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Preface

FUN with Algorithms is a three-yearly conference that aims at attracting works
which, besides a deep and interesting algorithmic content, also present amusing
and fun aspects, are written with a keen wit, and are presented in a lively way.
FUN is actually one of the main moving wheels behind most of the best scientific
results, and in a sense this conference answers to the unconfessed need of having
a place where we can present the most lighthearted part of our work without
sacrificing precision and rigor.

The 5th International Conference on Fun with Algorithms (FUN 2010) was
held at Hotel Continental Terme in Ischia (Italy), June 2–4, 2010. The island of
Ischia, a worldwide famous spa, sea, and tourist resort, is the ideal venue to host
an event dedicated to pleasure as well as to science.

The call for papers attracted 54 submissions from all over the world. Submit-
ted papers were characterized by an extremely high quality and featuring a large
variety of topics. After a careful and thorough reviewing process, the Program
Committee selected 32 papers. The program also included three invited talks by
Roberto Grossi, Prabhakar Raghavan, and Paul Spirakis. Extended versions of
selected papers presented at the meeting will be published in a special issue of
Theory of Computing Systems.

We would like to take this opportunity to thank all the authors who submit-
ted their work to FUN 2010 and of course all the colleagues that served on the
Program Committee whose comments and discussions were crucial in selecting
the papers. We also wish to thank all the external reviewers (listed in the follow-
ing pages) who provided further reports on the papers as well as the members
of the Organizing Committee (Gennaro Cordasco and Adele Rescigno).

The EasyChair Conference System (http://www.easychair.org/) was used
through all the stages (submission, review, selection, preparation of the proceed-
ings) and greatly simplified our work: we wish to thank its creators and main-
tainers for their support and help. We also thank Alfred Hofmann and Anna
Kramer at Springer, who provided feedback and timely answers to our ques-
tions. We are pleased to acknowledge support from Dipartimento di Informatica
ed Applicazioni “R.M. Capocelli,” from Università di Salerno, and from Dipar-
timento di Scienze dell’Informazione (Università degli studi di Milano).

March 2010 Paolo Boldi
Luisa Gargano
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Fun with Olympiad in Algorithmics

Roberto Grossi, Alessio Orlandi, and Giuseppe Ottaviano

Dipartimento di Informatica, Università di Pisa
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
{grossi,aorlandi,ottavian}@di.unipi.it

The creative approach when designing new algorithms is probably the major
rewarding task for many researchers. This love for solving algorithmic problems
is cultivated by some very young and talented students at high school.

The IOI (International Olympiad in Informatics) is a special programming
contest for these students [1]. The main flavor is not just computer program-
ming, but deep thinking in terms of algorithmics. The required skills are prob-
lem analysis, design of efficient algorithms and data structures, programming
and testing [2]. The winners are among the best young computer scientists in
the world. It is not so unusual that they are also winners in other International
Science Olympiads, such as IMO (International Mathematical Olympiad). They
perform extremely well when going to academia.

Teams from over 80 countries attend IOI every year. It is impressive to see
how many different cultures meet at this event, many more than we can imagine
at the events organized by our community. Students compete on an individual
basis, with up to four students per country, and try to maximize their score
during two competition days. There are three or four tasks to be solved in five
hours. The typical task during a competition is a problem with input size n,
where the range of possible values of n are known in advance, and a time limit s
in seconds. Looking at the assigned values of n and s, the contestants can make
an educated guess on the time complexity of the required algorithm. Sometimes
a space limit is given, thus allowing a guess also for the space complexity.

For all the inputs, called test cases, the algorithmic solution must give a cor-
rect answer and stay within the time and space limits. Each correct answer
increases the score by a fixed amount. The algorithmic problems are described
using nice stories, and are non-trivial at all. Quite often, these stories are the
vanilla (and masqueraded) version of research problems from the known litera-
ture. The scientific background of the teenager contestants is quite impressive
for their age [3].

In this talk, we will organize a small session with selected problems, based
upon our experience in training the Italian team for IOI. People are usually at-
tracted by these quiz-style sessions, and are surprised to learn that these kids
solve three or four of them in just five hours. Here, solving does not mean just
providing the algorithmic ideas (the creative and funny part of the competition),
but also programming and debugging is required, since the verdict is very de-
manding: either the program passes the test case to get the score, or it is not
accepted even if it contains the greatest idea in the world but with a small glitch.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 R. Grossi, A. Orlandi, and G. Ottaviano

We will focus on the creative part, which is more fun for the algorithmists.
Prizes will be distributed to the audience. As one can imagine, the algorithmic
quality of IOI is very high and much denser than other similar competitions
in Informatics. It is very rare that a contestant can solve a problem by merely
applying a known algorithm; rather, she should invent a new one or make a non-
trivial modification of a known one. For these reasons, IOI should be properly
called Olympiad in Algorithmics, but do not let us spread this little secret with
non-algorithmists :-).

References

1. International Olympiad in Informatics, http://ioinformatics.org
2. Skiena, S.S., Revilla, M.A.: Programming Challenges: The Programming Contest

Training Manual. Springer, Heidelberg (2003)
3. Verhoeff, T., Horváth, G., Diks, K., Cormack, G.: A Proposal for an IOI Syllabus.

Teaching: Matemathics and Computer Science (4/1), 193–216 (2006)

http://ioinformatics.org


The FUNnest Talks That belong to FUN
(Abstract)

Prabhakar Raghavan

Yahoo! Labs.

Abstract. This talk presents the author’s personal favorites of fun talks
from algorithms and complexity. Not all of these were presented at FUN,
but definitely would have generated fun at FUN.

P. Boldi (Ed.): FUN 2010, LNCS 6099, p. 3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Fun with Games�

Paul G. Spirakis1,2, Ioannis Chatzigiannakis1,2, Georgios Mylonas1,2,
and Panagiota N. Panagopoulou2

1 Computer Engineering and Informatics Department, University of Patras
2 Research Academic Computer Technology Institute

spirakis@cti.gr, ichatz@cti.gr, mylonasg@cti.gr, panagopp@cti.gr

Abstract. We discuss two different ways of having fun with two dif-
ferent kinds of games: On the one hand, we present a framework for
developing multiplayer pervasive games that rely on the use of mobile
sensor networks. On the other hand, we show how to exploit game the-
oretic concepts in order to study the graph-theoretic problem of vertex
coloring.

1 Introduction

In everyday life, a game is a structured, competitive activity that people under-
take for enjoyment. In applied mathematics however (and in particular in the
branch of game theory), a game is a mathematical model used to describe situ-
ations where decision-makers with possibly conflicting interests interact. These
two kinds of games seem loosely related and rather irrelevant; however, they
both share the same key components: goals, rules, and interaction: Each player
has to choose a course of actions out of a set of allowed actions in order to win,
while always taking into consideration the actions taken by the opponents.

Here, we aim at exploring “funny” aspects of both kinds of games. On the
one hand, we present a framework for creating, deploying and administering
multiplayer pervasive games that rely on the use of ad hoc mobile sensor networks
[1]. The unique feature in such games is that players interact with each other and
their surrounding environment by using movement and presence as a means of
performing game-related actions, utilizing sensor devices. On the other hand, we
show how game-theoretic tools and concepts can be exploited in order to study
the fundamental graph-theoretic problem of vertex coloring [2]. We define an
imaginary game among the vertices of the graph; the analysis of the game leads
to the derivation of several upper bounds on the chromatic number, as well as
to a polynomial time vertex coloring algorithm that achieves all these bounds.

Developing sensor-based multiplayer pervasive games. The outstanding activity
in the wireless sensor networking (WSN) research area resulted among other
things in the the continuous integration of sensing devices in multiple application
� Partially supported by the EU within the ICT Programme under contract IST-2008-

215270 (FRONTS).

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 4–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Fun with Games 5

domains. Even though we are using sensors in an ever-increasing number of ways,
we have only scratched the surface regarding their use in entertainment-related
applications. The use of sensors such as accelerometers, e.g., in Nintendo Wii,
has already been proven a major success. At the same time, there is an additional
trend of detaching from traditional gaming environments, evident by the massive
success of mobile platforms, like Sony’s PSP, or even devices like the iPhone.
Lately, pervasive gaming appeared as a hot new gaming genre. Some examples
of games that are placed in the pervasive gaming genre are geotagging games,
ubiquitous games, mixed reality games, urban games, etc. In this context, we
believe that there is great potential in combining distributed sensor networks
and pervasive gaming to produce exciting gaming applications.

Such games can be largely based on features like movement, presence, and
sensory input, all provided by the use of sensor networking techniques. Players
interact with each other and their surrounding environment by moving, run-
ning and gesturing as a means to perform game related actions, using sensor
devices. We identify here the main issues and research challenges that arise in
multiplayer pervasive games based on distributed sensor networks and provide
solutions and guidelines for the most important of them, and we present Fun in
Numbers (FinN, http://finn.cti.gr), a framework for developing pervasive appli-
cations and interactive installations for entertainment and educational purposes.
Using ad hoc mobile wireless sensor network nodes as the enabling devices, FinN
allows for the quick prototyping of applications that utilize input from multi-
ple physical sources (sensors and other means of interfacing), by offering a set
of programming templates and services, such as topology discovery, localization
and synchronization, that hide the underlying complexity. FinN’s architecture is
based on a hierarchy of layers for scalability and easy customization to differ-
ent scenarios (heterogeneity). A number of services are currently implemented,
allowing location awareness of wireless devices in indoor environments, perform
sensing tasks while on the move, coordinate basic distributed operations and
offer delay-tolerant communication. We present the target application domains
of FinN, along with a set of multiplayer games and interactive installations, and
we describe the overall architecture of our platform.

Using game theory to study vertex coloring. One of the central optimization
problems in Computer Science is the problem of vertex coloring of graphs: given
a graph G = (V, E) of n vertices, assign a color to each vertex of G so that no pair
of adjacent vertices gets the same color and so that the total number of distinct
colors used is minimized. The global optimum of vertex coloring (the chromatic
number) is, in general, inapproximable in polynomial time unless a collapse of
some complexity classes happens. We describe here an efficient vertex coloring
algorithm that is based on local search: Starting with an arbitrary proper vertex
coloring (e.g. the trivial proper coloring where each vertex is assigned a unique
color), we do local changes, by allowing each vertex (one at a time) to move to
another color class of higher cardinality, until no further local moves are possible.

We choose to illustrate this local search method via a game-theoretic analy-
sis; we do so because of the natural correspondence of the local optima of our
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proposed method to the pure Nash equilibria of a suitably defined strategic game.
In particular, given a graph G = (V, E) of n vertices and m edges, we define
the graph coloring game Γ (G) as a strategic game where the set of players is
the set of vertices and the players share the same action set, which is a set of
n colors. The payoff that a vertex v receives, given the actions chosen by all
vertices, equals the total number of vertices that have chosen the same color
as v, unless a neighbor of v has also chosen the same color, in which case the
payoff of v is 0. We show that Γ (G) has always pure Nash equilibria, and each
pure equilibrium is a proper coloring of G. We give a polynomial time algorithm
A which computes a pure Nash equilibrium of Γ (G), and show that the total
number, k, of colors used in any pure Nash equilibrium (and thus achieved by
A) is k ≤ min{Δ2 +1, n+ω

2 , 1+
√

1+8m
2 , n−α+1}, where ω, α are the clique num-

ber and the independence number of G and Δ2 is the maximum degree that a
vertex can have subject to the condition that it is adjacent to at least one vertex
of equal or greater degree. (Δ2 is no more than the maximum degree Δ of G.)
Thus, in fact, we propose here a new, efficient coloring method that achieves a
number of colors satisfying (together) the known general upper bounds on the
chromatic number χ. Our method is also an alternative general way of proving,
constructively, all these bounds.

2 Developing Games: A Platform for Sensor-Based
Multiplayer Pervasive Games

We present the basic system requirements and key design goals of Fun in Num-
bers (FinN), a platform for developing pervasive applications and interactive
installations for entertainment and educational purposes. We attempt to iden-
tify the differentiating factors of our approach from already existing ones, along
with some of the respective implementation requirements. We believe that these
key factors are common in both application domains that use ad hoc and mobile
sensor networks for entertainment and education.

Simultaneous participation of multiple users: we envisage games and installations
where groups of players participate, potentially in large numbers. The players
will be in close proximity, most probably in indoor environments, and will have
to engage in such applications by either interacting between themselves or with
an infrastructure provided by the organizing authority. Depending on the nature
of the application, players may have to cooperate or compete with each other,
e.g., to reach the goals of a team-based game inside a museum, and this may be
done in a real-time fashion. Regarding implementation, this assumes that there
is a reliable neighborhood discovery mechanism, along with proximity detection,
location-aware and context-aware providing mechanisms to the software and the
players. These mechanisms are required to scale to a large number of players
and to different area sizes.

Multiple types of inputs: we envisage the utilization of a plethora of inputs,
the most general of which are presence, motion and other types of sensors. Such
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inputs will, in the majority of cases, be provided by the mobile devices carried by
the participating players. In simple words, this means that e.g., pupils or museum
visitors will carry mobile devices that are able to sense their location (absolute
or relative to each other and specific landmarks), their movement (both in terms
motion detection and gesture recognition) and other physical measures (e.g., the
device could sense if the player is in a warm/cold or light/dark place). Therefore
an expandable architecture is required to cover all the different sensors that can
be used on a single device and be reported to the upper layers of the system, along
with mechanisms for reliable motion detection and gesture recognition. In the
additional case of using cameras throughout the system, respective mechanisms
for the same actions must be used.

Distributed network operation: the use of embedded sensors and ad hoc net-
working capabilities requires that the software executed on the mobile devices
carried by players is based on lightweight mechanisms. The complex parts of
the system’s logic need to be implemented at the fixed infrastructure. Further-
more, depending on the final application, further functionalities may be required
that rely on real-time coordination and complete knowledge of the users’ where-
abouts, or are executed in a disconnected part of the network. It is therefore
necessary for the architecture to be distributed and to involve a certain level of
modularity and heterogeneity. Delay-tolerant mechanisms can be activated to
ensure the correct operation of the system and/or reliable multihop or multicas-
ting mechanisms may be necessary to cover all possibilities of communication
between players and the infrastructure.

Need for synchronization and coordination between players: in most games play-
ers are competing or cooperating in order to reach/fulfill the goals set in a specific
application. Players have to directly interact with each other and the overall sys-
tem in a synchronized way. Such synchronization schemes should cover updates
of the state of the players and the system, and also possibly coordinate the ways
that the users move and act inside the playing field. Mutual exclusion, agreement
and leader election mechanisms may be used to ensure the correct operation of
the system.

Non-conventional interfacing methods and use of actuators/haptics: the partic-
ipants should be able to decipher both their personal and/or their team’s sta-
tus/score while engaging in the proposed interactive schemes, and also the sys-
tem interfaces should reflect the location and context awareness inherent in such
situations. The use of actuators such as lights turning on/off, opening/closing
doors, haptic interfaces, etc., will enable a more immersive experience.

