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Preface

The 5th International Computer Science Symposium in Russia (CSR 2010) was
held June 16–20, 2010 in Kazan, Russia, hosted by the Institute of Informatics
of the Tatarstan Academy of Sciences and the Kazan State University. It was
the fifth event in the series of regular international meetings, following CSR 2006
in St. Petersburg, CSR 2007 in Ekaterinburg, CSR 2008 in Moscow, and CSR
2009 in Novosibirsk.

The opening lecture was given by Alexander Razborov, and seven more
invited plenary lectures were given by Susanne Albers, Fedor Fomin, Juraj
Hromkovič, Richard Jozsa, Prabhakar Raghavan, Miklos Santha, and Uwe Schö-
ning.

This volume contains all the accepted papers and, at varying detail, the
abstracts or extended abstracts of the invited talks. The scope of the proposed
topics for the symposium was quite broad and covered basically all areas of the
foundations of (meaning: theoretical) computer science. Unlike in previous years,
no special application track was scheduled. We received 62 valid submissions in
total, and out of these the Program Committee selected 30 for acceptance.

As in previous years, Yandex provided the Best Paper Awards; the recipients
of these awards were, as selected by the Program Committee:

– Best Paper Award:
Dmitry Itsykson: “Lower Bound on Average-Case Complexity of Inversion
of Goldreich’s Function by Drunken Backtracking Algorithms”

– Best Student Paper Award:
Yu Junhua: “Prehistoric Phenomena and Self-Referentiality”

The reviewing process was organized using the EasyChair conference system,
created by Andrei Voronkov, and we would like to acknowledge that this system
very much helped to improve the efficiency of the committee work (and, of course,
made a physical meeting of the PC unnecessary, a fact certainly advantageous
in a number of respects, and at the same time not in others).

The following satellite events were collocated with CSR 2010:

1. Workshop on Program Semantics, Specification and Verification: Theory and
Applications (PSSV 2010)

2. International Workshop on High Productivity Computations (HPC 2010)

We are very grateful to our sponsors:

– Russian Foundation for Basic Research
– Yandex (the largest Russian Internet portal providing key Web services)



VI Preface

We would also like to thank all the local organizers, among them in particular
Alexander Vasiliev, Dina Mingazova, Rauf Ahtyamov, Ramil Garaev, Mikhail
Abramsky, Mansur Ziyatdinov, and Regina Kozlova.

June 2010 Farid Ablayev
Ernst W. Mayr
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Marchetti-Spaccamela Università di Roma ”La Sapienza”, Italy
Michael Tautschnig TU Darmstadt, Germany
Pascal Tesson Université Laval, Canada
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Equilibria in Quantitative Reachability Games . . . . . . . . . . . . . . . . . . . . . . . 72
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Algorithms for Energy Management�

(Invited Talk)

Susanne Albers

Department of Computer Science, Humboldt University Berlin
Unter den Linden 6, 10099 Berlin, Germany

albers@informatik.hu-berlin.de

Abstract. This article surveys algorithmic techniques to save energy
in computing environments. More specifically, we address power-down
mechanisms as well as dynamic speed scaling in modern microprocessors.
We study basic problems and present important results developed over
the past years.

1 Introduction

Energy has become a scarce and expensive resource. This also holds true for
many computing environments. In data and computer centers energy costs often
emerge as the second highest operating cost behind labor. Portable devices, such
as laptops or mobile phones, operate on batteries of limited capacity and rely on
effective energy management. Autonomous distributed systems such as sensor
networks are even more sensitive in this respect as the charging of batteries is
difficult or even impossible.

As a result energy has become a leading design constraint for computing de-
vices. At the same time, the past years have witnessed considerable research
interest in the design and analysis of algorithmic techniques to save energy.
Energy-efficient algorithms reduce energy consumption while minimizing com-
promise to service. The studies focus mostly on the system and device level:
How can we save energy in a single computational device? Two fundamental
and effective techniques have been investigated extensively.

1. Power-down mechanisms: Whenever a system is idle, it can be transitioned
to lower power stand-by or sleep modes. While a power-down operation
is usually inexpensive, a subsequent wake-up operation incurs a significant
amount of energy. The goal is to find state transition schedules minimizing
energy consumption over a given time horizon.

2. Dynamic speed scaling: Many modern microprocessors are able to operate at
variable speed/frequency. High speed levels result in high performance but
also high energy consumption. The goal is to use the full speed/frequency
spectrum of a processor and to apply low speeds whenever possible.

� Work supported by a Gottfried Wilhelm Leibniz Award of the German Research
Foundation.

F. Ablayev and E.W. Mayr (Eds.): CSR 2010, LNCS 6072, pp. 1–11, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 S. Albers

In this survey we study both techniques and review important results that have
been developed in the algorithms community. A key aspect is that the corre-
sponding solutions achieve a provably good performance. We remark that both
of the above techniques have also been investigated in the systems community.
The studies present algorithmic approaches but usually do not prove perfor-
mance guarantees.

2 Power-Down Mechanisms

Power-down mechanisms are well-known and effective techniques to save energy.
We encounter them on an every day basis: The desktop of a desktop turns off
after some period of inactivity. A laptop transitions to a standby or hibernate
mode if it has been idle for some time.

2.1 Problem Setting

We study a very general scenario where a given device can reside in one of several
states. In addition to the active state, the device may be equipped with several
low-power states such as stand-by, suspend, sleep and full-off modes. Specifica-
tions of such systems are given, for instance, in the Advanced Configuration and
Power Management Interface (ACPI) that establishes industry-standard inter-
faces enabling power management and thermal management of mobile, desktop
and server platforms; see [1] for more details. The various states have individual
power consumption rates. Moreover state transitions incur cost. While the energy
needed to move from a higher-power to a lower-power state is usually negligible,
a reverse power-up operation consumes a significant amount of energy.

Over time, the device experiences an alternating sequence of active and idle
periods. During an active period the device must reside in the active mode
to execute jobs or provide a certain service. During an idle period the device
may be transitioned to lower-power states. An algorithm has to decide when
to perform transitions and to which states to move. Obviously, at the end of
an idle period, the device must be transitioned back to the active state. The
goal is to minimize the total energy consumption. As the energy consumption
during the active periods is fixed, assuming that prescribed tasks have to be
performed, we concentrate on energy optimization during the idle periods. In
fact, we wish to design algorithms that, for any given idle period, minimize the
energy consumption.

In practical applications, the power management problem described above
typically is an online problem, i.e. the length T of an idle period is not known in
advance. An online algorithm only learns about T when the period ends. Despite
the handicap of not knowing the future, an online algorithm should achieve a
provably good performance. Here one resorts to competitive analysis [21] that
compares an online algorithm A to an optimal offline algorithm OPT . An opti-
mal offline algorithm knows the length T in advance and can compute an optimal
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state transition schedule minimizing the total energy consumption. Online algo-
rithm A is called c-competitive if, for any idle period, the energy consumed by
A is at most c times that of OPT .

Formally, suppose that we are given a device with � states s1, . . . , s�. Let ri

denote the power consumption rate, measured in energy units per time unit, of
si. We number the states such that r1 > . . . > r�. Hence s1 is the active state
and s� represents the state with lowest energy consumption. Moreover, let βij ,
1 ≤ i, j ≤ �, be the energy required to transition the system from state si to
state sj . Obviously, βii = 0, for any 1 ≤ i ≤ �. We consider arbitrary state
transition matrices where also power-down operations may incur energy.

We remark that if � = 2, i.e. the system has an active mode and a sleep mode
only, the power management problem can be reduced to the ski rental problem,
a basic problem in the theory of online algorithms, see e.g. [12]. As a result we
can derive a 2-competitive deterministic online algorithm. The factor of 2 is the
smallest competitive ratio that can be achieved by deterministic strategies. The
best competitiveness of randomized online algorithms is equal to e/(e−1) ≈ 1.58,
where e is the Eulerian number, see [14]. Karlin et al. [14] also presented results
for the case that the input, i.e. the length T of an idle period, is generated by a
probability distribution.

In the following we concentrate on the general scenario that the given device
is equipped with an arbitrary number � of states. We present results that were
developed by Augustine et al. [3] and Irani et al. [13].

2.2 Online and Offline Algorithms

Given a device with � states, Augustine et al. [3] first develop an optimal of-
fline algorithm that gives insight how to design good online strategies. They
start with an observation that simplifies the state transition matrix (βij)1≤i,j≤�.
More specifically, one may assume without loss of generality that the power-up
transition energies are zero. If this is not the case, one can define a new system in
which the cost of transitioning from state si to sj , where i < j, is βij + dj0 −βi0
and the energy of moving from sj to si is 0. A second observation is that during
an idle period a system never powers up to an intermediate state si with i > 1. If
the system powers up, then it does so at the end of the idle period to transition
back to the active mode s1. In the sequel, let βi = β1i be the transition energy
between s1 and si.

Using the above facts, Augustine et al. presented an elegant formulation of
an optimal offline strategy OPT . The total energy incurred by OPT in an idle
period of length T is given by

OPT (T ) = min
1≤i≤�

{βi + riT }.

Hence, OPT chooses the state that yields the smallest total cost consisting of
state transition energy and energy consumption. Interestingly, the optimal cost
has a simple graphical representation, see Figure 1. If we consider all linear
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Energy

State 3
State 2State 1

State 4

T

Fig. 1. The optimum cost in a four-state system

functions fi(t) = βi + rit, then the optimum energy consumption is given by the
lower envelope of the arrangement of lines.

One can use this lower envelope to guide an online algorithm which state to use
at any time. Let SOPT (t) denote the state used by OPT in an idle period of total
length t, i.e. SOPT (t) is the state argmin1≤i≤�{βi + rit}. Augustine et al. [13]
propose an online algorithm that traverses the state sequence as suggested by the
optimum offline algorithm, i.e. at any time t the algorithm uses state SOPT (t).
This strategy works well if the state transition energies are well separated and
satisfy βi ≥ γβi−1, for 1 < i ≤ � and γ = 1 + 1/

√
2. In this case the strategy

achieves a competitive ratio of 2 +
√

2 ≈ 3.41.
If the state transition energies are not well separated, one can work with

a modified algorithm OPT’ that restricts itself to states satisfying the desired
constraint. The state set S′ used by OPT’ can be constructed as follows. Initially,
S′ = {s�}. Consider the system states in order of decreasing index and suppose
that si was last added to S′. Determine the largest j, where 1 ≤ j < i, such
that γβj ≤ βi and add sj to S′. Note that s1 is finally added to S′ because
0 = γβ1 ≤ βi, for any i.

The algorithm by Augustine et al. traverses the state sequence of OPT’.

Algorithm Lower Envelope: In an idle period, at any time t, use state
SOPT ′(t).

Theorem 1. [3] Lower-Envelope achieves a competitive ratio of 3+2
√

2 ≈ 5.82.

It is worth noting that Lower Envelope is 2-competitive if the state transition
matrix is additive, i.e. if βik = βij + βjk for any i < j < k, see [13].

The above competitiveness of 3+2
√

2 holds for any system. Augustine et al. [3]
showed that, interestingly, better competitive ratios can be obtained for specific
systems. More precisely, they gave a deterministic algorithm that achieves a
competitive ratio of c∗ + ε, where c∗ is best ratio possible for the given system.
The key ingredient of the algorithm is a strategy that decides, for a fixed c, if a
c-competitive algorithm exists. To this end the strategy enumerates all possible
subsets of states and checks, for a given subset, if there exists a state transition
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schedule whose energy consumption is always upper bounded by c time the
optimum consumption. The best choice of c can then be approximated using
binary search in the interval [1, 3 + 2

√
2]. The scheme described so far has a

running time that is exponential in �. Augustine et al. [3] showed that the time
can be reduced to O(�2 log � log(1/ε)).

2.3 A Probabilistic Setting

The online algorithms presented in the last section achieve a provably good
performance for any idle period whose length might even be generated by an
adversary. From a practical point of view, this worst-case scenario is a bit pes-
simistic and it is reasonable to also study a stochastic setting where the length
of idle periods is governed by probability distributions. In concrete applications,
short periods might occur more frequently. Probability distributions can also
model specific situations where either very short or very long idle periods are
more likely to occur, compared to periods of medium length. Of course, such a
probability distribution may not be known in advance but can be learned over
time.

Let Q = (q(T ))0≤T<∞ be a fixed probability distribution on the length T of
idle periods. Inspired by work of Karlin et al. [14], Irani et al. [13] and Augustine
et al. [3] gave algorithms for this probabilistic setting. For simplicity we assume
here that the state transition matrix is additive and use βi to denote the tran-
sition energy between s1 and si. The results can be extended to arbitrary state
transition matrices [3].

Irani et al. [13] determined the time ti when an online strategy should move
from state si−1 to si, 2 ≤ i ≤ �. Let ti be the time t that minimizes∫ t

0
ri−1Tq(T )dT +

∫ ∞

t

(ri−1t + (T − t)ri + βi − βi−1)q(T )dT .

Intuitively, the above expression is the expected cost of a deterministic algorithm
ALGt that powers down after t time units, assuming that only states si−1 and
si are available.
Algorithm ALG-P(�): Change states at the transition times t2, . . . , t� defined
above.

Theorem 2. [13] For any fixed probability distribution Q, the expected energy con-
sumption of ALG-P(�) is at most e

e−1 times the expected optimum consumption.

Irani et al. [13] presented an approach how to learn an initially unknown distri-
bution Q. They combined the approach with ALG-P(�) and performed experi-
mental tests for an IBM mobile hard drive with four power states. It shows that
the combined scheme achieves low energy consumption close to the optimum
consumption.

Augustine et al. [3] extended the results to arbitrary state transition matrices.
They determined optimal transition times tij when to move from si to sj , as-
suming that only these two states are available. Based on these times the authors
derived an optimal state sequence to be visited by the system.
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3 Dynamic Speed Scaling

Many modern microprocessors allow the frequency/speed of the processor to be
changed dynamically. Examples are the Intel SpeedStep or the AMD processor
PowerNow. High speed levels yield high performance but consume significant
amounts of energy. Low speed levels save energy but provide low performance
only. The well-known cube-root rule for CMOS devices states that the speed s of
a device is proportional to the cube-root of the power or, equivalently, that the
power is proportional to s3. The algorithms literature considers a generalization
of this rule. If a processor runs at speed s, then the required power is sα, where
α > 1 is a constant. Obviously, energy consumption is power integrated over
time.

Dynamic speed scaling gives rise to many new challenging optimization prob-
lems. Most of them turn out to be scheduling problems. A scheduler, at any time,
has to decide not only which job the execute on the processor but also which
speed to use. The goal is to construct schedules that minimize energy consump-
tion and satisfy additional constraints: The schedule has to be feasible and/or
guarantee a certain quality of service. The past years have witnessed consider-
able research interest in dynamic speed scaling problems. In a seminal paper,
initiating the algorithmic study of speed scaling, Yao, Demers and Shenker [22]
investigated a scheduling problem with hard job deadlines. It is by far the most
extensively studied speed scaling problem and we will concentrate on it in this
survey.

Consider n jobs J1, . . . Jn that have to be processed on a variable speed proces-
sor. Each job Ji is specified by an release time ri, a deadline di and a processing
volume wi. The release time and the deadline specify the time interval [ri, di]
during which the job must be executed. The job may not be started before ri

and must be finished until di. The processing volume wi is the amount of work
that must be completed to finish the job. Intuitively wi can be viewed as the
total number of CPU cycles required by the job. The processing time of the job
depends on the processor speed. If Ji is executed at speed s, then it takes wi/s
time units to finish the task. Preemption of jobs is allowed, i.e. the processing
of a job may be stopped and resumed later. The goal is to construct a feasible
schedule minimizing the total energy consumption.

Yao, Demers and Shenker [22] make two simplifying assumptions. (1) There is
no upper bound on the allowed processor speed. Hence a feasible schedule always
exists. (2) The processor has a continuous spectrum of speed. In the following
we will present algorithm for this enhanced model. Then we will discuss how to
relax the assumptions.

3.1 Online and Offline Algorithms

Yao et al. [22] developed elegant online and offline algorithms. We first present
the offline strategy, which knows all the jobs along with their characteristics in
advance. The algorithm is known as YDS , referring to the initials of the authors.
Algorithm YDS computes a minimum energy schedule for a given job set in a
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series of rounds. In each round the algorithm identifies an interval of maximum
density and computes a corresponding partial schedule for that interval. The
density ΔI of a time interval I = [t, t′] is the total processing volume to be
completed in I divided by the length of I. More formally, let SI be the set of
jobs Ji that must be processed in I, i.e. that satisfy [ri, di] ⊆ I. Then

ΔI =
1
|I|

∑
Ji∈SI

wi.

Intuitively, ΔI is the minimum average speed necessary to complete all jobs that
must be scheduled in I.

In each round, YDS determines the interval I of maximum density. In I the
algorithm schedules the jobs of SI at speed ΔI according to Earliest Deadline
First (EDF). The EDF policy always processes the job having the earliest dead-
line among the available unfinished jobs. Then YDS removes the set SI as well
as the time interval I from the problem instance. More specifically, for any un-
scheduled job Ji with di ∈ I, the new deadline time is set to di := t. For any
unscheduled Ji with ri ∈ I, the new release time is ri := t′. Time interval I is
discarded. A summary of YDS in pseudo-code is given below.

Algorithm YDS: Initially J := {J1, . . . , Jn}. While J �= ∅, execute the follow-
ing two steps. (1) Determine the interval I of maximum density. In I process the
jobs of SI at speed ΔI according to EDF . (2) Set J := J \ SI . Remove I from
the time horizon and update the release times and deadlines of unscheduled jobs
accordingly.

The algorithm computes optimal schedules.

Theorem 3. [22] For any job instance, YDS computes an optimal schedule min-
imizing the total energy consumption.

Obviously, the running time of YDS is polynomial. When identifying intervals of
maximum density, the algorithm only has to consider intervals whose boundaries
are equal to the release times and deadlines of the jobs. Hence, a straightforward
implementation of the algorithm has a running time of O(n3). Li et al. [18]
showed that the time can be reduced to O(n2 log n). Further improvements are
possible if the job execution intervals form a tree structure [16].

In the online version of the problem, the jobs J1, . . . , Jn arrive over time. A
job Ji becomes known only at its arrival time ri. At that time the deadline di

and the processing volume wi are also revealed. An online algorithm A is called
c-competitive if, for any job sequence, the total energy consumption of A is at
most c times that of an optimal offline algorithm OPT .

Yao et al. [22] devised two online algorithms, called Average Rate and Optimal
Available. For any incoming job Ji, Average Rate considers the density δi =
wi/(di − ri), which is the minimum average speed necessary to complete the
job in time if no other jobs were present. At any time t the speed s(t) is set to
the accumulated density of jobs active at time t. A job Ji is active at time t if
t ∈ [ri, di]. Available jobs are scheduled according to the EDF policy.
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Algorithm Average Rate: At any time t the processor uses a speed of s(t) =∑
Ji:t∈[ri,di] δi. Available unfinished jobs are scheduled using EDF .
Yao et al. [22] proved an upper bound on the competitiveness.

Theorem 4. [22] The competitive ratio of Average Rate is at most 2α−1αα, for
any α ≥ 2.

Bansal et al. [4] demonstrated that the analysis is essentially tight by giving a
nearly matching lower bound.

Theorem 5. [4] The competitive ratio of Average Rate is at least ((2−δ)α)α/2,
where δ is a function of α that approaches zero as α tends to infinity.

The second strategy Optimal Available is computationally more expensive than
Average Rate. It always computes an optimal schedule for the currently available
work load. This can be done using YDS .
Algorithm Optimal Available: Whenever a new job arrives, compute an
optimal schedule for the currently available unfinished jobs.

Bansal, Kimbrel and Pruhs [7] analyzed the above algorithm and proved the
following result.

Theorem 6. [7] The competitive ratio of Optimal Available is exactly αα.

The above theorem implies that in terms of competitiveness, Optimal Available
is better than Average Rate. Bansal et al. [7] also developed a new online algo-
rithm, called BKP according to the initials of the authors, that approximates
the optimal speeds of YDS by considering interval densities. For times t, t1 and
t2 with t1 < t ≤ t2, let w(t, t1, t2) be the total processing volume of jobs that are
active at time t, have a release time of at least t1 and a deadline of at most t2.
Algorithm BKP: At any time t use a speed of

s(t) = max
t′>t

w(t, et − (e− 1)t′, t′)
t′ − t

.

Available unfinished jobs are processed using EDF .

Theorem 7. [7] Algorithm BKP achieves a competitive ratio of 2( α
α−1 )αeα.

For large values of α, the competitiveness of BKP is better than that of Optimal
Available.

All the above online algorithms attain constant competitive ratios that depend
on α but no other other problem parameter. The dependence on α is exponential.
For small values of α, which occur in practice, the competitive ratios are reason-
ably small. Moreover, a result by Bansal et al. [7] implies that the exponential
dependence on α is inherent to the problem.

Theorem 8. [7] Any randomized online algorithm has a competitiveness of at
least Ω((4/3)α).

An interesting open problem is to determine the best competitiveness that can
be achieved by online algorithms.
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3.2 Bounded Speed

The algorithms presented in the last section are designed for processors having
available a continuous, unbounded spectrum of speeds. However, in practice a
processor is equipped with only a finite set of discrete speed levels s1 < s2 <
. . . < sd. The offline algorithm YDS can be modified easily to handle feasible
job instances, i.e. inputs for which feasible schedules exist using the restricted
set of speeds. Feasibility can be checked easily by always using the maximum
speed sd and scheduling available jobs according to the EDF policy. Given a
feasible job instance the modification of YDS is as follows. We first construct
the schedule according to YDS . For each identified interval I of maximum density
we approximate the desired speed ΔI by the two adjacent speed levels sk and
sk+1, such that sk < ΔI < sk+1. Speed sk+1 is used first for some δ time units
and sk is used for the last |I|− δ time units in I, where δ is chosen such that the
total work completed in I is equal to the original amount of |I|ΔI . An algorithm
with an improved running time of O(dn log n) was presented by Li and Yao [17].

If the given job instance is not feasible, it is impossible to complete all the jobs.
Here the goal is to design algorithms that achieve good throughput , which is the
total processing volume of jobs finished by their deadline, and at the same time
optimize energy consumption. Papers [5,11] present algorithms that even work
online. At any time the strategies maintain a pool of jobs they intend to complete.
Newly arriving jobs may be admitted to this pool. If the pool contains too large a
processing volume, jobs are expelled such that the throughput is not diminished
significantly. The algorithm with the best competitiveness currently known is
due to Bansal et al. [5]. The algorithm, called Slow-D , is 4-competitive in terms
of throughput and constant competitive with respect to energy consumption.
We describe the strategy.

Slow-D assumes that the processor has a continuous speed spectrum that is
upper bounded by a maximum speed smax. The algorithm always keeps track of
the speeds that Optimal Available would use for the workload currently available.
At any time t Slow-D uses the speed that Optimal Available would set at time t
provided that this speed does not exceed smax; otherwise Slow-D uses smax. The
algorithm also considers scheduling times that are critical in terms of speed. For
any t, down-time(t) is the latest time t′ ≥ t in the future schedule such that the
speed of Optimal Available is at least smax. If no such time exists, down-time(t)
is set to the most recent time when smax was used or to 0 if this has never been
the case. Using this definition, jobs are labeled as urgent or slack . These labels
may change over time. A job Ji is called t-urgent if di ≤ down-time(t); otherwise
it is called t-slack. Additionally, Slow-D maintains two queues Qwork and Qwait

of jobs it intends to process. The status of Qwork defines urgent periods . An
urgent period starts at the release time ri of a job Ji if Qwork contained no
urgent job right before ri and Ji is an urgent job admitted to Qwork at time ri.
An urgent period ends at time t if Qwork contains no more t-urgent jobs. Slow-D
works as follows.
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Algorithm Slow-D:
Job arrival: A job Ji arriving at time ri is admitted to Qwork if it is ri-slack
or if Ji and all the remaining work of ri-urgent jobs in Qwork can be completed
using smax. Otherwise Ji is appended to Qwait.
Job interrupt: Whenever a job Ji in Qwait reaches its last starting time t =
di − wi/smax, it raises an interrupt. At this time the algorithm is in an urgent
period. Let Jk be the last job transfered from Qwait to Qwork in the current
period. If no such job exists, let Jk be a dummy job of processing volume zero
transfered just before the current period started. Let W be the total orginal work
of jobs ever admitted to Qwork that have become urgent after Jk was transfered
to Qwork. If wi > 2(wk + W ), then remove all t-urgent jobs from Qwork and
admit Ji; otherwise discard Ji.
Job completion: Whenever a job is completed, it is removed from Qwork.

Bansal et al. [5] analyzed the above algorithm and proved the following result.

Theorem 9. [5] Slow-D is 4-competitive with respect to throughput and (αα +
α24α)-competitive with respect to energy.

Interestingly, the competitiveness of 4 is best possible, even if energy is ignored.
More precisely, Baruah et al. [8] showed that no online algorithm can be bet-
ter than 4-competitive considering only throughput maximization in overloaded
systems where the deadlines cannot be met for all jobs.

4 Conclusions

This paper has surveyed algorithmic solutions to save energy in computing de-
vices. As the field has attracted considerable research interest recently, this sur-
vey is not exhaustive. In particular, as for dynamic speed scaling, many more
results have been developed. A classical objective function in scheduling is the
minimization of response times as it models user satisfaction and quality of ser-
vice. Unfortunately, energy minimization and response time minimization are
contradicting objectives. The studies in [2,5,6,9,15,20] integrate both measures
and develop offline as well as online algorithms. Another basic objective func-
tion in scheduling theory is makespan minimization, i.e. the minimization of the
point in time when all jobs are finished. This measure, in the presence of energy
minimization, has been considered in [10,19]. In summary we expect that the
design and analysis of energy-efficient algorithm will continue to be an active
area of research during the next years.
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Université Paris-Est
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Abstract. We introduce the notion of sofic tree-shifts which corresponds
to symbolic dynamical systems of infinite trees accepted by finite tree au-
tomata. We show that, contrary to shifts of infinite sequences, there is
no unique minimal deterministic irreducible tree automaton accepting
an irreducible sofic tree-shift, but that there is a unique synchronized
one, called the Shannon cover of the tree-shift. We define the notion of
almost finite type tree-shift which is a meaningful intermediate dynami-
cal class in between irreducible finite type tree-shifts and irreducible sofic
tree-shifts. We characterize the Shannon cover of an almost finite type
tree-shift and we design an algorithm to check whether a sofic tree-shift
is almost of finite type.

1 Introduction

In a previous article [1], we introduced the notion of tree-shifts of finite type
defined as sets of infinite trees avoiding a finite number of forbidden patterns.
Infinite trees have a natural structure of one-sided symbolic systems equipped
with several shift transformations. The ith shift transformation applied to a tree
gives the subtree rooted at the child number i of the tree. Tree-shifts are highly
interesting to study as they constitute an intermediate class between one-sided
shifts of infinite sequences and multidimensional shifts.

The conjugacy of multidimensional shifts of finite type, also called textile sys-
tems or tiling systems (see for instance [11],[14],[8],[6]), is undecidable. However,
the conjugacy of (one-sided) shift spaces of finite type of infinite sequences is de-
cidable ([19], see also [12]). In [1], we extended William’s result to trees, showing
that the conjugacy of irreducible tree-shifts of finite type is decidable.

In this paper, we focus on sofic tree-shifts, which are shifts of infinite trees
accepted by finite (bottom-up) tree automata, and thus whose set of patterns
is a recognizable set of finite trees. The goal is to extend to trees some results
of sofic shifts of infinite sequences, to define a hierarchy a sofic tree-shifts and
characterize each level of this hierarchy.

We introduce the notion of irreducible sofic tree-shifts. We show, that, unlike
for sofic shifts of sequences, an irreducible sofic tree-shift may be accepted by
several minimal deterministic irreducible tree automata. This is due to the lack
of a synchronizing block, even in minimal irreducible automata. We introduce
the notion of synchronized tree automaton and the notion of Shannon cover of
an irreducible sofic tree-shift. We prove that the Shannon cover is the unique
minimal synchronized tree automaton accepting an irreducible sofic tree-shift.

F. Ablayev and E.W. Mayr (Eds.): CSR 2010, LNCS 6072, pp. 12–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The existence of the Shannon cover allows us to introduce the class of almost
finite type tree-shifts, which extends the known notion of almost of finite type
shifts of sequences. The almost of finite type concept was introduced by Marcus
in [13] for coding purposes. The class of almost of finite type shifts is a meaningful
class of shifts between irreducible shifts of finite type and irreducible sofic shifts
(see [4], [20], [9], [3], [2]). The class contains strictly the class of irreducible shifts
of finite type and is strictly contained in the class of sofic shifts. The class is stable
by conjugacy and it is also invariant by a flow equivalence [7]. We characterize
the Shannon cover of an almost of finite type tree-shift and design an algorithm
to check whether a sofic tree-shift is almost of finite type.

The paper is organized as follows. In Section 2.1 and Section 2.2, we give basic
definitions about tree-shifts and conjugacies. In Section 3, we define the notion
of automaton accepting a tree-shift. We refer to [5], [18], [15] for more general
trees and automata on finite and infinite trees. The notion of Shannon cover is
introduced in Section 3.4. The characterization of almost of finite type tree-shifts
is done in Section 4. In the algorithmic issue, Section 5, we give a construction of
the Shannon cover of a sofic tree-shift. We design a polynomial-time algorithm
to check whether a sofic tree-shift given by its Shannon cover is almost of finite
type. Some proofs are omitted in this version of the paper.

2 Definitions

2.1 Tree-Shifts

We first recall some basic definitions of symbolic dynamics on infinite trees
(see [1] for more details). We consider infinite trees whose nodes have a fixed
number of children and are labeled in a finite alphabet. We restrict to binary
trees, but all result extend to the case of trees with d children for all d ≥ 1.

Let Σ = {0, 1}. An infinite tree t over a finite alphabet A is a complete
function from Σ∗ to A. Unless otherwise stated, a tree is an infinite tree. A node
of a tree is a word of Σ∗. The empty word, that corresponds to the root of the
tree, is denoted by ε. If x is a node, its children are xi with i ∈ Σ. Let t be a
tree and let x be a node, we shall denote t(x) by tx. When Σ is fixed, we denote
by T (A) the set of all infinite trees on A, hence the set AΣ∗

.
We define the shift transformations σi for i ∈ Σ from T (A) to itself as follows.

If t is a tree, σi(t) is the tree rooted at the i-th child of t, I.e. σi(t)x = tix for all
x ∈ Σ∗. The set T (A) equipped with the shift transformations σi is called the
full shift of infinite trees over A. A sequence of words (xk)k≥0 of Σ∗ is called a
path if for all k, xk+1 = xkik with ik ∈ Σ.

A pattern is a function p : L → A, where L is a finite prefix-closed1 subset
of Σ∗. The set L is called the support of the pattern. A block of height n is
a pattern with support Σ≤n, where n is some nonnegative integer, and Σ≤n

denotes the words of length at most n of letters of Σ. The height of a block u is
denoted by height(u). A leaf of a pattern is a node with no child.

1 Each prefix of L belongs to L.
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We say that a block u of support L is a block of a tree t if there is a word
x ∈ Σ∗ such that txy = uy for all words y ∈ Σ∗. We say that u is a block of t
rooted at the node x. If u is not a block of t, one says that t avoids p.

We define a tree-shift space (or tree-shift) X of T (A) as the set XF of all trees
avoiding each element of a set of blocks F . If the set of trees on A is equipped
with the usual product topology, where the topology in A is the discrete one, a
tree-shift space is closed and invariant for any shift transformation σi. A tree-
shift of finite type (SFT) X of T (A) is a set XF of all trees avoiding each block
of a finite set of blocks F . The set F is called a set of forbidden blocks of X .

We denote by L(X) the set of patterns of all trees of the tree-shift X , by
B(X) the set of all blocks of X and by Bn(X) the set of all blocks of height
n of X . If u is a block of height n with n ≥ 1, we denote by σi(u) the block
of height n − 1 such that σi(u)x = bix for x ∈ Σ≤n−1. The block u is written
u = (uε, σ0(u), σ1(u)).

Example 1. In Figure 1 is pictured an infinite tree of a tree-shift X on the
alphabet {a, b}. The forbidden blocks are those containing an even number of a
between two b on any path in the tree. This tree-shift is not of finite type.

b

a

b b

a

a a

Fig. 1. An infinite tree of the tree-shift XF , where F is the set of patterns containing
an even number of a between two b on any path in the tree

2.2 Block Maps and Conjugacies

Let A, A′ be two finite alphabets, X be a tree-shift of T (A) and m be a positive
integer. A map Φ : X ⊆ T (A) → T (A′) is called an m-local map (or an m-block
map) if there exists a function φ : Bm(X) → A′ such that, for all x ∈ Σ∗,
Φ(t)x = φ(txΣ≤m−1), where txΣ≤m−1 is the block q such that qy = txy for all
y ∈ Σ≤m−1. The smallest integer m−1 such that Φ is an m-block map, is called
the memory of the block map. A block map is a map which is an m-block map
for some nonnegative integer m.

The image of X by a block map is also a tree-shift, and is called a factor of
X . A one-to-one and onto block map from a tree-shift X onto a tree-shift Y has
an inverse which is also a block map, as for shifts of sequences. It is called a
conjugacy from X onto Y . The tree-shifts X and Y are then conjugate. We call
sofic a tree-shift which is a factor of a tree-shift of finite type.

Let X be a tree-shift and m a positive integer. We denote by X(m) the higher
block presentation of X . It is a tree-shift on the alphabet Bm(X). For each tree t
in X(m), there is tree t′ in X such that, for each node x, tx is the block of height
m of t′ rooted at x. The shifts X and X(m) are conjugate (see [1]).
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3 Sofic Tree-Shifts

3.1 Tree Automata

In this section we consider bottom-up automata of infinite trees. Such an au-
tomaton starts its computation from the infinite branches and moves upward.
A tree automaton is here a structure A = (V, A, Δ) where V is a finite set of
states, A is a finite set of input symbols, and Δ is a set of transitions of the
form (q0, q1), a → q, with q, qi ∈ V , a ∈ A. A transition (q0, q1), a → q is called
a transition labeled by a, going out of the pair of states (q0, q1) and coming in
the state q. A transition (q0, q1), a → q will be pictured by

a : q

q0 q1

Note that no initial nor final states are specified. This means that all states are
both initial and final.

Such an automaton is deterministic if for each pair of states (q0, q1) and for
each a ∈ A, there is at most one transition (q0, q1), a → q. Then the set of
transitions defines a partial function δ from V 2 ×A to V .

A (bottom-up) computation of A on the infinite tree t is an infinite tree C
on V such that, for each node x, there is a transition (Cx0, Cx1), tx → Cx ∈ Δ.
A tree t is accepted by A if there exists a computation of A on t. The set of
infinite trees accepted by A is a tree-shift. Given a tree automaton A, it is always
possible to transform it into a deterministic tree automaton which accepts the
same set of trees (this process is called determinization, see for instance [5] for
details). In the sequel, we assume that all states of an automaton are accessible,
I.e. each state ends some computation of the automaton.

A (bottom-up) finite computation of A on the complete finite tree t is a
complete finite tree C on V such that, for each node x which is not a leaf, there
is a transition (Cx0, Cx1), tx → Cx ∈ Δ.

A tree automaton is called an edge tree automaton is all transitions have
distinct labels. An edge tree-shift is a tree-shift (of finite type) accepted by an
edge tree automaton.

Example 2. We define a tree automaton A with three state qb, q0 and q1 which
accepts the tree-shift X of Example 1. The two states q0 and q1 only label nodes
with an a, and they control the parity of the number of a encountered from any
last b below. The state qb only labels nodes with a b. The transitions of the tree
automaton A are

a : q1

q0 q0

a : q0

q1 q1

a : q0

qb, q1 qb, q1

b : qb

qb, q1 qb, q1

The proofs of the following proposition is similar to the one for shifts of infinite
or bi-infinite sequences (see [12], [10]).
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Proposition 1. A tree-shift is sofic if and only if it is accepted by a tree automaton.

3.2 Irreducible Tree-Shifts

In this section, we define a notion of irreducibility which is suitable for tree-shifts.
A finite complete prefix code of Σ∗ is a prefix set 2 P of finite words in Σ∗

such that each word of Σ∗ longer than the words of P has a prefix in P .
A tree-shift X is irreducible if for each pair of blocks u, v ∈ B(X), there is a

tree t in X and a finite complete prefix code P ⊂ Σ≥height(u), such that u is a
subtree of t rooted at ε, and v is a subtree of t rooted at x for all x ∈ P .

q

q

q q

p

Fig. 2. (left) An irreducible tree-shift. Let t denotes the tree pictured. If u denotes the
black block and v the white one, u is a subtree of t rooted at ε, and v is a subtree of t
rooted at each x ∈ P , where P is the complete prefix code {00, 010, 011, 1}. (right) An
hyperpath from q to p in a tree automaton.

A tree automaton is irreducible if for each pair of states p, q, there is a finite
complete prefix code P of Σ∗ and a finite computation C of the automaton on
a pattern u such that Cε = p and Cx = q for each x ∈ P . We say in this case
that there is an hyperpath from q to p labeled by u. For two states p, q of a tree
automaton, we say that p is accessible from q if there is a hyperpath from q to p.

Proposition 2. An irreducible automaton accepts an irreducible sofic tree-shift.
Conversely, for any irreducible sofic tree-shift, there is an irreducible automaton
accepting it.

Proposition 3. Let S and T be two conjugate tree-shifts. Then S is irreducible
if and only if T is irreducible.

3.3 Synchronizing Blocks

We define below the notion of synchronizing block3 of a deterministic tree
automaton.

Let A = (V, A, Δ) be a deterministic tree automaton accepting a sofic tree-
shift X , and u be a block (resp. pattern). We say that u is a synchronizing block
(resp. pattern) of A if all computations of A on u terminate at the same state
q ∈ Q. We say that u focuses to the state q. A deterministic tree automaton
which has a synchronizing block is called synchronized.
2 I.e. no word is prefix of another one.
3 Also called a homing pattern or a magic pattern.
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3.4 Minimal Deterministic Tree Automata

Let X be a tree-shift. A context c is a finite pattern with a marked leaf. If u
is a pattern, c(u) is the pattern c where the marked leaf is replaced by u. If
c(u) ∈ L(X), we say that c is a context of u in X . Given a block u, we denote
by contX(u) the set of all the contexts of u in X .

Given a tree automaton A = (V, A, Δ) accepting a sofic tree-shift X , the
context of a state q ∈ V in A is the set of patterns u with a marked leaf x on
which there exists a finite computation C of A with Cx = q and x is a leaf of
C. We denote it by contA(q). Note that the context of a pattern u of X is the
union of the contexts of the states p such that there is a computation of A on
u ending in p. As a consequence, a sofic tree-shift has only a finite number of
distinct contexts.

Let A = (V, A, Δ) be a deterministic automaton accepting a sofic tree-shift
X . We denote by δ(p, q, a) the unique state r such that (p, q), a → r ∈ Δ when
such a transition exists. We define a deterministic automaton MA accepting X
called the minimization of the automaton A as follows. The states of MA are the
classes of the coarsest partition of V such that if p, q belong to the same class,
then for each letter a and each state r, δ(p, r, a) and δ(q, r, a) (resp. δ(r, p, a)
and δ(r, q, a)) belong to the same class, and δ(p, r, a) (resp. δ(r, p, a)) is defined
if and only if δ(q, r, a) (resp. δ(r, q, a)) is defined. Let [p] denotes the class of the
state p. The transition ([p], [q]), a → [δ(p, q, a)] is a transition of MA if and only
if δ(p, q, a) is defined. It can be shown that this definition is consistent, I.e. does
not depend on the choice of the leader in each class. A deterministic automaton
is minimal if it is equal to its minimization.

For any deterministic tree automaton, two states in a same class have the
same context. If A is moreover irreducible and synchronized, it is minimal if and
only if any two states have distinct contexts.

The minimization algorithm for deterministic tree automata accepting lan-
guages of finite trees, which is for instance described in [5, Section 1.5], can be
applied to the tree automata accepting tree-shifts. Remember that all states in
tree automata accepting tree-shifts are both initial and final.

In the framework of shifts of bi-infinite words, irreducible sofic shifts have
a unique minimal deterministic automaton (I.e. all minimal deterministic au-
tomata accepting the shift are equal up to a renaming of the states), see [12].
The situation is quite different for trees since, as is shown below in Example 3, ir-
reducible sofic tree-shifts may have several minimal deterministic tree automata.
Indeed, contrary to the situation that we have for shifts of infinite or bi-infinite
sequences, an irreducible minimal deterministic tree automaton may not have a
synchronizing block.

Example 3. Let X be the full tree-shift on the alphabet A = {a, b}. It is ac-
cepted by a trivial one-state automaton. It is also accepted by the deterministic
irreducible tree automaton A = (V, A, δ) described by the following transitions
and which is minimal.
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a : p1

p0 p0

a : q1

q0 q0

b : p1

p0 p0

b : p1

p1 p1

b : q1

p1 q1

a : q0

p1 p1

a : p1

p1 q1

a : q1

q1 p1

a : p0

q1 q1

One can overcome this difficulty with the notion of Shannon cover for irre-
ducible tree-shifts.

Let X be a sofic tree-shift. The context tree automaton of X is the determin-
istic automaton S = (V, A, Δ), where V is set of contexts of finite blocks of X .
Since X is sofic, V is finite. The transitions of S are (contX(u), contX(v)), a →
contX(a, u, v), where u, v ∈ B(X).

Proposition 4. The context tree automaton of a sofic tree-shift is synchronized.

Proof. Let S be the context tree automaton of a sofic shift X . There is a finite
computation C1 in S on some block u1 ending in contX(u1). Let us assume that
u1 is not a synchronizing block of S. Hence there is another computation C2
of S on u1 ending in contX(u2) for some block u2 �= u1. We get contX(u2) �
contX(u1) since contX(u2) �= contX(u1). If u2 is not a synchronizing block of
S, there is another computation C2 of S on u2 ending in contX(u3). We get
contX(u3) � contX(u2). By iterating this process, we either get a synchronizing
block for S or an infinite strictly decreasing sequence of contexts. Hence, since
the number of contexts is finite, there is a synchronizing block.

We define the Shannon cover of an irreducible sofic tree-shift X as the unique
irreducible component S of its context tree automaton C obtained by keeping
the states accessible from contC(z), where z is a synchronizing block of C. Since
z is synchronizing and C is deterministic, each state in this component is the
context of some synchronizing block.

Let us show that the states accessible from contC(z) form an irreducible com-
ponent and that it is the unique irreducible component of S. It is enough to
prove that there is a hyperpath from any state to contC(z). Let p = contC(u) be
a state. Since X is irreducible, there is a pattern w of X and a finite complete
prefix code P of Σ≥height(z), such that z is a subtree of w rooted at ε, and u is
a subtree of w rooted at x for all x ∈ P . Let C be a computation of C on w.
We have Cε = contC(z), and for all x ∈ P , Cx = p. Hence there is an hyperpath
from p to contC(z). Finally, it is easy to check that the automaton S accepts X
by using the irreducibility of X .

We now prove that the Shannon cover is the unique minimal deterministic
irreducible and synchronized tree automaton accepting an irreducible sofic tree-
shift.

Proposition 5. Two minimal deterministic irreducible and synchronized tree
automata accepting the same irreducible sofic tree-shift are equal up to a renam-
ing of the states.
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4 Almost of Finite Type Tree-Shifts

The following notion of almost of finite type tree-shift extends to trees the notion
of almost of finite type shift of bi-infinite sequences. The class contains strictly
the class of irreducible tree-shifts of finite type and is strictly contained in the
class of irreducible sofic tree-shifts.

Let X, Y be two tree-shifts. A block map Φ : X → Y is left closing if there
are non negative integers m, a (m for memory and a for anticipation) such that,
whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi with 0 ≤ i ≤ (a+1+m),
and sx = tx for all x ∈ Σi with 0 ≤ i ≤ a, then sx = tx for any x ∈ Σ(a+1). The
map Φ is left resolving if m can be chosen equal to 0.

A tree automaton A = (V, A, Δ) is left closing if any two computations of A
on a same tree and ending in a same state are equal. Equivalently, there is a
nonnegative integer m such any two finite computations C, C′ of A on a same
block u ∈ Bm+1(X) such that Cε = C′

ε satisfy Cx = C′
x for all x ∈ {0, 1}. Hence

a deterministic and left closing tree automaton corresponds, for trees, to the
notion of automata of words which are both deterministic and co-deterministic
with a finite delay.

A block map Φ : X → Y is right closing if there are non negative integers
m, a such that, whenever Φ(s) = s′, Φ(t) = t′ with s′x = t′x for all x ∈ Σi with
0 ≤ i ≤ (a + 1 + m), and sx = tx for all x ∈ Σi with a + 1 ≤ i ≤ (a + 1 + m),
then sx = tx for all x ∈ Σa. The map Φ is right resolving if a can be chosen
equal to 0.

Let X be a tree-shift. Let u be a block in Bm(X). A cylinder C[u] of X with
basis u is the set of trees t in X such that tx = ux for all x ∈ Σ∗ of length at
most m.

A sofic tree-shift is almost of finite type (AFT) if it is the image of an ir-
reducible tree-shift of finite type via a block map which is right resolving, left
closing, and is one-to-one on a cylinder (equivalently, the map is one-to-one on
a non trivial open set).

Proposition 6. Let S and T be two conjugate irreducible sofic tree-shifts. Then
S is AFT if and only if T is AFT.

Proof. (sketch) It is easy to check that the composition of a right resolving map
with a conjugacy is still right resolving. The composition of a left closing map
with a conjugacy is still left closing. A conjugacy also keeps the property of being
one-to-one on a cylinder.

We say that an automaton is an almost of finite type automaton (AFT automa-
ton) if it is deterministic, irreducible, left closing and synchronized.

Proposition 7. A tree-shift is AFT if and only if it is accepted by an AFT
automaton.

Proof. Let S be an AFT tree-shift on the alphabet A. Let Φ : X → S be
a block map from an irreducible tree-shift of finite type X onto S which is
right resolving, left closing and one-to-one on a cylinder of S. Without loss of
generality (by changing X into a higher block presentation of X), we can assume
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that X is an edge tree-shift and that Φ is a one-block map. Again by changing
X into a higher block presentation of X , we can assume that Φ is left closing
with parameters a′ = 1, m′.

Let A = (V, E, Δ) be an irreducible edge tree automaton accepting X . Let
B = (V, A, Δ′) where (p, q, φ(e), r) ∈ Δ′ if and only if (p, q, e, r) ∈ Δ.

Since Φ is a one-block right-resolving map (with some parameter m), B is a
deterministic automaton.

We now prove that B has a synchronizing block. Since Φ is one-to-one on
a cylinder C[z0] of S, for any tree t ∈ C[z0], any two computations of B on t
are equal and thus end in a same state p. As a consequence, and by compacity
arguments, there is a finite subtree z such that z0 is a subtree of z at ε and
such that each finite computation of B on z ends in the same state pz, I.e. z is
a synchronizing block of B. Let us keep in B only the states accessible from pz.
Since S is irreducible, B remains irreducible and still accepts S.

Let us now show that B is left closing. If B were not left closing, there would
be two distinct computations C, C′ of B on a same tree t ending in a same state
p. Let (p, q, e, r) ∈ Δ a transition going out of (p, q) for some states p, r ∈ V (if
there is none, there is a transition going out of (q, p) since A is irreducible). We
get two distinct computations (r, C, D), (r, C′, D) of B ending in r on a same
tree u = (φ(e), t, t′) for some tree t′. These two distinct computations of B are
also two distinct computations of A on two trees s, s′ of X with sε = s′ε = e and
such that Φ(s) = Φ(s′) = u. Since Φ is left closing with parameters a′ = 1, m′,
we get s = s′ and thus C = C′.

Conversely, if S is accepted by an AFT automaton A = (V, A, Δ), let X be the
edge tree-shift accepted by T = (V, Δ, Δ′), whose transitions are (p, q, (p, q, a, r))
→ r for (p, q, a, r) ∈ Δ. Let Φ be the one-block map from X onto S defined by
φ(p, q, a, r) = a. This map is right resolving since A is deterministic. It is left clos-
ing since A is left closing. It is one-to-one on a cylinder since A is synchronized.
As a consequence, S is AFT.

Corollary 1. An irreducible sofic tree-shift is AFT if and only if its Shannon
cover is AFT.

Proof. Let X be an irreducible sofic tree-shift. By Proposition 5, any irreducible
sofic tree-shift is accepted by an irreducible deterministic synchronized automa-
ton S equal to the Shannon cover of X .

Let us assume that X is AFT. By Proposition 7, S is equal to the minimization
of an AFT automaton A. Let us show that S is left closing. If it is not left closing,
then there is a tree t ∈ X and two distinct computations of S on t ending in
a same state. As a consequence, there are two distinct computations of A on t
ending in two states p, p′ which have the same context.

Let z be a synchronizing pattern of A focusing to the state qz. Since A is
irreducible, there is an hyperpath from p to qz labeled by some pattern w such
that z is a subtree of w rooted at ε. Since p and p′ have the same context, there
is also a hyperpath from p′ to q labeled by w. Since z is synchronizing, q = qz .
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This gives two distinct computations of A on a same tree ending in the same
state qz , which contradicts the fact that A is left closing. This proves that the
Shannon cover of an AFT is left closing.

Conversely, if S is AFT, then X is AFT by Proposition 7.

Corollary 2. Let S be an irreducible sofic shift accepted by a deterministic tree
automaton. It is decidable whether S is AFT.

Proof. One can compute the Shannon cover of the sofic tree-shift and check
whether it is AFT as explained in Section 5.

5 The Algorithmic Issue

In this section, we design algorithms to check whether a deterministic tree au-
tomaton is synchronized, and whether it is left closing. We also describe an
algorithm to compute the Shannon cover of an irreducible sofic tree-shift given
by a deterministic tree automaton that accepts it.

5.1 Computation of the Shannon Cover

Let A = (V, A, δ) be a deterministic automaton. We define the deterministic tree
automaton D(A) as the accessible part from the state V of the tree automaton
(P(V ), A, δ′), where for, P, Q ∈ P(V ), δ′(P, Q, a) = {δ(p, q, a) | p ∈ P, q ∈ Q} if
this set is nonempty, and is not defined otherwise.

Proposition 8. It can be checked in polynomial time whether a tree automaton
is irreducible.

Proposition 9. It is decidable whether a deterministic tree automaton is syn-
chronized.

Proof. The automaton A is synchronized if and only if D(A) contains a singleton
state. The time and space complexity of this algorithm is exponential in the
number of states of A.

Proposition 10. Let A = (V, A, δ) be a deterministic automaton accepting an
irreducible sofic tree-shift X. The Shannon cover of X is computable from A.

Proof. Let D(A) = (P(V ), A, δ′) and R be a minimal state of D(A) for the
inclusion. Let u the label of a hyperpath from V to R. Then u a synchronizing
pattern of D(A). Indeed, any finite computation of D(A) ends in R by minimality
of R. We keep in D(A) only the states accessible from R and get an irreducible
and synchronized automaton accepting X . Its minimization gives the Shannon
cover of X by Proposition 5.

We now describe algorithms to check whether an irreducible deterministic au-
tomaton is left closing.
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5.2 The Pair Graph of a Tree Automaton

Given a deterministic tree automaton A = (V, A, Δ), we define the square au-
tomaton of A, denoted by A×A = (V ×V, A, Δ′), as the deterministic automa-
ton whose transitions are (p, p′), (q, q′), a → (r, r′) if and only if (p, q), a → r and
(p′, q′), a → r′ are transitions of A. A diagonal state of A × A is a state (p, p)
for some p ∈ V .

Square automata of finite words (see for instance [16, p. 647]) are used to
check properties of pairs of paths. We extend this notion, together with a notion
a pair graph, to trees, to check properties of pairs of computations. Seidl [17] used
branch automata to check the degree of unambiguity of finite tree automata.

Proposition 11. A deterministic tree automaton is not left closing if and only
if there is a computation in the square automaton ending in a diagonal state and
containing a non diagonal one.

Proof. By definition of A×A, the existence of a computation in A×A ending
in a state (p, p) and containing a state (r, s) with r �= s is equivalent to the
existence of two distinct computations of A on a same tree.

In order to check the above property, we build the pair graph GA = (VG, EG) of
A, where VG ⊆ (V 2 ×V 2)∪V 2 is the set of vertices, EG ⊆ VG ×{0, 1}×A×VG

is the set of edges labeled by 0 or 1 and a letter from A. For more convenience,
an edge labeled by 1 is noted by a plain arrow −→ and is called a plain edge,
and an edge labeled by 0 is noted by a dashed arrow ��� and is called a dashed
edge. For each pair of transitions (p, q), a → r and (p′, q′), a → r′ of A,

((r, r′), (s, s′))
0,a−−→ ((p, p′), (q, q′)),

((s, s′), (r, r′))
1,a−−→ ((p, p′), (q, q′)),

(r, r′)
0,a−−→ ((p, p′), (q, q′)),

(r, r′)
1,a−−→ ((p, p′), (q, q′)),

are edges of GA, for each pair (s, s′).
A vertex of GA is useful if it has at least one outgoing plain edge and at least

one outgoing dashed edge. We keep the essential part of the pair graph obtained
by discarding vertices which are not useful, and their incoming and outgoing
edges. A vertex ((p, q), (r, s)) of GA is called non diagnonal if either p �= q or
r �= s.

Proposition 12. A deterministic tree automaton is not left closing if and only
its there is a path in its pair graph starting at a vertex (p, p) and ending in a
non diagonal vertex.

The number of vertices of GA is at most O(|V |4) and its number of edges of
GA is at most O(|V |6). The property of Proposition 12 can be checked in a
linear time in the size of GA. As a consequence, it can be checked in polynomial
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(qb, qb)(qb, qb) (q0, q0)(q0, q0) (q1, q1)(q1, q1)

(qb, qb)(q1, q1)

(q1, qb)(q1, q1); (qb, q1)(q1, q1)

(q1, qb)(qb, qb); (qb, q1)(qb, qb

(q1, qb)(q1, qb); (qb, q1)(q1, qb); (qb, q1)(q,q1)
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Fig. 3. The pair graph for the tree automaton of Example 1. A thick edge represents
a plain edge and a dashed edge with the same label. The non useful edges and vertices
are drawn in grey. Each vertex (p, q) is identified with the vertex (p, q)(p, q). For the
test, the pair ((p, q), (r, s)) may not be represented if ((r, s), (p, q)) does. The tree-shift
X accepted by A satisfies the property of Proposition 12 since there is no path from
a diagonal state to a non diagonal one. Then A is a left closing automaton and as a
consequence the tree-shift X is AFT.

time whether the Shannon cover of an irreducible sofic tree-shift is AFT. Note
that Seidl’s check of the finite degree of ambiguity of tree automata in [17] has a
similar complexity (the cube of the size of the transitions of the tree automaton).
The pair graph for the tree automaton A of Example 1 is given in Figure 3.

6 Conclusion

In this article, we have shown that tree-shifts differ from one-sided shifts of
infinite sequences at least concerning the following property: there may be more
than one minimal deterministic irreducible tree automata accepting the same
irreducible sofic tree-shift. The reason is that such automata do not always have
a synchronizing block. For irreducible sofic tree-shifts, the Shannon cover remedy
for this lack and allows us to define the class of almost finite type tree-shifts.
In further work we will focus on topological and syntactic properties of AFT
tree-shifts.
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Abstract. We consider the refinement-based process for the develop-
ment of security protocols. Our approach is based on the Event B re-
finement, which makes proofs easier and which makes the design process
faithfull to the structure of the protocol as the designer thinks of it. We
introduce the notion of mechanism related to a given security property;
a mechanism can be combined with another mechanism through the
double refinement process ensuring the preservation of previous security
properties of mechanisms. Mechanisms and combination of mechanisms
are based on Event B models related to the security property of the
current mechanism. Analysing cryptographic protocols requires precise
modelling of the attacker’s knowledge and the attacker’s behaviour con-
forms to the Dolev-Yao model.

1 Introduction

1.1 Analysing Cryptographic Protocols

Cryptographic protocols are complex software systems; they are, therefore, in
need of high level modelling tools and concepts. They have also underlying de-
sired properties, which can be expressed logically like secrecy, authentication.
Formal methods are widely used for cryptographic protocols as a verification
tool, not as a design tool. The goal of this paper is to present an attempt to
mix the two: design, predominant in software engineering, and formal methods.
We introduce mechanisms which are ensuring a property and are characterized
by a Event B models; we show how to combine these mechanisms by apply-
ing a double refinement process which guarantees the preservation of the basic
properties of the underlying mechanisms. This leads to the notion of proof-based
design allowing a correct-by-construction approach to security protocols.

Our approach is based on incremental development using refinement. The re-
finement of a formal model allows us to enrich a model in a step-by-step approach,
and is the foundation of our correct-by-construction approach. Refinement is used
to make proofs easier but also to make the design process faithfull to the struc-
ture of the protocol as the designer thinks of it. Implicit assertions are identified
for proving the protocol secure at each refinement step.

To be able to prove security properties on a protocol, we must be able to
model the knowledge of the attacker. A pet model of attacker’s behaviour is the
Dolev-Yao model [9]; this model is an informal description of all possible be-
haviours of the attacker as described by N. Benaissa [3]. Hence, we present a
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proof-based design to model and prove key protocols using Event B [1,7] as
a modelling language. We give a presentation of a proof-based design frame-
work and an application of the proof-based design on a simplified version of the
Kerberos protocol [19] with smart cards.

Proving properties on cryptographic protocols such as secrecy is known to
be undecidable. However, works involving formal methods for the analysis of
security protocols have been carried out. Theorem provers or model checkers are
usually used for proving properties. For model checking, one famous example
is Lowe’s approach [12] using the process calculus CSP and the model checker
FDR. Lowe discovered the famous bug in Needham-Schroeder’s protocol. Model
checking is efficient for discovering an attack if there is one, but it can not guar-
antee that a protocol is reliable with respect to a list of given assumptions on the
environment or on the possible attacks. We should be carefull on the question of
stating properties of a given protocol and it is clear that the modelling language
should be able to state a given property and then to check the property either
using model checking or theorem proving. Other works are based on theorem
proving: Paulson [14] used an inductive approach to prove safety properties on
protocols. He defined protocols as sets of traces and used the theorem prover
Isabelle.

1.2 Proof-Based Guidelines

Designers can now justify design decisions (and the claims for their designs of
being high quality) based on the patterns that they have (or have not) applied.
In fact, much like the quality of code can easily be judged by a quick glance
at whether certain coding standards have been followed, so the quality of a
design can now be judged based on the use of well-understood patterns (and
architectures) [10]. Good software design tools have given rise to the notion of
design patterns - where expertise is wrapped up in re-usable form and support
provided for the (semi-automated) application of these patterns.

Patterns and design patterns [10] provide a very convenient help in the design
of object-oriented software. Recently, J.-R. Abrial [1] suggested the introduc-
tion of a kind of patterns for the proof-based development. The action/reaction
patterns have been applied to the press case study by J.-R. Abrial and they
improve the proof process. Another pattern called re-usability pattern, has been
suggested by Abrial, Cansell and Méry [2] and applied to the development of vot-
ing systems [6]. In previous works [4], we have already analysed cryptographic
protocols and the use of Event B without proposing a genera technique for
composing mechanisms. Clearly, a growing activity on modelling patterns has
started and is addressing many kinds of case studies and domains of problems.
No classification is yet given and there is no real repository of patterns validated
for a specific modelling language based on proof-based transformations.

We postulate that proof-based designs or proof-based design patterns will play
a vital role in any future measurements with respect to claims of security and
trustworthiness based on verification. The key point is that proof-based design
patterns have a very important feature: they are based on an objective way to
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ensure the validity of the resulting objects. However, we have no formal definition
of what is a proof-based design pattern.

1.3 Summary of the Paper

Section 2 contains definitions and notions related to cryptographic protocols.
Section 3 is the heart of the paper and defines the proof-based pattern using
the hierarchy of properties of authentication and key establishment goals. In
section 4, an example of the pattern application is presented. Finally, we conclude
the paper.

2 Principles for Modelling the Protocols

Our goal is to define a proof-based guideline or a pattern for modelling cryp-
tographic protocols using Event B. The pattern is defined by a proof-based
development of Event B models which are modelling protocols first using a
very abstract model followed by several refinements. The definition of models
is based on the notion of transaction. The choice of the details added in each
refinement is crucial, this choice is guided by several criteria. First, introducing
refinement in general helps to make proofs easier and increases the automatic
proofs rate. Second, refinement introduces automation in the design process: in
each refinement step, assertions for proving the protocol correct are generated
and have to be proved. The hierarchy of the properties to prove corresponds
to the hierarchy of the chosen refinements. Boyd and Mathuria [8] give a hi-
erarchy of some important properties that have to be proved on cryptographic
protocols in general and properties related with key establishment protocols
(Figure 1). Far-end operative, peer knowledge, key freshness and key secrecy
are generic properties, while the other properties can be obtained by combining
these generic ones.

There are several different definitions of security properties in the literature
we present here a summary of these definitions given by [8]. These properties
can be divided into two categories, user oriented goals and key oriented goals :

– User-oriented goals include:
• Far-end operative property: A believes B recently said something.
• Knowledge of peer: A is aware of B as her claimed peer entity in the

protocol.
Combining these two generic properties leads to the entity authentication
property.

– Key-oriented goals include key freshness and key secrecy.
• Key freshness: The key is fresh.
• key secrecy: The key is known only to A, B and any mutually trusted

parties.
Combining these two generic properties leads to good key property.
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If user-oriented goals and key oriented goals are combined as shown in figure 1,
we can obtain other enhanced goals:

– Key confirmation: Key confirmation of A to B is provided if B has assurance
that key K is a good key to communicate with A and that principal has
possession of K.

– Mutual belief in key: Mutual belief in the key K is provided for B only if
K is a good key for use with A and A wishes to communicate with B using
key K which A believes is good for the purpose.

Fig. 1. Hierarchy of authentication and key establishment goals

Key secrecy also known as key authentication means that a shared key is
known only by the agents sharing the key and any mutually trusted third party.

The basic idea of our approach is to make the incremental development of
the cryptographic protocol faithfull to the structure of the protocol as the engi-
neer thinks of it. What we want to do is to identify all the mechanisms that let
a protocol satisfy each safety property, and then combine them by refinement
to obtain the final protocol. The general approach is described as follows. We
start by identifying properties of the final protocol and decompose these proper-
ties to obtain the basic properties ensuring the required properties. Each basic
property is validated by a mechanism through a Event B development start-
ing by a first abstract machine and completed by a final machine integrating
elements on the protocol itself and on the possible attacks. Then the combi-
nation of mechanisms is driven by the target property and is validated by a
double refinement. Modelling attacker’s knowledge is an important issue, a set
of variables Attack_Know is used to model this knowledge. As we will see in
subsection 3.1, to prove that a mechanism satisfies a safety property, we need
to introduce an invariant I(Attack_Know) that contains a characterisation of
the attacker’s knowledge that allow us to prove the desired property. When two
mechanism are combined the attacker is more powerfull and has more knowledge
since more information are added to the variables in the set Attack_Know by
events modelling attacker’s behaviour of both models together. We need then
to prove that Attack_Know variable (shared by both mechanism models) still
satisfy the invariants of both models.
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3 The Pattern Structure

Properties in the figure 1 are defined in an abstract way in Event B using the
notion of abstract transactions that will be introduced in subsection 3.1. For
each property, a set of mechanisms that guarantee this property are available
described with Event B models. Let P the set of properties and M the set of
Event B models of mechanisms. The figure 2 summarizes relationships among
Event B models and properties and we define now definitions for expressing
conditions over mechanisms and for defining composition of mechanisms, prop-
erties and models. For a given attacker’s model, a relation � is defined over the
sets P and M :

Definition 1. ∀ p, m. p ∈ P ∧m ∈ M : m � p iff there exists a machine n such
that p is a theorem of the machine n and m is a refinement of n. We say that
m implements the property p.

Event B models will be defined in the subsection 3.1 and we will formally
introduce how properties and mechanisms are modelled in Event B . We will
also see how a mechanism is proved to implement a property.

Let us consider an example of a mechanism using shared key cryptography
that implements the authentication property. The mechanism 1 is contained in
the ISO/IEC 9798-2 two-pass unilateral authentication protocol from the inter-
national standard ISO/IEC 9798 Part 2 [18]:

1. B → A : Nb

2. A → B : {Nb, B}KAB

Mechanism 1

1. A → B : Na

2. B → A : {Na, B}KAB

Mechanism 2

In the mechanism 1, B has knowledge of A as her peer entity, we proved that
this mechanism implements the knowledge of peer property in the Dolev-Yao
attacker model. If the nonce Nb is fresh we can also prove that the mechanism
implements the Far-end operative property. Combining two mechanisms is not
always possible, for example, combining the mechanism 1 with the mechanism 2
where A has knowledge of B as his peer entity may not be possible: let us
consider a possible composition of the two previous mechanisms given in the
new mechanism 3:

1. A → B : Na

2. B → A : {Na, B}KAB
, Nb

3. A → B : {Nb, B}KAB

Mechanism 3

1. IA → B : Ni

2. B → IA : {Ni, B}KAB
, Nb

3. IB → A : Nb

4. A → IB : {Nb, A}KAB
, Na

5. IA → B : {Nb, A}KAB

Attack 1
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We may think that this new mechanism provides both properties of the com-
posed ones but a possible attack on the new obtained mechanism is shown in the
attack 1. Both mechanisms when considered separately implement the authenti-
cation property but when we combine them, the attacker can use one mechanism
to attack the other as shown in the attack 1. We identified for each mechanism
a set of conditions that guarantee that a combination of this mechanism with
others is possible and a set of generated proof obligations have to be discharged.

We also introduce a function R that maps two models m1 and m2 to the
set of possible mechanisms obtained by combining these two mechanisms in a
correct way (proof obligations have been discharged):

Definition 2. ∀ m1, m2, m. m1 ∈ M ∧ m2 ∈ M ∧ m ∈ M : m ∈ R (m1, m2) iff
m is a double refinement of m1 and m2 ie m refines m1 and m refines m2.

R 
R

Fig. 2. Structure for composing mechanisms

The concrete Event B machine of the mechanism R (m1, m2) in the figure 2
is a double refinement (R ) of the two Event B models corresponding to the
two mechanisms m1 and m2. The basic idea of our approach is to start with
mechanisms that implements (�) generic properties expressed in the abstract
Event B machines (figure 2) and to combine them by a double refinement
process to implement more complex properties as shown in figure 1. We have
proved the following theorem that we will use to combine mechanisms:

Theorem 1. ∀ m, m1, m2, p1, p2.m ∈ M ∧m1 ∈ M ∧m2 ∈ M ∧p1 ∈ P ∧p2 ∈ P :
If m1 � p1 ∧ m2 � p2 ∧ m ∈ R (m1, m2), then m � p1 ∧ p2

When proving a protocol, we will need to prove only the combination proof
obligations and not the proofs of different mechanisms that are done only once
and can be reused for different protocols. The last definition to introduce before
presenting the pattern is the instance of a mechanism. We may need to use
several instances of the same mechanism. From an Event B point of view two
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instances of the same mechanism model are simply two models where variables
are renamed. These models have exactly the same behaviour and satisfy the same
properties. Two instances of the same mechanism are linked with a ∼ relation
defined as follows:

Definition 3. ∀ m1, m2. m1 ∈ M ∧m2 ∈ M :
m2 ∼ m1 iff m2 is obtained by renaming the variables of m1.

Theorem 2. ∀ m1, m2, p.m1 ∈ M ∧ m2 ∈ M ∧ p ∈ P :
If m1 ∼ m2 ∧ m2 � p then m1 � p

Using our design patterns has two advantages:

– To have an efficient refinement (in term of automatic proofs), we need to
make the right choices when choosing abstraction levels and variables dur-
ing the modelling process. When using the pattern, the designer of the cryp-
tographic protocol will have to decide only how to combine mechanism to
obtain the desired protocol since the mechanisms are already modelled in
Event B.

– Proofs of already proved mechanisms are done once and can be reused with
different protocols and proof obligations for combining them are defined.

3.1 Event-B Models of the Mechanisms

We present the Event B models of the mechanism 1. Our goal is to prove that
a mechanism m implements (�) a certain property p and also to identify the
proof obligation of correct composition of this mechanism with others. To prove
that a mechanism m satisfies a given property P we need one abstract model
and two refinement steps:

– The first model is the specification, the desired property p is stated in an
abstract way using the notion of abstract transaction that will be introduced
later in this section. The way a property is expressed in this first abstract
model is common to all the mechanisms.

– The second model is the implementation, we exhaustively add all details
used by the mechanism m to guarantee the desired property stated in the
previous model. The RODIN tool will then automatically generate proof
obligations by respect to the property stated in the abstract model.

– Third model: we model the behaviour of the attacker. The attacker knowl-
edge is injected to the previous model. We introduce attacker’s knowledge
in a separate refinement so we can apply several attacker’s behaviours to see
if we still can prove safety properties.

Abstract Model. At this abstraction level, we introduce the type of AGENT,
that is common to all kinds of cryptographic protocols, other notions like nonces,
timestamps or cryptographic keys are specific to each kind of protocols and
will be introduced in further refinements. To model the different properties, the
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pattern is based on the notion of abstract transactions. An abstract transaction
(type T in the models) is a session of the protocol performed by one of the agent
involved in the protocol run. In some cryptographic protocols, nonces are used to
identify each session or protocol run. Intuitively, each transaction of the abstract
model will correspond, in this case, to a fresh nonce (or to a timestamp in other
protocols) in the concrete model. The intruder is a particular agent: I ∈ AGENT,
note that for most protocols, even if there is more than one dishonnest agent
in the system, it suffices to consider only one attacker that will combine the
abilities and knowledge of all the other dishonnest agents.

There are several definitions in the literature of entity authentication in cryp-
tographic protocols, Syverson and van Oorschot [16] define entity authentication
as: “A believes B recently replied to a specific challenge.” This property is ob-
tained by combining two generic properties: peer knowledge and far-end opera-
tive. In this first model we focus on peer knowledge property. To be able to model
it, we introduce variables that model each protocol run (one abstract transac-
tion in the abstract model) attributes. An abstract transaction has a source
(t_src) that is the agent that initiated the transaction and a believed destina-
tion (t_bld_dst) that is the believed destination agent. A running transaction
is contained in a set trans. When a transaction terminates it is added to a set
end, to prove peer knowledge, we need to prove that both variables are equal when
a transaction terminates.

Theorem 3. ∀t·t ∈ end ∧ t_src(t) �= I⇒ t_dst(t) = t_bld_dst(t)

First Refinement. The goal of this first refinement is to understand how the
property stated in the previous model is achieved, thus, the corresponding details
of the modelled mechanism messages are exhaustively added. Cryptographic
keys are introduced in this refinement. For example shared keys are modelled as
follows: KEY is the set of all pair keys; KEY_A ∈ KEY→ AGENT contains the first
owner agent; KEY_B ∈ KEY→ AGENT is the second owner agent.

For example, to model the attributes of the message in the step 2 of the
mechanism 1, we need the following variables: answer_Na ∈ answer→ T that
models the the encrypted nonce; answer_KAB ∈ answer→ KEY that models the
used encryption key and also answer_A ∈ answer→ AGENT that contains the
agent identity included in the message.

Second refinement: attacker’s knowledge. To be able to prove properties
such as secrecy and authentication on a protocol, we have to be able to model the
knowledge of the attacker. To model the knowledge of the attacker, it is necessary
to know exactly what the attacker is able to do. This refinement models all the
options the attacker has in the Dolev-Yao attacking model and can be reused
for different protocols. To model all these options, we use a set of variables
Attack_Know that contains the crucial information the attacker can obtain.
Because of the typing constraints in the Event B, we use one variable for
each information type : N_Mem for nonces and K_Mem for each type of keys:
N_Mem ⊆ P(T) and K_Mem ⊆ P(KEY).
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The attacker can also use fragments of encrypted
messages contained in the communication chan-
nel, we model the set of fragments available to
the attacker using a variable FRAG. In the case
of mechanism 1, the fragment has the following
structure.

FRAG ⊆ MSG
FRAG_Na ∈ FRAG→ T
FRAG_KAB ∈ FRAG→ KEY
FRAG_A ∈ FRAG→ AGENT
FRAG_Src ∈ FRAG→AGENT

We added Event B events modelling all the possible attacker behaviours
according to the Dolev-Yao model and we automatically generated a gluing in-
variant to prove that the refinement is correct using an invariant strengthening
technique. In the case of the mechanism 1, we obtained the following invariants:

∀ K, A, B. K ∈ K_MEM ∧ K ∈ dom(KEY_A) ∧ ¬A = I ∧
((KEY_A(K) = A ∧ KEY_B(K) = B) ∨ (KEY_A(K) = B ∧ KEY_B(K) = A))

⇒ B = I

This first invariant states that to preserve the peer knowledge property, the
attacker should only posses keys he share with another agent. The second theo-
rem is as follows:

∀ K, A, B, frag. frag ∈ FRAG∧FRAG_A(frag) = A∧FRAG_Key(frag) = K∧
((KEY_A(K) = A∧KEY_B(K) = B)∨(KEY_A(K) = B∧KEY_B(K) = A))∧
¬A = I ∧ K ∈ dom(KEY_A)

⇒ B = FRAG_Src(frag)

Intuitively this invariant states that if a fragment is encrypted with a key
owned by two agents and the identity of one of these agent is in the field FRAG_A,
then the source of this fragment is the other agent. These two invariants are
very important for the composition of mechanisms. If this mechanism is com-
posed with another one we need to prove that the fragments of the same type
generated by the other mechanism satisfy these theorems. This is how proof obli-
gations of mechanisms composition are generated. When we tried to compose
mechanisms 1 and 2 we could not prove these invariants and we could generate
the attack 1. In general, attacker’s knowledge contained in the variables N_Mem,
K_Mem and the fragments of the same structure is shared between the combined
mechanisms. To prove that a composition is correct we need to prove that events
of each mechanism model maintain the invariants that characterise the attacker’s
knowledge of the other mechanism.

3.2 Describing the Pattern

The pattern is organized in three modules:

– The LIBRARY module: contains the available properties and the mecha-
nisms that are proved to implement them.



34 N. Benaissa and D. Méry

– The COMPOSITION module: contains the structure of the protocol and
shows how it was obtained by composing the different mechanisms. This
module has three clauses:

1. The PROPERTIES clause: contains the properties that the protocol
should satisfy.

2. The MECHANISMS clause: contains the instances of the used mecha-
nisms in the protocol.

3. The THEOREM clause: shows the � relation of the instances of mech-
anisms used in the protocol.

– The B_MODELS clause: contains the Event B models of the mechanisms.

The pattern can be used for two purposes, designing new protocols and analysing
existing ones. By analysing a protocol we mean proving it by identifying which
component of the protocol guarantees each property and possibly identify any
unnecessary component of the protocol.

4 An Example of the Pattern Application

We applied our design pattern on different cryptographic protocols among which:
Blake-Wilson-Menezes key transport protocol [5], the well known Needham-
Schroeder public key protocol [13] and the Shoup-Rubin key distribution proto-
col [11]. We will illustrate our approach in this paper on a simplified version (as
shown in protocol 1) of the well known Kerberos protocol [19].

1. A → S : A, B, Na

2. S → A : {KAB , B, Na}KAS
, {KAB , A}KBS

3. A → B : {A, TA}KAB
, {KAB , A}KBS

Protocol 1. A simplified version of the Kerberos protocol

The basic protocol involves three parties, the
client (A), an application server (B) and an au-
thentication server (S). A secret long term key
KAS is shared between A and S and another key
KBS is shared between B and S. This simplified
protocol provides the properties.

Property Agent
p1A Key authentication A
p1B Key authentication B
p2A Key freshness A
p3B far-end operative B

Three mechanisms are used to guarantee these properties. The first one (mech-
anism 4) is a part of the ISO/IEC11770 Part2 [17]. The second mechanism is
similar to mechanism 1 where the server S is involved, but the identity of agent
A in the response message is no longer necessary since reflection attack is not
possible anymore. The last mechanism uses time stamps:

1. S → A :
{KAB , B}KAS

1. S → B : {KAB , A}KBS

Mechanism 4

1. A → S : Na

2. S → A : {Na}KAS

Mechanism 5

1. A → B : {A, Ta}KAB

Mechanism 6
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Table 1. The design pattern for Kerberos protocol

LIBRARY COMPOSITION B-MODELS

PROPERTIES
< p1A >< p1B >
< p2A >< p3B >
. . .
MECHANISM
m4 � p1A

m4 � p1B

m5 � p2A

m6 � p3B

. . .

PROPERTIES
< p1A >< p1B >< p2A >< p3B >
MECHANISM
m41 ∼ m4
m51 ∼ m5
m451 ∈ R (m41, m51)
m61 ∼ m6
m4561 ∈ R (m451, m61)
THEOREM
m41 � p1A ∧ p1B

m51 � p2A

m451 � (p1A ∧ p1B) ∧ p2A

m4561 � ((p1A ∧ p1B) ∧ p2A) ∧ p3B

m41 = B models
m51 = B models
m451 = B models
m61 = B models
m4561 = B models

The table 1 shows how the pattern is applied, but due to lack of space we will
skip the Event B models, in section 3.1 contains the Event B model of one
mechanism taken as an example. Mechanisms are introduced one by one in the
pattern and proofs of double refinement are generated and discharged.

We emphasize that this simplified version of Kerberos protocol does not satisfy
key freshness property for agent B. The full Kerberos protocol uses a mechanism
of expiration time in the message intended to B to fulfil this property.

5 Conclusion

We have introduced an Event-B-based design pattern for cryptographic proto-
cols and we have applied it on three different protocols. Several properties were
proved on these protocols, user-oriented and key-oriented properties. Less than
10% of the proofs of the models were interactive. Patterns facilitate proof pro-
cess by reusing partially former developments; we have not yet designed new
cryptographic protocols and it remains to develop other case studies by apply-
ing patterns. Like design patterns, proof-based patterns are based on real cases;
they should help the use of refinement and proof techniques; it is then clear
that specific tools should be developed and further works should be carried out
using refinement for discovering new patterns. As a perspective of our work, we
want to model more mechanisms and define a plugin of the RODIN tool that
implements this pattern.
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Abstract. We prove that, unless P = NP, no polynomial-time algo-
rithm can approximate the minimum length of synchronizing words for
a given synchronizing automaton within a constant factor.

Background and Overview

Let A = 〈Q, Σ, δ〉 be a complete deterministic finite automaton (DFA), where
Q is the state set, Σ is the input alphabet, and δ : Q×Σ → Q is the transition
function. The function δ extends uniquely to a function Q×Σ∗ → Q, where Σ∗

stands for the free monoid over Σ; the latter function is still denoted by δ. Thus,
each word in Σ∗ acts on the set Q via δ. The DFA A is called synchronizing if
there exists a word w ∈ Σ∗ whose action resets A, that is, leaves the automaton
in one particular state no matter which state in Q it starts at: δ(q, w) = δ(q′, w)
for all q, q′ ∈ Q. Any such word w is called a synchronizing word for A. The
minimum length of synchronizing words for A is denoted by minsynch(A).

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of reac-
tive systems) and also reveal interesting connections with symbolic dynamics and
other parts of mathematics. For a brief introduction to the theory of synchroniz-
ing automata we refer the reader to the recent survey [10]. Here we discuss only
some complexity-theoretic issues of the theory. In the following we assume the
reader’s acquaintance with some basics of computational complexity that may
be found, e.g., in [3,6].

There is a polynomial-time algorithm (basically due to Černý [1]) that de-
cides whether or not a given DFA is synchronizing. In contrast, determining the
minimum length of synchronizing words for a given synchronizing automaton is
known to be computationally hard. More precisely, deciding, given a synchro-
nizing automaton A and a positive integer �, whether or not minsynch(A) ≤ � is
NP-complete [2,5,9,8]. Moreover, deciding, given the same instance, whether or
not minsynch(A) = � is both NP-hard and co-NP-hard [8]. Thus, unless NP = co-
NP, even non-deterministic algorithms cannot find the minimum length of syn-
chronizing words for a given synchronizing automaton in polynomial time.
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There are some polynomial-time algorithms that, given a synchronizing au-
tomaton, find synchronizing words for it, see [2,7]. Such algorithms can be con-
sidered as approximation algorithms for calculating the minimum length of syn-
chronizing words but it seems that they have not been systematically studied
from the approximation viewpoint. Experiments show that Eppstein’s greedy al-
gorithm [2] behaves rather well on average and approximates minsynch(A) within
a logarithmic factor on all tested instances; however, no theoretical justification
for these observations has been found so far.

In this paper we prove that, unless P = NP, no polynomial-time algorithm
can approximate the minimum length of synchronizing words for a given syn-
chronizing automaton within a constant factor. This result was announced in the
survey [10] (with a reference to the present author’s unpublished manuscript)
but its proof appears here for the first time. We also mention that a special case
of our result, namely, non-approximability of minsynch(A) within a factor of 2,
was announced by Gawrychowski [4].

The paper is organized as follows. First we exhibit an auxiliary construction
that shows non-approximability of minsynch(A) within a factor of 2 − ε for au-
tomata with 3 input letters. Then we show how to iterate this construction in
order to obtain the main result, again for automata with 3 input letters. Finally,
we describe how the construction can be modified to extend the result also to
automata with only 2 input letters.

1 Non-approximability within a Factor of 2 − ε

First we fix our notation and introduce some definitions. When we have specified
a DFA A = 〈Q, Σ, δ〉, we can simplify the notation by writing q.w instead of
δ(q, w) for q ∈ Q and w ∈ Σ∗. For each subset S ⊆ Q and each word w ∈ Σ∗,
we write S.w instead of {q.w | q ∈ S}. We say that a subset S ⊆ Q is occupied
after applying some word v ∈ Σ∗ if S ⊆ Q.v.

The length of a word w ∈ Σ∗ is denoted by |w|. If 1 ≤ s ≤ |w|, then w[s]
denotes the letter in the s-th position of w; similarly, if 1 ≤ s < t ≤ |w|, then
w[s..t] stands for the word w[s]w[s + 1] · · ·w[t].

Let K be a class of synchronizing automata We say that an algorithm M
approximates the minimal length of synchronizing words in K if, for an arbitrary
DFA A ∈ K, the algorithm calculates a positive integer M(A) such that M(A) ≥
minsynch(A). The performance ratio of M at A is RM (A) =

M(A)
minsynch(A)

. The al-

gorithm is said to approximate the minimal length of synchronizing words within
a factor of k ∈ R if

sup{RM (A) | A ∈ K} = k.

Even though the following theorem is subsumed by our main result, we prove it
here because the proof demonstrates underlying ideas in a nutshell and in the
same time presents a construction that serves as the induction basis for the proof
of the main theorem.
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Theorem 1. If P �= NP, then for no ε > 0 a polynomial-time algorithm ap-
proximates the minimal length of synchronizing words within a factor of 2− ε in
the class of all synchronizing automata with 3 input letters.

Proof. Arguing by contradiction, assume that there exist a real number ε >
0 and a polynomial-time algorithm M such that RM (A) ≤ 2 − ε for every
synchronizing automaton A with 3 input letters.

We fix an arbitrary n > 2 and take an arbitrary instance ψ of the classical
NP-complete problem SAT (the satisfiability problem for a system of clauses,
that is, formulae in conjunctive normal form) with n variables. Let m be the
number of clauses in ψ. We shall construct a synchronizing automaton A(ψ)
with 3 input letters and the number of states a polynomial in m, n such that
minsynch(A(ψ)) = n + 2 if ψ is satisfiable and minsynch(A(ψ)) > 2(n − 1) if ψ
is not satisfiable. If n is large enough, namely, n ≥ 6

ε − 2, then we can decide
whether or not ψ is satisfiable by running the algorithm M on A(ψ). Indeed, if
ψ is not satisfiable, then M(A(ψ)) ≥ minsynch(A(ψ)) > 2(n − 1), but, if ψ is
satisfiable, then

M(A(ψ)) ≤ (2 − ε)minsynch(A(ψ)) = (2 − ε)(n + 2)

≤ (2 − 6
n + 2

)(n + 2) = 2(n− 1).

Clearly, this yields a polynomial-time algorithm for SAT: given an instance of
SAT, we can first, if necessary, enlarge the number of variables to at least 6

ε −
2 without influencing satisfiability and then apply the above procedure. This
contradicts the assumption that P �= NP.

Now we describe the construction of the automaton A(ψ) = 〈Q, Σ, δ〉. The
state set Q of A(ψ) is the disjoint union of the three following sets:

S1 = {qi,j | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1, i �= m + 1 or j �= n + 1},
S2 = {pi,j | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1},
S3 = {z1, z0}.

The size of Q is equal to 2(m + 1)(n + 1)+ 1, and hence is a polynomial in m, n.
The input alphabet Σ of A(ψ) is the set {a, b, c}. In order to describe

the transition function δ : Q × Σ → Q, we need an auxiliary function
f : {a, b} × {1, . . . , m} × {1, . . . , n} → Q defined as follows. Let the variables
involved in ψ be x1, . . . , xn and the clauses of ψ be c1, . . . , cm. For a literal
y ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} and a clause ci, we write y ∈ ci to denote that y
appears in ci. Now set

f(d, i, j) =

⎧⎪⎨⎪⎩
z0, if d = a and xj ∈ ci;
z0, if d = b and ¬xj ∈ ci;
qi,j+1, otherwise.
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The transition function δ is defined according to the following table:

State q ∈ Q δ(q, a) δ(q, b) δ(q, c)

qi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n f(a, i, j) f(b, i, j) qi,1

qm+1,j for 1 ≤ j < n qm+1,j+1 qm+1,j+1 qm+1,1

qm+1,n z1 z1 qm+1,1

qi,n+1 for 1 ≤ i ≤ m z0 z0 qm+1,1

pi,j for 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n pi,j+1 pi,j+1 pi,j+1

pi,n+1 for 1 ≤ i ≤ m + 1 z0 z0 qi,1

z1 qm+1,1 qm+1,1 z0

z0 z0 z0 z0

Let us informally comment on the essence of the above definition. Its most
important feature is that, if the literal xj (respectively ¬xj) occurs in the clause
ci, then the letter a (respectively b) moves the state qi,j to the state z0. This
encodes the situation when one can satisfy the clause ci by choosing the value
1 (respectively 0) for the variable xj . Otherwise, the letter a (respectively b)
increases the second index of the state. This means that one cannot make ci be
true by letting xj = 1 (respectively xj = 0), and the next variable has to be
inspected. Of course, this encoding idea is not new, see, e.g., [2].

By the definition, z0 is the zero state of the automaton A(ψ). Since there is a
path to z0 from each state q ∈ Q, the automaton A(ψ) is synchronizing.

Figure 1 shows two automata of the form A(ψ) built for the SAT instances

ψ1 = {x1 ∨ x2 ∨ x3, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3},
ψ2 = {x1 ∨ x2, ¬x1 ∨ x2, ¬x2 ∨ x3, ¬x2 ∨ ¬x3}.

If at some state q ∈ Q the picture has no outgoing arrow labelled d ∈ Σ, the
arrow q

d→ z0 is assumed (all those arrows are omitted in the picture to improve
readability). The two instances differ only in the first clause: in ψ1 it contains
the variable x3 while in ψ2 it does not. Correspondingly, the automata A(ψ1)
and A(ψ2) differ only by the outgoing arrow labelled a at the state q1,3: in A(ψ1)
it leads to z0 (and therefore, it is not shown) while in A(ψ2) it leads to the state
q1,4 and is shown by the dashed line.

Observe that ψ1 is satisfiable for the truth assignment x1 = x2 = 0, x3 = 1
while ψ2 is not satisfiable. It is not hard to check that the word cbbac synchronizes
A(ψ1) and the word a7c is one of the shortest reset words for A(ψ2).

To complete the proof, it remains to show that minsynch(A(ψ)) = n + 2 if
ψ is satisfiable and minsynch(A(ψ)) > 2(n − 1) if ψ is not satisfiable. First
consider the case when ψ is satisfiable. Then there exists a truth assignment
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Fig. 1. The automata A(ψ1) and A(ψ2)

τ : {x1, . . . , xn} → {0, 1} such that ci(τ(x1), . . . , τ(xn)) = 1 for every clause ci

of ψ. We construct a word v = v(τ) of length n as follows:

v[j] =

{
a, if τ(xj) = 1;
b, if τ(xj) = 0.

(1)
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We aim to prove that the word w = cvc is a synchronizing word for A(ψ),
that is, Q.w = {z0}. Clearly, z1.c = z0. Further, S2.cv = {z0} because every
word of length n + 1 that does not end with c sends S2 to z0. Now let T =
{qi,1 | 1 ≤ i ≤ m + 1}, so T is the “first row” of S1. Observe that S1.c = T .
Since ci(τ(x1), . . . , τ(xn)) = 1 for every clause ci, there exists an index j such
that either xj ∈ ci and τ(xj) = 1 or ¬xj ∈ ci and τ(xj) = 0. This readily
implies (see the comment following the definition of the transition function of
A(ψ)) that qi,1.v = z0 for all 1 ≤ i ≤ m. On the other hand, qm+1,1.v = z1
because every word of length n that does not involve c sends qm+1,1 to z1. Thus,
S1.cv = T .v = S3 and S1.w = {z0}. We have shown that w synchronizes A(ψ),
and it is clear that |w| = n + 2 as required.

Now we consider the case when ψ is not satisfiable.

Lemma 1. If ψ is not satisfiable, then, for each word v ∈ {a, b}∗ of length n,
there exists i ≤ m such that qi,n+1 ∈ T .v.

Proof. Define a truth assignment τ : {x1, . . . , xn} → {0, 1} as follows:

τ(xj) =

{
1, if v[j] = a;
0, if v[j] = b.

Since ψ is not satisfiable, we have ci(τ(x1), . . . , τ(xn)) = 0 for some clause ci,
1 ≤ i ≤ m. According to our definition of the transition function of A(ψ), this
means that qi,j .v[j] = qi,j+1 for all j = 1, . . . , n. Hence qi,n+1 = qi,1.v ∈ T .v. ��

Lemma 2. If ψ is not satisfiable, then for each word v ∈ {a, b}∗ of length n and
each letter d ∈ Σ, the state qm+1,1 belongs to T .vd.

Proof. If d = c, the claim follows from Lemma 1 and the equalities qm+1,1 =
qi,n+1.c that hold for all i ≤ m. If d �= c, we observe that the state qm+1,1 is
fixed by all words of length n + 1 not involving c. ��

Let w′ be a synchronizing word of minimal length for A(ψ) and denote w = cw′c.
Then the word w is also synchronizing and � = |w| > n because already the
length of the shortest path from qm+1,1 to z0 is equal to n + 1. Let k be the
rightmost position of the letter c in the word w[1..n].

Lemma 3. T ⊆ Q.w[1..k].

Proof. Indeed, since k ≤ n, for each 1 ≤ i ≤ m + 1 we have

pi,n+2−k.w[1..k − 1]w[k] = pi,n+1.c = qi,1 ∈ T . �

We let v denote the longest prefix of the word w[k + 1..�] such that v ∈ {a, b}∗
and |v| ≤ n. Since w ends with c, the word v cannot be a suffix of w. Let
d ∈ Σ be the letter that follows v in w. If |v| = n, then Lemma 2 implies that
qm+1,1 ∈ T .vd. If |v| < n, then by the definition of v we have d = c. Hence

qm+1,1.vd = qm+1,|v|+1.c = qm+1,1.
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Thus, qm+1,1 ∈ T .vd also in this case. Combining this with Lemma 3, we have

Q.w[1..k]vd ⊇ T .vd � qm+1,1. (2)

From the definitions of k and v it readily follows that w[k + 1..n] is a prefix of v
whence |v| ≥ n− k. Thus, |w[1..k]vd| ≥ k + (n− k) + 1 = n + 1. Recall that the
length of the shortest path from qm+1,1 to z0 is equal to n + 1, and the suffix
of w following w[1..k]vd must bring the state qm+1,1 to z0 in view of (2). Hence
|w| ≥ (n + 1) + (n + 1) = 2n + 2 > 2n and |w′| > 2(n− 1). We have proved that
minsynch(A(ψ)) > 2(n− 1) if ψ is not satisfiable. ��

2 The Main Result

The main result of this paper is

Theorem 2. If P �= NP, then no polynomial-time algorithm can approximate
the minimal length of synchronizing words within a constant factor in the class
of all synchronizing automata with 3 input letters.

Proof. Again we fix an arbitrary n > 2 and take an arbitrary instance ψ of
SAT with n variables. We shall prove by induction that for every r = 2, 3, . . .
there exists a synchronizing automaton Ar(ψ) = 〈Qr, Σ, δr〉 with the following
properties:

– Σ = {a, b, c};
– |Qr| is bounded by a polynomial of n and the number m of clauses of ψ (for

any fixed r);
– if ψ is satisfiable under a truth assignment τ : {x1, . . . , xn} → {0, 1}, then

the word w = cr−1v(τ)c of length n + r synchronizes Ar(ψ) (see (1) for the
definition of the word v(τ));

– minsynch(Ar) > r(n − 1) if ψ is not satisfiable.

Then, applying the same standard argument as in the proof of Theorem 1, we
conclude that for no ε > 0 the minimal length of synchronizing words can be
approximated by a polynomial-time algorithm within a factor of r − ε. Since r
can be arbitrarily large, the statement of the main result follows.

The induction basis is verified in the proof of Theorem 1: we can choose
the synchronizing automaton A(ψ) to play the role of A2(ψ). For the sake of
uniformity, in the sequel we refer to the state set Q of A(ψ) and its transition
function δ as to Q2 and respectively δ2.

Suppose that r > 2 and the automaton Ar−1(ψ) = 〈Qr−1, Σ, δr−1〉 with the
desired properties has already been constructed. We let

Qr = Qr−1 ∪ [(Q2 − z0) ×Qr−1].

Clearly, |Qr| = |Qr−1| · |Q2| and from the induction assumption it follows that
|Qr| is a polynomial in m, n.
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We now define the transition function δr : Qr ×Σ → Qr. Let d ∈ Σ, q ∈ Qr.
If q ∈ Qr−1, then we set

δr(q, d) = δr−1(q, d). (3)

If q = (q′, q′′) ∈ (Q2 \ {z0}) ×Qr−1, we define

δr(q, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0, if δ2(q′, d) = z0;
q′′, if δ2(q′, d) = qm+1,1 and either

q′ = qi,n+1 for i ∈ {1, . . . , m}
or q′ = qm+1,j for j ∈ {2, . . . , n}
or q′ = z1;

(δ2(q′, d), q′′), in all other cases.

(4)

Using this definition and the induction assumption, one can easily verify that
the state z0 is the zero state of the automaton Ar(ψ) and that there is a path
to z0 from every state in Qr. Thus, Ar(ψ) is a synchronizing automaton.

In order to improve readability, we denote the subset {qi,j}×Qr−1 by Qi,j for
each state qi,j ∈ S1 and the subset {pi,j}×Qr−1 by Pi,j for each state pi,j ∈ S2.
Slightly abusing notation, we let T denote the “first row” of S1 × Qr−1, i.e.
T =

⋃
1≤i≤m+1 Qi,1. Similarly, let P =

⋃
1≤i≤m+1 Pi,1 be the “first row” of

S2 × Qr−1. We also specify that the dot-notation (like q.d) always refers to the
function δr.

First we aim to show that if ψ is satisfiable under a truth assignment τ :
{x1, . . . , xn} → {0, 1}, then the word w = cr−1v(τ)c synchronizes the automa-
ton Ar(ψ). By (3) and the induction assumption we have Qr−1.c ⊆ Qr−1 and
Qr−1.c

r−2v(τ)c = z0. Further, we can decompose ((Q2 \ {z0}) × Qr−1).c as
{z0} ∪ Fr−1 ∪ Fr for some sets Fr−1 ⊆ Qr−1 and Fr ⊆ (Q2 \ {z0}) × Qr−1. By
the induction assumption,

Fr−1.c
r−2v(τ)c ⊆ Qr−1.c

r−2v(τ)c = z0

Consider the set Fr. Using the definition of the action of c on Q2 via δ2, one can
observe that Fr = T ∪G where G stands for S2×Qr−1 \P . From (4) we see that
T .c = T and G.c ⊆ T ∪G. Thus we have Fr.c

r−2v(τ)c ⊆ T .v(τ)c ∪G.v(τ)c, and
combining the first alternative in (4) with properties of the automaton A2(ψ)
established in the proof of Theorem 1, we obtain T .v(τ)c = G.v(τ)c = {z0}.

Now we consider the case when ψ is not satisfiable. The following lemma is
parallel to Lemma 1 and has the same proof because the action of a and b on the
“blocks” Qi,j with 1 ≤ i ≤ m and 1 ≤ j ≤ n via δr precisely imitates the action
of a and b on the states qi,j in the automaton A(ψ), see the last alternative in
(4).

Lemma 4. If ψ is not satisfiable, then, for each word v ∈ {a, b}∗ of length n,
there exists i ≤ m such that Qi,n+1 ⊆ δr(T, v). ��

In contrast, the next lemma, which is a counterpart of Lemma 2 uses the fact that
in some cases the action of the letters via δr drops states from ((Q2 \z0)×Qr−1)
down to Qr−1, see the middle alternative in (4).
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Lemma 5. If ψ is not satisfiable, then for each word v ∈ {a, b}∗ of length n and
each letter d ∈ Σ, we have Qr−1 ⊆ δr(T, vd).

Proof. If d = c, the claim follows from Lemma 4 and the equalities
δr((qi,n+1, q

′′), c) = q′′ that hold for all i ≤ m and all q′′ ∈ Qr−1. If d �= c, we
observe that δr((qm+1,1, q

′′), v) = (z1, q
′′) and δr((z1, q

′′), a) = δr((z1, q
′′), b) =

q′′ for all q′′ ∈ Qr−1. ��

Let w′ be a synchronizing word of minimal length for Ar(ψ) and denote w = cw′c.
Then the word w is also synchronizing and � = |w| > (r − 1)n by the induction
assumption. Let k be the rightmost position of the letter c in the word w[1..n].
We have the next lemma parallel to Lemma 3 and having the same proof (with
the “blocks” Pi,j with 1 ≤ i ≤ m + 1, n + 2 − k ≤ j ≤ n playing the role of the
states pi,j).

Lemma 6. T ⊆ δr(Qr, w[1..k]). ��

Now, as in the proof of Theorem 1, we let v denote the longest prefix of the word
w[k + 1..�] such that v ∈ {a, b}∗ and |v| ≤ n. Clearly, v cannot be a suffix of w.
Let d ∈ Σ be the letter that follows v in w. If |v| = n then Lemma 5 implies that
Qr−1 ⊆ δr(T, vd). If |v| < n, then by the definition of v we have d = c. Hence

δr(Qm+1,1, vd) = δr(Qm+1,|v|+1, c) = Qr−1.

Thus, Qr−1 ⊆ δr(T, vd) also in this case. Combining this with Lemma 6, we have

δr(Qr, w[1..k]vd) ⊇ δr(T, vd) ⊇ Qr−1. (5)

From the definitions of k and v it readily follows that |v| ≥ n − k. Thus,
|w[1..k]vd| ≥ k + (n − k) + 1 = n + 1. The suffix of w following w[1..k]vd must
bring the set Qr−1 to a single state in view of (5). However, by (3) the restriction
of δr to Qr−1 coincides with δr−1 whence the suffix must be a synchronizing word
for Ar−1(ψ). By the induction assumption minsynch(Ar−1(ψ)) > (r − 1)(n− 1),
and therefore,

|w| > (n + 1) + (r − 1)(n − 1) = r(n − 1) + 2

and |w′| > r(n− 1). We have thus proved that minsynch(Ar(ψ)) > r(n− 1) if ψ
is not satisfiable. This completes the induction step. ��

3 The Case of 2-Letter Alphabets

We show that the main result extends to synchronizing automata with only 2
input letters.

Corollary 1. If P �= NP, then no polynomial-time algorithm can approximate
the minimal length of synchronizing words within a constant factor in the class
of all synchronizing automata with 2 input letters.
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Proof. Our aim is to show, that for any synchronizing automaton
A = (Q, {a1, a2, a3}, δ) we can construct a synchronizing automaton
B = (Q′, {a, b}, δ′) such that

minsynch(A) ≤ minsynch(B) ≤ 3 minsynch(A) (6)

and |Q′| is a polynomial of |Q|. Then any polynomial-time algorithm approx-
imating the minimal length of synchronizing words for 2-letter synchronizing
automata within a factor of r would give rise to a polynomial-time algorithm
approximating the minimal length of synchronizing words for 3-letter synchro-
nizing automata within a factor of 3r. This would contradict Theorem 2.

We let Q′ = Q × {a1, a2, a3} and define the transition function δ′ : Q′ ×
{a, b} → Q′ as follows:

δ′((q, ai), a) = (q, amin(i+1,3)),
δ′((q, ai), b) = (δ(q, ai), a1).

Thus, the action of a on a state q′ ∈ Q′ substitutes an appropriate letter from in
the alphabet {a1, a2, a3} of A for the second component of q′ while the action of
b imitates the action of the second component of q′ on its first component and
resets the second component to a1. Now let a word w ∈ {a1, a2, a3} of length �
be a synchronizing word for A. Define

vs =

⎧⎪⎨⎪⎩
b, if w[s] = a1;
ab, if w[s] = a2;
aab, if w[s] = a3.

Then the word v = bv1 · · · v� is easily seen to be a synchronizing word for B and
|v| ≤ 3� unless all letters in w are a3, but in this case we can just let a2 and a3
swap their names. Hence the second inequality in (6) holds true, and the first
inequality is clear.
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Abstract. We introduce dynamic communicating automata (DCA), an exten-
sion of communicating finite-state machines that allows for dynamic creation of
processes. Their behavior can be described as sets of message sequence charts
(MSCs). We consider the realizability problem for DCA: given a dynamic MSC
grammar (a high-level MSC specification), is there a DCA defining the same set
of MSCs? We show that this problem is decidable in doubly exponential time, and
identify a class of realizable grammars that can be implemented by finite DCA.

1 Introduction

Requirements engineering with scenario-based visual languages such as message se-
quence charts (MSCs) is a well established practice in industry. However, the require-
ments phase usually stops when a sufficiently large finite base of scenarios covering
expected situations of the modeled system has been created. Although more elabo-
rated formalisms have been proposed, such as HMSCs [13], compositional MSCs [8],
or causal MSCs [6], requirements frequently consist in a finite set of finite behaviors
over a finite set of processes. The existing higher-level constructs are often neglected.
A possible reason might be that, in view of their huge expressive power, MSC specifi-
cations are not always implementable. As a part of the effort spent in the requirements
design is lost when designers start implementing a system, scenarios remain confined
to expressions of finite examples, and the higher-level constructs are rarely used. An-
other reason that may prevent designers from using high-level scenarios is that most
models depict the interactions of an a priori fixed set of processes. Nowadays, many
applications rely on threads, and most protocols are designed for an open world, where
all the participating actors are not known in advance. A first step towards MSCs over an
evolving set of processes was made by Leucker, Madhusudan, and Mukhopadhyay [11].
Their fork-and-join MSC grammars allow for dynamic creation of processes and have
good properties, such as decidability of MSO model checking. However, it remains un-
clear how to implement fork-and-join MSC grammars. In particular, a corresponding
automata model with a clear behavioral semantics based on MSCs is missing. Dynamic
process creation and its realizability are then two important issues that must be consid-
ered jointly.

This paper introduces dynamic communicating automata (DCA) as a model of pro-
grams with process creation. In a DCA, there are three types of actions: (1) a new
process can be created, (2) a message can be sent to an already existing process, and
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(3) a message can be received from an existing process. Processes are identified by
means of process variables, whose values can change dynamically during an execution
of an automaton and be updated when a message is received. A message is sent through
bidirectional unbounded FIFO channels, which are available to any pair of existing pro-
cesses. Our model extends classical communicating finite-state machines [5], which
allow only for actions of the form (2) and (3) and serve as an implementation model for
existing specification languages such as HMSCs or compositional MSCs.

In a second step, we propose dynamic MSC grammars (DMG for short) as a specifi-
cation language. They are inspired by the fork-and-join grammars from [11] but closer
to an implementation. We keep the main idea of [11]: when unfolding a grammar, MSCs
are concatenated on the basis of finitely many process identifiers. While, in [11], the
location of identifiers can be changed by means of a very general and powerful split-
operator, our grammars consider an identifier as a pebble, which can be moved locally
within one single MSC. In addition to process identifiers, we introduce a new means of
process identification that allows for a more concise description of some protocols.

Given an implementation model and a specification formalism, the realizability prob-
lem consists in asking whether a given specification comes with a corresponding imple-
mentation. Realizability for MSC languages has been extensively studied in the setting
of a fixed number of processes [2,12,1]. In a dynamic framework where DMGs are seen
as specifications and DCA as distributed implementations, we have to consider a new
aspect of realizability, which we call proximity realizability. This notion requires that
two processes know each other at the time of (asynchronous) communication. We show
that proximity realizability can be checked in doubly exponential time. Note that the
representation of the behavior of each process may require infinitely many states (due
to the nature of languages generated by the grammar), and that the notion of proximity
realizability does not take into account the structure of processes. The next step is then
to identify a class of DMGs that is realizable in terms of finite DCA.

The paper is organized as follows: Section 2 introduces MSCs. Sections 3 and 4
present dynamic communicating automata and dynamic MSC grammars, respectively.
In Section 5, we define proximity realizability and show that the corresponding decision
problem can be solved in doubly exponential time. Moreover, we present an implemen-
tation of local-choice MSC grammars in terms of finite DCA. Section 6 concludes with
some directions for future work. Missing proofs can be found in [3].

2 Message Sequence Charts

A message sequence chart (MSC) consists of a number of processes (or threads). Each
process p is represented by a totally ordered set of events Ep. The total order is given by
a direct successor relation <p. An event is labeled by its type. The minimal element of
each thread is labeled with start. Subsequent events can then execute send (!), receive
(?), or spawn (spawn) actions. The relation <m associates each send event with a cor-
responding receive event on a different thread. The exchange of messages between two
threads has to conform with a FIFO policy. Similarly, <s relates a spawn event e ∈ Ep

with the (unique) start action of a different thread q �= p, meaning that p has created q.

Definition 1. An MSC is a tuple M = (P , (Ep)p∈P , <p, <s, <m, λ) where
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(a) P ⊆ � = {0, 1, . . .} is a nonempty finite set of processes,

(b) the Ep are disjoint nonempty finite sets of events (we let E :=
⋃

p∈P Ep),

(c) λ : E → {!, ?, spawn, start} assigns a type to each event, and

(d) <p, <s, and <m are binary relations on E.

There are further requirements: ≤ := (<p∪<s∪<m)∗ is a partial order; λ−1(start) =
{e ∈ E | there is no e′ ∈ E such that e′ <p e}; <p ⊆

⋃
p∈P(Ep × Ep) and, for every

p ∈ P , <p ∩ (Ep × Ep) is the direct-successor relation of some total order on Ep;
(E,≤) has a unique minimal element, denoted by start(M); <s induces a bijection
between λ−1(spawn) and λ−1(start) \ {start(M)}; <m induces a bijection between
λ−1(!) and λ−1(?) satisfying the following: for e1, e2 ∈ Ep and e′1, e

′
2 ∈ Eq with

e1 <m e′1 and e2 <m e′2, we have both p �= q and e1 ≤ e2 iff e′1 ≤ e′2 (FIFO).

In Figure 1, M is an MSC with set of processes P = {1, 2, 3, 4}. An MSC can be
seen as one single execution of a distributed system. To generate infinite collections of
MSCs, specification formalisms usually provide a concatenation operator. It will allow
us to append to an MSC a partial MSC, which is a kind of suffix that does not necessarily
have start events on each process. Let M = (P , (Ep)p∈P , <p, <s, <m, λ) be an MSC
and let E′ ⊆ E be a nonempty set satisfying E′ = {e ∈ E | (e, e′) ∈ <m ∪ <s ∪ ≤−1

for some e′ ∈ E′} (i.e., E′ is an upward-closed set containing only complete messages
and spawning pairs). Then, the restriction of M to E′ is called a partial MSC (PMSC).
In particular, the new process set is {p ∈ P | E′ ∩ Ep �= ∅}. The set of PMSCs is
denoted by P, the set of MSCs by M. Consider Figure 1. It depicts the simple MSC Ip,
with one event on process p ∈ �. Moreover, M1, M2 ∈ P \ M.

Let M = (P , (Ep)p∈P , <p, <s, <m, λ) be a PMSC. For e ∈ E, we denote by loc(e)
the unique process p ∈ P such that e ∈ Ep. For every p ∈ P , there are a unique minimal
and a unique maximal event in (Ep,≤ ∩ (Ep × Ep)), which we denote by minp(M)
and maxp(M), respectively. We let Proc(M) = P . By Free(M), we denote the set of
processes p ∈ P such that λ−1(start) ∩ Ep = ∅. Finally, Bound(M) = P \Free(M).
Intuitively, free processes of a PMSC M are processes that are not initiated in M . In
Figure 1, Bound(Ip) = {p}, Free(M1) = {1}, and Free(M2) = {1, 2}.

Visually, concatenation of PMSCs corresponds to drawing identical processes one
below the other. For i = 1, 2, let M i = (P i, (Ei

p)p∈Pi , <i
p, <

i
s, <

i
m, λi) be PMSCs.

Consider the structure M = (P , (Ep)p∈P , <p, <s, <m, λ) where Ep = E1
p � E2

p

for all p ∈ P = P1 ∪ P2 (assuming Ei
p = ∅ if p �∈ P i) and <p = <1

p ∪ <2
p ∪

{(maxp(M1), minp(M2)) | p ∈ P with E1
p �= ∅ and E2

p �= ∅}. In addition, <m and
λ arise as simple unions. If M is a PMSC, then we set M1 ◦ M2 := M . Otherwise,
M1 ◦ M2 is undefined (e.g., if some p ∈ P2 has a start event and E1

p �= ∅).
In the context of partial orders, it is natural to consider linearizations. We fix the

infinite alphabet Σ = {!(p, q) , ?(p, q) , spawn(p, q) | p, q ∈ � with p �= q}. For a
PMSC M = (P , (Ep)p∈P , <p, <s, <m, λ), we let poset(M) := (E′,≤′, λ′) where
E′ = E \ λ−1(start), ≤′ = ≤ ∩ (E′ × E′), and λ′ : E′ → Σ such that, for all
(e, ê) ∈ <s, we have λ′(e) = spawn(loc(e), loc(ê)), and, for all (e, ê) ∈ <m, both
λ′(e) = !(loc(e), loc(ê)) and λ′(ê) = ?(loc(e), loc(ê)). The set Lin(poset(M)) of
linearizations of poset(M) is defined as usual as a subset of Σ∗.
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? !M2
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? !

? !

? !
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Fig. 1. (Partial) message sequence charts

3 Dynamic Communicating Automata

Dynamic communicating automata (DCA) extend classical communicating finite-state
machines [5]. They allow for the dynamic creation of processes, and asynchronous
FIFO communication between them. Note that most of existing dynamic models lack
such asynchronous communication (see [4] for some references). Each process p holds
a set of process variables. Their values represent process identities that p remembers
at a given time, and they allow p to communicate with them. This model is close to
the threading mechanism in programming languages such as JAVA and Erlang, but also
borrows elements of the routing mechanisms in protocols implemented over partially
connected mesh topologies. Threads will be represented by dynamically created copies
of the same automaton. At creation time, the creating thread will pass known process
identities to the created thread. A thread can communicate with another one if both
threads know each other, i.e., they have kept their identities in memory. This mecha-
nism is chosen to preserve the partial-order concurrency of MSCs, which provide the
semantics of DCA.

We introduce DCA with an example. The DCA in Figure 2 comes with sets of pro-
cess variables X = {x1, x2, x3}, messages Msg = {m}, states Q = {s0, . . . , s6}
where s0 is the initial state, final states F = {s3, s4, s6}, and transitions, which are
labeled with actions. Each process associates with every variable in X the identity
of an existing process. At the beginning, there is one process, say 1. Moreover, all
process variables have value 1, i.e., (x1, x2, x3) = (1, 1, 1). When process 1 moves
from s0 to s1, it executes x1 ← spawn(s0, (self, self, x3)), which creates a new pro-
cess, say 2, starting in s0. In the creating process, we obtain x1 = 2. In process 2, on
the other hand, we initially have (x1, x2, x3) = (1, 1, 1). So far, this scenario is cap-
tured by the first three events in the MSC M of Figure 1. Process 2 itself might now
spawn a new process 3, which, in turn, can create a process 4 in which we initially have
(x1, x2, x3) = (3, 3, 1). Now assume that, instead of spawning a new process, 4 moves
to state s5 so that it sends the message (m, (4, 3, 1)) to process 3. Recall that process
3 is in state s1 with (x1, x2, x3) = (4, 2, 1). Thus, 3 can execute x1 ? (m, {x1}), i.e.,
receive (m, (4, 3, 1)) and set x1 to 4. We then have (x1, x2, x3) = (4, 2, 1) on process
3. The DCA accepts, e.g., the behavior M depicted in Figure 1.
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s0

s1 s2

s3

s4

s5 s6

x1 ← spawn(s0, (self, self , x3))

x2 ! (m, (self , x2, x3))

x2 ! (m, (x1, x2, x3))

x1 ? (m, ∅)

x1 ? (m, {x1})

x3 ! (m, (x1, x2, x3))

Fig. 2. A dynamic communicating automaton

Definition 2. A dynamic communicating automaton (or simply DCA) is a tuple A =
(X,Msg , Q, Δ, ι, F ) where X is a set of process variables, Msg is a set of messages,
Q is a set of states, ι ∈ Q is the initial state, F ⊆ Q is the set of final states, and
Δ ⊆ Q×ActA ×Q is the set of transitions. Here, ActA is a set of actions of the form
x ← spawn(s, η) (spawn action), x ! (m, η) (send action), x ? (m, Y ) (receive action),
and rn(σ) (variable renaming) where x ∈ X , s ∈ Q, η : (X � {self})X , σ : X → X ,
Y ⊆ X , and m ∈ Msg . We say that A is finite if X , Msg , and Q are finite.

We define the semantics of a DCA as a word language over Σ. This language is the set
of linearizations of some set of MSCs and therefore yields a natural semantics in terms
of MSCs. Let A = (X,Msg , Q, Δ, ι, F ) be some DCA.

A configuration of A is a quadruple (P , state, proc, ch) where P ⊆ � is a non-
empty finite set of active processes (or identities), state : P → Q maps each active
process to its current state, proc : P → PX contains the identities that are known
to some process, and ch : (P × P) → (Msg × PX)∗ keeps track of the channels
contents. The configurations of A are collected in ConfA. We define a global transition
relation =⇒A ⊆ ConfA × (Σ ∪ {ε}) × ConfA as follows: For a ∈ Σ ∪ {ε},
c = (P , state, proc, ch) ∈ ConfA, and c′ = (P ′, state′, proc′, ch ′) ∈ ConfA, we let
(c, a, c′) ∈ =⇒A if there are p ∈ P and p̂ ∈ � with p �= p̂ (the process executing a and
the communication partner or spawned process), x ∈ X , s0 ∈ Q, η : (X � {self})X ,
Y ⊆ X , σ : X → X , and (s, b, s′) ∈ Δ such that state(p) = s, and one of the cases in
Figure 3 holds (c and c′ coincide for all values that are not specified below a line).

