDH) problem is to determine whether
¢ = ab (mod |g|); if this is infeasible then we say that G satisfies the decision
Diffie-Hellman assumption. Now suppose we are given a DDH challenge T'. De-
fine G to be G x G and G; to be the cyclic subgroup of G generated by (g, g%).
Then the element (g°, g°) € G is in G if and only if ¢ = ab (mod |g|) — so solv-
ing the subgroup decision problem for G; C G is exactly equivalent to solving
DDH in G.

Now we consider the same construction in the bilinear setting: let G1, Gs, G
be finite cyclic groups, and let é : Gy x Gy — Gy be a nondegenerate bilinear map.
Then we can define G = G, H = G3, and G; = G?, and choose random elements
of G and H to generate GG; and H; respectively. We can define a nondegenerate
pairing e : G x H — G, by taking any invertible matrix A = (%) € Mat(F,)
and setting

e((g1,92), (h1,h2)) == e(g1, h1)e(g1, ha2)e(g2, h1)e(ga, h2)®.

We can define a pairing mapping to Gy = G}* by choosing different coefficients
a,b,c,d to define each component of the output. With this setup, if the DDH
assumption holds in G; and G, then the subgroup decision assumption holds
for Giy C G and Hi C H.

More generally, we consider a bilinear group generator G; that produces two
groups G = G} and H = GI and random rank-k subgroups Gi; C G and
H; C H. In this situation the natural analogue of the DDH problem is the k-
Linear problem, introduced by Hofheinz and Kiltz [I5] and Shacham [19]. The 1-
Linear problem is simply DDH, while the 2-Linear problem is called the decision
linear problem and was originally proposed by Boneh, Boyen, and Shacham [2]
as a reasonable analogue for DDH in a group with a bilinear map.

The following definition and theorem formalize the relationship between sub-
group decision problems and d-Linear problems. We will use the following no-
tation: if we have a group G of order p, an element g € G, and a vector
T = (z1,...,7,) € F}, then we define g = (g*,...,g"") € G™.

Definition 2.4. A bilinear group generator P is prime-order if the groups
G,G1, H, Hy, G, all have prime order p > 2*. Then we have G = G and H = Hy,
and we denote the three distinct groups by Gy = G, Gy = H, and G; = G;. We
let G denote the output (p, Gy, Ga, Gy, €) of P(N).
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Let d > 1 be an integer. If A is an algorithm that takes as input 2d + 2
elements of G1, we define the advantage of A in solving the d-Linear problem in
G1, denoted d-Ling,-Adv[A, P], to be

~ R R
Pr |:A(G7gla s agd7gII’ e a92d7 h, hr1+~~~+7“d) =1: P,y 91;~~~,gd<*G1;:|

R
T1,..,TqFp

9

. SR i
— Pr {A(G,gl,...,gd,g?,...,g;",h,h‘g) =1 P o1ga Gl’]

R
T1era s B,

and similarly for d-Ling,-Adv[A,P]. We say that G satisfies the d-Linear as-
sumption in Gy if d-Ling,-Adv[A, G](\) is a negligible function of A for any
polynomial-time algorithm A (and similarly for Go). The decision Diffie-Hellman
(DDH) assumption is the 1-Linear assumption. The decision linear assumption
is the 2-Linear assumption.

Some previous authors (e.g., [14]) have called the assumption that DDH is in-
feasible in both G1 and G the symmetric external Diffie-Hellman assumption,
or SXDH. For clarity in our arguments, we prefer to call the problems DDH in
G1 and Gso, respectively.

Theorem 2.5. Let P be a prime-order bilinear group generator. For integers
n,k withn > 2 and 1 <k < n, define G to be a bilinear group generator that
on input X does the following:

Let (p,G1,Gy, Gy, &) < P(N).

Let G =GY, H =GY, Gy =G} for some m.

Choose generators g & Gy, h < Gs.

Choose random &;, i; — Y fori=1,...,k, such that the sets {Z;} and {¥;}
are each linearly independent.

5. Let Gy be the subgroup of G generated by {g™,..., g™} and Hy be the sub-
group of H generated by {hV:,... hVk}

6. Choose nonzero n x n matrices Ay = (agf)) fort=1,...,m.

T o o =

a(.o

7. Deﬁne e:Gx H— Gt by 6((91, v 7971)7 (hh . '7hn))f = He(giahj) Y
8. Output the tuple I = (G,G1, H,H1,Gy,e€).

If P satisfies the k-Linear assumption in G1 and G, then G} satisfies the sub-
group decision assumption. Specifically, for any adversary A that solves the sub-
group decision problem on the left for G, there exists an adversary B that solves
the k-Linear problem in Gy for P, with

SDPy.-Adv[A4,GP] < (n — k) - k-Ling, -Adv|B, P).

An analogous statement holds for A solving the subgroup decision problem on
the right for G and B solving the k-Linear problem in Gy for P.
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Proof sketch. We sketch the proof for n = k+1; the general case is proved in the
full paper [10]. Let (G, u1, ..., uk,v1,...,Vk, Y, 2) be a k-Linear challenge in G;.

Let & = (z;1,- - ., %in) be the vectors chosen in Step (@) above. Choose b F¥,
and let G be the subgroup generated by
i, T, 1/bi\\ k
{(Uf 17 . '7“? kavi/ )}izl'

Now consider T = (y2 bi%i1  yX bi%ik ) € G, where each sum in the ex-
ponent runs over ¢ = 1 to k. Write v; = u;’, z = y°. If ¢ = >, r; (mod p)
then T is uniformly distributed in Gy, while if ¢ is random then T is uniformly
distributed in G7. It follows that any algorithm that has advantage € in solving
the subgroup decision problem for G}' can solve the k-Linear problem in G; with
advantage at least ¢. O

Since the d-Linear assumption implies the (d+1)-Linear assumption for all d > 1
[15] Lemma 3], if P satisfies the DDH assumption in G; and Gg, then G} satisfies
the subgroup decision assumption for any n > 1 and 1 < k& < n. The converse
holds when k = 1; the proof is in the full paper.

If we view all of the groups in the above construction as Fy-vector spaces, then
we see that the subgroup decision problem is a decisional version of the vector
decomposition problem [22I11], in which the adversary is given a decomposition
G = G1 X G2 and an element = € G and asked to find y € Gy and z € G2 such
that © = yz.

The nondegeneracy of the pairing e defined on G;* will depend on the matrices
Ay and must be checked in each case. However, if m = 1 then e is nondegenerate
if and only if A; is invertible.

3 Pairings on Product Groups

In our construction of the bilinear group generator G;’ from the prime-order bilin-
ear group generator P, we took the pairing e on the product groups to be any non-
trivial linear combination of the componentwise pairings on the underlying prime-
order group. However, the correctness proofs for protocols built in composite-
order groups all use the fact that the pairings have some extra structure that arbi-
trary linear combinations are unlikely to have. We now investigate this structure
further and determine how to replicate it in our product group context.

Projecting Pairings. The cryptosystem of Boneh, Goh, and Nissim works by
taking elements g € G and h € (G; and encrypting a message m as C' = g™h",
where r is random. The A term is a “blinding term” used to hide the part of
the ciphertext that contains the message. Decryption is achieved by “projecting”
the ciphertext away from the blinding term and taking a discrete logarithm to
recover m. Specifically, when g has order N = pips and h has order p;, the
decryption can be achieved by first computing CP' to remove the h term, and
then taking the discrete logarithm to the base gP* to recover m. The functionality
of the cryptosystem requires that we can do this procedure either before or after
the pairing; i.e., that we can construct and remove blinding terms in Gy. The
following definition incorporates this concept into our abstract framework.
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Definition 3.1. Let G be a bilinear group generator (Def. 2Tl). We say G is pro-
jecting if it also outputs a group G} C G and group homomor-phisms 7y, 7a, ¢
mapping G, H, G; to themselves, respectively, such that

1. Gy, Hy, G} are contained in the kernels of 7y, ma, 7, respectively, and
2. e(mi(g),m2(h)) = m(e(g,h)) for all g € G, h € H.

Example 3.2. The bilinear group generator Gpgn of Example23]is projecting:
we let G} be the order-p; subgroup of Gy, let 71 = w3 be exponentiation by p1,
and let 7; be exponentiation by (p;)2.

Given a prime-order bilinear group generator P, we wish to modify the bilinear
group generator G’ constructed in Theorem 2.0 so it is projecting. To do so, we
interpret the generation of G; and H; in terms of matrix actions, and we define
the pairing e using a tensor product of matrices.

We begin by defining the projection maps 7 and my. Let G = G} and let g be
a generator of Gy. For i = 1,...,n, let €; be the unit vector with a 1 in the ith
place and zeroes elsewhere. To construct the projection map 7y, we first observe
that if G} is the subgroup of G generated by ¢,...,¢%, then any element of
G has 1’s in the last n — k coordinates, so we can define a projection map 7
whose kernel is G by

ﬂ-i(gla"'vgn) = (17"‘71791’7/7164*17"'7977,)-

Next we observe that the elements ¢!, ..., g% produced by Gp can be viewed
as coming from a (right) action of an n x n matrix on the elements ¢, ..., g%.
More precisely, for g = (g1,...,9») € G and a matrix M = (a;;) € Mat, (F,),
we define g™ by

gM = (H?:l 9;11'17 ERRR) H?:l g;“") .

With this definition, we have (¢%)M = g(&M),

Now let M be an invertible matrix whose first k rows are the vectors Z;. Then
g% = ¢%M _If we define U, to be the matrix with 1’s in the last n — k diagonal
places and zeroes elsewhere, then the map 7} is given by 7/ (g) = gV*. Thus we
can construct a projection map 71 on G by applying M ~! to map to G, using
7 to project, and acting by M to map back to Gy; that is, m1(g) = gM_lUkM.
We define 72 analogously on H by computing an invertible matrix M’ whose
first k rows are the ¢; produced by G;'.

We now define the pairing e, the subgroup G}, and the projection map .
Recall that the tensor product of two n-dimensional vectors Z, ¥ is

ZRY= (219, ,2n¥) = (T1Y1y- - -, T1Yny - - - s TnYls- - - » TnlYn)-

We define € : G x H — Gy := G by e(g®, h¥) := é(g, h)*™¥. That is, to pair
g € G and h € H, we take all the n? componentwise pairings e(g;, h;) and write
them in lexicographical order. In this case the A, of Theorem are the n?
matrices with a 1 in entry (7, j) and zeroes elsewhere; it is easy to see that these
Ay definite a nondegenerate pairing e.
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Defining the pairing in this manner allows us to define the map m,; abstractly
as the tensor product of the maps 7 and ms. In terms of the matrices we have

defined, we have

() = gi N EIIIED),

where ® indicates the tensor product (or Kronecker product) of matrices: if
A = (a;j) and B = (b;j) are two n x n matrices, then A ® B is the n? x n?
matrix which, when divided into n x n blocks, has the (4, j)th block equal to
aijB.

Given this framework, we see that the constructions of Groth and Sahai |14,
Section 5] are exactly the above with (n,k) = (2,1) and (3,2). We now give
explicit details for the first case.

Example 3.3. Let P be a prime-order bilinear group generator. Define Gp to
be a bilinear group generator that on input A does the following:

1. Let (p,G1,Ga, Gy, é) «— P(N\), and let G = G?, H = G3, G; = G}.

2. Choose generators g < Gy, h < Gy, and let y = e(g, h).

3. Choose random aq, by, c1,d,as,ba, co,do & F,, such that a;di — bici =
a2d2 - bQCQ =1.

4. Let Gy be the subgroup of G generated by (g%, g), let H; be the subgroup
of H generated by (h%2, h®2?), and let G} be the subgroup of G; generated by

{,Y(a1a2,a1b2,bla27b1b2)
5. Define e: G x H — G} by

e((91,92), (h1, h2)) := (é(g1, h1), é(g1, ha), é(g2, h1), é(ga, h2)).
6. Let A= (7 rer bubiy B = (7 h2e2 02> ang define

ailci a1d1 asc2 a2d2

aicz,aidz,bica,bids c1az2,d1b2,c1a2,d1b2
Y )4 3.

_blcl ajcy —bldl aldl)
)

m1((g1,92)) = (91, 92)" = (g7 """ g5**, g7 "M g5
mo((h1,ha)) i= (ha,ha)? = (hy "2 hg2e2, hy P2 pg)

T (71572, 73574)) i= (71772,W3774)A®B
7. Output the tuple (G, Gy, H, Hy, Gy, G}, e,m1, T2, T).

Tt is easy (though tedious) to check that Gp is a projecting bilinear group gener-
ator. We note that the groups output by Gp can be described simply by giving
G1, G, Gy and the pairs (g, g**), (h?2, hb?). In particular, the group G} is gen-
erated by elements of the form e(g, h;) and e(g1,h) withg € G, g1 € G1,h € H,
and h; € H;. This is important since in applications the maps my, mo, my will be
“trapdoor” information used as the system’s secret key.

Proposition 3.4. If P satisfies the DDH assumption in G1 and Gg, then Gp
satisfies the subgroup decision assumption.

Proof. Since g is uniform in G; and aq, b1, ¢; are uniformly random in F,, im-
posing the condition a1d; — bic; = 1 does not introduce any deviations from
uniformity in the generation of G (and similar for G3). We can thus apply The-
orem 2H with n =2, k = 1. O
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Cancelling Pairings. The traitor-tracing scheme of Boneh, Sahai, and Waters
[4], the predicate encryption scheme of Katz, Sahai, and Waters [16], and many
other schemes based on bilinear groups of composite order use in an essential
manner the fact that if two group elements g, h have relatively prime orders,
then e(g,h) = 1. This property implies, for example, that we can use the two
subgroups generated by g and h to encode different types of information, and the
two components will remain distinct after the pairing operation. The following
definition incorporates this concept into our framework.

Definition 3.5. Let G be a bilinear group generator (Definition ). We say
that G is r-cancelling if it also outputs groups Ga,...,G, C G and Hs, ..., H, C
H, such that

1. GGy x - xGrand H= Hy X ---x H,
2. e(gi, hj) = 1 whenever g; € G;, h; € H;, and @ # j.

Example 3.6. The bilinear group generator Gggn of Example2.3]is 2-cancelling:
we set G2 = Hp to be the order-p, subgroup of E(F,). An analogous r-cancelling
generator can be built by making the group order N a product of r distinct primes.

Given a prime-order bilinear group generator P, we now show how to modify
the bilinear group generator Gi* constructed in Theorem[ZH]so it is n-cancelling.
We define the pairing e : G x H — Gy := Gy to be

6((91, s 7gn)’ (h’17 L) hn)) = H?:l é(gi7 hl)? (31)

so we have e(g%, h¥) = e(g, h)*¥, where - indicates the vector dot product; this
pairing is necessarily nondegenerate.

If G is m-cancelling, then the subgroups G;, H; are all cyclic of order p. Thus
we need to choose generators g% of G; and h¥ of H; such that &; - y; = 0if
and only if 4 = j. This is straightforward: we first choose any set of n linearly
independent Z;; then the equation ; - ¢; = 0 for all ¢ # j gives a linear system
n variables of rank n — 1, so there is a one-dimensional solution space in Fy. If
we choose ¥; in this space then with high probability we have Z; - §; # 0; if this
is not the case then we can start again with a different set of #;. We illustrate
with concrete examples for n = 2 and 3. We use the notation (X) to indicate
the cyclic group generated by X.

Example 3.7. Let P be a prime-order bilinear group generator. Define G3¢ to
be a bilinear group generator that on input A does the following:

. Let (p,G1,G2,Gy, é) <= P(N), and let G = G3, H = G3, G; = Gy.
. Choose generators g1, g2, g3 & G, h1, ho, hg & Go.

—_

—zv—rw—yut+yw+zu+zv#£0,

2
R .
3. Choose random z,¥, 2, u, v, w < F,, with {
Tv—rwW—Yyut+yw—+zu—2zv#£0.
4

. Define the subgroups
Gl - <(glvgfvg?)>7 GQ - <(92793795)>a GS - <(937g§795’:})>7
Hy = ((R1"7",hY7Y,h{77)), Ha = (3" ™", hy ™", h3™")),
Hs = <(th7m}7 h;’jiua hgiy»
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5. Define e : G x H — Gy by B1) (with n = 3).
6. Output the tuple (G, G1, G2, Gs, H, Hy, Ho, Hs, Gy, €).

It is straightforward to show that Gs¢ is a 3-cancelling bilinear group generator.
The inequalities in Step ([B]) guarantee non-degeneracy of the pairing e. Note
that choosing the elements g1, g2, g3 independently uniform allows us to scale
the vectors 1 = (1, z,u), T2 = (1,y,v), 3 = (1, z,w) so their first components
are 1 without losing uniformity.

Example 3.8. We define a 2-cancelling bilinear group generator Go¢ by restrict-
ing the construction in Example [3.7] to the first two components. Explicitly, we
have G = G?, H = G3, G; = G; and we set u =0, v =0, w = 1 to obtain

G1=((91,97)), G2={((92,93)), H1 = ((hy” 1)), Ha=((hy", h2)).
We define e : G x H — G by (31) and output (G, Gy, G, H, Hy, Hy, Gy, €).

Example 3.9. If we have a symmetric pairing (i.e. G; = Gg), then for any
n > k > 1 we can obtain an (n — k + 1)-cancelling bilinear group generator
Gr(n,k) by doing the following:

1. Let (p,G,Gy,é) < P(N), and let G = H = G", Gy = G;.

2. Choose T, ..., T, — [F}, such that {7;} is linearly independent and for all
i>kwehave ¥; - T =0if i # j, and & - &; #0if i = j.

3. Choose a generator g « G, and let v; = g% € G.

4. Let G1 = {71, -y7), and G; = (yiqp—1) for 2<i<n-—k+1.

5. Define e by B3Il and output (G, G4, ...,Gn—k+1,Gt,€).

Proposition 3.10. If P satisfies the DDH assumption in Gy and Go, then Gso
and Goo satisfy the subgroup decision assumption. If G1 = Go and P satis-
fies the k-linear assumption in Gy, then Gr(n, k) satisfies the subgroup decision
assumption.

Proof. Recall that an SDP adversary is given only G,G1, H, Hy, and not a de-
scription of any G; or H; for ¢ > 2. Since in each case the generators of G
and H; are independent and uniform, the outputs of Gs¢, Gac, and Gr,(n, k) are
distributed identically to the output of G} (for the appropriate values of n, k) so
we may apply Theorem O

4 Performance Analysis

Our primary motivation for converting composite-order group protocols to
prime-order groups is to improve efficiency in implementations. This improve-
ment results from the fact that we can use smaller prime-order groups than
composite-order groups at equivalent security levels. We now examine this im-
provement concretely. Specifically, we compare the sizes of the groups G, H,
and G produced by the bilinear group generator Gpeny (Example 23]) with the
four examples from Section [3 of bilinear group generators built from prime-order
generators.
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For the generators Gp (Example B3), Gs¢ (Example B1), and Gae (Example
BR) we take the prime-order bilinear group generator P to be an algorithm that
produces a “pairing-friendly” ordinary elliptic curve E over a finite field ;. On
such curves there are two “distinguished” subgroups G; and Gs of order p in
which the DDH problem is presumed to be infeasible, and such that the Tate
pairing é : G; x Gy — G; C F;‘k is nondegenerate. Here k is the embedding
degree, defined to be the smallest integer such that p divides the order of F;k.

The ordinary elliptic curves E that give the best performance while providing
discrete log security comparable to three commonly proposed levels of AES se-
curity are as follows. The group sizes follow the 2007 NIST recommendations [IJ.
Further details can be found in the full version of this paper [10, Appendix AJ;
descriptions of the elliptic curves are in [9].

80-bit security: A 170-bit MNT curve with embedding degree k = 6.
128-bit security: A 256-bit Barreto-Naehrig curve with k = 12.
256-bit security: A 640-bit Brezing-Weng curve with k = 24.

The advantage of the generator Gy, is that we can use a prime-order group with
a symmetric pairing, which only exists on supersingular elliptic curves. Thus in
this case we take P to produce a supersingular curve over Fsm with embedding
degree k = 6. The fields that provide the best “match” for group orders at our
three security levels are Fzi11, F3323, and Fg1e15. Since 6 is the maximum possible
embedding degree for supersingular curves, at high security levels the group G;
will be much larger than the group G; on an equivalent ordinary curve.

Table[l compares the sizes of the groups produced by all of our bilinear group
generators at each of the three security levels. In all cases the groups G and H
built using products of prime-order groups are much smaller than the groups
G and H built using composite-order groups. The group G for the projecting
generator Gp is twice as large as the composite-order G, due to the fact that
elements of G are four elements of F ;». However, the groups G for the cancelling
generators Goco, G3co, Gr, are half as large as the composite-order Gy.

The last column indicates the number of elliptic curve pairings required to
compute the pairing e for the specified generator. While the prime-order gener-
ators require more pairings than the composite-order generator Gggn, the sizes
of the elliptic curve groups in this case are so much smaller that the pairings will

Table 1. Estimated bit sizes of group elements for bilinear group generators at three
different security levels

80-bit AES 128-bit AES 256-bit AES #Pai-
Bilinear group generator G H G G H G, G H G: rings
Gren (Example 23)) 1024 1024 2048 3072 3072 6144 15360 15360 30720 1

Gp (Example B.3) 340 680 4080 512 1024 12288 1280 5120 61440
Gsc (Example B71) 510 1020 1020 768 1536 3072 1920 7680 15360
Goc (Example B.3) 340 680 1020 512 1024 3072 1280 5120 15360

Gr(3,2) (Example[30) 528 528 1056 1536 1536 3072 7680 7680 15360
Gr(4,2) (Example[30) 704 704 1056 2048 2048 3072 10240 10240 15360

=W N W ok
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be far more than four times faster. For example, the Tate pairing on a 1024-bit
supersingular curve runs ~ 50 times slower than the Tate pairing on a 170-bit
MNT curve [I§], so a pairing for Gp at the 80-bit security level will be roughly
12 times faster than a pairing for Ggan.

5 Application: The BGN Cryptosystem

Our first application of the framework developed above is to the public-key
encryption scheme of Boneh, Goh, and Nissim [3]. This scheme has the feature
that given two ciphertexts, anyone can create a new ciphertext that encrypts
either the sum or the product of the corresponding plaintexts. The product
operation can only be carried out once; the system is thus “partially doubly
homomorphic.”

Step 1 of the conversion process is to write the scheme in the abstract frame-
work and transfer it to asymmetric groups. In the original BGN protocol any
ciphertext may be paired with any other ciphertext, so in the asymmetric set-
ting each computation in G must be duplicated in H. We must use a projecting
pairing, as the decryption algorithm requires projection away from a certain
subgroup.

KeyGen(\): Let G be a projecting bilinear group generator (Definition B]). Com-
pute (G,G1,H, Hy,Gy, G}, e, 1, m, ) — G(N\). Choose g & G, h <~ H, and
output the public key PK = (G,G1,H, H1,Gy,e, g,h) and the secret key
SK = (m, 7o, m).

Encrypt(PK, m): Choose g1 & Gy and by & Hy. (Recall that the output of G
allows random sampling from G and H;.) Output the ciphertext (Ca,Cpg) =
(gm'gl, hm'hl) ceGx H.

Multiply(PK,Ca,Cg): This algorithm takes as input two ciphertexts C4 € G
and Cp € H. Choose g1 < G1 and hy < Hy, and output C' = e(Ca,Cp) -
e(g,h1) - e(g1, h) € Gy

Add(PK,C,C"): This algorithm takes as input two ciphertexts C,C’ in one of
G, H, or G;. Choose g1 E G, & Hy, and do the following:
1. f C,C" € G, output C-C" - g1 € G.
2. If C,C" € H, output C-C’" - hy € H.
3. If C,C" € Gy, output C - C' - e(g,h1) - e(g1,h) € Gy.

Decrypt(SK,C): The input ciphertext C' is an element of G, H, or G;.
L. If C € G, output m « log,, (4 (m1(C)).
2. If C € H, output m « log,, ;) (m2(C)).
3. If C € Gy, output m «log,., (.(4.n))(T(C))-

It is clear that if C,C’ are encryptions of m,m’ respectively, then the Add algo-
rithm gives a correctly distributed encryption of m +m’. Furthermore, it follows
from the bilinear property of the pairing that if Cy € G, Cp € H are the left
and right halves of encryptions of m, m’ respectively, then the Multiply algorithm
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gives a correctly distributed encryption of m - m/. Since there is no pairing on
Gt we can only perform the multiplication once.

Correctness of decryption of ciphertexts in G and H follows from the fact
that G1, Hy are in the kernels of 71, mo, respectively. Correctness of decryption
of ciphertexts in G; follows from the “projecting” properties of G; for example,
we have m(e(g, h1)) = e(m1(g), m2(h1)) = e(m1(g),1) = 1.

Step 2 of the conversion process is to translate the security assumptions to
asymmetric bilinear groups. In this case, semantic security of ciphertexts in G
follows from the subgroup decision assumption on the left for G. Intuitively, if G
satisfies the subgroup decision assumption on the left, then an adversary cannot
distinguish the real system from a “fake” system in which g € G;. Semantic
security then follows from the fact that in the fake system the ciphertext ele-
ment C'4 will be a uniformly random element of G; and thus will contain no
information about the message m. The same argument holds for ciphertexts in
H, and semantic security of ciphertexts in G; follows from semantic security in
G and H. For further details see [3, Theorem 3.1].

Step 3 is to translate the assumption to prime-order groups. Since the security
proof uses no intrinsic properties of the groups G and H, it carries over to our
more general setting.

Theorem 5.1. Let P be a prime-order bilinear group generator, and let Gp be
the projecting bilinear group gemerator constructed from P in Example [T3. If
P satisfies the DDH assumption in G1 and Gg, then the BGN cryptosystem
instantiated with G = Gp is semantically secure.

When instantiated with either Gpany or Gp, decryption in the BGN system
requires taking discrete logarithms in a group of large prime order. Thus to
achieve efficient decryption the message space must be small (i.e., logarithmic
in the group size). It is an open problem to find a projecting bilinear group
generator G for which the subgroup decision assumption may hold and for which
discrete logarithms can be computed in a subset of 7 (G)) whose size is a constant
fraction of the full group order.

If we carry out the tensor product construction described in Section [3] for any
k and n > k + 1, we obtain an instantiation of the BGN cryptosystem whose
security depends on the k-Linear assumption. Since ciphertexts will consist of n
elements of G; or Gy or n? elements of G, these systems will be less efficient
than the system constructed using Gp, which has (n,k) = (2,1). We do note,
however, that if £ > 2 we can use a group with a symmetric pairing, in which
case the Encrypt algorithm needs only to output the ciphertext Cjy.

6 More Applications

We conclude by summarizing several further applications of our framework to
cryptosystems constructed using composite-order groups. Details can be found
in the full version of this paper [10].
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Traitor Tracing. Boneh, Sahai, and Waters [4] construct a traitor tracing
system that is fully collusion resistant and has short ciphertexts. After reducing
the construction of their system to construction of a primitive called private
linear broadcast encryption (or PLBE), Boneh et al. devise a PLBE scheme using
bilinear groups of composite order and show it secure under three assumptions
in bilinear groups: the subgroup decision assumption, the 3-party Diffie-Hellman
assumption, and the bilinear subgroup decision assumption.

To apply our general framework to the Boneh et al. PLBE scheme, we first
write the original system using asymmetric pairings on abstract groups, and then
convert the three assumptions to this more general context. We instantiate the
system using the 2-cancelling bilinear group generator Goc of Example B.8 and
obtain the following security theorem.

Theorem 6.1. Let P be a prime-order bilinear group generator, and let Goco be
the 2-cancelling bilinear group generator constructed from P in Example 38 If
P satisfies the DDH assumption in Gy and the 3-party DDH assumptions in Gy
and Gy (i.e., given g,9% g%, g¢, no efficient adversary can distinguish g**¢ from
a random group element), then the Boneh-Sahai-Waters PLBE system is secure
when instantiated with G = Goc.

Predicate Encryption. Katz, Sahai, and Waters [16] construct a predicate
encryption scheme using bilinear groups whose order is a product N of three dis-
tinct primes. The security of the system is based on two complex (yet constant-
size) assumptions in composite-order bilinear groups, which we call Assumptions
1 and 2; both can be seen as variants of the subgroup decision problem.

To apply our general framework to this scheme, we write the scheme using a
bilinear group generator with an asymmetric pairing and translate the security
assumptions into this more general context. We then instantiate the system in
two different ways, using the 3-cancelling bilinear group generators Gs¢ of Ex-
ample B and Gy, (4,2) of Example When using Gs¢, translating the asym-
metric versions of Assumptions 1 and 2 explicitly to this setting produces two
new (constant-size) assumptions in prime-order groups; we call these Assump-
tions 3 and 4. (We also show that these assumptions hold in the generic group
model.) When using Gr,(4,2) we can use simpler assumptions at the expense of
a less efficient system (cf. Table[Tl). We obtain the following security theorem for
Gsc; details for both cases appear in the full paper.

Theorem 6.2. Let P be a prime-order bilinear group generator, and let Gsco be
the 3-cancelling bilinear group generator constructed from P in Example[5] If P
satisfies Assumptions 8 and 4, then the Katz-Sahai- Waters predicate encryption
scheme is secure when instantiated with G = Goc.

Further Work. We expect that our framework can be used to create prime-
order group instantiations of other cryptosystems that use composite-order bilin-
ear groups. However, since our construction is not black box, the security proof
of each cryptosystem must be checked to ensure that it is still valid in our more
general framework. For example, the proof of the Lewko-Waters IBE system [17]
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uses in an essential way the fact that G has two subgroups with relatively prime
order; thus our prime-order construction does not apply in this case. Lewko and
Waters do give a version of their system in prime-order groups, with a different
security proof under new assumptions. It remains an open problem to find a
framework that incorporates both versions of the system.

Acknowledgments. The author thanks Dennis Hoftheinz, Eike Kiltz, and Brent
Waters for helpful discussions.
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Abstract. We present two fully secure functional encryption schemes: a
fully secure attribute-based encryption (ABE) scheme and a fully secure
(attribute-hiding) predicate encryption (PE) scheme for inner-product
predicates. In both cases, previous constructions were only proven to
be selectively secure. Both results use novel strategies to adapt the
dual system encryption methodology introduced by Waters. We con-
struct our ABE scheme in composite order bilinear groups, and prove
its security from three static assumptions. Our ABE scheme supports
arbitrary monotone access formulas. Our predicate encryption scheme is
constructed via a new approach on bilinear pairings using the notion of
dual pairing vector spaces proposed by Okamoto and Takashima.

1 Introduction

In a traditional public key encryption system, data is encrypted to be read by
a particular individual who has already established a public key. Functional
encryption is a new way of viewing encryption which opens up a much larger

* Supported by a National Defense Science and Engineering Graduate Fellowship.

** Research supported in part from NSF grants 0830803, 0627781, 0716389, 0456717,

and 0205594, an equipment grant from Intel, and an Okawa Foundation Research
Grant.

*** Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, Air Force Of-
fice of Scientific Research (AFO SR) under the MURI award for “Collaborative
policies and assured information sharing” (Project PRESIDIO), Department of
Homeland Security Grant 2006-CS-001-000001-02 (subaward 641), and the Alfred
P. Sloan Foundation.

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 62-81] 2010.
© International Association for Cryptologic Research 2010



Fully Secure Functional Encryption 63

world of possibilities for sharing encrypted data. In a functional encryption sys-
tem, there is a functionality f(z,y) which determines what a user with secret
key y can learn from a ciphertext encrypted under x (we can think of both x
and y as binary strings, for example). This allows an encryptor to specify a
policy describing what users can learn from the ciphertext, without needing to
know the identities of these users or requiring them to have already set up public
keys. The enhanced functionality and flexibility provided by such systems is very
appealing for many practical applications.

Several previous works have pursued directions falling into this general frame-
work, e.g. [3425T75I32124I3927T2]. However, the same expressive power of
these systems that makes them appealing also makes proving their security es-
pecially challenging. For this reason, all of the prior systems were only proven
selectively secure, meaning that security was proven in a weaker model where
part of the challenge ciphertext description must be revealed before the attacker
receives the public parameters.

In this paper, we present fully secure systems for two cases of functional en-
cryption, namely attribute-based encryption (ABE) and predicate encryption
(PE) for inner products. Sahai and Waters [34] proposed Attribute-Based En-
cryption as a new concept of encryption algorithms that allow the encryptor to
set a policy describing who should be able to read the data. In an attribute-based
encryption system, private keys distributed by an authority are associated with
sets of attributes and ciphertexts are associated with formulas over attributes.
A user should be able to decrypt a ciphertext if and only if their private key
attributes satisfy the formula. Predicate encryption for inner products was first
presented by Katz, Sahai, and Waters [27]. In a predicate encryption scheme,
secret keys are associated with predicates, and ciphertexts are associated with
attributes. A user should be able to decrypt a ciphertext if and only if their
private key predicate evaluates to 1 when applied to the ciphertext attribute.

Our Two Results. The ABE and PE schemes described in this paper have essen-
tial commonalities: both are functional encryption schemes that employ the dual
system methodology of Waters [40] to prove full security. This is a powerful tool
for achieving full security of systems with advanced functionalities, but realizing
the dual system methodology in each new context presents unique challenges.
In particular, the technical challenges for ABE and PE are distinct, and the
two results now combined into this paper were obtained by separate research
groups working independently. The ABE result was obtained by Lewko, Sahai,
and Waters, while the PE result was obtained by Okamoto and Takashima.

1.1 Attribute-Based Encryption

We are particularly interested in attribute-based encryption as a special case
of functional encryption because it provides a functionality that can be very
useful in practice. For example, a police force could use an ABE system to
encrypt documents under policies like “Internal Affairs OR (Undercover AND
Central)” and give out secret keys to undercover officers in the central division
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corresponding to the attributes “Undercover” and “Central”. Given the many
potential uses of ABE systems, constructing efficient systems with strong security
guarantees is an important problem.

Previous Constructions and Selective Security. All previous constructions of ABE
systems [3425]T8IBIB22439] have only been proven to be selectively secure. This
is a limited model of security where the attacker is required to announce the tar-
get he intends to attack before seeing the public parameters of the system. This
is an unnatural and undesirable restriction on the attacker, but it unfortunately
appears to be necessary for the proof techniques used in prior works.

To see why this is the case, it is instructive to look into the way that previous
security proofs have worked. In these security proofs, the simulator uses the
attacker’s announced target to embed the challenge in the public parameters in
such a way that the simulator can produce any keys the attacker can request but
can also leverage the attacker’s output to break the underlying challenge. This is
a partitioning strategy reminiscent of the strategies first used to prove security
for IBE systems. The formation of the public parameters partitions the keys into
two classes: those that the simulator can make, and those that are useful to the
simulator in solving its challenge.

While this partitioning strategy was successfully employed by Boneh and
Boyen [7], and Waters [38] to prove full security for an IBE system, any parti-
tioning approach seems doomed to failure when one tries to achieve full security
for ABE systems. Without selectivity, the simulator cannot anticipate which
keys the attacker may ask for, so the attacker must make some type of a guess
about what the partition should be. One natural direction is to partition the
identity space in some random way and hope that the attacker’s queries respect
the partition (which was the main idea behind the works in the IBE setting). For
ABE systems, however, private keys and ciphertexts have much more structure;
different keys can be related (they may share attributes), and this severely re-
stricts allowable partitions. Thus, the power and expressiveness of ABE systems
work directly against us when attempting to create partitioning proofs.

Our Approach. We are able to obtain full security by adapting the dual system
encryption technique of [40I28] to the ABE case. Waters [40] introduced dual
system encryption to overcome the limitations of partitioning. In a dual encryp-
tion system, keys and ciphertexts can take on one of two forms: normal and
semi-functional. A normal key can decrypt both normal and semi-functional ci-
phertexts, while a semi-functional key can only decrypt normal ciphertexts. The
semi-functional keys and ciphertexts are not used in the real system, only in
the proof of security. The proof employs a hybrid argument over a sequence of
security games. The first is the real security game, with normal keys and cipher-
text. In the second game, the ciphertext is semi-functional and the keys remain
normal. In subsequent games, the keys requested by the attacker are changed to
be semi-functional one by one. By the final game, none of the keys given out are
actually useful for decrypting a semi-functional ciphertext, and proving security
becomes relatively easy.
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There is one important subtlety inherent in the dual system technique. In the
step where the k' key becomes semi-functional, the simulator must be prepared
to make any semi-functional challenge ciphertext and any key as the k' key.
At first, this appears to be a paradox, since it seems the simulator can just
make a key that should decrypt the challenge ciphertext and decide for itself
whether the key is semi-functional by attempting to decrypt the semi-functional
challenge ciphertext. Waters addresses this issue by introducing tags: if a key and
ciphertext in his IBE system have the same tag, decryption will fail regardless of
semi-functionality. The simulator is constructed in such a way that if it attempts
to check if key k is semi-functional by decrypting a semi-functional ciphertext,
it will be thwarted because they will have equal tags. (This relationship between
the tags will be hidden to an attacker who cannot request a key able to decrypt
the challenge ciphertext.)

Lewko and Waters [28] provide a new realization of dual system encryption where
tags are replaced by nominally semi-functional keys. Nominally semi-functional
keys are structured like semi-functional keys except that they do also successfully
decrypt semi-functional ciphertexts (the semi-functional contribution cancels out).
When the k" key turns semi-functional in the hybrid, the simulator is constructed
so that it can only make a nominally semi-functional key k. It is then argued that
this looks like a regular semi-functional key to the attacker.

Though they achieve fully secure HIBE with constant size ciphertext, it is not
clear how to extend the techniques of [40I28] to obtain fully secure ABE systems.
Both rely on the fact that the identities attached to keys and ciphertexts are
the same. Waters relies on this to align tags, while Lewko and Waters use this
symmetry in designing their system so that a nominally semi-functional key is
identically distributed to a regular semi-functional key in the view of an attacker
who cannot decrypt. This symmetry does not hold in an ABE system, where
keys and ciphertexts are each associated with different objects: attributes and
formulas. The additional flexibility and expressiveness of ABE systems leads to a
much more complicated structure of relationships between keys and ciphertexts,
which makes the potential paradox of the dual system encryption technique more
challenging to address for ABE.

We overcome this by giving a new realization of nominally semi-functional
keys in the ABE setting. We do this by designing the semi-functional components
of our keys and ciphertexts to mirror the functionality of the ABE scheme.
Intuitively, we want to argue that an attacker who cannot decrypt the message
also cannot determine if the final contribution of the semi-functional components
will be non-zero. We make this argument information-theoretically by showing
that our nominally semi-functional keys are distributed identically to regular
semi-functional keys from the attacker’s perspective. This information-theoretic
argument is more intricate than the HIBE analog executed in [28], due to the
more complicated structure of ABE systems.

The ideas above allow us to construct an ABE system that is fully secure. We
build our construction in two phases. First, we construct an ABE system with
the restriction that each attribute can only be used once in an access formula.
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We call this a one-use ABE system. Then, we provide a generic transformation
from a one-use system to a system which is fully secure when attributes are
used multiple times (up to a constant number of uses fixed at setup). While
this transformation does incur some cost in key size, it does not increase the
size of the ciphertext; we stress that ours is the first feasibility result for fully
secure ABE. Our construction supports arbitrary monotone access formulas. We
realize our ABE construction using bilinear groups of composite order and prove
security under three assumptions used by Lewko and Waters [2§].

1.2 Predicate Encryption for Inner Products

ABE systems have desirable functionality, but have one limitation in that the
structure of the ciphertext is revealed to users who cannot reveal. For example,
in a CP-ABE system, a user who cannot decrypt can still learn the formula
associated with the ciphertext. For applications where the access policy must
also be kept secret, this is unacceptable. In our second result we address a class of
systems, called predicate encryption systems, that overcome this limitation. Our
second result gives predicate encryption of inner products between the ciphertext
and key vectors.

Predicate encryption (PE) for inner products was presented by Katz, Sahai
and Waters [27] as a generalized (fine-grained) notion of encryption that cov-
ers identity-based encryption (IBE) [6I7J9IT2TI26], hidden-vector encryption
(HVE) [12] and attribute-based encryption (ABE) [BI25I32J3334]. Informally,
secret keys in a PE scheme correspond to predicates in some class F, and a
sender associates a ciphertext with an attribute in set X; a ciphertext associated
with attribute I € X' can be decrypted using a secret key sky corresponding to
predicate f € F if and only if f(I) = 1.

The special case of inner product predicates is obtained by having each at-
tribute correspond to a vector 7 and each predicate fw correspond to a vec-
tor ¥, where fz(Z) = 1iff 7 - ¥ = 0. (Here, @ - ¥ denotes the standard
inner-product). We note that these represent a wide class of predicates includ-
ing equality tests (for IBE and HVE), disjunctions or conjunctions of equality
tests, and, more generally, arbitrary CNF or DNF formulas (for ABE). However,
we note that inner product predicates are less expressive than the LSSS access
structures of ABE. To use inner product predicates for ABE, formulas must be
written in CNF or DNF form, which can cause a superpolynomial blowup in size
for arbitrary formulas.

Katz, Sahai, and Waters also introduced attribute-hiding, a security notion
for PE that is stronger than the basic security requirement, payload-hiding.
Roughly speaking, attribute-hiding requires that a ciphertext conceal the asso-
ciated attribute as well as the plaintext, while payload-hiding only requires that
a ciphertext conceal the plaintext. If attributes are identities, i.e., PE is IBE,
attribute-hiding PE implies anonymous IBE. This notion of attribute-hiding
addresses the limitation of ABE systems. Katz, Sahai, and Waters provided a
scheme which is attribute-hiding PE for inner-product predicates, but it is only
proven to be selectively secure and no delegation functionality is provided.
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Our Results

— This paper proposes the first adaptively secure PE scheme for inner-product
predicates in the standard model. The scheme is proven to be adaptively
attribute-hiding (against CPA) under an assumption that is non-interactive.
The number of terms of the assumption depends on a system parameter
n, which is the vector length. (However, the number of terms does not de-
pend on the number of adversarial private key queries.) We prove that the
assumption is true in the generic model of bilinear pairing groups.

The efficiency of the proposed PE scheme is comparable to that of the
existing selectively-secure PE schemes [27J31].

— This paper also establishes a (hierarchical) delegation functionality on the
proposed adaptively secure PE scheme. That is, we propose an adaptively
secure (attribute-hiding) hierarchical PE (HPE) scheme for inner-product
predicates (with polynomially many levels) in the standard model under the
n-eDDH assumption.

The proposed HPE scheme implies the first anonymous hierarchical IBE
(HIBE) with polynomially many levels in the standard model as a special
case (when the associated inner-product predicate is specialized as the equal-
ity test for HIBE).

— It is straightforward to convert the (CPA-secure) basic (H)PE scheme to a
CCA-secure (H)PE scheme by employing an existing general conversion such
as that by Canetti, Halevi and Katz [16] or that by Boneh and Katz [11] (us-
ing an additional level with two-dimensions for the basic (H)PE scheme, and
a strongly unforgeable one-time signature scheme or message authentication
code and encapsulation). That is, we can present a fully secure (adaptively
attribute-hiding against CCA) (H)PE scheme for inner-product predicates
in the standard model under the n-eDDH assumption as well as a strongly
unforgeable one-time signature scheme or message authentication code and
encapsulation.

— To achieve the result, this paper elaborately combines a new methodology,
the dual system encryption, proposed by Waters [40] and a new approach
based on a notion of higher dimensional vector spaces, dual pairing vector
spaces (DPVS), proposed by Okamoto and Takashima [30/31]. The notion
of DPVS is constructed on bilinear pairing groups, and they presented a
selectively secure (H)PE scheme on DPVS [31]. We will explain this approach
and our key technique in Section [311

Note that the n-eDDH assumption in this paper is defined over the basic
primitive, bilinear pairing groups (not over the higher level concept, DPVS),
although the proposed PE and HPE schemes are constructed over DPVS,
and the assumptions in [31] are defined over DPVS.

— Since HPE is a generalized (fine-grained) version of anonymous HIBE
(AHIBE) (or includes AHIBE as a special case), HPE covers (a generalized
version of) applications described in [I3], fully private communication and
search on encrypted data. For example, we can use a two-level HPE scheme
where the first level corresponds to the predicate/attribute of (single-layer)
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PE and the second level corresponds to those of “attribute search by a pred-
icate” (generalized “key-word search”).

1.3 Related Work

Identity Based Encryption (IBE) was proposed by Shamir [35]. In an identity
based encryption system, an authority distributes keys to users with associ-
ated identities, and messages are encrypted directly to identities. The first IBE
schemes were constructed by Boneh and Franklin [9] and Cocks [19]. These
schemes were proven secure in the random oracle model. Then selectively secure
schemes in the standard model were constructed [I5l6]. Boneh and Boyen [7]
and Waters [38] constructed fully secure IBE schemes in the standard model.
Gentry [21] gave an IBE system and security proof that moved beyond the con-
fines of the partitioning strategy, but at the cost of a large and complicated
complexity assumption.

Hierarchical Identity Based Encryption (HIBE) [23126] expands the function-
ality of identity based encryption to include a hierarchical structure on identities,
where identities can delegate secret keys to their subordinate identities. Boneh
and Boyen [6] constructed a selectively secure HIBE scheme. Boneh, Boyen, and
Goh [§] constructed a selectively secure HIBE scheme with constant size cipher-
texts. Gentry and Halevi [22] extended Gentry’s techniques to get a fully secure
HIBE system, but under “q-type” assumptions. Waters [40] leveraged the dual
system encryption methodology to obtain fully secure IBE and HIBE systems
from simple assumptions. Lewko and Waters [28] extended the dual encryption
technique to obtain a fully secure HIBE system with constant size ciphertexts.

Attribute-based encryption was introduced by Sahai and Waters [34]. Goyal,
Pandey, Sahai, and Waters [25] formulated two complimentary forms of ABE:
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and Key-Policy
Attribute-Based Encryption (KP-ABE). In a CP-ABE system, keys are asso-
ciated with sets of attributes and ciphertexts are associated with access policies.
In a KP-ABE system, the situation is reversed: keys are associated with access
policies and ciphertexts are associated with sets of attributes. Selectively secure
CP-ABE and KP-ABE systems were constructed in [34J25I18/5132124139].

Goyal, Jain, Pandey, and Sahai [24] provide a general way to transform a
KP-ABE system into a CP-ABE system. Chase [I7] considered the problem of
ABE with multiple authorities.

Other works have discussed similar problems without addressing collusion re-
sistance [TI2I3[T4129137]. In these systems, the data encryptor specifies an access
policy such that a set of users can decrypt the data only if the union of their
credentials satisfies the access policy.

Predicate encryption was introduced by Katz, Sahai, and Waters [27], who
also provided a scheme which is attribute-hiding PE for inner-product predicates;
only the selective security (not adaptive security) is proven and no delegation
functionality is provided.
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Shi and Waters [36] presented a delegation mechanism for a class of PE, but
the admissible predicates of the system, which is a class of equality tests for
HVE, are more limited than inner-product predicates in [27]. Moreover, they
proved only selective security.

Okamoto and Takashima [31] proposed a (hierarchical) delegation mechanism
for a PE scheme, i.e., a hierarchical PE (HPE) scheme, for inner-product predi-
cates, but only selective security is proven.

Dual pairing vector spaces were introduced by Okamoto and Takashima [30I31],
who presented a selectively secure (H)PE scheme based on DPVS.

1.4 Organization

In Section 2] we present our result for ABE. In more detail, Subsection 2] pro-
vides the necessary background on linear secret-sharing schemes (LSSS), CP-
ABE, and composite order bilinear groups, and states our complexity assump-
tions. Subsection 22 we describe our transformation from a one-use CP-ABE
system to a system that is secure when attributes are used multiple times in a
formula. In Subsection 2.3} we present our CP-ABE system and prove its secu-
rity. In Subsection [Z4] we discuss extensions of our ABE result.

In Section Bl we present our result for PE for inner products. Subsection B3]
describes the main ideas of the approach and establishes the necessary notations.
In Subsection 3.2l we formally define DPVS. In Subsection [3.3] we state the com-
plexity assumption. In Subsection [3.4] we formally define predicate encryption
and inner product predicate encryption. In Subsection 3.5 we present our in-
ner product predicate encryption scheme and its security. In Subsection [3.6], we
present our HPE scheme.

2 Fully Secure Attribute-Based Encryption

2.1 Background

Linear Secret-Sharing Schemes. The formal definitions of access structures and
linear secret-sharing schemes (LSSS) can be found in [4] and the full version of
this paper. Informally, a LSSS is a share-generating matrix A whose rows are
labeled by attributes. When we consider the column vector v = (s,7r2,...,75),
where s € Z, is the secret to be shared and ry,...,r, € Z, are randomly
chosen, then Av is the vector of £ shares of the secret s. A user’s set of attributes
S satisfies the LSSS access matrix if the rows labeled by the attributes in S have
the linear reconstruction property, which means there exist constants {w;} such
that, for any valid shares {\;} of a secret s according to the LSSS matrix, we
have: ). w;\; = s. Essentially, a user will be able to decrypt a ciphertext with
access matrix A if and only if the rows of A labeled by the user’s attributes
include the vector (1,0,...,0) in their span.

Now, we formally define CP-ABE and give the full security definition. We also
give the necessary background on composite order bilinear groups and state our
complexity assumptions.
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CP-ABE. A ciphertext-policy attribute-based encryption system consists of
four algorithms: Setup, Encrypt, KeyGen, and Decrypt.

Setup(\,U) — (PK, MSK). The setup algorithm takes in the security parame-
ter A and the attribute universe description U. It outputs the public parameters
PK and a master secret key MSK.

Encrypt(PK,M,A) — CT. The encryption algorithm takes in the public pa-
rameters PK, the message M, and an access structure A over the universe of
attributes. It will output a ciphertext CT such that only users whose private
keys satisfy the access structure A should be able to extract M. We assume that
A is implicitly included in CT.

KeyGen(MSK, PK,S) — SK. The key generation algorithm takes in the mas-
ter secret key M SK, the public parameters PK, and a set of attributes S. It
outputs a private key SK.

Decrypt(PK,CT,SK) — M. The decryption algorithm takes in the public pa-
rameters PK, a ciphertext CT, and a private key SK. If the set of attributes
of the private key satisfies the access structure of the ciphertext, it outputs the
message M.

Security Model for CP-ABE. We now give the full security definition for
CP-ABE systems. This is described by a security game between a challenger and
an attacker. The game proceeds as follows:

Setup. The challenger runs the Setup algorithm and gives the public parameters
PK to the attacker.

Phase 1. The attacker queries the challenger for private keys corresponding to
sets of attributes S1,...,.Sg,.

Challenge. The attacker declares two equal length messages My and M; and
an access structure A*. This access structure cannot be satisfied by any of the
queried attribute sets Si, ..., Sg . The challenger flips a random coin 3 € {0,1},
and encrypts M; under A*| producing C'T*. It gives CT™* to the attacker.

Phase 2. The attacker queries the challenger for private keys corresponding to
sets of attributes Sg,41,...,S5¢, with the added restriction that none of these
satisfy A*.

Guess. The attacker outputs a guess 3’ for 3.

The advantage of an attacker is this game is defined to be Pr[3 = 3'] — 5. We
note that the model can easily be extended to handle chosen-ciphertext attacks
by allowing for decryption queries in Phase 1 and Phase 2.

Definition 1. A ciphertext-policy attribute-based encryption system is fully se-
cure if all polynomial time attackers have at most a negligible advantage in this
security game.
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Selective security is defined by adding an initialization phase where the attacker
must declare A* before seeing PK. Unlike previous works [BI25139], we do not
impose this restriction on the attacker.

Composite Order Bilinear Groups. We will construct our systems in com-
posite order bilinear groups. Composite order bilinear groups were first intro-
duced in [I0]. We define a group generator G, an algorithm which takes a security
parameter A\ as input and outputs a description of a bilinear group G. For our
purposes, we will have G output (p1, p2, p3, G, Gr, €) where p1, p2, ps are distinct
primes, G and G are cyclic groups of order N = pipaps, and e : G2 — G is a
non-degenerate bilinear map.

We now state the complexity assumptions that we will rely on to prove security
of our systems. These same assumptions were used by Lewko and Waters to
obtain full security of their IBE and HIBE constructions in composite order
groups [28]. We note that all three assumptions are static (constant size) and
the first assumption is just the subgroup decision problem in the case where the
group order is a product of three primes. The assumptions were proven to be
generically secure in [28].

In the assumptions below, we let Gp,p,, €.g., denote the subgroup of order
pip2 in G.

Assumption 1 (Subgroup decision problem for 3 primes). Given a group gener-
ator G, we define the following distribution:

G = (N = p1p2p3, G, Gr,e) < G,
9 Gy, X3 £ Gy,
D = (G,g,Xs),
Ty & Gprpyy To - Gy,
We define the advantage of an algorithm A in breaking Assumption 1 to be:
Advlg a(X) := |PrlA(D,T1) = 1] — PrlA(D,T») = 1].