Pilot Multiplayer Games. In order to further demonstrate the capabilities
of our system we present here three pilot games that we have implemented.
The key characteristic of these games is that players engage in interactions with
each other and their surrounding environment by moving and gesturing, as a
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means to perform game-related actions. The player, as a physical entity, is the
center of the game. The players’ input is kept to a minimum (e.g., by means
of performing a specific gesture) or is indirect (e.g., based on the location of
the player). Similarly, the feedback of the game to the player is again minimum
(e.g., win or lose) and some times sporadic (e.g., indicating that the player
reached a specific location or is close to an opponent). There is minimum need
for continuous visual feedback compared to most video games played today, e.g.,
through a display. FinN games are meant to be played in every place and at
every time, with or without any fixed game “backbone” infrastructure. After
the game is over, players can upload the data collected by their devices to a
social networking web portal.

Moving Monk: Each player in the game is called a “monk”, moving continuously
amongst a predefined set of “temples”. The goal for each player is to visit all
of the temples as fast as possible, perform specific “prayers” in each location. A
temple is defined by the coverage range of the available infrastructure and the
prayers performed are specific gestures. To help monks find the temples, clues
can be given regarding the exact location of a temple, but in general the players
are unaware of the temples’ location. The winner of the game is the first monk
who gets to visit all of the temples.

Hot Potato: In this game, each device held by players randomly generates a Hot
Potato, which “explodes” after a specific amount of time, eliminating the player
carrying the potato. Each player can pass the potato to one of the neighboring
players, by performing a specific gesture. Thus, each player tries to pass the
potato of her device to the other players, so as to avoid elimination by the
exploding potato. If the player tries to avoid meeting (i.e., getting outside the
range of) other players, then a new potato is generated in her device with high
probability. As a result, more than one potatoes may be active simultaneously
in each game. When a player who already carries a potato receives an additional
one, then two potatoes merge. The winner is the player who last stands alive
while all other opponents have been eliminated.

Casanova: This is a two-players-only game. One of the players is randomly se-
lected as the “Casanova”, while the other one as “Bianca”. The goal of Casanova
is to run away from Bianca, while Bianca must not lose Casanova from her
sight, running when Casanova runs and staying still when Casanova does not
move. The two players are informed for who is who and the actual game starts.
Casanova tries to win Bianca, by running away from her, or by staying still sud-
denly. This game is based on ad-hoc networks, where the need of infrastructure
is not compulsory. As a result, the Casanova game is easily played anywhere and
anytime.

Pilot Interactive Installations. We now present two pilot networked inter-
active installations that we are currently implementing using our platform. We
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expect that these schemes are simple, self explaining and should challenge play-
ers (of all ages, but mostly pupils) to interact with them. Like before, we are
based on two basic sensing capabilities, presence (near a point of interest or near
another person), and movement detection and recognition. A notable advantage
of using mobile ad hoc sensors (e.g., Sun SPOTs instead of cameras) is that
each device provides a unique identification of a player, that works similarly to
an RFID and can be used for user history tracking or for enhancing the overall
entertainment experience.

Chromatize it!: This edutainment installation is based on the mixture of basic
colors. The basic features demonstrated here are proximity between devices,
player’s input as well as visual output. A chromatic mass appears as soon as the
player approaches the screen. By choosing among basic colors available on his
device, the player colorizes the masses’ minions. By doing so, he mixes colors,
in an effort to match the color of the mass. The matching combination leads
to an ever increasing difficulty of levels in chromatic complexity. More than one
players can simultaneously participate.

Tug of war: In this highly competitive multiplayer game, players enter a 3D
cube (approx. 2 x 2 x 2 m) on each side of which colors are floating. Each color
defines a territory owned by a player. The aim of each player is to expand his
territory as much as possible. This is achieved when the indicated gestures are
performed properly and fast. Visual output as well as gesture recognition are the
basic characteristics of this installation. Each player owns a chromatic territory,
which he aims to expand over his opponents. By performing gestures faster than
his opponents he manages to dominate. There is no limit to the amount of
players.

Overall Architecture. FinN is designed and implemented targeting application
scenarios where a large number of players, using wireless handheld devices with
sensing capabilities, participate in various game instances and game types. These
games can take place in the same or different place and time. The operation of
the games may be supported by a “backbone” infrastructure that provides a
number of services (e.g., localization and context awareness). The games may be
coordinated by a central entity that records the games’ progress. The architecture
of FinN has been based upon those principles and has been implemented by a
hierarchy of layers. Each layer is assigned a particular role in the game:

Guardian layer: This layer is composed by the devices used by players dur-
ing the FinN games. The Guardian is the software component running in each
player’s wireless sensing device and uses the devices capabilities in terms of user
interface, communication, etc. Protocols for the discovery and the communica-
tion with the “backbone” infrastructure and other Guardians are provided (echo
protocol service). When another Guardian peer is discovered the player may be
prompted for further action, by using the sensors and the buttons of her device.
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For monitoring the evolution of the game, each game related action is repre-
sented by an Event. Also, Guardian peers implement services that allow them
to interact even when they are disconnected from the “backbone” infrastructure
for extended periods of time. In particular, when an Event occurs, the Guardian
stores it to the device memory and when communication with the infrastructure
is possible, then all collected Events are forwarded (delay tolerant communica-
tion service). Also, Guardians provide a subsystem, which processes the samples
of the accelerometer and recognizes gestures that correspond to game-related
actions.

Game Station layer: This layer implements the “backbone” infrastructure, which
is important though not necessary for all the games developed. It provides lo-
calization and context awareness services and it is through this infrastructure
that the data of the players are transferred to and from the higher layers of the
architecture, for coordination and storing purposes. This wireless backbone is
established by Station peers, with each Station controlling a specific physical
area. During the initialization of each game, one Station peer becomes also the
Game Engine, responsible for the coordination of the infrastructure and of the
game itself. The Stations communicate with the users’ devices either through lo-
cal ad-hoc networks or via personal area non-IP networks and act as gateways,
essentially allowing communication between the players’ devices and the Game
Engine. Multiple Stations can be attached to an Engine in order to maximize area
coverage or the points of interest. During the initialization of a game, Stations
communicate with the Engine and retrieve data such as the set of players, which
are registered for this game instance, the associations between Avatars, player
devices and POIs. Stations are also responsible for the Guardians initialization
and for forwarding all data generated during the course of a game to the Engine.
There is also the option of using mobile Stations during the course of a game.
In this case, such Stations operate in a slightly different way than the stationary
mode - their role is primary in the context of providing location-aware services
during games, while communication with the upper layers is either suppressed
(by informing lower layers to use other ways of propagating game-related events
to the upper layers) or carried out in a delay-tolerant mode.

Game Engine layer: Each game instance is assigned to and also coordinated
by a specific Game Engine, i.e., it is the local authority for each physical game
site. The Engine retrieves data from higher layers and stores them locally, for
the duration of a specific game. In order to avoid computational and communi-
cation overhead, data between higher layers and the Engines are synchronized
periodically. Thus, the processing and storage of generated events during the
game is done locally. The Engine is also a control mechanism that provides
game-specific services and implements various game scenarios. Communication
between the Engine and the Stations is carried out through wired and/or wire-
less IP-based networks. Finally the Engine features an embedded Web container
for providing additional game specific information to players.
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World layer: The World layer is the topmost layer of the hierarchy, enabling
the management of multiple FinN games, physical game sites and users. This
layer includes the World Portal, which is the central point of management in the
system, providing interaction with all the different game instances operating in
the real world. It is also the central storing point for all game-related data, such as
player-related statistics and game history. Furthermore, it allows personalization
capabilities and possible interaction with external social networking sites.

3 Exploiting Games: A Strategic Game for Efficient
Vertex Coloring

Denote G = (V, E) a simple, undirected graph with vertex set V and set of
edges E. For a vertex v ∈ V denote N(v) = {u ∈ V : {u, v} ∈ E} the set of its
neighbors, and let deg(v) = |N(v)| denote its degree. Let Δ(G) = maxv∈V deg(v)
be the maximum degree of G. Let Δ2(G) = maxu∈V maxv∈N(u):d(v)≤d(u) deg(v)
be the maximum degree that a vertex v can have, subject to the condition
that v is adjacent to at least one vertex of degree no less than deg(v). Clearly,
Δ2(G) ≤ Δ(G). Let χ(G) denote the chromatic number of G, i.e. the minimum
number of colors needed to color the vertices of G such that no adjacent vertices
get the same color (i.e., the minimum number of colors used by a proper coloring
of G). Let ω(G) and α(G) denote the clique number and independence number of
G, i.e. the number of vertices in a maximum clique and a maximum independent
set of G.

Given a finite, simple, undirected graph G = (V, E) with |V | = n vertices,
we define the graph coloring game Γ (G) as the game in strategic form where
the set of players is the set of vertices V , and the action set of each vertex
is a set of n colors X = {x1, . . . , xn}. A configuration or pure strategy profile
c = (cv)v∈V ∈ Xn is a combination of actions, one for each vertex. That is,
cv is the color chosen by vertex v. For a configuration c ∈ Xn and a color
x ∈ X , we denote by nx(c) the number of vertices that are colored x in c,
i.e. nx(c) = |{v ∈ V : cv = x}|. The payoff that vertex v ∈ V receives in the
configuration c ∈ Xn is

λv(c) =
{

0 if ∃u ∈ N(v) : cu = cv

ncv(c) else .

A pure Nash equilibrium (PNE in short) is a configuration c ∈ Xn such that no
vertex can increase its payoff by unilaterally deviating. Let (x, c−v) denote the
configuration resulting from c if vertex v chooses color x while all the remaining
vertices preserve their colors. Then, c ∈ Xn is a pure Nash equilibrium if, for all
vertices v ∈ V , λv(x, c−v) ≤ λv(c) ∀x ∈ X.

A vertex v ∈ V is unsatisfied in the configuration c ∈ Xn if there exists a
color x �= cv such that λv(x, c−v) > λv(c); else we say that v is satisfied. For an
unsatisfied vertex v ∈ V in the configuration c, we say that v performs a selfish
step if v unilaterally deviates to some color x �= cv such that λv(x, c−v) > λv(c).
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Existence and Tractability of Pure Nash Equilibria

Lemma 1. Every pure Nash equilibrium c of Γ (G) is a proper coloring of G.

Proof. Assume, by contradiction, that c is not a proper coloring. Then there
exists some vertex v ∈ V such that λv(c) = 0. Clearly, there exists some color
x ∈ X such that cu �= x for all u ∈ V . Therefore λv(x, c−v) = 1 > 0 = λv(c),
which contradicts the fact that c is an equilibrium. ��

Theorem 1. For any graph coloring game Γ (G), a pure Nash equilibrium can
be computed in O(n ·α(G)) selfish steps, where n is the number of vertices of G
and α(G) is the independence number of G.

Proof. We define the function Φ : P → R, where P ⊆ Xn is the set of all
configurations that correspond to proper colorings of the vertices of G, as Φ(c) =
1
2

∑
x∈X n2

x(c), for all proper colorings c. Fix a proper coloring c. Assume that
vertex v ∈ V can improve its payoff by deviating and selecting color x �= cv, and
let c′ = (x, c−v). It can be shown that c′ is a proper coloring and that

Φ(c′)− Φ(c) = nx(c) + 1− ncv (c) = λv(c′)− λv(c) .

Therefore, if any vertex v performs a selfish step then the value of Φ is in-
creased as much as the payoff of v is increased. Now, the payoff of v is increased
by at least 1. So after any selfish step the value of Φ increases by at least 1.
Now observe that, for all proper colorings c and for all colors x, nx(c) ≤ α(G).
Therefore Φ(c) ≤ 1

2

∑
x∈X(nx(c)·α(G)) = n·α(G)

2 . Moreover, the minimum value
of Φ is 1

2n. Therefore, if we allow any unsatisfied vertex (but only one each time)
to perform a selfish step, then after at most n·α(G)−n

2 steps there will be no ver-
tex that can improve its payoff (because Φ will have reached a local maximum,
which is no more than the global maximum), so a pure Nash equilibrium will
have been reached. Of course, we have to start from an initial configuration that
is a proper coloring so as to ensure that A will terminate in O(n · α(G)) selfish
steps; this can be found easily since there is always the trivial proper coloring
that assigns a different color to each vertex of G. ��

The above proof implies the following simple algorithm A that computes a pure
Nash equilibrium of Γ (G) (and thus a proper coloring of G): At each step, allow
one unsatisfied vertex to perform a selfish step, until all vertices are satisfied.
Note that, at each step, there may be more than one unsatisfied vertices, and
more than one colors that a vertex could choose in order to increase its payoff.
So actually A is a whole class of algorithms, since one could define a specific
ordering (e.g., some fixed or some random order) of vertices and colors, and
examine vertices and colors according to this order. In any case however, the
algorithm is guaranteed to terminate in O(n · α(G)) selfish steps. Furthermore,
each selfish step can be implemented straightforwardly in O(n2) time, since there
are n vertices and n colors that each vertex can be assigned.
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Bounds on the Total Number of Colors

Lemma 2. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ Δ2(G) + 1 and hence k ≤ Δ(G) + 1.

Proof. Consider a pure Nash equilibrium c of Γ (G), and let k be the total number
of distinct colors used in c. If k = 1 then it easy to observe that G must be totally
disconnected, i.e. Δ(G) = Δ2(G) = 0 and therefore k = Δ2(G)+1. Now assume
k ≥ 2. Let xi, xj ∈ X be the two colors used in c that are assigned to the
minimum number of vertices. W.l.o.g., assume that nxi(c) ≤ nxj (c) ≤ nx(c) for
all colors x /∈ {xi, xj} used in c. Let v be a vertex such that cv = xi. The payoff
of vertex v is λv(c) = nxi(c). Now consider any other color x �= xi that is used in
c. Assume that there is no edge between vertex v and any vertex u with cu = x.
Then, since c is a pure Nash equilibrium, it must hold that nxi(c) ≥ nx(c) + 1,
a contradiction. Therefore there is an edge between vertex v and at least one
vertex of every other color. Hence the degree of vertex v is at least the total
number of colors used minus 1, i.e. deg(v) ≥ k − 1. Furthermore, let u be the
vertex of color cu = xj that v is connected to. Similar arguments as above yield
that u must be connected to at least one vertex of color x, for all x /∈ {xi, xj}
used in c. Moreover, u is also connected to v. Therefore deg(u) ≥ k − 1. Now:

Δ2(G) = max
s∈V

max
t ∈ N(s)

deg(t) ≤ deg(s)

deg(t)

≥ max

⎧⎨⎩ max
t ∈ N(v)

deg(t) ≤ deg(v)

deg(t), max
t ∈ N(u)

deg(t) ≤ deg(u)

deg(t)

⎫⎬⎭
≥ min {deg(u), deg(v)} ≥ k − 1

and therefore k ≤ Δ2(G) + 1 as needed. ��

Lemma 3. In a pure Nash equilibrium, all vertices that are assigned unique
colors form a clique.

Proof. Consider a pure Nash equilibrium c. Assume that the colors cv and cu

chosen by vertices v and u are unique, i.e. ncv(c) = ncu(c) = 1. Then the payoff
for both vertices is 1. If there is no edge between u and v then, since c is an
equilibrium, it must hold that 1 = λv(c) ≥ λv(cu, c−v) = 2 , a contradiction. ��

Lemma 4. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ n+ω(G)

2 .