An initial configuration is of the form ({p}, p �→ ι, proc, (p, p) �→ ε) ∈ ConfA for
some p ∈ � where proc(p)[x] = p for all x ∈ X . A configuration (P , state, proc, ch)
is final if state(p) ∈ F for all p ∈ P , and ch(p, q) = ε for all (p, q) ∈ P × P . A
run of DCA A on a word w ∈ Σ∗ is an alternating sequence c0, a1, c1, . . . , an, cn of
configurations ci ∈ ConfA and letters ai ∈ Σ ∪ {ε} such that w = a1.a2 . . .an, c0
is an initial configuration and, for every i ∈ {1, . . . , n}, (ci−1, ai, ci) ∈ =⇒A.1 The
run is accepting if cn is a final configuration. The word language of A, denoted L(A),
is the set of words w ∈ Σ∗ such that there is an accepting run of A on w. Finally, the
(MSC) language of A is L(A) := {M ∈ M | Lin(poset(M)) ⊆ L(A)}. Figure 2
shows a finite DCA. It accepts the MSCs that look like M in Figure 1.

1 Here and elsewhere, u.w denotes the concatenation of words u and v. In particular, a.ε = a.
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spawn
a = spawn(p, p̂) b = x ← spawn(s0, η)

P ′ = P � {p̂}
state ′(p) = s′

state ′(p̂) = s0

ch ′(q, q′) = ε
if p̂ ∈ {q, q′}

proc′(p)[x] = p̂

proc′(p̂)[y] =

{
proc(p)[η[y]] if η[y] �= self

p if η[y] = self

for all y ∈ X

send
a = !(p, p̂) b = x ! (m, η) p̂ = proc(p)[x]

state ′(p) = s′ ch ′(p, p̂) = (m,γ).ch(p, p̂)

where γ ∈ PX with

γ[y] =

{
proc(p)[η[y]] if η[y] �= self

p if η[y] = self

receive
a = ?(p̂, p) b = x ? (m, Y ) p̂ = proc(p)[x]

state ′(p) = s′ there is γ ∈ PX such that[
ch(p̂, p) = ch ′(p̂, p).(m, γ)

∧ for all y ∈ Y, proc′(p)[y] = γ[y]

]

renaming
a = ε b = rn(σ)

state ′(p) = s′ proc′(p)[y] = proc(p)[σ(y)]
for all y ∈ X

Fig. 3. Global transition relation of a DCA

DCA actually generalize the classical setting of communicating finite-state machines
[5]. To simulate them, the starting process spawns the required number of processes and
broadcasts their identities to any other process.

4 Dynamic MSC Grammars

In this section, we introduce dynamic MSC grammars (DMGs). They are inspired by the
grammars from [11], but take into account that we want to implement them in terms of
DCA. We keep the main idea of [11] and use process identifiers to tag active processes
in a given context. Their concrete usage is different, though, and allows us to define
protocols such as the language of the DCA from Figure 2 in a more compact way.

Let us start with an example. Figure 4 depicts a DMG with non-terminals N =
{S, A, B}, start symbol S, process identifiers Π = {π1, π2}, and five rules. Any rule
has a left-hand side (a non-terminal), and a right-hand side (a sequence of non-terminals
and PMSCs). In a derivation, the left-hand side can be replaced with the right-hand
side. This replacement, however, depends on a more subtle structure of a rule. The
bottom left one, for example, is actually of the form A −→f α with α = M1.A.M2,
where f is a function that maps the first process of α, which is considered free, to the
process identifier π2. This indicates where α has to be inserted when replacing A in a
configuration. To illustrate this, consider a derivation as depicted in Figure 5, which is
a sequence of configurations, each consisting of an upper and a lower part. The upper
part is a named MSC [11], an MSC where some processes are tagged with process
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S −→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1

spawn start
π2

A

? !

B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S −→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1

spawn start
π2

? !

B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
B −→

⎛⎜⎜⎜⎝
π1 π2

? !

⎞⎟⎟⎟⎠

A −→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π2

spawn start
π2

A

? !

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A −→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π2

spawn start
π2

? !

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4. A dynamic MSC grammar

identifiers. The lower part, a sequence of PMSCs and non-terminals, is subject to further
evaluation. In the second configuration, which is of the form (M, A.β) (with named
MSC M), replacing A with α requires a renaming σ of processes: the first process of α,
tagged with π2, takes the identity of the second process of M, which also carries π2. The
other process of α is considered newly created and obtains a fresh identity. Thereafter,
A can be replaced with ασ so that we obtain a configuration of the form (M,M.γ),
M being a PMSC. The next configuration is (M ◦ M, γ) where the concatenation
M ◦ M is simply performed on the basis of process names and does not include
any further renaming. Process identifiers might migrate, though. Actually, M is a pair
(M, μ) where M is a PMSC and μ partially maps process identifiers π to process pairs
(p, q), allowing π to change its location from p to q during concatenation (cf. the third
configuration in Figure 5, where π2 has moved from the second to the third process).

Let us formalize the components of a DMG. Let Π be a nonempty and finite set of
process identifiers. A named MSC over Π is a pair (M, ν) where M is an MSC and
ν : Π → Proc(M). An in-out PMSC over Π is a pair (M, μ) where M is a PMSC
and μ : Π ⇀ Free(M) × Proc(M) is a partial mapping. We denote by nM the set of
named MSCs and by mP the set of in-out PMSCs over Π (we assume that Π is clear
from the context). We let M range over named MSCs and M over in-out PMSCs.

A derivation of a DMG is a sequence of configurations (M, β). The named MSC
M represents the scenario that has been executed so far, and β is a sequence of non-
terminals and in-out PMSCs that will be evaluated later, proceeding from left to right.
If β = M.γ for some in-out PMSC M, then the next configuration is (M ◦ M, γ).
However, the concatenation M ◦ M is defined only if M and M are compatible.
Formally, we define a partial operation ◦ : nM × mP ⇀ nM as follows: Let
(M1, ν1) ∈ nM and (M2, μ2) ∈ mP. Then, (M1, ν1) ◦ (M2, μ2) is defined if M1 ◦M2
is defined and contained in M, and, for all π ∈ Π such that μ2(π) = (p, q) is defined, we
have ν1(π) = p. If defined, we set (M1, ν1)◦(M2, μ2) := (M, ν) where M = M1◦M2,
ν(π) = ν1(π) if μ2(π) is undefined, and ν(π) = q if μ2(π) = (p, q) is defined.

Consider a configuration (M, A.γ). Replacing non-terminal A with a sequence α
includes a renaming of processes to make sure that those that are free in α and carry
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π2
π1

start

S

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1 π2

start

spawn start

A

? !

B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1 π2

start

spawn start

spawn start

? !

? !

B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1 π2

start

spawn start

spawn start

? !

? !

? !

ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 5. A derivation

identifier π have the same name as an existing process of M carrying π. I.e., processes
that occur free in α take identities of processes from M. To be able to distinguish
between free and bound processes in α, we introduce the notion of an expression. Let
N be a set of non-terminals, and Π be a set of process identifiers. An expression over
N and Π is a sequence α ∈ (mP ∪ N )∗ of the form u0.(M1, μ1).u1 . . . (Mk, μk).uk,
k ≥ 1 and ui ∈ N ∗, such that M(α) := M1 ◦ . . . ◦ Mk ∈ P. We let Proc(α) :=
Proc(M(α)), Free(α) := Free(M(α)), and Bound(α) := Bound(M(α)).

Definition 3. A dynamic MSC grammar (DMG) is a quadruple G = (Π,N , S,−→)
where Π and N and are nonempty finite sets of process identifiers and non-terminals,
S ∈ N is the start non-terminal, and −→ is a finite set of rules. A rule is a triple
r = (A, α, f) where A ∈ N is a non-terminal, α is an expression over N and Π with
Free(α) �= ∅, and f : Free(α) → Π is injective. We may write r as A −→f α.

In the sequel, let |G| := |Π |+
∑

A−→f α(|α| + |M(α)|) be the size of G (|α| denoting
the length of α as a word and |M(α)| the number of events of M(α)). Moreover, we
set Proc(G) :=

⋃
A−→f α Proc(α).

A renaming is a bijective mapping σ : � → �. For an in-out PMSC M =
(M, μ) with M = (P , (Ep)p∈P , <p, <s, <m, λ), we let Mσ = (Mσ, μσ) where
Mσ = (σ(P), (Eσ−1(p))p∈σ(P), <p, <s, <m, λ) and μσ(π) = (σ(p), σ(q)) if μ(π) =
(p, q) is defined; otherwise, μσ(π) is undefined. For a rule r = (A, α, f) with α =
u0.M1.u1 . . .Mk.uk, we set rσ := (A, ασ, fσ) where ασ = u0.M1σ.u1 . . .Mkσ.uk

and fσ(q) = f(σ−1(q)) for q ∈ Free(ασ).
A configuration of DMG G = (Π,N , S,−→) is a pair (M, β) where M ∈ nM and

β ∈ (mP ∪ N )∗. If β = ε, then the configuration is said to be final. Let ConfG be
the set of configurations of G. A configuration is initial if it is of the form ((Ip, ν), S)
for some p ∈ �, where Ip is depicted in Figure 1 and ν(π) = p for all π ∈ Π . The
semantics of G is given as the set of (named) MSCs appearing in final configurations
that can be derived from an initial configuration by means of relations

r=⇒G ⊆ ConfG×
ConfG (for every rule r) and

e=⇒G ⊆ ConfG × ConfG.
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Fig. 7. 2-realizable

– For configurations C = (M, A.γ) and C′ = (M, α.γ), M = (M, ν), and r ∈ −→,
we let C r=⇒G C′ if there is a renaming σ such that rσ = (A, α, f), ν(f(p)) = p
for all p ∈ Free(α), and Proc(M) ∩ Bound(α) = ∅.

– For configurations C = (M,M.γ) and C′ = (M′, γ), we let C e=⇒G C′ if M′ =
M ◦ M (in particular, M ◦M must be defined).

We define =⇒G to be
e=⇒G ∪

⋃
r∈−→

r=⇒G. The language of G is the set L(G) :=
{M ∈ M | C0 =⇒∗

G ((M, ν), ε) for some initial configuration C0 and ν}.

Let us formalize G = (Π,N , S,−→) from Figure 4. Given the PMSCs M1 and M2
from Figure 1, we let M1 = (M1, μ1), M2 = (M2, μ2), and M12 = (M1 ◦ M2, μ1)
be in-out PMSCs with μ1(π1), μ2(π1), μ2(π2) undefined and μ1(π2) = (1, 2). We have

S −→fS M1.A.M2.B S −→fS M12.B B −→fB M2

A −→fA M1.A.M2 A −→fA M12

where fS(1) = fB(1) = π1 and fA(1) = fB(2) = π2. Recall that =⇒∗
G is illustrated in

Figure 5. In a configuration, the part above a first non-terminal (if there is any) illustrates
a named MSC. Note that L(G) = L(A) for the DCA A from Figure 2.

5 Realizability of Dynamic MSC Grammars

Definition 4. Let L ⊆ M be an MSC language. We call L (proximity) realizable if
there is a DCA A such that L = L(A). For B ∈ �, we say that L is B-realizable if
there is a DCA A = (X,Msg , Q, Δ, ι, F ) such that L = L(A) and |X | ≤ B.

The MSC M from Figure 1, considered as a singleton set, is 3-realizable. It is not 2-
realizable. The singleton set from Figure 6 is not realizable, as process 3 receives a
message from an unknown process. Adding a message makes it 2-realizable (Figure 7).

Theorem 1. For a DMG G, one can decide in exponential time (wrt. |G|) if L(G) is
empty, and in doubly exponential time if L(G) is realizable.

Proof (sketch). Let G = (Π,N , S,−→) be a DMG. To answer the first question, we
build a tree automaton AG that accepts all parse trees that correspond to successful
derivations of G. Thus, we have L(AG) = ∅ iff L(G) = ∅. To answer the second
question, we build a tree automaton BG for those parse trees that give rise to realizable
MSCs (considering an MSC as a singleton set). One can show that L(G) is realizable
iff all MSCs in L(G) are realizable. Thus, L(G) is realizable iff L(AG) \ L(BG) = ∅.
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We restrict here to the more involved construction of the tree automaton BG. To
illustrate the idea of BG, we use the DMG G from Figure 4. The left-hand side of
Figure 8 depicts the parse tree t of G that corresponds to the derivation from Figure 5.
We, therefore, call t legal. Note that, for technical reasons, the function f from a rule
A −→f α is located at its non-terminal A. The crucial point of the construction is
to record, during a derivation, only a bounded amount of information on the current
communication structure of the system. A communication structure is a partition of the
set of process identifiers together with a binary relation that provides information on
what processes know of other processes. The right-hand side of Figure 8 depicts a run
of BG on t. States, which are assigned to nodes, are framed by a rectangle. A state is
hence either a pair of communication structures (together with a non-terminal, which
is omitted), or an element from mP that occurs in G. Our automaton works bottom-up.
Consider the upper right leaf of the run tree, which is labeled with its state M12. Sup-
pose that, when it comes to executing M12, the current communication structure C0
of the system contains two processes carrying π1 and π2, respectively, that know each
other (represented by the two edges). When we apply M12, the outcome will be a new
structure, C1, with a newly created process that collects process identifier π2. Hence-
forth, the process carrying π1 is known to that carrying π2, but the converse does not
hold. Names of nodes are omitted; instead, identical nodes are combined by a dotted
line. We conclude that applying A −→fA M12 has the effect of transforming C0 into
C1. Therefore, (C0, A, C1) is a state that can be assigned to the (A, fA)-labeled node,
as actually done in our example run. It is important here that the first structure C0 of
a state (C0, A, C1) is reduced meaning that it restricts to nodes carrying process iden-
tifiers. The structure C1, however, might keep some unlabeled nodes, but only those
that stem from previously labeled ones. Hence, the set of states of BG will be finite,
though exponential in |G|. Like elements of mP, a triple (C0, A, C1) can be applied to
a communication structure. E.g., the states that label the successors of the root trans-
form D0 into D1. It is crucial here that, at any time, communicating processes know
each other in the current communication structure. Now, we can reduce D1 to D2 by
removing the middle node, as it does not carry a process identifier nor does it arise from
an identifier-carrying node. Thus, (D0, S, D2) is the state assigned to the root. It is fi-
nal, as D0 consists of only one process, which carries all the process identifiers. A final
state at the root ensures that the run tree represents a derivation that starts in the initial
configuration gathering all process identifiers, and ends in a realizable MSC. ��

Corollary 1. For every DMG G = (Π,N , S,−→), L(G) is realizable iff L(G) is
(|Proc(G)| + a · |Π |)-realizable where a = max{|α| | A −→f α}.

A realizable DMG is not necessarily implementable as a finite DCA, as the behavior of
a single process need not be finite-state. We will determine a simple (but non-trivial)
class of DMGs that are finitely realizable. To guarantee finiteness, we restrict to right-
linear rules: a rule A −→f α is right-linear if α is of the form M or M.B. Our class is
inspired by local-choice HMSCs as introduced in [9]. Local-choice HMSCs are scenario
descriptions over a fixed number of processes in which every choice of the specification
is taken by a root process for that choice. This root is in charge of executing the minimal
event of every scenario, and the subsequent messages can then be tagged to inform other
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S, fS

M1

A, fA

M2

B, fB

M12

M2

π2π1

π1 π2

π2π1

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

π1 π2

C0

C1

D0

D1

D0

D2

π2−→

←−

π2−→←−

←−

Fig. 8. A legal parse tree of G and a run of BG

processes about the choice. Note that locality allows for a deadlock-free implementation
if the number of processes is fixed [7]. This is not guaranteed in our setting.

To adapt the notion of local-choice to DMGs, we essentially replace “process” in
HMSCs by “process identifier”. I.e., the root process that chooses the next rule to be
applied must come with a process identifier π that is active in the current rule. So, for a
right-linear rule r = A −→f (M, μ).α, we set Active(r) = f(Free(M)) ∪ dom(μ).

Definition 5. A DMG (Π,N , S,−→) is local if, for every rule r = A −→f α, r is
right-linear and M(α) has a unique minimal element. Moreover, if α = M.B, then
there is π ∈ Active(r) such that, for all B-rules B −→g β, M(β) has a unique
minimal element e satisfying g(loc(e)) = π.

Theorem 2. Let G be a local DMG such that L(G) is realizable. There is a finite DCA
A = (X,Msg , Q, Δ, ι, F ) such that L(A) = L(G). Hereby, |X | and |Msg | are poly-
nomial in |G|. Moreover, |Q| and |ActA| are exponential in |G|.

Proof (sketch). A state ofAwill locally keep track of the progress that has been made to
implement a rule. The root process may choose the next rule and inform its communica-
tion partners about this choice. The main difficulty in the implementation is the correct
identification of process identities in terms of process variables. We introduce a variable
xπ for each π ∈ Π and a variable xp for each p ∈ Proc(G). As G is right-linear, L(G)
is indeed |Π |+ |Proc(G)|-realizable. We pursue the following strategy of transmitting
process identities: When a process p is about to instantiate a non-terminal with a new
rule r, an arbitrary renaming σ is applied. We assume hereby, that the “free processes”
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of r are known to p, though it is not clear to which variables they belong. Thus, σ is
a simple guess, which has to be verified in the following. Indeed, the subsequent ex-
ecution can pass through only if that guess is correct. The reason is that identifiers of
free processes are held in local states and are sent in messages (in terms of events) so
that the receiving process can be sure to receive from the correct process. Yet, we need
to make sure that bound processes q are correctly identified. The idea is to enforce an
update of xq whenever a message is received from a process that “knows” q. ��

6 Future Work

A nice theory of regular sets of MSCs over a fixed number of processes has been estab-
lished [10] (a set of MSCs is regular if its linearization language is regular). We would
like to extend this notion to our setting. Preferably, any regular set of MSCs should have
an implementation in terms of a DCA. Note that, however, the linearizations of a set of
(dynamic) MSCs are words over an infinite alphabet. Another challenge is to extend
the class of DMGs that can be implemented by finite DCA beyond that of right-linear
specifications (and preferably without deadlock). Last, we think that logics (e.g., MSO
logic) may serve as an alternative specification language for DCA implementations.
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Abstract. In this paper, we deal with the problem of finding quasi-
independent sets in graphs. This problem is formally defined in three
versions, which are shown to be polynomially equivalent. The one that
looks most general, namely, f -QIS, consists of, given a graph and a non-
decreasing function f , finding a maximum size subset Q of the vertices
of the graph, such that the number of edges in the induced subgraph is
less than or equal to f(|Q|). For this problem, we show an exact solu-

tion method that runs within time O∗(2
d−27/23

d+1 n) on graphs of average
degree bounded by d. For the most specifically defined γ-QIS and k-QIS
problems, several results on complexity and approximation are shown,
and greedy algorithms are proposed, analyzed and tested.

1 Introduction and Preliminaries

The problem of finding in a graph a maximum size subgraph whose density differs
(being smaller or larger) from that of the whole graph, arises often in various
application contexts. For example, inputs may represent graphs, wherein dense
(with respect to the input) subgraphs are sought, as it is the case for call details
database mining [1], or protein-protein interaction networks analysis [8]. In other
cases, inputs may represent graphs from which one wants to extract maximum
size, sparser than the input graphs, as for example in visualization tools for stock
market interaction graphs [3].

In this paper we address the problem of finding in a graph a maximum size
subgraph whose sparsity is less than or equal to a value specified with the input.
In the case that appears as most general, the sparsity of a graph is measured by
means of a function bounding the number of edges in the sought subgraph and
depending on its size; we also study some special forms of this function, namely,
when it has the form of the ratio of the number of edges of the solution to the
number of edges in a complete graph of equal size, and also when it is a numeric
parameter of the input.

We denote by G a simple finite graph without loops, by V and E(G) its
vertex set and its edge set, respectively, and by n and m their respective sizes.
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Let A, B be two subsets of V . The induced subgraph by A in G is denoted by
G[A] and its edge set by E[A], respectively. The edge set with one extremity in
A and the other in B \ A will be denoted as E[A, B]. Clearly, if A and B are
disjoint then E[A, B] = E[B, A] and E[A, A] = ∅. The degree of A towards B is
equal to |E[A, B]| and is denoted by δB(A); when A is reduced to a singleton
{v}, we denote its degree in B by δB(v), or simply by δ(v) whenever B = V .
The maximum vertex degree in a graph G is denoted by ΔG or simply by Δ
if there is no risk of confusion. We also set dB(A) = 1/|A|

∑
v∈A δB(v), and

d = 1/n
∑

v∈V δ(v).
We tackle the following variants of the quasi-independent set problem.

Maximum f-Quasi-Independent Set (f -QIS, the general quasi-independent
set problem):
Given a graph G and a polynomially computable non-decreasing real function
f : N → R, find the largest possible Q ⊆ V such that |E[Q]| ≤ f(|Q|).

In the above definition, f is used as a sparsity specification for the induced
subgraph of the sought solution. We study in particular two variants of f -QIS,
denoted by γ-QIS and k-QIS, respectively, formally defined in what follows.

In the first one, sparsity specification is given in the special form of the ratio
of the number of edges in the subgraph induced by the quasi-independent set
over the number of edges induced by a complete graph of the same size:

Maximum γ-Quasi-Independent Set (γ-QIS):
Given a graph G and a real γ, 0 ≤ γ ≤ 1, find the largest possible Q ⊆ V such
that |E[Q]| ≤ γ

(|Q|
2

)
.

It is easy to see that γ-QIS is not hereditary (a problem is said hereditary if its
solutions satisfy some non-trivial hereditary property). Indeed, given a feasible
solution for γ-QIS, the induced subgraph G[Q′] of a subset Q′ of Q may violate
the sparsity condition |E(Q′)| � γ|Q′|(|Q′| − 1)/2.

In the second restricted variant of the problem considered in the paper, we
simply seek for a maximum vertex subset of the graph with no more than a
constant number of edges having both extremities in it:

Maximum k-Quasi-Independent Set (k-QIS):
Given a graph G and a positive integer k, find the largest possible Q ⊆ V such
that |E[Q]| ≤ k.

Clearly, k-QIS is hereditary. In fact, it is easy to see that k-QIS belongs to the
family of node-deletion problems, first defined in [10] and further studied in [11].
Formally, a node-deletion problem consists of finding, given a graph G and a
non-trivial hereditary property P , the minimum number of vertices of G that
one has to delete from G, in order to have P satisfied in the remaining graph.
In [11], it is proved that the decision version of such problems is NP-complete
even for planar graphs.

For f ≡ 0 (resp., γ = 0 and k = 0), Q is simply a maximum independent set
in G, while for f : f(|Q|) ≥ m (resp., for γ ≥ 2m/n(n− 1) and k ≥ m), Q = V
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is a trivial solution; being a direct generalization of max independent set,
the f -, γ- and k-QIS problems are obviously inapproximable within better than
O(n1−ε), unless P = NP [13].

In [1] essentially the same problem as γ-QIS is addressed, formulated as the
research, given a graph and 0 ≤ γ ≤ 1, of a maximum subgraph of sparsity
(defined as the ratio of the number of its edges over the number of edges of
the complete graph of the same size) at least γ; any solution to this problem
can be obtained as the complementary of a quasi-independent set of sparsity at
most 1 − γ in the complementary of the input graph. The authors present an
algorithm equivalent to the greedy algorithm for γ-QIS, analyzed later in this
paper; however, they focus in implementation issues on very large instances and
they don’t attempt to analyze its performance. To our knowledge, the k-QIS
problem has been specifically formulated for the first time in [9]. The authors
call it the k-edge-in subgraph problem. Nevertheless, in this paper the problem
is not addressed, but simply mentioned as related to other subgraph problems
on which it focuses.

A kind of dual of the maximum quasi-independent set problem is to search,
given a graph and a positive integer k, for the sparsest - or densest - (maximal)
subgraph with exactly k vertices. This kind of problems have been extensively
studied during the last years under the names of “k-sparsest” or “k-densest
subgraph” problem (see, for example, [2,6,9]).

The remainder of the paper is organized as follows. Section 2 gives several
bounds to the optimal solutions for γ-QIS. Section 3 tackles a specific polynomial
case for the three variants of max quasi-independent set and proves its NP-
hardness in bipartite graphs. In Section 4 an exact solution method with non-
trivial worst-case running time for the general f -QIS problem is presented and
analyzed. As we discuss here this method applies also to other combinatorial
optimization problems. Finally, in Section 5 approximation results are proved
for both γ-QIS (Subsection 5.1) and k-QIS (Subsection 5.2).

In what follows, when we indifferently refer to either one of the quasi-indepen-
dent set versions defined above, we use the term max quasi inpendent set

instead. Also, when no confusion arises, we sometimes use f -, or γ-, or k-QIS in
a twofold way: either to denote the problem itself, or to denote a feasible solution
of the corresponding problem. Also, due to limits to paper’s length some of the
results are given without proofs. They can be found in [4].

2 Solution Properties and Bounds

As it is already mentioned, in general, γ-QIS is not a hereditary problem; just
consider an instance where the graph is an edge plus some isolated vertices,
and γ is the smallest possible for having the whole graph as a trivial solution.
Obviously, the sparsity condition will be violated for any strict part of the solu-
tion containing the edge. However, γ-QIS is still a weakly hereditary problem,
in the sense given by the following lemma that will be used later.
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Lemma 1. Let Q be a γ-QIS in G, of size q. Then, for any k ≤ q, there exists
in G some γ-QIS R(k) ⊆ Q, of size k.

Next lemma gives some bounds for the solutions of the γ-QIS.

Lemma 2. Let Q be any non-trivial γ-quasi-independent set (0 < γ < m/
(
n
2

)
),

with size q, not contained in any γ-quasi-independent set of size q + 1. Let
ϑ(Q) = minv∈V \Q{δQ(v)}, let Q∗ �= Q be an optimal solution for γ-QIS, q∗

be its size, and for any vertex-subset P , let d(P ) be the average degree of the
subgraph induced by P (recall that we denote d(V ) by d). Finally, let αmin be the
size of a smallest maximal independent set (minimum independent dominating
set) in G. Then: (1) q∗ ≤ αminΔ; (2) q∗

q ≤ Δ
ϑ(Q) ; (3) q ≥ n − Δ

γ ; (4) q∗ ≤ Δ
γ ;

(5) q∗ ≤
√

dn
γ ; (6) q∗ ≤ d(Q∗)+2

γ − 1.

3 Complexity Results for max quasi-independent set in
Various Graph-Classes

The following proposition claims that all three variants of max quasi inpend-

ent set dealt in this paper are closely interrelated.

Proposition 1. f -QIS, γ-QIS and k-QIS are polynomially equivalent with re-
spect to their exact solution.

We now tackle max quasi-independent set in bipartite graphs. The following
result characterizes its complexity.

Theorem 1. max quasi-independent set is NP-hard on bipartite graphs.

There are several hereditary graph classes the definitions of which imply direct
conditions on their sparsity, independently of the measure used; take for instance
complete graphs, split graphs or trees. Such proprieties, together with heredity,
can be exploited in order to polynomially solve the k-QIS (in fact, by Propo-
sition 1, any of the three variants of max quasi-independent set). In the
sequel, we present a polynomial algorithm for k-QIS, that works on split graphs.

Let S = (I, C, E) be a split graph, where I is an independent set, C is a
clique, and E is the set of edges between I and C plus the edges of the clique
C. The following lemma holds.

Lemma 3. There is an optimal k-QIS on a split graph S = (I, C, E) such that
it contains the independent set I.

Based upon Lemma 3, the following theorem holds:

Theorem 2. max quasi-independent set is polynomial on split graphs.

The optimal solution Q∗ to k-QIS on a split graph S = (I, C, E) can be found
in polynomial time. Indeed, by Lemma 3, Q∗ can be initialized to I. Next, we
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consider the vertices of the clique C in increasing order with respect to their
degree, that is in increasing order with respect to the number of edges between
any vertex c ∈ C to its neighbors in I. Using this order, we add vertices to Q∗

until the number of edges of S[Q∗] becomes greater than k. The proof for this
greedy selection is straightforward.

4 Exact Solution of max quasi-independent set

In this section we give an exact algorithm for f -QIS with non-trivial worst-case
running time. Let us note that to our knowledge, no algorithm that optimally
solves max quasi-independent set with running time better than O∗(2n) is
known. Also, as we will see in the sequel, the scope of the results of this section
is even larger than the max quasi-independent set case. Indeed, the method
described in what follows concerns a broad class of optimization problems, those
that “match vertex branching”, defined in Definition 1, below.

4.1 Problems That Match Vertex Branching

The intuition behind the exact solution method for max quasi-independent

set, lies in the possibility of organizing the solution space of the problem in a
tree-like manner. So we need first to formally characterize the class of optimiza-
tion graph-problems for which such an organization is possible. This is done in
Definition 1.

Definition 1. We say that a graph problem Π matches vertex branching, if for
any graph instance G(V, E), for any v ∈ V , there exist some sets of parameters
Si, some subsets v ∈ Hi ⊂ V and two functions f1, f2 bounded above by some
polynomial of n, such that

optΠ(G,S3) ≤ max {f1(optΠ(G[V \ H1],S1)), f2(optΠ(G[V \ H2],S2))}

where optΠ(G,S) denotes the value of the optimal solution of Π for G with
parameter set S.

Notice that, with appropriate choice for f1, f2, it is possible to replace max by
min, or to make a single reduction.

Several problems whose aim is to find a specific subset in a given graph may
be generalized as a problem that matches vertex branching. For example, for the
Maximum Weighted Independent Set: Given a graph G(V, E) and a weight
function w : V → R, we search for an independent set S maximizing

∑
v∈S w(v),

we have opt(G, w) ≤ max {opt(G[V \ v], w), opt(G[V \ N [v]], w) + w(v)}. Obvi-
ously, this remains true for the non-weighted version, i.e., whenever w = 1.

Also the f -QIS can be reformulated as a problem that matches vertex branch-
ing, in the following manner: Given a graph G(V, E), two constants w0, q0 and
a weight function w : V → R, we search for a maximal size vertex subset Q ⊆ V
whose induced graph G[Q] = (Q, R) verifies |R|+w0+

∑
v∈Q w(v) ≤ f(|Q|+q0).
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Let w+ ≡ w + 1 on N(v) = {u : {u, v} ∈ E} and w+ ≡ w elsewhere. Then, it is
opt(G, w0, q0, w) ≤ max{opt(G[V \v], w0, q0, w), 1+opt(G[V \v], w0 +w(v), q0 +
1, w+)}, and the formulation is completed by setting initially q0 = w0 = 0, w ≡ 0.

Informally, w0 and q0 stand, respectively, for the number of edges and of
vertices that are already in the solution, while w(v) represents the number of
edges that will be added, if one decides to keep v.

Notice that, as it can be shown by straightforward recurrence, any problem
that matches vertex branching can be solved within time O(2n × poly(n, k)),
where |Si| < k. Obviously, this is useless for problems where a specific subgraph
is sought, since they can be solved in O∗(2n).

However, an exact algorithm for f -QIS based upon vertex branching would
be interesting if its running time T (n) could be shown to be in 2φ(Δ)n with φ
some increasing function bounded above by 1 for any Δ. Intuitively, a possibility
for such an improvement lies in finding an efficient vertex branching rule for
fast reduction of the remaining graph’s degree, and showing fast (polynomial)
algorithms for computing a maximum f -QIS problem in bounded degree graphs.

4.2 Bottom-Up Algorithms

We give below a general scheme, using vertex branching for finding a maximum
f -QIS in a graph G. Recall that by Proposition 1 such a method can be used
for computing an optimal solution for any of the three variants of the max

quasi-independent set problem, with a polynomial overhead. This scheme,
parameterized by a graph G, some integer function f , two integers q0 and w0,
and some vertex weight function w, can be written as follows:

procedure exactrec(G(V, E), f , q0, w0, w)
in, not in: integer;

if (V = ∅) then
if (w0 ≤ f(q0)) then

return q0
else

return −∞
endif;

endif;
pick v ∈ V (G) such that δV (v) = max;
not in ← exactrec(G[V \ v], f , q0, w0, w);
for all u neighbors of v

w(u) ← w(u) + 1
endfor;
in ← exactrec(G[V \ v], f , q0 + 1, w0 + w(v), w);
return max{ in, not in};

end exactrec;
procedure f QIS(G(V, E): graph, f : integer function)

return exactrec(G, f , 0, 0, 0);
endf QIS
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As noted at the end of the previous subsection, the running time for an exact
method based upon the above scheme can be improved if the f -QIS problem is
shown polynomial on graphs of bounded small degree graphs.

Lemma 4. Assume that some problem that matches vertex branching can be
computed on graphs whose average degree is at most d − 1, d ∈ N, within time
O∗(2αdn) for a given αd ≥ 1/2. Then, it can be computed on graphs whose
average degree is at least d−1 within time O∗(2αdn+βd(m−(d−1)n/2)), where βd =
2(1−αd)

d+1 .

As a straightforward consequence of the above lemma, the following proposition
holds:

Proposition 2. Assume that some problem that matches vertex branching can
be computed on graphs with average degree at most d−1, d ∈ N, in time O∗(2αdn)
for a given αd ≥ 0.5. Then, it may be computed on graphs whose average degree
is at most d within time O∗(2αd+1n), where αd+1 = dαd+1

d+1 .

Direct consequence of Proposition 2, is the following theorem:

Theorem 3. Any problem that is polynomial on totally disconnected graphs and
matches vertex branching can be solved on graphs of average degree at most d
with running time O∗(2dn/(d+1)).

Notice that this bound is tight for some problems that fit Definition 1. If the
problem has the worst possible recurrence, then:

opt(G, w) = max {f1(opt(G \ {v}, w1)), f2(opt(G \ {v}, w2))}

For instance, this is the case of maximum quasi-independent set. If we either
make a greedy choice for the branching, i.e., if we always branch on a vertex
of maximal degree, or we select an independent set of maximal size, then there
exists an instance where the running time is at least 2

d
d+1 n. To see this, consider

for any δ ≤ d the graph Gδ that is composed of n/(d + 1) cliques of size δ + 1.
T (G1) = 2n/(d+1). The algorithm removes one vertex in each connected compo-
nent; we so have T (Gδ) = 2n/(d+1)T (Gδ−1) and finally T (Gd) = 2dn/(d+1). On
the other hand, α(Gd) = n/(d + 1) (one vertex per clique).

Unfortunately, there is little hope for generalizing this corollary, since, unless
P = NP no problem is polynomial on graphs of average degree bounded above
by some d > 0, unless it belongs to P (just add some independent set to decrease
d). Furthermore, restricting the instance set to graphs without isolated vertices,
or even to connected graphs, does not help much, since the greedy branching
may disconnect the graph as well. On the other hand, some improved results can
be obtained for graphs of bounded maximum degree.

Many problems that match vertex branching are in fact well-known to be
polynomial on graphs of maximum degree 2, for instance max independent

set (or equivalently max clique and min vertex cover). For some dif-
ficult problems like max quasi-independent set this remains true, but it
is not straightforward. The corresponding result is stated in Subsection 4.3
(Proposition 8).
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Proposition 3. Any problem that is polynomial on graphs of maximum degree
2 and matches vertex branching can be solved on graphs of average degree d with
running time O∗(2dn/6). This bound is tight for d = 3 and a greedy choice of the
branching.

Proposition 4. Any problem that is polynomial on graphs of maximum degree
2 and matches vertex branching can be solved on graphs of average degree that
rounds up to d ≤ 2 with running time O∗(2

d−1
d+1 n). If the average degree is d, this

bound is tight for a greedy choice of the branching.

We now study the performance of bottom-up algorithms for problems that match
vertex branching, on graphs of bounded maximum degree. We first deal with the
case of graphs of maximum degree 3, followed by the general case of graphs with
bounded maximum degree.

Proposition 5. Any problem that matches vertex branching and is polynomial
on graphs of maximum degree 2 can be solved on graphs of maximum degree 3
within time O∗(23n/8).

A rather immediate corollary is that any problem that matches vertex branching
and is polynomial on graphs of maximum degree 2 can be solved on graphs of
maximum degree Δ with running time O∗(2n(1−(5/8)Δ−2)). Unfortunately, for
Δ ≥ 4, result from Proposition 4 overlap this one.

In case we can only make the weaker hypothesis that the problem is poly-
nomial on totally disconnected graphs (in fact, we need a somewhat stronger
hypothesis, namely, polynomiality on collection of bounded cliques), it is still
possible to improve the O∗(23n/4) result from Theorem 3, if we know that our
graph has maximum degree 3 instead of average degree 3 or less:

Proposition 6. Any problem that matches vertex branching and is polynomial
on collections of cliques of bounded cardinality can be solved on graphs of maxi-
mum degree 3 within time O∗(22n/3).

Proposition 7. Any problem that matches vertex branching and is polynomial
on graphs of maximum degree 2 can be solved on graphs of average degree d ≤ 3
with running time O∗(221n/46).

Thus, the following theorem holds:

Theorem 4. Any problem that matches vertex branching and is polynomial on
graphs of maximum degree 2 can be solved on graphs of average degree bounded
above by d within time O∗(2

d−27/23
d+1 n), for any d ≥ 3.

4.3 Applying the Bottom-Up Scheme for Exact Solution of the
f-QIS Problem

Next proposition establishes the possibility to use a vertex branching method
directly derived from the bottom-up scheme, for finding an optimal f -QIS within
the time stated in Theorem 4.
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Proposition 8. max quasi-independent set is polynomial on graphs of max-
imum degree 2 or less.

From the discussion made in this Section, the following result is immediate.

Theorem 5. Optimal max quasi-independent set-solutions in graphs of av-
erage degree ≤ d can be found in time O∗(2

d−27/23
d+1 n).

For instance, max quasi-independent set on graphs of average degree 3 can be
solved in time O∗(2

21
46 n), while in graphs of average degree 4, the corresponding

time is O∗(2
13
23n).

5 Approximation Algorithms

5.1 Approximation of γ-QIS

When γ is bounded from below by a fixed constant. In this case, things
are rather optimistic, since the following result holds.

Theorem 6. Consider the γ-QIS problem when γ is bounded below by a positive
constant c. For any fixed k ≤ Δ, a solution of size at least k/Δ the optimal can
be computed within polynomial time.

Corollary 1. If γ is bounded below by some positive constant, then γ-QIS is
polynomial for graphs with bounded degree.

A greedy algorithm. In this subsection, a greedy algorithm for computing a γ-
QIS is discussed; the solution is initialized to some independent set S, and at each
step a vertex of minimum degree to the current solution is being inserted; the
insertions keep on, until the largest solution, respecting the sparsity specification,
is reached.

procedure γ QIS (G(V, E): graph, 0≤γ≤1: real, S⊆V : some independent set)
Q ← S;
Q′ ← S;
while (|Q′| ≤ |V |)

pick v ∈ V \ Q′ such that δQ′(v) = min (break ties arbitrarily)
Q′ ← Q′ ∪ {v};
if (|E[Q′]| ≤ γ

(|Q′|
2

)
) and (|Q| ≤ |Q′|)

Q ← Q′;
endif;

endwhile;
return(Q);

end γ QIS

Obviously, γ QIS always returns a solution, if S is set to some γ-QIS (any inde-
pendent set in G, for instance the empty set, would do).
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As it has already been mentioned, the non-hereditary character of γ−QIS is
reflected to the algorithm by the fact that it may some Q′ produced during the
execution of the algorithm be infeasible while after some later vertex-insertions
it may become feasible. This non-hereditary character of the problem is a major
difficulty for a more refined analysis of algorithm γ QIS. The following lemma
gives a lower bound on the size of the solutions returned by this algorithm.

Lemma 5. Let q be the size of the γ-QIS returned by the algorithm, where S
has been initialized to some independent vertex set. It holds that q > α−1√

1−γ
where

α is the size of Q during the last step of the algorithm’s execution before the first
edges insertion.

Combining Lemma 5 and item 1 of Lemma 2, we finally get:

Theorem 7. For the γ-QIS problem it is possible to find in polynomial time a
solution of size q achieving approximation ratio q∗

q ≤ Δαmin
α−1

√
1 − γ, where q∗

is the size of an optimal quasi-independent set and αmin the size of a minimum
independent dominating set of the input graph. This ratio tends to Δ

√
1 − γ.

Algorithm γ QIS has been run on 20 randomly generated graphs of each size (10,
20 and 30 vertices; edges in an instance have been generated with a probability p,
0.1 < p < 0.5). Optimal solutions have been computed with the exact method
of Section 4. The following table gives a summary of the experimental results
obtained. It contains for every value of γ, the worst, best and average ratios and
the percentage of optima returned by the algorithm.

γ value Worst ratio Best ratio Average ratio % of optimal solutions
0.2d(G) 0.667 1 0.947 66.667%
0.4d(G) 0.7 1 0.969 75%
0.6d(G) 0.75 1 0.983 83.333%
0.8d(G) 0.905 1 0.996 93.333%

1/n 0.667 1 0.96 75%
1/
√

n 0.778 1 0.98 85%
log(n)/n 0.778 1 0.973 76.667%

One may remark that the more the density of the sought subgraph comes
close to the density of the instance, the best the quality of the returned solution
is.

Moderately exponential approximation for γ-QIS. We finish the approx-
imation section for γ-QIS by showing how it can be approximated within any
constant ratio by exponential algorithms with running time better than that of
an exact computation.

Theorem 8. For any k ≥ 1, it is possible to compute a γ-QIS of size at least
1/k of the optimal, within time O∗(2(log2(k+1)−k/(k+1) log2 k)n).

The following result exhibits a further link between γ-QIS and max indepen-

dent set.
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Theorem 9. Given some algorithm that computes an exact solution for max

independent set on G within time O∗(cn), for some constant c, a γ-QIS of
size at least 1 + γn/2 can be computed within time O∗(cn).

5.2 Approximation of k-QIS

In this section we deal with polynomial approximation of k-QIS. We propose a
greedy algorithm for that purpose, based upon the same idea as γ QIS presented
above; however, k-QIS being a hereditary problem, the algorithm stops as soon
as it finds the first vertex whose insertion violates the condition on the number
of edges allowed in the solution.

Procedure k QIS(G(V, E): Graph, k: integer≥ 0, S: some independent set)
Q ← S;
while (|E(Q)| ≤ k)

pick v ∈ V \ Q such that δQ(v) = min (break ties arbitrarily)
Q ← Q ∪ {v};

endwhile
return(Q \ {v});

end k QIS

Theorem 10. For the k-QIS problem it is possible to find in polynomial time a
solution of size q achieving approximation ratio:

q∗

q
≤ α∗θ(S) + kθ(Q)

αθ(Q) + k
≤ max

{
α∗

α
, θ(Q)

}
where q∗ is the size of the optimal, α∗ is the size of a maximum independent set
in G and α the size of some independent set.

Recall that the best approximation ratio (as function of Δ) known for max

independent set is (Δ + 2)/3 and is guaranteed by the natural greedy max

independent set-algorithm [7].
Suppose first that θ(Q) ≥ 3. Then, by item 2 of Lemma 2, the approximation

ratio of algorithm k QIS is bounded from above by Δ/3. Assume now that θ(Q) ≤
3. Then, by Theorem 10, the approximation ratio of the algorithm is bounded
above by max

{
α∗
α , 6

}
≤ α∗

α ≤ Δ+2
3 , and the following holds.

Corollary 2. k-QIS is approximable in polynomial time within ratio (Δ + 2)/3.

Another set of tests have been implemented in order to experimentally observe
the behavior of performance of algorithm k QIS presented for several values of
k. As for the case of γ-QIS, we have used the exact method of Section 4 to
compute optimal solutions of the test instances. Instances have been generated
randomly, following a probability p, 0.1 < p < 0.5, for an edge to be present in
the instance graph. The tests indicate that the algorithm performs fairly well
in small instances. A summary of the obtained results is given in the following
table.
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k value Worst ratio Best ratio Average ratio % of optimal solutions
2
√

m 0.93 1 0.99 90%√
n 0.83 1 0.98 80%

log(m) 0.83 1 0.98 80%
log(n) 0.83 1 0.97 75%
m/2 0.96 1 0.99 92.5%
m/3 0.96 1 0.99 95%
n/2 0.90 1 0.99 90%
n/3 0.90 1 0.99 87.5%
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Abstract. In this paper, we study turn-based quantitative multiplayer
non zero-sum games played on finite graphs with reachability objectives.
In this framework each player aims at reaching his own goal as soon as
possible. We prove existence of finite-memory Nash (resp. secure) equi-
libria in multiplayer (resp. two-player) games.

Keywords: Nash equilibrium, Turn-based quantitative game, Secure
equilibrium.

1 Introduction

General framework. The construction of correct and efficient computer systems
(hardware or software) is recognized as an extremely difficult task. To support
the design and verification of such systems, mathematical logic, automata the-
ory [10] and more recently model-checking [7] have been intensively studied. The
model-checking approach, which is now an important part of the design cycle
in industries, have proved its efficiency when applied to systems which can be
accurately modeled as a finite-state automaton. In contrast, the application of
these techniques to computer software, complex systems like embedded systems
or distributed systems has been less successful. This could be partly explained
by the following reasons: classical automata-based models do not faithfully cap-
ture the complex interactive behavior of modern computational systems that
are usually composed of several interacting components, also interacting with
an environment that is only partially under control. Recent research works show
that it is suitable to generalize automata models used in the classical approach
to verification, with the more flexible and mathematically deeper game-theoretic
framework [13,14].

Game theory meets automata theory. The basic framework that extends com-
putational models with concepts from game theory is the so-called two-player
zero-sum games played on graphs [8]. Many problems in verification and design
of reactive systems can be modeled with this approach, like modeling controller-
environment interactions. Given a model of a system interacting with a hostile
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environment, given a control objective (like preventing the system to reach some
bad configurations), the controller synthesis problem asks to build a controller
ensuring that the control objective is enforced whatever the environment will do.
Two-player zero-sum games played on graphs are adequate models to solve this
problem [15]. Moves of Player 1 model actions of the controller whereas moves
of Player 2 model the uncontrollable actions of the environment, and a winning
strategy for Player 1 is an abstract form of a control program that enforces the
control objective.

The controller synthesis problem is suitable to model purely antagonist in-
teractions between a controller and a hostile environment. However in order to
study more complex systems with more than two components whose objectives
are not necessarily antagonists, we need multiplayer and non zero-sum games to
model them adequately. Moreover, we are not looking for winning strategies, but
rather try to find relevant notions of equilibria, for instance the famous notion
of Nash equilibria [13]. On the other hand, only qualitative objectives have been
considered so far to specify, for example, that a player must be able to reach a
target set of states in the underlying game graph. But, in line with the previous
point, we also want to express and solve games for quantitative objectives such
as forcing the game to reach a particular set of states within a given time bound,
or within a given energy consumption limit. In summary, we need to study equi-
libria for multiplayer non zero-sum games played on graphs with quantitative
objectives. This article provides some new results in this research direction.

Related work. Several recent papers have considered two-player zero-sum games
played on finite graphs with regular objectives enriched by some quantitative
aspects. Let us mention some of them: games with finitary objectives [6], games
with prioritized requirements [1], request-response games where the waiting times
between the requests and the responses are minimized [11,16], and games whose
winning conditions are expressed via quantitative languages [2].

Other works concern qualitative non zero-sum games. The notion of secure
equilibrium, an interesting refinement of Nash equilibrium, has been introduced
in [5]. It has been proved that a unique secure equilibrium always exists for two-
player non zero-sum games with regular objectives. In [9], general criteria ensuring
existence of Nash equilibria, subgame perfect equilibria (resp. secure equilibria)
are provided for n-player (resp. 2-player) games, as well as complexity results.

Finally, we mention reference [3] that combines both the quantitative and the
non zero-sum aspects. It is maybe the nearest related work compared to us, how-
ever the framework and the objectives are pretty different. In [3], the authors study
games played on graphs with terminal vertices where quantitative payoffs are as-
signed to the players. These games may have cycles but all the infinite plays form
a single outcome (like in chess where every infinite play is a draw). In that paper,
criteria are given that ensure existence of Nash (resp. subgame perfect) equilibria
in pure and memoryless strategies.

Our contribution. We here study turn-based quantitative multiplayer non zero-
sum games played on finite graphs with reachability objectives. In this framework
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each player aims at reaching his own goal as soon as possible. We focus on exis-
tence results for two solution concepts: Nash equilibrium and secure equilibrium.
We prove existence of Nash (resp. secure) equilibria in n-player (resp. 2-player)
games. Moreover, we show that these equilibria can be chosen with finite memory.
Our results are not a direct consequence of the existing results in the qualitative
framework, they require some new proof techniques. To the best of our knowl-
edge, this is the first general result about existence of equilibria in quantitative
multiplayer games played on graphs.

Organization of the paper. Section 2 is dedicated to definitions. We present the
games and the equilibria we study. In Section 3 we first prove an existence result
for Nash equilibria and provide the finite-memory characterization. Existence of
secure equilibria in two-player games is then established. Detailed proofs and ex-
amples can be found in [4].

2 Preliminaries

2.1 Definitions

We consider here quantitative games played on a graph where all the players have
reachability objectives. It means that, given a certain set of vertices Goali, each
player i wants to reach one of these vertices as soon as possible.

This section is mainly inspired by reference [9].

Definition 1. An infinite turn-based quantitative multiplayer reachability game
is a tuple G = (Π, V, (Vi)i∈Π , v0, E, (Goali)i∈Π) where

• Π is a finite set of players,
• G = (V, (Vi)i∈Π , v0, E) is a finite directed graph where V is the set of vertices,
(Vi)i∈Π is a partition of V into the state sets of each player, v0 ∈ V is the initial
vertex, and E ⊆ V × V is the set of edges, and
• Goali ⊆ V is the goal set of player i.

We assume that each vertex has at least one outgoing edge. The game is played as
follows. A token is first placed on the vertex v0. Player i, such that v0 ∈ Vi, has to
choose one of the outgoing edges of v0 and put the token on the vertex v1 reached
when following this edge. Then, it is the turn of the player who owns v1. And so on.

A play ρ ∈ V ω (respectively a history h ∈ V +) of G is an infinite (respectively
a finite) path through the graph G starting from vertex v0. Note that a history
is always non empty because it starts with v0. The set H ⊆ V + is made up of all
the histories of G. A prefix (respectively proper prefix ) p of a history h = h0 . . . hk

is a finite sequence h0 . . .hl, with l ≤ k (respectively l < k), denoted by p ≤ h
(respectively p < h). We similarly consider a prefix p of a play ρ, denoted by p < ρ.

We say that a play ρ = ρ0ρ1 . . . visits a set S ⊆ V (respectively a vertex v ∈ V )
if there exists l ∈ N such that ρl is in S (respectively ρl = v). The same terminol-
ogy also stands for a history h. Similarly, we say that ρ visits S after (respectively
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in) a prefix ρ0 . . . ρk if there exists l > k (respectively l ≤ k) such that ρl is in S.
For any play ρ we denote by Visit(ρ) the set of i ∈ Π such that ρ visits Goali. The
set Visit(h) for a history h is defined similarly. The function Last returns, given a
history h = h0 . . . hk, the last vertex hk of h, and the length |h| of h is the number k
of its edges1.

For any play ρ = ρ0ρ1 . . . of G, we note Costi(ρ) the cost of player i, defined by:

Costi(ρ) =
{

l if l is the least index such that ρl ∈ Goali,
+∞ otherwise.

We note Cost(ρ) = (Costi(ρ))i∈Π the cost profile for the play ρ. The aim of each
player i is to minimize the cost he has to pay, i.e. reach his goal set Goali as soon
as possible.

A strategy of player i in G is a function σ : V ∗Vi → V assigning to each his-
tory hv ending in a vertex v of player i a next vertex σ(hv) such that (v, σ(hv))
belongs to E. We say that a play ρ = ρ0ρ1 . . . of G is consistent with a strategy σ
of player i if ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such that ρk ∈ Vi. The same termi-
nology is used for a history h of G. A strategy profile of G is a tuple (σi)i∈Π where
σi is a strategy for player i. It determines a unique play of G consistent with each
strategy σi, called the outcome of (σi)i∈Π and denoted by 〈(σi)i∈Π〉.

A strategy σ of player i is memoryless if σ depends only on the current vertex,
i.e. σ(hv) = σ(v) for all h ∈ H and v ∈ Vi. More generally, σ is a finite-memory
strategy if the equivalence relation ≈σ on H defined by h ≈σ h′ if σ(hδ) = σ(h′δ)
for all δ ∈ V ∗Vi has finite index. In other words, a finite-memory strategy is a
strategy that can be implemented by a finite automaton with output. A strategy
profile (σi)i∈Π is called memoryless or finite-memory if each σi is a memoryless
or a finite-memory strategy, respectively.

We now introduce the notion of Nash equilibrium and secure equilibrium.

Definition 2. A strategy profile (σi)i∈Π of a game G is a Nash equilibrium if for
all player j ∈ Π and for all strategy σ′

j of player j, we have:

Costj(ρ) ≤ Costj(ρ′)

where ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′
j , (σi)i∈Π\{j}〉.

This definition means that player j (for all j ∈ Π) has no incentive to devi-
ate since he increases his cost when using σ′

j instead of σj . A strategy σ′
j such

that Costj(ρ) > Costj(ρ′) is called a profitable deviation for player j with respect
to (σi)i∈Π . In this case either player j pays an infinite cost for ρ and a finite cost
for ρ′ (ρ′ visits Goalj , but ρ does not), or player j pays a finite cost for ρ and a
strictly lower cost for ρ′ (ρ′ visits Goalj earlier than ρ does).

In order to define the notion of secure equilibrium2 we first need to associate
an appropriate binary relation ≺j on cost profiles with each player j ∈ Π . Given
two cost profiles (xi)i∈Π and (yi)i∈Π :
1 Note that the length is not defined as the number of vertices.
2 Our definition naturally extends the notion of secure equilibrium proposed in [5] to the

quantitative reachability framework. A longer discussion comparing the two notions
can be found in [4].
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(xi)i∈Π ≺j (yi)i∈Π iff (xj > yj) ∨ (xj = yj ∧ ∀k xk ≤ yk ∧ ∃k xk < yk) .

We then say that player j prefers (yi)i∈Π to (xi)i∈Π . In other words, player j
prefers a cost profile to another either if he can decrease his own cost, or if he can
increase the costs of all his opponents, among which one is strictly increased, while
keeping his own cost.

Definition 3. A strategy profile (σi)i∈Π of a game G is a secure equilibrium if for
all players j ∈ Π, there does not exist a strategy σ′

j of player j such that:

Cost(ρ) ≺j Cost(ρ′)

where ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′
j , (σi)i∈Π\{j}〉.

In other words, player j ∈ Π (for all j ∈ Π) has no incentive to deviate, with
respect to the relation≺j. Note that any secure equilibrium is a Nash equilibrium.
A strategy σ′

j such that Cost(ρ) ≺j Cost(ρ′) is called a ≺j-profitable deviation for
player j with respect to (σi)i∈Π .

Definition 4. The type of a Nash or a secure equilibrium (σi)i∈Π in a reachability
game G is the set of players j ∈ Π such that the outcome ρ of (σi)i∈Π visits Goalj.
It is denoted by Type((σi)i∈Π).

In other words, Type((σi)i∈Π) = Visit(ρ).
The previous definitions are illustrated on a simple two-player game in the tech-

nical report [4].
The questions studied in this article are the following ones:

Problem 1. Given G a quantitative multiplayer reachability game, does there ex-
ist a Nash equilibrium (respectively a secure equilibrium) in G?

Problem 2. Given a Nash equilibrium (respectively a secure equilibrium) in a
quantitative multiplayer reachability game G, does there exist a memoryless or a
finite-memory Nash equilibrium (respectively secure equilibrium) with the same
type?

We provide partial positive answers in Section 3. These problems have been in-
vestigated in the qualitative framework (see [9]). In [4], we show that Problems 1
and 2 can not be reduced to problems on qualitative games.

2.2 Unraveling

In the proofs of this article we need to unravel the graph G = (V, (Vi)i∈Π , v0, E)
from the initial vertex v0, which ends up in an infinite tree, denoted by T . This tree
can be seen as a new graph where the set of vertices is the set H of histories of G,
the initial vertex is v0, and a pair (hv, hvv′) ∈ H×H is an edge of T if (v, v′) ∈ E.
A history h is a vertex of player i in T if Last(h) ∈ Vi, and it belongs to the goal
set of player i if Last(h) ∈ Goali.
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We denote by T the related game. This game T played on the unraveling T of G
is equivalent to the game G played on G in the following sense. A play (ρ0)(ρ0ρ1)
(ρ0ρ1ρ2) . . . in T induces a unique play ρ = ρ0ρ1ρ2 . . . in G, and conversely. Thus,
we denote a play in T by the respective play in G. The bijection between plays
of G and plays of T allows us to use the same cost function Cost, and to transform
easily strategies in G to strategies in T (and conversely).

We also need to study the tree T limited to a certain depth d ≥ 0: we note
Truncd(T ) the truncated tree of T of depth d and Truncd(T ) the finite game played
on Truncd(T ). More precisely, the set of vertices of Truncd(T ) is the set of histo-
ries h ∈ H of length ≤ d; the edges of Truncd(T ) are defined in the same way as
for T except that for the histories h of length d, there exists no edge (h, hv). A
play ρ in Truncd(T ) corresponds to a history of G of length equal to d. The no-
tions of cost and strategy are defined exactly like in the game T , but limited to
the depth d. For instance, a player pays an infinite cost for a play ρ (of length d)
if his goal set is not visited by ρ.

3 Nash Equilibria and Secure Equilibria

From now on we will often use the term game to denote a quantitative multiplayer
reachability game according to Definition 1.

3.1 Existence of a Nash Equilibrium

In this section we positively solve Problem 1 for Nash equilibria.

Theorem 5. In every quantitative multiplayer reachability game, there exists a
finite-memory Nash equilibrium.

From the previous theorem we can find a Nash equilibrium such that each player
pays either an infinite cost, or a cost bounded by |Π | · 2 · |V |.

The proof of this theorem is based on the following ideas. By Kuhn’s theorem
(Theorem 6), there exists a Nash equilibrium in the game Truncd(T ) played on the
finite tree Truncd(T ), for any depth d. By choosing an adequate depth d, Propo-
sition 8 will enable to extend this Nash equilibrium to a Nash equilibrium in the
infinite tree T , and thus in G. Let us detail these ideas.

We first recall Kuhn’s theorem [12]. A preference relation is a total reflexive
transitive binary relation.

Theorem 6 (Kuhn’s Theorem). Let Γ be a finite tree and G a game played
on Γ . For each player i ∈ Π, let �i be a preference relation on cost profiles. Then
there exists a strategy profile (σi)i∈Π such that for every player j ∈ Π and every
strategy σ′

j of player j in G we have

Cost(ρ′) �j Cost(ρ)

where ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′
j , (σi)i∈Π\{j}〉.
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Note that Cost(ρ′) �j Cost(ρ) means that player j prefers the cost profile of the
play ρ than the one of ρ′, or they are equivalent for him.

Corollary 7. Let G be a game and T be the unraveling of G. Let Truncd(T ) be the
game played on the truncated tree of T of depth d, with d ≥ 0. Then there exists a
Nash equilibrium in Truncd(T ).

Proof. For each player j ∈ Π , we define the relation �j on cost profiles in the fol-
lowing way: let (xi)i∈Π and (yi)i∈Π be two cost profiles, we say that (xi)i∈Π �j

(yi)i∈Π iff xj ≥ yj . It is clearly a preference relation which captures the Nash
equilibrium. The strategy profile (σi)i∈Π of Kuhn’s theorem is then a Nash equi-
librium in Truncd(T ). ��

The next proposition states that it is possible to extend a Nash equilibrium in
Truncd(T ) to a Nash equilibrium in the game T , if the depth d is equal to (|Π |+
1)·2·|V |. We obtain Theorem 5 as a consequence of Corollary 7 and Proposition 8.

Proposition 8. Let G be a game and T be the unraveling of G. Let Truncd(T ) be
the game played on the truncated tree of T of depth d = (|Π |+ 1) · 2 · |V |. If there
exists a Nash equilibrium in the game Truncd(T ), then there exists a finite-memory
Nash equilibrium in the game T .

The proof of Proposition 8 roughly works as follows. Let (σi)i∈Π be a Nash
equilibrium in Truncd(T ). A well-chosen prefix αβ, with β being a cycle, is first
extracted from the outcome ρ of (σi)i∈Π . The outcome of the required Nash equi-
librium (τi)i∈Π in T will be equal to αβω. As soon as a player deviates from this
play, all the other players form a coalition against him to punish him in a way that
this deviation is not profitable for him. These ideas are detailed in the next two
lemmas whose complete proofs can be found in [4, Section C].

In Lemma 10 we consider the qualitative two-player zero-sum game Gj played
on the graph G, where player j plays in order to reach his goal set Goalj , against
the coalition of all other players that wants to prevent him from reaching his goal
set. Player j plays on the vertices from Vj and the coalition on V \ Vj . We have
the following proposition (see [8]).

Proposition 9. Let Gj = (V, Vj , V \ Vj , E, Goalj) be the qualitative two-player
zero-sum reachability game associated to player j. Then player j has a memoryless
strategy νj that enables him to reach Goalj within |V | − 1 edges from each vertex v
from which he wins the game Gj . On the contrary, the coalition has a memoryless
strategy ν−j that forces the play to stay in V \Goalj from each vertex v from which
it wins the game Gj.

The play ρ of Lemma 10 is illustrated in Figure 1.

Lemma 10. Let d ≥ 0. Let (σi)i∈Π be a Nash equilibrium in Truncd(T ) and ρ the
(finite) outcome of (σi)i∈Π . Suppose that ρ has a prefix αβγ, where β contains at
least one vertex, such that
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Visit(α) = Visit(αβγ)
Last(α) = Last(αβ)
|αβ| ≤ l · |V |
|αβγ| = (l + 1) · |V |

for some l ≥ 1.
Let j ∈ Π be such that α does not visit Goalj. Consider the qualitative two-player
zero-sum game Gj = (V, Vj , V \Vj , E, Goalj). Then for all histories hu of G consis-
tent with (σi)i∈Π\{j} and such that |hu| ≤ |αβ|, the coalition of the players i �= j
wins the game Gj from u.

Condition Visit(α) = Visit(αβγ) means that if Goali is visited by αβγ, it has al-
ready been visited by α. Condition Last(α) = Last(αβ) means that β is a cycle.

This lemma means in particular that the players i �= j can play together to
prevent player j from reaching his goal set Goalj , in case he deviates from the
play αβ (as αβ is consistent with (σi)i∈Π\{j}). We denote by ν−j the memoryless
winning strategy of the coalition. For each player i �= j, let νi,j be the memoryless
strategy of player i in G induced by ν−j .

Lemma 11 states that one can define a Nash equilibrium (τi)i∈Π in the game T ,
based on the Nash equilibrium (σi)i∈Π in the game Truncd(T ).

Lemma 11. Let d ≥ 0. Let (σi)i∈Π be a Nash equilibrium in Truncd(T ) and αβγ
be a prefix of ρ = 〈(σi)i∈Π〉 as defined in Lemma 10. Then there exists a Nash equi-
librium (τi)i∈Π in the game T . Moreover (τi)i∈Π is finite-memory, and
Type((τi)i∈Π) = Visit(α).

Proof. Let Π = {1, . . . , n}. As α and β end in the same vertex, we can consider
the infinite play αβω in the game T . Without loss of generality we can order the
players i ∈ Π so that

∀i ≤ k Costi(αβω) < +∞ (α visits Goali)
∀i > k Costi(αβω) = +∞ (α does not visit Goali)

where 0 ≤ k ≤ n. In the second case, notice that ρ could visit Goali (but after the
prefix αβγ).

The Nash equilibrium (τi)i∈Π required by Lemma 11 is intuitively defined as
follows. First the outcome of (τi)i∈Π is exactly αβω . Secondly the first player j who
deviates from αβω is punished by the coalition of the other players in the following
way. If j ≤ k and the deviation occurs in the tree Truncd(T ), then the coalition
plays according to (σi)i∈Π\{j} in this tree. It prevents player j from reaching his
goal set Goalj faster than in αβω . And if j > k, the coalition plays according
to (νi,j)i∈Π\{j} (given by Lemma 10) so that player j does not reach his goal set
at all.

We begin by defining a punishment function P on the vertex set H of T such
that P (h) indicates the first player j who has deviated from αβω, with respect to h.
We write P (h) = ⊥ if no deviation has occurred. For h ∈ V ∗ and v ∈ Vi we let:
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P (hv) =

⎧⎨⎩
⊥ if P (h) = ⊥ and hv < αβω ,
i if P (h) = ⊥ and hv �< αβω ,
P (h) otherwise (P (h) �= ⊥) .

The Nash equilibrium (τi)i∈Π is then defined as follows: let h be a history ending
in a vertex of Vi,

τi(h) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v if P (h) = ⊥ (h < αβω); such that hv < αβω,
arbitrary if P (h) = i,
νi,P (h)(h) if P (h) �= ⊥, i and P (h) > k,
σi(h) if P (h) �= ⊥, i, P (h) ≤ k and |h| < d,
arbitrary otherwise (P (h) �= ⊥, i, P (h) ≤ k and |h| ≥ d)

(1)

where arbitrary means that the next vertex is chosen arbitrarily (in a memoryless
way). Clearly the outcome of (τi)i∈Π is the play αβω , and Type((τi)i∈Π) is equal
to Visit(α) (= Visit(αβ)).

It remains to prove that (τi)i∈Π is a finite-memory Nash equilibrium in the
game T . The end of this proof can be found in [4, Section C]. ��

We can now proceed to the proof of Proposition 8.

Proof (of Proposition 8). Let Π = {1, . . . , n} and d = (n+1) · 2 · |V |. Let (σi)i∈Π

be a Nash equilibrium in the game Truncd(T ) and ρ its outcome.
To be able to use Lemmas 10 and 11, we consider the prefix pq of ρ of minimal

length such that

∃ l ≥ 1 |p| = (l − 1) · |V |
|pq| = (l + 1) · |V |
Visit(p) = Visit(pq) . (2)

The following statements are true.

(i) l ≤ 2 · n + 1.

(ii) If Visit(p) � Visit(ρ), then l < 2 · n + 1.

Indeed the first statement results from the fact that in the worst case, the play ρ
visits the goal set of a new player in each prefix of length i · 2 · |V |, 1 ≤ i ≤ n,
i.e. |p| = n · 2 · |V |. It follows that pq exists as a prefix of ρ, because the length d
of ρ is equal to (n + 1) · 2 · |V | by hypothesis. Thus Visit(p) ⊆ Visit(ρ). Suppose
that there exists i ∈ Visit(ρ) \ Visit(p), then ρ visit Goali after the prefix pq by
Equation (2). The second statement follows easily.

Given the length of q, one vertex of V is visited at least twice by q. More pre-
cisely, we can write

pq = αβγ with Last(α) = Last(αβ)
|α| ≥ (l − 1) · |V |
|αβ| ≤ l · |V | . (3)
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|V |

2·|V |

(l−1)·|V |

l·|V |

(l+1)·|V |

d

α

β

γ

ρ

p

q

Fig. 1. Slicing of the play ρ in the tree Truncd(T )

In particular, |p| ≤ |α|. See Figure 1. We have Visit(α) = Visit(αβγ), and |αβγ| =
(l + 1) · |V |.

As the hypotheses of Lemmas 10 and 11 are verified, we can apply them in this
context to get a Nash equilibrium (τi)i∈Π in the game T with Type((τi)i∈Π) =
Visit(α). ��
Proposition 8 asserts that given a game G and the game Truncd(T ) played on
the truncated tree of T of a well-chosen depth d, one can lift any Nash equilib-
rium (σi)i∈Π of Truncd(T ) to a Nash equilibrium (τi)i∈Π of G. The proof of Propo-
sition 8 states that the type of (τi)i∈Π is equal to Visit(α). We give in [4, Section C]
an example that shows that, with this approach, it is impossible to preserve the
type of the lifted Nash equilibrium (σi)i∈Π .

3.2 Nash Equilibrium with Finite Memory

In this section we study the kind of strategies we can impose for a Nash equilib-
rium in a quantitative multiplayer reachability game. We show that given a Nash
equilibrium, we can construct another Nash equilibrium with the same type such
that all its strategies are finite-memory. We then answer to Problem 2 for Nash
equilibria.

Theorem 12. Let (σi)i∈Π be a Nash equilibrium in a quantitative multiplayer
reachability game G. Then there exists a finite-memory Nash equilibrium of the
same type in G.

The proof is based on two steps. The first step constructs from (σi)i∈Π another
Nash equilibrium (τi)i∈Π with the same type such that the play 〈(τi)i∈Π〉 is of
the form αβω with Visit(α) = Type((σi)i∈Π). This is possible by first eliminating
unnecessary cycles in the play 〈(σi)i∈Π〉 and then locating a prefix αβ such that β
is a cycle that can be infinitely repeated.

The second step transforms the Nash equilibrium (τi)i∈Π into a finite-memory
one. For that, we consider the strategy profile (τi)i∈Π limited to the tree T trun-
cated at a well-chosen depth.

The detailed proof of Theorem 12 can be found in [4, Section D].
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3.3 Existence of a Secure Equilibrium

In this section we positively answer to Problem 1 for secure equilibria in two-player
games.

Theorem 13. In every quantitative two-player reachability game, there exists a
finite-memory secure equilibrium.

The proof of this theorem is based on the same ideas as for the proof of Theorem 5
(existence of a Nash equilibrium). By Kuhn’s theorem (Theorem 6), there exists a
secure equilibrium in the game Truncd(T ) played on the finite tree Truncd(T ), for
any depth d. By choosing an adequate depth d, we are able to extend this secure
equilibrium to a secure equilibrium in the infinite tree T , and thus in G. The details
of the proof are given in [4, Section E].

4 Conclusion and Perspectives

In this paper, we proved the existence of finite-memory Nash (resp. secure) equi-
libria for quantitative multiplayer (resp. two-player) reachability games played on
finite graphs. We do believe that our results remain true when the model is en-
riched by allowing positive weights on edges (instead of weight 1 on each edge).
Indeed the idea is to replace any edge with a weight c ≥ 1 by a path of length c
composed of c new edges, and use the results proved in this article.

There are several interesting directions for further research. First, we intend to
investigate the existence of secure equilibria in the n-player framework. Secondly,
we would like to check whether our results remain true when the model is enriched
by allowing a n-tuple of non-negative weights on edges (one weight by player).
Then, we will also investigate deeper the size of the memory needed in the equi-
libria. This could be a first step towards a study of the complexity of computing
equilibria with certain requirements, in the spirit of [9]. We also intend to look for
existence results for subgame perfect equilibria. Finally we would like to address
these questions for other objectives such as Büchi or request-response.

Acknowledgments. The authors are grateful to Jean-FrançoisRaskin and Hugo
Gimbert for useful discussions.
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Abstract. A language L is prefix-closed if, whenever a word w is in L,
then every prefix of w is also in L. We define suffix-, factor-, and subword-
closed languages in an analogous way, where by subword we mean
subsequence. We study the quotient complexity (usually called state
complexity) of operations on prefix-, suffix-, factor-, and subword-closed
languages. We find tight upper bounds on the complexity of the subword-
closure of arbitrary languages, and on the complexity of boolean oper-
ations, concatenation, star, and reversal in each of the four classes of
closed languages. We show that repeated application of positive closure
and complement to a closed language results in at most four distinct
languages, while Kleene closure and complement gives at most eight.

Keywords: automaton, closed, factor, language, prefix, quotient, regular
operation, state complexity, subword, suffix, upper bound.

1 Introduction

The state complexity of a regular language L is the number of states in the
minimal deterministic finite automaton (dfa) recognizing L. The state complexity
of an operation in a subclass C of regular languages is defined as the worst-case
size of the minimal dfa accepting the language resulting from the operation,
taken as a function of the quotient complexities of the operands in C.

The first results for the state complexity of reversal are due to Mirkin [21]
(1966), and of union, concatenation, and star, to Maslov [20] (1970). For a general
discussion of state complexity see [5,27] and the reference lists in those papers.
In 1994 the complexity of concatenation, star, left and right quotients, reversal,
intersection, and union in regular languages was examined in detail in [28]. The
complexity of operations was also considered in several subclasses of regular
languages: unary [23,28], finite [27], cofinite [3], prefix-free [14], suffix-free [13],
and ideal [7]. These studies show that the complexity can be significantly lower
in a subclass than in the general case. Here we examine state complexity in the
classes of prefix-, suffix-, factor-, and subword-closed regular languages.
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There are several reasons for considering closed languages. Subword-closed lan-
guages were studied in 1969 [12], and also in 1973 [25]. Suffix-closed languages
were considered in 1974 [11], and later in [10,15,26]. Factor-closed languages, also
called factorial, have received some attention, for example, in [2,19]. Subword-
closed languages were studied in [22]. The state complexities of the prefix-, suffix-,
and factor-closure of a language were examined in [17]. Prefix-closed languages
play a role in predictable semiautomata [8]. All four classes of closed languages
were examined in [1], and decision problems for closed languages were studied
in [9]. A language is a left ideal (respectively, right, two-sided, all-sided ideal) if
L = Σ∗L, (respectively, L = LΣ∗, L = Σ∗LΣ∗, and L = Σ∗ L, where Σ∗ L
is the shuffle of Σ∗ with L). Closed languages are related to ideal languages as
follows [1]: A non-empty language is a right (left, two-sided, all-sided) ideal if
and only its complement is a prefix (suffix, factor, subword)-closed language.
Closed languages are defined by binary relations “is a prefix of” (respectively,
“is a suffix of”, “is a factor of”, “is a subword of”) [1], and are special cases of
convex languages [1,25]. The fact that the four classes of closed languages are
related to each other permits us to obtain many complexity results using similar
methods.

2 Quotient Complexity

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by Σ.
A word is any element of Σ∗, and ε is the empty word. A language over Σ is any
subset of Σ∗. The cardinality of a set S is denoted by |S|. If w = uxv for some
u, v, x in Σ∗, then u is a prefix of w, v is a suffix of w, and x is a factor of w.
If w = w0a1w1 · · ·anwn, where a1, . . . , an ∈ Σ, and w0, . . . , wn ∈ Σ∗, then the
word a1 · · · an is a subword of w.

A language L is prefix-closed if w ∈ L implies that every prefix of w is also
in L. In a similar way, we define suffix-, factor-, and subword-closed languages.
A language is closed if it is prefix-, suffix-, factor-, or subword-closed.

The following set operations are defined on languages: complement (L = Σ∗ \
L), union (K ∪ L), intersection (K ∩ L), difference (K \ L), and symmetric
difference (K ⊕ L). A general boolean operation with two arguments is denoted
by K ◦L. We also define the product, usually called concatenation or catenation,
(KL = {w ∈ Σ∗ | w = uv, u ∈ K, v ∈ L}), (Kleene) star (L∗ =

⋃
i≥0 Li), and

positive closure (L+ =
⋃

i≥1 Li). The reverse wR of a word w in Σ∗ is defined
as follows: εR = ε, and (wa)R = awR. The reverse of a language L is denoted
by LR and is defined as LR = {wR | w ∈ L}.

Regular languages over an alphabet Σ are languages that can be obtained
from the set of basic languages {∅, {ε}} ∪ {{a} | a ∈ Σ}, using a finite number
of operations of union, product, and star. Such languages are usually denoted
by regular expressions. If E is a regular expression, then L(E) is the language
denoted by that expression. For example, E = (ε ∪ a)∗b denotes the language
L(E) = ({ε} ∪ {a})∗{b}. We usually do not distinguish notationally between
regular languages and regular expressions; the meaning is clear from the context.
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A deterministic finite automaton (dfa) is a quintuple D = (Q, Σ, δ, q0, F ),
where Q is a set of states, Σ is the alphabet, δ : Q × Σ → Q is the transition
function, q0 is the initial state, and F is the set of final or accepting states.
A nondeterministic finite automaton (nfa) is a quintuple N = (Q, Σ, η, Q0, F ),
where Q, Σ, and F are as in a dfa, η : Q×Σ → 2Q is the transition function and
Q0 ⊆ Q is the set of initial states. If η also allows ε, that is, η : Q×(Σ∪{ε}) → 2Q,
we call N an ε-nfa.

Our approach to quotient complexity follows closely that of [5]. Since state
complexity is a property of a language, it is more appropriately defined in
language-theoretic terms. The left quotient, or simply quotient, of a language
L by a word w is the language Lw = {x ∈ Σ∗ | wx ∈ L}. The quotient complex-
ity of L is the number of distinct quotients of L, and is denoted by κ(L).

Quotients of regular languages [4,5] can be computed as follows: First, the
ε-function Lε of a regular language L is Lε = ∅ if ε �∈ L and Lε = ε if ε ∈ L.
The quotient by a letter a in Σ is computed by induction: ba = ∅ if b ∈ {∅, ε} or
b ∈ Σ and b �= a, and ba = ε if b = a; (L)a = La; (K ∪L)a = Ka ∪La; (KL)a =
KaL ∪ KεLa; (L∗)a = LaL∗. The quotient by a word w in Σ∗ is computed
by induction on the length of w: Lε = L and Lwa = (Lw)a. A quotient Lw is
accepting if ε ∈ Lw; otherwise it is rejecting.

The quotient automaton of a regular language L is D = (Q, Σ, δ, q0, F ), where
Q = {Lw | w ∈ Σ∗}, δ(Lw, a) = Lwa, q0 = Lε = L, and F = {Lw | (Lw)ε = ε}.
This is a minimal dfa for L; so quotient complexity of L equals the state comple-
xity of L. However, there are some advantages to using quotients [5]. To simplify
the notation, we write (Lw)ε as Lε

w. Whenever convenient, we use the formulas
given in the next proposition to establish upper bounds on quotient complexity.

Proposition 1 ([4,5]). If K and L are regular languages, then

(L)w = Lw; (K ◦ L)w = Kw ◦ Lw. (1)

(KL)w = KwL ∪KεLw ∪ (
⋃

w=uv
u,v∈Σ+

Kε
uLv). (2)

(L∗)ε = ε ∪ LL∗, (L∗)w = (Lw ∪
⋃

w=uv
u,v∈Σ+

(L∗)ε
uLv)L∗ for w ∈ Σ+. (3)

3 Closure Operations

Let � be a partial order on Σ∗; the �-closure of a language L is the language
�L = {x ∈ Σ∗ | x � w for some w ∈ L}. We use ≤, #, $, 	 for the relations
“is a prefix of”, “is a suffix of”, “is a factor of”, “is a subword of”, respectively.

The worst-case quotient complexity for closure was studied by Kao, Ramper-
sad, and Shallit [17]. For suffix-closure, the bound 2n−1 holds in case L does not
have the empty quotient. We add the case where L has the empty quotient; here
the bound is 2n−1. Subword-closure was previously studied by Okhotin [22], but
tight upper bounds were not established. Our next theorem solves this problem.
For the sake of completeness, we provide all proofs.
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Theorem 1 (Closure Operations). Let n ≥ 2. Let L be a regular language
over an alphabet Σ with κ(L) = n. Let ≤L, �L, �L, �L be the prefix-, suffix-,
factor-, and subword-closure of L, respectively. Then
1. κ(≤L) ≤ n, and the bound is tight if |Σ| ≥ 1;
2. κ(�L) ≤ 2n−1 if L does not have empty quotient and κ(�L) ≤ 2n−1 otherwise,

and both bounds are tight if |Σ| ≥ 2;
3. κ(�L) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2;
4. κ(�L) ≤ 2n−2 + 1, and the bound is tight if |Σ| ≥ n− 2.

Proof. 1. Given a language L recognized by dfa D, to get the dfa for its prefix-
closure ≤L, we need only make each non-empty state accepting. Thus κ(≤L) ≤ n.
For tightness, consider the language L = {ai | i ≤ n − 2}. We have κ(≤L) = n.

2. Having a quotient automaton of a language L, we can construct an nfa for
its suffix-closure by making each non-empty state initial. The equivalent dfa has
at most 2n − 1 states if L does not have the empty quotient (the empty set of
states cannot be reached), and at most 2n−1 states otherwise.

To prove tightness, consider the language L defined by the quotient automaton
shown in Fig. 1. Construct an nfa for the suffix-closure of L, by making all states
initial. We show that the corresponding subset automaton has 2n − 1 reachable
and pairwise inequivalent states. We prove reachability by induction on the size

a
30 1 2

b b b b

...

a

a a a a

b
n − 1

Fig. 1. Quotient automaton of a language L which does not have ∅

of subsets. The basis, |S| = n, holds since {0, 1, . . . , n − 1} is the initial state.
Assume that each set of size k is reachable, and let S be a set of size k − 1. If S
contains 0 but does not contain 1, then it can be reached from the set S ∪ {1}
of size k by b. If S contains both 0 and 1, then there is an i such that i ∈ S and
i + 1 /∈ S. Then S can be reached from {(s− i) mod n | s ∈ S} by ai. The latter
set contains 0 and does not contain 1, and so is reachable. If a non-empty S does
not contain 0, then it can be reached from {s−minS | s ∈ S}, which contains 0,
by amin S . To prove inequivalence notice that the word an−i is accepted by the
nfa only from state i for all i = 0, 1, . . . , n− 1. It turns out that all the states in
the subset automaton are pairwise inequivalent.

Now consider the case where a language has the empty quotient. Let L be
defined by the dfa of Fig. 2. Remove state n − 1 and all transitions going to it,
and then construct an nfa as above. The proof of reachability of all non-empty
subsets of {0, 1, . . . , n− 2} is the same as above. The empty set is reached from
{0} by b. For inequivalence, the word (ab)n is accepted only from state 0, and
the word an−1−i(ab)n is accepted only from state i for i = 1, 2, . . . , n− 2.
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n − 1 30 1 2

b b b

...

a

a a a a a

b

b

a, b

n − 2

Fig. 2. Quotient automaton of a language L which has ∅

3. Suppose we have the quotient automaton of a language L. To find an nfa for
the factor closure �L, we make all non-empty states of the quotient automaton
both accepting and initial, and delete the empty state. Hence the bound is 2n−1.
The language L defined by the quotient automaton of Fig. 2 meets the bound.

4. To get an ε-nfa for the subword-closure �L from the quotient automaton
of L, we remove the empty state (if there is no empty state, then �L = Σ∗),
and add an ε-transition from state p to state q whenever there is a transition
from p to q in the quotient automaton. Since the initial state can reach every
non-empty state by ε-transitions, no other subset containing the initial state can
be reached. Hence there are at most 2n−2 + 1 reachable subsets.

To prove tightness, if n = 2, let Σ = {a, b}; then L = a∗ meets the bound.
If n ≥ 3, let Σ = {a1, . . . , an−2}, and L =

⋃
ai∈Σ ai(Σ \ {ai})∗. Thus L con-

sists of all words over Σ in which the first letter occurs exactly once. Let K
be the subword-closure of L. Then K = L ∪ {w ∈ Σ∗ | at least one letter is
missing in w}. For each boolean vector b = (b1, b2, . . . , bn−2), define the word
w(b) = w1w2 · · ·wn−2, in which wi = ε if bi = 0 and wi = ai if bi = 1. Con-
sider ε, and each word a1w(b). All the quotients of K by these 2n−2 + 1 words
are distinct: For each binary vector b, we have a1a2 · · ·an−2 ∈ Kε \ Ka1w(b).
Let b and b′ be two different vectors with bi = 0 and b′i = 1. Then we have
a1a2 · · · ai−1ai+1ai+2 · · · an−2 ∈ Ka1w(b) \ Ka1w(b′). Thus all quotients are dis-
tinct, and so κ(K) ≥ 2n−2 + 1. ��

4 Basic Operations on Closed Languages

Now we study the quotient complexity of operations on closed languages. For
regular languages, the following bounds are known [20,21,28]: mn for boolean
operations, m2n−2n−1 for product, 2n−1+2n−2 for star, and 2n for reversal. The
bounds for closed languages are smaller in most cases. The bounds for boolean
operations and reversal follow from the results on ideal languages [7].

Theorem 2 (Boolean Operations). Let K and L be prefix-closed (or factor-
closed, or subword-closed) languages with κ(K) = m and κ(L) = n. Then
1. κ(K ∩ L) ≤ mn− (m + n− 2),
2. κ(K ∪ L), κ(K ⊕ L) ≤ mn,
3. κ(K \ L) ≤ mn− (n − 1).
For suffix-closed languages, κ(K◦L) ≤ mn. All bounds are tight if |Σ| ≥ 2 except
for the union and difference of suffix-closed languages where |Σ| ≥ 4 is required.
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Proof. The complement of a prefix-closed (suffix-, factor-, or subword-closed)
language is a right (respectively, left, two-sided, all-sided) ideal. We get all the
results using De Morgan’s laws and the results from [7]. ��

Remark 1. If L is prefix-closed, then either L = Σ∗ or L has the empty quotient.
Moreover, each quotient of L is either accepting or empty.

Remark 2. For a suffix-closed language L, if v is a suffix of w then Lw ⊆ Lv. In
particular, Lw ⊆ Lε = L for each word w in Σ∗.

Theorem 3 (Product). Let m, n ≥ 2. Let K and L be closed languages with
κ(K) = m, κ(L) = n, and let k be the number of accepting quotients of K.
1. If K and L are prefix-closed, then κ(KL) ≤ (m + 1) · 2n−2.
2. If K and L are suffix-closed, then κ(KL) ≤ (m − k)n + k.
3. If K and L are both factor- or both subword-closed, then κ(KL) ≤ m + n− 1.
The first two bounds are tight if |Σ| ≥ 3, and the third bound is tight if |Σ| ≥ 2.
If κ(K) = 1 or κ(L) = 1, then κ(KL) = 1.

Proof. If m = 1, then K = ∅ or K = Σ∗; so KL = ∅ or KL = Σ∗, for if L �= ∅,
then ε ∈ L. Thus κ(KL) = 1. The case n = 1 is similar. Now let m, n ≥ 2.

1. If K and L are prefix-closed, then ε ∈ K and by Remark 1 both languages
have the empty quotient. The quotient (KL)w is given by Equation (2). If Kw is
accepting, then L is always in the union, and there are 2n−2 non-empty subsets
of non-empty quotients of L that can be added. Since there are m− 1 accepting
quotients of K, there are (m− 1)2n−2 such quotients of KL. If Kw is rejecting,
then 2n−1 subsets of non-empty quotients of L can be added.

For tightness, consider prefix-closed languages K and L defined by the quo-
tient automata of Fig. 3 (if n = 2, then L = {a, c}∗). Construct an ε-nfa for

a

qm−2 qm−1q1 q2q0

a, b a, b a, b a, b a, b, c

cc c c c

b, c a, b, cc c c

a, ba, ba, ba
0 1 2 n − 2 n − 1

...

... b

Fig. 3. Quotient automata of prefix-closed languages K and L

the language KL from these quotient automata by adding an ε-transition from
states q0, q1, . . . , qm−2 to state 0. The initial state of the nfa is q0, and the ac-
cepting states are 0, 1, . . . , n−2. We show that there are (m+1) ·2n−2 reachable
and pairwise inequivalent states in the corresponding subset automaton.
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State {q0, 0} is the initial state, and each state {q0, 0, i1, i2, . . . , ik}, where
1 ≤ i1 < i2 < · · · < ik ≤ n − 2, is reached from state {q0, 0, i2 − i1, . . . , ik − i1}
by abi1−1. For each subset S of {0, 1, . . . , n−2} containing 0, each state {qi}∪S
with 1 ≤ i ≤ m − 1 is reached from {q0} ∪ S by ci. If a non-empty S does not
contain 0, then {qm−1} ∪S is reached from {qm−1}∪ {s−min S | s ∈ S}, which
contains 0, by aminS . State {qm−1, n− 1} is reached from {qm−1, n− 2} by b.

To prove inequivalence, notice that the word bn is accepted by the quotient
automaton for L only from state 0, and the word an−1−ibn only from state i
(1 ≤ i ≤ n−2). It turns out that two different states {qm−1}∪S and {qm−1}∪T
are inequivalent. It follows that states {qi} ∪ S and {qi} ∪ T are inequivalent as
well. States {qi}∪S and {qj}∪T with i < j can be distinguished by cm−1−jbnabn.

2. If K and L are suffix-closed, then, by Remark 2, for each word w in Σ∗ and
u, v in Σ+, we have (KL)w = KwL ∪ KεLw ∪ (

⋃
w=uv Kε

uLv) = KwL ∪ Lx for
some suffix x of w. If Kw is a rejecting quotient, there are at most (m−k)n such
quotients. If Kw is accepting, then ε ∈ Kw, and since Lx ⊆ Lε = L ⊆ KwL, we
have (KL)w = KwL. There are at most k such quotients. Therefore there are at
most (m − k)n + k quotients in total.

To prove tightness, let K and L be ternary suffix-closed languages defined by
the quotient automata of Fig. 4. Consider the words ε = a0b0, and aibj with

c

210
aa a a a

bb, c b b a, b, c

c
c c

0 1 2
b b b b b

c c

a, c a a a a, b, c

...

...

m − 2 m − 1

n − 1n − 2

Fig. 4. Quotient automata of suffix-closed languages K and L

1 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. Let us show that all the quotients of KL
by these words are distinct. Let (i, j) �= (k, �), and let x = aibj and y = akb�.
If i < k, take z = am−1−kbnc. Then xz is in KL, while yz is not, and so
z ∈ (KL)x \ (KL)y. If i = k and j < �, take z = ambn−1−�c. We again have
z ∈ (KL)x \ (KL)y.

Notice that, if the quotients Kai with 0 ≤ i ≤ k − 1 are accepting, then the
resulting product has quotient complexity (m − k)n + k.

3. It suffices to derive the bound for factor-closed languages, since every
subword-closed language is also factor-closed. Since factor-closed languages are
suffix-closed, κ(KL) ≤ (m− k)n + k. The language K has at most one rejecting
quotient, because it is prefix-closed. Thus, k = m− 1 and κ(KL) ≤ m + n− 1.
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For tightness, let K = {w ∈ {a, b}∗ | am−1 is not a subword of w} and L =
{w ∈ {a, b}∗ | bn−1 is not a subword of w}. The languages are subword-closed
and κ(K) = m and κ(L) = n. Consider the word w = am−1bn−1. This word
is not in the product KL. However, removing any non-empty subword from w
results in a word in KL. Therefore, κ(KL) ≥ m + n− 1. ��

Theorem 4 (Star). Let n ≥ 2. Let L be a closed language with κ(L) = n.
1. If L is prefix-closed, then κ(L∗) ≤ 2n−2 + 1.
2. If L is suffix-closed, then κ(L∗) = n if L = L∗, and κ(L∗) ≤ n− 1 if L �= L∗.
3. If L is factor- or subword-closed, then κ(L∗) ≤ 2.
The first bound is tight if |Σ| ≥ 3, and all the other bounds are tight if |Σ| ≥ 2.
If κ(L) = 1, then κ(L∗) ≤ 2.

Proof. 1. For every non-empty word w, the quotient (L∗)w is given by Equa-
tion (3). If L is prefix-closed, then so is L∗ and (L∗)w. Thus, if (L∗)w is non-
empty, then it contains ε. Hence (L∗)w ⊇ L∗ ⊇ L. Since ∅ and L are always
contained in every non-empty quotient of L∗, there are at most 2n−2 non-empty
quotients of L∗. Since there is at most one empty quotient, there are at most
2n−2 + 1 quotients in total. The quotient (L∗)ε has already been counted, since
L is closed and ε ∈ L implies (L∗)ε = LL∗, which has the form of Equation (3).

If n = 1 and n = 2, the bound 2 is met by L = ∅ and L = ε, respectively. Now
let n ≥ 3 and let L be the prefix-closed language defined by the dfa of Fig. 5;
transitions not depicted in the figure go to state n − 1. Construct an ε-nfa for

210
a, ba, b

c

a, b b

a, b, c

a

b

n − 1... n − 2

Fig. 5. Quotient automaton of prefix-closed language L

L∗ by removing state n − 1 and adding an ε-transition from all the remaining
states to the initial state. Let us show that 2n−2 + 1 states are reachable and
pairwise inequivalent in the corresponding subset automaton.

We first prove that each subset of {0, 1, . . . , n−2} containing state 0 is reach-
able. The proof is by induction on the size of the subsets. The basis, |S| = 1,
holds since {0} is the initial state of the subset automaton. Assume that each
set of size k containing 0 is reachable, and let S = {0, i1, i2, . . . , ik}, where
0 < i1 < i2 < · · · < ik ≤ n − 2, be a set of size k + 1. Then S is reached
from the set {0, i2 − i1, . . . , ik − i1} of size k by abi1−1. Since the latter set is
reachable by the induction hypothesis, the set S is reachable as well. The empty
set can be reached from {0} by b, and we have 2n−2 + 1 reachable states. To
prove inequivalence notice that bn−3 is accepted by the nfa only from state 1,
and each word bn−2−icbn−3 (2 ≤ i ≤ n− 2), only from state i.

2. For a non-empty suffix-closed language L, the quotient (L∗)ε is LL∗, which
is of the same form as the quotients by a non-empty word w in Equation (3),
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(L∗)w = (Lw ∪ Lv1 ∪ · · · ∪ Lvk
)L∗, where the vi are suffixes of w, and vk is the

shortest. By Remark 2, (L∗)w = Lvk
L∗. There are at most n such quotients. If

L �= L∗ for a non-empty suffix-closed language L, then there must be two words
x, y in L such that xy /∈ L. Hence y ∈ Lε \ Lx, and so Lε �= Lx. However, since
ε ∈ Lx and L∗ is suffix-closed, we have (L∗)ε = L∗ ⊆ LxL∗ ⊆ (L∗)x ⊆ (L∗)ε,
and so (L∗)ε = (L∗)x. It turns out that κ(L∗) ≤ n− 1.

For n = 1, L = ∅ and for n = 2, L = ε meet the bound 2. Let n ≥ 3. If L =
(a∪ ban−2)∗, then L is suffix-closed, κ(L) = n, and L∗ = L. If L = ε∪

⋃n−3
i=0 aib,

then L is suffix-closed, κ(L) = n, L∗ = (
⋃n−3

i=0 aib)∗, and κ(L∗) = n− 1.
3. If each letter in Σ appears in some word of a factor-closed language L,

then L∗ = Σ∗ and κ(L∗) = 1. Otherwise, κ(L∗) = 2. The bound is met by
subword-closed language L = {w ∈ {a, b}∗ | w = ai and 0 ≤ i ≤ n− 2}. ��

Since the operation of reversal commutes with complementation, the next theo-
rem follows from the results on ideal languages [7].

Theorem 5 (Reversal). Let n ≥ 2. Let L be a closed language with κ(L) = n.
1. If L is prefix-closed, then κ(LR) ≤ 2n−1. The bound is tight if |Σ| ≥ 2.
2. If L is suffix-closed, then κ(LR) ≤ 2n−1 + 1. The bound is tight if |Σ| ≥ 3.
3. If L is factor-closed, then κ(LR) ≤ 2n−2 + 1. The bound is tight if |Σ| ≥ 3.
4. If L is subword-closed, then κ(LR) ≤ 2n−2 +1. The bound is tight if |Σ| ≥ 2n.
If κ(L) = 1, then κ(LR) = 1. ��

Unary Languages: Unary languages have special properties because the prod-
uct of unary languages is commutative. The classes of prefix-closed, suffix-closed,
factor-closed, and subword-closed unary languages all coincide. If a unary closed
language L is finite, then either it is empty and so κ(L) = 1, or has the form
{ai | i ≤ n − 2} and then κ(L) = n. If L is infinite, then L = a∗ and κ(L) = 1.
The bounds for unary languages are in Tables 1 and 2 on page 94.

5 Kuratowski Algebras Generated by Closed Regular
Languages

A theorem of Kuratowski [18] states that, given a topological space, at most 14
distinct sets can be produced by repeatedly applying the operations of closure
and complement to a given set. A closure operation on a set S is an operation
� : 2S → 2S satisfying the following conditions for any subsets X, Y of S:
(1) X ⊆ X�, (2) X ⊆ Y implies X� ⊆ Y �, (3) X�� ⊆ X�.

Kuratowski’s theorem was studied in the setting of formal languages in [6].
Positive closure and Kleene closure (star) are both closure operations. It then
follows that at most 10 distinct languages can be produced by repeatedly ap-
plying the operations of positive closure and complement to a given language,
and at most 14 distinct languages can be produced with Kleene closure instead
of positive closure. We consider here the case where the given language is closed
and regular, and give upper bounds on the quotient complexity of the result-
ing languages. We denote the complement of a language L by L−, the positive
closure of the complement of L by L−+, etc.
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We begin with positive closure. Let L be a �-closed language not equal to
Σ∗. Then L− is an ideal, and L−+ = L−. In addition, L+ is also �-closed, so
L+−+ = L+−. Hence there are at most 4 distinct languages that can be produced
with positive closure and complementation.

Theorem 6. The worst-case complexities in the 4-element algebra generated by
a closed language L with κ(L) = n under positive closure and complement are as
follows: κ(L) = κ(L−) = n, κ(L+) = κ(L+−) = f(n), where f(n) is 2n−2 +1 for
prefix-closed languages, n − 1 for suffix-closed languages, and 2 for factor- and
subword-closed languages. There exist closed languages that meet these bounds.

Proof. Since L+ = L∗ for a non-empty closed language we have κ(L+) = κ(L∗),
and the upper bounds f(n) follow from our results on the quotient complexity
of the star operation; in the case of suffix-closed languages, to get a 4-element
algebra we need L �= L∗. All the languages that we have used in Theorem 4 to
prove tightness can be used as examples meeting the bound f(n). ��

The case of Kleene closure is similar. Let L be a non-empty �-closed language
that is not equal to Σ∗. Then the language L− is an ideal and L− does not
contain ε. Thus L−∗ = L− ∪ ε and L−∗− = L \ ε, which gives at most four
languages thus far. Now L∗ = (L \ ε)∗, and the language L∗ is also �-closed. By
the previous reasoning, we have at most four additional languages, giving a total
of eight languages as the upper bound. The 8-element algebras are of the form
(L, L−, L−∗ = L−∪ε, L−∗− = L\ε, L∗, L∗−, L∗−∗ = L∗−∪ε, L∗−∗− = L∗ \ε).

Theorem 7. The worst-case quotient complexities in the 8-element algebra gen-
erated by a closed language L with κ(L) = n under star and complement are as
follows: κ(L) = κ(L−) = n, κ(L∗) = κ(L∗−) = f(n), κ(L∗−∗) = κ(L∗−∗−) =
f(n) + 1, κ(L−∗) = κ(L−∗−) = n + 1, where f(n) is 2n−2 + 1 for prefix-closed
languages, n− 1 for suffix-closed languages, and 2 for factor-and subword-closed
languages. Moreover, there exist closed languages that meet these bounds.

Proof. Since L−∗− = L \ ε and L∗−∗− = L∗ \ ε we have κ(L−∗−) ≤ n + 1 and
κ(L∗−∗−) ≤ f(n) + 1. In the case of suffix-closed languages, since L must be
distinct from L∗, we have f(n) = n− 1 by Theorem 4.

1. Let L be the prefix-closed language defined by the quotient automaton in
Fig. 5 on page 91; then L meets the upper bound on star. Add a loop with a
new letter d in each state and denote the resulting language by K. Then K is
a prefix-closed language with κ(K) = n and κ(K \ ε) = n + 1. Next we have
κ(K∗) = κ(L∗) = 2n−2 + 1 and κ(K∗ \ ε) = 2n−2 + 2.

2. Let L = b∗ ∪
⋃n−3

i=1 b∗aib. Then L is a suffix-closed language with κ(L) = n
and κ(L \ ε) = n + 1. Next κ(L∗) = n − 1 and κ(L∗ \ ε) = n.

3. Let L = {w ∈ {a, b, c}∗ | w = b∗ai and 0 ≤ i ≤ n − 2}. Then L is a
subword-closed language with κ(L) = n and κ(L\ε) = n+1. Next L∗ = {a, b}∗,
and so κ(L∗) = 2 and κ(L∗ \ ε) = 3. ��
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Table 1. Bounds on quotient complexity of boolean operations

K ∪ L |Σ| K ∩ L |Σ| K \ L |Σ| K ⊕ L |Σ|
unary closed max(m,n) 1 min(m,n) 1 m 1 max(m, n) 1

prefix-, factor-,
subword-closed mn 2 mn − m − n + 2 2 mn − n + 1 2 mn 2
suffix-closed mn 4 mn 2 mn 4 mn 2

regular mn 2 mn 2 mn 2 mn 2

Table 2. Bounds on quotient complexity of closure, product, star and reversal

�L |Σ| KL |Σ| K∗ |Σ| KR |Σ|
unary closed n 1 m + n − 2 1 2 1 n 1

prefix–closed n 1 (m + 1)2n−2 3 2n−2 + 1 3 2n−1 2
suffix-closed 2n − 1 2 (m − k)n + k 3 n 2 2n−1 + 1 3
factor-closed 2n−1 2 m + n − 1 2 2 2 2n−2 + 1 3
subword-closed 2n−2 + 1 n − 2 m + n − 1 2 2 2 2n−2 + 1 2n

regular − − m2n − k2n−1 2 2n−1 + 2n−k−1 2 2n 2

6 Conclusions

Tables 1 and 2 summarize our complexity results. The complexities for regu-
lar languages are from [16,20,21,28], except those for difference and symmetric
difference, which are from [5]. The bounds for boolean operations and reversal
of closed languages are direct consequences of the results in [7]. In Table 2, k
is the number of accepting quotients of K; the results for prefix-, suffix-, and
factor-closure are from [17]. The tables also show the size of the alphabet of the
witness languages. In all cases when the size of the alphabet is more than two,
we do not know whether the bounds are tight for a smaller alphabet.
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Abstract. In this paper, we introduce a notion of a right-sequential
function on infinite words. The main result is that any rational function
is the composition of a right-sequential function and a left-sequential
function. This extends a classical result of Elgot and Mezei on finite
words to infinite words. We also show that our class of right-sequential
functions includes the normalization of real numbers in some base and the
truth value of linear temporal logic. Finally, we apply the decomposition
theorem to show that automatic sequences are preserved by rational
letter-to-letter functions.

1 Introduction

A classical result, due to Elgot and Mezei [7], on rational functions of finite
words states that any such function can be described as the composition of a
left-sequential function and a right-sequential one. The aim of this paper is to
establish the same result when dealing with rational functions of infinite words.
For this, we introduce a natural notion of a right-sequential function for infinite
words.

Rational functions are functions between free monoids realized by finite trans-
ducers. Transducers are finite nondeterministic automata with edges labeled by
pairs of finite words (an input and an output label). They are very useful in
various areas like coding [8], computer arithmetic [9], language processing (see
for instance [12] and [10]), and in program analysis [6]. Transducers that have
a deterministic input automaton are called left-sequential transducers [14] since
they deterministically read their input from left to right. Rational functions that
can be realized by left-sequential transducers are called left-sequential functions.
They play an important role since they allow sequential encoding. We refer the
reader to [3] and [13] for complete introductions to transducers.

In the case of finite words, the result of Elgot and Mezei [7] states that any
rational function is the composition of a left-sequential function and a right-
sequential function. In that case, right-sequential functions are those realized by
transducers with a co-deterministic input automaton, that is, an automaton that
becomes deterministic if all its transitions are reversed. This result is important
since it has both theoretical and practical applications. From a theoretical point
of view, it allows us to show that some words or languages are preserved by
rational functions by just considering sequential functions which are usually

F. Ablayev and E.W. Mayr (Eds.): CSR 2010, LNCS 6072, pp. 96–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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much easier to handle. From a practical point of view, it allows us to implement
a rational transduction in a two-stage process.

In this paper, we extend the result of Elgot and Mezei to infinite words. The
main problem is to come up with a right notion of a right-sequential trans-
ducer. The intuitive idea of such a machine is not clear because it should read
each infinite word from right to left, starting at the infinite tail. The notion of
a left-sequential transducer is the same for finite and for infinite words, since
determinism makes sense for both finite and infinite words. Co-determinism is,
however, not sufficient to define a suitable notion of a right-sequential transducer
on infinite words (see Example 3). Our definition of a right-sequential transducer
is based on prophetic automata introduced in [4]. These automata are defined
by a global property rather than a local one such as the co-determinism.

To show that our notion of a right-sequential function is relevant, we give
examples of such functions taken from different fields. Our first example comes
from computer arithmetic. We show that normalization of real numbers is a
right-sequential function. This extends the classical result on integers represented
in some base by finite words [9]. Our second example comes from the field of
verification. We show that the function that maps a model of linear temporal
logic to its word of truth values is also a right-sequential function.

Finally, we apply the main theorem to automatic sequences. It allows us to
prove that automatic sequences are preserved by rational letter-to-letter func-
tions. This extends a classical result that these sequences are preserved by left-
sequential functions [1].

The paper is organized as follows. Section 2 is devoted to basic notions of
automata and transducers. Left- and right-sequential transducers are defined in
Section 3. Examples of right-sequential functions are given in Section 4. The
main theorem of decomposition of rational function is stated in Section 5. The
application to automatic sequences is given in Section 6.

2 Automata and Transducers

In the sequel, A and B denote finite alphabets. Sets of finite and infinite words
over A are respectively A∗ and Aω . The empty word is denoted by ε.

A Büchi automaton (see [11, p. 25] for a complete introduction) over A is an
automaton (Q, A, E, I, F ) where Q is a finite set of states, E ⊆ Q ×A ×Q is a
finite set of transitions, I ⊆ Q is the set of initial states and F ⊆ Q is the set
of final states. A transition (p, a, q) from p to q is denoted p a−→ q. An infinite
path γ in the automaton is an infinite sequence

q0
a0−→ q1

a1−→ q2
a2−→ q3 · · ·

of consecutive transitions. Its label is the infinite concatenation x = a0a1a2 · · ·
of the labels of its transitions. The path is initial if its first state q0 is initial and
it is final if it visits a final state infinitely often. A path is accepting if it is both
initial and final. An infinite word is accepted if it is the label of an accepting
path.
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A Büchi transducer is a Büchi automaton over A∗ × B∗. The label of each
transition is then a pair (u, v) of words that is merely written u|v. A transition
(p, u, v, q) is then denoted by p u|v−−→ q. The words u and v are called the input
and output label of the transition. The label of an infinite path

q0
u0|v0−−−→ q1

u1|v1−−−→ q2
u2|v2−−−→ q3 · · ·

is the pair (x, y) where the input label x is u0u1u2 · · · and the output label
y is v0v1v2 · · · . Since the labels of the transitions might be empty, the labels
of a path are either finite or infinite. A path is accepting if it is initial and
final and if both its input and output labels are infinite. The relation realized
by a Büchi transducer is the set of pairs (x, y) labelling an accepting path. A
partial function f from Aω to Bω is realized by a transducer T if its graph
{(x, f(x)) | x ∈ dom(f)} is realized by T . A relation or a partial function is said
to be rational if it is realized by some Büchi transducer.

0 1 20|0
1|0

1|1

0|0

0|1
1|1

Fig. 1. Transducer for division by 3 in base 2

Example 1. Let A and B be the alphabet {0, 1}. The transducer depicted in
Fig. 1 realizes division by 3. If the input word is the infinite binary representation
of a real number α, the output word is the binary representation of α/3.

A transducer with an initial output function is a transducer with an additional
function ι from the set I of initial states to the set B∗ of finite words over B.
The purpose of this function is to prefix the output of each accepting path with
some finite word ι(q0), called the initial output, depending on the first state q0.
The output label of an accepting path

q0
u0|v0−−−→ q1

u1|v1−−−→ q2
u2|v2−−−→ q3 · · ·

is the word ι(q0)v0v1v2 · · · . In the figures, the initial output ι(q) is written as a
label on the small incoming arrow marking the initial state q. Nothing is written
when ι(q) = ε.

Initial output functions are, in general, not needed. It is always possible to
remove the initial output function by adding a new initial state and some tran-
sitions. In this paper, we consider a special class of transducers, namely right-
sequential transducers, for which initial output functions turn out to be useful.

A transducer is said to be real-time if the input label of each transition is
a single letter. The transducer of Example 1 is real-time. The input automaton
of a real-time transducer is the automaton obtained by ignoring the output
label of each transition. Each transition p a|v−−→ q of the transducer is replaced
in the input automaton by the transition p a−→ q. A transducer is said to be
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letter-to-letter if both the input and the output labels of each transition are
letters. The transducer of Example 1 is actually letter-to-letter. By extension, a
partial function is said to be letter-to-letter if it is realized by a letter-to-letter
transducer.

3 Sequential Transducers

We first recall the usual definition of a left-sequential transducer, and next we
define the notion of a right-sequential transducer.

As usual, an automaton is deterministic if it has a single initial state and for
any pair (p, a) ∈ Q × A, there is at most one transition p a−→ q. A transducer
is left-sequential if it is real-time and its input automaton is deterministic. A
partial function f : Aω → Bω is left-sequential if it is realized by a left-sequential
transducer. The transducer given in Example 1 is left-sequential.

We now introduce the key definition that allows us to define right-sequential
transducers and functions. A Büchi automaton over a finite alphabet A is called
prophetic if any infinite word over A is the label of exactly one final path. Let us
rephrase this definition. For any state q, let Xq be the set of words accepted by
the automaton Aq obtained by replacing the set I of initial states in A by the
singleton {q}. The automaton A is prophetic if the family (Xq)q∈Q is a partition
of the set Aω of all infinite words over A. This means that Aω =

⋃
q∈Q Xq and

Xp ∩ Xq = ∅ whenever p �= q. Here we follow the terminology of [11, p. 122].
These automata were introduced as complete and unambiguous Büchi automata
in [4], where it is shown that any rational set of infinite words is accepted by
such an automaton. To illustrate this definition, we give below an example of a
prophetic automaton.

0 1

2 3

0, 1
1

0

0

0

1

1

Fig. 2. A prophetic automaton

Example 2. Consider the automaton A depicted in Fig. 2. The sets X0, X1, X2
and X3 are respectively equal to (0+1)∗10ω, 0ω, 0(0∗1)ω and 1(0∗1)ω. Since these
four sets do form a partition of (0 + 1)ω, the automaton A is prophetic. Since
the initial states are states 2 and 3, this automaton accepts X2 + X3 = (0∗1)ω.

We recall here a property of prophetic automata that is proved in [4]. Any
prophetic automaton is co-deterministic and complete. This means that for any
pair (q, a) in Q × A, there is exactly one state p such that p a−→ q is a transi-
tion. This property is, however, not sufficient to insure that the automaton is
prophetic. This is shown by the following example.
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0 10

1

1

0

Fig. 3. A non-prophetic automaton

Example 3. The automaton depicted in Fig. 3 is co-deterministic and complete
but it is not prophetic. The word 0ω is the label of the two final paths (0 0−→ 0)ω

and (1 0−→ 1)ω.

Prophetic automata capture the idea of reading infinite words from right to left,
that is, from the infinite tail to the first letter. The unique final path labeled
by an infinite word x′ = ax is always made of a transition p a−→ q preceding the
unique final path labeled by x.

We now recall a second property of prophetic automata. The final path labeled
by a periodic word x = uω is always periodic (see [4, Proposition 8]).

A transducer is called right-sequential if it is real-time and its input
automaton is prophetic. A partial function from Aω to Bω is called purely right-
sequential if it is realized by a right-sequential transducer. Is is called right-
sequential if it is realized by a right-sequential transducer with an initial output
function. The next example shows that the former class is strictly contained in
the latter one. We follow the terminology of [13] rather than the seminal one
of Schützenberger. More emphasis is put on sequential functions (called sub-
sequential in Schützenberger’s terminology) which form the most natural class
as shown by the following example.

0
0 0|0

1|1
Fig. 4. A right-sequential transducer

Example 4. The transducer depicted in Fig. 4 realizes the function f from {0, 1}ω

to {0, 1}ω which maps each infinite word x to 0x. The leading 0 is added by the
initial output function ι defined by ι(0) = 0. Since the input automaton of
this transducer is obviously prophetic, the function f is right-sequential. This
function is not purely right-sequential since the image of a periodic word must
be periodic. This is due to the fact that the final path labeled by a periodic word
in a prophetic automaton is periodic.

Example 5. The transducer depicted in Fig. 5 realizes the shift function from
{0, 1}ω to {0, 1}ω which maps any infinite word a0a1a2 · · · to a1a2a3 · · · .

4 Examples of Right-Sequential Functions

The purpose of this section is to show that some natural functions are right-
sequential.
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0 10|0
0|1

1|1
1|0

Fig. 5. A purely right-sequential transducer

4.1 Normalization of Real Numbers

It is well known [9] that, when integers are represented in a base, multiplication
and division by a fixed integer are rational functions. Furthermore, multiplication
is right-sequential whereas division is left-sequential. This captures the fact that
multiplication must be algorithmically performed from right to left, whereas
division must be performed from left to right. The left-sequential transducer
that realizes division for integers also realizes division for real numbers. The
transducer given in Example 1 for division by 3 works for integers as well as
for real numbers. In this section, we show that multiplication of real numbers
by a fixed integer is a right-sequential function. This result follows from a more
general result about normalization.

Let b ≥ 2 be a fixed base. A b-representation of a real number α in [0, 1)
is an infinite word d0d1d2 · · · of digits in B = {0, . . . , b − 1} such that α =∑

i≥0 dib
−i−1. Such a representation is not always unique; for example, both infi-

nite words 10ω and 01ω are 2-representations of 1/2. The normal b-representation
of α is the unique representation which does not end with (b− 1)ω.

Let A be the alphabet {0, . . . , k} where k ≥ b−1. Each infinite word a0a1a2 · · ·
over A has a numerical value α =

∑
i≥0 aib

−i−1. This real number α has a
normal representation in base b. Since α might be greater than 1, this normal
representation has the form d−n · · · d−1 · d0d1d2 · · · where d−n · · · d−1 is the b-
representation of the integer part of α and d0d1d2 · · · is the normal representation
of its fractional part. By b-normalization over the alphabet A = {0, ..., k}, we
mean the function which maps each infinite words a0a1a2 · · · over A to the
normal b-representation of its numerical value.

Proposition 1. For any integer k ≥ b − 1, b-normalization over the alphabet
{0, . . . , k} is a right-sequential function.

Proof. Let q be the integer %k/(b− 1)& and let Q be the set {0, . . . , q} × {0, 1}.
We define a Büchi transducer T whose state set is Q. All states are initial and
the initial output function ι is defined by ι(p, e) = 〈p〉b where 〈p〉b is the b-
representation of the integer p. The set of final states is {0, . . . , q} × {0}. The
set E of transitions is given by

E = {(p, δr,b−1)
�|r−−→ (p′, e′) | � + p′ = pb + r}

where the Kronecker symbol δi,j is defined, as usual, by δi,j = 1 if i = j and
δi,j = 0 otherwise.
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For simplicity, the result has been stated and proved for the normalization over
the alphabet {0, . . . , k} but it also holds for larger alphabets containing negative
digits.

00 01

10 11

0|0
0|0

1|1
1|1

0|1 0|1
1

1|0 1|0

Fig. 6. Normalization with b = 2 and k = 1

Example 6. The simplest case of normalization is for b = 2 and k = 1. In that
case, the transducer just replaces each tail 01ω by the tail 10ω. The transducer
depicted in Fig. 6 realizes this transformation. State (1, 1) is useless but it has
been kept in the figure for completeness. It can be verified that this transducer
is right-sequential, by using the definition of prophetic automata based on a
partition of Aω.

Corollary 1. Multiplication of real numbers represented in some base b by a
fixed integer is a right-sequential function.

Since the transducer of Example 1 realizes division by 3, a transducer realizing
multiplication by 3 can be obtained by exchanging the input and the output
labels of each transition. The resulting transducer is still real-time but it is
neither left-sequential nor right-sequential.

0

3 4

1 2

0|0

0|1

0|0

0|0
1|1

1|0

1|0

0|1

1|1
1|1

Fig. 7. Transducer for multiplication by 3 in base 2

Example 7. The transducer depicted in Fig. 7 is right sequential. It realizes
multiplication by 3.