We note that T} can be written (uniquely) as the product of an element of Gy,
and an element of G,. We refer to these elements as the “G,, part of 77”7 and
the “G,, part of T1” respectively. We will use this terminology in our proofs.

Definition 2. We say that G satisfies Assumption 1 if Advlg a(X) is a negligible
function of A for any polynomial time algorithm A.

Assumption 2. Given a group generator G, we define the following distribution:
R
G= (N = P1pP2p3, G7 GTa 6) — g7

gle & Gp17 X27Y2 & sza X37YE’) & Gp37
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D = (G, g, X1X5, X3,Y5Y3),
nEanda,,,.

We define the advantage of an algorithm A in breaking Assumption 2 to be:
Adv2g a(A) == ‘PT[A(D7T1) =1]— PrlA(D,Ts) = 1]]

We use G, p, to denote the subgroup of order pip3 in G. We note that 77 can
be (uniquely) written as the product of an element of G,,, an element of G,,,
and an element of G,,. We refer to these as the “G,, part of 71", the “G), part
of T1”, and the “G), part of T1”, respectively. T5 can similarly be written as the
product of an element of G, and an element of G,,.

Definition 3. We say that G satisfies Assumption 2 if Adv2g, 4(X) is a negligible
function of A for any polynomial time algorithm A.

Assumption 3. Given a group generator G, we define the following distribution:
R R
G = (N = p1p2p3, G,Gr,e) «— G, a,s «— Ly,

R R R
g(_GP17 X27Y27Z2(—Gp2a X3(—Gp3a
D= (GvgvgaX%XSagSYanZQ)v

s R
Tl = e(gag) ) T2 — GT'
We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3g 4(N) == |PrlA(D, Ty) = 1] — PrlA(D,T») = 1]|.

Definition 4. We say that G satisfies Assumption 3 if Adv3g, 4(X) is a negligible
function of \ for any polynomial time algorithm A.

2.2 Transformation from One-Use CP-ABE

Here we show how to obtain a fully secure CP-ABE system where attributes are
used multiple times from a fully secure CP-ABE system where attributes are
used only once. We do this with a simple encoding technique.

Suppose we have a CP-ABE system with a universe of n attributes with LSSS
access structures that is secure when the function p is injective for each access
structure associated to a ciphertext (i.e. attributes are only used once in the
row labeling the of the share-generating matrix). Suppose we would like to have
a system with n attributes where attributes can be used < k times in the row
labeling of a share-generating matrix. We can realize this by essentially taking
k copies of each attribute in the system: instead of a single attribute B, we will
have new “attributes” B : 1,...,B : k. Each time we want to label a row of
an access matrix A with B, we label it with B : i for a new value of 7. We let
p denote the original row labeling of A and p’ denote this new row labeling.
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Each time we want to associate a subset S of attributes to a key, we instead use
S':={B:1,...,B: kB € S}. We can then employ the one use system on the
new universe of kn attributes and retain its full security. We note that the set
S’ satisfies the access structure (A4, p') if and only if the set S satisfies the access
structure (4, p).

For our construction, the sizes of the public parameters and the secret keys
grow linearly in the number of involved attributes, so these will expand by a
factor of k under this transformation. Note that the size of the access matrix
does not change, so ciphertexts in our construction will remain the same size.

2.3 Our Fully Secure CP-ABE System

We construct our fully secure CP-ABE system in composite order groups of or-
der N = p1pops with LSSS access structures. We note the strong resemblance
between our system and the selectively secure CP-ABE system of Waters [39].
The KP-ABE system we give in the full version of this paper also bears a strong
resemblance to the selectively secure schemes in [25]. We thus provide addi-
tional examples of the phenomenon noted by [40/28]: dual system encryption
is a powerful and versatile tool for transforming selectively secure schemes into
fully secure ones.

The normal operation of our system essentially occurs in the subgroup G, .
Keys are additionally randomized in G,,, and the subgroup Gp, is our semi-
functional space, which is not used in the real system. Keys and ciphertexts
will be semi-functional when they involve elements in the G, subgroup. When
normal keys are paired with semi-functional ciphertexts or semi-functional keys
are paired with normal ciphertexts, the elements in G, will not contribute to the
pairings because they are orthogonal to elements in the G, and G, subgroups.
When we pair a semi-functional key with a semi-functional ciphertext, we get
an extra term arising from pairing the corresponding elements of G, which will
cause decryption to fail, unless this extra term happens to be zero. When this
cancelation occurs and decryption still works, we say the key is nominally semi-
functional. In other words, nominally semi-functional keys involve elements in
Gyp,, but these cancel when paired with the G, elements involved in the semi-
functional ciphertext.

Our proof of security will rely on the restriction that each attribute can only
be used once in the row labeling of an access matrix. This is because we will
argue that a nominally semi-functional key is identically distributed to a reg-
ular semi-functional key in the attacker’s view, since the attacker cannot ask
for keys that can decrypt the challenge ciphertext. This information-theoretic
argument fails when attributes can be used multiple times. Nonetheless, we can
achieve full security for a system which uses attributes multiple times through
the transformation given in the last section.

We believe that our fully secure system in composite order groups can be
transformed to a fully secure system in prime order groups. This was accom-
plished for the previous applications of dual system encryption in [40/28].
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Construction

Setup(\,U) — PK, MSK. The setup algorithm chooses a bilinear group G of
order N = p1paps (3 distinct primes). We let G, denote the subgroup of order
p; in G. It then chooses random exponents «,a € Zy, and a random group
element g € G),. For each attribute ¢ € U, it chooses a random value s; € Zy.
The public parameters PK are N,g,g% e(g,9)%, T; = g°Vi. The master secret
key MSK is o and a generator X3 of Gp,.

KeyGen(MSK,S,PK) — SK. The key generation algorithm chooses a random
t € Zn, and random elements Ry, R{, R; € Gp,. The secret key is:

S, K =g%g"Ro, L=g'Rf), K;, =T/R; Vi € S.

Encrypt((A, p), PK,M) — CT. A is an £ x n matrix and p is map from each
row A, of A to an attribute p(x). The encryption algorithm chooses a random
vector v € Z%, denoted v = (s,vg,...,vy). For each row A, of A, it chooses
a random r, € Zy. The ciphertext is (we also include (A, p) in the ciphertext,
though we do not write it below):

C = Me(g,9)*°, C' =g,

_ aAgv To _ora
Cr=g Tp(w) D, =g" Vx.
Decrypt(CT, PK,SK) — M. The decryption algorithm computes constants
wy € Zpn such that Z 2)es wy Ay = (1,0,...,0). It then computes:

K)/ T] (e(CarL)e(Da, Kpa))) ™ = e(g,9)**

p(z)eS
Then M can be recovered as C'/e(g, g)**

Security. Before we give our proof of security, we need to define two additional
structures: semi-functional ciphertexts and keys. These will not be used in the
real system, but will be needed in our proof.

Semi-functional Ciphertext. A semi-functional ciphertext is formed as follows.
We let g2 denote a generator of G, and c a random exponent modulo N. We also
choose random values z; € Zy associated to attributes, random values v, € Zy
associated to matrix rows z, and a random vector u € Z%;. Then:

aAg e 73D A e UV Zp(z) D

p(a) I » =99y " V.

C'=g°g5, Co =y

Semi-functional Key. A semi-functional key will take on one of two forms. A
semi-functional key of type 1 is formed as follows. Exponents t,d,b € Zy and
elements Ry, Ry, R; € G, are chosen randomly. The key is set as:
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K =g%g"' Rogs, L = g'Rig5, Ki =T Rigy" Vi € S.
A semi-functional key of type 2 is formed without the terms g4 and ggzi (one
could also interpret this as setting b = 0):

K = g%g"Rogd, L =¢'R), K; =T!R; Vi€ S.

We note that when we use a semi-functional key to decrypt a semi-functional
ciphertext, we are left with an additional term:
e(g2, g2) """,

where u; denotes the first coordinate of w (i.e. (1,0,...,0)-u). We also note that
these values z; are common to semi-functional ciphertexts and semi-functional
keys of type 1. These z; terms always cancel when semi-functional keys are paired
with semi-functional ciphertexts, so they do not hinder decryption. Instead, they
are used as blinding factors to hide the value being shared in the G,, subgroup of
a semi-functional ciphertext (the value u1) from an attacker who cannot decrypt.
This is where our one-use restriction is crucial: an attacker with a single semi-
functional key of type 1 which cannot decrypt the challenge ciphertext should
only be able to gain very limited information-theoretic knowledge of the z; values.
If attributes are used multiple times, too many z; values may be exposed to
the attacker. In each of the games we define below, at most one key is semi-
functional of type 1 and all other semi-functional keys are type 2. This is to
avoid information-theoretically leaking the z; values by using them in multiple
keys at once.

We call a semi-functional key of type 1 nominally semi-functional if cd—bu; =
0. Notice that when such a key is used to decrypt a corresponding semi-functional
ciphertext, decryption will succeed.

We will prove the security of our system from Assumptions 1, 2, and 3 using a
hybrid argument over a sequence of games. The first game, Gameg,;, is the real
security game (the ciphertext and all the keys are normal). In the next game,
Gamey, all of the keys will be normal, but the challenge ciphertext will be semi-
functional. We let ¢ denote the number of key queries made by the attacker. For
k from 1 to ¢, we define:

Gamey,1. In this game, the challenge ciphertext is semi-functional, the first k—1
keys are semi-functional of type 2, the k" key is semi-functional of type 1, and
the remaining keys are normal.

Gamey 2. In this game, the challenge ciphertext is semi-functional, the first &
keys are semi-functional of type 2, and the remaining keys are normal.

We note that in Gameg 2, all of the keys are semi-functional of type 2. In the
final game, Gameg;nq, all keys are semi-functional of type 2 and the ciphertext
is a semi-functional encryption of a random message, independent of the two
messages provided by the attacker. In Gamep;,q;, the attacker’s advantage is 0.
We will prove these games are indistinguishable in the following four lemmas. We
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give the proof of the most interesting lemma below, and the rest of the proofs
can be found in the full version of this paper. For notational purposes in the
lemmas below, we think of Gameg > as another way of denoting Game 0.

Lemma 1. Suppose there is an efficient algorithm A such that Gamegeq Adv g —
GamegAdv 4 = €. Then we can construct an efficient algorithm B with advantage
€ in breaking Assumption 1.

Lemma 2. Suppose there is an efficient algorithm A such that Gamey_1 2 Adv s —
Gamey,,1 Adv g = €. Then we can construct an efficient algorithm B with advantage
negligibly close to € in breaking Assumption 2.

Proof. B is given g, X1 Xo, X3,Y2Y3,T. It will simulate Gamey,_1 2 or Gamey, 1
with A. It chooses random exponents a, @ € Zx and a random exponent s; € Zy
for each attribute 4 in the system. It then sends A the public parameters:

PK = {Nv g, ga’ e(g;g)a, Ti =gsi VZ}

To make the first £ — 1 keys semi-functional of type 2, B responds to each key
request by choosing a random ¢ € Zy, random elements R{, R; of G,,, and
setting:

K = g%g"(YaY3)!, L=g¢'R}), K; = T/R; Vi € S.

We note that K is properly distributed because the values of ¢t modulo ps and
ps are uncorrelated to its value modulo p;. To make normal keys for requests
> k, B can simply run the key generation algorithm since it knows the M SK.

To make key k, B will implicity set g* equal to the G, part of T'. B chooses
random elements Ry, Rj, R; in G, and sets:

K =g¢"T"Ry, L=TRj,, K;=T*R; Vi€ S.

We note that if T' € G, p,, this is a properly distributed normal key. If T' € G,
this is a semi-functional key of type 1. In this case, we have implicitly set z; = s;.
If we let g4 denote the G, part of T', we have that d = ba modulo py (i.e. the G,
part of K is g5a, the G,, part of L is g5, and the G, part of K; is ggzi. Note that
the value of z; modulo ps is uncorrelated from the value of s; modulo p;.

A sends B two messages My, M, and an access matrix (4%, p). To make the
semi-functional challenge ciphertext, B implicitly sets g° = X; and ¢g5 = Xo.

It chooses random values us,...,u, € Zy and defines the vector v’ as u' =
(a,ug,...,uy). It also chooses a random exponent r,, € Zy. The ciphertext is
formed as:

C = ]\4',@6(906,‘le‘XQ)7 Cl = X1X27

C, = (XlXQ)AZ'"’ (XIXQ)_T‘;‘QP(m)7 D, = (X1X2)’”Q.
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We note that this sets v = sa™ v’ and u = cu/, so s is being shared in the G,
subgroup and ca is being shared in the Gy, subgroup. This also implicitly sets
Ty = T8, Yo = —cry. The values z,;) = s,(;) match those in the kth key if it is
semi-functional of type 1, as required.

The k' key and ciphertext are almost properly distributed, except for the fact
that the first coordinate of uw (which equals ac) is correlated with the value of a
modulo p, that also appears in key k if it is semi-functional. In fact, if the k" key
could decrypt the challenge ciphertext we would have cd — bu; = cba — bca = 0
modulo ps, so our key is either normal or nominally semi-functional. We must
argue that this is hidden to the attacker A, who cannot request any keys that
can decrypt the challenge ciphertext.

To argue that the value being shared in G,, in the challenge ciphertext is
information-theoretically hidden, we appeal to our restriction that attributes
are only used once in labeling the rows of the matrix. Since the k** key cannot
decrypt the challenge ciphertext, the rowspace R formed by the rows of the
matrix whose attributes are in the key does not include the vector (1,0,...,0).
So for shares 0, = A} -u in the G, subgroup, we can write u = ur +uw, where
up is in the space R and uyy is in its orthogonal complement, W. We note that
u; = u-(1,0,...,0) cannot be determined from up alone - some information
about uy is needed.

The only places uy, appears are in equations of the form:

A; U+ Yz Zp(z)>

where the p(z)’s are each unique attributes not appearing the k** key. As long
as each 7, is not congruent to 0 modulo po, each of these equations introduces
a new unknown z,(,y that appears nowhere else, and so no information about
uw can be learned by the attacker. More precisely, for each potential value of
u1, there are an equal number of solutions to these equations, so each value is
equally likely. Hence, the value being shared in the G, subgroup in the semi-
functional ciphertext is information-theoretically hidden, as long as each ~, is
non-zero modulo py. The probability that any of the v, values are congruent to 0
modulo p is negligible. Thus, the ciphertext and key k are properly distributed
in the attacker’s view with probability negligibly close to 1.

Thus, if T' € Gp, p,, then B has properly simulated Gamey_; 2, and if T € G
and all the v, values are non-zero modulo po, then B has properly simulated
Gamey, ;. B can therefore use the output of A to gain advantage negligibly close
to € in breaking Assumption 2.

Lemma 3. Suppose there is an efficient algorithm A such that Gamey 1 Adv s —
Gamey,2Advg = €. Then we can construct an efficient algorithm B with advan-
tage € in breaking Assumption 2.

Lemma 4. Suppose there is an efficient algorithm A such that Gameg 2 Adv s —
GamepinaAdvg = €. Then we can construct an efficient algorithm B with ad-
vantage € in breaking Assumption 3.
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We have now proven the following theorem:

Theorem 1. If Assumptions 1, 2, and 3 hold, then our CP-ABE system is
secure.

Proof. 1If Assumptions 1, 2, and 3 hold, then we have shown by the previous lem-
mas that the real security game is indistinguishable from Gamep;;,4;, in which the
value of (3 is information-theoretically hidden from the attacker. Hence the attacker
cannot attain a non-negligible advantage in breaking the CP-ABE system.

Expanding to Multi-Use. To build a fully secure CP-ABE system where each
attribute can be used up to k times in the row labeling of an access matrix, we
apply the encoding technique of Section 2.2l We note that the public parameters
and key sizes will grow by a factor of k, but the encoding does not increase the
size of the ciphertext.

2.4 Discussion

We have obtained the first fully secure CP-ABE system in the standard model.
Our techniques also yield a fully secure KP-ABE system. Our KP-ABE system
and the proof of its security can be found in the full version of this paper. Es-
sentially, a KP-ABE system is like a CP-ABE system with the roles of keys
and ciphertexts reversed: in a KP-ABE system, keys are associated with access
structures and ciphertexts are associated with subsets of attributes. Our tech-
niques readily adapt to KP-ABE, and the proof of security is very similar to the
CP-ABE case.

It is also possible to adapt our techniques to obtain a large universe construc-
tion. In our current construction, the size of the public parameters is linear in the
number of attributes in the universe. In a large universe construction, we could
use all elements of Zy - as attributes, with the size of the public parameters linear
in n, a parameter which denotes the maximum size of a set of attributes used
in the system. This reduces the size of the public parameters and allows us to
use arbitrary strings as attributes by applying a collision-resistant hash function
H :{0,1}* — Z; . Note that these attributes no longer need to have been con-
sidered during setup. To obtain a large universe construction, we could replace
the group elements T; associated with attributes ¢ with a function 17" : Z,, — Gy,
based on a degree n polynomial. Goyal, Pandey, Sahai, and Waters [25] do this
for their KP-ABE construction.

Though we build our ABE systems in composite order bilinear groups, we
believe that similar systems can be constructed in prime order groups. Wa-
ters [40] first instantiated his fully secure IBE and HIBE systems in composite
order groups and then transferred them into prime order groups, obtaining full
security under the well-established d — BDH and decisional Linear assump-
tions. Lewko and Waters [28] built upon these ideas to obtain an analog of their
IBE system in asymmetric prime order groups. The introduction of asymmetry
simplified their construction, at the expense of relying on non-standard (static)
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assumptions. Freeman [20] also discusses a general class of transformations from
composite order groups to prime order groups, but this does not encompass our
construction. In the future, these transformation techniques might be extended
to obtain versions of our ABE schemes in prime order groups.

3 Fully Secure Predicate Encryption
3.1 Owur Approach and Key Technique

Dual Pairing Vector Spaces (DPVS). We now briefly explain our approach,
DPVS, constructed on symmetric pairing groups (¢, G,Gr, g,¢), where ¢ is a
prime, G and G are cyclic groups of order g, g is a generator of G, e : G x G —
Gr is a non-degenerate bilinear pairing operation, and gr := e(g, g) # 1. Here
we denote the group operation of G and Gr by multiplication. Note that this
construction also works on asymmetric pairing groups (in this paper, we use
symmetric pairing groups for simplicity of description). As for the definitions of
some notations, see the last part of this subsection.

N
Vector space V: V = Gx-x G whose element is expressed by
N-dimensional vector, « := (¢**,...,¢9"V) (x; € Fyfori=1,...,N).
Canonical base A: A := (aq, .,aN) of V, where a1 := (g9,1,...,1), ag :=
(1’9’ 7"'71)""’a :( '71’9).

Pairing operation: e(z,y) := Hf\il e(g®i, g¥i) = e(g,g)zb 1% = g—>7 €
Gr, where @ := (¢**,...,¢*V)=r1a1+ - -+axyany € V,y := (g¥*, ..., g¥") =
yia; + - +yvay €V, T = (z1,...,zn) and Y = (y1,.-- 7yN). Here,
x and y can be expressed by coefficient vector over basis A such that
(1, 2n)a = (T)a =@ and (y1,...,yn)a = (¥)a = y.

Base change: Canonical basis A is changed to basis B := (by,...,by) of V
using a uniformly chosen (regular) linear transformation, X := (xi ;) &
GL(N,Fy), such that b; = Z;\r:l Xij@j, (i=1,...,N). Ais also changed to
basis B* := (bf,...,b}) of V, such that (9; ;) :== (XT)~1, b = 31| 9, ;a;,
(i=1,...,N). We see that e(b;, b)) = ggf'j7 (0;; =1ifi=j, and 6; ; = 0 if
1#£7) i.e., B and B* are dual orthonormal bases of V.

Here, x := 2161 + - +2nyby € Vand y := y1b7 + - + ynbyy €V can

be expressed by coefficient vectors over B and B* such that (x1, .. $N)]B =
(F)s 1= @ and (41, ) = (T)s- = y, and e(,y) = e(g,g) =i 70
= gT v € Gr.

Intractable problem: One of the most natural decisional problems in this
approach is the decisional subspace problem [30]. It is to distinguish v :=
UN2+1bN2+1 +-- ~-|-’UN1bN1 (: (0, oo 0,UN 41, le)]B)v from u := v1by +

. '—|—’U]\/1b]\/1 (Z (’Ul7 . 7UN1)IB)a where (’Ul, ey UNl) <—U Févl and N2+1 < Nl.
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Trapdoor: Although the decisional subspace problem is assumed to be in-
tractable, it can be efficiently solved by using trapdoor t* € span(bj, ..., by, ).
Given v := vn,+1bNn,41 + - +UN, bN, OF w :=v1b1 + -+ +vN, bN,, We can
distinguish v from w using t* since e(v,t*) = 1 and e(u,t*) # 1 with high
probability.

Dual System Encryption Methodology. At the top level of strategy of the
security proof, we follow the dual system encryption methodology proposed by
Waters [40]. Security is proven using a sequence of games. Game 0 is the real
security game. In Game 1, the target ciphertext is changed to semi-functional.
When v secret key queries are issued by an adversary, there are v game changes
from Game 1 (Game 2-0) through Game 2-v. In Game 2-k, the first k& keys
are semi-functional while the remaining keys are normal. The final game with
advantage 0 is changed from Game 2-v. As usual, we prove that the advantage
gaps between neighboring games are negligible.

The most difficult part in the security proof, especially for inner-product pred-
icate encryption, is how to resolve a paradoxical problem to prove the negligible
gap between Game 2-k and Game 2-(k — 1), where the simulator (for the secu-
rity proof) itself may distinguish the simulated k-th key (semi-functional key) in
Game 2-k and the k-th key (normal key) in Game 2-(k — 1) by using a simulated
(semi-functional) ciphertext, since the simulator can make ciphertexts and keys
for any legal attributes and predicates (especially, in the adaptive security game,
the simulator should generate a target ciphertext associated with any attribute
adaptively selected by the adversary).

For (H)IBE, this problem was resolved by introducing tricks such that the sim-
ulated k-th key and ciphertext have a special correlation regarding the equality
of their identity values [28/40].

This problem is much harder for inner-product predicate encryption. Given a
predicate vector v for secret key sk, there are exponentially many (orthogonal)
attribute vectors 7 for ciphertext ¢ such that sk— can decrypt ¢, i.e., v-7 =
0. Therefore, in order to resolve the above-mentioned paradoxical problem, we
should give some trick on the simulated k-th key sk with @ and all ciphertexts
with 7 satisfying @ - @ = 0, while a trick on the simulated k-th key sk; with
identity I and ciphertext with the same I is enough for (H)IBE.

We use special form of semi-functional keys and ciphertexts for simulating
the k-th key and target ciphertext such that the simulated k-th key (a special
form of semi-functional key) sk in Game 2-k can decrypt all simulated ci-
phertexts (a special form of semi-functional ciphertexts) c with 2 satisfying
7 -7 = 0. Essentially, we adapt the notion of nominally semi-functional keys
and ciphertexts that was introduced by Lewko and Waters [28] to the setting of
inner product encryption.

In addition, the distribution of a pair comprising the simulated k-th key sk
and simulated ciphertext ¢ (i.e., a special semi-functional key and ciphertext)
is equivalent to that of an independent and random semi-functional key and
ciphertext except with negligible probability, when @' - 7 # 0.
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That is, the special forms of semi-functional keys and ciphertexts are corre-
lated (for the case of ¥ -2 = 0), but the adversary cannot notice the correlation
since the adversary’s queries should satisfy the condition @ - 7 # 0. In other
words, nominal semi-functionality is information-theoretically hidden from the
adversary. A more detailed explanation of how this is implemented on DPVS
will be given in the proof outline in Section

Notations. When A is a random variable or distribution, y &£ A denotes that
y is randomly selected from A according to its distribution. When A is a set,

y & A denotes that y is uniformly selected from A. y := z denotes that y is set,
defined or substituted by z. When a is a fixed value, A(z) — a (e.g., A(z) — 1)
denotes the event that machine (algorithm) A outputs a on input z. A function
f N — R is negligible in A, if for every constant ¢ > 0, there exists an integer
n such that f(A) < A7¢ for all A > n.

We denote the finite field of order ¢ by F,. A vector symbol denotes a vec-
tor representation over F,, e.g., @ denotes (x1,...,7,) € F;'. For two vec-
tors 7 = (21,...,7,) and ¥ = (v1,...,v,), T - v denotes the inner-product
Z?:l x;v;. XT denotes the transpose of matrix X. I, and 0; denote the £ x ¢
identity matrix and the ¢ x £ zero matrix, respectively. A bold face letter de-
notes an element of vector space V, e.g., € € V. When b; € V (i = 1,...,n),
span(by,...,b,) C V (resp. span(71,..., T ,)) denotes the subspace gener-
ated by by,...,b, (resp. T'1,..., Tp). For bases B := (by,...,by) and B* :=

(by,....b%), (z1,...,zN)B = ZZ]\LI x;b; and (y1,...,yn)B := ZZ]\LI y;b}.

3.2 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

Definition 5. “Symmetric bilinear pairing groups” (¢,G,Gr,g,¢e) are a tuple
of a prime q, cyclic (multiplicative) groups G and Gr of order q, g #1 € G, and
a polynomial-time computable nondegenerate bilinear pairing e : G x G — G
i.e., e(g°,9") = e(g,9)*" and e(g,g) # 1.

Let Gupg be an algorithm that takes input 1* and outputs a description of
bilinear pairing groups (q,G,Gr, g,e) with security parameter X.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [30J3T] constructed by using symmetric bilinear pairing groups given in
Definition

Definition 6. “Dual pairing vector spaces (DPVS)” (q,V,Gr, A, e) by a direct
product of symmetric pairing groups (q,G,Gr, g,e) are a tuple of prime q, N-
N
dimensional vector space V:=G x --- x G over Fy, cyclic group Gr of order q,
i—1 N—i
, ) PN
canonical basis A = (a1,...,an) of V, where a; :== (1,...,1,9,1,.. .,D, and
pairing e : VXV — Gr.
The pairing is defined by e(x,y) := Hf\il e(gi, hi) € Gy where  := (¢1,. ..,
gn) € Voand y = (h1,...,hn) € V. This is nondegenerate bilinear i.e.,
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st

e(sx,ty) = e(x,y)* and if e(x,y) = 1 for all y € V, then x = 0. For
all i and j, e(a;,a;) = ggf'j where 0;; = 1 if i = j, and 0 otherwise, and

gr :==e(g,9) #1 € Gr.
DPYVS also has linear transformations ¢; ; on'V s.t. ¢; j(a;) = a; and ¢; ;(ax)
i—1 N—i

N 7
=0 if k # j, which can be easily achieved by ¢; ;(x) := (1,...,1,gj,1,...,D
where  := (g1, ...,9n). We call ¢;; “distortion maps”.

DPVS generation algorithm Gapys takes input 1* (A € N) and N € N, and
outputs a description of paramy = (q,V,Gr, A, e) with security parameter A
and N-dimensional V. It can be constructed by using Gupg.

For the asymmetric version of DPVS, (¢, V,V* Gr, A, A*, e), see the full version
of this paper. The above symmetric version is obtained by identifying V = V*
and A = A* in the asymmetric version. (For the other realization using higher
genus Jacobians, see [30].)

We describe random dual orthonormal bases generator Gop below, which is
used as a subroutine in the proposed (H)PE scheme.

gob(]-Av N) . paramy = (Q7V7 GTvAu 6) <_R gdpvs<1>\7 N)7
u _
X = (xig) & GL(N,Fy), (935) = (XT)7,

N * N * * *
bi ::ijl Xi,ja'ja Blz(bl,...,b]\/)7 bi ::ijl ’191'7]'(1]'7 B I:(bl,...,bN)7
return (paramy, B, B*).

3.3 Assumption

Definition 7 (n-eDDH: n-Extended Decisional Diffie-Hellman Assump-
tion). Then-eDDH problem is to guess 3 € {0, 1}, given (paramg, g, g", {g“+7h,

Y " R
97 9" hicicn, {97 Mcizicn, Ya) < G5 PPH(1Y), where
. R
g,g EDDH(]-)\) : paramG = (quvGTagﬂe) — gbpg(lA)v
/<;<—U]qu7 w7hi7%<—UFq fori=1,...,n,

Yo:=g¢™, Y1 <G,

return (paramg, g,g"~, {g* M

970" M<i<n, {97 Y<izi<n, Vo),

for B & {0,1}. For a probabilistic machine C, we define the advantage of C for
the n-eDDH problem as:

AVEPPI(3) 1= |Pr[C(1%,0) = 1| 0 & GgrePPH(1Y) |
_Pr [C(l’\ 0) — 1 ’ o & g?—eDDH(lA)} ’ .

The n-eDDH assumption is: For any polynomial-time adversary C, the advantage
AdvPPH (N is negligible.
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The following lemma shows that the n-eDDH assumption is true in the generic
bilinear pairing group model [§].

Lemma 5. For any adversary C that makes a total of at most v queries to the
oracles computing the group operation in G and the bilinear pairing e : G x G —
Gr, the advantage Advy PR (N) is O((v+n2)2/2*) in the generic bilinear pairing

group model.

The proof of Lemma [l is given in the full version of this paper.

3.4 Definition of Predicate Encryption

This section defines predicate encryption (PE) for the class of inner-product

predicates and its security.
-
An attribute of inner-product predicates is expressed as a vector @ € F\{ 0 }

i,

and a predicate f- is associated with a vector ©', where f—(2') = 1iff v- 2" = 0.
n AR : - rrd n

Let X :=TF\ {0}, ie., the set of the attributes, and F := {f+|v € F\{ 0 }}

i.e., the set of the predicates.

|

Definition 8. A predicate encryption (PE) scheme for the class of inner-product
predicates F and attributes X consists of probabilistic polynomial-time algorithms
Setup, KeyGen, Enc and Dec. They are given as follows:

Setup takes as input security parameter 1* outputs (master) public key pk
and (master) secret key sk.

KeyGen takes as input the master public key pk, secret key sk, and predicate
vector v . It outputs a corresponding secret key sk .

Enc takes as input the master public key pk, plaintext m in some associated
plaintext space, msg, and attribute vector T . It returns ciphertext c.

Dec takes as input the master public key pk, secret key sk and ciphertext
c. It outputs either plaintext m or the distinguished symbol 1.

A PE scheme should have the following correctness property: for all fo € F

and T € X, for correctly generated pk, ske and ¢ <& Enc(pk,m, ), it holds
that m = Dec(pk,sk,c) if fz (@) = 1. Otherwise, it holds with negligible
probability.

Definition 9. An inner-product predicate encryption scheme is adaptively
attribute-hiding (AH) against chosen plaintext attacks if for all probabilistic
polynomial-time adversaries A, the advantage of A in the following experiment
1s negligible in the security parameter.

1. Setup is run to generate keys pk and sk, and pk is given to A.

2. A may adaptively make a polynomial number of key queries for predicate vec-
tors, v . In response, A is given the corresponding key sk— & KeyGen(sk, 7).

3. A outputs challenge attribute vector (70, 2 and challenge plaintexts
(m©®, mM) | subject to the restriction that v - 2 # 0 and v - T #0
for all the key queried predicate vectors, U .
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4. A random bit b is chosen. A is given c(®) K Enc(pk, m(®, 2 ®)),
5. The adversary may continue to issue key queries for additional predicate
vectors, U, subject to the restriction that -7 £0 and 7-7TM #£0. A

is given the corresponding key sk— X KeyGen(sk, 7).
6. A outputs a bit V', and succeeds if b’ = b.
We define the advantage of A as the quantity AdviE’AH()\) =Pr[p =0b] —1/2.

Remark: In Definition [ adversary A is not allowed to ask a key query for o’
such that @ - T (® = 0 for some b € {0,1}, while in the security definition in
[27], such a key query is allowed provided that m(®) = m®) and ¥ - T® =0
for all b € {0,1}.

3.5 The Proposed PE Scheme

Construction

Setup(1*,n) : (paramy, B, B*) K Gob (1,20 + 3),
B:= (b1,...,bp, boni1,bonis), sk:=B*, pk:=(1* paramy,B),
return sk, pk.
KeyGen(sk, ¥ := (v1,...,v,)) : 0,0 s Fy,
k* =0 (3L, vib]) + b5, 1 + b5, 40,
return sk— = k*.
Enc(pk,m € Gp, @ = (x1,...,2,)) : 01,62, 2 Fy,
c1:= 0101 @ibi) + Cbany1 + dabongs, c2:= g%m,
return (c1, ¢2).
Dec(pk, k", (€1,¢2)) : m' :=ca/e(ey, k*),

return m’.

[Correctness] k* and ¢; can be expressed by k* = (¢7,0,...,0,1,71,0)g-, and
c1=(6,7,0,...,0,(,0,8,)s. Hence, e(cy, k*) = g{d* © 0r-0:0.0:02):(070.0,-..0.10.0)

:ggja(mv)ﬁ-C7 ie., 6(017k*)=g% it -7 =0.

Security

Theorem 2. The proposed PE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the n-eDDH assumption. For any adversary A,
there exist probabilistic machines Cr, (k = 0,...,v), whose running times are
essentially the same as that of A, such that for any security parameter A,

AVEEAT(A) < ST AdvePPH () 4 :
k=0

where v is the mazimum number of adversary A’s key queries.
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We will show Lemmas [6] [[] and [ for the proof of Theorem 2l The proofs of
these lemmas are given in the full version of this paper.

Definition 10. Problem 1 is to guess [ € {0,1}, given (paramv7ﬁ7@*,
R
{es,iti=1,..n) < gﬁpl(lk,n), where

le(lA,n) : (paramy, B, B*) R Qob(IA,Qn +3),
B:= (b1, by, bopi1,bonis), B = (b,....b% b5, 1, b5 00),
81,00 2 Fyy p o FX, (ui) < GL(n,Fy) fori,j=1,...,n,
fori=1,...,n,
eg,i = 01b; + d2,:ban 3,
e :=0b; + ng;l Wi jbntj + 02,ibonts,

return (paramy, I/B\%, I/B\%*, {es.i}i=1,..n)s

for B A {0,1}. For a probabilistic machine B, we define the advantage of B for
Problem 1 as:

AdVBE(N) = ‘Pr [3(1*,9)%1\ g<—RQ§1(1>‘,n)}—Pr [3(1*,9)%1\ g<—RQ1P1(1>‘,n)”.

Lemma 6. For any adversary B, there is a probabilistic machine C, whose run-
ning time is essentially the same as that of B, such that for any security param-
eter A, AdvPPH(\) = AdviRr()).

Definition 11. Problem 2 is to guess 3 € {0,1}, given (paramV7I§7I§*, {h5 .

€iti=1,..n) & ggz(lA,n), where

QE2(1>‘7n) : (paramy, B, B*) K Gob(1*,2n + 3),
B:= (b1,...,bn, boni1,bonis), B = (bi,...,b5,.0),
W, i, 0 <—U]Fq, Py T A Fx,
(i) < GL(n,F,), (zi;) = ((ui;)™ )T fori,j=1,...,n,
fori=1,...,n,
h,i == wb;i + 7ib3y 10,
hi;=wb; +7 Z?:I Zi by i + Vi3, 40,
e; ;= 6b; + PZ;:1 Ui, jbnyj,

return (paramy, B, B, {h5.0 €iti=1,..n),

for B & {0,1}. For a probabilistic machine B, the advantage of B for Problem
2, AdvR2 (), is similarly defined as in Definition [I0.



86 A. Lewko et al.

Lemma 7. For any adversary B, there is a probabilistic machine C, whose run-

ning time is essentially the same as that of B, such that for any security param-
eter A, AdvPPH(\) = AdvRZ()).

Lemma 8. Let C := {(7,7)|Z - v #0} CV x V* where V is n-dimensional
vector space T, and V* its dual. For all (Z,) €C, for all (7, w) € C,

1

Pr [T (pU)=7T AN ¥V (12)=w]=

z & GL(n, 1), &
p,7—<—UIF;<

where U == (Z71)" and 5 :=£C (= (¢" = 1)(¢" = ¢"7")).

Proof Outline of Theorem[2. To prove the security, we employ Game 0 (original
adaptive-security game) through Game 3. Roughly speaking, the (normal) target
ciphertext is changed to a semi-functional ciphertext in Game 1 (or Game 2-0),
the k-th secret key replied to the adversary is changed to a semi-functional key in
Game 2-k (k=1,...,v), and the (semi-functional) target ciphertext is changed
to perfectly randomized key in Game 3, whose advantage is 0.
A normal secret key k%"™ (with predicate vector ') is a correct form of the
secret key of the proposed PE scheme, i.e., k%"™ := o(31" | v;by) + b3, +
n
)
b3, 0 = (077ﬁ>n, 1,7,0)p«, where 0, = (6, e \) Similarly, a normal ci-
phertext (with attribute 7’) is (€™, c3) Wlth ™ =61 (31 i)+ Cbong +
Sabanys = (617, 6)”, ¢,0,02)p. (Hereafter we will ignore ¢; since ¢ is always cor-
rectly generated.) A semi-functional secret key is k*?semi = (o, 7,1,1,0)p-

and a semi-functional ciphertext is csem' = (6,7,75,(,0,0:)p, where 7,75 &2
]P‘n If - . _) — 0 then e(cnorm x;)norm) _ e(cnol’m k* Seml) _ e(cs_e:'nl >5;)["|0|'r'n) —

seml * semi\ _ S T+C
o ) - gT )

gT7 which leads to correct decryption. In contrast, e(c=

which is uniformly and independently distributed over F, since 7,78 s F,
(i.e., leads to random decryption).

To prove that the advantage gap between Games 0 and 1 is bounded by the
advantage of Problem 1 (to guess 8 € {0,1}), we construct a simulator of the
challenger of Game 0 (or 1) (against an adversary .A) by using an instance with

164 & {0,1} of Problem 1. We then show that the distribution of the secret
keys and target ciphertext replied by the simulator is equivalent to those of
Game 0 when § = 0 and Game 1 when § = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma
[@). The advantage of Problem 1 is proven to be equivalent to that of the n-eDDH
assumption (Lemma [f]).

The advantage gap between Games 2-(k — 1) and 2-k is similarly shown to be
bounded by the advantage of Problem 2 (i.e., of the n-eDDH assumption) +1/¢
(Lemmas [ and [I0Q).
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Problem 2 is based on our key trick (explained in Section B.1l). Here, we intro-
duce special form of semi-functional keys and ciphertexts such that k2% semi . —
(o0, (t7Z),1,n,0)p, and cSpecsem' = (6m7(pxU),C70,52)IB,WhereZisaran—
dom regular (n x n)-matrix, U := (Z71)T, and 7,p & F,.

%Spec'sem' can decrypt €2 <M for all vectors 7 with ¥~ 7 = 0, since (70 Z)-
(pZU) =1p(v-7T),ie. e(cs‘_pfeC ssemi , kZPee semiy — (810+7p) (V- T+ I addition,
(17 Z) and (p7TU) are umformly and palrW1se—1ndependently dlstrlbuted (i.e.,
equlvalently distributed to (7,7) < FEM2\{((7,5) | 7 = 0}), when

-7 # 0 (Lemma). Therefore, the joint dlstrlbutlon of k%P M and cS?peC'semi
is equlvalent to that of an 1ndependent pair of k%, semi and csem' (except with
probability 1/¢), when ¥ - @ # 0.

Finally we show that Game 2-v can be conceptually changed to Game 3 by
using the fact that n elements of B, (by,41,. .., b2,), are secret to the adversary

(Lemma [TT]).

Proof of Theorem [@: To prove Theorem [ we consider the following (v + 3)
games.

Game 0. Original game.
Game 1. Same as Game 0 except that the target ciphertext (¢1,c2) for chal-
lenge plaintexts (m®), m(1)) and challenge attributes (Z'(?), 2(1)) is

cr =01, be)bi) + 3 Wibpyi + Cbong1 4 Gaboyis, o= gém(b),

where 81, 85, ¢ & Fy, b & {0,1}, (axgb), . ,x£f’)) =7 and (wy,...,wy,) &
—
Fpr\{0}.
Game 2-k (k=1,...,v). Game 2-0is Game 1. Game 2-k is the same as Game
2-(k — 1) except the reply to the k-th key query for v := (vq,...,v,) is:

k= o3 vibl) + >0 b b5, 0bs, o,

U — Umn
where o, < Fy and 7" = (r1,...,m,) < F.
Game 3. Same as Game 2-v except that the target ciphertext (¢, cq) for chal-
lenge plaintexts (m(?), m(1) and challenge attributes (7 (), 7)) is

cri= Y0 b + 300 Wibngi 4 ('bongy + G2banys, o= g%m(b),

where z,...,2),02,¢, & Fg,b & {0,1}, and (w1, ...,w,) & Fa\ {6}}
In particular, we note that («},...,2!) and ¢’ are chosen uniformly and

rn

independently from 7z (), (1) and (.

Let Adv(Y (1) be AdvPEAR (X) in Game 0, and Adv(y (A), Adv T (1), Ad Ej) (\)
be the advantage of A in Game 1, 2-k, 3, respectively. It is clear that /—\dv )\)
0 by Lemma
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We will use three lemmas (Lemmas [@ [0 1) that evaluate the gaps be-
tween pairs of Advy(A), Adv’(A), AdvE (A) (k = 1,...,0), Adv® (). From
these lemmas, we obtain AvaE AR = Advf)(/\) < ‘Advf)(/\) — Advg)(A)‘ +

S [AdvZ D 4y — Ady R (o ]+ ’Ava”)(A) —Advf)(/\)‘ + AV () <

Adv%})(/\) +> ey Adv%i (A)+ ;- From Lemmas[fland [T} there exist probabilistic

machines Cy, (k =0,...,v), WhObe running times are essentially the same as those
of Bk, respectively, such that AdvgPPH(\) = Advi(\) and AdvgPPH () =

AdviZ (\) (k =1,...,v). Hence, Advf’f AR < AdVEL (V) + 300 Advige (V) +7 <
> k= Adve; eDDH(/\) + 7. This completes the proof of Theorem 0

The proofs of the following lemmas appear in the full version of this paper.

Lemma 9. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security
parameter A, |Adv52)(/\) — Advg)()\)\ = Ade% (N).

Lemma 10. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security pa-

rameter A, [AdvG * 7 () — AdVE (V)] < AdVEZ (M) + L.

q

Lemma 11. For any adversary A, Adv(2 (N = Advg‘f)(/\).

Lemma 12. For any adversary A, Advg‘f)()\) = 0.

3.6 The Proposed HPE Scheme

The definition of HPE and key idea for the proposed HPE (and the correctness
of the HPE) are given in the full version of this paper.

Construction
Setup(]-)\v ﬁ) = (nv d; My 7ﬂd)) : (paramV7BvB*) <_R gob(lAv 2n + 3)7

B:= (b1,...,bn,bony1,bonys), sk:=B* pk:= (1%, paramV,I/B\i)7
return sk, pk.

KeyGen(pk, sk, (U1, ...y 00) = (V15w Uy )y e v vy (Vpy 1415 - -5 Up))
. . U
Odec,t) Tldec; Oran,j,ts Mran,j (] =1, b+ ]-)7 Odel,j,t5 Tldel,j (] =1, “7”)7 P — ]Fq
fort=1,...,4,

Ej dec = Zt 1 Odec,t (D212 po 141 V7)) 05,1+ NdecbBn o,
eran,j = Zt:l Uran,j,t(zg:m_lﬂ 'Uibf) + nran,jb§n+2 for _] = ]_, . 76 + ].,

* L * * *
ke,deLj = Zt:l Udel,ji(Zf‘Zm,ﬁl v;b}) + ﬂ’bj + Ndel,j02n 42
forj=pe+1,...,n

PN
ko * * * * *
return  k L (kf,deca kf,ran,la R k(,ran,EJrlv k(,del,,ug+17 ARE k(,del,n)'
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Ty, X)) = (@1, Tpy)s ooy (T 15 -5 X))

Enc(pk,m € Gr, (
U _ _ U
(?[+1,...7?d)<—FlM+l W{X-'-XF; Md_l, 517...,5g,52n+3,<<—Fq,

c1i= Yoy 0, oy wibi) + Cbanit + Ganisbanys,  c2 = ggm,
return (c1, ¢2).
Dec(pkv kZdeca C1, CQ) com = 62/6(C17 k;,dec)v
return m’.
= —
Delegate,(pk, k7, Vet := (Vpyt1s- -3 Vppiy))

Qdec,ty Odecy (ran,j,ts Oran,j (] =1, ~7€+2)7 Qdel,j,t5 Odel,j (] =1, “7”)7 W — ]Fq
fort=1,...,0+1,

* * He41
ki+1 dec T k@ dec + Zt 1 Otdec tk@ ran,t + Udec( i=pe+1 ,Ulki del z)
R YAt i . Hett _
k€+1,ran,j T Zt:l aranv]ytkf,ran,t + aran,j( i=pe+1 UZkZ del z) for -] - 17 o {4+ 27

% L £+1 L Lk . Het1 1
ki1 delj = Dot Odel,jtk] ran ¢ + Odel i (D21 0 11 Vik ger i) + VKT gl

forj:;uf+l+]-7"'7n7

—
* (1% * * * *
return k 41— (k€+1,dec7 k€+1,ran,17 33 k€+1,ran,€+27 k(—&-l,del,,uﬂﬁ-l? ° k€+1,de|,n)'

Remark: A PE scheme with general delegation is given in the full version of
this paper.

Security

Theorem 3. The proposed HPE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the n-eDDH assumption. For any adversary A,
there exist probabilistic machines, Co and Cq, 5y (k=1,...,v; j=1,....,n+1)
whose running times are essentially the same as that of A, such that for any
security parameter A,

v n+l1

n- Y AdvE (n+4)v

Ad HPE AH()\) < AdV eDDH _|_ Ad C(:D?H ) q ,
k=1 j=1

where v is the mazimum number of adversary A’s key queries.

The proof is given in the full version of this paper.
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Secure Obfuscation for Encrypted Signatures
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Abstract. Obfuscation is one of the most intriguing open problems in
cryptography and only a few positive results are known. In TCC’07, Ho-
henberger et al. proposed an obfuscator for a re-encryption functionality,
which takes a ciphertext for a message encrypted under Alice’s public
key and transforms it into a ciphertext for the same message under Bob’s
public key [24]. It is the first complicated cryptographic functionality
that can be securely obfuscated, but obfuscators for such cryptographic
functionalities are still elusive. In this paper, we consider obfuscation for
encrypted signature (ES) functionalities, which generate a signature on a
given message under Alice’s secret signing key and encrypt the signature
under Bob’s public encryption key. We propose a special ES function-
ality, which is the sequential composition of Waters’s signature scheme
[33] and the linear encryption scheme proposed by Boneh, Boyen, and
Shacham [5], and construct a secure obfuscator for it. We follow the
security argument by Hohenberger et al. to prove that our proposed ob-
fuscator satisfies a virtual black-box property (VBP), which guarantees
that the security of the signature scheme is preserved even when adver-
saries are given an obfuscated program. Our security argument is in the
standard model.

Keywords: Obfuscation, encrypted signatures, signcryption, bilinear
map.

1 Introduction

An obfuscator is a tool to convert a program into a new unintelligible program
while preserving the functionality. Several formal definitions have been proposed
so far [223127I341200232412119IT2]. Informally, obfuscators should satisfy the fol-
lowing two requirements: (1) functionality: the obfuscated program has the same
functionality as the original one and (2) virtual black-box property (VBP): what-
ever one can efficiently compute given the obfuscated program can be computed
given black-box access to the functionality. The functionality requirement is the
syntactic requirement while the VBP is the security requirement to capture the
unintelligibility of obfuscated programs.

As discussed in [3], obfuscators, if they exist, would have a wide variety of
cryptographic applications including software protection, fully homomorphic en-
cryption, removing random oracles, and transforming private-key encryption
schemes into public-key encryption schemes. Unfortunately, the impossibility

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 92-f[13, 2010.
© International Association for Cryptologic Research 2010
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of generic obfuscation have been shown in [3J20] even under very weak VBP
definitions, which require that any predicate that can be efficiently computed
from an obfuscated program can also be efficiently computed given black-box
access to the functionality. Specifically, they showed the existence of (contrived)
functionalities for which no obfuscator can satisfy the weak VBPs. However, the
negative results do not rule out the possibility that there exists an obfuscator
for a specific functionality. Indeed, some positive results are known for point
functions [RBITTI27I3A200T6I23I9IT2]. In spite of these positive results, obfuscators
for traditional cryptographic functionalities have remained elusive.

In TCC’07, Hohenberger et al. proposed an obfuscator for a re-encryption
functionality [24]. It is the first complicated cryptographic functionality that
can be securely obfuscated. A re-encryption functionality for Alice and Bob
takes a ciphertext for a message encrypted under Alice’s public key and trans-
forms it into a ciphertext for the same message under Bob’s public key. The
naive program contains both Alice’s secret key and Bob’s public key, and it sim-
ply decrypts the input ciphertext and encrypts the plain message. Clearly, this
program reveals Alice’s secret key to any party executing the program. If Alice
can securely obfuscate the program, the VBP ensures that any party learns no
more from the obfuscated program than it does from black-box access to the
functionality. In particular, the obfuscated program does not reveal Alice’s se-
cret key and cannot be used for eavesdropping. Hohenberger et al. constructed
a special encryption scheme and a secure obfuscator for the re-encryption func-
tionality. Their security argument is based on a new VBP definition suitable for
cryptographic functionalities. It ensures that the security of cryptographic func-
tionalities can be preserved even when adversaries are given obfuscated programs
(See the discussion in [24]). They showed that the security of their proposed en-
cryption scheme is preserved even when adversaries are given an obfuscated
re-encryption program.

From both the theoretical and practical perspectives, it is important to inves-
tigate the possibility of secure obfuscation for more cryptographic functionalities.
In this paper, we consider obfuscation for encrypted signature (ES) functional-
ities. An ES functionality for Alice and Bob generates a signature on a given
message under Alice’s secret signing key and then encrypts the signature under
Bob’s public encryption key. As in re-encryption, the naive program contains
Alice’s secret key and Bob’s public key, and reveals Alice’s secret key. If Alice
can securely obfuscate the program, the VBP ensures that any party executing
the obfuscated program cannot forge Alice’s signature. We propose a special
pair of signature and encryption schemes and construct a secure obfuscator for
the ES functionality. Also, we follow the security argument by Hohenberger et
al. in [24] to show that the security of signature scheme is preserved even when
adversaries are given an obfuscated ES program.

We believe that there are many useful applications of our proposed obfus-
cation. We informally describe an application to secure Webmail services. ES
should not be confused with Signature-then-Encryption or Sign-then-Encrypt
(StE). The StE functionality signs a given message and then encrypts both the
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message and signature. StE is the most widely-used approach to constructing a
signcryption scheme [2,35}. On the other hand, the ES functionality does not
encrypt the message itself and we can not necessarily use it as a signcryption
scheme. However, as shown in Appendix [A] we believe that one can use an ES
functionality as a building block to construct a signcryption functionality and
that an obfuscator for the ES functionality can be used to obfuscate the sign-
cryption functionality. Potential target applications include Webmail services
such as Yahoo! Mail and Google’s Gmail where users use e-mail services via
Web browsers. If users want to signcrypt their messages and their Web browsers
do not have the required capability then their Webmail providers need to sign-
crypt their messages on behalf of them. This means that users need to securely
delegate their signing capability to the Webmail providers. The combination of
the proposed obfuscation for an ES functionality presented in this paper and
the obfuscation for the signcryption scheme constructed in Appendix [A] would
provide a solution. For example, even if a malicious operator inside Webmail
providers is given an obfuscated signcryption program for Alice-to-Bob, he/she
can neither forge Alice’s signatures nor perform the signcryption operation for
Alice-to-Carol. However, we must be careful. The obfuscation does not prevent
the malicious operator from performing the signcryption for Alice-to-Bob. Also,
if the malicious operator has access to Bob’s secret decryption key, he/she can
forge Alice’s signatures (In the case of our proposed obfuscations, what is worse is
that he/she can extract Alice’s secret signing key from the obfuscated program).
The formal security argument for the signcryption and obfuscation outlined in
Appendix [Al is outside the scope of this proceedings version.

1.1 Basic Idea

Our obfuscation is based on the following basic idea: We construct a special
pair of signature and encryption schemes such that generating a signature on a
message and then encrypting the signature is functionally equivalent to encrypt-
ing the signing key and then generating a signature on the message under the
encrypted signing key. The former process is the ES functionality. In the latter
process, “encrypting the signing key” can be viewed as an obfuscation of the ES
functionality and “generating a signature on the message under the encrypted
signing key” corresponds to executing the obfuscated program.