Proof. Consider a pure Nash equilibrium c of Γ (G). Assume there are t ≥ 0
vertices that are each assigned a unique color. These t vertices form a clique
(Lemma 3), hence t ≤ ω(G). The remaining n − t vertices are assigned non-
unique colors, so the number of colors in c is k ≤ t + n−t

2 = n+t
2 ≤

n+ω(G)
2 . ��

Lemma 5. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ 1+

√
1+8m
2 .
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Proof. Consider a pure Nash equilibrium c of Γ (G). W.l.o.g., assume that the k
colors used in c are x1, . . . , xk. Let Vi, 1 ≤ i ≤ k, denote the subset of all vertices
v ∈ V such that cv = xi. W.l.o.g., assume that |V1| ≤ |V2| ≤ · · · ≤ |Vk|. Observe
that, for each vertex vi ∈ Vi, there is an edge between vi and some vj ∈ Vj ,
for all j > i. If not, then vi could improve its payoff by choosing color xj , since
|Vj | + 1 ≥ |Vi| + 1 > |Vi|. This implies that m ≥

∑k−1
i=1 |Vi|(k − i) and, since

|Vi| ≥ 1 for all i ∈ {1, . . . , k}, m ≥
∑k−1

i=1 (k − i) or equivalently m ≥ k(k−1)
2 or

equivalently k2 − k − 2m ≤ 0, which implies k ≤ 1+
√

1+8m
2 . ��

Theorem 2. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ n− α(G) + 1.

Proof. Consider any pure Nash equilibrium c of Γ (G). Let t be the maximum,
over all vertices, payoff in c, i.e. t = maxx∈X nx(c). Partition the set of vertices
into t sets V1, . . . , Vt so that v ∈ Vi if and only if λv(c) = i (note that each vertex
appears in exactly one such set, however not all sets have to be nonempty). Let
ki denote the total number of colors that appear in Vi. Clearly, |Vi| = i · ki and
the total number of colors used in c is k =

∑t
i=1 ki. Now consider a maximum

independent set I of G. The vertices in V1 have payoff equal to 1, therefore they
are assigned unique colors, so, by Lemma 3, the vertices in V1 form a clique.
Therefore I can only contain at most one vertex among the vertices in V1. Our
goal is to upper bound the size of I. First we prove the following:
Claim 1. If there exists some i > 1 such that ki = 1 and I contains all the
vertices in Vi, then k ≤ n− α(G) + 1.
Proof of Claim 1. Let x denote the unique color that appears in Vi. Since I
contains all the vertices in Vi, then it cannot contain any vertex in V1∪· · ·∪Vi−1.
This is so because each vertex v ∈ Vj , j < i, is connected by an edge with at
least one vertex of color x (otherwise v could increase its payoff by selecting x,
which contradicts the equilibrium). Furthermore, each vertex in Vi has at least
one neighbor of each color that appears in Vi+1 ∪ · · · ∪ Vt. Therefore

|I| = α(G) ≤ |Vi|+
t∑

j=i+1

|Vj | −
t∑

j=i+1

kj = n−
i−1∑
j=1

|Vj | − k +
i∑

j=1

kj

which gives k ≤ n−α(G)+
i−1∑
j=1

(kj−|Vj |)+ki ≤ n−α(G)+ki = n−α(G)+1 . ��

So now it suffices to consider the case where, for all i > 1 such that ki = 1, I
does not contain all the vertices in Vi. So I contains at most |Vi| − 1 = |Vi| − ki

vertices that belong to Vi. In order to complete the proof we need the following:
Claim 2. For all i > 1 with ki �= 1, I cannot contain more than |Vi|−ki vertices
among the vertices in Vi.
Proof of Claim 2. This is clearly true for ki = 0 (and hence |Vi| = 0). Now
assume that ki ≥ 2. Observe that, for all vertices vi ∈ Vi there must exist an
edge between vi and a vertex of each one of the remaining ki − 1 colors that
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appear in Vi (otherwise, vi could change its color and increase its payoff by 1,
which contradicts the equilibrium). Fix a color x of the ki colors that appear
in Vi. If I contains all vertices of color x, then it cannot contain any vertex
of any color other than x that appears in Vi. Therefore I can contain at most
i ≤ (i − 1)ki = |Vi| − ki vertices among the vertices in Vi. On the other hand,
if I contains at most i − 1 vertices of each color x that appears in Vi, then I
contains again at most (i−1)ki = |Vi|−ki vertices among the vertices in Vi. ��
Therefore I cannot contain more than |Vi|−ki vertices among the vertices of Vi,
for all i > 1, plus one vertex from V1. Therefore:

|I| = α(G) ≤ 1 +
t∑

i=2

(|Vi| − ki) = 1 + n− |V1| − (k − |V1|) = n− k + 1 .

So, in any case, k ≤ n− α(G) + 1 as needed. ��

The bounds given by Lemmata 2, 4, 5 and Theorem 2, together with the facts
that any Nash equilibrium is a proper coloring (Lemma 1) and that a Nash
equilibrium can be computed in polynomial time (Theorem 1) imply:

Corollary 1. For any graph G, a proper coloring that uses at most k ≤
min

{
Δ2(G) + 1, n+ω(G)

2 , 1+
√

1+8m
2 , n− α(G) + 1

}
colors can be computed in

polynomial time.
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Abstract. Removing noises in a given binary image is one of common
operations. A generalization of the operation is to erase arbitrarily
specified component by reversing pixels values in the component.
This paper shows that this operation is done without using any data
structure like a stack or queue, or without using any extra work space
in O(n log n) time for a component consisting of n pixels. This is an
in-place algorithm, but the image matrix cannot be used as work space
since it has a single bit for each pixel. Whenever we flip pixel value
in an objective component, the component shape also changes, which
causes some difficulty. An idea for our constant work space algorithm is
a conversion keeping its topology.

Keywords: constant work space, binary image, component, connectivity.

1 Introduction

Consider a binary image consisting of black and white pixels. We can define
connected components of white (or black) pixels. Each connected component
may correspond to some object or a noise component. Erasing a component
is rather easy. Starting at any pixel in the component, we iteratively include
neighboring pixels of the same color into a stack while marking them. When no
more extension is possible, we pop pixels from the stack and flip its pixel value.
It is done in linear time in the component size. This algorithm, however, needs
mark bits and a stack (or queue), whose size can be linear in the image size in
the worst case. Since we have to keep locations of those pixels in the stack, the
total work space can be much larger than the given binary image itself which
requires O(m)bits for a binary image with m pixels. We also need O(m) bits for
the mark bits.

In this paper we show that we can erase a given component consisting of n
pixels in O(n log n) time without using any extra work space except O(log n)
bits in total. The algorithm works even for a component having a number of
holes in it in the same time complexity.

This is the first constant work space algorithm for erasing a component in a
binary image, where erasing a component means flipping a pixel value at each
pixel in the component, say from white to black. Although it is usual to assume
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a read-only array for input image in other constant work space algorithms, our
input image is a read/write array. But it is hard to use the image matrix as
work space since it has a single bit for each pixel. Furthermore, whenever we
flip pixel value in an objective component, the component shape also changes,
which causes some difficulty. An idea for our constant work space algorithm is
a conversion keeping its topology.

There are several related results on images, such as an in-place algorithm for
rotating an image by an arbitrary angle [1] and a constant work space algorithm
for scanning an image with an arbitrary angle [2] and others [9]. For in-place
algorithms a number of different algorithms are reported [7].

2 Preliminary

Consider a binary image G which consists of n white (value 1) and black (value 0)
pixels. When two pixels of the same color are adjacent horizontally or vertically,
we say they are 4-connected [10]. Moreover, if there is a pixel sequence of the
same color interconnecting two pixels p and q and every two consecutive pixels
in the sequence are 4-connected, then we also say that they are 4-connected. We
can define 8-connectivity in a similar fashion. In the 4-connectivity we take only
four among eight immediate neighbors (pixels in the 3 × 3-neighborhood) of a
pixel. In the 8-connectivity we take all of those eight immediate neighbors as
8-connected neighbors.

A 4-connected (resp., 8-connected) component is a maximal set of pixels of
the same color any two of which are 4-connected (resp., 8-connected). Hereafter,
it is referred to as a component in short if there is no confusion. Following
the tradition we assume that white components are defined by 4-connectivity
while black ones by 8-connectivity. A binary image may contain many white
components. Some of them may have holes, which are black components. Even
holes may contain white components, called islands, and islands may contain
islands’ holes, etc.

In this paper a pixel is represented by a square. The four sides of the square
are referred to as edges. An edge is called a boundary edge if it lies between
two pixels of different colors. We orient each boundary edge so that a white
pixel always lies to its left. Thus, external boundaries are oriented in a counter-
clockwise manner while internal boundaries are clockwisely oriented.

The leftmost vertical boundary edge on a boundary is defined as a canonical
edge of the boundary. If there are two or more such edges then we take the
lowest one. The definition guarantees that each boundary, internal or external,
has a unique canonical edge. It is also easily seen that the canonical edge of an
external boundary is always downward (directed to the South) and that of an
internal one upward (directed to the North). So, when we find a canonical edge,
it is also easy to determine whether the boundary containing it is external or
not. It suffices to check the direction of the canonical edge.
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C4
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B2
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C1

Fig. 1. (White) components C1 and C2, (black) holes B1 and B2, and (white) islands
C3 and C4 in a binary image. There are four (white) components consisting of white
pixels. Note that C3 and C4 are not 4-connected. Holes consist of black pixels. Since
8-connectivity is used for (black) pixels, this image contains only two black components.

3 Erasing a Connected Component in Constant Work
Space

One of the most fundamental problems in computer vision or pattern recognition
is, given a query pixel p in a binary image, to enumerate all pixels belonging
to a component to which the pixel p belongs. The problem is also considered
for an intensity image. Suppose we know a local rule (or a function using local
information around a pixel in question) on how to partition a given intensity
image into homogeneous regions. Then, the problem of extracting a region to
which a query pixel belongs is just the same as above for a binary image.

The problem is easily solved using a stack or queue. Starting from a query
pixel q, we expand a search space just as wave is propagated from q. Whenever
we find a pixel of the same color reachable from q which has not been checked yet,
we put it into the data structure and check its neighborhood to look for unvisited
pixels of the same color. This simple algorithm works quite well. In fact, it runs
in time linear in the number of pixels of the component (or component size).
Unfortunately, it is known that the size of the data structure is linear in the
size of the component in the worst case [5]. This storage size is sometimes too
expensive. We could also use depth-first algorithm with mark bits over the image.
In this case the total storage size is reduced to O(n) bits for an image of n pixels,
but we also need storage for recursive calls of the depth-first search.

A question we address in this paper is whether we can solve the problem in
a more space efficient manner. That is, can we design an algorithm for erasing
a component without using any extra array? An input binary image is given
using an array consisting of n bits in total. This is an ordinary bit array. We
are allowed to modify their values, but it is hard to use the array to store some
useful information to be used in the algorithm since we have only one bit for
each pixel.
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In the problem above we are requested to enumerate all pixels belonging to
the same component as a query pixel. Whenever we find a pixel to be output, we
output its coordinates and to prevent duplicate outputs we flip the pixel value
to 0. This corresponds to erasing a component containing a query pixel. Thus,
our problem is restated as follows.

Problem: Let G be a binary image. Given an arbitrary pixel q in G, erase the
component containing the query pixel q. Here, by erasing a component we mean
flipping a color of each pixel in the component.

How fast can we erase a connected component? This is a problem we address
in this paper.

An algorithm to be presented consists of the following four steps. At the first
step a query pixel is specified. Assuming it is a white pixel, we compute the
canonical edge es of the component containing the query pixel.

Then, at the second step, we follow the external boundary of the component
starting from the canonical edge. During the traverse we also try to find a canon-
ical edge of a hole by extending a horizontal ray to the right at each downward
edge. Recall that no extra array is available. When we extend the ray to find a
boundary edge e, we have to determine whether the edge e is on a hole or not.
The decision is done by finding the canonical edge on the boundary to which e
belongs. It is on the external boundary if it is the canonical edge es found at
the first step. Otherwise, it is on a hole. We can perform this test using only
constant work space. It takes quadratic time if we just follow the boundaries, but
the running time is shortened to O(n log n) time by using bidirectional search.

Once we find any hole, we traverse it while flipping white pixels on the way
and finally returning to the original edge from the canonical edge by walking to
the left until we touch any boundary edge.

The above flipping operations remove all the holes and a single connected
component is left. At the third step we traverse the boundary again and slim
the component into a tree that is one-pixel wide by erasing all possible safe pixels
in the component. Here, a pixel p is safe if and only if removal of p (flipping the
pixel value of p) does not separate any component within the 3×3 neighborhood
around p. Safe pixel check is done in constant time.

The final step is to erase all the pixels in the thinned component. It is rather
easier than others.

Now, we will describe the four step in more detail.

Step 1: Locating a given pixel
Given a query white pixel p, we want to locate it in a given binary image. In
other words, we want to find a (connected) component of white pixels, which
is equivalently to find a canonical edge of the component. For the purpose we
first traverse the image horizontally to the left until we encounter a black pixel.
The eastern edge e of the pixel is a candidate of the canonical edge. To verify it
we follow the boundary starting from the edge whether we encounter any other
vertical edge that is lexicographically smaller than e. Here, a vertical edge e is
lexicographically smaller than another vertical edge e′ if e lies to the left of e′
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(more precisely, the x-coordinate of e is smaller than that of e′) or both of them
lie on the same vertical line but e is below e′ on the line. If there is no smaller
edge than e then it is certainly the canonical edge of the external boundary we
seek. Otherwise, starting from the pixel just to the left of e we perform the same
procedure again. Figure 2 illustrates how the canonical edge is found.

Fig. 2. Finding a canonical edge of a component containing a query point p by following
boundaries at the first step of the algorithm

Step 1: Locating a given pixel
Let p be a given white pixel and f be the western edge of the pixel p.
do{

e = ScanLeft(f).
f = CanonicalEdge(e).

} while(f is an internal edge)
return f .
ScanLeft(e){ // move to the left until we encounter an edge between 0 and 1

do{
e = vertical edge just to the left of e.

} while(e is an edge between 0 and 1)
return e

CanonicalEdge(f){ // edge f is canonical if no edge on the same boundary
is smaller than f .

e∗ = es = f .
do{

e = nextEdge(e).
if e < e∗ then e∗ = e.

} while(e �= es)
return e∗
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nextEdge(e){
return the next (uniquely determined) boundary edge of e.

}

Lemma 1. The algorithm given above finds the canonical edge of the external
boundary of a component which contains a query pixel p, in time linear in the
size (the number of pixels) of the component.

Proof. Since the canonical edge is defined to be the leftmost vertical boundary
edge, every time when we apply the function LeftScan() we move to the left until
we reach some boundary. If it happens to be an internal boundary, we follow it
to find its canonical edge and then apply LeftScan() again from there. Due to
the same reason we further move to the left. Thus, eventually we must reach
the external boundary. Once we reach it, then it suffices to follow the boundary.
Thus, the total running time is linear in the size of the component.

Step 2: Removing holes
At the first step we obtain the canonical edge es of the external boundary. At the
next step we remove all the holes by merging them to others or to the external
boundary. For the purpose we traverse the boundary again. This part is just the
same as the algorithm for reporting components with their sizes in our previous
paper [4]. That is, we traverse the boundaries starting from the canonical edge
of the external boundary.

At each downward edge e, we walk to the right until we encounter a boundary
edge f . If we find f a canonical edge after following the boundary, then we move
to the hole and continue the traverse again from f . Otherwise, we go back to
the edge e and continue the traverse.