Let p be a fixed integer. If the infinite word d0d1d2 · · · is a b-representation of α,
then the infinite word (pd0)(pd1)(pd2) · · · is obviously a representation of pα. It
suffices then to apply b-normalization over the alphabet {0, · · · , p(b− 1)} to get
the normal b-representation of pα.
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Corollary 2. Addition of real numbers is a right-sequential function.

If d0d1d2 · · · and d′0d′1d′2 · · · are b-representations of α and α′, then (d0+d′0)(d1+
d′1)(d2 +d′2) · · · is obviously a representation of α+α′. It suffices then to apply b-
normalization over the alphabet {0, . . . , 2b−2} to get the normal b-representation
of α + α′.

4.2 Temporal Logic

We consider here future linear temporal logic with discrete time. We assume
that a set AP of atomic propositions is fixed. The formulas are built from these
atomic propositions using the Boolean connectives and the operators � (Next)
and U (Until).

ϕ := AP | ¬ϕ | ϕ ∨ ϕ | �ϕ | ϕ U ϕ

A model is an infinite word over the alphabet 2AP. For k ≥ 0, the letter xk of
the model x = x0x1x2 · · · is the set of valid atomic propositions at time k in the
model x. The semantics is then inductively defined as usual.

– x, k |= p if p ∈ xk;
– x, k |= ¬ϕ if x, k �|= ϕ;
– x, k |= ϕ ∨ ψ if x, k |= ϕ or x, k |= ϕ;
– x, k |= �ϕ if x, k + 1 |= ϕ;
– x, k |= ϕ U ψ if there exists j ≥ k such that x, j |= ψ and for any k ≤ i < j,

one has x, i |= ϕ.

Let ϕ be a formula and let x = x0x1x2 · · · be a model. The word of truth value
of x is the infinite word y0y1y2 · · · where yi = 1 if x, i |= ϕ and yi = 0 otherwise.
This word is denoted by ϕ(x).

Proposition 2. Let ϕ be a formula. The function that maps any model x to its
word of truth value ϕ(x) is a purely right-sequential function.

This proposition gives another proof that LTL is decidable but it does not yield
a polynomial time algorithm in the size of the formula. There is an exponential
blow-up of the number of states of the constructed transducer.

Proof. Each Boolean connective and each operator Next and Until can be viewed
as an operator on words of truth value. For instance, the word of truth value
(ϕ U ψ)(x) only depends on the words of truth value ϕ(x) and ψ(x). It is then suf-
ficient to show that each of these operators can be realized by a right-sequential
transducer. The transducer for a formula ϕ is then built using the composition
of the transducers. It is easy to show that purely right-sequential transducers
can be composed.

The transducers for the Boolean connectives are trivial. The Next operator is
essentially the shift function. A purely right-sequential transducer realizing this
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Fig. 8. Transducer for the Until operator

function has been given in Example 5. The most interesting transducer is the
one realizing the Until operator.

The transducer depicted in Fig. 8 realizes the Until operator. It takes as input
two words ϕ(x) and ψ(x) and output the word (ϕ U ψ)(x). The label of each
transition has the form ab|c where a and b are symbols from ϕ(x) and ψ(x) and
c is a symbol of (ϕ U ψ)(x). It can be verified that this transducer is purely
right-sequential.

5 Decomposition of Rational Functions

In this section, we state and we prove the main result of the paper. It has been
proved by Elgot and Mezei [7] that each rational function of finite words is the
composition of a left-sequential function and a right-sequential function. We refer
the reader to [3, p. 125] or [13] for more structured presentations of this result.
Here we extend this result to infinite words.

Theorem 1. Any rational partial function f : Aω → Bω can be decomposed
f = g ◦ h where g : Cω → Bω is a left-sequential partial function and h : Aω →
Cω is a purely right-sequential partial function. The function h can always be
chosen to be letter-to-letter. Moreover, if the function f is letter-to-letter, the
function g can be chosen to be letter-to-letter.

As in [3,13], the proof is mainly based on a adaptation of a construction due
to Schützenberger [14]. Roughly speaking, the main idea in [3,13] is to consider
the synchronized product of a real-time transducer with the automaton obtained
by the subset construction applied to the input automaton of the transducer.
Some transitions of this product must then be removed in a clever way to make
it unambiguous. The proof of our result follows these lines, but the subset con-
struction is replaced by another construction that yields an equivalent prophetic
automaton from any Büchi automaton. This construction is borrowed from [4].

6 An Application to Automatic Sequences

Automatic sequences are sequences of letters from a finite alphabet that are
generated by an automaton. They are also the pointwise images of fixed points
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Fig. 9. Automaton for the Thue-Morse word

of uniform morphisms. Much of the interest in these sequences stems from their
numerous connections with number theory. The most famous result in this area
is Christol’s theorem, which states that the formal power series

∑
n≥0 anXn is

algebraic over Fk(X) if and only if the sequence (an)n≥0 is k-automatic. We refer
the reader to [1] for a complete introduction to automatic sequences.

For the sake of completeness, we recall the definition of automatic sequences.
Let k ≥ 2 be an integer and let B be the alphabet {0, . . . , k − 1}. The represen-
tation in base k of an integer n is denoted 〈n〉k. An infinite word x = x0x1x2 · · ·
over A is k-automatic if there is a deterministic automaton A = (Q, B, E, {i}, F )
and a function λ : Q → A such that for each integer n, xn = λ(i · 〈n〉k) where
i · w denotes the state reached after reading the finite word w from the initial
state i. In other words, the n-th element of the sequence is determined by the
state reached after reading the k-representation of n in the automaton A.

Example 8. The Thue-Morse word is the infinite word x = x0x1x2 · · · over A =
{0, 1} defined by xn = 0 if n has an even number of 1’s in its 2-representation
and xn = 1 otherwise. This word is 2-automatic since the automaton depicted
in Fig. 9 satisfies xn = 0 · 〈n〉2 for each n ≥ 0. The function λ is the identity.

Automatic sequences are closed under many transformations. It is for instance
stated in [1, Theorem 6.9.2] that automatic sequences are closed under letter-
to-letter left-sequential transducer. What is called a transducer in [1] is actually
a left-sequential transducer in our terminology (see definition p. 140). We show
here that this result can be extended to any functional letter-to-letter transducer.

Theorem 2. Let f be a function realized by a letter-to-letter transducer. If the
infinite word x is k-automatic, the infinite word f(x) is also k-automatic.

7 Conclusion

As a conclusion, let us sketch a few problems that are raised by our work.
In the case of finite words, left- and right-sequential functions play a sym-

metrical role. It follows from Elgot and Mezei’s result that a rational function
of finite words is either the composition of a left-sequential function with a
right-sequential function or the composition of a right-sequential function with
a left-sequential function. In this paper, we have only proved that a rational
function of infinite words is the composition of a left-sequential function with
a right-sequential function. The other result does not follow from symmetry
arguments and it is still open.
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Sequential functions of finite words have a quasi-topological characterization
due to Choffrut [5]. This characterization gives a necessary and sufficient con-
dition for a transducer, called the twinning property, to realize a sequential
function. This characterization has been extended to left-sequential functions
of infinite words in [2] with a variant of the twinning property. Moreover, the
twinning property and its variant can be checked in polynomial time [15]. It
would be nice to have similar characterizations for right-sequential functions of
infinite words.
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2. Béal, M.-P., Carton, O.: Determinization of transducers over infinite words: the
general case. TOCS 37(4), 483–502 (2004)

3. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner (1979)
4. Carton, O., Michel, M.: Unambiguous Büchi automata. Theo. Comput. Sci. 297,
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11. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)
12. Roche, E., Schabes, Y.: Finite-State Language Processing, ch. 7. MIT Press,

Cambridge (1997)
13. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,

Cambridge (2009)
14. Schützenberger, M.-P.: Sur les relations rationnelles entre monöıdes libres. Theo.
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Preprocessing (data reduction or kernelization) as a strategy of coping with
hard problems is universally used in almost every implementation. The history
of preprocessing, like applying reduction rules simplifying truth functions, can
be traced back to the 1950’s [6]. A natural question in this regard is how to
measure the quality of preprocessing rules proposed for a specific problem. For a
long time the mathematical analysis of polynomial time preprocessing algorithms
was neglected. The basic reason for this anomaly was that if we start with an
instance I of an NP-hard problem and can show that in polynomial time we can
replace this with an equivalent instance I ′ with |I ′| < |I| then that would imply
P=NP in classical complexity.

The situation changed drastically with advent of Parameterized Complexity
[3]. The philosophy of parameterized complexity is that beyond overall input size,
key secondary measurements fundamentally affect the computational complex-
ity of problems and govern the opportunities for designing efficient algorithms.
Combining tools from parameterized complexity and classical complexity it has
become possible to derive upper and lower bounds on the sizes of reduced in-
stances, or so called kernels. In parameterized complexity each problem instance
comes with a parameter k and the parameterized problem is said to admit a
polynomial kernel if there is a polynomial time algorithm (the degree of poly-
nomial is independent of k), called a kernelization algorithm, that reduces the
input instance down to an instance with size bounded by a polynomial p(k) in
k, while preserving the answer. This reduced instance is called a p(k) kernel for
the problem. If p(k) = O(k), then we call it a linear kernel and ifp(k) = kO1),
then a polynomial kernel.

The classical example goes back to the work of Nemhauser and Trotter [5],
who gave a polynomial time algorithm that for a given graph G and integer k,
reduces G to a graph K on 2k vertices (and thus of size O(k2)) such that G
has a vertex cover of size k if and only if K does. In other words, there is an
O(k2) kernel for k-Vertex Cover. Other examples of kernels include a linear
kernel for k-Dominating Set on planar graphs [1] and an O(k2) kernel for
k-Feedback Vertex Set [7].

In this talk we give an overview of recent results and techniques for obtaining
linear and polynomial kernels on planar graphs and more generally, on graphs
excluding some fixed graph as a minor. The talk is based on joint works with Hans
Bodlaender, Daniel Lokshtanov, Elko Penninkx, Saket Saurabh, and Dimitrios
M. Thilikos [2,4].
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Abstract. We study one-head machines through symbolic and topo-
logical dynamics. In particular, a subshift is associated to the subshift,
and we are interested in its complexity in terms of realtime recognition.
We emphasize the class of one-head machines whose subshift can be rec-
ognized by a deterministic pushdown automaton. We prove that this
class corresponds to particular restrictions on the head movement, and
to equicontinuity in associated dynamical systems.

Keywords: Turing machines, discrete dynamical systems, subshifts, for-
mal languages.

We study the dynamics of a system consisting in a finite automaton (the head)
that can write and move over an infinite tape, like a Turing machine. We use
the approach of symbolic and topological dynamics. Our interest is to under-
stand its properties and limitations, and how dynamical properties are related
to computational complexity.

This approach was initiated by Kůrka in [1] with two different topologies: one
focused on the machine head, and the other on the tape. The first approach
was further developed in [2,3]. More recently, in [4,5], a third kind of dynamical
system was associated to Turing machines, taking advantage of the following
specificity: changes happen only in the head position whilst the rest of the con-
figuration remains unaltered. The whole evolution can therefore be described by
the sequence of states taken by the head and the symbols that it reads. This
observation actually yields a factor map between Kůrka’s first dynamical system
and a one-sided subshift.

In [4], it has been proved that machines with a sofic subshift correspond to
machines whose head makes only bounded cycles. We prove here a similar char-
acterization of machines with a shift that can be recognized by a deterministic
pushdown automaton. Moreover, we establish links between these two properties
and equicontinuity in all three spaces.

� This work has been supported by ECOS-Sud Project and CONICYT FONDECYT
#1090568.
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In the first section, we recall the definitions and fundamental results. The
second section is devoted to defining the different dynamical systems associated
to one-head machines, and to stating basic results about equicontinuity within
these systems. In the last section, we define the class of bounded-zigzag machines
and state our main results.

1 Preliminaries

Consider a finite alphabet A, and M to stand either for N or for Z. For a finite
word u ∈ A∗, we will note |u| its length, and index its letters from 0 to |u| − 1,
unless specified otherwise. We denote A≤m the set of words on A of length at
most m ∈ N. If i, j ∈ Z and i ≤ j, �i, j� will denote the closed interval of integers
i, . . . , j, �i, j� = �i, j − 1�, etc. A point x ∈ AM will be called configuration. For
a configuration or a word x, we define x�i,j� = xi . . . xj . A � B will denote the
disjoint union of two sets A and B.

1.1 Topological Dynamics

A dynamical system (DS) is a pair (X, F ) where X is a metric space and F a
continuous self-map of X . Sometimes the space will be implicit.

The orbit of a point x ∈ X is the set of the F t(x) for all iteration t > 0. A point
x is called preperiodic if there exist two naturals q, p such that F q+p(x) = F q(x).
If q and p are minimal, then q is called the transient and p the period. When
t = 0, x is called periodic.

A point x ∈ X is isolated if there is an ε > 0 such that the ball of radius ε
and center x contains only x. A point x ∈ X is equicontinuous for F if, for any
ε > 0, there exists some δ > 0 such that, for any y ∈ X with d(x, y) < δ, we have
that, for all t ∈ N, d(F t(x), F t(y)) < ε. The DS (X, F ) is equicontinuous if, for
any ε > 0, there exists some δ > 0 such that, for any x, y ∈ X with d(x, y) < δ,
we have that, for all t ∈ N, d(F t(x), F t(y)) < ε. When X is compact, this
is equivalent to having only equicontinuous points. The DS (X, F ) is almost
equicontinuous if it has a residual set of equicontinuous points.

A DS (X, F ) is a factor of a DS (Y, G) if φG = Fφ for some continuous onto
map φ : Y → X , then called a factor map.

1.2 Subshifts

We can endow the space AM of configurations with the product of the discrete
topology of A. It is based on the cylinders [u]i =

{
x ∈ AM

∣∣ x�i,i+k� = u
}
, where

i ∈ M, k ∈ N and u ∈ Ak; this notation shall be extended to semi-infinite words.
If M = Z, u ∈ A2r+1 and r ∈ N, we note [u] = [u]−r.

This topology corresponds to the metric d : x, y �→ 2−minxi �=yi
|i|. In other

words, d(x, y) ≤ 2−i ⇔ x�−i,i� = y�−i,i�; two points are “close to each other”
if they coincide “around position 0”. It is easy to extend this metric to spaces
AM × Q and AM × Q × Z. In that setting, AM and AM × Q are compact, but
AM ×Q× Z is not.
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The shift map is the function σ : AM → AM defined by σ(x)i = xi+1. A
subshift Σ is a closed subset of AM which is also invariant by σ. It can be seen
as a compact DS where the map is σ.

A subshift Σ is characterized by its language, containing all finite patterns
that appear in some of its configurations: L(Σ) =

{
z�i,j�

∣∣ z ∈ Σ and i, j ∈ M
}
.

We denote Ln(Σ) = L(Σ) ∩ An. If the language L(Σ) is regular, then we say
that Σ is sofic. Equivalently, a sofic subshift can be seen as the set of labels of
infinite paths in some finite arc-labeled graph; this graph basically corresponds
to the finite automaton that recognizes its language, without initial nor terminal
state.

Any subshift can also be defined from a set of forbidden finite patterns F ⊂ A∗

by Σ =
{

z ∈ AM
∣∣ ∀i, j ∈ M, z�i,j� /∈ F

}
. If F can be chosen to be finite, then Σ

is a subshift of finite type (SFT).
A DS F on AM is completely determined by the family of its factor subshifts,

i.e. the factors which are also subshifts in some alphabet. Up to some letter
renaming, all factor subshifts of F are of the form (P(F j(x)))j∈N, where P is a
finite partition of X into closed open sets, and P(y) denotes the unique element
of this partition which contains y ∈ X .

1.3 Deterministic Pushdown Automata

Definition 1. A deterministic pushdown automaton (DPDA) is a tuple
(A, Ω, Γ,⊥, λ, o0, F ) where A is the input alphabet, Ω is the set of states , Γ is
the stack alphabet, ⊥ ∈ Γ is the stack bottom, o0 is the initial state, F ⊂ Ω is
the subset of terminal states and λ : A × Ω × Γ → Ω × Γ≤2 is the transition
function such that: if λ(a, o,⊥) = (o′, μ), then μ contains exactly one ⊥, which
is on its end, and if λ(a, o, β) = (o′, μ) with β �= ⊥, then μ does not contain any
⊥.

An (infinite) arc-labeled graph G is associated to the automaton. Its set of
vertices is Ω × (Γ \ {⊥})∗⊥, and there exists an arc from (e, μ) to (f, ν) labeled
a if and only if ν = ρμ�1,|μ|−1� and λ(a, e, μ0) = (f, ρ). The word μ is called the
stack content.

The language L recognized by the automaton consists of all words w in A∗

such that there exists a finite path in G with label w, starting on vertex (o0,⊥)
and ending in some vertex (o, μ) with o ∈ F . A subshift is recognized by the
automaton if its language is recognized by the automaton.

2 Turing Machines

In this article, a Turing Machine (TM) is a triple (A, Q, δ), where A and Q are
the finite tape alphabet and set of state, and δ : A×Q → A×Q×{−1, 1} the rule.
We do not particularize any halting state. We can see the TM as evolving on a
bi-infinite tape. The phase space is X = AZ ×Q×Z. Any element of X is called
a configuration and represents the state of the tape, the state of the head and
its position. We consider here the topology introduced in Section 1.1. Thus, the
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farther the head is from the center, the less important become the read symbols,
but the head state and position remain important. On this (non-compact) space,
T : X → X by T (x, q, i) = (x�−∞,i�ax�i,∞�, p, i + d) if δ(xi, q) = (a, p, d) gives
the corresponding DS. We can extend the shift function to TM configurations
by σ : (x, q, i) �→ (σ(x), q, i − 1), and it clearly commutes with T .

We can represent the head state and position by adding a “mark” on the tape.
If we want a compact space, this corresponds to the following phase space:

XH =
{

x ∈ (A � (A ×Q))Z
∣∣ |{ i ∈ Z|xi ∈ A ×Q}| ≤ 1

}
where the head position is implicitly given by the only cell with a symbol in (A×
Q), and the function TH : XH −→ XH is defined by TH(x�−∞,i�(b, q)x�i,∞�) =
y�−∞,i+d�(yi+d, p)y�i+d,∞�, where y = x�−∞,i�ax�i,∞� and δ(b, q) = (a, p, d), and
TH(x) = x if x does not contain any symbol in A×Q. With the topology of XH

as a subshift of (A� (A×Q))Z , the head state and movement are less important
when the head is far from 0. This model corresponds to the TM with moving head
defined by Kůrka in [1], which highlights the tape configuration. It is a particular
case of cellular automaton, i.e. based on some uniformly-applied local rule. We
can intuitively see a continuous injection Φ : X → XH such that ΦT = THΦ and
Φσ = σΦ.

Focusing on the movements and states of the head, [1] also defines the system
with moving tape TT : XT → XT on the (compact) space
XT = AZ × Q by TT (x, q) = (σd(x�−∞,0�ax�0,∞�), p) if δ(x0, q) = (a, p, d).
Here the head is assumed to be always at position 0, and the tape is shifted
at each step according to the rule. There is a continuous non-injective surjection
Ψ : X → XT such that ΨT = TT Ψ .

Finally, we can have a vision centered on the head and which emphasizes only
the relevant part of the configuration, as in [4,5]. The system ST is the one-sided
subshift on alphabet Q×A, which is the image of the factor map τT : XT → ST

defined by τT (x, q)t = (y0, p) if (y, p) = T t
T (x, q). In other words, it represents

the sequence of pairs corresponding to the successive states of the head and the
letters that it reads.

XH

TH

��

X��
Φ��

T

��

Ψ �� �� XT

TT

��

τT �� �� ST

σ

��
XH X��

Φ�� Ψ �� �� XT
τT �� �� ST

Similarly, we will note SH the one-sided subshift on alphabet Q�(A×Q) which
is the image of the factor map τH : XH → SH defined by τH(x)t = T t

H(x)0.
Unlike ST , this subshift does not always contain the relevant information, since
the head can be completely absent.

2.1 Equicontinuous Configurations

Topological notions can actually formalize various types of head movements.
One first example is equicontinuity of the DS TT . It is strongly related with
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periodicity, as the next remark establishes. This is natural since the symbol that
the head reads in XT is always at position 0. Hence, if the head visits an infinite
number of cells, say to the right, any perturbation on the initial configuration
will get to position 0, and thus will become largely significant for this topology.
We conclude the following.

Remark 1. Let x ∈ X be a configuration and T a machine over X. The fol-
lowing statements are equivalent:

1. The head position on x is bounded.
2. x is preperiodic for T .
3. Φ(x) is preperiodic for TH .
4. Ψ(x) is equicontinuous for TT .
5. τT Ψ(x) is preperiodic and isolated –i.e. equicontinuous– in ST .

Moreover, if one of the above occurs, then Ψ(x) is preperiodic for TT , x is
equicontinuous for T and Φ(x) is equicontinuous for TH. The set of equicon-
tinuous configurations for TT is a union of cylinders of XT .

If Ψ(x) is preperiodic for TT , then τT Ψ(x) is also periodic (for σ), but x need
not be periodic for T . For example, a machine that simply moves to the left on
every symbol will produce a periodic point for TT if the initial configuration x is
spatially periodic. From the previous remark, such a point is not equicontinuous,
and τT Ψ(x) is a non-isolated periodic point in ST , because any perturbation of x
will produce a neighbor of τT Ψ(x) in ST . Periodic points for T generate isolated
periodic points in ST because, once the system falls in the periodic behavior, its
future is fixed.

Preperiodicity in T also implies equicontinuity in TH , but TH may have other
equicontinuous points. The previously mentioned machine which always go to
the left produces equicontinuous points for TH which are not equicontinuous nor
preperiodic for TT .

The following proposition states that the equicontinuity of preperiodic con-
figurations is transmitted to factor subshifts of TH , which will be helpful in the
sequel.

Proposition 1. If z ∈ SH is a preperiodic word involving the machine head
infinitely often, then it is isolated.

Proof. We can assume that z is periodic, and then include the transient evolution
in a larger ball. Let p ∈ N\{0} be the period of z; let us prove that the ball U =
[z�0,|Q||A|p+1(p+1)2�]0 of SH is equal to {z}. Let z′ ∈ U and x ∈ τ−1

H (z′). It can
be seen that the head computing over z′ always remains between the positions
%−p/2& and %p/2&, which correspond to at most |Q| |A|p+1 (p + 1) distinct finite
patterns. Hence there are i < j ≤ |Q| |A|p+1 (p + 1) such that T i(x) = T j(x);
as a consequence σi(z′) is (j − i)-periodic. Together with σi(z), they are both
(j − i)p-periodic and coincide on their first (j − i)p letters, since (j − i)p ≤
|Q| |A|p+1 (p + 1)2 − i. As a conclusion, z′ = z. ��
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2.2 Preperiodic Machines

When all the configurations are uniformly preperiodic, we say that the system
is preperiodic, i.e. there exist q, p such that T q+p = T q. In the present case,
global preperiodicity of each of the considered systems comes directly from local
preperiodicity of T ; and it is equivalent to global equicontinuity of each of the
systems as the next theorem establishes.

Theorem 1. Considering a machine, the following statements are equivalent:

1. The head position is (uniformly) bounded.
2. Any configuration of X (or XH , XT ) is preperiodic.
3. T (or TH, TT , ST , SH) is preperiodic.
4. T (or TH, TT , ST , SH) is equicontinuous.
5. ST (or SH) is finite.

Proof. We give only a sketch of the main implications.

– It is quite obvious from the commutation diagrams that the preperiodicity
of T , TH and TT are equivalent, and they imply those of ST and SH . They
also imply, from Remark 1, that the head position is bounded.

– Clearly, the equicontinuity of T and TH are equivalent.
– It is known from cellular automata theory that the equicontinuity of TH ,

its preperiodicity, that of all its configuration and the finiteness of SH are
equivalent.

– If the head position on all configurations is bounded, then from Remark 1
they are all equicontinuous for TT . XT being compact, TT is equicontinuous.

– It is obvious that ST is finite if and only if the head reads a bounded part
of the initial configuration. ��

2.3 Sofic Machines

Now we allow computations where the head can go arbitrarily “far”, but without
ever making “large” movements back.

Definition 2. We say that a machine makes a right-cycle ( left-cycle) of width
N ∈ N over a configuration x ∈ AZ × Q× Z and a cell i ∈ Z if there exist time
steps 0 = t0 < t1 < t2 such that the head position is i at time 0 and t2, and is
i + N (i−N) at time t1.

In this section, we consider machines whose cycles have bounded width, i.e. there
exists an integer N such that the machine cannot make any cycle wider than N .
These machines have been studied in [5,4], where it was proved that they are
exactly the machines for which ST is sofic.

Theorem 2. Considering a machine, the following statements are equivalent:

1. ST is sofic.
2. All configurations of XH that contain the head are equicontinuous.
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Proof

1⇒2 From [4], we know that there exists an integer N such that the machine
cannot make any cycle wider than N ∈ N, and let x ∈ XH a configuration
containing the head within �−k, k�, for some k ∈ N. Let us show that if
y ∈ [x�−k−N,k+N�], then for every t ∈ N we have T t

H(y) ∈ [T t
H(x)�−k,k�].

Let us remark that while the head is inside �−k −N, k + N�, we necessarily
have T t

H(y) ∈ [T t
H(x)�−k,k�]. Let us suppose that there exists j ∈ N such

that the head is outside �−k −N, k + N� at time j and let us take this j
minimal. Then the heads of T j

H(x) and T j
H(y) are outside �−k −N, k + N�.

At some moment, the head has gone from k to k + N (or from −k − N);
if it comes back to �−k, k�, it would make a cycle. Therefore, the head
cannot come back to �−k, k�, and this is true both for x and y, and we
have the result.

2⇒1 Conversely, assume that the head can do arbitrarily wide right-cycles in
cell 0, i.e. for each j ∈ N there exists a cylinder [uj ]0 of XH with uj ∈ (A×
Q)Anj , with nj > j, such that over each configuration of [uj]0, the head
starts at 0, it visits the whole interval �0, nj� and comes back to cell 0. Let
us take some configuration cj in each cylinder [uj]0. By compactness, the
sequence (cj)j∈N admits an adhering value c, on which the head necessarily
goes infinitely far to the right without ever coming back to cell 0. By
construction, for any N , there is some j ∈ N such that the configuration
cj
�−N,N� = c�−N,N�. But there exists a time t ∈ N such that T t

H(cj) has the
head in cell 0, whilst T t

H(c) has not; hence c is not equicontinuous. ��
From [5], any of the former properties implies that any configuration is either
preperiodic or gives rise to a movement of the head arbitrarily far in some direc-
tion, but the converse is not true. Any configuration of SH is preperiodic, hence
this subshift is numerable.

3 Bounded-Zigzag Machines

Whilst the sofic machines did not allow any large cycle, we can wonder what
happens when allowing a single one, or a finite number of these. The first step
is to allow one cycle of arbitrary width but to forbid two overlapped unbounded
cycles (zigzags). We remark that two independent cycles, each on a different
direction, are allowed in this case.

Definition 3. We say that a machine makes a right-zigzag (resp., left-zigzag)
of width N ∈ N over a configuration x ∈ AZ×Q×Z and a cell i ∈ Z, if there exist
time steps 0 = t0 < t1 < t2 such that the machine position is i at times t0 and
t2, and i+N (resp., i−N) at time t1. We say that a machine is bounded-zigzag
if the maximal width of the zigzags that it can make is finite.

3.1 Complexity of ST

While bounded cycle machines have a sofic shift ST , the bounded-zigzag ma-
chines have a subshift recognized by a deterministic pushdown automata. The
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words of ST contain information about the tape symbols and the head state.
From this data, it is possible to deduce the tape symbol of the visited cells and
the relative position of the head at each time step. In order to recognize ST , we
can register this information and check its coherence at each time step. When
the width of the cycles is bounded, we only need to register a finite part of the
tape (bounded-cycle machines have a subshift that can be recognized by a finite
state automaton).

When only one “wide” cycle can be done, we can register the information in a
stack, from which it can be read exactly once (and is lost forever once read). This
corresponds to the fact that the cells registered in the stack cannot be visited any
more and zigzags cannot be allowed. The complete proof can be found in [6].

Theorem 3. A machine T is bounded-zigzag if and only if ST is recognized by
some deterministic pushdown automaton.

3.2 Complexity of SH

If we now adopt a point of view fixed on the tape –SH– rather than the head, a
cycle in the subshift corresponds to a waiting time during which cell 0 does not
change. We can adapt the previously built DPDA so that it recognizes exactly
these waiting words between two visits of the head. The key point here is that
these languages are unary, and unary context-free languages are regular (see for
example [7]), and thus they can be recognized with a finite automaton.

When the machine is bounded-zigzag, the head can make at most one long
cycle by side. The rest of the time, the head is either moving closer to or far-
ther from cell 0, or staying in some finite window around cell 0. All of these
behaviors can be recognized by a finite automaton, thus the language of SH

is regular. Therefore, we obtain a surprising reduction in language complexity
when changing the point of view: if ST is recognized by some DPDA, then SH

is sofic. The complete proof can be found in [6]. Note that, up to a rescaling of
the tape alphabet, all factor subshifts can be reduced to the case of SH .

Theorem 4. For any bounded-zigzag machine, all the factor subshifts of TH are
sofic.

The converse of this theorem is false: we can construct a machine with a tape
with n levels, where the head vertically shifts down the content of each level
while moving right. It rebounds when it finds a wall in the lowest level (which
is erased in the same way), and does the same in the opposite direction. We can
see that the machine can make arbitrarily wide n-zigzags, each of independent
length, in such a way that the factor subshifts of TH are sofic.

Nevertheless, we can prove that this kind of construction is possible only with
a bounded n. Let us introduce this formally.

Definition 4. We say that a machine makes an n-cycle of width N ∈ N over
configuration x ∈ AZ × Q × Z and cell i ∈ Z, if there exist 2n + 1 time steps
0 = t0 < t1 < . . . < t2n such that the head is in position i at time t2q and
outside �−N, N� at time t2q+1, for each q ∈ �0, n�. We say that the machine is
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n-bounded-cycle if there is some N such that the head cannot make n-cycles of
width larger than N .

When ST is sofic, the machine is 1-bounded cycle. Considering some machine T ,
we denote ψN (x) ∈ N�{+∞} the maximum n such that the machine can make
an n-cycle of width N over configuration x. Clearly, T is n-bounded cycle if and
only if for some N ∈ N, ψN is bounded by n− 1.

Let us call Φi(x) the set of time steps for which the head has position i ∈ Z
when computing over configuration x. This set is linked to cycles by the following
intuitive observation.

Proposition 2. If T is an n-bounded-cycle machine, then there exists p ∈ N
such that for any cell i ∈ Z and any non-preperiodic configuration x ∈ X,
|Φi(x)| ≤ p.

Proof. Let n, N ∈ N be such that max {ψN (x)| x ∈ X} = n − 1, and x ∈ X

such that |Φ0(x)| > p = 2n |A|2N+1 – the case i �= 0 can be obtained by shifting.
Consider {t0, . . . , tp} ⊂ Φ0(x) with t0 < t1 < . . . < tp. If we consider an (n− 1)-
cycle over x in cell 0, we can see that there exist tk1 < tk2 < . . . < tkn−1) such that
for any i ∈ �1, n− 1�, the head goes beyond N or −N between time steps tki and
tki+1, but not between (possibly equal) times tki+1 and tki+1 . This means that tki

is the last time that the head is in 0 before going beyond �−N, N�. Let k0 = −1
and kn = p, in such a way that �0, p� =

⋃n
i=0 Ii, where Ii = �ki + 1, ki+1� for 0 ≤

i ≤ n. There are n+1 such intervals, so one of them, say Ii, has at least |A|2N+1

elements; this is all the more the case for
�
tki+1, tki+1

�
⊃
{

tkj

∣∣ ki < j ≤ ki+1
}
.

Hence, between time steps tki+1 and tki+1 there are at least |A|2N+1 consecutive
time steps in Φ0(x) such that the head stays within the interval of cells �−N, N�.
As a result, there are i, j ∈

�
tki+1, tki+1

�
with i < j and T i(x) = T j(x), which

implies that x is preperiodic. ��

Theorem 5. If SH is sofic, then T is n-bounded-cycle for some n.

Proof. Assume that SH = τH(XH) is recognized by some finite automaton with
N states, and that there exists some configuration x ∈ X on which the machine
makes some N -cycle of width N . Let t0, . . . , t2N be as in the definition of N -
cycles, and u = τH(x)�0,t2N �. Let o0 . . . ot2N +1 be the corresponding path of the
finite automaton. We can see that there are i < j < N such that ot2i = ot2j ,
hence there is some periodic infinite word z ∈ τH(XH) corresponding to the path
w that repeats the cycle (ot2i . . . ot2j ). From Proposition 1, z is isolated. As a
consequence, w is the only path to start from ot2i . Therefore, its vertices are all
different, and t2j − t2i ≤ N , but in this case the head does not have the time to
go beyond �−N, N� between these two iterations, which is a contradiction. We
have proved that T is N -bounded-cycle. ��

Here, too, the converse is false, since it is easy to build a machine doing a given
number of arbitrarily wide rebounds on specific wall characters before stopping.
The language of such a machine cannot be regular because the time intervals
between two rebounds are not independent.
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3.3 Almost Equicontinuity

We have already seen that in sofic machines, almost all configurations of XH are
equicontinuous. It is still so when allowing n-cycles, though in this case there
are some configurations with head which are not equicontinuous – recall that
Theorem 2 is an equivalence.

Theorem 6. If T is an n-bounded-cycle machine for some n, then TH is almost
equicontinuous.

Proof. By compactness of the space, it is enough to prove that for any cylinder
[u] and any k ∈ N, there exist some x ∈ [u] and some m ∈ N such that for any
y ∈ [x�−m,m�] and any t ∈ N, T t

H(y) ∈ [T t
H(x)�−k,k�]. Let N ∈ N be as in the

definition of n-bounded-cycle machine, [u] a cylinder of XH and k ∈ N. If [u]
contains some preperiodic configuration with the head, then we can easily find m
thanks to Remark 1. Otherwise, let us consider some configuration x ∈ [u] (with
the head) maximizing |Φ−k(x) � Φk(x)|, which is finite thanks to Proposition 2.
Let m ∈ Z be such that m ≥ k and the interval �−m, m� contains all the cells
visited, when computing from x, up to time step t = max(Φ−k(x) � Φk(x)).
Then we can see that any configuration y ∈ [x�−m,m�] has the same evolution
as x until this time step, and that after that, its head cannot visit cell −k nor
k, otherwise it would contradict the maximality of x. We can deduce that the
head of x (then also y) is outside �−k, k� after iteration t, otherwise it would
be trapped between −k and k and would become periodic. We observe, then,
that the cells of �−k, k� evolve exactly in the same way for configurations x and
y. ��

The converse is untrue: imagine a machine whose head rebounds between two
walls, each time shifting them to the left. Every configuration where the head
starts enclosed between two walls is equicontinuous. Any finite pattern can be
extended by adding walls to enclose the head, therefore equicontinuous points
are dense, but the head can make an arbitrary number of arbitrarily wide cycles.

4 Conclusion

The complexity of the Turing machine will always be very hard to understand. In
our attempt to treat this issue through the theories of topological and symbolic
dynamics, we have found interesting relations between:

– The head movements that can be observed during the computation;
– The density of equicontinuous points;
– The language complexity of the associated subshifts ST and SH .

These relations introduce a new point of view on how computation is performed.
In addition to generalizing them to more machines, the next step would be to
study Turing machines as computing model by introducing a halting state, and
to link all of these considerations to the result itself of the computation, and
eventually the temporal or spatial complexity of the computation.
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Abstract. We show that a logical framework, based around a fragment
of existential second-order logic formerly proposed by others so as to cap-
ture the class of polynomially-bounded P-optimisation problems, cannot
hope to do so, under the assumption that P �= NP. We do this by exhibit-
ing polynomially-bounded maximisation and minimisation problems that
can be expressed in the framework but whose decision versions are NP-
complete. We propose an alternative logical framework, based around
inflationary fixed-point logic, and show that we can capture the above
classes of optimisation problems. We use the inductive depth of an infla-
tionary fixed-point as a means to describe the objective functions of the
instances of our optimisation problems.

1 Introduction

The theory of computational complexity is primarily concerned with the classi-
fication of decision problems, and although many (NP-complete) decision prob-
lems are actually decision versions of more natural optimisation problems, the
classification of optimisation problems does not fit naturally into many of the
available standard classification frameworks. While there do exist criteria against
which we can classify optimisation problems, such as according to their approx-
imation properties [11], it was not until Papadimitriou and Yannakakis [18] pro-
posed the use of existential second-order logic as a means for classification that
a natural and robust framework became available. The classification of opti-
misation problems within this logical framework was subsequently significantly
clarified by Panconesi and Ranjan [17] and Kolaitis and Thakur [13,14] (we
briefly explain Kolaitis and Thakur’s work later).

The optimisation problems considered in the papers above are (polynomially-
bounded) NP-optimisation problems. The class of (polynomially-bounded)
P-optimisation problems is an important sub-class of optimisation problems.
Typical of P-optimisation problems are the maximum unit flow problem, the
maximum 2-satisfiability problem, the minimum shortest-path problem and the
minimum cut problem. In [16], Manyem attempted to logically capture the class
of polynomially-bounded P-optimisation problems by utilizing a fragment of
existential second-order logic (where the first-order part of any formula is a
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universally-quantified Horn formula) which is known to capture the class of de-
cision problems P (on ordered structures; this characterization was due to Grädel
[6]). As we demonstrate here, proceeding as Manyem suggests results in failure
(assuming that P �= NP), for there are polynomially-bounded optimisation prob-
lems that can be expressed within his logical framework but whose associated
decision problems are NP-complete (by definition, an NP-optimisation problem
is a P-optimisation problem if its associated decision problem is in P). However,
we present a new framework based around inflationary fixed-point logic and
where we use the inductive depth of an inflationary fixed-point as a mechanism
by which to compute the values of the objective functions of the instances of
our optimisation problems. We show that the classes of polynomially-bounded
P-maximisation problems and polynomially-bounded P-minimisation problems
can be captured within our framework.

2 A Framework for Classification

In this section, we define classes of (non-deterministic polynomial-time) opti-
misation problems and provide logical frameworks for the classification of such
problems. These classes and frameworks come from [13,14,17,18]. Furthermore,
we present some classification results from [13,14]. In addition, we refine defini-
tions and notions from [1,16]. In particular, we define classes of (deterministic)
polynomial-time optimisation problems and we explain how the logical frame-
work presented in [1,16], together with the subsequent analysis, was somewhat
incongruous.

2.1 P-Optimisation Problems

We begin by defining what we mean by a polynomial-time optimisation problem,
or P-optimisation problem for short.

Definition 1. A maximisation problem (resp. minimisation problem) Q is a
4-tuple (I,F , f, opt) where:

1. I is the set of instances of Q, with I recognisable in polynomial-time;
2. F is the set of feasible solutions to some instance of I, where we denote by

F(I) the set of feasible solutions to instance I;
3. f : I × F → N ∪ {⊥} is the objective function, and is such that :

– f(I, J) = ⊥ if, and only if, J �∈ F(I);
– there is a polynomial pf such that f(I, J) is computable in time pf (|I|);

4. For any instance I ∈ I, if F(I) is non-empty then opt(I) = max{f(I, J) :
J ∈ F(I)} (resp. opt(I) = min{f(I, J) : J ∈ F(I)}), and if F(I) is empty
then opt(I) = ⊥.

The class of optimisation problems consists of the class of maximisation prob-
lems in union with the class of minimisation problems. The maximisation (resp.
minimisation) problem Q is a P-maximisation problem (resp. P-minimisation
problem) if :
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5. The problem of deciding whether a given instance I ∈ I and a given integer m
are such that there exists a feasible solution J ∈ F(I) such that f(I, J) ≥ m
(resp. f(I, J) ≤ m) can be solved in polynomial-time.

The class of P-optimisation problems Popt is the class of P-maximisation prob-
lems Pmax in union with the class of P-minimisation problems Pmin. The classes
of NP-optimisation problems NPopt, NP-maximisation problems NPmax, and
NP-minimisation problems NPmin are defined analogously except that in condi-
tion 5 ‘non-deterministic polynomial-time’ replaces ‘polynomial-time’. We refer
to the problem in condition 5 as the decision version of Q.

Importantly, for us the solution of an optimisation problem Q = (I,F , f, opt)
is an algorithm that given any instance I of the problem, produces as output
the value opt(I) and not (necessarily) an optimal feasible solution from F(I) (if
there is one). In fact, this algorithm need not even work with representations of
feasible solutions; all it has to do is to come up with the optimal value. Note
that all problems Q = (I,F , f, opt) in Popt can be solved in polynomial-time, for:
given any instance I of size n and any feasible solution J ∈ F(I), by definition
f(I, J) is O(2p(n)), where p is some polynomial; and repeating the algorithm in
condition 5 in tandem with a binary search yields a polynomial-time algorithm
that computes opt(I).

Remark 1. Note that Definition 1 implies that all feasible solutions to some
instance can be taken to have size bounded by some polynomial in the size of the
instance. Given that our notion of a solution of an optimisation problem is such
that a numeric value should be found and not a witnessing feasible solution, there
is no real need to discuss the computational nature of a set of feasible solutions
corresponding to some instance. In particular, Definition 1 says nothing about
the complexity of deciding whether some potential feasible solution is indeed an
actual feasible solution to some instance. It turns out that most (instances of)
natural optimisation problems have easily recognizable sets of feasible solutions.

Remark 2. The reader will have noted that according to Definition 1, every
optimisation problem is in fact an NP-optimisation problem, and so condition
5 is redundant when defining an NP-optimisation problem. However, we have
included it as it appears in analogous definitions in [13,14]; for in these definitions
the objective function is defined to be computable in time polynomial in the size
of the input, i.e., the instance and a feasible solution, rather than in the size of
the instance. Our notion of an optimisation problem is such that every feasible
solution to some instance necessarily has size bounded by some polynomial in the
size of the instance, whereas in [13,14] there is scope for considering optimisation
problems whose instances have feasible solutions of size exponential in the size
of the instance.

Remark 3. We should point out that Manyem’s definition of a P-optimisation
problem in [16], and subsequently in [1], is slightly different from that in Defini-
tion 1, for Manyem had an extra condition, namely that:
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6′. The problem of computing an optimal solution for a given instance I of Q
can be solved in time polynomial in |I|.

We have dropped this condition as we feel that the condition is not intrin-
sic to our notion of the solution of an optimisation problem. We wish our
P-optimisation problems to be analogous to the NP-optimisation problems of
[13,17,18] where no such condition exists. Indeed, imposing such a condition in
the context of NP is somewhat problematic as not only would we be asking for
a non-deterministic polynomial-time transducer but checking optimality would
provide difficulties too. Dropping Manyem’s additional condition provides for a
more appropriate analysis. (Note that the conditions 1 – 5 and 6′, above, mirror
Manyem’s conditions (i) – (vi) in [16].)

2.2 Polynomially-Bounded P-Optimisation Problems

The classes defined in the following definition play an important role.

Definition 2. An optimisation problem Q is polynomially-bounded if there is a
polynomial q such that for every instance I of Q, opt(I) ≤ q(|I|). We denote the
class of polynomially-bounded P-optimisation problems by PPB

opt , the (sub-)class
of polynomially-bounded P-maximisation problems by PPB

max, and the (sub-)class
of polynomially-bounded P-minimisation problems by PPB

min. There are analogous
definitions of NPPB

opt , NPPB
max, and NPPB

min.

We now mention some examples of optimisation problems.

Example 1. Consider the maximum 2-satisfiability problem MAX2SAT = (I,
F , f, opt), where:

– I is the set of conjunctive normal form formulae ϕ where every clause has 2
literals;

– F(ϕ) is the set of truth assignments on the Boolean variables involved in ϕ;
– f(I, J), for some instance I and for some feasible solution J ∈ F(I), is the

number of clauses of I made true under the truth assignment J .

It is well-known that the decision version of MAX2SAT is NP-complete (see,
e.g., [5]). Hence, MAX2SAT is in NPPB

max (and not in Pmax unless P = NP).
If we define MAXHORN2SAT just as was MAX2SAT except that all instances
are in addition Horn formulae then thanks to a result in [10] where the de-
cision version of MAXHORN2SAT was shown to be NP-complete, we obtain
that MAXHORN2SAT is in NPPB

max and unlikely to be in PPB
max (in fact, the

analogous problem MINHORN2SAT is also NP-complete [12]). However, if we
define the problem MAX2SAT(≤2) by restricting instances of MAX2SAT so
that every variable appears in at most 2 clauses then as the decision version of
MAX2SAT(≤2) can be solved in linear time [19], MAX2SAT(≤2) is in PPB

max.

Example 2. Consider the minimum shortest-path problem MINSP = (I,F , f,
opt), where:
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– I is the set of triples (G, s, t), with G a digraph and s and t two distinct
vertices of G;

– F((G, s, t)) is the set of all possible paths in G from s to t;
– f(I, J), for some instance I and for some feasible solution J ∈ F(I), is the

length of the path J .

It is well-known that the decision version of MINSP is in P (see, e.g., [2]); thus,
MINSP ∈ PPB

min.

Henceforth, we define the maximum or minimum of the empty set as ⊥.

2.3 Using Logic to Classify NP-Optimization Problems

We begin with some basic definitions. For us, a signature σ is a finite tuple of
relation symbols R1, R2, . . . , Rr, where each Ri has arity ai, and constant sym-
bols C1, C2, . . . , Cc. A finite structure over σ, or σ-structure, A of size n, where
n ≥ 2, consists of a domain, or universe, {0, 1, . . . , n − 1} and a relation Ri of
arity ai (resp. constant Cj), for every relation symbol Ri (resp. constant symbol
Cj) in σ (it causes no confusion that we do not differentiate between relations
and relation symbols, and constants and constant symbols). We denote both the
size and the domain of a structure A as |A| (again, this causes no confusion).
Let σ and τ be signatures with no symbols in common. Suppose that A is a
σ-structure and B is a τ -structure with |A| = |B|. The σ∪τ -structure (A,B) has
domain that of A (and B) with relations and constants corresponding to symbols
from σ (resp. τ) inherited from A (resp. B). If τ = 〈S1, S2, . . . , St〉, where each
Si is a relation symbol, then we sometimes denote (A,B) by (A, S1, S2, . . . , St).
A problem is an isomorphism-closed set of finite structures over some fixed sig-
nature; so, a problem refers to a decision problem (as opposed to an optimisation
problem). Of particular interest to us is a successor relation; that is, a binary
relation over some domain of size n where this relation is of the form

{(a0, a1), (a1, a2), . . . , (an−2, an−1) : all ai’s are distinct}.

We assume that the reader is familiar with using first-order logic FO and second-
order logic SO to define problems.

Henceforth, all instances of some optimisation problem are finite structures A
over some fixed signature, σ say, and we say that such an optimisation problem
is over σ. We make no assumptions as regards the feasible solutions of some
instance although in practice they tend to be structures over some (fixed) sig-
nature. Such a framework fully captures all of the optimisation problems from
the previous section.

In [13], Kolaitis and Thakur characterized the classes of polynomially-bound-
ed NP-maximization problems NPPB

max and polynomially-bounded NP-minimiz-
ation problems NPPB

min.

Theorem 1 (Kolaitis and Thakur [13]). Let Q = (I,F , f, opt) be a max-
imisation problem over σ. The following are equivalent.
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1. Q is a polynomially-bounded NP-maximization problem, i.e., Q ∈ NPPB
max.

2. There exists a signature τ , consisting solely of relation symbols and disjoint
from σ, and a first-order formula ϕ(x) over σ ∪ τ , where x is a k-tuple of
variables, for some k, such that for every instance A ∈ I:

opt(A) = max
B

{|{u ∈ |A|k : (A,B) |= ϕ(u)}|},

where B ranges over all τ-structures of size |A|.
Moreover, if one of the above conditions holds then the formula ϕ, above, can be
taken to be a Π2-formula.

Theorem 2 (Kolaitis and Thakur [13]). Let Q = (I,F , f, opt) be a min-
imisation problem over σ. The following are equivalent.

1. Q is a polynomially-bounded NP-minimization problem, i.e., Q ∈ NPPB
min.

2. There exists a signature τ , consisting solely of relation symbols and disjoint
from σ, and a first-order formula ϕ(x) over σ ∪ τ , where x is a k-tuple of
variables, for some k, such that for every instance A ∈ I:

opt(A) = min
B

{|{u ∈ |A|k : (A,B) |= ϕ(u)}|},

where B ranges over all τ-structures of size |A|.
Moreover, if one of the above conditions holds then the formula ϕ, above, can be
taken to be a Σ2-formula.

The class of (logically-defined) maximisation problems defined in Theorem 1 is
called MAX Π2 and the class of minimisation problems defined in Theorem 2
is called MIN Σ2, with the notation derived from the syntax of the defining
first-order formula. By imposing suitable restrictions upon the formula ϕ in
Theorems 1 and 2, one obtains classes such as MAX Πi, MAX Σi, MIN Πi, and
MIN Σi, for i ≥ 0. Obviously, NPPB

max = MAX Π2 = MAX Πi and NPPB
min =

MIN Σ2 = MIN Σi, for all i ≥ 2. In fact, Kolaitis and Thakur also proved the
following result.

Theorem 3 (Kolaitis and Thakur [13])

– MAX Σ0 ⊂ MAX Σ1 ⊂ MAX Π1 = MAX Σ2 ⊂ MAX Π2 = NPPB
max.

– MIN Σ0 = MIN Σ1 ⊂ MIN Π1 = MIN Σ2 = MIN Π2 = NPPB
min.

Kolaitis and Thakur went on in [14] to vary their logical framework slightly. They
defined the following classes of optimisation problems. Note that for a relation
X , we write |X | to denote the number of tuples in X .

Definition 3. Let Q = (I,F , f, opt) be a maximisation problem over σ and let
i ≥ 1. The optimisation problem Q is in MAX FΠi if, and only if, there exists
a Πi (first-order) sentence ϕ over σ ∪ τ , where τ = 〈S1, S2, . . . , St〉 and where
each Sj is a relation symbol not appearing in σ, with the property that for every
instance A of I:

opt(A) = max
B

{|S1| : (A,B) |= ϕ},

where B ranges over all τ-structures of size |A|.
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The classes MAX FΣi, MIN FΠi, and MIN FΣi, for i ≥ 1, are defined analo-
gously.

Kolaitis and Thakur [14] showed that these new classes of optimisation prob-
lems are closely related to the classes discussed earlier.

Theorem 4 (Kolaitis and Thakur [14])

MAX Σ0
MAX FΣ1

}
⊂ MAX Σ1 ⊂ MAX Π1 = MAX FΠ1 = MAX Σ2

= MAX FΣ2 ⊂ MAX Π2 = MAX FΠ2 = NPPB
max.

MIN Σ0 = MIN Σ1 = MIN FΠ1
MIN FΣ1

}
⊂ MIN FΣ2 ⊂ MIN FΠ2 = MIN Π1

= MIN Σ2 = MIN Π2 = NPPB
min.

The bracketing used in the statement of Theorem 4 is to denote that the classes
are incomparable.

2.4 Manyem’s Framework for P-Optimization Problems

Inspired by the work of Kolaitis and Thakur, in [16] Manyem (and subse-
quently with Bueno in [1]) attempted to provide a suitable logical framework to
characterize the classes of polynomially-bounded P-maximisation problems and
polynomially-bounded P-minimisation problems. Whereas Kolaitis and Thakur’s
logical framework had been derived from Fagin’s seminal characterization of NP
as the class of problems definable in existential second-order logic [4], Bueno
and Manyem tried to take Grädel’s characterization of P [6] as the class of prob-
lems definable in a particular fragment of existential second-order logic as their
inspiration. We shall now describe Grädel’s result.

We say that a quantifier-free first-order formula over σ ∪ τ , where τ consists
entirely of relation symbols and is disjoint from σ, is a Horn formula over (σ, τ) if
it is a conjunction of clauses where each clause contains at most one positive atom
involving a symbol from τ . The logic ∃SO-Horn is the fragment of existential
second-order logic consisting of all formulae over some signature σ of the form:

∃S1∃S2 . . .∃St∀y1∀y2 . . . ∀ymϕ,

where each Si is a relation symbol not in the underlying signature σ, each
yj is a (first-order) variable, and ϕ is a Horn formula over (σ, τ), where τ =
〈S1, S2, . . . , St〉. We say that a logic L describes , or captures , a class of (deci-
sion) problems C in the presence of a built-in successor relation, or on ordered
structures , if the following are equivalent:

– The problem Ω, over the signature σ, is in C;
– There is a sentence Φ of L over the signature σ ∪ 〈succ, min, max〉, where

succ is a binary relation symbol not in σ and min and max are constant
symbols not in σ, such that:
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• For every σ-structure A, as to whether the expansion of A by a successor
relation succ and constants min and max, so that min (resp. max) is the
minimal (resp. maximal) element of the linear order described by succ,
satisfies Φ is independent of the particular successor relation chosen (that
is, Φ is order invariant);

• For every σ-structure A, A ∈ Ω if, and only if, the expansion of A by
some successor relation succ and corresponding constants min and max
satisfies Φ.

For more on built-in successor relations, we refer the reader to [3,7,9,15].

Theorem 5 (Grädel [6]). A problem is in P if, and only if, it can be defined
by a sentence of ∃SO-Horn in the presence of a built-in successor relation.

In [16], Manyem gave a definition of a P-optimisation problem and a logical
framework within which to try and capture the classes of polynomially-bounded
P-maximisation problems and polynomially-bounded P-minimisation problems.
As we have already mentioned, his definition of a P-optimisation problem was at
variance with the definition to be expected should one proceed analogously to
related research on (NP) optimisation problems, mentioned above. In Theorem
3 of [16] he claims that every polynomially-bounded P-maximisation problem
Q = (I,F , f, opt) over σ (according to his definition) is such that there exists a
signature τ consisting of only relation symbols and disjoint from σ and a Horn
formula ϕ(y) over (σ, τ), where y is the tuple of free variables of ϕ, such that
for every instance A ∈ I:

opt(A) = max
B

|{u : (A,B,u) |= ∀x1∀x2 . . .∀xkϕ(y)}|,

with B ranging over all τ -structures with domain |A| and u detailing values
for the variables of y. Manyem made a similar claim relating to polynomially-
bounded P-minimisation problems in Theorem 10 of [16]. Manyem allowed for the
use of a built-in successor relation in the formula ϕ, above, but did not explain
how ϕ(y) might be order-invariant; consequently, he left open the possibility
that |{u : (A,B,u) |= ∀x1∀x2 . . . ∀xkϕ(y)}| might vary depending upon the
particular successor relation chosen. Manyem made no claims as regards the
converse direction; that is, whether optimisation problems definable in the above
logical form are necessarily polynomially-bounded P-optimisation problems.

3 The Failure of Manyem’s Framework

We show how any framework defined in accordance with that proposed by
Manyem will not suffice to characterize the classes of polynomially-bounded
P-maximisation problems and polynomially-bounded P-minimisation problems.

Theorem 6. There exists a polynomially-bounded maximisation problem Q =
(I,F , f, opt) such that:
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– Q is over σ = 〈H, Z〉, where H is a relation symbol of arity 4 and Z is a
constant symbol, with I the set of σ-structures;

– τ = 〈P, T 〉, where P and T are both relation symbols of arity 1, so that the set
of feasible solutions F(A) to some instance A ∈ I is the set of τ-structures
with domain |A|;

– ϕ is a Horn formula over (σ, τ) with free variables x1, x2, x3, y, so that given
some instance A ∈ I and some feasible solution B ∈ F(I),

f(A,B) = |{u : (A,B, u) |= ∀x1∀x2∀x3ϕ(y)}|;

– The decision version of Q is NP-complete.

Theorem 7. There exists a polynomially-bounded minimisation problem Q =
(I,F , f, opt) such that:

– Q is over σ = 〈H, Z〉, where H is a relation symbol of arity 4 and Z is a
constant symbol, with I the set of σ-structures;

– τ = 〈P, T 〉, where P and T are both relation symbols of arity 1, so that the set
of feasible solutions F(A) to some instance A ∈ I is the set of τ-structures
with domain |A|;

– ϕ is a Horn formula over (σ, τ) with free variables x1, x2, x3, y, so that given
some instance A ∈ I and some feasible solution B ∈ F(I),

f(A,B) = |{u : (A,B, u) |= ∀x1∀x2∀x3ϕ(y)}|;

– The decision version of Q is NP-complete.

An immediate consequence of Theorems 6 and 7 is that any framework based
around Grädel’s characterisation of P using restricted (Horn) formulae of ex-
istential second-order logic (as advocated by Manyem) will not characterize
the class of polynomially-bounded P-maximisation problems nor the class of
polynomially-bounded P-minimisation problems (assuming that P �= NP).

Note also that when working with polynomially-bounded P-minimisation
problems, there is a pronounced difference between the original framework pro-
posed by Kolaitis and Thakur [13], where in order to obtain the objective
function value we count the number of elements satisfying some formula, and
the amended one [14], where we count the cardinality of a witnessing relation
(Manyem chose to adopt the former framework when he strove for a logical
classification of P-optimisation problems in [16]). Whilst MIN FΠ1 ⊂ MINΠ1,
with MIN FΠ1 still containing NP-hard optimisation problems (like VERTEX
COVER), if we have some optimisation problem Q = (I,F , f, opt), over σ, where
for every instance A ∈ I for which F(A) is non-empty,

opt(A) = max
B

{|B0| : (A,B) |= ∀x1∀x2 . . . ∀xkϕ},

with ϕ a Horn sentence over (σ, τ), B ranging over all τ -structures with domain
|A| and B0 a specific relation from B, then Q is indeed a polynomially-bounded
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P-optimisation problem. To see this, simply ‘expand’ the sentence ϕ in any in-
stance A in order to obtain a collection of Horn formulae. If there exists a
witnessing set of relations B then there is a unique ‘minimal’ set of relations B,
computable in polynomial-time. The cardinality of the relation B0 from this set
of relations B yields the value opt(A). Thus, if we were to adopt the amended
framework from [14] and Manyem’s approach to obtaining a logical characteri-
zation of polynomially-bounded P-minimisation problems then it is feasible that
we might be able to do so (though we would have to ensure that all defining for-
mulae were order-invariant, as we explained at the end of Section 2.4). Even this
revised framework would fail for polynomially-bounded P-maximisation prob-
lems, though, as is demonstrated by the proof of Theorem 6 (as always, we
assume that P �= NP).

4 Logically Capturing PPB
max and PPB

min

In this section we provide logical characterizations of the classes of polynomially-
bounded P-maximisation problems and polynomially-bounded P-minimisation
problems. The logic we use is not a fragment of existential second-order logic
but the well-known inflationary fixed-point logic FO(IFP). We use the inductive
process of building fixed-points in order to provide values for the objective func-
tions of our optimisation problems. The reader is referred to any of [3,7,9,15] for
details as regards FO(IFP). Pertinent to this paper is the following result where
we denote the logic FO(IFP) in the presence of a built-in successor relation by
FOs(IFP).

Theorem 8 (Immerman [8], Vardi [20]). A problem is in P if, and only if, it
can be defined by a sentence of FOs(IFP). Moreover, any sentence of FOs(IFP)
is logically equivalent to one of the form [IFPR,xϕ](max), where ϕ is quantifier-
free first-order and max is a tuple every component of which is the constant
symbol max.

Let ϕ be a formula of FOs(IFP) over the signature σ ∪ 〈R〉, where R is a k-
ary relation symbol, so that the free variables of ϕ are those of the k-tuple of
variables x. We write depth(A,u)([IFPR,xϕ]) to denote the inductive depth of
the inflationary fixed-point of ϕ(R,x) in (A,u). We say that ϕ(R,x) is depth-
invariant if the inductive depth of the inflationary fixed-point of ϕ(R,x) in any
σ-structure is independent of the actual underlying successor relation.

Theorem 9. Let Q = (I,F , f, opt) be a maximisation problem over σ. The
following are equivalent.

1. Q is a polynomially-bounded P-maximisation problem (i.e., Q ∈ PPB
max).

2. There exists some depth-invariant formula ϕ(R,x) of FOs(IFP) over σ∪〈R〉,
where R is a k-ary relation symbol and the free variables of ϕ are those of
the k-tuple x, such that for any A ∈ I:

– if F(A) is non-empty then A |= [IFPR,xϕ](min) and the optimal value
opt(A) is given by depthA([IFPR,xϕ]) − 1;

– If F(A) is empty then A �|= [IFPR,xϕ](min).
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Theorem 10. Let Q = (I,F , f, opt) be a minimisation problem over σ. The
following are equivalent.

1. Q is a polynomially-bounded P-minimisation problem (i.e., Q ∈ PPB
min).

2. There exists some depth-invariant formula ϕ(R,x) of FOs(IFP) over σ∪〈R〉,
where R is a k-ary relation symbol and the free variables of ϕ are those of
the k-tuple x, such that for any A ∈ I:
– if F(A) is non-empty then A |= [IFPR,xϕ](min) and the optimal value

opt(A) is given by |A|k − depthA([IFPR,xϕ]) + 1;
– if F(A) is empty then A �|= [IFPR,xϕ](min).

Note that the actual numeric formulae giving the value of an optimal solution in
Theorems 9 and 10 in terms of the depth of a fixed-point construction are to some
extent unimportant. All that matters is that they are efficiently computable,
which both formulae are. In consequence, we obtain logical characterizations of
the classes PPB

max and PPB
min.

5 Conclusions

In this paper we have clarified the applicability of logical frameworks in rela-
tion to capturing classes of polynomially-bounded NP-optimisation problems.
We have seen: that Manyem’s framework does not (and will not) suffice; that
there are additional differences between the two frameworks proposed by Kolaitis
and Thakur when one restricts so as to consider P-optimisation problems; and
that there does exist an alternative logical framework capturing polynomially-
bounded P-optimisation problems.

We suggest the following as directions for further research. Whilst Manyem’s
attempt to capture classes of polynomial-time optimisation problems using frag-
ments of existential second-order logic with the first-order quantifier-free part
restricted to be a conjunction of Horn clauses has gone awry, it would be in-
teresting to continue this investigation in relation to the hierarchy results from
Theorem 4. That is, what happens at the lower end of this hierarchy when we
restrict the first-order quantifier-free part of formulae (with or without succes-
sor) to be a conjunction of Horn clauses, or even Krom clauses (a Krom clause
is a clause with exactly 2 literals)?

Finally, there is no doubt that polynomial-time optimisation problems are
not as abundant as NP-optimisation problems, nor do they straddle the P versus
NP divide as do NP-optimisation problems. Nevertheless, a more wide-ranging in-
vestigation as to the relationship between, for example, P-optimisation problems
and optimisation problems that can be solved in NC or NL and into alternative
means of logically defining P-optimisation problems is warranted.

Acknowledgement. The authors are indebted to Prabhu Manyem for many
clarifying conversations as regards his work, undertaken whilst he spent a sab-
batical stay in Durham.
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Abstract. Let π′
w denote the failure function of the Knuth-Morris-Pratt

algorithm for a word w. In this paper we study the following problem:
given an integer array A′[1 . . n], is there a word w over an arbitrary
alphabet Σ such that A′[i] = π′

w[i] for all i? Moreover, what is the
minimum cardinality of Σ required? We give an elementary and self-
contained O(n log n) time algorithm for this problem, thus improving the
previously known solution [8] with no polynomial time bound. Using both
deeper combinatorial insight into the structure of π′ and more advanced
tools, we further improve the running time to O(n).

1 Introduction

Failure functions. The Morris-Pratt algorithm [19], first linear time pattern
matching algorithm, is well known for its beautiful concept. It simulates the
minimal DFA recognizing Σ∗p (p denotes the pattern) by using a failure function
π, known as the border array. The automaton’s transitions are recovered, in
amortized constant time, from the values of π for all prefixes of the pattern, to
which the DFA’s states correspond. The values of π are precomputed in a similar
fashion, also in linear time.

The MP algorithm has many variants. For instance, the Knuth-Morris-Pratt
algorithm [16] improves it by using an optimised failure function, namely the
strict border array π′ (or strong failure function). This was improved by Si-
mon [21], and further improvements are known [13,1]. We focus on the KMP
failure function for two reasons. Unlike later algorithms, it is well-known and
used in practice. Furthermore, the strong border array itself is of interest as, for
instance, it captures all the information about periodicity of the word. Hence it
is often used in word combinatorics and numerous text algorithms, see [4,5]. On
the other hand, even Simon’s algorithm (i.e., the very first improvement) deals
with periods of pattern prefixes augmented by a single text symbol rather than
pure periods of pattern prefixes.

Problem statement. We investigate the following problem: given an integer
array A′[1 . .n], is there a word w over an arbitrary alphabet Σ s.t. A′[i] =
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π′
w[i] for all i, where π′

w denotes the failure function of the Knuth-Morris-Pratt
algorithm for w. If so, what is the minimum cardinality of the alphabet Σ over
which such a word exists?

Pursuing these questions is motivated by the fact that in word combinatorics
one is often interested only in values of π′

w rather than w itself. For instance, the
logarithmic upper bound on delay of KMP follows from properties of the strict
border array [16]. Thus it makes sense to ask if there is a word w admitting
π′

w = A′ for a given array A′.
We are interested in an online algorithm, i.e., one that receives the input

array values one by one, and is required to output the answer after reading each
single value.

Previous results. To our best knowledge, this problem was investigated only
for a slightly different variant of π′, namely a function g that can be expressed
as g[n] = π′[n − 1] + 1, for which an offline validation algorithm is known [8].
Unfortunately, Duval et al. [8] provided no upper bound on the running time
of their algorithm, but they did observe that on certain input arrays it runs in
Ω(n2) time.

Our results. We give a simple O(n log n) online algorithm for strong border
array validation, which uses the linear offline bijective transformation between
π and π′. Our algorithm is also applicable to g validation with no changes, thus
giving the first provably polynomial algorithm for the problem considered by
Duval et al. [8]. Note that aforementioned bijection between π and π′ cannot be
applied to g considered by Duval et al. [8], as it essentially uses the unavailable
value π[n] = π′[n].

Then we improve this construction to an optimal linear online algorithm
Validate-π′. The improved algorithm heavily relies on both more sophisticated
data structures, such as dynamic suffix trees supporting LCA queries, and deeper
insight into the combinatorial properties of π′ function.

Related results. The study of validating arrays related to string algorithms
and word combinatorics was started by Franěk et al. [11], who gave an offline
algorithm for border array validation. This result was improved over time, in
particular a simple linear online algorithm for π validation is known [9].

The border array validation problem was also studied in the more general
setting of parametrised border array validation [14], where parametrised border
array is a border array for text in which a permutation of letters of alphabet
is allowed. A linear time algorithm for a restricted variant of this problem is
known, with the general case still not settled [14].

Recently a linear online algorithm for a closely related prefix array validation
was given [2].

Validation of border arrays is used by algorithms generating all valid border
arrays [7,11,18].
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2 Preliminaries

For w ∈ Σ∗, we denote its length by |w| or n, when w is clear from the context.
For v, w ∈ Σ∗, by vw we denote the concatenation of v and w. We say that
u is a prefix of w if there is v ∈ Σ∗ such that w = uv. Similarly, we call v
a suffix of w if there is u ∈ Σ∗ such that w = uv. A word v that is both a prefix
and a suffix of w is called a border of w. By w[i] we denote the i-th letter of w
and by w[i . . j] we denote the subword w[i]w[i + 1] . . .w[j] of w. We call a prefix
(respectively: suffix, border) v of the word w proper if v �= w, i.e., it is shorter
than w itself.

i
w[i]

1 11109876543 12 13 14 15 162
b b b baa aa a aa ca aa a

πw[i] 0 1 0 1 52 3 4 52 3 4 07 86
π′

w[i] −1 1 −1−1 51 −1−1 11 −1−1 0−1 8−1

Fig. 1. Functions π and π′ for aabaabaaabaac

For a word w its failure function πw is defined as follows: πw[i] is the length
of the longest proper border of w[1 . . i] for i = 1, 2 . . . , n. By π

(k)
w we denote the

k-fold composition of πw with itself, i.e., π
(0)
w [i] := i and π

(k+1)
w [i] := πw[π(k)

w [i]].
This convention applies to other functions as well. We omit the subscript w in
πw, whenever it is unambiguous. Note that every border of w[1 . . i] has length
π

(k)
w [i] for some integer k ≥ 0.
The strong failure function π′ is defined as follows: π′

w[n] := πw[n], and for
i < n, π′[i] is the length of the longest (proper) border of w[1 . . i] such that
w[π′

w [i] + 1] �= w[i + 1]. If no such border exists, π′[i] = −1.
Below we present a bijection between πw and π′

w. Values of this function, as
well as its inverse, can be computed in linear time. The correctness as well as
the procedure itself are a consequence of the following observation1.

w[i+1]=w[π[i]+1]⇐⇒ π[i+1]=π[i]+1⇐⇒ π′[i]<π[i]⇐⇒ π′[i]=π′[π[i]]. (1)

Compute-π′
-From-π(π)

π′[0] ← −1
π′[n] ← π[n]
for i ← 1 to n− 1 do

if π[i + 1] = π[i] + 1 then
π′[i] ← π′[π[i]]

else π′[i] ← π[i]

Compute-π-From-π′(π′)
π[n] ← π′[n]
for i ← n − 1 downto 1 do

π[i] ← max{π′[i], π[i + 1]− 1}

1 While we believe that (1) and both transformations are folklore, we did not find
them explicitly stated anywhere, though.
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3 Online Strict Border Array Validation

Since there is a bijection between valid border arrays and strict border arrays,
it is natural to proceed as follows. Assume the input forms a valid strict border
array, obtain the corresponding border array, and validate the result using the
known border array validation algorithm. Unfortunately, the bijection in ques-
tion starts the calculations from the last entry of the array, so it is not suitable for
an online algorithm. We refine this approach, by noting that while there can be
many border arrays consistent with A′[1 . . i], they differ only on a certain suffix.
Our algorithm identifies this suffix and finds the maximal (in a sense explained
below) function A consistent with A′. Then it validates the fixed prefix of A (as
a border array) using the known linear-time online algorithm by Duval et al. [9].

Consistent functions. We say that A[1 . .n+1] is consistent with A′[1 . .n] iff
there is a word w[1 . . n + 1] such that

(i1) A[1 . . n + 1] = πw[1 . . n + 1],
(i2) A′[1 . .n] = π′

w[1 . .n].

Among functions consistent with A′ there exists the maximal one, i.e.,
A[1 . .n + 1] such that

(i3) every B[1 . . n+1] consistent with A′[1 . .n] satisfies B[1 . . n+1] ≤ A[1 . . n+
1], where A[1 . .m] ≥ B[1 . .m] denotes that A[j] ≥ B[j] for j = 1, . . . , m.

We call such A the maximal function consistent with A′. Our algorithm
Validate-π′ maintains such A, proving its existence.

Slopes and their properties. Imagine the array A′ as the set of points
(i, A′[i]). Such a picture helps in understanding the idea behind the algorithm.
In this setting we think of A as a collection of maximal slopes : a set of indices
i, i + 1, . . . , i + j is a slope if A[i + k] = A[i] + k for k = 1, . . . , j. Note that
A[i + j + 1] �= A[i + j] + 1 implies that A[i + j] = A′[i + j], by (1). Let the A-pin
be the first position on the last slope of A. We abbreviate it to the pin, if A is
clear from the context. It turns out that all functions consistent with A′ differ
with A only on the last slope.

Lemma 1. Let A[1 . .n+1] ≥ B[1 . .n+1] be both consistent with A′[1 . .n]. Let
i be the A-pin. Then A[1 . . i− 1] = B[1 . . i− 1].

Algorithm’s overview. Our algorithm, Validate-π′, maintains the maximal
function A consistent with A′ and the A-pin i. When a new value A′[n] is read,
these are updated as follows. If A is no longer consistent with A′, the last slope
of A is adjusted. This consists in setting A[i] to its next maximum candidate
value. If there is none, A′ is invalid. Otherwise it may happen that the A-pin
is invalid, i.e., that there is j ≥ i such that A[j] ≤ A′[j]. Again, A′ is invalid if
A[j] < A′[j], and if A[j] = A′[j], the last slope is broken into two slopes, one
ending at j and the other starting at j + 1, which is the new pin.
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slopes

A’s last slope

maximal consistent A
other consistent tables

A’s slopes’ ends
other slopes’ ends

Fig. 2. Graphical illustration of slopes and maximal consistent function

Two condition are checked to decide if adjustment is needed: whether A′[j] <
A[j] for all j ≥ i, and whether A′[i . .n] = A′[A[i] . . A[i] + (n − i)].

Unfortunately, this simple combinatorial idea alone fails to produce a linear al-
gorithm. The problem is caused by the second check: large segments of A′ should
be compared in amortised constant time. We exploit LCA queries on suffix trees
for this task. The known online suffix tree construction algorithms [17,22] are
linear only for constant size-alphabets and the only linear-time algorithm for
non-constant alphabets [10] is inherently offline and thus infeasible for our pur-
poses. To overcome this obstacle we specialise the data structures used, building
the suffix tree for compressed encoding of A′ and multiple suffix trees for short
texts over polylogarithmic alphabet.

Data maintained. Validate-π′ stores:

– n, the number of values read so far,
– A′[1 . .n], the input read so far,
– i, the A-pin,
– the maximal A[1 . .n + 1] consistent with A′[1 . .n]:

• A[1 . . i− 1], the fixed prefix,
• A[i], the candidate value that may change.

Note that A[i+j] for j = 1, . . . , n−i+1 are not stored. These values are implicit,
given by A[i + j] = A[i] + j.

Validating A. Validate-π′ creates a border array A, which is always valid by
the construction. We run the linear-time online algorithm Validate-π [9] for
border array validation on A. For a valid border array A[1 . .n] it computes all
valid π-candidates for A[n + 1], i.e., A[1 . .n + 1] is a valid border array if and
only if A[n + 1] is in the precomputed set.

Validate-π′ runs Validate-π on the fixed prefix of A[1 . .n], i.e., A[1 . . i−1]
if A[i] > 0, or A[1 . . i] if A[i] = 0. This way the set of valid candidates for π[i]
is computed, as well as the minimum size of the alphabet Σ required by A, and
the word w over Σ that admits A.
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A′[j] = A[j]

current A

new slopes’ end
new last slope

slopes’ ends

current last slope

Fig. 3. Splitting the last slope

We note that the minimum alphabet size required by the fixed prefix of A
matches the minimum alphabet size required by A′.

Lemma 2. Let A′[1 . .n] be a valid π′ function, A[1 . .n + 1] be the maximal
function consistent with A′[1 . .n], and i be the A-pin. The minimum alphabet
size required by A′[1 . . n] equals the minimum alphabet size required by A[1 . . i−1]
if A[i] > 0, and by A[1 . . i] if A[i] = 0.

Checking the last slope. When the next value A′[n] is read, and A′[n] �=
A′[A[n]], then A is no longer consistent with A′ or i should be changed. Hence,
we adjust A on the current last slope until the following conditions hold.

A′[j] < A[j], for each j ∈ [i . .n] , (2)
A′[j] = A′[A[j]], for each j ∈ [i . .n] . (3)

Validate-π′(A′)
A[1] ← 0, i ← 0, n ← 1, A′[0] ← −1
while true do

change ← false

n ← n + 1
if A′[n] �= A′[A[n]] then

change ← true

while change do
change ← false

j ← Pin-Check

if j is defined then
run Check-slope

if not Consistencythen
change ← true

if change then
if A[i] = 0 then

A′ is not valid at n
A[i] ← next candidate

The A-pin i is valid if and only
if (2) holds, while the values of A
and A′ on the last slope are con-
sistent if and only if (3) holds.

These conditions are checked
by appropriate queries: (2) by the
pin check (denoted Pin-Check),
which returns any j ∈ [i . .n] such
that A′[j] > A[j] or, if there is no
such j, the smallest j ∈ [i . . n] such
that A′[j] = A[j], and (3) by the
consistency check (denoted Con-

sistency), which checks whether
A′[i . . n] = A′[A[i] . . A[i]+ (n− i)].

When a new input value A′[n]
is read, the last slope is up-
dated as explained below until
both (2) and (3) hold, i.e., until
Pin-Check returns no index and
Consistency returns true.
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current A

consecutive tries for A
slopes’ ends

Fig. 4. Decreasing the A[i]

Check-slope

if A′[j] > A[i− 1] + (j − i + 1) then
error A′ is not valid at n

if A′[j] = A[j] then
if A′[i . . j − 1] �= A′[A[i] . .A[j − 1] then

error A′ is not valid at n
run Validate-π(A) on positions i . . j
if A[j + 1] = 0 then

run Validate-π(A) on j + 1
for m ← i + 1 to j do

store A[m] ← A[m − 1] + 1
i ← j + 1
change ← true

Adjusting the last slope.
If the pin check returns an
index j such that A′[j] >
A[j], then we reject the in-
put and report an error. If
A′[j] = A[j] then we check
(naively) whether A′[i . . j −
1] = A′[A[i] . .A[i]+(j−i−1)]
holds. If it does not hold, we
reject. If it does, we break
the last slope in two: [i . . j]
and [j + 1 . .n], the new last
slope, see Fig 3. This consists
in storing values A[i . . j], set-
ting i to j+1, and setting A[i]
to the largest valid candidate value for π[i].

If Consistency check fails, then we set the value of A[i] to the next valid
candidate value for π[i], see Fig. 4. If A[i] = 0, then there is no candidate value
and A′ is rejected.

Note, that as the values A[i + 1 . .n + 1] are implicit, decreasing the value of
A[i] decreases all the values of A[i + 1 . .n + 1], see Fig. 4.

Theorem 1. Validate-π′ answers if A′ is a valid strict border array. If so, it
supplies the maximal function A consistent with A′. Furthermore A = πw for a
word w over an alphabet of minimum required size.

We further note that Lemma 2 implies that the minimum size of the alphabet
required for a valid strict border array is at most as large as the one required
for border array. The latter is known to be O(log n) [18, Th. 3.3a]. These two
observations imply the following.

Corollary 1. The minimum size of the alphabet required for a valid strict border
array is O(log n).
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Performing pin checks. Consider the Pin-Check. Note that if A′[j′]−A′[j] >
j′− j > 0 and j is an answer to Pin-Check, so is j′. This observation allows to
keep a collection j1 < j2 < · · · < j� of indices such that the answer to the query
is always either j1 or false. Updates of this collection are done by either removal
from the beginning of the list, when i becomes larger than j1, or by consecutive
removals from the end of the list, when a new A′[n] is read.

Lemma 3. The total time of answering all the pin checks is linear.

Performing consistency checks. We need to efficiently perform two opera-
tions: appending a letter to the current text A′[1 . .n] and checking if two frag-
ments of the prefix read so far are the same. First we show how to implement
both of them using randomisation so that the expected running time is O(log n).
In the next section we improve the running time to deterministic O(1).

We use the standard labeling technique [15], assigning unique small names
to all fragments of length that are powers of two. More formally, let name[i][j]
be an integer from {1, . . . , n} such that name[i][j] = name[i′][j] if and only if
A′[i..i+2j −1] = A′[i′..i′ +2j −1]. Then checking if any two fragments of A′ are
the same is easy: we only need to cover both of them with fragments which are
of the same length 2j, where 2j is the largest power of two not exceeding their
length. Then we check if the corresponding fragments of length 2j are the same
in constant time using the previously assigned names.

Appending a new letter A′[n + 1] is more difficult, as we need to compute
name[n − 2j + 2][j] for all j. We set name[n + 1][0] to A′[n + 1]. Computing
other names is more complicated: we need to check if a given fragment of text
A′[n− 2j + 2...n + 1] occurs at some earlier position, and if so, choose the same
name. To locate the previous occurences, for all j > 0 we keep a dictionary M(j)
mapping pair (name[i][j−1], name[i+2j−1][j−1]) to name[i][j]. As soon as we
choose the value of name[i][j], we insert a new element into M(j). To check if
a given fragment A′[n− 2j + 2...n + 1] occurs previously in the text, we look up
the pair (name[n− 2j + 2][j − 1], name[n− 2j−1 + 2][j − 1]) in M(j). If there is
such an element in M(j), we set name[n− 2j + 2][j] equal to the corresponding
name. Otherwise we set name[n− 2j + 2][j] equal to the size of M(j) plus 1 (or,
in other words, the smallest integer which we have not assigned as a name of
fragment of length 2j yet).

To implement the dictionaries M(j), we use dynamic hashing with a worst-
case constant time lookup and amortized expected constant time for updates
(see [6] or a simpler variant with the same performance bounds [20]). Then the
running time of the whole algorithm becomes expected O(n log n), where the
expectation is taken over the random choices of the algorithm.

4 Improving the Running Time to Linear

To improve the running time we only need to show how to perform consistency
checks more efficiently. A natural approach is as follows: construct a suffix tree
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on-line [17,22] for the input table A′[1 . . n], together with a data structure for
answering LCA queries [3]. However, A′ is a text over an alphabet {−1, 0, . . . , n−
1}, i.e., of size n, so the online suffix tree construction takes O(n log n) time. To
get a linear time algorithm we exploit both the structure of the π′ array and the
relationship between subsequent consistency checks. First we note that a suffix
tree for text over a polylogarithmic alphabet can be constructed in linear time.

Lemma 4. For any constant c, the suffix tree for a text of length n over an
alphabet of size logcn can be constructed on-line in O(n) time. Given a vertex in
the resulting tree, its child labeled by a specified letter can be retrieved in constant
time.

Proof (outline). It is enough to modify Ukkonen’s algorithm [22] so that retrieval
of the child of a given vertex labeled with a specified letter takes constant time.
For that we can use the atomic heaps of Fredman and Willard [12], which allow
constant time search and insert operations on a collection of O(

√
log n)-elements

sets. This results in a fairly complicated structure, which can be greatly simplified
since in our case not only are the sets small, but the size of the universe is
bounded as well.

To this end we develop a simple succinct data structure similar to a B-tree
of order

√
log n and constant depth. Similarly to atomic heaps, both search and

insert operation take constant time. ��

Compressing A′. Lemma 4 does not apply to A′, as it may hold too many
different values. To overcome this obstacle we compress A′ into Compress(A′), so
that the resulting text is over a polylogarithmic alphabet and checking equality of
two fragments of A′ can be performed by looking at the corresponding fragments
of Compress(A′). To compress A′, we scan it from left to right. If A′[i] = A′[i−j]
for some 1 ≤ j ≤ log2 n we output #0j. If A′[i] ≤ log2 n we output #1A

′[i].
Otherwise output #2 and the binary encoding of A′[i] followed by #3 . For each
i we store the position of its encoding in Compress(A′) in Start [i].

We show that the number of different large values of π′ is small, which allows
bounding the size of Compress(A′) by O(n).

Lemma 5. Let k ≥ 0 and consider a segment of 2k consecutive entries in the
π′ array. At most 48 different values from the interval [2k, 2k+1) occur in such
a segment.

Corollary 2. Compress(A′) consists of O(n) symbols over an alphabet of
O(log2 n) size.

As the alphabet of Compress(A′) is of polylogarithmic size, the suffix tree for
Compress(A′) can be constructed in linear time by Lemma 4.

Subchecks. Consider Consistency check: is A′[j . . j+k] = A′[i . . i+k], where
j = A[i]? We first establish equivalence of this equality with equality of proper
fragments of Compress(A′). Note, that A′[�] = A′[�′] does not imply the equality
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of two corresponding fragments of Compress(A′), as they may refer to other
values of A′. Still, such references can be only log2 n elements backwards. This
observation is formalised as:

Lemma 6. Let j = A[i]. Then

A′[j . . j + k] = A′[i . . i + k]

if and only if

Compress(A′)[Start [j + log2 n] . .Start [j + k + 1]− 1] = (4)

Compress(A′)[Start [i + log2 n] . .Start [i + k + 1]− 1]

and A′[j . . j + log2 n] = A′[i . . i + log2 n] (5)

We call the checks of the form (4) the compressed consistency checks, checks of
the form (5) the short consistency checks and the near short consistency checks
when moreover |i− j| < log2 n.

The compressed consistency checks can be answered in amortised constant
time using LCA query [3] on the suffix tree built for Compress(A′). What is left
is to show how to perform short consistency checks in amortised constant time
as well.

Performing near short consistency checks. To do near short consistency
checks efficiently, we split A′ into blocks of log2 n consecutive letters: A′ =
B1B2 . . . Bk, see Fig 5. Then we build suffix trees for each pair of consecutive
blocks, i.e., B1B2, B2B3, . . . , Bk−1Bk. Each block contains at most log2 n values
smaller than log2 n, and at most 48 logn larger values, by Lemma 5, so all the
suffix trees can be built in linear time by Lemma 4. For each tree we also build a
data structure supporting constant-time LCA queries [3]. Then, any near short
consistency check reduces to an LCA query in one of these suffix trees.

Performing general short consistency checks. General short consistency
checks are answered by near short consistency checks and naive letter-to-letter
comparisons. To obtain linear total time, the results of previous short consistency
checks are reused as follows. We store the value jbest for which the length of the
common prefix of A′[j . . j + log2 n] and A′[i . . i + log2 n] is relatively long as
well as the length L ≤ log2 n itself. When another short consistency checkis
done for j such that |j − jbest| ≤ log2 n, we first compute the common prefix

B1 B2 B3 B4 B6 B6 B7 B8 B9B5

Fig. 5. Scheme of ranges for suffix trees
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of A′[j . . j + log2 n] and A′[jbest . . jbest + log2 n] and compare it with L: if it is
smaller, then clearly the common prefix of A′[j . . j+log2 n] and A′[i . . i+log2 n] is
smaller than L; if it equals L, then we naively check if A′[j+L+k] = A′[i+L+k]
for consecutive k. If |j − jbest| > log2 n, j becomes jbest, and we find the longest
common prefix naively. Amortised analysis yields the following.

Lemma 7. Answering all consistency checks can be done in O(n) time.

Running time. Validate-π′ runs in O(n) time: construction of the suffix trees
and doing consistency checks, as well as doing pin checks all take O(n) time.

Remarks. While Validate-π produces the word w over the minimum alphabet
such that πw = A on-line, this is not the case with Validate-π′. At each time-
step Validate-π′ can output a word over minimum alphabet such that π′

w = A′,
but the letters assigned to positions on the last slope may yet change as further
entries of A′ are read.

Since Validate-π′ keeps the function π[1 . .n + 1] after reading A′[1 . .n],
virtually no changes are required to adapt it to g validation, where g(i) = π′[i−
1] +1 is the function considered by Duval et al. [8], because A′[1 . .n− 1] can be
obtained from g[1 . .n]. Running Validate-π′ on such A′ gives A[1 . .n] that is
consistent with A′[1 . .n− 1] and g[1 . .n]. Similar proof shows that A[1 . .n] and
g[1 . .n] require the same minimum size of the alphabet.

5 Open Problems

Two interesting questions remain: is it possible to remove the suffix trees and
LCA queries from our algorithm without hindering its time complexity? We
believe that deeper combinatorial insight might result in a positive answer.
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Abstract. Separating words with automata is a longstanding open
problem in combinatorics on words. In this paper we present a related
algebraic problem. What is the minimal length of a nontrivial identical
relation in the symmetric group Sn?

Our main contribution is an upper bound 2O(
√

n log n) on the length of
the shortest nontrivial identical relation in Sn. We also give lower bounds
for words of a special types. These bounds can be applied to the prob-
lem of separating words by reversible automata. In this way we obtain
an another proof of the Robson’s square root bound.

Keywords: automaton, identity, symmetric group.

The problem of separating words with automata is to determine the size of
the smallest deterministic automaton distinguishing two words. The best known
upper bound is O(�2/5 log3/5 �) states, where � is the length of the words. It was
obtained by J.M. Robson [7] in 1989. The logarithmic bound Ω(log �) states is
the best known lower bound for this problem [2]. Later Robson found reversible
automata with O(

√
�) states separating the words of length � [8]. This bound is

the best known for reversible automata.
Better results were achieved in separating words with context-free grammars.

In [2] the upper bound O(log �) and the lower bound Ω(log �/ log log �) were
proved.

There are similar problems concerning the reconstruction of words from frag-
ments [4]. A fragment is a subsequence of a word. The main problem in recon-
struction from fragments is to determine the minimal fragment length such that
any pair of words can be distinguished by multisets of fragments of this length.
In this problem the bounds also differ drastically. The best lower bound is log-
arithmic (for the best factor see [9]) and the best upper bound is square root
(obtained by I. Krasikov, Y. Roditty in 1997 [3], for the best factor see [5]).

In this paper we present a related algebraic problem: to determine the minimal
length of a nontrivial identical relation in the symmetric group Sn.

Let’s recall basic definitions from combinatorial group theory (see [6]).
Let Xs = {x0, . . . , xs−1} and X±1

s = Xs∪{x−1
0 , . . . , x

−1
s−1}. We consider words

over the alphabet X±1
s as multiplicative expressions in the variables xi. By def-

inition a word w is an identical relation in a group G iff it takes the identity
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value under all possible assignments of variables xi to elements of the group G.
For example, a word x0x−1

0 is an identical relation in any group.
A reduced word do not contain subwords in the form xkx

−1
k or x−1

k xk. A non-
trivial identical relation is a nonempty reduced word which is an identical re-
lation. Let Ls(n) be the length of the shortest nontrivial identical relation in s
variables in the symmetric group Sn. The identity problem is to determine the
value of the Ls(n). To the best of our knowledge the problem was not discussed
earlier.

The identity problem has an easy solution for a 1-letter alphabet (see Sec-
tion 1). For s > 1 there is an exponential gap between known upper and lower
bounds of the Ls(n).

In this paper we prove the upper bound Ls(n) = 2O(
√

n log n) for each s > 1
(see Theorem 1 in Section 2). Up to the date we are unable to prove any nonlinear
lower bound of the Ls(n) for s > 1.

We also consider a restriction of the identity problem to special classes of
words. In this setting it is helpful to introduce the permutation complexity ν(w)
of a word w ∈ (X±1

s )∗ as the minimal n such that w is not an identical relation
in the group Sn. Note that an upper bound on the minimum of ν(w) over all
words of length at most � over the alphabet X±1

s implies a lower bound of the
Ls(n) and vice versa.

For words of a special type the permutation complexity is related to separating
with reversible automata. Namely, if a word has the form w = uv−1, u, v ∈ X∗

s ,
then ν(w) is the smallest size of a reversible automaton separating words u and v.
So, for the permutation complexity of these words the square root upper bound
holds due to Robson’s bound for separating words with reversible automata.

In this paper we generalize the above example. The crucial property for estab-
lishing sublinear upper bounds on permutation complexity is expressed in terms
of a walk on the integer lattice Zs induced by the word w. We call this prop-
erty edge unbalancing. For Z2-edge unbalanced words we prove the upper bound
ν(w) = O(�2/3 log �), where � is the length of w (see Theorem 2 in Section 3).
In the case of words in the form w = uv−1, u, v ∈ X∗

s , it can be improved to
Robson’s bound of O(

√
�) (Section 4).

1 Identical Relations in Groups: Definitions and Simple
Facts

Let w = w�w�−1 . . . w1 be a word over the alphabet X±1
s . For any group G and

an assignment of variables xk := gk, where gk – elements of G, the evaluation of
the word w is the product

Ev(w; g0, . . . , gs−1) = g̃�g̃�−1 . . . g̃1, g̃i =

{
gk, if wi = xk;

g−1
k , if wi = x−1

k .

Definition 1. A word w is an identical relation in a group G if

Ev(w; g0, . . . , gs−1) = e for all g0, . . . , gs−1 ∈ G,
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where e is the identity element of the group G.

Words x0x−1
0 and x−1

0 x0 are identical relations in any group. So, insertion or
deletion of these words do not change the evaluation function. Recall that the
reduced form of a word is obtained by removing all subwords of the form xix

−1
i

and x−1
i xi as long as possible (for details see books in combinatorial group theory,

say, [6]).
It was mentioned above that a nontrivial identical relation is a nonempty

reduced word which is an identical relation.

Definition 2. The permutation complexity ν(w) of the word w is the minimal
n such that w is not an identical relation in the symmetric group Sn. (For trivial
identical relations ν = +∞.)

The length of the shortest nontrivial identical relation Ls(n) is

Ls(n) = min(|w| : w ∈ (X±1
s )∗, n < ν(w) < +∞).

Recall that commutator [x, y] of group elements x and y equals xyx−1y−1.

Example 1. The permutation complexity of the word

w = [[x0, x1], [x2, x3]] = x0x1x−1
0 x

−1
1 x2x3x

−1
2 x

−1
3 x1x0x

−1
1 x

−1
0 x3x2x

−1
3 x

−1
2

equals 4. Indeed, the word w is an identical relation in any dihedral group
(an easy exercise) and the group S3 is isomorphic to the dihedral group D3.
In the group S4 the word w takes the value (14)(23) under the assignment
x0 := (12), x1 := (23), x2 := (13), x3 := (34).

It is easy to determine the value of L1(n).

Lemma 1. The least common multiple of orders of elements in the symmet-
ric group Sn is lcm(1, 2, . . . , n). For each integer k < lcm(1, 2, . . . , n) there is
a permutation π ∈ Sn such that ordπ � k.

Proof. The first claim follows from the cyclic decomposition of a permutation.
It is clear that the order of a permutation with the cycle lengths n1, . . .nt is
lcm(n1, . . . , nt).

If k < lcm(1, 2, . . . , n) then j � k for some 1 ≤ j ≤ n. So, a cycle of length j
satisfies the second claim. ��

The exact answer for L1(n) follows immediately from the previous lemma.

Lemma 2. L1(n) = lcm(1, 2, . . . , n) = en+o(n).

The asymptotic bound in Lemma 2 is due to the well-known asymptotic bound
on the Chebyshev function θ(x). We cite it below in Section 2.

For all s ≥ 2 all functions Ls(n) are asymptotically equal up to a constant
factor. The exact claim is stated in the following lemma.

Lemma 3. For any s ≥ 2 we have Ls(n) = Θ(L2(n)) for n→∞.
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Proof. By definition Ls(n) ≤ Lk(n) if s > k. Indeed, a k-letter identical relation
is an s-letter identical relation. So, Ls(n) = O(L2(n)).

Let w be a nonempty reduced identical relation over the alphabet X±1
s . To

build an identical relation over the alphabet X±1
2 we substitute each letter xi

by an appropriate word ui in X2. To guarantee that the reduced form of the
resulted word is not empty we choose ui such that

ui = b−1
i x1bi, bi =

�∏
α=0

xiα ,

where i0i1 · · · i� is binary representation of i of length � = *log2 s+ + 1 padded
by zeroes to the left. The words bi are pairwise distinct. So the reduced form of
the substituted word is nonempty and its length is O(|w| log s). Consequently,
Ls(n) = Ω(L2(n)). ��

Due to Lemma 3 we can now focus on the case of 2-letter alphabet X2.

2 The Upper Bound for the Identity Problem

Let’s start from a simple example.

Example 2. L2(5) < L1(5) = lcm(1, 2, 3, 4, 5) = 60. Indeed, take a word

w = x50x1x
12
0 x

−1
1 x

−5
0 x1x

−12
0 x−1

1 = [x50, x1x
12
0 x

−1
1 ]

of length 38.
If the order d of the permutation x0 ∈ S5 is not 5 then d is a divisor of 12

because all cycles in the cycle decomposition of x0 are shorter than 5. So, either
x50 or x120 is the identity in the S5. In both cases w takes the identity value.

Taking commutators will be the main tool in construction below.
Let H0, H1, . . . , HN−1 be integers and N = 2h is a power of 2. Note that

vertices of the complete binary tree Th of the height h have a natural labeling
by binary words of length ≤ h. Namely, the root of the tree is labeled by the
empty word λ and descendants of the vertex labeled by a word a are labeled by
words a0 and a1. We assign a word wa over the alphabet X±1

2 to a vertex of Th

labeled by a word a using the following inductive rule:

– If the length of a is h then wa = [xHa2
0 , x1], where a2 is the integer with

binary representation a;
– If the length of a is less than h then wa = [wa0, wa1].

We will refer to the words wλ assigned to the root of Th as the tree commutators
based on the set {H0, . . . , HN−1}.

Below we show that a tree commutator for appropriately chosen integers Hi

is a nontrivial identical relation of sufficiently short length.
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Example 3. Let H0 = 15, H1 = 12, H2 = 8, H3 = 7. Then

wλ = [[[x150 , x1], [x
12
0 , x1]], [[x

8
0, x1], [x

7
0, x1]]]

w0 = [[x150 , x1], [x120 , x1]] w1 = [[x80, x1], [x70, x1]]

w00 = [x150 , x1] w01 = [x120 , x1] w10 = [x80, x1] w11 = [x70, x1]

Any order of the permutation in the group S8 is a divisor of some integer Hi.
So, wλ is an identical relation in the S8. The length of the reduced form of wλ

equals
240 < lcm(1, 2, 3, 4, 5, 6, 7, 8) = 840.

In general case we have the following bound on the length of the reduced form
of wλ.

Lemma 4. If integers Hi are pairwise distinct and maxiHi ≤ H then for the
reduced form w′ of the tree commutator wλ we have 0 < |w′| ≤ (2H + 2)4h =
(2H + 2)N2.

Proof. The upper bound is proved by the induction on h. For h = 0 the statement
holds: |[xH0

0 , x1]| ≤ (2H + 2).
If |w0| and |w1| do not exceed (2H + 2)4h−1 then |wλ| = 2|w0| + 2|w1| ≤

(2H + 2)4h.
Note that

[[xH1
0 , x1], [x

H2
0 , x1]] =

xH1
0 x1x

−H1
0 x−1

1 x
H2
0 x1x

−H2
0 x−1

1 x1x
H1
0 x

−1
1 x

−H1
0 x1x

H2
0 x

−1
1 x

−H2
0

is reducible. For H1 �= H2 its reduced form starts with xH1
0 x1 and ends with

x−1
1 x

−H2
0 .

By downward induction we prove the following claim: for any a of length < h
the reduced form of the word wa starts with xH1

0 x1 and ends with x−1
1 x

−H2
0 and

binary representations of H1, H2 starts with a.
The basis |a| = h− 1 has been proven above. The inductive step follows from

the computation

wa = [wa0, wa1] =

xH1
0 x1 . . . x

−1
1 x

−H2
0 xH3

0 x1 . . . x
−1
1 x

−H4
0 xH2

0 x1 . . . x
−1
1 x

−H1
0 xH4

0 x1 . . . x
−1
1 x

−H3
0 =

xH1
0 x1 . . . x

−1
1 x

H3−H2
0 x1 . . . x

−1
1 x

H2−H4
0 x1 . . . x

−1
1 x

H4−H1
0 x1 . . . x

−1
1 x

−H3
0

= xH1
0 x1 . . . x

−1
1 x

−H3
0

Here H3 − H2 �= 0, H2 − H4 �= 0, H4 − H1 �= 0 by the induction hypothesis
(binary representations of their indices differ so the integers are distinct). ��
Definition 3. A set of integers H = {H0, H1, . . . , HN−1} is called n-hitting if

for each set n1, n2, . . . , nt of integers such that
t∑

i=1
ni ≤ n there is a common

multiple of ni in the set H.
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Example 3 gives an illustration of this definition. The integers 15, 12, 7, 8 form a
8-hitting set: 12 is a common multiple of 3, 2, 2 and so on.

Lemma 5. If a set H is an n-hitting set then the tree commutator based on the
set H is an identical relation in the group Sn.

Proof. If a word wa takes the identity value then for all prefixes b of a, the word
wb takes also the identity value. Let n1, n2, . . . , nt be the lengths of cycles in
the cycle decomposition of the permutation x ∈ Sn. Then some integer Hi is a
multiple of the order of the x by definition of a hitting set. This means that some
leaf of the tree takes the identity value under the assignment x0 := x. Thus the
root of the tree takes the identity value for all assignments of the variable x0. ��

Now we construct an n-hitting set Hn for arbitrary n. In the construction we
use the notation m = *

√
n+ and

Kn =
�log2 n�∏

i=1

∏
pi≤n,p≤m
p is a prime

p.

(In what follows we assume that the variable p (possibly indexed) takes prime
values only.)

Note that the integer Kn is the factor of the prime factorization of the
lcm(1, 2, . . . , n) that includes all prime powers greater than 1.

We need a standard number theoretical asymptotic bound.

Theorem (See [1]). θ(x) =
∑

p≤x log p = x+ o(x).

This gives a bound on Kn for sufficiently large n:

logKn =
�log2 n�∑

i=1

∑
pi≤n,p≤m

log p =
∑
p≤m

log p+
�log2 n�∑

i=2

∑
pi≤n

log p =

∑
p≤m

log p+
�log2 n�∑

i=2

∑
p≤n1/i

log p =

m+ n1/2 + o(n1/2) + n1/3 + o(n1/3) + · · · + n1/�log2 n� + o(n1/�log2 n�)

≤ m+ n1/2 + o(n1/2) ≤ 3m

The set Hn consists of all products of m different integers in the form Knp,
where m < p ≤ n. So elements of the Hn are Kn · pl1 · pl2 · . . . · plm , where
m < pα ≤ n and pα �= pβ for α �= β.

By construction the cardinality of the set Hn is less than(
n

m

)
< nm = em ln n

(there are less than n primes in the range [m + 1, n]). The maximum over the
set Hn is at most nm ·Kn ≤ em ln ne3m = em ln n+3m.
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Lemma 6. The set Hn is an n-hitting set.

Proof. Let n1, . . . , nt be a set of integers such that
∑t

i=1 ni ≤ n. Consider the
prime factorization of A = lcm(n1, . . . , nt):

A = pα1
1 p

α2
2 . . . p

αj

j pj+1 . . . pr.

We assume that p1 < p2 < · · · < pr and pj ≤ m < pj+1. Let’s divide A into two
factors:

A1 =
j∏

i=1

pαi

i , A2 =
r∏

i=j+1

pi.

Note that A1 | Kn because A | lcm(1, 2, . . . , n) and the Kn includes all prime
powers of the lcm(1, 2, . . . , n) greater than 1. On the other hand, A2 = pj+1 . . . pr
is a product of distinct primes and r−j ≤ m (there are no more than

√
n integers

ni such that ni ≥
√
n). Thus A is a divisor of some integer from the set Hn. ��

Now we get the announced upper bound on L2(n).

Theorem 1. L2(n) ≤ e4
√

n lnn for sufficiently large n.

Proof. To apply the tree commutator construction described above we extend
the set Hn by suitable number of distinct integers to ensure that the cardinality
N of the extended set is a power of 2 and the reduced form of the tree commutator
is not empty. This extension increase the cardinality by factor at most 2 as well
as the maximal integer in the set.

Lemma 5 and 6 say that the tree commutator based on the extended set is
an identity relation in the group Sn.

To bound the length of the tree commutator we use Lemma 4. For sufficiently
large n the cardinality of the extended set is at most 2em ln n and the maximal
integer in it is at most 2em ln n+3m. Thus the length of the reduced form of the
tree commutator is at most (2 · em lnn+3m + 2) · (2 · em ln n)2 ≤ e4

√
n ln n. ��

3 Lower Bounds for the Permutation Complexity of
Unbalanced Words

Definition 4. A word w ∈ (X±1
s )∗ is called balanced if |w|xi − |w|x−1

i
= 0 for

all i.

Lemma 7. Let w be an unbalanced word. Then ν(w) = O(log �), |w| = �.

Proof. Suppose that |w|x0 −|w|x−1
0

�= 0. Assign the identity value to all variables
except x0. Then by Lemma 2

ν(w) = O(log k),

where k is the number of the letters x0, x−1
0 in the word w. ��
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Now we introduce a stronger notion of edge balancing. It is based on a corre-
spondence between words and walks on digraphs of special kind. These digraphs
include transition graphs for reversible automata and Cayley graphs for finitely
generated groups.

Definition 5. An s-regular digraph is a digraph Γ = (V,E) equipped by an edge
coloring c : E → [1, . . . , s] in s colors such that for each vertex v ∈ V and each
color i there is the exactly one edge of i-th color going out the vertex v and there
is the exactly one edge of i-th color going to the vertex v.

(We assume that loops and parallel edges are permitted for digraphs.)

Note that if a vertex set V is finite then an s-regular digraph is a transition
graph for a deterministic reversible automaton.

Cayley graphs for finitely generated groups are also s-regular: a vertex set in
this case is a group and colors are generators used in Cayley graph construction.

A word w ∈ X±1
s induces the unique walk

τΓ (w; v0) = v0e1v1e2 . . . e�v�

on an s-regular edge colored digraph Γ with a given base point v0 by the following
rule: if wi = xci then the edge ei has a color ci and goes from vi−1 to vi (a forward
pass through the edge), if wi = x−1

ci
then the edge ei has a color ci and goes

from vi to vi−1 (a reverse pass).
The multiplicity of the edge e in the walk τΓ (w; v0) is the difference between

the number of forward passes and the number of reverse passes through the edge.

Definition 6. A word w is (Γ, v0)-edge balanced if the multiplicity of each edge
e ∈ E(Γ ) in the walk τΓ (w; v0) is zero. Otherwise, the word is (Γ, v0)-edge
unbalanced .

A word w is n-universally edge balanced if it is (Γ, v0)-edge balanced for all
digraphs Γ on ≤ n vertices and for all v0 ∈ V (Γ ).

For a finite s-regular digraph on n vertices edges of i-th color form a graph of
the permutation gi on n vertices. Note that the mapping that sends a vertex v0
to the last vertex v� of the walk τΓ (w; v0) is the value of the reversed word wR

under the assignment xi := gi.
It is easy to see that n-universally edge balanced words are identical relations

in the group Sn. Indeed, an edge balanced walk is cyclic: it starts and finishes
at the same vertex. On the other hand, a construction of the n-universally edge
balanced word from an identical relation w in Sn is also straightforward: just
take the word

b = [w−1, x0][w, x0] = w−1x0wx
−1
0 wx0w

−1x−1
0 .

It is an n-universally edge balanced because for endpoints u, v of any 0-colored
edge (u, v) the cyclic walks τΓ (w;u) and τΓ (w; v) are passed exactly once in
forward and reverse directions during the walk τΓ (b;u) and the edge (u, v) is
passed exactly twice in forward and reverse directions. So, there are n-universally
edge balanced words of length ≤ 4Ls(n) + 4.

In the opposite direction a bound is established by the following lemma.
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Lemma 8. There is a constant C such that for any Γ -edge unbalanced word w
we have ν(w) ≤ |V (Γ )|(C log |w| + 3).

Proof. Denote by r the non-zero multiplicity of the edge e ∈ E(Γ ). Obviously,
|r| ≤ |w|. Choose the least prime p that does not divide r. Note that p ≤
C log |r| + 3 for some constant C.

To construct for the word w a non-identity assignment of the permutations
of the degree p|V (Γ )| we use the following idea: count the multiplicity of the
edge e modulo p while walking along the digraph Γ .

More formally, let’s define a permutation πi on the set V (Γ ) × Zp (Zp is a
cyclic group of the order p) by the rules: if

πi(v, j) = (v′, j′)

then an i-colored edge e′ starts at the v and ends at the v′ and

j′ =

{
j, if e′ �= e;
j + 1 (mod p), if e′ = e.

We claim that the evaluation of the word w = w� · · ·w2w1 at the assignment
xi := πi is not the identity. More exactly,

Ev(w;π1, . . . , πs)(v0, 0) = (ṽ, a),

where a �= 0. Indeed, while applying the evaluations of the suffixes of the w
under the assignment xi := πi to (v0, 0) the first components run the vertices
along the walk τΓ (w; v0). At the same time a forward pass through the edge e
adds +1 modulo p in the second component and a reverse pass adds −1. So, the
final value of the second component equals r mod p �= 0. ��
For an infinite graph Lemma 8 gives no interesting bound. Meanwhile, any re-
duced nonempty word is edge unbalanced for an infinite graph. Note that an
s-regular infinite tree is the Cayley graph of the free group of the rank s. So, the
multiplicities of the edges for the walk induced by a reduced word are ±1.

An another example of the infinite graph is the integer lattice Zs — the Cayley
graph of the free Abelian group of the rank s. Let’s take the case s = 2.

Vertices of the Z2 are pairs of integers (i, j). Edges of the form ((i, j), (i+1, j))
are colored in the color 0 and edges of the form ((i, j), (i, j + 1)) are colored in
the color 1.

Theorem 2. ν(w) = O(�2/3 log �) for a Z2-edge unbalanced word w of length �.

Theorem 2 follows from Lemma 8. To apply it we show that for some digraph Γ
on O(�2/3) vertices the word w is edge unbalanced.

We will choose a graph Γ as the Cayley graph of the cyclic group Zq of the
order q.

W.l.o.g. we assume that a Z2-unbalanced edge has a color 0 and the word w
is balanced. We form a polynomial in two variables

fw(x, y) =
∑
j,k

δ0(j, k)xjyk,
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where δ0(j, k) is the multiplicity of the edge ((j, k), (j + 1, k)). Actually, fw is
a Laurent polynomial because the walk can go through vertices with negative
coordinates. Nevertheless, one can exclude negative exponents in fw by changing
the base point.

For a pair g0, g1 generating Zq the digraph Γq,g0,g1 is the Cayley graph of Zq

w.r.t. to the generating set {g0, g1}.
Suppose that the word w is Γq,g0,g1 -edge balanced for all q ≤ m, g0, g1.
Edge balancing for 0-colored edges in the Γq,g0,g1 is expressed by equations in

the coefficients of the polynomial fw:∑
g0j+g1k≡c (mod q)

δ0(j, k) = 0, (1)

where c ranges from 0 to q − 1.
Now we check that for any primitive root of unity ωq of the degree q and for

any integers a, b equations (1) for all pairs g0, g1 imply fw(ωa, ωb) = 0. Indeed,
compute fw(ωa, ωb):

f(ωa, ωb) =
∑
δ0(j, k)ωajωbk =

q−1∑
c=0

ωc
∑

aj+bk=c mod q

δ0(j, k) = 0.

To complete the proof of the Theorem 2 we need a pair a, b of integers such that
fw(ta, tb) is not zero. Let a, b be such a pair that a linear form ax0 + bx1 takes
the maximal value N on the Newton polytope of the fw at the unique point.
Then the Nth coefficient of the fw(ta, tb) is not zero. So, fw(ta, tb) satisfies the
conditions of the following lemma.

Lemma 9. Let k be an algebraically closed field and g(t) ∈ k[t] be a nonzero
polynomial. If g(t) vanishes at all roots of unity of the degree ≤ m then deg g =
Ω(m2).

Proof. Polynomials vanishing at primitive roots of unity of the degree q form an
ideal I. The ideal I is generated by the cyclotomic polynomial Φq(t). The degree
of the Φq(t) is ϕ(n), where ϕ(n) is the Euler function.

Cyclotomic polynomials are relatively prime so the polynomial g(t) should be
a multiple of the product of Φq(t), q ≤ m. Thus

deg g ≥
m∑

i=1

degΦi(m) =
m∑

i=1

ϕ(i) ≥ m2/6.

(The last inequality can be found in [10].) ��

Now we are able to prove the bound on the permutation complexity ν(w). It
is clear that deg fw ≤ �. Below we denote the degree of fw by d. To bound
values of a, b note that each edge of the Newton polytope defined by an equation
a′x0 + b′x1 = c′ with relatively prime a′, b′ contributes b′ in the degree of the
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polynomial fw. All relatively prime pairs with elements a < b ≤ B make a
contribution

B∑
b=1

bϕ(b) = Ω(B3).

So, there exists a pair a, b such that the maximal value of its elements is O(d1/3).
Thus we have

�4/3 ≥ �d1/3 ≥ dmax(a, b) ≥ deg fw(ta, tb) = Ω(m2). (2)

The last inequality is due to Lemma 9.
Thus for some q = O(�2/3), g0, g1 the word w is Γq,g0,g1-edge unbalanced. By

Lemma 8 we get ν(w) = O(�2/3 log �).
The proof of the Theorem 2 is completed.

4 An Application to Separating Words with Reversible
Automata

Contrary to the case of the infinite tree there are reduced words that are Z2-edge
balanced. For any pair of balanced words u, v the commutator [u, v] is Z2-edge
balanced.

But Z2-edge unbalanced words cover the important case of words in the form
uv−1, where u, v ∈ X∗

s . The maximum of the permutation complexity for these
words of length 2� equals the smallest size of reversible automata separating
words of length �.

For the words in the form uv−1, where u, v ∈ X∗
s , the bound of the Theorem 2

can be improved to Robson’s square root bound. In this section we describe this
improvement.

Now we prove that a word w = uv−1, u �= v ∈ X∗
2 , is Z2-edge unbalanced.

To indicate an unbalanced edge let’s take the last position in which the words
u, v differ. W.l.o.g. we assume that u = u0x1w0 and v = v0x0w0. Let #0(u0)
be the number of x0 in the word u0 and #1(u0) be the number of x1. Then
0-colored edge starting at the point (#0(u0),#1(u0)) has multiplicity −1 in the
Z2-walk induced by the uv−1. The form x0 + x1 takes the maximal value on the
Newton polytope of the polynomial fw at the same point and it is the unique
point of maximum. So, fw(t, t) �= 0.

Thus we can omit the factor d1/3 in the bound (2) and get

m = O(�1/2).

Direct use of the Lemma 8 gives ν(w) = O(�1/2 log �). But note that fw �= 0
in a field of characteristic 2. So the arguments in the proof of Theorem 2 are
valid in characteristic 2. This means that we can set p = 2 in the proof of the
Lemma 8 and cancel the logarithmic factor. Finally, we get Robson’s bound
ν(w) = O(�1/2).
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Abstract. We present the first linear time algorithm for d-list colouring
of a graph—i.e. a proper colouring of each vertex v by colours coming
from lists L(v) of sizes at least deg(v). Previously, procedures with such
complexity were only known for Δ-list colouring, where for each vertex v
one has |L(v)| ≥ Δ, the maximum of the vertex degrees. An implemen-
tation of the procedure is available.

1 Introduction

Graph colouring is probably the most popular subject in graph theory. Although
even the 3-colourability of a graph is known to be an NP-complete problem, there
is a number of positive results dealing with the case where the number of colours
is close to Δ — the maximal degree of a graph. The most famous among them
is the Brooks’s theorem [5] asserting that a connected graph that is neither a
clique nor an odd cycle, can be coloured with Δ colours. However, the question
becomes much harder even forΔ−1 colours. Borodin and Kostochka conjectured
in [4] that for Δ ≥ 9 the graphs with no clique of size Δ are (Δ− 1)-colourable.
The conjecture remains open; for Δ ≥ 1014 it was affirmed by Reed in [15] by
means of the probabilistic method.

Another extension of the Brooks’s theorem in the direction of list-colourings
was made independently by Vizing [19] and Erdős et al. [7]. Recently this line
of research became even more popular than simple colourings. For example it is
studied in depth in [9,18,13,11] and many other sources, e.g. as recently as [10].
In 1994 at a graph theory conference held at Oberwolfach Thomassen pointed
out that one can also prove a choosability version of Gallai’s result [8], which
characterized the subgraphs of k-colour-critical graphs induced by the set of
all vertices of degree k − 1. Surprisingly, as Kostochka in [12] has mentioned,
this theorem can be easily derived from the result of Borodin [2,3] and Erdős et
al. [7]. Specifically, Erdős has characterised all d-choosable graphs as follows. The
non-d-choosable graphs are exactly the graphs, whose blocks are cliques or odd
cycles. So if a graph possesses a block that is neither a clique nor an odd cycle, it
can be coloured for every d-list-assignment. This characterisation does not treat
the case of colouring of a non-d-choosable graph for a given d-list-assignment.
� Partially supported by RFBR grant 09-01-12137-ofi m, the president of Russia grant
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The latter was addressed by Borodin in little-known [2], covering the case when
we are given a non-d-choosable graph and a d-list-assignment.