We informally describe how to construct such a special pair using the BLS
signature scheme proposed by Boneh et al. [7]. Let (¢, G, Gr, e, g) be a parameter
for a bilinear map, where both G and G are cyclic groups of prime order ¢, e
is an efficient bilinear mapping from G x G to G, and g is a generator of G. A
public verification and secret signing key pair is (v, s) such that v = ¢g®, where s
is a random number in Z7. Given a message m, the signature o is calculated as
H(m)®, where H : {0,1}* — G is a hash function. We can verify the signature by
checking the equality e(g, o) = e(H(m),v). If the computational Diffie-Hellman

! Following [2], we use the term “signcryption” for any scheme achieving both privacy
and authenticity in the public key setting.
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problem is hard, the scheme is secure in the random oracle model [4], where H is
modeled as a random oracle. Also, we use a secure key encapsulation mechanism
(KEM) to encrypt the signature value ¢ = H(m)®. Let KEM.Enc(pk) be the
encryption algorithm of the secure KEM. Given a public encryption key pk,
it generates a pair of a random key r and its ciphertext ¢. Given KEM.Enc,
we define an encryption algorithm Enc, which takes as input a plaintext p(=
H(m)?®) € G and a public key pk, generates (r, ¢) «— KEM.Enc(pk), and outputs
(¢,p") as the ciphertext. The key and message spaces of KEM.Enc and Enc are
Zy and G, respectively. The decryption is straightforward (You can decrypt ¢
to recover r and then p). Then we consider the ES functionality defined as
the sequential composition of the BLS signing algorithm and the encryption
algorithm Enc. That is, given a message m, it computes the signature H(m)®,
generates (r,c¢) «— KEM.Enc(pk), and outputs (¢, H(m)*"). The naive program
implementing the ES functionality contains (s, pk) and reveals s. Our goal is to
obfuscate it.

Approach 1. Given the naive program, we extract (s,pk) and encrypt s using
KEM.Enc. Specifically, we generate (r, ¢) < KEM.Enc(pk) and compute sr mod ¢,
where (¢, sr) is an encryption of the secret signing key s. It reveals no information
on s since KEM.Enc is secure. However, using it, we can still compute an encryp-
tion of the valid signature of a given message m. That is, we can construct an
obfuscated program C. s, containing (c, sr), which takes as input m and outputs
(¢, H(m)®"). Note that the output is an encryption of the valid signature H(m)?*
by Enc. The problem here is that C. .. does not preserve the probabilistic ES
functionality since it is deterministic. If Enc is rerandomizable with pkﬁ, we can
fix the problem simply by rerandomizing (¢, H(m)*"). That is, we can construct
a new obfuscated program C¢ s pr containing (c, sr,pk), which takes as input
m, computes (¢, H(m)*"), rerandomizes it using pk, and outputs the rerandom-
ized ciphertext. The contained information (¢, sr, pk) reveals no information on
s because it is a ciphertext. It is not difficult to see that the obfuscation satisfies
a VBP under the assumption that KEM.Enc is secure. In other words, the VBP
simply reduces to the security of KEM.Enc.

Approach 1 (A special case of Approach 1). We describe a sufficient condition
under which Enc is rerandomizable with pk. If KEM.Enc satisfies a scalar homo-
morphic property (and is rerandomizable with pk), then Enc is rerandomizable
with pk. By the scalar homomorphic property, we mean that, given a KEM ci-
phertext ¢, we can compute (/,¢’) such that r’ is a new random key and ¢’ is
a ciphertext of 77’ mod q. We denote the operation by (r',c’) « multiply,, (c).
In this approach, a modified obfuscated program C’éyswk computes (¢, H(m)*"),
generates (r',c’) « multiply . (c), and outputs (¢, H(m)*"""), which is a reran-
domization of (¢, H(m)*"). Bob can decrypt ¢’ to recover rr’/ and then H(m)*.

2 We mean that anybody having the public key can convert a ciphertext of a message
into a different ciphertext that is distributed identically to a fresh encryption of the
same message.
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We are done if Cy, ., preserves the probabilistic functionality. However, we still
have a potential problem. The distribution of ¢’ may be different from the orig-
inal distribution produced by KEM.Enc. If KEM.Enc is rerandomizable with pk,

we can fix it simply by rerandomizing ¢’. That is, a modified program C7_ .

computes (¢, H(m)*""), rerandomizes ¢ as ¢/, and outputs (¢, H(m)*"""). For
example, we can use the Paillier encryption scheme as KEM.Enc [31]. However,
since its message (key) space is Z,, such that n is the product of two large primes,
we need to define the bilinear group for the BLS scheme as having order n.

Approach 2. When Enc cannot be rerandomizable and we can not take Ap-
proaches 1 and 1’, we can consider a new ES functionality. The new ES func-
tionality is the sequential composition of the BLS signing algorithm and a new
encryption algorithm Enc’. Enc’ takes as input a plaintext p(= H(m)®) € G
and a public key pk, runs KEM.Enc twice ((r1,¢1) < KEM.Enc(pk), (re, c2) <
KEM.Enc(pk)), and outputs (c1,ce, p™"2). Clearly, the use of two random keys
(r1,72) is redundant, but we can obfuscate the naive program as follows: Given
the naive program, we extract (s,pk), generate (r1,c1) < KEM.Enc(pk), and
compute sr; mod g. Then, we construct an obfuscated program Ce¢, s, pr cOD-
taining (c1, s71, pk), which takes as input m, generates (72, c2) «— KEM.Enc(pk),
and outputs (c1,ca, H(m)*™"2). The contained information (c1, sr1,pk) is the
same as in the previous approaches and reveals no information on s. Note that
the C¢, sry pr does not preserve the probabilistic ES functionality since the value
of ¢ is always the same. However, if KEM.Enc is rerandomizable with pk, then
it is easy to fix the problem by rerandomizing c¢;. In this approach, we can use
any rerandomizable encryption scheme as KEM.Enc.

Comparison. Let us briefly compare the above three approaches. Approaches 1
and 2 require that Enc and KEM.Enc are rerandomizable, respectively. Approach
1’ is a special case of Approach 1 and requires that a scalar homomorphic prop-
erty (and rerandomizability) of KEM.Enc, which is a strong requirement. Note
that we may be able to take Approach 1 without using the scalar homomorphic
property required by Approach 1’ (although we don’t have a concrete example).
Approach 2 requires a redundancy of ciphertexts. Therefore, Approach 1 seems
to be the best approach.

1.2 Owur Contributions

In this paper, we will use the pair of Waters’s signature scheme [33] and the
linear encryption scheme proposed by Boneh, Boyen, and Shacham [5] to take
Approach 1’ and propose a secure obfuscator for the ES functionality. Following
the security definition and argument by Hohenberger et al. in [24], we present a
security analysis of our proposed obfuscation. Waters’s signature scheme is more
complicated than the BLS scheme, but it is provably secure in the standard
model. All security arguments in this paper are in the standard model.

Our contributions are summarized as follows: In Section [3] we propose two se-
curity definitions of digital signature schemes in the context of ES. One requires
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that no adversary can existentially forge a signature even if it is given black-box
access to the ES functionality. The other requires the same even if it is given an
obfuscated program for the ES functionality. We expect that the former/weaker
definition implies the latter/stronger definition if the obfuscator satisfies a VBP.
In Section[d we propose a natural generalization of the VBP definition proposed
by Hohenberger et al. in [24] so that we can show that the weaker existential
unforgeability implies the stronger one. As stated in [24], their proposed VBP
provides a meaningful security for cryptographic schemes if they satisfy a special
property called distinguishable attack property. Unfortunately, digital signature
schemes do not have this property in the context of ES. This is the reason why
we need to introduce the generalized VBP definition. In Section [, we propose a
special ES functionality, which is the sequential composition of Waters’s signa-
ture scheme and the linear encryption scheme, and construct an obfuscator for it.
We prove that the obfuscator is secure under the generalized VBP definition and
that Waters’s signature scheme satisfies the stronger existential unforgeability
with the obfuscator.

1.3 Related Works

Some related works are already mentioned in the previous sections. In particular,
our work is inspired by the secure obfuscation for re-encryption in [24]. Both re-
encryption and ES functionalities output a ciphertext and this common property
enables us to simulate real obfuscated programs by randomly generating junk
programs to prove the VBPs.

Our proposed obfuscation can be viewed as public-key obfuscation for signing
functionalities [30/I]. A generic construction of public key obfuscations with a
fully homomorphic encryption scheme is discussed in [I§].

There are some different definitional approaches than VBPs to capture the
unintelligibility of obfuscation, e.g., indistinguishability of obfuscation [3], best-
possible obfuscation [21I], and non-malleable obfuscation [12].

2 Preliminaries

Given a positive integer n, we denote by [n] the set {1, 2, ---, n}. We say that a
function v(-) : IN — IR is negligible in n if for every polynomial p(-) and all suf-
ficiently large n’s, it holds that v(n) < 1/p(n). Given a probability distribution
S, we denote by x < S the operation of selecting an element according to S. If A

is a probabilistic machine then A(x1,x2,...,xy) denotes the output distribution
of A on inputs (21,2, ..., x). Let Prlz < S1; 29 « Sa;...;2, — Sk : E] denote
the probability of the event E after the processes 1 «— S1, 22 < Ss, ..., «— Sk

are performed in order. PPT stands for “probabilistic polynomial time”. All PPT
machines in this paper run in probabilistic polynomial-time in the security pa-
rameter denoted by n. Also, some PPT machines (e.g., representing adversaries)
are allowed to take non-uniform auxiliary input of polynomial length in n, which
is denoted by z.
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2.1 Circuit Obfuscators

A class of circuits is of the form C = {C, }new, where C,, is a set of polynomial-
size circuits with input length I;,,(n) and output length I,y (n), where l;,(n) and
lout(n) are polynomials. It has an associated PPT generation algorithm which
takes as input 1" and generates a random circuit C' from C,,. In this paper, it
corresponds to the random selection of information such as cryptographic keys
on security parameter 1. We denote the generation process by C' < C,,. When
a circuit is used as an input or an output argument of an algorithm, we assume
that an encoding of circuits is used implicitly (e.g., obfuscators take as input a
circuit and output a circuit). The results of this paper are independent of any
particular encoding method.

Let C(xz,r) be a probabilistic circuit which takes the regular input « and the
random input 7. Given a regular input z, we can view C(z,-) as a sampling
algorithm for the distribution obtained by evaluating C(x,r) on random coins
r. Given two probabilistic circuits (Cy, C2) whose regular inputs are of the same
length, we denote by (Ci(x),Ca(z)) the two distributions produced by Ci(z,-)
and Ca(z, -) and by StaDiff(Cy (z), C2(x)) the statistical difference between them,
i.e., StaDiff(Cy(z), Ca(x)) = ézye{o,l}%ut(") |Prfo < Ci(x) : 0 = y] — Prfo «
Calw) 0=yl

When we say that a machine M has black-box access to a probabilistic circuit
C, we have two different meanings: oracle access and sampling access. Oracle
access is such that M is allowed to set both regular and random inputs. We
denote it by M¢. Sampling access is such that M is allowed to set only the
regular input, but not the random input. That is, when M makes an oracle
query x, M obtains a uniform and independent sample from the distribution
produced by C(z,-). We denote it by M <>,

An obfuscator for a class of circuits C = {Cp,}new is a PPT machine which
takes as input a circuit C' € C, and outputs an unintelligible circuit C’ which
preserve the functionality. In this paper, we require that the functionality should
be perfectly preserved.

Definition 1. A PPT machine Obf is a circuit obfuscator for a class of prob-

abilistic circuits C = {Cp}new if, for every probabilistic circuit C € C,, the
following holds: Pr[C’ «+ Obf(C) : Vx, StaDiff(C(x),C'(z)) = 0] = 1.

Remark 1. We can relax the functionality requirement by allowing a negligible
statistical difference and a negligible error probability as in [23/24]. In this paper,
we use this stronger definition because our proposed obfuscator can satisfy it.

Definition [ says nothing about the security requirement and we will formulate
it based on VBPs in Section [4

2.2 Public-Key Encryption and Digital Signatures

We review the security notions of public-key encryption (PKE) and digital signa-
ture (DS) schemes (Our definitions are based on [19]). Let Setup be an algorithm
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which, on security parameter 1", generates a parameter to be used commonly
by multiple users in a pair of PKE and DS schemes.

A PKE scheme consists of three algorithms (EKG, E, D). The key generation
algorithm EKG is a probabilistic algorithm which takes as input a common pa-
rameter p and returns a public-secret key pair (pk, sk). The encryption algorithm
E is a probabilistic algorithm which takes a common parameter p, a public key
pk, and a plaintext m € MS(p, pk) to return a ciphertext ¢, where M.S(p, pk)
is the message space defined by (p,pk). The encryption process is denoted by
¢ <+ E(p, pk,m). The decryption algorithm D is a deterministic algorithm which
takes a common parameter p, a secret key sk, and a ciphertext ¢ to return the
plaintext m, and the decryption process is denoted by m = D(p, sk, c). When
the given ciphertext is invalid, the decryption algorithm produces a special sym-
bol L to indicate that the ciphertext was invalid. It is required that, for every
key information (p,pk,sk) and every message m € MS(p,pk), the decryption
always succeeds, i.e., Pr[c < E(p, pk,m) : D(p, sk,c) = m] = 1. The following is
the standard indistinguishability requirement against chosen plaintext attacks
(CPAs). The definition is for a single message, but implies the indistinguishabil-
ity requirement for polynomially multiple messages [19].

Definition 2 (Indistinguishability of Encryptions against CPAs). A
PKFE scheme (EKG, E,D) satisfies the indistinguishability if the following condi-
tion holds: For every PPT machine pair (A1, As) (adversary), every polynomial
p(+), all sufficiently large n € IN, and every z € {0, 1}PV(),

p < Setup(1"); (pk, sk) — EKG(p);

9. py | (M1sm2, 1) = Ai(p,pk, 2);b — {0, 1};¢ — E(p, pkymy); | _ 1
d<—A2(p,pk7(m1,m27h),c7z): p(n)7
b=d

where we assume that A; produces a valid message pair m; and mo € M S(p, pk).

A DS scheme consists of three algorithms (SKG, S, V). The key generation al-
gorithm SKG is a probabilistic algorithm which takes as input a common param-
eter p and returns a public-secret key pair (pk, sk). The signing algorithm S is a
probabilistic algorithm which takes a common parameter p, a secret key sk, and
a plaintext m € M S(p, pk) to return a signature o, where M.S(p, pk) is the mes-
sage space defined by (p, pk). The signing process is denoted by o < S(p, sk, m).
The verification algorithm V is a deterministic algorithm which takes a com-
mon parameter p, a public key pk, a message m, and a signature o to return
Accept if ¢ is a valid signature of m, and the verification process is denoted
by d = V(p,pk,m, o). It is required that, for every key information (p, pk, sk)
and every message m € MS(p,pk), the verification of valid signatures always
succeeds, i.e., Pr[o < S(p, sk, m) : V(p, pk, m, o) = Accept] = 1. The following is
the standard existential unforgeability (EU) requirement against chosen-message
attacks (CMAs).

Definition 3 (Existential Unforgeability against CMAs). A DS scheme
(SKG, S,V ) is existentially unforgeable if the following condition holds: For every
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PPT oracle machine A (adversary), every polynomial p(-), all sufficiently large
n € IN, and every z € {0, 1}P°|y(n);

p < Setup(1"); (pk, sk) < SKG(p);
Pr (m7 O-’ Q) — A<<Sp,5k>>(p7 pk’ Z) : < )
V(p,pk,m,o) = Accept and m ¢ Q p(n)

where Sy, s s the signing oracle (circuit) and Q is the set of messages queried
by A adaptively.

3 Security of Digital Signatures in the Context of ES

In this section, we re-define the EU requirement on DS schemes in the context
of ES. Let (EKG, E,D) and (SKG,S,V) be a pair of PKE and DS schemes. We
consider the ES functionality Frs = {F,}nen for the two schemes. Given a
common parameter p, a secret signing key sk, and a public encryption key pke
generated with the security parameter 17, the ES functionality Fj, sx pr, € F}, is
defined as follows:

1. When F), s pk, is Tun on a message m, it generates a signature on m under
sk (o «— S(p, sk,m)), encrypts o under pk. (¢ < E(p, pke, o)), and outputs c.

2. When F), s pk, is run on the special input keys, it outputs (p, pk, pke), where
pk is the public verification key corresponding to sk.

Also, we define a corresponding class of circuits Cgs = {Cp}nenw which im-
plements Fggs. Cy, is a set of circuits C, sk pr, implementing F, o1 i, . The as-
sociated generation algorithm takes as input 1", generates p <« Setup(1"),
(sk,pk) < SKG(p) and (sk, pke) < EKG(p), and outputs Cp s pk. -

The following is the EU requirement re-defined in the context of ES. The
difference from Definition [J] is that A is given the public encryption key pke.
However, it is still equivalent to Definition [Bl

Definition 4 (EU w.r.t. ES Functionality). Let (EKG, E, D) and (SKG,S,V)
be a pair of PKE and DS schemes. The DS scheme is existentially unforgeable
w.r.t. the ES functionality if the following condition holds: For every PPT ma-
chine A (adversary), every polynomial p(-), all sufficiently large n € IN, and
every z € {0, 1}PoV(n)

p < Setup(1™); (pk, sk) < SKG(p); (pke, ske) — EKG(p);
Pr | (m,0,Q) «— ASr#>(p, pk, pke, 2) : < .
V(pk,m,o0) = Accept and m ¢ Q p(n)

Note that the adversary A implicitly has sampling access to F), ok pk, because
it has sampling access to the signing oracle S, s and takes as input the public
encryption key (p, pke). In this sense, Definition @l requires that the signature
scheme is still existentially unforgeable even when A is given sampling access to
Fp,sk,pke .
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Next, we consider a stronger EU, which requires that the signature scheme
is still existentially unforgeable even when A is given an obfuscated circuit for
F, skpk.- The following is the strengthened definition and the difference from
Definition Ml is that A is given an obfuscated circuit for Fj s pi. -

Definition 5 (EU w.r.t. ES Obfuscator). Let (EKG, E,D) and (SKG,S,V) be
a pair of PKE and DS schemes. Also, let Obf be a circuit obfuscator for Cgg. The
DS scheme is existentially unforgeable w.r.t. Obf if the following condition holds:
For every PPT machine A (adversary), every polynomial p(-), all sufficiently
large n € IN, and every z € {0, 1}p°'Y(”),

p — Setup(1"); (pk, sk) — SKG(p); (phe, sk.) — EKG(p):
C" — OBF(Ch.atpr, ): 1
(mvav Q) — A<<Sp’8k>><papkvpk67claz) : p(n)
V(pk,m,o) = Accept and m ¢ Q

Pr

We expect that if Obf satisfies a strong VBP, then the EU w.r.t. the ES func-
tionality implies the (stronger) EU w.r.t. Obf. The question is what VBP Obf
should satisfy for the implication to hold. We will answer it in the next section.

Remark 2. We can re-define the indistinguishability of encryptions in the con-
text of ES in a similar way. However, we omit it because the main purpose of
obfuscators is to hide Alice’s secret signing key but not Bob’s secret decryption
key. Note that the indistinguishability is preserved even when the distinguisher
D in Definition [ is given the naive program for ES that reveals the signing key.

4 Virtual Black-Box Properties

In this section, we review average-case VBP (ACVBP) proposed by Hohenberger
et al. in [24], under which the VBP of the re-encryption obfuscator is proved. As
stated in [24], their ACVBP provides a meaningful security for cryptographic
schemes if they satisfy a special property called distinguishable attack property.
Unfortunately, DS schemes do not have this property in the context of ES.
That is, even if Obf satisfies the ACVBP under their ACVBP definition, the
EU w.r.t. the ES functionality does not necessarily imply the stronger EU w.r.t.
Obf. Therefore, we propose a natural generalization of their ACVBP definition
under which we can claim that, if Obf satisfies the (stronger) ACVBP, then the
implication holds.
First of all, we review the definition of ACVBP proposed in [24].

Definition 6 (ACVBP [24]). A circuit obfuscator Obf for C satisfies the
ACVBP if the following condition holds: There exists a PPT oracle machine
S (simulator) such that, for every PPT oracle machine D (distinguisher), every
polynomial p(-), all sufficiently large n € IN, and every z € {0, 1}P°'Y("),

C «— Cy; C + Cp;

Pr|C'«Obf(C); :b=1| —Pr|C" « S<>(1"2);:b=1]||<
b — D<C>(C, 2) b — D<C>(C" 2) p(n)



102 S. Hada

It was proposed as a general definition in the sense that it is not specific to re-
encryption. The authors gave an informal discussion that their proposed ACVBP
provides a meaningful security in cryptographic settings [24, Section 2.1]. We
briefly review it below. In general, VBPs should guarantee that if a cryptographic
scheme is secure when the adversary is given black-box access to a program,
then it remains secure when the adversary is given the obfuscated program. The
authors claim that for a large class of applications (including re-encryption),
obfuscators satisfying Definition [l indeed give this guarantee. More specifically,
the authors propose to use the following informal argument: If a cryptographic
scheme has the following three properties:

1. The scheme is secure against black-box adversaries with sampling access to
functionality X selected randomly from a family F’;

2. A distinguisher D with sampling access to X can test whether an adversary
A can break the security guarantee of the scheme (distinguishable attack
property);

3. There exists a circuit obfuscator satisfying ACVBP for a class Cg of circuits
implementing F’;

Then the cryptographic scheme is also secure against adversaries who are given
an obfuscation of a circuit selected at random from the class Cr.

The argument works for re-encryption functionalities as discussed in [24],
where F' is a re-encryption functionality and the cryptographic scheme is the
underlying encryption scheme. However, it does NOT work for ES functionalities,
where the cryptographic scheme is a pair of PKE and DS schemes, F' is the
ES functionality Fgg, and X is Fj s pk.. Let us check whether the argument
goes through for the DS scheme. We have no problem with the first and third
conditions. The first condition requires that the DS scheme satisfies the standard
EU requirement according to Definitiondl The third condition requires that there
exists a circuit obfuscator satisfying ACVBP for Cgg. The problem is that the
second condition is not satisfied in this case. The reason is that A has sampling
access to the signing oracle, but D does not have.

Remark 3. Readers might ask if Definition [ still provides a meaningful security
for cryptographic schemes even when they do NOT satisfy the distinguishable
attack property. However, it is not the case. We can show that there exists a
cryptographic functionality using a secret information such that (1) the secret
operation does not satisfy the distinguishable attack property and (2) it has an
obfuscator satisfying the ACVBP under Definition [6, but any obfuscated circuit
reveals the secret information.

As discussed above, Definition [Glis not strong enough for our purpose. In order to
make it stronger, we propose a natural generalization. The generalization allows
distinguishers to have sampling access not only to < C > but also to a set of
oracles dependent on C.

Definition 7 (ACVBP w.r.t. Dependent Oracles). Let T(C) be a set of
oracles dependent on the circuit C. A circuit obfuscator Obf for C satisfies the
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ACVBP w.r.t. dependent oracle set T if the following condition holds: There
exists a PPT oracle machine S (simulator) such that, for every PPT oracle
machine D (distinguisher), every polynomial p(-), all sufficiently large n € IN,
and every z € {0, 1}PV(n),

C «— Cp; C — Cy; 1
Pr | C' «— Obf(C); cb=1| —=Pr | C" « S (1", 2); :b=1]||< ,
b D<<C,T(C)>>(C/ Z) b D<<C’,T(C)>>(C// Z) p(n)

where D<CT(C> means that D has sampling access to all oracles contained in
T(C) in addition to C.

Clearly, for every T, this generalized ACVBP implies the ACVBP in Definition [l

Remark 4. Since T(C) can be viewed as dependent auxiliary-input to adver-
saries, it is natural to allow the simulator S to have access to T'(C'). However,
we did not allow it because the security proof of our obfuscator does not need it.

Now we can clarify the condition on Obf under which the EU w.r.t. the ES
functionality implies the EU w.r.t. Obf.

Theorem 1. Let T(Cp sk pk, ) be {Sp.sk}- If an obfuscator Obf for Cps satisfies
ACVBP w.r.t. dependent oracle set T, then the EU w.r.t the ES functionality
implies the EU w.r.t. Obf.

Proof. We show that, if the EU w.r.t. the ES functionality is satisfied, but the
stronger EU w.r.t. Obf is NOT satisfied, then it contradicts the ACVBP w.r.t.
dependent oracle set T'. Let A be the adversary that breaks the stronger EU.
Consider the following distinguisher D that uses sampling access to T(C} sk pk, )
to check whether the adversary A succeeds in breaking the stronger EU.

1. Take as input a circuit C' and an auxiliary-input z. (C is either an obfuscated
circuit or a simulated circuit).

2. Use the sampling access to Cp, sk pk. to get (p, pk, pke).

3. Use the sampling access to S, s, to simulate (m, o, Q) « A<Sr¥>(p, pk, pk,,
C,z2).

4. Output 1 if and only if V(pk, m, o) = Accept and m ¢ Q.

If C is an obfuscated circuit, then the probability D outputs 1 is equal to the
probability that A breaks the stronger EU, which is not negligible by the as-
sumption. On the other hand, if C' is a simulated circuit, then the probability
D outputs 1 is negligible, otherwise, A can be used to break the standard EU
w.r.t. the ES functionality. Therefore, it contradicts the ACVBP w.r.t. depen-
dent oracle set T'. O

Remark 5. Note that the proof argument does not work under the ACVBP
definition (Definition [f]), where distinguishers are not allowed to use dependent
oracle set T
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5 Secure Obfuscator for a Special ES Functionality

In this section, we propose an obfuscator for a special ES functionality and
prove the security based on the generalized ACVBP definition. Our proposed
ES functionality is the sequential composition of Waters’s signature scheme and
the linear encryption scheme.

5.1 Algebraic Setting and Complexity Assumptions

First of all, we review the required algebraic setting and complexity assumptions.
Let Setup be an algorithm which, on input the security parameter 1™, randomly
generates the parameters for a bilinear map (¢, G, Gr, e, g), where ¢ is a prime
of length n, both G and G are groups of order ¢, e is an efficient bilinear
mapping from G x G to Gr, g is a generator of G (e.g., refer to [6, Section 5]).
The mapping e satisfies the following two properties: (i) Bilinear: for all g € G
and a,b € Z,, e(g%, %) = e(g,9)?°. (ii) Non-degenerate: if g generates G, then
e(g®, g% # 1.

In this paper, we use the following two Diffie-Hellman assumptions. All as-
sumptions are standard ones which have been used in the literature. The first
one is so-called the Decisional Bilinear Diffie-Hellman (DBDH) assumption (e.g.,
see [25I33]), which assumes that, given g, g%, ¢°, g, e(g, g)%, it is hard to check
whether abc = d. The second one is the Decisional Linear (DL) assumption (e.g.,
see [5I24]), which assumes that, given g, g%, ¢°, g%, (9%)", (¢®)*, it is hard to check
whether r + s = ¢.

Definition 8 (DBDH Assumption). For every PPT machine D, every poly-
nomial p(-), all sufficiently large n € IN, and every z € {0, 1}PV()

p=(¢,G,Gr,e,g) — Setup(1™);
Pr | a« Zg;b— Zg; c — Zg; s decision =1| —
decision < D(p, g%, g%, g%, e(g, )™, 2)
p=(q,G,Gr,e, h) — Setup(1™);
Pr|a« Zg;b < Zg;c — ZLg;d +— Lyg; : decision =1
decision < D(p, g%, g%, g% e(g,9)?, 2)

p(n)

Definition 9 (DL Assumption). For every PPT machine D, every polyno-
mial p(-), all sufficiently large n € IN, and every z € {0,1}POV()

p=(q,G,Gr, e, g) < Setup(1");
Pr|a« Zg;b— Zg;r — Ly 8 — Lg; s decision = 1| —
decision < D(p, (9*,9"), (9" "%, (9*)", (4")*), 2)

b= (quvGTveﬂg) — Setup(ln)v 1
Pr|a«Zgb—Zg;r — Lg; s — Lyt — Lyg; s decision = 1| | < .
decision < D(p, (9%, g°), (g%, (9%)", (g*)®), 2) p(n)
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5.2 Waters’s Signature Scheme

We recall Waters’s signature scheme [33]. The message space is {0, 1}"™.

SKG(p):

1. Parse p = (¢,G,Gr, e, g).
2. Randomly select o + Z, and compute g; = g“.
3. Randomly select go «+— G and v’ « G.
4. Randomly select u; < G for every i € [n] and set U = {u;}ic[n)-
5. Output pk = (g1,92,v,U) and sk = (¢%,u’,U) as public and secret keys,
respectively.
Sign(p, sk, m):

1. Parsep = (¢,G,Gr, e, g), sk = (95, u, {ui}ie[n])v and m=(m, ma, -+, my),
where m; denotes the 7’th bit of m.

2. Randomly select x « Zj.

3. Compute (01,02) = (g5 (v [[;cpq ui)*, 9%), where M is the set of all i such
that m; = 1.

4. Output o = (01, 02).

Verify(p, pk,m, o):

1. Parse p= (quvGTveag)a pk = (917927 'LL/, {Ui}ie[n])a m = (mla ma, -, mn)7
and o0 = (01, 02).

2. Output Accept if e(a1, g)/e(o2, u' [[;c o ui) = €(g1,92). Output Reject oth-
erwise.

The security is proved under the DBDH assumption.

Theorem 2 ([33]). Under the DBDH assumption, Waters’s signature scheme
1s existentially unforgeable.

5.3 Linear Encryption Scheme

We recall the linear encryption scheme [5]. The message space is G.
EKG(p):

1. Parse p = (¢,G,Gr, e, g).
2. Randomly select a < Z, and b« Z,.
3. Output pk. = (g%, g*) and sk. = (a, b) as public and secret keys, respectively.

Enc(p, pke, m):

. Parse p = (¢,G,Gr, e, g) and pk. = (92, ¢").
. Randomly select r < Z, and s « Z,.

. Compute (c1, ¢z, ¢3) = ((9)", (¢")°, 9" *m).
. Output ¢ = (¢1, ¢2, c3).

=W N =
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Dec(p, ske, ¢):

1. Parse p= (Q7GaGTaevg)7 Ske = (avb)ﬂ and ¢ = (01702763)'
2. Output m = 63/(C}/a : cé/b).

The security is proved under the DL assumption.

Theorem 3 ([5]). Under the DL assumption, the linear encryption scheme sat-
1sfies the indistinguishability.

We can view ¢g"t* as a random key generated by a KEM and (ci,c2) as its
ciphertext. Note that the KEM encryption algorithm has the scalar homomor-
phic property described in Section [[LT] and Enc is rerandomizable. Specifically,
given a ciphertext ¢ = (c1,co,c3) and the public key pk. = (g%, ¢°), we can
rerandomize the ciphertext by computing (¢1(g%)" , c2(g®)*, csg™ T%'), where 1/
and s are random numbers in Z,. We denote by ReRand(p, pke, (¢1,c2,¢3)) the
rerandomization algorithm.

5.4 The Obfuscator for the ES Functionality

Our special ES functionality is the sequential composition of Waters’s signature
scheme and the linear encryption scheme. Given a common parameter p, a secret
signing key sk, and a public encryption key pk., the ES functionality £, sk pk.
provides the following two functions:

— ESp skpi. (m):
1. Run (o1, 02) < Sign(p, sk, m).
2. Run Cy < Enc(p, pke, o1).
3. Run Cy < Enc(p, pke, 02).
4. Output (C1,C3).
- Keysp,sk,pke(keys):
1. Output (p, pk, pk.), where pk is the public key corresponding to sk.

We define a (naive) class of circuits Cgg = {Cp, tnew for the ES functionality,
which we want to obfuscate. C,, is a set of circuits Cp sk,pr, and each Cp g pk, is
a naive implementation of Fj, s pr.. Without loss of generality, we assume that
we can extract (p, sk, pke) from Cj g pi, . The associated generation algorithm
takes as input 1", generates a common parameter p < Setup(1™), runs (pk, sk) «—
SKG(p), runs (pke, sk.) < EKG(p), and outputs Cp s pk. -

Now, we describe our proposed obfuscator Obf gg for Cpg below. According to
the basic idea in Section [Tl the obfuscation is done by encrypting the signing
key ¢5 and the obfuscated circuit generates a signature using the encrypted
signing key.
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Given a circuit Cp sk pk. , the obfuscator Obfgg

1. Extracts (p, sk, pke).

2. Gets pk using the Keys function.

3. Parses p = (¢,G,Gr, e,g) and sk = (¢3,u,U).

4. Runs (c1, ¢2,¢3) < Enc(p, pke, g3) to encrypt g§. (NOTE: We have (¢, ¢z, ¢3)
= ((9")".(9")°, 9" "*95)).

5. Sets sk’ = (¢3,u’,U), which is an encrypted form of the signing key sk.

6. Constructs and outputs an obfuscated circuit that contains the values (p,
pke, pk, sk, (c1,c2)) and does the following: (1) On input keys, outputs (p,
pk, pk.) and (2) On input a message m € {0,1}",

(a) Runs (o1,02) < Sign(p, sk’, m). Note that (¢1, c2,01) is an encryption of
the first part of a valid signature by Enc. (NOTE: we have (¢1,c,01) =
((9")",(9")%, 97298 (u' [T enq wi)"))-

(b) Computes Cy = (¢}, ¢5, c4) < ReRand(p, pke, (c1,¢c2,01)).

(¢) Runs Cy < Enc(p, pke, 02).

(d) Outputs (Cy, Cy).

Remark 6. For simplicity, we used Enc to encrypt o9 in the definition of Fj, sk pk, -
However, we can use an arbitrary encryption algorithm instead of Enc and it is
easy to modify the obfuscator Obfgg. Furthermore, we may want to omit the
encryption of oy since it is just a random number and leaks no meaningful
information (as long as o7 is encrypted). In this case, we have Cy = o9 in the
both definitions of Fj, s pr, and Obfgg.

Clearly, it satisfies the functionality requirement according to Definition [Il We
prove that it satisfies ACVBP even though distinguishers are given sampling
access to the signing oracle according to Definition [7

Theorem 4. Let T(Cp sk pk.) be {Sp sk }. Under the DL assumption, Obfgg sat-
isfies ACVBP w.r.t. dependent oracle set T.

Proof. Since we can identify an obfuscated ES circuit with the values (p, pke,
pk, sk, (¢1,c2)) contained in the circuit, it is sufficient to construct a simulator
which simulates the values by the help of sampling access to the original circuit
Cp sk, pk, - The first three values (p, pke, pk) can be obtained from the sampling
access to Cp sk pk, using the Keys, g ., function and so the question is how
to simulate the last three values (sk’, (c1,c¢2)). We show that it is sufficient to
generate junk values for them because it is essentially an encryption of the signing
key g5'.
Consider the following simulator S having sampling access to Cyp sk, pk. -

. Take as input the security parameter 1" and an auxiliary-input z.
. Use the sampling access to Cp, sk pk, t0 get (p, pk, pke).

. Parse p= (Q7 G? GT; evg) and pk = (917927 'LL/, U)

. Randomly select Junk «— G.

= W N =
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5. Run (e1, ¢2,¢3) < Enc(p, pke, Junk).
6. Set sk’ = (c3,u',U).
7. OutPUt (pvpkevpku Sk/a (01762))'

We need to show that the output distribution of S is indistinguishable from
the real distribution of (p, pke, pk, sk, (c1,¢2)) for any PPT distinguisher even
when it is allowed to have sampling access to C'S = {C sk pk. , Sp,sk }- For contra-
diction, assume that the probability that a distinguisher D<¢*> can distinguish
between them is not negligible. That is, the difference between the following two
probabilities is not negligible. They are the probabilities that D outputs 1 given
the real and simulated distributions, respectively. g5 is encrypted in the real
distribution while Junk is encrypted in the simulated distribution. It is the only
difference.

[p=(4,G,Gr,e,g) — Setup(1");
(pke, ske) < EKG(p);
(pkv Sk) = ((917927 u/7 U)’ (937 u/7 U)) — SKG(p),
Pr | (c1,¢2,c3) < Enc(p, pke, 95);
sk’ = (cz,u/,U);
b— D<<CS>>((p,pke,pk7 Sk/a (Cla 02))7 Z) :
[b=1
b= (q7 G7 GTveag) — Setup(ln);
(pke, ske) — EKG(p);
(pk7 Sk) = ((917927 ', U)’ (937 ', U)) - SKG(p),
Junk — G;
(c1,c2,c3) « Enc(p, pke, Junk);
sk! = (es, v/, U);
b— D<<CS>>((p,pke,pk7 Sk/a (Cla 02))7 Z) :
b=1

Pr

Then we can construct an adversary pair (A;, A2) which breaks the indistin-
guishability of the linear encryption scheme. A; produces a message pair (my, ms)
and an associated hint h as follows:

Take as input a common parameter p, a public key pk., and auxiliary input z.
Parse p = (¢,G,Gr, e, g).

Randomly generate (pk, sk) = ((g1, g2, v, U), (95,u’',U)) «— SKG(p).
Randomly generate Junk «— G.

Set my = g%, mo = Junk, and h = pk.

Output (mq,mg, h).

BN o

Given a ciphertext ¢ (of either m; or ms), As can use the distinguisher D to
distinguish between m, and mo as follows:

1. Take as input a common parameter p, a public key pk., Ai’s output
(m1,ma, h), a ciphertext ¢, and auxiliary input z.
2. Parse p = (¢,G,Gr,e,g), h = pk = (g1,92,4',U), and ¢ = (c1, c2, c3).
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3. Compute sk’ = (c3,u', U = {u; }ie[m))-

4. Simulate D> ((p, pk., pk, sk’, (c1, c2)), ), where the oracle queries can be
perfectly simulated using p, sk = (m1,u',U), and pk..

5. Output the output of D.

If the target ciphertext c is a ciphertext of mq, the probability that As outputs 1
is equal to the former probability, otherwise, it is equal to the latter probability.
Since the difference is not negligible, it contradicts Theorem [3l a

As a corollary, we can conclude that Waters’s signature scheme is existentially
unforgeable even when adversaries are given an obfuscated circuit for Fgg. It
immediately follows from Theorems [l 2 and 4

Corollary 1. Under the DL and DBDH assumptions, Waters’s signature scheme
is existentially unforgeable w.r.t. Obfgg.

6 Concluding Remarks

In this paper, we have constructed an obfuscator for a special ES functionality
and presented a security analysis. We can generalize our construction to clarify
the properties that a pair of PKE and DS schemes should satisfy so that the
ES functionality can be securely obfuscated. We omit it due to the space lim-
itation. Here, we list several DS schemes satisfying all the required properties:
Lysyanskaya’s unique signature scheme [28], Dodis’s verifiable random function
(signature scheme) [15], the undeniable signature scheme by Chaum and Antwer-
pen [I3], the DDH-based pseudo-random function (MAC) proposed by Naor and
Reingold [29], and Schnorr’s signature scheme [32].

We have proposed generic approaches to obfuscating ES functionalities (Ap-
proaches 1,1’, and 2). We took Approach 1’ using the scalar homomorphic prop-
erty of the linear encryption scheme. If we take Approaches 1 and 2 where the
only requirement on Enc and KEM.Enc is rerandomizability, then we can use
an encryption scheme with a relaxed version of chosen-ciphertext attack (CCA)
security [I0]. It is an interesting research issue to investigate what kind of CCA
security we can achieve in the context of ES obfuscation.

Finally, we believe that our proposed obfuscation can be used to securely
obfuscate a signcryption scheme as described in Appendix[Al The formal security
argument is a future work item.
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Appendix

A A Relation to Signcryption

In this appendix, we informally describe (1) how to use an ES functionality as a
building block to construct a secure signcryption scheme and (2) how to obfuscate
the resulting signcryption scheme using an obfuscator for the ES functionality.

A.1 EncryptedSignature-then-Encryption

We propose a new composition method which we call EncryptedSignature-then-
Encryption (EStE) as a new approach to constructing a secure signcryption
scheme: To signcrypt a message, we generate an encrypted signature and encrypt
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both the message and encrypted signature. More specifically, given a message
m, we compute o «— S(p, sk,m), c1 — E1(p,pk, o), and co — Ea(p, pk, (m, 1)),
where the sequential composition of S and E; is the ES functionality, ¢; is the
encrypted signature, and ¢y is the resulting signcryption of m. The difference
from the standard StE composition is that the signature o is doubly encrypted.
The first encryption E; is by the ES functionality and the second encryption E,
can be done by a standard hybrid encryption as in StE (using the same public
encryption key pk).

We follow the security argument of [2] to show that the EStE-based signcryp-
tion scheme satisfies a meaningful security requirement (privacy and authenticity
properties). In [2], two security formalizations are considered: Outsider security
and insider security. In outsider security, adversaries are outsiders who only know
the public keys (p, pk, pke ). On the other hand, in insider security, adversaries are
insiders who know either the signing key sk or the decryption key sk, in addition
to the public keys (p, pk, pke). We focus on insider security since it is stronger.
The insider security is defined in terms of induced PKE and DS schemes (See
[2] for the meaning of induced). That is, we say that a signcryption scheme is
insider-secure if the induced PKE and DS schemes are secure. More specifically,
we say that a signcryption scheme is insider-secure against CPAs and CMAs if
the induced PKE and DS schemes satisfy the indistinguishability against CPAs
and the existential unforgeability against CMAs, respectively (For simplicity, we
don’t consider the indistinguishability against chosen-ciphertext attacks). Fol-
lowing the security argument in [2], we can show that (1) if the PKE scheme of
E, satisfies the indistinguishability against CPAs then the induced PKE scheme
does so (The indistinguishability of E; does not matter) and (2) if the DS scheme
of S satisfies the existential unforgeability against CMAs then the induced DS
scheme does so. Therefore, we can say that the EStE-based signcryption scheme
provides a meaningful security if Es and S are secure as in the two statements.
A next question is how to obfuscate the EStE-based signcryption functionality.

A.2 Obfuscation for EStE

A secure obfuscator for an ES functionality can be used to obfuscate the EStE-
based signcryption functionality since the second encryption E; is just a public
operation. In other words, given an obfuscated ES program, we can append a
program for performing the second encryption to it so that the resulting pro-
gram computes the EStE composition, where we don’t need any extra secret
information. Therefore, by an argument similar to Section [5.4], we can show that
the resulting obfuscator satisfies the ACVBP against distinguishers having sam-
pling access to the signcryption and signing oracles and that the security of the
DS scheme is preserved even when adversaries are given an obfuscated signcryp-
tion program. A question here is what kind of security we can achieve for the
signcryption scheme (rather than the DS scheme) when adversaries are given
an obfuscated signcryption program. This is not a trivial question. For exam-
ple, the insider security of the signcryption scheme is violated when adversaries
have access to the obfuscated program and the secret decryption key. The formal
security argument is outside the scope of this proceedings version.
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Abstract. We construct the first public-key encryption scheme in the
Bounded-Retrieval Model (BRM), providing security against various forms
of adversarial “key leakage” attacks. In this model, the adversary is al-
lowed to learn arbitrary information about the decryption key, subject
only to the constraint that the overall amount of “leakage” is bounded by
at most ¢ bits. The goal of the BRM is to design cryptographic schemes
that can flexibly tolerate arbitrarily leakage bounds ¢ (few bits or many
Gigabytes), by only increasing the size of secret key proportionally, but
keeping all the other parameters — including the size of the public key, ci-
phertext, encryption/decryption time, and the number of secret-key bits
accessed during decryption — small and independent of €.

As our main technical tool, we introduce the concept of an Identity-
Based Hash Proof System (IB-HPS), which generalizes the notion of hash
proof systems of Cramer and Shoup [CS02] to the identity-based setting.
We give three different constructions of this primitive based on: (1) bilin-
ear groups, (2) lattices, and (3) quadratic residuosity. As a result of inde-
pendent interest, we show that an IB-HPS almost immediately yields an
Identity-Based Encryption (IBE) scheme which is secure against (small)
partial leakage of the target identity’s decryption key. As our main result,
we use IB-HPS to construct public-key encryption (and IBE) schemes in
the Bounded-Retrieval Model.

1 Introduction

Traditionally, the security of cryptographic schemes has been analyzed in an
idealized setting, where an adversary only sees the specified “input/output be-
havior” of a scheme, but has no other access to its internal secret state. Unfortu-
nately, in the real world, an adversary may often learn some partial information

* Research supported by NSF grants CNS-0831299 and CNS-0716690.
** Research supported in part by a grant from the Israel Science Foundation.
*** Research supported by the Adams Fellowship Program of the Israel Academy of
Sciences and Humanities, and by a grant from the Israel Science Foundation.

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 113-[L34, 2010.
© International Association for Cryptologic Research 2010



114 J. Alwen et al.

about secret state via various key leakage attacks. Such attacks come in a large
variety and include side-channel attacks, where the physical realization of a cryp-
tographic primitive can leak additional information, such as the computation-
time, power-consumption, radiation/noise/heat emission etc. The cold-boot
attack of Halderman et al. [HSH™ 08| is another example of a key-leakage attack,
where an adversary can learn (imperfect) information about memory contents
of a machine, even after the machine is powered down. Lastly, and especially
relevant to this work, we will also consider key-leakage attacks where a remote
adversary hacks into a target computer, or infects it with some malware, allow-
ing her to download large amounts of secret-key information from the system.
Schemes that are proven secure in an idealized setting, without key leakage, may
become completely insecure if the adversary learns even a small amount of in-
formation about the secret key. Indeed, even very limited leakage attacks have
been shown to have devastating consequences for the security of many natural
schemes.

In this work, we study the design of leakage-resilient public-key encryption
schemes, which are provably secure even in the presence of some limited key-
leakage attacks. In particular, we will assume that the attacker can learn any
efficiently computable function of the secret key, subject only to the constraint
that the total amount of information learned (i.e. the output size of the leakage
function) is bounded by ¢ bits, where ¢ is some arbitrary “leakage parameter”
of the system. Clearly, at this level of generality, the secret-key size s must be
strictly greater than the leakage-parameter ¢. In the literature, there seems to
be a distinction between two related models of leakage, which differ in how they
treat the leakage-parameter ¢ in relation to the secret-key size s.

RELATIVE-LEAKAGE MODEL. In the model of relative leakage, firs studied by
Akavia Goldwasser and Vaikuntanathan, [AGV09], the key-size s is chosen in
the same way as in standard (non leakage-resilient) cryptographic schemes: it is
based on a security parameter, and is usually made as small as possible (e.g.
1024 bits) to give the system some sufficient level of security. Once the key-size
s is determined, the allowed leakage ¢ should be relatively large in proportion to
s so that e.g. up to 50% of the key can be leaked without compromising security.
Therefore, the relative-leakage model implicitly assumes that, no matter what
the key-size is, a leakage attack can reveal at most some relatively small fraction
of the key. This assumption is very reasonable for some attacks, such as the
cold-boot attack, where all memory contents decay uniformly over time.

BOUNDED-RETRIEVAL MODEL (BRM). The Bounded-Retrieval Model (BRM)
[Dzi06], [CLW06, [ADWQ9] is a generalization of the relative-leakage model. In this
model, the leakage-parameter £ is an arbitrary and independent parameter of the
system, which is based on practical considerations about how much leakage the
system needs to tolerate on an absolute scale. The secret-key size s is then chosen
flexibly, depending on the security parameter and the leakage parameter £, so as
to simultaneously provide a sufficient level of security while allowing up to £ bits
of leakage. Therefore, we can tolerate settings where the leakage £ might be small
(several bits) or huge (several Gigabytes) by flexibly increasing the secret-key
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size s depending on (and necessarily exceeding) the leakage parameter e[ of
course, the key-size s should be as small as possible otherwise, so that the allowed
leakage /¢ is a large relative portion of s as well.

With the additional flexibility in secret-key size, the BRM imposes an added
efficiency requirement: the public-key size, ciphertext size, encryption-time and
decryption-time must remain small, only depending on the security parame-
ter, and essentially independent of the leakage-parameter £. In other words, /¢
could potentially grow to the order of Gigabytes, and still result in a usable
system, where the secret key is huge, but the public-key size, ciphertext size
and encryption/decryption times are not much different from those of standard
cryptosystems. This also means that the number of secret-key bits accessed dur-
ing decryption (called locality from now on) must remain small and essentially
independent of the flexibly growing secret-key size.

The flexibility of the BRM seems necessary to protect against large classes
of key-leakage attacks. For example, if the key size is (only) proportional to
the security parameter, several consecutive side-channel readings of a handful of
bits might already leak the entire secret key. Therefore, for natural side-channel
attacks (such as radiation/heat/noise emission) it might already make sense to
make ¢ moderately large (say on the order of Megabytes) to get security. The
main intention of the BRM in prior works, which we also focus on here, is to
offer a novel method for protecting systems against hacking/malware attacks,
where an adversary can download large amounts of information from an attacked
system. It is clear that no security can be achieved using standard-sized (e.g.
1,024 bit) secret keys, as the adversary can download such keys in their entirety.
However, it may be conceivable that the adversary still cannot download too
much (e.g. many Gigabytes) worth of information because: (1) the bandwidth
between the attacker and the system may be too slow to allows this, (2) the
operating-system security may detect such large levels of leakage, or (3) such
attacks would simply not be cost-effective. Therefore we can conceivably protect
against such attacks by just making the leakage-parameter ¢ large enough (e.g.
potentially many Gigabytes), and using a proportionally larger secret-key-size
s. Having a large secret key may, by itself, not be a major concern due to the
increasing size and affordability of local storage. On the other hand, it is crucial
that the other efficiency measures of the system — ciphertext and public-key
sizes, encryption and decryption times — must not degrade with the growth of /.

1.1 Owur Results

As our main contribution, we construct the first leakage-resilient Public-Key
Encryption (PKE) scheme in the BRM. Along the way, we develop new notions
and get results of independent interest. In particular, we:

— Develop a new notion of an Identity-Based Hash Proof System (IB-HPS),
which naturally yields Identity-Based Encryption (IBE) schemes.

! Historically, the BRM setting envisioned ¢ as being necessarily huge. Here we take
a more general view of the BRM, insisting only that the key size can be set flexibly
based on the leakage /.
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— Give three constructions of IB-HPS based on the ideas behind three prior IBE
schemes: [Gen06, BGHOT, [GPVO0S§|. In particular, we show that the notion
of IB-HPS unifies these seemingly unrelated constructions under a single
framework. As a result, we get constructions of IB-HPS under (1) a bilinear
Diffie-Hellman type assumption (2) the quadratic-residuosity assumption (3)
the Learning With Errors (LWE) assumption. The first scheme is secure
in the standard model, while the latter two rely on Random Oracles or,
alternatively, non-standard interactive assumptions.

— Show that an IBE based on IB-HPS can easily be made leakage-resilient, in
the relative-leakage model.

— Show how to use IB-HPS to construct public-key encryption (PKE) schemes
in the BRM, allowing for arbitrary large leakage-bounds, while preserving
efficiency. Our techniques also naturally extend to allow for the construction
of IBE schemes in the BRM.

— Develop new information-theoretic tools to analyze our construction of PKE
in the BRM. Namely, we define a new notion of approximate hash func-
tions (where only elements that are far in Hamming distance are unlikely to
collide) and generalize the Leftover-Hash Lemma to approximate hashing.

— Show how to achieve CCA security for our leakage-resilient IBE and PKE
in BRM constructions.

Before describing our construction of PKE in the BRM, it is instructive to un-
derstand why this problem is non-trivial, and therefore we begin with some naive
approaches, which we improve in several steps.

NAIVE APPROACH: INFLATING THE SECURITY PARAMETER. As the first step
of getting a PKE in the BRM, we would like to simply design a leakage-resilient
PKE scheme that allows for arbitrarily large leakage-bounds ¢, without neces-
sarily meeting the additional efficiency requirements of the BRM. Luckily, there
are several recent PKE schemes in the relative-leakage model [AGV09, [NSO9)
where the leakage-bound ¢()\) is a large portion of the key-size s(A) which, in
turn, depends on a security parameter A. Therefore, one simple solution is to
simply artificially inflate the security parameter A sufficiently, until s(\) and,
correspondingly, £(\) reach the desired level of leakage we would like to toler-
ate. Unfortunately, it is clear that this approach gets extremely inefficient very
fast — e.g. to allow for Gigabytes worth of leakage, we may need to perform
exponentiations on group elements with Gigabyte-long description sizes.