At each upward edge e, we check whether it is a canonical edge of a hole by
following the boundary. If it is the case, we walk to the left from e until we hit
some boundary corner. There are two cases to consider. If we touch just one
corner, then we erase the white pixels visited during the walk from e, which
merges the hole into the boundary of the corner. If we touch two corners, we
erase the white pixels visited during the walk except the last one and also erase
the pixel just below the last pixel.

After erasing those pixels we still keep walking to the left until we reach a
boundary edge and then start traversing the boundary again from there. Repeat-
ing this process until we come back to the starting canonical edge, the second
step is done. Figure 3 illustrates behavior of the algorithm.

Step 2: Removing holes
e = es: // the canonical edge of the external boundary
do{

e = nextEdge(e).
if e is downward then {

f = ScanRight(e).
Check whether f is canonical or not.
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(a) (b)

(c) (d)

Fig. 3. Step 2: Removing holes. We traverse the boundaries. At each downward edge
we check whether its right corresponding edge is canonical or not. If so, we move to
the edge. At each canonical edge we walk to the left while erasing pixels until we touch
some other boundary. (a) touching external boundary, (b) touching a hole, (c) touching
two corners, and (d) touching two corners of the same component.

if f is a canonical edge of a hole then e = f .
} else if e is upward and a canonical edge of a hole then{

traverse to the left from e until we touch some boundary corner.
Let p1, . . . , pk be those pixels.
If the last pixel pk touches one corner (or one edge) then

erase all those pixels.
If it touches two corners then{

erase them except the last one pk and
erase the pixel just below pk.

}
keep traversing to the left until it encounters a vertical boundary edge f.

e = f .
}

} while(e �= es)

Lemma 2. The algorithm given above transforms a component with holes into
one without any hole in O(n log n) time, where n is the number of pixels in the
component.

Proof. In the algorithm we traverse the boundaries starting from the canonical
edge of the external boundary. At each downward edge e we perform ScanRight()
until we encounter a vertical boundary edge f and check whether f is a canonical
edge of an internal boundary or not. The test is done by bidirectional search.
Since the test is done at most twice for each vertical edge, the total time we
need is bounded by O(n log n) (the proof is similar to the one in [3]).

Once we find a canonical edge of an internal boundary, we move to the bound-
ary and continue the traverse. Then, eventually we come back to the canonical
edge f again. In the algorithm we check every upward edge whether it is a
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canonical edge. If we find such a upward canonical edge f then we walk to the
left until we touch some boundary corner. Let p1, . . . , pk be a sequence of pixels
visited in this walk. If the last pixel pk touches a single corner, then we can safely
erase all these pixels without touching any other boundary. After erasing them
the internal boundary which used to contain f is merged into the boundary of
the corner. Thus, one hole is removed. If the last pixel pk touches two corners
from dirrerent sides, then erasing pk may cause a trouble. Refer to Figure 3(d).
If the two corners belong to the same boundary, then erasing pk creates a new
hole. So, to avoid the situation, we erase p1, . . . , pk−1 and the pixel p′ just below
pk. The pixel p′ must be a white pixel since otherwise we have touched it before
reaching pk. Since pk touches two corners from both sides (from above and be-
low), the row of pk is not the bottom row. Recall that holes are treated using
8-connectivity. So, the boundary is merged into that of the lower corner without
creating a new hole.

Step 3: Thinning a component
Now, we can assume that a connected component forms a simple polygon (with-
out any hole). What we do next is to erase fat parts so that a one pixel wide
skinny pattern is obtained. Again we traverse the boundary. For each downward
edge e we traverse horizontally to the right until we encounter another boundary
edge f . During the traverse we erase every safe pixel. This process is illustrated
in Figure 4.

Fig. 4. Extension from the left wall while removing every safe pixel. Colored pixels
have been flipped into 0.

Step 3: Thinning a component
es = canonical edge of a component, and let e = es.
do{

e = nextEdge(e).
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if e is downward edge then {
p = the eastern pixel of e.
while(p is a safe pixel of value 1){

Erase the pixel p and p = the right pixel of p.}
e = the western edge of the pixel p.
while(the pixel value of p is 1){

if(p is a safe pixel) then Erase the pixel p.
p = the eastern pixel of p.}

}
} while(e �= es)

Lemma 3. Implementing the algorithm above results in a slimmed component
in which every remaining pixel in the component touches the external boundary.

Proof. The algorithm scans pixels starting from each downward boundary edge
until it reaches the external boundary. Thus, every pixel in the component must
be examined. A pixel is erased as far as it is safe. Suppose a pixel p in the
component which does not touch any boundary remains in the resulting image.
Then, if we walked from the pixel p to the left then we would encounter a
boundary edge, which must be downward. The downward edge may be created
by a boundary edge further to the left, but there is no reason that the pixel is
left without being erased, a contradiction.

Step 4: Erasing the skinny component
Applying the operation we obtain a skinny pattern such that every pixel touches
the external boundary as shown in Figure 5. Now, it is not so hard to erase all
the pixel in the final pattern. We traverse the boundary again. Whenever the
pixel associated with the current edge is a safe pixel, we erase it, and otherwise
we leave it as it is. In practice we must be more careful not to miss any pixel.
For that we have a procedure to find the next pixel to be handled. The detail is
found in the following pseudocode.

Step 4: Erasing the thinned component
es = canonical edge of the component.
p = Pixel(e).
e = es.
do{

do{
e = nextEdge(e).
} while(Pixel(e) = p)
q = p.
p = nextPixel(p).
if p is nil then p = Pixel(e).
erase the pixel q.

} while(p has a neighbor)
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Fig. 5. Erasing the skinny component by removing safe pixels (colored pixels) in order

nextPixel(p){
if only one pixel q is 4-adjacent to p then return q.
else return nil.

}

Lemma 4. The algorithm above erases all the pixels in a given component in
linear time in the size of the component.

Proof. In the algorithm we start traversing the boundary from its canonical
edge, the leftmost vertical edge. Unless the pixel associated with the edge is a
branching pixel (to above and to the right), the pixel is safe and it is erased. If it is
a branching point, the we traverse the boundary. It never happens that we reach
the starting pixel again without erasing any pixel. The reason is as follows: We
know that the component forms a simple polygon consisting of white pixels such
that every such pixel touches the boundary. If we define a graph representing
adjacency of those white pixels in the component, it must be a tree. So, if we
traverse the boundary of the polygon from some edge and come back to the
same pixel again, then we must pass some leaf node in the graph. The white
pixel corresponding to the leaf node is safe and thus it must have been erased
in the algorithm. This means that when we start traversing the boundary, we
must have erased at least one pixel before coming back to the same pixel again.
Therefore, every pixel must be erased in the algorithm.

Combining the four lemmas above, we have the following theorem.

Theorem 1. Given a binary image B with n pixels in total and a pixel p, a con-
nected component containing p can be erased in O(n log n) time using constant
work space by flipping pixel values of those pixels in the component.

Unfortunately we cannot erase a component in linear time since we have to
traverse boundaries to find canonical edges of internal boundaries.
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4 Some Applications of the Algorithm

4.1 Removing Small Connected Components as Noise

One of basic tasks in image processing on binary images is to remove noise. If
we define a noise to be a small component, with size bounded by some small
number, we can remove all such noise components by applying our algorithm
using only constant work space.

In the first step we scan the entire image and finds every component. Whenever
we find a canonical edge, we scan the pixels in the component to compute the
size of the component. If it is small, then we apply our algorithm to erase the
component. It runs in O(n log n) time for a binary image with n pixels.

Suppose T is a specified size for small component. If O(T ) work space is
available, we can do better. We scan the entire image to find a white pixel
p such that its left and lower pixels are both black. We grow a white region
reachable from p using a queue of size T . If the component is small enough, we
can include all the pixels in the component into the queue, and thus it is easy
to erase them. Otherwise, the queue will be overflowed. Then, we conclude that
the component is a large component, not a noise. Since an enqueue operation
takes O(log T ) time to avoid duplication, the algorithm takes O(n log T ) time.

4.2 Region Segmentation

One of the most fundamental tasks for pattern recognition for color images
is region segmentation, which partitions a given color image into meaningful
regions. A number of algorithms have been proposed so far. Here we simplify
the problem. That is, we assume that there is a simple rule for determining
whether any two adjacent pixels belong to the same region or not.

In this particular situation we can solve the following problem:

Region Clipping: Given a color image G and an arbitrary pixel p, report
all the pixels belonging to a region containing p using a given local rule for
determining similarity of pixels.

It is rather easy to design such an algorithm if some sufficient amount of work
space is available. What about if only constant work space is available? Well,
we can apply our algorithm by assuming a binary image implicitly defined using
the given local rule. To clip a region we don’t need to convert the whole image
into a binary image, but it suffices to convert the region and its adjacent areas
into binary data.

Using our algorithm we can collect all regions with some useful information
such as areas and average pixel values, etc., as well in O(n log n) time. If every
region is small, then our algorithm runs in almost linear time.

5 Concluding Remarks

This paper has presented an in-place algorithm for erasing an arbitrarily spec-
ified component without using mark bits or extra array. The algorithm runs in
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O(n log n) time when the component to be erased consists of n pixels. Since the
output is written on an input array and hence the input array allows write as
well as read, which is a difference from other constant work space (or log-space)
algorithms assuming read-only input arrays. If we are interested only in enu-
merating all pixels in a component without changing pixel values, it is easier in
some sense. An efficient O(n log n)-time algorithm is known in our unpublished
paper [4]. A basic idea for traversing component boundaries is similar to that of
traversing planar subdivision in the literature [6,8]. The algorithmic techniques
developed here would be useful for other purposes in computer vision.
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Abstract. Kaboozle is a puzzle consisting of several square cards, each
annotated with colored paths and dots drawn on both sides and holes drilled. The
goal is to join two colored dots with paths of the same color (and fill all holes) by
stacking the cards suitably. The freedoms here are to reflect, rotate, and order the
cards arbitrarily, so it is not surprising that the problem is NP-complete (as we
show). More surprising is that any one of these freedoms—reflection, rotation,
and order—is alone enough to make the puzzle NP-complete. Furthermore, we
show NP-completeness of a particularly constrained form of Kaboozle related
to 1D paper folding. Specifically, we suppose that the cards are glued together
into a strip, where each glued edge has a specified folding direction (mountain
or valley). This variation removes the ability to rotate and reflect cards, and
restricts the order to be a valid folded state of a given 1D mountain-valley pattern.

Keywords: Kaboozle, Transposer, silhouette, puzzles, origami.

1 Introduction

Kaboozle: The Labyrinth Puzzle is a puzzle created and developed in 2007 by Albatross
Games Ltd., London.1 This “multi-layer labyrinth” consists of four square cards; see
Fig. 1. (In fact, each card is octagonal, but the pattern on it is a square.) Each card
has holes drilled in different locations, and various colored paths and dots drawn on
both sides. The goal is to arrange the cards—by rotation, reflection, and stacking in an
arbitrary order—to create a continuous monochromatic path between the corner dots
of the same color that is visible on one side of the stack. The goal of this paper is to
understand what makes this puzzle NP-complete, when generalized to n cards instead
of four.

Kaboozle is an example of a broader class of puzzles in which patterned pieces with
holes must be arranged to achieve some goal, such as monochromatic sides. For exam-
ple, Albatross Games Ltd. places Kaboozle in a series of puzzles called Transposers,2

which all have this style. See [4] for descriptions, and [10] for the relevant patent. Our
NP-hardness proofs for Kaboozle immediately imply NP-completeness for this general
family of puzzles, though there are likely other special cases of interest.

1 http://www.transposer.co.uk/KABpage1.htm
2 http://www.transposer.co.uk/

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 28–36, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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http://www.transposer.co.uk/
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Fig. 1. The four Kaboozle cards and one of the ten solutions

An earlier form of this type of puzzle is a silhouette puzzle, where pieces are regions
with holes (no pattern beyond opaque/transparent) and the goal is to make a target
shape. Perhaps the first silhouette puzzle, and certainly the best known, is the “Question
du Lapin” or “Rabbit Silhouette Puzzle”, first produced in Paris around 1900 [7, p. 35].
Fig. 2 shows the puzzle: given the five cards on the left, stack them with the right
orientations to obtain one of two different rabbit silhouettes. The puzzle can be played
online.3

Fig. 2. The classic silhouette puzzle “Question du Lapin”

The freedoms in a silhouette puzzle are reflection and rotation of the cards; the card
stacking order has no effect on the silhouette. (In fact, both rabbits can be obtained
without reflecting the cards in Fig. 2, so that puzzle only needs rotation.) Are these
freedoms enough for NP-completeness? We show that indeed silhouette puzzles are
NP-complete, even allowing just rotation or just vertical reflection of the pieces. Fur-
thermore, we show that Kaboozle is NP-complete under the same restriction of just
rotation or just vertical reflection.

3 http://www.puzzles.com/PuzzlePlayground/Silhouettes/Silhouettes.htm

http://www.puzzles.com/PuzzlePlayground/Silhouettes/Silhouettes.htm
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But is reflection or rotation necessary for Kaboozle to be NP-complete? We show
that Kaboozle is NP-complete even when the cards can only be stacked in a desired
order, without rotation or reflection. We also show that Kaboozle is NP-complete when
restricted to a restricted class of orderings that arise from paper folding, as described
below.

Our folding variation of Kaboozle is inspired by a 1907 patent [5] commercialized
as the (politically incorrect) “Pick the Pickaninnies” puzzle [8]. This puzzle consists of
a single piece, shown on the left of Fig. 2, with holes, images (stars), and crease lines.
The goal is to fold along the crease lines to make an array of stars, as shown on the
right. This type of puzzle severely limits the valid stacking orders of the parts, while
also effectively forbidding rotation and reflection of the parts.

Fig. 3. Puzzle commercialized as “Pick the Pickaninnies”. Figure from [5].

We consider a simple general puzzle along these lines, by restricting a generalized
Kaboozle puzzle. Namely, we glue all the cards in the Kaboozle puzzle into a strip, and
specify the folding direction (mountain or valley) on each glued edge (crease). Now
the only freedom is folding the 1D strip of paper down to a unit size, respecting the
folding directions. This freedom is a weak form of the ordering of the cards; rotation
and reflection are effectively forbidden.

This idea also comes from problems in computational origami. In polynomial time,
we can determine whether a mountain-valley pattern on a 1D strip of paper can be
folded flat, when the distances between creases are not all the same [1]. A recent notion
is folding complexity, the minimum number of simple folds required to construct a unit-
spaced mountain-valley pattern (string) [2]. For example, n pleats alternating mountain
and valley can be folded in a polylogarithmic number of simple folds and unfolds. On
the contrary, the number of different ways to fold a uniform mountain-valley pattern
of length n down to unit length is not well-investigated. The number of foldings of a
paper strip of length n to unit length has been computed by enumeration, and it seems
to be exponentially large; the curve fits to Θ(3.3n) [6, A000136]. However, as far as the
authors know, the details are not investigated, and it was not known whether this func-
tion is polynomial or exponential. Recently, the last author showed theoretical lower
and upper bounds of this function: it is Ω(3.07n) and O(4n) [9]. These results imply that
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a given random mountain-valley pattern of length n has Θ(1.65n) foldings on average,
which is bounded between Ω(1.53n) and O(2n).