The present paper focused on a linear-time algorithm for the d-list colouring.We
also present a proof of the Borodin’s result as a corollary of our algorithmic result.

Algorithmic aspects. Although the general list-colouring problem is a hard prob-
lem even to approximate, there is a linear time algorithm by Skulrattanakulchai
[16] for any Δ-list-assignment, which improves the Lovász’s algorithm [14] of
such complexity for Δ-colouring. The algorithm of Skulrattanakulchai emerged
from a new proof of a theorem of Erdős, Rubin and Taylor [7]. Unlike the latter,
we rely upon a simple idea of recursive deletion of vertices presented in the proof
by Dirac and Lovász [1] of Brooks Theorem [5]. It allows us to present the first
linear time algorithm for d-list colouring problem. Since d-list colouring obeys a
simple rule of reduction, our procedure can be easily applied to the problem of
partial d-list colouring completion and thus to the completion of a partial Δ-list
colouring. So our work generalises, in a number of directions, the result of [16]
where the first time optimal algorithm for Δ-list colouring is presented. We de-
scribe, as a part of the main algorithm, a linear-time procedure for Δ-colouring
adapted for usage in our main algorithm, and which also can be applied to gen-
eral Δ-colouring problems. It also yields an algorithmic proof for the Brooks’s
Theorem. Our procedure appears to be quite practical.

An implementation of the entire algorithm together with the procedure can
be found in [20]. Finally, we remark that our work can be considered as an
algorithmic, and rather nontrivial, counterpart to Borodin’s result [2].

2 Preliminaries

For a graph G, a proper colouring or just a colouring of G is a map c : V (G) → N
such that c(v) �= c(u) whenever uv ∈ E(G). It is called a k-colouring if at most
k colours were used. It is natural to consider a more restricted setting, where
the allowed colours are prescribed for each vertex.

Formally, a list-assignment is a function L assigning to every vertex v ∈ V (G)
a set L(v) of natural numbers, which are called admissible colours for v. An L-
colouring of G is a proper colouring c of G which assigns to any vertex v a colour
c(v) ∈ L(v). If |L(v)| ≥ k for every v ∈ V (G), then L is a k-list-assignment. If
|L(v)| ≥ deg(v) for every v ∈ V (G), then L is a d-list-assignment. A partial
L-colouring of G of a vertex subset S is an L-colouring of the induced subgraph
G(S). An L-colouring C of G is a precolouring extension of a partial colouring
C′ on the set S if C(v) = C′(v) for all v ∈ S.

Thus, we are given a graph and a list-assignment function L, and the task
is either to find a proper L-colouring, or to establish its nonexistence. In a
precolouring extension of L-colouring problem we are given, in addition to G
and L, a precoloured set S ⊂ V with a proper colouring on G(S), and the task is
to extend this L-colouring to the all vertices of G or to find that it is impossible.

Graph is called d-choosable if for any d-list assignment function L the L-
colouring Problem has a solution.
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2.1 Terminology

For a graph G = (V,E) let E = E(G) denote the set of edges of G and V = V (G)
denote the set of vertices of G. For a subset S of vertices, G(S) denotes the
induced subgraph of G on S. In this paper we consider only finite simple graphs,
i.e. those without loops and multi-edges. We denote by degG(u), or deg(u), the
degree of u in G, i.e. the number of edges incident with u. Let us from the very
beginning assume that G is connected, since the colouring problem can be solved
separately for each component of G.

A cut vertex is a vertex after deletion of which the graph splits into more than
one connected component. A two-connected graph is a graph which remains
connected after deletion of any vertex (here we assume that an empty graph
is connected). A block of G is a maximal by inclusion two-connected induced
subgraph of G. Let us recall some facts about blocks and cut vertices, which one
can find in [1] or in [6]:

– Two blocks can have at most one common vertex and if they have one then
it is a cut vertex of G.

– Any edge of G belongs to exactly one block.
– A bipartite graph with the first part being the set of blocks of G and the

second one being the set of cut vertices of G such that every cut vertex is
adjacent to the blocks which contain it, is a tree.

We call such a tree of blocks and cut vertices a block tree.
Suppose we have a spanning tree T of G with a root r, and an edge orientation

towards the root. Such a tree is called normal if there is an oriented path in T
joining any two u, v ∈ V such that (u, v) ∈ E. In [6] it is proved that every
connected graph contains a normal tree. One can easily check that the depth-
first search spanning tree is a normal tree. Using this fact one can easily see
that the root of normal spanning tree of two-connected graph is a leaf in this
tree, since otherwise by deleting the root we will get more than one connected
component.

2.2 Main Results

Before discussing the algorithm, let us describe some natural requirements on
the input data. In the present paper we consider the most concise graph rep-
resentation, i.e. the vertices of the graph are represented by integers from 1 to
N = |V |, and E(G) is given as a set of pairs.

Definition 1. Let the maximum value of the colour for L be at most c|E(G)|,
for a constant c. Then we say that L satisfies the colour density condition.

One needs the latter condition to efficiently handle colours. It is not restrictive,
since it allows one to describe all possible essentially different situations for L
up to renumbering of the colours. The same condition on the maximal colour
value and numeration of vertices was imposed in [16].
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Theorem 1. There is a linear time algorithm which, for a given graph G and
d-list-assignment function L satisfying the colour density condition, either finds
an L-colouring of G, or reports its nonexistence.

Our algorithm is effectively based on the following theorem characterising all
the list assignments and graphs which have an admissible assignment.

Theorem 2. Let G = (V,E) be a graph, with the set of blocks B, and L a
d-list-assignment for G. Then G has no L-list colouring if and only if:

1. Every B ∈ B is either a clique or an odd cycle.
2. There exists a map S which assigns to each pair (v,B), where v ∈ B ∈ B, a

set of colours S(v,B) satisfying the following conditions:
(a)

⋃
B: v∈B∈B

S(v,B) = L(v)

(b) S(v,B)
⋂
S(v,B′) = ∅ for any B �= B′ ∈ B with v ∈ B ∩B′.

(c) |S(v,B)| = degG(B)(v) for any v ∈ B
(d) S(v,B) = S(u,B) for any u, v ∈ B

Remark 1. Conditions 2a and 2c of the theorem imply condition 2b; the condi-
tion 1 is just the Erdős’ characterisation of the d-choosable graphs. Note that
the appearance of cliques and odd cycles is not a coincidence, due to Brooks
Theorem [5], that says that a connected graph H that is neither a clique nor an
odd cycle satisfies χ(H) ≤ Δ(H).

Remark 2. This theorem is a reformulation of the Borodin’s result [2]. One more
variant of the Borodin’s result one can find in [12].

In other words, the theorem states that non-colourable instances of d-list colour-
ing problem can be described as follows. In the block tree of G we can split every
list of a cut vertex v into t disjoint parts and leave only one such part for a block
containing v (each part should corresponds to exactly one block) in such a way,
that now it is impossible to find a proper colouring of any block using only the
lists of admissible colours of its vertices (for each cut vertex in the block we have
to use the part of the list we have left for these block and vertex). (See Fig. 1)

Keeping in mind this characterisation while reading the algorithm description
may make the latter more transparent. The algorithm for Theorem 1 is described
in Section 3.

3 d-List Colouring Problem

INPUT: A graph G = (V,E) and list-assignment L with L(v) ≥ degG(v) for
every vertex v ∈ V .

TASK: Find a proper L-colouring of G or deduce that there is none.
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Fig. 1. A graph and L-assignment that does not lead to a L-colouring. The colour
list of each cut vertex is split into a number of lists according to the statement of
Theorem 2.

To simplify the presentation, let G be a connected graph. However, almost the
same algorithm works for not necessarily connected graphs.

Our algorithm, essentially, exploits a simple observation, that if G has a vertex
v with |L(v)| > degG(v), then we can easily colour the whole graph. In the
algorithm we use some generalisation of this idea: we are trying to find a vertex
u and its admissible colour, such that, given u coloured with that colour the
remaining graph G − u will be connected and posses a vertex v with |L(v)| >
degG−u(v).

The working scheme is as follows. At the beginning, we find a block tree T in
G. At the next step we take a block B corresponding to the leaf in T . Using the
tool mentioned above we either colour the whole graph, or find a colouring of
B, except the corresponding cut vertex v0 (here B should be an odd cycle or a
clique). In the last case we remove B \ {v0} from G, as well as all colours of v0’s
neighbours from L(v0). We repeat this step until we either colour the graph, or
discover a vertex with an empty list of colours.

3.1 Algorithm

Let us give a few definitions before we start describing an algorithm.

Definition 2. We call a block a leaf block if it contains at most one cut vertex,
i.e. it corresponds to a leaf vertex in the block tree T .
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Definition 3. We call an ordered pair of two adjacent vertices (u, v) distin-
guished by the colour i if i ∈ L(u) \ L(v).

In the main algorithm we will use the following auxiliary procedures:

1. Recursive deletion of vertices. It finds a desired d-colouring of a con-
nected graph G, if G has a vertex v with |L(v)| > degG(v).

2. Search for blocks of G. It finds the representation of each block by the
set of its vertices.

3. Search for a colour distinguishing the pair (u, v). It requires us to
introduce one boolean array C of the size c|E(G)|, which we reuse by every
application of the procedure.

4. Δ-colouring of a connected graph. For a connected graph H that is
neither a clique nor an odd cycle, the procedure finds a proper Δ-colouring.

Now we are ready to describe the algorithm.

– STEP 1. Suppose there exists v ∈ V with |L(v)| > degG(v). The recursive
deletion of vertices will give us a colouring we seek and we terminate the
algorithm.

– STEP 2. A) Find all blocks of G and the corresponding block tree T .
1. Find the blocks of G using search for blocks of G.
2. For each vertex v of G find a list of the blocks containing v.
3. Construct a bipartite graphH0 with one part consisting of all blocks and

another one consisting of all cut vertices and with E(H0) = {(v,B) | v ∈
B}.

4. Construct a block tree T as the breadth-first search tree of H0, i.e. find
the corresponding order B on the blocks and cut vertices.

– B) Take the last block B in the order B and its unique cut vertex v0. In
the next steps we are trying to reduce G by cutting off B \ {v0}, or find a
desired colouring.

– STEP 3. Try to find in B a pair of distinguished by a colour vertices (u, v),
such that u is not a cut vertex, i.e. u �= v0.
1. If there is such a pair in B, say (u, v) distinguished by the colour c,

then we colour u with c and delete it from G. In the remaining graph,
|L(v)| > deg(v). Also the graph G′ = G \ {u} is connected. We colour
G′ by the recursive deletion of vertices and terminate.

2. Otherwise we proceed to the next step.
– STEP 4. Check whether the block B is a clique or an odd cycle. Can be

done by pre-computing vertex degrees of G.
1. If B is a clique or an odd cycle, we reduce G by cutting off B \ {v0}.

Since in STEP 3 v0 and a vertex v adjacent to v0 are not distinguished
by a colour, we have L(v0) ⊇ L(v). We reduce L(v0) by L(v). Then we
return to the STEP 2 B) with next after B in B block. Here we use a
property of order B to reduce efficiently L(v0).

2. Other possibilities for B. In this case we necessarily get a desired colour-
ing and terminate.
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• ColourG(V \V (B)) by applying the recursive deletion of vertices
in G(V \B).

• Delete from L(v0) all the colours which are present among neighbours
of v0.

• Check if v0 has the same as the other vertices in B set of admissible
colours.

• If v0 does not, then for the remaining not coloured vertices a pair
(v0, u), where u is any vertex adjacent to v0 in B, is distinguished by
a colour. We complete the colouring of the whole graph as in STEP
3.1 and terminate.

• Otherwise we apply Δ-colouring procedure to B.

3.2 Implementation of Procedures

Here we give a description of our auxiliary procedures in details together with
their complexity analysis.

The recursive deletion of vertices. Suppose there exists v ∈ V with |L(v)| >
degG(v). Put v in a stack O and delete it from the graph.

Then the remaining graph again should have a vertex with the same property,
since G is a connected graph and |L(u)| ≥ deg(u) for any u ∈ V . We repeat the
previous action for this vertex, i.e. put it in O and delete it from G, and keep
doing such deletion until there are no vertices left in G.

Then we take the first vertex from the O and colour it with any admissible
colour, then take the second one and again colour it with any admissible colour
which does not occur among its already coloured neighbours and so on (we
succeed to colour every such vertex because we have appropriately chosen vertices
in the O). Eventually we colour all the vertices of G.

Remark 3. This procedure also works well for graphs which have more than
one connected component if in each such component there is a vertex w with
|L(w)| > deg(w).

Proposition 1. The recursive deletion of vertices in G and subsequent colour-
ing, works in linear in the size of the graph time.

Proof. We can compute the degrees of all vertices of G in linear time. Indeed,
after putting any vertex in O, any of its neighbours can be put in O immediately
after it. So we can make a depth-first search starting with a vertex, which has
degree less than its list size, and put in O corresponding vertex at each step of
that search. All of this works in linear time.

To colour all the vertices in O in linear time it is sufficient to colour each
vertex u ∈ O in O(|L(u)|) time.

As we have the bound on the maximal colour value we can create in linear
time, during the initialisation of the algorithm, an array C0 of boolean values of
size equal to maximum value among all possible colours and with initial False
values.
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At the colouring step of the procedure for a vertex u we match in C0 with
True the colours of all already coloured neighbours of u and then search in L(u)
for a colour c with False value of C0[c]. When we have found c, we reset back to
False, by one pass along the neighbours of u, all the values of C0. Thus we return
C0 to the initial state and we can use it again for other vertices. Then we colour
u with c. This concludes the proof, since we use only O(|L(u)|) time to colour u;
also in total we use only c|E(G)| of space, since we create the array only once.

Search for blocks of G. The algorithm for finding all blocks in linear time
can be found, e.g. in [17].

Search for a colour distinguishing the pair (u, v). As we have the bound
on the maximal colour value we can in linear in |L| time create, during the
initialisation of the algorithm, an array C of boolean values of size equal to the
maximum value among all possible colours and with initial False values. Then
we can mark with True value all the colours which are in L(v) and then verify
whether there is a colour c in L(u) for which C[c] is False, and finally reset all
the True values of C back to False. Thus we either find a distinguishing colour
or check that there are no such a colour, in linear in |L(u)| + |L(v)| time.

Δ-colouring of a connected graph. We use a linear time algorithm for Δ-
colouring by Lovász [14]. But there is another, easier, way to deal with the
Δ-colouring and we will describe it in Section 4, which also provides a new
constructive proof of the Brooks Theorem.

3.3 Proof of Correctness of the Algorithm

STEP 1. We compute all vertex degrees in G and check for each vertex whether
|L(v)| > degG(v).

STEP 2.
A) Find all blocks of G and the corresponding block tree T . We consider

the representation of each block by the set of its vertices; also we construct for
each vertex a list of all blocks it contains. To recall the definition of block tree,
one can think of a bipartite graph H with one part consisting of all blocks and
another consisting of all cut vertices (that is vertices which belong to at least
two blocks) and with E(H) = {(B, v) | v ∈ B}; by construction H is a tree
and is called the block tree. For complexity reasons we need to construct T as
the breadth-first search tree, i.e. we require that T has the specific order on
blocks and cut vertices.

Remark 4. We have to do the search for blocks as the unsolvable instances of
the problem are described in terms of certain conditions on blocks [7].

For tree representation it is useful to view an orientation towards the root. So we
add an artificial vertex to G and join it to a vertex ofG. Thus we add an artificial
block to T . Let us take this artificial block B0 to be a root of T . Let us pick
a block B0 and consider the order B in which blocks appear in a breadth-first
search on T with the root in B0.
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B) Let B be the last block of T in B.
Note that B is a leaf block. Let us denote by v0 the cut vertex of B, i.e. the

unique cut vertex in T joined with B. Since B is the last in B, and B is the
order of a breadth-first search, all the other neighbours of v0 that appear after
v0 in B, are leaf blocks.

STEP 3.
Case A. Suppose we have found a pair of vertices (u, v) distinguished by the

colour c, such that u is not a cut vertex in B.
Then we colour u with c and delete it fromG. In the remaining graph, |L(v)| >

deg(v). Also the graph G′ = G \ {u} is connected. So we can colour G′ by the
recursive deletion of vertices.

Case B. If there are no such pairs then for all non-cut vertices w, v ∈ B
we have L(v) = L(w), whereas for the cut vertex v0 one has L(v0) ⊇ L(v).
Consequently, all the vertices of B \ {v0} have the same degree. Then we come
to the STEP 4.

At the next step of the algorithm we either reduce G by cutting off B \ {v0}
or find a colouring of G by recursive deletion of vertices.

STEP 4. All lists for non cut vertices of B are the same and that one is
contained in the list of cut vertex of B.

According to the Brooks Theorem [5] (cf. Remark 1) there are two cases.
(That can be distinguished by pre-computing vertex degrees)

Case I. (B is either a clique or an odd cycle)
We need to make the reduction of L(v0) very carefully, since |L(v0)| can be

much bigger than the size of B. We describe it in details in Section 3.4.
Case II. (remaining possibilities for B) In this case due to classification by

Erdős [7] we know that G should have a proper colouring for any list-assignment
function.

3.4 Complexity Analysis of the Algorithm

Clearly each of the Steps 1 and 2 takes only O(|G| + |L|) time.

STEP 3. Part 1. Search of a distinguished by a colour pair of vertices in
B \ {v0}.

Proposition 2. Search for a distinguished by a colour pair of vertices (u, v),
such that u, v �= v0, can be done in linear in the block’s size time, where by the
size of a block we mean the number of edges plus number of vertices in this block.

Proof. We can consider a spanning depth-first search tree of B with the root
in v0 and check only pairs of admissible colour sets for adjacent vertices in this
tree. Since B is a block, v0 has unique neighbour in the tree. So we do double
check for two adjacent vertices u and v twice, at first for the pair (u, v) then for
(v, u).
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Now let us show that the total time of all checks is linear in
∑

v∈B\{v0}
|L(v)|. By

every check of u and v which are not cut vertices we either get that L(u) = L(v),
or find a pair of distinguished by a colour vertices together with such colour. In
the latter case we terminate the search of the pair. In the former case we see
that the check works in linear in min(|L(u)|, |L(v)|) time. So the total time will
be linear in

∑
v∈B\{v0}

|L(v)|.

Part 2. Check whether a pair (u0, v0) is distinguished by a colour in linear
in L(u0) time, where u0 is adjacent to v0 in B.

Remark 5. Since B is a block and we consider the depth-first search spanning
tree with the root in v0, we need only to make one check for v0 and its unique
neighbour u0 in the tree. But we cannot allow ourselves doing this check even in
linear in |L(v0)|+ |L(u0)| time in straightforward manner for all blocks pending
at v0. Since |L(v0)| may be much bigger than the size of B and furthermore
v0 may be the cut vertex for many small blocks like B, the total time can be
quadratic in input size, e.g.for G = Kn−1,1. For the same reasons we are not
allowed to make a straightforward reduction of L(v0) in Step 4.

To avoid multiple checks described in Remark 5 and reductions of L(v0) for
large L(v0) we can remember the True values of L(v0) in C and use it not for
one pending at v0 block but for all such blocks. So strictly speaking we do the
following:

– Introduce at the beginning of the algorithm a new array C′ with |C′| = |C|
of boolean, initially marked with False values.

– If the cut vertex of a leaf block B differs from the previous one, say v′0, then
we do the following.
1. Revert C′ to initial state of only False values in |L(v′0)| time, just going

once along L(v′0).
2. Mark in C′ by True values the colours of L(v0).

– For a leaf block B with the cut vertex v0 check the pair (u0, v0) in linear in
|L(u0)| time. One can do it by one passing along L(u0) and checking if C′[c]
is True for c ∈ L(u0).

For the search of a distinguishing colour for the pair (u0, v0) it suffice to use C′

instead of L(v0), since in the search we only check whether a colour i ∈ L(u0)
belongs to L(v0).

STEP 4.

Effective reduction of L(v0). Since we do not need the whole list L(v0), while
v0 is a cut vertex, at any reduction we can efficiently maintain only C′ instead
of L(v0). Thus at every reduction of L(v0) we just mark back with False all the
colours of L(u0) in C′ and do not change L(v0) yet. We will really change L(v0)
only when we cut off all the leaf blocks pending at v0 and when v0 becomes a
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non-cut vertex. By definition of B we will do such change only once for v0, so
the total time of reducing lists for all cut vertices will take a linear time. After
such “fake” reduction of L(v0) we colour all vertices in B \ {v0} and delete them
from G. Then we go back to Step 2 B) and find other leaf block in the reduced
graph.

Thus Step 3 and Step 4 work in O(|B|) time for each particular block B and
to maintain C′ for each cut vertex in total takes O(|L|) time. Adding up all above
together, we see that the algorithm works in O(|G| + |L|) time.

4 Constructive Proof of the Brooks Theorem

Δ-Colouring of a two-connected graph which is neither a clique nor an odd cycle.
We describe an algorithm different from Step 4 III. Here we may suppose that
all vertices in B \ {v0} (v0 is the unique cut vertex in B) have the same list of
admissible colours. Hence all the vertices in B \ v0 have the same degree.

To this moment we know that B is a block, i.e. two-connected graph. Moreover
we have found a depth-first search spanning tree for B (it is just a part of depth-
first search tree for G). And also we have described a procedure of recursive
deletion of vertices. So using all of this we can now describe a quite simple
algorithm for colouring of G. The only difficult place in this algorithm is the
number of combinatorial cases we are considering. So the description of the
algorithm will consist of working out these cases, as follows.

– Suppose we have found two non-adjacent vertices, say u and v, in B \ {v0}
such that if we do the following:

• Colour u and v with the same colour.
• Delete this colour from L(w) for each neighbour w of v or u.
• Delete both u and v from G,

then the remaining graph have a recursive deletion of vertices. We call such
vertices u and v a good pair. Thus if we have found a good pair then we can
easily colour G in linear time.

– If degG(u) = 2 for an u ∈ B \ {v0}, then B is a cycle and we know that B
is not an odd cycle. So it is even. Let us colour B \ {v0} then delete from
L(v0) the colour of its two neighbours in B and then colour the remaining
graph, since it has recursive deletion of vertices.

– Two descendant neighbours of a vertex u in the depth-first search spanning
tree, i.e. normal tree, with v0 as a root, are a good pair. Indeed, one can
easily derive that these two descendants are not adjacent from the fact that
a tree with root v0 is normal. Also one can see that if we delete from B these
two descendants, then in the remaining graph there always will be a path
from u to any other vertex. These two things show the goodness of the pair.

– If our depth-first search spanning tree is not a path, then we can efficiently,
i.e. in linear in block’s size time, find such a pair. In this case we are done.
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– So our tree is just a path w0, w1, w2, . . . , wk−1, v0, and, as above, v0 is the
unique cut vertex of B for G. For convenience let v0 = wk. Consider the
closest to w0 vertex, say wt, on the path, which is not adjacent to w0, and
so degG(w0) ≥ t− 1.

1. The pair (w0, wt) is good when either there is a vertex among w1, w2, . . . ,
wt−1 which is adjacent to something else than w0, w1, . . . , wt, or t+1 ≤ k
and wt+1 is adjacent to w0.
This is true, as w0 and wt are not adjacent and there cannot be more
than two connected components in the graph B \ {w0, wt}, since w0 is a
leaf in the normal tree (the vertices w1, w2, . . . , wt−1 will be connected
in B \ {w0, wt} and so will be v0 with remaining vertices).

2. Suppose degG(w0) ≥ t + 1, then w1 is adjacent to a wl with l ≥ t + 1,
since degG(w1) = degG(w0) ≥ t + 1. By case 1 above, we have found a
good pair.

3. If t−1 = degG(w0), then wt−1 is not adjacent to some wr with r < t−1,
as degG(w0) = degG(wt−1) and wt−1 is adjacent to wt. Hence wr and
wt−1 are a good pair, since wr and wt−1 are both adjacent to w0 and wt.

4. Suppose t = degG(w0) and that we are not in case 1. Hence w0, w1, . . . ,
wt−1 and w1, . . . , wt form cliques, as t = degG(w0) = · · · = degG(wt) and
no wi with 1 ≤ i ≤ t−1 is adjacent to wj with j ≥ t+1. Also k ≥ t+2, as
w0 is not adjacent to wt and wt+1, but there is a vertex wi adjacent to w0
with i > t. We can assume i > t+1, since the possibility, when i = t+1,
we have considered in the case 1. Thus, as degG(wt) = degG(w0) > 2,
wt−1 and wt+1 are a good pair.

Remark 6. The same algorithm works for theΔ-colouring of a 2-connected graph
H . Indeed, we can take any vertex ofH as a cut vertex v0 and we can easily colour
H in linear in the size of H time if there is a vertex u with degH(u) < Δ(H).

Remark 7. This algorithm also provides a proof of Brooks Theorem [5] for two-
connected graphs, since if the graph is not a clique or an odd cycle we can apply
the algorithm and get the proper colouring.

Acknowledgement. We thank Oleg Borodin and Alexander Kostochka for rather
helpful pointers to the literature.
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7. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proc. West-Coast

Conf. on Combinatorics, Graph Theory and Computing, Arcata, California, Congr.
Numer., vol. XXVI, pp. 125–157 (1979)

8. Gallai, T.: Kritische Graphen I. Publ. Math. Inst. Hung. Acad. Sci. 8, 373–395
(1963)

9. Jensen, T.R., Toft, B.: Graph Colouring Problems. John Wiley & Sons, New York
(1995)

10. Kawarabayashi, Ken-ichi, Mohar, B.: List-color-critical graphs on a fixed surface.
In: SODA ’09: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, New York, pp. 1156–1165 (2009)

11. Kostochka, A., Stiebitz, M.: A list version of Dirac’s Theorem. J. Graph Th. 39
(2002)

12. Kostochka, A., Stiebitz, M., Wirth, B.: The colour theorems of Brooks and Gallai
extended. Discrete Math 162, 299–303 (1996)

13. Kratochv́ıl, J., Tuza, Z., Voigt, M.: New trends in the theory of graph colorings:
choosability and list coloring. DIMACS Ser. Discrete Math. Theoret. Comput. Sci,
vol. 49, pp. 183–197. Amer. Math. Soc., Providence (1999)

14. Lovász, L.: Three short proofs in graph theory. J. Comb. Th. (B) 19, 269–271
(1975)

15. Reed, B.: A strengthening of Brooks’ theorem. J. Comb. Th. (B) 76, 136–149 (1999)
16. Skulrattanakulchai, S.: Δ-List Vertex Coloring in Linear Time and Space. Infor-

mation Processing Letters 98(3), 101–106 (2006)
17. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),

146–160 (1972)
18. Tuza, Z.: Graph colorings with local constraints—a survey. Discussiones Math.

Graph Th. 17(2), 161–228 (1997)
19. Vizing, V.: Colouring the vertices of a graph in prescribed colours. Metody Diskret.

Anal. v Teorii Kodov i Schem 29, 3–10 (1976) (in Russian)
20. http://www1.spms.ntu.edu.sg/~ngravin/code/Dcols.tgz

http://www1.spms.ntu.edu.sg/~ngravin/code/Dcols.tgz


The Cantor Space as a Generic Model of

Topologically Presented Knowledge

Bernhard Heinemann

Fakultät für Mathematik und Informatik,
FernUniversität in Hagen,
58084 Hagen, Germany

bernhard.heinemann@fernuni-hagen.de

Abstract. We prove a new completeness theorem for topologic, a par-
ticular system for reasoning about knowledge and topology. In fact, we
show that topologic is complete with respect to the Cantor space, i.e., the
set of all infinite 0-1-sequences endowed with the initial segment topol-
ogy. To this end, we make use of the connection between the semantics
of topologic and McKinsey and Tarski’s topological interpretation of the
modal box operator, as well as of Georgatos’ Normal Form Lemma.
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1 Introduction

It is known since McKinsey and Tarski, [12], that not only the modal system S4
is sound and complete for topological spaces in general, but also for the real line
R endowed with the standard topology. (In fact, S4 is sound and complete with
respect to every dense-in-itself metric separable space.) Thus, a certain spatial
aspect appeared very early in the history of modal logic, even before the nowa-
days ubiquitous Kripke semantics was established. Due to the need for a rigorous
treatment of space in computer science and, in particular, artificial intelligence,
that spatial dimension inherent to modal logic was recently rediscovered and
more thoroughly investigated. The reader is referred to the handbook [2] for an
overview of the modern developments in this area.

A new proof of McKinsey and Tarski’s theorem is given in [1]. Quasi as a
starter, the authors of that paper show that S4 is sound and complete with
respect to the Cantor space; see also [13]. We take up again this data structure
here and reinforce the just quoted completeness theorem by substituting S4 with
topologic.

The system topologic is based on the modal logic for subset spaces, which
was introduced in the paper [14]; more background information and the corre-
sponding technical details were presented later, in [7]. Here we only recall the
underlying bi-modal language, L. Basically, L comprises a modality K describ-
ing the knowledge of an agent under discussion, and a second one, �, measuring
qualitatively the effort to acquire knowledge. The relevant semantic domains,
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called subset spaces, consist of a non-empty set X of states (of the world), a set
O of subsets of X representing the epistemic states (or knowledge states) of the
agent, and a valuation V determining the states where the atomic propositions
are true. L-formulas are interpreted in subset spaces with respect to neighborhood
situations x, U , for which x ∈ U ∈ O is valid by definition. The operator K quan-
tifies over all states of some epistemic state U ∈ O then, whereas � quantifies
‘downward’ over all U ′ ∈ O that are contained in U , since shrinking and gaining
knowledge correspond to each other. Now, the topological aspect appears since
a certain approximation procedure in some space of sets is modelled with that.
Going the other way round, i.e., interpreting open sets as knowledge states of an
agent, yields an epistemic interpretation of topological spaces. Thus, reasoning
about knowledge and topological reasoning may be regarded as two sides of the
same coin. This is substantiated by the fact that topological spaces can com-
pletely be axiomatized through L-formulas, resulting in the system topologic; see
Section 2.

We now argue that the Cantor space, C, can serve as a model of knowledge of
binary streams. Such data processing may be represented by computable func-
tions g : N → {0, 1}, i.e., by certain infinite 0-1-sequences, in an abstract way. C
consists of the set B of all such sequences together with the initial-segment topol-
ogy T . Thus, it is allowed to call C a generic model for that kind of knowledge.
We want to put a finer point on that now, in particular, we want to say to what
extent this knowledge is topologically presented. Suppose that g : N → {0, 1} is
a given stream, and there is an observer monitoring an appropriate device. The
set B can be illustrated by the full infinite binary tree. Moreover, every node of
this tree can be annotated with the basic open neighborhood U ∈ T containing
all possible prolongations of the initial segment leading to this node. In this way,
a tree of subsets of B results. Now, computing the function g yields, step by
step, a bisection of the actual open set, constituting a new epistemic state of
the observer at each time. Thus the knowledge of the observer is reflected in a
certain subset of the set of opens of a particular topological space.

At this point, it is natural to ask whether the prominent part the Cantor space
plays for the context just described finds expression in the logic as well. We give
an affirmative answer in the following. To be precise, we show that the system
topologic is sound and complete for C = (B, T ). This result should underpin the
notion of being ‘generic’ attributed to the Cantor space above.

The technical part of the paper is organized as follows. In the next section,
we recall the basics of topologic. Afterwards, the peculiarities of this system
required in the course of this paper are arranged in a way that proves to be
useful for us later on. This is done in Section 3 and Section 4. In Section 5,
we consider the notion of bisimulation for both topological spaces and subset
spaces in general. This facilitates the proof of our main result, which is stated
in Section 6. The paper is concluded with a summing up and some additional
remarks, in particular, on the completeness of topologic with respect to R.

Finally, two recent generalizations of McKinsey and Tarski’s theorem that are
different from ours should be quoted here; see [3] and [10].
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2 Prerequisites

In this section, we recapitulate the language underlying topologic as well as some
of the basic properties of this system. Doing so, we use [7] as a reference without
mentioning this each time.

We first define the syntax of the language. Let Prop = {p, q, . . .} be a denumer-
ably infinite set of symbols called proposition variables (which are to represent
the basic facts about the states of the world). Then, the set Form of formulas
over Prop is defined by the rule α ::= p | ¬α | α ∧ α | Kα | �α. Later on,
the boolean connectives that are missing here are treated as abbreviations, as
needed. And the duals of the modal operators K and � are denoted by L and �,
respectively. In accordance with the above, K is called the knowledge operator
and � the effort operator. Note that the set of all formulas of usual modal logic,
denoted by MF, is obviously a subset of Form. (MF is obtained by omitting the
last but one clause of the above generation rule.)

Second, we turn to the semantics. For a start, we define the relevant domains
and comment on this definition afterwards. We let P(X) designate the powerset
of a given set X .

Definition 1 (Subset Frames and Subset Spaces)

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X
such that {∅, X} ⊆ O. Then the pair S := (X,O) is called a subset frame.

2. Let S = (X,O) be a subset frame. The set NS := {(x, U) | x ∈ U and U ∈
O} is called the set of neighborhood situations of S.

3. Let S = (X,O) be a subset frame. An S-valuation is a mapping V : Prop →
P(X).

4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=
(X,O, V ) is called a subset space (based on S).

A couple of things should be noted here. First, it will become clear soon that
the requirement ‘{∅, X} ⊆ O’ from item 1 above is quite natural; see the next
definition where the mode of operation of the modalities is fixed. Second, the
term ‘neighborhood situation’ from item 2 is introduced just to denominate
the semantic atoms of our language. Note that the first component of such a
situation x, U indicates the actual state of the world while the second displays the
uncertainty of the agent in question about it. And third, note that S-valuations
only depend on states (and are independent of sets thus). This is in accordance
with the common modelling practice, eg, in contexts where temporal logics are
used.

Now, let a subset space M be given. We define the relation of satisfaction,
|=M , between neighborhood situations of the underlying frame and formulas
from Form. In the following, neighborhood situations are often written without
parentheses.

Definition 2 (Satisfaction and Validity). Let M = (X,O, V ) be a subset
space based on S = (X,O), and let x, U ∈ NS be a neighborhood situation of S.



172 B. Heinemann

Then

x, U |=M p : ⇐⇒ x ∈ V (p)
x, U |=M ¬α : ⇐⇒ x, U �|=M α
x,U |=M α ∧ β : ⇐⇒ x, U |=M α and x, U |=M β
x, U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α
x,U |=M �α : ⇐⇒ ∀U ′ ∈ O : (x ∈ U ′ ⊆ U ⇒ x, U ′ |=M α) ,

where p ∈ Prop and α, β ∈ Form. In case x, U |=M α is true we say that α holds
in M at the neighborhood situation x, U. Furthermore, a formula α is called valid
in M iff it holds in M at every neighborhood situation of S.

The intuitive notion of knowledge and effort described in the introduction is
obviously captured by this definition. Note that any iterated application of K’s
and �’s always has an ‘only downward’ effect in subset spaces.

The following list provides a sound and complete axiomatization of the logic
of subset spaces:

1. All instances of propositional tautologies
2. K(α→ β) → (Kα→ Kβ)
3. Kα→ (α ∧ KKα)
4. Lα→ KLα
5. � (α→ β) → (�α→ �β)
6. (p→ �p) ∧ (�p→ p)
7. �α→ (α ∧ ��α)
8. K�α→ �Kα,

where p ∈ Prop and α, β ∈ Form. In this way, it is expressed that, for every
Kripke model M validating these axioms,

– The accessibility relation K−→ of M belonging to the knowledge operator is
an equivalence (i.e., K is an S5-modality),

– The accessibility relation �−→ of M belonging to the effort operator is re-
flexive and transitive (i.e., � is S4-like),

– The composite relation �−→◦ K−→ is contained in K−→◦ �−→ (this is usually
called the cross property), and

– The valuation of M is constant along every �−→ -path, for all proposition
variables.

The most important fact is the cross property here, formalizing the interplay
of knowledge and effort. The ‘stability property’ of the proposition variables
corresponds to their semantics and is caused by Axiom 6. – Note that the logic of
subset spaces is decidable although it does not satisfy the finite model property.

For the rest of this paper, we almost exclusively deal with the smaller class
of all topological spaces, i.e., subset spaces where O is closed under arbitrary
unions and finite intersections. These two properties are forced by Axiom 9 and
Axiom 10 following right now.
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9. �α ∧ L�β → � (�α ∧ L�β ∧ K�L(α ∨ β))
10. ��α→ ��α,

where α, β ∈ Form. – It is not hard to see that Axiom 9 is valid in spaces
closed under arbitrary unions and Axiom 10 in spaces closed under arbitrary
intersections.1 However, the proof of the next theorem is highly non-trivial.

Theorem 1 (Georgatos, [8]). The logic determined by the just given list of
axioms and the common modal proof rules, is sound and complete with respect
to the class of all topological spaces.

Thus, it is justified to call this logic topologic. – In the following, we have to take
a closer look at some of the properties of topologic.

3 Topological Modal Logic versus topologic

First in this section, we recall a few basic facts from topological modal logic
needed later on. (The reader is referred to the paper [1] for a more detailed ex-
position.) Afterwards, we study a particular embedding of the set of all formulas
of usual modal logic, MF, into the set Form, by which means the topological
semantics is related to the semantics of topologic.

Let T = (X, τ) be a topological space and V : Prop → P(X) a T -valuation.
Then, V is extended to all (mono-)modal formulas as follows:

Ṽ (p) := V (p)
Ṽ (¬α) := X \ Ṽ (α)
Ṽ (α ∧ β) := Ṽ (α) ∩ Ṽ (β)
Ṽ (�α) := Int

(
Ṽ (α)

)
,

where p ∈ Prop, α, β ∈ MF, and Int(A) denotes the interior of the set A. This
is (essentially) the McKinsey-Tarski interpretation of the �-operator. The topo-
logical semantics of a modal formula α in the model M =

(
X, τ, Ṽ

)
at a point

x ∈ X is now given by
(
M,x |= α : ⇐⇒ x ∈ Ṽ (α)

)
.

It is easy to see that M,x |= �α iff ∃U ∈ τ : (x ∈ U and ∀y ∈ U :M, y |= α)
is valid. The latter formulation indicates how the embedding announced above
should operate on �-formulas: the modal quantification provided by � should be
replaced by an existential quantification over open sets followed by a universal
quantification over points.

We touched on the following theorem of McKinsey already at the beginning of
this paper. It concerns, of course, the topological semantics of modal formulas;
cf [11].

Theorem 2 (McKinsey). The system S4 is sound and complete with respect to
the class of all topological spaces. Moreover, finite topological spaces even suffice
for that.
1 Note that the latter schema characterizes the property of weak directedness of the

accessibility relation in basic modal logic; cf, eg, [9], § 1.
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Theorem 2 can actually be strengthened. As is known, a topological space (X, τ)
is called connected iff its point set X cannot be written as a union of two open
proper subsets which are disjoint. In the paper [1], the authors call a topological
space well-connected iff this non-partitioning property is true even if the two open
subsets are not necessarily disjoint. Showing that well-connectedness corresponds
to Kripke-structures for S4 which are generated (see [9], § 1), they prove the
subsequent stronger completeness result.

Theorem 3 ([1], Theorem 3.10). The system S4 is sound and complete with
respect to the class of all finite well-connected topological spaces.

This theorem is used for the proof of Lemma 6 below. – The notion of bi-
persistence of formulas introduced in the next definition plays a crucial part for
topologic, in particular.

Definition 3 (Bi-Persistence). Let derivability in topologic be denoted by ,,
and let α ∈ Form be a formula. Then, α is called bi-persistent (for topological
spaces) iff , �α→ �α.

Thus, satisfaction of a bi-persistent formula at a neighborhood situation x, U
depends only on the point x.

Let Π ⊆ Form be the closure of Prop under negations, conjunctions, and the
operators �K and �L. It is a fact that all elements of Π are bi-persistent for
topological spaces. For that, Axiom 10 from Section 2 is responsible, among
other things; see [7], Prop. 3.1.

We now define a mapping ϕ : MF → Form in the following way.

ϕ(p) = p
ϕ(¬α) = ¬ϕ(α)
ϕ(α ∧ β) = ϕ(α) ∧ ϕ(β)
ϕ(�α) = �Kϕ(α),

for all p ∈ Prop and α, β ∈ MF.
A bijection from MF onto Π is obviously induced by restricting the mapping

ϕ in the range (thus this bijection is denoted by ϕ, too). Hence the inverse
mapping ϕ−1 from Π to MF exists. ϕ−1 is utilized in the proofs of the results of
Section 5.

We close this section by stating the above indicated connection between the
McKinsey-Tarski semantics of modal logic and the semantics of topologic intro-
duced in Definition 2.

Proposition 1 ([7], Proposition 3.5). Let T = (X, τ) be a topological space
and V : Prop → P(X) a T -valuation. Let M = (X, τ, V ) and M =

(
X, τ, Ṽ

)
be the induced subset space and topological model, respectively. Then, for every
α ∈ ML and x ∈ X, we have that

M,x |= α ⇐⇒ x,X |=M ϕ(α).
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4 The Normal Form Lemma

This short section is devoted to the most important property of topologic, viz the
decomposition of formulas from Form into a ‘horizontal’ component regarding
knowledge and a ‘vertical’ one regarding effort. The precise formulation of this
is a certain Normal Form Lemma, which is due to Georgatos [8].2 In order to be
able to state this result, we must first fix some notation.

The set Π introduced right after Definition 3 plays an important part in the
following. But we need an additional set of formulas.

Definition 4. Let a set Σ of formulas from Form be defined as the closure of
the set {Kπ | π ∈ Π} ∪ {Lπ | π ∈ Π} under conjunctions.

Since K is a normal modality, it distributes over conjunctions; see, eg, [5], Ex-
ample 1.40. This implies that any σ ∈ Σ is logically equivalent to a formula of
the form Kπ ∧

∧
i Lπi, where i ranges from 1 to some natural number j ∈ N.

Thus, we may assume without loss of generality that σ in fact has this form.

Definition 5 (Normal Forms). Let α ∈ Form be a formula. Then α is said
to be in prime normal form iff there are π ∈ Π and σ ∈ Σ such that α = π ∧ σ.
And α is said to be in normal form iff α is a disjunction of formulas in prime
normal form.

Let the formula α ∈ Form be in prime normal form, α = π∧σ (where π ∈ Π and
σ ∈ Σ). Then π is the ‘vertical component’ and σ is the ‘horizontal component’
of α. For suppose that α holds at any neighborhood situation x, U . Then, due to
bi-persistence, π holds at all situations x, V where V , containing x, runs ‘up’ and
‘down’ the underlying space. On the other hand, σ moves satisfaction of certain
formulas from Π horizontally, i.e., to other points inside U . This ‘orientation’ of
formulas is particularly reasonable in case the open sets of the space one has in
mind have a kind of tree structure, like the Cantor space.

We call two formulas α, β ∈ Form topologically equivalent iff for all subset
spaces M based on a topological space T and all neighborhood situations x, U
of T the assertion (x, U |=M α ⇐⇒ x, U |=M β) is valid. Using this way of
speaking, we are now in a position to quote Georgatos’ Normal Form Lemma.

Lemma 1 (Normal Form Lemma, [8]). Let α ∈ Form be any formula. Then
α is topologically equivalent to some formula β ∈ Form in normal form.

The proof of Lemma 1 uses, among other things, Axiom 9 from Section 2 in a
tricky way.

5 Bisimulations

It is well-known that the right concept for invariance of modal formulas with
respect to their usual (i.e., Kripke) models is that of bisimulation; cf [5], Ch. 2.2.
2 Section 3.1 of the paper [7] contains a proof of the Normal Form Lemma as well.



176 B. Heinemann

A corresponding notion for topological spaces is given in [1], Definition 2.1. For
convenience of the reader, we include this definition here. We also list the key
result of Section 4.1 of the paper [1]. Afterwards, we introduce bisimulations also
for subset spaces and prove a couple of lemmata connected to this subject. Our
final concern is the sum of topological spaces. We mention an important special
case at the end of this section.

Definition 6 (Topo-Bisimulation). Let M1 =
(
X1, τ1, Ṽ1

)
as well as M2 =(

X2, τ2, Ṽ2
)

be topological models, and let R ⊆ X1 ×X2 be a non-empty binary
relation. Then R is called a topo-bisimulation iff the following three conditions
are satisfied whenever x1Rx2 is valid for any x1 ∈ X1 and x2 ∈ X2 :

1. For all p ∈ Prop,
(
x1 ∈ Ṽ1(p) ⇐⇒ x2 ∈ Ṽ2(p)

)
.

2. If x1 ∈ U1 for any U1 ∈ τ1, then there exists some U2 ∈ τ2 such that
(a) x2 ∈ U2 and
(b) for all y2 ∈ U2 there is some x′1 ∈ U1 satisfying x′1Ry2.

3. If x2 ∈ U2 for any U2 ∈ τ1, then there exists some U1 ∈ τ1 such that
(a) x1 ∈ U1 and
(b) for all y1 ∈ U1 there is some x′2 ∈ U2 satisfying y1Rx2.

As usual, items 1, 2 and 3 of Definition 6 (in this order), are called the base,
forth and back condition, respectively.

The following lemma coincides with ‘FACT 2.3’ from [1], Section 2.3, in terms
of content.

Lemma 2 (Topological Invariance of Formulas). Let M1 =
(
X1, τ1, Ṽ1

)
and M2 =

(
X2, τ2, Ṽ2

)
be as above and R ⊆ X1 ×X2 a topo-bisimulation. Fur-

thermore, assume that x1 ∈ X1 and x2 ∈ X2 satisfy x1Rx2. Then, for all for-
mulas α ∈ MF, we have that M1, x1 |= α iff M2, x2 |= α.

We want to remind the reader of the notion of morphism of topological spaces
before we formulate the key result from [1] we need below. Let T1 = (X1, τ1)
and T2 = (X2, τ2) be topological spaces and f : X1 → X2 a mapping. Then f is
called continuous iff f−1[U2] ∈ τ1 for every U2 ∈ τ2. Moreover, f is called open
iff f [U1] ∈ τ2 for every U1 ∈ τ1.

Lemma 4.5 and Corollary 4.6 from [1] are subsumed in the subsequent propo-
sition. We choose a slightly different formulation which is most qualified for our
purposes. Note that C = (B, T ) designates the Cantor space.

Proposition 2. Let M =
(
X, τ, Ṽ

)
be a finite topological model such that the

underlying topological space is well-connected. Then there exist a C-valuation V ′

and a surjective continuous and open mapping χ from B onto X which induces
a topo-bisimulation of the models

(
B, T , Ṽ ′) and M .

The proof of Proposition 2 proceeds by suitably unravelling X into B. We omit
further details here.

The question whether there is also an idea of bisimulation for subset spaces is
quite natural. Clearly, this must be a relation between neighborhood situations
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since these are the basic semantic entities of topologic. And we must respect
both modalities, K and �, in addition. We now present an appropriate defini-
tion, comment on it and prove two lemmata, of which one concerns a particular
example we get back to later.3

Definition 7 (Subset Space Bisimulation). For i = 1, 2, let Si = (Xi,Oi)
be subset frames and Mi = (Xi,Oi, Vi) subset spaces based on Si. Moreover,
let R ⊆ NS1 × NS2 be a non-empty binary relation. Then R is called a sub-
set space bisimulation iff the following five conditions are satisfied whenever
(x1, U1)R (x2, U2) is valid for any (x1, U1) ∈ NS1 and (x2, U2) ∈ NS2 :

1. For all p ∈ Prop,
(
x1 ∈ V1(p) ⇐⇒ x2 ∈ V2(p)

)
.

2. For all x′1 ∈ U1 there exists x′2 ∈ U2 such that (x′1, U1)R (x′2, U2).
3. For all x′2 ∈ U2 there exists x′1 ∈ U1 such that (x′1, U1)R (x′2, U2).
4. If x1 ∈ U ′

1 for any U ′
1 ∈ O1 such that U ′

1 ⊆ U1, then there exists U ′
2 ∈ O2

satisfying x2 ∈ U ′
2 ⊆ U2 and (x1, U ′

1)R (x2, U ′
2).

5. If x2 ∈ U ′
2 for any U ′

2 ∈ O2 such that U ′
2 ⊆ U2, then there exists U ′

1 ∈ O1
satisfying x1 ∈ U ′

1 ⊆ U1 and (x1, U ′
1)R (x2, U ′

2).

We obviously have two forth conditions as well as two back conditions here,
given by items 2, 4 and 3, 5 of Definition 7, respectively. Note that subset space
bisimulations apply to topological spaces in particular, however, with respect to
a different semantics. – The next lemma is an analogue to Lemma 2.

Lemma 3 (Subset Space Invariance of Formulas). Let M1 = (X1,O1, V1)
and M2 = (X2,O2, V2) be subset spaces based on S1 = (X1,O1) and S2 =
(X2,O2), respectively, and let R ⊆ NS1 × NS2 be a subset space bisimula-
tion. Furthermore, assume that (x1, U1) ∈ NS1 and (x2, U2) ∈ NS2 satisfy
(x1, U1)R (x2, U2). Then, for all formulas α ∈ Form, we have that x1, U1 |=M1 α
iff x2, U2 |=M2 α.

It turns out that every embedding of subset frames induces a subset space bisim-
ulation in a straightforward manner. We give the precise definition first and state
this fact right after that.

Definition 8 (Embedding). Let S1 = (X1,O1) and S2 = (X2,O2) be subset
frames. An injective mapping η : X1 → X2 is called an embedding (of S1 into
S2) iff η[U1] ∈ O2 for every U1 ∈ O1 and η−1[U2] ∈ O1 for every U2 ∈ O2. In
this case we write η : S1 
 S2.

Lemma 4 (Embedding Lemma). Let S1 = (X1,O1) and S2 = (X2,O2)
be subset frames and η : S1 
 S2 an embedding. Furthermore, let M1 =
(X1,O1, V1) be based on S1. Define an S2-valuation V2 through V2(p) := η[V1(p)],
for all p ∈ Prop, and let M2 = (X2,O2, V2). Finally, let R ⊆ NS1 ×NS2 be de-
fined by

(x1, U1)R (x2, U2) : ⇐⇒ x2 = η(x1) and U2 = η[U1],
3 One of the anonymous referees pointed to the fact that Definition 7 and Lemma 3

are contained in Section 3.3 of the paper [4] already.
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for all x1 ∈ X1, x2 ∈ X2, U1 ∈ O1 and U2 ∈ O2. Then R is a subset space
bisimulation.

Two more examples of subset space bisimulation occur in the proof of Lemma 8
from the next section.

Finally in this section, we turn to a further concept from topology which plays
a part in the proof of our main theorem: that of topological sum; cf [6], Ch. I,
§ 2.4. We recall the special case relevant to our purposes here. Let a finite number
T1 = (X1, τ1), . . . , Tn = (Xn, τn) of topological spaces be given. Assume that
their sets of points, X1, . . . , Xn, are pairwise disjoint.4 Then, the topological
sum -1≤i≤nTi of the spaces T1, . . . , Tn has X := X1∪ · · · ∪Xn as carrier set,
and the set of all U ⊆ X satisfying U ∩ Xi ∈ τi for every i = 1, . . . , n as set of
opens.

Concerning topological sums, we remind the reader of the fact that the sum
of n copies of the Cantor space can topologically be embedded into the Cantor
space itself. This is also true with regard to subset spaces.

Lemma 5. Let -nC be the topological sum of n copies of the Cantor space.
Then there exists an embedding η : -nC 
 C.

6 Main Result

We now return to topologic. First in this section, we state another three auxiliary
results, with putting things from previous sections together already. With that,
we obtain our main result, viz the completeness of topologic with respect to the
Cantor space.

We call a formula α ∈ Form topologically satisfiable iff there exist a topological
space T = (X, τ), a subset space M = (X, τ, V ) based on T , and a neighborhood
situation x, U of T such that x, U |=M α. Our first lemma says that every
topologically satisfiable formula of the form π ∧ Kπ′, where π and π′ belong to
the set Π introduced in Section 3, is even satisfiable in a finite well-connected
topological space.

Lemma 6. Let π, π′ ∈ Π, and let α = π ∧Kπ′ be topologically satisfiable. Then
there exist a finite well-connected topological space T = (X, τ) and a subset space
M = (X, τ, V ) based on T such that, for some neighborhood situation x, U of
T , the formula α holds in M at x, U .

If we drop the requirement on the special form of the formula α in Lemma 6, then
topological sums of finite well-connected topological spaces appear as realizing
domains. This is the content of the next lemma.

Lemma 7. Let the formula α ∈ Form be topologically satisfiable. Then there
exist a natural number m ∈ N, finite well-connected topological spaces T1 =
4 This may be assumed without loss of generality, since one can take a suitable home-

omorphic copy of some of the Xi otherwise.
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(X1, τ1), . . . , Tm = (Xm, τm), and a -1≤i≤mTi-valuation V , such that, for some
neighborhood situation x, U of -1≤i≤mTi, the formula α holds in the subset space
M := (-1≤i≤mTi, V ) at x, U .

Note that the finite model property (see [5], Section 2.3) of topologic follows from
Lemma 7 immediately; see [7], Section 3.5.

In the next step we prove that a topologically satisfiable formula is realized
in an m-fold topological sum of the Cantor space, for some m ∈ N.

Lemma 8. Let α ∈ Form be a topologically satisfiable formula. Then there exist
some m ∈ N and a subset space M̂ based on -mC in which α holds at some
neighborhood situation.

We are now up to establish the result we were heading for throughout this paper.

Theorem 4 (Completeness for the Cantor Space). The system topologic
is sound and complete with respect to C.

7 Concluding Remarks

Decades ago, McKinsey and Tarski proved that the modal logic S4 is sound and
complete with respect to every dense-in-itself metric separable space, in particu-
lar, C and R. We utilized new proofs of this theorem for strengthening it, at least
regarding the Cantor space, by replacing S4 with topologic; the latter system was
designed by Moss and Parikh for both epistemic and topological reasoning. To
be quite unequivocal here, we proved the soundness and completeness of topo-
logic with respect to C. For this purpose, we considered a notion of bisimulation
for subset spaces which turned out to support our proof substantially.

Not only our main result is of theoretical interest, but it also applies to the
semantics of programming languages to a certain extent. The thing is that topo-
logic can be identified as the subset space logic of (algebraic) complete partial
orderings (cpos) endowed with the Alexandroff (respectively Scott) topology, in
fact, by utilizing the completeness of this system with respect to C. Thus topo-
logic may be viewed as a programming logic in the broader sense. This issue will
be taken up in greater detail in the full version of this paper.

Finally, what about R? This is certainly the most obvious question remaining.
Well, we know that for every finite well-connected topological space (X, τ) there
exists a surjective continuous and open mapping from the open interval (0, 1) ⊆
R onto X ; see [1], ‘FACT 4.10’ and Lemma 4.13. Furthermore, one can easily see
that the topological sum of a finite number of copies of (0, 1) can be embedded
into R. Noting that the respective results in case of C (Proposition 2 and Lemma
5 above) are the key facts we have used for completeness, we are, therefore, able
to finish the paper with another nice theorem.

Theorem 5 (Completeness for the Reals). The system topologic is sound
and complete with respect to R.
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Abstract. Computer science was born with the formal definition of the
notion of an algorithm. This definition provides clear limits of automa-
tization, separating problems into algorithmically solvable problems and
algorithmically unsolvable ones. The second big bang of computer science
was the development of the concept of computational complexity. Peo-
ple recognized that problems that do not admit efficient algorithms are
not solvable in practice. The search for a reasonable, clear and robust
definition of the class of practically solvable algorithmic tasks started
with the notion of the class P and of NP-completeness. In spite of the
fact that this robust concept is still fundamental for judging the hard-
ness of computational problems, a variety of approaches was developed
for solving instances of NP-hard problems in many applications. Our
40-years short attempt to fix the fuzzy border between the practically
solvable problems and the practically unsolvable ones partially reminds
of the never-ending search for the definition of “life” in biology or for
the definitions of matter and energy in physics. Can the search for the
formal notion of “practical solvability” also become a never-ending story
or is there hope for getting a well-accepted, robust definition of it? Hope-
fully, it is not surprising that we are not able to answer this question in
this invited talk. But to deal with this question is of crucial importance,
because only due to enormous effort scientists get a better and better
feeling of what the fundamental notions of science like life and energy
mean. In the flow of numerous technical results, we must not forget the
fact that most of the essential revolutionary contributions to science were
done by defining new concepts and notions.

1 A Piece of Computer Science History

The history of the mathematical foundations of computer science started in
1936, when Alan Turing [40] introduced his famous Turing machine as a formal
definition of the notion “algorithm” (a mathematical method for symbol manip-
ulation). Church [13], Kleene [25], Post [31], and also others introduced different
formalisms in order to provide a formal model of this notion. All these distinct
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models are equivalent to each other with respect to the set of algorithmically
solvable problems. The consequence of this experience is the Church-Turing the-
sis which can be viewed as the first axiom of computer science. Due to the exact
formal concept of an algorithm, we have a sharp border between algorithmically
solvable problems and algorithmically unsolvable ones and can investigate the
limits of the automatization.

The second-most fundamental concept of computer science is the concept of
computational complexity [39, 18]. Due to this concept, developed in the 1960s,
we learned that it is not sufficient to design an algorithm for a computing task,
because it may be unrealistic to execute the corresponding amount of computer
work. Still worse, there are problems that do not admit any efficient algorithm
and hence cannot be solved automatically by the means of computers. A new fun-
damental question came up: “Which computing problems are “easy” (tractable)
and can be efficiently solved and which algorithmically solvable problems are
“hard” (intractable), i. e., unsolvable in the practice?” Therefore, people wanted
to classify problems with respect to the hardness, but to do this one needs two
things:

(1) A closer definition of practical solvability.
(2) A method that can be used to prove that a large amount of computer work

is necessary to solve a concrete algorithmic problem (i. e., that the problem
is not practically solvable).

As the reader may know, we did not succeed to achieve any of these goals.
But we learned a lot by trying to develop a methodology for the classification
of problems with respect to their computational difficulty. The first attempt
resulted in taking P (the set of decision problems solvable in polynomial-time)
as an approximation of the set of “practically” solvable problems. Why did one
accept this “approximation” of practical solvability although it is obvious that
an algorithm with O(n100) time complexity is everything, but not practical, and
that an O(2

√
n/1000) exponential algorithm can be extremely useful in practice?

The two main reasons (except being not able to do it better) for connecting
polynomial-time computations with the intuitive notion of practical solvability
are the following:

(i) The first reason is of theoretical nature. Any definition of a fundamental
problem class (or of a basic notion) has to be robust in the sense that it
is invariant with respect to all reasonable models of computation. Taking
TIME(n6) as the class of tractable decision problems could cause that
a decision problem would be tractable for JAVA programs, but not for
multi-tape Turing machines. Since all reasonable computing models are
polynomial-time reducible each to each other; the class of problems solvable
in polynomial time has the required degree of robustness.

(ii) The second reason is based on our experience, and thus related to prac-
tice. In almost all cases, once a polynomial-time algorithm has been found
for an algorithmic problem that formerly appeared to be hard, some key
insight into the problem has been gained. With this new knowledge, faster
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polynomial-time algorithms with a lower degree than the first polynomial
algorithm were designed.
There are only a few exceptions like primality testing for which the best-
known deterministic polynomial-time algorithm is not practical. On the
other hand, we do not know natural computing problems of interest for
which the best-known algorithm has a time complexity like O(2

√
n/1000).

To achieve the second goal (2) seems to be a really hard story. No one is able
to prove a nonlinear lower bound on the complexity of a NP-complete problem.
This is a huge gap between our goal to prove super-polynomial lower bounds
on the time complexity of concrete problems and our incompetence to prove at
least an Ω(n log n) lower bound. Razborov and Rudich [35] showed the critical
dimension of this situation: No known method for proving lower bounds on
the complexity can work for this purpose. Unable of providing evidence that
a problem is hard, Cook [14] and Karp [24] introduced the concept of NP-
completeness for classifying problems into easy ones and hard ones. The great
idea behind NP-completeness is that, if one NP-hard problem is in P , then
all NP-complete problems are efficiently solvable. This is the way to bring the
experience about a huge unsuccessful effort of designing efficient algorithms for
several thousand NP-complete problems into the theory. Since almost nobody
believes that all these many NP-complete problems are easy, the concept of
“if one is easy then all are easy” became accepted as a tool for proving the
hardness of problems. Moreover, there are also other reasons to believe in the
computational hardness of NP-complete problems. If P = NP holds, then the
verification of proofs of problems in NP would be as hard as the generation of
(as searching for) the proofs and this as well is something we do not want to
believe in.

2 Searching for the Definition of the Class of
“Practically” Solvable Problems

The end of the story presented above looks like a happy end with some accept-
able compromises. But it is not. Probably, it is the beginning of a potentially
never-ending story. Why? Right after introducing the concept of NP-hardness,
people found ways to solve instances of NP-hard problems in practice. The fact
that a problem is NP-hard was not considered as an impossibility of solving it
efficiently. The NP-hardness of a problem only became a reason to attack this
problem using different tools than those for classical problems from P .

For non-specialists, these statements may be really confusing. How can one
solve NP-hard problems without finding polynomial algorithms for them and
thus without proving P = NP?

The true art of designing algorithms for hard problems consists of saving a
huge amount of computer work by making as few changes as possible in the
specification of the problem or in the requirements of the problem solutions.
If it works, one can provide solutions to instances of some hard problems that
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are highly appreciated in the corresponding applications. We learned that many
NP-hard problems are very sensitive. A negligible change of requirements can
help to save an unbelievable amount of work. Even jumps from an intractable
amount of computer work to a few seconds on a common computer are possible.
In what follows, we divide the basic algorithmic approaches of attacking hard
problems into three categories:

1 Weakening of requirements. One can deviate from the requirements to
guarantee the computation of the correct result in different ways.

1.1 Approximation algorithms. Instead of requiring an optimal solution of
an NP-hard optimization problem, one accepts solutions whose qual-
ity (cost) does not essentially differ from the cost of the optional so-
lutions. The gain of this approach can lead to an exponential decrease
of computational complexity. Note that, in the case of FPTAS (fully
polynomial-time approximation scheme), we are even allowed to choose
the approximation ration ε and the time complexity is polynomial in the
input size n as well as in 1/ε. Note that approximation algorithms [17]
were already proposed before the concept of NP-completeness was intro-
duced [14] in 1971 and immediately after that, several efficient approx-
imation algorithms for NP-hard optimization problems were designed
(see, for instance, [23, 36, 12, 22, 27]).

1.2 Randomization. The idea of randomized algorithms [33, 34, 38, 1] is to
move from the hypothetical absolute guarantee of computing the correct
result to computing correct results with high probability. Nobody has
doubts that bounded-error randomized algorithms are very practical and
usually we consider a problem to be practically solvable if we can solve it
by an efficient (polynomial-time) randomized algorithm with bounded-
error probability. In spite of the fact that complexity theory provides
a good reason for conjecturing P = BPP, we remain very interested
in the design of randomized algorithms, because also a speed-up by a
multiplicative factor of n3 is great. On the other hand, we still know
problems, such as the equivalence testing for polynomials or searching
for a quadratic non-residue, that can be solved efficiently by randomized
algorithms, but where the best-known deterministic algorithms solving
these problems have an exponential complexity.

2 Useful Exponential Algorithms. Algorithms with time complexity like
2n or n! are applicable for very small problem instances only. But algorithms
with the time complexity cn for c < 2 could be of practical interest. The clas-
sical result of Monien and Speckenmeyer [28,29] provides such an algorithm
for kSAT.
Example 1. The starting idea (not providing the result from [28]) for 3SAT is
the following one. Instead of looking at each of the 2n possible assignments,
one quickly excludes most of them as candidates that do not need to be
checked. If a clause x1∨x2∨x3 has to be satisfied, one needs only to consider
the possibilities as depicted in Fig. 1.
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Problem(n)

Problem(n − 1)

Problem(n − 2)

Problem(n − 3)

x1 = 1 x1 = 0

x2 = 1 x2 = 0

x3 = 1

Fig. 1.

If n is the number of variables, this leads to a divide-and-conquer strategy
with complexity T (n), given by the recursive equation

T (n) = T (n− 1) + T (n− 2) + T (n− 3),

which is definitely better than

T (n) = 2 · T (n− 1)

given by the complete search. ��
For satisfiability problems, several useful randomized exponential algorithms
were developed.

3 Classification of Problem Instances. This is probably the most promis-
ing approach to attack hard problems in practice. In fact, one tries to give
a deeper analysis of the hard problem considered by trying to figure out the
essence of the hardness of the problem. For sure, we cannot speak about the
algorithmic hardness of a particular problem instance or a finite set of in-
stances. But one can fix infinite sets of problem instances of a hard problem
that can be efficiently solvable. On the other hand, one can prove that some
infinite subsets of problem instances contain the instances making the corre-
sponding problem hard. Following these strategies, we know several distinct
successful approaches.
3.1 Pseudopolynomial Algorithms. For most problems, the input instances

can be viewed as sequences of integers. For sure, an integer is exponential
in the size of its representation and can thus be also exponential in
the size n of the problem instance. Pseudopolynomial algorithms run in
time polynomial in n and in the value of the largest integer of the given
input instance. If a hard problem admits an efficient pseudopolynomial
algorithm, then the subproblem with integers polynomial in the size of
their input instances is easy. A consequence is that, for input values
restricted to a fixed interval of possible integers, the problem can be
efficiently solved.
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3.2 Parameterized Complexity. The concept of parameterized complexity
was introduced by Downey and Fellows [15] and can be viewed as a
generalization of the concept of pseudopolynomial algorithms. The com-
plexity function is considered as a function of two variables. One variable
is, as usual, the size of the problem instance, and the second argument
is the so-called parameter. A parameter has to be an important number
characterizing the instances of the given problem that somehow “mea-
sures” the hardness of the problem instances. For an input size n and
a parameter size k, one considers algorithms with time complexity in
O(f(k) · p(n)), for a polynomial p and an arbitrary function f , to be
useful. In that way, one can fix classes of “easy” problem instances as
the classes of problem instances with a small value of k.

3.3 Stability of Approximation. This approach is similar to the parameter-
ized complexity in the sense that we again search for a characteristic of
the instances of a given hard problem, that captures its hardness. The
difference to parameterized complexity is that the parameter does not
influence the time complexity, but the quality of the computed solution.
One considers this approach for optimization problems that do not ad-
mit any polynomial-time algorithm with a constant approximation ratio.
The idea is to partition the set of all instances of such an optimization
problem into infinitely many classes of infinite sizes. This partition of
problem instances has to be given by a parameter k. An approximation
algorithm is called stable with respect to a considered parameter k, if its
approximation ratio grows with k, but not with n. In this way, the pa-
rameter k measures the hardness of the polynomial-time approximability
of the given optimization problem.
Example 2. TSP is known to be a hard optimization problem with re-
spect to approximability. One is not even able to guarantee a polyno-
mial approximation ratio within polynomial-time. The proof of this fact
is straightforward. One reduces the Hamiltonian Cycle Problem to TSP
with edge costs 1 or 2n where n is the number of vertices. The cost 1
is assigned to all edges of the graph of the instance of the Hamiltonian
Cycle Problem, and cost 2n is assigned to all remaining edges of the
complete graph of the constructed instance of TSP.

What does this mean? For sure, these are hard instances of TSP. But
are there many hard instances or only those that allow huge differences
in the costs of particular edges? We know that for the geometric TSP
one has a PTAS and that for the metric TSP one has approximation
algorithms with constant approximation ratios. These facts may propose
that the metric property is essential for measuring the hardness of the
instances of TSP. This hypothesis can be really proved using the concept
of stability of approximation. Consider the general β-triangle inequality

cost({u, v}) < β(cost({u,w}) + cost({w, v})),

for arbitrary three vertices u, v, and w of a graph. Obviously, for β = 1/2,
all edges must have the same cost and so such instances of TSP are
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trivial. For β = 1 we get the classical Euclidian metrics. Böckenhauer
and Seibert [10] proved that TSP with β-triangle inequality is APX-
hard already for any β > 1/2 and their concrete lower bound on the
approximability grows with an increasing β. This is an interesting start-
ing point. In several papers [2, 3, 5, 6, 4, 20], the authors designed sta-
ble efficient algorithms for TSP with growing approximation ratios with
growing β. This proves our hypothesis that extremely hard instances of
TSP are only few and not natural. The hard instances must break the
metric property in such a way that β even becomes dependent on the
size of the instance (the number of vertices).

Note that the well-known 2-approximation algorithm for the metric
TSP is not stable with respect to the relaxed triangle inequality. In this
algorithm, one starts with a minimum spanning tree, and then takes
the order of the vertices of a depth-first search as the resulting Hamil-
tonian cycle. Following this procedure, each edge of the tree is used or
“shortened” exactly twice. If the β-triangle inequality for β > 1 holds,
then shortening paths of length m can cause a cost increase that is not
only a function of β, but also a function of m (see Fig. 2). Since m
can be related to the size of the graph, this algorithm is not stable.
Christofides algorithm [12] also is not stable since it shortens paths even
twice (once by shorthening paths of an optimal Hamiltonian cycle and
later by shorthening the paths of a minimum spanning tree).

A simple idea for designing a stable approximation algorithm for TSP
is based on the classical theorem of Sekanina [37] which claims that, for
any tree T , the graph T 3 must contain a Hamiltonian cycle. This means
that, taking a minimum spanning tree of a complete weighted graph,
one can build a Hamiltonian cycle such that

(i) it traverses or shortens each edge of the tree exactly twice and
(ii) the edges of the resulting Hamiltonian cycle are shortcuts of at

most three edges of the spanning tree.

In this way, the designed algorithm runs in linear time and guarantees
the worst-case approximation ratio 2 · β2. For more details, we refer
to [21], page 302. ��
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3.4 Heuristics. If we speak about heuristics, we mean algorithms whose be-
havior we are unable to analyze. This means that we are not able to
prove that they work efficiently or that they provide reasonable results.
In spite of missing a guarantee of getting correct results in time, heuris-
tics, such as simulated annealing or genetic algorithms, may behave very
well on “typical” problem instances in some applications. Also, algo-
rithm design methods such as local search, primal-dual method, branch
and bound, or greedy may lead to successful heuristics. It is more a rule
than an exception that in operations research the most successful imple-
mented algorithms are heuristics and their success is not mathematically
proven, but measured in an empirical way. We know examples of NP-
hard optimization problems, for which the costs of the solutions provided
by heuristics differ by 1.5% in average from the costs of the optimal
solutions.

3.5 Hybrid Algorithms. Let us consider inputs that can be viewed as problem
instances of different problems. A good example is simply a weighted
complete graph. A hybrid algorithm for two different problems of that
kind efficiently provides a correct solution to one of the two problems.
The only trouble is that we are not allowed to force for which one. The
algorithm simply tries to solve both problems and then “recognizing”
which one is easier for the particular instance, the algorithm finishes its
work by computing a solution for the easier task [8, 16].
What can one learn from this? If one has an efficient hybrid algorithm for
two hard problems, then one discovered that the sets of hard instances
of these two problems are disjoint.

3 Discussion about Upper Bounds

In Section 2, we presented some fundamental approaches for attacking hard
problems and making some of them “practically solvable” or “practically solv-
able to some extent”. In this way, we may view these approaches as tools for
proving upper bounds on the computational difficulty of algorithmic problems.
These approaches document very well how hard it is to provide a robust defini-
tion of “practical solvability”. From the approaches considered in Section 2, only
randomization provides a closer picture. Without any doubt, efficient bounded-
error randomized algorithms are practical. This is the reason why we correctly
consider the class of problems solvable by polynomial-time bounded-error ran-
domized algorithms as a robust class of tractable problems.

But what is the influence of other approaches? Consider approximability. For
sure, optimization problems having FPTAS can be viewed to be tractable. Are
we allowed to say this also for problems admitting PTAS? Are also efficient
approximation algorithms with a small constant approximation ratio as 1.01 a
proof of the tractability of the corresponding problem? If yes, which concrete
approximation ratio has to provide the exact limit of tractability? Can the sta-
bility of approximation have any influence on the notion of tractability? Are all
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fixed-parameter-tractable problems really tractable? For instance, what about
(22h ·n2)-parameterized algorithms? Can successful heuristics have any influence
on a reasonable definition of a robust class of tractable problems? And on top of
it all, one can combine all the approaches listed above. Is there at all a chance to
find a clear and well-accepted border between tractable problems and the really
“practically unsolvable” problems?

It looks like a visit by a medician. For each problem one tries to apply different
approaches or their combination in order to solve it at least to some achievable
extent. This corresponds to the current situation. We have a huge amount of
results about attacking several thousand problems and these results very rarely
help us to fix the practical solvability of the corresponding problems or to com-
pare the computational hardness of two NP-hard problems.

Is there a way out? Are we forced to sample a huge amount of often incompa-
rable algorithms for different problems, and so to build a continuously larger and
larger zoological garden forever? Are we forced to build highly specialized “doc-
tors” for small specific classes of computing problems who do not need to take
care of the general context of algorithmics, because a unified theory providing a
useful insight is missing?

To find a way out, we have to try to fix the reason why everything becomes so
fuzzy if one wants to classify algorithmic problems with respect to the tractabil-
ity. I believe that at least one of the reasons (if not the only one) of our troubles
lies in our definition of the complexity in the worst case. We needed this def-
inition in order to be able to analyze the complexity of algorithms within a
reasonable effort and in order to compare the complexity of different algorithms.
Taking Time(n) as the maximum of the complexity of all computations on in-
puts of size n instead of considering the average complexity with respect to some
inputs probability distribution is not wrong. In algorithms as a theory, we are
always forced to provide guarantees of computing correct results in a reasonable
time limit. I do not like the idea of giving up this effort. Proving guarantees in
the above mentioned sense is our way to a deeper understanding of algorithm
design and computational complexity, and so it is an essential contribution to
the computer science fundamentals. On the other hand, if proportionally few
problem instances are allowed to make a problem hard and these instances are
even somehow exotic, then one is allowed to prefer to view this problem (if not
as easy) as a not very hard one. The way out is really not taking a weighted
average, because this is not robust. Different probability distributions of inputs
may lead to different results and different applications may force to consider
different probability distributions. Therefore, taking the weighted average, one
can risk to lose robustness.

One way out we propose is related to the concepts of parameterized complex-
ity and stability of approximation. One has to try to understand and express
the hardness of the problem by partitioning the set of all instances of a consid-
ered problem into infinitely many classes of infinite cardinality. In each of these
infinitely many classes, one has to use the worst-case measurement for the com-
putational complexity or the solution quality. If this effort is successful, then one
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splits all instances of the problem into infinitely many classes of instances with
growing hardness from class to class. It seems that this is a reasonable way of
classifying the hardness of input instances. The fact that an instance is in a class
provides us an upper bound on the hardness of this instance. If one succeeds to
embed her or his intuition into such a classification, then one does a big step in
understanding the computational hardness of the problem.

This can be even helpful for the classification of the problems with respect to
their hardness. I do not see how to use this concept in order to get a clear border
between tractable problems and intractable ones. But being able to parameter-
ize algorithmic problems in the way described above can lead to a reasonable
measurement of the problem hardness. Even if it results in some hierarchy of
several degrees of hardness, it can be helpful for judging the tractability of the
problems in concrete applications and instrumental in searching for a way to
master them.

Note that this approach does not suggest to follow the most typical approach
of parameterized complexity, where a part of the input is considered as a pa-
rameter (for instance, k is a parameter of the input instance (G, k) of the vertex
cover problem asking for the existence of a vertex cover of size k in G). One is
forced to discover the proper reasons of the hardness of the problem investigated
by searching for some crucial property of the problem instances that takes an
essential influence on the problem hardness. I personally believe that this kind
of research is very promising.

4 Proving Lower Bounds on Complexity

Proving lower bounds on the computational complexity of problems seems to
be the hardest core of current research in computer science fundamentals. As
already mentioned above, mathematics looks to be underdeveloped for this pur-
pose. Proving the non-existence of an oject is usually a harder task than to prove
its existence, especially if one can do it in a constructive way. But proving the
non-existence of efficient algorithms for specific algorithmic problems is a real
challenge and we do not have any promising idea how to develop instruments
which are able to successfully attack this problem. Let us shortly summarize our
effort to get at least some progress in developing mathematical tools for this
purpose and/or to provide a useful methodology to algorithm designers.

1 Proving lower bounds on the complexity of concrete problems.
Since we are not able to prove super-linear lower bounds on the time com-
plexity of concrete problems in NP (or super-logarithmic lower bounds on
the space complexity of problems in P ⊇ NLOG) one tries at least to prove
lower bounds on the complexity measures of restricted models of compu-
tation. On one side, this contributes to the development of a mathematical
machinery for proving lower bounds (see, for instance, the concept of commu-
nication complexity introduced by Yao [41,19,26]). A byproduct of this effort
is a lot of new results about fundamental computing models like automata



Algorithmics – Is There Hope for a Unified Theory? 191

or different kinds of circuits. On the other hand, this effort is helpful to sep-
arate determinism, nondeterminism, and different modes of randomization
and so it essentially contributed to our understanding of computation and
its fundamental phenomena. We do not try to present any survey on proving
lower bounds on the complexity of concrete problems in restricted scenarios,
because one would need a book series for this purpose.

2 Proving that some design technique does not work. Another way to
restrict the class of all algorithms is to consider algorithm design techniques
such as greedy, local search, dynamic programming, etc. The idea is to prove
at least that some approaches cannot help to efficiently solve the considered
problems. Here, we can distinguish two different research streams. One is
based on absolute results and another one is based on assumptions such as
NP �= P or similar ones.

2.1 Absolute results. The results that some design techniques cannot be suc-
cessful in efficiently solving concrete problems are of methodological
importance. In this way, we can learn more about the reasons of the
hardness of a problem, as well as about the advantages and drawbacks
of specific methods for algorithm design. For instance, a nice classical
result of Papadimitriou and Steiglitz shows that local search is not suit-
able for solving TSP [32]. Even neighbourhoods of exponential size do
not suffice to reach a polynomial approximation ratio with reasonable
probability.

Another approach to understand greedy algorithms and their general-
izations in combinatorial optimization was recently proposed by Borodin
(see [11] for a survey). In spite of the fact that this kind of effort does not
solve our problem with general lower bounds, to work on corresponding
goals is very promising for our understanding of algorithms and their lim-
its. Contributions showing boundaries for some design techniques may
be instrumental for algorithms design.

2.2 Assuming NP �= P. There are many lower bounds based on the well ac-
cepted assumption that NP �= P or on similar assumptions. For sure, we
understand that NP-hardness of a problem is a confirmation of the fact
that the problem is computationally hard. But our goal is to approach
the limits of practical solvability, and we gave arguments for considering
several NP-hard problems to be tractable. Therefore, we aim to speak
about higher degrees of hardness than NP-hardness in this section.

Let us list some of them. The strong NP-hardness of some problems
shows that there are no pseudopolynomial algorithms for them. This
concept is interesting for us, because strong NP-hardness is based on
the fact that already “easy” instance classes with small integer values
are NP-hard. From the viewpoint of parameterization, this proves that
using the maximum integer value as a parameter is not suitable for
classifying the hardness of instances of these problems. In this sense,
one can propose other versions of “strong” NP-hardness to show that
other parameterizations do not work as well.
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In the area of approximability, we have several advanced techniques and
concepts like APX -hardness for proving that some discrete optimization
problems do not admit efficient algorithms with a “good” approximation
ratio (for a survey, see, for instance, [21]).

Another way to show a higher degree of hardness for concrete prob-
lems is the concept of reoptimization (see [7] for a survey and [9] for some
specific lower bounds). The idea is to provide an optimal solution to a
“similar” instance for free, in addition to the input of an optimization
problem. If this does not make the problem easier (for example, if the
problem remains APX -hard), one may consider the corresponding prob-
lem to be hard. Since the reoptimization versions of some optimization
problems are easier than the original problem and some others are not,
we get another new view (criterion) of problem hardness.

For the parameterized complexity [15, 30], we also have a special
notion of hardness that is stronger than NP-hardness. Due to it, one
can prove that there is no parameterized algorithm for some considered
problems.

5 What to Do with Lower Bounds on Computational
Hardness?

I think we are asked to continue in all directions mentioned above, because all
are promising in the sense that we learn a lot during our effort to understand
why some algorithmic approaches do not work. Additionally, allow me to en-
courage people to think about lower bounds with respect to the classification
of problem instances. In contrast to our ability to prove upper bounds on the
hardness of particular problem instances, one cannot prove a lower bound on
a particular problem instance, because something like that does not exist. But
a good example about what is achievable is given by Böckenhauer and Seib-
ert [10]. They proved explicit lower bounds on the approximability of TSP with
β-triangle inequality, and these lower bounds increase with growing β.

Concluding the discussion, I would like to express my belief that, in order
to make essential progress in algorithmics, one has to move from measuring
the problem hardness in a worst-case manner to classifying the hardness of the
instances of the investigated algorithmic problems.
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23. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256–278 (1974)

24. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum, New York (1972)

25. Kleene, S.: General recursive functions of natural numbers. Mathematische An-
nalen 112, 727–742 (1936)

26. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

27. Lovász, L.: On the ratio of the optimal integral and fractional covers. Discrete
Mathematics 13, 383–390 (1975)

28. Monien, B., Speckenmeyer, E.: 3-satisfiability is testable in O(1.62r) steps. Bericht
Nr. 3/1979, Reihe Theoretische Informatik, Universität-Gesamthochschule Pader-
born (1979)

29. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n. Discrete Ap-
plied Mathematics 10(3), 287–295 (1985)

30. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

31. Post, E.: Finite combinatory process–formulation. Journal of Symbolic Logic 1,
103–105 (1936)

32. Papadimitriou, C.H., Steiglitz, K.: On the complexity of local search for the trav-
eling salesman problem. SIAM Journal of Computing 6(1), 76–83 (1977)

33. Rabin, M.O.: Probabilistic algorithms. In: Traub, J.F. (ed.) Algorithms and Com-
plexity: Recent Results and New Directions, pp. 21–39. Academic Press, London
(1976)

34. Rabin, M.O.: Probabilistic algorithms for primality testing. Journal of Number
Theory 12, 128–138 (1980)

35. Razborov, A., Rudich, S.: Natural proofs. Journal of Computers and System Sci-
ences 55(1), 24–35 (1997)

36. Sahni, S., Gonzalez, T.F.: P-complete approximation problems. Journal of the
ACM 23(3), 555–565 (1976)

37. Sekanina, M.: On an ordering of the vertices of a graph. Publications of the Faculty
of Sciences University of Brno 412, 137–142 (1960)

38. Solovay, R., Strassen, V.: A fast monte-carlo test for primality. SIAM Journal of
Computing 6(1), 84–85 (1977)

39. Stearns, R.E., Hartmanis, J., Lewis, P.M.: Hierarchies of memory limited compu-
tations. In: Proceedings of IEEE Sixth Annual Symposium on Switching Circuit
Theory and Logical Design (SWCT 1965), pp. 179–190. IEEE, Los Alamitos (1965)

40. Turing, A.: On computable numbers with an application to the Entscheidungsprob-
lem. In: Proceedings of the London Mathematical Society, vol. 42, pp. 230–265
(1936)

41. Yao, A.C.: The entropic limitations on VLSI computations (extended abstract).
In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing
(STOC 1981), pp. 308–311 (1981)



Classifying Rankwidth k-DH-Graphs

Ling-Ju Hung and Ton Kloks�

Department of Computer Science and Information Engineering
National Chung Cheng University, Chia-Yi 621, Taiwan

hunglc@cs.ccu.edu.tw

Abstract. Let k be a natural number. A graph is k-distance hereditary if it has a
tree-decomposition such that every cutmatrix has a block structure that is some
submatrix of

(
Ik 0
0 0

)
, where Ik is the k × k identity matrix. We characterize k-

distance hereditary graphs and we show that for fixed k there exists an O(n3)

time algorithm that recognizes the graphs in this class.

1 Introduction

Recent results on tree-decompositions of graphs, such as rank– and cliquewidth-
decompositions, make it a point of interest to investigate graphs that can be decom-
posed such that every cutmatrix has a certain shape. To explain our focus we need a few
definitions.

A graph G is a pair G = (V , E) where V is a finite set, of which the elements are
called the vertices of G, and where E is a set of two-element subsets of V , of which the
elements are called the edges of G.

Definition 1. A tree-decomposition of a graph G is a pair (T , f) where T is a ternary
tree and where f is a bijection from the leaves of T to the vertices of G.

Definition 2. Let (T , f) be a tree-decomposition of a graph G = (V , E). Let e be a line
in T and consider the two sets A and B of leaves of the two subtrees of T − e. The
cutmatrix Me is the submatrix of the adjacency matrix of G with rows indexed by the
vertices of A and columns indexed by the vertices of B.

Oum studies rank-decompositions in [12]. A graph has rankwidth k if it has a tree-
decomposition such that every cutmatrix has binary rank at most k. The interest in
graphs with small rankwidth stems from the fact that problems that can be formu-
lated in monadic second-order logic, can be solved in O(n3) time on graphs with
rankwidth at most k. For each k there exists an O(n3) algorithm which produces a
tree-decomposition of rankwidth at most k for an input graph G with n vertices, if that
exists. This is proven in two ways. Firstly, it can be seen that the class of graphs with
rankwidth at most k is closed under taking induced subgraphs and under complement-
ing subgraphs that are induced by neighborhoods of vertices. This last operation is usu-
ally referred to as a local complementation. The graphs that are obtained from a graph G
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by a series of these operations are called the vertex-minors of G. It is shown that graphs
with bounded rankwidth can be characterized by a finite collection of forbidden vertex-
minors. A test for a vertex-minor can be formulated in monadic second-order logic, and
this proves the claim. Secondly, also an explicit recognition algorithm is reported.

In order to classify graphs with rankwidth k we study graphs that have a tree-
decomposition such that every cutmatrix has a certain shape.

Definition 3. Consider a 0, 1-matrix M. Let M′ be the maximal submatrix of M with
no two rows equal and no two columns equal. The shape of M is the class of matrices
equivalent to M′ under permuting rows, permuting columns, and taking the transpose.

Let’s look at a few classic examples of graph classes that are characterized by shapes
of cutmatrices. A graph is a cograph if it has no induced P4, that is, a path with four
vertices. We can characterize cographs with the aid of ‘twins.’ A module is a set M of
vertices such that

x, y ∈ M ⇒ N(x) − M = N(y) − M.

A twin is a module with two vertices. The twin is false if the vertices are not adjacent and
it is true if the vertices are adjacent. Cographs are the graphs for which every nontrivial
induced subgraph has a twin. Corneil et al. show that a graph is a cograph if and only
if it has a tree-decomposition such that every cutmatrix has a shape which is equivalent
to some submatrix of

(
1 0
)
.

Howorka defines distance-hereditary graphs as follows:

Definition 4. A graph G is distance hereditary if for all nonadjacent vertices x and y

in some component of G, all induced x, y-paths have the same length.

Chang et al. give the following characterization.

Theorem 1. A graph G is distance hereditary if and only if every induced subgraph
has a twin, or a pendant vertex, or an isolated vertex.
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Fig. 1. A graph is distance hereditary if it has no induced house, hole, domino or gem

Distance-hereditary graphs are the graphs with rankwidth one. That is, they are those
graphs that have a tree-decomposition (T , f) such that every cutmatrix has a shape
equivalent to some submatrix of

(
1 0
0 0

)
, where the 1 stands for an all-ones block and

the zeros stand for all-zero blocks. In our terminology, distance-hereditary graphs are
1-distance hereditary. Alternatively, this class is characterized as the class of graphs
that do not have C5 as a vertex-minor. Note that the characterization by vertex-minors
is finite, whereas the characterization by forbidden induced subgraphs is infinite. How-
ever, note also that for k > 1, k-distance hereditary graphs are not closed under local
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complementations. For example, the 5-cycle is 2-distance hereditary and it is locally
equivalent to the gem, but the gem is not 2-distance hereditary. At the moment we are
not aware of a finite characterization of k-DH-graphs in terms of ‘forbidden structures.’

As a third example we mention graphs that have a tree-decomposition such that ev-
ery cutmatrix is shape-equivalent to some submatrix of

(
1 0
0 1

)
[2,8]. They are the graphs

without C5, bull, gem, or co-gem; i.e., the Seidel-switching class has no C5. Alterna-
tively, they can be characterized as those graphs for which every nontrivial, induced
subgraph has a twin or an antitwin. Also, if Gx is the graph in the switching class of G

for which the vertex x is isolated, then G is in the class if and only if every, or also if
some, Gx is a cograph.

In this paper we investigate k-distance-hereditary graphs for fixed, natural
numbers k.

Definition 5. Let k be a natural number. A graph G is k-distance hereditary if it has a
tree-decomposition in which every cutmatrix is shape-equivalent to some submatrix of(

Ik 0
0 0

)
,

where Ik is the k × k identity matrix and where the zeros stand for all-zero blocks.

If a graph G has only one vertex then a tree-decomposition for G has no cutmatrix. As
a rule, we say that a 1-vertex graph is also k-distance hereditary. We prove that there is
a characterization for k-DH-graphs which can be formulated in monadic second-order
logic. Since k-DH-graphs have rankwidth at most k, this proves that the graphs can be
recognized in O(n3) time. We end this section with some of our notational customs [7]
and with one elementary observation.

For two sets A and B we write A + B and A − B instead of A ∪ B and A \ B. We
write A ⊆ B if A is a subset of B with possible equality and we write A ⊂ B if A is a
subset of B and A �= B. For a set A and an element x we write A + x instead of A + {x}

and we write A − x instead of A − {x}. It will be clear from the context when x is an
element instead of a set.

A graph G is a pair G = (V , E) where V is a finite, nonempty set, of which the
elements are called the vertices of G, and where E is a set of two-element subsets of V ,
of which the elements are called the edges of G. If the graph is a tree, we call the vertices
points, and the edges lines. A graph consisting of a single vertex is called trivial. We
denote edges of a graph as (x, y) and we call x and y the endvertices of the edge. For a
vertex x we write N(x) for its set of neighbors and we write N[x] = N(x) + x for the
closed neighborhood of x. For a subset W ⊆ V we write N(W) =

⋃
x∈W N(x) − W

for its neighborhood and we write N[W] = N(W) + W for its closed neighborhood.
Usually we use n = |V | to denote the number of vertices of G and we use m = |E| to
denote the number of edges of G.

For a graph G = (V , E) and a subset S ⊆ V of vertices we write G[S] for the
subgraph induced by S, that is, the graph with S as its set of vertices and with those
edges of E that have both endvertices in S. For a subset W ⊆ V we write G − W for
the graph G[V − W]. For a vertex x we write G − x rather than G − {x}.
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Lemma 1. ‘Creating a twin’ of a vertex x in a graph G is the operation of adding
a new vertex x′ and adding edges incident with x′ such that x′ and x become twins.
Assume that G is k-distance hereditary for some k � 1 and let G′ be obtained from G

by creating a twin. Then G′ is also k-distance hereditary.

Proof. Let (T , f) be a tree-decomposition for G. Construct a tree-decomposition (T ′, f′)
for G′ by subdividing the line in T that has the image of x as an endpoint. Create a new
leaf for x′ and make this adjacent to the subdivision point.

First consider the line in T ′ incident with x′. If x′ is isolated, then the cutmatrix is the
all-zero matrix. Thus the shape is indeed a submatrix of

(
Ik 0
0 0

)
. If x′ is not isolated, then

the shape is equivalent to
(

1 0
)

or to
(

1
)
, which is also OK because k � 1. Obviously,

the same holds true for the cutmatrix of the line incident with x in T ′. Finally, for any
other line in T ′, the row (or column) of the cutmatrix that corresponds with x′ is a copy
of the row (or column) that corresponds with x. Thus the shape is the same as that of
the corresponding original line in T . ��
In the same manner it follows without much difficulty that the class of k-DH-graphs is
hereditary, and that it is also closed under creating pendant vertices and under creating
isolated vertices.

2 k-Cographs

The class of k-cographs is defined as follows.

Definition 6. Let k be a natural number. A graph G = (V , E) is a k-cograph if there
exists a coloring of the vertices with colors from {1, . . . , k} such that for every subset
of vertices W ⊆ V with | W | � 2 there exist a partition {W1, W2} and a permutation
σ ∈ Sym(k), such that for each i ∈ {1, . . . , k}, either

i. vertices of W1 of color i have no neighbor in W2, or
ii. vertices of W1 of color i are adjacent exactly to vertices of W2 of color σ(i).

We say that the graph is partitioned if it is equipped with a k-coloring. We call a partition
as stipulated in this definition, a k-modular partition.

In a recent paper we define a slightly different notion of k-cographs [9]. The follow-
ing proof, which shows that the class of k-cographs is characterized by a finite set of
forbidden induced subgraphs, is essentially the same as the proof for the related class
of graphs in that paper. We include it for completeness sake.

Theorem 2. Let k be a natural number. Partitioned k-probe cographs are well-quasi-
ordered by the induced subgraph relation.

Proof. A cotree is a binary tree with a bijection from the leaves to the vertices of the
graph and internal nodes labeled as join- or union-operators [4]. Two vertices are adja-
cent in the graph if and only if their lowest common ancestor is a join-node. Kruskal’s
theorem [10] states that trees, with points labeled by a well-quasi-ordering, are well-
quasi-ordered with respect to their lowest common ancestor embedding. Pouzet ob-
served that this implies that cographs are well-quasi-ordered by the induced subgraph
relation [13]. For partitioned k-cographs we equip each leaf with a label that is a color
from {1, . . . , k}. Each internal node receives a label which consists of
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a. a permutation σ ∈ Sym(k), and
b. for each i = 1, . . . , k an indicator of a union– or a join-operator.

Two vertices are adjacent if their lowest common ancestor has a label that makes them
adjacent by a join-operator. Kruskal’s theorem implies the claim. ��

Remark 1. Note that each color class of a partitioned k-cograph induces a cograph.

Corollary 1 ([9]). Let k be a natural number. The class of partitioned k-cographs is
characterized by a finite set of forbidden induced colored graphs. Also, the class of
k-cographs is characterized by a finite set of forbidden induced subgraphs.

Theorem 3. For every natural number k there exists an O(n3) algorithm that recog-
nizes k-cographs.

Proof. This can be seen in two ways. First notice that k-cographs have a tree-
decomposition such that every cutmatrix is shape-equivalent to a submatrix of

(
Ik 0

)
,

where Ik is the k×k identity matrix [9]. A fortiori, k-cographs have bounded rankwidth.
Since the definition of k-cographs can be formulated in monadic second-order logic,
this proves the claim. Alternatively one could verify that the graph has none of the
forbidden induced subgraphs. Note however that this last proof is nonconstructive;
Kruskal’s theorem does not provide the forbidden induced subgraphs. ��

3 A Tree-Structure

In this section we describe the structure of k-distance-hereditary graphs as a tree-
structure of k-cographs. Chang et al. describe connected distance-hereditary graphs
as binary tree-decompositions where each branch is equipped with a ‘twinset.’ These
twinsets are cographs. A twinset of a branch is obtained from the twinsets of the two
children by either a union – or a join operation, or by a ‘pendant operation.’ This last
operation copies exactly one of the two twinsets. For k-DH-graphs, to create a k-twinset
of a branch, we have these three choices for each of the k σ-paired color classes of the
two k-twinsets of the children, where σ is some permutation. We prove that k-twinsets
are k-cographs.

Let G = (V , E) be k-distance hereditary and let (T , f) be a tree-decomposition for G

such that every cutmatrix is shape-equivalent to some submatrix of
(

Ik 0
0 0

)
. Let c be an

internal point of T and let P, Q, and R be the partition of V induced by the leaves of the
three branches at c. Let P′ = N(Q + R), and define Q′, and R′ likewise.

Lemma 2. There exists a coloring of each of P′, Q′, and R′ with at most k colors, such
that for each pair of P′, Q′, and R′, say P′ and Q′, there is a permutation of the colors
σ ∈ Sym(k) such that vertices of color i in P′ either have no neighbors in Q′, or else
they are adjacent exactly to the vertices with color σ(i) of Q′.

Proof. Consider the branch at c that carries P and let e be the line of that branch incident
with c. By assumption, the cutmatrix of e is shape-equivalent with some submatrix(

Ik 0
0 0

)
. Consider the cutmatrix with rows indexed by the vertices of P and columns by
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the vertices of Q + R. The nonzero rows of this submatrix correspond with the vertices
of P′. Thus there exists a coloring of the vertices of P′ with at most k colors such that
vertices with the same color have exactly the same neighbors in Q+R and vertices with
different colors have no common neighbor in Q + R. Of course, similar colorings exist
for the vertices of Q′ and for the vertices of R′. This proves the claim. ��
Consider an arbitrary line α of T and root the tree at α. We obtain a binary tree-
decomposition by distinguishing left – and right subtrees. Consider a branch, rooted
at some line e = (c, c′) such that c′ is the child of c. Let C be the set of vertices that
are mapped to leaves of the subtree.

Definition 7. The twinset at e is the set of vertices of C that have neighbors in V − C.
In other words; the twinset at e is N(V − C).

Lemma 3. The twinset of e induces a k-cograph.

Proof. Consider the cutmatrix at e. Let R = V−C and let R′ = N(C). Then there exists
a partition of R′ into at most k color classes, such that vertices with the same color have
the same neighbors in C and such that vertices with different colors have no common
neighbor in C. If C consists of a single vertex, there is nothing to prove. Otherwise, the
tree decomposes C into two sets A and B. Let A′ and B′ be the vertices of A and B

that have neighbors in R. The vertices of A′ are colored with at most k colors, such that
vertices with the same color have the same neighbors in V − A and such that vertices
with different colors have no common neighbor in V − A. The same holds for B, and
we may permute the colors of B such that vertices of color i in A′ + B′ have the same
neighbors in R. By induction we may assume that the colored graphs A′ and B′ induce
k-cographs. There exists a permutation σ ∈ Sym(k) that matches vertices of color i in
A′ with vertices of color σ(i) in B′ and this proves that A′ + B′ induces a k-cograph.

��

Connecting the twinsets. To complete the description of the k-DH-structure we ana-
lyze the connections between color classes of three branches meeting in a point.

Let P, Q, and R be a partition of V induced by the three branches of an internal node
c of a tree-decomposition. Let P′ = N(Q +R) and define Q′ and R′ likewise. Consider
the graph Ω = Ω(P, Q, R) which has as its vertexset V(Ω) the set of color classes of
the twinsets P′, Q′, and R′. We connect two color classes in different twinsets by an
edge in E(Ω) if their color classes are joined in G. Notice that every vertex of Ω has
degree at most two; for example, a vertex that represents a color class of P′ has degree
two if it is joined to exactly one color class of Q′ and it is joined to exactly one color
class of R′. Thus Ω is the union of a collection of paths and cycles that pass alternately
through P′, Q′ and R′. Obviously, the total number of vertices in these paths and cycles
is at most 3k.

We end this section with some observations concerning the structure of k-DH-graphs
in terms of forbidden induced subgraphs.

The class of 2-DH-graphs contains all cycles. Also the domino and the house are
2-distance hereditary. Forbidden induced subgraphs for 2-DH-graphs include the 3×3-
grid and some infinite collection of ‘gem-structures.’ A gem-structure consists of a path
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[p1, . . . , pt] with at least 4 vertices and one additional vertex c. The vertex c is adjacent
to p1, p2, pt−1 and pt. Furthermore, c is adjacent to an arbitrary subset of vertices of
{p3, . . . , pt−2}.

The gem is universally forbidden. We mention this result explicitly since it improves
the run-time of the algorithm in practice.

Theorem 4. k-DH-Graph are gem-free.

Proof. Let G be k-distance hereditary. Consider a binary tree-decomposition. Assume
that there is a gem, and consider a lowest branch rooted at some line e that contains
the vertices of the gem in the leaves. The twinset of e is obtained from two twinsets T1

and T2 at the children. We may assume that the universal vertex of the gem is contained
in some color class C of T1. By connectedness it follows that all the vertices of the P4

must be contained in a color class of T2 that is joined to C. This is not possible, since
each color class of a twinset is a cograph. ��

We end this section with the key observation that k-cographs have bounded diameter.

Theorem 5. There exists a constant Ck such that k-cographs have no induced paths of
length more than Ck.

Proof. We prove this by way of contradiction. Assume that there exists a sequence
[P1, P2, . . .] of paths of increasing lengths that are all k-cographs. For each i construct
the graph P′

i by creating a twin of each of the two endpoints of Pi. The graphs P′
i are

k-cographs since this class is closed under creating twins. Since the class of k-cographs
is well-quasi-ordered by the induced subgraph relation, there must exist i < j such that
P′

i is an induced subgraph of P′
j. This is a contradiction. ��

4 A Recognition Algorithm

A k-DH-tree-decomposition for a graph G consists of a labeled binary tree T and a
bijection f from the leaves of T to the vertices of G. The leaves of T are labeled with a
color from {1, . . . , k}. To ease the description we equip the lines of T with twinsets. A
line that is incident with a leaf has a twinset that consists of the colored vertex that is
mapped to the leaf by f.

The internal points of T are labeled with a permutation σ ∈ Sym(k) that matches
color classes of the left twinset with color classes of the right twinset. For each color
i ∈ {1, . . . , k} the point has a label which says whether the vertices of color i in the left
twinset are adjacent or not to the vertices of color σ(i) in the right twinset. Furthermore,
for each color i ∈ {1, . . . , k} the point has a label which indicates whether the color class
of the left – and of the right twinset is copied into the twinset of the line that connects
the point to its parent. This defines the twinset of the line incident with the point and its
parent. For the root we only need to define the adjacencies between the twinsets of the
left – and right subtree.

Note that the twinsets are defined by the bijection f and the labels of the inter-
nal nodes; we only introduced these to simplify the description. For a point p we call the
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left twinset τ� and the right twinset τr the ‘input twinsets’ of the point. We call the
twinset τo of the line that connects the point with its parent, the ‘output twinset’ of the
point.

Theorem 6. There exists an O(n3) time algorithm which checks if a graph G is k-
distance hereditary.

Proof. We describe a dynamic programming procedure. Consider a branch with a twin-
set P′ of colored vertices. Since the diameter of k-cographs is bounded, we need to
search up to some constant depth for a branch with a twinset Q′ such that P′ + Q′ in-
duces a k-cograph. This proves the theorem. ��

5 Some Final Remarks

We study graph classes such as k-DH-graphs in order to gain insight into why, and
when some combinatorial problems are solvable for tree-structures such as these.

Consider a graph class C defined by the property that the graphs allow for a tree-
decomposition such that every cutmatrix is shape-equivalent to some element of a finite
collection C of matrices. Say the matrices of C have binary rank at most k. It is our
aim to characterize the graphs of C by describing operators that act on the adjacency
conditions and that transform k-DH-graphs into graphs of C. Perhaps this leads to an
elegant classification of the graphs of rankwidth k.

Notice that the definition of k-cographs can be made suitable by changing the ad-
jacency conditions. Kruskal’s theorem guarantees that any of these classes is charac-
terized by a finite number of forbidden induced subgraphs. Furthermore, any of these
classes has bounded diameter, which implies the O(n3) recognition for the tree-version
with the adapted version of the twinsets.
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Abstract. We prove an exponential lower bound on the average time
of inverting Goldreich’s function by drunken [AHI05] backtracking algo-
rithms; therefore we resolve the open question stated in [CEMT09]. The
Goldreich’s function [Gol00] has n binary inputs and n binary outputs.
Every output depends on d inputs and is computed from them by the
fixed predicate of arity d. Our Goldreich’s function is based on an ex-
pander graph and on the nonliniar predicates of a special type. Drunken
algorithm is a backtracking algorithm that somehow chooses a variable
for splitting and randomly chooses the value for the variable to be inves-
tigated at first. Our proof technique significantly simplifies the one used
in [AHI05] and in [CEMT09].

1 Introduction

In 2000 Goldreich introduced the candidate one-way function based on expanders
[Gol00]. The function has n binary inputs and n binary outputs. Every output
depends on d inputs and is computed from them by the fixed predicate of arity
d. Goldreich suggested using expander graphs as graphs of dependency and a
random predicate of arity d. There are many similarities between the Goldreich’s
function and the pseudorandom generator by Nisan and Wigderson [NW94].

One of the approaches for inverting of one-way function is the usage of contem-
porary SAT solvers [MZ06]. Almost all SAT algorithms are based on backtracking
(so called DPLL (by names of authors Davis, Putnam, Logeman, Loveland) algo-
rithms [DP60, DLL62]). Backtracking algorithm is a recursive algorithm. On each
recursive call it simplifies an input formula F (without affecting its satisfiability),
chooses a variable v and makes two recursive calls on the formulas F [v := 1] and
F [v := 0] in some order. It returns the result “Satisfiable” if at least one of recur-
sive calls returns “Satisfiable” (note that it is not necessary to make the second
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call if the first one was successful). Recursion stops if the input formula becomes
trivial. That is, the algorithm is only allowed to backtrack when unsatisfiability
in the current branch is proved. A backtracking algorithm is defined by simpli-
fication rules and two heuristics: the heuristic A chooses a variable for splitting
and the heuristic B chooses a value that will be investigated first.

Lower bounds on the running time of backtracking algorithms on unsatisfiable
formulas follow from lower bounds on the size of resolution proofs [Tse68]. Un-
satisfiable formulas based on a pseudorandom generator by Nisan and Wigder-
son are used for proving lower bounds in several propositional proof systems
[ABSRW00]. Note that formulas that code the problem of inverting a one-way
function are usually satisfiable. If we do not restrict a type of heuristics of back-
tracking algorithms, then the exponential lower bound on running time of back-
tracking algorithms implies P �= NP (otherwise heuristic B may compute the
correct value of the variable in polynomial time).

The first unconditional lower bounds on running time of backtracking algo-
rithms on satisfiable formulas were proved in [AHI05] for myopic and drunken
algorithms. Heuristics in myopic algorithms are restricted in the following way:
they are allowed to read only a small fraction of the formula precisely, but they
can see the rest of the formula sketchy (for example in [AHI05] they don’t see
negations but have access to the statistics of number of positive and negative
variable occurrences). Exponential lower bound on the running time of myopic
algorithms was proved on the family of formulas that actually code the problem
of inverting Goldreich’s function based on linear predicate. In drunken algo-
rithms heuristic A has no restriction (and actually it may be not computable),
but heuristic B selects the value just at random. For drunken algorithms hard
satisfiable formulas are based on any family of hard unsatisfiable formulas.

Goldreich’s function based on a linear predicate is not very interesting since
it may be inverted by Gaussian elimination. In the paper [CEMT09] the tech-
nique from [AHI05] was extended for proving lower bounds for myopic al-
gorithms on nonlinear predicates. In particular it was proved in [CEMT09]
that any myopic algorithm has exponential running time in average case when
it solves a problem of inverting Goldreich’s function based on the predicate
x1 ⊕ x2 ⊕ · · · ⊕ xd−2 ⊕ xd−1xd. The paper [CEMT09] also presents results of ex-
perimental analysis of running time of contemporary SAT solvers on the problem
of inverting Goldreich’s function with the above predicate. Their analysis shows
that these formulas are hard for MiniSAT 2.0 [EB05, ES03]. The question of ex-
ponential lower bound on inverting Goldreich’s function by a drunken algorithm
was left open in [CEMT09]. In this paper we give an answer on this question.
In particular we prove that the average running time of drunken algorithms on
formulas that code the problem of inverting Goldreich’s function based on a ran-
dom graph and the predicate x1⊕ · · ·⊕xd−k ⊕Q(xd−k+1, . . . , xd) is exponential
with high probability. Here Q is an arbitrary predicate of arity k, k+ 1 < d

4 and
d is a constant large enough.

The proof strategy is as follows: at first we prove a lower bound for unsat-
isfiable formulas using the technique from [BSW01], then we show that it is
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possible to introduce some superstructure on drunken algorithms, which does
not increase the running time but guarantees that in the first several steps the
algorithm does not backtrack. After that we show that with high probability
Goldreich’s function has a small number of pre-images and with high proba-
bility the algorithm with superstructure falls into an unsatisfiable formula and
we will apply a lower bound for unsatisfiable formulas. The general plan of our
proof is the same as it was in [AHI05] and [CEMT09], but the resulting proof is
substantially simpler.

We also show that drunken algorithms are powerful enough: they may solve
satisfiable Tseitin formulas in polynomial time while unsatisfiable Tseitin formu-
las are hard for all backtracking algorithms. Drunken algorithms may also simu-
late the pure literal simplification rule while myopic algorithms from [CEMT09]
are not allowed to use this rule.

2 Preliminaries

Propositional variable is one that has 0/1-value, literal is either a variable or its
negation. A clause is a disjunction of literals, a CNF formula is a conjunction
of clauses. A k-CNF formula is a CNF formula in which all clauses contain
at most k literals. The formula is satisfiable if there exists substitution for its
variables such that the value of the formula becomes 1 (we call such substitution
a satisfying assignment).

The set of all functions from {0, 1}n to {0, 1}n we denote as Fn. For every
function f ∈ Fn and every string b ∈ {0, 1}n the equality f(x) = b may be
written as a CNF formula with propositional variables x1, . . . , xn. We denote
such formula Φf(x)=b.

In this paper G(V,E) is a bipartite graph with multi-edges. The vertices of G
are divided into two parts: X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}; the
number of vertices in each part is n. Vertices in X are inputs and vertices in Y
are outputs. Every vertex in Y has degree d.

Proposition 1 (Chernoff-Hoefding bounds). Independent and equally dis-
tributed random variables X1, X2, . . . , XN , such that for every 1 ≤ i ≤ N
Xi ∈ {0, 1} and E[Xi] = μ, satisfy the following inequality: Pr{|

∑N
i=1 Xi

N − μ| ≥
ε} ≤ 2e−2ε2N .

Goldreich introduced the function g : {0, 1}n → {0, 1}n based on a bipartite
graph G(V,E) and a predicate P : {0, 1}d → {0, 1} [Gol00]. Every string from
{0, 1}n defines a value of inputs {x1, x2, . . . , xn}; the value (g(x))j (j-th symbol
of g(x)) may be computed as follows: if yj is adjacent with xj1 , xj2 , . . . , xjd

,
then (g(x))j = P (xj1 , xj2 , . . . , xjd

). We assume that every vertex in Y has some
order on the incoming edges. Goldreich suggested using random predicates and
expanders.

The problem of inverting of function g on the string b (i.e. equation g(x) = b)
may be written as a d-CNF formula Φg(x)=b: every equality P (xj1 , xj2 , . . . , xjd

) =
bj we write as a d-CNF formula of at most 2d clauses. For every set of vertices
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A ⊆ Y the formula ΦA
g(x)=b denotes the subformula of Φg(x)=b that consists of

all clauses corresponding to vertices in A.
Let G be a bipartite graph, its vertices are split into two parts X =

{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. For A ⊆ Y we denote the set of all
vertices in X that are connected with at least one vertex in A as Γ (A) (neigh-
bours of A); and denote the set of all vertices in X that are connected with
exactly one vertex in A by one edge as δ(A) (boundary of A).

Definition 1. The graph G is a (r, d, c)-expander, if 1) the degree of any vertex
in Y is equal to d; 2) for any set A ⊆ Y, |A| ≤ r we have Γ (A) ≥ c|A|. The
graph G is called a (r, d, c)-boundary expander if the second condition is replaced
by: 2) for any set A ⊆ Y, |A| ≤ r we have δ(A) ≥ c|A|.

Lemma 1 ([AHI05], lemma 1). Every (r, d, c)-expander is also a (r, d, 2c−d)-
boundary expander.

Lemma 2 ([HLW06], lemma 1.9). For d ≥ 32, for all big enough n a ran-
dom bipartite d-regular graph, where parts X and Y contain n vertices is a
( n
10d , d,

5
8d)-expander with probability 0.9 if for every vertex in Y , d edges are

chosen independently at random (with repetitions).

Corollary 1. In terms of Lemma 2 this graph is a ( n
10d , d,

1
4d)-boundary expander.

Proof. Follows from Lemma 1.

Let f ∈ Fn be some function. The problem of finding a satisfying assignment of
Φf(x)=b and the problem of finding an element in f−1(b) are equivalent.

We consider a wide class of SAT algorithms: backtracking algorithms. A back-
tracking algorithm is defined by two heuristics (procedures): 1) Procedure A
maps a CNF formula to one of its variables. (This is a variable for splitting). 2)
Procedure B maps CNF formula and its variable to {0, 1}. (This value will be
investigated at first).

An algorithm may also use some syntactic simplification rules. Simplification
rules may modify the formula without affecting its satisfiability and also make
substitutions to its variables if their values can be inferred from a satisfiability
of the initial formula.

The backtracking algorithm is a recursive algorithm. Its input is a formula ϕ
and a partial substitution ρ.

Algorithm 1. Input: formula ϕ and substitution ρ

– Simplify ϕ by means of simplification rules (assume that simplification rules
change ϕ and ρ; all variables that are substituted by ρ should be deleted from
ϕ).

– If current formula is empty (that is, all its clauses are satisfied by ρ), then
return ρ. If formula contains an empty clause (unsatisfiable), then return
“formula is unsatisfiable”.



208 D. Itsykson

– xj := A(ϕ); c := B(ϕ, xj)
– Make a recursive call with the input (ϕ[xj := c], ρ∪{xj := c}), if the result is

“formula is unsatisfiable”, then make a recursive call with the input (ϕ[xj :=
1− c], ρ ∪ {xj := 1− c}) and return its result, otherwise return the result of
the first recursive call.

Definition 2. Drunken algorithms [AHI05] are backtracking algorithms, where
the heuristic A may be arbitrary (even not computable) and the heuristic B
chooses the value of variable at random with equal probabilities. Simplification
rules: 1) Unit clause elimination: if formula contains a clause with only one
literal, then make a substitution that satisfies that clause. 2) Pure literals rule: if
formula contains a variable that has only positive or only negative occurrences,
then substitute it with the corresponding value.

In Section 3 we will show that we may assume that a drunken algorithm does
not use the above simplification rules. Usages of them may be replaced by an
appropriate choice of splitting variable.

Running time of a backtracking algorithm for a given sequence of random bits
is the number of recursive calls.

3 What Can We Solve by Drunken Algorithms?

In this section we show that it is possible to modify a drunken algorithm in such
a way that it will not use pure literals and unit clause elimination rules while
its running time is increased only polynomially. We also show that there exists
a drunken algorithm that solves satisfiable Tseitin formulas in polynomial time.

Proposition 2. For any drunken algorithm A there exists another drunken al-
gorithm B, that does not use unit clause elimination rule. The running time of
algorithm B (for a given sequence of random bits) is at most the running time
of A (for the same sequence of random bits) times n, where n is the number of
variables in the input formula.

Proposition 3. For any drunken algorithm A there exists another drunken al-
gorithm C that does not use unit clause elimination and pure literals rules. The
running time of algorithm C is at most the running time of A times n2, where
n is the number of variables in the input formula.

Further we assume that drunken algorithms don’t use simplifications rules.
Now we show that drunken algorithms may efficiently solve Tseitin formulas.