BETTER APPROACH: LEAKAGE-AMPLIFICATION VIA PARALLEL REPETITION.
As an improvement over the previous suggestion, we propose an alternative
which we call parallel-repetition. Assume we have a leakage-resilient PKE scheme
in the relative-leakage model, tolerating ¢-bits of leakage, for some small /. We
can create a new “parallel-repetition scheme”, by taking n independent copies
of the above PKE with key-pairs (pkq,ski), ..., (pk,,sk,) and setting the secret-
key of the new scheme to be sk = (sky,...,sk,) and the public key to be pk =
(pkq, ..., pk,). To encrypt under the repetition scheme, a user would n-out-of-n
secret-share the message m, and, encrypt each share m; under the public key
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pk,. One may hope to argue that, if an adversary learns fewer than n/ bits about
the secret-key sk of the repetition scheme, then there is at least one secret key sk;
about which the adversary learns fewer than ¢ bits, thus maintaining security.
Therefore, the hope is that parallel-repetition amplifies leakage-resilience from
£ bits to nf bits, and thus lets us meet any leakage-bound just by increasing n
sufficiently. In terms of efficiency, the parallel-repetition approach will usually
be more efficient than artificially inflating the security parameter, but it is still
far from the requirements of the BRM: the public-key size, ciphertext size, and
encryption/decryption times are all proportional to n, and therefore must grow
as we strive to tolerate more and more leakage.

SECURITY OF PARALLEL-REPETITION? Surprisingly, we do not know how to
formalize the hope that parallel-repetition amplifies leakage-resilience generically
via a reduction. Such a reduction would need to use an attacker that expects
a public key and nf bits of leakage on its secret key in the repetition scheme,
to break the original scheme with ¢ bits of leakage. Unfortunately, it does not
seem like there is any way to embed a challenge public key pk; into pk, and
faithfully simulate the output of an arbitrary leakage-function f(sk) with né-bit
output, by only learning g(sk;) for some g(-) with ¢ bit output. In fact, as a
subject of future work, we believe that there is a black-box separation showing
that no such reduction can succeed in general. Luckily, we show that (a variant
of) parallel-repetition amplifies leakage for schemes of a special form, which we
will discuss later. For now, let us get back to the issue of efficiency, which we
still need to resolve.

IMPROVEMENT I: IMPROVED EFFICIENCY VIA RANDOM SELECTION. To de-
crease ciphertext size and encryption/decryption times, the encryptor selects
some random subset {r1,...,7:} C {1...n} of t indices, and targets the cipher-
text to the corresponding public keys pk,. ,...,pk, (e.g. t-out-of-t secret-shares
the message m and encrypts each share m; under the public key pk,,). Intu-
itively, if an adversary learns much less than nf bits of leakage about sk, then
there should be many component-keys sk; for which the adversary learns less
than ¢ bits. Therefore the encryptor should select at least one index correspond-
ing to such a key with large probability, when ¢ is made proportional to the se-
curity parameter, and potentially much smaller than n. Although the ciphertext
size and encryption/decryption times (and locality) are now only proportional
to the security parameter, the size of the public key still grows with n, and so
this scheme is still not appropriate for the BRM in terms of efficiency.

IMPROVEMENT II: SMALL PUBLIC-KEY SI1ZE via IBE. A natural solution
to having a short public key is to use identity-based encryption (IBE) instead
of standard PKE. This way, the public key of the repetition scheme is simply a
short master public key of an IBE scheme, while the secret key sk = (sky, ..., sky)
consists of secret-keys for some fixed “identities” IDq,...,ID,. Together, the
above two improvements yield a scheme which meets the efficiency requirements
of the BRM: the public-key size, ciphertext size, encryption/decryption times are
now only proportional to the security parameter and independent of n, which
can grow flexibly.
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SECURITY OF THE IBE-BASED PKE IN BRM CONSTRUCTION? In order to
show that the resulting scheme, utilizing the two proposed improvements, is a
PKE in the BRM we need to show the following. If we start with a leakage-
resilient IBE that allows for ¢-bits of leakage, then the construction amplifies
this to any desired amount ¢ just by increasing the number of secret keys n
sufficiently. Unfortunately, it turns out that this is not the case in general and,
in the full version of this work [ADNT09|, we construct a counterexaple. That
is, we can construct an artificial IBE scheme which is leakage-resilient in the
relative leakage model, with leakage ¢, but the above construction does not
amplify leakage-resilience beyond ¢’ = £, no matter how large n is. The problem
is that, conceivably, after observing all n secret keys for n identities, it might
be possible to come up with a very short “compressed” key (e.g. whose size is
independent of n) which allows one to decrypt ciphertexts for each one of the
given n identities. Our main result is to show that (a variant of) the construction
is secure, if the leakage-resilient IBE has some additional underlying structure,
which we call an Identity-Based Hash Proof System (IB-HPS).

HASH PROOF SYSTEMS AND IDENTITY-BASED HASH PROOF SYSTEMS. Re-
cently, Naor and Segev [NS09] showed how to use a hash proof system (HPS)
to construct leakage-resilient PKE in the relative-leakage model. Following,
[IKPSY09, NS09], we view an HPS as a key-encapsulation mechanism (KEM)
with special structured A KEM consists of a key-generation procedure (pk, sk) «—
KeyGen(1%), an encapsulation procedure (c, k) « Encap(pk) which produces ci-
phertext/randomness pairs (c, k), and a decapsulation procedure k=Decap(c, sk),
which uses the secret key sk to recover the randomness k£ from a ciphertext c.
A KEM allows a sender that knows pk, to securely agree on randomness k with
a receiver that possesses sk, by sending an encapsulation-ciphertext c. A hash
proof system is a KEM with the following two properties:

— There exists an invalid-encapsulation procedure ¢ « Encap®(pk), so that
ciphertexts generated by Encap®(pk) are computationally indistinguishable
from those generated by Encap(pk), even given the secret key sk.

— For a fixed pk and invalid ciphertext ¢ generated by Encap®(pk), the output of
Decap(c, sk) is statistically uniform, over the randomness of sk. This property
can only hold if a fixed pk leaves statistical entropy in sk.

Notice the difference between valid and invalid ciphertexts. For a fixed pk, a
valid ¢, produced by (c, k) < Encap(pk), always decapsulated to the same value
k, no matter which secret key sk is used to decapsulate it. On other hand, an
invalid ¢ produced by ¢ « Encap®(pk), decapsulated to a statistically random
value based on the randomness of sk.

2 Our informal description and definition of HPS here, which will also be a basis of
our formal definition of IB-HPS in Section [3.]] is a simplified version of the standard
one. Although the two are not technically equivalent, the standard definition implies
ours, which is in-turn sufficient for leakage-resilience and captures the main essence
of HPS.



Public-Key Encryption in the Bounded-Retrieval Model 119

The above two properties are sufficient to prove KEM security, showing that
for (¢, k) < Encap(pk), an attacker given ¢ cannot distinguish k& from uniform.
The proof proceeds in two steps:

1. We replace the honestly generated (c, k) <+ Encap(pk) with ¢’ < Encap*(pk)
and k' « Decap(c’, sk).

2. The value k' = Decap(c/,sk) is statistically uniform over the choice of sk,
which is unknown to the adversary.

As Naor and Segev noticed in [NS09], this proof also works in the presence of
leakage since step (1) holds even if the adversary saw all of sk, and step (2) is
information-theoretic, so we can argue that ¢ bits of leakage about sk will only
reduce the statistical entropy of k&’ by at most £ bits. To agree on a uniform
value k in the presence of leakage, we just compose the KEM with a randomness
extractor.

The main benefit of this proof strategy is that, after switching valid/invalid ci-
phertexts in the first step, we can argue about leakage using a purely information-
theoretic analysis. We observe that it is therefore relatively easy to show that (a
variant of) parallel repetition amplifies leakage-resilience, since it amplifies the
statistical entropy of the secret key sk = (ski,...,sky). In this work, we gener-
alize the notion of HPS to the identity-based setting by defining Identity-Based
Hash Proof System (IB-HPS) in a natural way. First of all, this gives us a general
framework for constructing leakage-resilient IBE schemes in the relative-leakage
model. Second of all, it also allows us to prove that a variant of the previously
proposed leakage-amplification technique (using an IB-HPS rather than just any
IBE) can indeed be used to get PKE (and IBE) schemes in the BRM.

1.2 Related Work

RESTRICTED MODELS OF LEAKAGE-RESILIENCE. Several other models of
leakage-resilience have appeared in the literature. They differ from the model
we described in the that they restrict the type, as well as amount, of informa-
tion that the adversary can learn. For example, the work on exposure resilient
cryptography [CDH™00, [DSSO1L, [KZ03| studies the case where an adversary can
only learn some small subset of the physical bits of the secret key. Similarly,
[ISW03] studies how to implement arbitrary computation in the setting where
an adversary can observe a small subset of the physical wires of a circuity. Un-
fortunately, these models fail to capture many meaningful side-channel attacks,
such as learning the hamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzin [MR04] initiated the formal mod-
eling of side-channel attacks under the axiom that “only computation leaks in-
formation”, where each invocation of a cryptographic primitive leaks a function
of only the bits accessed during that invocation. Several primitives have been
constructed in this setting including stream ciphers [DP0S|, [Pie09] and signa-
tures [FKPRI0]. On the positive side, this model only imposes a bound on the
amount of information learned during each invocation of a primitive, but not
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on the overall amount of information that the attacker can get throughout the
lifetime of the system. On the negative side, this model fails to capture many
leakage-attacks, such as the cold-boot attack of [HSHT08|, where all memory
contents leak information, even if they were never accessed.

Certainly, all of the restricted models fail to capture hacking/malware attacks,
where it is very conceivable that an attacker can compute even complicated
functions of all information stored on the system.

RELATIVE-LEAKAGE MODEL. Several constructions of primitives in the relative-
leakage model have appeared recently. The works of [AGV09, [NS09] construct
public-key encryption schemes in this model, and [KV09] constructs signatures.
The works of [DKL09, IDGK™10| considers a yet-stronger model of leakage-
resilience, called the auxiliary input model, where the leakage-function need only
be one-way (and not necessarily length-bounded), and constructs symmetric-key
and public-key encryption in this model.

BRM. The Bounded-Retrieval Model was (concurrently) proposed by Di
Crescenzo et al. [CLW06] and Dziembowski [Dzi06]. The name serves as an
analogy to the Bounded Storage Model (BSM) of [Mau92], which restricts the
amount of data that an adversary can store after observing a huge public ran-
dom string, rather than the amount of data an adversary can retrieve from
a huge secret key. With the exception of [ADWO09], all of the work on the
BRM is in the symmetric-key setting, where two parties share a huge secret
key. The recent work of Alwen et al. [ADWOQ9] gave the first public-key results
in the BRM, by constructing identification schemes, (variants of) signatures,
and authenticated-key-agreement protocols. However, these primitives cannot
be used to encrypt a message non-interactively, as is done in the current work.
Moreover, the authenticated-key agreement protocols of [ADWOQ9] required the
use of Random Oracles, while we offer (some) constructions in the standard
model. We note that many of the prior schemes in the BRM and BSM employ
ideas similar to the “parallel repetition” and “random-subset selection” that we
described in the introduction. However, the proof-techniques in this paper differ
significantly from previous works.

2 Preliminaries

def

NOTATION. For an integer n, we use the notation [n] to denote the set [n] =
{1,...,n}. For a randomized function f, we write f(z;r) to denote the unique
output of f on input x with random coins r. We write f(x) to denote a random
variable for the output of f(x;r), over the random coins r. For a set S, we let
Us denote the uniform distribution over S. For an integer v € N, we let U,
denote the uniform distribution over {0,1}", the bit-strings of length v. For a
distribution or random variable X we write z « X to denote the operation of
sampling a random x according to X . For a set S, we write s < S as shorthand
for s « Usg.
def

ENTROPY. The min-entropy of a r.v. X is Hoo(X) = —log(max, Pr[X = z]).
This is a standard notion of entropy used in cryptography, since it measures the
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worst-case predictability of X. The average conditional min-entropy [DORS0S]
of X given Z is defined by Hoo(X|Z) = —log (E.z [27H=(XIZ=2)]) | This
measures the worst-case predictability of X by an adversary that may observe
a correlated variable Z.

STATISTICAL DISTANCE AND EXTRACTORS. The statistical distance between
X,Y is defined by SD(X,Y) = 1 3" [Pr[X = 2] — Pr[Y = z]|. We write X ~.
Y to denote SD(X,Y) <¢, and X = Y to denote that the statistical distance is
negligible. An extractor [NZ96] can be used to extract uniform randomness out
of a weakly-random value which is only assumed to have sufficient min-entropy.
Our definition follows that of [DORS08], which is defined in terms of conditional
min-entropy.

Definition 1 (Extractors). We say that an efficient randomized function Ext :
{0,1}* — {0,1}" is an (m, e)-extractor if for all X, Z such that X is distributed
over {0,1}* and Hoo(X|Z) > m, we get (Z, R,Ext(X; R)) ~. (Z,R,U,) where
R is a random variable for the coins of Ext.

Due to space constraints, almost all the proofs are omitted from the confer-
ence version of this paper. Please see the full version [ADNT(09] for proofs and
additional details.

3 Identity-Based Hash Proof System (IB-HPS)

3.1 Definition

An Identity-Based Hash Proof System (IB-HPS) consists of PPT algorithms:
Setup, KeyGen, Encap, Encap®, Decap. The algorithms have the following syntax.

(mpk, msk) < Setup(1*) : The setup algorithm takes as input a security parameter
A and produces the master public key mpk and the master secret key msk. The
master public key defines an identity set ZD, and an encapsulated-key set K.
All other algorithms KeyGen, Encap, Decap, Encap™ implicitly include mpk as an
input.

skip < KeyGen(ID, msk) : For any identity ID € ZD, the KeyGen algorithm uses the
master secret key msk to sample an identity secret key skip.

(¢, k) < Encap(ID) : The valid encapsulation algorithm creates pairs (c, k) where
c is a valid ciphertext, and k € I is the encapsulated-key.

¢ < Encap*(ID) : The alternative invalid encapsulation algorithm which samples
an invalid ciphertext c.

k <« Decap(c,skip) : The decapsulation algorithm is deterministic, and takes an
identity secret key skip and a ciphertext ¢ and outputs the encapsulated key k.

We require that an Identity-Based Hash Proof System satisfies the following
properties.

I. CORRECTNESS OF DECAPSULATION. For any values of mpk, msk produced
by Setup(1*), any ID € ZD we have:

skip < KeyGen(ID, msk)

(c.k) — Encap(ID) , K — Decap(c,skip) | = "8I

Pr [k;ék’
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II. VALID/INVALID CIPHERTEXT INDISTINGUISHABILITY. The valid ciphertexts
generated by Encap and the invalid ciphertexts generated by Encap™ should be
indistinguishable even given the identity secret key. In particular, we define the
following distinguishability game between an adversary A and a challenger.

VI-IND(A)

Setup: The challenger computes (mpk, msk) «— Setup(1*) and gives mpk to the
adversary A.

Test Stage 1: The adversary A adaptively queries the challenger with ID € ZD
and the challenger responds with skip.

Challenge Stage: The adversary selects an arbitrary challenge identity ID* € ZD.
The challenger chooses b < {0,1}.
If b = 0 the challenger computes (c, k) < Encap(ID*).
If b = 1 the challenger computes ¢ « Encap™(ID*).
The challenger gives ¢ to the adversary A.

Test Stage 2: The adversary A adaptively queries the challenger with ID € ZD
and the challenger responds with skip.

Output: The adversary A outputs a bit ¥ € {0,1} which is the output of the
game. We say that A wins the game if b’ = b.

Note: In test stages 1,2 the challenger computes skip < KeyGen(ID, msk) the first
time that ID is queried and responds to all future queries on the same ID with the
same skip.

Note that, during the challenge phase, the adversary can choose any identity
ID*, and possibly even one for which it has seen the secret key skip+« in Test
Stage 1 (or the adversary can simply get skp+ in Test Stage 2). We define the

advantage of A in distinguishing valid/invalid ciphertexts to be Advl\Q:LNPD& ey B

| Pr[A wins ] — }|. We require that Adv?Q:LNPDS)A()\) = negl(A).

III. UNIVERSALITY/SMOOTHNESS/LEAKAGE-SMOOTHNESS. Other than prop-
erties I and II, we will need one additional information theoretic property. Essen-
tially, we want to ensure that there are many possibilities for the decapsulation
of an invalid ciphertext, which are left undetermined by the public parameters
of the system. We define three flavors of this property as follows.

Definition 2 (Universal IB-HPS). We say that an IB-HPS is (m, p)-universal
if, for any fived values of mpk, msk produced by Setup(1*), and any fized |D € ITD
the following two properties hold:

1. Let SK < KeyGen(ID, msk) be a random variable. Then Ho(SK) > m.
2. For any fized distinct values skip # skip in the support of SK, we have

Pr  [Decap(c,skip) = Decap(c,skip)] < p.
c+—Encap*(ID)

Notice the significant difference between valid and invalid ciphertexts. For valid
ciphertexts ¢, the correctness of decapsulation ensures that there is a single value
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k € K such that Decap(c,skip) = k for (virtually) all choices of skip (of which
there are many by (1)). On the other hand, for invalid ciphertexts ¢, (2) ensures
that it is highly unlikely that any two distinct secret-keys skip will decapsulate
¢ to the same value k.

Definition 3 (Smooth/Leakage-Smooth IB-HPS). We say that an 1B-HPS
is smooth if, for any fixed values of mpk, msk produced by Setup(1*), any ID €
ID, we have:

SD( (c,k) , (c,k') ) < negl(})
where ¢ < Encap®(ID), k' + Uy and k is sampled by choosing skip < KeyGen(ID,
msk) and computing k = Decap(c,skip). We say that an IB-HPS is {-leakage-

smooth if, for any (possibly randomized) function f(-) with ¢-bit output, we
have:

SD( (Cv f(Sk|D)’ k) ’ (C’ f(Sk|D)7 k/) ) < negl(A)

where ¢, k,skip, k' are sampled as above. Note, for this property, f need not be
efficient.

3.2 Relations between Universality, Smoothness and
Leakage-Smoothness

The following theorem is a simple consequence of the leftover hash lemma.

Theorem 1. Assume that an IB-HPS, with key set K = {0,1}", is (m,p)-
universal. Then it is also (-leakage smooth as long as £ < m — v — w(log(\))
and p < .., (14 negl(\)).

We also show how to convert a smooth IB-HPS (Setup, KeyGen, Encap, Encap®,

Decap) into a leakage-smooth IB-HPS using an extractor Ext : K — {0,1}”. We
define:

- Encap,(ID): Choose (¢, k) < Encap(ID), k" < Ext(k;r) where r is a random
seed. Output ¢’ = (¢, 1), k.

- Encap3(ID) : Choose a random seed r and ¢ «— Encap™(ID). Output ¢’ = (c, 7).

- Decap,(c/, msk): Parse ¢/ = (¢, r). Compute k = Decap(c, msk), k' = Ext(k;r).
Output '.

Theorem 2. Assume that an|B-HPS is smooth and that || = 2™. LetExt : K —
{0,1}? be an (m — ¢, €)-extractor for some e = negl(A\). Then the above transfor-
mation produces an £-leakage-smooth IB-HPS.

4 Constructions of IB-HPS
4.1 A Construction of IB-HPS Based on Bilinear Groups

BACKGROUND: Let G,Gyp be two (multiplicative) groups of prime order p and
let g be a generator of G. Let e : G x G — G7 be a map from G to the target
group Gp. We say that the group G is bilinear if we have
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1. Bilinearity: For all u,v € G and a,b € Z, we have e(u®,v®) = e(u, v)®.
2. Non-degeneracy: For the generator g of G, we get e(g,g) # 1.
3. Efficiency: Operations (multiplication, exponentiation) in G, Gr and the

map e can be computed efficiently.

We assume the existence of a group-generation algorithm G(1*) which outputs
a tuple (G,Gr, g,e(-,-),p) where G is a bilinear group of prime order p.

We will rely on the truncated augmented bilinear Diffie-Hellman exponent
assumption (g-TABDHE ) from [Gen06]. We define the two distributions

« a? a? ait?
Dg:(g’g 9@ gl g gl >76(9(‘”1)7g/>)

e 0 . q .
Pha= (g’gaﬂ(a N N AAG ),Z>

where (G,Gr,g,e(-,-),p) «— G(1"), ¢ — G, a «— Zyp, and Z «— Gr. For any
algorithm B, the distinguishing advantage of B in the q-TABDHE problem is

AVE'PHE (N ) = |Pr [B (DY) ) = 0] - Pr[B (D)) = 0] .
Definition 4. We say that the g-TABDHE assumption holds if, for any PPT B,

Adv*BPHE(X ) = negl(\). We say that the TABDHE assumption holds if q-
TABDHE holds for all polynomial q.

CONSTRUCTION: We now present the construction of IB-HPS which is based
directly on Gentry’s IBE [Gen06].

Setup(1*) : Let (G,Gr,g,¢,p) <« G(1*). Let h «— G, o « Z,, and g1 := ¢°.
Set mpk = (G, Gr, g,¢,p, g1, h) and set msk = a.
The identity set is ZD = Z; \ {a} and the encapsulated-key set is £ = Gr. [

KeyGen(ID,msk) : For ID € ZID, choose rp <« Zp, and compute hp =
(hgir'D)l/(ailD). Output skip = (7‘|D, h|D).

Encap(ID) : Choose random s € Z, and compute u = gig~
output ¢ = (u,v),k = e(g, h)°.

Encap*(ID) : Choose a random pair (s,s’) € Z, subject to the constraint s # s'.
Let u = gig , U= e(g,g)s/ and output ¢ = (u, v).

Decap(c,skip) : Parse ¢ = (u,v) and output k = e(u, hip)v™.

P v =e(g,9)° and

—sID

® The set ZD is defined in terms of the secret a. Given ID € Z,, one can efficiently
check if ID € TD by checking if ¢'° = g,.

Essentially, various parts of Gentry’s proof already show that the scheme satisfies
the properties of IB-HPS. We provide a moularized proof of the following theorem
in the full version [ADNT09].

Theorem 3. Under the TABDHE assumption, the above construction is an IB-
HPS which is simultaneously smooth and (m, p)-universal for p = 0 and m =
log(p). More precisely, the valid/invalid ciphertext indistinguishability property
holds under the qg-TABDHE assumption for any adversary making at most g
secret-key and leakage queries.
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4.2 Parameters of Three IB-HPS Constructions
In the full version of this work [ADNT09|, we give two additional constructions
of IB-HPS based on the recent IBE schemes of [BGHOT7, [GPV0S]. Here we, just
give a short note on each construction and explain its parameters. We will be
interested in the following:
1. The actual identity-key size m: the number of bits needed to efficiently rep-
resent an identity secret key skip.
2. The encapsulated-key size v = log(|K|): the size of the encapsulated key.
3. The min-entropy m and the universality p: the values for which the scheme
is (m, p)-universal.
An important parameter is the ratio ', which determines the amount of relative
leakage that our IBE and PKE in BRM constructions can handle. We note that
all of the schemes satisfy the definition of smoothness.

A SCHEME BASED ON BILINEAR GROUPS. The parameters of our construction
from the previous section, based on Gentry’s IBE, are:

N m 1

i =2log(p) +0(1) , m=log(p) , . ~, , v=loglp) , p=0
where p is the (prime) order of an appropriate bilinear-group G.

A SCHEME BASED ON QUADRATIC RESIDUOSITY. We show that the IBE
scheme of Boneh, Gentry and Hamburg [BGHO7] contains a IB-HPS. The con-
struction and proof essentially follow [BGHOT7] (with a minor modification in
how identity secret keys are chosen, to get universality). The scheme is secure
under the Quadratic Residuosity assumption in the Random Oracle model, or
under a non-standard interactive quadratic residuosity assumption in the stan-
dard model. The parameters of interest are:

m 1

m  log(N) ’
where N is an appropriately sized RSA modulus. Unfortunately, it is not clear
how to make the scheme leakage-smooth for any ¢ > 0, since the secret-key
entropy m is too small to extract even a single bit. This problem can be fixed,
as will be done in the BRM, by using parallel-repetition to amplify the entropy.
Still, the relative leakage of the scheme will be poor because of the poor ratio of
the entropy m to actual-key-size m.

m=1log(N) , m=1 |, v=1 , p=0.

A SCHEME BASED ON LATTICES. We show how to get a construction of IB-HPS
using the IBE scheme of Gentry, Peikert and Vaikuntanathan [GPV0§|. Note that
this IBE construction was already observed to be leakage-resilient by [AGV09)],
but this does not imply that it is an IB-HPS. In fact, we need to make some
simple modifications so that the scheme satisfies our definition. The security of
the scheme is based on a (decisional) Learning With Errors (LWE) assumption,
in the random oracle model. Note that this assumption can be reduced to the
GapSVP problem for lattices, using the techniques of [Reg05l PeiOQ]E We show

3 We note that our construction requires that we use some (slightly) super-polynomial
modulus ¢q in the LWE problem, which means that we need to assume GapSVP is
hard against some (slightly) super-polynomial time adversaries.
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that, for any constant € > 0, there exists some setting of the actual-key-size m
so that:
m

1
m=(1—-¢e)ym , m =(1-¢), v=1, p= 2(1+neg1()\)).
Note that, by Theorem[2] this construction is therefore already ¢-leakage smooth,
for any ¢ < m — w(log(\)), without any need to apply an extractor.

5 Leakage-Resilient IBE from IB-HPS

We define what it means for an Identity-Based Encryption (IBE) scheme to be
resistant to key leakage attacks and show how to use an IB-HPS to construct
such an IBE scheme. Our notion of leakage-resilience only allows leakage-attacks
against the secret keys of the various identities, but not the master secret key.
Also, we only allow the adversary to perform leakage attacks before seing the
challenge ciphertext. As noted by [AGV09, [NS09, [ADW09], this limitation is in-
herent to (non-interactive) encryption schemes since otherwise the leakage func-
tion can simply decrypt the challenge ciphertext and output its first bit.

DEFINITION. Recall an IBE scheme consists of four PPT algorithms Setup,
KeyGen, Encrypt, and Decrypt. We omit discussion of the usual correctness re-
quirements. We define the semantic security game, parameterized by a security
parameter A and a leakage parameter ¢ as the following game between an adver-
sary A and a challenger.

IBE-SS(, £)

Setup: Challenger computes (mpk, msk) < Setup(1*), gives mpk to the adv. A.

Test Stage 1: The adv. A adaptively makes the following queries:

Secret-Key Queries: On input ID € ZD, the challenger replies with skip.
Leakage Queries: On input ID € ZD, a PPT function f : {0,1}* — {0,1},
the challenger replies with f(skip).

Challenge Stage: The adversary selects two messages mg,m; € M and a chal-
lenge identity ID* € ZD which never appeared in a secret-key query and ap-
peared in at most £ leakage queries. The challenger chooses b «— {0, 1} uniformly
at random and computes ¢ < Encrypt(ID*, m;) and gives ¢ to the adversary A.

Test Stage 2: The adversary gets to make secret-key queries for arbitrary ID #
ID*. The challenger replies with skjp.

Output: The adversary A outputs a bit b’ € {0,1}. We say that the adversary
wins the game if b’ = b.

Note: In test stages 1,2 the challenger computes skip < KeyGen(ID, msk) the first
time that ID is queried (in a secret-key or leakage query) and responds to all future
queries on the same ID with the same skip.

The advantage of an adversary A in the semantic security game with leakage ¢
is Adv:EE:iS()\,E) = |Pr[A wins ] — 3.

Definition 5 (Leakage-Resilient IBE). An IBE scheme is (-leakage-resilient,
if the advantage of any any PPT adversary A in the semantic security game
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with leakage £, is AdleEjs()\, £) = negl(\). We define the relative leakage of the
scheme to be o dé%/m, where m is the number of bits needed to efficiently store
identity secret keys skip.

CONSTRUCTION: The construction of a leakage-resilient IBE from a leakage-
smooth IB-HPS is almost immediate, by simply using the encapsulated key as
a one-time-pad to encrypt a message. In particular, given an IB-HPS where the
encapsulated key set K has some group structure (K, +) (e.g. bit-strings with
@), we construct an IBE scheme with the same identity set ZD and message set
M = K. The Setup, KeyGen algorithms are the same for both primitives and
Encrypt, Decrypt are defined by:

Encrypt(ID, m): Choose (¢1, k) < Encap(ID) and let ¢co = k + m.
Output ¢ = (e1, ¢2).

Decrypt(c, skip): For ¢ = (¢1, ¢2), compute k = Decap(cy, skip).
Output m = ¢y — k.

Note that the Encap™ algorithm of the IB-HPS is not used in the construction,
but will be used to argue security.

Theorem 4. Assume that we start with an (-leakage-smooth |1B-HPS. Then the
above construction yields an £-leakage-resilient |1BE.

6 Leakage Amplification of IB-HPS

We now show how to construct an ¢-leakage-smooth IB-HPS, for arbitrarily large
values of ¢, meeting the efficiency requirements of the BRM. This will be the
main step towards building PKE (and IBE) schemes in the BRM. We start with
a IB-HPS scheme IT; = (Setup, KeyGen,, Encap,, Encap], Decap;) and compile
it into a new IB-HPS scheme IT; = (Setup, KeyGen,, Encap,, Encap;, Decap,),
where the identity secret keys can be made arbitrarily large, so as to achieve
{-leakage-smoothness for a large /. We will assume there is a one-to-one function
H : IDy x [n] — ID; where ID1,ZD5 are the identity sets of ITy, ITs respec-
tively. In the constructed scheme, the identity secret key of each ID € D5 con-
sists of n components skip = (skip[1], ..., skip[n]), where each component skp|i]
is an independently sampled identity secret key for an identity H(ID,i) € ZD;
of the original scheme. Here, n will be a key-size parameter, which gives us
flexibility in the size of the identity secret key in the constructed scheme, and
will depend on the desired leakage-parameter ¢. The encapsulation procedure
Encap,(ID) will target only a small subset of t-out-of-n of the identities H(ID, ),
and decapsulation Decap, will only need to read the values skip[¢] associated with
these ¢ identities. Here ¢ will be a locality-parameter which can be much smaller
than (and independent of) n. A formal description of the construction appears
in Figure[Il It is described abstractly in terms of arbitrary parameters n,t,v. In
the theorem that follows, we show how to instantiate these appropriately based
on the setting of £, \.
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Let IT; = (Setup, KeyGen,, Encap,, Encapj, Decap;) be a IB-HPS with encapsulated-
key-set K and identity-set ZD;.

Let n,t,v € ZT. We call n a key-size parameter, t a locality parameter and v a
output-size parameter.

Let H : ID3 X [n] — ZD; be a one-to-one function for some set IDZE

Let G be a } -universal hash function family of functions g : K — {0, 1}".

gv
Define IT» = (Setup, KeyGen,, Encap,, Encap;, Decap,) as follows:

Setup(lA): The setup procedure is the same as that of I7;.

KeyGen, (ID, msk): For i € [n], sample skip[i] < KeyGen,(H(ID, %), msk). Output
Sk|D = (Sk|D[1}, N ,Sk|D[Tl]).

Encap,(ID): Choose t random indices r = (r1,...,7¢) « [n]*. Choose g «— G.
For i € {1,...,t}, compute: (¢;, ki) < Encap,(H(ID,;)). Let ¢ = (c1, ..., ).
Output: C = (r,¢,9), k= g(k1, ..., k).

Encap;(ID): Choose ¢ random indices r = (r1,...,7¢) « [n]*. Choose g « G.
For ¢ € {1,...,t}, compute: ¢; < Encap](H(ID,r;)). Let ¢ = (c1,...,¢t). Out-
put: C' = (r, ¢, g).

Decap,(C,skip): Parse C' = (r,c,g). Compute k; = Decap,(ci,skip[r:]) for i €
{1,...,t}. Output k = g(k1, ..., ke).

@ A collision-resistant hash function (CRHF) would suffice here as well.
Fig. 1. Leakage- Amplification of an IB-HPS: Construction of IT; from IT;

For the analysis of the construction, we need to define a new parameter called
the effective key size m’. This is the minimal value such that, for any fixed
mpk, msk, ID, the number of values that skip < KeyGen(ID) can take on is
bounded by 2™ If the actual key size is m and the key entropy is m, then
m > m’ > m. Note that in all of our constructions, m/m’ is a constant (even
when m /7 is not, as is the case for our QR-based construction).

Theorem 5. Assume II; is an (m, p)-universal IB-HPS with effective key size
m’, where p < 1 and m/m’ > 0 are constants. Then, for any constant ¢ >
0 and any polynomial v(X), there exists some t = O(v + A) so that, for any
polynomial n(\), the above construction of Ils with parameters (n,t,v) is an £-
leakage-smooth 1B-HPS where ((A) = (1—e)nm—v—\. The encapsulated-key-set
of Il is K ={0,1}".

The full proof of the above theorem appears in [ADNT09]. We give some intu-
ition here. It is easy to see that II» satisfies correctness. Also, the valid/invalid
ciphertext indistinguishability property of I1s follows by a simple hybrid argu-
ment. Therefore, we only need to show ¢-leakage smoothness, for the ¢ given by
the theorem statement. For a fixed mpk, msk, ID in I15, the entropy of the ran-
dom variable SK|p ~ KeyGen, (ID, msk), is amplified to Ho (SKip) > nm, since it
consists of n independently sampled secret keys of IT;. If we could show that the
scheme is also p/-universal, for some small p’ < (}, +negl())), then we could rely
on Theorem [ to show leakage-smoothness. Unfortunately, this is not the case.
The problem is that, if two values skip # sk|p in the constructed scheme differ
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in only one position j, then Decap,(C,skip) = Decap(C, skip) as long as the ci-
phertext C' does not “select” j, which happens with large probability. Therefore,
to analyze the leakage smoothness of the construction, we define a new notion
called approximately universal hashing, where we only insist that values which
are far from each other in Hamming distance (over some alphabet) are unlikely
to collide. We then show a variant of the leftover-hash lemma, called the ap-
prozimate leftover-hash lemma holds for approximate hashing. Lastly, we show
that the decapsulation procedure Decap,(C, skip) of the amplified scheme IT is
approximately universal, for appropriate parameters, when C' «— Encap*(ID)H
Combining these results, we get the parameters of the theorem.

7 Public-Key Encryption and IBE in the BRM

A public-key encryption (PKE) scheme in the BRM consists of the algorithms
(KeyGen, Encrypt, Decrypt), which are all parameterized by a security parameter
A and a leakage parameter . The syntax and the correctness property of an
encryption scheme follow the standard notion of public-key encryption. We define
the following semantic-security game with leakage £ between an adversary A and
a challenger.

SemS(\, £)

Key Generation: The challenger computes (pk,sk) «— KeyGen(1*,1%) and gives
pk to the adversary A.

Leakage: The adversary A selects a PPT function f : {0,1}* — {0,1}* and gets
f(sk) from the challenger.

Challenge: The adversary A selects two messages mo, m;. The challenger chooses
b — {0,1} uniformly at random and gives ¢ < Encrypt(my, pk) to the adversary

A.
Output: The adversary A outputs a bit b" € {0,1}. We say that A wins the game
if b/ = b.

For any adversary A, the advantage of A in the above game is defined as
AdvEE A(A, £) = |Pr[A wins | — 1.

Definition 6 (Leakage-Resilient PKE). A public-key encryption scheme PKE
is leakage-resilient, if for any polynomial £(\) and any PPT adversary A, we have
AV A (A, (X)) = negl(N).

Definition 7 (PKE in the BRM). We say that a leakage-resilient PKE
scheme is a PKE in the BRM, if the public-key size, ciphertext size, encryption-
time and decryption-time (and the number of secret-key bits read by decryption)
are independent of the leakage-bound £. More formally, there exist polynomials
pksize, ctsize, encT,decT, such that, for any polynomial ¢ and any (pk,sk) «—
KeyGen(1*,1¢V), m € M, ¢ « Encrypt(m, pk), the scheme satisfies:

4 For approximate universality, we think of the “big key” skpp as consisting of n
alphabet symbols, with one symbol for each component key skip|i].
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1. Public-key size is |pk| < O(pksize(X)), ciphertext size is|c| < O(ctsize(A, |m])).

2. Run-time of Encrypt(m, pk) is < O(encT (A, |m])).

3. Run-time of Decrypt(c,sk), and the number of bits of sk accessed, is <
O(decT (A, |m))).

The relative-leakage of the scheme is a = £/|sk|.

We can generalize the above definition to IBE schemes. A leakage-resilient IBE
is an IBFE in the BRM if the master-public-key size, master-secret-key size, ci-
phertext size and encryption/decryption times are bounded by polynomials in-
dependent of £.

Theorem 6 (PKE and IBE in BRM). Assume that we have an (m,p)-
universal |IB-HPS satisfying the conditions of Theorem [d and having actual key
size . Then, for any constant € > 0 and any polynomial v, we get PKE (resp.
IBE) schemes in the BRM with message space M = {0,1}" and:

1. Public-key size (resp. master public/secret key size) is the same as that of
the underlying 1B-HPS.

2. The locality-parameter is t = O(v + X). The # of secret-key bits accessed
during decryption is tm.

3. Ciphertext-size/encryption-time/decryption-time differ by a factor of t from
those of the underlying 1B-HPS.

4. Relative leakage is o > 77 (1 —¢), for sufficiently large values of the leakage-
parameter £. In particular, for large enough {, the secret-key size (resp.
identity-secret-key size) is < ™ (1 + ).

Proof. Follows directly from leakage-amplification (Theorem[H]). For any leakage-
parameter £, the key-size parameter n in the construction of ITy in Figure [ is
made just large enough so that £ < (1 —¢&)nm —v— \. Therefore, II5 is {-leakage
smooth. By Theorem (] this yields an f-leakage resilient IBE. The efficiency
parameters are obvious from the construction, so it is easy to see that we get an
IBE in the BRM. By ignoring all identities except for a single one, we naturally
get a PKE in the BRM. The relative leakage is o = an ~ (1 —¢), for £ large

enough in relation to v, A. O

8 Extensions

In the full version [ADNT09] of this work, we show several extensions to the
results from the previous section. We describe them briefly here.

CCA SEecuRrITY. We show that the main ideas underlying our approach can
be extended to deal with chosen-ciphertext attacks. We present constructions
of encryption schemes that are resilient to leakage even under chosen-ciphertext
attacks. That is, these schemes are semantically secure even against an adver-
sary that is allowed to submit both leakage queries and decryption queries. We
first consider identity-based encryption, and show that the CCA-secure variant
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of Gentry’s scheme [Gen06] can be generalized to deal with leakage. We then
consider public-key encryption in the BRM, and observe that the generic trans-
formation from chosen-plaintext security to chosen-ciphertext security, using the
Naor-Yung paradigm [NY90], also applies in the BRM.

SHORTER CIPHERTEXTS VIA ANONYMOUS ENCAPSULATION. We notice that
two of our IB-HPS constructions, based on lattices and quadratic residuosity,
have additional structure, which allows for a more efficient version of our leakage-
amplification construction. In the construction shown in Figure[I], the ciphertext
C of the constructed scheme IT> contains ¢ ciphertexts cy,...,c; of the under-
lying scheme IT;, where t = O(\ + v). We show how to reduce this to a single
ciphertext if we start with an IB-HPS construction I7; that has an additional
property, which we call anonymous encapsulation. Such a scheme has two addi-
tional procedures:

— (¢, 8) < EncapC(), which samples a ciphertext ¢ together with a trapdoor s
without knowing the target ID.

— k = EcnapK(g, s, ID), which (deterministically) computes k for any ID, given
c and a trapdoor s.

Note that the procedures EncapC, EcnapK (like Encap) are implicitly parameter-
ized by the master public key mpk.

Definition 8 (Anonymous Encapsulation). An IB-HPS has anonymous en-
capsulation if there exist efficient procedures EncapC, EcnapK as above, such that,
for any fixzed mpk, msk, ID, sampling (c, k) < Encap(ID) is equivalent to sampling
(¢,s) < EncapC() and computing k = EcnapK(c, s, ID).

For the lattice and quadratic-residuosity based constructions, the procedures
EncapC, EcnapK are already implicitly defined by Encap, which first samples ¢
anonymously (independently of ID) and then computes k for a given ID using
the randomness s that was used to generate c.

There are several advantages to IB-HPS schemes that have the anonymous-
encapsulation property. Firstly, it’s easy to see that the IBE constructed from
such schemes has anonymity, in that the ciphertext does not reveal the target
identity. Perhaps more importantly, anonymous encapsulation can be used to get
an improved leakage-amplification scheme with shorter ciphertextsEl In particu-
lar, we modify the procedure Encap,(ID) of the constructed IT; scheme, so that
it samples a single ciphertext/trapdoor pair (¢, s) < EncapC;() of the under-
lying scheme II;, and computes k; = EcnapK, (¢, s, H(ID,r;)) for each of of the
t random indices r; € [n]. The ciphertexts of the constructed scheme therefore
consist of C = (r, ¢, g), and contain only a single ciphertext ¢ of the underlying
scheme. To reduce the ciphertext size still further, we can employ the following
optimizations:

1. Instead of sampling the indices r «+ [n]® uniformly at random, and com-
municating this choice in the ciphertext, we use use a hitting sampler to

5 A similar technique is implicitly used to get shorter ciphertexts relative to the mes-
sage length in the IBE constructions of [BGHOQT7, [GPV0S].
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sample r € [n]' efficiently. This choice can then be communicated using a
seed of description size log(n) + O(X + v), rather than the previous size
tlog(n) = O((A + v) log(n)) needed to communicate r explicitly.

2. Use a ~-universal, instead of fully universal, hash function g, where v =
o (1 + negl(X)). As observed in [SZ99], such hash functions can have de-
scription sizes O(v 4+ A), only proportional to the output size, and not the
somewhat larger input size.

We show that leakage-amplification still holds for the modified constructions,
by showing that Decap,(C,-) is an approximately-universal hash function with
appropriate parameters, when C' « Encap®(ID). Unfortunately, the setting of
the parameters requires that p < 211, in the original scheme, which is only the
case for our QR-based scheme but not the lattice-based scheme.

9 Comparison of PKE (and IBE) in BRM Constructions

In Table[Il we compare the efficiency and relative-leakage of our various IBE and
PKE in BRM constructions. We assume that the plaintext size is v = O(\)[
In all of the schemes, the leakage-parameter ¢ can be arbitrarily large and the
relative leakage column indicates the ratio of leakage to secret-key size. The
public-key size of all schemes is the same as the master-public-key size of the
corresponding IB-HPS and the encryption/decryption times (and the number
of bits accessed) differ by a multiplicative factor of ¢ = O(X) from those of
the underlying IB-HPS. The “CT expansion” column indicates the ratio of the
ciphertext size in the BRM to that of the underlying IB-HPS. The “CT size in
BRM” column measures the size of the ciphertext in the BRM on an absolute
scale[] The value ¢ > 0 can be an arbitrary constant.

Table 1. Comparison of Our PKE in BRM Constructions

Relative CT Size

Scheme Assumption Leakage in BRM CT Expansion
Bilinear-Groups
(Cants] P TABDHE (L—e) 00 0]0))
Quadratic Residuosity
[BGHOT) QR oty OW o(1)
Lattices
VOS] LWE/GapSVP T (1—¢) O\ o\

1 = Random Oracle Model/Interactive Assumption

5 To encrypt larger messages, it is sufficient to encrypt a short O()) sized key for a
symmetric-key encryption scheme.

7 Note that, to make a fair comparison, we assume that RSA moduli and bilinear-
group elements have description sizes O(\). For our LWE based construction, the
modulus ¢ needs to be (slightly) super-polynomial, and we are pessimistic by just
bounding its description size by O(\).
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Abstract. Physical computational devices leak side-channel informa-
tion that may, and often does, reveal secret internal states. We present a
general transformation that compiles any circuit into a new, functionally
equivalent circuit which is resilient against well-defined classes of leakage.
Our construction requires a small, stateless and computation-independent
leak-proof component that draws random elements from a fixed distribu-
tion. In essence, we reduce the problem of shielding arbitrarily complex
circuits to the problem of shielding a single, simple component.

Our approach is based on modeling the adversary as a powerful ob-
server that inspects the device via a limited measurement apparatus.
We allow the apparatus to access all the bits of the computation (ex-
cept those inside the leak-proof component) and the amount of leaked
information to grow unbounded over time. However, we assume that the
apparatus is limited either in its computational ability (namely, it lacks
the ability to decode certain linear encodings and outputs a limited num-
ber of bits per iteration), or its precision (each observed bit is flipped
with some probability). While our results apply in general to such leakage
classes, in particular, we obtain security against:

— Constant depth circuits leakage, where the measurement apparatus
can be implemented by an ACP circuit (namely, a constant depth
circuit composed of NOT gates and unbounded fan-in AND and OR
gates), or an ACC®[p] circuit (which is the same as AC®, except that
it also uses MOD,, gates) which outputs a limited number of bits.

— Noisy leakage, where the measurement apparatus reveals all the bits
of the state of the circuit, perturbed by independent binomial noise.
Namely, each bit of the computation is perturbed with probability
p, and remains unchanged with probability 1 — p.
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1 Introduction

The best of cryptographic algorithms are insecure when their implementations
inadvertently reveal secrets to an eavesdropping adversary. Even when the soft-
ware is flawless, practical computational devices leak information via numerous
side channels, including electromagnetic radiation (visible and otherwise) [30123],
timing [7], power consumption [22], acoustic emanations [33], and numerous ef-
fects at the system architecture level (e.g., cache attacks [BI26127]). Leaked in-
formation is even more easily accessible when the computational device is at
the hands of an adversary, as is often the case for many modern devices such
as smart-cards, TPM chips and (potentially stolen) mobile phones and laptops.
Reducing such information leakage has proven excruciatingly difficult and costly,
and its complete elimination is nowhere in sight.

There has lately been a growing amount of interest in coming up with pre-
cise definitions of security against side-channel attacks and in designing crypto-
graphic algorithms that withstand these attacks (e.g., [24/T928/T7ITTIRI29 31259
and others). Micali and Reyzin [24] were the first to propose a general model
of side-channel attacks. They model a side-channel attacker as a two part en-
tity — the first is the measurement apparatus that performs measurements on
the physical state of the device. This is done on behalf of the second entity
which is the adversarial observer. The observer is assumed to be computation-
ally powerful (e.g., polynomial-time or even unbounded), and takes as input the
measurements of the apparatus. Thus, the power of the adversarial observer is
primarily constrained by the quality of the information provided by the mea-
surement apparatus.

It is interesting to note that even though computational devices leak abun-
dantly, many side channel attacks are hard to carry out and some devices remain
unbroken. This is due to the fact that useful measurements can often be difficult
to realize in practice. Physical measurement apparatuses typically produce a
“shallow” or “noisy” measurement of the state of the object, by combining some
of its salient physical properties in a simple way. The measurement consists of a
limited amount of information, obtained as a simple leakage function applied to
the physical state of the device; any in-depth analysis happens only in the form
of post-processing by the observer (rather than in the measurement apparatus).

In this work, we follow the paradigm of Ishai, Sahai, and Wagner [19] who
construct a general transformation from any cryptographic algorithm into one
that is functionally equivalent, but also leakage-resilient. The particular class
of leakage functions they consider is the class of spatially local measurement
functions, namely functions that read and output at most ¢ bits of information.
In particular, the leakage functions are completely oblivious of a large portion
of the circuit’s state.

In contrast, we are interested in security against global measurements, which
are often easier to carry out than localized measurements that require a focus on
specific wires or memory cells; in many side-channel attacks, the main practical
difficulty for the attacker lies precisely in obtaining high spatial resolution and
accuracy. Furthermore, global measurements are typically also more informative
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than local measurements. The question that motivates our work is whether, anal-
ogously to [19], we can construct a general circuit transformation that tolerates
global side-channel measurements.

1.1 Owur Results

Similar to Ishai et al. [I9], we present a general transformation for arbitrary
circuits that makes them resilient against certain classes of leakage. We now
explain what these classes of leakage are and describe our techniques.

Measurement Apparatus. As in most prior work, the measurement appara-
tus in our model is not allowed to access some (very limited) portions of the
computation. It can observe the rest of the computation, and return either a
“computationally bounded” or a “noisy” function of the entire state[l Specifi-
cally, the measurement apparatus is modeled as computing either of the following
types of leakage functions:

— a computationally-bounded leakage function f applied to the state of the de-
vice and all intermediate results that occur during the computation. The
class of functions £ from which f can be chosen models the practical lim-
itations of the physical experimental setting available to the attacker. For
example, £ may consist of all functions computable by circuits of small
depth.

For the computational limitation to be meaningful, the function must
also be limited in its output length (otherwise, the measurement apparatus
could simply leak the entire state by “computing” the identity function).

— a noisy leakage function, where the measurement apparatus returns the ac-
cessed bit with probability 1 — p and flips it with probability p. The mea-
surement apparatus can potentially access all the bits of the computation
this way.

There are specific components of the circuit that we consider to be leak-free. We
diverge from previous solutions by requiring that these components be simple,
stateless and computation-independent. By this, we mean that the complexity
of implementing the leak-free component is independent of the complexity of
the computed function, and that it neither holds secrets nor maintains state.
In particular, the leak-free component cannot hold the secret data used in the
computation.

Specifically, our leak-free components, which we call opaque gates, are defined
as follows. The opaque gate has no inputs and it outputs an element sampled
according to a fixed distribution which is independent of the computation being
carried out. For example, an opaque gate that we consider is one that samples ¢
uniformly random bits subject to the condition that they have even parity.

1 When we refer to the state of a computation, we mean all the intermediate values
produced during the computation on a particular input. Once this computation is
done, the intermediate state is erased to make room for new computations. Thus,
the leakage function can access all the bits of the current computation, but not the
past computations. In fact, this is necessary to achieve security.



138 S. Faust et al.

The leakage function cannot observe the innards of the opaque gate, but it
can observe the wires going into and coming out of it. Although the requirement
of a leak-free component is a strong one, the leak-free components we require
are minimal in many senses:

1. It is a fixed standardized functionality which can be designed and validated
once and added to one’s VLSI “cell library” — which is far better than having
to devise separate protection mechanisms for every circuit of interest.

2. It has no secret keys, no inputs and no internal state, i.e., it is independent
of the computation in the circuit and merely samples from a distribution.

3. Alternatively, because we only need samples from a distribution, we can have
the opaque “gate” simply read them one by one from a precomputed list.
Thus, it suffices to have leak-proof one-time storage (a consumable “tape
roll”) instead of leak-proof computation. This is a viable option if the com-
putation is performed only a bounded number of times.

Many variations of the leak-proof component assumption have been made in the
literature. We highlight some of these works below.

— The “Oblivious RAM” model of Goldreich and Ostrovsky [I5J16] considered
memory to be leaky and the computation to be on a leak-free secure processor
which stores a long-term secret key.

— The model of Micali and Reyzin [24] (and subsequent works [IT|29/12]) re-
versed these roles: they assume that the memory cells that are not accessed
during a computation step do not affect the observable leakage from that
stage and cannot be measured by the apparatus. They called it the “only
computations leaks” assumption]%,

— The model of Goldwasser et al. [I7] (which, although presented in the one-
time programs setting, can be transformed into the leakage-resilient setting)
relaxes the assumption of Micali and Reyzin, assuming only that some read-
only memory (which holds secrets correlated to the computation) is leak-free
if it is not “touched”. The circuit, however, can only be executed a single
time (or more generally, a bounded number of times).

The adversarial observer is all-powerful, and in each invocation of the circuit, it
comes up with an input to the circuit as well as a leakage function, and obtains
the output of the computation (on the given input), together with the leakage.
The adversary decides which leakage function to use in a particular invocation
adaptively, depending on all the information it received so far. We design circuit
transformations that withstand such adversaries, and obtain the following main
results.

Theorem 1 (Informal). Let t be a (statistical) security parameter. There are
circuit transformations that convert any (possibly stateful) circuit C into a circuit
C that is resilient against the following leakage functions:

2 [11129] point out that this requirement can be somewhat relaxed — it suffices that
leakage of memory that is not used is independent of the leakage from computation.
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— Constant-depth ACY circuits whose output length in each invocation is bounded
by t'=°, for any § > 0, and whose output length over the course of time is
unbounded.

— Noisy measurements that leak the entire state of the circuit in each invoca-
tion, where each bit flipped independently with probability p, for any constant

p € (0,1/2].

In both cases, the size of the transformed circuit C is larger than the size of the
original circuit C' by a factor of O(t?).

Both results follow from a more general transformation that protects against any
leakage class, provided that it has an associated encoding scheme (See Theorem[2]
for details). We should note that although AC is not a particularly strong class
of functions, it is strong enough to allow for measuring approximate Hamming
weight of the values on the wires [2]: something routinely measured by side-
channel attacks in practice.

1.2 Overview of the Techniques

To protect against the kinds of information leakage described above, we encode
the computation in a way that prevents the powerful computing observer from
gaining additional information about the computation. We show that, indeed,
for certain classes of leakage, any computation can be so encoded: namely, we
give a method for transforming arbitrary circuits into new circuits, which are
still leaky but whose leakage is useless to the attacker (in the sense of offering
no advantage over black-box access to the original circuit’s functionality).

More precisely, given any linear secret sharing scheme IT and a leakage class
L which cannot decode , we show an explicit construction that transforms
any circuit C' into a circuit C' that is resilient against leakage in L.