Intuitively, the folding version of the Kaboozle puzzle seems easy. Perhaps we could
apply the standard dynamic programming technique from one side of the strip? But this
intuition is not correct. Essentially, the problem requires folding a 1D strip of paper, but
the strip has labels which place constraints on the folding. Despite the situation being
quite restrictive, we prove the problem is still NP-complete.

Therefore we conclude that the generalized Kaboozle problem is NP-complete even
if we allow only one of ordering, rotation, or reflection of the cards, and in the ordering
case, even if the ordering comes from a 1D strip folding.

2 Preliminaries

We generalize the number of the Kaboozle cards to n + 1. Each card is square, with
some fragments of a path drawn on both sides, and some holes drilled into it. We will
use just one color of path we have to join. The (potential) endpoints of a path are distin-
guishable from the other fragments. To simplify, we assume that the cards are numbered
0, 1, 2, . . . , n.

A strip of the cards can be constructed as follows: for each 0 ≤ i ≤ n − 1, the right
side of the card i is glued to the left side of the card i + 1, and that side is called the
(i + 1)st crease. Each crease has a label “M” or “V” which means that the strip must
be mountain folded or valley folded at the crease. (We define one side of the strip as
the top side, and creases are mountain or valley folded with respect to this side.) We
assume that the label of the first crease is “M” without loss of generality, or otherwise
specified. For a strip of the cards, a folded state is a flat folding of unit length (where the
unit is the width of a card) such that each crease is consistent with its label. (A folded
state always exists for any string of labels [9].)

The main problem in this paper is the following:

Input: A strip of n + 1 Kaboozle cards, each with a label of length m.
Question: Determine whether the strip has a folded state that is consistent with the

labels, and exactly one connected path is drawn on a surface of the folded state.

We begin with an observation for folding a unit pattern:

Observation 1 A strip of n + 1 cards with n creases has a unique folded state if and
only if the crease pattern is a pleat, i.e., “MVMV· · ·MV” or “MVMV· · ·MVM”.

Proof. Suppose that a mountain-valley pattern has a unique folded state. Without loss
of generality, we assume that the first crease is a mountain. If the second crease is also a
mountain, we have two folded states of the cards 1, 2, and 3: 2, 1, 3 and 2, 3, 1. Hence the
second crease must be valley. We can repeat the argument for each crease, and obtain
the pleat pattern. ��
Using the pleats, we introduce a useful folding pattern for NP-completeness, namely,
the shuffle pattern of length i: “(MV)i−1MM(VM)i−1”.4 By Observation 1, the left and

4 Here we use the standard notation xk for string repetition. For example,
“(MV)3MM(VM)3”=“MVMVMVMMVMVMVM”.
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right pleats are folded uniquely and independently. However, these pleats can be com-
bined in any order to fold to unit length. Thus we have

(
2i
i

)
distinct foldings of the shuffle

pattern of length i. We note that the center card of the shuffle pattern of length i, the card
i + 1 in our notation, always appears on one side of any folded state. We call this side
the top of the shuffle pattern, and card i + 1 the top card (although it may come to the
“bottom” in a natural folding).

3 NP-completeness of Generalized Kaboozle

It is easy to see that all the problems in this paper are in NP. Hence we concentrate on
the proofs of NP-hardness. Our reduction is from the 1-in-3 3SAT problem:

Input: A conjunctive normal form (CNF) Boolean formula F(x1, . . . , xn) = c1 ∧ c2 ∧
· · · ∧ cm, where each clause ci = �

i
1 ∨ �i2 ∨ �i3 has three literals �ij ∈ {x1, . . . ,

xn, x̄1, . . . , x̄n}.
Question: Determine whether F has a truth assignment such that each clause contains

exactly one true literal.

This problem is a well-known NP-complete variant of 3-satisfiability [3, LO4].

c1 c2 c3

x1

x2

x2

c1 c2 c3

x1

c1 c2 c3

c1 c2 c3

c1 c2 c3

x3

c1 c2 c3

x3

c1 c2 c3

x4

c1 c2 c3

x4

c1 c2 c3

Top Blank

Fig. 4. Example of the reduction for F(x1, x2, x3, x4) = (x1∨ x2∨ x3)∧ (x̄1∨ x2∨ x4)∧ (x̄2∨ x3∨ x̄4)

For a given CNF formula F(x1, . . . , xn) with n variable and m clauses, we use 4n + 1
Kaboozle cards as follows. Fig. 4 shows an example of the reduction for F(x1, x2, x3) =
(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4). Each gray area is a hole in the card,
each black line is a fragment of the unique path, and the black circles are the endpoints
of the unique path.

Top card: One top card is placed at the top of the shuffle pattern, and it represents m
clauses. On the top card, two endpoints of the unique path are drawn, and each clause
is represented by a hole in the card. Each hole has two dimples corresponding to the
borders of the path and that will be extended to one of three possible directions by the
variable cards described below.
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Variable card: We use 2n variable cards. Here, the index i with 1 ≤ i ≤ n is used
to represent the ith variable, and the index j with 1 ≤ j ≤ m is used to represent the
jth clause. Each card represents either xi or x̄i. We make m gadgets on the card for the
variable xi as follows.

If neither xi nor x̄i appear in clause c j, the card xi has a hole at that place. Hence this
card has no influence at that place of clause c j.

If xi appears in clause c j, the card xi has a part of the path at that place. According
to the position (first, second, or third literal) in the clause, the path is depicted at top,
center, or bottom, respectively, as shown in Fig. 4.

If x̄i appears in clause c j, the card xi has a cover area of the path at that place. This
white area covers the corresponding path drawn on the variable card corresponding to
x̄i, as shown in Fig. 4.

Each variable card x̄i is symmetric to the variable card xi, and hence omitted.

Blank card: We use 2n blank cards depicted in Fig. 4. They will be used to join variable
cards and the top card. They have no influence on the appearance of the variable cards.

We first show that generalized Kaboozle is NP-complete, without requiring a strip
folding:

Theorem 2. Generalized Kaboozle is NP-complete, even forbidding reflection and
rotation.

Proof. We use the top card and 2n variable cards. Make the cards asymmetric, e.g., by
shifting the gadgets on each card a little, to forbid reflecting or rotating the cards (if that
is allowed). Clearly, the reduction can be done in a polynomial time.

Because of the pictures of the endpoints of the unique path, the top card must be on
top. It is not difficult to see that card xi has no influence on cards x j and x̄ j if i � j. Hence
it is sufficient to consider the ordering between each pair xi and x̄i for i = 1, 2, . . . , n.

When F(x1, . . . , xn) has a solution, i.e., each clause c j contains exactly one true literal
�

j
i , the card corresponding to the literal activates one of three parts on the card that

joins the two endpoints of the parts of path incident to the hole representing c j in the
top card. For example, consider the (wrong) assignment x1 = 0, x2 = 1, x3 = 0, and
x4 = 1 for F(x1, x2, x3, x4) from Fig. 4, as shown in Fig. 5. Then we put the card x̄1

over the card x1, the card x2 over the card x̄2, and so on. Then, the card x̄1 covers
the parts of the path on the card x1, the card x2 covers the parts of the path on the
card x̄2, and so on. Any two cards corresponding to different variables can be stacked
in any order. For example, we can arrange “top”, x̄1, x1, x2, x̄2; “top”, x̄1, x2, x̄2, x1;
or “top”, x̄1, x2, x1, x̄2; and so on. For this assignment, the clause c1 = (x1 ∨ x2 ∨
x3) satisfies the condition of the 1-in-3 3SAT because only x2 is true. Hence the hole
corresponding to c1 in the top card is filled and the path is joined properly. On the other
hand, all literals are true in the clause c2, and no literal is true in the clause c3. Hence
the hole corresponding to c2 produces loops and the path is disconnected at the hole
corresponding to c3.

Therefore, the two endpoints of the path on the top card are joined by one simple
path if and only if each c j contains exactly one true literal. ��
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c1 c2 c3

Topc1 c2 c3

x4

x3

c1 c2 c3

x2

c1 c2 c3

c1 c2 c3

x1

c1 c2 c3

Top

x4

x3

x2

x1

Fig. 5. For F(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4), a wrong ordering of
the cards that corresponds to a wrong assignment x1 = 0, x2 = 1, x3 = 0, and x4 = 1. For this
assignment, the first clause c1 contains one true literal, the second clause c2 contains three true
literals, and the third clause c3 contains no true literal.

We now turn to the main theorem.

Theorem 3. Generalized Kaboozle is NP-complete even in a strip with fixed mountain-
valley pattern.

Proof. We use the top card, 2n variable cards, and 2n blank cards. We join these cards
into a strip as “xn-b-xn−1-b-· · ·-b-x2-b-x1-b-top-b-x̄1-b-x̄2-b-· · ·-b-x̄n−1-b-x̄n”, where “b”
means a blank card. Fig. 6 shows the example from Fig. 4). We glue the blank cards
upside down, which will be reflected by folding to unit length. The mountain-valley
pattern is the shuffle pattern of length n; that is, the creases on either side of the top
card are mountain, and from there, the other creases are defined to form two pleats of
length n.

x2 x1

x3x4

TopBlank

c1 c2 c3c1 c2 c3 c1 c2 c3c1 c2 c3 c1 c2 c3

c1 c2 c3 c1 c2 c3c1 c2 c3 c1 c2 c3

x4x3

x2x1

BlankBlank

BlankBlank Blank

BlankBlank

MV MMVM

MVMV MVM V

MV V M

Fig. 6. The cards joined in a strip

Now, the left pleat of the top card makes the sequence of xis, and the right pleat makes
the sequence of x̄is. For each pair of xi and x̄i, we can choose the ordering between the
corresponding cards with an appropriate shuffling. This means that we can assign true
or false to this variable. Moreover, thanks to the blank cards between the variable cards,
we can arrange the ordering of the cards xi and x̄i independently for each i. Hence,
by Theorem 2 and the property of the shuffle pattern, the constructed Kaboozle strip
with fixed mountain-valley pattern has a solution if and only if the 1-in-3 3SAT has a
solution. ��
Carefully checking the proof of the main theorem, we can also let the mountain-valley
pattern be free:
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Corollary 1. Generalized Kaboozle is NP-complete even in the strip form and allowing
any mountain-valley pattern.

Proof. We use the same strip in the proof of Theorem 3. Even if the mountain-valley
pattern is not specified, the top card should be on top; otherwise, the endpoints of the
path disappear. Hence both creases bordering the top card are mountains. If the 1-in-3
3SAT instance has a solution, the constructed Kaboozle puzzle has a solution by the
folding in the proof of Theorem 3. On the other hand, if the Kaboozle puzzle has a
solution, we can extract the ordering between xi and x̄i for each i with 1 ≤ i ≤ n from
the folded state. From these orderings, we can construct the solution to the 1-in-3 3SAT
instance. ��

x1

c1c2c3

x1

c1 c2 c3

c1 c2 c3

x1

x1

Top

(2)

c1 c2 c3c1 c2 c3

(3)

upside
down

(1)Top card For rotation For reflection

Fig. 7. Gadgets for rotation and reflection

By combining gadgets, we can show that generalized Kaboozle is also NP-complete if
we allow only either rotation or reflection. Note that we can rotate a card 180◦ by the
combination of a horizontal reflection and a vertical reflection. To forbid this kind of
cheating with cards, we restrict reflection to be vertical.

Theorem 4. Generalized Kaboozle is NP-complete even if the card ordering is fixed (or
free), and (1) only 180◦ rotation of the cards is allowed, or (2) only vertical reflection
of the cards is allowed.

Proof. As in the proof of Theorem 2, we prepare the top card and 2n variable cards.
Now, the top card is enlarged to twice of the original cards ; see Fig. 7(1).

Rotation: For each variable xi, two variable cards xi and x̄i are glued so that 180◦
rotation exchanges them; see Fig. 7(2).

Vertical reflection: For each variable xi, two variable cards xi and x̄i are glued so that a
vertical reflection exchanges them; see Fig. 7(3).

Then it is easy to see that the ordering of the cards has no influence, except the top
card which should be the top, and the resultant Kaboozle has a solution if and only if
the 1-in-3 3SAT instance has a satisfying truth assignment. ��
Along similar lines, we can show that silhouette puzzles are NP-complete:

Theorem 5. Silhouette puzzles are NP-complete even if (1) only 180◦ rotation of the
cards is allowed, or (2) only vertical reflection of the cards is allowed.
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Proof. We reduce from regular (not 1-in-3) SAT, mimicking the gadgets in Fig. 7. The
top card has one hole per clause, all in the top half of the card. Each variable card reserves
the top and bottom halves for the true and false literals; each side has a solid patch for
each clause the literal satisfies, and a hole for all other clauses. As in Fig. 7, the top and
bottom sides are rotations or vertical reflections of each other according to the variation.
A rectangular silhouette is possible if and only if the formula is satisfiable. ��
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Abstract. Consider the following game. There are n players, each wear-
ing a hat colored red or blue. Each player does not see the color of her
own hat but does see the colors of all other hats. Simultaneously, each
player has to guess the color of her own hat, without communicating with
the other players. The players are allowed to meet beforehand, hats-off,
in order to coordinate a strategy. We give an explicit polynomial time de-
terministic strategy which guarantees that the number of correct guesses
is at least max{nr, nb}−O(n1/2), where nr is the number of players with
a red hat and nb = n − nr. This answers a question of Feige.

1 Introduction

A group of n players is gathered, nr of which wear a red hat and nb = n − nr
of which wear a blue hat. Every player in the group can see the colors of the
hats of the other players, but cannot see and does not know the color of her own
hat, a color which has been picked by an adversary. No form of communication
is allowed between the players. At the mark of an unseen force, each player
simultaneously guesses the color of her hat. The objective of the players as a
group is to make the total number of correct guesses as large as possible. In
order to achieve this goal, the players are allowed to meet beforehand, hats-off,
and agree upon some strategy. Our main result follows.

Theorem 1. There exists an explicit polynomial time deterministic strategy
which guarantees at least max{nr, nb} −O(n1/2) correct guesses.

Let us give a few remarks. First, our main result is optimal, in the sense that
any deterministic strategy can guarantee only max{nr, nb} − Ω(n1/2) correct
guesses in the worst case; this was proved by Feige [3] and Doerr [2]. Second, our
main result improves a result of Doerr [2] who gave an explicit polynomial time
deterministic strategy which guarantees at least max{nr, nb} −O(n2/3) correct
guesses, and a result of Feige [3] who gave a non-explicit deterministic strategy
which guarantees at least max{nr, nb} − O(n1/2) correct guesses. Feige further
asked whether there exists an explicit polynomial time deterministic strategy
which guarantees this last bound, and our main result answers this question
affirmatively. Lastly it should be noted that Winkler [4], who brought the prob-
lem to light, gave a simple explicit polynomial time deterministic strategy which
guarantees �n/2 correct guesses.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 37–40, 2010.
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The proof of Theorem 1 has two parts. First, we design an explicit poly-
nomial time randomized strategy for the players, a strategy which guaran-
tees that under any hat assignment, the expected number of correct guesses
is max{nr, nb} − O(n1/2). We then derandomize this strategy by giving an ex-
plicit polynomial time deterministic strategy that always achieves, up to an
O(n1/2) additive factor, the expected number of correct guesses of the random-
ized strategy. We note that the derandomization is based on a generalization of
a technique due to Aggarwal et al. [1].