Tseitin formula is based on a simple connected undirected graph H(V,E) with
degree bounded by a constant d. Every edge e ∈ E has the corresponding propo-
sitional variable pe. There is a function f : V → {0, 1}; for every vertex v ∈ V we
put down a formula in CNF that codes an equality

⊕
u∈V :(u,v)∈E

p(u,v) = f(v). (⊕

denotes the summation modulo 2). The conjunction of formulas described above
is called Tseitin formula. If

⊕
v∈V

f(v) = 1, then Tseitin formula is unsatisfiable.
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Indeed, if we sum (modulo 2) all equalities stated in vertices we get 0 = 1 since
every variable has exactly 2 occurrences. If

⊕
v∈V

f(v) = 0, then Tseitin formula

is satisfiable ([Urq87], Lemma 4.1).
Satisfiable Tseitin formulas may be solved in polynomial time by appropriate

drunken algorithm as follows. We assume that the substitution of a variable re-
moves the corresponding edge from the graph. While the graph contains cycles,
the drunken algorithm chooses an edge from a cycle for the substitution. Note
that after each substitution the current formula remains satisfiable Tseitin for-
mula (if we substitute 0, the function f for the substituted formula is the same as
for the original one and if we substitute 1, the function f for substituted formula
differs from the original one in 2 ends of the edge). If the graph becomes a tree,
then it contains a vertex of degree 1, then the formula contains a unit clause and
the whole formula can be solved by application of unit clause elimination rules
(we may remove them by Proposition 2).

4 Behavior of Drunken Algorithms on Unsatisfiable
Formulas

Behavior of backtracking algorithms on unsatisfiable formulas is closely con-
nected with the resolution proof system. The resolution proof system is used
for proving of unsatisfiability of CNF formulas. The proof of unsatisfiability of
formula ϕ in the resolution proof system is a sequence of clauses, every clause in
this sequence is either a clause of ϕ or a result of application of the resolution
rule to two previous clauses; and the last clause in the sequence is an empty
clause (a contradiction). The resolution of two clauses (l1 ∨ l2 ∨ · · · ∨ ln) and
(l′1 ∨ l′2 ∨ · · · ∨ l′m) where l′m = ¬ln is the clause (l1 ∨ · · · ∨ ln−1 ∨ l′1 ∨ · · · ∨ l′m−1).
The proof is called treelike if every inferred clause is used as the premise of the
resolution rule at most once.

The running of every drunken algorithm on the unsatisfiable formula corre-
sponds to the splitting tree. Vertices of the tree are marked with variables that
are chosen for splitting. There are two outgoing edges from every vertex except
leaves; one of the edges is marked with 0, the other edge is marked with 1. In
every leaf at least one of clauses of initial formula is refuted. The running time
of a drunken algorithm is the size of the splitting tree (note that if formula is un-
satisfiable then the algorithm should investigate the whole tree and it’s number
of steps is the same for all random choices).

The following statement is well known.

Proposition 4. The running time of a drunken algorithm on unsatisfiable for-
mula is at least the size (number of clauses) of the shortest treelike resolution
proof.

Ben-Sasson and Wigderson in [BSW01] introduced the notion of width of the
proof. The width of a clause is the number of literals in it. The width of a CNF
formula is the width of its widest clause. The width of a resolution proof is the
width of its widest clause.
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Theorem 1 ([BSW01], corollary 3.4). The size of a treelike resolution refu-
tation of the formula ϕ is at least 2w−wϕ, where w is the minimum width of the
resolution refutation of ϕ and wϕ is the width of ϕ.

Let G be a boundary (r, d, c)-expander. We associate a proposition variable with
every vertex in set X . Let every vertex yj in set Y have a CNF formula that
depends on variables adjacent to yj . We denote the formula in the vertex yj as
ϕj . Obviously the width of ϕj is at most d. The conjunction of all formulas that
correspond to the vertices Y we denote Φ. For any subset A ⊆ Y the conjunction
of all formulas that correspond to the vertices in A we denote as ΦA.

We say that a variable is sensible if by changing its value we change the value
of the formula (for every assignment of values of other variables).

Theorem 2. Let every formula ϕj contain at most k insensible variables; ρ is
a partial assignment to variables of X such that formula Φ|ρ is unsatisfiable and
for any set of vertices A ⊆ Y , |A| < r

2 , the formula Φ|Aρ is satisfiable. Then any
resolution proof of Φ|ρ has width at least (c−k)r

4 − |ρ|.
Proof. We consider Ben-Sason-Wigderson measure μ that is defined on the
clauses of resolution proof of Φ|ρ. μ(D) is the size of the minimal set of vertices
A such that clause D is a semantic implication of ΦA|ρ (it means that every
satisfying assignment of ΦA|ρ also satisfies D). The measure μ is semiadditive:
if clause D is a resolvent of clauses C1 and C2, then μ(D) ≤ μ(C1) + μ(C2).
Since for every set A ⊆ Y such that |A| < r

2 , formula Φ|Aρ is satisfiable, then
the measure of an empty clause is at least r

2 . Semiadditivity implies that there
exists a clause C such that r

2 > μ(C) ≥ r
4 for r large enough. Let A be the min-

imal set of vertices such that Φ|Aρ semantically implies C, i.e. |A| = μ(C) ≥ r
4 .

Since G is a (r, d, c)-boundary expander we have δ(A) ≥ c|A|. δ(A) is a set of
variables that have exactly one occurrence in the formulas corresponding to the
set A. There are at least (c−k)|A| variables among them that are sensible for at
least one vertex of A. There are at least (c− k)|A| − |ρ| sensible variables in the
formula Φ|Aρ . Now we will show that the clause C contains all sensible variables.
Suppose for contradiction that there is a variable xj that is sensible for a vertex
v ∈ A and the clause C doesn’t contain xj . Consider the set A \ {v}. It doesn’t
semantically imply C, therefore there exists such an assignment that satisfies all
formulas for A \ {v} and doesn’t satisfy C. We may change the value of xj in
this assignment in such way that the resulting assignment satisfies all formulas
in A and doesn’t satisfy C. The later contradicts the fact that C is a semantic
implication of A. ��

Corollary 2. The size of the splitting tree of Φ|ρ is at least 2
(c−k)r

4 −|ρ|−d.

Proof. Follows from the Theorem 2, Theorem 1 and Proposition 4. ��

5 Behaviour of Drunken Algorithms on Satisfiable
Formulas

Let G be a bipartite boundary (r, d, c)-expander. Let c > k + 1.
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Definition 3. Let J ⊆ X, the set of vertices I ⊆ Y is called k-closure of the set
J if there is a finite sequence of sets I1, I2, . . . , Im (we denote C� =

⋃
1≤i≤� Ii,

C0 = ∅), such that the following properties are satisfied:

– I� ⊆ Y and 0 < |I�| ≤ r
2 for all 1 ≤ � ≤ m;

– Ii ∩ Ij = ∅ for all 1 ≤ i, j ≤ m;
– |δ(I�) \ (Γ (C�−1) ∪ J)| ≤ (1 + k)|Il|; for all 1 ≤ � ≤ m;
– for all I ′ ⊆ Y \Cm if 0 < |I ′| ≤ r

2 , then |δ(I ′) \ (Γ (Cm) ∪ J)| > (1 + k)|I ′|;
– I = Cm.

The set of all k-closures of the set J we denote as Clk(J).

Lemma 3. 1. For every set J ⊆ X there exists a k-closure. 2. Let J1 ⊆ J2,
then for every I1 ∈ Clk(J1) there exists I2 ∈ Clk(J2) such that I1 ⊆ I2

Lemma 4 ([AHI05]). Let |J | < (c−k−1)r
2 , then for every set I ∈ Clk(J) the

inequality |I| ≤ (c− k − 1)−1|J | is satisfied

We assume that a drunken algorithm creates a splitting tree during the execu-
tion. At the beginning it creates the root of the tree that becomes the current
vertex. Each vertex of the tree has a current formula, each edge is associated
with the assignment of one variable. The path from the root to the vertex de-
fines a partial assignment that is a union of all assignments along this path.
The current vertex of the tree becomes a leaf if the current formula is either al-
ready satisfied (i.e. all its clauses are satisfied) or contains an empty clause (i.e.
a contradiction). In the first case the algorithm prints a satisfying assignment
and stops. In the second case the algorithm looks for the closest backtrack point
along the path to the root and considers the vertex with that backtrack point
as current (in this case we say that the algorithm backtracks). If there are no
vertices with a backtrack point, then the algorithm stops and returns “formula
is unsatisfiable”. If the current formula is not trivially unsatisfiable or satisfiable,
then the algorithm chooses the variable for splitting and the value for splitting
according to heuristics A and B, puts a backtrack point in the vertex and creates
a descendant that corresponds to the assignment that was chosen; this descen-
dant becomes the current vertex. If the current vertex has a backtrack point,
then the algorithm removes this point and creates a descendant corresponding
to the assignment that was not investigated in that vertex.

Now we describe a superstructure of drunken algorithms that slightly modi-
fies their behavior on the formula Φg(x)=b for several first steps. After this the
superstructure finishes its work and the algorithm continues its normal work
without modification. We claim that the running time of the algorithm with the
superstructure is not increased. (The last statement is not very clear since our
algorithm uses random bits. In our case it should be understood in the follow-
ing way: the original algorithm uses p random bits and the algorithm with the
superstructure uses q bits where q ≤ p, and for every string of random bits r of
length q there are 2p−q strings of random bits of length p such that the running
time of the original algorithm on those strings is at least the running time of the
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algorithm with the superstructure on the string r. The above correspondence
covers all strings of length p.)

The superstructure has a partial assignment π. If π assigns some value to
the variable x, then we call x forced. If a drunken algorithm tries to make
an assignment to a forced variable that differs from the value in π, then the
superstructure doesn’t allow this. In other words, the superstructure cuts off a
subtree but we guarantee that the cut subtree is unsatisfiable (it does not contain
a satisfying assignment). We also guarantee that while the superstructure is
working there are no backtrackings (all backtrackings are left in the cut subtrees).

Let’s formally describe the superstructure. Let drunken algorithm A get as
input a satisfiable formula Φg(x)=b, where G is a (r, d, c)-boundary expander, k
is the number of insensible variables of the predicate P and k + 1 < c.

1. J := ∅, I := ∅, ρ := ∅ (current substitution)
2. π := ∅ (initially there are no forced variables).
3. While |J | < r(c−k−1)

16d and |ρ| < n do

(a) If algorithm A is ready to finish its work or it wants to backtrack, then
break.

(b) Let A choose a variable xj for the splitting.
(c) If variable xj is forced and π contains assignment xj := a, then ρ :=
ρ ∪ {xj := a}. In the splitting tree we add one decender and we do not
put a backtracking point.

(d) Otherwise the variable xj is not forced, then

– Let A chooses value a, then J := J ∪ {xj}, ρ := ρ ∪ {xj := a}. We
put backtrack point in the current vertex.

– We extend I to the element of Clk(J) (it is possible by the item (2)
of Lemma 3).

– For all variables xj from Γ (I) and a ∈ {0, 1}, if the value xj = a is a
semantic implication of formula ΦI

g(x)=b|ρ, then π := π ∪ {xj := a}.
(Formally it is possible that the formula ΦI

g(x)=b|ρ implies both xj =
0 and xj = 1. In this case we add to π only one of them; later we
show that this case is impossible).

– Create a descendant in the tree that corresponds to the made as-
signment, this descendant becomes the current vertex.

4. Simulate A without changes on the formula Φg(x)=b|ρ in the current vertex
of the tree.

Let the loop at the 3rd step of the superstructure be executed (up to the end)
t times. For 0 ≤ i ≤ t we denote as Ji, Ii, ρi the values of the variables J, I, ρ
before the (i+1)-th iteration of the loop at the 3rd step. (It, Jt, ρt are the values
after t-th iteration of the loop).

The following Lemma implies that during the work of the superstructure the
algorithm does not backtrack.

Lemma 5. For every 0 ≤ i ≤ t and for any subset A ⊆ Y , such that |A| ≤ r
2 ,

the formula ΦA
g(x)=b|ρi is satisfiable and Ii = Clk(Ji).
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Proof. Proof by induction on i. Let’s verify the condition for i = 0, ρ0 = ∅.
Proof by contradiction. We consider the smallest set A ⊂ Y , |A| ≤ r

2 such
that the formula ΦA

g(x)=b is unsatisfiable. Since G is a boundary expander, then
|δ(A)| ≥ c|A|, and therefore there are at least (c − k)|A| sensible boundary
variables for formulas from the set A. By changing of the value of the boundary
variable we may change the value of some formula from A, that is this formula
(and a vertex) may be removed from A; the latest contradicts to the minimality
of A.

The induction step. Proof by contradiction. Consider the minimum set A ⊆ Y ,
|A| ≤ r

2 such that the formula ΦA
g(x)=b|ρi+1 is unsatisfiable. Let A1 = A ∩ Ii+1,

A2 = A\Ii+1. If A2 is not empty, then the definition 3 implies |δ(A2)\(Γ (Ii+1)∪
J)| > (k+1)|A2|, therefore we may remove at least one vertex from A2 since one
of the formulas in A2 may be satisfied by a sensible boundary variable (a sensible
boundary variable exists since each vertex has at most k insensible variables)
that contradicts to the minimality of A. Therefore A2 = ∅ and A ⊆ Ii+1.

We split A on A′ = A ∩ Ii and A′′ = A \ Ii. Let A′′ = ∅. By the induction
hypothesis the formula ΦA′

g(x)=b|ρi is satisfiable since |A′| ≤ |A| ≤ r
2 . The formula

ΦA′
g(x)=b|ρi+1 is satisfiable since ρi+1 differs from ρi in only one assignment and

the variables are forced by the substitution π only if their values are semantic
implications of the formula ΦIi

g(x)=b|ρi . The latest means that it is impossible for

the algorithm A (on the (i + 1)-the iteration of the loop) to make ΦIi

g(x)=b|ρi

unsatisfiable by one assignment.
Let A′′ �= ∅. |A′′| ≤ r

2 and A′′∩Ii = ∅ imply |δ(A′′)\(Γ (Ii)∪J)| > (k+1)|A′′|,
that is the set A′′ contains at least two sensible boundary variables (that are
not in Γ (Ii) ∪ J), therefore after one assignment there is at least one sensible
boundary variable. We can remove at least one vertex from A′′ with ΦA

g(x)=b|ρi+1

remaining unsatisfiable. This contradicts the minimality of A. ��

Now we show that the algorithm can’t find the satisfying assignment during
the work of the superstructure. During the work of the superstructure for every
0 ≤ i ≤ t the inequality |Ji| ≤ r(c−k−1)

16d is satisfied. Lemma 4 implies |Ii| ≤ r
16d ,

hence |Γ (Ii)| ≤ r
16 . The number of variables that were assigned during the work

of the superstructure is at most |Γ (It)| ∪ |Jt| ≤ r
8 (|Jt| ≤ r

16 since c ≤ d in
the (r, d, c)-boundary expander). This is not enough to satisfy the formula, since
any subset A ⊆ Y of size r contains at least r sensible variables. To satisfy the
formula we should assign a value to all sensible variables.

Lemma 6. Let g be the Goldreich’s function based on the (r, d, c)-boundary ex-
pander G and the predicate P , which has at most k insensible variables and
c > k + 1. Let b be the n-th bit string such that the equation g(x) = b has at
most 2

r(c−k−1)
64d solutions. Then with probability 1− 2−Ω(r) the running time of a

drunken algorithm on the formula Φg(x)=b is 2Ω(r) (in asymptotic notations c, k
and d are considered to be constants).

Proof. Since the superstructure doesn’t increase the running time it is sufficient
to estimate the running time of the algorithm with the superstructure. Since
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the superstructure works until |J | ≤ r(c−k−1)
16d and |I| ∈ Clk(J) we have that

Lemma 4 implies |I| ≤ r
16d . Therefore |Γ (I)| ≤ r

16 . Hence during the work of the
superstructure the number of assignments made is at most |Γ (I)|+ |J | ≤ r

8 . The
set J corresponds to splittings (to assignments that put a backtrack point). The
first substituted values are chosen at random. The substitution of one variable
xj := a is lucky for a formula ϕ if it agrees with at least half of satisfying
assignments of ϕ and unlucky otherwise.

During the work of the superstructure a drunken algorithm makes r(c−k−1)
16d

assignments choosing the values at random. With probability 1
2 the chosen value

is unlucky, that is, the number of satisfying assignments decreases at least by
half. Chernoff bound implies that with probability 1− 2−Ω(r) there are at least
r(c−k−1)

64d unlucky assignments. Thus with probability 1− 2−Ω(r) after the work
of the superstructure the current formula is unsatisfiable; the size of substitution
ρ is at most r

8 . The statement of the Lemma follows from Corollary 2, where
we’ve proved the lower bound for unsatisfiable formulas. ��

Theorem 3 (cf. [CEMT09], theorem 4.1). Let Pd(x1, x2, . . . , xd) = x1 ⊕
x2⊕· · ·⊕xd−k ⊕Q(xd−k+1, . . . , xd), where Q is an arbitrary predicate of arity k
and k+1 < d

4 . The graph G is obtained randomly in the following way: for every
vertex in Y we choose independently at random d edges to X (repetitions are
allowed). Then E[#(x, y) | g(x) = g(y)] = 2(1+2−Ω(d))n, where g is a Goldreich’s
function based on G and the predicate Pd.

Now we prove the main theorem:

Theorem 4. Let Pd(x1, x2, . . . , xd) = x1 ⊕ . . . xd−k ⊕Q(xd−k+1, . . . , xd), where
Q is an arbitrary predicate of arity k and k + 1 < d

4 . For all d large enough
and all n large enough the random graph G with probability at least 0.85 has
the following property. For every drunken algorithm A, Pry←Un [Pr[tAΦg(x)=g(y)

>

2Ω(n)] > 1 − 2−Ω(n)] > 0.9, where tAΦ denotes the running time of the algorithm
A on the formula Φ.

Proof. By the corollary 1 the random graph with probability 0.9 is a ( n
10d , d,

1
4d)-

boundary expander. Theorem 3 implies that the average number of pairs x and
y that g(x) = g(y) is 2(1+2−Ω(d))n, where the averaging is on random graphs.
The Markov inequality implies that with probability at least 0.95 for the ran-
dom graph the number of pairs x and y such that g(x) = g(y) is 2(1+2−Ω(d))n

(the constant is hidden in Ω(d)). Therefore with probability at least 0.85 the
random graph is a boundary expander and the upper bound on the number of
pairs with equal values of g holds. We fix such graph G. The Markov inequality
implies that for at least 0.9 fraction of strings y ∈ {0, 1}n the following inequality
|g−1(g(y))| < 22−Ω(d)n is satisfied. The predicate P contains at most k insensible
variables (insensible variables are among xd−k+1, . . . , xd), then Lemma 6 implies
that the running time of any drunken algorithm on the formula Φg(x)=g(y) is at
least 2Ω(n) with probability 1− 2−Ω(n). ��
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Abstract. The Hamiltonian cycle problem (HCP) is an important com-
binatorial problem with applications in many areas. While thorough the-
oretical and experimental analyses have been made on the HCP in undi-
rected graphs, little is known for the HCP in directed graphs (DHCP).
The contribution of this work is an effective algorithm for the DHCP.
Our algorithm explores and exploits the close relationship between the
DHCP and the Assignment Problem (AP) and utilizes a technique based
on Boolean satisfiability (SAT). By combining effective algorithms for
the AP and SAT, our algorithm significantly outperforms previous exact
DHCP algorithms including an algorithm based on the award-winning
Concorde TSP algorithm.

1 Introduction

An undirected graph G = (V,E) is Hamiltonian, if it contains a Hamiltonian
cycle (HC), a cycle that visits each vertex exactly once. Given a graph, the
Hamiltonian cycle problem (HCP) is to find a HC or to prove that no HC exists
in the graph. The decision version of the HCP is among the first problems that
were proven to be NP-complete [20]. HCP is a well-known problem with many
applications in different areas, e.g., problems in game theory as the Hamiltonian
cycle game [29], the problem of finding a knight’s tour on a chessboard [15],
and problems in bioinformatics as DNA Physical Mapping [14]. Much research
has been done on the HCP in undirected graphs; see [5,6,13,30,32] for reviews.
In particular, many heuristics and exact algorithms have been developed for
the HCP [1,4,8,28,30,33]. One effective algorithm for the HCP is based on the
related Traveling Salesman Problem (TSP) in an undirected weighted graph,
which is the problem of finding a HC with minimum total weight. The HCP
is also a canonical problem for understanding intrinsic properties of combina-
torial problems. One such problem property is the so called phase transition.
Consider an undirected graph Gn,m with m edges randomly chosen from all

F. Ablayev and E.W. Mayr (Eds.): CSR 2010, LNCS 6072, pp. 216–227, 2010.
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possible n(n− 1)/2 edges over n vertices. It is expected that when keeping the
number of vertices n a constant while increasing the number of edges m, the
probability that a random graph Gn,m is Hamiltonian increases from 0 to 1.
Surprisingly, the probability of being Hamiltonian for Gn,m exhibits a sharp,
dramatic transition from 0 to 1, and the transition approximately occurs when
m = *c · n · (logn+ log logn)/2& [23].

In this study we consider the HCP in directed graphs, which we call directed
HCP, or DHCP for short. In contrast to the work on the HCP for undirected
graphs, the research on the DHCP is limited [3,22]. Probabilistic heuristics for
DHCP were proposed in [1,9]. In 1983, the first exact algorithm for the DHCP
was developed by Martello [26]. This algorithm outputs a fixed number h HCs
or reports that it cannot find h HCs in a given directed graph. By setting h = 1,
this gives rise to an algorithm for the DHCP. For the DHCP, a phase transition
result similar to that of the HCP has been obtained as well, namely the phase
transition appears whenm = *c·n·(logn+log logn)& [27]. Note that the research
on the TSP has also alluded to a DHCP algorithm. Using the technique of 2-
point reduction, the asymmetric TSP (ATSP) – where the distance from city i
to city j may not be necessarily equal to that from j to i – can be converted
to the symmetric TSP, with the number of vertices being doubled [18]. Using
this transformation, we can determine whether a directed graph is Hamiltonian
by solving the symmetric TSP using the renowned Concorde algorithm [2,34],
which is the best TSP solver for large TSP instances.

In this paper, we present an effective exact algorithm for the DHCP. In our
algorithm, we utilize methods for two well-known combinatorial problems, i.e.,
Assignment Problem (AP) and Boolean satisfiability (SAT); we therefore denote
this algorithm by AP-SAT. Using random graphs and many real world instances,
we experimentally compare the AP-SAT algorithm to the DHCP algorithm of
Martello [26] and with the TSP based approach that takes advantage of the TSP
solver Concorde [2,34]. The results show that the AP-SAT algorithm significantly
outperforms these algorithms.

2 The Algorithm

In the following let a directed unweighted graph G = (V,E) be given. For our
purpose of solving the DHCP, we consider the problem of determining whether
or not there exists a collection of cycles visiting each vertex exactly once. We
call this problem directed Assignment Problem or DAP for short. Our algorithm
explores and exploits the intrinsic relationship between the DHCP and the DAP.
More exactly, the AP-SAT algorithm searches for a HC in the space of DAP so-
lutions. It first solves the DAP. If the DAP solution forms a HC, or no DAP
solution exists, the algorithm terminates. If the DAP solver returns a solution
that is not a HC, the algorithm then tries to patch the subcycles in the solution
into a HC using the well-known Karp-Steele patching method [21]. If the algo-
rithm has not terminated, these steps are iterated, with the only difference that
another DAP solution might be found. For most cases that we considered in this
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study, the algorithm can find HCs or determine no solution exists after these
two steps. If the patching result is not a HC, the algorithm then attempts to
enumerate the DAP solutions by formulating the DAP as a Boolean satisfiabil-
ity problem and repeatedly solving the problem using a SAT solver and adding
constraints to eliminate the DAP solutions that have been encountered [16]. We
discuss the details of these steps in the rest of the section.

2.1 Solving the Assignment Problem

Given n vertices and a matrix C = (cij)1≤i,j≤n ∈ Zn,n of the costs between
pairs of vertices, the Assignment Problem (AP) is to find a vertex permutation
π∗ such that π∗ = argmin

{∑n
i=1 ci,π(i) : π ∈ Πn

}
, where Πn is the set of all

permutations of {1, . . . , n}. Note that an AP solution can be viewed as a collec-
tion of cycles visiting each vertex exactly once. The most efficient AP algorithm
is the Hungarian algorithm, which is based on König-Egervary’s theorem and
has a complexity of O(n3). In the AP-SAT algorithm we use the implementation
of the Hungarian algorithm by Jonker and Volgenant [19,36].

An instance of DAP can be solved by applying an AP algorithm to the AP
instance defined by the matrix C = (cij)1≤i,j≤n with

cij =

⎧⎨⎩
0, if (i, j) ∈ E, i �= j
1, if (i, j) /∈ E, i �= j
1, if i = j

where we map an arc in the original graph to an arc of cost 0 in the new complete
graph and the remaining cost is set to 1. If the AP algorithm returns a solution
with cost 0 on the new complete graph, there is a DAP solution in the original
graph, since every arc taken in the AP solution is an arc in the original graph.
On the other hand, if it returns a solution of cost greater than 0, there is no
DAP solution in the original graph, because at least one arc in the solution does
not belong to the original graph.

The first step of the AP-SAT algorithm is this DAP algorithm. Then a HC of
G, if one exists, is a solution to the DAP. We have to distinguish three cases at
the end of this first step:

• If the AP solution cost is greater than 0, G does not have a HC, and the
DHCP instance is solved with no solution.

• If the AP solution cost is 0 and the solution consists of one cycle, we have
found a HC, and the DHCP instance is also solved.

• If the AP solution has cost 0 and the AP solution has more than one cycle,
we cannot determine, based on the AP solution, if the givenG is Hamiltonian
such that we continue to the next steps of the AP-SAT algorithm.

2.2 Karp-Steele Patching

If the DAP solution does not provide a definitive answer to our problem, i.e., the
case where the AP solution cost is 0 and the AP solution contains more than one
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cycle, we continue to search for a HC in G. We first patch the subcycles in an
attempt to form a HC, and we use Karp-Steele patching (KSP) for this purpose,
which is an effective ATSP heuristic [11,12,21]. The operation of patching two
cycles Ci and Cj in an AP solution is defined as follows: two fixed arcs (vi, wi) ∈
Ci and (vj , wj) ∈ Cj are first deleted and two arcs (vi, wj) and (vj , wi) joining
the two cycles are added. The cost of patching Ci and Cj using (vi, wj) and
(vj , wi) is equal to δ(Ci, Cj) = c(vi, wj) + c(vj , wi) − (c(vi, wi) + c(vj , wj)), i.e.,
δ(Ci, Cj) is the difference between the total cost of the inserted arcs and the total
costs of the deleted arcs. In each step we choose to patch the two cycles that have
the largest number of vertices. For these two cycles, the two arcs are chosen in
such a way that the patching cost is the minimum among all possible arc pairs.
If we have k ≥ 2 cycles we repeat this patching step k − 1 times to form one
cycle at the end. We apply KSP to the AP instance, defined in Section 2.1. If the
patching procedure provides a HC, the AP-SAT algorithm can be terminated.
Otherwise, we continue to the next step.

2.3 Solving Variant APs

DAP may have multiple solutions, and some of the DAP solutions may be HCs.
We can increase the chance of finding a HC if we apply the AP step multiple
times, since the computational cost of the AP and the KSP algorithms is low.
The key is to avoid finding the same DAP solution multiple times. To do this,
we slightly alter some of the arc costs of the corresponding AP instance so as
to find the other DAP solutions, enhanced by the KSP if needed, to increase
the possibility of finding a HC for a given graph. In other words, we add a
randomized component of solving multiple variant AP instances to boost the
overall chance of finding a HC. Note that in the worst case when the DHCP
instance is not Hamiltonian, this procedure will not be productive.

To create a variant AP instance different to that in Section 2.1, we generalize
the AP instance as follows. Let ci,j be a non-negative cost value for arc (i, j) ∈ E.
Let

M := n · max {ci,j | (i, j) ∈ E} + 1

i.e., M is greater than n times the largest cost of all the arcs in the given graph
G. We then set the remaining cost to M . The AP instance in Section 2.1 is a
special case of the generalized version of the AP instance, where all costs ci,j ,
for (i, j) ∈ E, are 0. It is critical to notice that all DAP solutions, including a
HC, must have costs less than M . The key idea to create a variant AP instance
is to “perturb” the costs of some of the arcs in G such that a new DAP solution,
which is different from any of the ones that have been encountered, can be found.
In order to possibly reach a new DAP solution, for each arc in the current DAP
solution we decrease the probability of its appearance by increasing its cost by 1
and receive a variant AP instance to be solved. As before, if the solution contains
a HC, the algorithm terminates; otherwise, the sub-cycles are patched using the
KSP to possibly find a HC. We repeat this step multiple times, so that an arc,
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which has appeared in many previous DAP solutions, will be very unlikely to
appear in the next DAP solution, and an arc, which has never appeared in any
previous DAP solution, will be more likely to appear in the next DAP solution.
We observed in our experiments that solving variant AP instances n times seems
to be a good choice.

2.4 Implicitly Enumerating All DAP Solutions Using SAT

All the AP and patching based steps discussed above may still miss a solution to a
DHCP instance. We now consider to implicitly enumerate all DAP solutions with
a hope of finding a solution to the DHCP. The idea is to systematically rule out all
the DAP solutions that have been discovered so far during the search. To this end,
we formulate a DAP as a Boolean satisfiability (SAT) problem and forbid a DAP
solution by adding new constraints to the SAT model. This technique of adding
new constraints with purpose to enumerate all SAT solutions has been introduced
by Jin, Han, and Somenzi [16] for a general SAT problem. Notice that this
cannot be easily done under the AP framework because such constraints cannot
be properly added to the AP. Moreover, we can take advantage of the research
effort that has been devoted to SAT, in particular, we can use an effective SAT
solver called MiniSAT [7,35].

In the conjunctive normal form (CNF), a SAT instance over a set of Boolean
variables is a conjunction of clauses, each of which is a disjunction of literals
which are Boolean variables or their negations. A clause is satisfied, if one of its
literals is True, and the instance is satisfied if all its clauses are satisfied. The
SAT problem is to find a truth assignment of the variables to satisfy all clauses,
if they are satisfiable, or to determine no such assignment exists. SAT was the
first problem shown to be NP-complete [20].

We now formulate the DAP in SAT. A solution to a DAP must obey the
following restriction:

• For each vertex i, i = 1, . . . , n, exactly one arc (i, j), i �= j, exists in the
DAP solution.

• For each vertex i, i = 1, . . . , n, exactly one arc (j, i), j �= i, exists in the DAP
solution.

We first introduce an integer decision variable xi,j to arc (i, j) ∈ E and represent
the above constraints in the following integer linear program (ILP).{∑n

j=1,(i,j)∈E xi,j = 1 for i = 1, . . . , n∑n
i=1,(i,j)∈E xi,j = 1 for j = 1, . . . , n

(1)

where xi,j ∈ {0, 1} for (i, j) ∈ E. Note that we only have to use m variables,
one variable for each arc in the graph, which can be substantially smaller than
n2 variables for sparse graphs. We represent the integer linear program (1) by a
SAT model similar to [25], where we replace integer variables {xi,j} with Boolean
variables {yi,j}. To enforce the 2n restrictions in the SAT formulation, we need
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to introduce constraints in clauses. One restriction in (1) means that exactly one
of the n involved Boolean variables can be set to True and the rest must be False.
To represent this, we introduce at most 2n2 auxiliary variables z1, z2, . . . , z2n2 ,
with n z’s for one restriction. W.l.o.g., consider the first restriction, which has
z1, z2, . . . , zn associated. We use zk to represent at least one of y1,1, y1,2, . . . , y1,k

is True. Precisely, the z variables are defined as follows.

• z1 = y1,1 or equivalently (¬y1,1 ∨ z1) ∧ (y1,1 ∨ ¬z1).
• zk = y1,k∨zk−1 or equivalently (zk∨¬y1,k)∧(zk∨¬zk−1)∧(¬zk∨y1,k∨zk−1)

for k = 2, 3, . . . , n.

In addition, we need to enforce that only one y1,i, for i = 1, 2, . . . , n, can be
True. This means, if y1,k is True, none of the y1,i, for i < k, can be True. This
is formulated as

• ¬zk−1 ∨ ¬y1,k for k = 2, . . . , n.

Finally zn must be True. The other restrictions in (1) are represented similarly.
The SAT based representation allows us to exclude a DAP solution, which is

not a HC, previously found in the search. This can be done by introducing new
clauses to explicitly forbidding all subcycles of the solution. Let such a subcycle
be (v1, . . . , vk, v1). We add the following clause

¬yv1,v2 ∨ . . . ∨ ¬yvk−1,vk
∨ ¬yvk,v1 (2)

to the current SAT instance. As a result, the updated SAT instance is not sat-
isfiable, meaning that the corresponding DHCP instance is not Hamiltonian, or
gives rise to a new DAP solution, as it does not allow the previous DAP solution.

In summary, after the AP- and patching-related steps failed to find a solution,
the AP-SAT algorithm transforms the problem instance into a SAT instance.
Then it collects all previous DAP solutions, each of which includes at least
two subcycles, and excludes these subcycles for each of these DAP solutions
by adding new clauses as described above. Then the resulting SAT model is
solved using MiniSAT [7,35]. If the SAT model is not satisfiable, then the DHCP
algorithm terminates with the result of G being not Hamiltonian. If the SAT
model is satisfiable and the solution has only one cycle, the algorithm stops with
a solution. If the SAT model is satisfiable, but the solution has more than one
subcycle, new clauses are added to the SAT model to rule out this solution, and
the algorithm repeats to solve the model. Since there is a finite number of DAP
solutions, the algorithm terminates. In the worst case when the DAP solutions
contain no HC, the SAT part of the algorithm will enumerate all these DAP
solutions.

2.5 General Remarks

1. The AP-SAT algorithm consists of three main components, namely the AP
step, the KSP step and the SAT step. It might be interesting to know which of
these components is the most important one. For this, we have to distinguish
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between completeness and efficacy of the algorithm. The only necessary step
for the completeness is the SAT step of Section 2.4. This step without all
previous steps leads also to a correct DHCP algorithm. On the other hand, in
contrast to AP and KSP, SAT is NP-complete. Thus the AP-SAT algorithm
is more effective, if the AP and the KSP steps are called often and the SAT
step is called only a few times. For example, if for an instance no DAP
solution exists or an existing HC is found by the previous steps, the SAT
part is not necessary. Indeed, our further experiments showed that the SAT
step is not called for most of the test instances. Regarding the relative time
needed by the AP and the KSP steps, we have to consider the density of
problem instances. For an instance with a small number of edges, in most
cases there is not only no HC solution, but also no DAP solution. In this
case the algorithm finishes after the first AP step and does not need any
KSP call. On the other hand, an instance with a large number of edges
should require many AP steps, as many DAP solutions may exist which are
not HCs, and thus probably the first HC solution has to be found by KSP.
Also this expected behavior could be verified by experiments: the time for
the KSP steps is rather small for instances with a small number of edges,
and almost as large as the time for the AP steps for instances with a large
number of edges.

2. The AP-SAT algorithm is also able to solve HCP as a special case of DHCP,
but it is less effective for this case. The reason is that for the symmetric case,
an edge is often present in a DAP solution in combination with its reverse
edge, resulting in many small cycles of two vertices in the solution. Thus
in general we have to enumerate a large number of DAPs solutions. In the
worst case, no HC exists, but all these DAP solutions have to be enumerated,
requiring a long running time.

3. We can easily transform the AP-SAT algorithm to enumerate all HCs in a di-
rected graph. This is a well-known problem with many applications, e.g., the
problem of finding all knight’s tour on a chessboard [15,24]. For algorithms
for this problem, see the already mentioned algorithm of Martello [26] and
the algorithm of Frieze and Suen [10]. The transformation works as follows.
If no or only one HC exists, the algorithm remains the same. Consider now
the case that more than one HC exists. If the first HC has been found, the
original AP-SAT algorithm terminates in this case. The transformed algo-
rithm at this stage saves the first HC, and then continues to search for the
next HC. Note that for the transformed algorithm, the SAT part is always
called, if at least one HC exists. Furthermore – like the original AP-SAT
algorithm – this transformed algorithm works also for the symmetric case,
but is not effective for this case.

3 Experimental Results

We have implemented the AP-SAT algorithm and the DHCP algorithm of Mar-
tello [26] in C++ and compared them to an algorithm based on the award-
winning Concorde TSP program implemented by Applegate, Bixby, Chvátal and
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Cook [2,34]. For the algorithm of Martello we have implemented a version which
terminates whenever a HC, if one exists, is found. As subroutines for the AP-SAT
algorithm we used the AP solver implemented by Jonker and Volgenant [19,36]
and the MiniSat SAT solver implemented by Eén and Sörensson [7,35]. For Con-
corde, a DHCP instance was first transformed to an asymmetric TSP instance
by the transformation in Section 2.1 and then to a symmetric TSP instance by
the 2-point reduction method [18]. In our experiments, we also tried the 3-point
reduction method [20], but got average running times worse than that using the
2-point reduction. After the 2-point reduction, Concorde started with the worst
possible solution value as the initial upper bound and was terminated as soon
as its lower bound made a HC impossible. All our experiments were carried out
on a PC with an Athlon 1900MP CPU with 2GB of memory.

In our experiments we used random asymmetric instances Gn,m as test in-
stances, and parameters n = 100, 200, 400, 800, 1600 and m = *c · n · (logn +
log logn)& with c = 0.5, 0.6, . . . , 1.90, 2.00, where for c = 1 a phase transition is
expected. For each n we generated 50 random instances and measured the av-
erage time over these instances. The results are summarized in Figure 2, where
the x-axis describes the parameter c and the y-axis the average CPU time in
seconds. Furthermore, we tested real world and random instances from the DI-
MACS challenge [17,31] which contains 10 asymmetric problem generators called
amat, coin, crane, disk, rect, rtilt, shop, stilt, super, tmat. Using each of these
generators we generated 24 instances, 10 with 100 vertices, 10 with 316 vertices,
three with 1000 vertices, and one with 3162 vertices. To transform asymmet-
ric TSP instances back to DHCP instances, it seems to be reasonable to only
keep the arcs of small weights while ignoring the ones with large weights. In
other words, to generate a DHCP instance we chose m smallest arcs in the cor-
responding asymmetric TSP instance. It is interesting to note that the most
difficult DIMACS instances appear when the degree parameter c is around 2,
which is the value we used in our experiments. Again, for each problem size we
measured the average time over these instances. The results for the DIMACS
instances are summarized in Figures 1 and 3.

Figure 2 shows that the AP-SAT algorithm and Concorde are more stable than
the Martello algorithm: Concorde failed to solve 16 single instances within a given
maximal CPU time of 1 hour, whereas the AP-SAT algorithm failed only on 7
single instances (6 of 7 on the stilt types from DIMACS). The Martello algorithm
was unable to solve most instances with 800 or more vertices because of too
large memory requirements. Nevertheless, the Martello algorithm outperformed
Concorde on smaller and easier instances, indicating that the former has a worse
asymptotic running time. Furthermore, we observed that the AP-SAT algorithm
is superior to the other two algorithms; the former outperformed the latter on
all problem instances except the stilt types from DIMACS, where Concorde is
competitive.

The efficacy of the AP-SAT algorithm may be due to the following reasons. In-
stances with no HC are most likely to have no DAP solution either, and therefore
the algorithm terminates after the first AP call. On the other hand, instances
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Fig. 1. DIMACS instances, part 1
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Fig. 2. Random instances
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Fig. 3. DIMACS instances, part 2
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with a HC are likely to have many HCs, one of which can be found very soon
by the AP or KSP steps. The only difficult case is when there are many DAP
solutions but none or a very few of them are HCs. Indeed, such cases occur for a
few unsolved instances and instances requiring long computation. In such cases,
often the SAT part does not terminate in a reasonable amount of time.
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Abstract. We use algorithmic tools for graphs of small treewidth to ad-
dress questions in complexity theory. For both arithmetic and Boolean
circuits, we show that any circuit of size nO(1) and treewidth O(logi n)
can be simulated by a circuit of width O(logi+1 n) and size nc, where
c = O(1), if i = 0, and c = O(log log n) otherwise. For our main construc-
tion, we prove that multiplicatively disjoint arithmetic circuits of size
nO(1) and treewidth k can be simulated by bounded fan-in arithmetic
formulas of depth O(k2 log n). From this we derive an analogous state-
ment for syntactically multilinear arithmetic circuits, which strengthens
the central theorem of [14]. As another application, we derive that con-
stant width arithmetic circuits of size nO(1) can be balanced to depth
O(log n), provided certain restrictions are made on the use of iterated
multiplication. Also from our main construction, we derive that Boolean
bounded fan-in circuits of size nO(1) and treewidth k can be simulated
by bounded fan-in formulas of depth O(k2 log n). This strengthens in the
non-uniform setting the known inclusion that SC0 ⊆ NC1. Finally, we
apply our construction to show that Reachability and Circuit Value

Problem for some treewidth restricted cases can be solved in LogDCFL.

1 Introduction

It is well-known that many hard graph theoretical problems become tractable
when restricted to graphs of bounded treewidth1. If a graph with n nodes has
bounded treewidth, there always exists a balanced tree decomposition of depth
O(log n). This yields NC-algorithms for many problems, which are known to be
NP-complete in general [6].

Consider the following question. Suppose one is given a circuit (Boolean or
arithmetic) of size s and bounded fan-in, for which the underlying graph has
bounded treewidth. Does this imply, as intuition might suggest, that there must
exist an equivalent bounded fan-in circuit of size poly(s) and depth O(log s)?
We show that in the Boolean case the situation is as expected, which yields the
following theorem:
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Theorem 1. The class of languages accepted by non-uniform constant fan-in
circuits of polynomial size and bounded treewidth equals non-uniform NC1.

Due to a celebrated result of Barrington [4], it is known that NC1 can be simu-
lated by constant width branching programs, which are skew circuits of constant
width. A constant width circuit can be evaluated using O(1) memory, and hence
SC0 = NC1 (SC0 is the class of Boolean functions computable by constant width
circuits of poly size, c.f. [13]). Theorem 1 strengthens this statement in the non-
uniform setting.

For arithmetic circuits, the short answer is that the equivalent circuit need
not exist: a depth O(log s) circuit of bounded fan-in computes a polynomial of
degree sO(1), but using repeated multiplication a bounded treewidth circuit of
size s can easily compute a polynomial of degree 2s. We rephrase the question
to avoid this triviality.

The class of families of polynomials {pn}n≥1 of polynomial degree with poly-
nomial size arithmetic circuits is known as VP (See e.g. [8]). In this paper, we let
VP[tw = O(logi n)] stand for the class corresponding to polynomial size circuits
of treewidth O(logi n). Let VNC1 denote the class corresponding to bounded
fan-in arithmetic circuits of depth O(log n), which due to Brent’s result [7] cor-
responds to poly-size arithmetic formulas. Our question becomes the following:
is VP[tw = O(1)] ⊆ VNC1 ?

One reason for considering this question, is that in case of an affirmative (and
effective) answer it could be a useful tool for circuit building. Namely, one could
during the design stage focus on using any of the well-known classes of bounded
treewidth, and be guaranteed a nicely balanced formula can be obtained after-
wards. Another reason, more on the complexity theoretic side, is that a flexible
parameter like treewidth contributes to obtaining a more refined structural un-
derstanding of the difference between formulas and circuits, since it provides
hierarchies of classes which bridge the two notions. Regarding this, it is a major
open problem whether VNC1 and VP are distinct. We only know of a separation
in the multilinear world, due to the result by Raz [17].

Considering the notion of restricted treewidth circuits will also shed some
light on issues regarding bounded width circuits. Arithmetic circuits of bounded
treewidth provide a common generalization of formulas and of circuits of bounded
width. One has the hierarchy of classes {VSCi}i≥0, where VSCi corresponds to
arithmetic circuits of width O(logi n) and size nO(1), for i ≥ 0. This hierarchy
is known to be sandwiched in between VNC1 and VP. We prove the following
(and the Boolean analogue):

Theorem 2

1. VSC0 ⊆ VP[tw = O(1)] ⊆ VSC1.
2. VSCi ⊆ VP[tw = O(logi n)] ⊆ VSCi+1[size = nO(log log n)], for any i ≥ 1.

Arithmetic circuit width is a fundamental notion, but it is still ill-understood
in its relation to other resources. We currently do not know of any “natural”
problems characterized by bounded width arithmetic circuit classes. However,
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as of recently, the notion has gained renewed attention from several researchers.
It more or less embodies a notion of space in the arithmetic setting (See [15]).
Mahajan and Rao [14] study the class VSC0[deg = nO(1)], which is obtained
from VSC0 by requiring formal degrees of circuits to be nO(1). Arvind, Joglekar,
and Srinivasan [2] give lower bounds for monotone arithmetic circuits of constant
width.

To make progress on the basic question whether VP[tw = O(1)] ⊆ VNC1, we
show that multiplicatively disjoint2 circuits of size nO(1) and bounded treewidth
can be simulated by bounded fan-in formulas of depth O(log n). In our notation
this is stated as follows:

Theorem 3. md-VP[tw = O(1)] = VNC1.

Notice that without the treewidth restriction multiplicatively disjoint circuits of
size nO(1) are known to compute all of VP [16]. From the above result, we de-
rive the analogous statement for syntactically multilinear circuits. The resulting
formulas will be syntactically multilinear (denoted with the prefix sm-) as well.
This implies the lower bounds by Raz [17] hold all the way up to syntactically
multilinear bounded treewidth circuits. We prove

Theorem 4. sm-VP[tw = O(1)] = sm-VNC1.

Theorem 4 strengthens the main result of Mahajan and Rao [14], which states
that poly size syntactically multilinear circuits of constant width can be simu-
lated by poly size circuits of log depth (but it was explicitly left open whether
the latter could be ensured to be syntactically multilinear). Considering the
more general notion of treewidth in a way simplifies the proof due to the help of
well-established algorithmic tools. We also remark that Theorem 3 strengthens
Theorem 4 in [10], which states that md-VSC0 = VNC1.

In [14] the fundamental question is raised whether VSC0[deg = nO(1)] ⊆
VNC1. As was mentioned, they show this holds under the restriction of syntactic
multilinearity. To make progress, we demonstrate a different restriction under
which an efficient simulation by arithmetic O(log n) depth formulas is achievable.
We apply Theorem 3 to give the following result for circuits with bounded iterated
multiplication chains (For a definition see Section 4):

Theorem 5. Constant width arithmetic circuits of size nO(1) with constant
bounded iterated multiplication chains can be simulated by fan-in two arithmetic
formulas of depth O(log n).

As two additional applications of the above results, we consider the Circuit

Value Problem (CVP) and the Reachability problem. Given the encoding
of a Boolean circuit C and an input x the Circuit Value Problem is to test if
C(x) = 1 or not. The general version of this problem is known to be P-complete.
Several variants of this has been studied (See [9,3,12] and the references therein).

Given a (directed or undirected) graph G = (V,E) and s, t ∈ V , reacha-

bility asks to test if t is reachable from s in G. reachability captures space
2 We indicate this with the prefix md-. See Section 2 for a definition.
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bounded computation in a natural way. For directed graphs it is complete for
NL [11,19]. The case of undirected graphs was settled recently by Reingold [18]
by giving a log-space algorithm for the problem. This shows the problem is com-
plete for L. There has been extensive research aimed at settling the complexity
of testing reachability on restricted graphs (see [1] and references therein).

LogCFL and LogDCFL are the classes of languages that are logspace many-
one reducible to non-deterministic and deterministic context-free languages, re-
spectively. LogDCFL can be also characterized as the class of languages that can
be recognized by a logspace Turing machine that is also provided with a stack,
which runs in polynomial time. It follows by definition that L ⊆ LogDCFL ⊆
LogCFL and L ⊆ NL ⊆ LogCFL. However, it is unknown how NL and LogDCFL
can be compared. In essense, this asks for a trade-off, trading non-determinism
with stack access. Given that directed reachability is an NL-complete problem,
giving a LogDCFL upper bound achieves such a trade-off for a restricted class
of NL-computations.

We prove the following theorem for the CVP and obtain a corollary for
Reachability.

Theorem 6. CVP for bounded treewidth and bounded fan-in circuits when the
input also contains the tree decomposition, is in LogDCFL.

Corollary 1. Reachability for directed acyclic graphs of bounded treewidth
and in-degree is in LogDCFL, provided the tree decomposition is given at the
input.

2 Preliminaries

We briefly recall basic circuit definitions. A Boolean circuit is a directed acyclic
graph, with labels {0, 1, x1, . . . , xn,∧,∨,¬} on its nodes. Nodes with label from
{0, 1, x1, . . . , xn} are called input gates, and designated nodes of zero out-degree
are called the output gates. The fan-in of a gate is its in-degree. Formulas are
circuits for which the out-degree of each gate is at most one. For size of a circuit
we count the number of non-input gates. The depth is measured as the length
of a longest directed path. Fan-in is assumed to be bounded. As in [14,10], when
we speak about the width of a circuit, we assume the circuit is layered, and it
is taken to be the maximum number of nodes on a layer. Let us emphasize that
we allow input gates (constant or variable labeled) to appear at all layers. The
class NC1 is the class of boolean functions on n bits which can be computed
by boolean circuits of depth O(log n) and size nO(1). SCi denotes the class of
functions computed by polynomial size circuits of width O(logi n).

For arithmetic circuits over a ring R, nodes are labeled by ring constants,
formal variables from a setX , and {+,×}. We assume that the fan-in is bounded
by two. The output of an arithmetic circuit is a polynomial in the ring R[X ],
defined in the obvious way. The size of a circuit is taken to be the number
of {+,×}-gates. For a circuit Φ with designated output gate f , the polynomial
computed by the output gate is denoted with *Φ+. We denote the set of variables
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used in Φ by V ar(Φ). Similarly we use V ar(p), if p is a polynomial. Note that
V ar(*Φ+) ⊆ V ar(Φ). We call a polynomial f multilinear in some subset of the
variables S, if the individual degree is at most one in f , for each variable in
S (even if f has a constant term). An arithmetic circuit is called syntactically
multilinear if for each multiplication gate the subcircuits originated at its inputs
carry disjoint sets of variables. For a multiplicatively disjoint circuit, for every
gate f = g × h, the sub-circuits rooted at g and h are disjoint (as graphs). The
formal degree of a circuit is defined inductively by taking variable and constant
labeled gates to be of degree one. For addition gates one takes the maximum
of the degrees of its inputs. For multiplication gates one takes the sum of the
degrees. The degree of the circuit is taken to be the maximum degree of a gate.

For a p-family of polynomials {fm}m≥1, we have fm ∈ R[x1, x2, . . . , xp(m)],
and deg(fm) ≤ q(m), for some polynomials p and q. Arithmetic circuit classes
contain p-families. VP and VPe are the classes of p-families computable by arith-
metic circuits and formulas, respectively, of size nO(1) (See e.g. [8]). For i ≥ 0,
VSCi is the class of all p-families computable by arithmetic circuits of width
O(logi n) and size nO(1). In [14] the class a-sSCi is considered, which corresponds
to width O(logi n) circuits of size and formal degree nO(1). We will denote this
class by VSCi[deg = nO(1)]. The class VNCi is the set of all p-families com-
putable by arithmetic circuits of depth O(logi n) and size nO(1).

Next we define various graph parameters. The width of a layered graph is the
maximum number of vertices in any particular layer. A tree decomposition of a
graph G = (V,E) is given by a tuple (T, (Xd)d∈V [T ]), where T is a tree, each
Xd is a subset of V called a bag, satisfying 1)

⋃
d∈V [T ]Xd = V , 2) For each

edge (u, v) ∈ E, there exists a tree node d with {u, v} ⊆ Xd, and 3) For each
vertex u ∈ V , the set of tree nodes {d : u ∈ Xd} forms a connected subtree of T .
Equivalently, for any three vertices t1, t2, t3 ∈ V [T ] such that t2 lies in the path
from t1 to t3, it holds that Xt1 ∩Xt3 ⊆ Xt2 .

The width of the tree decomposition is defined as maxd |Xd|−1. The treewidth
tw(G) of a graph G is the minimum width of a tree decomposition of G. For a
rooted tree T , letX≤t = ∪u∈StXu, with St = {u : u = t or t is an ancestor of u}.

Lemma 1. (Theorem 4.3 in [6]) Let G = (V,E) be a graph with |V | = n and
treewidth at most k. Then G has a tree decomposition (T, (Xd)d∈V [T ]) of width
3k + 2 such that T is a binary tree of depth at most 2*log 5

4
n+.

The following proposition is left as an easy exercise:

Proposition 1. A leveled graph G of width k has treewidth at most 2k − 1.

3 Arithmetic Circuits of Bounded Treewidth

The treewidth of a circuit with underlying graph G is defined to be tw(G). Note
that a circuit has treewidth 1 if and only if it is a formula. We introduce the
class VP[tw = O(logi n)] as the class of p-families of polynomials {fn}n≥1 that
can be computed by fan-in two arithmetic circuits of size nO(1) and treewidth
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O(logi n). As Theorem 2 states, these classes interleave (roughly) with the VSCi

classes. We postpone the proof of Theorem 2 as it uses developments of our main
construction.

Theorem 7. For any multiplicatively disjoint arithmetic circuit Φ of size s and
treewidth k, there exists an equivalent formula Γ of size at most sO(k2).

Proof. Let Φ be a multiplicatively disjoint circuit of size s, and let (T, (Xt)t∈V [T ])
be a tree decomposition of Φ of width k. By Lemma 1, we can assume that T is
a rooted binary tree of depth d = O(log s). We first preprocess T and Φ using
Proposition 2 (Proof will appear in full version).

Proposition 2. For every circuit Φ of size s, that has a tree decomposition
(T, (Xt)t∈V [T ]) of width k and depth d, there exists a circuit Φ′ of size at most
2s, for which *Φ+ = *Φ′+, with tree decomposition (T ′, (X ′

t)t∈V [T ′]) of width at
most k′ = 3k+ 2 and depth at most d, so that for any t ∈ T ′, for any non-input
gate g ∈ X ′

t with inputs g1 and g2, either both g1, g2 ∈ X ′
t or both g1, g2 /∈ X ′

t.
In the latter case it holds that g1 /∈ X ′

≤t iff g2 /∈ X ′
≤t.

We assume wlog. that Φ and (T, (Xt)t∈V [T ]) satisfy the conditions of Proposi-
tion 2, as the increase in k and s due to preprocessing does not affect the bound
we are aiming for. For any tree node t ∈ T and f ∈ Xt, we define a circuit Φt,
which is obtained from the subgraph Φ[X≤t], by turning all g ∈ Xt that take
both inputs from gates not inX≤t into input gates with label zg. For any f ∈ Xt,
let Φt,f be the subcircuit of Φt rooted at gate f . At most k + 1 new z-variables
will be used at the tree node t. Crucially, observe that, since Φ is multiplicatively
disjoint, any gate in Φt,f computes a polynomial that is multilinear in z.

We will process the tree decomposition going bottom up. At a node t, we
want to compute for each f ∈ Xt a formula Γt,f equivalent to Φt,f . Wlog. we
assume that the output gate of Φ is contained in Xr, for the root r of T . Hence,
when done, we have a formula equivalent to Φ. In order to keep the size of
the computed formulas properly bounded, we require a constant bound on the
number of appearances of a z-variable in Γt,f . We achieve this by brute-force
with Proposition 3, at the cost of blowing up the size by a factor of 2k+1. To
verify its correctness, observe that the lhs. and rhs. are multilinear polynomial
in F [x][z1, z2, . . . , zk+1] taking identical values on {0, 1}k+1, and hence must be
identical.

Proposition 3. For any f(x, z1, z2, . . . , zk+1) that is multilinear in z, we have
that f =

∑
b∈{0,1}k+1

(∏
i∈[k+1](1 − zi)1−bizbi

i

)
f(x, b1, b2, . . . , bk+1).

The recursive procedure for computing the desired formula equivalent to Φt,f is
given by Algorithm 1. Formally, for any t ∈ T , and f ∈ Xt, let Γt,f be the formula
output by the procedure call Traceback(t, f). The following lemma proves its
correctness:

Lemma 2. For any t ∈ T , and any f ∈ Xt, *Γt,f+ = *Φt,f+.
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Proof. The proof will proceed by structural induction both on T and Φ. The
statement can be easily verified for the two base cases: if t is a leaf of T , or f is
an input gate in Φ. For the induction step, suppose t has children t0 and t1, and
say f = f0 ◦ f1, with ◦ ∈ {+,×}. We ignore line 17 of the procedure Traceback,
since it does not modify the output of the computed formula.

In case both f0, f1 ∈ Xt, by induction hypothesis, *Γt,f0+ = *Φt,f0+ and
*Γt,f1+ = *Φt,f1+. Observe that in this case Traceback(t, f) returns Γt,f0 ◦ Γt,f1 ,
so *Γt,f+ = *Γt,f0 ◦ Γt,f1+ = *Γt,f0+ ◦ *Γt,f1+ = *Φt,f0+ ◦ *Φt,f1+ = *Φt,f+.

Now assume not both f0, f1 ∈ Xt. By Proposition 2, this means f0 /∈ Xt and
f1 /∈ Xt. Furthermore, we either have f0, f1 ∈ X≤t, or {f0, f1}∩X≤t = ∅. In the
latter case, *Φt,f+ = zf , which is exactly what is returned by Traceback(t, f).
In the former case, say f0 ∈ X≤ti1

and f1 ∈ X≤ti2
, for i1, i2 ∈ {0, 1}. Observe

that by the tree decomposition properties f ∈ Xti1
, which makes the call of

Traceback(ti1 , f) on line 11 valid. Note that f0 /∈ X≤ti2
and f1 /∈ X≤ti1

, if
i1 �= i2. Hence, by the tree decomposition properties, if i1 �= i2, there would
exist a node t′ with t1 as ancestor such that f, f0 ∈ Xt′ , but f1 /∈ Xt′ . Due to
Proposition 2 this case does not arise.

The algorithm first computes Γ = Traceback(ti1 , f). By the induction hy-
pothesis *Γ + = *Φti1 ,f+. In Φti1 ,f , whenever a gate g takes an input from a gate
not in X≤ti1

, i.e. by Proposition 2 this means both its inputs are not in X≤ti1
, it

appears as input node with label zg. However, for the circuit Φt,f node g roots
Φt,g. Observe that this means that substituting *Φt,g+ for each zg ∈ V ar(*Φti1 ,f+)
in *Φti1 ,f+ yields *Φt,f +. Observe that the tree decomposition properties give us
that g ∈ Xt, whenever we make the call on line 13 to compute Γ ′, and hence that
this call is valid. By the induction hypothesis, *Γ ′+ = *Φt,g+. Hence replacing,
for all zg ∈ V ar(*Γ +), each gate in Γ labeled with zg by the formula Γ ′ gives a
new formula Γ satisfying *Γ + = *Φt,f +.

We must bound the size of the formula Γt,f . The proof of the following lemma
will appear in the full version of the paper.

Lemma 3. Let t ∈ T be a node at height h, then for any f ∈ Xt, Γt,f has at
most αh2k+1 many gates, where α = 23k2+9k+6.

Since T has depth O(log s), we conclude the final formulas given at the root of
T will be of size sO(k2).

The proof of Theorem 3 is now clear. Trivially VPe ⊆ md-VP[tw = O(1)]. The
converse follows from Theorem 7. Now use the fact that VPe = VNC1 [7].

3.1 Proof of Theorem 4

Observe that sm-VNC1 ⊆ sm-VPe ⊆ sm-VP[tw = O(1)]. For the other direction,
let Φ be a syntactically multilinear circuit of treewidth k. We first modify it
so that any gate g computing a field constant α is replaced by an input gate
g′ labeled with α. This can be done by removing edges fanning into g and
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Algorithm 1. Recursive procedure for computing Γt,f

1: procedure Traceback(t ∈ T , f ∈ Xt)
2: if t is a leaf or f is an input gate in Φ then
3: return a formula equivalent to Φt,f of size at most 2k+1 computed by ’brute

force’.
4: else
5: let t0 and t1 be the children of t in T , and say f = f0 ◦ f1, with ◦ ∈ {+,×}.
6: if both f0 and f1 are in Xt then
7: let Γ = Traceback(t, f0) ◦ Traceback(t, f1).
8: else
9: // Neither f0 nor f1 is in Xt, by pre-processing.

10: If f0 and f1 are not in X≤t return a single node with label zf . Otherwise,
say f0 ∈ X≤ti1

and f1 ∈ X≤ti2
, for i1, i2 ∈ {0, 1}.

11: Γ = Traceback(ti1 , f).
12: for all zg ∈ V ar(�Γ �) do
13: let Γ ′ = Traceback(t, g).
14: replace any gate in Γ labeled with zg by the formula Γ ′.
15: end for
16: end if
17: Process Γ to make any z-variable occur at most 2k+1 times using Proposition 3.

18: return Γ .
19: end if

relabeling. Hence the treewidth of the modified circuit is at most k. Next, any
gate g labeled with a field constant α, with edges going to gates f1, f2, . . . , fm,
is replaced by m separate copies of g1, g2, . . . , gm, each labeled with α, where
we add edges (gi, fi), for all i ∈ [m]. This does not increase the treewidth,
as it can be thought of as a two step procedure, neither of which increases
treewidth: first removing the vertex g and attached edges, secondly, adding back
the isolated copies. Observe that now we have obtained an equivalent circuit Φ′

that is multiplicatively disjoint. Namely, for purpose of contradiction, suppose
there exists a multiplication gate f = f1 × f2 such that both f1 and f2 are
reachable from some gate h. Then there exists such an h for which the paths
to f1 and f2 are edge disjoint. For this h, since Φ′ is syntactically multilinear,
there cannot be variables in the subcircuit Φ′h. Hence h is a gate computing a
constant. Since the paths to f1 and f2 are edge disjoint, h must have out-degree
at least two. This contradicts the fact that any gate computing a constant in
Φ′ has out degree one. The statement sm-VP[tw = O(1)] ⊆ VNC1 now follows
from Theorem 7 and the fact that VPe = VNC1 [7].

To get the strengthened conclusion that sm-VP[tw = O(1)] ⊆ sm-VNC1, we
will now indicate how to modify Algorithm 1 to ensure syntactic multilinearity.
We use the notation of the proof of Theorem 7. Assume we have done prepro-
cessing as indicated above. We know each circuit Φt,f is syntactically multilinear,
for all t ∈ T , and f ∈ Xt. The goal is to establish inductively that each Γt,f is
syntactically multilinear, for all t ∈ T , and f ∈ Xt.
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At the base case, i.e. line 3 of Algorithm 1, we can simply enforce the condition
by brute force. At line 7, by induction Γt,f0 and Γt,f1 are syntactically multilinear.
If ◦ = +, then so is Γ . In case ◦ = ×, whenever the formulas Γt,f0 and Γt,f1

share a variable α, since we know *Γ + = *Φt,f+ is multilinear, α does not appear
in at least one of the polynomials *Γt,f0+ and *Γt,f1+. Setting α to zero in the
corresponding formula ensures Γ is syntactically multilinear.

We now argue how to correctly deal with the substitution on line 14, and the
processing of z variables on line 17. Consider Γ as computed on line 11. We want
to ensure it is in the following standard form:

∑
a∈{0,1}k+1

(∏
i∈[k+1] z

ai

i

)
fa(x),

for certain polynomials fa ∈ F [X ]. For this we use the following modification
of Proposition 3, which is obtained by multiplying out the factors

∏
i∈[k+1](1 −

zi)1−bizbi

i . For a, a′ ∈ {0, 1}k+1, we say a′ ≤ a iff {i : a′i = 1} ⊆ {i : ai = 1}.
We denote the size of {i : a′i = 1} by |a′|. We leave the proof of the following
proposition as an exercise:

Proposition 4. Let f(x, z1, z2, . . . , zk+1) be given that is multilinear in z. Write
f(x, z1, z2, . . . , zk+1) =

∑
a∈{0,1}k+1

(∏
i∈[k+1] z

ai

i

)
coef(f, za1

1 z
a2
2 . . . z

ak+1
k+1 ), then

it holds that coef(f, za1
1 z

a2
2 . . . z

ak+1
k+1 ) =

∑
a′≤a(−1)|a|−|a′|f(x, a′).

If we use the above proposition to process z-variables on line 17, then by induc-
tion, Γ on line 11 will indeed have the required form, or for simplicity one can also
assume we do an extra step of z-variable processing. That is, assume we apply
above proposition to get Γ in the required form. This requires at most (2k+1)2

copies of Γ and blows up Γ by an inconsequential factor of 2O(k). Observe that
this leaves Γ syntactically multilinear.

Now consider line 14. First of all, any zg ∈ V ar(Γ )\V ar(*Γ +) can be set to
zero in Γ . For the remaining z-variables, we claim that for any pair zg, zh ∈
V ar(*Γ +), whenever Γt,g and Γt,h share a variable α, then coef(*Γ +,m) = 0,
for any multilinear monomial m in the z-variables of Γ that contains both zg
and zh. Hence we can remove these terms from the standard form of Γ , and
avoid multilinearity conflicts among products between each of the substituted
formulas.

We will verify this claim using the notion of a proof tree. A proof tree rooted at
a gate g in a circuit C is any tree obtained by recursively selecting gates, starting
with g, as follows: 1) at an addition gate select exactly one of its children, and
2) at a multiplication gate select both children. We will consider proof trees of
Φti1 ,f rooted at f . For a subset Z of z-variables in Φti1 ,f , we let PTree(Z) stand
for the collection of proof trees rooted at f that have precisely the z-variables
in Z appearing at its leaves. Given T ∈ PTree(Z), let p(T ) denote the product
of all X variables appearing in T . The following proposition is easily proved by
structural induction on the circuit Φti1 ,f .

Proposition 5. For any multilinear monomial m in z-variables used in Φti1 ,f ,
it holds that coef(*Φti1 ,f+,m) =

∑
T∈PTree(Z) p(T ), where Z is the set of z-

variables of m.
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Recall that by induction *Γ + = *Φti1 ,f+. Now consider any multilinear monomial
m in z-variables of *Φti1 ,f+ with both zg and zh in it, where Γt,g and Γt,h

share a variable α. For purpose of contradiction suppose coef(*Φti1 ,f+,m) �=
0. By Proposition 5 this means there exists a proof tree in Φti1 ,f rooted at
f that contains both zg and zh. This implies g and h are reachable from a
single multiplication gate r in Φti1 ,f , and hence also in Φt,f . Observe that our
construction satisfies the property that for any t ∈ V [T ] and f ∈ Xt, V ar(Γt,f ) ⊆
V ar(Φt,f ). Hence α appears in both Φt,g and Φt,h. Observe that both α’s must
be reachable from r in Φt,f . This contradicts the fact that Φt,f is syntactically
multilinear.

Similarly, one can verify that whenever for a variable zg ∈ V ar(*Γ +), the
formula Γt,g contains a variable α, then coef(*Γ +,m) does not contain α for
any monomial m containing zg. Hence any occurrence of α in the formula∑

a′≤a(−1)|a|−|a′|Γ (x, a′) used to compute coef(*Γ +,m) can be replaced by zero.
We conclude that under above modifications, Algorithm 1 yields a syntacti-

cally multilinear formula Γt,f equivalent to Φt,f . The proof is completed with
the observation of [14] that Brent’s construction [7], which shows VPe ⊆ VNC1,
preserves syntactic multilinearity.

3.2 Evaluation over a Finite Field and Boolean Implications

The observation is that Algorithm 1, when applied over GF (2) to an arbi-
trary n-input arithmetic circuit Φ, will result in a formula Γ such that for any
a ∈ GF (2)n, *Φ+(a) = *Γ +(a). For this, no assumptions regarding the multiplica-
tive disjointness of Φ is needed. One can prove this condition using structural
induction similarly as in Lemma 2. For the processing of the z-variables on
line 17, observe that we have the following adaption of Proposition 3:

Proposition 6. Let f(x1, . . . , xn, z1, . . . , zk+1) be a polynomial over GF (2), and
let g =

∑
b∈{0,1}k+1

(∏
i∈[k+1](1 − zi)1−bizbi

i

)
f(x1, x2, . . . , xn, b1, b2, . . . , bk+1).

Then for any a ∈ GF (2)n+k+1, f(a) = g(a).

One can generalize this to an arbitrary finite field F of size q, by similarly using
brute force on line 17 of Algorithm 1 to make sure any z-variables appears at
most qk+1 times in Γ . Consequently, we have the following theorem:

Theorem 8. Let F be a finite field, and let q = |F |. For any arithmetic circuit
Φ over F of size s and treewidth k, there exists a formula Γ over F of size at
most sO(k2 log q) such that Φ and Γ evaluate to identical values for inputs in F .

A proof of the following proposition will appear in the full version.

Proposition 7. For every Boolean circuit C of fan-in two and treewidth k, there
is an arithmetic circuit C′ over GF (2) of treewidth 3k such that ∀x ∈ {0, 1}n,
C(x) = 1 if and only if C′(x) = 1.
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Proof of Theorem 1. Given a Boolean circuit of size s and treewidth k of
bounded fan-in (wlog. assume fan-in two), first convert it into an arithmetic
circuit over GF (2) using Proposition 7. Now apply Theorem 8 to obtain an
arithmetic formula Γ over GF (2) of size sO(k2). Balance this formula down to
depth O(k2 log s) using [7]. Now do the reverse construction of arithmetization
and code out an {∧,∨,¬}-formula computing the same function. The final circuit
has depth O(k2 log s). Thus we have proven Theorem 1.

We can use a similar reduction to derive a Boolean analogue of Theorem 2. The
proof will appear in the full version of the paper. Let TWCi denote the class of
Boolean functions computed by Boolean circuits of treewidth O(logi n).

Theorem 9. The following two statements hold in the non-uniform setting: 1)
SC0 ⊆ TWC0 ⊆ SC1, and 2) ∀i ≥ 1, SCi ⊆ TWCi ⊆ SCi+1[size = nO(log log n)].

4 Constant Width Circuits

We make the following definition: an iterated multiplication chain of length � in a
circuit Φ is given by a sequence of gates g0, g1, . . . , g�, where all are multiplication
gates, except possibly g0, such that both inputs of gi are reachable from gi−1,
for all i ∈ [�]. We denote the length of a longest iterated multiplication chain
in Φ by M(Φ). Note that if M(Φ) = 0, then Φ is multiplicatively disjoint. The
following theorem will be proved in the full version of the paper:

Theorem 10. For any leveled arithmetic circuit Φ of size s and width w, there
exists equivalent formula of depth d = O(w4M(Φ) log s) and size at most 2d.

Theorem 5 immediately follows from Theorem 10. Note that conversely one
has the inclusion VNC1 ⊆ VSC0[M = O(1)], due to [5].

5 Application to Circuit Evaluation and Reachability

We use Proposition 7 to reduce the proof of Theorem 6 to the following propo-
sition. We note this reduction can be computed within logspace.

Proposition 8. Given an arithmetic circuit C over GF (2) together with its
tree decomposition (T, (Xd)d∈V [T ]) of constant width k and an input x ∈ {0, 1}n,
testing whether C(x) = 1 can be done in LogDCFL.

Proofsketch. The proof proceeds by analyzing Traceback. We are given the circuit
C and an input x. We replace each gate of C labeled by xi with its Boolean value.
Next we run Traceback to compute an equivalent formula. We claim this can
be implemented in poly-time and O(log n) workspace, provided we use a stack
(whose space usage is not counted towards the space bound). This claim will be
substantiated in the paper’s full version.

A proof of following proposition will appear in the full version of the paper.
Corollary 1 follows from it.
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Proposition 9. Given a DAG G = (V,E) of bounded treewidth and bounded
in-degree and s, t ∈ V , we can obtain a circuit C of bounded treewidth and an
input x such that C(x) = 1 if and only if t is reachable from s in the graph G.
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Abstract. A colouring of a graph is ecological if every pair of vertices that have
the same set of colours in their neighbourhood are coloured alike. We consider the
following problem: if a graph G and an ecological colouring c of G are given, can
further vertices added to G, one at a time, be coloured using colours from some
finite set C so that at each stage the current graph is ecologically coloured? If the
answer is yes, then we say that the pair (G, c) is ecologically online extendible.
By generalizing the well-known First-Fit algorithm, we are able to characterize
when (G, c) is ecologically online extendible. For the case where c is a colouring
of G in which each vertex is coloured distinctly, we give a simple characterization
of when (G, c) is ecologically online extendible using only the colours of c, and
we also show that (G, c) is always online extendible if we permit ourselves to
use one extra colour. We also study (off-line) ecological H-colourings where the
colouring must satisfy further restrictions imposed by some fixed pattern graph
H . We characterize the computational complexity of this problem. This solves an
open question posed by Crescenzi et al.

1 Introduction

One of the goals of social network theory is to determine patterns of relationships
amongst actors in a society. Social networks can be represented by graphs, where ver-
tices of the graph represent individuals and edges represent relationships amongst them.
One way to study patterns of relationships in such networks is to assign labels in such
a way that those who are assigned the same label have similar sorts of relationships
within the network; see e.g. Hummon and Carley [9]. Several graph-theoretic concepts
such as ecological colourings [1], role assignments [6] and perfect colourings [2], have
been introduced to facilitate the study of social networks in this way.

This paper focuses on ecological colourings. The term “ecological” is derived from
certain models of population ecology in which individuals are assumed to be determined
by their environment. For example, in biology, features of a species’ morphology are
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usually defined in relation to the way such a species interacts with other species. Also,
some network theories of attitude formation assume that one’s attitude is predicted by
the combination of the attitudes of surrounding individuals [3,5].

We introduce some basic notation and terminology. Throughout the paper, all graphs
are undirected and without loops or multiple edges unless otherwise stated. We denote
the vertex and edge sets of a graph G by VG and EG respectively. An edge between u
and v is denoted (u, v). The neighbourhood of u inG is denotedNG(u) = {v | (u, v) ∈
EG}. For a subset S ⊆ VG and a function c on VG (for example, a colouring of the ver-
tices), we use the short-hand notation c(S) for the set {c(u) | u ∈ S}. The colourhood
of a vertex v in a graph G with colouring c is defined to be c(NG(v)). For a set C, we
write A+ x to denote A ∪ {x} for some subset A ⊆ C and x ∈ C.

Ecological colourings were introduced by Borgatti and Everett in [1] to analyse
power in experimental exchange networks. Formally, an ecological colouring of a graph
G = (V,E) is a vertex mapping c : V → {1, . . .} such that any u, v ∈ V with the same
colourhood, i.e. with c(N(u)) = c(N(v)), have the same colour c(u) = c(v). Note that
such a colouring does not have to be proper, i.e. two adjacent vertices may receive the
same colour. This reflects that two individuals that play the same role in their environ-
ment might be related to each other. See Fig. 1 for an example of a proper ecological
colouring.

1 2 1 2

3

Fig. 1. A proper ecological colouring that is also an ecological K3-colouring

One of the appealing features of ecological colourings is a result of Crescenzi
et al. [4]. In order to state the result precisely, we need to introduce some terminology.
A twin-free graph (also known as a neighbourhood-distinct graph) is a graph in which
no two vertices have the same neighbourhood (including empty neighbourhoods). A
graphG that is not twin-free can be made twin-free as follows: whenever we find a pair
of vertices u and v for which NG(u) = NG(v), we delete one of them until no such
pair remains. It is easy to check that the resulting graph is independent of the order in
which vertices are deleted and is twin-free; it is called the neighbourhood graph of G
and is denoted by GN . The main result of Crescenzi et al. [4] states that an ecological
colouring of a graph G using exactly k colours can be found in polynomial time for
each 1 ≤ k ≤ |VGN | and does not exist for k ≥ |VGN | + 1.

Our motivation for studying online ecological colourings. In static optimization
problems, one is often faced with the challenge of determining efficient algorithms
that solve a particular problem optimally for any given instance of the problem. In the
area of dynamic optimization the situation is more complicated: here, one often lacks
knowledge of the complete instance of the problem.

This paper studies ecological colourings for dynamic networks. Gyárfás and Lehel [7]
introduced the concept of online colouring to tackle dynamical storage allocations. An
online colouring algorithm irrevocably colours the vertices of a graph one by one, as
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they are revealed, where determination of the colour of a new vertex can only depend
on the coloured subgraph induced by the revealed vertices. See [10] for a survey on
online colouring.

Perhaps the most well-known online colouring algorithm is FIRST-FIT. Starting from
the empty graph, this algorithm assigns each new vertex the least colour from {1, 2, . . .}
that does not appear in its neighbourhood. It is easy to check that an ecological colouring
is obtained at each stage and hence FIRST-FIT is an example of an on-line ecological
colouring algorithm. Note, however, that it may use an unbounded number of colours.
If we wish to use at most k colours when we start from the empty graph, then we can
alter FIRST-FIT so that each new vertex v is assigned, if possible, the least colour in
{1, 2, . . . , k−1} not in the colourhood of v, or else v is coloured k. We call the modified
algorithm k-FIRST-FIT. It gives a colouring that is ecological but not necessarily proper
(cf. 1-FIRST-FIT which assigns all vertices the same colour).

A natural situation to consider is when we are given a nonempty start graphG0 = G,
the vertices of which are coloured by an ecological colouring c. At each stage i, a new
vertex vi is added to Gi−1 (the graph from the previous stage) together with (zero or
more) edges between vi and the vertices of Gi−1, to give the graph Gi. Knowledge of
Gi is the only information we have at stage i. Our task is to colour the new vertex vi at
each stage i, without changing the colours of the existing vertices, to give an ecological
colouring of Gi. If there exists an online colouring algorithm that accomplishes this
task using some colours from a finite set C ⊇ c(VG), we say that the pair (G, c) is
(ecologically) online extendible with C. Sometimes we do not giveC explicitly and say
simply that (G, c) is (ecologically) online extendible. Motivated by our observation that
colourings obtained by FIRST-FIT and k-FIRST-FIT are ecological, we examine which
pairs (G, c) are online extendible.

Our motivation for studying ecologicalH-colourings. In order to analyse the salient
features of a large networkG, it is often desirable to compressG into a smaller network
H in such a way that important aspects of G are maintained in H . Extracting relevant
information about G becomes much easier using H . This idea of compression is en-
capsulated by the notion of graph homomorphisms, which are generalizations of graph
colourings. Let G and H be two graphs. An H-colouring or homomorphism from G
to H is a function f : VG → VH such that for all (u, v) ∈ EG we have (f(u), f(v)) ∈
EH . An ecologicalH-colouring of G is a homomorphism f : VG → VH such that, for
all pairs of vertices u, v ∈ VG, we have f(NG(u)) = f(NG(v)) =⇒ f(u) = f(v).
See Fig. 1 for an example of an ecological K3-colouring, where K3 denotes the com-
plete graph on {1, 2, 3}. The ECOLOGICAL H -COLOURING problem asks if a graphG
has an ecologicalH-Colouring. Classifying the computational complexity of this prob-
lem is our second main goal in this paper. This research was motivated by Crescenzi et
al. [4] who posed this question as an interesting open problem.

Our results and paper organisation. In Section 2, we characterize when a pair (G, c),
where G is a graph and c is an ecological colouring of G, is online extendible with a
fixed set of coloursC. We then focus on the case where each vertex of a k-vertex graph
G is coloured distinctly by c. We show that such a pair (G, c) is always online extendible
with k+1 colours, and give a polynomial-time online colouring algorithm for achieving
this. We show that this result is tight by giving a simple characterization of exactly
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which (G, c) are not ecologically online extendible with k colours. This characterization
can be verified in polynomial time. In Section 3, we give a complete answer to the
open problem of Crescenzi et al. [4] and classify the computational complexity of the
ECOLOGICAL H -COLOURING problem. We show that if H is bipartite or contains
a loop then ECOLOGICAL H -COLOURING is polynomial-time solvable, and is NP-
complete otherwise. Section 4 contains the conclusions and open problems.

2 Online Ecological Colouring

We first give an example to demonstrate that not all pairs (G, c) are online extendible.
Consider the ecologically coloured graph in Fig. 2.(i). Suppose that a further vertex is
added as shown in Fig. 2.(ii). Its colourhood is {1, 3, 4} so it must be coloured 2 to keep
the colouring ecological (since there is already a vertex with that colourhood). Finally
suppose that a vertex is added as shown in Fig. 2.(iii). Its colourhood is {2, 3, 4} so it
must be coloured 1. But now the two vertices of degree 2 have the same colourhood but
are not coloured alike so the colouring is not ecological.

3

1

4

2

4 3

(i)

3

1

4

2

4 3

2

(ii)

3

1

4

2

4 3

2 1

(iii)

Fig. 2. A pair (G, c) that is not online extendible

We also give an example of a pair (G, c) that is online extendible but for which we
cannot use FIRST-FIT or k-FIRST-FIT. Let G be the path v1v2v3v4 on four vertices
coloured abcd. We will show in Theorem 2 that (G, c) is online extendible (even if we
are forced to use only colours from {a, b, c, d}). However, FIRST-FIT or k-FIRST FIT

(arbitrary k) cannot be used with any ordering of {a, b, c, d}. To see this, add a new
vertex adjacent to v1 and v3. Any correct online colouring algorithm must colour it b.
So if the algorithm is FIRST-FIT, b is before d in the ordering of the colours. Next add
a new vertex adjacent to v3. If this vertex is not coloured d then the colouring will not
be ecological, but FIRST-FIT will not use d as b (or possibly a) is preferred.

Let us now describe our general approach for obtaining online ecological colourings
when they exist. As before, let G be a graph with an ecological colouring c and let C
be a set of colours where C ⊇ c(VG). What we would like to do is to write down a
set of instructions: for each subset A ⊆ C, a colour x should be specified such that
whenever a vertex is added and its colourhood is exactly A, we will colour it x. We
would like to construct a fixed set of instructions that, when applied, always yields
ecological colourings. We make the following definitions.
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(i) A rule on C is a pair A ⊆ C and x ∈ C and is denoted A→ x.
(ii) A rule A→ x represents a vertex v in G if v has colourhoodA and c(v) = x.

(iii) The set of rules that represent each vertex ofG is said to be induced by (G, c) and
is denotedR(G,c).

(iv) A set of rulesR on C is valid for (G, c) if R ⊇ R(G,c) andR contains at most one
rule involvingA for each subset A ⊆ C.

(v) A set of rules R on C is full if R contains exactly one rule involving A for each
subset A ⊆ C.

Notice that a full set of rulesR constitutes an online colouring algorithm: if v is a newly
revealed vertex with colourhood A and A → x is the unique rule for A in R, then v is
coloured x by R. Notice also that the k-FIRST-FIT algorithm can be written down as
the full set of rules

Rk
FF = {A→ min{y ≥ 1 | y /∈ A} | A ⊂ {1, . . . , k}} ∪ {{1, . . . , k} → k},

that is, the k-FIRST-FIT algorithm assigns colours to new vertices purely as a function
of their colourhoods. In this way, the notion of rules generalises FIRST-FIT. There is
no reason a priori that a general online colouring algorithm should follow a set of rules;
however, one consequence of Theorem 1 below is that every online ecological colouring
algorithm can be assumed to follow a set of rules.

While a full set of rules R gives an online colouring algorithm, it does not guarantee
that each colouring will be ecological. For this, we must impose conditions on R. The
following observation, which follows trivially from definitions, shows that having a
valid set of rules for a coloured graph ensures that it is ecologically coloured. We state
the observation formally so that we can refer to it later.

Observation 1. Let G = (V,E) be a graph with colouring c. Let R be a valid set of
rules on some C ⊇ c(V ) for (G, c). Then c is an ecological colouring of G.

Proof. Suppose c is not ecological. Then there are two vertices coloured x and y, x �= y,
which both have colourhood A ⊆ c(V ) ⊆ C. Then the set of rules induced by (G, c)
contains two rules A → x and A → y. Since R is valid for (G, c), it must contain the
rules induced by (G, c), but this contradicts that R must contain at most one rule for
each A ⊆ C. ��
Note, however, that if we have a valid and full set of rulesR on C for (G, c) and further
vertices are added and coloured according to the rules, R might not necessarily remain
valid for the new graph, that is, R might not be a superset of the induced rules for the
new graph. Let us see what might happen. Suppose that a new vertex u is added such
that the colours in its neighbourhood are B and that, according to a rule B → y in R,
it is coloured y. Now consider a neighbour v of u. Suppose that it had been coloured
x at some previous stage according to a rule A → x in R. But now the colour y has
been added to its colourhood. So R is valid for the altered graph only if it contains
the rule A + y → x. This motivates the following definition. Let R be a set of rules
on C ⊇ c(VG). We say that R is a good set of rules on C if for any A,B ⊆ C and
x, y ∈ C the following holds:

if (A→ x) ∈ R and (B → y) ∈ R and x ∈ B then (A+ y → x) ∈ R.

It is an easy exercise to check that the rules Rk
FF for k-FIRST-FIT are good.
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We are now able to present the main results of this paper. First we characterize when
a pair (G, c) is online extendible.

Theorem 1. Let G be a graph with ecological colouring c. Then (G, c) is online ex-
tendible with a finite set C if and only if there exists a set of rules that is valid for (G, c),
good, and full on C′, where C′ is a set of colours satisfying C ⊇ C′ ⊇ c(VG).

The purpose of C′ in the statement of Theorem 1 is to account for the possibility that
some of the colours of C may, under all circumstances, not be required.

Proof. (=⇒) If (G, c) is online extendible with finite C, then there exists, by defini-
tion, an algorithm α that can be used to obtain an ecological colouring of any graph
constructed by adding vertices to G. We shall show that, by carefully choosing how to
add vertices to G and colouring them with α, we can obtain a graph which induces a
set of rules that is valid for (G, c), good and full on some set C′ ⊆ C.

First, we describe one way in which we add vertices. If a graph contains a vertex
u coloured x with colourhood A, then the set of rules induced by the graph includes
A→ x. To protect that rule means to add another vertex v with the same neighbourhood
(and thus also the same colourhood) as u, to colour it x (as any correct algorithm must),
and to state that no further vertices will be added that are adjacent to v. Hence all future
graphs obtained by adding additional vertices will also induce the rule A→ x.

We use this method immediately: we protect each of the rules induced by (G, c). In
this way, we ensure that the set of induced rules for any future graph is valid for (G, c).

As long as the set of rules R induced by the current graph G∗ is not full for the set
of colours C∗ used on G∗, we add a new vertex as follows:

Let B ⊆ C∗ be a set for which R does not contain a rule. Add to G∗ a new
vertex u with colourhood B and use the algorithm α to obtain an ecological
colouring. Add vertices to protect any rule induced by the new graph not in R.

Note that it is possible to add such a vertex u without making it adjacent to vertices that
have been used for protection. There is at least one rule induced by the new graph not
induced by the previous graph, namely B → y, where y is the colour α assigns to u.
So if we continue in this way, the number of rules will increase and eventually a full
set of rules will be obtained for some set C′ ⊆ C (since, by definition, α only uses
colours from such a set). Let GF be the graph for which the induced rules are full. It
only remains to prove that these rules are good.

If the rules are not good, then they include rules A → x, B → y, A + y → z such
that x ∈ B and x �= z. Let u be a vertex in GF coloured x with colourhoodA. Choose
a set of vertices S � u coloured B such that each vertex, except possibly u, is not one
that was created to protect a rule. Add a new vertex adjacent to the vertices of S. This
must be coloured y by α. But now the neighbourhood of u is A + y and the colouring
is not ecological (since no vertex has been added adjacent to the vertex protecting the
rule A+ y → z); this contradicts the definition of α.

(⇐=) Suppose R is a set of rules that is valid for (G, c), good, and full on some
C′ where C ⊃ C′ ⊇ c(V ). Set G0 = G and suppose, in the online process, vertices
v1, . . . , vr are added one at a time to obtain graphs G1, . . . , Gr. Colouring each new
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vertex according to R, we obtain the colouring ci for Gi. We must show that ci is an
ecological colouring of Gi. By Observation 1, we can do this by proving inductively
that R is valid for each (Gi, ci).

We have that R is valid for (G0, c). Assume, for induction, that R is valid for
(Gi−1, ci−1). Let B be colourhood of vi in Gi. If R contains the rule B → y, then
vi is coloured y, giving the colouring ci of Gi. We must check that there are rules in R
to represent each vertex of Gi. Clearly the rule B → y represents vi. Let v �= vi be a
vertex of Gi. Suppose, as a vertex of Gi−1, it is represented by the rule A → x. If v is
not adjacent to vi, then v is still represented by the rule A → x in Gi. If v is adjacent
to vi, then v is represented by the rule A + y → x; this rule is present in R since R is
good and contains the rules A→ x and B → y, where x ∈ B. ��

Corollary 1. Fix a colour set C. Given an input graph G = (V,E) together with an
ecological colouring c, where c(V ) ⊆ C, the problem of deciding if (G, c) is ecologi-
cally online extendible with C is solvable in polynomial time.

Proof. Suppose |C| = � for some fixed integer �. We enumerate all full sets of rules on
all C′ ⊆ C and check whether they are good and valid for (G, c). The number of sets
of rules to be checked depends only on � and is independent of |G|, and checking a set
of rules requires polynomial time. ��

So far, we have not been able to prove the computational complexity of the above deci-
sion problem if C is part of the input. A natural question to start with is to consider the
case in which all vertices of G have distinct colours. Thus we assume that G is twin-
free else the colouring would not be ecological. Theorem 2 solves this case by showing
that any such pair (G, c) is online extendible using one extra colour in addition to c(V ).
We show in the second part of this theorem that the above is tight by characterizing
those pairs (G, c) for which we always need the extra colour. The simple necessary and
sufficient conditions in our characterization can easily be checked in polynomial time.

Theorem 2. LetG = (V,E) be a twin-free graph on k vertices and let c be a colouring
of G with |c(V )| = k (thus c is an ecological colouring of G).

1. (G, c) is online extendible with c(V ) and one extra colour.
2. (G, c) is online extendible with c(V ) if and only ifG contains a vertex u∗ such that

(i) the neighbourhood of u∗ is maximal in G, that is N(u∗) is not a proper subset
ofNG(v) for all v ∈ V , and

(ii) the graphG− u∗ is twin-free.

The smallest twin-free graph that does not satisfy the two conditions (i) and (ii) in
Theorem 2 is a graph on two components, one of which is an isolated vertex and the
other is an edge. The smallest connected twin-free graph that does not satisfy these two
conditions is obtained from a complete graph on four vertices u1, u2, u3, u4 after adding
two new vertices v1, v2 with edges (u1, v1), (u2, v1), (u3, v2), (u4, v2) and (v1, v2).
We can construct an infinite family of such examples as follows. Take two disjoint
copies, H and H ′, of the complete graph K2n on 2n vertices with a perfect matching
removed. Let (v1, w1), (v2, w2), . . . , (vn, wn) be the perfect matching removed from
H , and let (v′1, w

′
1), (v

′
2, w

′
2), . . . , (v

′
n, w

′
n) be the perfect matching removed from H ′.
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LetG be the graph obtained by adding the edges (v1, v′1), (v2, v
′
2), . . . , (vn, v

′
n) toH ∪

H ′. Clearly, the vertices with maximal neighbourhoods are v1, . . . , vn, v′1, . . . , v
′
n, but

removing vi (resp. v′i) fromG leaves twins v′i, w
′
i (resp. vi, wi).

Proof. We restate that G is a twin-free graph on k vertices and that c is an ecological
colouring ofG with |c(V )| = k. Define C := c(V ) = {1, 2, . . . , k}. To prove each part
of the theorem, we must find a valid, good, full set of rules R for (G, c). We know that
R must contain rules that represent each vertex of G; we must describe how to define
the remaining rules. Here is a useful technique.

Let A contain the subsets A ⊆ C for which R(G,c) contains a rule involving A. To
propagateR(G,c) apply the following to obtain a set of rules R∗

(G,c):

• for each 1 ≤ i ≤ |C|, fix an ordering for the collection of sets in A of cardinality i;
• for each subset A ⊆ C, let, if possible, A∗ be the smallest member of A, first

ordered, that is a superset of A (possibly A∗ = A). If A∗ exists and A∗ → x is a
rule in R(G,c), then add A→ x to R∗

(G,c).

We make two claims. The first is a simple observation.

Claim 1. We have that R∗
(G,c) is valid for (G, c). Furthermore R∗

(G,c) is a full set of
rules on C if and only if R(G,c) contains a rule C → x for some x.

Claim 2. We have that R∗
(G,c) is good.

We prove Claim 2 as follows. If R∗
(G,c) is not good, then there are rules A → x and

B → y in R∗
(G,c), where x ∈ B, but A+ y → x is not in R∗

(G,c). By definition, R(G,c)
contains a rule A∗ → x. Notice that A∗ is the set of colours used on the neighbours
of the vertex in G coloured x. Similarly R(G,c) must contain a rule B∗ → y, where
x ∈ B ⊆ B∗ and B∗ is the set of colours used on the neighbours of the vertex in G
coloured y. So the vertices in G coloured x and y are adjacent and so y ∈ A∗. But then
A∗ containsA+ y so we must haveA∗ = (A+ y)∗. ThusA+ y → x is in R∗

(G,c). This
proves Claim 2.

We now prove the first part of the theorem. Let G′ be obtained from G by adding
a new vertex v∗ adjacent to all existing vertices and to itself (we could avoid having
a loop by adding two new vertices adjacent to every vertex in G and each other; but
allowing the loop makes the analysis a little tidier). Colour v∗ with colour k + 1 to
obtain a colouring c′ of G′, and write C′ = {1, . . . , k + 1}. Note that G′ is twin-free.

As R∗
(G′,c′) contains a rule involvingC′, Claim 1 tells us that it is a full and valid set

of rules on C′ for (G′, c′). By Claim 2, R∗
(G′,c′) is also good. It remains only to show

that R∗
(G′,c′) is valid for (G, c).

Note that each vertex v ofG has the colour k+1 in itsG′-neighbourhood. Therefore,
as a vertex of G′, v is represented in R(G′,c′) by a rule A + (k + 1) → x (where A is
the set of colours in theG-neighbourhood of v). Observe that, sinceA∗ is a minimal set
containingA that is involved in a rule of R(G′,c′), and since all rulesB → y in R(G′,c′)
satisfy k+ 1 ∈ B, we have A∗ = A+ (k+ 1). ThusR∗

(G′,c′) contains the rule A→ x,
which represents the vertex v of G. This is true for all vertices of G, and so R∗

(G′,c′) is
also valid for (G, c). Thus R∗

(G′,c′) is a full set of rules on C′ = {1, . . . , k + 1} that
is good and valid for (G, c). Thus (G, c) is online extendible with {1, . . . , k + 1} by
Theorem 1. This completes the proof of the first part of Theorem 2.
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Now we prove the second part of the theorem.
(=⇒) We begin by showing that if G contains a vertex u∗ such that G− u∗ is twin-

free and the neighbourhood of u∗ in G is maximal (that is, it is not a proper subset
of the neighbourhood of another vertex in G), then (G, c) is online extendible with
c(V ) = C = {1, . . . , k}. If we can construct a full set of rules on C that is good and
valid for (G, c) then we are done by Theorem 1.

We may assume that u∗ is coloured k. LetG′ be obtained fromG by adding edges to
G so that u∗ is adjacent to every vertex in G, including itself. Note thatG′ is twin-free:
u∗ is the only vertex adjacent to every vertex in the graph and if two other vertices both
have neighbourhoodsA+ u∗, then in G one must have neighbourhoodA and the other
A+ u∗, contradicting that G− u∗ is twin-free.

Let R∗
(G′,c) be obtained from R(G′,c) by propagation. As R(G′,c) contains the rule

C → k, we have that R∗
(G′,c) is a full set of rules on C that is valid for (G′, c) by Claim

1 and that is good for (G′, c) by Claim 2.
It remains only to show that R∗

(G′,c) is valid for (G, c). Note that for each vertex
v �= u∗ ofG, if c(NG(v)) = A, thenR(G′,c) contains the ruleA+k → x. Also R∗

(G′,c)
contains the rule A→ x as A∗ = A+ k (since A∗ is a minimal superset of A and must
contain k). In G, the set of colours in the neighbourhood of v is either A or A + k; in
either case there is a rule in R∗

(G′,c) to represent it.
Let B be the colours in the neighbourhood of u∗ in G. Then B∗ = C as, by the

maximality of B, there is no other superset of B involved in a rule of R(G′,c). Since
R(G′,c) contains C → k, R∗

(G′,c) contains B → k which represents u∗. So R∗
(G′,c) is

valid for (G, c) as required.
(⇐=) Suppose that for every vertex u∗ of G, either G − u∗ is not twin-free or the

neighbourhood of u∗ in G is not maximal. We show that (G, c) is not online extendible
with C = {1, . . . , k}.

Suppose, for a contradiction, that there is an online algorithm to extend (G, c). Add
vertex v to G adjacent to all vertices in G to form G1. Without loss of generality, our
algorithm assigns colour k to v to give us a colouring c1 of G1. Let u be the vertex
of G0 := G that is coloured k. There are two cases to consider: either G0 − u is not
twin-free or NG0(u) is not maximal.

SupposeG0 −u has twins, that is two vertices a and b with the same neighbourhood
(inG0−u). The colouring c0 = c, and therefore c1, colours a and b differently; however
we have c1(NG1(a)) = c1(NG1(b)), a contradiction.

Suppose NG0(u) is not maximal; suppose S = NG0(u) and T = NG0(u′), where
T = S ∪{t1, . . . , tr}. LetNi = NG0(ti). (Note that r �= 0 sinceG0 = G is twin-free.)
Add vertices w1, . . . , wr to G1 one at a time, where wi is adjacent to each vertex in
Ni ∪ {u}. Our online algorithm is forced to assign the colour of ti to wi (since they
have the same colours in their neighbourhoods). Let Gr+1 be the graph obtained after
addition of w1, . . . , wr and let cr+1 be its colouring. In Gr+1, cr+1, we find that u and
u′ have the same set of colours in their neighbourhoods but are coloured differently
(since they were coloured differently by c0). This is a contradiction. ��
Now we show that the online algorithms implied by Theorem 2 run in polynomial time.
Let G be a twin-free graph with ecological colouring c. We compute the sets A∗ re-
quired for the propagation. When a new vertex vi is presented and needs to be coloured,
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we first determine the set of coloursA in the neighbourhood of vi. We then computeA∗

by checking whether A is a subset of any member of A, and if so, finding the smallest
and first ordered such member of A. This determines the rule by which vi should be
coloured and can be done in time polynomial in the size of G.

3 Ecological H-Colouring

Crescenzi et al. [4] mention that ECOLOGICAL K3-COLOURING is NP-complete and
ask if the computational complexity of ECOLOGICAL H -COLOURING can be classi-
fied. We classify the computational complexity of the ECOLOGICAL H -COLOURING

problem for all fixed target graphsH .
Before doing this, we must introduce some further terminology. Given a graph H

on k vertices, we define the product graph Hk. The vertex set of Hk is the Cartesian
product

VHk = VH × · · ·VH︸ ︷︷ ︸
k times

.

Thus a vertex u of Hk has k coordinates ui, 1 ≤ i ≤ k, where each ui is a vertex
ofH (note that these coordinates of u need not be distinct vertices ofH). The edge set
of Hk, EHk , contains an edge (u, v) in EHk if and only if, for 1 ≤ i ≤ k, there is an
edge (ui, vi) in H . For 1 ≤ i ≤ k, the projection on the ith coordinate of Hk is the
function pi : VHk → VH where pi(u) = ui. It is clear that each projection is a graph
homomorphism.

Theorem 3. If H is bipartite or contains a loop, then ECOLOGICAL H -COLOURING

is in P . IfH is not bipartite and contains no loops, then ECOLOGICAL H -COLOURING

is NP-complete.

Proof. The first sentence of the theorem is an easy observation which we briefly justify.
IfH has no edges, then G has an ecologicalH-colouring if and only ifG has no edges.
Suppose H is bipartite and contains at least one edge (x, y). If G is bipartite, then we
can find an ecologicalH-colouring by mapping each vertex of G to either x or y. If G
is not bipartite then it is clear that there is no homomorphism from G to H . If H has a
loop, then any graph has an ecologicalH-colouring since we can map every vertex to a
vertex with a loop.

We prove that the ECOLOGICAL H -COLOURING problem is NP-complete for loop-
less non-bipartite H by reduction from H -COLOURING which is known to be NP-
complete for loopless non-bipartiteH [8].

Let G be an instance of H-colouring and let n be the number of vertices in G. Let
k denote the number of vertices in HN , the neighbourhood graph of H (recall that the
neighbourhood graph of H is a graph in which each vertex has a unique neighbour-
hood and is obtained from H by repeatedly deleting one vertex from any pair with the
same neighbourhood). Let π denote a vertex in Hk

N whose k coordinates are the k dis-
tinct vertices ofHN (the order is unimportant). LetG′ be a graph formed fromG and n
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G G′

u = π

Hk
N

Fig. 3. The graph G′ formed by attaching G to copies of Hk
N

copies ofHk
N by identifying each vertex u ofG with a distinct copy of the vertex π; see

Fig. 3. We can distinguish the copies of Hk
N by referring to the vertex of G to which

they are attached.
We claim that G has an H-colouring if and only if G′ has an ecological HN -

colouring which is clearly equivalent to G′ having an ecological H-colouring. As it
is clear that if G′ has an ecological HN -colouring, the restriction to VG provides an
H-colouring for G, all we need to prove is that when G has an H-colouring, we can
find an ecologicalHN -colouring forG′.

If G has an H-colouring, then clearly it also has an HN -colouring f . We use f to
find an ecologicalHN -colouring g forG′. For each vertex u ∈ VG, f(u) = πi for some
i (this is possible because of the choice of π as a vertex that has each vertex ofHN as a
coordinate). For each vertex v in the copy of Hk

N attached to u, let g(v) = pi(v). Note
that g(u) = pi(u) = πi = f(u) for each vertex u in VG.

Certainly g is anHN -colouring: the edges ofEG are mapped to edges ofHN since g
is the same as f on VG, and the edges of each copy ofHk

N are mapped to edges ofHN

as g is the same as one of the projections ofHk
N on these edges.

We must show that it is ecological; that is, for each pair of vertices s and t in G′, we
must show that

g(NG′(s)) = g(NG′(t)) =⇒ g(s) = g(t). (1)

Suppose that g(NG′(s)) = g(NG′(t)). We know that g(s) = pi(s) = si for some value
of i. Then for each x ∈ NHN (si), there is a vertex s′ ∈ NG′(s) with g(s′) = x (since
we can choose as s′ a vertex in the same copy ofHk

N as s with s′i = x and s′j being any
neighbour of sj , 1 ≤ j ≤ k, j �= i). Thus g(NG′(s)) ⊇ NHN (si) and so, since g is an
HN -colouring, g(NG′(s)) = NHN (si) and then, by (1), g(NG′(t)) = NHN (si). But
as the neighbourhoods of vertices in HN are distinct, we must have g(t) = si = g(s).
This completes the proof of Theorem 3. ��

4 Conclusions and Open Problems

In the first part of our paper, we show that checking whether a pair (G, c) is online
extendible with some finite set C ⊇ c(VG) can be done in polynomial time for fixed C.
Determining the computational complexity of this problem when C is part of the input
remains an open problem. We obtain a positive result when considering pairs (G, c) in
which each vertex of the k-vertex graph G has a distinct colour. For such (G, c), we
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can check in time polynomial in k if (G, c) is online extendible with any C ⊇ c(VG).
Indeed, we find that if |C| = k+ 1, then (G, c) is always online extendible with C, and
there are infinitely many examples of (G, c) that are not online extendible with C when
|C| = k. It would be interesting to know whether there are examples of graphs that can
be extended online with an infinite number of colours but not with a finite number. We
have not been able to find such examples.

In the second part of our paper we gave a complete computational complexity
classification of the ECOLOGICAL H -COLOURING problem, thus answering an open
problem posed in [4]. What about the computational complexity of the problems that
ask whether a given graph G allows an edge-surjective or vertex-surjective ecological
colouring to a fixed target graph H? If H is not a neighbourhood graph, G allows nei-
ther an edge-surjective nor a vertex-surjective ecological colouring. Hence, both prob-
lems differ from the ECOLOGICAL H -COLOURING problem and are only interesting
for neighbourhood graphsH . We note, however, that determining the complexity of the
corresponding problems that ask if a graph allows an edge-surjective homomorphism,
or a vertex-surjective homomorphism, respectively, to a fixed graph H are notoriously
difficult open problems.
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Abstract. Quantum computing is widely regarded as being able to of-
fer computational complexity benefits beyond the possibilities of classical
computing. Yet the relationship of quantum to classical computational
complexity is little understood. A fundamental approach to exploring this
issue is to study the extent to which quantum computations (especially
with restricted sub-universal ingredients) can be classically efficiently
simulated. We will discuss a series of results relating to the classical
simulation of some interesting classes of quantum computations, partic-
ularly Clifford circuits, matchgate circuits and a simple class of quantum
circuits (so-called IQP circuits) comprising commuting gates. We will
outline an argument that a suitably efficient classical simulation of the
latter class would imply a collapse of the polynomial hierarchy.

Keywords: Quantum computation, quantum complexity, classical sim-
ulation, matchgates.

1 Introduction

Quantum computing is widely regarded as being able to offer computational
complexity benefits beyond the possibilities of classical computing. The non-
classical phenomenon of quantum entanglement is sometimes quoted as an es-
sential feature (cf [1]) but we still have very little understanding of how to exploit
specific quantum effects for computational advantage, and the landscape bridg-
ing classical and quantum computational complexity remains largely uncharted.
A fundamental approach to exploring these issues is to study the extent to which
quantum computations (especially with restricted sub-universal ingredients) can
be classically efficiently simulated. In this talk we will begin by briefly recalling
the basic formalism of the quantum computational model and notions of classical
simulation, and then discuss a series of results relating to the classical simulation
of some interesting classes of quantum computations, and their implications for
quantum versus classical computational complexity.

A uniform family of (quantum) circuits is a family of circuit descriptions Cw

parameterised by bit strings w = i1 . . . in, such that the mapping w → Cw is
computable in classical log space. Thus uniform circuit families are always poly-
sized. The output of Cw is the result of a standard quantum measurement (i.e.
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in the computational basis) on one or more qubit lines, after Cw is applied to a
nominated input state. The description Cw is deemed to include a specification
of the input state and a specification of which lines are the output lines.

There are various possible notions of classical simulation for quantum circuit
families. Let Pw denote the output distribution of Cw. We say that the circuit
family is strongly simulatable if each of the output probabilites in Pw can be com-
puted to m digits of precision (i.e. exponential precision) in classical poly(n,m)
time. A circuit family is weakly simulatable if given the description of Cw, its out-
put distribution Pw can be sampled by purely classical means in poly(n) time.
A circuit family is weakly simulatable with multiplicative error c ≥ 1 if there is a
family Rw of distributions (on the same sample spaces as Pw) such that Rw can
be sampled in classical poly(n) time and for all x and w we have

1
c

Prob(Pw = x) ≤ Prob(Rw = x) ≤ c Prob(Pw = x).

A further notion of approximate weak simulation has been formulated in [3]:
recall first that the Chernoff-Hoeffding bound (cf Appendix of [3]) implies the
following result – if we have a quantum process implementing Cw then by running
it poly-many times we can (with probability exponentially close to 1) obtain an
estimate p̃ of any output probability p to within polynomial precision i.e for any
polynomial f(n) we can output p̃ such that |p − p̃| < 1/f(n). We say that the
circuit family is (classically) weakly simulatable with additive polynomial error if
the same estimates can be obtained from the circuit descriptions Cw by purely
classical means in poly(n) time (and probability exponentially close to 1).

Note that if a uniform circuit family Cw decides a language L with bounded
error probability 0 ≤ ε < 1

2 then the existence of a weak simulation for Cw

implies that L ∈ BPP. Similarly the existence of a weak simulation with additive
polynomial error, or with multiplicative error 1 ≤ c < 2(1 − ε), will also imply
that L ∈ BPP. The class of languages decided with bounded error probability
by a uniform quantum circuit family is conventionally denoted BQP. The term
“efficient” will be used to mean “polynomial time”.

Perhaps the earliest explicitly recognised example of the classical simulata-
bility of a restricted class of quantum circuits is the Gottesman-Knill theorem
[2,4] which we briefly recall. The Pauli group P1 on a single qubit comprises the
standard Pauli matrices [2] X,Y and Z together with the identity matrix I and
scalar multiples by powers of i. The Pauli group Pn on n qubits, a subgroup
of the unitary group U(2n) in 2n dimensions, is the n-fold tensor power of P1.
The Clifford group Cn is then defined to be the normaliser of Pn in U(2n). The
Gottesman-Knill theorem (slightly modified from the original form) asserts the
following: suppose we have any uniform family of quantum circuits comprising
Clifford gates with input being a product state (e.g. any computational basis
state) and output given by a measurement on a single specified qubit. Then the
output can be strongly simulated. In fact for Clifford circuits single qubit output
probabilities are always 0,1 or 1

2 . An explicit characterisation of Clifford gates
is known [4] and it is notable that such circuits can generate entanglements
between the qubits. Thus a naive classical simulation by direct linear algebra
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calculation of the evolving state vector components, fails to be efficient, and the
special relationship between the Clifford and Pauli groups turns out to be able
to provide an alternative method that is efficient.

2 Matchgate Circuits

Inspired by the simulation of Clifford circuits, it is interesting to seek further in-
stances of mathematical structural properties that can be exploited for efficient
classical simulation of quantum circuits. A second example is given by the the-
ory of matchgates, introduced by Valiant [5], which have a series of remarkable
properties. For us, a matchgate [5,9] is defined to be any 2-qubit gate G(A,B)
of the form (in the computational basis):

G(A,B) =

⎛⎜⎜⎝
p 0 0 q
0 w x 0
0 y z 0
r 0 0 s

⎞⎟⎟⎠ A =
(
p q
r s

)
B =

(
w x
y z

)
(1)

where A and B are both in SU(2) or both in U(2) with the same determinant.
Thus the action of G(A,B) amounts to A acting in the even parity subspace
(spanned by |00〉 and |11〉) and B acting in the odd parity subspace (spanned
by |01〉 and |10〉). Such gates arise in the theory of counting perfect matchings
in weighted graphs [5,6] and also in aspects of quantum physics (especially the
theory of so-called non-interacting fermions [8,7]). A fundamental simulation
result of Valiant (slightly modified from [5] and elaborated in [9]) is the following:
consider any matchgate circuit of size N such that (i) the matchgates act on
nearest neighbour (n.n.) lines only, (ii) the input is any computational basis
state |i1 . . . in〉, and (iii) the output is the final measurement of any designated
single qubit line. Then the output probabilities may be classically calculated to
m digits of precision in poly(N,m) time. In particular uniform families of n.n.
matchgate circuits can be classically strongly simulated. After the announcement
of Valiant’s result it was noticed [8,7] that this theorem is closely related to
known simulation results for systems of non-interacting fermions in quantum
physics. It is also interesting to note that, as emphasised in [10], the proof of
Valiant’s theorem may be cast into a form parallelling that of the Gottesman-
Knill theorem, with suitable alternative mathematical structures substituting
for the Pauli and Clifford groups.

3 Assessing Simulation Complexity and Extensions

A further feature that emerges from the above simulation proofs is the following:
if we examine more closely the actual computations involved in the classical simu-
lations then in some cases we can characterise the exact (sub classical-poly-time)
computational power of the circuit classes. In this way Aaronson and Gottes-
man [11] showed that the computational power of Clifford circuits coincides,
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in a natural way, with the classical complexity class ⊕L (of languages decided
by classical nondeterministic log-space Turing machines which are deemed to
accept if an odd number of computational paths halt with accept). More pre-
cisely, introduce the language Lclifford of descriptions of Clifford circuits such
that on input |0 . . . 0〉, an output measurement on the first qubit line yields 1
with probability 1 (recalling [2] that the latter probability is always 0 or 1

2 or 1
for any Clifford circuit). Then is was shown that this language is complete for
⊕L (relative to log-space reductions).

For the case of matchgate circuits, the classical simulation method (based on
the so-called Jordan-Wigner representation, cf [9] for an exposition) proceeds by
translating the action of circuits of width n (hence acting in a state space of
dimension 2n) into the consideration of products of orthogonal matrices of size
2n× 2n. The orthogonality property is especially fortuitous here since we may
then view these matrices as special cases of unitary matrices, and hence quantum
operations, acting on log 2n = O(log n) qubit lines. In this way we can obtain
an exact relationship [12] between the power of matchgate circuits and quantum
space bounded computation. For example in the setting of uniform circuit fam-
ilies we have the following theorem [12]: the computational power of log-space
uniform n.n. matchgate circuit families (which generally have polynomial size
and width) coincides with universal unitary poly-time quantum computation
on O(log n) qubits (i.e. within a quantum log space bound). We obtain equal-
ities between corresponding classes of decision problems both in the bounded
error and unbounded error settings. This result is interesting in that it identifies
the computational power of an algebraically restricted class (i.e. matchgates) of
computations as coinciding with the power of full quantum computation subject
only to a resource restriction (log space).

Given any class of quantum circuits that can be classically simulated (and
hence offering no supra-classical computational benefit) it is interesting to con-
sider what extra quantum ingredients suffice to restore full universal quantum
computing power. In the case of matchgates we obtain a tantalizing result [9]:
although circuits of matchgates acting on n.n. qubit lines are efficiently simulat-
able, if we allow the 2-qubit matchgates to act also on just next-nearest-neighbour
lines, then we efficiently regain full universal quantum computation [9]. In this
sense we could attribute any extra computational power of quantum over clas-
sical computation to the mere ability of matchgates to act on lines just distance
one further apart! This (and other such results) may suggest that the gap be-
tween classical and quantum computational power might be considerably more
subtle than initially intuitively envisaged. In view of the above, we may even be
lead to ask whether (almost) all quantum computations might after all, turn out
to be classically efficiently simulatable e.g. is BPP = BQP? This question is at
present unresolved.

4 IQP Circuits

Although the above results about n.n. vs. next-n.n. matchgate circuits may sug-
gest that the distinction between BPP and BQP could be delicate, we can also
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develop other arguments supporting the presence of a substantial gap in com-
putational power. We consider an especially simple class of quantum circuits,
originally introduced in [13], called temporally unstructured (or instantaneous)
quantum computations, and an associated class called IQP (of families of prob-
ability distributions that can be generated in “instantaneous quantum poly-
time”). Here we will describe a restricted version of the formalism of [13] that
will suffice for our purposes. Let S denote the class of all 2-qubit unitary gates
which are diagonal in the computational basis and with diagonal entries all be-
ing powers of eiπ/8. An IQP circuit is defined to be any circuit of the following
form: each qubit line begins and ends with a Hadamard gate H , and in be-
tween we have a circuit of gates drawn only from S. The input state is always
|0〉 |0〉 . . . |0〉 and the output is a quantum measurement (in the computational
basis) on a designated set of lines. A uniform family of IQP circuits is a family
Cw of IQP circuit descriptions where w → Cw is computable in classical poly(n)
time. In contrast to our previous notion of uniform family (used for classically
simulatable circuits) it is convenient here to allow full poly-time (rather than
just log-space) uniformity and to standardise the input states as always being
|0〉 . . . |0〉. Let IQP denote the class of (families of) probability distributions that
arise as outputs of uniform IQP circuit families.

IQP is indeed a very simple kind of quantum computational process. The gates
of S all commute so (apart from the initial and final Hadamard gate on each
line) the output is independent of the order in which the gates are applied, hence
“temporally unstructured” or “instantaneous (as in quantum physics, commut-
ing operations may be physically implemented simultaneously on a system). If
we place two Hadamard gates on each line between each occurrence of a gate
from S (recalling that HH = I) then we may absorb all H gates (including the
initial and final ones on each line) into conjugation actions on the gates from
S. Thus alternatively we could define an IQP circuit simply as a circuit made
entirely of gates diagonal in the X-basis {|0〉± |1〉}, with diagonal entries, input
state and output measurements remaining as before.