The gist of the construction is to encode every wire of C' into a bundle of wires
in C using II, where each wire in the bundle carries a single share. Similarly to
Ishai et al. [19], we transform each gate in C' into a gadget in C' which operates
on encoded bundles. The gadgets are carefully constructed to use I internally
in a way that looks “essentially random” to leakage functions in £, and we
show that this implies that the whole content of the transformed circuit remains
“essentially random” to a leakage in L. Hence, the adversary gets no advantage
from his observation of the leakage; formally, this is captured by a simulation-
based definition.

An important contribution of this work is a general technique for proving
security of leakage-resilient circuit transformations. Namely, we capture a strong
notion of leakage-resilience for circuits or parts thereof, by saying that they are
reconstructible if there exist certain efficient simulators for their internal wires
that fool the leakage class. We then show a composition lemma: if all parts of
a circuit are reconstructible then so is the whole circuit. This implies security

3 Technically, the requirement that we make for the class £ is a little bit stronger then
not being able to decode.
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of the transformation. Thus, security of the overall transformation is reduced to
the reconstructibility of the individual gadgets. Our specific results using linear
secret-sharing schemes follow this route, and other transformations can be built
by devising different gate gadgets and merely showing that each is reconstructible
by itself.

Other Related Approaches. Recently, starting from the work of Akavia et
al. [3], several results have appeared that show security against adversaries that
learn arbitrary functions of the secret state of a device without requiring leak-free
components (see [BIA[92T25] and the references therein). All these constructions
assume that the total leakage does not exceed the size of the secret key; in
contrast, the total leakage in our case can be unbounded (subject only to the
condition that in every time period, it is bounded). Furthermore, these works de-
sign specific cryptographic primitives such as encryption and signatures, whereas
we focus on a general leakage-resilient transformation.

Standaert et al. [35] consider security against particular attacks such as Ham-
ming weight attacks and analyze in [28] the security of a block-cipher based
construction of a pseudorandom number generator.

2 Preliminaries and Definitions

Notation. Throughout the paper, we let ¢ denote the security parameter.
For n € N, let [1,n] denote the set of integers {1,...,n}. We denote function
composition by fog : z — f(g(x)). If £; and Lo are two sets of functions,
then L2 0 L1 is a set of functions {fog | f € La,9 € L1}. Vectors, denoted
v=(v1,...,0,), will be treated as column vectors.

If D is a probability distribution, then the notation d « D means that the
random variable d is drawn from D. (If D is a set with no distribution specified,
then by default we assume the uniform distribution.) If D is a randomized algo-
rithm, then d « D(z) denotes the output of D on input x. The notation D = D’
means the distributions D and D’ are identical.

Circuits. We consider circuits whose wires carry elements of an arbitrary finite
field K; in particular, we may set K = GF(2) to speak of a Boolean circuit. We
consider circuits composed of the following gates operating on elements of K (in
addition to the input, output, and memory gates): @, 9, and ® (which compute,
respectively, the sum, difference, and product in &, of their two inputs), the
“coin flip” gate $ (which has no inputs and produces a random independently
chosen element of K), and for every a € K, the constant gate const, (which
has no inputs and simply outputs «). Fanout is handled by a special copy gate
that takes as input a single value and outputs two copies. Notice that copy gates
compute the identity function (pass-through wires) and are present mainly for
notational convenience.

For a circuit C' containing w wires, a wire assignment to C' is a string in %,
where each element represents a value on a wire of C. By W¢(X), we denote
a distribution of wire assignments that is induced when a circuit C' is being
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evaluated on an input X (in particular, if C' is deterministic, then We(X) has
only one element in its support). By W (X|Y'), we denote the same distribution
conditioned on the fact that the output of C(X) was Y.

Two classes of circuits figure prominently in this paper.

— The first class of circuits is SHALLOW(d, s), the class of all deterministic
circuits (i.e., ones without $ gates) that have at most s ®,6, and ® gates
that are arranged at most d deep (i.e., the longest path in the circuit has at
most d such gates on it)

— The second is a class that contains a single probabilistic circuit N, that
gets as input a string v, and outputs w = v @ r, where each bit of r is
independently 1 with probability p, and 0 with probability 1 — p.

Stateful Circuits. A stateful circuit additionally contains memory gates,
which have a single incoming edge and any number of outgoing edgesﬁ Memory
gates maintain state: at any clock cycle, a memory gate sends its current state
down its outgoing edges and updates it according to the value of its incoming
edge. Any cycle in the circuit must contain at least one memory gate.

The state of all memory gates at clock cycle i is denoted by M;, with M
denoting the initial state. Inputs to and outputs from clock cycle i are denoted,
respectively, by z; and y;. When a circuit is run in state M;_; on input z;,
the computation will result in a wire assignment W;; the circuit will output
y; and the memory gates will be in a new state M;. We will denote this by
(yi, My, W;) = C[M;1](x;).

2.1 Leakage-Resilient Circuit Transformation

In this work, we construct a circuit transformation that takes as input a circuit
and outputs a functionally equivalent, and yet, leakage-resilient circuit. Our
definition generalizes the notion of a private transformation from Ishai, Sahai
and Wagner [19]. For readers familiar with the model of Ishai et al., we note that
the main difference is that whereas they speak of a “t-private transformation”
that is secure against observers who can access at most ¢ wires, we consider the
general notion of a “L-secure transformation” that is secure against observers
who can evaluate any leakage function f within a class £. One can recover the
definition of Ishai et al. from our definition by simply letting £ be the class of
functions that output a subset of their input bits.

In order to understand our definition, it helps to keep the following scenario
in mind. Imagine a circuit that has a secret stored within it (possibly in an
encoded form) and it uses the secret together with a (public) input to come
up with an output; the encoding of the secret itself may get modified during
the computation. For example, the circuit may implement a block cipher or
the RSA signing algorithm, where the keys are secret. An adversarial observer

4 Note that copy and const, gates do not count towards the depth d or the size s.
5 Formally, our notion of a stateful circuit is essentially the same as the one in [19].
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(who we denote OBS) gets to interact with the circuit and the measurement
apparatus by iterating the following process polynomially many times, in an
adaptive manner: choosing an input for the circuit and a leakage function for
the measurement apparatus, and receiving the output of the circuit on the chosen
input and the physical leakage from the measurement apparatus. We would like
to make sure that the ability to observe physical leakage does not help the
observer: that is, the observer learns nothing more about the state of the circuit
from the leakage than it could have learnt from input-output access.

Circuit Transformer. A circuit transformer TR takes as input a security pa-
rameter t, a circuit C, and an initial state My and produces a new circuit C
and new mltlal state MOE We require the transformer to be sound: for all C
and My, C[My] should behave identically to C[My]. By “behave identically” we
mean that for any number of clock cycles ¢ and any set of inputs x1, 2, ...,z
(one for each clock cycle) the distribution of the outputs Y1,Y2, -, Yq 1S the

same for C starting at state My and C starting at state Mo

Security. We want to ensure that the transformed circuit leaks no useful in-
formation to an observer other than what the observer could have obtained by
input-output access to the circuit’s functionality. We define an (£, 7, q)-observer
OBS to be an algorithm that: [

— Queries the circuit g times with inputs x;, and receives the outputs y;.

— For each execution of the circuit (say, with input x;), chooses a leakage
function f € L, and obtains f(We(x;)). That is, the leakage function f
takes as input the circuit’s wire assignment on input z;, and outputs the
resulting leakage.

— Runs for at most 7 steps (not including the computation by the leakage
function itself).

The observer makes the choice of which leakage function to use in a particular
execution adaptively, depending on all the information it has received so far. To
formalize that such an observer learns nothing useful, we show the existence of a
simulator SIM, and prove that anything the observer learns can also be learned
by SIM which only sees inputs and outputs of the circuit.

Consider the following two experiments that start with some circuit C in
state My, and allow it to run for ¢ iterations. In both experiments, we assume
that OBS and SIM are stateful, namely, they remember their state from one
invocation to the next.

5 Throughout this paper, we use the hat notation [J (reminiscent of the proverbial
“tinfoil hat”) to designate circuit or components that are transformed for leakage-
resilience.

7 The number of observations ¢, the observer’s running time 7, and various other
running times and success probabilities are all parameterized by a security parameter
t, which is given as input to the transformation TR. For readability, we will omit ¢
from most of our discussion.
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Expia!(OBS, £, q, C, My): EipSTi/&m(SIM, OBS, ¢, C, My):
(C, My) — TR(C, My) (C, My) — TR(C, M)
(21, 1) — OBS(C), with f; € £ (1, f1) — OBS(C), with f; € £
Fori=1tog—1 Fori=1toqg—1

(Y M;, Wi) & 6[@—1}(%); (yi, Mi) — C[Mi1](x:)

(zig1, fir1) < OBS(ys, f;(Wh)) A; — SIM(z;,y;, fi), with A; being the leakage
(Yq, My, W) &= a[ﬂq—l}(xqﬁ (@41, fir1) < OBS(ys, Ay)

Return output of OBS(y,, fu(W,)). Si/qiv[g)”\‘/l_(xc[zfq}l%(xq)?
q q>Jq>Jq

Return output of OBS(y,, 4,).

The definition below says that the transformed circuit is leakage-resilient if
the outputs of the two experiments above are indistinguishable.

Definition 1. Let £ be a class of circuits, and let T = 7(t), 7" = 7/'(t), ¢ = q(¢)
and € = €(t) be functions of the security parameter t. A circuit transformer TR
is said to be (L,7,7,q,¢€)-secure if for every (L, T,q)-observer OBS, there is a
simulator SIM that runs in time 7' such that for all circuits C and all initial
states My,

| Pr[Expii' (OBS, £, q, C, M) = 1] — Pr[ExpiR'(SIM, OBS, ¢,C, My) = 1]| < ¢,

where the probabilities are taken over all the coin tosses involved in the exper-
iments. We refer to a circuit transformer being L-secure, as a shorthand for
saying that it is (L, poly(t), poly(t), poly(t), negl(t))-secure in the above sense.

Remark. We note that a stronger result is obtained when £, 7 and q are as large
as possible (as it allows for more leakage functions, and stronger observers),
when 7/ is as close as possible to 7, and when the distinguishing advantage ¢ is
as small as possible (because either of these indicate a tighter simulation).

3 Circuit Transformation from Linear Secret-Sharing

Our main result states that if there exists a linear encoding scheme for elements
of any field K (taking a single element to ¢ elements) for which encodings of any
two values are indistinguishable by functions in a class £, then there exists a
circuit transformation that is secure against a slightly less powerful leakage class
L1r. (Jumping ahead, we remark that the leakage class £ is essentially the same
as the class L1r “augmented with” a depth-3 circuit of size O(t?)).

We now describe the main elements in the circuit transformation.

Encoding for the wires. Our transformation can be based on any linear
encoding scheme IT = (Enc,Dec), which maps a single element of X to a vector
in k' and back. In the simplest case of K = GF(2), an encoding of a bit x is
a random string of ¢ bits whose exclusive-or is x. More generally, for security
parameter ¢, a linear encoding scheme IT is defined by a decoding vector r =
(r1,...,7¢) € K" and the decoding function Dec : (y1,...,y:) — >, viri =7 'y.
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Enc is a (probabilistic) algorithm that, on input x, chooses uniformly at random
an element of Dec™ ! (z).

Linear encoding schemes include the aforementioned parity encoding, as well
as any threshold or non-threshold linear secret sharing scheme, e.g., [32/6120].

We need the notion of leakage-indistinguishability of an encoding scheme
which, roughly speaking, formalizes what it means for an encoding of two values
to be indistinguishable in the presence of leakage. In conjunction with formaliz-
ing this notion, let us first introduce a more general definition that speaks about
leakage-indistinguishability of two distributions.

Definition 2. Two distributions X and Y are said to be (L,p,T,e€)-leakage-
indistinguishable, if for any observer OBS, running in time 7 and making at
most p queries to its oracle where each query f is a function in L,

| Priz — X;0BSE@)(1%) = 1] — Pry — Y; 0BSE?W)(14) = 1] < ¢,

where Eval(z, ) takes as input a leakage function f and outputs f(x).

We say that an encoding scheme IT is (L, p, 7, €)-leakage-indistinguishable if
for any a,b € K the two distributions Enc(a) and Enc(b) are (L, p, T, €)-leakage-
indistinguishable. If T = poly(t) and ¢ = negl(t), then we abbreviate this to
(L, p)-leakage-indistinguishable.

Opaque gates. In our scheme, the transformed circuit C is built of the same
gate types as the original circuit, with the addition of a new opaque gate denoted
O. As mentioned in the introduction, the O gate has no inputs, and outputs an
encoding sampled from the distribution Enc(0). Crucially, while the wires coming
out of this gate can be observed by the leakage function, we assume that its
internals do not leak (we show how to somewhat relax this condition in the full
version). For the case of L = GF(2) our leak-free component can be implemented
by a circuit that works as follows: generate ¢t random bits by, ..., b;—1 and output
the bits ¢; := b; ® bi+1 modt for 0 <4 <¢t—1.

As mentioned in the introduction, our leak-free component is minimal in many
senses; the only sense in which it is not minimal is that its size is proportional to
the security parameter ¢. Improving on this is left as an important open problem.

We now state our main theorem. The rest of this section describes the trans-
formation, and the next section contains an overview of the proof of securityﬁ

Theorem 2. Let t be the security parameter, and let L1r be some class of leak-
age functions. If there exists a linear encoding scheme II that is (L, 2)-leakage-
indistinguishable, then there exists a circuit transformation TR that is LTr-secure
provided that:

L1 D L1r o SHALLOW(3, O(t?))

The transformation increases the size of each multiplication gate by a factor of
O(#?) and the rest of the circuit by a factor of O(t), where the constants hidden
in O(+) are small.
8 A complete statement of the theorem keeps track of other parameters such as the
running-time of the observer as well as the simulator, and the distinguishing advan-
tage. We postpone the more detailed theorem statement to the full version.
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—— - — -
-encoder -mask - encoder mask @ _
o - i - — - -~ —
~encoder -mask - ® — -decoder— *encoder ‘mask ¢ ©  tdecoder -
. o >
-encoder -mask - & ~encoder ‘mask :(3" Er—
o ~decoder @ tdecoder

Fig. 1. Example of a circuit C for the function (a,b,¢) — ((a ®b) ® ¢,c), and the
corresponding transformed circuit C. Three parallel lines denote encoding (¢ wires).
Dashed borders indicate a gadgets, whose internal wires leak. Note that in C, the
special gates encoder, decoder, mask and copy are just the identity and are present
for notational convenience.

3.1 The Transformation for Stateless Circuits

We will first describe our transformation for circuits without any memory gates,
which we call, like in [19], stateless circuits. We then show how to extend the
transformation to general (i.e., stateful) circuits.

Given a stateless circuit C, our transformation TR produces the transformed
circuit C' as follows (see Figure [Tl for an example). Each wire w in C' is replaced
by a wire bundle in C, consisting of ¢ wires w = (w1,...,w), that carry an
encoding of w. Each gate is transformed into a gadget, built out of gates, which
takes encodings and outputs encodings. Crucially, note that the internals of these
gadgets may leak. The gadgets themselves are described in Figure 2

Transformation c — a®b = ¢« a®b: Transformation ¢ — § = c — $:
Compute the ¢ x ¢ matrix ci—$ foriell,t
B+ ab" = (aibj)i<i,j<: using t* © gates Output ¢
Compute the t x ¢ matrix S
where each column of S is output by O
U «— B+ S (using t*> @ gates)
Decode each row of U using ¢t — 1 @ gates,
t © gates, and ¢ const, gates
to obtain g «— Ur,
where r is the decoding vector o
(it does not matter how this decoding is Transformation b < mask(a) = b « mask(a)

Transformation ¢ — a ®b = ¢ — a®b
(or c+—a©b = ¢+ abb):
g—a+b(org—a-—0>)
using ¢ & (or &) gates
o—0
¢ — q+ o (using t @ gates)

performed as long as there are O(t) wires o—0
in the decoding subcircuit and each one b« a + o (using t ® gates)
carries some linear combination of the Transformation a «— const, = a « consta,
wires being decoded, plus possibly a for any a € K
constant) Let a be a fixed arbitrary encoding of a.
0—0 o—0
¢+ q+ o (using t & gates) a «— a + o (using t @ gates)

Gadget (b, c) « copy(a)
01 <— O, 02 «— O
b — a + o1 (using t ® gates)
¢ — a+ o2 (using t @ gates)

Fig. 2. Gadgets used in the stateless circuit transformation TR
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Since our gadgets operate on encoded values, C needs to have a subcircuit
at the beginning that encodes the inputs and another subcircuit at the end
that decodes the outputs. However, in our proofs, we want to be able to also
reason about transformed circuits without encoding and decoding. Thus, we do
not require that every transformed circuit C' should have such encoding and
decoding. Instead, we introduce artificial input and output gates that can be
part of C for syntactic purposes. If such gates are present (as they would be on
any “complete” circuit that one would actually wish to transform), then C will
include input encoding and output decoding. If they are not, then C will operate
on already encoded inputs and produce encoded outputs.

More precisely, if we wish for C' to include input encoding and output decod-
ing, then the circuit C' given to TR must have two special gates in sequence on
every input wire: an encoder gate followed by a mask gate, both of which are
simply the identity. Also, on every output wire there must be a special decoder
gate, which is also the identity. These special gates must not appear anywhere
else in C'. In C each encoder gate is replaced by an encoder gadget which per-
forms encoding (see below), each decoder gate is replaced by a decoder gadget
that performs decoding (see below), and each mask gate is replaced by a mask
gadget (that is needed for security and is described in Figure ().

The encoder gadget takes an input a € K and outputs an encoding (i.e.,
a wire bundle) a € K! of a. The encoding can be chosen arbitrarily from the
support of Enc(a): a = (r7'a,0,...,0). The decoder gadget takes an encoding
(i.e., a wire bundle) a € K of a and outputs a < Dec(a). This is computed by
a decoding circuit with just const,, @, and ® gates. The operation of all the
gadgets is described in 2l For the soundness of our transformation, we refer the
reader to the full version.

Incidentally, observe that because every gadget other than encoder or decoder
ends with a masking by an output of OEI and wire bundles do not fan-out (instead,
they go through the copy gadget), each connecting wire bundle carries an encod-
ing of its value that is chosen uniformly and independently of all the wires in the
transformed circuit. This fact, together with the construction of the gadgets, is
what enables the simulation.

Handling Stateful Circuits. To augment the above stateless circuit transfor-
mation to a full circuit transformation, we have to explain how to transform the
initial state My and what to do with each memory gate. The initial state is re-
placed by a randomly chosen encoding Enc(Mj). Each memory gate is replaced
by a gadget that consists of ¢ memory gates to store the encoding followed by a
mask gadget to guarantee re-randomization of the state[ld

9 One can instead define the basic gadgets as not including this masking with O, and
instead place a mask gate on every wire. The resulting transformation is similar.

10 Masking the output of the memory gadget has two reasons: first, we want to allow
the total leakage to be much larger than the size of the state, and second, we want
to allow the adversary to choose leakage functions adaptively.
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4 Proof of Security

Conceptually, the proof of security for the circuit transformation in Section [3]
proceeds in two steps. First, consider a mental experiment where each gadget in
the transformed circuit C' is perfectly opaque. Namely, the only wires that the
observer OBS can “see” are the external wires of the gadgets that connect the
output of a gadget to the input of another gadget (these are exactly the wires
that carry encodings of the values in the circuit C'). The wires internal to the
gadgets are off-limits to OBS. Once in this (imaginary) world, we use the first
key property of our gadgets, namely

Re-randomizing: The output of each gadget in Cisa uniformly random encod-
ing of the output of the corresponding gate in cl

Letting w1, ..., w, denote the values o/f the wires in C, the re-randomizing
property says that the wire-bundles in C' that are external to the gadgets are
distributed like (ws,...,w,,) where the w; < Enc(w;) are random and inde-
pendent encodings of the bit w;.

The simulator does not know the value w; (because it does not know the
secret state in the circuit), but will simulate it with a random encoding of a
random value w;. Now, the leakage indistinguishability of the encoding scheme
tells us that given the leakage from any of these encodings (individually), it is
hard to tell if the underlying value is w; or w}. By a hybrid argument, the same
holds for a vector of independent encodings of m values as well, which is what
the simulator uses.

Before we declare victory (in this imaginary world), let us look a little more
closely at the hybrid argument. At each hybrid step, we will prove indistinguisha-
bility by a reduction to the security of the encoding scheme. In other words, we
will show by reduction that if OBS equipped with functions from L1g can distin-
guish two hybrid wire distributions, then some adversary OBS 7, equipped with
functions from a slightly larger class L7, can distinguish two encodings. Given
an encoding, our reduction will need to fake the remaining wires of the circuit
and give them as input to the function from Ltg.

Efficiency of such a reduction is particularly important. If OBS specifies a
leakage function f € L1g for C, then OBS; will specify its own leakage function
fn for the encoding and return its result to OBS. This leakage function fr has
to fake (in a way that will look real to f and OBS) all the wires of C' before
it can invoke f. At the same time, fr7 should not be much more complex than
f, because our result is more meaningful when difference between the power of
L7 and the power of Ltr is smaller. The main trick is for OBS;; to hardwire
as much as possible into f77, so that when f; observes the encoding, it has to
do very little work before it can invoke f. In fact, in this imaginary situation,

1 Of course, given the values of the internal wires of the gadgets as well, the outputs
of the gadgets are not independent encodings any more. But, note that we are still
in the mental experiment where the observer does not get to see the internals of the
gadgets.
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all the remaining wires can be hardwired into f;; because of independence of
encodings, so frr has to simply invoke f on its input wires and hardwired values.

The second step in the proof is to move from the mental experiment to the
real world, where the internals of the gadgets also leak. Unlike in the mental
experiment, where the values of all wire bundles were independent, values of
wires inside a gadget are correlated to its input and output wire bundles. Thus,
they cannot be hardwired into fr7. Nor can they be computed by fi7, because
the complexity of the gadgets is too high.

Handling this problem requires invoking the second key property of the gad-
gets, namely:

Reconstructzbzlzty We say that a pair of strings (X, Y) is plausible for G if
G might output Y on input X. For every gadget G there exists a distri-
bution RECg over low-complexity functions R, which takes as input X,V

and produces a simulated distribution of the internal wires of G. If for any
plausible X, Y this distribution is (£, 7, €)-leakage-indistinguishable from the
actual distribution of the internal wires of G (conditioned on X and Y'), then
we say that G is (L, 7,€)-reconstructible by R, and call RECs a (£, 7, ¢)-
reconstructor.

In the following we will often omit the parameters 7 and e.

We use this property to handle leakage from gadgets. Given reconstructors for
each single gadget we can show that a transformed circuit that is encoding-based
(i.e. the gadgets operate on encodings) and composed of reconstructible gadgets
is secure according to Definition [Il On a high-level we will replace each gadget
with its reconstructor in addition to replacing connecting wire bundles with
random encodings. The proof that the simulation is indistinguishable requires
first doing a hybrid argument over gadgets as they are replaced by reconstructors
one-by-one, and then modifying the hybrid argument over the wires described
above. In the hybrid argument over the wires, f;7 can have hardwired values for
every wire in the circuit except the gadgets connected to the challenge encoding,
which will be computed by fr; using the low-complexity function given by the
reconstructor. This allows for a very efficient reduction. The formal statement
of the composition lemma is given in Lemma Bl

Let us now move on to building reconstructors for two simple gadgets.

4.1 Reconstructors for Single Gadgets
We present proof sketches for the reconstructibility of the @ and ® gadget.

Lemma 1 (& and & gadgets are reconstructible). For any class of circuits

L, the ® and S gadgets are (L, 00, 0)-reconstructible, where the reconstructor can
be computed by SHALLOW(2, O(t)).

Proof. In this sketch we will do the proof only for &. The reconstructor REC;
is the distribution whose only support is the following circuit Rg. On inputs

(X,Y) where X = (a,b) (i.e., the desired input of the & gate), and ¥ = (c)
(i.e., its desired output), Rz assigns the wires of Stog—adband o — coq.
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If X,Y are chosen as in the definition of a reconstructor, then the resulting
output of Rz is identically distributed to the wire distribution Wg (XY’), since
in both cases o takes the only possible consistent value o < ¢ © q. Notice that
Rz can be computed by a circuit of depth 2 because on inputs X,V it first
computes g < a @® b and based on that o «— ¢ © q. The © and @ gates above
operate only on single field elements, so Rz requires O(t) size. g

Let us now give a proof sketch for the @ reconstructor. Notice that the main
technical difficulty is the fact that our simulation has to be shallow whereas the
real ® gadget is already a deep circuit. In the following, let L = GF(2).

Lemma 2 (@ is reconstructible). Let Lz be a class of functions, and as-
sume that the encoding II is Liz-leakage-indistinguishable, where Lyp 2 Lz o

SHALLOW(2, O(t?)). Then, the & gadget is L -reconstructible, where the recon-
structor can be computed by SHALLOW(2, O(t?)).

Proof (sketch). The reconstructor RECy takes as inputs (X,Y), where X =
(a,b), and Y = (c) and is defined as follows:

1. Sample U uniformly from K!** and compute the values on the wires in the
subcircuits for the computation of g. Hard-wire the results as Rz ’s outputs.

2. On input X, Rz computes the matrix B « (a; ® b;)ij,i,j € [1,t] and
outputs it as part of the wire assignment.

3. Rz computes S «— B—U and 0 < ¢ —gq.

REC has size O(?) (because it needs to compute matrices B and S) and depth
2, because S is computed from B, that in turn has been computed from the
inputs.

It remains to show that the distribution Rz (X,Y’) produced by the recon-
structor and the actual wire distribution Wz (X |Y') are leakage-indistinguishable
by leakage functions in L. Since U is computed as B + S it suffices to show
that S can be replaced by a matrix sampled uniformly at random from K<

We prove it by a hybrid argument and define hybrids Wé (X|Y) (¢ € [0,t])
as Wy (X[Y'), except that for the first £ columns of S the elements are drawn
uniformly from K. We show the leakage-indistinguishability between two con-
secutive hybrids by a reduction to the encoding leakage-indistinguishability. As
part of this reduction we build the observer OBSy; that runs OBSz and has to
answer its leakage queries fz € Lz. OBSpy runs fz as part of its own leakage
function f; € L. However, fi7 only expects a single target encoding e as input,
whereas functions from Lz expect a full wire assignment for ®. Thus, before fr
runs fz, a wire simulator fg, computes a wire assignment for ® given only the
target encoding e. To keep the reduction tight (and our result meaningful), fg
has to be very simple; i.e. we use the input e as little as possible and hard-wire
most of the values of the wires of ® into fg. For any X,Y:

1. From X compute B = (a;b;); jeq1,q and hard-wire a, b, B into fs.
2. Hard-wire the columns 1...¢ — 1 to random encodings and £ + 1...t¢ to
Enc(0). The ¢th column is filled with the challenge encoding e.



150 S. Faust et al.

3. Hard-wire all elements of U = B + S into fg except for the ¢th column. For
the ¢th column, compute for each i € [1,¢], the value U; ; < B; ¢ + e;.

4. The wires in the decoding sub-circuits to compute q from U carry the @& of
some row {U; ;};. If a wire in the sub-circuit does not depend on U; (i.e.,
the input to fg), then pre-compute its value and hard-wire the intermediate
result. On the other hand, if it depends on U; ¢ = B; (+e¢;, then pre-compute
a partial sum except the term that depends on e; and hard-wire the result.
On input e, fs computes the missing outputs by @-ing the relevant parts
of e.

5. With fixed Y and g from (B]) compute o — Y — q and output it.

It is not difficult to check that fg outputs a valid wire assignment for ® that is
either distributed as Wé_l(X|Y) or Wé(X\Y). If e is drawn from Enc(0), then
the ¢th column of S is assigned an encoding drawn from Enc(0). Since all the
other wires are computed honestly using either hard-wired values or the input e,
fs(Enc(0)) and Wé_l(X|Y) are distributed identically. If e < Enc(z), for z € K,
then the ¢th column of S is assigned an encoding drawn from Enc(z), hence, we
get that fo(Enc(z)) and Wé(X |Y)) are distributed identically. Since fs needs
to compute the ¢th column of U, the values in the decoding sub-circuits, and
from q the value of o, fs € SHALLOW(2, O(t?)). Together with the ¢ hybrids, we
get that Wz (X]Y) and Ry (X,Y) are (L), te)-leakage-indistinguishable, if I is
(L1, €)-leakage-indistinguishable (where L7 2 Lz o SHALLOW(2,0(t?))). O

The rerandomizing property of the simple gadgets follows immediately from the
fact that every gadget’s output is masked by the output of O.

4.2 Security of Full Circuit Transformation

Until now we showed that individual gadgets are re-randomizing, and recon-
structible. The following central lemma, that is proved in the full version, states
how to compose reconstructors for single gadgets to yield a reconstructor for the
entire circuit.

Lemma 3 (Composition Lemma). Let Lz be some set of leakage functions
and €y > 0,7p > 0,t > 0. Let IT be (L, 7m, €rr)-leakage-indistinguishable.
Let C be a stateless circuit of size s, withoul encoder or decoder gates with
k1 inputs and ko outputs. Then the transformed circuit C is rerandomizing and
(L&, 7a, €a)-reconstructible by SHALLOW(2, (ky + ko)O(t?)) where L = Lg o
SHALLOW(3,0(t?)), ez = ens(t +2), and 75 = 71 — O(st?).

There is one caveat that remains in proving security according to Definition [T}
the encoder and decoder gadget are not reconstructible, however, the simulator
can easily include them into his simulation since the inputs and outputs of these
gadgets are known.

We would like to make a final remark: the circuit transformation that we dis-
cussed so far are based on any linear encoding scheme, however, the proof tech-
niques that we introduced along the way are more general. Note that Lemma [3]
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relies essentially on the fact that the gate gadgets are rerandomizing and recon-
structible. One can obtain an analogously result using any (not necessarily linear)
encoding scheme and a corresponding set of sound gate gadgets that are reran-
domizing and reconstructible. We refer the interested reader to the full version.

5 Security against Constant Depth Leakage

In this section, we show how to use the general circuit transformation from
Section [Bl to achieve security against leakage functions that can be computed by
constant-depth circuits.

5.1 AC° Leakage

The first leakage class we consider is AC’, the class of constant-depth, polynomial-
size circuits formed out of NOT gates and unbounded fan-in AND and OR gates.
Let C(d, s, \) denote the class of AND-OR-NOT Boolean circuits with depth d,
size s and A bits of output.

The Encoding. The encoding we use in this case is the parity encoding. The
(randomized) parity encoding of a bit b is a sequence of bits (b1, ...,b;) which
are uniformly random subject to the condition that their parity is the bit b. This
encoding can be computed in many different ways, for example, as:

ENC(b): Generate bits by,...,b;—1 uniformly at random, and set by := b @
Di; bi.

Obviously, the decoding function for the parity encoding is simply the parity
function, namely the function that outputs the exclusive-or of the ¢ bits in the
encoding.

The parity encoding is hard to decode for AC” circuits. The classical result
of Hastad [I8] (which builds on [IJT4]), translated to our definition, states that
the parity encoding of the bits 0 and 1 are indistinguishable by circuits in the
class C(d, 2t1/d, 1) for any constant d. This protects against ACY circuits that
output 1 bit. Using a recent result of Dubrov and Ishai [I0, Theorem 3.4], we
can protect against the circuit class C(d, e®"/® $1=9) for any 0 < § < 1, namely
AC? circuits that output up to ¢!~ bits.

We obtain the following theorem by instantiating Theorem[2 with the parity en-
coding, and using the above observations about the leakage-indistinguishability of
the parity encoding against AC® circuits. The reader is referred to the full version
for a tight statement and a formal proof of security.

Theorem 3. Lett be the security parameter, and 0 < 6 < 1, and d € N be con-
stants. Then, there exists a circuit transformation that is Laco g4 5-secure where
Laco.q5 = C(d — 4, eo(té)/d,tl_‘s) is the class of all Boolean AND-OR-NOT cir-

cuits of depth at most d — 4, size at most eON/d gnd output length at most t*=9.
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In particular, the theorem states that the transformation is secure against AC°
circuits (constant depth, polynomial-size circuits) that output at most ¢!~ bits,
for any constant § > 0.

5.2 ACC°[q] Leakage

A natural way to extend the class of leakage functions from AC® to something
more general is to allow the leakage function to have parity gates. Clearly, such
circuits can decode the parity encoding, but are there still other linear encoding
schemes that cannot be decoded by even such circuits? It turns out that such
encodings indeed exist. For any integer ¢, let MOD, be the gate that outputs 0
if the sum of its inputs is 0 modulo ¢, and 1 otherwise. The class Cuap-¢(d, s, A)
is defined to be the functions computable by circuits made of NOT gates and
unbounded fan-in AND, OR and MOD, gates, with depth d, size s and output length
A. For example, letting ¢ = 2, we get the class of depth d circuits that include
parity gates as well.

The encoding scheme we use in this case is the mod-¢’ encoding scheme, for
some ¢’ that is co-prime to ¢, defined analogously to the parity encoding scheme
in Section i1l By a result of Razborov and Smolensky [31I34], for any distinct
primes ¢’ and ¢, the mod-¢q’ encoding is leakage-indistinguishable for functions
in the class Cugp-(O(1), poly(t), 1), i.e., ACC"[q] circuits with output length 1.
Since the mod-¢’ encoding is linear, we can apply Theorem ] to get a secure
circuit transformation.

6 Security against Noisy Leakage

So far, we considered leakage classes that are constrained in terms of their com-
putational power and output length. In this section, we consider the noisy leakage
model, where the leakage consists of the values of all the wires in the circuit,
except that each bit is flipped with some probability p € [0,1/2]. More pre-
cisely, the class of noisy leakage functions is represented by the circuit class
L= {/\fp}pe[OJ /2], Where each circuit N, is probabilistic, and is defined as fol-
lows: Let B, be the binomial distribution with parameter p which outputs 1
with probability p and 0 otherwise. Then, N,(x) = & & b, where each bit b; is
drawn from the distribution B, and the different b; are independent.

Ideally, we would hope that the circuit transformation in Section [3] provides
security against noisy leakage as well. However, this turns out to be false, and in
fact, there is an explicit attack against the transformation in Section B] (as well
as the circuit transformation of Ishai et al. [I9]) in the presence of noisy leakage,
even when the noise is very small.

We outline the basic idea of the attack here. Specifically, the attack is against
the construction of the multiplication gadget ® in Figure 2l The gadget takes as
input two encodings a and b and first computes the ¢? bits {a; A bj : i,j € [t]}.
Consider the first ¢ bits (a1 A b1,...,a1 Aby). If a3 = 0, then all these bits are
0, whereas if a; = 1, then roughly half of them are 1. Given such disparity, the
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observer can determine whether ay is 0 or 1, even if he is given a noisy version of
these t bits (for any noise parameter p < 1/2). Proceeding in a similar way, he
can reconstruct all the bits a;, and thus the input bit a itself. The fundamental
reason why this attack works is that the construction of the ® gadget in Figure 2
has high input locality, namely it accesses the input bits a large number of times.

6.1 A New Circuit Transformation against Noisy Leakage

We construct a new circuit transformation against noisy leakage. The transfor-
mation proceeds in the same way as in Section [3 except for the construction of
the multiplication gadget ®. The new construction of the multiplication gadget
avoids the attack outlined below, and is constructed using a new opaque gate
that we call M (in addition to the opaque gate O). We stress that the opaque
gate M that we design and use, inherits the main characteristics of the opaque
gate O in that it is stateless, and independent of the computation. In other words,
M simply produces samples from a fixed distribution.

In what follows, we describe the specification of the opaque gate M as well
as the construction of the ® gadget.

The Opaque Gate M. The opaque gate M is probabilistic, takes no in-
puts and operates in the following way: Sample 2¢ uniformly random 0-sharings
r1,...,7¢ — O and s1,...,8 < O. Let R and S be the following two ¢ x ¢
matrices:

! S1

R= @;:1 rj | and S = @;:1 85

t . t .
@j:l T] @]:1 sj

Let R;; (resp. S; ;) denote the (i,)™ entry of the matrix R (resp. S). Define
R ® S to be the “inner product of the matrices R and S”, when written out as
bit-strings. That is,
R@S=EPRi;S,
i,j
The output of the opaque gate M is the tuple (r1,...,7¢,81,..., 8¢, u) where
u =R ® S’ the inner product of the matrices R and the transpose of S.

The new Multiplication Gadget ®. The operation of the multiplication
gadget ® proceeds in two stages.

— The first stage uses a gadget mult that takes as input two encodings a =
(aM,...,a®) and b = (M, ..., b®), and outputs a longer encoding q =
(¢, ..., qD) of size t2.

— The second stage “compresses” this longer encoding into an encoding ¢ =
(W), ..., ), using a gadget compress.
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We first describe how the (sub-)gadget mult works.

1. First, generate (r1,...,7¢, 81,...,8,u) «— M.
2. Define ag := a and by := b. Compute the encodings a; and b; iteratively as
follows. For 1 < ¢ <'t, set

a;=a;_1dr;, and b; =b;_1 & s;

3. Let agj) (resp. bz(-j)) denote the j'" bit of the vector a; (resp. b;). Output
q=(¢tY, ..., ¢*) defined as follows:

L) — oV AV @ if (i,5) = (1,1)
az(-] ) A by) otherwise

(Note the asymmetry in the evaluation, namely the bit az(-j ) is multiplied
with the bit b;z), where the subscript and the superscript are switched; this
asymmetry is intentional, and indeed, crucial to the correctness).

4. Generate z «+ Oy (thus, z is a uniformly random #2-bit string whose entries

xor to 0). Output w := q @ z.

Now, we invoke the compress gadget on the output of the mult gadget. The
compress gadget takes t2 bits (¢(11), ..., ¢(*)) and outputs ¢ bits (¢(V), ..., c®)
such that ), ; ¢4 = @, cV. The construction of the compress gadget proceeds
in the following way.

1. Split the bits ¢(*7) into ¢ blocks of ¢ bits each.

2. Construct a tree of & gadgets that takes as input t blocks of t bits each,
and outputs one block of ¢ bits. (The structure of the tree can be arbitrary.)
Apply the tree to the bits ¢»7) and call ¢ = (¢!, ..., c®) the output.

The correctness of the ® gadget can be verified by a simple computation, and
is omitted. The efficiency of implementation is practically the same as that in
Bl Namely, the transformation converts a circuit of size s into another circuit of
size O(s - t?), where t is the security parameter. We now outline the main ideas
behind the proof of security of the new transformation against noisy leakage.

Outline of the Security Proof. As in Section [3 the proof proceeds in two
steps. First, we show that the gadgets are re-randomizing and reconstructible.
In other words, this says that the internals of a gadget reveal no more useful
information than its inputs and output. Secondly, we apply a general version
of the Composition Lemma (Lemma [3]) to conclude that since each individual
gadget is re-randomizing and reconstructible, the entire circuit transformation
is leakage-resilient. We describe these two steps in a little more detail below.

It is easy to see that the gadgets are re-randomizing. The key difference from
Section [3] is that in the proof of reconstructibility, we are not concerned about
the computational efficiency of the reconstructor, but rather the number of times



Protecting Circuits from Leakage 155

the reconstructor accesses its input. This is a consequence of the fact that the
larger the number of noisy copies of an encoding e (with independent binomial
noise) the observer sees, the easier it is for him to tell if e is an encoding of
0 or 1. Thus, the bulk of the effort in the design of the circuit transformation
as well as the reconstructor is in ensuring that the inputs and the intermediate
values are “touched” as few times as possible. The technical heart of the proof
(similar to the theorems of [I3JI8/I0] for the AC® case) is a lemma which states
that for any constant ¢ and any fixed vectors fi,..., fc, the distribution of
Np(e® f1),...,.Npy(e® fc)) when e is an encoding of 0 or 1 are statistically
close. We refer the reader to the full version for the design of the reconstructors
and the formal proof.
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Abstract. A seminal result of Cleve (STOC ’86) is that complete fairness
is impossible to achieve in two-party computation. In light of this, various
techniques for obtaining partial fairness have been suggested in the litera-
ture. We propose a definition of partial fairness within the standard real-
/ideal-world paradigm that addresses deficiencies of prior definitions. We
also show broad feasibility results with respect to our definition: partial
fairness is possible for any (randomized) functionality f : X XY — Z1 X Za
at least one of whose domains or ranges is polynomial in size. Our proto-
cols are always private, and when one of the domains has polynomial size
our protocols also simultaneously achieve the usual notion of security with
abort. In contrast to some prior work, we rely on standard assumptions
only.

We also show that, as far as general feasibility is concerned, our results
are optimal (with respect to our definition).

1 Introduction

In the setting of secure two-party computation, two parties run a protocol that
enables each of them to learn a (possibly different) function of their inputs while
preserving security properties such as privacy, correctness, input independence,
etc. These requirements, and more, are traditionally formalized by comparing a
real-world execution of the protocol to an ideal world where there is a trusted
entity who performs the computation on behalf of the parties. Informally, a
protocol is “secure” if for any real-world adversary A there is a corresponding
ideal-world adversary S (corrupting the same party) such that an execution of
the protocol in the real world with A is computationally indistinguishable from
computing the function in the ideal world with S.

One desirable security property is fairness which, intuitively, ensures that
either both parties learn the output or else neither party does. In a “true” ideal
world — this is the ideal world used in the multi-party setting when a majority
of parties are honest — fairness is ensured since the trusted party evaluating the
function provides output to both parties. Unfortunately, Cleve [10] shows that
complete fairness is impossible to achieve, in general, in the two-party setting.

* Research supported by NSF CAREER award #0447075 and NSF-CCF #0830464.

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 157-[I76] 2010.
© International Association for Cryptologic Research 2010
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For this reason, the usual treatment of secure two-party computation (see [18])
weakens the ideal world to one in which fairness is not guaranteed at all. A
protocol is said to be “secure-with-abort” if it can be simulated (as described
above) with respect to this less-satisfying ideal world.

Various methods for achieving partial fairness have been suggested; we pro-
vide an extensive discussion in Section [Tl With the exception of [17], however,
all previous work has departed from the traditional real-/ideal- world paradigm
in defining partial fairness. (Indeed, addressing this deficiency is explicitly men-
tioned as an open problem by Goldreich [I8, Section 7.7.1.1].) Furthermore,
many previously suggested approaches to partial fairness only apply in specific
settings (e.g., fair exchange of signatures) or under certain assumptions on the
parties’ inputs and auxiliary information (e.g., that inputs are chosen uniformly
at random) but do not give a “general-purpose” solution that can be used for
arbitrary functions computed on arbitrary inputs. Finally, much previous work
on partial fairness requires strong cryptographic assumptions, e.g., regarding the
precise amount of time needed to solve some problem (even using parallelism).

As noted earlier, the most desirable (but, in the two-party setting, unachiev-
able) definition of security requires computational indistinguishability between
the real world and a “true” ideal world where both parties receive output. The
usual relaxation of security-with-abort [I8] leaves unchanged the requirement of
computational indistinguishability, but weakens the ideal world to one in which
fairness is no longer guaranteed at all. Katz [23] suggested an alternate relax-
ation: keep the ideal world unchanged, but relax the notion of simulation and
require instead that the real and ideal worlds be distinguishable with probabil-
ity at most 11, + negl, where p is some specified polynomia (see Definition [II).
“117_
and Moran et al. [27] show ;—secure protocols for two-party coin tossing (where

We refer to a protocol satisfying this definition as being “ -secure”. Cleve [10]

parties have no inputs), but we are not aware of any other results satisfying
our definition. In particular, none of the prior approaches for achieving partial
fairness yield protocols that are ;—secure.

We propose the notion of ;—security as a new way to approach the prob-
lem of partial fairness, and view this as an independent contribution. We also
demonstrate protocols that achieve this definition for a broad class of functions.
Specifically, let f, : X, x Y, — Z! x Z2 be a (randomized) functionality where
player 1 (resp., player 2) provides input z € X,, (resp., y € Y,,) and receives
output 2! € Z! (resp., 22 € Z2). (Throughout this paper, n denotes the se-

curity parameter.) For arbitrary polynomial p, we show ;—secure protocols for

computing f, as long as at least one of X,,,Y,,, Zl, Z2 is polynomial size (in n).
Our protocols are always private, and when either X,, or Y, is polynomial-size
we also achieve the usual notion of security-with-abort. (Relevant definitions are

! This definition is similar in spirit to (but weaker than) the notion of e-zero knowl-
edge [13] and is analogous to the definition used in [19] for password-based key ex-
change (although there p is fixed by the size of the password dictionary). A similar
idea, formalized differently and with different motivation, is also used in [1].
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standard and appear in the full version of this paper.) We assume only the exis-
tence of enhanced trapdoor permutations or, more generally, oblivious transfer.

We also prove that our feasibility results are, in general, optimal. First, we
demonstrate a deterministic, boolean function f, : X,, x Y,, — {0,1}, where X,
and Y,, both have super-polynomial size, for which no protocol computing f, can
simultaneously achieve both security-with-abort and !-security (for p > 4). We
also show a deterministic function f, : X,, x Y;, — Z,, with each of X,,,Y,,, Z,
super-polynomial in size, such that f, cannot be ;—securely computed for p > 2.

1.1 Prior Work

There is an extensive literature devoted to the problem of achieving partial
fairness when an honest majority is not present, both for the case of specific
functionalities like coin tossing [I0,11127] and contract signing/exchanging se-
crets [BL25L14L[4[12L16], as well as for the case of general functionalities [29][16]
3, 20,15, 28, [I7]. Prior work (with the exception of [I7]; see below), however,
does not consider a simulation-based definition within the standard real/ideal
world paradigm as we do here. Moreover, to the best of our knowledge none of
the previous approaches (with the exception of [I0,27], that deal only with coin
tossing) can be proven ;—secure. Beyond the theoretical advantages of achieving
a simulation-based notion of security, our protocols offer several concrete benefits
with respect to prior solutions; these are explained in what follows.

One approach that has been suggested for achieving partial fairness is to
construct a protocol where, roughly speaking, at every round both parties can
recover their output using a “similar” amount of work (except in early rounds,
where one party can recover their output only by investing exponential work).
This idea was used in [I6/I26}28], and was formalized by Garay et al. [I7] within
the framework of universal composability [9]. An unsatisfying feature of this ap-
proach, no matter how it is implemented, is that the decision of whether an
honest party should invest the necessary work and recover the output is not de-
termined by the protocol, but is somehow decided “externally”; if the adversary
knows how this decision is made, then it can abort at “exactly the right time”
and violate fairness completely. In this approach there may also be no a priori
polynomial bound on the honest party’s running time. This approach also seems
problematic in defending against an adversary who runs in polynomial time, but
has more computational power than honest parties are able to invest. Finally,
this technique appears to inherently require strong assumptions regarding the
precise time required to solve some specific computational problem.

A second approach, used in, e.g., [25] for exchanging secrets and in [3,20] for
computation of general functions, gradually increases each party’s confidence in
their output by, roughly speaking, masking the correct output with “noise” that
tends to 0 as the protocol progresses. Protocols of this sort are inapplicable when
the adversary has auxiliary information about the output of the function, since in
that case the adversary’s “confidence” at any point in the protocol is impossible
to estimate. More problematic is that an adversary can bias the output of the
honest party beyond what is possible in the ideal world. As a simple illustration,
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consider a computation of the equality function where each party holds a value
chosen uniformly from some domain D. In the ideal world, the probability that
an adversary can cause the honest player to output 1 is exactly 1/|D|. Using
the approach of [31[20], however, the adversary can cause the honest player to
output 1 with probability essentially 1/2 by aborting in the first round (when
the true answer is masked by an almost uniform random bit). Besides indicating
a weakness of previous protocols, this example also demonstrates the importance
of defining partial fairness within the simulation paradigm.

Gordon et al. [22] recently showed that complete fairness is possible in the
two-party setting for certain specific functions. Work continuing that direction
is complementary to our work here: while we do not yet have a complete charac-
terization of what can be computed with complete fairness, we know that there
certainly do exist some functions that cannot be computed with complete fair-
ness [10] and so some relaxation must be considered (at least for some functions).
Our feasibility results here apply to a much richer class of functions.

Other work has looked at achieving complete fairness with off-line trusted
third parties (e.g., [7]) or in non-standard communication models (e.g., [24]). We
work in the standard communication model, and without any trusted parties.

1.2 Overview of Our Approach

We now give an informal description of our feasibility results (details are in
Section B]). Let  denote the input of P, let y denote the input of P», and let
f: X XY — Z denote the function they are trying to compute. (For simplicity,
here we omit the dependence of X,Y, and Z on n, and focus on the case where
each party receives the same output.) As in [23/2227], our protocols will be
composed of two stages, where the first stage can be viewed as a “pre-processing”
step and the second stage takes place in a sequence of r = r(n) iterations. The
stages have the following form:

First stage. This consists of the following steps:

1. A value i* € {1,...,r} is chosen according to some distribution (see below).
This represents the iteration in which the parties will learn the “true output”.
2. Values ay,...,a, and by,...,b, are generated. For ¢ < i*, the {a;} (resp.,
{b;}) are chosen (independently) according to some distribution that is inde-
pendent of y (resp., x). For i > z(* ,) ho(w)ever, it holds that a; = b; = f(z,y).
1 2 (1) (2)

3. Each q; is randomly shared as a; ’,a;” with a;”’ @ ;" = a; (and similarly
for each b;). The stage concludes with P; being given a§1)7 b§1)7 ey agl), bgl),
and P, being given a§2), b§2), e a? P, (Shares are also authenticated

with an information-theoretic MAC.)

After this stage, each party has a set of random shares that reveal nothing about
the other party’s input. This stage can thus be carried out by any protocol that
is secure-with-abort.

Second stage. In each iteration i, for i = 1,...,r, the parties do the following:
(2

. to P; who reconstructs a;; then P; sends b(l) to P, who

i

First, P, sends a
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reconstructs b;. (Parties also verify validity of the MAC but we omit this here.)
If a party (say, P1) aborts in some iteration i, then the other party (here, P»)
outputs the value reconstructed in the previous iteration (i.e., b;—1). Otherwise,
after reaching iteration r the parties output a, and b,, respectively.

To fully specify the protocol we must specify the distribution of i* as well as
the distribution of the a;, b; for i < i*. As in [23[27], we choose * uniformly from
{1,...,7}. (In [22] a geometric distribution was used. That would work here, but
with slightly worse round complexity.) When X and Y (the domains of f) are
polynomial size, we follow [22] and set a; = f(x, ) for § chosen uniformly from
Y, and set b; = f(Z,y) for & chosen uniformly (and independently) from X.
Note that a; (resp., b;) is independent of y (resp., ), as desired.

Intuitively, this is partially fair because fairness is only violated if P; aborts
exactly in iteration i*. (If P; aborts before iteration ¢* then neither party learns
the “correct” value z = f(x,y), while if it aborts subsequently then both parties
learn the correct value. An abort by P» in iteration i* does not violate fairness,
since by then P; has already learned the output.) We show that even if Py knows
the value of z (which it may, depending on partial information P; has about y), it
cannot determine with certainty when iteration ¢* occurs. Specifically, we prove
a general result (see Lemmal[ll) implying (roughly) that as long as Pr{a; = 2] > «
for all 4 < i*, then P; cannot abort in iteration i* except with probability at
most 1/ar (recall that r is the number of iterations in the second phase). Since
Pr[ai = f(‘ra y)] = PrQEY[f(xu Q) = f(mvy)} > PrQEY[g = y] = 1/‘Y| for any .y,
we conclude that setting r = p - |Y], so that 1/ar = 1/p, suffices to achieve
;—security. We thus get a protocol with polynomially many rounds as long as Y’
is polynomial size.

The above does not work directly when Y has super-polynomial size. To fix
this, we must ensure that for every possible z € Z (the range of f) we have that
Pr[a; = z] is noticeable. We do this by changing the distribution of a; (for i < i*)
as follows: with probability 1 —1/¢ choose a; as above, but with probability 1/¢
choose a; uniformly from Z. Now, for any f,z,y, we have Prla; = f(x,y)] >
; - Pro,ezlai = f(z,y)] > 1/¢|Z| and so setting r = pg|Z| ensures that P
cannot abort in iteration i* except with probability at most 1/p.

Changing the distribution of a;, however, introduces a new problem: if P,
aborts prior to iteration i*, the output of the honest P; in the real world cannot
necessarily be simulated in the ideal world. We show, however, that it can be
simulated to within statistical difference O(1/q). Taking ¢ = p (along with r =
pq|Z|) thus gives a ;—secure protocol with polynomially many rounds.