2 Randomized Strategy

Let the players agree in advance on some ordering so that the ith player is well
defined and known to all. Under a given hat assignment, let χr(i) be the number
of red hats that the ith player sees. Analogously, let χb(i) be the number of blue
hats that the ith player sees. Say that a player is red (respectively blue) if she
wears a red (respectively blue) hat.

Our strategy is a collection of randomized strategies, one for each player. We
describe the strategy of the ith player, Paula. First Paula computes two integers
a(i) and b(i), and sets p(i) = a(i)/b(i). If |χr(i) − χb(i)| ≤ 1, then Paula takes
a(i) = 1 and b(i) = 2, so that p(i) = 1/2. Otherwise, |χr(i) − χb(i)| ≥ 2 and
so we have either χr(i) = n/2 + c for some c > 0 or χb(i) = n/2 + c for some
c > 0 (but not both). In the former case Paula takes a(i) = min{�n1/2, �c�}
and b(i) = �n1/2, so that p(i) = min{1, �c�/�n1/2} and in the latter case she
takes a(i) = �n1/2 − min{�n1/2, �c�} and b(i) = �n1/2, so that p(i) = 1 −
min{1, �c�/�n1/2}. Note that a(i), b(i) and p(i) can be computed in polynomial
time. Having p(i) at hand, Paula draws a uniformly random real p in the unit
interval, guesses red if p ≤ p(i) and blue otherwise.

Lemma 1. If each player follows the above strategy then the expected number
of correct guesses is at least max{nr, nb} −O(n1/2).

Proof. We shall assume throughout the proof that nr ≥ nb; the argument for
the other case is symmetric. We consider the following cases.

– nr = nb. In that case, every player guesses correctly with probability 1/2.
Thus the expected number of correct guesses is max{nr, nb}.

– nr ∈ {nb + 1, nb + 2}. In that case, every red player guesses red with proba-
bility 1/2 and every blue player guesses blue with probability 1−O(n−1/2).
Thus, the expected number of correct guesses is nr/2 + nb(1 − O(n−1/2)),
which is clearly at least max{nr, nb} −O(n1/2).

– nr ≥ nb + 3. Let x > 1 satisfy nr = n/2 + x, so that nb = n/2 − x. First
assume that �x� ≤ �n1/2. In that case, every red player guesses red with
probability �x−1�/�n1/2 = (�x�−1)/�n1/2, and every blue player guesses
blue with probability 1 − �x�/�n1/2. Therefore, the expected number of
correct guesses is
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(n/2 + x)(�x� − 1)/�n1/2+ (n/2− x)(1 − �x�/�n1/2) =
(n/2 + x)�x�/�n1/2 − (n/2 + x)/�n1/2+ (n/2− x)(1 − �x�/�n1/2) ≥
(n/2− x)�x�/�n1/2 − (n/2 + x)/�n1/2+ (n/2− x)(1 − �x�/�n1/2) ≥

(n/2− x)− (n/2 + x)/�n1/2 ≥
n/2− 4n1/2 ,

which is at least max{nr, nb}−O(n1/2), since max{nr, nb} ≤ n/2+O(n1/2).
Next assume that �x� > �n1/2. In that case, every red player guesses her hat
correctly with probability 1 and so the expected number of correct guesses
is at least nr ≥ max{nr, nb} −O(n1/2). ��

3 Derandomization

The randomized strategy we gave above has two phases. In the first phase the
ith player computes in deterministic polynomial time some number p(i) in the
unit interval. Moreover, for some pr and pb that depend each only on the number
of red hats and the number of blue hats, we have p(i) = pr if the ith player is red
and p(i) = pb if the ith player is blue. Given the first phase, the second phase
guarantees that the expected number of correct guesses is prnr+(1−pb)nb, which
was shown to be at least max{nr, nb} −O(n1/2). What we show in this section
is that given that for all 1 ≤ i ≤ n, the ith player has determined p(i), we can
replace the second phase of the randomized strategy by an explicit polynomial
time deterministic strategy that guarantees that at least prnr − O(n1/2) red
players make a correct guess and at least (1−pb)nb−O(n1/2) blue players make
a correct guess. This will imply Theorem 1.

Suppose that for all 1 ≤ i ≤ n, the ith player has determined a(i), b(i) and
p(i). The following is the strategy that the ith player follows in order to determine
her guess.

1. Let X(i) =
∑

j j, where the sum ranges over all j �= i such that the jth
player is red.

2. Let Y (i) =
∑

j 1, where the sum ranges over all j < i such that the jth
player is red.

3. Let Z(i) = i + X(i) + (b(i)− 1)Y (i) (mod b(i)).
4. Guess red if Z(i) < a(i), blue otherwise.

Note that the above deterministic strategy can be implemented so that its run-
ning time is polynomial in n. This fact together with the next lemma proves
Theorem 1.

Lemma 2. Suppose that for all 1 ≤ i ≤ n, the ith player has computed a(i), b(i)
and p(i). If each player follows the above strategy, then the number of red players
that make a correct guess is at least prnr−O(n1/2) and the number of blue players
that make a correct guess is at least (1− pb)nb −O(n1/2).
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Proof. In what follows we make use of the following facts, which follow from
the definition of a(i) and b(i) in the previous section. If the ith player and the
jth player both have a hat of the same color, then a(i) = a(j) and b(i) = b(j).
Furthermore, for all 1 ≤ i ≤ n, 1 ≤ b(i) ≤ 2n1/2.

Let us first consider the red players. If 0 ≤ nr ≤ 1 then at least nr − 1 ≥
prnr − O(n1/2) red players guess red. Assume nr ≥ 2. Let 1 ≤ i < j ≤ n be
two indices of players so that the ith player’s hat and the jth player’s hat are
both red and furthermore, for all i < k < j we have that the kth player’s hat
is blue. Let a(i) = a(j) = a and b(i) = b(j) = b so that pr = a/b. We have
i + X(i) = j + X(j) and Y (j) − Y (i) = 1. Thus Z(j)− Z(i) = b − 1 (mod b).
This implies that out of each b consecutive red players, a guess red. Thus, since
b ≤ 2n1/2, at least prnr −O(n1/2) red players guess red.

Next consider the blue players. If 0 ≤ nb ≤ 1 then at least nb − 1 ≥ (1 −
pb)nb − O(n1/2) blue players guess blue. Assume nb ≥ 2. Let 1 ≤ i < j ≤ n
be two indices of players so that the ith player’s hat and the jth player’s hat
are both blue and furthermore, for all i < k < j we have that the kth player’s
hat is red. Let a(i) = a(j) = a and b(i) = b(j) = b so that pb = a/b. We have
X(i) = X(j) and Y (j)−Y (i) = j−i−1. Thus Z(j)−Z(i) = j−i+(b−1)(j−i−1)
(mod b) = b(j− i)− b+1 (mod b) ≡ 1 (mod b). This implies that out of each
b consecutive blue players, b − a guess blue. Thus, since b ≤ 2n1/2, at least
(1− pb)nb −O(n1/2) blue players guess blue. ��
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Abstract. In this paper we introduce new algebraic forms, SOP+ and
DSOP+, to represent functions f : {0, 1}n → N, based on arithmetic
sums of products. These expressions are a direct generalization of the
classical SOP and DSOP forms. We propose optimal and heuristic algo-
rithms for minimal SOP+ and DSOP+ synthesis. We then show how the
DSOP+ form can be exploited for Data Mining applications. In particu-
lar we propose a new compact representation for the database of trans-
actions to be used by the LCM algorithms for mining frequent closed
itemsets.

Keywords: SOP, Implicants, Data Mining, Frequent Itemsets, Blulife.

Consider a department store with a very good body care department. Among
many products, the following are on demand:
a - Algesiv: adhesive for dental plates, b - Blulife: spray for breath with a
floral scent, c - Crinagen: lotion against hair loss, d - Deocontrol: drops for
feet odor control, e - Earbeauty: spoon for taking out earwax, f - Fleastop:
powder against flea invasion, g - Gluttonase: tablets for stomachache, h - Halt-
muc: tampon for nasal mucus, i - Itchand: plastic hand for back scratching, j
- Johnheaven: toilet deodorant.1

Now, take a look at the customers’ baskets (called transactions in the follow-
ing). No wonder that most customers buying b also buy g and occasionally j; or
that the ones buying f quite often buy i as well. It is also understandable that
several people tend to buy b, d, and e together, and is not uncommon to find
a and c in the same basket, where, on the other hand, e seldom appears. But
seems to be a mystery why no-one buying h also buys c.

Studying associations among the items occurring jointly in a set of trans-
actions is of paramount importance for conducting business of many kinds.
Data mining is the main area in which such studies have been developed, where
knowledge of the phenomena involved and related computational methods have

1 Some of these products are actually on the market, some are due to the authors’
fantasy. Just guess.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 41–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



42 A. Bernasconi et al.

reached maturity through a wealth of significant publications, e.g. see [1,10,7,5],
or the comprehensive bibliography of [3]. A point that has probably to be ex-
amined in more depth is the joint study of the items present and absent in a
transaction, as brought to the general attention in [8].

In this work we propose an innovative way at describing and processing trans-
actions, whose origin comes from the theory of digital circuits. The two products:
a b c d e fg h i j and a b c d e fg h i j will indicate the two transactions consisting
of items b, g and b, g, j, respectively. The product (same as before, with a missing
variable j) a b c d e fg h i is obtained as the sum of the two products above and
accounts for the pair. I.e., products of variables will represent transactions or
sets of transactions, where the absence of items, corresponding to complemented
variables, appears as a byproduct of the notation. Two points, however, have to
be clarified immediately. As the possible items are generally many more than
the ones contained in a transaction, an efficient notation to avoid long chains of
complemented variables in a product must be adopted. Second, the same trans-
action, or set of transactions, may appear more than once. In this case an integer
coefficient will be appended to the corresponding product, thus requiring an ex-
tension of switching theory from Boolean to integer algebra. This will also lead
to the introduction of a new problem in circuit design, and of a computational
method for its solution.

1 Functions {0, 1}n → N and SOP+ Forms

Consider a space {0, 1}n on n variables x1, ..., xn that take the values 0, 1 ∈ N

(note that we are not dealing with Boolean variables). A point x ∈ {0, 1}n is
represented by an assignment of values to x1, ..., xn. For simplifying the notation,
the variables will be possibly indicated as a, b, c.... We shall study functions
f : {0, 1}n → N, i.e., for each point x the value of f(x) is an arbitrary natural
number.

As in Boolean algebra, a literal is a variable in direct or complemented form,
with obvious meaning. A product (of literals) p is an elementary function. Al-
though we use multiplication instead of AND, the value of p is formally as in
Boolean algebra since 0 · a = 0, 1 · a = a. We then have p(x) = 0 or p(x) = 1,
depending on x. If a product p contains k literals, the points x ∈ {0, 1}n such
that p(x) = 1 form a subspace (or cube) {0, 1}n−k.

For k ∈ Z
+, let k p = p + p + ... + p (k terms, with + denoting addition).

We have kp(x) = 0 for p(x) = 0, kp(x) = k for p(x) = 1. The expression
k1p1 + ...+krpr, r ≥ 1, is called a SOP+ form, and ki is called the multiplicity of
pi. For a given SOP+ form and a given x ∈ {0, 1}n, let (A, B) be the partition
of {1, ..., r} such that pi(x) = 0 for i ∈ A and pi(x) = 1 for i ∈ B. The value (or
weight) of the form in x is then k1p1(x) + ... + krpr(x) =

∑
i∈B ki.

Definition 1. Given a function f , a SOP+ form for f (shortly, SOP+ for f),
denoted by S+f = k1p1 + ... + krpr, is such that: S+f(x) = 0 for all x such that
f(x) = 0; S+f(x) ≥ f(x) for all x such that f(x) > 0.
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Note that if f has values only in {0, 1}, a SOP+ form for f with all products
with multiplicity 1 is formally identical to a SOP form in Boolean algebra. We
now state:

– A minimal SOP+ for f is one with minimum weight
∑r

i=1 ki.
– A strictly minimal SOP+ for f is a minimal SOP+ where the total number

of literals in p1, ..., pr is minimum.

We now borrow some concepts and terminology from switching theory. Given a
function f , a product p whose non-zero points are also non-zero points in f is
called an implicant of f . Note that this condition is independent of the relative
values of f and p wherever both are non-zero. All the products in a SOP+ form
for f are implicants of f .

A function f of up to six variables can be represented by an obvious extension
of a Karnaugh map. Implicants are represented in the map as in switching theory.
As a working example, a function f of four variables a, b, c, d is represented in
Figure 1(A), together with three of its implicants.
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Fig. 1. (A) A function f and three of its implicants ab, bc, abc. The third one is not
prime. (B) All the prime implicants of f . Four of them are also essential, due to the
starred points. The terms 2ab, 3ac, bc, abc are inserted in a minimal SOP+. (C) The
new values of the points of f . Some of the original prime implicants, now containing
don’t cares, may be removed. In the present case only two implicants remain, and
a minimal SOP+ is completed with the inclusion of 2cd, abd. In conclusion we have:
S+f = 2ab + 3ac + bc + abc + 2cd + abd.
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2 Minimal SOP+ Synthesis

As in switching theory, a prime implicant p of a function f is such that no other
implicant of f “covers” p. A prime implicant p is essential if contains at least one
essential point, i.e., a non-zero point of f covered by p and by no other prime
implicant of f . In our working example, all the prime implicants of f are shown
in Figure 1(B). Four of them are essential, due to the essential points marked
with stars. A minimal (or a reasonably low weight) SOP+ is found with the
following procedure.
Procedure 1

1. Start with an empty S+f .
2. Determine the set P of all the prime implicants of f , as in switching theory.

I.e., for this step all the non-zero points of f can be set to 1.
3. Consider the subset E of all essential prime implicants (if any). For each

e ∈ E, consider the essential point where f has maximal value k. Assign
(temporary) multiplicity k to e and include ke in S+f .
In Figure 1(B), for example, implicant ab covers two essential points where
f has values 2 and 1. The term 2ab is then inserted into S+f . Note that the
multiplicity 2 of ab may be increased in later steps.

4. For all the points covered by each essential implicant e, decrease the value
of f of an amount equal to the multiplicity assigned to e in S+f . If a point
reaches a value ≤ 0, mark it as a don’t care condition.
In the example of Figure 1, the points covered by implicant ab assume the
values 0, -1, -4, 2 left to right (the last two points are covered by 2ab, 3ac,
and ac). From now on, the first three points will be treated as don’t cares.

5. The resulting points must be covered as it is done for an incompletely speci-
fied function. For this purpose only the points with non-zero values must be
covered. Remove from consideration each original prime implicant p cover-
ing non-zero points all covered by another prime implicant p′. Then iterate
Steps 3 to 5.
In Figure 1(C), implicants ab, ac, bc, abc have been removed, because their
non-zero points are also covered by cd or abd. These two implicants become
essential and are selected, the first one with multiplicity 2. In this simple
case the function has been completely covered and we have: S+f = 2ab +
3ac + bc + abc + 2cd + abd. The total weight of the form is 10.