Our main result about IQP computations is the following [14]: suppose that
outputs from any uniform family of IQP circuits can be weakly simulated to
within multiplicative error c with 1 ≤ c <

√
2. Then the classical polynomial

hierarchy PH collapses to its third level, PH3. This provides strong evidence
that such weak classical simulation of IQP processes should not be possible
and correspondingly, that quantum poly-time computational processes, utilising
only such simple IQP processes as their quantum ingredients, should be able to
provide complexity benefits surpassing the possibilities of classical computation.

We refer to the forthcoming preprint [14] for a full discussion and proof of
this result and here we make only some remarks. An essential technical tool in
the proof is the notion of a post-selected computation for a decision problem.
This is a (classical or quantum) probabilistic process with output lines com-
prising a single line (x) and a further register of so-called post-selection lines
(denoted y). Then we consider only runs of the process for which the y register
is seen to output some fixed value, say 00 . . .0 i.e. instead of using Prob(x) as
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the accepting and rejecting probabilities, we use the conditional probabilities
Prob(x|y = 00 . . .0). Aaronson [15] showed that the post-selected version post-
BQP of BQP coincides with the classical class PP. As a preliminary lemma for
our result above we show that the class called post-IQP, of languages decided
with bounded error by uniform IQP circuits with post-selection, also equals post-
BQP and hence PP. Then we can argue that if IQP circuits could be weakly sim-
ulated to within a multiplicative error as above, then we would have post-IQP
⊆ post-BPP, where post-BPP is the post-selected version of BPP. The latter
class (also known as BPPpath [16,17]) is known [16] to be contained in the third
level PH3 of the polynomial hierarchy. Then putting all these relations together,
the multiplicative-error weak simulatability of IQP processes would entail PP =
post-IQP ⊆ post-BPP ⊆ PH3, and then Toda’s theorem would imply that PH
= PH3.

As a final remark we point out that it may be shown [14] that uniform families
of IQP circuits can be classically weakly simulated (even without multiplicative
error i.e. with c = 1) provided that the number of output lines is suitably small
viz. growing only as O(log n). (The methods of [3] can also be used to give a
weak simulation with additive polynomial error in these cases). In view of this
it is notable that our argument above leading to a collapse of PH involves a hy-
pothetical weak simulation (with multiplicative error) of distributions resulting
from O(n) lines of IQP processes (as we generally need to consider post-selection
registers y of width O(n)). Thus the assumption of non-collapse of PH implies
classical hardness of simulation only for IQP processes with a suitably large
number of output lines. Recalling that the class BQP is defined in terms of only
single line measurements, it would then still be not inconsistent to have BQP
and BPP being equal with PH not collapsing.
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Abstract. In this paper we compare two types of conditional prefix
complexity assuming that conditions are sets of strings rather than
strings. We show that prefix-free and prefix-correct versions of the defi-
nition are essentially different.

1 Introduction

A function f (arguments and values are binary words) is called prefix-correct if

f(x) is defined and x � x′ ⇒ f(x′) = f(x)

Here x � x′ means that x is a prefix of x′. A prefix-correct description mode, or
method is a computable prefix-correct function (the arguments and values are
binary words). Prefix complexity of a word z with respect to description mode
f is the length of the shortest x such that f(x) = z (in this case x is called a
description of z w.r.t. f):

KPf (z) = min{l(x) | f(x) = z}.

It is known that there exists an optimal prefix-correct description mode, such
that for all other f ′ there exists a constant c, and

KPf (z) � KPf ′(z) + c

for all z. We fix some optimal prefix-correct description method. In what fol-
lows we call complexity w.r.t. this optimal method prefix complexity KP (z) of
z. Similarly to the plain Kolmogorov complexity, complexities with respect to
different optimal prefix-correct description methods differ at most by an additive
constant. Thus KP (z) is defined up to an additive constant.

The definition above was given by Levin in [3], [4] and Gács in [2]. Chaitin in
[1] used a different definition based on prefix-free functions. A function is prefix-
free if every two words from its domain are incomparable (one of them cannot
be a prefix of the other). There exist optimal prefix-free description methods;
we fix one of them and denote prefix-free complexity by KP ′(z).
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It is known that these two variants of prefix complexity are equal up to an
additive term O(1). This follows from bounds

− logm(z) � KP (z) +O(1) � KP ′(z) +O(1) � − logm(z),

where m(z) is the a priori probability of z (m is the maximal enumerable semi-
measure; it is unique up to a multiplicative constant).

The definitions above have their conditional versions. A function f of two
arguments (both are binary words) is called prefix-correct in the first argument
if for every fixed value of the second argument we get a prefix-correct function.
If f(x, y) = z then x is called a description of z conditional on y, and

KPf(z|y) = min{l(x) | f(x, y) = z}.

Again, the class of such description methods has an optimal one: there is f such
that for all g we have KPf(z|y) � KPg(z|y) + c for some c and all y, z. We fix
one of them and denote the corresponding conditional complexity by KP (z|y).

This definition can be modified: instead of prefix-correct description modes
(in the first argument) we can consider prefix-free descriptions modes (in the
first argument). For this class of description methods there is also an optimal
description method. We denote the corresponding conditional complexity by
KP ′(z|y).

These two definitions differ from each other by only an additive constant:

KP (z|y) = KP ′(z|y) +O(1) = − logm(z|y) +O(1),

where m(z|y) is a conditional version of a priori probability.
In the paper [6], the plain conditional Kolmogorov complexity KS(z|y) was

generalized to the case when condition consists of many words. Let f be a com-
putable function of two arguments, z a binary word, and Y a set of binary
words. Complexity KSf(z‖Y ) is defined as the minimal length of x such that
f(x, y) = z for every y∈Y . Again there exists an optimal f , and we denote the
corresponding complexity byKS(z‖Y ). The goal of [6] was to define Kolmogorov
complexity for a larger class of algorithmic problems than problems of the type
“print the string a”. In general, any set of strings Z has its (plain) Kolmogorov
complexity defined as min{KS(z) | z∈Z}. The conditional completity KS(z‖Y )
is essentially the complexity of the algorithmic problem “transform any element
of Y to z”.

The prefix version of complexity KS(z‖Y ) was introduced in [7]. For ev-
ery binary z and a set of binary words Y we call conditional prefix complexity
KPf (z‖Y ) of z conditional on Y the minimal length of a word x such that
f(x, y) = z for all y∈Y . There is an f in the class of all partial computable
functions that are prefix-correct in the first argument such that for every other
f ′ in the class there exists c such that KPf (z‖Y ) � KPf ′(z‖Y ) + c for all z
and all Y . We call such a function strongly optimal. We fix a strongly optimal
function and denote the corresponding prefix complexity conditional on a set by
KP (z‖Y ).
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Similarly, there is a strongly optimal prefix-free (in the first argument) de-
scription method; we denote the corresponding complexity of z conditional on a
set Y by KP ′(z‖Y ).

These definitions are the counterparts of the usual KP (z) and KP ′(z) (and
their conditional variants KP (z|y), KP ′(z|y)) and coincide with them up to an
additive constant in the case Y = {empty string} (respectively, Y = {y}).

Let us define also a priori probability m(z‖Y ) as infimum of m(z|y) over all
y∈Y . It is not hard to see that for all z, Y we have

− logm(z‖Y ) � KP (z‖Y ) +O(1) � KP ′(z‖Y ) +O(1)

Is it true that all the three complexities in these inequality coincide up to an
additive constant (as it happens to KP (z|y), KP ′(z|y), and − logm(z|y))? This
question was raised in [7].

The partial positive answer to this question was known in one special case.
Let n be a natural and Yn the set of all naturals greater than n. Denote com-
plexities conditional on this Yn by KP (z| � n), KP ′(z| � n) and m(z| � n).
In [7] it was proven that for all z the limits of the sequences (as n tends to
infinity) − logm(z| � n), KP (z| � n), KP ′(z| � n) coincide (up to an additive
constant).

In this paper we show that in general case the answer to the question is
negative, even for sets Y of cardinality at most 2.

2 Inequality between Two Types of Conditional Prefix
Complexity

It is easy to prove the following inequality (for all z and Y ):

KP (z‖Y ) � KP ′(z‖Y ) +O(1)

Indeed, let g be a strongly optimal prefix-free (in the first argument) function.
We can convert it in a strongly optimal prefix function f as follows. For a given
pair (x, y) we run in parallel computations of g(x′, y) for all x′ that are prefixes
of x. Since g(·, y) is prefix-free, at most one of these computations converges.
When we find x′ such that g(x′, y) is defined, we set f(x, y) = g(x′, y).

By the construction, f is computable, prefix-correct in the first argument,
and it is a continuation of g. Hence, complexity w.r.t. f is not greater than
that w.r.t. g. The prefix-correct conditional complexity is not greater (up to an
additive constant) than KPf , and we are done.

Now we state the result of this paper:

Theorem 1. For all c there are z, Y such that

KP (z‖Y ) � KP ′(z‖Y )− c.
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Proof. Let g be the strongly optimal prefix-free function. It suffices to show that
there exists a prefix-correct in the first argument function f such that for c there
are z, Y with

KPf(z‖Y ) � KP ′
g(z‖Y ) − c. (1)

First we fix any constant c and construct a function f that satisfies the re-
quired inequality for that value of c. We will define f by exhibiting an algorithm
computing f . More precisely, we will define an algorithm A that enumerates
all the triples (x, y, z) with f(x, y) = z. The algorithm A will run the algorithm
computing g on all inputs in a dovetailed fashion and, observing appearing values
of g, it will define f ’s values on certain arguments. During this procedure, when
f(x, y) becomes defined, we also mentally define f(x′, y) for all continuations
x′ � x of x.

The algorithm will find a string z and a finite (1- or 2-element) set Y satis-
fying (1). At each time the algorithm is aware only about finitely many values
of g and thus has at his hand a restriction of g on a finite set of pairs (x, y). If
that restriction satisfies (1) for the currently constructed g, we will say that we
“are fine”. If for certain z, Y the inequality (1) remains true forever, we will say
that the algorithm A is successful. We will prove that this is indeed the case.

The main idea is as follows. The algorithm is allowed to define f on contin-
uations of strings where f has been defined previously, whereas g cannot get
defined on continuations of strings in the domain of g. We will use this property
of g to force g “run out of space” or to satisfy (1).

The algorithm A runs in 2c+1 + 1 stages. On stage i we will use descriptions
of length i for f . Stage i will consists of 2i−1 steps. And each step will basically
consist of a huge number (about 222c+1

) of applications of a certain Procedure.
Stage 0. Take a large enough finite set Z of strings (the cardinality of Z

depends on c, we specify it later). Choose for every z∈Z a string yz and set
f(Λ, yz) = z for all z∈Z (here Λ is the empty word). Run the algorithm com-
puting g for all possible inputs in a dovetailed fashion. Wait until for every z∈Z
there appears xz of length less than c with g(xz, yz) = z. If it never happens, we
are fine, as then there exists a z such that 0 = KPf (z‖{yz}) � KP ′

g(z‖{yz})−c.
The number of words of length less than c is 2c−1, so by pigeon hole principle

we can find x such that xz = x for an essential fraction of z from Z. We delete
from Z all other values of z and denote {x} = X . The cardinality of Z has
reduced at most by a factor of 2c.

Stage i (1 � i � 2c+1). At the start of Stage i we have a (large enough) set Z
and a set of binary words X such that

1. |X | = 2i−1.
2. ∀x∈X : |x| < c+ i− 1.
3. ∀z∈Z, ∀x∈X : g(x, yz) = z.

The goal of the stage is to add 2i−1 words of length less than c+ i to X at the
expense of reducing Z so that property 3 remain true (or to make (1) forever
true for some z, Y ).
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Stage i consists of 2i−1 steps. On each step we add to X one word of length
less than c + i keeping property 3 true. On each step the algorithm works as
follows.

Step k (1 � k � 2i−1): As we have yet made less that 2i−1 steps, we have
|X | < 2i. We say that a z∈Z is good if

∃x : x/∈X, |x| < c+ i, g(x, yz) = z,

and bad otherwise. While the number of bad elements in Z is greater than |X |
run the following procedure.

Procedure: Select a subset of bad words Z ′ ⊂ Z of cardinality |X | + 1.
Pick an arbitrary v such that f(·, v) is not yet defined anywhere. Then,
for all z∈Z ′, choose a word uz of length i and set f(uz, v) = z. There
are enough unused words uz for this purpose, as |Z ′| = |X |+ 1 � 2i and
the number of words of length i is 2i. So we get

∀z∈Z ′ KPf (z‖{yz, v}) = i,

since f(Λ, yz) = z and hence f(uz, yz) = z.
Continue computation of g and wait until it happens that

∀z∈Z ′ KP ′
g(z‖{yz, v}) < c+ i.

If it never happens, we are fine. Otherwise, for every z∈Z ′ there is xz of
length less than c+ i with g(xz, yz) = z. As |X | < |Z ′|, for some z ∈ Z ′

we have xz /∈ X . Thus, we have acquired a new good word xz.

Every application of the Procedure decreases the number of bad words. Once
the number of bad words has become at most |X |, for at least |Z| − |X | strings
z ∈ Z there is xz /∈X with |xz| < c+ i and g(xz, yz) = z. By pigeonhole principle
there is x such that for at least 2−c−i(|Z| − |X |) string z ∈ Z we have xz = x.
We remove from Z all other z, add this x to X and proceed to the next step.
(End of Step k.)

We keep adding elements in X until |X | reaches the required cardinality (to
this end it suffices to make Step k for k = 1, . . . , 2i−1). Then we proceed to the
next stage i+ 1. (End of Stage i.)

We have to show that it is impossible to complete all 2c+1 + 1 stages (that
is, the algorithm succeeds on some stage). Indeed, all words in X are pairwise
incomparable, since they are from the domain of the prefix-free function g. On
Stage the set X gets 2i−1 new words of length at most c+ i− 1. If all 2c+1 + 1
stages have finished, we get a contradiction with the Kraft–McMillan inequality:

2c+1∑
i=0

2i−1 · 1
2c+i

> 1.

So we get z, Y such that KPf (z‖Y )�KP ′
g(z‖Y ) − c.
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How to generalize this argument so that to construct f that beats all constants
c? Since the initial cardinality of Z is finite and depends only on c, we can run
the algorithm A in parallel for all c. We need to ensure that all sets Zc and are
pairwise disjoint. Also we need to use different descriptions for different c’s. To
this end we can prefix each description the algorithm A(c) is about to use by a
self-delimiting description of c in O(log c) bits. In this way we will construct a
function f such that for all c there are z, Y with

KPf (z‖Y )�KP ′
g(z‖Y ) − c+O(log c).

As c is arbitrary, the statement of the theorem is not weakened in this way. ��

The next theorem is a more refined version of our result. It provides an upper
bound of z as a function of c in the previous theorem.

Theorem 2. For all c there are z, Y such that

KP (z‖Y )�KP ′(z‖Y ) − log log |z|+O(log log log |z|)

and |z| = 22c+1
+O(1), the set Y consists at most of two words of length |z|+O(1).

Proof. To show this we have to estimate the initial cardinality of Zc. Since there
are less than 2c+i words of length less than c + i, adding every new word in X
costs reducing |Zc| by a factor of at most 2c+i (the pigeon hole principle). On
each stage we add 2i−1 words, and the number of stages is at most 2c. Hence,
in the course of 2c stages Zc gets reduced by a factor at most

((2c+2c

)2
2c

)2
c ∼ 222c+1

.

And we need Zc to be non-empty on all stages. So, everything is OK if the initial
cardinality of Zc is O(222c+1

). Since z is chosen in Zc, it holds c = log log |z| +
O(1).

Required set Y consists of one word yz (if the goal has been reached on stage
0) or two words {yz, v} (otherwise). Obviously, |{yz|z ∈ Zc}| = |Zc|, so we can
choose as yz strings of length 22c+1

+ O(1). On each step we used at most |Zc|
words called v in the construction. The number of steps is at most 22c

, so the
number if needed v’s is at most 22c · |Zc| ∼ O(222c+1

) and we can choose strings
of length 22c+1

+O(1) as v’s. ��

Is the lower bound of the last theorem tight? The only known upper bound for
KP ′(z‖Y ) in terms of KP (z‖Y ) is the following. For every word z and set Y ,

KP ′(z‖Y )�KP (z‖Y ) +O(log |z|)

Indeed, let g([|x|]x, y) = f(x, y), where [|x|] is a self-delimited representation of
the length of x. With respect to g, we have

KP ′
g(z‖Y )�KPf (z‖Y ) +O(log |z|).

Thus there is an exponential gap between the known lower and upper bounds
for KP ′(z‖Y ) −KP (z‖Y ).
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Abstract. We define monotone complexity KM(x, y) of a pair of binary
strings x, y in a natural way and show that KM(x, y) may exceed the
sum of the lengths of x and y (and therefore the a priori complexity of
a pair) by α log(|x| + |y|) for every α < 1 (but not for α > 1).

We also show that decision complexity of a pair or triple of strings
does not exceed the sum of its lengths.

1 Introduction

There are different versions of Kolmogorov complexity: plain complexity (C),
prefix complexity (K), decision complexity (KR), monotone complexity (KM),
etc. Let us recall the definitions of plain, monotone and decision complexities in
a form suitable for generalizations (see [7,8]).

1.1 Plain Complexity

Kolmogorov complexity CF (x) of a binary string x with respect to a computable
function F (a decompressor) is defined as

CF (x) = min{|p| : F (p) = x},

where |p| stands for the length of a binary string p. There exists an optimal
decompressor U such that CU is minimal up to O(1); CU (x) is then called (plain)
Kolmogorov complexity of x.

Let us reformulate this definition in a way that is parallel to the definition
of monotone complexity. Instead of a function F let us consider its graph. A
description mode is an enumerable set W of pairs of binary strings that is a
graph of a function, i.e.,

〈p, x〉 ∈W, 〈p′, x′〉 ∈W, p = p′ ⇒ x = x′,

If 〈p, x〉 ∈ W , then p is called a description for x with respect to W . The com-
plexity CW (x) of a binary string x is the minimal length of a description for x
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with respect to W . There is an optimal description mode S such that for every
description mode W there exists cW such that

CS(x) � CW (x) + cW

for every binary string x. The corresponding function CS is plain Kolmogorov
complexity.

Monotone complexity. We use the definition of monotone complexity KM(x)
suggested by L. A. Levin. (Levin [2] gave a criterion of Martin-Löf randomness in
its terms: a binary sequence ω is Martin-Löf random if and only if |x|−KM(x) �
c for some constant c and all prefixes x of sequence ω; here |x| denotes the
length of a string x. Earlier a similar criterion was proven by Schnorr who used
a different version of complexity, called “process complexity”.) Let us recall the
definition of monotone complexity in terms of binary relations. A monotone
description mode is an enumerable set W of pairs of binary strings such that:

– if 〈p, x〉 ∈W and p # p′, then 〈p′, x〉 ∈W .
– if 〈p, x〉 ∈W and x′ # x, then 〈p, x′〉 ∈W .
– if 〈p, x〉 ∈W and 〈p, x′〉 ∈ W, then x # x′ or x′ # x.

Here x # x′ means that x is a prefix of x′ (or x = x′). The intuition behind
this definition: a binary string u is considered as partial information about an
infinite sequence that has prefix u; then p # p′ means that p′ is a refinement of
p, so if p describes x, every p′ / p should also describe x, and so on.

If 〈p, x〉 ∈ W , then p is called a description for x with respect to W . The
monotone complexity KMW (x) of x with respect to a monotone description
modeW is (again) the minimal length of a description for x. There is an optimal
monotone description mode S such that

KMS(x) � KMW (x) + cW

for every monotone description modeW and binary string x. The function KMS

is called monotone Kolmogorov complexity. (It is indeed monotone: if x is a prefix
of x′, then KM(x) � KM(x′).)

1.2 Decision Complexity

Decision complexity was defined by D.W. Loveland [4]. As before, we reformulate
the definition in terms of binary relations. (Here description is treated as an
isolated binary string while described object is treated as information about an
infinite sequence.)

Formally, a decision description mode is an enumerable set W of pairs of
binary strings such that:

– if 〈p, x〉 ∈W and x′ # x, then 〈p, x′〉 ∈W .
– if 〈p, x〉 ∈W and 〈p, x′〉 ∈ W , then x # x′ or x′ # x.
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If 〈p, x〉 ∈ W , then p is called a description for x with respect to W . The
decision complexity KRW (x) of x is the minimal length of a description for x
with respect to W . There is an optimal decision description mode S such that

KRS(x) � KRW (x) + cW

for every decision description mode W and binary string x. KRS(x) is called
decision Kolmogorov complexity.

The notions of monotone complexity and decision complexity can be naturally
generalized to tuples of strings. (Monotone complexity for tuples was considered
also by H. Takahashi, cf. [6].)

2 Monotone Complexity of a Pair

A monotone description mode for pairs is a pair of enumerable sets W1 and W2;
each of them is a monotone description mode (as defined earlier).

The monotone complexity KMW1,W2(x, y) of a pair of binary strings x and y
is the minimal length of a string p such that 〈p, x〉 ∈ W1 and 〈p, y〉 ∈ W2 (i.e.,
p describes x with respect to W1 and describes y with respect to W2). There is
an optimal monotone description mode for pairs and we can define monotone
complexity of a pair, denoted by KM(x, y).

Monotone complexity of pairs is a monotone function: x # x′ and y # y′
implies KM(x, y) � KM(x′, y′). Monotone complexity of pairs 〈x, x〉, 〈x, Λ〉 and
〈Λ, x〉 (here Λ stands for an empty string) equals KM(x) (up to O(1) additive
term).

Monotone complexity of a string x is bounded by its length:

KM(x) � |x| + c

(for some c and all x). It is easy to prove that monotone complexity of a pair
〈x, y〉 is bounded by sum of lengths of strings x and y with additional logarithmic
term. For every α > 1 we have

KM(x, y) � |x| + |y| + α log(|x| + |y|) +O(1).

(all the logarithms have base 2). Indeed, a pair 〈x, y〉 can be (monotonically)
described by the concatenation of a self-delimited code for x (of size |x|+α log |x|)
and string y. The following theorem shows that this bound cannot be significantly
improved.

Theorem 1. For every α < 1 and every c ∈ N there exists a pair of binary
strings 〈x, y〉 such that

KM(x, y) > |x| + |y| + α log(|x| + |y|) + c.

Proof. We fix some universal monotone description mode W of pairs. By way
of contradiction, let us suppose the inequality

KM(x, y) � |x| + |y|+ α log(|x| + |y|) + c
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holds for some α < 1, some c ∈ N and for all pairs 〈x, y〉. Then every pair 〈x, y〉
has description of length f(|x| + |y|) where

f(n) = n+ %α logn& + c

(and f(0) = c). (Note that if p is a description for a string x, then every p′ / p
is also description for x).

We get the desired contradiction by counting how many objects can a descrip-
tion serve and how many descriptions and objects we have. First of all, note that
we have about n2n pairs where sum of lengths is n but only 2n descriptions of
length n. This is not enough for us, because the same string can be a description
of many pairs: if p is a description of some pair 〈x, y〉 with long x and y, it is a
description of all pairs 〈x′, y′〉 where x′ # x and y′ # y, and n+ 1 pairs among
them have |x′|+ |y′| = n. So we get the same factor n here as before. The crucial
observation is that if some short p is a description of a pair 〈x, y〉 with long x
and y, then all extensions of p describe the same pair and therefore we waste a
lot of descriptions. To make this argument formal, we need to consider at the
same time descriptions of different lengths.

It is done in the following way. Let S be a set of binary strings. We define
the gain of the set S, denoted by G(S), as follows: each pair 〈x, y〉 that has a
description p in S with |p| = f(|x| + |y|), adds 2−(|x|+|y|) to the gain.

G(S) =
∑

〈x,y〉 has a description p in S with |p| = f(|x| + |y|)
2−(|x|+|y|).

Let Sn be a set of all strings of length at most f(n). By assumption, Sn contains
descriptions of length f(k) for all pairs 〈x, y〉 such that k = |x| + |y| � n.
Therefore the gain of Sn is at least∑

k�n

(k + 1) 0 n2/2

At the other hand, we prove the following lemma (and get the desired contra-
diction):

Lemma. The gain of the set of all strings of length at most f(n) does not exceed
O(n1+α).

Proof. Let p be a string of length f(l) for some l � n. We prove the following
upper bound on the gain of set Sp,n of all binary strings of length at most f(n)
that have prefix p:

2f(l)G(Sp,n) � (n+1)2f(n)−n+
n−1∑
k=l

2f(k)−k+1+
n−1∑

k=�(n−1)/2�
(2k+1−n)2f(k)−n (1)

(Note that in the last term the factor (2k+ 1− n) is non-negative if and only if
k � *(n − 1)/2+.) Using the fact that f(k) is less than k + α log(k) + c we get
an upper bound for the gain of Sb,n when |b| = c (we let l = 0):
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2cG(Sb,n) � 2c(n+ 1)nα + 2c · 2 ·
n−1∑
k=0

kα + 2c · 2 ·
n−1∑

k=�(n−1)/2�
(2k + 1− n)2k−nkα

The left-hand side is an upper bound for G(Sn) since the gain is achieved on
strings of size b or more, and all three terms in the right hand side (both sums
and the additional term 2c(n+ 1)nα) are bounded by O(n1+α) values.

It remains to prove the inequality (1) by a backward induction on the length
of string p. There are 2f(k) different subsets Sp,n with |p| = f(k), and our bound
is valid for each of them. The right side of the inequality (1) depends only on
the length of p.

Induction base (l = n). For strings p with |p| = f(n) we need to show that
the following inequality holds:

G(Sp,n) � (n+ 1)2−n

Indeed, the set Sp,n consists of only one string of length f(n) that can be a
description for n+ 1 (or less) pairs 〈x, y〉 with |x| + |y| = n, and the pairs with
smaller sum of lengths do not give any gain.

Induction step. Suppose the inequality (1) is valid for all sets Sp′,n with |p′| =
f(l) and l > k. We will prove the bound on the gain G(Sp,n) with |p| = f(k).
At first we consider a case when f(k + 1) = f(k) + 1. (It can also happen that
f(k+1) = f(k)+2, but we consider this case later.) The set Sp,n consists of the
root p and two subtrees Sp0,n and Sp1,n. A simple bound for G(Sp,n) is the sum
of gains of this subtrees and the root’s gain, but it is not enough. We should use
the fact that if the root (p) is a description for many pairs of total length k then
there should be of lot of pairs (of greater total length) that have descriptions in
both subtrees Sp0,n and Sp1,n, and we should take into account descriptions for
each of this pairs only once.

There is some maximal pair of binary strings 〈x, y〉 such that p is a description
of 〈x, y〉 (in the following sense: if p is a description of some other pair 〈x′, y′〉,
then x′ # x and y′ # y). The total length |x| + |y| of this pair may be greater
than k; in this case p provides gain for several pairs. Let r be a number of those
pairs. (Obviously, 0 � r � k+ 1). Then (by definition) the root p itself provides
gain r2−k. If r > 1, the root p is also a description for at least r − 1 pairs with
total length k + 1. These pairs are already taken into account in both G(Sp0,n)
and G(Sp1,n) since they have descriptions of length f(k + 1) in these subtrees.
Therefore, we may subtract this overlap of size (r − 1)2−(k+1) from the sum
G(Sp0,n) +G(Sp1,n). Continuing this line of reasoning, we note that the root p
is a description for r − 2 pairs with total length k+ 2, for r − 3 pairs with total
length k + 3 and so on. We should take into account the overlap for these pairs
too. Gains and penalties should be taken only for pairs with total length at most
n. Thus we get the following bound on the gain of Sp,n:

G(Sp,n) � G(Sp0,n) +G(Sp1,n) + r2−k − (r − 1)2−(k+1) − . . .− (r − i)2−(k+i).
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Here i is the maximal integer such that r − i � 1 and k + i � n, i.e., i =
min(r−1, n−k). Transforming the right hand side (splitting one term into two),
we get

G(Sp,n) � G(Sp0,n) +G(Sp1,n) + 2−k + (r − 1)2−k − (r − 1)2−(k+1)−
− (r − 2)2−(k+2) − . . .− (r − i)2−(k+i),

then (combining terms that contain r − 1)

G(Sp,n) � G(Sp0,n) +G(Sp1,n) + 2−k + (r − 1)2−(k+1)−
− (r − 2)2−(k+2) − . . .− (r − i)2−(k+i),

then (splitting again)

G(Sp,n) � G(Sp0,n) +G(Sp1,n) + 2−k + 2−(k+1) + (r − 2)2−(k+1)−
− (r − 2)2−(k+2) − . . .− (r − i)2−(k+i),

then (combining terms that contain r − 2)

G(Sp,n) � G(Sp0,n)+G(Sp1,n)+2−k+2−(k+1)+(r−2)2−(k+2)−. . .−(r−i)2−(k+i),

and so on until we get

G(Sp,n) � G(Sp0,n)+G(Sp1,n)+2−k +2−(k+1) + . . .+2−(k+i−1) +(r− i)2−(k+i),

Recall that we have two cases: i = min(r− 1, n− k) and minimum can be equal
to the first or the second term. If r − 1 < n − k, the first term matters. Then
i = r − 1, so r − i = 1 and in the right hand side we have a geometric sequence
that can be bounded by twice its first term, i.e.,

G(Sp,n) � G(Sp0,n) +G(Sp1,n) + 2 · 2−k.

If r− 1 � n− k, then i = n− k and (in addition to geometric sequence) we have
the last term:

G(Sp,n) � G(Sp0,n) +G(Sp1,n) + 2 · 2−k + (r − n+ k)2−n.

The maximal value for this last term is achieved when r is maximal, i.e., r = k+1.
So in any case we have the following bound:

G(Sp,n) � G(Sp0,n) +G(Sp1,n) + 2 · 2−k + (2k + 1 − n)2−n.

At the end we have the expression:

G(Sp) < 2 max(G(Sp0), G(Sp1)) + 2−k+1 + max(0, 2k + 1 − n)2−n

Remember, f(k + 1) − f(k) is equal to 1 by assumption. Then the inequality
may be rewritten as:

G(Sp) < 2f(k+1)−f(k) max(G(Sp0), G(Sp1))+2−k+1+max(0, 2k+1−n)2−n (2)
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Now we can multiply both sides of inequality (2) by 2f(k) and use the induction
assumption. The max-operation in the last terms restricts the sum to its non-
negative terms, i.e., for k � *(n− 1)/2+.

Now it remains to consider the case f(k + 1) − f(k) = 2. In this case we can
also use the inequality (2) with term max(G(Sp00), G(Sp10), G(Sp01), G(Sp11))
instead of max(G(Sp0), G(Sp1)). (We have the sum of gains for four subtrees,
and 2f(k+1)−f(k) = 4. Note that we do not use the overlap in full: the same pairs
are served in all four subtrees, so we could subtract three times more, but it is
not needed.) This is enough for our induction argument.

Lemma (and therefore Theorem 1) are proven.

3 Decision Complexity of Triples

A decision description mode for pairs is a pair of enumerable sets W1 and W2;
each of them is a decision description mode. The complexity KRW1,W2(x, y)
of a pair of binary strings x and y is the minimal length of a string p such
that 〈p, x〉 ∈ W1 and 〈p, y〉 ∈ W2 (i.e., p describes x with respect to W1 and p
describes y with respect to W2).

There is an optimal decision description mode for pairs and we can define
decision complexity of a pair, denoted by KR(x, y). We can also define decision
complexity KR(x, y, z) of a triple in the same way (as well as decision complexity
of k-tuples for any fixed k).

It is easy to see that decision complexity of a binary string x is bounded by
|x| + O(1). Indeed, we may consider the set W of all pairs 〈p, x〉 where x is a
prefix of p. In this case every string x is a description of itself; switching to the
optimal description mode, we lose O(1).

It is also easy to prove that decision complexity of a pair 〈x, y〉 is bounded by
|x| + |y| +O(1). Let the set W1 from our definition be the set of all pairs 〈p, x〉
where x is a prefix of p. Let the set W2be the set of all pairs 〈p, y〉 where y is a
prefix of pR (the reversed string p). Then any pair 〈x, y〉 has a description xyR,
and its length is |x| + |y|.

It turns out (quite unexpectedly) that similar statement is true for triples
(though we do not know the simple explanation why it happens and the argument
we use looks artificial; we do not know whether it generalizes to k-tuples for
k > 3):

Theorem 2
KR(x, y, z) � |x| + |y|+ |z|+ c

for some c and all triples 〈x, y, z〉.

Proof. The statement of Theorem 2 is a consequence of the following combina-
torial statement:

Lemma 1. For every n ∈ N there is a set Zn that contains 2n triples of n-bit
strings 〈a, b, c〉 such that for every triple 〈x, y, z〉 with |x| + |y| + |z| = n there
exists a triple 〈a, b, c〉 ∈ Zn such that x # a, y # b and z # c.
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Note that we need at least 2n elements in Zn since every triple 〈a, b, c〉 serves(
n+2

2

)
triples 〈x, y, z〉 and there are 2n

(
n+2

2

)
triples 〈x, y, z〉 with |x|+|y|+|z| = n.

Lemma 1 implies the statement of Theorem 2. Indeed, we may assume that
Zn is a computable function of n, and fix some bijection between elements of
Zn and n-bit strings. Then a binary string p of length n that corresponds to a
triple 〈a, b, c〉 ∈ Zn is considered as a description for every triple 〈x, y, z〉 where
x # a, y ≺ b, z # c. It remains to prove Lemma 1.

Lemma 1 is a simple consequence of the following algebraic statement. Con-
sider for every n a n-dimensional vector space Fn

2 over two-element field F2.

Lemma 2. There is a family of 3n vectors a1, . . . , an, b1, . . . , bn, c1, . . . , cn in
this space such that for every non-negative q, r, t with q + r + t = n the vectors
a1, . . . , aq, b1, . . . , br, c1, . . . , ct are linearly independent.

In other terms, we have three bases (ai), (bi) and (ci) in our space Fn
2 with

additional property: if we take in total n vectors from these bases, and in each
basis start from the beginning, we again get a basis in Fn

2 .
Let us show how Lemma 2 implies Lemma 1 (and therefore the statement of

Theorem 2). There are 2n different linear functions on Fn
2 → F2. For each linear

function f we construct a triple of binary strings 〈a, b, c〉 (and these triples form
Zn):

a = f(a1) . . . f(an), b = f(b1) . . . f(bn), c = f(c1) . . . f(cn).

So we get 2n triples. For any triple of binary strings 〈x, y, z〉 such that |x|+ |y|+
|z| = n, consider q = |x|, r = |y|, and t = |z|. Since a1, . . . , aq, b1, . . . , br, c1, . . . , ct
are independent, there exists a linear function that has values x1, . . . , xq on
a1, . . . , a1, has values y1, . . . , yr on b1, . . . , br and z1, . . . , zt on c1, . . . , ct. It re-
mains to prove Lemma 2.

Proof of lemma 2. We will construct the required family by induction over n.
The induction step moves us from n to n+ 3, so we need to consider the cases
n = 1, 2, 3 for a base.

Induction base. For n = 1, the space has dimension 1 and three vectors are
a, a, a where a is the only nonzero vector in the space.

For n = 2 consider the basis e, f in our (2-dimensional) space; six vectors
could be, for example

e f
f e
e+ f e

(the first row is a1, a2, the second is b1, b2, the third is c1, c2). Each row is
evidently a basis, and if we take any two vectors from the first column, we also
get a basis.

Finally, for n = 3 we take a basis e, f, g in three-dimensional space and con-
sider vectors

e f g
g f e

f + e+ g f e.
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Each row is evidently a basis; first column is a basis. If we take two first vectors
of any row and complement them by a first element of some other row, we again
get a basis. (Note that we can check either the linear independence or the fact
that chosen vectors span the entire space.)

Induction step. By induction assumption, we have 3k vectors

a1 a2 . . . ak
b1 b2 . . . bk
c1 c2 . . . ck

in a k-dimensional space. Now we add three new dimensions and corresponding
vectors a, b, c (that complement any basis in k-dimensional space giving a basis in
(k+3)-dimensional space). We need to construct 3k+3 vectors in this extended
space. It can be done as follows:

a a1[+c] a2[+c] . . . ak[+c] b+ c c
b b1[+a] b2[+a] . . . bk[+a] c+ a a
c c1[+b] c2[+b] . . . ck[+b] a+ b b

(square brackets mean that we either add the term in brackets or not, the choice
will be made later).

We need to check the every family of k + 3 vectors (in each row we choose
some vectors starting from the left) is independent. Let us start with simple
cases where this can be checked independently of the terms in brackets.

Each row forms a basis: first vector and two last vectors generate all three
vectors a, b, c, after that the square brackets terms do not matter and we use the
induction assumption.

If selection involves all three rows, then vectors a, b, and c are there, and
the rest of the selection is k vectors taken from old family, so we get a basis
(induction assumption).

It remains to consider the case when selection involves exactly two rows,
say, two first rows. Then it includes vectors a and b. Therefore, the terms [+a]
in the second row do not matter (since we can add b without changing linear
independence). There are several possibilities starting from

a, b, b1, b2, . . . , bk, a+ c

(all the terms except the first one are taken from the second row) and ending
with

a, a1[+c], a2[+c], . . . , ak[+c], b+ c, b
(all the terms, except the last one, are taken from the first row). These two
extreme cases are easy (we have a, b, c and vectors from the old basis), but
intermediate cases require more attention. Let us start with selection

a, a1[+c], b, b1, b2, . . . , bk

(two vectors from the first row and the rest from the second row). We have here
b1, . . . , bk that form a basis in the old space; vector a1 is a combination of them,
so if we add c, we get a basis in the new space (all three new vectors a, b, c are
now accessible). Then we move to the selection
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a, a1 + c, a2[+c], b, b1, . . . , bk−1.

Here (by induction) the vectors a1, b1, . . . , bk−1 form a basis, therefore a2 is a
combination of them. Using a1 + c instead of a1 in this combination, we may get
a2 + c instead of a2. If this is the case, we do not add c to a2 and get a basis in
the new space; if we still get a2, not a2 + c (this happens if a1 was not involved
in the expression for a2), we use a2 + c. Then we consider the next selection

a, a1 + c, a2[+c], a3[+c], b, b1, b2, . . . , bk−2,

recall that a1, a2, b1, . . . , bk−2 form a basis, take an expression for a3 in this basis,
look whether c appears if we use a1 + c and a2[+c] instead of a1 and a2, and so
on.

The case when selection does not involve first or second row is similar (circular
permutation of rows).

Lemma 2 is proven.

Question: Is an algebraic statement similar to Lemma 2 true for quadruples
(or k-tuples) instead of triples? If not, is the combinatorial statement similar to
Lemma 1 true? If not, is the decision complexity bounded by the sum of lengths?

Remark: If it is not the case for k-tuple for some fixed k, then get a new proof of
Theorem 1 in a weak form saying that KM(x, y) is not bounded by |x|+|y|+O(1).
indeed, it is easy to see that if such a bound were true, this would imply similar
bound for k-tuples for any k, and this would imply Theorem 2 for any k.
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Abstract. Symbolic semantics for logics of proofs based on Mkrtychev
models covers the the case of multi-conclusion proof logics. We pro-
pose symbolic models for single-conclusion proof logics (FLP and its
extensions). The corresponding soundness and completeness theorems
are proven. The developed symbolic model technique is used to establish
the consistency of contexts required for proof internalization. In par-
ticular, we construct an extension of FLP that enjoys the strong proof
internalization property with empty context.

1 Introduction

Propositional logics of proofs (see surveys [6,7]) are justification logics ([8]) with
justifications denoting formal proofs. They formalize the invariant properties
of arithmetical proof predicates together with computable operations on proofs
induced by admissible inference rules. The propositional language is extended
by new formulas of the form t :F (is read as “t proves F”) where F is a formula
and t is a proof term reflecting the proof constructed by means of a fixed set of
basic operations on proofs. Typical examples of basic operations are binary “ · ”
(application of modus ponens rule) and unary “ ! ” (proof checking).

Historically the first one was Logic of Proofs LP [2,4]. It corresponds to strictly
multi-valued proof predicates. In the sense of LP justifications mean finite sets
of arithmetical derivations with additional basic operation “+” that implements
the union of such sets. But “standard” proof predicates traditionally used in
formal arithmetic have the form

“x is (a code of) a derivation and y is (a code of) its last formula”

and are single-valued, i.e. a derivation can justify at most one formula. This case
is covered by single-conclusion (functional) proof logic FLP and its extensions
[10,11,12,13] where the uniqueness of such formula is formalized via Unification
axioms (see below, section 3). The approach based on Unification axioms was
proposed for the first time in [1] but was applied there to more primitive proof
logic language without operations on proofs.
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The consistency of LP and other justification logics that do not involve unifi-
cation can be easily established by forgetful translation that replaces all subfor-
mulas of the form t :F by F . It maps theorems of LP into classical propositional
tautologies. Moreover, this translation is the main method to study the consis-
tency of theories that are axiomatized over LP by formulas of the form c : A
(declares c to be a sufficient justification for A).

The forgetful translation does not work for FLP and its extensions. It maps
Unification axioms into formulas with arbitrary truth tables. The consistency of
FLP can be proven by another translation that replaces all subformulas of the
form t :F by ⊥ . But this method fails to establish the consistency of extensions
capable to prove positive facts of the form t : F . More thorough model theory
should be used for this purpose.

Arithmetical provability interpretations for single-conclusion proof logics were
considered in [11,13] where arithmetical soundness, completeness and decidabil-
ity theorems for these logics were proven. In this paper we propose the symbolic
model technique for single-conclusion proof logics. In most cases it is easier to
construct a symbolic model than arithmetical one, so it is natural to use the
developed technique in semantical studies of single-conclusion proof logics.

The idea to interpret formulas of the proof logic language as statements about
some abstract referential data structure comes from [3]. In [15] it was formalized
via the definition of symbolic model for LP (M -model, Mkrtychev model) and
was used to prove the decidability of this logic. Later the definition was adapted
to many other multi-conclusion proof logics in [14,18,19,17] and was generalized
for the case of epistemic modal logics with justifications (Kripke-Fitting models)
in [9,8,16]. The decidability results and complexity bounds for these logics are
based on symbolic semantics. Kripke-Fitting models provide the main semantics
for epistemic justification logics. But for single-conclusion proof logics the ade-
quate classes of symbolic models were not found. The straightforward adaptation
of definitions from [15] results in the class of single-valued M -models which is
too poor. The logic FLP is incomplete with respect to it.

We fill this gap by developing the symbolic model technique for
single-conclusion proof logics. The new idea we propose is to distinguish be-
tween the proof logic language and the language of a model. The corresponding
translation is a substitution that replaces variables of the first language by ap-
propriate expressions of the second one. It is an additional parameter in the
definition of a single-valued symbolic interpretation. We prove the completeness
of FLP with respect to interpretations of this sort.

The logics under consideration are FLP and its extensions by reference con-
structions of the form

f(t) = “ such ξ that t proves P (ξ, η) ”.

Here P (ξ, η) is a substitutional instance of some pattern formula P (x, y) and
t is a proof term. For given t the list of objects (proofs or sentences) denoted
by ξ, η is unique provided t really proves P (ξ, η) and the proof predicate is
single-valued (see [12,13] for restrictions on pattern formulas and further details).
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Reference constructions are used as Skolem functions for some limited form of
quantification. The propositional logic of proofs with reference constructions
FLPref is still decidable [13], whereas the logics of proofs with quantifiers are
not recursively enumerable [5].

For convenience, we extend the symbolic semantics to the language with two
particular reference constructions:

goal (t) = “ the formula that is proven by t ”,

refl (t) = “ such s that t proves that s proves something ”.

Here the pattern formulas are p and x :p where p is a sentence variable and x is
a proof variable. The corresponding soundness theorem is established.

As an example, we consider an application of symbolic model technique to
consistency proofs that concern proof internalization. Logics of proofs are able
to argue about their own derivations encoded via proof terms. In the case of
single-conclusion proof logics the sound usage of this encoding requires additional
context (constant specification) that declares parameters of the proof term to
denote the (trivial) proofs of axioms involved in the derivation. We establish
the consistency of these contexts. Moreover, we construct a decidable, consistent
and axiomatically appropriate constant specification. It is a joined context that
is sufficient for sound internalization of any derivation.

2 The Language L(FLP)

The language L(FLP) of single-conclusion proof logic FLP [11] has two sorts:
proof terms (Tm) and formulas (Fm),

Tm ::= xi | (Tm · Tm) | (!Tm) ,
Fm ::= ⊥ | pi | (Fm → Fm) | (Tm : Fm),

where x0, x1, . . . and p0, p1, . . . are proof and propositional variables respectively.
The following priority ordering is supposed: !, ·,→, : . We also use boolean con-
nectives ¬,∧,∨,↔, but treat them as shortenings which denote the classical
representations of these connectives in the basis {⊥,→}.

The members of Expr = Tm∪Fm will be considered as terms in the signature
Ω = {⊥,→, :, !, ·} and will be called expressions. In this context a substitution
is a sort preserving homomorphism of free term algebras of signature Ω, i.e. a
function on Expr that maps proof terms into proof terms, formulas into for-
mulas and commutes with symbols from Ω. A substitution σ is finite, if the
set Dom(σ) = {v | v is a variable and vσ �= v} is finite. Otherwise it is called
infinite. Let

V ar(σ) =
⋃

v∈Dom(σ)

V ar(vσ) ∪Dom(σ)

where V ar(e) is the set of all variables that occur in e ∈ Expr.
For e, e′ ∈ Expr we shall write e′ < e when e′ is a proper subexpression (sub-

term or subformula) of e and e′ ≡ e when expressions e and e′ are syntactically
equal.
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Definition 1. A conditional unification problem is a finite set of conditional
equalities

Ai = Bi ⇒ Ci = Di, Ai, Bi, Ci, Di ∈ Expr, i = 1, . . . , n. (1)

Definition 2. Let ∼ be an equivalence relation on Expr. It is called valid when
the following conditions hold:

(i) f(e1, . . . , en) ∼ f(e′1, . . . , e′n) ⇔ e1 ∼ e′1 ∧ . . . ∧ en ∼ e′n where f ∈ Ω is a
function symbol of arity n > 0 and e1, . . . , en, e′1, . . . , e

′
n ∈ Expr.

(ii) f(e1, . . . , en) �∼ g(e′1, . . . , e′m) for f �= g, f, g ∈ Ω.
(iii) The subexpression relation induces a strict partial ordering ≺ of the quo-

tient set Expr/∼ where [e]∼ ≺ [e′]∼ iff

e ≡ e0 ∼ e′0 < e1 ∼ e′1 < . . . < en ∼ e′n ≡ e′

for some finite sequence of expressions e0, e′0, e1, e
′
1, . . . , en, e

′
n and n > 0.

The partial order (Expr/∼,≺) remains well-founded.

Lemma 1. Let Expr, Expr′ be free term algebras of signature Ω. Any substi-
tution σ : Expr → Expr′ defines a valid equivalence relation ∼σ on Expr :

e ∼σ e
′ ⇔ eσ ≡ e′σ. (2)

Proof. Clearly, ∼σ is an equivalence relation and satisfies (i), (ii). The statement
(iii) follows from the fact that [e]∼σ ≺ [e′]∼σ implies eσ < e′σ. ��

Definition 3. A valid equivalence relation ∼ is called consistent with the con-
ditional unification problem (1) iff Ai ∼ Bi implies Ci ∼ Di for i = 1, . . . , n.
The conditional unification problem is called unifiable when it has a consistent
equivalence relation. A substitution σ is a unifier of (1) if the equivalence relation
∼σ is consistent with (1).

The classical (unconditional) unification is a special case of our definitions when
Ai ≡ Bi for all i. In the conditional case the main results of the classical unifi-
cation theory are also valid. In particular, the following statements are proven
in [11,13].

– The unifiability property for conditional unification problems of the form (1)
is decidable.

– Any unifiable problem of the form (1) has the least consistent equivalence
relation. The latter has the form ∼σ0 where σ0 is a finite substitution that is
idempotent (σ2

0 = σ0) and conservative (all variables from V ar(σ0) occur in
(1) ). The substitution σ0 can be computed effectively given Ai, Bi, Ci, Di,
i = 1, . . . , n.

– The substitution σ0 is the most general unifier of (1) in the following weak
sense: any substitution σ that unifies (1) has the form σ = σ0λ for some
substitution λ. (Note that not every substitution of the form σ0λ must unify
(1).)
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Definition 4. Let S be a conditional unification problem (1) and A,B ∈ Expr.
We shall write A = BmodS when A ∼ B for every valid equivalence relation ∼
that is consistent with S.

Lemma 2 ([11]). The relation A = BmodS is decidable.

Proof. The unifiability property of S is decidable. If S is not unifiable then
A = BmodS holds for every A,B ∈ Expr. For unifiable S one should restore
the most general unifier σ0 of S and test the equality Aσ0 ≡ Bσ0. ��

3 The Single-Conclusion Proof Logic FLP

With a formula of the form G =
∧n

i=1 ti :Fi we associate a conditional unification
problem:

ti = tj ⇒ Fi = Fj , i, j = 1, . . . , n. (3)

We shall write A = BmodG when A = BmodS and S is the conditional
unification problem (3).

The single-conclusion (or functional) proof logic FLP is defined by the follow-
ing calculus (see [11]):

(A0) Axioms of the classical propositional logic.
(A1) t :F → F .
(A2) t : (F → G) → (s :F → t · s :G).
(A3) t :F → !t :t :F .

(A4) Unification axioms:
n∧

i=1
ti :Fi → (A↔ B) if A = Bmod

n∧
i=1
ti :Fi.

Inference rule: (MP) F → G, F , G

4 Single-Valued M -Models

Definition 5. Let Sc = {S0, S1, . . .} and P c = {a0, a1, . . .} be two disjoint
sets of constants, propositional and proof constants respectively. The language
L(Sc, P c) is the same as L(FLP) but with all variables replaced by constants of
corresponding sorts:

Tmc ::= ai | (Tmc · Tmc) | (!Tmc) ,
Fmc ::= ⊥ | Si | (Fmc → Fmc) | (Tmc : Fmc).

Definition 6. AnM -model (Mkrtychev model, [15]) is a triplet 〈L(Sc, P c), E , v〉.
Here L(Sc, P c) is the language of the model, v :Sc → {0, 1} is a truth assignment
for propositional constants and E : Tmc → 2Fmc

is an evidence function. In the
model a term t ∈ Tmc is accepted as a valid evidence for every formula F ∈ E(t).
The following closure conditions are supposed:

– if F → G ∈ E(t) and F ∈ E(s) then G ∈ E(t · s);
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– if F ∈ E(t) then t :F ∈ E(!t).

An M -model is called single-valued if for every term t ∈ Tmc the set E(t) is a
singleton or empty.

For an M -model M = 〈L(Sc, P c), E , v〉 the validity relation |= is defined as
follows:

M �|= ⊥;
M |= Si ⇔ v(Si) = 1;
M |= F → G⇔M �|= F or M |= G;
M |= t :F ⇔ F ∈ E(t) and M |= F.

Definition 7. A symbolic model 〈σ,M〉 for the language L(FLP) is a single-
valued M -model M = 〈L(Sc, P c), E , v〉 supplied with a translation σ from
L(FLP) into L(Sc, P c). The translation is a substitution σ : L(FLP) → L(Sc, P c)
that replaces all variables of the language L(FLP) by expressions of the language
L(Sc, P c). (Note that σ preserves sorts, i.e. xiσ ∈ Tmc and piσ ∈ Fmc, but we
do not require it to be a finite substitution.)

The validity relation for formulas of the language L(FLP) is defined as follows:

〈σ,M〉 |= F ⇔M |= Fσ.

Comment. M -models can be considered as symbolic models with trivial trans-
lation σ = id. They provide an adequate semantics for multi-conclusion proof
logics [15,14]. Our definition can be rewritten in this form too: the validity rela-
tion for a symbolic model 〈σ,M〉 coincides with one forM -model 〈L(FLP), E ′, v′〉
with E ′(t) = {F | Fσ ∈ E(tσ)}, v′(pi) = v(piσ). In this sense the semantics given
by Definition 7 is a special case of the standard semantics for logics of proofs
based on Mkrtychev models. We decompose the standard definition in order to
separate the models that satisfy Unification axioms.

Theorem 1. If FLP , F then F is valid in every symbolic model of the language
L(FLP).

Proof. Axioms (A0)–(A3) and the rule (MP) are sound with respect to the class
of all M -models (see [15]). Let us prove the soundness of (A4).

Let 〈σ,M〉 be a symbolic model for L(FLP) and 〈σ,M〉 |=
∧n

i=1 ti :Fi. Con-
sider the equivalence relation (2) induced by σ. It is valid by Lemma 1. If ti ∼σ tj
then both formulas Fiσ, Fjσ belong to E(tiσ). But E(tiσ) is a singleton, so
Fi ∼σ Fj . Thus, ∼σ is consistent with (3) and A ∼σ B. The latter implies
〈σ,M〉 |= A↔ B. ��

5 Language Extension

The more expressive but still propositional proof logic language is proposed in
[12,13]. It extends the language L(FLP) by reference constructions which are
formalized via second order function variables of types Tm → Fm and Tm →
Tm. For example, the operation that extracts a provable formula from its proof
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is expressed by a function variable goal : Tm → Fm and axiomatized (over
Unification axioms) by the axiom schema

t :F → t :goal (t). (4)

Another example is the reflection operation refl : Tm → Tm that restores a
proof term for F given a proof term for t :F . The corresponding axiom schema
is

t1 :t :F → t1 :refl (t1) :F. (5)

Comment. The reason why function variables (not constants) are used comes
from Unification axioms. One has to allow the expressions like goal (t) or refl (t)
to be unifiable with expressions of the form f(u) where f ∈ Ω. Otherwise, when
for example F ≡ (F1 → F2) and goal is treated as a constant, the formula

t :F ∧ t :goal (t) → (2 ↔ ⊥)

should be qualified as Unification axiom because F and goal (t) are not unifiable.
So (4) implies ¬(t :F ) for any t and any F with → as the main connective.

In a single-valuedM -modelM = 〈L(Sc, P c), E , v〉 function variables α : Tm →
Fm and β : Tm → Tm denote functions α∗ and β∗ that map any term t ∈ Tmc

of the language L(Sc, P c) into a formula α∗(t) ∈ Fmc and a term β∗(t) ∈ Tmc

respectively. The axioms like (4), (5) may restrict the choice of these functions
(when present). The formal definition is as follows.

Definition 8. Let L(FLP2) be the extension of the language L(FLP) by func-
tion variables αi, βj where i ∈ I, j ∈ J . Terms (Tm2) and formulas (Fm2) of
the language are defined by the following grammar:

Tm 2 ::= xi | (Tm 2 · Tm 2) | (!Tm 2) | βj(Tm 2) ,
Fm 2 ::= ⊥ | pi | (Fm 2 → Fm 2) | (Tm 2 : Fm 2) | αi(Tm 2).

A symbolic model for the language L(FLP2) is a pair 〈σ,M 〉 where

M = 〈M, {α∗i }i∈I , {β∗j }j∈J〉

is a single-valued M -model M = 〈L(Sc, P c), E , v〉 supplied with the values
{α∗i }i∈I , {β∗j }j∈J for function variables and σ is an interpretation of the language
L(FLP) inM in the sense of Definition 7 extended to the language L(FLP2) by
the equalities

αi(t)σ = α∗i (tσ), βi(t)σ = β∗i (tσ), t ∈ Tm 2. (6)

A formula F ∈ Fm2 is valid in a symbolic model 〈σ,M〉 iff M |= Fσ.

Comment. For function variables αi, βj the expressions of the form αi(t) and
βj(t) are ordinary first order variables. We simply add these new variables to
the language and consider them as new atomic elements of the term algebra
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of signature Ω. The extended interpretation σ from Definition 8 is an infinite
substitution that replaces the new variables too. Equalities (6) define the ex-
pressions that should be substituted for them. The following property of the
extended interpretation is the direct consequence of (6):

tσ ≡ t′σ ⇒ αi(t)σ ≡ αi(t′)σ ∧ βj(t)σ ≡ βj(t′)σ. (7)

Definition 9. Let Expr2 = Tm 2 ∪ Fm 2 be the set of all expressions of the
language L(FLP2) considered as terms in signature Ω. In particular, the expres-
sions αi(t), βj(t) are treated as atomic and have no proper subexpressions. An
equivalence relation ∼ on the set Expr2 is called valid if it satisfies the conditions
(i),(ii), (iii) from Definition 2 and the following one:

(iv) If t ∼ t′ then αi(t) ∼ αi(t′) and βj(t) ∼ βj(t′), i ∈ I, j ∈ J .

The relation A = BmodG and the set of Unification axioms for the language
L(FLP2) are defined similarly but involve valid equivalence relations in the sense
of Definition 9. Both of them are also decidable (see [13]).

Definition 10. The logic FLP2 in the language L(FLP2) is defined by the same
axiom schemes (A0)-(A4) with methavariables denoting corresponding expres-
sions of the language L(FLP2). The inference rule is (MP).

Theorem 2. If FLP2 , F then F is valid in every symbolic model of the lan-
guage L(FLP2).

Proof. We follow the proof of Theorem 1. What should be updated is the proof
of the fact that the equivalence relation ∼σ on Expr2 (see (2)) induced by the
extended interpretation σ of a symbolic model 〈σ,M 〉 for the language L(FLP2)
is valid. The extended interpretation is a substitution, so Lemma 1 can be ap-
plied. It proves the properties (i), (ii) and (iii), i.e. the validity of ∼σ in the sense
of Definition 2. But (iv) follows from (7), so the relation ∼σ is valid in the sense
of Definition 9 too. ��

Definition 11. The logic FLP+
2 in the language L(FLP2) with two function

variables goal : Tm2 → Fm2 and refl : Tm2 → Tm2 is the extension of FLP2
by axiom schemes (4) and (5).

Definition 12. An FLP+
2 -model is a symbolic model that satisfies (4) and (5).

Any symbolic model 〈σ,M〉 for the language L(FLP) can be extended to an
FLP+

2 -model by appropriate choice of the functions goal ∗ and refl ∗. It is suffi-
cient to define goal ∗(t) as F if M |= t :F and refl ∗(t) as t′ if M |= t :t′ :F .

Corollary 1. The logic FLP+
2 is sound with respect to the class of all FLP+

2 -
models.
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6 Completeness

Single-conclusion proof logics are complete with respect to corresponding classes
of symbolic models. It follows from the saturation technique used in arithmetical
completeness proofs for these logics (see [11,13]). We prove the completeness
theorem for FLP.

Comment. In the case of multi-conclusion proof logics the consistency proofs
are usually based on the standard construction of maximal consistent sets of
formulas. This method does not work for single-conclusion proof logics. The
problem is to restore the interpretation σ via unification of an infinite set S of
conditional equalities encoded by a consistent set of formulas. The consistency
implies that any finite subset of S is unifiable which does not guarantee the
unifiability of S. Saturation procedures from [11,13] provide the unifiability.

Theorem 3. Let F ∈ Fm and FLP �, F . There exists a symbolic model 〈σ,M〉
for the language L(FLP) such that 〈σ,M〉 �|= F .

Proof. The saturation procedure for the logic FLP is described in [11]. It trans-
forms an unprovable formula F ∈ Fm into a saturated triplet 〈Γ,Δ, θ〉 where
Γ,Δ ⊂ Fm, Γ ∩Δ = ∅, and θ : Expr → Expr is a finite idempotent substitution.
The following saturation properties hold:

– If X → Y ∈ Γ then X ∈ Δ or Y ∈ Γ . If X → Y ∈ Δ then X ∈ Γ and
Y ∈ Δ. If t :X ∈ Γ then X ∈ Γ .

– If t : (X → Y ) ∈ Γ and s : X ∈ Γ then t ·s : Y ∈ Γ . If t : X ∈ Γ then
!t :t :X ∈ Γ .

– Γθ = Γ , Δθ = Δ, {⊥, F θ} ⊆ Δ.
– If t :X ∈ Γ and t :Y ∈ Γ then X ≡ Y .

Let 〈Γ,Δ, θ〉 be a saturated triplet for F . With every variable ξ �∈ Dom(θ) we
associate a new constant ξ. For an expression e ∈ Expr let e = eλ where λ is a
substitution that replaces all variables ξ �∈ Dom(θ) by ξ. Consider the language
L(Sc, P c) with

Sc = {pi | piθ = pi, i ∈ ω}, P c = {xi | xiθ = xi, i ∈ ω},

and an infinite substitution σ = θλ. Note that eσ ∈ Tmc∪Fmc for every e ∈ Expr
because θ is idempotent. Let E(t) = {X | t :X ∈ Γ} for t ∈ Tmc and v(pi) = 1 iff
pi ∈ Γ . It follows from saturation properties that E is an evidence function in the
sense of Definition 6 and E(t) contains at most one formula for every t ∈ Tmc.
Thus, 〈σ,M〉 where M = 〈L(Sc, P c), E , v〉 is a symbolic model for the language
L(FLP).

By induction on G ∈ Fm we prove that G ∈ Γ implies M |= G and G ∈ Δ
implies M �|= G. For example, consider the case G ≡ t :X . If t :X ∈ Γ then
X ∈ Γ (saturation property), so M |= X by induction hypothesis. We also have
X ∈ E(t) by the definition of E . Thus, M |= t :X . If t :X ∈ Δ then t :X �∈ Γ and
X �∈ E(t) which implies M �|= t :X . Other cases are treated similarly.

As a consequence we have M �|= Fσ because Fθ ∈ Δ and Fσ ≡ Fθ. ��
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7 Example: Consistency of Contexts

Logics of proofs are able to argue about their own derivations encoded via proof
terms. The possibility to encode derivations by proof terms known as proof inter-
nalization property (see [6,7])) is an essential property of all proof logic languages.
For single-conclusion proof logics FLP, FLP2 and FLP+

2 the encoding is is based
on the following Lemma 3 in which , denotes the derivability in one of these
logics.

Lemma 3. If , F then it is possible to construct a term t(c1, . . . , cn) depending
on fresh variables c1, . . . , cn such that

c1 :A1, . . . , cn :An , t(c1, . . . , cn) :F (8)

where A1, . . . , An is the list of all axioms involved in the derivation of F .

Proof. Consider a derivation F1, . . . , Fm of F with axioms A1, . . . , An. Let
c1, . . . , cn be distinct variables that do not occur in the derivation. For k =
1, . . . ,m define the term tk as follows. If Fk is an axiom Ai set tk = ci. Otherwise,
the formula Fk is obtained by the rule (MP) from some formulas Fi and Fj with
i, j < k. Set tk = ti · tj . By induction on k using (A2) one can prove that
c1 :A1, . . . , cn :An , tk :Fk, so the term t = tm satisfies (8). ��

Any derivation can be represented by corresponding term t(c1, . . . , cn). For sound
usage of this representation one should prove that the set of hypotheses in (8)
is consistent. It can be done by symbolic model technique (see Proposition 1).

For logics FLP, FLP2, FLP+
2 the term satisfiability means satisfiability in cor-

responding classes of symbolic models (models for L(FLP), models for L(FLP2)
or FLP+

2 -models respectively).

Proposition 1. For logics FLP, FLP2, FLP+
2 the following holds: if a set of

formulas Γ is satisfiable, F ∈ Γ and xi is a fresh variable that does not occur in
Γ then the set Γ ∪ {xi :F} is also satisfiable.

Proof. Case FLP. Let 〈σ,M〉 with M = 〈L(Sc, P c), E , v〉 be a symbolic model
for the language L(FLP) and M |= Gσ for all G ∈ Γ . We extend the language
L(Sc, P c) by new proof constant d.

Let E ′ be the minimal evidence function that extends E to all terms of the
language L(Sc, P c ∪ {d}) and E ′(d) = {Fσ}. It can be easily checked that M ′ =
〈L(Sc, P c ∪ {d}), E ′, v〉 is a single-valued M -model. Moreover, M ′ |= Gσ for all
G ∈ Γ and M ′ |= d :Fσ.

Consider a substitution σ′ such that xiσ
′ = d and zσ′ = zσ for all variables

z �= xi of the language L(FLP). It is a translation of the proof logic language
into the language of the model M ′ which coincides with σ on formulas from Γ
and (xi :F )σ′ = d :Fσ. So, 〈σ′,M ′〉 is a model for Γ ∪ {xi :F}.

Cases FLP2 and FLP+
2 . In addition to previous steps one has to define the

values α∗i (t), β
∗
j (t) for terms t of the language L(Sc, P c∪{d}) that contain d. The

validity of formulas from Γ ∪ {xi :F} does not depend on these values, so it is
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sufficient to satisfy the axioms. In the case of FLP2 there is no restrictions, so the
values α∗i (t), β

∗
j (t) for such t’s may be any formula and any term, respectively.

For FLP+
2 the values should be chosen in accordance with axioms (4) and (5)

(see Definition 12). ��

Corollary 2. In conditions of Lemma 3 the set of hypotheses {c1 :A1, . . . , cn :
An} is consistent.

Proof. By soundness results and Proposition 1, it is sufficient to prove the sat-
isfiability of the set {A1, . . . , An}. But formulas A1, . . . , An are axioms, so it
remains to prove that the classes of symbolic models for the logics FLP, FLP2
and FLP+

2 are nonempty.
The class of symbolic models for FLP includes trivial symbolic models with

L(Sc, P c) = L(FLP), σ = id and E(t) = ∅ for all t ∈ Tm. Any symbolic model
for FLP can be extended to an FLP+

2 -model which is also a model for FLP2. ��

Definition 13. Let one of the logics FLP, FLP2 or FLP+
2 be fixed. Any set of

formulas of the form c :A where c is a variable and A is an axiom will be called
a context. A context Γ is axiomatically appropriate (see [9]) if c :A ∈ Γ for every
axiom A of the logic and some variable c.

Comment. In the case of LP contexts are called constant specifications. For
single-conclusion proof logics the term “context” is preferable because the lan-
guages of these logics have no proof constants.

Let Γ be an axiomatically appropriate context. Consider a theory that extends
the logic by all formulas c :A ∈ Γ as new axioms. For this theory the internal-
ization property (Lemma 3) holds in a strong form without the hypotheses in
(8). But the theory may happen to be inconsistent.

Note that the logic LP has the same form. It is an extension of its logical
kernel LP0 by all formulas of the form c :A where A is an axiom of LP0 and c
is a proof constant. The consistency of LP is quite evident and can be proven
by forgetful projection. The consistency of theories over single-conclusion proof
logics requires more thorough analysis (see Introduction).

Theorem 4. The logics FLP, FLP2 and FLP+
2 have consistent decidable ax-

iomatically appropriate contexts.

Proof. Consider one of these logics. Let cij be the variable x2i3j , i, j ∈ ω, and
Ai

0, A
i
1, . . . be the lexicographic ordering of all axioms that do not contain vari-

ables ckj for k � i. The context Γ = {cij : Ai
j | i, j ∈ ω} is decidable and

axiomatically appropriate. It follows from Proposition 1 that all finite contexts
of the form Γk = {cij :Ai

j | i, j < k} for k ∈ ω are satisfiable. Thus, all Γk are
consistent which implies the consistency of Γ =

⋃
k Γk. ��

Corollary 3. The logics FLP, FLP2, FLP+
2 have consistent recursively axioma-

tizable extensions which admit proof internalization in the following strong form:
if , F then , t :F for some proof term t.
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Proof. Let T be a theory that extends the logic by the context Γ constructed in
Theorem 4. T is recursively axiomatizable and consistent. As in Lemma 3, the
strong proof internalization property for T can be established by induction on
the derivation of F . If F is a logical axiom then t = c where c :F ∈ Γ . If F is an
axiom c :A ∈ Γ then t =!c. The rule (MP) should be treated as in the proof of
Lemma 3. ��
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Abstract. We show that the problem of checking careful synchroniz-
ability of partial finite automata and the problem of finding the shortest
carefully synchronizing word are PSPACE-complete. We show that the
problem of checking D1, D2 and D3-directability of nondeterministic fi-
nite automata and the problem of finding the shortest D1, D2 and D3-
directing word are PSPACE-complete. The restrictions of these problems
to 2-letter automata remain PSPACE-complete.

Keywords: Synchronization, Automata, Directing Words, Computa-
tional Complexity.

1 Introduction

A deterministic finite automaton (DFA) is a triple A = (Q,Σ, δ), where Q is
a finite set of states, Σ is a finite alphabet and δ is a totally defined transition
function. Denote by 2Q the set of all subsets of the set Q, and by Σ∗ the free
Σ-generated monoid with the empty word λ. The function δ extends in a natural
way to the action Q × Σ∗ → Q. This extension is also denoted by δ. A DFA
A = (Q,Σ, δ) is called synchronizing if there exists a word w ∈ Σ∗ whose
action resets A , that is, leaves the automaton in one particular state no matter
at which state in Q it started: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word w
with this property is said to be a reset or synchronizing word for the automaton
A .

A conjecture proposed by Černý in [1] states that every synchronizing au-
tomaton with n states can be synchronized by a word of length at most
(n − 1)2. There have been many attempts to prove it, but they all have failed
so far. The conjecture has been proved only for some special cases of automata.
The best known upper bound is (n3 − n)/6 (see [2]). The corresponding lower
bound has been proved by Černý [1]. Surveys of results concerning synchronizing
words can be found in [4].

It is natural to consider the computational complexity of various problems
arising from the study of automata synchronization. The main natural questions
are as follows: given an automaton is it synchronizing or not, and what is the
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length of the shortest synchronizing word for a given automaton? In [3], Eppstein
presented an algorithm which checks whether a given DFA A = (Q,Σ, δ) is
synchronizing. This algorithm runs in O(|Σ| · |Q|2) + |Q|3 time. Moreover, for a
synchronizing automaton this algorithm finds some synchronizing word although
not necessarily the shortest. In [3], it is proved that the following problem is
NP-complete. Given a DFA A and an integer L, is there a word of length ≤ L
resetting the automaton A ? This problem remains NP-complete even if the
input automaton has a 2-letter alphabet.

The notion of a synchronizing word can be generalized to the case of DFA
with a partial transition function (PFA) and to nondeterministic finite automata
(NFA). A partial finite automaton (PFA) is a triple A = (Q,Σ, δ), where Q is a
finite set of states, Σ is a finite alphabet and δ is a partial function from Q×Σ
to Q (the function δ can be undefined on some pairs from the set Q×Σ). The
function δ can be naturally extended to 2Q ×Σ∗ as follows. We put δ(q, λ) = q
for every q ∈ Q. Let q ∈ Q, a ∈ Σ, w ∈ Σ∗. If both states p = δ(q, w) and δ(p, a)
are defined, then we put δ(q, wa) = δ(p, a). If S ⊆ Q, w ∈ Σ∗ and the values
δ(q, w) are defined for all states q ∈ S, then we put δ(S,w) = {δ(q, w)|q ∈ S}.

A PFA A = (Q,Σ, δ)is called carefully synchronizing, if there is a word
w ∈ Σ∗ such that the value δ(Q,w) is defined and |δ(Q,w)| = 1. We say that
such a word w is a carefully synchronizing word (c.s.w.) for the automaton A .
Clearly DFA is a partial case of PFA and in this case any c.s.w. is also syn-
chronizing. Therefore careful synchronization of PFA is a natural generalization
of the synchronization of DFA. The notion of careful synchronization was in-
troduced in [6]. This paper is devoted to a generalization of the Černý problem
to the case of PFA. Let c(n) be the maximal length of the shortest c.s.w. for
carefully synchronizing PFA A with n states. It follows from [6] and [7] that

Ω(3n/3) ≤ c(n) ≤ O(n2 · 4n/3).

A nondeterministic finite automaton (NFA) is a triple A = (Q,Σ, δ) such that
Q is a finite set of states, Σ is a finite alphabet, and δ is a function from Q×Σ
to 2Q. The function δ can be naturally extended to the set 2Q ×Σ∗. Let S ⊆ Q,
a ∈ Σ, then we put δ(S, a) =

⋃
q∈S

δ(q, a). We also put δ(S, λ) = S. Let S ⊆ Q,

w ∈ Σ∗, w = ua and the set δ(S, u) is defined, then we put
δ(S,w) = δ(δ(S, u), a). Note, that PFA is a partial case of NFA, but the def-
initions of the functions δ : 2Q × Σ∗ → 2Q for PFA and NFA are sufficiently
different, because these function have different co-domain.

Let A = (Q,Σ, δ) be an NFA and w ∈ Σ∗. The word w is D1-directing if
δ(q, w) �= ∅ for all q ∈ Q and |δ(Q,w)| = 1. The word w is D2-directing if
δ(q, w) = δ(Q,w) for all q ∈ Q. The word w is D3-directing if

⋂
q∈Q

δ(q, w) �= ∅.

The NFA A is called D1, D2 or D3-directing if there is a D1, D2 or D3-directing
word for it. The D1 and D3-directability is a generalization of careful synchro-
nization in the case when an NFA is a PFA and the D1, D2 and D3-directability
is a generalization of the synchronization in the case that an NFA is a DFA. The
D1, D2 and D3-directing words were studied in [5,7]. Let d1(n), d2(n) and d3(n)



290 P.V. Martyugin

be the maximal lengths of the shortest D1, D2 or D3-directing words for NFA
with n states respectively. The following lower and upper bounds of the length
of the shortest directing words were obtained:

2n − n− 1 ≤ d1(n), d2(n) ≤ O(2n), Ω(3n/3) ≤ d3(n) ≤ O(n2 · 4n/3).

There are two natural questions. How can we check whether a given PFA (NFA)
is carefully synchronizing (D1, D2, D3-directable)? How can we find the shortest
carefully synchronizing (D1, D2, D3-directing) word for a given PFA (NFA)?

These problems can be solved using simple algorithms. Let us consider an
algorithm of finding a c.s.w. for a PFA (the problems of finding D1, D2, D3-words
can be solved using similar algorithms). The algorithm uses the power automaton
2A = (2Q, Σ, δ), where 2Q is a set of all subsets of Q, and δ : 2Q × Σ → 2Q

is an extension of the function δ. If there is a path from the set Q to some
one-element set in the graph of the automaton 2A , then there is a c.s.w. for
A . This word can be read along the path in the graph. The path in the graph
of the automaton 2A can be found using breadth-first search. The breadth-first
search finds the shortest c.s.w. Such algorithm uses an exponential time and an
exponential memory in the size of PFA A .

The natural questions are as follow: can we solve the problems described
before using the memory of polynomial size? What is the complexity of checking
careful syncronizability and D1, D2, D3-directability? What is the complexity of
finding carefully synchronizing (D1, D2, D3-directing) words? In this paper we
prove that all these problems are PSPACE-complete. These problems stated for
automata over a k-letter alphabet for k > 1 (for instance for 2-letter alphabet)
are PSPACE-complete too.

Let us consider one more natural subclass of PFA. A PFA A = (Q,Σ, δ) is
called a PFA with a zero if there is a state z ∈ Q such that for any letter a ∈ Σ
it follows δ(z, a) = z. We will show that checking careful syncronizability for
PFA with a zero is PSPACE-complete even for 2-letter PFA.

2 Problems

Let us give formal definitions of the problems we have discussed.

Problem: CARSYN (ZERO CARSYN)
Input: A PFA (a PFA with a zero) A = (Q,Σ, δ).
Question: Is the automaton A carefully synchronizing?

Problem: D1DIR (D2DIR, D3DIR)
Input: A NFA A = (Q,Σ, δ).
Question: Is the automaton A D1-directing (D2-directing, D3-directing)?

Problem: SHORT CARSYN (ZERO CARSYN) WORD
Input: A PFA (a PFA with a zero) A = (Q,Σ, δ).
Task: To check whether the automaton A is carefully syncronizing and to

find the shortest c.s.w. for the automaton A if A is carefully synchronizing.
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Problem: SHORT D1DIR (D2DIR, D3DIR) WORD
Input: A NFA A = (Q,Σ, δ).
Task: To check whether the automaton A is D1-directing (D2-directing,

D3-directing) and to find the shortest D1-directing (D2-directing, D3-directing)
word for automaton A if A is D1-directing (D2-directing, D3-directing).

If the input of some PROBLEM contains only automata over an alphabet of size
≤ k for some fixed k, then we call such a problem k-PROBLEM (for example,
k-CARSYN or k-SHORT D1DIR WORD).

We will prove that all the problems defined above are PSPACE-complete. We
use polynomial-space reducibility of problems. Let the problem A be polynomial-
space reducible to the problem A. We denote this A ≤p B. This means that for
any instance α of the problem A there is an instance β of the problemB such that
the answer on α is true iff the answer on β is true and the size of β is polynomial
in the size of α. The problem B does not have to be a decision problem, but can
also be a search problem (like SHORT CARSYN WORD). To find a solution
of such a problem includes the problem of determining the existence of the
solution. Therefore, the relation A ≤p B is defined for all problems B defined in
this section. The length of fining words can be not polynomial in the size of input
automata. Therefore, then we calculate the computational space complexity of
some search problem we do not take take in account the size of output. The size
of search problem is the size of used memory without output tape. The next
proposition contain some trivial relations among the problems.

Proposition 1. Let PROBLEM ∈ {CARSYN, ZERO CARSYN, D1DIR,
D2DIR, D3DIR}, and let k ≥ 2 be an integer, then

1. ZERO CARSYN ≤p CARSYN, D2DIR
2. k-ZERO CARSYN ≤p k-CARSYN, k-D2DIR
3. SHORT ZERO CARSYN WORD ≤p SHORT CARSYN (D2DIR) WORD;
4. k-SHORT ZERO CARSYN WORD ≤p k-SHORT CARSYN (D2DIR)

WORD.
5. CARSYN ≤p D1DIR, D3DIR;
6. k-CARSYN ≤p k-D1DIR, k-D3DIR;
7. SHORT CARSYN WORD ≤p SHORT D1DIR (D3DIR) WORD;
8. k-SHORT CARSYN WORD ≤p k-SHORT D1DIR (D3DIR) WORD.
9. PROBLEM ≤p SHORT PROBLEM WORD;

10. k-PROBLEM ≤p k-SHORT PROBLEM WORD;
11. k-PROBLEM ≤p k + 1-PROBLEM;
12. k-SHORT PROBLEM WORD ≤p k + 1-SHORT PROBLEM WORD;
13. k-PROBLEM ≤p PROBLEM;
14. k-SHORT PROBLEM WORD ≤p SHORT PROBLEM WORD;

Proof. See Appendix.

Now, let us formulate the main theorem.

Theorem 1. For any integer k ≥ 2
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1. The problems CARSYN, SHORT CARSYN WORD, k-CARSYN and k-
SHORT CARSYN WORD are PSPACE-complete;

2. The problems ZERO CARSYN, ZERO SHORT CARSYN WORD, k- ZERO
CARSYN and k-SHORT ZERO CARSYN WORD are PSPACE-complete;

3. The problems D1DIR, SHORT D1DIR WORD, k-D1DIR and k-SHORT
D1DIR WORD are PSPACE-complete;

4. The problems D2DIR, SHORT D2DIR WORD, k-D2DIR and k-SHORT
D2DIR WORD are PSPACE-complete;

5. The problems D3DIR, SHORT D3DIR WORD, k-D3DIR and k-SHORT
D3DIR WORD are PSPACE-complete.

Proof. Our proof will consist of three steps. Firstly we reduce the problem FI-
NITE AUTOMATA INTERSECTION to the problem ZERO CARSYN and
prove that the problem CARSYN is PSPACE-hard (Proposition 2). Secondly
we reduce the problem ZERO CARSYN to the problem 2-ZERO CARSYN with
the help of automata obtained in Proposition 3. This proves that the problem
2-ZERO CARSYN is PSPACE-hard (Proposition 3). Thirdly we show that the
problems SHORT D1, D2 and D3DIR WORD belong to the class PSPACE
(Proposition 4). Then Proposition 1 gives us PSPACE-completeness of all con-
sidered problems.

Now we give some auxiliary definitions and notations. Let w ∈ Σ∗. Denote
by We let |w| denote the length of the word w. Let i, j ∈ {1, . . . , |w|}. We
let w[i] denote the i-th letter of the word w. We let w[i, j] denote the word
w[i]w[i+ 1] · · ·w[j]. Let n be a natural number. We denote by Σn the set of all
words of length n over the alphabet Σ.

3 The Problems Are PSPACE-Hard

Let us prove that the problem ZERO CARSYN is PSPACE-hard. We use the clas-
sical PSPACE-complete problem FINITE AUTOMATA INTERSECTION (see
[8]). We consider deterministic finite automata of the form A = (Q,Σ, δ, s, F )
as recognizers, where Q is a set of states, Σ is an alphabet, δ is a totally-defined
transition function, s ∈ Q is an initial state and F ⊆ Q is a set of final states. Let
w be a word Σ∗. The automaton A accepts the word w if and only if δ(s, w) ∈ F .

Problem: FINITE AUTOMATA INTERSECTION
Input: The recognizers A1 = (Q1, Σ, δ1, s1, F1), . . . ,Ak = (Qk, Σ, δk, sk, Fk),

for k ≥ 2.
Question: Is there a word w ∈ Σ∗ such that

δ1(s1, w) ∈ F1, . . . , δk(sk, w) ∈ Fk?

Proposition 2. The problem ZERO CARSYN is PSPACE-hard.

Proof. We reduce the problem FINITE AUTOMATA INTERSECTION to the
problem ZERO CARSYN. Let recognizers A1 = (Q1, Σ

′, δ1, s1, F1), . . .
. . . ,Ak = (Qk, Σ

′, δk, sk, Fk), k ≥ 2 be an input of the problem FINITE AU-
TOMATA INTERSECTION. We construct a PFA B = (Q,Σ, δ) such that there
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is a c.s.w. for the automaton B if an only if the recognizers A1, . . . ,Ak have a
common accepting word.

Let B = (Q,Σ, δ) be a PFA with Q = Q1 ∪ . . . ∪ Qk ∪ {beg, end}, Σ =
Σ′∪{x, y} and the following transition function. Let c ∈ Σ′ and q ∈ Qi for some
i ∈ {1, . . . , k}. We put

δ(q, c) = δi(q, c), δ(q, x) = si, δ(q, y) =
{
end, q ∈ Fi

undefined, otherwise

δ(end, x) = δ(end, y) = δ(end, c) = end.

δ(beg, x) = s1, δ(beg, y), δ(beg, c) are undefined.

The automaton B is represented by Figure 2 which can be found in Appendix.
The state end is a zero in the PFA B.

Let w ∈ Σ′∗ be a a word accepted by all the recognizers A1, . . . ,Ak. Let us
prove that the word xwy is a c.s.w. for the PFA B. Indeed, δ(Q, x) is defined
and δ(Q, x) = {s1, . . . , sk, end}. We have δ1(s1, w) ∈ F1, . . . , δk(sk, w) ∈ Fk.
Therefore the function δ(•, w) is defined on the set {s1, . . . , sk} and
δ({s1, . . . , sk}, w) ⊆ F1 ∪ · · · ∪ Fk. Hence the letter y is defined on the set
δ(Q, xw) = δ({s1, . . . , sk} ∪ {end}, w) and δ(Q, xwy) = {end}. Thus the word
xwy is a c.s.w. for the PFA B.

Lemma 1. Each shortest c.s.w. u ∈ Σ∗ for the automaton B is of the form
u = xwy for some w ∈ Σ′∗.

Proof. See Appendix.

Let u ∈ Σ∗ be some shortest c.s.w. for the automaton B. By Lemma 1 we get
u = xwy for some w ∈ Σ′∗. The letter y is defined on the set δ(Q, xw). Therefore
δ(Q, xw) ⊆ F1∪· · ·∪Fk∪{end}. This means that δ1(s1, w) ∈ F1, . . . , δk(sk, w) ∈
Fk and the word w is a common accepting word for the recognizers A1, . . . ,Ak.

We have reduced the problem FINITE AUTOMATA INTERSECTION to
the problem ZERO CARSYN. The size of the PFA B is polynomial in the
sum of the sizes of automata A1, . . . ,Ak. Thus the problem ZERO CARSYN is
PSPACE-hard. The proposition is proved.

A PFA B is called simple if it can be constructed from some recognizers using
the procedure from the proof of Proposition 2. Note that the problem ZERO
CARSYN is PSPACE-hard not only for the class of arbitrary PFA with a zero
but for the class of simple PFA. We denote such problem by SIMPLE CARSYN.
It will be used in the proof of the next proposition. Proposition 3 states the
PSPACE-hardness for the problem ZERO CARSYN for two-letter automata.

Proposition 3. The problem 2-ZERO CARSYN is PSPACE-hard.

Proof. We reduce the problem SIMPLE CARSYN to the problem 2-ZERO
CARSYN. Let a PFA B be an input of the problem SIMPLE CARSYN. This
means that B = (Q,Σ, δ), Q = {q1, . . . , qn}, Σ = {c1, . . . , cm, x, y} and there
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is a state end ∈ Q such that every shortest c.s.w. u for PFA B is equal to
xwy for some w ∈ {c1, . . . , cm}∗, δ(Q, xwy) = end and the action of letters
y, c1, . . . , cm is undefined on the set Q. We also suppose end = qn. We construct
a PFA C = (P, {a, b}, γ) with a zero state z such that there is a c.s.w. for the
automaton C if an only if there is a c.s.w. for the automaton B.

Let C = (P, {a, b}, γ) be a PFA, P = {pi,k|i ∈ {1, ..., n− 1}, k ∈ {0, ...,m+
1}} ∪ {z}. Denote c0 = y, cm+1 = x. We also denote pn,1 = . . . = pn,m+1 = z
Let i ∈ {1, ..., n}, k ∈ {0, ...,m+ 1}. Define the function γ.

for j ≤ m, γ(pi,k, a) = pi,k+1, γ(pi,m+1, a) = pi,m+1,

γ(pi,k, b) =
{
pt,0,
undefined,

if δ(qi, ck) = qt
if δ(qi, ck) is undefined.

The state z = pn,1 = . . . = pn,m+1 is a zero state in the automaton C .
Figure 1 represents an example of reduction according to the proofs of Propo-

sitions 2 and3.Atfirst, the set of recognizers {A1,A2} reduces to the corresponding

s1 F1

s2 F2

c2

c2 c2

c1

c1, c2

c1

c1

⇒
x = c3, y = c0

q2 q3

q4 q5
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end

c2, c3

c2, c3 c2
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c2, c3

c1
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Fig. 1. The example of automata A1, A2, B and C
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PFA B using the proof of Proposition 2. Then the PFA B reduces to the corre-
sponding PFA C .

Let i ∈ {1, . . . , n}. We call the set Qi = {pi,0, . . . , pi,m+1} the i-th column of
the set P . Let k ∈ {0, . . . ,m+ 1}. We call the set Rk = {p1,k, . . . , pn,k} the k-th
row of the set P . Note, that n-th column is one state z, and on the over hand,
the state z belongs to any row. The following statements are evident corollaries
of the definition of the function γ.

Lemma 2. 1. γ(Qi, a) ⊆ Qi for i ∈ {1, . . . , n};
2. γ(Rk, a) = Rk+1 for k ∈ {0, . . . ,m}, γ(Rm+1, a) = Rm+1;
3. γ(P, b) ⊆ R0.

Let us formulate more complicated properties about the function γ.

Lemma 3. Let v ∈ {a, b}∗\{a}∗ and the value γ(P, v) is defined then

1. for any i ∈ {1, . . . , n}, we have |Qi ∩ γ(P, v)| ≤ 1;
2. |γ(P, va)| = |γ(P, v)|;
3. γ(P, vb) ⊆ R0.

Proof. See Appendix

Let us consider a morphism φ : {a, b}∗b → Σ∗, where Σ = {c0, . . . , cm+1} and
the set {a, b}∗b is the set of all words over {a, b} ended by b. By definition put
φ(akb) = ck for k ∈ {0, . . . ,m + 1} and φ(akb) = cm+1 for k ≥ m + 2. Every
word from the set {a, b}∗b is a product of words from the set
{akb|k = 0, 1, 2, ...}. Therefore φ can be extended to the set {a, b}∗b. We also
consider φ−1 : Σ∗ → {a, b}∗b. Put φ−1(ck) = akb. Of course, the morphism φ−1

is not a inverse relation to the function φ, but φ−1 is a convenient notation. The
morphism φ−1 also can be extended to Σ∗. Note that for any word u ∈ Σ∗ we
have φ(φ−1(u)) = u. We are going to prove that the word u is a c.s.w. for PFA
B if and only if the word φ−1(u) is a c.s.w. for PFA C .

Let v ∈ {a, b}∗b and the value γ(P, v) is defined. By Lemma 2 we get γ(P, b) ⊆
R0. Therefore γ(P, v) ⊆ R0. We define the value I(v) = {i|pi,0 ∈ γ(P, v)}. Let
u ∈ Σ∗ and the value δ(Q, u) is defined. Denote J(u) = {i|qi ∈ δ(Q, u)}.

Lemma 4. If v ∈ {a, b}∗b and the value γ(P, v) is defined, then I(v) = J(φ(v)).
If u ∈ Σ∗ and the value δ(Q, u) is defined, then J(u) = I(φ−1(u)).

Proof. Let v ∈ {a, b}∗b, then v = ah1bah1b . . . ahrb for some integer
h1, . . . , hr. Let vk = ah1b . . . ahkb for some k ∈ {1, . . . , r}. The value γ(P, v) is
defined. This means that the value γ(P, ah1b) = γ(P, v1) is defined too. It is
possible only in the case of h1 ≥ m + 1, because if h1 < m + 1 then pm,n ∈
γ(P, ah1) and the letter b is undefined on the set γ(P, ah1). Therefore φ(v1) =
φ(ah1b) = cm+1 = x. It can be easily verified that I(v1) = I(ah1b) = J(cm+1).

Let k > 1. Let I(vk−1) = J(φ(vk−1)). We prove that I(vk) = J(φ(vk)). Let i ∈
I(vk−1) = J(φ(vk−1)). This means that pi,0 ∈ γ(P, vk−1) and qi ∈ δ(Q,φ(vk−1)).
The value γ(pi,0, akb) is defined. This means that γ(pi,0, akb) = pm,0 for some
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m ∈ I(vk). Therefore, from the definition of the function γ we obtain that the
value δ(qi, φ(ahkb)) is defined and δ(qi, φ(ahkb)) = qm. Hence m ∈ J(φ(vk)) and
I(vk) ⊆ J(φ(vk)). The proof of the inclusion I(vk) ⊇ J(φ(vk)) is analogous.
Therefore I(vk) = J(φ(vk)). This means that I(v) = J(φ(v)).

The second statement of the lemma can be proved similarly using an induction
and the definition of the function γ. The lemma is proved.

Let u be some shortest c.s.w. for PFA B. By Lemma 1 we get u = xwy
for some w ∈ Σ′∗. Therefore u = cm+1wc0 = φ(am+1b)wφ(b). Hence for any
k ∈ {1, . . . , |u|} the last letter of the word φ−1(u[1, k]) is b and φ−1(u[1, k]) ∈
{a, b}∗b. By Lemma 4 we obtain J(u[1, k]) = I(φ−1(u[1, k])). In particular
J(u) = I(φ−1(u)). Hence |I(φ−1(u))| = |J(u)| = 1. Therefore the word φ−1(u)
is a c.s.w. for the automaton C.

Let v be some shortest c.s.w. for PFA C . It is easy to see that any word form
the set a∗ is not carefully synchronizing. Therefore v ∈ {a, b}∗\{a}∗. By Lemma
3 we obtain |γ(P, v[1, |v| − 1]a)| = |γ(P, v[1, |v| − 1])|. Therefore v[|v|] = b and
v ∈ {a, b}∗b. Whence I(v) = J(φ(v)). The word v is a c.s.w. for the automaton
C and hence |I(v)| = 1. Therefore |J(φ(v))| = 1. This means that the word φ(v)
is a c.s.w. for the automaton B. The proposition is proved.

4 The Problems Are in PSPACE

Proposition 4. The problems SHORT D1, D2 and D3DIR WORD belong to
the complexity class PSPACE.

Proof. At first, recall the following property.

Lemma 5. There is a constant C such that for D ∈ {D1, D2, D3} and for every
D-directing NFA with n states the length of the shortest D-directing word is less
than C · 2n.

Proof. The statement follows from [7].

Using Lemma 5 and the Savitch’s theorem (which states that PSPACE=
NPSPACE) it can be proved that the problems CARSYN, D1DIR, D2DIR and
D3DIR are belong to PSPACE, because any carefully synchronizing or directing
word can be nondeterministically applied to a given PFA or NFA using O(n) bits
of memory. Similar but more complicated ideas can be used to prove that the
corresponding search problems are also belong to PSPACE. We do not discuss
here such approach because there can be some conceptual problems with a using
of Savitch’s theorem for a search problem and for a model with out taking in
account of the size of output.

Instead of using nondeterministic calculations we introduce here an determin-
istic searching algorithm. Let A = (Q,Σ, δ) be an NFA with Q = {q1, . . . , qn}
and Σ = {a1, . . . , ak}. The automaton A can be stored using O(nk) bits of
memory. We are going to describe an algorithm for searching the shortest D1,
D2 or D3-directing words for the automaton A . Our purpose is to construct
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an algorithm that uses space that is a polynomial in O(nk). We do not take
in account the size of output word. Our algorithm examines different word and
finds the first appropriate one. A simple corollary of Lemma 5 is that the length
of the shortest directing word can be kept using O(n) bits of memory. The same
fact is true for all numbers used in our algorithm.

Our algorithm is a procedure FindWord(D,A ) which takes some
D ∈ {D1, D2, D3} and some NFA A as input parameters and returns one of the
shortest D1, D2 or D3-directing word letter by letter. The procedure FindWord
uses the function GetLetter(L,N) where N and L are integers and N ≤ L.
The parameters D and A are global variables for the function GetLetter. This
function returns either the N -th letter of a D-directing word of length L for the
NFA A or the value no if there is no D-directing word of length L for A . The
function calls GetLetter(L,N1) and GetLetter(L,N2) return different letters of
one word. Let us describe the procedure FindWord(D,A ). If the NFA A is D-
directing then the procedure finds the length of the shortest D-directing word
and writes this word letter by letter.

Procedure FindWord(D,A )
L = 1
While L ≤ C · 2n and GetLetter(L, 1) = no Do
L = L+ 1

If (L > C · 2n) Then
Return “There is no D-directing word”

Else
For N = 1 To L Do

Write GetLetter(L,N)
End Procedure

Now we describe the function GetLetter(L,N). Let A = (Q,Σ, δ) and Q =
{q1, . . . , qn}. A position of the NFA A is an array P = (P 1, . . . , Pn) where
P 1, . . . , Pn ⊆ Q. Let Pos(A ) be the set of all positions of the NFA A . The
function δ extends to the function acting from Pos(A ) ×Σ to P (A ). Let P ∈
Pos(A ) and a ∈ Σ. We put δ(P, a) = (δ(P 1, a), . . . , δ(Pn, a)). The starting
position of the NFA A is the array S0 = ({q1}, . . . , {qn}). Let w ∈ Σ∗. The
array P = (P 1, . . . , Pn) is a D1-position of A if P 1 = · · · = Pn = {q} for some
q ∈ Q. The array P is a D2-position of A if P 1 = · · · = Pn. The array P is a D3-
position of A if P 1∩· · ·∩Pn �= ∅. The position δ(S0, w) describes the images of all
states of A under the action of w. The following lemma is a trivial consequence
of the definitions of D1, D2, D3-directing words and D1, D2, D3-positions.

Lemma 6. Let D ∈ {D1, D2, D3}. The word w ∈ Σ∗ is D-directing for the
NFA A iff δ(S0, w) is a D-position.

Recall A = (Q,Σ, δ), |Q| = n, |Σ| = k. Let us calculate without proof how much
memory is sufficient to keep some objects and to do some operations which we
need for the algorithm.

Lemma 7. 1. Every subset T ⊆ Q can be kept using n bits of memory.
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2. Every position P ∈ Pos(A ) can be kept using n2 bits of memory.
3. Let P,R ∈ Pos(A ) and we need to check whether there is a letter a ∈ Σ

such that δ(P, a) = R. It can be done using O(n) of memory.
4. For D ∈ {D1, D2, D3} every position P ∈ Pos(A ) can be checked to be a
D-position using O(n) of memory.

Let us describe the function GetLetter(L,N). We denote S[0] = S0.

Function GetLetter(L,N)
m = %log(L)&
P [m+ 1] = S[0]
Return InPath(m, 2m, L, N)

End Function

The function GetLetter(L,N) uses the recursive function InPath. The function
InPath can return yes, no or some letter a ∈ Σ. Define the relation ≤ on the
set Σ ∪ {yes, no}. Put no < yes < a for any a ∈ Σ. The sense of every returned
letter shall be described later.

Let D ∈ {D1, D2, D3}. By Lemma 5 we have the length of the shortest D-
directing word for the NFA A is less than C · 2n for some constant C. Let
m̄ = %log(C · 2n)&+1. Our algorithm uses an additional memory of size at most
m̄ · n2 + O(n2) = O(n3). We keep at most m̄ + 1 positions P [0], . . . , P [m̄] of
the automaton A . The NFA A , the directing type D ∈ {D1, D2, D3} and the
positions P [0], . . . , P [m̄] are global variables for the function InPath.

Function InPath(t,M,L, N)
res = no
For Each P [t] ∈ Pos(A )

If (M �= L) or (M = L and P [t] is a D-position)
If t > 0 Then

res1 = InPath(t− 1,M − 2m−1, N)
res2 = InPath(t− 1,M + 2m−1, N)

If t = 0 Then
r =the number of the last nonzero bit in the numberM−1
l =the number of the last nonzero bit in the numberM +1
If M − 1 ≥ L Then
res1 = yes

Else
If there is a ∈ Σ such that δ(P [r], a) = P [0] Then

If M = N Then res1 = a
Else res1 = yes

If there is b ∈ Σ such that δ(P [0], b) = P [l] Then
If M = N − 1 Then res2 = b
Else res1 = yes

If res1 > no and res2 > no and res ≤ yes Then
res = max(res, res1, res2)

Return res
End Function
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Due to space limitations we do not give a detailed proof of the algorithm cor-
rectness, but we attempt to describe how the algorithm works in Appendix.

The algorithm GetLetter(L,N) returns the N -th letter of the first found D-
directing word or no if there is no such word. It follows from Lemma 7 that all
operations of the algorithm use polynomial space. It can be calculated that the
algorithm usesO(n3) of additional memory i.e., additional memory of polynomial
size. The proposition is proved.

By Proposition 3 we have that the problem 2-ZERO CURSYN is PSPACE-hard.
From Proposition 4 we have that the problems SHORT D1, D2 and D3DIR
WORD belong to PSPACE. Let k ≥ 2. From Proposition 1 we have that all
problems from the statement of Theorem 1 are PSPACE-complete. Theorem 1
is proved.
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Appendix

The Proof of Proposition 1
1,2,3,4. The class of PFA with a zero is a subclass of the class of all PFA.
Therefore ZERO CARSYN ≤p CARSYN, k-ZERO CARSYN ≤p k-CARSYN
e.t.c. Let A = (Q,Σ, δ) and the state z ∈ Q be a zero in A . For any word w ∈ Σ
we have δ(z, w) = z Therefore, the PFA A can be carefully synchronized only
to the zero state z. We can consider the PFA A as a NFA. If the word w ∈ Σ∗

is D2-directing for the NFA A , then for any state q ∈ Q, we have δ(q, w) =
δ(z, w) = z �= ∅. Hence every D2-directing word is carefully synchronizing for
A . Therefore ZERO CARSYN ≤p D2DIR, k-ZERO CARSYN ≤p k-D2DIR
e.t.c.

5,6,7,8. Note that if some NFA is a PFA then any D1 and D3-directing word is
a carefully synchronizing word. Therefore the problem CARSYN is a partial case
of the problems D1DIR, D3DIR and the problem SHORT CARSYN WORD is
a partial case of the problems SHORT D1 and D3DIR WORD e.t.c.

9,10. Checking the careful synchronizability (careful synchronizability for PFA
with zero,D1,D2 orD3 -directability) is a part of the problem SHORT CARSYN
(ZERO CARSYN, D1DIR, D2DIR, D3DIR) WORD. Therefore the relations are
evident.

11, 12. For any k > 0 it follows that k + 1-PROBLEM is more complicated
then k-PROBLEM. To prove this fact we can add one letter with identical action
to any k-letter PFA (NFA) and obtain a k + 1-letter automaton with the same
properties of the synchronization.

13, 14. k-PROBLEM is a partial case of PROBLEM for any integer k > 0.
Therefore, PROBLEM is more complicated then k-PROBLEM for any fixed k
and k-PROBLEM ≤p PROBLEM. The proposition is proved.

The Proof of Lemma 1
Only the letter y can merge some states from Q1 and Q2. Therefore u[|u|] = y.
The word u is defined on the state beg. On the other hand letters from Σ and
the letter y are undefined on the state beg. Therefore u[1] = x. Hence u = xwy.

The image of the letter y contains only one element. Hence if u[m] = y for
some m > 0, then the word w[1,m] is also a c.s.w. for PFA B and the word w
is not the shortest. On the other hand only the letter y can merge some states
from Q1 and Q2. Therefore the shortest c.s.w. u for automaton B contains only
once the letter y and u[|u|] = y.

We have u[1] = x. Hence for any i ∈ 1...k, we have |δ(Q, u[1]) ∩ Qi| = 1.
All the letters from Σ and the letter x are defined on the set Qi and map
Qi to Qi. Therefore for any m ∈ 1...|u| − 1 we have |δ(Q, u[1,m]) ∩ Qi| = 1.
Hence if u[m] = x then δ(Q, u[1,m]) = {s1, . . . , sk} = δ(Q, u[1]) and the word
u[1]u[m+ 1, |u|] is also a c.s.w. This means that there is the only one letter x in
the shortest c.s.w. u and u[1] = x. Thus u = xwy for some w ∈ Σ′∗. The lemma
is proved.
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F1

Fk

F2

A1

A2

Ak

s1 � � �

s2 � � �

sk � � �

� � �

end
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x
x

x
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x
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x
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y y y

y

y

y y y

Fig. 2. Automaton B

The Proof of Lemma 3
1. We have v ∈ {a, b}∗\{a}∗. Therefore a letter b occurs in the word v. Let
v[h1] be the first occurrence of the letter b in the word v. By Lemma 2 obtain
γ(P, b) ⊆ R0. Therefore γ(P, v[1, h1]) ⊆ R0. Therefore
|Qi ∩ γ(P, v[1, h1])| ≤ 1. Let for some j ∈ {1, . . . , |v| − 1} it holds
|Qi ∩ γ(P, v[1, j])| ≤ 1. If v[j + 1] = a then from Lemma 2 we have for any i ∈
{1, . . . , n} γ(Qi, a) ⊆ Qi. Therefore |γ(P, v[1, j]a)∩Qi| ⊆ |γ(P, v[1, j])∩Qi| ≤ 1.
If v[j+1] = b then Qi∩γ(P, v[j+1]) ⊆ R0. This means |Qi∩γ(P, v[j+1])| ≤ 1.
Whence |Qi ∩ γ(P, v)| ≤ 1.

2. Let i ∈ {1, . . . , n}. We have |Qi ∩ γ(P, v)| ≤ 1. By Lemma 2 we obtain
γ(Qi, a) ⊆ Qi for i ∈ {1, . . . , n}. The letter a is defined on every state from the
set P . Therefore if |Qi ∩ γ(P, v)| = 1, then |Qi ∩ γ(P, va)| = 1. Therefore

|γ(P, v)| =
n∑

i=1

|γ(P, v) ∩Qi| =
n∑

i=1

|γ(P, va) ∩Qi| = |γ(P, va)|.

3. By Lemma 2 we obtain γ(P, b) ⊆ R0. Therefore γ(P, vb) ⊆ γ(P, b) ⊆ R0. The
lemma is proved.

The Description of the Function InPath.
Our goal is to find the set of positions {S[0], . . . , S[L]} such that there is a
word w ∈ Σ∗ such that for i ∈ {1, . . . , L}, we have δ(S[i − 1], w[i]) = S[i] and
S[L] is a D-position. In such case the word w is a D-directing word for the
NFA A . Every position from the set {S[0], . . . , S[L]} will appear as a value of
the one of the variables P [0], . . . , P [m + 1]. The position P [m + 1] is always
equal to S[0]. The position S[2m] appears as a value of the variable P [m]. The
positions S[2m − 2m−1] and S[2m + 2m−1] can appear as a values of P [m − 1].
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The positions S[2m−2m−1−2m−2], S[2m−2m−1 +2m−2], S[2m +2m−1−2m−2]
and S[2m + 2m−1 + 2m−2] can appear as values of P [m− 2] and so on. If there
are exactly t zero bits at the end of the binary record of some number M ∈
{0, . . . , L}, then the position S[M ] can appear as a value of P [t]. The length of the
shortest D-directing word for A is L, therefore all the found sets S[1], . . . , S[L]
are different.

When we call InPath(s,M,L, N) we search a position S[M ]. If M = L then
algorithm searches only D-positions because the last position should be a D-
position. The number M has exactly t zero bits at the end of its binary record.
We look over all the positions from Pos(A ) and put each of them into the
variable P [t]. Let M be even. This means t > 0. Firstly, for any set P [t] (which
can be S[M ]) we want to find a position P [t− 1] which can be S[M − 2m−1]. If
P [t] = S[M ] and P [t− 1] = S[M − 2m−1] then there is a word v of length 2m−1

such that δ(P [t−1], v) = P [t]. Secondly, we want to find a position P [t−1] which
can be S[M + 2m−1]. If P [t] = S[M ] and P [t− 1] = S[M + 2m−1] then there is
a word v of length 2m−1 such that δ(P [t], v) = P [t − 1]. The function InPath
calls itself recursively to find the positions S[M − 2m−1] and S[M + 2m−1]. If
L > M + 2m−1 then the position S[M + 2m−1] shell not be searched, but the
algorithm shell search sets S[M ], . . . , S[L] anyway.

If the sets S[M − 2m−1] and S[M + 2m−1] (or S[L]) are not found then the
function InPath(s,M,L, N) returns no. If the sets are found, then if M +
2m−1 ≥ N > M − 2m−1, then the function InPath(s,M,L, N) returns the
N −M +2m−1-th letter of the first found word v such that δ(S[M −2m−1], v) =
S[M + 2m−1] (or δ(S[M − 2m−1], v) = S[L]), if not N ≤ M − 2m−1 or N >
M + 2m−1 then the function InPath(s,M,L, N) returns yes.

If M is odd, then t = 0. The variables r and l are the numbers of the last
nonzero bit in the numbers M − 1 and M + 1. In this case the position P [r]
is suspected to be the position S[M − 1] and the position P [l] is suspected to
be the position S[M + 1]. The variables P [r] and P [l] already contain some
positions. The algorithm looks over all positions, puts each of them to a variable
P [0] and checks whether there are letters a, b ∈ Σ such that δ(P [r], a) = P [0]
and δ(P [0], a) = P [l]. If the letters are found then P [0] = S[M ] and the function
InPath(s,M,L, N) returns yes, or the letter a if M = N , or the letter b if
M = N − 1.
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Abstract. The known algorithms for linear systems of equations per-
form significantly slower where the input matrix is ill conditioned, that
is lies near a matrix of a smaller rank. The known methods counter this
problem only for some important but special input classes, but our novel
randomized augmentation techniques serve as a remedy for a typical ill
conditioned input and similarly facilitates computations with rank de-
ficient input matrices. The resulting acceleration is dramatic, both in
terms of the proved bit-operation cost bounds and the actual CPU time
observed in our tests. Our methods can be effectively applied to various
other fundamental matrix and polynomial computations as well.

1 Introduction

1.1 Background

The condition number condA = ||A||/σρ(A) of a matrix A of a rank ρ > 0 is the
ratio of its largest and smallest positive singular values [8] and is a fundamental
concept of matrix computations. (Here and hereafter ||M || denotes the 2-norm
of a matrix M .) The value σk(A) is the distance from the matrix A to a nearest
matrix of rank k − 1 for k = 1, 2, . . . , ρ. σρ(A) = 1/||A−1|| for a nonsingular
matrix A.

In the inversion of the matrix A and the solution of a nonsingular linear
system of equations Ay = b the condition number is roughly the coefficient of
the magnification of input errors, condA ≈ ||INPUT ERROR||

||OUTPUT ERROR|| [8]. To support
the output precision of pt bits, one needs the input precision of ps ≥ pt +
log2 condA bits, and so computations with ill conditioned matrices (that is the
ones having large condition numbers) require a higher input precision ps. (Here
the concepts “large”, “ill” and “well conditioned” are quantified in the context
of the computational task and computer environment.) The condition number
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is also largely responsible for convergence of some popular iterative algorithms
such as iterative refinement for solving linear systems of equations [8], which
only works where the precision p of the computation exceeds log2 condA.

It is known that random matrices tend to be well conditioned [4], [6], [14],
that is to have not too large condition numbers, but in computational practice
ill conditioned inputs A appear routinely, requiring costly computations with an
extended precision ps. There is a huge literature on preconditioning (cf., e.g.,
[2]), that is on mappings A → C such that condC 3 condA and the solution
y to a linear system Ay = b is readily expressed via the matrix C. Then the
precision ps is used only in a small fraction of all operations. Generally, however,
computing such a mapping is as costly as approximating the inverse, and this
limits the power of the known preconditioning methods to the important but
special matrix classes.

1.2 Our Improvement

Our alternative randomized preconditioning enables desired maps A → C for a
typical ill conditioned input A. To specify our progress assume a nonsingular
linear system Ay = b of n equations. Our solution uses O∗(I(n)p + n2pt) bit-
operation for p of the order of *log2 condC+, say p = 2 log2 condC, where O∗(f)
means O((log n) log logn), and I(n) has the order of n3 or n2.376. For an ill
conditioned input, this means a dramatic decrease from the order of psI(n)
required in the customary computations, where ps = pt + log2 condA and pt 3
log2 condA.

Our randomization also enables us to avoid (with a probability near one) run-
ning into auxiliary singular linear systems of equations, which is a well known
hurdle in Gaussian elimination, particularly poisonous for the important task of
solving homogeneous linear systems. The known remedies rely on pivoting and
orthogonalization, which take their toll. Orthogonalization techniques such as
QR factorization and SVD are more costly, but even pivoting “usually degrades
the performance” [8, page 119] by interrupting the stream of arithmetic opera-
tions with the foreign operations of comparisons, readily destroys matrix struc-
ture and sparseness, and threatens or undermines application of block matrix
algorithms. Our techniques handle rank deficient (e.g., square singular) inputs
as by-product. This power is no wonder because matrices of full rank are ill
conditioned if and only if they lie near rank deficient matrices.

Let us sketch some of our techniques. Assume the challenging problem of
computing the null space N(A) of an m × n matrix A of a rank ρ, ρ < m ≤
n, that is computing the set of its null vectors x, satisfying the homogeneous
linear system Ax = 0. In Section 5 we show simple extension to the solution of
nonsingular nonhomogeneous linear systems Ay = b. (If ỹ is a specific solution
and if such a system is singular, then every solution can be represented as ỹ+x
for some x ∈ N(A).)

Now write r = n − ρ and apply northern augmentation A → C =
(
V
A

)
for

a random or even random structured (e.g., Toeplitz) r × n matrix V . Then the



Advancing Matrix Computations with Randomized Preprocessing 305

matrix C has full rank with a probablity one or close to one. Let C(I) be a left
inverse, such that C(I)C = I is the identity matrix, C(I) = C−1 for m = n. Let
B denote the submatrix formed by the first r rows of the matrix C(I). Then one
can easily prove [12] that the columns of the matrix B form a basis for the null
space of the matrix A.

The above map A → C tends neither to decrease nor increase the condition
number dramatically, but we achieve preconditioning via western augmentation
A→ C = (Bq, A), that is via appending q random and properly scaled columns
to the matrix A for a sufficiently large integer q. By combining tools from paper
[14], linear algebra, and probability theory, we prove that such an augmentation
tends to define a well conditioned matrix C, and this is achieved already for
q = 1 for a typical ill conditioned input, excluding just the inputs on and near
an algebraic variety of a lower dimension. Then we can combine western and
northern augmentations to compute the null space of a rank deficient input by
working with well conditioned matrices of full rank.

For a smaller integer q the western augmentations always map a structured
(e.g., Toeplitz or Hankel) input matrix into a matrix with the same but slightly
deteriorated structure. (Namely the displacement rank grows by at most q, cf.
[10].) Then our formal support for the power of our techniques can be auto-
matically extended. Practically for a structured input, even where the integer q
is small, one should apply randomized structured augmentation, allowing fewer
random parameters but completely preserving the input structure. In this case
our formal support is still valid except for the proof from [4], [6], [14] that ran-
dom matrices tend to be well conditioned. Its extension to Toeplitz, Hankel and
other structured matrices is an open problem (see [12] on some initial progress).
According to our tests the extension holds in the Toeplitz and Hankel cases (see
Tables 1 and 2), but even without assuming this extension we informally argue
that our randomized structured augmentation tends to be preconditioning (see
Remarks 1 and 5) and support this claim empirically in [12]. We also apply
our techniques to the solution of singular Toeplitz linear systems of n equations
with n unknowns and accelerate the customary algorithms by the factor a(n) (in
terms of the CPU time) where a(512) > 20, a(1024) > 90, and a(2048) > 300
(see Table 3).

1.3 Extensions

Our tests (the contribution of the second and the third authors) give empirical
evidence of the power of our approach, but its present exposition shows just the
tip of an iceberg. E.g., Conjugate Gradient algorithms, iterative refinement, and
Newton’s iteration for matrix inversion are highly effective for well conditioned
inputs but lose their power as the condition number grows. Our methods nat-
urally extend this power to ill conditioned inputs. For another example, recall
the Rayleigh quotient popular iteration for matrix eigen-solving. Its every step
is reduced essentially to the solution of ill conditioned linear system of equations
and therefore can be accelerated by our methods.
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Other natural applications include computation of the numerical rank of a
matrix, approximation of a nearly rank deficient matrix with a matrix of a
smaller rank, approximation of a matrix by a nearby Toeplitz-like or Hankel-like
matrix, and root-finding for polynomial equations. The first author has advanced
in all these directions, but due to the space limitation he leaves the respective
results to his Technical Reports and journal papers. Due to the space limitation
we also compress our exposition and skip many details, proofs, test results,
natural variations, extensions etc., available in [12] and [13].

2 Definitions and Basic Facts

General, Toeplitz and Hankel matrices, nmbs and annihilators
We use and extend the customary definitions of matrix computations in the
real and complex fields R and C (cf. [8]). In or just I denote the n × n iden-
tity matrix. ei is its ith column vector, i = 0, 1, . . . , n − 1. Om,n or just O
is the m × n matrix filled with zeros. A matrix U is unitary or orthonormal
if UHU = I. (B1, . . . , Bk) = (Bj)k

j=1 is a 1 × k block matrix with blocks
B1, . . . , Bk. diag(B1, . . . , Bk) = diag(Bj)k

j=1 is a k × k block diagonal matrix
with diagonal blocks B1, . . . , Bk. AH is the Hermitian transpose of a matrix
A ∈ Cm×n. range(A) is its range (column span), nulA = n− rankA its nullity,
N(A) = {y : Ay = 0} its null space made up of its null vectors y. A matrix
H is its complete annihilator if rangeH = N(A) and is a null matrix basis if in
addition it has full column rank. We use the abbreviations nmb, nmb(A), and
ca(A). Hereafter we seek cas and nmbs for matrices A ∈ Cm×n where m ≥ n.
For m > n we would recall that N(AHA) = N(A) and N(A) = ∩h

i=1N(Bi)
where A =

∑h
i=1 Ai, Ai = (O,BT

i , O)T , Bi ∈ Cki×n, i = 1, . . . , h,
∑h

i=1 ki ≥ m
(also cf. [8, Theorem 12.4.1]). Given a ca(A), we can compute a nmb(A) based
on LUP or QR factorization of the matrix A or on the following simple fact.