2 Definitions

Preliminaries. A function u(-) is negligible if for every positive polynomial p(-)
and all sufficiently large n it holds that u(n) < 1/p(n). A distribution ensemble
X = {X(a,n)}aep,, nen is an infinite sequence of random variables indexed by
a € D, and n € N, where D,, may depend on n.
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For a fixed function p, the distribution ensembles X = {X(a,n)}qep,, nen
and Y = {Y(a,n)}aep,, nen are computationally ;—indistinguishable, denoted

1
X ép Y, if for every non-uniform polynomial-time algorithm D there exists a

negligible function u(-) such that for every n and every a € D,

Pr[D(X(a,n)) =1] = Pr[D(Y(a,n)) =1]| <

Two distribution ensembles are computationally indistinguishable, denoted X =
Y, if for every ¢ € N they are computationally nlc—indistinguishable.

Functionalities. A functionality F = { fn}nen is a sequence of poly-time com-
putable, randomized mappings f, : X, x Y, — Z} x Z2, where X,, and Z}
(resp., Y, and Z2) denote the input and output of the first (resp., second) party.
We write f,, = (f}}, f2) if we wish to emphasize the two outputs of f,,, but stress
that if f! and f2 are randomized then the outputs of f} and f2 are correlated
random variables. If Pr[f!(z,y) = f2(x,y)] = 1 for all z,y, then we call f, a
single-output functionality and write it as f,, : X, x Y,, — Z,,. If F is determin-
istic, we sometimes call it a function. For notational convenience, we sometimes
drop the explicit dependence on n.

Two-party computation. A two-party protocol for computing a functionality
F = {(f', f?)} is a protocol running in polynomial time and satisfying the
following correctness requirement: if party P; begins by holding 1™ and input
x € X, and party P, holds 1" and input y € Y, then the joint distribution of
the outputs of the parties is statistically close to (f!(x,%), f?(z,y)).

Security of protocols. We consider active adversaries, who may deviate from
the protocol in an arbitrary manner, and static corruptions. We use the stan-
dard real/ideal paradigm [18] (based on [26,2,]). Define IDEAL £ 4(aux)(Z,y,7)
as the random variable consisting of the output of the adversary .4 and the
output of the honest party following a computation of F in the ideal model
(where complete fairness is guaranteed), with security parameter n and parties
holding initial inputs x and y, respectively, and auxiliary input aux. We also
define REAL 7, A(aux) (2, ¥, n) as the analogous random variable for the real-world
execution of protocol II.

Having defined the ideal and real models, we now state our new notion of
security. Loosely speaking, our definition asserts that a secure protocol (in the
real model) emulates the ideal model (in which a trusted party exists) to within
a difference of 11). This is formulated as follows:

Definition 1. Let F,II be as above, and fix a function p. Protocol II is said to
;—securely compute F if for every non-uniform probabilistic polynomial-time ad-
versary A in the real model, there exists a non-uniform probabilistic polynomial-
time adversary S in the ideal model such that

"
{IDEALZF,S(aux) ((E, Y, n)} %p {REALH,A(aux) ((E, Y, n)} .
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Although our definition of ;—security allows privacy to be violated with prob-

ability 11)7 in fact all our protocols are fully private. We remark further that

;—Security (even with privacy) and security-with-abort are incomparable.

3 :’—Secure Computation of General Functionalities

We begin in Section [3] by stating a lemma that forms an essential piece of our
analysis in the two sections that follow. In Section 3.2l we demonstrate a private
and !-secure protocol for functionalities defined on polynomial-size domains. A
slight modification of this protocol is also simultaneously secure-with-abort. To
keep the exposition as simple as possible, we restrict our attention there to single-
output functionalities (though the techniques extend easily to the general case).
In Section [3:3] we show how to adapt the protocol for functionalities defined over
domains of super-polynomial size (but polynomial range), and also generalize to
functionalities generating different outputs for each party.

3.1 A Useful Lemma

We analyze an abstract game I" between a challenger and an (unbounded) ad-
versary A. The game is parameterized by a value o € (0,1] and an integer r > 1.
Fix arbitrary distributions D1, Do such that for every z it holds that

Prop,la=2] > a-Prop,la=z]. (1)
The game I'(a, ) proceeds as follows:

1. The challenger chooses i* uniformly from {1,...,r}, and then chooses aq, . ..,
a, as follows:
— For ¢ < 4%, it chooses a; <+ D;.
— For ¢ > 4*, it chooses a; <+ D».
2. The challenger and A then interact in a sequence of at most r iterations. In
iteration 1:
— The challenger gives a; to the adversary.
— The adversary can either abort or continue. In the former case, the game
stops. In the latter case, the game continues to the next iteration.
3. A wins if it aborts the game in iteration i*.

Let Win(«, r) denote the maximum probability with which A wins the game.
Lemma 1. For any D1, Dy satisfying (), it holds that Win(a,r) < 1/ar.

Proof. Fix Dy, D2 satistying ([II). We prove the lemma by induction on r. When
r = 1 the lemma is trivially true; for completeness, we also directly analyze the
case r = 2. Since A is unbounded we may assume it is deterministic. So without
loss of generality, we may assume the adversary’s strategy is determined by a
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set S in the support of Dy such that A aborts in the first iteration iff a; € S,
and otherwise aborts in the second iteration (no matter what). We have

Pr[A wins] = Pr[A wins and ¢* = 1] 4+ Pr[A wins and i* = 2]

1 1

—  Procpfac S+ - (1= Procpila e )
1 1

< . 1—-a-
N Pro—p,la € S]+ 9 (1 a-Pryp,la€ S])
1 1

= . —a)- < 1=
2+2 ((1 «) Praepz[aES]) < 1-a/2,

where the first inequality is due to Equation (). One can easily verify that
1—a/2 <1/2a when a > 0. We have thus proved Win(a,2) < 1/2¢.

Assume Win(a,r) < 1/ar, and we now bound Win(a,r + 1). As above, let S
denote a set in the support of D5 such that A aborts in the first iteration iff
a1 € S. If A does not abort in the first iteration, and the game does not end,
then the conditional distribution of i* is uniform in {2,...,7 + 1} and the game
I'(a,7 4+ 1) from this point forward is exactly equivalent to the game I'(a, 7).
In particular, conditioned on the game I'(«,r + 1) not ending after the first
iteration, the best strategy for A is to play whatever is the best strategy in
game I'(«, r). We thus have

Win(a,r + 1) = Pr[A wins and i* = 1] + Pr[A wins and i* > 1]

1 .
=41 ‘Prop,la €S+ rtl (1 —Proep,fa € S]) -Win(a, 7)
1
Pry. (1 =a-Procp, .
L DQ[aesH_a(r—l—l)( a-Pr D[aeS])
_ 1
Ca(r+1)°

This completes the proof.

3.2 1%’-Security for Functionalities with Polynomial-Size Domain

In this section, we describe a protocol that works for functionalities where at
least one of the domains is polynomial-size. (We stress that the protocol works
directly for randomized functionalities; the standard reduction from randomized
to deterministic functionalities [I8] would not apply here since, in general, it
makes the domain too large.) Although a small modification of the protocol
works even when the parties receive different outputs, for simplicity we assume
here that the parties compute a single-output function. We return to the more
general setting in the following section.

Theorem 1. Let F = {f, : X, x Y, — Z,} be a (randomized) functionality
where |Yy,| = poly(n). Assuming the existence of enhanced trapdoor permutations,
for any polynomial p there is an O (p - |Y,|)-round protocol computing F that is
private and ;-secure,



Partial Fairness in Secure Two-Party Computation 165

ShareGen,

Inputs: The security parameter is n. Let the inputs to ShareGen, be z € X,
and y € Y;,. (If one of the received inputs is not in the correct domain, a default
input is substituted.)

Computation:
1. Define values a1,...,a, and by, ..., b, in the following way:
— Choose ¢* uniformly at random from {1,...,7}.

— Fori=1to" —1do:
e Choose §j + Y, and set a; = fn(z,9).
e Choose Z <+ X, and set b; = fn(Z,y).
— Compute z = fp(z,y). For i = 4" to r, set a; = b; = z.
2. For 1 <i <r, choose (agl), a?) and (6", b{*) as random secret sharings of
a; and b;, respectively. (Le., az(.l) is random and ag1> ® a§2) =a;.)
3. Compute kq,ks < Gen(1™). For 1 < ¢ < r, let t§ = Macg, (iHal@)) and
t? = Macy, (i[b{").

Output:
1. Send to P; the values a{",...,a" and (6{",2%),..., (6", 1%), and the
MAC-key kq.-
2. Send to P> the values (a§2),t‘f),..4,(a$2),t$) and b§2),...7b$2), and the
MAC-key kp.

Fig. 1. Functionality ShareGen,.

Proof. As described in Section [[L2] our protocol I consists of two stages. Let
p be an arbitrary polynomial, and set r = p - |Y,|. We will implement the
first stage of IT using a sub-protocol 7w for computing a randomized function-
ality ShareGen, defined in Figure [Il (ShareGen, is parameterized by a polyno-
mial r.) This functionality returns shares to each party, authenticated using
an information-theoretically secure r-time MAC (Gen, Mac, Vrfy). In the second
stage of IT the parties exchange these shares in a sequence of r iterations as
described in Figure

We analyze our protocol in a hybrid model where there is a trusted party
computing ShareGen,. according to the second ideal model where a malicious P;
can abort the trusted party before it sends output to the honest party. We prove
privacy and ;—security of IT in this hybrid model; it follows as in [§] that if we
use a sub-protocol for computing ShareGen,. that is secure-with-abort, then the
real-world protocol IT is private and ;—Secure.

We first consider the case of a malicious P;. Intuition for the following claim
was given in Section The formal statement and proof follow.

Claim 1. Let II"Y denote an execution of II in a hybrid model with access to
an ideal functionality computing ShareGen,. (with abort). For every non-uniform,
polynomial-time adversary A corrupting Py and running II", there exists a non-
uniform, polynomial-time adversary S corrupting Py and running in the ideal
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Protocol 1

Inputs: Party P; has input = and party P» has input y. The security parameter
isn. Let r =p- |V,
The protocol:

1. Preliminary phase:
(a) Py chooses § € Y, uniformly at random, and sets ag = fn(z,§). Similarly,
P, chooses & € X, uniformly at random, and sets by = fn(Z,y).
(b) Parties P; and P» run a protocol m to compute ShareGen,, using their
inputs z and y.
(c) If P5 receives L from the above computation, it outputs by and halts.
Otherwise, the parties proceed to the next step.

(d) Denote the output of P; from 7 by a§1)7 . 7a(rn, (b(ll),tl{), e (b(rl),t?),
and kg.
(e) Denote the output of P> from 7 by (a@,t‘f), e (ag), ty), b§2>, R b£2),
and kp.
2. Fori=1,...,r do:

P> sends the next share to Pi:

(a) P, sends (a!?,1%) to Py.

(b) P1 receives (af),tf) from P». If Vrfy, (i||al(.2)7 t§) =0 (or if Py received
an invalid message, or no message), then P; outputs a;—1 and halts.

(c) If Vrfy, (iHaEQ),t?) = 1, then P; sets a; = ail) D a§2) (and continues
running the protocol).

P, sends the next share to Ps:

(a) Py sends (bl(-l),t?) to Ps.

(b) Ps receives (b§1)7tf) from P;. If Vrfykb(iHbEl), t?) = 0 (or if Py received
an invalid message, or no message), then P» outputs b;—1 and halts.

(c) If Vrfykb(iHbgl),t?) = 1, then P, sets b; = bﬁ” & bﬁz) (and continues
running the protocol).

3. If all r iterations have been run, party Pi outputs a, and party P» outputs b,.

Fig. 2. Generic protocol for computing a functionality f,

world with access to an ideal functionality computing F (with complete fairness),
such that ;—secum'ty and privacy hold.

Proof. We construct a simulator S given black-box access to A. For readability in
what follows, we ignore the MAC-tags and keys. When we say that A “aborts”,
we include in this the event that A sends an invalid message, or a message whose
tag does not pass verification. We also drop the subscript n from our notation
and write X, Y in place of X,,Y,.

1. § invokes A on the inpu x’, the auxiliary input, and the security param-
eter n. The simulator also chooses & € X uniformly at random (it will send
Z to the trusted party, if needed).

2. S receives the input x of A to the computation of the functionality ShareGen,..
(If ¢ X a default input is substituted.)

2 We reserve z for the value input by A to the computation of ShareGen,..
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3. S sets r = p- |Y|, and chooses uniformly-distributed shares agl),...,a,(ﬁl)
and bgl), .. .,bgl). Then, S gives these shares to A as its output from the
computation of ShareGen,..

4. Tf A sends abort to the trusted party computing ShareGen,., then S sends &
to the trusted party computing f, outputs whatever A outputs, and halts.
Otherwise (i.e., if A sends continue), S proceeds as below.

5. Choose ¢* uniformly from {1,...,7}

6. Fori=1to ¢ —1:

(a) S chooses § € Y uniformly at random, computes a; = f(z, %), and sets

aZ@) = agl) ®a;. It gives aZ@) to A. (A fresh ¢ is chosen in every iteration.)

(b) If A aborts, then S sends & to the trusted party, outputs whatever 4
outputs, and halts.

7. For i =¢* to r:

(a) If 4 = ¢* then S sends x to the trusted party computing f and receives

(b) S sets a§2) = agl) ® z and gives aZ@) to A.

(c) If A aborts, then S then outputs whatever A outputs, and halts. If A
does not abort, then S proceeds.

8. If A never aborted (and all r iterations are done), S outputs what A outputs

and halts.

It is immediate that the view of A in the simulation above is distributed
identically to its view in IT"; privacy follows. We now prove -security.

Ignoring the possibility of a MAC forgery, we claim that the statistical differ-
ence between an execution of A, running IT in a hybrid world with access to an
ideal functionality computing ShareGen,., and an execution of S, running in an
ideal world with access to an ideal functionality computing f, is at most 1/p.
(Thus, taking into account the possibility of a MAC forgery makes the statistical
difference at most 1/p + pu(n) for some negligible function p.) To see this, let y
denote the input of the honest P, and consider three cases depending on when
the adversary aborts:

1. A aborts in round ¢ < ¢*. Conditioned on this event, the view of A is identi-
cally distributed in the two worlds (and is independent of y), and the output
of the honest party is f(&,y) for & chosen uniformly in X.

2. A aborts in round ¢ > i* (or never). Conditioned on this, the view of A
is again distributed identically in the two worlds, and in both worlds the
output of the honest party is f(z,y).

3. A aborts in round i = ¢*: here, although the view of A is still identical in
both worlds, the output of the honest party is not: in the hybrid world the
honest party will output f(Z,y), for & chosen uniformly in X, while in the
ideal world the honest party will output f(z,y).

However, Lemma [I] implies that this event occurs with probability at
most 1/p. To see this, let Dy denote the distribution of a; for i < i* (i.e., this
is the distribution defined by the output of f(z,g), for § chosen uniformly
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from Y), and let Dy denote the distribution of a;« (i.e., the distribution
defined by the output of f(z,y)). For any z € Z we have

Prop,fa= 2] < Pryy[f(2,5) = 2]

2 ‘;v‘ 'Pr[f(x’y) = Z] = ‘;v‘ 'Prﬂ‘—Dz[a = Z}

Taking a = 1/|Y| and applying Lemmal[ll we see that A aborts in iteration i*
with probability at most 1/ar =|Y|/|Y|p =1/p.

This completes the proof of the claim.

Next we consider the case of a malicious P5. A proof of the following is almost
identical to that of Claim 1; in fact, the proof is simpler and we can prove
a stronger notion of security since P; always “gets the output first” in every
iteration of I1. For these reasons, a proof is omitted.

Claim 2. (Informal.) Let II™ denote an evecution of IT in a hybrid model
where the parties have access to an ideal functionality computing ShareGen,. (with
abort). Then for any adversary corrupting P,, protocol IT" securely computes F
(which in particular implies privacy).

The results of [§], along with the fact that a secure-with-abort protocol for
ShareGen,. is implied by the existence of enhanced trapdoor permutations, com-
plete the proof of Theorem [I

Achieving security-with-abort. As written, the protocol is not secure-with-
abort. However, the protocol can be modified easily so that it is (without affect-
ing ;—security)t simply have ShareGen, choose * uniformly from {2,...,r + 1}
and set bj«_1 =1, where L is some distinguished value outside the range of f.
Although this allows a malicious P> to identify exactly when iteration i* oc-
curs, this does not affect security since by that time P; has already received the
correct output.

3.3 1%’-Security for Functionalities with Polynomial-Size Range

The protocol from the previous section does not apply to functions on domains
of super-polynomial size, since the round complexity is linear in the size of the
smaller domain. Here we show how to extend the protocol to handle arbitrary
domains if the range of the function (for at least one of the parties) is polynomial
size. We now also explicitly take into account the case when parties obtain
different outputs. Intuition for the changes we introduce is given in Section [[.2

Theorem 2. Let F = {f, : X, x Y, — Z} x Z2} be a (randomized) func-
tionality, where |Z}| = poly(n). Assuming the existence of enhanced trapdoor
permutations, for any polynomial p there is an O (p2 . \Z}L|)—r0und protocol com-
puting F that is private and ;-secure.
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’
ShareGen;, .

Inputs: The security parameter is n. Let the inputs to ShareGen,, . be z € X,
and y € Y,,. (If one of the received inputs is not in the correct domain, a default
input is substituted.)

Computation:
1. Define values a1,...,a, and by, ..., b, in the following way:
— Choose ¢* uniformly at random from {1,...,7}.

— Fori=1to ¢ —1do:
e Choose & + X, and set b; = fﬁ(i, Y).
e With probability %, choose z + Z) and set a; = z. With the re-
maining probability 1 — 11;, choose ¢ < Y and set a; = fl(x,9).
— Compute z1 = fi(z,y) and z2 = f2(z,y) (if fn = (f1, £2) is randomized,
these values are computed using the same random tape). For ¢ = i* to
r, set a; = z1 and b; = zo.
2. For 1 < i <, choose (agl),ag)) and (bﬁ”,bﬁ”) as random secret sharings of
a; and b;, respectively. (E.g., agl) is random and agl) @ al(.2) =a;.)
3. Compute kq,ky, < Gen(1™). For 1 < ¢ < r, let t§ = Macy, (iHagz)) and
12 = Macy, (i[b{").

Output:
1. Send to P the values agl),.,.,aﬁl) and (b(ll),tl{),...,(b(rn,tl,’.), and the
MAC-key kq.
2. Send to P> the values (af),t‘f), cey (ag.z),tﬁ) and b(12)7 .. .,b,@, and the
MAC-key ky.

Fig. 3. Functionality ShareGen;, .

Proof. Our protocol IT is, once again, composed of two stages. The second stage
is identical to the second stage of the previous protocol (see Figure[), except that
the number of iterations r is now set to r = p? - |Z}|. The first stage generates
shares using a sub-routine 7 computing a different functionality ShareGen;m,
parameterized by both p and r and described in Figure Bl

We again analyze our protocol in a hybrid model, where there is now a trusted
party computing ShareGen;)T. (Once again, P, can abort the computation of
ShareGen;’T in the ideal world.) We prove privacy and ;—security of IT in this
hybrid model, implying [§] that if the parties use a secure-with-abort protocol for
computing ShareGen;’T7 then the real-world protocol I7 is private and zl)—secure.
We first consider the case of a malicious P;.

Claim 3. (Informal.) Let II™ denote an evecution of I in a hybrid model
where the parties have access to an ideal functionality computing ShareGen;’T
(with abort). Then for any adversary corrupting Py, protocol IT™ privately and
;—securely computes F.

Proof. The simulator used to prove this claim is essentially the same as the
simulator used in the proof of Claim 1, except that in step 6(a) the distribution on
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a; (for i < i*) is changed to the one used by ShareGen;, .. The analysis is similar,
too, except for bounding the probability that A aborts in iteration ¢*. To bound
this probability we will again rely on Lemmalll, but now distribution Dy (i.e., the
distribution of a; for ¢ < ¢*) is different. Let y denote the input of P». Note that,
by construction of ShareGen;, ,., for any z € Z,, we have Pr,.p,[a = 2] > 11)~ IZli -
Regardless of f and y, it therefore holds for all z € Z! that

1
PraHD a=z >
da=zz

-Prop,la = z].
Setting a = 1/p-|Z}| and applying Lemmal[Il we see that A aborts in iteration i*
with probability at most
1 plZy _1
ar  p*-|Z  p’
This completes the proof of the claim.

We next consider the case of a malicious P,. Note that, in contrast to Claim 2,
here we claim only ;—security.

Claim 4. (Informal.) Let II™ denote an evecution of IT in a hybrid model
where the parties have access to an ideal functionality computing ShareGen;’T
(with abort). Then for any adversary corrupting Py, protocol IT™ privately and
;-securely computes F.

Proof. A proof appears in the full version of this work, and is omitted here due
to space constraints.

The results of [8], along with the fact that a secure-with-abort protocol for
ShareGen;’T is implied by the existence of enhanced trapdoor permutations, com-
plete the proof of Theorem

4 Optimality of Our Results

We show that the results of the previous section are optimal as far as generic
feasibility is concerned.

4.1 Impossibility of ;-Security and Security-with-Abort
Simultaneously

In Section (cf. the remark at the end of that section) we showed a protocol
achieving !-security and security-with-abort simultaneously for functionalities
where at least one of the domains is polynomial-size. We show that if both
domains are super-polynomial in size then, in general, it is impossible to achieve
both these criteria at once.
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Theorem 3. Let F = {EQ, : {0,1}*™ x {0,1}*™ — {0,1}}, where EQ,, de-
notes the equality function on strings and £(n) = w(logn). Let IT be any protocol
computing F. If II is secure-with-abort, then II does not ;—securely compute F

1
for any p >4+ poly(n) -

Proof. Let II be a protocol that computes F and is secure-with-abort. Assume
without loss of generality that P, sends the first message in Il and that P;
sends the last message. Say II has r = r(n) iterations for some polynomial r,
where an iteration consists of a message sent by P, followed by a message sent
by P;. Let ag denote the value that P; outputs if P, sends nothing, and let a;,
for 1 <4 < r, denote the value that P; outputs if P, aborts after sending its
iteration-i message. Similarly, let by denote the value that P, outputs if P, sends
nothing, and let b;, for 1 < i < r, denote the value that P> outputs if P; aborts
after sending its iteration-i message. We may assume without loss of generality
that, for all 4, we have a; € {0,1} and b; € {0,1, L}.

We will consider two experiments involving an execution of II. In the first,
¢ and y are chosen uniformly and independently from {0, 1}¢(™); the parties are
given inputs x and y, respectively; and the parties then run protocol II honestly.
We denote the probability of events in this experiment by Pryang[-]. In the second
experiment, x is chosen uniformly from {0, 1}5(") and y is set equal to x; these
inputs are given to the parties and they run the protocol honestly as before. We
denote the probability of events in this probability space by Preq]].

Lemma 2. Prypglao =1V -+ Va, = 1] and Pryanalbo =1V - Vb, = 1] are
negligible.

Proof. This follows from the fact that IT is secure-with-abort. If, say, it were the
case that Pryapalag = 1V -+ V a, = 1] is not negligible, then we could consider
an adversarial P» that runs the protocol honestly but aborts at a random round.
This would cause the honest P; to output 1 with non-negligible probability in
the real world, whereas P; outputs 1 with only negligible probability in the ideal
world (since the parties are given independent, random inputs).

Assume for simplicity that IT has perfect correctness, i.e., that a, = b, =
EQ(z,y) when the two parties run the protocol honestly holding initial inputs z
and y. (This assumption is not necessary, but allows us to avoid having to deal
with annoying technicalities.) Then

Prlag=1V---Va, =1]=Prlbg=1V---Vb. =1 =1

eq eq
since, in particular, Preg[a, = 1] = Preg[br = 1] = 1. In a given execution, let
1" denote the lowest index for which a;« = 1, and let j7* denote the lowest index
for which b;- = 1. Since

Preq[i* < j*] + Preq[i* > 5% =1,

at least one of the terms on the left-hand side is at least 1/2. We assume that
Preq[i* < 5*] > 1/2 in what follows, but the same argument (swapping the roles
of the parties) applies if Preg[i* > j*] > 1/2.
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Consider now a third experiment that is a mixture of the previous two. Specif-
ically, in this experiment a random bit b is chosen; if b = 0 then the parties are
given inputs & and y as in the first experiment (i.e., chosen uniformly and in-
dependently at random), while if b = 1 then the parties are given (random)
x = y as in the second experiment. The parties then run protocol I honestly.
We denote the probability of events in this probability space by Pri?'[-]. We
use the superscript real to distinguish this from an ideal-world version of this
experiment where the bit b is chosen uniformly and the parties are given x and y
generated accordingly, but now the parties interact with an ideal party comput-
ing EQ without abort (i.e., in the first ideal model). We denote the probability
of events in this experiment by Pride'[.],

Consider an execution of the third experiment (in either the real or ideal
worlds), in the case when P; is malicious. Let guess denote the event that Py
correctly guesses the value of the bit b, and let outs denote the output of Ps. It
is not hard to show that

1

Pride! [guess A outy # 1] = o

(2)
(Note that outy € {0,1} in the first ideal world.) Now take the following real-
world adversary A corrupting P;: upon receiving input x, adversary A runs IT
honestly but computes a; after receiving each iteration-i message from Ps. Then:

— If, at some point, a; = 1 then A aborts the protocol (before sending the
iteration-i message on behalf of P;) and outputs the guess “b=17.

— If a; = 0 for all ¢, then A simply runs the protocol to the end (including the
final message of the protocol) and outputs the guess “b = 0.

We have:

Pr'[guess A outy # 1]

1 1
=, - Prrand[guess A outs # 1] 4+ 5 - Preg[guess A outy # 1]

1

> ~Prrand[a1:0/\~-~/\aT:0/\bT:0]+2-Preq[i*gj*]

3
> (L-negln) 4, = |~ neglin), 3)
using Lemma [2] for the second inequality. Equations (@) and (B]) show that IT

1 1
cannot also be ,-secure for any p >4+ poly(n)

4.2 Impossibility of ;—Security for General Functions

Our results show that ;—security is achievable for any functionality f : X, X
Y, — Z} x Z2 if at least one of X,,,Y,,, Z}, Z2 has polynomial size. Here, we
demonstrate that this limitation is inherent.
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Define a deterministic, single-output function F = {Swap,, } with
Swap,, : {0, 1}<0°8™) x {0, 1}(esm) — {0, 1} (&)

as follows: Fix some £(n) = w(logn). Let (Gen, Mac, Vrfy) denote an information-
theoretic, one-time MAC for messages of length 2 - £(n) with key length O(4(n))
and tag length ¢(n). Then

Swap,, ((z1,t1, k2), (x2,t2, k1))

def (.731,.732) if Vrfykl (xl,tl) = Vrfyk2 (xg,tg) =1
o s otherwise ‘

(Note that both parties receive the same output (x1,x2) in the first case.)

Theorem 4. Function F cannot be zl)-securely computed for anyp > 2+ polyl(n).

Proof. Consider an ideal-world computation of Swap where:

— 1z, are chosen uniformly at random from {0, 1}2¢("),

— ka1, ki, ko, kb are output by Gen(1™) (i.e., they are random MAC-keys).
— t1 = Macy, (71), t} = Macy; (21), t2 = Macy, (z2), and t5 = Macy, (72).
— Py is given input (z1,t1, ]{,‘2]) and auxiliary information (k%,t5)

— P, is given input (z2,t2, k1) and auxiliary information (k7,t}).

Define a win for P; as the event that P, outputs xo while P; fails to output 7.
(A win for P» is defined analogously.) It is easy to see that, e.g., a malicious P
cannot win in the ideal world, where complete fairness is guaranteed, except with
negligible probability. This is because x2 is a uniform 2¢(n)-bit value, while the
only information P; has about z initially is the £(n)-bit tag ¢5. Thus, the only
way for P; to learn x5 is to submit to the trusted party some input (1,71, l%g)
for which Vrfy, (551,1?1) = 1; unless &1 = x1, however, this condition holds with
negligible probability.

In any real-world computation of Swap, however, there must be one party
who “gets its output first” with probability at least 1/2, and can identify exactly
when this occurs using its auxiliary information. More formally, say we have an
r-iteration protocol IT computing Swap where P, sends the first message and Py
sends the last message. Let a;, for i =0, ..., 7, denote the second component of
the value P; would output if P> aborts the protocol after sending its iteration-
1 message, and let b; denote the first component of the value that P, would
output if P; aborts the protocol after sending its iteration-i message. Each value
a; and b; can be computed in polynomial time after receiving the other party’s
iteration-i message. We can therefore define an adversary P} that acts as follows:

Run the protocol honestly until the first round where Vrfy,, (a;,t5) = 1;
then output a; and abort.

An adversary P can be defined analogously. Note that if, e.g., Vrfy,, (a;,t3) =1
then a; = z2 except with negligible probability; this follows from the information-
theoretic security of the MAC along with the fact that the execution of IT is
independent of kj, t),.
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Let i denote the first round in which Vrfy,, (a;,t5) = 1, and let j denote
the first round in which Vrfy,, (b;,#]) = 1. Assuming for simplicity that IT has
perfect correctness, we have

Pr[i <j]+Pr[j >i=1.

Further, since |Pr[P; wins] — Pr[i < j]| and |Pr[Ps wins] — Pr[i > j]| are both
negligible, we see that either P; or Py wins in the real world with probability
at least 1/2 — negl(n). Since an adversary wins in the ideal world with negligible
probability, this rules out ;—security for p > 2.

Theorem [ does not contradict the results of [12], or any previous work on fair
exchange of signatures. One reason is that prior work on fair exchange typically
assumes that each party has no auxiliary information about the other party’s se-
cret, whereas our definition (as is standard for definitions of secure computation)
accounts for this possibility!d Also, in some previous work on fair exchange the
running time of the honest party is not bounded by a fixed polynomial, whereas
in our setting we require this to be the case.

5 Conclusions and Open Questions

Our work offers a clean definition of partial fairness within the standard real/ideal
world paradigm, and settles the question of the general feasibility of achieving this
notion in the two-party setting. Several compelling questions remain:

— An easy modification of our second impossibility result (cf. Theorem M)
rules out our definition of partial fairness for the interesting special case of
exchanging digital signatures. What is the appropriate (simulation-based?)
notion of partial fairness for that setting?

— We can show a function F = {f,, : X,, x Y,, — Z,,} for which any protocol
computing F with ;—Security requires min {p, | X, |Y»|} rounds. This leaves
a gap as compared to Theorem [Il

— The question of partial fairness in the multi-party setting (with dishonest
majority) is wide open. We are not aware of any results in this direction ex-
cept for the case of coin tossing [I0,27], or functions where complete fairness
is possible [21].
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Abstract. In the problem of Secure Message Transmission in the public discus-
sion model (SMT-PD), a Sender wants to send a message to a Receiver privately
and reliably. Sender and Receiver are connected by n channels, up to ¢ < n of
which may be maliciously controlled by a computationally unbounded adversary,
as well as one public channel, which is reliable but not private.

The SMT-PD abstraction has been shown instrumental in achieving secure
multi-party computation on sparse networks, where a subset of the nodes are able
to realize a broadcast functionality, which plays the role of the public channel.
However, the implementation of such public channel in point-to-point networks
is highly costly and non-trivial, which makes minimizing the use of this resource
an intrinsically compelling issue.

In this paper, we present the first SMT-PD protocol with sublinear (i.e., loga-
rithmic in m, the message size) communication on the public channel. In addition,
the protocol incurs a private communication complexity of O( " ), which, as we
also show, is optimal. By contrast, the best known bounds in both public and private
channels were linear. Furthermore, our protocol has an optimal round complexity
of (3, 2), meaning three rounds, two of which must invoke the public channel.

Finally, we ask the question whether some of the lower bounds on resource
use for a single execution of SMT-PD can be beaten on average through amorti-
zation. In other words, if Sender and Receiver must send several messages back
and forth (where later messages depend on earlier ones), can they do better than
the naive solution of repeating an SMT-PD protocol each time? We show that
amortization can indeed drastically reduce the use of the public channel: it is pos-
sible to limit the total number of uses of the public channel to two, no matter how
many messages are ultimately sent between two nodes. (Since two uses of the
public channel are required to send any reliable communication whatsoever, this
is best possible.)

1 Introduction

Dolev, Dwork, Waarts and Yung [DDWY93] introduced the model of Secure Message
Transmission (SMT) in an effort to understand the connectivity requirements for secure

* Supported in part by IBM Faculty Award, Xerox Innovation Group Award, the Okawa Foun-
dation Award, Intel, Teradata, NSF grants 0716835, 0716389, 0830803, 0916574, BSF grant
2008411 and U.C. MICRO grant.
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communication in the information-theoretic setting. Generally speaking, an SMT pro-
tocol involves a sender, S, who wishes to transmit a message M to a receiver, R, using a
number n of channels (“wires”), some of which are controlled by a malicious adversary
A. The goal is to send the message both privately and reliably. Since its introduction,
SMT has been widely studied and optimized with respect to several different settings
of parameters (for example, see [SA96, ISNP04, ACHO6, FFGV07, [KSOS]).

Garay and Ostrovsky [GOOS|| studied a model they called Secure Message Trans-
mission by Public Discussion (SMT-PD) as an important building block for achieving
secure multi-party computation [BGW8S| ICCDS88]| on sparse (i.e., not fully connected)
networks. (An equivalent setup was studied earlier in a different context by Franklin
and Wright [FW9S].) In this model, in addition to the wires in the standard SMT for-
mulation, called “common” or “private” wires from now on, § and R gain access to a
public channel which the adversary can read but not alter. In this new setting, secure
message transmission is achievable even if the adversary corrupts up to ¢ < n of the
private wires—i.e., up to all but one.

The motivation for this abstraction comes from the feasibility in partially connected
settings for a subset of the nodes in the network to realize a broadcast functionality
despite the limited connectivity [DPPUS6, [Upf92, BG93ﬂ, which plays the role of the
public channel. (The private wires would be the multiple paths between them.) As such,
the implementation of the public channel in point-to-point networks is costly and highly
non-trivial in terms of rounds of computation and communication, as already the send-
ing of a single message to a node that is not directly connected is simulated by sending
the message over multiple paths, not just blowing up the communication but also incur-
ring a slowdown factor proportional to the diameter of the network, and this is a process
that must be repeated many times—Ilinear in the number of corruptions for determin-
istic, error-free broadcast protocols (e.g., [GMOS]]), or expected (but high) constant for
randomized protocols [FM97, [KKO06].

A main goal of this work is to minimize the use of this expensive resource, both
in terms of communication as well as in the number of times it must be used when
sender and receiver must send many messages back and forth, as it is the case in secure
multi-party computation. We first present an SMT-PD protocol with a logarithmic (in
m, the message size) communication complexity on the public channel; the best known
bound, due to Shi, Jiang, Safavi-Naini, and Tuhin [SISTO09], was linear (see related
work below). In addition, our protocol incurs a private communication complexity of
O(,""), which, as we also show, is optimal, thus providing an affirmative answer to
the question posed in [SIST09] of whether their O(mn) private communication could
be improved. Furthermore, our protocol has an optimal round complexity of (3,2),
meaning 3 rounds, 2 of which must invoke the public channel [SIST09].

Regarding the number of times the public channel must be used when considering
SMT-PD as a subroutine in a larger protocol, we ask the question whether some of the
lower bounds on resource use for a single execution of SMT-PD can be beaten on average
through amortization. In other words, if a sender and receiver must send several messages
back and forth (where later messages depend on earlier ones), can they do better than
the naive solution of repeating an SM'T-PD protocol each time, incurring a cost of three

! Called “almost-everywhere” agreement, or broadcast, in this setting.
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rounds and two public channel transmissions per message? We show that amortization
can in fact drastically reduce the use of the public channel: indeed, it is possible to limit
the total number of uses of the public channel to two, no matter how many messages are
ultimately sent between two nodes. (Since two uses of the public channel are required
to send any reliable communication whatsoever, this is best possible.)

Prior work. The first variant of SMT considered in the literature is perfectly secure mes-
sage transmission (PSMT), in which both privacy and reliability are perfect [DDWY93].
Itis shown in the original paper that PSMT is possible if and only if n > 2¢4-1. For such
n, 2 rounds are necessary and sufficient for PSMT, while one-round PSMT is possible
if and only if n > 3t + 1.

The communication complexity of PSMT depends on the number of rounds. For
1-round PSMT, Fitzi et al. [FFGV07] show that transmission rate > ", is neces-
sary and sufficient. (Recall that n > 3t is required in this case.) For 2-round PSMT,
Srinathan et al. [SNPO4]] show that a transmission rate > nll2 " is require(ﬂ; this was
extended in [SPRO7|], which showed that increasing the number of rounds does not
help. Kurosawa and Suzuki [KSOS8|| construct the first efficient (i.e., polynomial-time)
2-round PSMT protocol which matches this optimal transmission rate.

A number of relaxations of the perfectness requirements of PSMT are considered in
the literature to achieve various tradeoffs (see for example [CPRSOS]| for a detailed dis-
cussion of variants of SMT). The most general version of SMT (or SMT-PD) is perhaps
(€,0)-SMT. We call a protocol for SMT(-PD) an (e, §)-SMT(-PD) protocol provided that
the adversary’s advantage in distinguishing any two messages is at most €, and the re-
ceiver correctly outputs the message with probability 1 — . The lower bound n > 2¢+1
holds even in this general setting (at least for non-trivial protocols, such as those satis-
fying € + § < 1/2); hence the most interesting case for SMT-PD is the case when the
public channel is required: ¢ < n < 2¢. As noted above, this requires round complexity
(3,2) [SJSTQ9]]. Franklin and Wright [FW98]|| show that perfectly reliable (6 = 0) SMT-
PD protocols are impossible when n < 2¢. On the other hand, perfect privacy (¢ = 0)
is possible, and is achieved by previous SMT-PD constructions (see below).

The communication complexity lower bounds noted above all apply to PSMT; for
more general SMT bounds, we are aware only of [KSO7]. They consider the prob-
lem of almost-secure message transmission, which is only slightly less restrictive than
PSMT. Namely, the problem requires perfect privacy, and that the Receiver never out-
put an incorrect message, though he may output “failure” with probability §. The au-
thors show that in this model, there is a communication complexity lower bound of
n(m + log(1/9)) (up to an additive constant).

A number of protocols for SMT-PD appear in previous work. The first such comes
in [FWO98] as a consequence of the equivalence shown there between networks with
multicast and those with simple lines and broadcast (i.e., the public discussion model).
Their solution has optimal round complexity (3, 2)f; however, when t < n < 1

2 The authors claim a matching upper bound as well, but this was shown to be flawed [ACHO6].

3 The round complexity is not apparent from the text, for two reasons: (1) The protocol is de-
scribed in terms of the multicast model, not SMT-PD directly; and (2) the authors consider
synchronous “rounds” not in the abstract SMT-PD model, but in the more concrete setting of
nodes relaying messages in the underlying network.
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(including the worst case ¢ = n + 1), their protocol has (pick your poison) either
positive privacy error ¢ > 0, or exponential communication complexity. Garay and
Ostrovsky [GOOS] first describe a (4,3)-round (0, §) protocol which was subsequently
improved to (3,2) rounds. The protocol has linear transmission rate (in terms of mes-
sage size) on the public and private channels. Shi et al. [SIST09] give the first protocol
with constant transmission rate on the public channel (for messages of sufficient, mod-
est size) with linear transmission rate on the private channels as well; however, the
communication complexity of their protocol is linear.

Our contributions. By contrast, we obtain the first round-optimal SMT-PD protocol
with sublinear (logarithmic) communication complexity on the public channel. More
specifically (and assuming for simplicity 6 = O(1)), our protocol has public chan-
nel communication complexity O(nlognlogm) for messages of sufficient size, as
compared with O(m) in the protocol of [SIST09]. (The message size required by
either protocol—namely, m/logm = §2(nlogn) for ours, or m = §2(n?) for that
of [SJSTQ9]—ensures that O(nlognlogm) improves over O(m) for relevant values
of n,m.) The protocol also enjoys a private communication complexity of O( ™),
which (just by itself) improves on previous constructions and, as we also show, is opti-
mal. At a high level, the protocol has the same structure as previous 3-round SMT-PD
protocols, with the following important differences: (1) our use of randomness extrac-
tors allows us to reduce the amount of transmitted randomness, which is reflected in the
gain in private communication, and (2) typically in previous protocols the message is
transmitted in the last round over the public channel, blinded by the private randomness
thought not to have been tampered with; our improvement to public communication
comes from the transmission of the (blinded) message on the private wires, provided
that the sender authenticates the transmission making use of the public channel, which
in turn requires smaller communication. Additionally, we achieve these improved com-
munication bounds even for messages of smaller required size than Shi ez al. [SJ STo9) A
Finally, the protocol achieves perfect privacy.

We arrive at this result through a series a transformations. First, we design a generic
SMT-PD protocol with linear public communication and O( '™, ) private communica-
tion (note that this already improves on existing results); second, we consider instantia-
tions of the generic protocol’s “black boxes” with different randomness extractors, each
providing its own benefits (perfect privacy vis-a-vis smaller message size); and last, we
obtain the final protocol by essentially running two perfect-privacy instantiations of the
generic protocol in parallel, one for the message itself and a “smaller” version for the
authentication key. These results are presented in Section 3

As noted above, we also show (Section H)) an 2( ;T‘t) lower bound on private com-
munication. The lower bound holds for SMT without public discussion as well. The
bound itself is weaker than previous, but it holds for a more general class of SMT pro-
tocols. In particular, it is the first communication complexity lower bound to consider
non-perfect privacy, as well as the first to allow for the Receiver outputting an incorrect
message.

* Specifically, [SIST09] require message size m = 2(n?(log(1/8))?), where we require only
m = 2(n(logn + log(1/6))log q), with ¢ = mn/(n — t).
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Finally, we show in Section[3lhow amortization can drastically reduce the use of the
public channel, allowing sender and receiver to communicate indefinitely after using the
public channel twice and a limited initial message. Our approach is to separate Sender
and Receiver’s interaction following the first execution of SMT-PD into two modes:
a Normal Mode and a Fault-Recovery Mode. At a high level, in the Normal Mode,
secure communication is successful provided the adversary does not interfere; this is
implemented by a one-round protocol satisfying a relaxed version of the problem that
we call Weak SMT-PD. Fault-Recovery Mode is entered if corruption is detected ]

Preliminaries and definitions are given in Section 21 Due to space limitations, most
of the proofs, as well as additional background material, are given in the full version of
the paper [GGOO09].

2 Model and Preliminaries

Definition 1. If X and Y are random variables over a discrete space S, the statistical
distance between X and Y is defined to be

AX,Y)Y ; ST [PrX = 5] - Pr[Y = s]].
seS

We say that X and Y are e-close if A(X,Y) <.

The public discussion model. The public discussion model for secure message trans-
mission [[GOOQS]| consists of a Sender S and Receiver R (PPTMs) connected by n com-
munication channels, or wires, and one public channel. S wishes to send a message
Ms from message space M to R, and to this end S and R communicate with each
other in synchronous rounds in which one player sends information across the wires
and/or public channel. Communication on the public channel is reliable but public; the
common wires may be corrupted and so are not necessarily reliable or private.

A is a computationally unbounded adversary who seeks to disrupt the communica-
tion and/or gain information on the message. .A may adaptively corrupt up to t < n of
the common wires (potentially all but one!). Corrupted wires are actively controlled by
A: he can eavesdrop, block communication, or place forged messages on them. Further,
we assume A is rushing—in each round, he observes what is sent on the public channel
and all corrupted wires before deciding what to place on corrupted wires, or whether to
corrupt additional wires (which he then sees immediately).

An execution E of an SMT-PD protocol is determined by the random coins of S,
R, and A (which we denote Cs, Cr, C4 respectively), and the message Ms € M.
The view of a player P € {S, R, A} in an execution E, denoted Viewp, is a random
variable consisting of P’s random coins and all messages received (or overheard) by P.
(8’s view also includes Ms). Additionally, let Viewp (Mj) denote the distribution on
Viewp induced by fixing Ms = Mj. In each execution, R outputs a received message
M, a function of Viewr.

3 Effectively, this is an instantiation in the SMT context of the “fast-track” approach
(e.g., [Lam87,IGRRIS])), where if things are “smooth” then the algorithm or protocol performs
very efficiently, reverting to a more punctilious mode otherwise.
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We can now define an (¢, §)-SMT-PD protocol (cf. [FW98][GO08, [STSTO9]):

Definition 2. A protocol I1 in the model above, in which S attempts to send a message
Ms to R, is (e, d)-secure (or simply, is an (€, d)-SMT-PD protocol) if it satisfies:

PRIVACY: For any two messages My, M1 € M, View 4(My) and View 4(M;) are
e-close.

RELIABILITY: For all Ms € M and all adversaries A, R should correctly receive
the message with probability at least 1 — §; i.e., Pr[Mgr = Mg] > 1 — 6. (The
probability is taken over all players’ random coins.)

Error-correcting codes and consistency checks for codewords. For our purposes, the
following definition of error-correcting codes is sufficient:

Definition 3. Given a finite alphabet X, an error-correcting code £ of minimum dis-
tance d is a pair of mappings Enc : X% — XN where K < N and Dec : XN — XX,
such that (1) any two distinct elements x,y in the image of Enc (the codewords) have
dist(x,y) > d in the Hamming metric; (2) Dec(Enc(z)) = x forall x € Ffﬁ We say
& has rate K/N and relative minimum distance d/N.

We require a family of codes of increasing input length which is asymptotically good,
that is, £ should have constant rate and constant relative minimum distance D. See,
e.g., IMS83] for a standard reference.

Of particular interest for us are the well-known Reed-Solomon codes over Fy, ob-
tained by oversampling polynomials in F,[X]. Given an input in FX, we interpret it as a
polynomial f of degree < K — 1; to obtain a codeword from f, we simply evaluate it at
N distinct points in IF, for any N > K. Indeed, any two such polynomials agree on at
most K — 1 points, therefore the Reed-Solomon code has minimum distance N — K +1.

Our protocols make use of a simple method to probabilistically detect when code-
words sent on the private wires are altered by .A. Simply put, the sender of the codeword
reveals a small subset of the codeword symbols. Formally, suppose S sends a codeword
C € XN to R over one of the private wires, and R receives the (possibly altered) code-
word C*. (If R receives a non-codeword, he immediately rejects it.) Then to perform
the consistency check, S chooses a random set J = {j1, j2,...,j¢} C [N] and sends
(J,Cl ) to R, where C| s represents the codeword C restricted to the indices in J. If the
revealed symbols match, then the consistency check succeeds; otherwise the check fails
and R rejects C* as tampered.

Suppose A alters C to a different codeword, C* # C. Since C and C* are distinct valid
codewords, they differ in at least, say, 1/3 of their symbols. Therefore, the probability
that they agree on a randomly chosen index is < 2/3, and so

Pr[R accepts C*] = Pr[C|; = C*|;] < (2/3)".

Thus, with probability > 1 — (2/ 3)5, R will reject a tampered codeword. Of course, the

validity of the check depends upon .A not knowing .J at the time of potential corruption
of C.

® Note in particular that this allows us to test for membership in the image Enc(X*) by first
decoding and then re-encoding.
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Average min-entropy and average-case randomness extractors. Recall that the min-
entropy of a distribution X = (X7y,..., Xy) over {0, 1} is defined as

and gives a measure of the amount of randomness “contained” in a weakly random
source. We say a distribution X is a kyip-source if Hoo (X) > kpin.-
A (seeded) (N, M, kynin, €)-strong extractor is a (deterministic) function

Ext: {0,1}" x {0,1}” — {0,1}

such that for any ki, -source X, the distribution Up o Ext(X, Up) is e-close to Up o
Unr (where Uy, represents the uniform distribution on {0, 1}*). The input to the ex-
tractor is the N-bit k,,;,-source, X, together with a truly random seed s, which is
uniformly distributed over {0, 1}. Its output is an M-bit string which is statistically
close to uniform, even conditioned on the seed s used to generate it.

This notion of min-entropy, and of a general randomness extractor, may be an awk-
ward fit when considering an adversary with side information Y as above. In these
cases, a more appropriate measure may be found in the average min-entropy of X given
Y, defined in [DORSO08] by

Ho (X |Y)=—log (]EyHy [mg?xPr X=z|Y= y]]) .

Note that this definition is based on the worst-case probability for X, conditioned on
the average distribution (as opposed to worst-case probability) of Y. The rationale is
that Y is assumed to be outside of the adversary’s control; however, once Y is known,
the adversary then predicts the most likely X, given that particular Y.

[DORSOS] use average min-entropy to define an object closely related to extractors:
A (seeded) average-case (N, M, kyin , €)-strong extractor is a (deterministic) function

Ext: {0,1}" x {0, 1} — {0,1}M

such that the distribution of (Up o Ext(X, Up), I) is e-close to (Up oUxys, I), whenever
(X, I) is a jointly distributed pair satisfying Hoo (X | I) > kpmin. The similarity to
an ordinary extractor is clear. [DORSOS8] prove the following fact about average min-
entropy:

Fact 1. If'Y has at most 2° possible values, then Hoo (X | (Y, Z)) > Hoo(X | Z) — .

Extracting randomness from F,. We will make use of a special-purpose deterministic
(seedless) extractor Ext, which operates at the level of field elements in I, as opposed
to bits. Ext, works not on general min-entropy sources, but on the restricted class of
symbol-fixing sources, which are strings in ]Fév such that some subset of K symbols is
distributed independently and uniformly over I, while the remaining N — K symbols
are fixed. Given a sample from any such source, Ext, outputs K field elements which
are uniformly distributed over ]quK .

Ext, works as follows: Given a@ € ]Ff]\’ , construct f € F, [X] of degree < N — 1,
such that f(i) = «; fori = 0,..., N — 1. Then Ext,(or) = (f(N), f(N +1),...,
f(N 4+ K —1)). (Of course we require N + K < ¢.) This extractor has proven useful
in previous SMT protocols as well (see, e.g., [ACHO06, [KSO08]).
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3 SMT-PD with Small Public Discussion

In this section we present our main positive results. First, we construct a basic (e, d)-
SMT-PD protocol, Ilge, (for “generic”), with optimal private communication and lin-
ear public communication. We then consider possible instantiations of Ilge,; using, in
particular, Reed-Solomon codes and the extractor Ext,, improves it to a O-private pro-
tocol. Finally, we use I1ge,, (instantiated with Reed-Solomon codes) as a building block
to construct our main protocol IIgpp, which achieves logarithmic public communica-
tion while maintaining optimal private communication (and other desirable properties).

3.1 A Generic Protocol with Optimal Private Communication

Protocol Ilge, achieves essentially optimal communication complexity on the private
wires of O( """, ), where m is the length of the message, while maintaining linear com-
munication complexity on the public channel. (See Section[dl for a precise statement of
the lower bound.) This is the first SMT-PD protocol to achieve sublinear transmission
rate on the private wires, and as such provides an affirmative answer to the question
posed in [SJSTQ9] of whether O(n) private-wire transmission rate can be improved.

[Mgen relies on two primitives as black boxes: an error-correcting code £ and an
average-case strong extractor, Ext 4. The efficiency of the protocol depends on the in-
teraction between the basic parameters of the protocol—e¢, §, m, n, and t—and the
parameters of £ and Ext 4. After presenting the protocol and proving its security, we
will examine its complexity in terms of these parameters.

At a high level, the protocol has the same structure as previous 3-round SMT-PD
protocols: (1) in the first round, one of the parties (in our case R) sends lots of ran-
domness on each private wire; (2) using the public channel, R then sends checks to
verify the randomness sent in (1) was not tampered with; (3) S discards any tampered
wires, combines each remaining wire’s randomness to get a one-time pad R, and sends
C = M @ R on the public channel. However, our use of extractors allows us to re-
duce the amount of transmitted randomness, which is reflected in the gain in private
communication.

We remark that one may modify Ilge, to have interaction order S-R-S, instead
of R-R-S as we present it. One advantage of R-R-S is that when instantiated with
deterministic extractors (see below), it does not require any random coins for S (in
contrast to S-R-S, where both parties use randomness crucially).

Now we turn to the details of protocol Ilge,. Let error-correcting code £ have encod-
ing and decoding functions Enc : {0,1}% — {0,1}" and Dec: {0,1}" — {0,1}%,
respectively, and relative minimum distance D. (We will specify K below.) While
N > K may be arbitrarily large for the purpose of correctness, we will want K /N
and D both to be constant for our complexity analysis—that is, we want £ to be asymp-
totically good.

Second, let Ext 4 be an average-case (nK, m, kmn, €/2)-strong extractor. Here K
is, as above, the source length of the error-correcting code £, and m and € are the
message-length and privacy parameters of IIgey. kpmin 1S the min-entropy threshold.
Now clearly m < kp,in < nK. On the other hand, we require ky,;, = O(m) for
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our complexity claim to hold—that is, Ext 4 should extract a constant fraction of the
min-entropy. Further, the extractor’s seed length s should be O(n + m).