6. The prime implicants remaining at this point (if any) are all non essential.
Note that some of them may cover don’t care points. The synthesis then
proceeds in two possible ways. One, heuristic, gives rise to a reasonable but
possibly non minimal solution. The other, enumerative in nature, yields a
minimal form at a cost of a possibly exponential number of steps. Let Q be
the current set of prime implicants.
(a) Heuristic. Select a prime implicant p ∈ Q where the smallest value s of

the covered non-don’t care points is maximal over all the other implicants
in Q. Treat p as it were essential, assigning to it a multiplicity s. Insert
sp in S+f and restart from Step 4.
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(b) Enumerative. Select a prime implicant p ∈ Q where the greatest value
g of the covered non-don’t care points is minimal over all the other im-
plicants in Q. Take the following g + 1 alternatives, and for each one of
them restart from Step 4. Alternative 0: eliminate p from Q. Alterna-
tive i, with i = 1, 2, ..., g: treat p as it were essential, assigning to it a
multiplicity i and inserting ip in S+f .

For finding a strictly minimal SOP+, only two minor corrections are needed
in Procedure 1. Namely, in Step 5 implicant p is removed only if the number of
literals in p is greater than or equal to the number of literals in p′. In Step 6(a), if
the same value s is found in several implicants, select one of them with minimum
number of literals. For the sample function of Figure 1 nothing changes in the
selection of implicants.

Theorem 1. (Correctness). For any function f , Procedure 1 generates a SOP+

form (heuristic version, Step 6(a)), or a minimal SOP+ form (enumerative ver-
sion, Step 6(b)), or a strictly minimal SOP+ form (with Step 5 corrected as
indicated).

The time needed by the procedure is studied as in standard switching synthe-
sis. Both the heuristic and the enumerative versions may be exponential in the
number n of variables, because the space where f is defined has 2n points, and
possibly all such points must be examined. However, the number N of prime
implicants of f may be exceedingly large, and the time is usually evaluated also
as a function of N . An immediate extension of a well known result in switching
theory indicates that the minimal SOP+ synthesis is an NP-hard problem. In
fact, from an elementary analysis of Procedure 1 we easily have:

Theorem 2. (Complexity). The time needed by Procedure 1, in the worst case, is
polynomial in N (heuristic version), and exponential in N (enumerative version).

3 Disjoint SOP+ Forms

We are now interested in covering the points of f “exactly”. That is, we look for
a sum of implicants whose weight, in any point x, is equal to f(x). Borrowing a
term from switching theory, we shall speak of a disjoint form.

Definition 2. A disjoint SOP+ form for a function f (shortly, DSOP+ for f),
denoted by DS+f = k1p1 + ... + krpr, is such that: DS+f(x) = f(x) for all x.

If f has values only in {0, 1}, a DSOP+ form for f is formally identical to a
DSOP form in Boolean algebra [2]. As for the SOP+ forms, a minimal DSOP+

for f is one with minimum weight
∑r

i=1 ki. And a strictly minimal DSOP+ for f
is a minimal DSOP+ where the total number of literals in p1, ..., pr is minimum.
However we shall consider only DSOP+ forms with a reasonably low weight, due
to the high time needed for determining the minimal forms. We then propose
the following heuristic procedure:
Procedure 2
1. Start with an empty DS+f .
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2. Determine a heuristic SOP+ form with Procedure 1. Let P be the set of all
the implicants contained in this form.
For the function of Figure 1 take the SOP+ form already found, where P =
{ab, ac, bc, abc, cd, abd}.

3. Let P = {p1, ..., pr}. For each pi consider the point (or the points) covered
by pi where f has minimal value ki. Then select one implicant p ∈ P which
maximizes such a value, say k (i.e., k is maximal among all ki). If more
implicants have the same value k, select p with minimal number of literals.
Assign multiplicity k to p, include kp in DS+f , and decrease by k the value
of f in all the points covered by p (clearly at least one point in p will get
value 0). Remove, from P , implicant p and all the implicants covering a point
with value 0.
For the function of Figure 1 we have k = 2 in ac, and k = 1 in all the
other implicants of P , hence 2ac is included in DS+f . Then the value of f is
decreased by 2 in the points covered by ac, and the situation of Figure 2(A)
results. The occurrence of value 0 in point 0011 causes the elimination of
ac, ab, bc from P and we have P = {abc, cd, abd}.

4. Repeat Step 3 until there are prime implicants in P . In our example we select
cd with multiplicity 1, remove abd from P , and select abc with multiplicity
1, to end up with P empty. The new values for the points of f are shown in
Figure 2(B).

5. If there are still points to cover (i.e., points with a non-zero value), restart
for them from Step 2.
In our example the new set P = {abc, abd, abc, acd, bcd, abc, abcd} of prime
implicants is indicated in Figure 1(B). abc, abc, abc and abcd are selected
with multiplicity 1. Then P is newly evaluated in Step 2, yielding the only
implicant abcd that is selected with multiplicity 5. We have the final form:
DS+f = 2ac+abc+cd+abc+abc+abc+abcd+5abcd, with total weight 13.

4 DSOP+ Forms and Data Mining

In this section we show as DSOP+ forms can find an interesting application to
data mining, and in particular to one of its most important problems: the mining
of (maximal, closed) frequent itemsets.

Let I be a set of items, and D a database of transactions, where each trans-
action t ∈ D is a subset of I. The total size of the database D is denoted by
‖D‖ and defined as ‖D‖ =

∑
t∈D |t|, where |t| denotes the cardinality of t, i.e.,

the number of items in the transaction t. A subset I of I is called an item-
set. Given an itemset I, D(I) denotes the set of transactions including I, i.e.,
D(I) = {t ∈ D | I ⊆ t}. The cardinality of D(I) is called the support of I w.r.t.
D, and it is denoted as suppD(I). For a given support threshold σ, an itemset
I is frequent if suppD(I) ≥ σ. If a frequent itemset I is included in no other
frequent itemset J , I is called maximal. An itemset I is called closed if there
exists no itemset J , with I ⊂ J , such that D(I) = D(J). Given a set S ⊆ D of
transactions, let I(S) be the set of items common to all transactions in S, i.e.,
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Fig. 2. (A) The function of Figure 1 after the essential prime implicant ac has been
selected with multiplicity 2. Only three of the original prime implicants remain in
P . (B) The new values of the points of f after abc and cd have been selected with
multiplicity 1, and the new prime implicants after Procedure 1 has been called again.
In conclusion we have: DS+f = 2ac + abc + cd + abc + abc + abc + abcd + 5abcd.

I(S) =
⋂

t∈S t. The closure of an itemset I, denoted by clo(I), is defined as the
set of items common to all transactions in D(I): clo(I) = I(D(I)) =

⋂
t∈D(I) t.

Observe that clo(I) is the unique smallest closed itemset including I. Moreover,
an itemset I is closed if and only if clo(I) = I.

We can now formally state the problem of mining frequent itemsets as follows:
Given a database of transactions D and an arbitrary integer support threshold σ,
enumerate all frequent itemsets in D. Depending on the threshold σ, the number
of frequent itemsets can be exponential in the database size ‖D‖, therefore some
variants of this classical problem have been studied in order to reduce the output
size, such as the mining of frequent closed itemsets, or the mining of frequent
maximal itemsets. The first variant of the problem is of particular interest since
all frequent itemsets and their supports can be computed from the set of frequent
closed itemsets and their supports, so that there is no loss of information if
mining only closed itemsets. However, the number of frequent closed itemsets,
which is often much smaller than the number of frequent itemsets, can still be
exponential in the database size [14]. Therefore, a new variant of the classical
problem of mining frequent closed itemsets has been introduced and studied: the
mining of the top-K frequent closed itemsets, where the threshold σ is chosen as
the maximum value yielding at least K frequent closed itemsets [7,13].

Many algorithms have been proposed for enumerating all frequent (closed,
maximal) itemsets. Among these algorithms, Linear time Closed itemset Miner
(LCM) [9,10,11,12] is one of the most efficient; indeed, its time complexity is
theoretically bounded by a linear function in the number of linear closed itemsets,
while other existing algorithms are not.

Our idea is to represent the database of transactions as a DSOP+ form. As
shown in the following, it is indeed possible to derive a DSOP+ form that repre-
sents the database D without loss of information. A fundamental advantage of
this representation is that the DSOP+ form is in general more compact in size
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than D. Moreover, the concepts of frequent/closed/maximal itemsets, and the
classical operations on D, such as computing the closure of an itemset or count-
ing its frequency, can be easily reformulated in this setting. Thus, all algorithms,
included LCM, can be reformulated and applied in this new framework.

Finally, another advantage of our new formulation is the possibility of investi-
gating and mining not only sets of items that are often present in the transactions
of D, but also items that are often absent. The importance of considering also
absent items has been first outlined in [8]. In their seminal paper they developed
a more general setting where standard association rules become just one type of
the possible recurring patterns that can be identified from a data set. In partic-
ular, correlations can be discovered, and the presence or absence of items forms
a basis for generating rules.

4.1 Database Representation

First of all, we observe that a database D of transactions can be represented,
without loss of information, as an integer valued function fD depending on n
variables x1, . . . , xn that take the values 0 or 1: fD : {0, 1}n → N. In fact, each
transaction t ∈ D can be represented by its n-bit characteristic vector x1 . . . xn,
where, for all 1 ≤ i ≤ n, xi = 1 if the item i ∈ I is included in the transaction
t, and xi = 0, otherwise. Thus, for all (x1, . . . , xn) ∈ {0, 1}n, fD(x1, . . . , xn)
is defined as the number of transactions t ∈ D whose characteristic vector is
x1 . . . xn.

We can now use for fD terms and concepts of switching theory, and in par-
ticular we can apply the heuristic procedure described in Section 3 to derive
DS+fD, i.e., a minimal DSOP+ form representing fD. Observe that there is no
information loss representing D as a disjoint SOP+ form:

Proposition 1. DS+fD represents exactly the database D of transactions over
the set of items I.
Observe that each implicant p in DS+fD represents a subset of transactions of
D. In fact, p possibly covers more points of fD. Precisely, if p contains � literals,
then p represents a cube of dimension n− � and covers 2n−� points.

Let us consider our working example of the function f , depending on four vari-
ables a, b, c, d, represented in Figure 1. We can view f as the function representing
a database D of transactions on the set of items I = {a, b, c, d}. The transactions
in D are the empty transaction ∅, occurring twice, the transactions {d}, {a, b, c},
{a, b, d}, and {a, c, d}, each occurring once, the transactions {a, b}, {a, c}, and
{c, d} occurring twice, {b, c, d} occurring three times, the transaction {b, c} oc-
curring four times, and {c} occurring 8 times. Thus, D can be represented by the
DSOP+ computed for f : DS+f = 2ac+abc+cd+abc+abc+abc+abcd+5abcd.
For instance, the implicant p = cd represents the cube of dimension 2 in {0, 1}4
given by the four points 0010, 0110, 1010, 1110. Thus, p represents the four trans-
actions {c}, {b, c}, {a, c}, {a, b, c}. The literals in p represent items always present
or always absent in these transactions: Crinagen (c) is always present, while De-
ocontrol (d) is always absent. Algesiv and Bluelife, i.e., a and b, appear in all
possible combinations, and are called don’t care items.
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Let us now evaluate the size of the DSOP+ representation of a database D,
i.e., the size of DS+fD.

Definition 3. The total size of a DS+fD =
∑r

i=1 kipi, where ki denotes the
multiplicity of the implicant pi, is

||DS+fD|| =
r∑

i=1

ki|pi| ,

where |pi| is the number of literals in pi.

For instance, the size of DS+f = 2ac + abc + cd + abc + abc + abc + abcd + 5abcd
is 42, while the traditional representation of the database D has size 47.

In this new framework, we explicitly represent the items that are always ab-
sent in a cube of transactions, while the traditional representation lists only the
present items. The explicit representation of absent items could be not advanta-
geous. For example, if the transactions in D are very sparse, as in many practical
data mining problems, and thus the majority of implicants in DS+fD have small
dimension, the proposed representation could result much larger that ||D||.

In order to overcame this problem, we propose an alternative representation
of the implicants, where only present and don’t care items are explicitly repre-
sented. We denote with x̃ an item x that is a don’t care in an implicant. For
instance, the implicant cd is now represented as ãb̃c. The new representation
(denoted as DS+f̃D) uses don’t care literals instead of negative ones. The size
of an implicant p is now given by its number of positive and don’t care literals.

The representation of our running example now becomes DS+f̃ = 2b̃cd̃+abd̃+
ãb̃c + d̃ + bcd̃ + acd̃ + ab + 5c, and its size reduces to 26.

The size of this new representation is always less or equal to the size of the
traditional database representation, as shown in the following proposition.

Proposition 2. ||DS+f̃D|| ≤ ||D||.

Proof. First suppose that each implicant in DS+f̃D represents a single transac-
tion (i.e., no merge occurred during the synthesis). In this case the size of our
representation is equal to the size of D, since each implicant is described using
only the positive literals, as in the traditional notation.

Suppose now that at least a merge occurred during the synthesis, producing a
cube of dimension d. This means that 2d transactions are now represented by just
one implicant. This implicant is described by d don’t care literals, and t ≤ n− d
positive literals. The transactions composing this cube have the following struc-
ture: they all contain the t positive literals representing items always present,
together with all possible combinations of the d don’t care literals representing
don’t care items. Recall that the negative literals are not represented. The size
of these 2d transactions is equal to 2dt + 2d−1d, as it can be easily verified by
induction. The size of the merged implicant (d + t) is therefore always less or
equal to this value for d ≥ 0 and t ≥ 0.

Note that this new notation can be directly used in the synthesis heuristics.
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4.2 LCM over DSOP+

Data mining algorithms usually store and maintain the input database D using
FP-trees, which are a particular version of a trie [4]. Other algorithms use even
more sophisticated graph based data structures, e.g., Zero-Suppressed BDDs [6],
while the first implementations of LCM algorithms [9,10,11] simply use arrays.

In our new approach, we represent cubes of transactions, instead of simple
transactions. However, the description of a cube can be maintained and stored
exactly as a single transaction. Therefore, the previous data structures can be
used also for DS+f̃D, where don’t care literals can be handled as new literals.
Since our representation is smaller than D, the applied data structures can be
even more compact.

We now briefly show how to exploit DS+f̃D in the classical LCM algorithm
for the mining of frequent closed itemsets. The LCM algorithm is based on the
prefix preserving extension property, which guarantees that any closed itemset is
generated by the extension of exactly one other closed itemset. Thus, all frequent
closed itemsets can be enumerated in a depth-first manner.

The basic operations involving itemsets are the frequency computation and
the closure of a single itemset. These operations can be easily reformulated for
the DS+f̃D representation of the database. As shown in the following, each
operation will manipulate implicitly the transactions in an implicant, without
explicitly decomposing it.

Recall that we are interested in mining present and absent items, therefore our
itemsets are composed of items represented with a positive or a complemented
literal. For instance, the itemset {a, b, c} means that a and b are present, while
c is absent.

For both operations we must select the products of DS+f̃D representing at
least one transaction containing a given itemset. These products can be charac-
terized as follows.

Property 1. Let p be a product in DS+f̃D. At least one transaction represented
by p contains the items of an itemset t if and only if:

1. the items represented in t by a positive literal occur in p in positive or don’t
care form;

2. the items represented in t by a negative literal are absent from p or occur in
don’t care form.

Let us now consider the frequency computation. Let t be an itemset and p a
product in DS+f̃D, with multiplicity k. Each p satisfying Property 1 contributes
to the frequency of t for a value that depends on the don’t cares in p, as shown
in the following property.