Fact 1. Suppose H is a ca(A). Then H is a nmb(A) if and only if nulH = 0
and HY is a nmb(A) if X is a ca(H) and if (X,Y ) is a nonsingular matrix.

J = Jn = (ji,k)n−1
i,k=0 is the reflection matrix, ji,n−1−i = 1 for all i, ji,k = 0 for

i+k �= n−1. (J2 = I.) Toeplitz matrix T = (ti−j)
m−1,n−1
i=0,j=0 (resp. Hankel matrix

H = (hi+j)
m−1,n−1
i=0,j=0 ) is defined by its m+ n− 1 entries, e.g., by its first row and

first (resp. last) column. (TJ and JT are Hankel matrices for a Toeplitz matrix
T , whereas HJ and JH are Toeplitz matrices for a Hankel matrix H .)

Hereafter “ops” stand for “arithmetic operations”.M(n) and I(n) ops suffice
to multiply an n×n matrix by a vector and (if possible) to invert it, respectively.
M(n) = 2n2−n, I(n) ≤ (2/3)n3+O(n2), I(n) ≤ chugen

2.376 for general matrices;
M(n) < 20n logn, I(n) ≤ clargen log2 n for Toeplitz and Hankel matrices where
chuge and clarge are immense and large constants, respectively (cf. [1], [3]).

Matrix norm, SVD, inverses, and condition number
A = SAΣAT

H
A is SVD or full SVD of an m× n matrix A of a rank ρ if SAS

H
A =

SH
A SA = Im, TAT

H
A = TH

A TA = In, ΣA = diag(Σ̂A, Om−ρ,n−ρ), and Σ̂A =
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diag(σj)
ρ
j=1. Here σj = σj(A) = σj(AH) is the jth largest singular value of

a matrix A, j = 1, . . . , ρ. σ1(A) = ||A|| = ||AH || is the 2-norm of a matrix
A = (ai,j)

m,n
i,j=1,

1√
mn

||A|| ≤ maxm,n
i,j=1|ai,j | ≤ ||A||. condA = ||A||/σρ(A).

A matrix X = A(I) is a left (resp. right) inverse of a matrix A if XA = I
(resp. AX = I). A(I)=A−1 for a nonsingular matrix A.

Theorem 1. [13]. Let A ∈ Cm×r and B ∈ Cr×n and write rA = rankA,
rB = rankB, r− = min{rA, rB} and r+ = max{rA, rB}. Let r+ = r. (In par-
ticular this holds if at least one of the matrices A and B is nonsingular.) Then
rank(AB) = r−, σr−(AB) ≥ σrA(A)σrB (B) and cond(AB) ≤ (condA) condB.

Random sampling, random matrices, and conditioning
|Δ| is the cardinality of a set Δ. Random sampling of elements from a set Δ is
their selection from this set at random, independently of each other, and under
the uniform probability distribution on Δ. A matrix is random if its entries are
randomly sampled (from a fixed set Δ). The (μ, σ) Gaussian random variable is
the Gaussian random variable with the mean μ and variance σ2. (μ, σ) = (0, 1)
for the standard Gaussian random variable. (μ, σ) (resp. standard) Gaussian
random matrix or vector is the matrix or vector filled with independent (μ, σ)
(resp. standard) Gaussian random variables.

Lemma 1. [5]. For a set Δ of cardinality |Δ| (in a fixed ring), suppose a poly-
nomial in m variables has total degree d and is not identically zero on the set
Δm. Let the values of its variables be randomly sampled from the set Δ. Then
the polynomial vanishes with a probability of at most d/|Δ|.

Corollary 1. An m × n matrix with entries sampled at random from a set Δ
has full rank with a probability of at least 1 − r/|Δ| for r = min{m,n}.

FX(y) = Probability{X ≤ y} for a real random variable X is the cumulative
distribution function (CDF) of X evaluated at y. FA(y) = Fσl(A)(y) for anm×n
matrix A and an integer l = min{m,n}. Fμ,σ(y) = 1

σ
√

2π

∫ y

−∞ exp(− (x−μ)2

2σ2 )dx
is the CDF for a Gaussian random variable with a mean μ and a variance σ2.
Φμ,σ(y) = Fμ,σ(μ+ y)− Fμ,σ(μ− y) for y ≥ 0.

Standard Gaussian random matrices are well conditioned with a high prob-
ability [4], [6], and even perturbations by such matrices A is expected to make
well conditioned any matrix having the norm of the order ||A|| [14].

Theorem 2. (See [14, Theorems 3.1, 3.3].) Suppose M ∈ Rm×n, Ū ∈ Rm×m,
and V̄ ∈ Rn×n, Ū and V̄ are orthonormal matrices, A ∈ Rm×n is the (0, σ)
Gaussian random matrix independent of the matrix M , W = Ū(A + M)V̄ ,
l = min{m,n}, and y ≥ 0. Then FW (y) ≤ 2.35y

√
l/σ. If in addition ||M || ≤

√
l,

then Fcond W (y) ≥ 1 − (14.1 + 4.7
√

(2 ln y)/n)n/(yσ) for all y ≥ 1.

Theorem 3. [13]. Suppose G ∈ Rq×m, rG = rankG, H ∈ Rn×r, rH = rankH,
and a random matrix W ∈ Rm×n has full rank with probability one. Then
FGW (y) ≤ FW (y/σrG(G)) if rG = m; FWH(y) ≤ FW (y/σrG(H)) if rH = n.
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cond(AB) can be arbitrarily large even for m × r unitary matrices A and BH

if m > r. So we cannot merely drop the above assumptions that rG = m and
rH = n, but the next theorem circumvents this obstacle.

Theorem 4. [13]. Suppose G ∈ RrG×m, H ∈ Rn×rH , W ∈ Rm×n, rankG =
rG < m, rankH = rH < n, and the assumptions of Theorem 2 hold. Then we
have (a) FGW (y) ≤ cy

√
l/(σrG(G)σ) and (b) FWH(y) ≤ cy

√
l/(σrH (H)σ).

3 A nmb of a Matrix via Northern Augmentation

We compute a nmb B of a rank deficient matrix A as a block of a left inverse
C(I) where condC is expected to be of the order of condA.

Algorithm 1. Given four integers m, n, ρ and r = n− ρ, a matrix A ∈ Cm×n

of a rank ρ, and a set Δ ∈ C, |Δ| 4 n ≥ m > ρ > 0, generate a random matrix
V ∈ Δr×n such that ||V || ≈ ||A||. Output FAILURE and stop if the matrix

C =
(
V
A

)
is rank deficient. Otherwise compute a left inverse C(I). Output the

submatrix B of its first r rows. (B = nmb(A).)

Correctness proof. Let Y = nmb(A). Then CY =
(
V Y
O

)
, Y = C(I)

(
V Y
O

)
.

So N(A) = rangeY ⊆ rangeB and rangeB = N(A) for rankB = rankY = r.
Lemma 1 implies that Probability(rankC < n) ≤ r/|Δ|. Our next theorem

bounds condC.

Theorem 5. Let the matrix C in Algorithm 1 be scaled so that ||C|| ≤ 1. Let
rankC = n, rankA = ρ, and so rankV = r. Let A = SAΣAT

H
A (SVD), ΣA =

diag(Σ̂A, O), Σ̂A = diag(σj)
ρ
j=1, diag(Ir , SH

A )CTA =
(
M
O

)
, M =

(
V0 V1
Σ̂A O

)
.

Then condC ≤ 3
σρ(A)σr(V1) .

Now we bound σr(V1) = 1/||V −1|| provided V is a Gaussian random matrix.

Theorem 6. Let the assumptions of Theorem 4 hold forW = V , H = TA

(
O
Ir

)
,

l = rH = r. Then FV1 (y) ≤ cy
√
r/σ.

Corollary 2. Let the assumptions of Theorems 5 and 6 hold. Then FC(y) ≤
cy
√
r/(σρ(A)σ).

Remark 1. In the SVD-free computation of a nmb(A) in Algorithm 1 the matrix
V is defined independently of the matrix TA of the singular vectors. This suggests
that the matrix V1 behaves as random (and thus tends to be well conditioned)
even where V is a weakly random (e.g., structured) matrix defined by O(r)
random parameters.

Remark 2. We can scale the matrices A and V to maximize their norms subject
to the bound ||C|| ≤ 1. E.g., we can let ||V || ≈ ||A|| ≈ 1/

√
2 and deduce from

Corollary 2 that condC has the expected order condA = σ1(A)/σρ(A).
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Remark 3. In Algorithm 1 the rank ρ is given to us, but instead we can search

for r as the integer for which rankC = n and AC(I)
(
Ir
O

)
= 0 or as the smallest

integer for which rankC = n.

Remark 4. Suppose instead of the matrixA, Algorithm 1 is applied to its approx-
imation Ã of full rank m > ρ where ||Ã−A|| 3 σρ(A), and so condA3 cond Ã.

Now under the assumptions of Corollary 2, suppose C̃ =
(
V

Ã

)
, V is Gaussian

random matrix scaled so that ||V || ≈ ||Ã||. Then we can expect that rank C̃ = n,
the block of the first r rows of a matrix C̃(I) approximates a nmb(A), and
cond C̃ ≈ condC has the order of condA.

4 Northwestern Augmentation

Algorithm 1 maps a rank deficient input A into a full rank matrix C, with
condC at about the level of condA. If this level is too high, we can first apply
preconditioning via western augmentation.

Algorithm 2. Assume two integers m and n, 0 < m ≤ n, an ill conditioned
matrix A ∈ Cm×n, and a finite set Δ ∈ C of a large cardinality |Δ|.

(a) Recursively generate m × k matrices Bk = (bi)k
i=1 for k = 1, . . . , q by

sampling their entries at random from the set Δ until you obtain a sufficiently
well conditioned matrix (Bq, A) of full rank.

(b) Apply Algorithm 1 to this matrix to compute matrix Z̄ =
(
Z0
Z1

)
=

nmb((Bq, A)) where Z0 ∈ Cq×s, Z1 ∈ Cn×s, and q ≤ s ≤ q + r, r = nulA.
(c) Reapply Algorithm 2 to compute the nullity r = nulZ0 and an s×r matrix

X = nmb(Z0).
(d) Compute the n × r matrix Y = Z1X = ca(A) and then a nmb(A) (cf.

Fact 1).
At Stage (a) we can apply a known condition estimator (cf. [8, Section 3.5.4])

or just Algorithm 1. Algorithm 2 combines northern and western augmentations
and can be also viewed as an aggregation process [12].

Correctness proof. By the definition of the matrices Z̄ and X , we have BqZ0+
AZ1 = 0 and BqZ0X = 0. Therefore AY = AZ1X = 0. Conversely, if Aỹ = 0,

then (Bq, A)
(

0
ỹ

)
= 0. It follows that Z̄x̃ =

(
0
ỹ

)
for some vector x̃ because

Z̄ = nmb((Bq , A)). Therefore Z0x̃ = 0 and Z1x̃ = ỹ. (The proof applies to any
q ≥ r such that matrix rank(Bq, A) = m, but it is desired to decrease q to yield
a matrix Z̄ of a smaller size.)

Our next theorem implies that Probability(q = r) ≥ 1 − r/|Δ|, and then we
estimate cond(Bq, A) to show the preconditioning power of Algorithm 2.

Theorem 7. Let m ≤ n and r = m− rankA. Then (a) for k < r the matrices
(Bk, A) in Algorithm 2 are rank deficient, whereas (b) for k ≥ r the matrices Bk

and (Bk, A) are rank deficient with a probability of at most r/|Δ|.
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Proof. rank(Bk, A) ≤ rankBk +rankA ≤ k+rankA, implying part (a). Clearly
the matrices Bk and (Bk, A) have full rank if k ≥ m− rankA and the entries of
the matrix Bk are indeterminates. Now Lemma 1 implies part (b).

Theorem 8. Suppose the matrix C = (Bq, A) in Algorithm 2 has been scaled
so that ||C|| ≤ 1. Let rankC = m and rankA = m − q, so that rankBq = q.
Let A = SAΣAT

H
A be a full SVD of the matrix A (where ΣA = diag(Σ̂A, O)

and the matrix Σ̂A is nonsingular). Then condC ≤ 3
σm−q(A)σq(B̄1)

provided that

SH
A C diag(Iq, TA) =

(
B̄0 Σ̂A O
B̄1 O O

)
.

The theorem shows that condA decreases by the factor σm−q(A)
σm(A)σq(B̄1)

in the map
A→ C. Let us bound the value σq(B̄1) provided Bq is Gaussian random matrix.

Theorem 9. Suppose rankA = m− q and the assumptions of Theorem 4a hold
for W = Bq, G = (O, Iq)SH

A and rG = l = q ≤ m. Then FB̄1
(y) ≤ cy√q/σ.

Corollary 3. Let the assumptions of Theorems 8 and 9 hold. Then FC(y) ≤
cy
√
q/(σm−q(A)σ).

Remark 5. We can readily extend Remarks 1–4 to the case of Algorithm 2. In
particular to extend Remark 1, recall that in the SVD-free computation of a
nmb(A) in Algorithm 2 the matrix Bq is defined independently of the matrix
SA of the left singular vectors of the matrix A. This suggests that the matrix
B̄1 behaves as random (and thus tends to be well conditioned) even where Bq

is a weakly random (e.g., random structured) matrix defined by O(r) random
parameters. Likewise, we can extend Remark 2, that is decrease the above upper
bounds on the values 1/σm(C) and condC by scaling the matrices A and Bq to
maximize their norms subject to the bound ||C|| ≤ 1. For ||Bq|| ≈ ||A|| ≈ 1/

√
2,

we can combine Theorems 8 and 9 and Corollary 3 and deduce that condC is
expected to be of the order σ1(A)/σm−q(A).

5 The Solution of a Nonsingular Linear System

We can reduce the solution of a nonsingular linear system Ay = b to computing

a null vector z =
(

1/η
y

)
for the matrix M = (−ηb, A) and a nonzero scalar η.

Claim. Suppose C = (−b, A), A = SAΣAT
H
A is a full SVD of an n× n matrix

A, SH
A SA = SAS

H
A = TH

A TA = TAT
H
A = In, Σ = diag(σi)n

i=1, σi = σi(A) for
all i, g = (gi)n

i=1 = −SHb, ||A|| = ||b|| = ||g|| = 1, σn−1 − 2cn
√
nσn > 0 and

1/|gn| ≤ cn for a constant c. (The latter bound is expected to hold where b is
a scaled Gaussian random vector independent of the matrix S.) Then condC =
σn(C) ≤ 2cn

√
n/(σn−1 − 2cn

√
nσn).

To compute a null vector of the matrix (−ηb, A) we can apply the algorithms
in the previous sections to the latter matrix playing the role of the matrix A.
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Remark 6. If the ratio σ1/σn is large, but condC is not large for the matrix
C = (−ηb, A), then we must require high accuracy in the computations with
the matrix C to avoid large output errors, but we can facilitate this task by
applying the extended iterative refinement in [11].

6 Estimates for the Bit-Operation Complexity

To ensure an output precision pt we must represent every entry of an n×n input
matrix C with the bit-precision ps ≥ pt + log2 condC, so that overall one must
process psn2 ≥ (pt + log2 condC)n2 bits of the input information and perform
at least (pt + log2 condC)n2/2 bit operations.

Recall the bounds M(n) and I(n) in Section 2 and let μ(p) bit operations
suffice for an op performed modulo q ≤ 2p. (μ(p) = O((p log p) log log p) and
in actual numerical computing μ(p) is optimized for the IEEE standard dou-
ble precision p = pdouble.) Then I(n)μ(pt + log2 condC) bit operations are in-
volved in the known algorithms for a linear system Cy = f of n equations.
By combining our randomized preconditioning with the extended iterative re-
finement in [11] we expect to yield the bound O(I(n)μ(p) +M(n)μ(p)h) where
h = pt/(p − *log2 condC+) and p, the precision of our computations, exceeds
*log2 condC+. The term I(n)μ(p) covers the bit operations for computing an ap-
proximate inverseX ≈ C−1 with the p-bit precision. The termM(n)μ(p)h covers
the bit operations in the extended iterative refinement, whose ith step amounts
essentially to multiplication of the two matrices C and X by two vectors and
produces a vector yi with the precision p. The solution vector y =

∑h
i=1 yi is

represented with the precision pt by the vectors y1, . . . ,yh. If p > *log2 condC+
and pt + log2 condC 4 (1 + h/n)p, then our approach is expected to decreases
the overall bit complexity of the solution by roughly the factor I(n)/M(n).

7 The Case of Hankel and Toeplitz Inputs

Hankel and Toeplitz linear systems can be solved much faster than general ones,
and our improvement factor I(n)/M(n) decreases to 0.05clarge logn, although
the factor 0.05clarge is still quite large for clarge from Section 2. For numerical
solution of these linear systems most popular are the algorithms running in n2

ops, such as the one in [7], based on the displacement transformation method
of [9] (also see [10, Sections 1.7 and 5.6] on this method). Thus the expected
improvement with our techniques is still significant.

In the augmentations A → (Bq, A) for small integers q, the input structure
deteriorates little (the displacement rank can grow by at most q, cf. [10]), but for
any q one can and should preserve the structure intact, to enable faster compu-
tations. All our estimates can be readily extended to such randomized stuctured
augmentation, except for Theorem 2. Its extension is a well known research chal-
lenge. (See [13] on our initial progress.) Remarks 1 and 5 suggest, however, that
the estimates in Corollaries 2 and 3 can be extended even independently of the
extension of Theorem 2. This conjecture is supported by the data on the CPU
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Table 1. Condition numbers condM of random n × n matrices M

dimension n type min max mean std

32 real 2.4 × 101 1.8 × 103 2.4 × 102 3.3 × 102

32 complex 2.7 × 101 8.7 × 102 1.1 × 102 1.1 × 102

64 real 4.6 × 101 1.1 × 104 5.0 × 102 1.1 × 103

64 complex 5.2 × 101 4.2 × 103 2.7 × 102 4.6 × 102

128 real 1.0 × 102 2.7 × 104 1.1 × 103 3.0 × 103

128 complex 1.3 × 102 2.5 × 103 3.9 × 102 3.3 × 102

256 real 2.4 × 102 8.4 × 104 3.7 × 103 9.7 × 103

256 complex 2.5 × 102 1.4 × 104 1.0 × 103 1.5 × 103

512 real 3.9 × 102 7.4 × 105 1.8 × 104 8.5 × 104

512 complex 5.7 × 102 3.2 × 104 2.3 × 103 3.5 × 103

1024 real 8.8 × 102 2.3 × 105 8.8 × 103 2.4 × 104

1024 complex 7.2 × 102 1.3 × 105 5.4 × 103 1.4 × 104

2048 real 2.1 × 103 2.0 × 105 1.8 × 104 3.2 × 104

2048 complex 2.3 × 103 5.7 × 104 6.7 × 103 7.2 × 103

time that we observed in our tests implementing our algorithms; furthermore
our tests show reasonably mild growth of condA for random Toeplitz matrices
A ∈ Cn×n as n grows (see Tables 1–3).

8 Numerical Tests

We performed a series of numerical experiments in the Graduate Center of the
City University of New York. We conducted them on a Dell server with a dual
core 1.86 GHz Xeon processor and 2G memory running Windows Server 2003 R2.
The test Fortran code was compiled with the GNU gfortran compiler within the
Cygwin environment. Random numbers were generated with the random number
intrinsic Fortran function assuming the uniform probability distribution over the
range {x : 0 ≤ x < 1}. To shift to the range {y : b ≤ y ≤ a + b} for fixed real
a and b, we applied the linear transform x → y = ax + b. To obtain random
complex numbers, we randomly generated their real and imaginary parts. We
computed QR factorizations and SVDs by applying the LAPACK procedures
DGEQRF and DGESVD, respectively.

Tables 1 and 2 display the average (mean), minimum (min), maximum
(max), and standard deviation (std) of the condition numbers for n×n random
general and Toeplitz matrices that we observed in 100 runs for each n.

Table 3 shows data on the CPU time for computing the null vectors of random
singular circulant matrices. The data are average over 100 runs for each algorithm
and each input size. Circulant matrices form an important subclass of Toeplitz
matrices; our tests with random Toeplitz matrices gave similar results [12].

We measured the CPU time in terms of the CPU cycles. To convert into
seconds divide them by CLOCKS PER SEC, which is 1000 on our platform.
Algorithm 2 reduced the task to solving nonsingular well conditioned Toeplitz



Advancing Matrix Computations with Randomized Preprocessing 313

Table 2. Condition numbers cond1 T of random real n × n Toeplitz matrices T

dimension n min mean max std

256 9.1 × 102 9.2 × 103 1.3 × 105 1.8 × 104

512 2.3 × 103 3.0 × 104 2.4 × 105 4.9 × 104

1024 5.6 × 103 7.0 × 104 1.8 × 106 2.0 × 105

2048 1.7 × 104 1.8 × 105 4.2 × 106 5.4 × 105

4096 4.3 × 104 2.7 × 105 1.9 × 106 3.4 × 105

8192 8.8 × 104 1.2 × 106 1.3 × 107 2.2 × 106

Table 3. CPU time (in cycles) for computing null vectors of circulant matrices

size Algorithm 2 QR SVD QR/Algorithm 2 SVD/Algorithm 2

256 3.0 18.8 261.5 6.3 87.2

512 7.3 147.9 4220.9 20.3 578.2

1024 16.1 1538.3 70452.5 97.1 4445.8

2048 35.5 11748.3 − 342.1 −
4096 78.7 − − − −
8192 170.4 − − − −

linear systems of equations, for which we applied the code from [15] (cf. [16]).
For comparison we also obtained the solution based on computing the QR fac-
torization and SVD of the input matrices. The table entries are marked by a
“-” where the tests required too long runtime and were not completed. Other-
wise in all our tests we computed approximate null vectors y within the relative
residual norms bound ||Ay||

||A|| ||y|| of the order of 10−17. The reader can download
our codes for these tests from http://comet.lehman.cuny.edu/vpan/. For other
tests supporting the presented algorithms and for detailed comments, see [12]
and [13].

Acknowledgement. We thank the referees and the Program Committee Chair
Ernst W. Mayr for helpful comments.
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Abstract. The predicate logic of recursive realizability was carefully
studied by the author in the 1970s. In particular, it was proved that
the predicate realizability logic changes if the basic language of formal
arithmetic is replaced by its extension with the truth predicate. In the
paper this result is generalized by considering similar extensions of the
arithmetical language by transfinite induction up to an arbitrary con-
structive ordinal. Namely, for every constructive ordinal α, a transfinite
sequence of extensions LAβ (β ≤ α) of the first-order language of formal
arithmetic is considered. Constructive semantics for these languages is
defined in terms of recursive realizability. Variants of LAβ-realizability
for the predicate formulas are considered and corresponding predicate
logics are studied.

1 Introduction

Constructive semantics of formal languages are widely used in intuitionistic
proof theory. Such semantics are also interesting because of their applications in
computer science, especially in extracting algorithms from constructive proofs.
Historically, the first precise constructive semantics of the language of formal
arithmetic LA was recursive realizability introduced by S. C. Kleene [1].

For any semantics it is of interest to study the corresponding logic as the
set of predicate formulas being schemata of propositions true in the given se-
mantics. A predicate formula A is constructively valid if there is an algorithm
for establishing the constructive truth for every proposition obtained by sub-
stituting concrete predicates for the predicate variables in A. In constructive
mathematics, a predicate is commonly understood as a parametric sentence in
an appropriate language. Thus the concept of a predicate can be made more
precise (and unavoidably narrowed) by choosing a language for formulating the
predicates. If a first-order language L with a constructive semantics is fixed,
then an m-place predicate is defined as a formula in L with m free variables. A
closed pedicate formula A is constructively L-valid if there is an algorithm for
establishing the constructive truth for L-instances of A.

If the language LA is taken as L in the above discussion and recursive realiz-
ability is considered as a constructive semantics of this language, then we obtain
� Partially supported by RFBR grant 08-01-00399.
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the notion of an effectively realizable predicate formula as a refinement of the
concept of a constructively valid formula. It was proved by the author [2], [3]
that the class of effectively realizable predicate formulas is not arithmetical.

Consider another formalized language denoted by LA + T . It is obtained by
adding to LA a one-place predicate symbol T and the following formation rule:
if t is a term, then T (t) is an atomic formula. The semantics of LA + T is
defined under the assumption that the realizability semantics of LA is known.
Namely we consider T (n) as stating that n is the Gödel number of a realizable
arithmetical proposition. The semantics of LA+ T can be described in terms of
realizability: a natural number e realizes a closed formula T (t) iff the value of t
is the Gödel number of a realizable arithmetical proposition and e realizes that
proposition.

The following results were proved by the author [4]:
1) the class of constructively (LA+T )-valid predicate formulas is not definable

in the language LA+ T ;
2) there are constructively LA-valid predicate formulas which are not con-

structively (LA+ T )-valid.
Thus the concept of a realizable predicate formula based on the arithmeti-

cal language is rather accidental from the point of view of constructive logic,
because it can not be considered as an adequate definition of a constructively
valid formula. In this sense the notion of an (LA + T )-valid predicate formula
deserves more attention. We show in this paper that similar extensions can be
continued by transfinite induction up an arbitrary constructive ordinal. Namely
a transfinite sequence of languages with constructive semantics is defined and
the results analogous to 1) and 2) proved.

The subject of the paper is interersting in a comparison with a set-theoretical
approach to the constructive predicate logic proposed by the author in [5] where
the notion of an absolutely realizable predicate formula is introduced. From
the classical point of view, absolutely realizable predicate formulas are exactly
the constructively valid formulas. The problem is to describe this semantics by
constructive methods. The results of this paper show that a natural approach
based on considering transfinite sequences of the languages with constructive
semantics does not lead to any final concept of a constructively valid predicate
formula.

2 A Transfinite Sequence of Languages

The language LA will play an essential role in further considerations. Arithmeti-
cal terms are constructed in the usual way from the individual variables, the
constant 0, and the function symbols ′,+, ·. The terms 0, 0′, 0′′, 0′′′, . . . will be
denoted by 0̄, 1̄, 2̄, 3̄, . . .. Arithmetical formulas are constructed from the atomic
formulas of the form t1 = t2, where t1, t2 are terms, by using the logical symbols
¬,&,∨,⊃, ∀, ∃ and parentheses. We write ∀x1, . . . , xn instead of ∀x1 . . . ∀xn and
∃x1, . . . , xn instead of ∃x1 . . . ∃xn.
Σ-formulas are arithmetical formulas of the form ∃x1, . . . , xn Φ, where Φ is

an atomic formula. By the Matiyasevich theorem on Diophantine presentation
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of the recursively enumerable sets, every recursively enumerable predicate P (x1,
. . . , xn) is expressible by a Σ-formula Φ(x1, . . . , xn) in the sense that for every
natural numbers k1, . . . , kn, P (k1, . . . , kn) holds iff Φ(k̄1, . . . , k̄n) is true by the
standard interpretation of LA.

Let L be the first-order language obtained by adding the two-place predicate
symbol T to LA. We call L the universal language. The formulas of the language
L will be called L-formulas. If Φ and Ψ are L-formulas, then Φ ≡ Ψ denotes the
formula (Φ ⊃ Ψ)& (Ψ ⊃ Φ). By substituting terms t1, . . . , tn for distinct variables
y1, . . . , yn in an L-formula Φ we assume that as a preliminary the bound variables
in Φ are renamed in order to avoid binding the variables in t1, . . . , tn. The result
of substituting t1, . . . , tn for y1, . . . , yn in Φ is denoted by Φ[t1/y1, . . . , tn/yn].
If for Φ a notation Φ(y1, . . . , yn) is used, then we write Φ(t1, . . . , yn) instead of
Φ[t1/y1, . . . , tn/yn]. Closed L-formulas are called L-propositions.

Let a Gödel numbering of L be fixed. Any technical details of this numbering
are not essential except of the following:

– The predicate ‘x is the Gödel number of an atomic arithmetical proposition’
is expressed by a Σ-formula ε(x);

– The predicate ‘x is the Gödel number of a true atomic arithmetical propo-
sition’ is expressed by a Σ-formula τ(x);

– The predicate ‘x is the Gödel number of an atomic proposition of the form
T (ȳ, t), the value of the term t being z’, is expressed by a Σ-formula θ(x, y, z);

– There exists a one-place primitive recursive function φ¬ such that if x is the
Gödel number of a formula Φ, then φ¬(x) is the Gödel number of ¬Φ; in this
case, the predicate x = φ¬(y) is expressed by a Σ-formula ν¬(x, y);

– For every λ ∈ {&,∨,⊃} there exists a two-place primitive recursive func-
tion φλ such that if x and y are the Gödel numbers of formulas Φ and Ψ
respectively, then φλ(x, y) is the Gödel number of (ΦλΨ); in this case, the
predicate x = φλ(y, z) is expressed by a Σ-formula νλ(x, y, z);

– For every κ ∈ {∀, ∃} there exists a two-place primitive recursive function φκ

such that if y is the Gödel number of a variable v and z is the Gödel number
of a formula Φ, then φκ(y, z) is the Gödel number of κv Φ; in this case, the
predicate x = φκ(y, z) is expressed by a Σ-formula νκ(x, y, z);

– There exists a three-place primitive recursive function sub such that if y is
the Gödel number of a variable v, z is the Gödel number of an L-formula
Φ(v), and u is a natural number, then sub(y, z, u) is the Gödel number of
Φ(ū); in this case, the predicate x = sub(y, z, u) is expressed by a Σ-formula
σ(x, y, z, u).

Let ≺ be a recursive well-ordering of (an initial segment of) the natural numbers
N. The order-type of the ordering ≺ is a constructive ordinal α (see [6, §11.8]).
Then every natural m is a notation of an ordinal β < α; denote this fact by
|m| = β. Without loss of generality one can suppose that |0| = 0.

For every β ≤ α we define a fragment LAβ of the universal language L.
LAβ-formulas, i. e., formulas of the language LAβ, are defined inductively:

– If t1 and t2 are terms, then t1 = t2 is a(n atomic) LAβ-formula;
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– If n is a natural number such that |n| < β and t is a term, then T (n̄, t) is
a(n atomic) LAβ-formula;

– If Φ is an LAβ-formula, then ¬Φ is an LAβ-formula;
– If Φ and Ψ are LAβ-formulas, then (Φ&Ψ), (Φ ∨ Ψ), and (Φ ⊃ Ψ) are LAβ-

formulas;
– If Φ is an LAβ-formula and v is a variable, then ∀v Φ and ∃v Φ are LAβ-

formulas.

Note that LA0 is LA and the LA0-formulas are arithmetical formulas. Further,
if γ < β, then every LAγ-formula is an LAβ-formula, thus LAα is the union
of all the languages LAβ for β ≤ α. A rank of an LAα-formula Φ is the least
ordinal β such that Φ is an LAβ-formula.

Constructive semantics of LAβ is defined in terms of realizability. First we
adopt some conventions on the notation of partial recursive functions and their
indexes. By {e} we denote the partial recursive function with index e. If an ex-
pression ϕ(x1, . . . , xn) defines an n-place partial recursive function, then Λx1, . . . ,
xn.ϕ(x1, . . . , xn) will denote an index of that function. We use (a)i to denote the
exponent with which the (i+ 1)th prime number appears in the decomposition
of a into prime factors.

The notion of realizability for LAβ is defined by transfinite induction on β.
Let for every γ < β a relation e rγ Φ (a natural number e is a γ-realization of
an LAγ-proposition Φ) be defined. Then we define e rβ Φ by induction on the
number of logical symbols in an LAβ-proposition Φ.

– If Φ is an atomic proposition t1 = t2, then e rβ Φ ⇀↽ [e = 0 and Φ is true].
– If Φ is an atomic proposition of the form T (m̄, t), where |m| = γ < β and
t is a term whose value is n, then e rβ Φ ⇀↽ [n is the Gödel number of an
LAγ-proposition Ψ , and e rγ Ψ ].

Let Φ0 and Φ1 be LAβ-propositions. Then

– e rβ (Φ0 &Φ1)⇀↽ [(e)0 rβ Φ0 and (e)1 rβ Φ1];
– e rβ (Φ0 ∨ Φ1)⇀↽ [(e)0 = 0 and (e)1 rβ Φ0 or (e)0 = 1 and (e)1 rβ Φ1];
– e rβ (Φ0 ⊃ Φ1)⇀↽ [∀a (a rβ Φ0 ⇒ {e}(a) rβ Φ1)];
– e rβ ¬Φ0 ⇀↽ [e rβ (Φ0 ⊃ 0 = 1)].

Let Φ0(x) be an LAβ-formula with the only parameter x. Then

– e rβ ∀xΦ0(x)⇀↽ [∀n {e}(n) rβ Φ0(n̄)];
– e rβ ∃xΦ0(x)⇀↽ [(e)1 rβ Φ0((e)0)].

Note that if γ < β, then for every LAγ-proposition Φ we have

∀e [e rγ Φ⇔ e rβ Φ].

Therefore we can omit the subscript in rβ . Now, if Φ is an LAγ-proposition, then
e rΦ means that e rβ Φ for every β such that γ ≤ β ≤ α, in particular, r means
the same as rα.
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If e rΦ, we say that e is a realization of Φ. An LAα-proposition Φ is called
realizable iff there exists a realization of Φ. Note that if a Σ-proposition is true,
then we can effectively find its realization. Let Rβ(x) mean that x is the Gödel
number of a realizable LAβ-proposition. An LAα-formula with free variables is
realizable iff its universal closure is realizable. LAα-formulas Φ and Ψ are called
equivalent iff the universal closure of Φ ≡ Ψ is realizabale.

We say that an n-place predicate P (x1, . . . , xn) is LAβ-definable, if there
exists an LAβ-formula Φ(x1, . . . , xn) with the only free variables x1, . . . , xn such
that for every natural numbers k1, . . . , kn, P (k1, . . . , kn) holds iff Φ(k̄1, . . . , k̄n)
is realizable. The following theorem can be proved by just the same arguments
as the Tarski theorem on the inexpressibility of the truth predicate for a formal
language by a formula of that language, if the language is sufficiently rich.

Proposition 1. The predicate Rβ(x) is not LAβ-definable.

We say that a language L2 is more expressive than another language L1 if every
L1-definable predicate is L2-definable, but there exists an L2-definable predicate
which is not L2-definable.

Proposition 2. If γ < β ≤ α, then the language LAβ is more expressive than
LAγ.

Proof. If γ = |m|, then the the LAβ-formula T (m̄, x) defines the predicate Rγ(x)
in the language LAβ , but in view of Proposition 1, this predicate can not be
defined by any LAγ-formula.

3 Realizable Predicate Formulas

Predicate formulas are first-order formulas constructed in the usual way from
predicate variables Aj

i (i, j = 0, 1, 2, . . .) and individual variables x1, x2, . . .. We
say that Am

n is an m-ary predicate variable.
The notion of a scheme is a generalization of both notions of a predicate

formula and an arithmetical formula. Schemata are defined inductively.

1. If t1 and t2 are arithmetical terms, then t1 = t2 is a scheme.
2. If P is an n-ary predicate variable, v1, . . . , vn are individual variables, then
P (v1, . . . , vn) is a scheme.

3. If A is a scheme, then ¬A is a scheme.
4. If A and B are schemata, then (A&B), (A ∨ B), (A ⊃ B) are schemata.
5. If A is a scheme, v is an individual variable, then ∀vA and ∃vA are schemata.

Arithmetical formulas are evidently schemata constructed according to rules 1
and 3–5, and predicate formulas are schemata constructed according to rules
2–5.

Let A be a scheme, P1, . . . , Pn be all the predicate variables in A, Pi being mi-
ary. Denote A by A(P1, . . . , Pn). A list of L-formulas Φ1, . . . , Φn is admissible
for substitution in A(P1, . . . , Pn) if for every i ∈ {1, . . . , n}, Φi does not con-
tain any free variables other than x1, . . . , xmi . If a list Φ1, . . . , Φn is admissible
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for substitution in A(P1, . . . , Pn), let A(Φ1, . . . , Φn) be an L-formula obtained
by replacing each atomic subformula Pi(y1, . . . , ymi) by Φi[y1/x1, . . . , ymi/xmi ].
In this case, the formula A(Φ1, . . . , Φn) is called an L-instance of the scheme
A(P1, . . . , Pn). A closed scheme A is called

– Effectively LAβ-realizable if there exists an algorithm allowing to find a re-
alization of every closed LAβ-instance of A;

– Uniformly LAβ-realizable if there exists a natural number realizing every
closed LAβ-instance of A.

Obviously, if a scheme is uniformly LAβ-realizable, then it is effectively LAβ-
realizable. Since every predicate formula is a scheme, the notions of an effectively
LAβ-realizable and a uniformly LAβ-realizable closed predicate formula are de-
fined. The main purpose of this paper is studying relations between the notions
of LAβ-realizability for different βs.

The notion of a scheme is useful in view of the following theorem.

Theorem 1 (Theorem on Schemata). For every closed scheme A one can
effectively construct a closed predicate formula A∗ such that for every β ≤ α:

1) A is effectively LAβ-realizable iff A∗ is effectively LAβ-realizable;
2) A is uniformly LAβ-realizable iff A∗ is uniformly LAβ-realizable.

This theorem is a generalization of Theorem 1 in [7] and can be proved in just
the same way.

4 The Basic Theorem

Obviously, the predicate ‘y is the Gödel number of an LA|x|-proposition’ is re-
cursive and is defined by a Σ-formula π(x, y). Let R be a one-place predicate
variable, w be an individual variable, and [R,w] be the conjunction of the fol-
lowing schemata:

∀x (¬π(w, x) ⊃ ¬R(x)); (1)

∀x (ε(x) ⊃ (R(x) ≡ τ(x))); (2)

∀x, y, z (π(w, x)& θ(x, y, z)&¬π(y, z) ⊃ ¬R(x)); (3)

∀x, y, z, u (π(w, x)& θ(x, y, z)& π(y, z) ⊃ (R(x) ≡ R(z)); (4)

∀x, y, z (π(w, x)& ν¬(x, y) ⊃ (R(x) ≡ ¬R(y))); (5)

∀x, y, z (π(w, x)& ν&(y, z) ⊃ (R(x) ≡ (R(y)&R(z)))); (6)

∀x, y, z (π(w, x)& ν∨(x, y, z) ⊃ (R(x) ≡ (R(y) ∨R(z)))); (7)

∀x, y, z (π(w, x)& ν⊃(x, y, z) ⊃ (R(x) ≡ (R(y) ⊃ R(z)))); (8)

∀x, y, z (π(w, x)& ν∃(x, y, z) ⊃
(R(x) ≡ ∃v, t (σ(t, y, z, v)&R(t)))); (9)

∀x, y, z (π(w, x)& ν∀(y, z, u) ⊃
(R(x) ≡ ∀v ∃t (σ(t, y, z, v)&R(x, t)))). (10)
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Let Φ(x) be an LAα-formula with the only free variable x and [Φ(x), w] be
obtained by substituting Φ(x) forR in [R,w]. Let |n| = β < α. It is rather evident
that the formula [T (n̄, x), n̄] is realizable. The following proposition means that
this is the only such formula up to the equivalence.

Theorem 2. There is a partial recursive function h such that for every formula
Φ(x) and every natural a, if a r [Φ(x), n̄], then h(a) r∀x (Φ(x) ≡ T (n̄, x)).

Proof. We define three-place partial recursive functions f and g such that for
every Φ and a, if a r [Φ(x), n̄], then

∀l, x [x rΦ(l̄) ⇒ f(a, x, l) rT (n̄, l̄)]; (11)

∀l, x [x rT (n̄, l̄) ⇒ g(a, x, l) rΦ(l̄)]. (12)

After that we set h(a) = Λl.2Λx.f(a,x,l) · 3Λx.g(a,x,l).
Let a formula Φ(x) and a realization a of [Φ(x), n̄] be given. If l is not a Gödel

number of any LAβ-proposition, then ¬π(n̄, l̄) is realizable. As (1) is a conjunct
in [R,w] and [Φ(x), n̄] is realizable, ¬Φ(l̄) is realizable and Φ(l̄) is not realizable.
On the other hand, in this case, T (n̄, l̄) is not realizable too. Therefore for every
a and x we can set f(a, x, l) = x, g(a, x, l) = x.

Let l be the Gödel number of an LAβ-proposition Ψ . Then π(n̄, l̄) is realizable.
We define f(a, x, l) and g(a, x, l) by transfinite induction (see [6, Chapter 11])
on the rank of Ψ .

If rank of Ψ is 0, then Ψ is an arithmetical proposition. Now we use induction
on the number of logical connectives and quantifiers in Ψ .

Let Ψ be an atomic arithmetical proposition. Then we have a realization of
ε(l̄). As a realization a of [Φ(x), n̄] is given and (2) is a conjunct in [R,w], we can
find a realization c of Φ(l̄) ≡ τ(l̄). Let x rΦ(l̄). Then τ(l̄) is realizable. This means
that Ψ is true and realizable, 0 being its realization. Thus 0 rT (n̄, l̄) and we can
set f(a, x, l) = 0. Now let x rT (n̄, l̄). This means that x rΨ . Therefore τ(l̄) is
true and we can find its realization t. Then we can set g(a, x, l) = {(c)1}(t).

Let Ψ be of the form ¬Ψ0 and l0 be the Gödel number of Ψ0. In this case, we
have a realization of ν¬(l̄, l̄0). As a realization a of [Φ(x), n̄] is given and (5) is
a conjunct in [R,w], we can find a realization c of Φ(l̄) ≡ ¬Φ(l̄0). By inductive
hypothesis, f(a, x, l0) and g(a, x, l0) are defined in such a way, that

∀x [x rΦ(l̄0) ⇒ f(a, x, l0) rT (n̄, l̄0)]; (13)

∀x [x rT (n̄, l̄0) ⇒ g(a, x, l0) rΦ(l̄0)]. (14)

Let x rΦ(l̄), then {(c)0}(x) r¬Φ(l̄0). Therefore Φ(l̄0) is not realizable. It follows
from (14) that T (n̄, l̄0) is not realizable too. This means that Ψ0 is not realizable,
¬Ψ0 is realizable, 0 rΨ , and 0 rT (n̄, l̄). Thus we can set f(a, x, l) = 0.

Now let x rT (n̄, l̄). This means that x r¬Ψ0 and Ψ0 is not realizable, thus
T (n̄, l̄0) is not realizable. It follows from (13) that Φ(l̄0) is not realizable too.
Therefore, 0 r¬Φ(l̄1) and {(c)1}(0) rΦ(l̄). Thus we can set g(a, x, l) = {(c)1}(0).

Let Ψ be of the form (Ψ0λΨ1), where λ ∈ {&,∨,⊃}. If l0, l1 are the Gödel
numbers of Ψ0 and Ψ1 respectively, then we have a realization of νλ(l̄, l̄0, l̄1). By
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inductive hypothesis, f(a, x, l0), g(a, x, l0), f(a, x, l1), g(a, x, l1) are defined in
such a way, that (13) and (14) hold and

∀x [x rΦ(l̄1) ⇒ f(a, x, l1) rT (n̄, l̄1)]; (15)

∀x [x rT (n̄, l̄1) ⇒ g(a, x, l1) rΦ(l̄1)]. (16)

Let λ = &. As a realization a of [Φ(x), n̄] is given and (6) is a conjunct in [R,w],
we can find a realization c of Φ(l̄) ≡ (Φ(l̄0)&Φ(l̄1)).

Let x rΦ(l̄), then {(c)0}(x) r (Φ(l̄0)&Φ(l̄1)). Therefore,

({(c)0}(x))0 rΦ(l̄0), ({(c)0}(x))1 rΦ(l̄1).

It follows from (13) that f(a, ({(c)0}(x))0, l0) rT (n̄, l̄0). This means that

f(a, ({(c)0}(x))0, l0) rΨ0. (17)

Similarly, it follows from (15) that f(a, ({(c)0}(x))1, l1) rT (n̄, l̄1) and

f(a, ({(c)0}(x))1, l1) rΨ1. (18)

Using (17) and (18), we get 2f(a,({(c)0}(x))0,l0) ·3f(a,({(c)0}(x))1,l1) rΨ . This means
that 2f(a,({(c)0}(x))0,l0) · 3f(a,({(c)0}(x))0,l1) rT (n̄, l̄). It follows that we can set

f(a, x, l) = 2f(a,({(c)0}(x))0,l0) · 3f(a,({(c)0}(x))1,l1).

Let x rT (n̄, l̄). This means that x r (Ψ0 &Ψ1), thus (x)0 rΨ0, (x)1 rΨ1. It follows
(x)0 rT (n̄, l̄0), (x)1 rT (n̄, l̄1). By (16) and (18),

g(a, (x)0, l0) rΦ(l̄0), g(a, (x)1, l1) rΦ(l̄1),

thus 2g(a,(x)0,l0) · 3g(a,(x)1,l1) r (Φ(l̄0)&Φ(l̄1)) and

{(c)1}(2g(a,(x)0,l0) · 3g(a,(x)1,l1)) rΦ(l̄).

Thus we can set g(a, x, l) = {(c)1}(2g(a,(x)0,l0) · 3g(a,(x)1,l1)).
Let λ = ∨. As a realization a of [Φ(x), n̄] is given and (7) is a conjunct in

[R,w], we can find a realization c of Φ(l̄) ≡ (Φ(l̄0) ∨ Φ(l̄1)).
If x rΦ(l̄), then {(c)0}(x) r (Φ(l̄0) ∨ Φ(l̄1)). Thus, 1) ({(c)0}(x))0 = 0 and

({(c)0}(x))1 rΦ(l̄0) or 2) ({(c)0}(x))0 = 1 and ({(c)0}(x))1 rΦ(l̄1). In the case
1), by (13), f(a, ({(c)0}(x))1, l0) rT (n̄, l̄0). This means f(a, ({(c)0}(x))1, l0) rΨ0,
20 · 3f(a,({(c)0}(x))1,l0) rΨ , and 20 · 3f(a,({(c)0}(x))1,l0) rT (n̄, l̄), thus we can set

f(a, x, l) = 20 · 3f(({(c)0}(x))1,l0).

Similarly, in the case 2), we can set

f(a, x, l) = 21 · 3f(a,({(c)0}(x))1,l1).
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Let x rT (n̄, l̄). This means x r (Ψ0 ∨ Ψ1), therefore, 1) (x)0 = 0 and (x)1 rΨ0 or
2) (x)0 = 1 and (x)1 rΨ1. In the case 1), (x)1 rT (n̄, l̄0). It follows from (16) that
g(a, (x)1, l0) rΦ(l̄0), 20 · 3g(a,(x)1,l0) r (Φ(l̄0) ∨ Φ(l̄1)) and

{(c)1}(20 · 3g(a,(x)1,l0)) rΦ(l̄).

Thus we can set g(a, x, l) = {(c)1}(20 · 3g(a,(x)1,l0)). In the case 2), we can set
g(a, x, l) = {(c)1}(21 · 3g(a,(x)1,l1)).

Let λ =⊃. As a realization a of [Φ(x), n̄] is given and (8) is a conjunct in
[R,w], we can find a realization c of Φ(l̄) ≡ (Φ(l̄0) ⊃ Φ(l̄1)).

Let x rΦ(l̄), then {(c)0}(x) r (Φ(l̄0) ⊃ Φ(l̄1)). Note that f(a, x, l) has to be a
realization of T (n̄, l̄), i. e., a realization of Ψ0 ⊃ Ψ1. Let f(a, x, l) be an index of
the partial recursive function χ defined in the following way:

χ(z) = f(a, {{(c)0}(x)}(g(a, z, l0)), l1).

We prove that if z rΨ0, then χ(z) rΨ1. Let z rΨ0. This means that z rT (n̄, l̄0). It
follows from (14) that g(a, z, l0) rΦ(l̄0). Then {{(c)0}(x)}(g(a, z, l0)) rΦ(l̄1) and
by (15), f(a, {{(c)0}(x)}(g(a, z, l0)), l1) rT (n̄, l̄1). This just means that χ(z) rΨ1.
Thus we can set f(a, x, l) = Λz.f(a, {{(c)0}(x)}(g(a, z, l0)), l1).

Let x rT (n̄, l̄). This means that x r (Ψ0 ⊃ Ψ1). First we find a realization of
Φ(l̄0) ⊃ Φ(l̄1). It will be an index of the partial recursive function ξ defined in
the following way:

ξ(b) = g(a, {x}(f(a, b, l0)), l1).
We see that Λb.ξ(b) r (Φ(l̄0) ⊃ Φ(l̄1)). Then {(c)1}(Λb.ξ(b)) rΦ(l̄), and we can
set g(a, x, l) = {(c)1}(Λb.g(a, {x}(f(a, b, l0)), l1)).

Let Ψ be of the form κv Ψ0(v), where κ ∈ {∃, ∀}. If p, l0 are the Gödel numbers
of v and Ψ0(v) respectively, then we have a realization of νκ(l̄, p̄, l̄0). By inductive
hypothesis, if l1, q are such that σ(l̄1, p̄, l̄0, q̄) is true (and realizable), then the
values f(a, x, l1) and g(a, x, l1) are defined in such a way, that (15) and (16)
hold.

Let κ = ∃. As a realization a of [Φ(x), n̄] is given and (9) is a conjunct in
[R,w], we can find a realization c of Φ(l̄) ≡ ∃v, t (σ(t, p̄, l̄0, v)&Φ(t)).

Let x rΦ(l̄), then

{(c)0}(x) r∃v, t (σ(t, p̄, l̄0, v)&Φ(t)). (19)

Denote (({(c)0}(x))1)0 by l1, ({(c)0}(x))0 by q, and (({(c)0}(x))1)1 by d. It is
easily shown that 2q · 3f(a,(d)1,l1) r∃v Ψ0(v) and 2q · 3f(a,(d)1,l1) rT (n̄, l̄). Thus we
can set f(a, x, l) = 2({(c)0}(x))0 · 3f(a,((({(c)0}(x))1)1)1,(({(c)0}(x))1)0).

Let x rT (n̄, l̄). This means x r∃v Ψ0(v). Then (x)1 rΨ0((x)0). Let l1 be the
Gödel number of Ψ0((x)0), then σ(l̄1, p̄, l̄0, (x)0) is true and we can find its real-

ization d. It can be proved that 2(x)0 ·32l1 ·32d·3g(a,(x)1 ,l1)

r∃v, t (σ(t, p̄, l̄0, v)&Φ(t))

and {(c)1}(2(x)0 · 32l1 ·32d·3g(a,(x)1 ,l1)

rΦ(l̄). Thus we can set

g(a, x, l) = {(c)1}(2(x)0 · 32l1 ·32d·3g(a,(x)1 ,l1)

.
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Let κ = ∀. As a realization a of [Φ(x), n̄] is given and (10) is a conjunct in [R,w],
we can find a realization c of Φ(l̄) ≡ ∀v ∃t (σ(t, p̄, l̄0, v)&Φ(t)).

Let x rΦ(l̄), then {(c)0}(x) r∀v ∃t (σ(t, p̄, l̄0, v)&Φ(t)). Let

ζ(v) = f(a, (e)1, l1),

where e = (({{(c)0}(x)}(v))1, l1 = (({{(c)0}(x)}(v))0. It can be proved that
Λv.ζ(v) rΨ . Thus Λv.ζ(v) rT (n̄, l̄) and we can set f(a, x, l) = Λv.f(a, (e)1, l1).

Let x rT (n̄, l̄). This means that x r∀v Ψ0(v). Let η(v) = 2l1 · 32d·3g(a,{x}(v),l1)
,

where l1 is the Gödel number of Ψ0(v̄) and d is a realization of σ(l1, p, l0, v̄). It
is easy to prove that Λv.η(v) is a realization of ∀v ∃t (σ(t, p̄, l̄0, v)&Φ(t)). Then
{(c)1}(Λv.η(v)) rΦ(l̄), and we can set g(a, x, l) = {(c)1}(Λv.2l1 ·32d·3g(a,{x}(v),l1)

).
Let for every δ < γ = |m| and every l being the Gödel number of an LAβ-

proposition of rank δ the values f(a, x, l) and g(a, x, l) be defined in such a
way that (11) and (12) hold. Let l be the Gödel number of an LAβ-proposition
Ψ whose rank does not exceed γ. We have to define f(a, x, l) and g(a, x, l) in
such a way that (11) and (12) hold. We use induction on the number of logical
connectives and quantifiers in Ψ .

The case of an arithmetical atomic proposition Ψ was considered above. Let
Ψ be an atomic LAγ-proposition of the form T (ā, b̄). Then |a| = δ < γ. Note
that Ψ is also an LAβ-proposition, thus π(n̄, l̄) is realizable. Moreover, we have
a realization of θ(l̄, ā, b̄). If b is not a Gödel number of any LAδ-proposition,
then T (ā, b̄) is not realizable, therefore T (n̄, l̄) is not realizable. On the other
hand, ¬π(ā, b̄) is realizable. As (3) is a conjunct in [R,w], the formula ¬Φ(l̄) is
realizable and Φ(l̄) is not realizable. Thus we can set f(a, x, l) = g(a, x, l) = x.

Let b be the Gödel number of an LAδ-proposition. Then we have a realization
of π(ā, b̄). Note that in this case, the rank of the proposition with the Gödel
number b does not exceed δ and is less than γ. By inductive hypothesis, f(a, x, b)
and g(a, x, b) are defined in such a way that

∀l, x [x rΦ(b̄) ⇒ f(a, x, b) rT (n̄, b̄)]; (20)

∀l, x [x rT (n̄, b̄) ⇒ g(a, x, b) rΦ(b̄)]. (21)

As a realization a of [Φ(x), n̄] is given and (4) is a conjunct in [R,w], we can
find a realization c of Φ(l̄) ≡ Φ(b̄). Let x rΦ(l̄), then {(c)0}(x) rΦ(b̄). It is easy
to prove that f(a, {(c)0}(x), b) rT (n̄, b̄). Thus f(a, {(c)0}(x), b) rT (n̄, l̄) and we
can set f(a, x, l) = f(a, {(c)0}(x), b)({(c)0}(x), b).

Now let x rT (n̄, l̄). This means x rT (ā, b̄), i. e., x is a realization of the LAδ-
proposition with the Gödel number b. Then x rT (n̄, b̄). By (21), g(a, x, b) rΦ(b̄)
and {(c)1}(g(a, x, b)) rΦ(l̄). Thus we can set g(a, x, l) = {(c)1}(g(a, x, b)).

The cases when Ψ is of the form ¬Ψ0, (Ψ0 &Ψ1), (Ψ0∨Ψ1), (Ψ0 ⊃ Ψ1), ∃v Ψ0(v),
or ∀v Ψ0(v) were considered above. Thus we have defined partial recursive func-
tions f and g satisfying (11) and (12). Then

Λx.2Λy.f(a,y,x) · 3Λy.g(a,y,x) r∀x (Φ(x) ≡ T (n̄, x)).

Theorem 2 is proved.
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5 Predicate Realizability Logics

Theorem 3. Let β ≤ α. For every LAβ-proposition Ψ one can effectively con-
struct a closed predicate formula Ψ∗ such that

1) if Ψ∗ is effectively LAβ-realizable, then Ψ is realizable;
2) if Ψ is realizable, then Ψ∗ is uniformly LAβ-realizable.

Proof. By Theorem on schemata (Theorem 1), it is sufficient for every LAβ-
proposition Ψ to construct a closed scheme A such that

1) if A is effectively LAβ-realizable, then Ψ is realizable;
2) if Ψ is realizable, then A is uniformly LAβ-realizable.
Let β ≤ α and Ψ be an LAβ-proposition. As for any natural m and a term t

the universal closure of the formula T (m̄, t) ≡ ∃x (t = x&T (m̄, x)) is obviously
realizable, Ψ is equivalent to a formula containing T only in atomic formulas of
the form T (m̄, x), where |m| < β and x is a variable. Suppose that Ψ already has
this property. As Ψ contains only a finite number of occurences of the subformulas
of the form T (m̄, x), we can find the greatest among such ms relative to the
order ≺; denote it by M . Replace every atomic subformula of the form T (m̄, x)
in Ψ by π(m̄, x)&T (M̄, x). As the formulas T (m̄, x) and π(m̄, x)&T (M̄, x) are
evidently equivalent, we obtain the formula equivalent to Ψ . Finally, replace
all the occurences of T (M̄, x) in the obtained formula by R(x), where R is a
one-place predicate variable. We obtain a scheme denoted by Ψ̂(R).

Proposition 3. If the formula Ψ is realizable, then the scheme [R, M̄ ] ⊃ Ψ̂(R)
is uniformly LAβ-realizable.

Proof. Let a be a realization of Ψ and Φ(x) be an LAβ-formula. Let a realization
b of [Φ(x), M̄ ] be given. By Theorem 2, h(b) r∀x (Φ(x) ≡ T (M̄, x)). By means
of arguments usual for theorems on logically equivalent formulas one can find a
realization c of the formula Ψ̂(Φ(x)) ≡ Ψ̂(T (M̄, x)) independent on Φ. Note that
Ψ̂(T (M̄, x)) is Ψ , thus a is a realization of the formula Ψ̂(T (M̄, x)). Therefore
{(c)1}(a) r Ψ̂(Φ(x)). Thus Λa.{(c)1}(a) r [Φ(x), M̄ ] ⊃ Ψ̂(Φ(x)). Note that this
realization of [Φ(x), M̄ ] ⊃ Ψ̂(Φ(x)) does not depend on Φ. Therefore the scheme
Φ∗(R) is uniformly LAβ-realizable. Proposition 3 is proved.

Proposition 4. If the scheme [R, M̄ ] ⊃ Ψ̂(R) is effectively LAβ-realizable, then
the formula Ψ is realizable.

Proof. Let the scheme [R, M̄ ] ⊃ Ψ̂(R) be effectively LAβ-realizable. Then we
can find a realization b of [T (M̄, x), M̄ ] ⊃ Ψ̂(T (M̄, x)). Note that the formula
[T (M̄, x), M̄ ] is realizable, let a be its realization. Then {b}(a) r Ψ̂(T (M̄, x)). As
Ψ̂(T (M̄, x)) is Ψ , the formula Ψ is realizable. Proposition 4 is proved.

Propositions 3 and 4 mean that 1) if the scheme [R, M̄ ] ⊃ Ψ̂(R) is effectively
LAβ-realizable, then the formula Ψ is realizable, and 2) if the formula Ψ is
realizable, then the scheme [R, M̄ ] ⊃ Ψ̂(R) is uniformly LAβ-realizable. Theorem
3 is proved.
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Theorem 4. The classes of effectively and uniformly LAβ-realizable predicate
formulas are not definable in the language LAβ.

Proof. Note that the predicate formula Ψ∗ constructed for an LAβ-proposition Ψ
according to Theorem 3 has the following proprety: 1) if Ψ is realizable, then Ψ∗ is
both effectively and uniformly LAβ-realizable; 2) if Ψ is not realizable, then Ψ∗ is
neither effectively nor uniformly realizable. Let ϕ be a partial recursive function
such that forall x, if x is the Gödel number of an LAβ-proposition Ψ , then ϕ(x) is
the Gödel number of the predicate formula Ψ∗. Now let Φ(x) be an LAβ-formula
such that for every n the formula Φ(n̄) is realizable iff n is the Gödel number of
an effectively (uniformly) LAβ-realizable predicate formula. Then evidently the
LAβ-formula ∃y (y = ϕ(x)&Φ(y)) defines the predicate Rβ(x) in the language
LAβ, but this is impossible by Proposition 1. Theorem 4 is proved.

Theorem 5. If γ < β ≤ α, then there exists a closed uniformly LAγ-realizable
predicate formula which is not effectively LAβ-realizable.

Proof. By Theorem 1, it is sufficient to construct a closed uniformly LAγ-
realizable scheme which is not effectively LAβ-realizable. Let |m| = γ < β.
We prove that ¬[R, m̄] is a required scheme. As it was noted above, the for-
mula [T (m̄, x), m̄] is realizable, thus the formula ¬[T (m̄, x), m̄] is not realizable.
As T (m̄, x) is an LAβ-formula, this means that the scheme ¬[R, m̄] is not ef-
fectively LAβ-realizable. On the other hand, if for an LAγ-formula Φ(x), the
formula [Φ(x), m̄] is realizable, then by Proposition 2, the formulas Φ(x) and
T (m̄, x) are equivalent. Thus Φ(x) defines the predicate Rγ(x) in the language
LAγ , but this is impossible by Proposition 1.
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Abstract. By blending principles from mechanism design, algorithms,
machine learning and massive distributed computing, the search industry
has become good at optimizing monetization on sound scientific princi-
ples. This represents a successful and growing partnership between com-
puter science and microeconomics. When it comes to understanding how
online users respond to the content and experiences presented to them,
we have more of a lacuna in the collaboration between computer science
and certain social sciences. We will use a concrete technical example
from image search results presentation, developing in the process some
algorithmic and machine learning problems of interest in their own right.
We then use this example to motivate the kinds of studies that need to
grow between computer science and the social sciences; a critical element
of this is the need to blend large-scale data analysis with smaller-scale
eye-tracking and “individualized” lab studies.
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Abstract. Given a directed graph G = (V, A), the Directed Maximum

Leaf Spanning Tree problem asks to compute a directed spanning tree
with as many leaves as possible. By designing a branching algorithm an-
alyzed with Measure&Conquer, we show that the problem can be solved
in time O∗(1.9044n) using polynomial space. Allowing exponential space,
this run time upper bound can be lowered to O∗(1.8139n).

1 Introduction

We investigate the Directed Maximum Leaf Spanning Tree (DMLST)

problem, where we are given a directed graph G(V,A), and we are asked to
find a directed spanning tree (with the arcs directed from the root towards the
leaves) for G with a maximum number of leaves. Such a directed spanning tree
is sometimes called an out-branching.

Known Results. Besides results on approximability [3,4], this problem has also
drawn notable attention in the field of parameterized algorithms. Here the prob-
lem is known as directed k-leaf spanning tree where k is a lower bound
on the number of leaves in the directed spanning tree. For kernelization results,
we refer to [3,5]. Branching algorithms both for directed and undirected graphs
have been developed, leading to the run times summarized in Table 1. All these
algorithms are based on an idea of J. Kneis, A. Langer and P. Rossmanith [8];
they solved this problem in time O∗(4k). The given run times marked with (*)
follow from the row above using an observation of V. Raman and S. Saurabh [11].

Our Achievements. The main result in this paper improves the currently best
upper bound of O∗(1.9973n) [2]. Our algorithm is inspired by the one of [6]
and achieves a run time of O∗(1.9044n). The algorithm of [6] is not trivially
transferrable to the directed version. Starting from an initial root the algorithm
grows a tree T . The branching process takes place by deciding whether the
vertices neighbored to the tree will become final leaves or internal vertices. A
crucial ingredient of the algorithm was also to create floating leaves, i.e., vertices
which are final leaves in the future solution but yet not attached to T . This
concept has been already used in [6] and partly by [2]. In the undirected case we
guarantee that in the bottleneck case we can generate at least two such leaves. In
the directed version there is a situation where only one can be created. Especially
for this problem we had to find a workaround.
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Table 1. Records for producing leafy trees; writing O∗() suppresses polynomial factors

directed graphs undirected graphs randomized
(undirected graphs)

parameterized O∗(3.72k) [2] O∗(3.46k) [10] O∗(2k) [9]
exact O∗(1.9973n) [2] (*) O∗(1.8962n) [6,10] O∗(1.7088n) (*)

Preliminaries, Terminology & Notation. We consider directed graphs G(V,A)
in the course of our algorithm, where V is the vertex set and A the arc set.
The in-neighborhood of a vertex v ∈ V is N−

V ′(v) = {u ∈ V ′ | (u, v) ∈ A} and,
analogously, its out-neighborhood is N+

V ′(v) := {u ∈ V ′ | (v, u) ∈ A}. The in-
and out-degrees of v are d−V ′(v) := |N−

V ′(v)| and d+V ′(v) := |N+
V ′(v)| and its degree

is dV ′(v) = d−V ′(v) + d+V ′(v). If V ′ = V , then we might suppress the subscript.
For V ′ ⊆ V we let N+(V ′) :=

⋃
v∈V ′ N+(v) and N−(V ′) is defined analogously.

Let A(V ′) := {(u, v) ∈ A | ∃u, v ∈ V ′}, N+
A (v) := {(v, u) ∈ A | u ∈ N+

V (v)} and
N−

A (v) := {(u, v) ∈ A | u ∈ N−
V (v)}. Given a graph G = (V,A) and a graph

G′ = (V ′, A′), G′ is a subgraph of G if V ′ ⊆ V and A′ ⊆ A. The subgraph
of G induced by a vertex set X ⊆ V is denoted by G(X) and is defined by
G(X) = (X,A′) where A′ = A(X). The subgraph of G induced by an arc
set Y ⊆ A is denoted by G(Y ) and is defined by G(Y ) = (V (Y ), Y ) where
V (Y ) = {u ∈ V | ∃(u, v) ∈ Y ∨ ∃(v, u) ∈ Y }.

A directed path of length � in G is a set of pairwise different vertices v1, . . . , v�
such that (vi, vi+1) ∈ A for 1 ≤ i < �. A subgraph H(VH , AH) of G is called a
directed tree if there is a unique root r ∈ VH such that there is a unique directed
path P from r to every v ∈ VH \ {r} under the restriction that its arc set obeys
A(P ) ⊆ AH . Speaking figuratively, in a directed tree the arcs are directed from
the parent to the child. If for a directed tree H = (VH , AH) that is a subgraph
of G(V,A) we have V = VH , we call it spanning directed tree of G. The terms
out-tree and out-branching are sometimes used for directed tree and spanning
directed tree, respectively. The leaves of a directed tree H = (VH , AH) are the
vertices u such that d−VH

(u) = dVH (u) = 1. In leaves(H) all leaves of a tree H
are comprised and internal(H) := V (H) \ leaves(H). The unique vertex v such
that N−

VH
(u) = {v} for a tree-vertex will be called parent of u. A vertex v ∈ VH

such that dVH (v) ≥ 2 will be called internal. Let T (VT , AT ) and T ′(VT ′ , AT ′) be
two trees. T ′ extends T , written T ′ / T , iff VT ⊆ VT ′ , AT ⊆ AT ′ . Simplistically,
we will consider a tree T also as a set of arcs T ⊆ A such that G(T ) is a directed
tree. The notions of / and leaves(T ) carry over canonically.

An arc-cut set is a set of arcs B ⊂ A such that G(A \ B) is a digraph which
is not weakly connected. We suppose that |V | ≥ 2. The function χ() returns 1 if
its argument evaluates to true and 0 otherwise. We now re-define our problem:
Rooted Directed Maximum Leaf Spanning Tree (RDMLST)

Given: A directed graph G(V,A) and a vertex r ∈ V .
Task: Find a spanning directed tree T ′ ⊆ A such that |leaves(T ′)| is maximum
and d−T ′(r) = 0.
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Basic Idea of the Algorithm. Once we have an algorithm for RDMLST, this
can be used to solve DMLST. As a initial step we simply consider every vertex
as a possible root r of the final solution. This yields a total of n cases.

Then in the course of the algorithm for RDMLST we will gradually extend
an out-tree T ⊆ A, which is predetermined to be a subgraph in the final out-
branching. Let VT := V (T ) and V T := V \VT . We will also maintain a mapping
lab : V → {free, IN,LN,BN,FL} =: D, which assigns different roles to the
vertices. If lab(v) = IN, then v is already fixed to be internal, if lab(v) = LN
then it will be a leaf. Vertices in IN or LN will also be called internal nodes or
leaf nodes, respectively. If lab(v) = BN (designating a branching node), then v
already has a parent in T , but can be leaf or internal in the final solution. If
lab(v) = FL, then v is constrained to be a leaf but has not yet been attached to
the tree T . Such vertices are called floating leaves. If lab(v) = free, then v �∈ VT

and nothing has been fixed for v yet. For a label Z ∈ D and v ∈ V we will
often write v ∈ Z when we mean lab(v) = Z. A given tree T ′ defines a labeling
VT ′ → D to which we refer by labT ′ . Let INT ′ := {v ∈ VT ′ | d+T ′(v) ≥ 1}, LNT ′ :=
{v ∈ VT ′ | d+G(v) = 0} and BNT ′ = VT ′ \(INT ′∪LNT ′) = {v ∈ VT ′ | d+T ′(v) = 0 <
d+G(v)}. Then for any ID ∈ D\{FL, free} we have IDT ′ = lab−1(ID). We always
assure that labT and lab are the same on VT . The subscript might be hence
suppressed if T ′ = T . If T ′ 5 T , then we assume that INT ⊆ INT ′ and LNT ⊆
LNT ′ . So, the labels IN and LN remain once they are fixed. For the remaining
labels we have the following possible transitions: FL → LN, BN → {LN, IN} and
free → D\{free}. Let BNi = {v ∈ BN | d+G(v) = i}, freei = {v ∈ free | d−G(v) = i}
for i ≥ 1, BN≥� :=

⋃n
j=� BNj and free≥� :=

⋃n
j=� freej .

Reduction & Halting Rules. We state a set of seven reduction & halting rules.
Similar reduction rules for the undirected version can be found in [6,10].

(H) Halt if BN = ∅. If free ∪ FL = ∅ then return |LN|. Otherwise, answer NO.
(R1) Let v ∈ V . If lab(v) = FL, then remove N+

A (v). If lab(v) = BN, then
remove N−

A (v) \ T .
(R2) If there exists a vertex v ∈ BN with d+(v) = 0, then set lab(v) := LN.
(R3) If there exists a vertex v ∈ free with d(v) = 1, then set lab(v) := FL.
(R4) If v ∈ LN, then remove NA(v) \ T .
(R5) Assume that there exists some u ∈ BN such that N+

A (u) is a an arc-cut
set. Then lab(u) := IN and for all x ∈ N+(u)∩FL set lab(x) := LN, and for
all x ∈ N+(u) ∩ free set lab(x) := BN.

(R6) If there is an arc (a, b) ∈ A with a, b ∈ free and G(A \ {a, b}) consists of
two strongly connected components of size greater than one. Then contract
(a, b) and label the resulting vertex “free”.

We mention that we defer the correctness proof for (H) to section 2.2. Due to
space restrictions, the proof of (R1)-(R3) is omitted.

Proposition 1. The reduction rules (R1) - (R6) are sound.

Proof. (R4) The only arcs present in any tree T ′ / T will be NA(v)∩T . Thus,
NA(v) \ T can be removed.
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(R5) As N+
A (v) is an arc-cut set, setting v ∈ LN would cut off a component

which cannot be reached from the root r. Thus, v ∈ IN is constrained.
(R6) Let G∗ be the graph after contracting (a, b). If G∗ has a spanning tree with
k leaves, then so does G. On the other hand, note that in every spanning
tree T ′ / T for G we have that a, b ∈ IN and (a, b) ∈ T ′. Hence, the tree T#

evolved by contracting (h, u) in T ′ is a spanning tree with k leaves in G∗. ��

2 The Algorithm

2.1 Branching Rules

If N+(internal(T )) ⊆ internal(T ) ∪ leaves(T ), we call T an inner-maximal
directed tree. We make use of the following fact:

Lemma 1 ([8] Lemma 4.2). If there is a tree T ′ with leaves(T ′) ≥ k such
that T ′ / T and x ∈ internal(T ′), then there is a tree T ′′ with leaves(T ′′) ≥ k
such that T ′′ / T , x ∈ internal(T ′′) and {(x, u) ∈ A | u ∈ V } ⊆ T ′′.

Look at Algorithm 1 which describes the branching rules. As mentioned before,
the search tree evolves by branching on BN-vertices. For some v ∈ BN we will
set either lab(v) = LN or lab(v) = IN. In the second case we adjoin the vertices
N+

A (v) \ T as BN-nodes to the partial spanning tree T . This is justified by
Lemma 1. Thus, during the whole algorithm we only consider inner-maximal
trees. Right in the beginning we therefore have A({r}∪N+(r)) as an initial tree
where r is the vertex chosen as the root.

We also introduce an abbreviationfor the different cases generated by branch-
ing: 〈v ∈ LN; v ∈ IN〉 means that we recursively consider the two cases were v
becomes a leaf node and an internal node. The semicolon works as a delimiter
between the different cases. More complicated expressions like 〈v ∈ BN, x ∈
BN; v ∈ IN, x ∈ LN; v ∈ LN〉 describe more complicated branchings.

2.2 Correctness of the Algorithm

In the following we are going to prove two lemmas which are crucial for the
correctness and for the run time.

Lemma 2 (Correctness of (H)). If BN = ∅ and free ∪ FL �= ∅, then no
spanning tree T ′ / T exists.

Proof. Let x ∈ free∪FL and assume there is a spanning tree T ′ / T . Then there
is a directed path P = r . . . x in G(T ′). By free∪FL �= ∅ and T ′ ⊇ T , there must
be a (a, b) ∈ A(P ) such that we can assume that a ∈ V (T ) and b �∈ V (T ). By
the fact BN = ∅ and (R4) it follows that a ∈ INT . But this is a contradiction
to Lemma 1, i.e., T would not be inner-maximal. ��

Lemma 3. Let T ⊆ A be a given tree such that v ∈ BNT and N+(v) = {x1, x2}.
Let T ′, T ∗ ⊆ A be optimal solutions with T ′, T ∗ / T under the restriction that
labT ′(v) = LN, and labT∗(v) = IN and labT∗(x1) = labT∗(x2) = LN.
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Data: A directed graph G = (V, A) and a tree T ⊆ A.
Result: A spanning tree T ′ with the maximum number of leaves s.t. T ′ � T .
Check if the halting rule (H) applies .
Apply the reduction rules exhaustively.
if BN1 �= ∅ then

Choose some v ∈ BN1.
Let P = {v0, v1, . . . , vk} be a path of maximum length such that (1) v0 = v,
(2) for all 1 ≤ i ≤ k − 1, d+

Pi−1
(vi) = 1 (where Pi−1 = {v0, . . . , vi−1}) and

(3) P \ free ⊆ {v0, vk}.
if d+

Pk−1
(vk) = 0 then

Put v ∈ LN. (B1)

else
〈v ∈ IN, v1, . . . , vk ∈ IN; v ∈ LN〉 (B2)

else
Choose a vertex v ∈ BN with maximum out-degree.
if a) d+(v) ≥ 3 or b)(N+(v) = {x1, x2} and N+(v) ⊆ FL) then

〈v ∈ IN; v ∈ LN〉 and in case b) apply makeleaves(v, x1, x2) in the 1st
branch. (B3)

else if N+(v) = {x1, x2} then
if for z ∈ ({x1, x2} ∩ free) we have
|N+(z) \ N+(v)| = 0 or (B4.1)
N+

A (z) is an arc-cut set or (B4.2)
N+(z) \ N+(v) = {v1} (B4.3)
then

〈v ∈ IN; v ∈ LN〉 (B4)

else if N+(v) = {x1, x2}, x1 ∈ free, x2 ∈ FL then
〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN; v ∈ LN〉
and apply makeleaves(v, x1, x2) in the 2nd branch. (B5)

else if N+(v) = {x1, x2}, x1, x2 ∈ free and ∃z ∈ (N−(x1) ∩ N−(x2)) \ {v}
then

〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ LN〉 (B6)

else if N+(v) = {x1, x2}, x1, x2 ∈ free and
|(N−(x1) ∪ N−(x2)) \ {v, x1, x2}| ≥ 2 then

〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ LN; v ∈
LN〉 and apply makeleaves(v, x1, x2) in the 3rd branch. (B7)

else
〈v ∈ IN; v ∈ LN〉 (B8)

Algorithm 1. An Algorithm for solving RDMLST

begin
∀u ∈ [(N−(x1) ∪ N−(x2)) \ {x1, x2, v}] ∩ free set u ∈ FL;
∀u ∈ [(N−(x1) ∪ N−(x2)) \ {x1, x2, v}] ∩ BN set u ∈ LN;

end

Procedure makeleaves(v, x1, x2)
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1. If there is a vertex u �= v with N+(u) = {x1, x2}, then |leaves(T ′)| ≥
|leaves(T ∗)|.

2. Assume that d−(xi) ≥ 2 (i = 1, 2). Assume that there exists some u ∈
(N−(x1) ∪ N−(x2)) \ {v, x1, x2} with labT∗(u) = IN. Then |leaves(T ′)| ≥
|leaves(T ∗)|.

Proof. 1. Let T+ := (T ∗ \ {(v, x1), (v, x2)}) ∪ {(u, x1), (u, x2)}. We have
labT+(v) = LN and u is the only vertex besides v where
labT∗(u) �= labT+(u) is possible. Hence, u is the only vertex where we could
have labT∗(u) = LN such that labT+(u) = IN. Thus, we can conclude
|leaves(T+)| ≥ |leaves(T ∗)|. As T ′ is optimal under the restriction that
v ∈ LN, |leaves(T ′)| ≥ |leaves(T+)| ≥ |leaves(T ∗)| follows.

2. W.l.o.g., we have u ∈ N−(x1)\{v, x2}. Let q ∈ N−(x2)\{v} and T+ := (T ∗\
{(v, x1), (v, x2)}) ∪ {(u, x1), (q, x2)}. We have labT+(v) = LN, labT+(u) =
labT∗(u) = IN and q is the only vertex besides v where we could have
labT∗(q) �= labT+(q) (i.e., possibly labT∗(q) = LN and labT+(q) = IN).
Therefore, |leaves(T ′)| ≥ |leaves(T+)| ≥ |leaves(T ∗)|. ��

Correctness of the Different Branching Cases. First note that by Lemma 2
(H) takes care of the case that indeed an out-branching has been built. If so,
the number of its leaves is returned. Below we will argue that each branching
case of Algorithm 1 is correct: it preserves at least one optimal solution. Cases
(B3)a), (B4) and (B8) do not have to be considered in detail, being simple binary,
exhaustive branchings.

(B1) Suppose there is an optimal extension T ′ / T such that labT ′(v) =
labT ′(v0) = IN. Due to the structure of P , there must be an i, 0 < i ≤ k,
such that (vj , vj−1) ∈ T ′ for 0 < j ≤ i, i.e., v, v1, . . . vi−1 ∈ IN and vi ∈ LN.
W.l.o.g., we choose T ′ in a way that i is minimum but T ′ is still optimal
(✛). By (R5) there must be a vertex vz , 0 < z ≤ i, such that there is an
arc (q, vz) with q ∈ VT ′ \ P . Now consider T ′′ = (T ′ \ {(vz−1, vz)})∪ {q, vz}.
In T ′′ the vertex vz−1 is a leaf and therefore |leaves(T ′′)| ≥ |leaves(T ′)|.
Additionally, we have that z − 1 < i which is a contradiction to the choice
of T ′ (✛).

(B2) Note that lab(vk) ∈ {BN,FL} is not possible due to (R1) and, thus,
lab(vk) = free. By the above arguments from (B1), we can exclude the case
that v, v1, . . . vi−1 ∈ IN and vi ∈ LN (i ≤ k). Thus, under the restriction that
we set v ∈ IN, the only remaining possibility is also to set v1, . . . vk ∈ IN.

(B3)b) When we set v ∈ IN, then the two vertices in N+(v) will become leaf
nodes (i.e., become part of LN). Thus, Lemma 3.2 applies. Note that (R5)
does not apply and therefore (N−(x1) ∪ N−(x2)) \ {v, x1, x2} �= ∅, as well
as d(xi) ≥ 2 (i = 1, 2). This means that that every vertex in (N−(x1) ∪
N−(x2)) \ {v, x1, x2} can be assumed a to be leaf node in the final solution.
This justifies to apply makeleaves(v, x1, x2).

(B5) The branching is exhaustively with respect to v and x1. Nevertheless, in
the second branch, makeleaves(v, x1, x2) is carried out. This is justified by
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Lemma 3.2 (similar to (B3)b)), as by setting v ∈ IN and x1 ∈ LN, x2 will
be attached to v as a LN-node and (R5) does not apply.

(B6) In this case, we neglect the possibility that v ∈ IN, x1, x2 ∈ LN. But due
to Lemma 3.1, a no worse solution can be found in the recursively considered
case where we set v ∈ LN. This shows that the considered cases are sufficient.

(B7) Similar to (B3), Lemma 3.2 justifies applying makeleaves(v, x1, x2) in the
third branch.

2.3 Analysis of the Run Time

The Measure. To analyze the running-time we follow the Measure&Conquer-
approach (see [7]) and use the following measure:

μ(G) =
n∑

i=1

εBN
i |BNi| +

n∑
i=1

εfreei |freei| + εFL|FL|

The concrete values are εFL = 0.2251, εBN
1 = 0.6668, εBN

i = 0.7749 for i ≥ 2,
εfree1 = 0.9762 and εfree2 = 0.9935. Also let εfreej = 1 for j ≥ 3 and
η = min{εFL, (1− εBN

1 ), (1− εBN
2 ), (εfree2 − εBN

1 ), (εfree2 − εBN
2 ), (εfree1 − εBN

1 ), (εfree1 −
εBN
2 )} = εfree1 − εBN

2 = 0.2013.
For i ≥ 2 let Δfree

i = εfreei − εfreei−1 and Δfree
1 = εfree1 . Thus, Δfree

i+1 ≤ Δfree
i with

Δfree
s = 0 for s ≥ 4.
In the very beginning, μ(G) ≤ n = |V |. The values for the different ε-variants

have been chosen in order to optimize the outcome of the following analysis.
Also note that if μ(G) = 0 then (H) correctly returns the number of leaf nodes.

Run Time Analysis of the Different Branching Cases. In the following.
we state for every branching case by how much μ will be reduced. Especially, Δi

states the amount by which the i-th branch decreases μ. Each branching case may
create several subcases in this analysis, depending on the sizes of the sets BNi,
freei and FL before and after the branching. We solved each of the resulting
recurrences by computing the largest positive roots (also known as branching
numbers) of the associated characteristic polynomials. The largest of all these
branching numbers is used in the formulation of Theorem 1 that summarizes our
findings.

If v is the vertex chosen by Algorithm 1 then it is true that for all x ∈ N+(v)
we have d−(x) ≥ 2 by (R5) (✜).

(B2) 〈v ∈ IN, v1, . . . , vk ∈ IN, v ∈ LN〉
Recall that d+

Pk−1
(vk) ≥ 2 and vk ∈ free by (R1). Then v1 ∈ free≥2 by (R5).

1. v becomes IN-node; v1, . . . , vk become IN-nodes; the free vertices in
N+(vk) become BN-nodes, the FL-nodes in N+(vk) become LN-nodes:
Δ1 ≥ εBN

1 +
∑k

i=2 ε
free
1 +χ(v1 ∈ free2) · εfree2 +χ(v1 ∈ free≥3) · εfree3 + 2 · η

2. v becomes LN-node; the degree of v1 is reduced:
Δ2 ≥ εBN

1 +
∑3

i=2 χ(v1 ∈ freei) ·Δfree
i
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(B3)a) Branching: 〈v ∈ IN; v ∈ LN〉.
1. v becomes IN-node; the free out-neighbors of v become BN-nodes; the

FL out-neighbors of v becomes LN-nodes:
Δ1 ≥ εBN

2 +
∑

x∈N+(v)∩free≥3
(1 − εBN

2 ) +
∑

x∈N+(v)∩free2(ε
free
2 − εBN

2 ) +∑
y∈N+(v)∩FL ε

FL

2. v becomes LN-node; the in-degree of the free out-neighbors of v is de-
creased: Δ2 ≥ εBN

2 +
∑3

i=2 |N+(v) ∩ freei| ·Δfree
i

(B3)b) Recall that v is a BN-node of maximum out-degree, thus d+(z) ≤
d+(v) = 2 for all z ∈ BN. On the other hand BN1 = ∅ which implies
BN = BN2 from this point on. Hence, we haveN+(v) = {x1, x2}, d−(xi) ≥ 2
(i = 1, 2), and |(N−(x1)∪N−(x2)) \ {v, x1, x2}| ≥ 1 by (✜) in the following
branching cases. Therefore, the additional amount of min{εfree1 − εFL, εBN

2 }
in the first branch is justified by the application of makeleaves(v, x1, x2).
Note that by (✜) at least one free-node becomes a FL-node, or one BN-node
becomes a LN-node. Also due to (R1) we have that N+(xi) ∩ BN = ∅.
1. v becomes IN-node; the FL out-neighbors of v become LN-nodes;

the vertices in [(N−(x1)∪N−(x2))\{v, x1, x2}]∩BN become LN-nodes;
the vertices in [(N−(x1)∪N−(x2))\{v, x1, x2}]∩ free become FL-nodes.
Δ1 ≥ εBN

2 + 2 · εFL + min{εfree1 − εFL, εBN
2 }

2. v becomes LN-node: Δ2 ≥ εBN
2 .

(B4) The branching is binary: 〈v ∈ IN; v ∈ LN〉.
(B4.1) 1. v becomes IN-node; z becomes LN-node by (R1), (R2) or both by

(R4). The vertex q ∈ {x1, x2} \ {z} becomes LN-node or BN-node
(depending on q ∈ FL or q ∈ free).
Δ1 ≥ εBN

2 + εfree2 + min{εFL, (εfree2 − εBN
2 )}

2. v becomes LN-node: Δ2 ≥ εBN
2

(B4.2) 1. v becomes IN-node; N+
A (z) is an arc-cut set. Thus, z becomes IN-

node as (R5) applies; The vertex q ∈ {x1, x2}\{z} becomes LN-node
or BN-node (depending on q ∈ FL or q ∈ free):
Δ1 ≥ εBN

2 + εfree2 + min{εFL, (εfree2 − εBN
2 )}

2. v becomes LN-node: Δ2 ≥ εBN
2 .

Note that in all the following branching cases we have N+(xi)∩free1 = ∅
(i = 1, 2) by this case.

(B4.3) We have |N+(z) \N+(v)| = 1. Thus, in the next recursive call after the
first branch and the exhaustive application of (R1), either (R6), case
(B2) or (B1) applies. (R5) does not apply due to (B4.2) being ranked
higher. Note that the application of any other reduction rule does not
change the situation. If (B2) applies we can analyze the current case to-
gether with its succeeding one. If (B2) applies in the case we set v ∈ IN
we deduce that v0, v1, . . . , vk ∈ free where z = v0 = x1 (w.l.o.g., we
assumed z = x1). Observe that v1 ∈ free≥2 as (B4.2) does not apply.
1. v becomes IN-node; x1 becomes LN-node; x2 becomes FL- or BN-node
(depending on whether x2 ∈ free or x2 ∈ FL); the degree of v1 drops:
Δ11 ≥ εBN

2 + χ(x1 ∈ free≥3) · εfree3 + χ(x1 ∈ free2) · εfree2 +
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χ(x2 ∈ free≥3) · (εfree3 − εBN
2 ) + χ(x2 ∈ free2) · (εfree2 − εBN

2 ) +
χ(x2 ∈ FL) · εFL +

∑3
i=2 χ(v1 ∈ freei) ·Δfree

i .
2. v becomes IN-node, x1, v1 ∈ IN, . . . , vk become IN-nodes; the free ver-
tices in N+(vk) become BN-nodes, the FL-nodes in N+(vk) LN-nodes:
Δ12 ≥ εBN

2 + χ(x1 ∈ free≥3) · εfree3 + χ(x1 ∈ free2) · εfree2 +
χ(x2 ∈ free≥3) · (εfree3 − εBN

2 ) + χ(x2 ∈ free2) · (εfree2 − εBN
2 ) +

χ(x2 ∈ FL)·εFL+χ(v1 ∈ free2)·εfree2 +χ(v1 ∈ free≥3)·εfree3 +
∑k

i=2 ε
free
1 +2η.

3. v becomes LN-node: the degrees of x1 and x2 drop:

Δ2 ≥ εBN
2 +

∑ max
h∈{1,2}

d−(xh)

�=2
∑2

j=1 χ(xj ∈ free�) ·Δfree
� .

The worst case branching number from above is 1.897, created by two
cases with k = 1: 1. x2 ∈ free≥4, d−(v1) ≥ 4, d+(v1) = 2, d−(x1) ≥ 4
and 2. x2 ∈ FL, d−(v1) ≥ 4, d+(v1) = 2, d−(x1) ≥ 4.
If case (B1) applies to v1 the reduction in both branches is as least as
great as in (B4.1)/(B4.2).
If (R6) applies after the first branch (somewhere in the graph) we get
Δ1 ≥ εBN

2 + (εfree2 − εBN
1 ) + εfree1 + min{εFL, (εfree2 − εBN

2 )} and Δ2 ≥ εBN
2 .

Here the amount of εfree1 in Δ1 originates from an (R6) application. The
corresponding branching number is 1.644.

(B5) A more complicated branching arises: 〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈
LN; v ∈ LN〉.
1. v and x1 become IN-nodes; x2 is now a LN-node; the vertices in N+(x1)∩
free become BN-nodes and those in N+(x1) ∩ FL become LN-nodes:
Δ1 ≥ εBN

2 + εfree2 + εFL +
∑

x∈N+(x1)∩free(ε
free
2 − εBN

2 ) +
∑

x∈N+(x1)∩FL ε
FL

2. v becomes IN-node; x1 and x2 become LN-nodes; after the application of
makeleaves(v, x1, x2), the vertices in [(N−(x1)∪N−(x2))\{v, x1, x2}]∩BN
become LN-nodes and those in [(N−(x1)∪N−(x2))\{v, x1, x2}]∩free become
FL-nodes: Δ2 ≥ εBN

2 + εfree2 + εFL + min{εfree1 − εFL, εBN
2 }.

3. v becomes LN: Δ3 ≥ εBN
2 .

The amount of min{εfree1 − εFL, εBN
2 } in the second branch is due to (✜) and

to the application of makeleaves(v, x1, x2).
(B6) 〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ LN〉: The branching vector

can be derived by considering items 1,2 and 4 of (B7) and the reductions
Δ1, Δ2 and Δ4 in μ obtained in each item.

(B7) 〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈
LN; v ∈ LN〉: Note that if N+

A (x1) or N+
A (x2) is an arc-cut set, then (B4.2)

applies. Thus, all the branching cases must be applicable. Moreover, due to
the previous branching case (B4.3) we have |N+(x1) \N+(v)| = |N+(x1) \
{x2}| ≥ 2 and |N+(x2) \ N+(v)| = |N+(x2) \ {x1}| ≥ 2 (✱). Note that
N−(x1) ∩N−(x2) = {v} due to (B6).
For i ∈ {1, 2}, let fli = |{x ∈ N+(xi) \ N+(v) | x ∈ FL}|, fr≥3

i = |{u ∈
N+(xi)\N+(v) | u ∈ free≥3}| and fr2i = |{u ∈ N+(xi)\N+(v) | u ∈ free2}|.
For i ∈ {1, 2} we have (fli + fr≥3

i + fr2i ) ≥ 2 due to (✱).
1.v and x1 become IN; x2 becomes BN; the free out-neighbors of x1 become
BN; the FL out-neighbors of x1 become LN:
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Δ1 ≥ εBN
2 + χ(x1 ∈ free≥3) +

χ(x1 ∈ free2) · εfree2 + χ(x2 ∈ free≥3) · (εfree3 − εBN
2 ) + χ(x2 ∈ free2) · (εfree2 −

εBN
2 ) + (fl1 · εFL + fr≥3

1 · (εfree3 − εBN
2 ) + fr21 · (εfree2 − εBN

2 ))
2. v becomes IN; x1 becomes LN; x2 becomes IN; the free out-neighbors of
x2 becomes BN; the FL out-neighbors of x2 become LN;
Δ2 ≥ εBN

2 + (
∑2

i=1[χ(xi ∈ free≥3) · εfree3 + χ(xi ∈ free2) · εfree2 ]) +
(fl2 · εFL + fr≥3

2 · (εfree3 − εBN
2 ) + fr22 · (εfree2 − εBN

2 ))
3. v becomes IN; x1 and x2 become LN; the free in-neighbors of x1 become
FL; the BN in-neighbors of x1 become LN; the free in-neighbors of x2 become
FL; the BN in-neighbors of x2 become LN:
Δ3 ≥ εBN

2 +[
∑2

i=1(χ(xi ∈ free≥3)·εfree3 +χ(xi ∈ free2)·εfree2 )]+max{2, (d−(x1)
+ d−(x2) − 4)} · min{εfree1 − εFL, εBN

2 }. Note that the additional amount of
max{2, (d−(x1)+d−(x2)−4)}·{εfree2 −εFL, εBN

2 } is justified by Lemma 3.2 and
by the fact that d−(xi) ≥ 2 and N−(x1)∩N−(x2) = {v} due to (B6). Thus,
we have |(N−(x1)∪N−(x2)) \ {x1, x2, v}| ≥ max{2, (d−(x1)+ d−(x2)− 4)}.
4. v becomes LN; the degrees of x1 and x2 drop:

Δ4 ≥ εBN
2 +

∑ max
	∈{1,2}

{d−(x	)}
j=2

∑2
i=1(χ(d

−(xi) = j) ·Δfree
j )

(B8) Observe that in the second branch we can apply (R6). Due to the non-
applicability of (R5) and the fact that (B7) is ranked higher in priority
we have |(N−(x1) ∪ N−(x2)) \ {v, x1, x2}| = 1. Especially, (B6) cannot be
applied, yielding N−(x1)∩N−(x2) = {v}. Thus, have the situation in Fig. 1.
So, w.l.o.g., there are arcs (q, x1), (x1, x2) ∈ A (and possibly also (x2, x1) ∈
A), where {q} = (N−(x1) ∪ N−(x2)) \ {v, x1, x2}, because we can rely on
d−(xi) ≥ 2 (i = 1, 2) by (✜).
Firstly, assume that q ∈ free.
(a) v becomes IN; x1 and x2 becomes BN: Δ1 ≥ εBN

2 + 2 · (εfree2 − εBN
2 ).

(b) The arc (q, x1) will be contracted by (R6) when we v becomes LN, as
x1 and x2 only can be reached by using (q, x1): Δ2 ≥ εBN

2 + εfree1 .
The branching number here is ≤ 1.606.
Secondly, assume q ∈ BN. Then q ∈ BN2 due to the branching priorities.
(a) v becomes IN; x1 and x2 become BN: Δ1 ≥ εBN

2 + 2 · (εfree2 − εBN
2 ).

(b) Then after setting v ∈ LN, rule (R5) will make q internal and subse-
quently also x1: Δ2 ≥ εBN

2 + εfree2 + εBN
2 . This amount is justified by the

changing roles of the vertices in N+(q) ∪ {q}.
1.499 upper-bounds the corresponding branching number.

Theorem 1. Directed Maximum Leaf Spanning Tree can be solved in
O∗(1.9044n) steps.

Notice that the claimed run time can be read off from Table 2 by computing
c = max ci as the basis. The proven run time bound admits only a small gap
to the bound of O∗(1.8962n) for the undirected version where we could benefit
from the presence of degree two vertices on a greater scale.
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q
x1

x2

v

Fig. 1. The unique situation occurring in (B8). The arc pointing towards v is in T .

Table 2. Summarizing worst case branching numbers ci per branching case (Bi)

(B2): k = 1, d−(v1) ≥ 4, d+(v1) = 2, for all u ∈ N+(v1) we have u ∈ free1 � c2 < 1.8.
(B3)a): d+(v) = 3 and |N+(v) ∩ FL| + |N+(v) ∩ free≥4| = 3 � c3a) ≤ 1.9044.
(B3)b): c3b) < 1.8.
(B4.1/2): c4.1/2 < 1.8.
(B4.3): c4.3 ≤ 1.897. (see main text)
(B5): N+(x1) ⊆ free, d+(x1) = 2, d−(x1) = 2 and N+(x1)\{v} ⊆ free1 � c5 < 1.888.
(B7)/(B6) : The next cases determine branching numbers 1.9043 ≤ c7 ≤ 1.9044.
1. d−(x1) = d+(x1) = 2, d−(x2) = 4, d+(x2) = 2, fr2

1 = fr2
2 = 2

2. d−(x1) = d−(x2) = 3, d+(x1) = d+(x2) = 2, fr2
1 = fr2

2 = 2
3. d−(x2) = d+(x2) = 2, d−(x1) = 4, d+(x1) = 2, fr2

1 = fr2
2 = 2

(B8): If q ∈ free, then c8 < 1.7.

3 Conclusions

An Approach Using Exponential Space. The algorithm of J. Kneis et al. [8] can
also be read in an exact non-parameterized way. It is not hard to see that it
yields a running time of O∗(2n). Alternatively, keep the cases (B1) and (B2)
of Algorithm 1 and substitute all following cases by a simple branch on some
BN-node. Using n as a measure we see that O∗(2n) is an upper bound. We are
going to use the technique of memoization to obtain an improved running time.
Let SGα := {G(V ′) | V ′ ⊆ V, |V ′| ≤ α · n} where α = 0.141. Then we aim to
create the following table L indexed by some G′ ∈ SGα and some VBN ⊆ V (G′):
L[G′, VBN] = T ′ such that |leaves(T ′)| = minT̃⊆L |leaves(T̃ )| where
L = {T̃ | T̃ is directed spanning tree for G′

BNwith root r′} and
G′

BN = (V (G′) ∪ {r′, y}, A(G′) ∪ ({(r′, y)} ∪ {(r′, u) | u ∈ VBN}),
with r′, y being new vertices. Entries where such a directed spanning tree T̃
does not exists (e.g., if VBN = ∅) get the value ∅. This table can be filled up
in time O∗ (( n

α·n
)
· 2αn · 1.9044αn

)
⊆ O∗(1.8139n). This run time is composed of

enumerating SGα, then by cycling through all possibilities for VBN and finally
solving the problem on G′

BN with Alg. 1. By stopping the O∗(2n)-algorithm1

whenever |V \ internal(T )| ≤ α ·n and looking up the rest of the solution in the
table L, we can show:

1 In the first phase, we cannot replace the O∗(2n)-algorithm by Algorithm 1. Namely,
(R6) might generate graphs which are not vertex-induced subgraphs of G.
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Theorem 2. Directed Maximum Leaf Spanning Tree can be solved in
time O∗(1.8139n) consuming O∗(1.6563n) space.

Résumé. The paper at hand presented an algorithm which solves the Directed

Maximum Leaf Spanning Tree problem in time O∗(1.9044n). Although this
algorithm follows the same line of attack as the one of [6] the algorithm itself
differs notably. The approach of [6] does not simply carry over. To achieve our
run time bound we had to develop new algorithmic ideas. This is reflected by the
greater number of branching cases. Let us mention that we produced in [6] also
a lower-bound example. By this we mean a class of graphs with n nodes such that
the suggested algorithm would actually take Ω(cn) time. The particular sample
graph family from [6] can be easily adapted to the directed case, proving:

Theorem 3. We can give a lower-bound example of Ω(3n/3) = Ω(1.4422n) for
the worst case running time of our algorithm.
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The underlying question of propositional proof complexity is amazingly simple:
when interesting propositional tautologies possess efficient (which usually means
short) proofs in a given propositional proof system? This theory is extremely well
connected to very different disciplines like computational complexity, theoreti-
cal cryptography, automated theorem proving, mathematical logic, algebra and
geometry. And, given its mixed origins, methods and concepts employed in the
area are also very diverse.

In this lecture we will try to accomplish as much of the following as possible;
our choice of topics is highly biased and personal.

We will begin with a brief discussion of connections to the classical proof
theory, notably bounded arithmetic. Essentially, for virtually all propositional
proof systems of significance there exists a first-order logical theory such that
provability in this theory can be almost equated with efficient provability in
the original proof system. In a sense, both capture the philosophical concept of
provability in the world in which all objects that can be used by the prover are
of restricted computational complexity (and in particular are restricted in size).

We give a sample of concrete lower and upper bounds for weak proof systems.
We definitely will mention the Feasible Interpolation Theorem, as well as more
elaborate applications of the “locality” method.

It turns out that (apparently) all lower bounds for restricted models and
explicit Boolean functions known in circuit complexity at the moment possess
efficient propositional proofs [12, Appendix]. It is an extremely interesting open
question whether the same systems can prove strong lower bounds for unre-
stricted circuits of formulas, i.e., if they can resolve major open problems in

complexity theory like NP
?
⊆ P/poly or P

?
⊆ NC1/poly. While the prospect

of giving an unconditional answer to these exciting questions does look slim at
the moment, we will discuss the possibility of showing this under reasonable
complexity assumptions [14, Introduction].

Somewhat surprisingly, it turned out [1] that certain techniques used in proof-
complexity studies can give unexpected and strong applications in a very differ-
ent area, (theoretical) machine learning. We will try to mention this application
as well.

Another important by-product of propositional proof complexity consists in
applications to studying so-called integrality gaps for a variety of linear or positive
semi-definite relaxation procedures widely used by the algorithmic community.
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From the side of propositional proof complexity, these procedures correspond to
ordinary proof systems with a very distinct algebraic or geometric flavor (see [8]
for a comprehensive catalogue), and we hope to spend a considerable time on
these results.

All references in the list below not mentioned in the main text are to various
books, surveys and other writings on proof complexity that serve various tastes
and can be used for further reading on the subject.
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Extended Abstract

Many classical search problems can be cast in the following abstract framework:
Given a finite setX and a subsetM ⊆ X of marked elements, detect ifM is empty
or not, or find an element inM if there is any. WhenM is not empty, a naive ap-
proach to the finding problem is to repeatedly pick a uniformly random element of
X until a marked element is sampled. A more sophisticated approach might use a
Markov chain, that is a random walk on the state spaceX in order to generate the
samples. In that case the resources spent for previous steps are often reused to gen-
erate the next sample. Random walks also model spatial search in physical regions
where the possible moves are expressed by the edges of some specific graph. The
hitting time of a Markov chain is the number of steps necessary to reach a marked
element, starting from the stationary distribution of the chain.

In this survey talk we discuss quantum walks, the discrete time quantiza-
tion of classical Markov chains, together with some of their properties and ap-
plications to search problems. We proceed by analogy: Szegedy’s method of
quantization of Markov chains is presented as the natural analogue of a ran-
dom walk on the edges of a graph. Grover search and the quantum walk based
search algorithms of Ambainis, Szegedy, Magniez/Nayak/Roland/Santha and
Magniez/Nayak/Richter/Santha are stated as quantum analogues of classical
search procedures. The complexities of these search algorithms are analyzed in
function of various parameters, including the quantum analogue of the eigenvalue
gap of the classical chain, the phase gap, and the quantum hitting time.

Among the many applications of quantum walks we describe two in the query
model of computation. In the Element Distinctness problem we are given
a function f defined on {1, . . . , n}, and we are looking for a pair of distinct
elements 1 ≤ i, j ≤ n such that f(i) = f(j). While the classical complexity of
this problem is Θ(n), it can be solved by a quantum walk based algorithm due
to Ambainis in time O(n2/3), and this upper bound is thight. In the Triangle

problem the input is the adjacency matrix of a graph G on vertex set {1, . . . , n},
and the output is a triangle if there is any. This problem can easily be solved
by Grover’s algorithm in time O(n3/2), while the obvious quantum lower bound
is Ω(n). We present the quantum walk based algorithm of Magniez, Santha and
Szegedy whose time is O(n13/10), the exact complexity of the problem is open.
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Abstract. In this survey we compare the similarities, differences and the
complexities of two very different approaches to solve a general constraint
satisfaction probblems (CSP). One is the algorithm used in Moser’s ingenious
proof of a constructive version of Lovász Local Lemma [3], the other is the
k-SAT random walk algorithm from [5,6], generalized to CSP’s. There are
several similarities, both algorithms use a version of stochastic local search
(SLS), but the kind of local search neighborhood is defined differently, also the
preconditions for the algorithms to work (efficiently) are quite different.

Keywords: constraint satisfaction problem, CSP, Lovász Local Lemma, SAT, sat-
isfiability algorithm, stochastic local search, SLS.

1 Introduction

Recently there has been a lot of research in reducing the constant c = ck in the com-
plexity boundO(cn) of algorithms which solve k-SAT problems, or more general, CSP
problems (here also c = cd,k depends on certain parameters, especially the domain size
d and the constraint size k.) One type of such algorithms is based on stochastic local
search, that is, after choosing a random initial assignment, the algorithm performs a
random walk on the space of potential solutions (this is {0, 1}n in the SAT case, and
more general, Dn for some finite set D in the CSP case.) Usually such random walk
is “focussed” in the sense that some clause/constraint is selected (possibly using some
particular selection strategy) that is not satisfied under the actual assignment, and then
the assignment is changed by flipping one bit or some bits that correspond to variable
values occuring in the clause or constraint.

It is a striking observation that this general description just given applies to two
algorithms originating from quite different contexts. The first algorithm, due to Moser
[3], is used to produce a constructive proof of Lovász Local Lemma, the other is an
algorithm originally designed for k-SAT, especially 3-SAT (cf. [5]), which reduces the
constant c to the smallest possible value.
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2 Moser’s Constructive Proof of Lovász Local Lemma

The Lovász Local Lemma states in its original form (cf. [1]) that in a probability space,
for a set of (considered bad) events, whenever there is only some weak dependency
between the events, there is a positive probability that none of the events will occur.
Moser [3] (improved in [4], see also [2]) has proved a constructive version of the Lo-
cal Lemma, in the sense that a (probabilistic) algorithm is able to find an elementary
event which is disjoint with all such bad event (with high probability). Moser presents
his proof in terms of the Boolean satisfiability problem. (Here an elementary event is a
possible assignment to the variables of the given formula, and the “bad” events corre-
spond to those assignments which cause clauses in the formula to be set to false. “Weak
dependency” means that for each clause in the formula there is just a certain bounded
number of clauses sharing at least one variable.)

We state the result in more general terms of a constraint satisfaction problem, CSP,
for short. A CSP is specified by some finite domain D. (For simplicity we assume
D = {1, 2, . . . , d}.) Further, we have a set of variables x1, . . . , xn taking their values
from D, and most importantly, there is a finite set of constraints C1, . . . , Cm where
each constraint is an inequality which rules out one specific value assignment to some
(small) subset of the variables, for example, “(x3, x4, x8) �= (1, 5, 2)”. The algorithmic
task is to find a value assignment (a1, . . . , an) ∈ Dn for the variables such that no
constraint is injured. We assume here that each constraint involves at most k variables.

Under this setting the Local Lemma (or, a version of it) states: If for each constraint
there are less than dk/4 many constraints which share at least one variable with the re-
spective constraint, then the CSP is satisfiable. Moreover, such a satisfying assignment
can be found efficiently (with high probability) using some (probabilistic) algorithm.

Here is the probabilitic algorithm: Initially, give each variable a random value cho-
sen uniformly from domain D. Now consider the constraints Cj , j = 1, . . . ,m, suc-
cessively. If Cj is injured under the actual assignment, then call a recursive procedure
Repair(Cj) as described below. Provided that all the recursive procedure calls return
to the main program we will have the garantee that the assignment has been changed
in a way that the constraint Cj is now satisfied and no other constraint that was satis-
fied before will be unsatisfied. Now, it should be clear, provided that all these calls of
the procedure Repair will terminate, the entire algorithm will terminate and produce a
satisfying assignment.

Here is a description of the procedure Repair(C) where C is a constraint being in-
jured by the actual assignment: First give the k variables in constraint C random new
values chosen uniformly fromDk. Then, inspect successively all the “neighbors”C′ of
constraint C (i.e. those constraints which have at least one variable with C in common)
whether C′ is injured by the new assignment. If so, call Repair(C′) recursively (in a
depth-first manner).

Suppose we interrupt the computation after t calls of the procedure Repair (as a
thought experiment). Up to this point, we have used n values from D for the initial
assignment, and for the t calls of the procedure Repair we have used each time k values
fromD. Altogether this amounts to n · log d+t ·k · log d bits of information. Since these
bits are random, it should not be possible to compress this information considerably
(only with very low probability.)
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But actually, it is possible to reconstruct these random bits in a compact way, first,
by using the output which we consider to be the assignment that has been reached after
t Repair steps. Therefore, the output takes n log d bits. Furthermore, we describe the
subset of {C1, C2, . . . , Cm} from which a call of Repair is started in the main program
by using m bits. The structure of these recursive calls (a “forest” of trees with t edges
altogether) can be described by a bitstring of length 2t. (A “1” meaning a procedure
call, a “0” meaning a return from a procedure call.) For example, the following tree
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�
���

���
���

��
�

��

�

� � � �

��

�

will be described by the bitstring 10101110010010.
Finally, the respective constraints in the trees of procedure calls can be identified by

the index in the neighbor list of the predecessor constraint. This part of the information
takes, by assumption, at most (1 − ε) · t · log(dk/4) ≤ (1 − ε) · k · t · log d− 2t bits,
for some ε > 0.

Now the entire computation process can be recovered in a backwards fashion start-
ing from the output assignment. Since we know at each step which constraint was used
in the last Repair-call, we can reset the assignment to the values it had before the call.
This is because, for each constraint, there is exactly one of the dk many variable assign-
ments which injures it. (Loosely speaking, the “go to” involves more entropy than the
“come from”.)

⇒⇒ ⇒⇒

algorithm

· · ·� �random bits output

⇐⇐ ⇐⇐· · ·
output +

additional
bits

��

⇓

�

input
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input

random bits

Therefore the entire computation can be recovered (as indicated in the picture) and
also all random values which were used in the computation, including the initial assign-
ment. Since “almost all” random values are incompressible, we get the inequality

theoretically best possible compression length ≤ achievable compression length

or

n · log d+ t · k · log d ≤ n · log d+m+ 2t+ (1 − ε) · k · t · log d− 2t

This gives us ε · t · k · log d ≤ m, hence we obtain the following linear upper bound
(and also a proof of termination): t ≤ 1

ε·k·log d ·m.
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3 Random Walk Algorithm for CSP

In [5,6] we descibe a k-SAT algorithm based on random walk (stochastic local search)
and restarts which can also be applied to the more general situation of a CSP problem.
What a CSP is was described in the last section. Given a CSP with domain D, domain
size d = |D|, number of variables n, number of constraints m, number of variables
per constraint k, the (basis) algorithm works as follows. Initially, give each variable a
random value chosen uniformly from domainD. Now consider the constraints Cj , j =
1, . . . ,m, successively. IfCj is injured under the actual assignment, then call a recursive
procedure Repair(Cj) as described below. If the number of (recursive) calls of Repair
reaches some value cn, for some constant c, stop the basis algorithm (unsuccessfully).
Provided that all the procedure calls return (i.e. terminate) in a regular way we will
have the garantee that the assignment has been changed in a way that the constraint
Cj is now satisfied and no other constraint that was satisfied before will be unsatisfied.
Now, it should be clear that provided that these calls of the procedure Repair will all
terminate, the entire algorithm will terminate and produce a satisfying assignment.

The procedure Repair(C ), C being a constraint that is injured under the actual as-
signment, works as follows. Choose one of the variables occuring in C at random (d
many choices), and choose for this variable another value (one of d−1 choices). Change
the actual assignment accordingly. (Now although this is not really necessary for this al-
gorithm to work properly, we proceed in analogy to Moser’s procedure above.) Inspect
successively all the “neighbors”C′ of constraint C (i.e. those constraints which have at
least one variable with C in common) whether C′ is injured by the new assignment. If
so, call Repair(C′) recursively (in a depth-first manner).

The analysis below shows that, under the precondition that the given CSP has a
solution, the success probability (the probability of finding a solution) during a single
run of the basis algorithm (with at most cnmany Repair’s) is at least (d · (1− 1/k))−n.
Therefore, the expected number of repetitions of the basis algorithm until we find a
solution is (d · (1 − 1/k))n. Put differently, supposing that the CSP has a solution, the
probability that no solution is found after t · (d · (1 − 1/k))n many unsuccessful runs
of the basis algorithm, is at most e−t.

The algorithm can be analyzed using a Markov chain approach. Suppose we have
the states of the Markov chain 0, 1, 2, . . . where the interpretation of state j is that the
Hamming distance of the actual assignment to some fixed satisfying assignment is j.
Each change of the assignment during a call of the procedure repair can change the
value of j to j − 1, to j + 1, or leaves j unchanged. In the worst case these 3 cases
happen with the probabilities 1

k·(d−1) , k−1
k , or d−2

k·(d−1) , respectively. Letting p(j) be
the probability that starting from state j this process finally reaches state 0, we get the
equation:

p(j) =
1

k · (d− 1)
· p(j − 1) +

d− 2
k · (d− 1)

· p(j) +
k − 1
k

· p(j + 1), p(0) = 1

Using the ansatz p(j) = αj we obtain the characteristic equation

0 =
1
d− 1

+ (
d− 2
d− 1

− k) · α+ (k − 1) · α2
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which has the solution α = 1
(d−1)·(k−1) . Putting this together with the probability(

n
j

)
(d−1

d )j( 1
d )n−j of reaching state j after the random choice of an initial assignment,

we obtain the success probability of the basis algorithm, using the binomial theorem, as

n∑
j=0

(
n

j

)(d− 1
d

)j(1
d

)n−j( 1
(d− 1) · (k − 1)

)j

=
(
d · (1 − 1

k
)
)−n

In the case of 3-SAT this gives the probability (4/3)−n. Notice that, provided the
stochastic process reaches state 0 at all, it does so within cn steps, for some c, with
high probability. Therefore, the above estimations also hold asymptotically if we cut
off the stochastic local search process after cn steps and restart the basis algorithm,
using a new random initial assignment (see also [7] for a discussion of restarts).

4 Conclusion

The two algorithms show striking similarities. Both belong to the class of stochastic
local search algorithms, and both start with a randomly chosen initial assignment. Both
algorithms focus in each random walk step on a non-satisfied constraint and change
the assignment of the variables of the selected constraint. But here the differences start.
In the case of the Moser algorithm it is important that the order in which the non-
satisfied clauses are considered follows the depth-first scheme as described above. But
the random walk algorithm can, without harm, be adapted to follow the same scheme,
although its complexity analysis does not rely on it.

The real big difference, finally, is the local neighborhood to which the assignment is
changed in a single step. In the case of the random walk algorithm, it is just a single
value flip, which affects the Hamming distance to a fixed satisfying solution, by at most
1. In the case of Moser’s algorithm the local neighborhood to which an assignment can
be changed consists of a Hamming ball of radius k around the actual assignment. In
both cases it is not of any advantage to switch the behavior. The random walk algorithm
will not benefit from the Hamming ball neighborhood. (For example, in the case of 3-
SAT the bound will go from 1.3n

to 1.6n.) Also, the termination proof in the case of
Moser’s algorithm will break down.

Nevertheless, we believe, even that Moser’s algorithm is constructed for the very
special purpose of giving a constructive proof of Lovász Local lemma, and needs for
functioning a very strong assumption about the neighborhood size of constraints, we
believe the underlying idea might flow in algorithmic solutions for constraint oder SAT
algorithms.
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Abstract. We study growth properties of power-free languages over fi-
nite alphabets. We consider the function α(k, β) whose values are the
exponential growth rates of β-power-free languages over k-letter alpha-
bets and clarify its asymptotic behaviour. Namely, we suggest the laws of
the asymptotic behaviour of this function when k tends to infinity and
prove some of them as theorems. In particular, we obtain asymptotic
formulas for α(k, β) for the case β ≥ 2.

1 Introduction

The study of words and languages avoiding repetitions is one of the central topics
in combinatorics of words since the pioneering work of Thue [19]. For a survey,
see [2] and the references therein. The most impressive achievement of the recent
years is the proof of Dejean’s conjecture, stated in 1972 [8]. Let us briefly recall
the story.