Finally, let b = | '/, and then set ¢ = [log,(¢/5)]. Now with foresight, we set
K = [kmin/(n — t)] + £[] Note that if ki, = O(m), then K = O(m)/(n — t) + £.
The protocol, Ilgey, is presented in Fig.[1l

Protocol Ilgen (€, 5, m,n,t,E,Exta)

1. (R irs ). For each wire 4, R chooses a random r; € {0, 1}K and sends the codeword
Ci = Enc(r;) along wire i. Let C; be the codeword received by S, and r; = Dec(C;).
2. (R PUp S). R chooses a random subset J = {j1, jo2,...,j5¢} C [N] of codeword

indices, |J| = ¢. Let
Cils = (CiyjssCias - -, Ciy,) € {0,1}°

be the codeword C; restricted to the indices of J. R sends (J, {Ci|s}icin)) to S over

the public channel.

3. (S FUp R). S rejects any wire ¢ which is syntactically incorrect (including the case

that C;" is not a valid codeword), or for which C;|; conflicts with C;. Call the set of
remaining, accepted wires ACC, and let B € {0,1}", where b; =1 <= i € ACC.
Let o* denote the concatenation of r; for all i € ACC, padded with zeroes so that
|a*| = nK. S chooses seed € {0,1}° uniformly at random. He applies Extq :
{0,1}™ x {0,1}* — {0,1}™ to obtain R* = Exta(a*, seed), where |[R*| = m. S
puts C' = Ms @ R*, and sends (B, C, seed) on the public channel.

Receiver: R uses B to reconstruct ACC. He forms « by concatenating r; for each i €
ACC, and padding with zeroes to size nkK. He applies Exta : {0, 1}™* — {0,1}™,
obtaining R = Exta(a, seed). He then recovers Mr = C @ R.

Fig. 1. A generic SMT-PD protocol with optimal communication complexity on the private wires
and linear communication complexity on the public channel

Theorem 2. Let t < n. Protocol llgen is a (3,2)-round (e, §)-SMT-PD protocol with
communication complexity O("",) on the private wires provided that m/(n — t) =
Q(log(t/d)), and communication complexity max(O(log(t/d)(n+logm)), O(m+n))

on the public channel, provided only that m = §2(log(t/9)).

Proof. Privacy. We first claim that if we omit C, then A has essentially no information
(up to €) on S’s output of the average-case extractor, R+ = Ext 4 (a*, seed). Formally:

Claim. The distribution (Us, R*, View 4 \ C) is €/2-close to (Us, U, View 4 \ C).

The remainder of the proof of e-privacy is by contradiction: We show that, if there exists
an adversary A and messages My, M; such that A(View 4(My), View 4(M7)) > e,

7 As a sanity check, observe that kmin < nK = n(kmin/(n —t) + £), so the extractor we
define can exist.
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then there exists a distinguisher D which can distinguish (Us, R*, View 4 \ C) from
(Us, Up,, View 4 \ C), in contradiction to the above claim.

So suppose such an A, M, M; exist. Then there exists a distinguisher Dy which
satisfies

| Pr[Do(Viewa(Mo)) = 1] — Pr[Do(View 4 (M1)) = 1]| > €
In particular it follows that either
(1) | Pr[Do(View4(My)) = 1] — Pr[Do(View4(Ms)) = 1]| > ¢/2
or
(2) | Pr[Do(Viewa(Ms)) = 1] — Pr[Do(View 4(M1)) = 1]| > €/2.

Here View 4(Mg) denotes the random variable obtained by first sampling Mg uni-
formly from {0, 1}™, and then sampling from View 4 conditioned on Ms = Mjy. (If
the probability distribution on M is uniform, then the distribution of View 4(Msg) is
identically that of View 4, but we do not assume this here.)

Without loss of generality, we assume case (1) above holds. Now we describe D,
which uses Dy as a black box in order to distinguish (Us, R*,View4 \ C) and
(Us, U, View 4 \ C). First, the challenger flips a coin. On heads, he samples u «
(Us, R*, View 4\ C'), and on tails, u < (Us, Uy, View 4 \ C). In either case he obtains
U = (Us, Utest, Uniew) Which he passes on to D. D forms Cp = My @B ugest, which
plays the role of C'in the protocol. He passes ty;ey U C'p to Dy, which returns a bit b
representing its guess that w;e,, U Cp was sampled from View 4(Mp). If b = 0, then
D outputs a guess of “heads” (i.e., guesses usest Was sampled from R*), otherwise D
guesses “tails” (u;es¢ was sampled from U,,).

Now consider the success probability of D when the challenger flips heads, so that
Utest ~ R*. In this case, Cp = My ® R* is obtained exactly as in Ilgep, and there-
fore wyiew U Cp is distributed identically with View 4(Mp). Thus Pr[D(u) = 1 |
heads] = Pr[Dy(View4(Mop)) = 1]. Alternatively, suppose the challenger flips tails,
and e is uniform. Then Cp = My @ uges is uniform, which is also the distribu-
tion of C' if we choose M = Mg uniformly at random. Thus Pr[D(u) = 1 | tails] =
Pr[Do(View 4(Mg)) = 1]. Putting these together, we discover

| Pr[D(Us, R*,View 4 \ C) = 1] — Pr[D(Us, Uy, View 4 \ C) = 1”
= | Pr[Dy(View 4(My)) = 1] — Pr[Dy(View 4(Ms)) = 1]|
>€/2,
which contradicts the above claim. This completes the verification of e-privacy.

Reliability. Observe that Mzr = C & R and Ms = C & R*. Therefore,

R fails to decode correctly (Mg # Ms) <= Ext(«, seed)=R # R*=Ext(a”, seed)
= a#a"
= Ji € ACC s.t. 1, #r}
= 3i € ACC s.t. C; #C;.
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The latter event only happens if A succeeds in altering C; without S detecting it. By
construction, our consistency check (Section2)) guarantees that this happens with prob-
ability at most (1 — D)* = §/t for a single wire, hence (taking a union bound over
corrupt wires) probability at most § overall. Consequently, Pr[Mzr = Mg] > 1 — 4.

Complexity. The private wires are used only in round 1, to send Enc(r;) on each wire.
The total complexity is therefore nN = O(nK) (for £ of constant rate). As noted
above, our assumptions on £ and Ext 4 imply that K = O(m/(n—t)+¢), and therefore
the total private wire complexity is O(mn/(n — t) + nf), which is O(mn/(n — t))
provided m/(n — t) = 2(¢).

The public channel is used in Rounds 2 and 3. In Round 2, R transmits J C [N] of
size ¢, and the restricted codewords C;| s, at total cost n + £log N = ¢n + £(log K +
0(1)) = fn+ O((log(m/(n —t) + £))). Provided that m = §2(£), this is O(4(n +
logm)).

In Round 3, S uses the public channel to send (B, C, seed) where B indicates ac-
cepted wires, C' hides the message M, and seed is a seed for Ext 4. Thus the Round 3
public communication is 7 4+ m + s, which is O(n + m) for any extractor with reason-
able seed length. a

3.2 Instantiating the Generic Protocol

Here we consider possible instantiations of IIge,. Since our main interest is in O-private
protocols, the most important instantiation will be that with Reed-Solomon codes and
the extractor Ext, of Section2l Nevertheless, other choices of (explicit) extractor, such
as Kamp and Zuckerman’s deterministic symbol-fixing extractor [KZ06], are possible;
refer to [GGOO9] for more details.

Statistical error is a feature of all general-purpose randomness extractors. To get
around it, we can exploit the fact that the sources arising from Ilge, are not general
min-entropy sources. Rather, conditioning on the adversary’s view, each good wire car-
ries independent, uniform randomness, and the corrupt wires carry fixed values. Thus
the source we are interested in actually carries quite a great deal of structure. In partic-
ular, we may view it as a symbol-fixing source as described in Section2] since we may
group bits into symbols, and the adversary has no information on the symbols carried
by good wires.

Consider an instantiation of IIge, using the extractor Ext,, : F’;N — IFZ of Sec-
tion Bl which is indeed errorless. (Here » = [m/loggq] is the size of Mg in field
elements.) Ext, is, according to our notation, a (kN,r,r, 0) extractor for sources over
[F,: It extracts 100% of the randomness from its input with no statistical error. (It is also
deterministic, hence trivially strong.) Since Ext, operates at the level of field elements,
Reed-Solomon codes are a natural choice for the error-correcting code & of Tlge,. We
choose & to be Ext, : FX — F2X, with relative minimum distance 1/2.

We now describe two requirements imposed by this instantiation. First, the descrip-
tion of Ilgen assumes an extractor which operates on bits rather than field elements.
This presents no real problem, as all statements can be recast in a straightforward way
to this new setting. However, as mentioned above, the move from {0, 1} to F,, does have
the effect of adding a log g term to the message size required for optimal communication
complexity (see statement of and complexity analysis for Theorem[3)).
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Second, we must specify the appropriate field size ¢ in terms of the basic parameters
m,n,t, 0. Recall £ = [log(t/d)]. We require (with foresight):

2
qlogq = 2(mn/(n —1t)) and (g —20)logq > mt'
n—
Thus Ms € F”, where r = [m/ logq].
For the proof of privacy, we require Ext, : ]FgK — [}, is in fact a perfect randomness

extractor—so we need ¢ > nK + r. Since K = r/(n —t) + ¢, we have (using m =
2(nl)):

T n

nK—!—T—n-(n_t—FE)—FT—r(n t+1)—|—n€
m n m n

toga) "n—t O = N togg) n s

).

Thus, for ¢ > nK + r it suffices that glogg = 2(mn/(n — t)), which is our first
assumption on gq.
Now observe that in order for our codeword authentication to be valid, we need
q > 2K =2r/(n —t) + 2¢. Thus we require:
2m

>2r/(n—1t)+20 < q> + 2/
a2 2r/(n 1) 12 (log q)(n — 1)

2
<~ qlogq > nint + 2¢logq

2
— (g—20)logg>
n—t

which gives our second condition on q.

3.3 A Protocol with Logarithmic Public Communication

In this section we present a protocol for SMT-PD which is the first to achieve loga-
rithmic communication complexity (in m) on the public channel. The protocol is per-
fectly private, achieves the optimal communication complexity of O("",) on the pri-
vate wires, and has optimal round complexity of (3, 2).

In its Round 3 communication, IIge,, incurs a cost of size m on the public channel,
which we wish to reduce to O(log m). Our improvement comes from the insight that S
can send the third-round message (C, in the notation of Ilge,) on the common wires,
provided that S authenticates the transmission (making use of the public channel).

S could simply send C' on every common wire and authenticate C' publicly. The
downside of this approach is that the private wire complexity would be {2(mn) rather
than O( ™", )—no longer optimal. Our solution is to take C' and encode it once again

using Reed-Solomon into shares C1, ..., (), each of size ~ n”j . such that any n — ¢
correct C;’s will reconstruct C. S then sends C; on wire ¢, and authenticates each C;
publicly.

This authentication uses a short secret key, s*, of size £(n + log( ,)) (which is

the cost of authenticating n messages of size cm/(n — t), using the consistency check
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Protocol IIspp

1. (R "B" S). (small) For each wire i, R chooses a random f; € F4[X] such that deg(f;) <
K. R sends the Reed-Solomon (RS) codeword C; = (f;(l)7 fi(2),..., f;(]\?)) along wire
i. Let C; be the codeword received by S, and f; = DecRs(éf ).

(big) For each wire 4, R chooses a random f; € F,[X] such that deg(f;) < K. R sends
the RS codeword C; = (fi(1), fi(2),..., fi(IN)) along wire i. Let C; be the codeword
received by S, and f; = Decgrs(C;).

2. (R "57 ). (small) R chooses a random subset .J = {1,-.-,7¢} € [N] of codeword
indices, |j | = £. R performs codeword verification as in Section 2 by sending J, as well as
{C;] ;} for each wire 7, over the public channel.

(big) R chooses a random subset J = {j1,...,j¢} C [N] of codeword indices, |J| = £.
R performs codeword verification as in Section 2 by sending .J, as well as {C;| s} for each

wire , over the public channel.

3. (S PUBEPRI R). S rejects any wire ¢ which is syntactically incorrect or which fails one of

the consistency checks in Round 2. Call the set of remaining, accepted wires ACC.

(small) Let 6 denote the concatenation of f;" for each i € ACC, padded with 0 € I, so its
length is K'n. Applying Extg : IF?" — IF; of Section 2, S obtains s = Extg(&™).

(big) Let o™ denote the concatenation of f;* for each ¢ € ACC, padded with 0 € Fy so
its length is K'n. Applying the randomness extractor Ext, : FX" — F7, S obtains R* =

Extq(a™).
Now Ms and R* are both vectors in Fy; S puts C' = R* + Ms. Now S applies the Reed
Solomon code F;, — ]Ff" to C, obtaining a codeword D € Ff"‘ Let D = (D1,...,Dy)

where each D; € IF‘;( View D; as a bit-string of length K log g, and let E; = Enc(D;),
so that |E;| = cK log ¢ (in bits). S sends E; on wire i € ACC; let E; denote the message
received by R on wire 4.

To authenticate each E;, S chooses a random subset J' C [cK logg], |J'| = £3/2. Put
auths = (J',{Ei|; }ieacc); we have |auths| < 7 (with equality if every wire is in
ACC). Padding as necessary, view auths as an element of ]Fg. Ssets V = s* 4+ auths and
sends (V, B) over the public channel, where B is an n-bit string representing the set ACC.
Receiver: R learns ACC from B. For i € ACC, he forms «, the concatenation of f; for each
i € ACC (padded with 0 € F, to length Kn). He applies Ext, to obtain R = Extq () €
Fy.

Similarly, for i € ACC, he forms &, the concatenation of fz for each 7 € ACC (padded with
0 € F, to length K'n). He applies Ext; to obtain s = Ext4(&) € F7.

Next R forms V' — s, which he parses as authg = (J'*, {check; };cacc)- For each (cor-
rectly formed) Ej, R verifies its authenticity by checking that E; |, = check;. For those
which pass, he recovers D = Dec(E;}), D; € FX. Once R has recovered at least n — ¢
valid D;’s, he has K (n — t) = r symbols in Fq, which he uses to decode the RS code used
by S to encode C'. (This is simply interpolation.) Call the result C* € Fy. Finally, R obtains
Mgr =C* — R.

(On failure to authenticate at least n — ¢ E;’s, or to parse authg correctly, R outputs L.)

Fig.2. SMT-PD protocol with small (logarithmic) public communication and optimal private
communication
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of Section [2} ¢ is an absolute constant defined below). Thus, S and R will run two
processes in parallel: a “small” strand, in which S privately sends the short key to R
and a “big” strand, in which S sends Mg to R, making use of the shared key in the third
round. The small protocol sends the short key using any reasonably efficient SMT-PD
protocol; for ease of exposition, we use Ilgey, instantiated with Reed-Solomon codes.
We also use Ilge, with Reed-Solomon codes for the big strand of the protocol in order
to achieve perfect privacy and optimal private wire complexity.

We now describe the protocol in detail. Many of the parameters are the same as in
(the Reed-Solomon instantiation of) Ige,: We set £ = [log(t/d)], and fix a prime g
such that

qlogq = 2(mn/(n —1t)) and (g—20)logq > n2mt'
The message space is M = Fy, that is, an m-bit message is considered as a sequence of
r = [m/logq] field elements in F,. (However, we also assume, for the purpose of the
Round 3 authentication, that the field elements are actually represented as bit-strings of
length rlogq.) Set K = [r/(n —t)| + fand N = 2K.

In addition to the above parameters, we will also define their small-strand counter-
parts, which we notate using variables with hats. Set 7 = ¢(n + log(cK log q))—as
noted above, this is the size of the shared secret which will be used to authenticate
the C;’s. Here the constant ¢ > 1 is the expansion factor of an efficiently computable,
constant-rate error-correcting code £’ of relative minimum distance (say) 1/3. (We cau-
tion that £ plays a different role in IIgpp than £ did in Ilgey, hence the different name.)
We will use Enc and Dec to denote the encoding and decoding functions of £’; we use
Encgrg and Decgg for the encoding and decoding functions of the Reed-Solomon code
which functions as & for IIgpp.

Fix ¢ to be a prime such that

T 2
mn ) and (Gg—20)logg > m
n—

qlog g = £2( "
Set# = [/ logq], K = [#/(n—t)]+¢,and N = 2K Finally, set U375 = logg /5(t/0).
The protocol, Ilgpp (for “small public discussion”), is shown in Figure 2l Keep in
mind the high-level understanding of the protocol: The first two rounds are simply par-
allel versions of Rounds 1 and 2 of I1gey,, run with different (big and small) parameters.
In Round 3, we complete the small instance of Ilge, as usual, and use the resulting
shared secret to blind the (public-channel) authentication of the C;’s which encode C.
The latter have been sent on the unreliable private wires, unlike in IIge,, Where no
authentication was required in Round 3 since C itself was sent on the public channel.

Theorem 3. Protocol llgpp (Fig.[2) is a valid (3,2)-round (0, 36)-SMT-PD protocol.
It has communication complexity O("'", ) on the private wires and O(n log(t/5) logm)
on the public channel, provided m = (nlog(t/d)log q).

n—t

4 Private Communication Lower Bound

In this section we prove a lower bound of £2( ™, ) for the expected communication

complexity on the private wires, for any (€, 5)-SMT-PD protocol (where € and ¢ are
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considered constants). Since protocol Ilge, of the previous section meets this bound,
we provide a complete answer to the question raised in [SJIST09|] of determining the
optimal transmission rate on private wires for an (e, §)-SMT-PD protocol.

Our communication lower bound holds even for a weakened adversary who is pas-
sive and non-adaptive—that is, A chooses which wires to corrupt at the start of the
protocol and only eavesdrops thereafter. It also holds even if we modify d-reliability so
that the probability that M'r = Mg is taken over the the choice of Mg as well (and not
just the players’ coins). Further, as noted in the Introduction, it also holds in the case of
SMT with no public channel, mutatis mutandis.

For the lower bound, we assume that M s is chosen uniformly at random from M; in
this case H(Ms) = log |M|. In the following lemmas we assume 7 is a valid (¢, d)-
SMT-PD protocol, and probabilities are over all players’ coins as well as the random
selection of Mg € M.

The first two lemmas are complementary, establishing entropy versions of e-privacy
and d-reliability, respectively. Namely, in Lemmal[ll we show that in any e-private pro-
tocol, the entropy of Mg remains high given the adversary’s view. Then in Lemma 2]
we show that for any d-reliable protocol (with passive adversary), the entropy of Mg
given the entire transcript of communications is low. Though these statements are quite
intuitive, their proofs are relatively delicate.

Lemma 1. For all adversaries A and all e-private protocols, H (Ms | View 4) >
—log(1/| M| + 2¢)8

The transcript T of an (e, 6)-SMT-PD protocol execution is the random variable con-
sisting of the list of messages the players send on public and private channels over the
course of the protocol. Thus in the case of a passive adversary, T' is completely de-
termined by Mg, Cs, and C'r. For a given set of wires .S, we will let T's denote the
transcript restricted to communications on the wires in S. In the sequel we use PUB,
PRIV, CORR, and SEC to denote respectively the public channel, private wires, cor-
rupted wires, and secure (uncorrupted and private) wires.

We use Hz(:) to denote the binary entropy function, Ha(p) = —plogp — (1 —

p)log(l —p).
Lemma 2. For all §-reliable protocols, H(Ms | T) < Hy(v/6) + 2v/0H (Ms).

Given Lemmas[Il(a proof of “high” entropy) and[2(a proof of “low” entropy), we take the
difference of the two inequalities (leaving still a “high” amount of entropy), and show
that this bounds from below H (Tsgc | SEC). This is intuitive: the adversary knows
which wires are secure, and yet it is only from these wires that S and R can leverage
any privacy at all. Therefore the entropy of the messages on them should be high.

Lemma 3. —log(1/|M| + 2¢) — Ha(V/§) — 2v/dlog | M| < H (Tsec | SEC).

Our main lower bound theorem follows. The idea is straightforward. Since the set of
secure wires is unknown to S and R (for a passive adversary, say), it must be that, in

8 This entropy lemma is not directly equivalent to a seemingly related probability version (as
in [SJSTO09], Lemma 2).
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an average sense, every set of n — ¢ private wires carries the requisite entropy. Then we
use Han’s inequality (see proof in [GGOQ9]) to “average” the entropy over all subsets
of n — ¢ wires and obtain an estimate for the total entropy on private wires, completing
the proof.

Theorem 4. Ler IT be any (¢,6)-SMT-PD protocol with n. < 2t, in the presence of a
passive, non-adaptive adversary A. Let C denote the expected communication (in bits)

over the private wires (the expectation is taken over all players’ coins and the choice of
Ms € M). Then

c> nit - (= log(1/|M| + 2¢) — Ha(V/5) — 2v/5log | M])

In particular, if e = O(1/|M|) and § = O(1), then C = 2(mn/(n —t)).

Corollary 1. Provided that e = O(1/|M|), and 6 = O(1), protocols Ilgen and Ilgpp
have optimal private communication complexity O('™,) for messages of size m =
2 (nf) and m = {2 (nllogq), respectively.

5 Amortized Use of the Public Channel

A natural question when considering SMT-PD as a subroutine in a larger protocol is
whether some of the lower bounds on resource use for a single execution of SMT-PD
can be beaten on average through amortization. For instance, an almost-everywhere
secure computation protocol may invoke an SMT-PD subroutine every time any two
nodes in the underlying network need to communicate. Must they use the public channel
twice every single time, or can the nodes involved, say, save some state information
which allows them to reduce their use of the public channel in later invocations?

Our next result shows that amortization can in fact drastically reduce the use of the
public channel: indeed, it is possible to limit the total number of uses of the public
channel to rwo, no matter how many messages are ultimately sent between two nodes.
(Since two uses of the public channel are required to send any reliable communication
whatsoever, this is best possible.)

Of course, S and R may use the first execution of SMT-PD to establish a shared se-
cret key, which can be used for message encryption and authentication on the common
wires. The Sender computes a ciphertext and sends it (with authentication) on every
common wire. With overwhelming probability, no forged message is accepted as au-
thentic, and the Receiver accepts the unique, authentic message which arrives on any
good wire. However, since we are considering the information-theoretic setting, each
use of the shared key reduces its entropy with respect to the adversary’s view. If the par-
ties know in advance an upper bound on the total communication they will require, and
can afford to send a proportionally large shared key in the first execution of SMT-PD,
then this approach is tenable by itself.

In some situations, however, the players may not know a strict upper bound on the
number of messages they will send. And even when they do, it may happen that the
protocol terminates early with some probability, so that an initial message with large
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entropy is mostly wasted. With these considerations in mind, we now explore strate-
gies which allow S and R to communicate indefinitely after using only two broadcast
rounds and a limited initial message. Our approach is to separate Sender and Receiver’s
interaction following the first execution of SMT-PD into two modes: a Normal Mode
and a Fault-Recovery Mode.

In the Normal Mode, S and R communicate over the common wires without making
use of their shared key; they are successful provided the adversary does not actively
interfere. If the adversary does interfere, one of the players (say R) will detect this and
enter Fault-Recovery Mode, in which he uses the shared key to broadcast information
about the messages he received on each common wire, allowing S to determine at least
one corrupted wire (which he then informs R about, authentically).

In this way, S and R communicate reliably and privately so long as the adversary
is passive; and any time he is active, they are able to eliminate at least one corrupted
wire[] (Of course, once they have eliminated all ¢ corrupt wires, communication be-
comes very efficient.) In the sequel, we describe implementations of Normal Mode and
Fault-Recovery Mode, as well as how the two modes interact with each other.

Normal Mode. Let us first define a weaker version of SMT by public discussion in
which reliability is only guaranteed for a passive adversary. Let II be a protocol which
attempts to send a message from S to R using only the common wires (and not relying
on any shared secret key). Then we say II is a Weak (e, ) SMT-PD protocol if it satis-
fies Definition [2] where we (1) add to the adversary’s view a bit indicating whether R
accepted a message or not (see next point), and (2) replace RELIABILITY with:

WEAK RELIABILITY:

(Correctness with passive adversary) If the adversary only eavesdrops, then R re-
ceives the message correctly.

(Detection of active adversary) If the adversary actively corrupts any wire, then
with probability > 1 — 6, either R receives the message correctly (Mr = M), or
‘R outputs “Corruption detected.”

The first change above affects e-privacy since it alters the definition of View 4; this
is necessary because in the compiled, amortized protocol using Weak SMT-PD as a
subroutine, the adversary will learn whether R accepted a message based on whether
‘R does or does not enter Fault-Recovery Mode.

We remark in passing that Weak SMT-PD is similar in spirit to almost SMT from
the standard (non-public discussion) model [KSO7], in that both are relaxations which
allow one-round transmission (for Weak SMT-PD, only with a passive adversary). The
difference is that in the ordinary model, definitions for almost SMT require that the
message be correctly received with overwhelming probability regardless of the adver-
sary’s actions; in the public discussion model, when the adversary controls a majority
of wires, this is impossible, so we only require that corruptions be detected. Indeed, we
cannot guarantee reliability in a single round even when the adversary simply blocks
transmission on corrupted wires (otherwise a minority of wires would carry enough
information to recover the message, thus violating privacy).

? This is akin to the “slow” PSMT original protocol in [DDWY93].
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If we do not require the Weak SMT-PD protocol to finish in one round, then there
is a simple solution: use the common wires to simulate the public channel wire in an
ordinary SMT-PD protocol. Any time a party would use the public channel, they instead
send the public-channel message over every common wire. Two possibilities arise: (1)
The adversary never tampers with any such “virtual” public channel invocation. In this
case, the virtual public channel functions like an actual public channel, and the protocol
succeeds with the same probability as the underlying SMT-PD protocol. (2) The adver-
sary at some point tampers with a virtual public channel invocation. If he does, then the
receiving party in that round will detect tampering, and can notify the other player by
sending a flag on every channel (or, if the receiving player is R and it is the final round,
he just outputs “Corruption Detected”)

The above Weak SMT-PD protocol is conceptually simple (given a pre-existing
SMT-PD protocol!), but we might hope to do Weak SMT-PD in a single round, as op-
posed to the three rounds required for ordinary SMT-PD. The following simple scheme
shows one way this can be done.

Assume the Sender wants to send a single field element Ms = o € F,. The one-
round protocol, IIw_smT—pD, is shown in Figure Bl Essentially, the sender performs
a 3t + 2-out-of-3n Shamir secret sharing of the message; however, rather than send-
ing externally specified shares on each wire ¢ (such as f(1), f(2), f(3) on wire 1), he
chooses a set of random points on which to evaluate f.

Lemma 4. The protocol of Figure[Blis a Weak (6, 0)-SMT-PD protocol for q sufficiently
large (£2(t/0)).

We are now ready to describe Normal Mode for S and R: it is simply the repeated
execution of the Weak SMT-PD protocol, with the two players alternating the role of
Sender and Receiver, until one of them as Receiver outputs “Corruption detected.” At
that time, that player’s next message to the other party will alert them to enter Fault-
Recovery Mode.

Protocol IIw_syvT—pPD

1. (8 &' R). S chooses a random polynomial f € F,[z] with deg(f) < 3t +1
and f(0) = «, and a random sequence 11, T12, Z13, 21, 22, 23, - - - , Tnl, Tn2, Tn3
of 3n distinct elements of F, \ {0}. On wire ¢ S sends to R the three pairs
(ir, f(zin)), (wiz, f(wi2)), (wis, f(wi3)).
Receiver: On wire 4, R receives (x7;,y:;) for 7 = 1,2,3. He verifies that all 3n
xj;’s are distinct, and that the 3n points (x];,y;;) lie on a polynomial f* of degree
< 3t+1. If so, he outputs Mz = f*(0); otherwise (or in case some wire is syntactically
incorrect) he outputs “Corruption detected.”

Fig.3. A one-round Weak SMT-PD protocol

19 We do not consider here whether such a protocol preserves (e-)privacy when the adversary
knows whether R detects corruption; obviously this depends on the details of the protocol.
Therefore this is not quite a black-box reduction.
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Fault-Recovery Mode. Specifically, suppose R detects corruption in a message sent
by S. He will then use the shared secret established in the initial execution of (ordi-
nary) SMT-PD to secretly and authentically send the following on all wires: (1) a flag
signalling Fault-Recovery Mode; (2) a list of specific wires known to be corrupted (if
any); (3) the received transmission on all wires not known to be corrupt.

Since at least one of the wires is not corrupted, S will receive this communication on
it and (verifying its authenticity) enter Fault-Recovery Mode also. S recovers the set of
received transmissions and determines which ones were tampered with. He then sends
the following to R, again using the shared secret for privacy and authentication: (1)
the message M s on which R detected corruption; (2) an updated list of specific wires
known to be corrupted. At this time, R has received the intended message and Normal
Mode resumes with R now playing the role of Sender.

Each time Fault-Recovery Mode occurs, S and R are able to detect at least one
previously unknown corrupt wire. If at any point S and R have jointly detected ¢ wires
as corrupt, they will simply send all future transmissions on the remaining, good wires,
guaranteeing perfect privacy and reliability.

Theorem 5. Given an initial shared secret consisting of O(n?) field elements, S and R
can communicate indefinitely using only the private wires. The probability that one of
them will ever accept an incorrect message is < t0. Moreover, with probability > 1—10,
A gains at most 6 information on each of t different messages, and no information on
any other message.
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Abstract. We investigate the possibility to prove security of the well-
known blind signature schemes by Chaum, and by Pointcheval and Stern
in the standard model, i.e., without random oracles. We subsume these
schemes under a more general class of blind signature schemes and show
that finding security proofs for these schemes via black-box reductions
in the standard model is hard. Technically, our result deploys meta-
reduction techniques showing that black-box reductions for such schemes
could be turned into efficient solvers for hard non-interactive crypto-
graphic problems like RSA or discrete-log. Our approach yields signif-
icantly stronger impossibility results than previous meta-reductions in
other settings by playing off the two security requirements of the blind
signatures (unforgeability and blindness).

Keywords: Blind signature scheme, black-box reduction, meta-reduction,
random oracle, round complexity.

1 Introduction

Blind signatures [II] implement a carbon copy envelope allowing a signer to
issue signatures for messages such that the signer’s signature on the envelope
is imprinted onto the message in the sealed envelope. In particular, the signer
remains oblivious about the message (blindness), but at the same time no addi-
tional signatures without the help of the signer can be created (unforgeability).

Many blind signature schemes have been proposed in the literature, e.g.,
112, 6, [, (12, (16, 17, (19, 20, 22, 23, 241 26, 27, 29], with varying security and effi-
ciency characteristics. The arguably most prominent examples are the schemes by
Chaum [IT] based on RSA and the ones by Pointcheval and Stern [27] based on the
discrete logarithm problem, RSA and factoring. Both approaches admit a security
proofin the random oracle model, in the case of Chaum’s scheme the “best” known
security proofs currently even requires the one-more RSA assumption [5].

Here we investigate the possibility of instantiating the random oracles in the
schemes by Chaum and by Pointcheval and Stern, and of giving a security proof
based on standard assumptions like RSA or discrete logarithm. Although both
schemes are different in nature we can subsume them under a more general
pattern of blind signature schemes where
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— blindness holds in a statistical sense, i.e., where even an unbounded malicious
signer cannot link executions of the issuing protocol to message-signature
pairs,

— the interactive signature issuing has three (or less) moves, and

— one can verify from the communication between a possibly malicious signer
and an honest user if the user is eventually able to derive a valid signature
from the interaction.

We note that the construction by Boldyreva [6] based on the one-more Gap
Diffie-Hellman problem in the random oracle model also obeys these three prop-
erties such that any impossibility result immediately transfers to this scheme
as well. The third property, which we coin signature derivation check, basically
guarantees that blindness still holds if the user fails to produce a signature in
the postprocessing step, after the actual interaction with the signer has been
completed. Common notions of blindness do not provide any security guarantee
in this case (see [I3}[17] for further discussions).

1.1 The Idea Behind Our Result

Given a blind signature scheme with the properties above we can show that for
such schemes finding black-box reductions from successful forgers to an arbitrary
non-interactive cryptographic problem (like RSA, discrete-log, or general one-
wayness or collision-resistance) is infeasible. The key idea to our result is as
follows. Assume that we are given a three-move blind signature scheme as above
and a reduction R reducing unforgeability to a presumably hard problem (given
only black-box access to an alleged forger). Vice versa, if the problem is indeed
infeasbile, then the reduction therefore shows that the scheme is unforgeable.

Our approach is to show that the existence of a reduction R as above already
violates the assumption about the hardness of the underlying problem. Our
starting point is to design an oracle Y with unlimited power and a “magic”
adversary A* breaking the unforgeability of the blind signature scheme with
the help of X. By assumption, the reduction R with access to A% is then able to
break the underlying cryptographic problem (see the left part of Figure[I]). Note
that, at this point, we are still in a setting with an all-powerful oracle X' and
the non-interactive problem may indeed be easy relative to this oracle, without
contradicting the presumed hardness in the standard model.

Now we apply meta-reduction techniques, as put forward for example in
[7914L28], to remove the oracle X' from the scenario. Given R we show how to
build a meta-reduction M (a “reduction for the reduction”) to derive an efficient
solver for the problem, but now without any reference to the magic adversary and
X (right part of Figure[l]). To this end, the meta-reduction M fills in for adver-
sary A* and simulates the adversary’s actions without X, mainly by resetting the
reduction R appropriately. We have then eventually derived an algorithm M7
solving the underlying non-interactive problem in the standard model, meaning
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P
RA” SOLVES PROBLEM (IN PRESENCE OF X): M™ SOLVES PROBLEM (WITHOUT X):
problem instance y problem instance y
. . meta-reduction
reduction R - reduction R - M
simulates simulates simulates w/o X
- L. - ..
. malicious . malicious
signer S <« user A% meta-reduction signer S < user A
forgery =« forgery =«
v N v .
problem solution = problem solution x

Fig. 1. Meta-reduction technique: The black-box reduction R on the left hand side uses
the adversary A* against unforgeability to solve an instance y of the non-interactive
problem. The meta-reduction M on the right hand side then uses R to solve the
problem from scratch, i.e., by simulating A* without X. For this, the meta-reduction
M exploits the blindness property of the scheme.

that the problem cannot be hard. In other words, there cannot exist such a
reduction R to a hard problemE

At this point it seems as if we have not used the blindness property of the scheme
and that the idea would paradoxically also apply to regular signature schemes (for
which we know secure constructions based on any one-way function). This is not
the case. The blindness subtly guarantees that the meta-reduction’s simulation
of the adversary is indistinguishable from the actual behavior of A%, such that
the success probabilities of RA” and of MR are close. For these two cases to be
indistinguishable, namely R communicating with A* or with M, we particularly
rely on the fact that blindness holds relative to the all-powerful oracle X' used by
A, as in case of statistically-blind signature schemes.

The reason that our approach only applies to blind signature schemes with at
most three moves originates from the resetting strategy of our meta-reduction. In
a three-move scheme the user sends a single message only, such that resetting the
reduction in such an execution allows our meta-reduction to choose independent
user messages in each run. This is essential for our proof. In schemes with four
or more moves the user sends at least two messages and the second message may
then depend on the first one, e.g., the scheme may implement a commit-and-
prove strategy with four moves.

1 We consider very general reductions running multiple instances of the adversary in a
concurrent and resetting manner, covering all known reductions for blind signatures
in the literature. Yet, since the meta-reduction itself uses rewinding techniques,
we somewhat need to restrict the reduction in regard of the order of starting and
finishing resetted executions of different adversarial instances (called resetting with
restricted cross-resets). This saves us from an exponential running time for M. For
example, any resetting reduction running only a single adversarial instance at a time
obeys our restriction.
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1.2 The Essence of Our Meta-reduction and Impossibility of
Random Oracle Instantiations

There are essentially two approaches in the literature to derive black-box separa-
tions like ours. One class of black-box separation results (e.g., [21,B0,[31]) basi-
cally starts with an oracle X' breaking any cryptographic primitive of type A, like
a collision-resistant hash function, but adds an oracle II implementing another
primitive of type B like a one-way function (and which cannot be broken by X).
Here, the cryptographic primitives in question are usually treated as black boxes.

The other approach uses meta-reductions [4.[7,[8,9,14,28] and usually treats
the adversary as a black box. In our case, we show that no black-box reduction
to arbitrary (non-interactive) cryptographic problems can exist. This includes
common assumptions like the RSA and discrete logarithm problem, but also
more general notions of one-way functions and collision-resistant hash functions.
Compared to oracle-based separations and previous meta-reduction techniques
our result gives the following two advantages:

— Oracle separations involving a “positive” oracle II implementing a primi-
tive often do not allow to make statements about the possibility of deriving
schemes based on concrete primitives such as RSA or discrete-log. The latter
primitives have other properties which could potentially be exploited for a
security proof, like homomorphic properties. This limitation does not hold
for our results.

— Meta-reduction separations such as [4,[8, 28] consider the impossibility of
reductions from secure encryption or signatures to a given RSA instance. Yet,
they often fall short of providing any meaningful claim if other assumptions
enter the security proof, e.g., the result in [28] does not hold anymore if two
RSA instances are given or an additional collision-resistant hash function is
used in the design. In comparison, our general approach covers such cases
as we can easily combine non-interactive problems P;, P> into more complex
problems like P; V P, and P; A Ps, requiring to break one of the two problems
and both of them, respectively.

The latter advantage emerges because our meta-reduction plays off unforgeabil-
ity against blindness. This idea may be useful in similar settings where two or
more security properties are involved, to provide stronger separation results for
meta-reductions.

The broader class of problems ruled out by our meta-reduction also allows
to make meaningful claims when it comes to the possibility instantiating the
random oracle in the blind signature schemes. Namely, our separation indicates
the limitations of hash function options (assuming some restriction on the resets
of the reductions, mentioned in the previous section):

Any hash function whose security can be proven by black-box reduction to
hard non-interactive problems does not allow a black-box reduction from
the unforgeability of the blind signature scheme to hard non-interactive
problems, such as RSA or discrete-logarithm.
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This can be seen as follows. Any reduction from the unforgeability either breaks
the underyling non-interactive problem like RSA or discrete-log, or breaks some
security property of the hash function. The latter, in turn, yields a nested reduc-
tion from the unforgeability of the blind signature scheme to the non-interactive
problem on which the hash function is based. One only needs to ensure that this
nested reduction falls within our admissible reset strategy. This is clearly true
if the security property of the hash function is given by a hard non-interactive
problem itself, like one-wayness or collision-resistance, or allows a suitable re-
duction to these problems or RSA, discrete-log etc.

1.3 Extension to Computational Blindness

In principle our result extends to computationally-blind signature schemes but the
conditions are arguably more restrictive than in the statistical case. First, recall
that blindness needs to hold relative to the forgery oracle X, i.e., the powerful
forgery oracle must not facilitate the task of breaking blindness. While this comes
“for free” in the statistical case, in the computational case one must assume that
unforgeability and blindness of the scheme are somewhat independent. This is true
for instance for Fischlin’s scheme [T6], but there are also examples where blindness
and unforgeability are correlated, as in Abe’s scheme [I] where unforgeability is
based on the discrete-log problem and blindness on the DDH problem.

Second, given that the scheme is computationally-blind relative to X we still
rely on the signature derivation check. One can easily design computationally-
blind schemes infringing this property, say, by letting the user sent a public
key and having the signer encrypt each reply (we are not aware of any counter
example in the statistical case). On the other hand, these signature derivation
checks are very common, e.g., besides the schemes above the ones by Okamoto
[26] and by Fischlin [I6] too have this property.

Third, since we have to change the forgery oracle X' for the computational
case, we also need a key-validity check which allows to verify if a public key
has a matching secret key (i.e., if there is a key pair with this public key in the
range of the key generating algorithm). For schemes based on discrete-logarithm
this usually boils down to check that the values are group elements. Given that
these three conditions are met we show that our techniques carry over to the
computational case.

1.4 Related Work

In a sense, our results match the current knowledge about the round complexity
of blind signature schemes. Nowadays, the best upper bound to build (non-
concurrently) secure blind signatures are four moves for the standard model, i.e.,
neither using random oracles nor set-up assumptions like a common reference
string. This is achieved by a protocol of Okamoto [26] based on the 2SDH bilinear
Diffie-Hellman assumption. Any schemes with three moves or less either use the
random oracle model [611,27] or a commom reference string [2}I6/[19].
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We note that Lindell [25] rules out any concurrently secure blind signature
scheme in the standard model, independently of any cryptographic assumption.
Hence, it seems that two-move schemes —which are concurrently secure by
nature— are impossible in the standard model. However, Lindell’s impossibility
result only refers to the stronger (black-box) simulation-based definition of blind
schemes and can indeed be circumvented by switching to the common game-based
definition, as shown by [20]. In contrast, our result holds with respect to game-
based definitions and also covers three-move schemes, thus showing that such blind
signature schemes may be hard to build even under this relaxed notion.

The recent results by Brown [8] and Bresson et al. [4] show meta-reduction
based separations of the one-more RSA and one-more discrete-logarithm problem
from their regular counterparts. The conclusion in [4] is that it should be hard
to find a security proof for Chaum’s scheme and the Pointcheval-Stern schemes
using only these regular assumptions. As mentioned before, the meta-reductions
in [84] are limited in the sense that they either cannot rewind (as in [§]) or can
only forward the input RSA or discrete log problem (as in [4]). Our approach,
however, considers arbitrary hard non-interactive problems and is robust with
respect to the combination of several underlying assumptions.

We also remark that the well-known three-move lower bound for non-trivial
zero-knowledge [I8] is not known to provide a lower bound for blind signature
schemes. The intuitively appealing idea of using the blind signature scheme as
a commitment scheme in such zero-knowledge proofs unfortunately results in
proofs which require more than three moves. This is even true if we start with a
two-move blind signature scheme where a “hidden” third move is required for the
initial transmission of the signer’s public key. In addition, the game-based notion
of blind signatures is not known to yield appropriate zero-knowledge simulators.

Organization. We start with the definition of blind signature schemes in Sec-
tion 2 In Section [3] we discuss our notion of black-box reductions to hard prob-
lems. Before presenting our main result in Section [f] where we show the hardness
of finding black-box reductions from unforgeability to non-interactive problems
we first discuss a simpler case for restricted reductions in Section @l to provide
some intuition about the general result. Due to the space restrictions, we have
delegated the case of computational blindness, as well as most of the proofs, to
the full version.

2 Blind Signatures

To define blind signatures formally we introduce the following notation for in-
teractive execution between algorithms X and Y. By (a,b) — (X (z),Y(y)) we
denote the joint execution, where z is the private input of &X', y defines the
private input for ), the private output of X equals a, and the private output
of YV is b. We write y<X<-T>~>°°(y) if Y can invoke an unbounded number of
executions of the interactive protocol with X in sequential order. Accordingly,
X Y)Y n)! (z) can invoke sequentially ordered executions with Y(yo) and
Y(y1), but interact with each algorithm only once.
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Definition 1 (Blind Signature Scheme). A blind signature scheme consists
of a tuple of efficient algorithms BS = (KG, (S,U) ,Vf) where

Key Generation. KG(1") generates a key pair (sk, pk).

Signature Issuing. The joint execution of the algorithms S(sk) and U(pk, m)
for message m € {0,1}™ generates an output o of the user, (L,0) «—
(S(sk),U(pk,m)), where possibly o = L.

Verification. Vf(pk,m,o) outputs a bit.

It is assumed that the scheme is complete, i.e., for any (sk, pk) «— KG(1¥), any
message m € {0,1}" and any o output by U in the joint execution of S(sk) and
U(pk,m) we have Vf(pk,m,o) = 1.

Security of blind signature schemes requires two properties, namely unforgeabil-
ity and blindness [22,27]. A malicious user U* against unforgeability tries to
generate k + 1 valid message-signatures pairs after at most k completed interac-
tions with the signer, where the number of interactions is adaptively determined
by the user during the attack. The blindness condition says that it should be in-
feasible for a malicious signer $* to decide upon the order in which two messages
mgo and m1 have been signed in two executions with an honest user U.

Definition 2 (Secure Blind Signature Scheme). A blind signature scheme
BS = (KG, (S,U) ,Vf) is called secure if the following holds:

Unforgeability. For any efficient algorithm U* the probability that experiment
Forgefﬁ evaluates to 1 is negligible (as a function of n) where

Experiment ForgeEﬁ
(sh, ph) — KG(1")
((mh 01)’ R (mk-l-l’ O'k+1)) — U*<S(Sk))'>x (pk)
Return 1 iff
m; #my for 1 <i<j<k+1, and
Vf(pk,m;,0;) =1 foralli =1,2,....k+1, and
at most k interactions with (S(sk),-)> were completed.

Computational resp. Statistical Blindness. For any (efficient resp. com-
putationally unbounded) algorithm S* working in modes find, issue and guess,
the probability that the following experiment Blind2§ evaluates to 1 is negli-
gibly close to 1/2, where

Ezxperiment Blind2§

(pk, mo, m1, string) — S*(find, 1™)

b—{0,1}

Stiecye — 5*(-J/f(pl'wm))f7<'J/1(10kﬂn17b)>1(,'Ssue7 Stfind)
and let oy, 01— denote the (possibly undefined) local outputs
of U(pk, myp) resp. U(pk,m1_p).

set (0'0,0'1) = (J_7J_) ifoo =1 or g1 = 1

b* — S* (guess, 00,01, Stissue)

return 1 iff b = b*.
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We remark that, even if occassionally not mentioned, all algorithms in this paper
receive the security parameter 1" as additional input.

3 Hard Problems and Black-Box Reductions

In order to prove the security of a cryptographic protocol, usually reduction
techniques are used. A reduction from a cryptographic protocol to an underly-
ing problem shows that breaking the protocol implies breaking the underlying
problem. A reduction is black-boz if it treats the adversary and/or the underly-
ing primitive as an oracle. Reingold et al. [30] call reductions which use both the
adversary and the primitive merely as an oracle fully-black-box, whereas semi-
black-box reductions work for any efficient adversaries (whose code the reduction
may access) as long as the primitive is black-box.

In our case we only need the orthogonal requirement to semi-black-box re-
ductions, namely that the reduction treats the adversary as an oracle but we do
not make any assumption about the representation of the underlying primitive.
The reduction we consider works for any kind of non-interactive primitive (i.e.,
in which one gets an instance as input and outputs a solution without further
interaction):

Definition 3 (Hard Non-Interactive Problem). A non-interactive (cryp-
tographic) problem P = (I, V') consists of two efficient algorithms:

Instance generation I(1"). The instance generation algorithm takes as input
the security parameter 1™ and outputs an instance y.

Instance Verification V' (z,y). The instance verification algorithm takes as
input a value = as well as an instance y of a cryptographic problem, and
outputs a decision bit.

We call a cryptographic problem P hard if the following condition is fulfilled:

Hardness. We say that an algorithm A solves the cryptographic problem P if
the probability that A on input y «— I(1™) outputs x’ such that V(z',y) = 1,
is non-negligible. We say that the problem P is hard if no efficient algorithm
solves 1it.

Note that in the definition above we do not impose any completeness requirement
on the cryptographic problem. The reason is that reductions from the security
of blind signatures must work for arbitrary problems, and in particular to the
ones with non-trivial completeness conditions.

The notion of a non-interactive cryptographic problem clearly covers such
popular cases like the RSA problem, the discrete logarithm problem, or finding
collisions for hash functions. It also comprises more elaborate combination of
such problems, e.g., if Py, P; are two non-interactive problems then so are PyA Py
and Py V Py (with the straightforward meaning requiring to solve both problems
or at least one of them).
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4 Warm Up: Impossibility Result for Vanilla Reductions

To give some intuition about our technique we first consider the simpler case
of vanilla reductions. This type of reduction only runs a single execution with
the adversary (without rewinding) and, if communicating with an honest user,
makes the user output a valid signature with probability 1. This means that a
vanilla reduction takes advantage of the magic adversary and its output, instead
of solving the problem on its own. We then augment our result in the next section
to deal with resetting reductions running multiple adversarial instances.

4.1 Preliminaries

For our impossibility result we need another requirement on the blind signature
scheme, besides statistically blindness. This property says that one can tell from
the public data and communication between a malicious signer and an honest
user whether the user is able to compute a valid signature or not.

For instance, in Chaum’s scheme the honest user sends a value y and receives
z from the signer, and the user is able to compute a signature ¢ for an arbitrary
message m if and only if 2° = y mod N. This is easily verifiable with the help
of the public key and the communication. The scheme of Pointcheval and Stern
implements the signature derivation check already in the user algorithmE Anal-
ogous derivation checks occur in the schemes by Okamoto and by Fischlin. More
formally:

Definition 4 (Signature-Derivation Check). A blind signature scheme BS
allows (computational resp. statistical) signature-derivation checks if there ex-
ists an efficient algorithm SDCh such that for any (efficient resp. unbounded)
algorithm S8* working in modes find and issue the probability that the experiment
SigDerCheckgﬁ’SDCh evaluates to 1 is negligible, where

Ezxperiment SigDerCheckEéVSDCh
(pk, m, st) «— S*(find, 1™)
(L,0) « (S*(issue, st),U(pk,m))
where trans denotes the communication between S*, U
¢ « SDCh(pk, trans)
return 1 if o # L and c =0, orif o = L but c=1.

In the computational case, if the above holds even if S* gets access to an oracle
Y then we say that the scheme has computational signature-derivation checks
relative to X. (In the statistical case 8* could simulate X internally, such that
granting access to X is redundant.)

The notion in some sense augments the blindness property of blind signature
schemes to the case that the user algorithm fails to produce a valid signature
2 The signature derivation check is given by the user’s local verification a = g®hy®,
where the values a,r, R, S are exchanged during the signature issuing protocol and
the values g, h,y are part of the public key.
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in the final local step. The common notion of blindness does not provide any
security in this case (because the malicious signer does not receive any of the
signatures if the user fails only then). See [I7] for more discussions and solutions.
Here, the signature derivation check provides something stronger, as it can be
efficiently performed by anyone and holds independently of the user’s message.
Next we introduce a weaker notion than blindness which is geared towards our
separation result. Informally, a blind signature scheme has so-called transcript-
independent signatures if one cannot associate a transcript to a signature. This
is formalized by comparing signatures generated via an execution with a mali-
cious signer and signatures generated “magically” via an oracle X' producing the
signature for a message from the public key and the transcript of the first execu-
tion. The intuition behind the following experiment is that the malicious signer
has to distinguish whether the second signature o}, results from the signature issu-
ing protocol, or if the oracle X' derived the signature o, from the transcript of the
signature issuing protocol where the honest user gets as input the message my.

Definition 5 (Transcript-Independent Signatures). A blind signature
scheme BS has (computationally resp. statistically) transcript-independent sig-
natures with respect to X if for any (efficient resp. unbounded) algorithm S,
the probability that the experiment trans—indg? s(n) evaluates to 1 is negligibly
close to 1/2, where "

Experiment tra ns-indgga"syz(n) :

b—{0,1}

(pk, st1, m_1,mq) — Sie(init, 1)

Sty — S;’afs:("u(pk’m*ml’<"u(pk’m0)>l(issue, st1)
let o_1 and oy be the local outputs of the users in the two
executions (possibly o_1 = L and/or o9 = L)
and let trans_1 be the transcript of the left execution

set m1 = mg and compute o1 — X(pk, trans_1,mq)

set (0'71,0'070'1) = (J_7J_7J_) Z'f0'71 =1 or og = 1 or o1 = 1

b* — Sp (guess, sty,m_1,0_1,mp, 0b)

return 1 iff b = b*.

To define our generic forgery oracle X allowing A to break unforgeability we
first outline the idea for the case of Chaum’s blind signature scheme. Assume
that the adversary has already obtained a valid signature for some message m’
by communicating with the signer. Let trans = (y, z) denote the transcript of
this communication. Algorithm X (pk, trans, m) for m # m’ then searches some
randomness 7 such that the user’s first message for m and r matches y in the
transcript, i.e., H(m)r¢ mod N = y. Such an r exists by the perfect blindness
and the signature derivation check

3 Note that blindness for Chaum’s scheme is only guaranteed if the user can verify
that the exponent e is relatively prime to ¢(N), say, if e is a prime larger than N;
only then is guaranteed that the function (-)® mod N really is a permutation.
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The above example can be generalized to any blind signature scheme and
the following generic forgery oracle (which only depends on the blind signature
scheme in question):

Definition 6 (Generic Forgery Oracle). For a statistically-blind signature
scheme BS the generic forgery oracle X (pk,trans,m) performs the following
steps:

enumerate all values r such that

the user algorithm U(pk, m) for randomness r generates the same

transcript trans when fed with the same signer messages as in trans;

also store all signatures o the user’s algorithm generates in these executions.
select a value r of the set at random and return the corresponding signature o
(or return L if there is no such r).

Proposition 1. Fvery statistically blind signature scheme, which has statistical
stgnature-derivation checks, also has statistical transcript-independent signatures
with respect to the generic forgery oracle X.

The proof appears in the full version. The idea is that we can safely exchange the
order of messages m_1, mg in the transcript-independence experiment because
of the blindness property. Then oracle X in this experiment simply computes
another signature for m; = mg from the transcript for a run with the same
message mo (instead of m_1). By construction of X' this is perfectly indistin-
guishable from the original signature derived from this transcript. We note that
the signature derivation check and the statistical blindness ensure that failures
of X' do not interfere with the blindness definition (where there are only two
executions with the user instances).

Given the generic forgery oracle X we can now define the “magic” adversary
which first plays an honest users communicating with the signer once. If this
single execution yields a valid signature (which is certainly the case when in-
teracting with the genuine signer, but possibly not when interacting with the
reduction), then the adversary generates another valid message-signature pair
without interaction but using X' as a subroutine instead.

3

Definition 7 (Magic Adversary). The magic adversary A for input pk and
with oracle access to the generic forgery oracle X and communicating with an
oracle (S(sk), ) is described by the following steps:

pick random messages m{, m}j — {0,1}"
run an ezecution (S(sk),U(pk, m{)) in the role of an honest user
to obtain o}y and let trans) be the corresponding transcript
if Vf(pk,my, o) = 1 then let o} «— X(pk, trans|, m}) else set o} «— L
return (mg, of, my, oq)

By the completeness of the blind signature scheme the magic adversary, when
attacking the honest signer, returns two valid message-signature pairs, with prob-
ability negligibly close to 1 (there is a probability of at most 27" that the ad-
versary outputs identical pairs for m{ = m/). We also remark that the magic
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adversary, when attacking the actual scheme, applies the forgery oracle to de-
rive a signature for the second message using the transcript of the first signature
issuing protocol.

4.2 Impossibility Result

The following theorem states that vanilla black-box reductions to (non-inter-
active) cryptographic problems do not provide a meaningful security statement.
That is, if there was such a reduction then the underlying problem would already
be easy. Since we only deal with non-resetting reductions the claim even holds
for schemes with arbitrary round complexity (instead of three-move schemes):

Theorem 1. Let BS be a statistically blind signature scheme that allows sta-
tistical signature-derivation checks. Then there is no vanilla black-box reduction
from unforgeability of BS to a hard non-interactive problem.

Proof. For sake of readability we divide the reduction R into steps, according to
the black-box simulation of the magic adversary in which R takes over the role of
the signer: in mode init the reduction outputs the public key pk and in mode msgs
the reduction creates the i-th protocol message msgi of the signer. After getting
the adversary’s signatures o, o1 in the post-processing step final the reduction
outputs a putative solution z’ for its input y. In each step the reduction also out-
puts some state information which is passed on to the next stage.

Analogously to the reduction R we denote by msgj the step of the honest
user U which on input a public key pk, a message m and the previous message
msgi of the signer, outputs message msgj sent to the signer. Likewise, in mode
finish the user creates the signature from its state and the final message sent by
the signer.

Description of the Meta-Reduction. The meta-reduction M works as follows
(see Figure 2l for the case of three moves). It gets as input an instance y of
the problem. It start to simulate the reduction R on y to derive a public key
pk as well as the first message msgl on behalf of the signer and a state stmsgi-
Algorithm M first completes an instance of the signature issuing protocol with
R using the program of the honest user on input a random message mg from
{0,1}™ and some randomness r. Afterwards, it selects another message m’ from
{0,1}™ at random together with some independent randomness " and resets the
reduction to the point where R has returned the first message of the signature
issuing protocol. As before, M executes the honest user algorithm on m’ using
the randomness 7”.

Now, if the meta-reduction obtains two valid signatures o, o1 from both ex-
ecutions, then it hands the pairs (mg, 09), (m1,01) to the reduction which then
outputs some z’. The meta-reduction returns z’ and stops. For brevity we often
write R™M (y) for this interaction.

Analysis of the Meta-Reduction. The final step is to show that the reduction
‘R successfully outputs a solution z’, even if given the pairs from M instead of
receiving them from the magic adversary. For this it suffices to show that
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Meta-reduction M (y)

let (pk, stini) < R(init,y)

let (msg;, Stmsg1) <— R(msgl, stinit)

choose mo «— {0,1}" choose m; < {0, 1}"

let (msg2,, st?nsgz) «— U(msg2, pk, mo, msgl) let (msg2,, st,lnng) — U(msg2, pk, m1, msgl)
let (msg3,, St?nsgg) — R(msg3, stmsg1, MSg2,) let (msg31,st,1nsg3) — R(msg3, stmsg1, MSE2; )
let oo «— U(finish, stheeo, msg3,) let o1« U(finish, sthego, msg3;)

output @’ + R(final, stoees, Mo, g0, M1, 1)

Fig. 2. Meta-Reduction for Vanilla Reduction (three moves), where transy =
(msgl, msg2, msg3) denotes the transcript of the first execution

Prob[y « I(1"),2' — RM(y) : V(2',y) =1 | M]

is non-negligible. As outlined above, for this we exploit the transcript-indepen-
dence of signatures.

Assume to the contrary that the reduction R outputs a valid solution x’ with
non-negligible probability if R receives two message-signature pairs (mg, o),
(m1,01) from the magic adversary,

Prob [y « I(1"), 2" — RAWy) V(2 y) =1 | A magic] # 0,

but succeeds only with negligible probability if the message-signature pairs are
generated by M:

Probly « I(1"),2' — RM(y) : V(2/,y) =1 | M] =~ 0.

Then we construct an adversary S;.,. who breaks the transcript independence
of signatures in experiment trans-indg*)x(n).

Description of Adversary S;,.,.- Informally, the adversary relays the first execu-

tion between the reduction and the external user instance and resets to reduc-
tion afterwards to answer the second execution. Afterwards S, receives two
message-signature pairs without knowing whether the second signature o has
been derived from the signature issuing protocol or with the help of . We then
use the result of the reduction to distinguish this case.

More formally, the adversary S;., ., generates an instance y < I(n) of a crypto-
graphic problem P. It simulates R in a black-box way, which for input y initially
outputs a public key pk as well as the first message msgl and some state informa-
tion Stmsg1. The algorithm S, selects two random message m_1,mg € {0,1}"
and outputs pk, m_1, mg according to the transcript-independence experiment.
It stores the first message (from R to U) and relays the communication be-
tween the reduction R and the first external user instance U(pk, m_1). Then the
adversary resets R to the point where R has returned msgl and forwards the
communication between R and U.

After having finished both executions S;, . receives two (valid) signatures
(0-1,00) and runs the reduction R in mode final on input (st9 s, m 1,01,
mo, 0p) to obtain a putative solution z’ of the cryptographic problem P. The

final output of the adversary is b* « V(2/,y).
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Analysis of S;,,.- For the analysis recall that the magic adversary, after a sin-
gle interaction, outputs two message-signature pairs (with the help of X). In
fact, taking the message-signature pairs (m_1,0_1) of the first execution to-
gether with the message-signature pair (mg, 0g) derived from X' in experiment
trans-indgi s»(n) corresponds exactly to the behavior of the magic adversary
(b =0). Here we take advantage of the fact that the second execution with the
user cannot fail (and force the signatures to be undefined) by our assumption
about the vanilla reduction always making the honest user derive a signature.

On the other hand, during the issuing protocol with the honest user U, the ad-
versary Syrans resets R and uses in the second execution the prefix msgl (obtained
during the signature generation of (m_1,0_1)) in experiment trans—indgix(n).
Therefore the message-signature pairs (m_1,0_1), (mp, 0p) are computed in the
same way as the meta-reduction M does (b = 1). Note that the additional run of
2 in the transcript-independence experiment cannot make the three signatures
invalid (except with negligible probability), because of the statistical blindness
and the signature derivation checks. More specifically, the statistical blindness
guarantees that the transcript generated with I/ for message m_; is (almost
surely) also a potential transcript for mo = my used by X. Furthermore, the
signature derivation check tells us that, independently of the message, the tran-
script allows the user to derive a signature (such that X, too, will find a valid
random string r for the simulated user with a valid signature). This fact is stated
more formally in the full version. For simplicity we neglect the small error for X
returning an invalid signature in the analysis below.

We obtain for the probability that S, . outputs the right bit b* = b:

trans
Prob[b* =b] =  + J - (Prob[b* =1 |b=1] — Prob[b* =1 |b=0])

According to our construction, b = 0 corresponds to the case where the simula-
tion mimics the behavior of the magic adversary, and b = 1 the setting involving
the meta-reduction. Furthermore, the adversary S, returns b* =1 in the case
that the reduction R returns a valid solution z’ of y. Hence,

Prob[b* =1 |b=1] —Prob[d* =1 |b=0]
=Prob[y « I(1"),2’ — R*(y) : V(2/,y) = 1 | A magic|
—Prob[y « I(1"),2' — RM(y): V(«/,y) =1 | M].
By assumption the difference is non-negligible (because the first probability is

non-negligible and we have assumed that the second probability is negligible).
This, however, contradicts the transcript independence of signatures. a

5 Impossibility Result for Statistically Blind Signature
Schemes

Here we discuss more general reductions which may reset the adversary and run
several nested executions with multiple copies of the adversary.
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5.1 Preliminaries

To build our meta-reduction we will reset the reduction continuously. That is,
whenever the reduction expects a forgery from an instance of the magic adver-
sary, we freeze the scenario and branch into a loop in which the meta-reduction
seeks a second valid message-signature pair. In order to avoid an exponential
blow-up in the running time of such rewinding executions [I5], we consider
slightly restricted reductions.

Resetting Reductions with Restricted Cross-Resets. Any reduction in our case is
allowed to run ¢ = ¢g(n) concurrent executions with the copies of the adversary,
each copy resetting at most ¢ times, except that the reduction has to finish the
interaction in the order according to the arrival of the second messages of the sig-
nature issue protocol. That is, consider a three-move signature issuing run of the
reduction with a copy of the adversary playing the honest user. Assume that the
reduction receives the second message in this execution (which has been sent by
the adversary resp. user), and call this execution pending from then on. We say
that the reduction successfully finishes this pending execution if it sends the third
message of the protocol such that the user is able to derive a valid signature.

The cross-reset restriction now demands that, if the reduction ever finishes
a pending execution successfully, then there is no other execution which has
become pending and has been finished successfully meanwhile. In other words,
between the pending state of an execution and its completion the reduction may
not receive the second message and complete any other execution (for which
the user can compute a signature). We remark that the reduction may decide
to entirely abort a pending execution and is still allowed to finish other pend-
ing executions, as long as the user is unable to produce a signature from that
interaction. A formal definition appears in the full version.

Note that the scheduling of reductions with restricted cross-resets is related to
so-called bounded concurrent (and resettable) executions [3]. In m-bounded con-
current executions the number of instances running simultaneously is bounded
by some fixed function m = m(n) where the bound itself is known by the pro-
tocol. We do not put any a-priori bound on the number of concurrently running
executions, because the number ¢ of such instances depends on the reduction
and is not bounded by a fixed polynomial. We merely restrict the way successful
executions are finished. We also note that we can extend our proof below to allow
a constant number of successfully finished executions between pending runs, but
state and prove the simpler version for sake of readability.

q-wise Independent functions. An adequate measure to thwart reset attacks
are usually pseudorandom functions (e.g., as in [I0]). The idea is to make the
randomness of the adversary depend on the communication by computing it as
the output of the pseudorandom function for the communication. In this case,
resetting the adversary essentially yields runs with independent random choices.
Here, we use the same idea but can fall back to the weaker requirement of ¢-
wise independent functions in order to avoid the additional assumption that
pseudorandom functions exist.
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We note that using g¢-wise independent functions instead of pseudorandom
functions makes the adversary now depend on the reduction. Namely, below we use
q as the number of maximal resets per row. However, since we deal with black-box
reductions this is admissible. We also remark that we can overcome this depen-
dency by using pseudorandom functions instead of g-wise independent function.

The New Magic Adversary. We use again the generic forgery oracle from the
vanilla case. But here we augment our “new” magic adversary through a ¢-
wise independent function (i.e., the random hash function h is given by parts
of the adversary’s randomness). Informally, the adversary again runs the issuing
protocol with the signer in the role of the honest user once. However, it now
generates the message (and the user’s randomness) as the result of the g-wise
independent function applied to the public key and the first message of the
signer. Again, in the case that the single execution yields a valid signature, then
the magic adversary here also creates another valid signature.

As we will later view X to be an integral part of the magic adversary and
thus let the adversary provide the randomness s € {0,1}%(™ required by oracle
Y. We denote this augmented (deterministic) oracle with X8 which now takes
pk, trans, m and randomness s as input and returns ¢. This randomness is also
derived through the g-wise independent function, ensuring consistent answers
for the same data (pk, msgl). We note that the length ¥ (n) of this randomness
is only polynomial by construction of the generic forgery oracle:

Definition 8 (Magic Adversary). The magic adversary A = A, (with pa-
rameter q) for input pk and access to the generic forgery oracle X*9 and com-
municating with an oracle (S(sk),-)" works as described in the following steps:

select a hash function h from the family of q-wise independent functions H
run an execution (S(sk),U(pk, my;ry)) in the role of an honest user, where
(mg, mh, 70, sp) < h(pk, msgl) is generated as the result of the
q-wise independent function applied to the public key pk and
the first message msgl of S; let oy denote the resulting signature and
trans the corresponding transcript.
if Vi(pk,mg, 0) = 1 then let of — XI(pk, transy, mj; s,) else set 0,07 «— L
return (mg, op, my, o1)

It follows again from the completeness of BS together with the construction of
the generic forgery oracle that the magic adversary succeeds in the unforgeability
experiment with probability negligibly close to 1.

5.2 Impossibility Result
In the following we extend our result to restricted-cross resets.

Theorem 2. Let BS be a three-mowve blind signature scheme, which is statis-
tically blind and has statistical signature-derivation checks. Then there is no
resetting (with restricted cross-resets) black-box reduction from unforgeability of
the blind signature scheme BS to a hard non-interactive problem.
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The proof appears in the full version. The idea is similar to the vanilla case.
Only here we use the g-wise independent hash function to ensure independent
randomness for runs with the adversary, and we need to take care of the fact
that the meta-reduction now loops to find the second message-signature pair. The
latter can be done in (expected) polynomial time by the assumption about the
restricted resets. Appropriate truncation then yields a meta-reduction running
in fixed polynomial time.

Transcript-independence again guarantees that the redcution cannot distin-
guish answers from the magic adversary from the ones of the meta-reduction.
Formally, one first reduces the case of at most ¢ instances, each with at most ¢
resets, to a single run by a standard hybrid argument. Then one injects the data
from the transcript-independence experiment into this single run. The signature
derivation check allows to verify (without the help of X) if one has successfully
inserted the data in a “good” execution (and not in a run in which the magic
adversary would have failed to produce a forgery).

6 Conclusion

We have shown that for the blind signature schemes of Chaum [I1] and of
Pointcheval-Stern [27] finding security reductions to any non-interactive cryp-
tographic problem in the standard model is hard. This class of cryptographic
problems is very broad in the sense that it contains candidates like RSA and
collision-resistant hash functions, and also any combination thereof. This also al-
lows us to make stronger infeasibility claims compared to previous results using
meta-reductions in other areas.
Concerning optimality of our results we remark that:

— Our result can be transfered to the computational blindness case (under ad-
ditional stipulations), thus also ruling out many approaches to revert to com-
putationally blindness to circumvent the results for the statistical schemes.

— Enlarging the class of cryptographic problems to interactive ones is too de-
manding: unforgeability of any blind signature scheme can indeed be securely
reduced to an interactive problem in the standard model by simply assuming
that the scheme is unforgeable. It is, however, unclear if and how decisional
problems can be subsumed under our class of non-interactive (computa-
tional) problems.

— Extending the result to protocols with more moves is impossible in light of
Okamoto’s scheme [26] with four moves in the standard model, based on a
non-interactive assumption.

Hence, our result fits well into our current knowledge about constructing blind
signatures and shows close boundaries for potential improvements on the effi-
ciency or assumptions.
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Abstract. An efficient protocol for quantum key distribution is pro-
posed the security of which is entirely device-independent and not even
based on the accuracy of quantum physics. A scheme of that type re-
lies on the quantum-physical phenomenon of non-local correlations and
on the assumption that no illegitimate information flows within and be-
tween Alice’s and Bob’s laboratories. The latter can be enforced via the
non-signaling postulate of relativity if all measurements are carried out
simultaneously enough.

1 Non-locality, General Non-signaling Adversaries, and
Device-Independent Secrecy

1.1 Minimizing Assumptions for Secure Key Agreement

It is well-established that secrecy must be based on certain premises such as a
limitation on the adversary’s computing power [2], [3] or memory [4], [5], noise
in communication channels [6], [7], [8], the uncertainty principle of quantum
physics [9], or entanglement [I0]. In traditional quantum key distribution, the
security proof is based on

1. the postulates of quantum physics,

2. the assumptions that the used devices work according to their specification,
and

3. that Eve does not get information about the generated key out of the legit-
imate partners’ laboratories.

This article is concerned with a variant of quantum key distribution which al-
lows the first two assumptions to be dropped, if at the same time, the third is
augmented by the assumption that no unauthorized information is exchanged
within and between the legitimate laboratories. One possibility to guarantee this
is via the non-signaling postulate of relativity if certain actions are carried out
in a space-like separated] way. Of particular importance is device independence

* Because of space limitations, technical proofs are omitted in this extended abstract.
The full proofs are given in [I].

! Two events, i.e., points in space-time, are called space-like separated if no signal at
the speed of light, or smaller, can get from one to the other.

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 216-34], 2010.
© International Association for Cryptologic Research 2010
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(i-e., dropping Condition [Z), for two reasons. First, the necessity to trust the
manufacturer is never satisfactory. Second, the security of traditional protocols
for quantum key distribution relies crucially on the fact that the devices exactly
match the theoretical model used in the security analysis, e.g., that a single
photon source only emits always exactly one photon. For instance, the BB84
protocol [9] becomes completely insecure if larger systems, such as pairs of pho-
tons, are transmitted. With present technology, this is a significant issue. The
fact that practical deviations from the theoretical model open the possibility of
attacks has been demonstrated experimentally, see [11], [12], [13], [14], [I5],
[16], and references therein.

The question of device-independent security has been raised by Mayers and
Yao in [I7]. It was shown in [I8] that such security is possible in principle. How-
ever, no non-zero secret-key rate has been achieved, and the classical-communi-
cation cost is exponential in the security parameter. Later schemes, robust
against noise and achieving a positive key rate, have been proven secure against
certain restricted types of attacks [19], [20], [21], [22]. The current state of the
art is that security can hold against all attacks for which no (quantum) correla-
tion is introduced between subsequent measurements, see, e.g., [23].

1.2 The Basic Idea: Systems, Correlations, and Non-locality

We explain the basic idea of achieving device-independent security by Barrett,
Hardy, and Kent [I8]. The resulting confidentiality is based on certain correla-
tions — called non-local — between Alice and Bob i

Non-locality is a property of the joint input-output behavior of two (or more)
remote objects. Surprisingly, certain quantum states show such a behavior: The
two parts of some entangled states display, under measurements, correlations un-
explainable by shared classical information. This fact was observed by Bell [25] in
1964 and terminated attempts to completely describe quantum physics by local
classical parameters, so-called hidden wvariables, as claimed by Einstein, Podol-
sky, and Rosen in 1935 [26]. It is, roughly speaking, exactly the non-existence of
such hidden variables which can be exploited cryptographically: Information that
does not exist can, in particular, not be known to an adversary (see Sect. [LHl).

In order to explain non-local correlations, we introduce the notion of a two-
party system, defined by its joint input-output behavior Pxy|yy (see Fig. [).

Definition 1. A bipartite system is a conditional distribution Pxy yy. It is
local if Pxyy gy = > iy wiP)iqUPf/IV for some w; > 0 and distributions P§<|U
and P)if|v’
mission, i.e., if Y Pxyjwv(®,y,u,v) =, Pxyjov(z,y,u,v) for all y, v, u,u’,
and similarly for the converse direction. A bipartite system that is non-signaling
is also called a mon-signaling boz.

i=1,...,n. It is non-signaling if it does not allow for message trans-

2 Note that although classically the possibility to derive secrecy from correlations
alone appears unusual, this is not so in quantum physics, since entanglement is
monogamous to some extent [24]: If Alice and Bob are maximally entangled, then
Eve factors out and must be independent.
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U—— ~—V

Pxyuv

X~ —Y

Fig. 1. A two-party system. If it does not allow for message transmission, it is called a
non-signaling bozx.

Local systems are exactly what can be achieved with shared randomness: The
randomness is equal to the ¢ in the weighted sum. We will concentrate on systems
that are non-local and at the same time non-signaling. It may be somewhat
surprising that such systems exist, and we describe an example in Sect.
Note that throughout this paper, all systems are non-signaling boxes.

1.3 Non-locality Exists in Nature

In this section, we discuss a type of non-locality that exists in nature, named
CHSH after [27]. For simplicity, we first discuss an idealization of that behavior,
introduced by Popescu and Rohrlich [28] and called the PR boz (see Fig. ).

0 1

U
vy

el ISR Neall IR (@)

—_ O =
o~ O O o RO
O oo~ O

o~ O o~ O -

Fig. 2. The PR box

Definition 2. [28] A Popescu-Rohrlich box (or PR box for short) is the follow-
ing bipartite system Pxy |y : For each input pair (u,v), X is a random bit and
Prob [X @Y =U-V]=1.

Bell [25] showed this system to be non-local. More precisely, any system that
behaves like a PR box with probability greater than 75% is. This can be seen
as follows: Locality is equivalent to the possibility that the outputs to the two
alternative inputs are pre-determined on each side. Let us call these bits X,
(Alice’s output if U = 0), X1, and Yp, Y1, respectively. Now, X @Y =U -V
translates to the four contradictory conditions Xy = Yy, X7 = Yy, Xo = Y7, and
X7 # Y7: Only three out of the four can be satisfied at a time!
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The concept of a non-signaling box can now be used to investigate the prop-
erties of entangled quantum states. For this one considers a setting where Alice
and Bob can choose local measurements, U and V respectively, and obtain out-
puts X and Y. Interestingly, in this model a PR box can be approximated by
roughly 85%! In order to see this, note first that when the two Qbits of a sys-
tem in the singlet state |¢p~) := (|01) — |10))/v/2 are measured in bases that
enclose an angle of ¢, then the probability of observing opposite measurement
results is cos? ¢. The behavior of a PR box can be approximated with probability
cos? 22.5° = 85% if the bases as shown in Fig. [l are used, and if Bob flips his
output bit. (Here, Uy determines the measurement basis Alice uses upon getting
input 0, etc.) This is optimal for all quantum states [29]. We have seen above
that with shared (classical) information, at most 75% can be achieved; hence,
nature is non-locall

Uy U,

Vi

30°
30° Vo
Fig. 3. Alice’s and Bob’s measurement Fig. 4. The measurement bases used in
bases for obtaining a 85%-PR box Protocol [I

1.4 The General Non-signaling Adversary

We model an adversary as an additional interface to the non-signaling box, with
the only restriction that the tripartite box is still non-signaling. In our security
analysis, we will show that the key, generated by Alice and Bob by interacting
with their respective parts of the non-signaling box, is secure in the sense that it
is uniform and independent of all information accessible at this third interface.
This model obviously puts minimal assumptions on the adversary: As usual in
quantum key distribution, Eve may be in control of the entire environment,
i.e., the complement of the two laboratories. Moreover, the information she has
about what happens in these laboratories is only restricted by the non-signaling
postulate: From the adversary’s viewpoint (i.e., given all her information), no
signaling can occur between space-like separated events, and no information is
leaked out of the legitimate laboratories to the adversary. Note, in particular,
that Eve is not assumed to be limited by quantum physics, neither is she assumed
not to be the manufacturer of the devices used by Alice and Bob.

The non-signaling condition may be enforced by relativity, i.e., by carrying out
the corresponding measurements in a space-like separated way. An alternative is
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to place every partial system into a shielded laboratory. Non-signaling is also a
direct consequence of the assumption usually made in quantum key distribution
that the Hilbert space is the tensor product of the Hilbert spaces associated with
the local measurement processes of the parties and the dynamics factorizes.

We will see in Sect. [l that in a non-local system, the non-signaling condition
leads to a limitation on the bias of the system’s outputs. When this fact is
interpreted as being from an adversary’s viewpoint, it represents a limitation on
her information about these outputs: Bits that are unbiased for an adversary are
secret.

1.5 Non-locality + Non-signaling = Limited Bias = Secrecy

The PR box is non-signaling: X and Y separately are perfectly random bits
and independent of the input pair. On the other hand, as we show below,
a system Pxy|yy (where all variables are bits) satisfying X @Y = U -V
is non-signaling only if the outputs are completely unbiased, given the input
pair, i.e., Pxjy—u,v=4(0) = Pyju—u,v=,(0) = 1/2. In other words, the out-
put bit can not even be slightly biased, let alone pre-determined. Assume that
Alice and Bob share some kind of physical system, carry out space-like sep-
arated measurements—hereby excluding message transmission—, and measure
data having the statistics of a PR box. The outputs must then be perfectly
secret bits because even when conditioned on an adversary’s complete informa-
tion, the correlation between Alice and Bob must still be non-signaling and fulfill
XeY=U- V.

Unfortunately, the behavior of perfect PR boxes does not occur in nature:
Quantum physics is non-local, but not maximally so. Can we also obtain secret
bits from weaker, quantum-physical, non-locality? Barrett, Hardy, and Kent [I§]
have shown that the answer is yes. But their protocol is inefficient: In order to
force the probability that the adversary learns a generated bit shared by Alice
and Bob below ¢, they have to communicate ©(1/¢) Qbits.

If we measure maximally entangled quantum states, we can get at most 85%-
approximations to the PR-box’ behavior. Fortunately, any CHSH non-locality
implies some secrecy. In order to illustrate this, consider a system approximating
a PR box with probability 1 — ¢ for all inputs. More precisely, we have

Prob [ XY =U-VIU=u,V=0v]=1-—¢ (1)

for all (u,v) € {0,1}2. Then, what is the maximal possible bias p := Prob [X =
0|U = 0,V = 0] such that the system is non-signaling?

We explain the table (Fig. Bl): Because of the (1 —¢)-CHSH condition (), the
bias of Y, given U = V = 0, must be at least p — €. Because of non-signaling,
X’s bias must be p as well when V' = 1, and so on. Finally, the (1 — ¢)-CHSH
condition for U =V =1 implies p—e — (1 — (p — 2¢)) < &, hence, p < 1/2+ 2¢.
For any € < 1/4, this is a non-trivial bound. (This reflects the fact that ¢ = 1/4
is the “local limit.”) In the special case of € = 0 the bit is perfectly secret.



Efficient Device-Independent Quantum Key Distribution 221

U | Px|r=u,v=v(0)| Py|v=u,v=s(0)] v
0 n-s / p - pb—¢ 0
0 & » - D¢ n-¢ 1
1 ll—S/p_2€(;: p_E/ E 0
1 \p — 2+ p—c’ |1

Fig. 5. The maximal bias of the output of a (1 — ¢)-approximation of the PR box

1.6 Strong from Weak Secrecy

Conditioned on Eve’s entire information, this reads: Weak non-locality means
weak secrecy. Can it be amplified? Privacy amplification is a concept well-known
from classical [30], [31], [32] and quantum [33], [34] cryptography, and means
transforming a weakly secret string into a highly secret key by hashing. These
results are, however, not applicable with respect to general non-signaling adver-
saries which may be strictly stronger than any quantum adversary. In [35], it has
been pessimistically argued that privacy amplification of non-signaling secrecy
is impossible, the problem being that certain collective attacks exist which leave
the adversary with significant information about the final key, however the latter
is obtained from the raw key.

Fortunately, the situation changes when one assumes an additional non-signaling
condition between the individual measurements performed within Alice’s as well as
Bob’s laboratories (see Fig.[]). This assumption could, for instance, be enforced by
a space-like separation of the individual measurement events. In [36], Masanes has
shown that in this case, privacy amplification is possible in principle — by hashing
with a function chosen at random from the set of all functionsﬁ Later, he has shown
that it is sufficient to consider a two-universal set of functions (see [37], IV.C).

Our result differs from Masanes’ in the sense that we show a single explicit
function, namely the XOR, to be a good privacy-amplification function. More
precisely, we prove that the adversary’s probability of correctly predicting the
XOR of the outcomes of n non-signaling boxes is exponentially (in n) close to
1/2 (Lemma [l). This can be seen as a generalization of the well-known fact
that the XOR of many partially uniform bits is almost uniform, and may be of
independent interest.

1.7 Owur Protocol and Results

Protocol 1

1. Alice prepares n + k Qbit pairs in the state [#~) = (|01) — [10))/v/2, for
suitable k = ©(n), and sends one Qbit of every state to Bob.

3 Masanes’ result is a non-constructive proof of the fact that there exists a fized function
for privacy amplification.
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2. Alice and Bob randomly measure the ith system in either the basis Uy or
Ui (for Alice) and Vj or Vp (Bob)ﬁ the four bases are shown in Fig. 4l All
2(n + k) measurement events are pairwise space-like separated.

3. They randomly choose n of the measurement results from the instances where
Alice has measured in Uy and Bob in Vj. This forms the raw key.

4. For the remaining k measurements, they announce the results over the public
channel and estimate the correlations. More precisely, they determine the
parameter €, where ¢ is the probability of violating the CHSH condition
(ie., X®Y # U - V) for uniform inputs, and 0, where ¢ is the probability
of different outputs bits when Uy and V) were measured. They also check
whether they have obtained roughly the same number of 1’s and 0’s. If the
parameters are such that key agreement is possible (Fig. []), they continue;
otherwise they abort.

5. Information reconciliation and privacy amplification: Alice randomly chooses
an (m + s) x n-matrix A such that p(0) = p(1) = 1/2 for all entries and
m := [n-h(5)]. She calculates A ® x (where x is Alice’s raw key) and sends
the first m bits and the matrix A to Bob over the public authenticated
channel. The remaining bits form the key. Bob uses the information received
from Alice to reconstruct the key.

Theorem 1. Protocolldl achicves a positive secret-key-generation rate as soon as
the parameter estimation shows an approzimation of PR boxes with an accuracy

0.25

T T T T
reachable by quantum mechanics

0.2 | quantum + key

0.15 -
0.1 positive key rate .

0.05 | ]

0 | | | |
0 0.01 0.02 0.03 0.04 0.05

3

Fig. 6. The parameter regions for which key agreement is possible (below the solid
line) and reachable by quantum mechanics (above the dashed line). € is the probability
of violating the CHSH condition (i.e., X @Y # U - V) for uniform inputs, and § the
probability of different output bits on input (0, 0).

4 To increase the efficiency, the bases Uy and Vo may be choosen with very high
probability, such that there are at least n positions where both Alice and Bob have
measured in this basis.
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exceeding 80% and a correlation of the outputs on input (0,0) higher than 98%,
e, if € < 0.2 and § < 0.02. The security of the protocol is based solely on the
non-signaling condition; in particular, it is independent of quantum physics and
of the devices used.

Protocol [l also allows for “traditional” entanglement-based quantum key agree-
ment [I0]. Therefore, we have the following.

Corollary 1. Protocolll allows for efficient information-theoretic key agreement
if quantum or relativity theory is correct.

2 Model and Security Definition

2.1 Modeling the Attacks

When Alice, Bob, and Eve carry out measurements on a (joint) physical system,
they can choose their measurement settings (the inputs) and receive their respec-
tive outcomes (the outputs). It is, therefore, natural to model the situation by a
tripartite system, characterized by Pxy zjyyw as depicted in Fig. [l Our secu-
rity analysis will be based on the non-signaling condition, i.e., the input/output
behavior of one side tells nothing about the input on the other side(s) (the same
must also hold with respect to a separation of all interfaces in two groups).

Condition 1. [18] The system Pxy zjyvw must not allow for signaling:

/
§ IPXYZ|UVW($7y727u7U7w): E TPXYZ|UVW($7y727u7v7w)

for all u,v’,y, z,v,w and similarly for signaling in all other directions.

If a system is non-signaling between its interfaces, this also means that its
marginal systems are well-defined: What happens at one of the interfaces does
not depend on any other input. This implies that at all the interfaces, an output
can always be provided immediately after the input has been given.

This tripartite scenario can be reduced to a bipartite one: Because Eve cannot
signal to Alice and Bob (even together) by her choice of input, we must have

ZZ Pxy zjovw (@Y, 2, u,v,w) = Pxyjpv(z,y,u,v) forall w,

U—— ~—V
Alice Pxy ziuvw Bob
X <— —Y
’ Eve I
w Z

Fig. 7. The tripartite scenario including the eavesdropper
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and the right-hand side is exactly the marginal box as seen by Alice and Bob.
We can, therefore, see Eve’s input as a choice of convex decomposition of Alice’s
and Bob’s box, and her output as indicating one part of the decomposition.
Furthermore, the condition that even Alice and Eve together must not be able
to signal to Bob and wvice versa means that the distribution conditioned on
Eve’s outcome, P)Z<Y|va must also be non-signaling between Alice and Bob.
Informally, we can write

A B  =plzw)- AB +pzjw) AB +---

zZ0 z1

and this also covers all possibilities available to Eve. Formally, we define:

Definition 3. A box partition of a given bipartite non-signaling box Pxy v
is a family of pairs (pz,Pf(YlUV), where p* is a weight and P§<Y|UV is a non-
signaling box, such that Pxyyy =), p*- P)Z(Y|UV'

This definition allows us to switch between the scenario of a bipartite non-
signaling box plus box partition and the scenario of a tripartite non-signaling
box, as stated in Lemmas [I] and

Lemma 1. For any given tripartite non-signaling box Pxy ZIUvw, any input
w induces a box partition of the bipartite box Pxyyy parametrized by z with
p* = p(z|w) and Piyviov = Pxyov,z=zw=uw-

Lemma 2. Given a bipartite non-signaling box Pxyyy, let W be a set of box
partitions w = {(pZ’P)Z(Y|UV)}Z' Then the tripartite box, where the input of
the third party is w € W, defined by Pxy zjuv, w=w(2) := p* - P)Z(Y|UV s mon-
signaling and has marginal box Pxy|yv -

As explained in the introduction, it is crucial for our security analysis to assume
that Alice and Bob have several input/output interfaces (whereas Eve’s inputs
and output may have an arbitrary structure). We then require the non-signaling
condition to hold between all of the interfaces. We, therefore, extend Condition[I]
from the tripartite to the (2n + 1)-partite case in the obvious way and call such
a system (2n + 1)-partite non-signaling (see Fig. §).

In order to study our particular protocol described in Sect. [l we consider
the case where Alice and Bob share 2n interfaces, each taking one bit input
and giving one bit outputﬁ Each input bit corresponds to the choice of a basis
applied to measure one part of an entangled state and the output bit corresponds
to the measurement result. In the case of a passive adversary, the distribution will

5 We will write U for the random bit denoting Alice’s input, bold-face letters U will
denote an n-bit random variable (i.e., an n-bit vector), U; a single random bit in this
n-bit string, and lowercase letters the value that the random variable has taken. A
similar notation is used for Alice’s output X and Bob’s input and output V and Y.
No assumption is made about the range of Eve’s input/output variables W and Z.
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I

w z

Fig. 8. Alice and Bob share n non-signaling boxes which are independent from their
viewpoint. However, Eve can attack all of them at once. The gray lines stand for the
non-signaling condition.

approximate the behavior of n non-local boxes. To prove security, however, we
cannot make any assumptions about the distribution (which may be arbitrarily
influenced by an adversaryﬁ). For this reason, our security proof only relies on
the non-signaling condition, which we now reformulate for this specific case.

Condition [I. The system Pxyzuvw must not allow for signaling between
any of the 2n + 1 marginal systems, i.e.,

> Pxyziuvw (%, 2, u\us, ui, v,w) = > Py ziuvw (X, ¥, 2, u\u;, w), v, w)

Zi Zi

for all x\x;,y, z,, u\u;, u;, u;, v,w, and where we used the notation x\z; to ab-
breviate x1,...,%;—1,%it1,... Ty, i.e., all x; for which j # ¢ (and similarly for
signaling in all other directions).

Note that the set of possible attacks of an adversary is determined by Con-
dition I only. More precisely, the adversary, Eve, could choose an arbitrary
behavior of the non-signaling box Pxy zjyvw satisfying Condition I and has
full access to the interface taking input W and giving output Z.

2.2 Security Definition

We define security in the context of random systems [38]. The closeness of two
systems Sg and &1 can be measured by introducing a so-called distinguisher. A
distinguisher D is itself a system, and it can interact with the other system. As-
sume the distinguisher is given at random either system Sy or Sp; after interacting
with the system, the distinguisher outputs a bit guessing whether it has interacted
with system Sy or 8. The distinguishing advantage between system Sy and Sy is
the maximum guessing advantage any distinguisher can have in this game.

5 This scenario is analogous to Eve being able to do coherent attacks in a quantum
key distribution protocol.
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Definition 4. The distinguishing advantage between two systems So and S1 is

8(S0,81) = max[P(B = 1S = S) = P(B =1|S = &1)] .

Two systems Sy and S; are called e-indistinguishable if 6(Sp, S1) < e.

The probability of any event £, defined by any of the input and output variables,
when the distinguisher D is interacting with Sp or S cannot differ by more than
this quantity. The reason is that otherwise this event could be used to distinguish
the two systems.

Lemma 3. Let Sy and Sy be e-indistinguishable systems. Denote by P(E|Sy, D)
the probability of an event £, defined by any of the input and output variables,
given the distinguisher is interacting with the system Sy. Then P(£|Sy, D) <
P(5|51,D) + €.

The security of a cryptographic primitive can be measured by its distance from
an ideal system which is secure by definition. For example in the case of key
distribution, the ideal system is the one which outputs a uniform and random
key (bit string) S at one end and for which all other input/output interfaces are
completely independent of this first interface. This key is secure by construction.
If the real system generating a key is indistinguishable from the ideal one, this
key is called secure.

Definition 5. A key S is e-secure if the system outputting S is e-indistinguish-
able from an ideal system which outputs a uniform random variable S and for
which all other input/output interfaces are completely independent of the random
variable S.

As a consequence of Lemmal[3] the resulting security is composable [39], [40], [41].

For the security analysis, we consider an entanglement-based version of Pro-
tocol [ (Sect. [L7). This means that the protocol starts with step 2 and it is
assumed that the n + k quantum states have already been pre-distributed (pos-
sibly by an adversary). As described in Sect. 2l these states are modeled as
non-signaling boxes. We model the public authenticated channel connecting Al-
ice and Bob as an additional (signaling) system, as depicted in Fig. [0l Eve can
wire-tap the public channel, choose an input on her part of the non-signaling
box and obtain an output (i.e., measure her part of the quantum state). Similar
to the quantum case, it is no advantage for Eve to make several box partitions
(measurements) instead of a single one, as the same information can be obtained
by making a refined box partition of the initial box. Without loss of generality,
we can, therefore, assume that Eve gives a single input to the non-signaling box
at the end (after all communication between Alice and Bob is finished). In our
scenario, Eve, therefore, obtains all the communication exchanged over the pub-
lic channel @, can then choose the input to her interface of the non-signaling box
W (which can depend on @), and finally obtains the outcome of the box Z. As
shown in Fig.[d we may also define a lager box S;.q; which includes the behavior
of the protocol executed by Alice and Bob and outputs S4 and Sp. According to
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public channel

quantum state

~< S

Q WZz

Fig. 9. Our system. Alice and Bob share a public authentic channel and a quantum
state. When they apply a protocol 7 to obtain a key, all this can together be modeled
as a system.

S Q wWZzZ S Q Wz
1 4 | 1 { { | ¢
Sreal X Sideal

t t

Fig. 10. An illustration of the security protocol: the real system (left) is compared to
the ideal system (right). The distribution of S in the ideal case is Ps(s) = 1/|S]|.

Definition B the key S A[?] is secure if the system S;.eq; is e-indistinguishable from
the ideal system (see Fig. [I0)). For the security analysis it is useful to formulate
this definition in terms of the distance from uniform.

Definition 6. The distance from uniform of S given Z(w) and Q is

d(S|Z(w)a Q) = 1/2 ZH%?XZPZ,Q”/V:’LU(Z?q) : ‘PS|Z:z,Q:q,W:w(S) - PU| .

s,q z

We have written Z(w) because the eavesdropper can choose the input adaptively,
and the choice of input changes the output distribution.
It is then straightforward to show the following Lemma [l

Lemma 4. A key S generated by a system as given in Fig. [Q is e-secure if

d(S|Z(w),Q) <.

3 Privacy Amplification

In this section, we prove the main technical result. We consider the situation where
Alice and Bob share n imperfect PR boxes, and the key is computed by taking

7 Note that we can consider the distance of S4 from an ideal key and the distance
between S4 and Sp (probability of the keys to be unequal) separately. By the triangle
inequality, the distance of the total real system from the ideal system is at most the
sum of the two.
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the XOR of all n output bits. We will show that taking the XOR of the outputs of
several non-signaling boxes is a good privacy-amplification function in the sense
that the resulting bit is almost perfectly secret (for sufficiently large n).

We now start with the statement and proof of our main claim.

Lemma 5. Let a (2n+1)-partite non-signaling bor Pxyzjgvw, f(X) := @, Xi
and Q .= (U= u, V=). Then

d(f(X)|Z(W)7Q) < 1/2 Z PXY|UV(Q:’ Y u, ’U) :

z,Y,u,v: T;DYiFu;v; Vi

Note that Alice and Bob estimate the average probability that their non-signaling
boxes deviate from the perfect CHSH condition. Conditioned on this estimate
of €, the right-hand side is approximately equal to 1/2 - (4¢)™.

We proceed in several steps. First, we show that the problem of finding the
maximum distance from uniform of the XOR of several output bits can be cast as
a linear optimization problem. Then, we show that this linear program describing
n non-signaling boxes can be seen as the n-wise tensor product of the linear
program describing a single non-signaling box — this is the crucial step. By
using the product form of the linear program we can then show that there exists
a dual feasible solution — i.e., an upper-bound on the distance from uniform —
reaching the above value.

First note that, because of convexity, the maximal possible non-uniformity of
the XOR of the output bits can be obtained by a box partition with only two
outputs, 0 and 1. It is, therefore, sufficient to consider a box partition with only
two elements z = 0 and z = 1. However, given one element of the box partition
(p, PXY|UV) the second element (1 — p, PXY|UV) is determined because their
convex combination forms the marginal box, Pxy|uv- The distance from uniform
of a random bit from the adversary’s point of view can then be expressed only
in terms of the one element of the box partition as

d(@xiw(w),@) =2-p- <P[69Xi =0[Z2=0,Q]—1/2).

This implies that finding the distance from uniform is equivalent to finding
the “best” element of a box partition (p, P)%Y?UV) When can (p, PXY|UV) be
element of a box partition? The criterion is given in Lemma [0l It follows from
the positivity of probabilities and the linearity of the non-signaling conditions.

Lemma 6. A non-signaling box Pxyjyv has a box partition with element
(p, P)%XZ’IOUV) if and only if for all inputs and outputs x, y, u, v,
p- P)%;OUV(% Y, u,v) < Pxyuv(Z, 9, U, v) .

We can now show that the maximal distance from uniform which can be reached
by a non-signaling adversary is the solution of a linear programming problem
(see, e.g., [42] for a good introduction to linear programming). We introduce a
new variable A. A(x,y|u,v) can be defined as 2p - P?=%(xy|uv) — P(xy|uv)ﬁ

8 In the following, we write P(xy|uv) instead of Pxviuv(x,y,a,v).
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Lemma 7. The distance from uniform of @, X; giwen Z(W) and Q := (U =
u, V=) is

AP, Xilzw),Q) =1/2-0" - A",
where bT - A* is the optimal value of the linear program

max: Z A(zy|luv) — Z A(zy|luv)

(m,y):f (2)=0 (m,y):f (2)=1
s.t.: Z A(zy|uv) — Z A(zy|lu’v) =0 Yy, v, u,u’ (non-sig. Alice to Bob)
T T

Z A(zy|uv) — Z A(zy|luv’) =0 Ve, u, v, v’ (non-sig. Bob to Alice)
y y

A(zy|uv) < P(xyluv) Va,y,u,v (Lemmald)
A(zy|uv) > —P(xy|uv) Va,y,u, v (positivity of probabilities) .

Note that there is no normalization constraint on A because normalization
follows from the non-signaling constraints. This linear program can easily be
brought into the form

max: A min: el
st A-A<ec and its dual st AT -X=b (2)
A>0

Note that in the dual program, the marginal box as seen by Alice and Bob
only appears in the objective function ¢’ - X. The feasible region is, therefore,
completely independent of the marginal.

For the case of a single non-signaling box, A1, b1 and ¢; explicitly have the form

Ans
| A by=(1100-1-10000000000)
T e ¢ = (016 016 P(ayluv) P(zyluv)) ,
—1i6
11-1-1000 0 0 0 0 0 0 0 0 0
000 011—-1-10 00 0 0 0 0 0
000 0000 0 1 1 1100 0 0
. looo 0000000001 1121
with A =1 1500 0100 0-10 0 0-10 0 0 |
010 0010 0 0-10200-10 0
001 0001 00 0—-10100—10
000 1000 1 00 0100 0—1

and where P(zy|uv) are the probabilities of Alice’s and Bob’s marginal box such
as, for example, given in Fig. [[T] below, but with the rows stack on top of each
other to form a vector. The dual optimal solution \; can easily be calculated as
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0500500500500050050050 0.5

*T_(
A= 01010000001010000000101001000001).

By comparison, we see that for every z,y,u,v such that x ® y # u - v, there
is exactly one 1 in the second part of A} and everywhere else A} is 0. IL.e.,
=3 P (z,y,u,v)
1 zy,u,vz®yFuv L XY|UV Y, U, V).

Our main tool to show Lemma [l will be to note that we can express the
linear program describing n non-signaling boxes as the tensor product of the
linear program describing one non-signaling box.

Lemma 8. Denote by Ai,by the vector and matriz associated with the linear
program (2) for the case of a single non-signaling box. Then the value of the
program A, b, ¢ associated with n non-signaling boxes is equal to the value of the
linear program defined by

maz: (b™M)7T - A (3)
s.t.: Ai@" -A<c.

Now we consider the dual program of [). It follows directly from its form that if
A1 is a feasible dual solution for a single non-signaling box, then A" is feasible
for n non-signaling boxes.

Lemma 9. For any \; which is dual feasible for the linear program Ai,by asso-
ciated with one non-signaling bozx, Q, i is dual feasible for the linear program
() associated with n non-signaling bozes.

Inserting the explicit value of A = )\?" into the objective function ¢’ -\ concludes
the proof of Lemma

4 Full Key Agreement

4.1 Information Reconciliation and Privacy Amplification: From
One to Several Bits

We have seen in Sect. [3] that it is possible to create a highly secure bit using a
linear function — the XOR. But obviously, we would like to extract a secure key
string, not only a single bit. Furthermore, Alice’s and Bob’s raw key bits (the
output of the non-signaling boxes) will differ with some probability d, therefore,
they need to do information reconciliation before extracting the secret key. Both
information reconciliation and privacy amplification can be done the same way:
by applying a random linear function to the output bits, i.e., [R,S] := A ® X,
where A is a (r+ s) x n-matrix over GF'(2) with p(0) = p(1) = 1/2 for all entries
and we write ® for the matrix multiplication modulo 2. The first r bits R are
released for information reconciliation, while the last s bits form the final key S.

It follows from a result of [43] about two-universal sets of hash functions and
from a result of [44] about information reconciliation that in the limit of large n,
r = [n-h(d)] (where § is the probability that Bob’s bit is different from Alice’s,
and h is the binary entropy function) is both necessary and sufficient for Bob to
be able to correct the errors in his raw key.
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In order to show that the key S is secure, we show that it is secure even
given the bits R of the information-reconciliation scheme are released. Using
the triangle inequality, we can reduce the question of the security of the whole
key to the question of the security of each of the bits S;, given all previous bits
S1,...,8;_1 and R. We then derive a bound on the distance from uniform of S
using Lemma [Bl

Lemma 10. Let a (2n + 1)-partite non-signaling box Pxyz yvw such that the
estimated average error is €. Let [R,S] := A©® X, where A is a (r + s) X n-
matriz over GF(2), and Pa the uniform distribution over all these matrices.
Q:=(U=u,V=uvA). Then

d(S|Z(W), Q. R) < 1/2- 27+ (1 +4E)n.

2

4.2 Key Rate

The key rate is the length of the key divided by the number of non-signaling
boxes used in the limit of a large number of boxes. Because we only need a
small number of boxes for parameter estimation [45], this will asymptotically
correspond to ¢ := s/n. From Lemma [[0] we can calculate the key rate by
setting 7 := h(0) - n (see Sect. [T for a detailed description of the Protocol[Il).

Lemma 11. Protocoll reaches a key rate q of
qg=1—=h(d) —logy(1 +4e) . (4)

Key agreement is possible if the parameters € and § are such that this quantity
is positive, i.e., e < 27"~ —1/4 (see Fig. ).

4.3 The Quantum Regime

If the non-signaling boxes have the same error ¢ for all inputs, then § = € in
@) and the protocol does not reach a positive secret key rate for ¢ = 1+4‘/2,
the minimum value reachable by quantum mechanics. In order to avoid this
problem, we have chosen the bases in Protocol I (see Sect. [[.7)) such that the
corresponding non-signaling box gives highly correlated output bits given input
(0,0) (see Fig. [II)). Alice and Bob generate their raw key only from these out-
putsﬁ Note that in a noiseless setting, the distribution described in black font
can be achieved by measuring a singlet state. In that case, Alice and Bob will
have perfectly correlated bits (and, therefore, would not need to do any informa-
tion reconciliation), and the parameter limiting Eve’s knowledge is € = 0.1875.
The parameters § and 7 (in light gray font in Fig. [[T]) are introduced to account
for possible noise that may arrise in the practical realization of the scheme.

9 Another way to reach a positive key rate in the quantum regime is to use a type of
non-locality characterized by a different Bell inequality allowing for a higher violation
in the quantum regime. See [30] for details.
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Fig. 11. The quantum box used for key agreement

5 Concluding Remarks and Open Questions

We propose a new efficient protocol for generating a secret key between two parties
connected by a quantum channel whose security is guaranteed solely by the fact
that no information is exchanged between the different measurement events. The
method is based on non-locality which can be generated from entangled quantum
states. The security proof, on the other hand, is independent of quantum physics
once the non-local correlations are established and have been verified.

The practical relevance is that the resulting security is device-independent: We
could even use devices manufactured by the adversary to do key agreement. The
theoretical relevance is that the resulting protocol is secure if either relativity or
quantum theory is correct. This is in the spirit of modern cryptography’s quest
to minimize assumptions on which security rests.

Our scheme requires space-like separation not only between events happening
on Alice’s and Bob’s side, but also between events within the same laboratory.
It is a natural open question whether the space-like-separation conditions can
be relaxed. For instance, is it sufficient if they hold on one of the two sides? Or
in one direction among the n events on each side? Obviously, the latter would
be easy to guarantee in practice.
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Abstract. In this paper, we study the complexity of solving hard knap-
sack problems, i.e., knapsacks with a density close to 1 where lattice-
based low density attacks are not an option. For such knapsacks, the cur-
rent state-of-the-art is a 31-year old algorithm by Schroeppel and Shamir
which is based on birthday paradox techniques and yields a running time
of O(2/?) for knapsacks of n elements and uses O(2"/*) storage. We
propose here two new algorithms which improve on this bound, finally
lowering the running time down to either O(2°%%°™) or O(2%-**%") un-
der a reasonable heuristic. We also demonstrate the practicality of these
algorithms with an implementation.

1 Introduction

The 0-1 knapsack problem or subset sum problem is a famous NP-hard problem
which has often been used in the construction of cryptosystems. An instance of
this problem consists of a list of n positive integers (a1, a2, - - , a,) together with
another positive integer S. Given an instance, there exist two forms of knapsack
problems. The first form is the decision knapsack problem, where we need to
decide whether S can be written as:

n
S = E €;0;,
i=1

with values of €; in {0, 1}. The second form is the computational knapsack prob-
lem where we need to recover a solution € = (€1, - ,€,) if at least one exists.

The decision knapsack problem is NP-complete (see [7]). It is also well-known
that given access to an oracle that solves the decision problem, the computational
problem can be solved using n calls to this oracle. Indeed, assuming that the
original knapsack admits a solution, we can easily obtain the value of €, by
asking to the oracle whether the subknapsack (ai,as, - ,a,—1) can sum to S.
If so, there exists a solution with ¢, = 0, otherwise, a solution necessarily has
€, = 1. Repeating this idea, we obtain the bits of € one at a time.

Knapsack problems were introduced in cryptography by Merkle and Hell-
man [