The repetitions considered by Dejean are periodic words, which are treated as
fractional powers of words. The exponent of such a power is the ratio between its
length and its minimal period. The β-power-free (or simply β-free) language over
a given alphabet consists of all words which contain no fractional powers of the
exponent γ ≥ β as factors. Exponent β is k-avoidable if the β-free language over
the k-letter alphabet is infinite. Thue proved that the exponent 2 is 3-avoidable
but not 2-avoidable, while all exponents that are greater than 2 are 2-avoidable.
Dejean added the description of 3-avoidable exponents and suggested a simple
rule to decide for any given numbers k and β whether a β-free language is k-
avoidable. This rule became known as Dejean’s conjecture. During more than
three decades there were several attempts to attack this conjecture but only a
modest success: the cases k = 4, . . . , 14 were proved. The key contribution was
made in 2006 by Carpi [4] who proved the conjecture for all large (k ≥ 33)
alphabets by a uniform construction. The remaining finite gap was filled in 2009
by Currie and Rampersad [6] and independently by Rao [12]. We should also
note that computer search played a very big role in the solution to the cases
k = 5, . . . , 32, while Carpi’s construction required no computer.

When a repetition is known to be avoidable, the following problem arises:
how can we calculate some quantitative measure of its avoidability? The most
natural measure is the order of growth of the avoiding language. The study of
growth properties of formal languages has a long history since the paper by
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Morse and Hedlund [11]. A survey on the growth of power-free languages can
be found in [1]. Recently the author proposed a universal method to estimate
the growth of power-free languages and gave sharp bounds for the (exponential)
growth rates of many particular languages [14, 15, 16, 17].

In this paper we show that our method can be applied not only to individual
languages but also to sets of languages. Somewhat similar to [4], we show how
the growth of languages avoiding similar repetitions over different alphabets
can be estimated in a uniform way. More precisely, we consider growth rate as a
function of two numerical parameters: the size k of the alphabet and the avoided
exponent β. Our goal is to describe the asymptotic behaviour of this function
when k tends to infinity while β either is a constant or depends on k. On the
basis of extensive numerical studies we suggest a general model of behaviour
of growth rate (Section 3), consisting of five laws. Law 1 concerns very small
exponents and immediately follows from Dejean’s conjecture. Law 2 deals with
“big” exponents (β > 2) and is proved as Theorem 1 in Section 4. Laws 3–5 are
devoted to all other avoidable exponents. Two of them describe the asymptotic
behaviour of the growth rate when β is constant (Law 3) or decreases with
increasing k (Law 5). Law 4 compares the impacts on growth rate made by an
increment of β and by an increment of k. In Section 5, Laws 3–5 are supported
by some partial results and restated in a more precise form (see Conjectures 2,3).
Laws 3,4 for the case β = 2 are proved in Theorem 2 in Section 4.

2 Preliminaries

We recall necessary notation and definitions. For more background, see [7,9,10].

1. Words and languages. An alphabet Σ is a nonempty finite set, the elements
of which are called letters. Words are finite sequences of letters. As usual, we
write Σ∗ for the set of all words over Σ, including the empty word λ. A word
u is a factor (respectively prefix, suffix) of a word w if w can be represented as
v̄uv̂ (respectively uv̂, v̄u) for some (possibly empty) words v̄ and v̂. A factor
(respectively prefix, suffix) of w is called proper if it does not coincide with w.
Subsets of Σ∗ are called languages (over Σ). A language is factorial if it is closed
under taking factors of its words.

A word w is forbidden for a language L if it is a factor of no word from L. The
set of all minimal (w.r.t. taking factors of words) forbidden words for a language
is called the antidictionary of this language. A factorial language is uniquely
determined by its antidictionary. If the antidictionary is regular (in particular,
finite), then the language is also regular.

A word w ∈ Σ∗ can be viewed as a function {1, . . . , n} → Σ. Then a period of
w is any period of this function; the minimal period is denoted by per(w). The
exponent of w is given by exp(w) = |w|/ per(w), where |w| is the length of w. If
exp(w) > 1 then w is a fractional power. The word w is said to be β-free (β+-
free) if all its factors have exponents less than β (respectively, at most β). By
β-free (β+-free) languages we mean the languages of all β-free (respectively β+-
free) words over a given alphabet. These languages are obviously factorial and
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are also called power-free languages. Following [3], we use only the term β-free,
assuming that β belongs to the set of “extended rationals”. This set consists of
all rational numbers and all such numbers with a plus; the number x+ covers x
in the usual ≤ order such that the inequalities y ≤ x and y < x+ are equivalent.

By L(k, β) andM(k, β) we denote the β-free language over a k-letter alphabet
and its antidictionary, respectively. We setMm(k, β)={w∈M(k, β) | per(w)≤m}.
The (regular) language Lm(k, β) with the antidictionary Mm(k, β) is called the
m-approximation of L(k, β). The word w ∈ M(k, β) is called an s-repetition,
if s = |w| − per(w). By L(r)(k, β) we mean the language whose antidictionary
consists of all s-repetitions of M satisfying s ≤ r. Of course, L(r)(k, β) coincides
with some m-approximation of L(k, β).

The repetition threshold is the function RT (k) = inf{β |L(k, β) is infinite }.
Dejean’s conjecture states that RT (3) = 7/4, RT (4) = 7/5, RT (k) = k/(k−1)
for k = 2 and k ≥ 5, and L(k,RT (k)) is always finite.

2. Automata, digraphs, and growth rates. We consider deterministic finite
automata (dfa’s) with partial transition function. We view a dfa as a digraph,
sometimes even omitting the labels of edges. A trie is a dfa that is a tree such
that the initial vertex is its root and the set of terminal vertices is the set of all
its leaves. Only directed walks in digraphs are considered. For a dfa, the number
of words of length n in the language it recognizes obviously equals the number of
accepting walks of length n in the automaton. A dfa is consistent if each vertex
is contained in some accepting walk.

The growth rate of a language L is defined by α(L) = lim supn→∞(CL(n))1/n,
where CL(n) is the number of words of length n in L. For factorial languages,
lim sup can be replaced by lim. We write α(k, β) instead of α(L(k, β)).

A strongly connected component (scc) of a digraphG is a subgraphG′ maximal
w.r.t. inclusion such that there is a walk from any vertex ofG′ to any other vertex
of G′. A digraph is strongly connected, if it consists of a unique scc.

The index of a digraph G is the maximum absolute value of the eigenvalues
of its adjacency matrix AG, and is denoted by Ind(G). By the Perron-Frobenius
Theorem, Ind(G) is itself an eigenvalue of AG, called the Frobenius root, and has
a nonnegative eigenvector called the principal eigenvector of AG. The index of
G equals maximum of the indices of its scc’s.

Growth rates of regular languages and indices of digraphs are closely con-
nected. Namely, if a language L is recognized by a consistent dfa A, then
α(L) = Ind(A). A short proof of this fact can be found in [13].

3 Model of Behaviour of the Growth Rate Function

We start with a table presenting some numerical results on the growth rates. These
results are obtainedby the author using themethod of [14,15,16,17]. In the last four
columns the exact values of growth rates, rounded off to 6 digits after the comma,
are presented. The values in other columns are obtained by extrapolation of a se-
quence of upper bounds only. Basing on these numerical results, we suggest five
laws describing the asymptotic behaviour of the function α(k, β).
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Table 1. Growth rates of some power-free languages

k k
k−1

+ k−1
k−2

k−1
k−2

+ k−2
k−3

k−2
k−3

+ 3/2 (3/2)+ 2 2+ 3 3+

3 0 0 1,301762 2,605879 2,701562 2,911924
4 1,0968 2,28052 2,621508 3,728494 3,778951 3,948787
5 1,1577 1,1646 2,2485 2,40242 3,492800 3,732539 4,789851 4,822067 4,966241
6 1,2246 1,2289 2,2768 2,3764 3,400 3,540514 4,603386 4,791407 5,827733 5,850362 5,976010
7 1,2369 1,2374 2,2988 2,3265 3,373 4,627498 5,672703 5,828466 6,853725 6,870588 6,982056
8 1,2348 1,2349 2,3125 2,3282 3,362 5,686769 6,720687 6,854117 7,872761 7,885852 7,986065
9 1,24666 1,2467 2,318 2,325 3,361 6,729676 7,756057 7,872990 8,887342 8,897819 8,988863

10 1,23930 1,23933 2,321 2,324 3,364 7,762175 8,783291 8,887486 9,898887 9,907470 9,990893
11 1,24260 1,24263 2,323 2,325 3,366 8,787655 9,804948 9,898981 10,908264 10,915429 10,992414
12 1,24287 1,24288 2,324 2,325 3,369 9,808175 10,822603 10,908328 11,916035 11,922111 11,993583
13 1,24087 1,24087 2,325 2,326 3,371 10,825060 11,837286 11,916080 12,922584 12,927802 12,994501
14 1,24277 1,24277 2,325 2,326 3,373 11,839200 12,849695 12,922617 13,928179 13,932711 13,995235
15 1,24183 1,24183 2,326 2,326 3,374 12,851217 13,860327 13,928203 14,933016 14,936989 14,995831

Law 1. If β ≤ RT (k) then α(k, β) = 0. This law follows immediately from
Dejean’s conjecture.

Law 2. If β ≥ 2+ then α(k, β) tends to k as k approaches infinity such that
the difference k−α(k, β) monotonically decreases at a polynomial rate. This law
can be observed in three last columns of Table 1. Note that α(k, 2+), α(k, 3) ≈
k− 1/k, while α(k, 3+) ≈ k− 1/k2. Theorem 1 in Section 4 implies this law and
gives the precise degree of the polynomial rate.

Now suppose that RT (k) < β ≤ 2.

Law 3. If β ∈ [n+1
n

+
, n

n−1 ] for an integer n ≥ 2, then α(k, β) tends to k+1−n
as k approaches infinity such that the difference (k+1−n)−α(k, β) monotoni-
cally decreases at linear rate starting with some number k = k(n). This law is
illustrated by the columns of the exponents 3/2, (3/2)+, and 2 in Table 1.

Law 4. If β = n
n−1 for an integer n ≥ 2, then adding + to β has nearly the

same effect as adding 1 to k: the difference α(k+1, n
n−1 )−α(k, n

n−1
+) tends to

zero at nonlinear polynomial rate as k approaches infinity. One can observe this
law comparing the values in the columns of the exponents 3/2 and (3/2)+, and
also of the exponents 2 and 2+ in Table 1. For β = 2, Laws 3 and 4 follow from
Theorem 2, see Section 4. In the general case these laws follow from Conjecture 2
(Section 5) which suggests the asymptotics of the function α(k, β) for arbitrary
fixed β from the interval (RT (k), 2].

Law 5. If β depends on k such that β ∈ [ k−n
k−n−1

+
, k−n−1

k−n−2 ] for a fixed nonnegative
integer n, then α(k, β) tends to some constant αn as k approaches infinity and,
moreover, αn+1 < αn+1. This is our Conjecture 1. It is illustrated by the first
five columns of Table 1. In Section 5 we give some partial results supporting this
conjecture and suggest the values of α0, α1, and α2.

4 Asymptotic Formulas for the Case β ≥ 2

Theorem 1. Let n ≥ 2 be an integer, β ∈ [n+, n+1] be an exponent. Then the
following equality holds:
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α(k, β) =
{
k − 1

kn−1 + 1
kn − 1

k2n−2 + O
( 1

k2n−1

)
if β ∈ [n+, n+ 1

2 ];
k − 1

kn−1 + 1
kn +O

( 1
k2n−1

)
if β ∈ [(n+ 1

2 )+, n+1]. (1)

Corollary 1. For any β ≥ 2+ one has (k − α(k, β)) → 0 as k → ∞, and the
rate of convergence is polynomial in k.

Corollary 2. α(k, n+)−α(k, n) = 1
kn−2 +O

( 1
kn−1

)
for any n ≥ 3, α(k, n+1)−

α(k, n+) = 1
k2n−2 + O

( 1
k2n−1

)
for any n ≥ 2.

Thus, for a fixed k the jumps of the function α(k, β) at the endpoints of the
interval [n+, n+1] are much bigger than the variation of this function inside this
interval. But with the growth of k all these jumps become negligible, while the
jump at the point n = 2 is always big:

Theorem 2. The following equalities hold:

α(k+1, 2) = k − 1
k − 1

k3 +O
( 1

k5

)
;

α(k, 2+) = k − 1
k − 1

k3 − 1
k4 +O

( 1
k5

)
.

(2)

Corollary 3 (Big Jump Property). α(k, 2+) − α(k, 2) = 1 + 1
k2 +O

( 1
k3

)
.

Corollary 4 (Law 4 for n = 2). α(k+1, 2)− α(k, 2+) = 1
k4 +O

( 1
k5

)
.

Remark 1. All obtained formulas correlate very well with the numerical results
of Table 1.

Now turn to the proof of Theorem 1. It consists of two big steps. First we use the
method previously developed in [14,15,16] to get upper bounds for the values of
α(k, β) and then the method of [17] to convert the upper bounds into two-sided
ones. Normally one should fix k and β before applying these methods, but here
we consider these numbers as parameters.

Proof (upper bounds). Since L(k, β) ⊂ Lm(k, β), the growth rate α(Lm(k, β))
approximates α(k, β) from above. To get α(Lm(k, β)) one can list all words of
Mm(k, β), build a consistent dfa Am for Lm(k, β) using a variant of the textbook
Aho-Corasick algorithm (see [5]), and calculate the Frobenius root Ind(Am).
However, it is more efficient to use symmetry to build a much smaller digraph
with the index Ind(Am). We call this digraph the factor automaton of the initial
automaton Am. This digraph is built as a dfa, but the language it recognizes
does not make much sense, because we need only the index which is a purely
graph characteristic. Algorithm FA, which builds factor automata, is described
in [16] and the details of its efficient implementation are in [15]. Here we do not
need the details, only the algorithm.

Suppose that Σ is an ordered alphabet. For two words v, w ∈ Σ∗ we write
v ∼ w if v = σ(w) for some permutation σ of the alphabet. A word v ∈ Σ∗ is
called lexmin, if v ∼ w implies that v is lexicographically smaller than w.

Algorithm FA
Input : the set of all lexmin words of Mm(k, β).
Output : factor automaton FAm with the index α(Lm(k, β)).
0. Build the trie T recognizing the set of input words. Associate each vertex in
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T with the word labeling the accepting walk ending at this vertex.
1. Add all possible edges to T , following the rule:
the edge (u, v) with the label x should be added if (a) u is not terminal, and
(b) u has no outgoing edge labeled by x, and (c) v ∼ w, where w is the longest
suffix of the word ux which is ∼-equivalent to a vertex of T .
2. Remove all terminal vertices and mark all remaining vertices as terminal to
get FAm.

Note that Algorithm FA diverges from Aho-Corasick’s algorithm in two points
only: we take lexmin forbidden words instead of all forbidden words as an input
and require ∼-equivalence of words instead of their equality in step 1.

Now we use Algorithm FA to build the factor automaton for the 2-approxima-
tion L2(k, β). Let Σ = {1, . . . , k}. Two different but very similar cases are possi-
ble. If β ∈ [n+, n+1

2 ], the input of Algorithm FA consists of the words 1n+1 and
(12)n1. If β ∈ [(n+ 1

2 )+, n+1], the second word is replaced by (12)n+1. Below
the factor automaton for the first case is given. For the second case we should
add one more vertex to the longer branch; this new vertex (12)n1 has the same
outgoing edges as the other vertices of this branch. (When drawing the factor
automaton we omit the labels of the edges, because they do not matter. Instead,
we indicate the multiplicities of multiple edges which are drawn in boldface.)

λ 1 11 . . .
. . .

. . .

. . .

1n

12 121 . . . (12)n

×k

×k−2

×k−1 ×k−1
×k−1

×k−2

×k−2

We proceed with the first case. Since the index of a graph equals the maximum
of indices of its scc’c, we discard the vertices λ and 1 from the obtained factor
automaton to get a strongly connected digraph with the adjacency matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k−2 1 0 . . . 0 1 0 . . . 0
k−2 0 1 . . . 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
k−2 0 0 . . . 1 1 0 . . . 0
k−2 0 0 . . . 0 1 0 . . . 0
k−1 0 0 . . . 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
k−1 0 0 . . . 0 0 0 . . . 1
k−1 0 0 . . . 0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3n−2×3n−2

(3)

The upper and lower square blocks are of size 2n−1 and n−1 respectively. Irre-
ducible nonnegative matrices, which correspond to strongly connected digraphs,
possess the following useful property (see [9]): the Frobenius root lies strictly
between the minimum and the maximum of row sums of the matrix. So, for the
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matrix A the Frobenius root equals k− ε, where 0 < ε < 1. Let us calculate the
characteristic polynomial |A− rE|, replacing r by k − ε. Adding all columns of
the matrix A− rE to the first one, we get

|A− rE| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε 1 0 . . . 0 1 0 . . . 0
ε ε−k 1 . . . 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
ε 0 0 . . . 1 1 0 . . . 0
ε−1 0 0 . . . ε−k 1 0 . . . 0
ε 0 0 . . . 0 ε−k 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
ε 0 0 . . . 0 0 0 . . . 1
ε−1 0 0 . . . 0 0 0 . . . ε−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This determinant can be explicitly calculated due to the following claim. Here
Cij denotes the cofactor of the (i, j)-th entry of the matrix A−rE and

Δ =

∣∣∣∣∣∣∣∣∣∣
1 0 . . . 0 1
ε−k 1 . . . 0 1
. . . . . . . . . . . . . . .
0 0 . . . 1 1
0 0 . . . ε−k 1

∣∣∣∣∣∣∣∣∣∣
2n−1×2n−1

=
2n−2∑
i=0

(−1)i(ε−k)i (4)

(to calculate this determinant one can expand along the last row to get a simple
recurrence).

Claim. Ci1 =
{

(−1)i−1(ε−k)3n−2−i if i < 2n;
(−1)i−1(ε−k)3n−2−i·Δ otherwise.

Let us prove this claim. In the case i < 2n the matrix of Ci1 equals
[
B X
O C

]
, where

B is a lower unitriangular matrix of size (i−1) while C is an upper triangular
matrix of size (3n−2−i) with the numbers (ε−k) along the diagonal. Multiplying
the diagonal entries we get the required formula. In the case i ≥ 2n the matrix

of Ci1 equals

⎡⎣D O OX B O
O O C

⎤⎦, where B is a lower unitriangular matrix of size (i−2n),

C is an upper triangular matrix of size (3n−2−i) with the numbers (ε−k) along
the diagonal, and the determinant Δ of D is given by (4). Thus, we multiply Δ
by the diagonal entries of C to finish the claim. Note that in the cases i = 1,
i = 2n, and i = 3n−2 some matrices in the above representations degenerate,
but the formulas obviously remain valid.

Now expand the determinant |A− rE| along the first column:

|A− rE| =

ε·
2n−1∑
i=1

(−1)i−1(ε−k)3n−2−i +Δ·ε·
3n−2−i∑

i=2n

(−1)i−1(ε−k)3n−2−i−(ε−k)n−1+(−1)n·Δ =
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ε·
(
(ε−k)3n−3−2(ε−k)3n−4+ · · ·+(−1)n−1n(ε−k)2n−2 + · · ·+
(−1)2n−2n(ε−k)n−1 + (−1)2n−1(n−1)(ε−k)n−2 + · · ·+ (−1)3n−3)+

(−1)n
(
1 − (ε−k) + (ε−k)2 − · · ·+ (ε−k)2n−2)− (ε−k)n−1 = 0 (5)

The sums in the first and second parentheses of (5) equal (−k)3n−3 +O(k3n−4)
and (−1)n(k2n−2 + O(k2n−3)) respectively. To obtain zero, we must put ε =

1
kn−1 + O( 1

kn ). Then we can simplify (5) so that after cancelling the powers of
(−1) the equation looks like

ε·
(
k3n−3+2k3n−4+ · · ·+nk2n−2+O(k2n−3)

)
− k2n−2−k2n−3− · · · −kn−2kn−1+O(kn−2) = 0 (6)

Only two highest terms in the parentheses in (6) contribute to the coefficient of
k2n−3. The second term contributes 2, so the first term must contribute (−1)
to annihilate the term −k2n−3 outside the parentheses. Hence, ε = 1

kn−1 − 1
kn +

O( 1
kn+1 ). Analyzing the coefficients of k2n−4, . . . , kn−1 in the same way, we finally

obtain
ε =

1
kn−1 − 1

kn
+

1
k2n−2 +O

( 1
k2n−1

)
(the third term in the expansion of ε is due to the coefficient −2 of kn−1). Since
the index of the analyzed 2-approximation equals k−ε, we get the upper formula
of (1).

Now consider the 2-approximation in the case β ∈ [(n+ 1
2 )+, n+1]. The ad-

jacency matrix has the same structure (3), only the sizes of the upper square
block and the whole matrix increase by 1. One can perform the same analysis
as above to arrive at the following analogue of (6):

ε·
(
k3n−2+2k3n−3+ · · ·+nk2n−1+O(k2n−2)

)
− k2n−1−k2n−2− · · · −kn+O(kn−1) = 0. (7)

Note that the degrees of all monomials in (7) increase by 1 w.r.t. the corre-
sponding monomials in (6). The only exception is the monomial −kn−1 which
corresponds to the last term of (5). As a result, this monomial is absorbed by
the O-expression. So, we have no coefficient −2 outside the parentheses and then
no term 1

k2n−2 in the expansion of ε. Hence, the index of the 2-approximation is
k − 1

kn−1 + 1
kn +O

( 1
k2n−1

)
, and we are done with the upper bound.

Proof (lower bound). We recall the method of [17] to convert the upper bounds
obtained from m-approximations to the two-sided bounds. The quality of the
lower bound in this method increases multiplicatively with increasing m. Here
we improve this method so that it is enough to consider only 2-approximations
in the case β ≥ 3+ and 3-approximations in the case β ≤ 3 to prove (1). If β ≤ 3,
there are four different 3-approximations depending on whether β falls into the
interval [2+, 73 ], [73

+
, 52 ], [52

+
, 83 ], or [83

+
, 3]. So we must check that the growth

rates of these 3-approximation satisfy (1). Since the parameter n is no longer
involved, the calculation of determinants becomes routine, so we omit it.
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To improve the method of [17], we sketch its main ideas. Let Am be the dfa
built by Aho-Corasick’s algorithm to recognize the m-approximation Lm(k, β)
(instead, all the reasoning can be done using the factor automaton FAm, but it
would be harder to follow). The dfa Am accepts all words of L(k, β) and also the
forbidden words in which the minimal forbidden factors have minimal periods
greater than m. We define the vectors P (t) and Q(t), the components of which
correspond to the vertices of Am. The component [P (t)]u equals the number
of words of length t in the language L(k, β) which are accepted by the state
(vertex) u. The component [Q(t)]u equals the number of words w of length t
which are accepted by the state u and have the following property: w /∈ L(k, β)
but v ∈ L(k, β) for any proper prefix v of w. Hence we have

P (t+1) = P (t)A−Q(t+1),

where A is the adjacency matrix of Am. Further, if Am has a unique nonsingleton
scc (for the m-approximations we study in this theorem, this is certainly the
case), and x is the principal right eigenvector of A then the growth rate of the
scalar product S(t) = P (t)x equals α(k, β). Hence,

S(t+1) = P (t+1)x = P (t)Ax −Q(t+1)x = Ind(Am)S(t) −Q(t+1)x. (8)

Now estimate [Q(t+1)]u. Each word w which is counted in [Q(t+1)]u ends by a
suffix v which has (a) the shortest period j > m (b) the length *βj+ (c) no for-
bidden powers inside (d) the word u as a suffix. One can prove that |u|<(β−1)j.
Hence, u occurs in v not only as a suffix but also j symbols to the left from this
suffix. Then the prefix w′ of length |w|−j of the word w is accepted by the state
u as well. Since w′ determines w and w′ ∈ L(k, β) by the choice of w, we get the
inequality

[Q(t+1))]u ≤
� t+1

β �∑
j=m+1

[P (t+1−j)]u.

For arbitrary number γ satisfying the inequality γj−1S(t+1−j) ≤ S(t) for any
j = m+1, . . . , % t+1

β & we have

Q(t+1)x ≤
� t+1

β �∑
j=m+1

S(t+1−j) ≤ S(t) ·
� t+1

β �∑
j=m+1

1
γj−1 <

S(t)
γm−1(γ − 1)

. (9)

Substituting (9) in (8) one can show that

γ+
1

γm−1(γ − 1)
≤ Ind(Am) implies γ < α(k, β). (10)

Producing a better estimation of [Q(t+1))]u we can get a better lower bound.
In the case m = 2 the word u is a prefix of a word an+1 or (ab)n+1 for some
a, b ∈ Σ. In the first case we have |u| < j, because otherwise v has period 1,
contradicting to the property (a). Similarly, |u| ≤ j in the second case, because v
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is not 2-periodic. Since β > n by the conditions of the theorem, we have |v| > nj.
Then v contains an occurrence of u (n−1)j symbols away from the right end.
Hence, the prefix w′ of length |w|−(n−1)j of the word w is accepted by the state
u, w′ determines w and w′ ∈ L(k, β) by the choice of w. So, we can recalculate
(9) (recall that m = 2):

Q(t+1)x ≤
� t+1

β �∑
j=3

S(t+1−(n−1)j) ≤ S(t) ·
� t+1

β �∑
j=3

1
γ(n−1)j−1 <

S(t)
γ2(n−1)−1(γn−1−1)

.

Similar to the above analysis,

γ +
1

γ2(n−1)−1(γn−1 − 1)
≤ Ind(A2) implies γ < α(k, β). (11)

Let γ̄ be the best lower bound obtained from (11). Then the equality Ind(A2) =
k − 1

kn−1 + 1
kn − 1

k2n−2 +O
( 1

k2n−1

)
implies Ind(A2)− γ̄ = O

( 1
k3n−4

)
. Therefore,

for n ≥ 3 this difference is absorbed by O
( 1

k2n−1

)
. Hence, any number from the

interval [γ̄, Ind(A2)], including α(k, β), can be represented as k − 1
kn−1 + 1

kn −
1

k2n−2 +O
( 1

k2n−1

)
.

In the case n = 2 the rule (11) does not improve (10). But for m = 3 even
the rule (10) gives a lower bound within the required distance O

( 1
k3

)
from the

upper bound. The proof is complete.

Proof (of Theorem 2). To prove (2), we use the same ideas as in the proof of The-
orem 1. To get the lower bound within the distance O

( 1
k5

)
from the upper bound

we calculate the growth rates of 5-approximations for L(k, 2) and L(k, 2+). This
routine is done by a computer program. The corresponding factor automaton
for the 2-free language has 49 vertices; 42 of them belong to the nonsingleton
scc. For the 2+-free language these numbers are 244 and 226 respectively.

5 Remarks on Lesser Exponents

No algorithm producing sharp two-sided bounds of the growth rates is currently
known in the case β < 2. So, here we give two conjectures about the behaviour of
α(k, β) in the case β < 2 and some partial results to support these conjectures.

1. Laws 3 and 4

Conjecture 2. For a fixed integer n ≥ 3 and arbitrarily large k the equalities
α(k, n

n−1
+) = k+2−n−n−1

k +O
( 1

k2

)
and α(k, n

n−1 ) = k+1−n−n−1
k +O

( 1
k2

)
hold.

If Conjecture 2 holds true, it implies Law 3 and the equations

α(k, n
n−1

+) − α(k, n
n−1 ) = 1 + O( 1

k2 ) ;
α(k, n

n−1 ) − α(k, n+1
n

+) = 1
k + O( 1

k2 ) ;
α(k+1, n

n−1 ) − α(k, n
n−1

+) = O( 1
k2 ) (refined Law 4).
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We can use the method of previous section to find upper bounds for α(k, n
n−1

+)
and α(k, n

n−1 ). First, take the language L(1)(k, n
n−1 ) (respectively, L(1)(k, n

n−1
+) )

avoiding all 1-repetitions of the given power-free language. One can see that this
language is given by a very simple condition: each successive n−1 (respectively,
n−2) letters in any word are different. As an easy consequence we have

Proposition 1. α(k, n
n−1

+) ≤ k+2−n, α(k, n
n−1 ) ≤ k+1−n.

To get the required upper bounds for the growth rates it is crucial to consider
2-repetitions, which are avoided by m-approximations satisfying the conditions
m ∈ [n−1, 2n−3] for L(k, n

n−1
+) and m ∈ [n, 2n−2] for L(k, n

n−1 ). As in Sec-
tion 4, for a fixed m these approximations have very similar factor automata.
Namely, the following proposition holds.

Proposition 2. Let n ≥ 3, s ≤ n−2 be fixed nonnegative integers, k > 2n−3,
A(k) =

(
aij(k)

)
be the adjacency matrix of the factor automaton built for the

language Ln+s(k, n
n−1 ). Then either aij(k) ≡ bij, or aij(k) ≡ k−cij for some

constants bij , cij . The same results with different constants are true for the lan-
guage Ln+s−1(k, n

n−1
+).

Due to Proposition 2 we calculate the growth rates of corresponding approxima-
tions in the same way as in Section 4. With the aid of computer we have

Proposition 3. For 0 ≤ s ≤ 7, α
(
Ln+s−1(k, n

n−1
+)
)
≤ k+2−n− s+1

k +O
( 1

k2

)
,

α
(
Ln+s(k, n

n−1 )
)
≤ k+1−n− s+1

k +O
( 1

k2

)
. In particular, for n ≤ 9 the values

α(k, n
n−1

+) and α(k, n
n−1 ) are bounded from above by the expressions given in

Conjecture 2.

Remark 2. Unfortunately, there is no similarity between the factor automata of
the languages L(2)(k, n

n−1 ) (respectively, L(2)(k, n
n−1

+) ) for different values of
n. As a result, the adjacency matrices of corresponding factor automata do not
have common structure and we cannot calculate the growth rate manipulating
with determinants of variable size, as in Section 4.

2. Law 5 Can be split in two statements: (A) for a fixed n the sequences{
α(k, k−n

k−n−1
+
)
}

and
{
α(k, k−n−1

k−n−2 )
}

have limits, (B) these limits coincide.
To justify these statements, first consider the case n = 0. It was shown in [18]

that α
(
L(2)(k, k

k−1
+
)
)

= α̂2 ≈ 1, 3247 independently of k, while the sequence{
α
(
L(m)(k, k

k−1
+
)
)}

for any fixed m > 2 has the limit α̂m which is the growth
rate of some regular 2-dimensional language. Moreover, α̂3 = α̂4 = α̂5 and, from
numerical experiments, α̂3 ≈ 1,2421, α̂3−α̂6 ≈ 4·10−5, α̂6−α̂7 ≈ 4·10−6. So,
it is quite probable that the sequence {α(k, k

k−1
+
)} has a limit. The following

proposition supports (B):

Proposition 4. L(m)(k, k
k−1

+
) = L(m)(k, k−1

k−2 ) for any m ≤ k/2.

Similar properties can be observed for n = 1 and n = 2. We mention some of
them without proofs.
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Proposition 5. For k ≥ 6, α
(
L(2)(k, k−1

k−2
+
)
)

= ᾱ2 ≈ 2,3790. The sequences{
α
(
L(3)(k, k−1

k−2
+
)
)}

and
{
α
(
L(2)(k, k−2

k−3
+
)
)}

have the limits ᾱ3 ≈ 2, 3301 and

α̃2 ≈ 3, 4070 respectively. L(m)(k, k−1
k−2

+
) = L(m)(k, k−2

k−3 ) for any m ≤ (k+1)/4.

Conjecture 3. α0 ≈ 1,242, α1 ≈ 2,326, α2 ≈ 3,376.

Remark 3. The values α1 and α2 are conjectured on the base of Table 1. But
if our methods slightly overestimate α1 and slightly underestimate α2, then it
may be that α1 = α̂2 + 1, α2 = ᾱ2 + 1.
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Abstract. Given a finite directed graph, a coloring of its edges turns
the graph into a finite-state automaton. A k-synchronizing word of a
deterministic automaton is a word in the alphabet of colors at its edges
that maps the state set of the automaton at least on k-element subset.
A coloring of edges of a directed strongly connected finite graph of a
uniform outdegree (constant outdegree of any vertex) is k-synchronizing
if the coloring turns the graph into a deterministic finite automaton
possessing a k-synchronizing word.

For k = 1 one has the well known road coloring problem. The recent
positive solution of the road coloring problem implies an elegant gener-
alization considered first by Béal and Perrin: a directed finite strongly
connected graph of uniform outdegree is k-synchronizing iff the greatest
common divisor of lengths of all its cycles is k.

Some consequences for coloring of an arbitrary finite digraph are pre-
sented. We describe a subquadratic algorithm of the road coloring for the
k-synchronization implemented in the package TESTAS. A new linear
visualization program demonstrates the obtained coloring. Some conse-
quences for coloring of an arbitrary finite digraph and of such a graph of
uniform outdegree are presented.

Keywords: graph, algorithm, synchronization, road coloring, determin-
istic finite automaton.

Introduction

The famous road coloring problem was stated almost 40 years ago [1] for a
strongly connected directed graph of uniform outdegree where the greatest com-
mon divisor (gcd) of lengths of all its cycles is one.

Together with the Černy conjecture [7], [9], the road coloring problem was
once one of the most fascinating problems in the theory of finite automata. In the
popular Internet Encyclopedia ”Wikipedia” it is on the list of most interesting
unsolved problems in mathematics. The recent positive solution of the road
coloring conjecture [10], [13], [11] has posed a lot of generalizations and new
problems.

One of them is k-synchronizing coloring. A solution of the problem based on
the method from [11] was appeared first in [4] and repeated later independently
in [5], [12].

F. Ablayev and E.W. Mayr (Eds.): CSR 2010, LNCS 6072, pp. 362–370, 2010.
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Some consequences for coloring of an arbitrary finite digraph as well as for
coloring of such a graph of a uniform outdegree are a matter of our interest. The
minimal value of k for k-synchronizing coloring exists for any finite digraph and
therefore a partially synchronizing coloring can be obtained.

Here we describe a polynomial time algorithm for k-synchronizing coloring.
Our proof also is based on [11] and [12], the more so the proofs in [4] meanwhile
have some gaps. The theorems and lemmas from [11] are presented below without
proof. The proofs are given only for new or modified results. The realization of
the algorithm is demonstrated by a new linear visualization program [3]. For an
n-state digraph with uniform outdegree d, the time complexity of the algorithm
is O(n3d) in the worst case and O(n2d) in the majority of cases. The space
complexity is quadratic.

Preliminaries

As usual, we regard a directed graph with colors assigned to its edges as a finite
automaton, whose input alphabet Σ consists of these colors.

A directed graph with constant outdegree (the number of outgoing edges) of
all its vertices is called a graph of uniform outdegree.

A finite directed strongly connected graph of uniform outdegree where the
gcd of lengths of all its cycles is k will be called k-periodic.

An automaton is deterministic if no state has two outgoing edges of the same
color. In a complete automaton each state has outgoing edges of any color.

If there exists a path in an automaton from the state p to the state q and
the edges of the path are consecutively labelled by σ1, ..., σk ∈ Σ, then for
s = σ1...σk ∈ Σ+ let us write q = ps.

Let Ps be the map of the subset P of states of an automaton using the word
s ∈ Σ+. For the transition graph Γ of an automaton let Γs denote the map of
the set of states of the automaton.

Let |P | denote the size of the subset P of states from an automaton (of vertices
from a graph).

A word s ∈ Σ+ is called a k-synchronizing word of the automaton with
transition graph Γ if both |Γs| = k and for all words t ∈ Σ∗ holds |Γt| ≥ k.

A coloring of a directed finite graph is k-synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a k-synchronizing word
and the value of k is minimal.

A pair of distinct states p,q of an automaton (of vertices of the transition
graph) will be called synchronizing if ps = qs for some s ∈ Σ+. In the opposite
case, if for any s ps �= qs, we call the pair deadlock.

A synchronizing pair of states p, q of an automaton is called stable if for any
word u the pair of states pu,qu is also synchronizing [6], [8].

We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.

The subset of states (of vertices of the transition graph Γ ) of maximal size
such that every pair of states from the set is a deadlock will be called an F -clique.
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1 A k-Synchronizing Coloring

Lemma 1. Let a finite directed strongly connected graph Γ with uniform out-
degree have a k-synchronizing coloring. Then the greatest common divisor d of
lengths of all its cycles is not greater than k.

If the length of a path from the state p to the state q is equal to i �= 0 (modulo
d) then for any word s one has ps �= qs.

Proof. Let N be the function defined on the states of Γ in the following way -
we take an arbitrary vertex p and let N(p) = 0. Then for each vertex q with
defined N(q) suppose for any next nearest vertex r N(r) = N(q) + 1 (modulo
d). The graph is strongly connected, whence for each vertex the function N is
defined. The enumeration does not imply a contradiction anywhere because the
length of each cycle is divided by d. Then by any coloring the mapping by a word
t produced the same shift of size |t| (modulo d) of the function N on the states.
Therefore the states with distinct values of N could not have common image
and |Γt| ≥ d for any word t. |Γs| = k for k-synchronizing word s. Consequently,
k ≥ d.

By any coloring, the mapping by a word s produced the same shift of the
function N on the set of states. N(ps) = N(p) + |s| (modulo d). Therefore
the difference of the values of the function N on two states is not changed by
the shift.

Theorem 1. [6], [8], [10] Let us consider an arbitrary coloring of a strongly
connected graph Γ with constant outdegree. Stability of states is a binary relation
on the set of states of the obtained automaton. Denote the reflexive closure of this
relation by ρ. Then ρ is a congruence relation, Γ/ρ presents a directed strongly
connected graph with constant outdegree, the gcd d of all its cycles is the same as
in Γ , and a k-synchronizing coloring of Γ/ρ implies a k-synchronizing recoloring
of Γ .

Lemma 2. [10] Let F be an F -clique via some coloring of a strongly connected
graph Γ . For any word s the set Fs is also an F -clique and each state [vertex]
p belongs to some F -clique.

Lemma 3. Let A and B (|A| > 1) be distinct F -cliques via some coloring with-
out stable pairs of the k-periodic graph Γ . Then |A|−|A∩B| = |B|−|A∩B| > 1.

Proof. Let us assume the contrary: |A|−|A∩B| = 1. By the definition of F -clique,
|A| = |B| and so |B| − |A∩B| = 1, too. Thus |A| − |A∩B| = |B| − |A∩B| = 1.

The pair of states p ∈ A \B and q ∈ B \A is not stable. Therefore for some
word s the pair (ps,qs) is a deadlock. Any pair of states from the F -clique A
and from the F -clique B as well as from F -cliques As and Bs is a deadlock. So
each pair of states from the set (A ∪ B)s is a deadlock, whence (A ∪ B)s is an
F -clique.

One has |(A ∪ B)s| = |A| + 1 > |A| in spite of maximality of the size of
F -clique A.
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Lemma 4. [10] Let some vertex of a directed complete graph Γ have two in-
coming bunches. Then any coloring of Γ has a stable pair.

Proof. If a vertex p has two incoming bunches from vertices q and r, then the
pair q, r is stable for any coloring because qα = rα = p for any letter (color)
α ∈ Σ.

1.1 The Spanning Subgraph with Maximum of Edges in the Cycles

Definition 1. Let us call a subgraph S of the k-periodic graph Γ a spanning
subgraph of Γ if all vertices of Γ belong to S and exactly one outgoing edge
of every vertex (in the usual graph-theoretic terms it is 1-outregular spanning
subgraph).

A maximal subtree of the spanning subgraph S with root on a cycle from S
and having no common edges with cycles from S is called a tree of S.

The length of the path from a vertex p through the edges of its tree of the
spanning set S to the root of the tree is called the level of p in S.

A tree with vertex of maximal level is called a maximal tree.

Remark 1. Any spanning subgraph S consists of disjoint cycles and trees with
roots on cycles. Each tree and cycle of S is defined identically. The level of the
vertices belonging to some cycle is zero. The vertices of the trees except the roost
have a positive level. The vertices of maximal positive level have no incoming edge
in S. The edges labelled by a given color defined by any coloring form a spanning
subgraph. Conversely, for each spanning subgraph, there exists a coloring and
a color such that the set of edges labelled with this color corresponds to this
spanning subgraph.
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Lemma 5. Let N be a set of vertices of level n from some tree of the spanning
subgraph S of the k-periodic graph Γ . Then via a coloring of Γ such that all
edges of S have the same color α, for each F -clique F holds |F ∩N | ≤ 1.

Proof. Some power of α synchronizes all states of a given level of the tree and
maps them into the root. Each pair of states from an F -clique could not be
synchronized and therefore could not belong to N .

Lemma 6. [10] Let d-periodic graph Γ have a spanning subgraph R consisting
solely of disjoint cycles (without trees). Then Γ either is a cycle of length d of
bunches or has another spanning subgraph with exactly one maximal tree.
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Lemma 7. [11] Assume that no vertex of the graph Γ has two incoming bunches.
Let R be a spanning subgraph with non-trivial tree and let its tree T with the root
r on cycle H have all vertices of maximal level L and one of them is the vertex
p. Let us consider

1) replacing an edge e from R with an edge having the same start vertex as e
and ending in p,

2) replacing in R an incoming edge of a root on the path in the tree from p,
3) replacing in R an incoming edge of a root from H.
Suppose that at most two such operations do not increase the number of edges

in cycles. Then by the coloring of R by the color α Γ has a spanning subgraph
with one maximal tree and the pair pαL−1, pαL+|H|−1 is stable.

Theorem 2. Any k-periodic graph Γ of size greater than k has a coloring with
stable pair.

Proof. We have |Γ | > k. By Lemma 4, in the case of vertex with two incoming
bunches Γ has a coloring with stable pairs. In opposite case, by Lemmas 7 and
6, Γ has a spanning subgraph R with one maximal tree in R.

Let us give to the edges of R the color α and denote by C the set of all vertices
from the cycles of R. Then let us color the remaining edges of Γ by other colors
arbitrarily.

By Lemma 2, in a strongly connected graph Γ for every word s and F -clique
F of size |F | > 1, the set Fs also is an F -clique of the same size and for any
state p there exists an F -clique F such that p ∈ F .

In particular, some F has non-empty intersection with the set N of vertices
of maximal level L. The set N belongs to one tree, whence by Lemma 5 this
intersection has only one vertex. The word αL−1 maps F on an F -clique F1
of size |F |. One has |F1 \ C| = 1 because the sequence of edges of the color α
from any tree of R leads to the root of the tree, and the root belongs to a cycle
colored by α from C and only for the set N with vertices of maximal level holds
NαL−1 �⊆ C. So |NαL−1 ∩ F1| = |F1 \ C| = 1 and |C ∩ F1| = |F1| − 1.

Let the integer m be a common multiple of the lengths of all considered cycles
from C colored by α. So for any p from C as well as from F1∩C holds pαm = p.
Therefore for an F -clique F2 = F1α

m holds F2 ⊆ C and C ∩ F1 = F1 ∩ F2.
Thus two F -cliques F1 and F2 of size |F1| > 1 have |F1| − 1 common vertices.

So |F1 \ (F1 ∩ F2)| = 1. Consequently, in view of Lemma 3, there exists a stable
pair in the considered coloring.

Theorem 3. Every strongly connected graph Γ is k-periodic if and only if the
graph has a k-synchronizing coloring. For arbitrary coloring Γ is m-synchronizing
for m ≥ k.
Proof. From the k-synchronizing coloring of Γ by Lemma 1 follows that if Γ is
m-periodic graph then m ≥ k. So |Γ | ≥ k. If |Γ | = k then also m = k.

Thus we only need to consider the case |Γ | > k. By Lemmas 6 and 7 there
exists a spanning subgraph with one maximal tree, whence by Theorem 2 there
exists a stable pair of states. Theorem 1 reduced the problem to a homomorphic
image of Γ of smaller size and the induction finishes the proof.
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The theorem 3 implies some consequences, in particular, even for an arbitrary
digraph.

Lemma 8. Let a finite directed graph Γ have a sink component Γ1. Suppose
that by removing some edges of Γ1 one obtains strongly connected directed graph
Γ2 of uniform outdegree. Let k be the greatest common divisor of lengths of the
cycles of Γ2. Then Γ has k-synchronizing coloring.

Proof. Γ2 has a k-synchronizing coloring by Theorem 3. The edges outside Γ2 can
be colored arbitrarily, sometimes by adding new colors for to obtain deterministic
automaton.

Lemma 9. Let Γ1,..., Γm be strongly connected components of a finite directed
graph Γ of uniform outdegree such that no edge leaves the component Γi (0 <
i ≤ m). Let ki be the greatest common divisor of lengths of cycles in Γi and
suppose k =

∑m
j=1 kj . Then Γ has k-synchronizing coloring.

The Lemmas 8, 9 imply

Theorem 4. Let finite directed graph Γ have a subgraph of uniform outdegree
with strongly connected components Γ1,..., Γm such that no edge leaves the com-
ponent Γi (0 < i ≤ m) in the subgraph. Let ki be the greatest common divisor of
lengths of cycles in Γi and suppose k =

∑m
j=1 kj . Then Γ has a k-synchronizing

coloring.

The proof for arbitrary k did not use anywhere that k �= 1, whence from the
validity of the Road Coloring Conjecture we have the following:

Theorem 5. [11] [10] Every finite strongly connected graph Γ of uniform outde-
gree with greatest common divisor of all its cycles equal to one has synchronizing
coloring.

2 Find Minimal k for k-Synchronizing Coloring

The algorithm is based on Theorem 3 and Lemma 8. One must check the ex-
istence of strongly connected components (SCC) having no outgoing edges to
others SCC and check the condition on gcd in any such SCC H . There exists a
subgraph S of C of maximal uniform outdegree. Then we check the condition on
gcd in any such S. Let us use the linear algorithm of finding strongly connected
component SCC [2]. Then we mark all SCC having outgoing edges to others
SCC and study only all remaining SCC H .

The coloring ofH : We find in everyH the value of kH for the kH -synchronizing
coloring of H . Let p be a vertex from H . Suppose d(p) = 1. For an edge r → q
where d(r) is already defined and d(q) is not defined suppose d(q) = d(r) + 1.
If d(q) is defined let us add the difference abs(d(q)− 1− d(r)) to the set D and
count the gcd of the integers from D. If finally gcd = kH , then the SCC H has
kH -synchronizing coloring. The value of k is equal to the sum of all such kH
(Theorem 3). The search of k is linear.

The edges outside subgraphs H can be colored arbitrarily (sometimes by
additional colors). The outgoing edges of every state are colored by different
colors.
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3 The Algorithm for k-Synchronizing Coloring

Let us begin from an arbitrary coloring of a directed graph Γ with n vertices
and d outgoing edges of any vertex. The considered d colors define d spanning
subgraphs of the graph. We find all SCC H having no outgoing edges and study
every such SCC H separately.

We keep images of vertices and colored edges from the generic graph by any
transformation and homomorphism.

If there exists a loop in Γ then let us color the edges of a tree with root in the
vertex of a loop by one color. The other edges may be colored arbitrarily. The
coloring in this case is synchronizing for the considered SCC.

In the case of two incoming bunches of one vertex the beginnings of these
bunches form a stable pair by any coloring (Lemma 4). We merge both vertices
in the homomorphic image of the graph (Theorem 1) and obtain according to
the theorem a new graph of the size less than |Γ |.

The linear search of two incoming bunches and of loop can be made at any
stage of the algorithm.

Find the parameters of the spanning subgraph: levels of all vertices, the num-
ber of vertices (edges) in cycles, for any vertex let us keep its tree and the cycle
of the root of the tree. We form the set of vertices of maximal level and choose
from the set of trees a tree T with vertex p of maximal level. This step is linear
and used by any recoloring.

Lemma 10. Let graph Γ have two cycles Cu and Cv either with one common
vertex p1 or with a common sequence p1,..., pk, such that all incoming edges of
pi form a bunch from pi+1 (i < k). Let u ∈ Cu and v ∈ Cv be the edges of the
cycles leaving p1. Let T be a maximal subtree of Γ with the root p1 and edges
from Cu and Cv except u and v.

Then the the adding one of the edges u or v turns the subtree T into precisely
one maximal tree of the spanning subgraph.

Proof. Let us add to T either u or v and then find the maximal levels of vertices
in both cases. The vertex pi for i > 1 could not be the root of a tree. If any
tree of spanning subgraph with vertex of maximal level has the root p1 then in
both cases the lemma holds. If some tree of spanning subgraph with vertex of
maximal level has the root only on Cu then let us choose the adding of v. In
this case the level of the considered vertex is growing and only the new tree with
root p1 has vertices of maximal level. In the case of the root on Cv let us add u.

1) If there are two cycles with one common vertex then we use Lemma 10 and
find a spanning subgraph R1 such that any vertex p of maximal level L belongs
to one tree with root on a cycle H . Then after coloring edges of R1 with the
color α we find stable pair q = pαL−1+|H| and s = pαL−1 (Lemma 7) and go to
step 3). The search of a stable pair in this case is linear and the whole algorithm
therefore is quadratic.
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2) Let us consider now the three replacements from Lemma 7 and find the
number of edges in cycles and other parameters of the spanning subgraph of
the given color. If the number of edges in the cycles is growing, then the new
spanning subgraph must be considered and the new parameters of the subgraph
must be found. In the opposite case, after at most 3d steps, by Lemma 7, there
exists a tree T1 with root on the cycle H1 of a spanning subgraph R1 such that
any vertex p of maximal level L belongs to T1.

Suppose the edges of R1 are colored by the color α. Then the vertices q =
pαL−1+|H1| and s = pαL−1 by Lemma 7 form a stable pair.

3) Let us finish the coloring and find the subsequent stable pairs of the pair
(s, q) using appropriate coloring. Then we go to the homomorphic image Γi/ρ
(Theorem 1) of the considered graph Γi (O(|Γi|mid) complexity where mi is the
size of the map Γi). Then we repeat the procedure with a new graph Γi+1 of a
smaller size. So the overall complexity of this step of the algorithm is O(n2d) in
the majority of cases and O(n3d) if the number of edges in cycles grows slowly,
mi decreases also slowly, loops do not appear and the case of two ingoing bunches
rarely emerges (the worst case).

Let Γi+1 = Γi/ρi+1 on some stage i+ 1 have k-synchronizing coloring. For ev-
ery stable pair q,p of vertices from Γi there exists a pair of corresponding outgo-
ing edges that reach either another stable pair or one vertex. This pair of edges is
mapped on one image edge of Γi+1. So let us give the color of the image to preim-
ages and obtain in this way a k-synchronizing coloring of Γi. This step is linear. So
the overall complexity of the algorithm isO(n3d) in the worst case. If Lemma 10 is
applicable, then the complexity is reduced at this branch of the algorithm (as well
as at some other branches) to O(n2d). The practical study of the implementation
of the algorithm demonstrates mainly O(n2d) time complexity.

4 Conclusion

In this paper, we have continued the study of k-synchronizing coloring of a finite
directed graph. It is an important and natural generalization of the well known
notion of the synchronizing coloring. This new approach gives an opportunity
to extend essentially the class of studied graphs, removing the restriction on the
size of the great common divisor of the lengths of the cycles of the graph. The
restriction is inspired by the Road Coloring Problem and now for k-synchronizing
coloring can be omitted.

There exists still another restriction on the properties of the considered graphs
concerning the uniform outdegree of the vertex. However, it also can be omitted
by consideration of subgraphs of the graph (Corollary 8).

The practical use of this investigation needs an algorithm and the paper
presents a corresponding polynomial time algorithm of the road coloring for
the k-synchronization implemented in the package TESTAS. The realization of
the algorithm demonstrates a new linear visualization program [3].
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Abstract. When we represent a decision problem, like CIRCUIT-SAT,
as a language over the binary alphabet, we usually do not specify how to
encode instances by binary strings. This relies on the empirical observa-
tion that the truth of a statement of the form “CIRCUIT-SAT belongs to
a complexity class C” does not depend on the encoding, provided both
the encoding and the class C are “natural”. In this sense most of the
Complexity theory is “encoding invariant”.

The notion of a polynomial time computable distribution from Av-
erage Case Complexity is one of the exceptions from this rule. It might
happen that a distribution over some objects, like circuits, is polyno-
mial time computable in one encoding and is not polynomial time com-
putable in the other encoding. In this paper we suggest an encoding
invariant generalization of a notion of a polynomial time computable
distribution. The completeness proofs of known distributional problems,
like Bounded Halting, are simpler for the new class than for polynomial
time computable distributions.

This paper has no new technical contributions. All the statements are
proved using the known techniques.

1 Polynomial Time Samplable and Computable
Distributions

Let us specify first what we mean by “encoding invariant” notions in Complexity
theory. Fix a set X of “objects” (like boolean circuits). An encoding of X is an
injective mapping g from X to the binary strings. To every decision problem L
with instances from X and every encoding g of X we assign the language

Lg = {g(x) | x is a YES-instance of L}.

We say that decision problem L in encoding g belongs to a complexity class C
if Lg ∈ C.

It turns out that different “natural” encodings of boolean circuits are equiva-
lent in the following sense. We call g1 and g2 poly-time equivalent if both func-
tions g1(g−1

2 (x)) and g2(g−1
1 (x)) are computable in polynomial time. Note that
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these functions map strings to strings and thus the notion of polynomial time
computability is meaningful in this context.

If encodings g1 and g2 are poly-time equivalent then Lg1 = h(Lg2) for a
polynomial time computable and invertible partial function (namely for h(x) =
g1(g−1

2 (x))). Let us call a class C of languages over a binary alphabet encoding
invariant if for every L ∈ C and every polynomial time computable and invert-
ible partial function h we have h(L) ∈ C. Natural complexity classes above P,
like NP or BPP, are encoding invariant.

We do we care about encoding invariance? The point is that natural encodings
of the same natural set of objects X are poly-time equivalent (like in the case
of boolean circuits). Thus we can freely say that a decision problem L is in an
encoding invariant class C meaning that Lg ∈ C without specifying the encoding
g used. For encoding non-invariant class, like the class of languages having AC0

circuits of depth 5 (say), we should carefully specify the encoding used, which
is not convenient. For example, the question of whether the problem “Boolean
circuit evaluation” can be solved by AC0 circuits of depth 5 is meaningless.

Now we are going to introduce the main notions from Average Case Com-
plexity. We will follow the paper [1] of Bogdanov and Trevisan. The main goal
of the theory is to show that certain NP problems are “hard on average”. More
specifically, we want to provide evidence that for certain NP problems L there is
a “simple” probability distribution D on their instances such that every efficient
algorithm errs with non-negligible probability on a randomly chosen instance.
To this end we define reductions between pairs (problem, distribution) and show
that the pair in question is complete in a large class of such pairs.

Definition 1 ([2,1]). A distribution over {0, 1}∗ is a function D from {0, 1}∗
to the non-negative reals such that

∑
xD(x) = 1. An ensemble of distributions

D is a sequence
D0, D1, . . . , Dn, . . .

of probability distributions over {0, 1}∗. (The parameter n is called the security
parameter.) We say that ensemble D is polynomial time samplable if there is a
randomized algorithm A that with an input n outputs a string in {0, 1}∗ and:

– There is a polynomial p such that, on input n, A runs in time at most p(n)
regardless of its internal coin tosses;

– For every n and every x ∈ {0, 1}∗, Pr[A(n) = x] = Dn(x).

We will call such an algorithm A a sampler for D.
A distributional problem is a pair (L,D) where L is a language over the binary

alphabet and D is an ensemble of distributions. We say that a distributional
problem (L,D) is in (NP,PSamp) if L ∈ NP and D is polynomial time samplable.

Note that, in the defintion of polynomial time samplability, we do not require
that the support of distribution Dn consist of strings of length exactly n. From
the definition it follows only that it consists of strings of length at most p(n).

The following straightforward lemma states that PSamp is an encoding invari-
ant class. Assume that we are given computable injective mappings (encodings)
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g1, g2 from a set X of objects to the binary strings. Assume that D is a prob-
ability distribution over binary strings that represents a distribution over X
in encoding g1. Then D(g1(g−1

2 (x))) represents the same distribution in encod-
ing g2. Obviously h(x) = g1(g−1

2 (x)) is a partial polynomial time computable
and invertible injective function (i.e., both h(x), h−1(x) are computable in time
polynomial in the length of x) and the support of D is included in the range of
h.

Lemma 1. Assume that D is polynomial time samplable and h : {0, 1}∗ →
{0, 1}∗ is a partial polynomial time computable and invertible injective function
and for all n the support of Dn is included in the range of h. Then the ensemble
Dh where

Dh
n(x) =

{
Dn(h(x)) if h(x) is defined,
0 otherwise

is polynomial time samplable.

The goal of Average Case Complexity is to show that certain distributional
problems are (NP,PSamp) complete under reductions of certain kinds which
preserve “simplicity on average”. We will not define here the type of reductions
used in the definition of completeness, and refer to [2,4,1] for the definition. We
will define simplified reductions (Definition 3.1 from [1]) that come back to [5].
These simplified reductions will suffice for the goal of this paper.

Definition 2. We say that ensemble D is dominated by an ensemble D′ if there
is a polynomial p(n) such that for all n, x,

Dn(x) ≤ p(n)D′
n(x).

We say that (L,D) reduces to (L′,D′) if there is a function f(x, n) that for every
n and every x in the support of Dn can be computed in time polynomial in n
and

– (Correctness) x ∈ L if and only if f(x, n) ∈ L′;
– (Domination) There is a polynomial q(n) such that the distribution

D′′
n(y) =

∑
x:f(x,n)=y

Dn(x)

is dominated by D′
q(n)(y).

In particular (L,D) always reduces to (L,D′) provided D′ dominates D.

The following argument justifies this defintion. Assume that there is an algo-
rithm A that on input x and parameter n solves decision problem L′ with a
negligible error probability εn for x randomly chosen with respect to D′

n. Then
the algorithm A(f(x, n), q(n)) solves decision problem L with (negligible) error
probability p(n)εq(n) with respect to distribution Dn.
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Remark 1. If the function f is injective (for every fixed n) then the domination
condition is easier to understand. In this case D′′

n(f(x, n)) = Dn(x) and the
domination condition boils down to requiring that

Dn(x) ≤ p(n)D′
q(n)(f(x, n))

for some polynomials p, q.

Now we are going to define polynomial time computable ensembles of distri-
butions. We will follow the exposition of [1]. Let # denote the lexicographic
ordering between bit strings. If D is a distribution over {0, 1}∗ we define

fD(x) = D({y | y # x}) =
∑
y�x

D(y).

The function fD is called cumulative probability for distribution D.

Definition 3 (Levin [5], Bogdanov–Trevisan [1]). We say that ensemble D
is polynomial time computable if there is an algorithm that given an integer n
and a string x ∈ {0, 1}∗, runs in time polynomial in n and computes fDn(x). Let
(NP,PComp) stand for the class of distributional problems (L,D) where L ∈ NP
and D is polynomial time computable.

Neither Levin, nor Bogdanov and Trevisan specify the meaning of polynomial
time computability of a real valued function. To interpret Defintion 3 in a right
way, we note that [1] claims that polynomial time computability implies polyno-
mial time samplability. Notice that if D is a polynomial time samplable ensemble
then Dn(x) is always a dyadic rational. Therefore we will assume that, in the
Definition 3, fDn(x) is always a dyadic rational and the algorithm computing
fDn(x) outputs the numerator and denominator of fDn(x) in binary notation.
With this interpretation, every polynomial time computable ensemble is indeed
polynomial time samplable, see Theorem 2 below.

This interpretation of Definition 3 has an obvious minor point: we restrict
possible values of fDn(x) to dyadic rationals. Therefore it is natural to consider
the following relaxation of Definition 3.

Definition 4. An ensemble D is called weakly polynomial time computable if
there is an algorithm that given integers n,m and a string x ∈ {0, 1}∗, runs in
time polynomial in n+m and computes a rational number within a distance at
most 2−m from fDn(x).

In this definition we allow Dn(x) to be any non-negative real. It is not hard to
see that every weakly polynomial time computable ensemble is dominated by
a polynomial time computable ensemble (see Theorem 1 below) and thus both
definitions are basically the same. In both definitions, the length of all strings
in the support of Dn is bounded by a polynomial in n (otherwise it is not clear
how a polynomial time algorithm can read x’s).
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Theorem 1 ([5]). Every weakly polynomial time computable ensemble is dom-
inated by a polynomial time computable ensemble.

This theorem was essentially proven in [5] (although not explicitly stated there).
For the sake of completeness we present the proof in the Appendix.

It is not clear whether Definitions 3 and 4 are encoding invariant1. Indeed,
assume that an ensemble of distributions D is polynomial time computable and
h is a polynomial time computable and invertible partial function. There is no
guarantee that Dh is polynomial time computable: the function h(x) might not
preserve lexicographical order.

The common scheme to prove (NP,PSamp) completeness is as follows. As-
sume that we want to show that (L,D) is (NP,PSamp) complete. First we show
that (L,D) is (NP,PComp) complete with respect to reductions of Definition 2.
Second, we use the result of [4,2] stating that every distributional problem in
(NP,PSamp) reduces to some distributional problem in (NP,PComp) (using
reductions that are weaker than those of Definition 2).

The goal of this paper is to simplify this scheme. Namely, in place of the class
(NP,PComp) we suggest to use a wider class, which we call (NP,PISamp). En-
sembles of distributions from PISamp will be called “polynomial time invertibly
samplable”. The class PISamp is encoding invariant and proving (NP,PISamp)
completeness is easier than proving (NP,PComp) completeness.

2 Polynomial Time Invertibly Samplable Distributions

Let A be a polynomial time probabilistic algorithm, as in the definition of a
samplable distribution. Think of the source of randomness for A as a real number
in the segment [0, 1) with respect to the uniform distribution. More precisely, if
a computation of A(n) returns x where r = r1 . . . rl is the sequence of outcomes
of coin tosses made in that computation, we will think that A(n) maps all reals
in the half-interval [0.r, 0.r + 2−l) to x. In this way A defines a mapping from
the set N × [0, 1) to {0, 1}∗ and we denote by A(n, α) the result of A for input
n and randomness α ∈ [0, 1). Let

A−1(n, x) = {α ∈ [0, 1) | A(n, α) = x}.

In general, A−1(n, x) is a union of a finite number of segments and each of them
has the form [k/2l, (k + 1)/2l).

Definition 5. We call A, as above, polynomial time invertible, if for all n and
all x in the support of Dn, the set A−1(n, x) is one subsegment of [0, 1) which
can be computed from n, x in time polynomial in n. (Segments are represented
by numerators and denominators of their end-points, written in binary nota-
tion.) We say that a polynomial time samplable ensemble D is polynomial time
invertibly samplable if there is a polynomial time invertible sampler for D.

1 And they are not provided one-way permutations exist, see Remark 1.
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Remark 2. If D is polynomial time invertibly samplable then Dn(x) is a dyadic
rational that can be computed from x in time polynomial in n. However this does
not imply that the cumulative function of Dn is polynomial time computable.

It is easy to see that the class of polynomial time invertibly samplable distribu-
tion is encoding invariant (in the sense of Lemma 1). The next theorem shows
that PComp ⊆ PISamp and thus PISamp is an encoding invariant generalization
of PComp.

Theorem 2 ([5]). Every polynomial time computable ensemble of distributions
is polynomial time invertibly samplable.

This theorem was essentially proven in [5] (although not explicitly stated there).
Actually the main idea of the proof comes back to Fano and Shannon (the so
called Shannon-Fano codes). For the sake of completeness we present the proof
in the Appendix.

Now we will explain why proving (NP,PISamp) completeness is easier than
proving (NP,PComp) completeness. Assume that we have to show that an ar-
bitrary problem (L′,D′) ∈ (NP,PComp) reduces to a fixed (NP,PComp) com-
plete problem (L,D). An analysis of the proof reveals that we use the assumption
about polynomial time computability of D′ to construct an invertible sampler for
D′. Thus to prove that (L,D) is (NP,PISamp) complete is easier than to prove
that it is (NP,PComp) complete: we can skip this step. On the other hand, for
all known (NP,PComp) complete problem (L,D) it is immediate that D is in
PISamp. Thus the proof of (NP,PISamp) completeness of (L,D) has one step
less than that of its (NP,PComp) completeness. An example of (NP,PISamp)
completeness proof is presented in Section 3.

The next theorem shows that under certain plausible assumptions PComp �=
PISamp �= PSamp.

Theorem 3. (a) If one-way functions exist, then there is a polynomial time
samplable ensemble that is not dominated by any polynomial time invertibly
samplable ensemble. (b) Assume that for some polynomial p there is a one-way
function fn : {0, 1}n → {0, 1}p(n) such that every string y ∈ {0, 1}p(n) has at
most poly(n) pre-images under fn. Then there is a polynomial time invertibly
samplable ensemble that is not dominated by any polynomial time computable
ensemble.

Item (a) implies that there is a polynomial time samplable ensemble that is
not dominated by any polynomial time computable ensemble (provided one-way
functions exist). The latter fact was proved in [2] using the techniques of (an
earlier version of) [3]. Our proof will use just the result of [3] (the existence of
Pseudorandom Generators).

Proof. (a) In [3], it is shown that if one-way functions exist, then there is a
Pseudorandom Generator Gn : {0, 1}n → {0, 1}2n. Consider Gn as a sampler
and let Dn denote the sampled distribution:

Dn(x) = Pr[Gn(s) = x],
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where s denotes a randomly chosen string of length n. Assume, by way of contra-
diction, that D is dominated by a polynomial time invertibly samplable ensemble
D′ so that

Dn(x) ≤ p(n)D′
n(x) (1)

for some polynomial p(n). Using D′
n we will construct a polynomial time test

that distinguishes the random variable Gn(s) from the random variable which is
uniformly distributed among all strings of length 2n, which is a contradiction.

As such test consider the set

Xn = {x : |x| = 2n, D′
n(x) ≥ 2−n/p(n)}.

As D′ is invertible samplable, the set Xn is polynomial time decidable. Indeed,
D′

n(x) is a dyadic rational that can be computed from x and n in time polynomial
in n. We claim that Gn(s) is in Xn for all s, whereas a random string of length
2n falls in Xn with negligible probability p(n)2−n.

The first claim follows from (1). Indeed, as Gn is a sampler for Dn, for every
s ∈ {0, 1}∗ we have Dn(Gn(s)) ≥ 2−n and hence D′

n(Gn(s)) ≥ 2−n/p(n).
The second claim means that |Xn| ≤ 2np(n). This fact follows from definition

of Xn. Indeed, otherwise the cumulative probability of Xn w.r.t. D′
n would be

larger than 1:

D′
n(Xn) =

∑
x∈Xn

D′
n(x) ≥ |Xn|2−n/p(n) > 1.

(b) Let fn be the function from the assumption in item (b). We claim that the
ensemble

Dn(z) =

{
1/2n, if z = fn(x)x, |x| = n,
0, otherwise

satisfies the conclusion of item (b).
D is polynomial time invertibly samplable: The following algorithm A is an

invertible sampler for Dn: choose a string x of length n at random, return fn(x)x
and halt. As fn is polynomial time computable, A is indeed a polynomial time
algorithm. Let us show that A is invertible in polynomial time. The following
algorithm finds A−1(z, n): represent z in the form yx where |x| = n (if |z| < n
then halt); apply fn to x; if y �= fn(x) then halt and otherwise output [0.x, 0.x+
2−n) and halt.

D is not dominated by any polynomial time computable ensemble. Let us first
prove a simpler statement: D is not polynomial time computable. By way of
contradiction assume that this is not the case. How do we use this assump-
tion? Under this assumption, we can find in polynomial time Dn({zw | w ∈
{0, 1}p(n)+n−|z|}) for any given z of length at most p(n) + n. Indeed, it is equal
to fDn(z11 . . .1) − fDn(z′11 . . .1) for the predecessor z′ of z w.r.t. lexicograph-
ical ordering. Here it is important that in the lexicographical ordering the first
bits are the most significant ones.
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We will show that given any y in the range of fn we can find by binary search
in polynomial time its lexicographical first pre-image. To this end we use the
following simple fact: a string y has a pre-image with prefix z iff

Dn({yzw | w ∈ {0, 1}n−|z|}) ≥ 2−n. (2)

Recall that for any y, z we can decide in polynomial time whether (2) holds.
Thus given any y of length p(n) we can first find whether it has a pre-image at
all, which happens iff (2) holds for the empty z. If this is the case we can find
whether y has a pre-image starting with 0, which happens iff (2) holds for z = 0,
and so on.

Now we will prove that D is not dominated by any polynomial time com-
putable ensemble. By way a contradiction, assume that D′ is polynomial time
computable ensemble with

D′
n(z) ≥ Dn(z)/q(n)

for a polynomial q. We will construct a polynomial time algorithm that inverts
fn(x) for at least half of all x’s of length n, which is a contradiction with non-
invertibility of fn.

Let us try first the same algorithm as before, but this time using D′
n instead

of Dn. If y has a pre-image with prefix z then

D′
n({yzw | w ∈ {0, 1}n−|z|}) ≥ Dn({yzw | w ∈ {0, 1}n−|z|})/q(n) ≥ 1/2nq(n),

but, unfortunately, not the other way around. Indeed, it may happen that

D′
n({yzw | w ∈ {0, 1}n−|z|}) ≥ 1/2nq(n) (3)

but y has no pre-image with prefix z.
How to fix this? Note that if we find the list of all x’s with D′

n(yx) ≥ 1/2nq(n)
then we are done, as all pre-images of y are in that list and we thus can find
one of them by probing all x’s from the list. The problem is that the list can be
super-polynomially big, and thus there is no hope to find it in polynomial time.
The solution is as follows: we mentally divide all y’s into “good” and “bad” ones.
For good y’s the set of x’s with D′

n(yx) ≥ 1/2nq(n) will have at most polynomial
number of elements, and we will be able to find all of them by binary search, as
before. For bad y’s, we know nothing about the cardinality of this set. However,
fn(x) will be bad for at most half of x of length n, and recall that we tolerate
the probability 1/2 of failure.

Specifically, call y good if

D′
n({yx : |x| = n}) ≤ s(n)/2n−1 (4)

where s(n) stands for a polynomial upper bound for the number of pre-images
under fn.

We have to prove that there is a polynomial time algorithm that finds a pre-
image of every given good y in the range of fn and that fn(x) is bad for at most
half of x of length n.
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Assume that y is good, i.e., Equation (4) holds. There are at most 2q(n)s(n)
strings x with D′

n(yx) ≥ 1/2nq(n), as otherwise the sum of their probabilities
would exceed s(n)/2n−1. Moreover, there are at most 2q(n)s(n) pairwise incom-
parable strings z such that (3) holds (we call z′ and z′′ incomparable if neither
is a prefix of the other). Therefore we can find by binary search in polynomial
time all maximal z’s satisfying (3) (we call z maximal, if no its proper extension
satisfies (3)). If a pre-image of y exists, the it is certainly among those z’s.

Assume that fn(x) is bad. That is, x happens to be a pre-image of a bad
y. The number of bad y’s is at most 2n−1/s(n). Indeed, otherwise the sum
of D′

n({yx : |x| = n}) over all bad y’s would exceed 1. Every bad y has by
assumption at most s(n) pre-images. Hence the number of x such that fn(x) is
bad is at most 2n−1.

Remark 3. Under the same hypothesis and by the same arguments, as in item
(b), we can show that the class PComp is not encoding invariant. Indeed, using
the notations from the proof, let h be cyclic shift by n bits on strings of length
n+p(n): h(xy) = yx. Obviously, h is polynomial time computable and invertible.
The distribution Dh is then defined by the equation

Dh
n(z) =

{
1/2n, if z = xfn(x), |x| = n,
0, otherwise.

It is not hard to see that Dh is polynomial time computable.

3 Completeness Proof

Let (NP,PISamp) denote the class of all distributional problem (L,D) such that
L ∈ NP and D is polynomial time invertibly samplable. We will prove that the
“Bounded halting” distributional problem is (NP,PISamp) complete.

Definition 6. (Bounded halting distributional problem). Let

BH = {(M,x, 1t) |M is a program of a non-deterministic
Turing machine that accepts x in at most t steps}

We assume here that programs of Turing machines are encoded by binary strings
in such a way that a universal Turing machine can simulate M with overhead
poly(|M |): each step of machine M is simulated in poly(|M |) steps. We also
assume that triples of strings are encoded by strings so that both encoding and
decoding functions are polynomial time computable.

Define the probability distribution Un on triples of binary strings as follows:

Un(M,x, 1t) =

{
2−2l−|x|−|M|, if |x| < 2l, |M | < 2l, t = n,
0 otherwise

(5)

where l = *log2 n+.
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Lemma 2. Ensemble U is polynomial time invertibly samplable.

Proof. The sampler A(n) computes l = *log2 n+, tosses the coin 2l times and
interprets the outcome as two integers a, b in the range 0, . . . , 2l − 1. Then it
tosses a coin a times to obtain M , then b times to obtain x and finally returns
the triple M,x, 1n. It is straightforward that A is polynomial time invertible.

Theorem 4 ([5]). The distributional problem (BH,U) is (NP,PISamp) com-
plete. That is, every distributional problem (L,D) ∈ (NP,PISamp) reduces to
(BH,U) in the sense of Definition 2.

The proof of this theorem is not novice: basically, it is a part of the proof from [5]
of (NP,PComp) completeness of (BH,U). More specifically, to prove Theorem 4
we just skip in the latter proof its first step, which is basically proving that the
given ensemble of distributions is in PISamp.

We start the proof with a lemma. We will call segments of the form [0.r0, 0.r1)
standard segments. The length of this segment is 2−|r|. The string r will be called
the name of [0.r0, 0.r1).

Lemma 3. Let D be a polynomial time invertibly samplable ensemble and A an
polynomial time invertible sampler for D. Given n and any x in the support of
Dn we can compute in time polynomial in n a standard segment I(x, n) of length
at least Dn(x)/4 with I(x, n) ⊆ A−1(n, x).

Proof. Let I(x, n) be a largest standard segment inside A−1(n, x). By assump-
tion we can find A−1(n, x) and hence I(x, n) in polynomial time from x, n.2

It remains to show that its length is at most 4 times less than Dn(x). Indeed,
otherwise the segment A−1(n, x) contains three consecutive standard segments.
Then a pair of them (the first and the second ones or the second and the third
ones) can be united into a larger standard segment inside A−1(n, x).

Proof (Proof of Theorem 4). Assume that (L,D) is the given distributional prob-
lem to reduce to (BH,U). Why not to do it in the standard way? Namely, fix a
non-deterministic machine M accepting L in polynomial time q(n) and consider
the reduction

f(x, n) = (M,x, 1q(n)). (6)

This reduction certainly satisfies the correctness requirement. However it might
violate the domination condition. As f is injective, the domination requirement
is met iff

Dn(x) ≤ p(n)Uq(n)(M,x, 1q(n))

for some polynomial p. Up to a polynomial factor, Uq(n)(M,x, 1q(n)) equals 2−|x|,
which might be much smaller than Dn(x). Thus to ensure the domination con-
dition we need to replace x in the right hand side of (6) by its representation x̂

2 To find the largest standard segment inside a given segment, we can use binary
search.
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in at most − log2Dn(x) + O(log n) bits so that 2−|x̂| ≥ Dn(x)/p(n) for a poly-
nomial p. This is can be done using Lemma 3. Indeed, fix an invertible sampler
A for D and let I(x, n) be the mapping existing by Lemma 3. Let rx,n stand for
the name of I(x, n). The string rx,n together with n form a desired succinct rep-
resentation of x (we need n, as the algorithm A cannot find x from rx,n alone).
The number n should be represented by its “self-delimiting” description n̂ in
O(log n) bits . Indeed, we need to parse n̂rn,x into n̂ and rn,x. For instance, we
can set n̂ to be the binary notation of n with all bits doubled and appended by
01 (e.g., 5̂ = 11001101) so that |n̂| ≤ 2 log2 n+ 2.

So the reduction f is defined by

f(x, n) = (N, n̂rx,n, 1q(n)) (7)

whereN is a non-deterministic (not necessarily polynomial time) Turing machine
working as follows:

(1) on input z, reject if z is not of the form n̂r for any natural n,
(2) otherwise (when z = n̂r) interpret r as the name of a standard
segment I ⊆ [0, 1),
(3) run A(n) using any real in I as randomness needed for A(n); let x
be the output of A(n),
(4) run M(x) where M is the fixed non-deterministic polynomial time
machine accepting L.

The running time of N for input n̂rx,n is the sum of the running time of A(n),
which is polynomial in n, and the running time ofM(x), which is also polynomial
in n, as so is the length of x. Thus N works in time q(n) for all inputs n̂rx,n,
where q is a polynomial. This polynomial should be used in (7). Then for every
x in the support of Dn machine N accepts n̂rx,n iff M accepts x. Therefore the
reduction (7) satisfies the Correctness property. The domination condition holds
by the choice of rx,n.

4 Conclusion

We have observed that the notion of a polynomial time computable ensemble
of distributions is probably not encoding invariant. We have suggested a relax-
ation of PComp, called PISamp, so that PISamp is encoding invariant. We have
provided an evidence that PISamp might be strictly larger than PComp. The no-
tion of (NP, PISamp) completeness may be used instead of that of (NP, PComp)
completeness in proofs of (NP,PSamp) completeness, which makes those proofs
a little easier.
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Appendix

Proof of Theorem 1

It suffices to prove the statement for weakly polynomial time computable ensem-
bles that have the following property: there is a polynomial p(n) such the support
of Dn is the set of all strings of length less than p(n) and Dn(x) ≥ 2−p(n)−1 for
all strings in the support of Dn. Indeed, let p(n) stand for a polynomial such
that the length of all strings in the support of Dn is strictly less than p(n). Con-
sider the distribution D′

n which is the arithmetic mean of Dn and the uniform
distribution over all strings of length less than p(n) (the latter assigns proba-
bility 1/(2p(n)+1 − 1) to all strings of length less than p(n)). Obviously, D′ is
weakly polynomial time computable, dominates Dn and D′

n(x) > 2−p(n)−1 for
all strings in the support of D′

n. As the domination relation is transitive, every
ensemble dominating D′ also dominates D.

So assume that D is weakly polynomial time computed by an algorithm A
and Dn(x) ≥ 2−p(n)−1 for some polynomial p(n) and all x in the support of
Dn, which consists of all strings of length less than p(n). Let fn(x) stand for the
dyadic rational number that is produced by A for the input triple (n, p(n)+3, x).
Let, additionally, fn(x) = 1 for the lexicographical largest string x of length less
than p(n). Finally, let D′

n(x) denote the difference of fn(x) and fn(y) for the
predecessor y of x. Then the values of D′

n(x) sum up to 1. We claim that D′
n(x)

is always non-negative and dominates Dn(x) and thus satisfies the theorem.
By construction we have

|fDn(z)− fn(z)| ≤ 2−p(n)−3

for all z. Applying this inequality to x and its predecessor we conclude that

|D′
n(x) −Dn(x)| ≤ 2−p(n)−2 ≤ Dn(x)/2

and hence D′
n(x) ≥ Dn(x)/2.
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Proof of Theorem 2

As fDn(x) is computable in time p(n) (for some polynomial p), the values of
fDn(x) are always of the form k/2l where l ≤ p(n) and k ≤ 2l.

The sampler A for Dn is as follows:

Choose at random a segment I of the form
[
k/2p(n), (k + 1)/2p(n)

)
with

k < 2p(n) (tossing a coin p(n) times).
Using a binary search, find x such that

I ⊆
[∑

y≺x

Dn(y),
∑
y≺x

Dn(y) +Dn(x)
)
.

Output x and halt. Here we use the fact that the cumulative distribution
is polynomial time computable. We use also that the length of all x’s in
the support of Dn is bounded by a polynomial in n and thus binary
search finishes in a polynomial number of steps.

The algorithm A is polynomial time invertible. Indeed,

A−1(n, x) =
[∑

y≺x

Dn(y),
∑
y≺x

Dn(y) +Dn(x)
)

for every x in the support of A. The endpoints of this interval are fDn(x) and
fDn(y) for predecessor y of x, thus poly-time computable by the assumptions of
the theorem.
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Abstract. By terms-allowed-in-types capacity, the Logic of Proofs LP
enjoys a system of advanced combinatory terms, while including types of
the form t :φ(t), which have self-referential meanings. This paper suggests
a research on possible S4 measures of self-referentiality introduced by
this capacity. Specifically, we define “prehistoric phenomena” in G3s,
a Gentzen-style formulation of modal logic S4. A special phenomenon,
namely, “left prehistoric loop”, is then shown to be necessary for self-
referentiality in realizations of S4 theorems in LP.

1 Introduction

The Logic of Proofs LP is introduced systematically in [1] by Sergei Artëmov,
where it is shown to be the explicit counterpart of modal logic S4 by veri-
fying the realization theorem. With terms being allowed in types, LP has its
polynomials as advanced combinatory terms, and hence, extends the idea of
propositions-as-types in proof theory. By this new capacity, types of the form
t :φ(t) are also included. This sort of types, however, has self-referential meaning,
and hence, may indicate some essential properties of this capacity. As [6] says, by
any arithmetical semantic ∗, t :φ(t) is interpreted to be the arithmetical sentence
Proof(t∗, �(φ(t))∗), which is not true in Peano Arithmetic with the standard
Gödel numbering, since the Gödel number of a proof can not be smaller than
that of its conclusion.

Roman Kuznets has studied this issue and verified the following meaningful
result: there is an S4−theorem, ¬�¬(p→ �p), with any realizations of it calling
for self-referential constant specifications (see Theorem 3, also [2] and [5]). In
Kuznets’s papers, self-referentiality was studied at a “logic-level”, i.e., whether
or not a modal logic can be realized non-self-referentially.

Correspondingly, it is also interesting to consider this topic at a “theorem-
level”, i.e., self-referentiality in realizations of specified theorems. That is, which
S4−theorems have to call for self-referential constant specifications to prove their
realized forms in LP? Are there any easy criteria for this? Roughly speaking, if
we can fix the class of non-self-referential-realizable S4−theorems, then we may
find some S4 (and then, intuitionistic) measure of self-referentiality introduced
by the terms-allowed-in-types capacity.

In this paper, we define “prehistoric phenomena” in G3s, a Gentzen-style for-
mulation of S4. This notion is then used to study self-referentiality in realization

F. Ablayev and E.W. Mayr (Eds.): CSR 2010, LNCS 6072, pp. 384–396, 2010.
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procedure. A special prehistoric phenomenon, i.e., left-prehistoric-loop, is shown
to be necessary for self-referentiality.

At beginning, we enumerate some preliminary notions and results which will
be referred directly in this paper. In [7] (see also [2]), a Gentzen-style formulation
of S4, which enjoys Cut-elimination and subformula property, was presented.

Definition 1 ([7]). G3s has standard G3 (atomic) axioms (i.e., p, Γ ⇒ Δ, p
and ⊥, Γ ⇒ Δ) and rules together with the following two rules for modalities:

(L�)
φ,�φ, Γ ⇒ Δ
�φ, Γ ⇒ Δ (R�)

�φ1, · · · ,�φn ⇒ ψ
�φ1, · · · ,�φn, Γ ⇒ Δ,�ψ .

The notion of “family (of �’s)” was defined in [1]. In a G3s−rule: (1) Each
occurrence of � in a side formula φ in a premise is related only to the corre-
sponding occurrence of � in φ in the conclusion; (2) Each occurrence of � in an
active formula in a premise is related only to the corresponding occurrence of �
in the principal formula of the conclusion. A family of �’s is an equivalence class
generated by the relation above. We denote families by f0, f1, · · ·. All rules of
G3s respect the polarity of formulas, and hence, each family consists of �’s of a
same polarity. A family is positive (negative) if it consists of positive (negative)
�’s. If a positive family has at least one of its �’s correspond to the principal
� of an (R�) rule, then this family is principal. Positive families that are not
principal are non-principal families.

LP enjoys a specialAN rule, which allows to introduce formulas of the form c :
A, where c is a constant, and A is an axiom, at any time. A constant specification
CS is a set of LP−formulas (see [1]) of the form c :A. CS is injective if for each c
there is at most one formula c :A in CS. CS is non-direct-self-referential (or non-
self-referential, respectively) if CS does not contain any formulas (or subsets) of
the form c :A(c) (or { c1 :A1(c2), · · · , cn−1 :An−1(cn), cn :An(c1) }). A non-direct-
self-referential (or non-self-referential) constant specification is denoted by CS∗

(or CS�). For any constant specification CS, if all AN rules are restricted to
formulas in CS, then the resulting system is denoted by LP(CS). For instance,
LP(∅) is the system obtained by dropping AN from LP.

Theorem 1 (Lifting Lemma [1] [2]). If x1 :φ1, · · · , xn :φn ,LP ψ, then there
is a term t = t(x1, · · · , xn) s.t. x1 :φ1, · · · , xn :φn ,LP t(x1, · · · , xn) :ψ.

Lemma 1 ([1]). If Γ, φ ,LP(CS) ψ, then Γ ,LP(CS) φ→ ψ.

As a Gentzen-style formulation of LP(∅), LPG0 is presented in [1] on the
propositional base G2c from [7]. For convenience, we take G3c from [7] as
our propositional base of LPG0. While sharing similar non-modal axioms and
rules with G3s (formulas in them are LP−formulas now), LPG0 also has the
following rules:

(L+L)
Γ ⇒ Δ, t :φ
Γ ⇒ Δ, s+ t :φ

(L+R)
Γ ⇒ Δ, t :φ
Γ ⇒ Δ, t+ s :φ (L :)

φ, t :φ, Γ ⇒ Δ
t :φ, Γ ⇒ Δ
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(R !)
Γ ⇒ Δ, t :φ
Γ ⇒ Δ, !t :t :φ (L ·) Γ ⇒ Δ, s : (φ→ ψ) Γ ⇒ Δ, t :φ

Γ ⇒ Δ, s · t :ψ .

LP and S4 are linked by forgetful projection in [1]. The forgetful projection ◦
is a function from the language of LP to the language of S4, which meets the
following clauses:

p◦ = p ⊥◦ = ⊥ (φ→ ψ)◦ = φ◦ → ψ◦ (t :φ)◦ = �φ◦

An LP−formula φ is a realization of an S4−formula ψ, provided φ◦ = ψ.

Theorem 2 (Realization of S4 [1]). If ,S4 φ then there is an LP−formula
ψ s.t. ,LP ψ and ψ◦ is φ.

In [1], the result above is shown by offering a realization procedure, which can
mechanically calculate a suitable realization of an S4−theorem. In this proce-
dure, the constant specification CS of the resulting LP−proof is determined
only by employing Lifting Lemma (Theorem 1) while dealing with instances of
(R�) rules. For details, we refer to [1] and [2]. It is stated in [1, page 27] that
the realization procedure there may lead to constant specifications of the sort
c :φ(c) where φ(c) contains c. This sort of formulas is interesting since they have
self-referential meanings in both arithmetical semantics [1] and Fitting seman-
tics [3]. The following result shows that self-referentiality is an essential property
of S4.

Theorem 3 ([2]). The S4−theorem

¬�¬(p→ �p) (1)

can not be realized in any LP(CS∗).

[5] and [6] considered self-referentiality of some other “modal-justification” pairs.
The results presented there are: each K−(or D−)theorem can be realized with a
non-self-referential constant specification, while in T,K4,D4, self-referentiality
is necessary for realization.

As we have stated at the beginning, self-referentiality will be considered at
a “theorem-level”, instead of a “logic-level” in this paper. In Section 2, a series
of notations about G3s and the standard realization procedure are introduced.
Then in Section 3, “prehistoric phenomena” in G3s are defined, and some results
are verified. In Section 4, we prove the necessity of “left prehistoric loop” for
self-referentiality in S4-LP realization. In Section 5, we list some related open
problems, which are suggested for further research.

2 Notations and Preliminary Discussions

We introduce a series of notations in this section. Though some of them seem
cumbersome, they are employed with a view of denoting notions in realization
procedure in detail1.
1 In [4], Melvin Fitting introduces annotated formulas, to display �−families in

G3s−proofs. We will go further by displaying instances of (R�) rules.
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2.1 On Gentzen-Style Formulation G3s

Observations of [5] and [6] indicate that behaviors of �−families in Gentzen-
style proofs are essential to self-referentiality. In this subsection, we introduce
some notations, and then, consider in general the behaviors of �−families in a
G3s−proof.

A G3s−proof (as a tree) is denoted by T = (T,R), where the node set
T := {s0, s1, · · · , sn} is the set of occurrences of sequents, and R := { (si, sj) ∈
T × T | si is the conclusion of a rule which has sj as a premise }. The only root
of T is denoted by sr. Since each path in T from sr is associated with a unique
end-node, we can denote paths by their end-nodes. In what follows, whenever
we say “path s0”, we mean the only path from sr to s0. T � s is the subtree of
T with root s. As usual, the transitive closure and reflexive-transitive closure of
P is denoted by P+ and P ∗, respectively, for any binary relation P .

Sometimes, we take � (�,�) to denote a negative (non-principal-positive,
principal-positive, respectively) occurrence of � in T . Particularly, we take ⊕ to
denote a principal-positive occurrence of � in the conclusion of an (R�), if this
� is just introduced principally2 in this rule.

In T , we have only finitely many principal-positive families, say, f1, · · · , fm.
An occurrence of � of family fi is denoted by �i. Related �’s may occur in
different sequents of T . We take �s

i as the notation for an occurrence of �i

in sequent s. Note that a family can have more than one occurrences in a
sequent. For each family, say fi, there are only finitely many (R�) rules, de-
noted by (R�)i.1, · · · , (R�)i.mi . The ⊕’s introduced by them are denoted by
⊕i.1, · · · ,⊕i.mi . We also use (R�)i and ⊕i, if we only concern the family they
belong. In T , the premise (conclusion) of (R�)i.j are denoted by Ii.j (Oi.j).

We are now ready to present some properties of �−families in G3s−proofs.

Lemma 2. In a G3s−proof T , each family has exactly one occurrence in sr.

Proof. By an easy induction on the height (see [7, Definition 1.1.9]) of T .

Theorem 4. In a sequent s in a G3s−proof T , any pair of nested �’s belong
to different families.

Proof. By an induction on the height of T . For the inductive step, employ the
fact that no G3s−rule can relate two nested �’s in a premise to a same one in
the conclusion.

Theorem 5. If a �j occurs in the scope of a �i in a sequent of T , then for any
�i in any sequent of T , there is a �j occurs in the scope of this �i.

Proof. Take �i(· · · �j · · ·) which occurs (as a subformula, proper or not) in a
sequent. Since G3s has the subformula property, �i(· · · �j · · ·) occurs in sr.
Suppose that there is a �i, which has no �j in its scope, occurs in some sequent,
then by a similar reason, this �i also occurs in sr, without any �j in its scope.
By Lemma 2, this cannot happen.
2 For the (R�) rule presented in Definition 1, only the displayed � in �ψ of the

conclusion is principally introduced.
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2.2 On S4-LP Realization Procedure

Here we need to denote notions from the realization procedure. We refer to [1]
and [2] for complete descriptions of the procedure without presenting any more
here, since including a detailed instruction of it may considerably prolong this
paper.

In the realization procedure, we need to apply two substitutions. The first one
is to substitute all occurrences of �’s in a G3s−proof by terms (with provisional
variables). Particularly, each �i is replaced by the sum of provisional variables of
this family, i.e., ui.1+ · · ·+ui.mi . After the first substitution described above, the
resulting tree is then denoted by T ′ = (T ′, R′), while the resulting sequent, set of
formulas and formula corresponding to si, Γ, φ are denoted by s′i, Γ

′, φ′, respec-
tively. (R�) rules of T are temporally replaced by “Lifting Lemma Rules” in T ′.
All the other rules are automatically transferred to corresponding LPG0−rules.

During the second substitution (in fact, a series of substitutions applied in-
ductively), all provisional variables (denoted by u’s) are replaced by (provisional-
variable free) LP terms (denoted by t’s). Roughly speaking, we apply this from
leaf-side-most “Lifting Lemma rules” to the root-side-most one. In a proof tree
with more than one branches, we may have variant orders to do so. For no-
tational convenience, here we employ a function ε s.t. for any i ∈ {1, · · · ,m}
and j ∈ {1, · · · ,mi}, the “Lifting Lemma Rule” corresponding to (R�)i.j is
dealt as the ε(i.j)-th one. It should be emphasized that Oi1.j1R

+Oi2.j2 im-
plies ε(i2.j2) < ε(i1.j1). Suppose that ε(i0.j0) = 1, then we use T ε(i.j) to
denote T ′(ui0.j0/ti0.j0) · · · (ui.j/ti.j), i.e., the result of substituting all provi-
sional variables which have been dealt till ε(i.j) by corresponding LP−terms.
sε(i.j), Γ ε(i.j), φε(i.j) have similar meanings. Particularly, we have T 0 =T ′.

Now we consider the subprocedure to generate, say, ti.j . We apply Lifting
Lemma (Theorem 1) on an LP−derivation of Iε(i.j)−1

i.j . This derivation is pro-
vided by i.h., and is denoted by di.j . During this application, we may need some
(finitely many) new constants, which are then denoted by ci.j.1, · · · , ci.j.mi.j . In
the standard realization procedure presented in [1], the constant specification
employed is injective. That is to say, given a constant, say, ci.j.k, the corre-
sponding formula being prefixed, denoted by Ai.j.k, is determined. Applying
Lifting Lemma (Theorem 1) on di.j generates a new LP−derivation and the
desired term ti.j . The set of all formulas introduced by AN rules in the new
derivation is denoted by CSε(i.j)−1

i.j . Then we substitute ui.j by ti.j in the new
generated derivation. After this u/t−substitution, the resulting derivation is an
LP−derivation of Oε(i.j)

i.j , and the set of all formulas introduced by AN rules in

this derivation is CSε(i.j)
i.j .

After the second (series of) substitution, we take notations T ′′, s′′i , Γ
′′, φ′′ to

denote respectively the tree, sequent, set of formulas and formula. Particularly,
CS′′ denotes the set of formulas introduced by AN rules in the LP−derivation
of the root sequent. Note that, if Oi2.j2R

∗Oi1.j1 , then CSε(i2.j2)
i1.j1

⊆ CSε(i2.j2)
i2.j2

,
since our procedure is applied leafside-to-rootside inductively. Therefore, we have
CS′′ =

⋃
i∈{1,···,m}

⋃
j∈{1,···,mi} CS

′′
i.j .
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3 Prehistoric Phenomena

In this section, we introduce “prehistoric phenomena”, while proving some re-
lated results.

Definition 2 (History). In branch s0 of the form srR∗Oi.jRIi.jR
∗s0 in a G3s

−proof T , the path Oi.j, i.e., srR∗Oi.j , is called a history of fi in branch s0.

Definition 3 (Prehistoric Relation). For any principal positive families fi
and fh, any branch s of the form srR∗Oi.jRIi.jR

∗s:
(1) If Ii.j has the form of �ξ1, · · · ,�ξk(�Ii.j

h (· · ·)), · · · ,�ξn ⇒ η, then fh is a
left prehistoric family of fi in s. Notation: h ≺s

L i.
(2) If Ii.j has the form of �ξ1, · · · ,�ξn ⇒ η(�Ii.j

h (· · ·)), then fh is a right
prehistoric family of fi in s. Notation: h ≺s

R i.
(3) The relation of prehistoric family in s is defined by: ≺s:=≺s

L ∪ ≺s
R.

In G3s−proof T , relations of (left, right) prehistoric are defined by:
≺L:=

⋃
{≺s

L | s is a leaf },≺R:=
⋃
{≺s

R | s is a leaf },≺:=≺L ∪ ≺R .

At a first sight, Definition 3 is not built on Definition 2 directly. We now present
a lemma to indicate the desired connection.

Lemma 3. The following two statements are equivalent: (1) h ≺s i; (2) In
branch s, there is a node s′ (which is also a sequent), s.t. there is a history of fi
in s that does not include s′, and there is an occurrence of �s′

h in s′.

Proof. The (⇒) direction is trivial, since �Ii.j

h mentioned in the definition is
the �h desired. For the (⇐) direction, the following arguments applies. By the
assumption, s has the form of srR∗Oi.jRIi.jR

∗s′R∗s for some j. Since G3s
enjoys the subformula property, we know that no matter what rules are applied
from s′ to Ii.j, the �s′

h will occur in Ii.j as a �Ii.j

h .

We have a few remarks here. (1) Intuitively speaking, a history can be seen as a
list of sequents, whose inverse starts from the conclusion of an (R�), and ends
at the root of the proof tree. Each history in a branch breaks it into two parts,
i.e, the “historic period”, which is from the conclusion of the (R�) to the root of
the proof tree, and the “prehistoric period”, which is from the leaf of the branch
to the premise of the (R�). We know by Lemma 3 that h ≺s i iff �h has an
occurrence in the “prehistoric period” of fi in s. That is the reason why the ≺
relation is called “prehistoric relation”. (2) If a family is principally introduced
into a branch for more than one times, it may have many different histories in
that branch. (3) It is possible that ≺s

L ∩ ≺s
R �= ∅, as instanced by the following

derivation, in which both h ≺s
L i and h ≺s

R i hold:

(Ax) p,�p,�¬�i �hp⇒ p
(L�) � p,�¬�i �hp⇒ p

(R�) � p,�¬�i �hp⇒ ⊕hp

(R�) � p,�¬�i �hp⇒ ⊕i �h p

(L¬) � p,�¬�i �hp,¬ �i �hp⇒
(L�) � p,�¬�i �hp⇒
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In Section 2, we have gained some properties about G3s−proofs. Now in the
terminology of prehistoric phenomena, we have the following corollaries:

Corollary 1. For any principal positive family fi, i ⊀R i.

Proof. Directly from Theorem 4.

Corollary 2. If k ≺R j and j � i, then k � i, where � is one of ≺, ≺L, ≺R,
≺s, ≺s

L ,≺s
R.

Proof. Since k ≺R j, there is a �k occurring in the scope of an ⊕j. By Theorem
5, wherever �j occurs, there is a �k occurring in the scope of it.

For � =≺s
L, since j ≺s

L i, the branch s has a form of srR∗Oi.xRIi.xR
∗s, where

Ii.x is �ξ1, · · · ,�ξy(�Ii.x

j (· · ·)), · · · ,�ξn ⇒ η. By the observation above, we know
that there is a �Ii.x

k occurring in the scope of the displayed �Ii.x

j . Therefore,
k ≺s

L i.
The case that � =≺s

R can be shown similarly, while the case that � =≺s

is an easy consequence of the previous cases. In the same way, we can gain
corresponding results for ≺L and ≺R, and then for ≺.

We are now ready to present the notion of “prehistoric loop”, which indicates a
special structure of principal positive families w.r.t. prehistoric relations.

Definition 4 (Prehistoric Loop). In a G3s−proof T , the ordered sequent of
principal positive families fi1 , · · · , fin is called a prehistoric loop or left prehis-
toric loop respectively, if we have:
i1 ≺ i2 ≺ · · · ≺ in ≺ i1 or i1 ≺L i2 ≺L · · · ≺L in ≺L i1.

In an (R�) rule, formulas residing in the left or right of ⇒ in the premise play
different roles. This property allows us to care about differences between ≺R

and ≺L. With Corollary 2, we know that ≺L’s are the only essential steps in a
prehistoric loop, as stated in the following theorem.

Theorem 6. T has a prehistoric loop iff T has a left prehistoric loop. Moreover,
for (⇒) direction, the left prehistoric loop claimed is not longer than the given
prehistoric loop.

Proof. The (⇐) direction is trivial. For the (⇒) direction, by assumption, i1 ≺
i2 ≺ · · · ≺ in ≺ i1. We claim that there must be a ≺L in the prehistoric loop
listed above. Otherwise, i1 ≺R i2 ≺R · · · ≺R in ≺R i1. By Corollary 2, we have
i1 ≺R i1, which is forbidden by Corollary 1.

· · · ≺ i1 ≺R i2 ≺ · · ·

··
·≺

··
·

· · · � i4 �L i3 � · · · ··
·�

··
·

Fig. 1. A prehistoric loop with both ≺L and ≺R
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By the observation above, we know that there is a ≺L in the loop. If there
is no ≺R, then we have done since it is already a left prehistoric loop. So it is
sufficient to treat the case that there are both ≺L’s and ≺R’s in the loop, which
can be displayed roughly in Figure 1.

As being indicated by the figure, there must be an “RL-border”, i.e., · · · ≺R≺L

· · ·3. W.l.o.g., we have · · · ≺ i1 ≺R i2 ≺L i3 ≺ · · ·. Then by Corollary 2, we have
· · · ≺ i1 ≺L i3 ≺ · · ·. While having less ≺R’s, it is still a prehistoric loop. Since
there are only finitely many ≺R’s in the original loop, we can, eventually, gain
a prehistoric loop with only ≺L’s, which is, by Definition 4, a left prehistoric
loop.

In the last of this section, we consider the role of prehistoric phenomena in G3s.
All axioms and most of rules in G3s are common devices in G3−systems. The
only two exceptions are (L�) and (R�). (L�) is the only rule, which can relate
two occurrences of � in one sequent together. Roughly speaking, it is (L�) who
determines the family-wise-situation of a proof. (R�) is the only rule, which
introduces prehistoric relations between (principal positive) families. While the
right prehistoric relation behaves so “explicitly” (this relation can be seen from
the form of the succedent of an (R�)’s conclusion), the left prehistoric relation is
not very obvious. By the notion of prehistoric relations, the behavior of families
in G3s−proofs are highlighted.

4 Left Prehistoric Loop and Self-referentiality

In this section, we consider (not necessarily direct) self-referentiality with notions
of prehistoric phenomena. We offer some lemmas at first, to avoid prolix proofs.
Lemma 4 tells, when applying Lifting Lemma (Theorem 1), which provisional
variables may be included in the corresponding constant specification. This is
important, since putting a later4 provisional variable in an earlier CS is the only
way that can force a later constant to occur in the axiom associated to an earlier
constant (by an AN rule).

Lemma 4. Any provisional variable ux.y, which does not occur in Iε(i.j)−1
i.j , does

not occur in CSε(i.j)−1
i.j .

Proof. (1) Claim: ux.y does not occur in any sequent of T ε(i.j)−1 � Iε(i.j)−1
i.j .

Proof of the claim: {Case 1: If �x does not occur in Ii.j , we know that �x does
not occur in any sequent of T � Ii.j , since G3s enjoys the subformula property.

3 Otherwise, since a ≺R, say i1 ≺R i2, is included, the loop would look like · · · i1 ≺R

i2 ≺R i3 ≺R · · · (loop to the beginning), and then no ≺L could ever been included.
Similarly, there is also an “LR-border”. To gain a left prehistoric loop, it is sufficient
(see following observations to see why) to consider one of “RL-case” and “LR-case”.
With Corollary 2 in hand, we take the “RL-case” in what follows.

4 Here “earlier” and “later” are used w.r.t. the order indicated by ε (see Section 2).
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Therefore, ux.y does not occur in any sequent of T 0 � I0i.j , and hence, does not

occur in any sequent of T ε(i.j)−1 �Iε(i.j)−1
i.j . Case 2: If �x occurs in Ii.j , then ux.y

occurs in I0i.j . In this case, ux.y does not occur in Iε(i.j)−1
i.j implies ε(x.y) < ε(i.j).

Therefore, ux.y does not occur in any sequent of T ε(i.j)−1 �Iε(i.j)−1
i.j .}

(2) Claim: Each sequent sε(i.j)−1 of T ε(i.j)−1 �Iε(i.j)−1
i.j has a ux.y-free LP−

derivation.
Proof of the claim: {By an induction on T ε(i.j)−1 � Iε(i.j)−1

i.j , which is an
“LPG0 + Lifting Lemma Rule” proof.

(2.1) For base cases, we take (Ax) as an example, since (L⊥) can be treated
similarly. Assume that s, which has the form5 of p, Γ ⇒ Δ, p, is introduced by an
(Ax). Then we can take p ∧ (∧Γ ), p ∧ (∧Γ ) → (∨Δ) ∨ p, (∨Δ) ∨ p
to be the LP−derivation desired6. Note that all provisional variables in this
derivation have occurrences in s, which is ux.y-free (by the first claim). Hence,
the resulting derivation is also ux.y-free.

(2.2) (Sketch) The proof for Boolean cases is a cumbersome routine. We take
(L→) as an instance. By i.h., we have ux.y-free derivations of the two premises.
Based on these derivations, we can build a ux.y-free derivation of the conclusion.
The deduction theorem of LP (Lemma 1) is employed, which does not introduce
any ux.y, if we use the standard algorithm to calculate. A full proof of this case
can be found in the Appendix.

(2.3) For non-Boolean LPG0−rules, we take (L :), which corresponds to (L�)
in G3s, as an example. The proofs for other non-Boolean rules can be found in
the Appendix. Suppose that s is obtained by an (L :), i.e.,

φ, t :φ, Γ ⇒ Δ
t :φ, Γ ⇒ Δ

By i.h., we have a ux.y-free derivation, say d′, of the premise. The desired ux.y-
free derivation of s is then gained by adding t : φ, t : φ → φ to the
beginning of d′.

(2.4) For the “Lifting Lemma Rule”. Assume that s is obtained by applying
a “Lifting Lemma Rule”:

x1 :ξ1, · · · , xn :ξn ⇒ η
x1 :ξ1, · · · , xn :ξn, Γ ⇒ Δ, t(x1, · · · , xn) :η

By i.h., we have a ux.y-free derivation of the premise. To construct t, we ap-
ply Lifting Lemma on this derivation. Note that the resulting derivation is also

5 Since s is a sequent in T ε(i.j)−1 �I
ε(i.j)−1
i.j , precisely speaking, we should denote it by

sε(i.j)−1, with similar superscripts added to formulas in it. However, we omit those
superscripts temporarily, since we are now living in the scope of a specified tree,
instead of a series of trees.

6 Strictly speaking, we need to specify an order for conjuncts and disjuncts here. Since
this issue is not essential here, we may take the one employed in [2].
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ux.y-free7. Then, we make some Boolean amendment (to allow the weakening) on
the resulting derivation, which is similar to the situation in Boolean-rule-cases.
This amendment does not introduce occurrences of ux.y, since each formula we
need to weakened in has an explicit occurrence in s, which is ux.y-free (by the
first claim).}

Thirdly, as an easy consequence of the second claim, we know that Iε(i.j)−1
i.j

has a ux.y-free derivation, which is constructed inductively on T ε(i.j)−1 �Iε(i.j)−1
i.j .

That is to say, di.j is ux.y-free.
Lastly, we consider CSε(i.j)−1

i.j , which consists of formulas of the from c :
Aε(i.j)−1. If c ∈ {ci.j.1, · · · , ci.j.mi.j}, then Aε(i.j)−1 is an axiom employed in
di.j. If c /∈ {ci.j.1, · · · , ci.j.mi.j}, then c :Aε(i.j)−1 is introduced by an AN rule in
di.j. In both cases, we have Aε(i.j)−1 occurs in di.j. Since ux.y does not occur in
di.j, ux.y does not occur in Aε(i.j)−1. Thus, ux.y does not occur in CSε(i.j)−1

i.j .

When dealing with a “Lifting Lemma Rule”, we can try to reduce the risk
of committing self-referentiality by choosing new constants. Hence, the order ε
is essential. Having considered this, we present Lemma 5, which says, given a
prehistoric-loop-free proof, we can arrange ε in such a way that the order respects
prehistoric relations.

Lemma 5. If a G3s−proof T is prehistoric-loop-free, then we can realize it in
such a way that: If h2 ≺ h1, then ε(h2.j2) < ε(h1.j1) for any j1 ∈ {1, · · · ,mh1}
and j2 ∈ {1, · · · ,mh2}.

Proof. We claim that there is a family fi1 s.t. h ⊀ i1 for any principal positive
family fh. Otherwise, each family would have a prehistoric family. Since there are
only finitely many principal positive families in T , there would be a prehistoric
loop, which contradicts the assumption.

Similarly, we can show that there are families fi2 , fi3 , · · · s.t.: if h ≺ i2,
then fh ∈ {fi1}; if h ≺ i3, then fh ∈ {fi1 , fi2}; · · ·; if h ≺ ix, then fh ∈
{fi1 , · · · , fix−1}; · · ·.

Since there are only finitely many principal positive families in T , we will
enumerate all of them as fi1 , fi2 , · · · , fin in the way above. Thus, the desired
ε is obtained by setting ε(ix.j) = j +

∑x−1
w=1miw for each family fix and j ∈

{1, · · · ,mix}.

Given a prehistoric-loop-free proof, we have generated an ε which respects prehis-
toric relations. Now Lemma 6 below says, with such an ε, the way the constants
reside is also restricted.
7 In applying Lifting Lemma, each axiom φ is transferred to c :φ for some new constant

c, each premise x : φ is transferred to x :φ x : φ →!x : x : φ !x :x : φ, each result of
(AN) a :φ is transferred to a :φ a :φ →!a :a :φ !a :a :φ, while each result of (MP )
with i.h. s : (φ → ψ) and t :φ is transferred by applying (MP ) on these two, together
with s : (φ → ψ) → (t :φ → (s · t) :ψ). It is easy to see that the whole algorithm does
not add any new provisional variables. For further details about Lifting Lemma, we
refer to [2].
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Lemma 6. Assume the proof tree is prehistoric-loop-free. Taken the ε generated
in Lemma 5, we have:

If ε(i0.j0) � ε(i.j), then for any k0 ∈ {1, · · · ,mi0.j0}, any k ∈ {1, · · · ,mi.j},
ci0.j0.k0 does not occur in A′′

i.j.k.

Proof. We employ the ε generated in Lemma 5. When dealing with (R�)i.j, we
need to apply the lifting procedure on di.j, which is an LP−derivation of Iε(i.j)−1

i.j .
Since Oi.jRIi.j, by Lemma 5, we know that: each � in Ii.j belongs to a family,
say fw, s.t. ε(w.jw) < ε(i.j) for any jw ∈ {1, · · · ,mw}. That is to say, Iε(i.j)−1

i.j is

provisional-variable-free. Hence, by Lemma 4, CSε(i.j)−1
i.j is provisional-variable-

free, which implies that CSε(i.j)−1
i.j = CS′′

i.j and

A
ε(i.j)−1
i.j.k = A′′

i.j.k for any k ∈ {1, · · · ,mi.j}. (2)

Since ε(i0.j0) � ε(i.j), ci0.j0.k0 had not been introduced by the procedure when
we began to apply lifting procedure on di.j . Therefore, ci0.j0.k0 does not occur in
di.j, and hence, does not occur in any axioms employed in di.j. That is to say,
for any k ∈ {1, · · · ,mi.j}, ci0.j0.k0 does not occur in Aε(i.j)−1

i.j.k . By (2), we know
that ci0.j0.k0 does not occur in A′′

i.j.k.

With the three lemmas above in hand, now we are ready to verify the main
theorem.

Theorem 7 (Necessity of Left Prehistoric Loop for Self-referentiality).
If an S4−theorem φ has a left-prehistoric-loop-free G3s−proof, then there is an
LP−formula ψ s.t. ψ◦ = φ and ,LP(CS�) ψ.

Proof. Since the G3s−proof is left-prehistoric-loop-free, by Theorem 6, the proof
is prehistoric-loop-free. Hence, we can take the ε generated in Lemma 5, which
implies the result stated in Lemma 6.

Assume with the hope of a contradiction that the resulting constant specifica-
tion CS is self-referential. That is to say, we have:⎧⎪⎪⎨⎪⎪⎩

ci1.j1.k1 : A′′
i1.j1.k1

(ci2.j2.k2),
· · · · · ·

cin−1.jn−1.kn−1 : A′′
in−1.jn−1.kn−1

(cin.jn.kn),
cin.jn.kn : A′′

in.jn.kn
(ci1.j1.k1)

⎫⎪⎪⎬⎪⎪⎭ ⊆ CS′′.

By Lemma 6, we have: ε(in.jn) < · · · < ε(i2.j2) < ε(i1.j1) < ε(in.jn), which is
impossible. Hence, the resulting constant specification is non-self-referential.

Having finished the proof, we may notice that what have been done are natu-
ral. By the left-prehistoric-loop-free condition, we are given an order of families.
The order is then inherited by an ε function, which indicates the order of lifting
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procedures. Eventually, the order is echoed by the way in which the constants
reside themselves in the axioms associated to them (by AN rules).

5 Conclusions and Future Research

In this paper, we define “prehistoric phenomena” in a Gentzen-style formulation
(G3s) of modal logic S4. After presenting some basic results about this notion,
a proof of the necessity of left prehistoric loop for self-referentiality is given.
The presented work constitutes a small step in the journey of finding a criterion
for self-referentiality in realization procedures, while the whole journey has its
meaning in offering an S4 (and then, intuitionistic) measure of self-referentiality
introduced by terms-allowed-in-types capacity.

There are still spaces for this work to be developed. (1) The current method
may be applied to other “modal-justification” pairs that also enjoy realization
procedures based on G3 Cut-free formulations. (2) It is unclear whether left pre-
historic loop is sufficient for self-referentiality. The approach in [2] may help here.
(3) We have not answered the question that whether there is an S4−theorem,
the realization of which necessarily calls for self-referentiality, but not for di-
rect self-referentiality. (4) Despite the applications shown above, we assume that
“prehistoric phenomena” have interests of their own, since they describe some
family-wise structures of Gentzen-style modal proof trees.

Acknowledgements. The author is indebted to Roman Kuznets and three
anonymous referees, who have offered detailed, helpful comments on earlier ver-
sions of this paper.
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Appendix

A Detailed Proof of Lemma 4 Subcase (2.2). For Boolean cases, we take
(L →) as an instance. All other Boolean rules can be dealt in similar ways.
Assume that s is introduced by an (L→), i.e.,

Γ ⇒ Δ,φ ψ, Γ ⇒ Δ
φ→ ψ, Γ ⇒ Δ

By i.h., we have ux.y-free derivations dL and dR of the two premises. We apply the
deduction theorem of LP (Lemma 1) to dR, and denote the resulting derivation
(∧Γ , ψ → ∨Δ) by d′R. Specifically, if we employ the standard method to
calculate d′R, the resulting d′R is also ux.y-free. Now what follows is a ux.y-free
derivation of s:

∧Γ, −−→
(dL) (∨Δ)∨φ, φ→ ψ, ((∨Δ)∨φ) → (φ→ ψ) → ((∨Δ)∨ψ),

(φ→ ψ) → ((∨Δ) ∨ ψ), (∨Δ) ∨ ψ, ∧Γ, −−→
(d′R) ψ → ∨Δ,

((∨Δ) ∨ ψ) → (ψ → ∨Δ) → ∨Δ, (ψ → ∨Δ) → ∨Δ, ∨Δ .

A Detailed Proof of Lemma 4 Subcase (2.3). There are five non-Boolean
LPG0−rules. Among them, the subcase of (L :) has been presented in the main
text. We now give the proofs for the rest four.

For (L+R), i.e.,
Γ ⇒ Δ, t : φ
Γ ⇒ Δ, t+ s : φ

.

By i.h., we have a ux.y−free derivation of the premise. The desired ux.y−free
derivation of the conclusion is gained by adding t : φ → t + s : φ (t : φ →
t+s : φ) → ((∨Δ)∨t : φ) → ((∨Δ)∨t+s : φ) ((∨Δ)∨t : φ) → ((∨Δ)∨t+s :
φ) (∨Δ) ∨ t+ s : φ to the end of the original proof.

The subcases of (L+L), (R!) and (L ·) are similar to that of (L+R). For
these cases, we also employ a corresponding LP−axiom, and then verify truth-
functionally.
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Béal, Marie-Pierre 12
Benaissa, Nazim 25
Berlinkov, Mikhail V. 37
Binkele-Raible, Daniel 328
Bollig, Benedikt 48
Bourgeois, N. 60
Brihaye, Thomas 72
Bruyère, Véronique 72
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Jeż, �Lukasz 132
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Méry, Dominique 25
Milis, I. 60

Pan, Victor Y. 303
Paschos, V. Th. 60
Patel, Viresh 240
Paulusma, Daniël 240
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