Property 2 (Frequency). Let d be the dimension of the cube represented by a
product p, i.e., the number of don’t care literals, and let g be the number of
positive or negative literals in the itemset t appearing as don’t care literals in p.
The number of transactions in p containing t is equal to k · 2d−g.
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Thus, the total frequency of the itemset t is given by the sum of the frequencies
computed for all products in DS+f̃D satisfying Property 1.

For example, let us compute the frequency of the itemset t = {b, c} in DS+f̃ =
2b̃cd̃ + abd̃ + ãb̃c + d̃ + bcd̃ + acd̃ + ab + 5c. The products contributing to the
frequency of t are 2b̃cd̃, ãb̃c, acd̃, and 5c. The overall frequency of t is then
2 · 22−1 + 22−1 + 21−0 + 5 · 20−0 = 13.

In order to compute the closure of an itemset t we must select the transac-
tions containing it, and compute their intersection, as described in the following
property.

Property 3 (Closure). Let t be an itemset, and p be a product of DS+f̃D satisfy-
ing Property 1. The intersection It(p) of the subset of transactions of p containing
t is given by the union of the following literals:

1. the positive literals of p;
2. the negative literals of p, that is the literals not appearing in p;
3. the literals representing the items in t.

The closure of t is given by the intersection of the sets It(p) computed for all p
satisfying Property 1.

Observe that the don’t care literals cannot be contained in an intersection, as
they represent items appearing in all possible combinations, that therefore can-
not be always present or always absent.

For example, let us compute the closure of t = {b, c} in DS+f̃ = 2b̃cd̃ + abd̃ +
ãb̃c + d̃ + bcd̃ + acd̃ + ab + 5c. The products b̃cd̃, ãb̃c, and c contribute to the
closure through the same subset {b, c}; while the product acd̃ contributes with
{a, b, c}. Taking the intersection, we get clo(t) = {b, c}, which means that t is
closed. Let us now compute the closure of t = {a, b}. The products b̃cd̃, ãb̃c, bcd̃
and c all contribute to the closure through the same subset {a, b, c}; while the
transactions in the other products do not contain t. Thus, clo(t) = {a, b, c}.

The efficiency of the LCM algorithm has been improved with several opti-
mizations, as shown in [11,12]. Again, these new versions of the algorithm can
exploit the proposed database representation.

5 Conclusion

Our future work includes an experimental evaluation of the proposed approach.
In particular we intend to show the gain in time and size of the LCM algorithm
when its input is represented as a disjoint SOP+ form. Note that this compact
form can be derived in polynomial time using heuristics, and it can then be
represented by the same data structures used by LCM (e.g., FP-tee, bitmap,
ZDDs). Recall that instead of representing single transactions, we now represent
subsets of transactions with a single object (product); moreover all transactions
in a product can be manipulated implicitly without decomposing the product.
It would be also very interesting to analyze the approximation properties of this
new synthesis problem.
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Logic synthesis algorithms have good performances when the number of vari-
ables is limited. In Data Mining instead the number of items is usually quite
high. Hence, we propose to afford the problem by grouping the items hierar-
chically, e.g., we could use variables to indicate single departments of a store
(meat, vegetables, body care, etc.). In case of interesting associations among
departments, the study can be refined inside them.
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Abstract. Sending text messages on cell phones which only contain the
keys 0 through 9 and # and * can be a painful experience. We consider
the problem of designing an optimal mapping of numbers to sets of let-
ters to act as an alternative to the standard {2 → {abc}, 3 → {def} . . .}.
Our overall goal is to minimize the expected number of buttons that
must be pressed to enter a message in English. Some variations of the
problem are efficiently solvable, either by being small instances or by
being in P , but the most realistic version of the problem is NP hard.
To prove NP-completeness, we describe a new graph coloring problem
UniquePathColoring. We also provide numerical results for the En-
glish language on a standard corpus which describe several mappings that
improve upon the standard one. With luck, one of these new mappings
will achieve success similar to that of the Dvorak layout for computer
keyboards.

Typing on a keyboard which has fewer keys than there are letters in the alphabet
can be a painful task. There are a plethora of input schemes which attempt to
make this task easier (e.g. [6,5,2] and many more), but the one thing they have
in common is that all of these input methods use the standard mapping of
numeric keys to alphabetic numbers of {2 → {abc}, 3 → {def}, 4 → {ghi}, 5 →
{jkl}, 6 → {mno}, 7 → {pqrs}, 8 → {tuv}, 9 → {wxyz}}. We will consider
schemes of rearranging the numbers on the keys to make messages easier to
type. Most variants of this problem turn out to be NP-hard, unfortunately.

Before we get any farther, let us sketch the basic problem that we will keep
revising and revisiting.

Problem 1 (MinimumKeystrokes)

Instance A set of letters corresponding to an alphabet A (|A| = n), a number
of keys k, an input method IN, and a set of tuples of words and frequencies
W . The frequencies in W are integers, and the words are made up of solely of
elements of A. We will treat IN as a function which, given a partition of A and
a word w, returns how many keystrokes are required to type w.

Question. What is the best partition of A into k sets, such that the total
number of keystrokes to type every word in W its associated frequency times is
minimized? Equivalently, what is the partition of P of A (|P | = k) that will
minimize ∑

(w,f)∈W

f ∗ IN(w, P )

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 53–67, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A cell phone keyboard. Each key is mapped to a letter sequence: 2 → (abc), 3 →
(def), 4 → (ghi), 5 → (jkl), 6 → (mno), 7 → (pqrs), 8 → (tuv), 9 → (wxyz).

We will consider two different real-world schemes for IN (basic typing and
T9), and for each variant or sub-variant that is proven NP-hard, we consider
the restriction on P that requires that we keep the alphabet in alphabetical
order. In all cases where it is computationally feasible we provide results for the
case of the English language, on 8-key keyboards, using the British National
Corpus[1] (BNC). One feature of note is that no matter what scheme we use,
the problem is trivial if the number of keys is not smaller than the number of
letters in the alphabet (k ≥ |A|). Using tiny keyboards is only (computationally)
difficult when the keyboards do not have enough keys.

1 Setting a Baseline with the Easiest Problem

The baseline we compare against is the most painful method of text entry. In
this method, to type an ‘a’, the user of the cellphone types the ‘2’ key; to type a
‘b’ they type ‘22’, to type ‘c’ they type ‘222’, to type a ‘d’ they type ‘3’, to type
an ‘e’ they type ‘33’, and so on. To type a word with multiple letters that use the
same key, such as ‘accept’, the user must pause between keystrokes. Thus, the
full key entry sequence for ‘accept’, using ‘.’ to indicate a pause, is ‘2.22.223378’.

We will neglect the pauses and concern ourselves solely with the number of
keystrokes required. This layout and input method imply that ‘a’ will always
require one button press, ‘b’ will always require two, and so on. Thus, to get
a baseline of how many keystrokes are required to enter the entirety of our
corpus of words W , we count the total number of occurrences of each letter, and
multiply that number of occurrences by the number of button pushes required
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by that letter. Running this on the British National Corpus using the standard
cell phone keyboard layout, we find that entering the entirety of the 100,106,029
word occurrences in the corpus would require 948,049,046 button presses.

If we examine a cell phone keyboard (Fig. 1) then we observe some terrible de-
sign choices. The frequently-occurring letters ’r’ and ’s’ require more keystrokes
than ’q’ ! Surely, a better designed keyboard can do better than this. If we just
reversed the order of the letters on the 7 key, from ‘pqrs’ to ‘srqp’, the number
of button presses required would drop to 865,118,331 — a savings of more than
8.7%. If we assume that every button press takes an equal amount of time, then
this corresponds the users spending 8.7% less time entering their text messages.
In an effort to discover how great these savings can be, we define the problem
BasicCellPhoneTyping based on the template problem on page 54.

Problem 2 (BasicCellPhoneTyping)

Instance A set of letters corresponding to an alphabet A (|A| = n), a number
of keys k, and a set of tuples of words and frequencies W . The frequencies in W
are integers, and the words are made up of solely of elements of A.

Question. What is the best partition P of A into k sequences, such that the
total number of button presses to type every word in W its associated frequency
times is minimized? The number of button presses is equal to the order of the
letter in the sequence assigned to a given key. For example, in the key 2 → {abc},
a requires one keystroke and c requires 3. Equivalently, if we denote the number
of button presses required to type letter a with partition P as INP (a), then we
want to find the P that minimizes∑

(w,f)∈W

∑
c∈w

INP (c) ∗ f

To solve BasicCellPhoneTyping we construct a provably optimal greedy al-
gorithm which works in time O(|W | + |A| log |A|). Our algorithm is detailed in
Fig. 2, and involves creating a histogram of the letters, and then assigning letters
to keys round-robin style in the order from most-popular to least-popular. To
prove optimality, we invoke an exchange argument.

Theorem 3. The greedy algorithm finds an optimal solution to BasicCell-

PhoneTyping.

Proof. We will assume, for simplicity of proof, that all letters occur a different
number of times in the corpus. We begin by comparing two assignments of letters
to keys by, for each assignment, constructing a sequence of sets, or spectrum, S.
The set S1 (layer 1) is the set of all letters which require a single button press
(that is, they are the first letter in their sequence on their assigned key), S2 (layer
2) is the set of all letters which require two button presses, and so on. If two
assignments have equal spectra, then one assignment may be transformed into
the other assignment simply by swapping letter between keys without increasing
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GreedyBasicCellPhoneTyping (A, k, W )
// A is the set of letters
// k is the number of keys
// W is a set of pairs of words and their corresponding frequencies
lettercount ← new map()
for c ∈ A

lettercount[c] ← 0
for (word, frequency) ∈ W

for c ∈ word
lettercount[c] ← lettercount[c]+frequency

ordered ← [(lettercount[c], c) for c ∈ lettercount]
sort(ordered)
keys ← a array of length k where each element is an empty list
for i ← 0 . . . length(ordered)

(count, char) ← ordered[i]
append(char, keys[i mod k])

return keys

Fig. 2. The greedy algorithm for Prob. 2

or decreasing the total number of button pushes required to enter the corpus of
words. Two assignments are isomorphic iff their spectra are equal.

Now assume for the sake of contradiction that we have assignment D, with
spectrum T , that is not isomorphic to the greedy solution G with spectrum S.
In a spectrum resulting from the greedy algorithm, all letters at layer i occur
strictly more frequently than the letters at layer j, j > i. Also, in S, for all layers
i except for the last layer, |Si| = k. Because T and S are not isomorphic, in T
there must be at least one layer i such that Ti �= Si. Let Ti be the first layer for
which that is true.

There are two cases for layer Ti. In the first case, |Ti| < k, and we may remove
any element from a later layer place it in layer Ti and create a strictly better
layout. In the second case, there is some letter a such that a ∈ Ti and a �∈ Si. We
choose the least-frequent such a. Because the greedy layout algorithm creates
layers in order of frequency, we know that the frequency of a is less than that
of some letter b in layer Tj , j > i. Therefore, by creating a new layout with
a and b swapped between Ti and Tj , we have strictly decreased the number of
button presses. Therefore, in both cases, T was not an optimal layout, and we
have reached our contradiction. ��

For the BNC, the optimal layout has the spectrum

[{etaoinsr}, {hldcumfp}, {gwybvkxj}, {qz}]

and any layout with that spectrum requires 638,276,114 button presses to entire
the entire BNC instead of our original requirements of 948,049,046. This repre-
sents a savings of 32.67% over our original layout, but only for the users who type
using this most basic of input methods. Unfortunately, this is the group of users
who are likely the least adaptable to change, as almost all “digital natives” use
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predictive methods to input text messages1. To place the least burden of “new-
ness” on these users while still decreasing the number of button presses, we now
consider schemes where the only alteration of the keyboard is the rearrangement
of the sequence of letters for a given key.

By an argument symmetric to the proof of Theorem 3, we find that the optimal
layout in this new scheme is to place the letters of a given key in sorted order,
according to frequency. Thus, the keyboard layout changes to 2 → [acb], 3 →
[edf ], 4 → [ihg], 5 → [lkj], 6 → [onm], 7 → [srpq], 8 → [tuv], 9 → [wyxz] and
requires 678,547,463 button presses to enter the whole corpus. This layout rep-
resents a 28.43% savings, and it has the added benefit that it does not change
which key is mapped to which set of letters. This makes it legacy preserv-
ing, as creating a keyboard with this layout will not invalidate such advertising
gems as 1-800-FLOWERS. Thus, we can speed up users by 28.43% (neglecting
inter-letter pauses) and not undermine more than half a century of advertising.
This layout represents perhaps the most plausible layout yet2. After setting up
this baseline for the easy problem, we turn our attention to optimizing cellphone
keyboards for predictive input methods.

2 The T9 Input Method

In an effort to minimize the pain of cellphone keyboard typing, cellular telephone
manufacturers have created the T9 input method, which attempts to guess which
letter (of the three or four possible) is intended when a user hits a single key.
Enhancements of this input method also provide speculative lookahead to report,
at any given time, what word it is that the user is most likely trying to enter
and provide a completion. Unfortunately, because there are fewer keys on the
cellphone keyboard than there are letters in the English alphabet, there are words
which have different spellings but the same input sequence. As an example, in
the traditional mapping of keys to characters both ‘me’ and ‘of’ have the input
sequence ‘63’. Two words with the same input sequence force the user to press
a third button to cycle through the possibilities in order from most likely (‘of’)
to least likely (‘me’). Even worse: ‘home’, ‘good’, ‘gone’, ‘hood’, ‘hoof’, ‘hone’,
and ‘goof’ all have the input sequence ‘4663’. If the * key is used as the “next
match” button, then the user will have to type in ‘4663******’ to type in the
word ‘goof’, for a total of 10 button presses — exactly the same number of button
presses required using the default layout and the basic input method, and three
more button presses than is required when using the basic input method with
an optimized layout.

1 I have no statistics on this except for an informal survey of one of my classes. In that
class, every student who used SMS either had a cellphone with a 26+ key alphabetic
keyboard or used a predictive method.

2 The described layout is the only legacy preserving layout in this paper, and therefore
should be considered the most practical suggestion. It also has the added benefit of
not angering any of the organizations behind the numbers 1-800-FLOWERS, 1-800-
THRIFTY, and 1-800-MARINES.
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When two words have the same input sequence (neglecting the *’s at the end)
then these words are t9onyms. When two or more words are t9onyms, then
the less-popular words require extra key presses, raising the expected number
of key presses to type in our corpus. To type a given word, one must press one
button for every character in the word, followed by pressing the * key as many
times as there are t9onyms which are more likely than the desired word. Because
typing on a cellphone keyboard is already an unpleasant experience, we would
like to minimize the expected number of keystrokes. The number of keystrokes
a word requires is equal to the number of letters in the word, plus the number
of t9onyms which are more frequent than the word. Formally, we extend Prob. 1
and define the MinimumT9Keystrokes problem as:

Problem 4 (MinimumT9Keystrokes)

Instance An alphabet A, a set of words and their associated frequencies W ,
and a number of keys k (|A| > k).

Question. What is the partition P of A into k sets which minimizes the total
button presses required to enter the entire corpus using the T9 input method?

and the corresponding decision problem is

Problem 5
Instance A set A, a set W of sequences of elements of A, a mapping f from
sequences in W to the integers, and a number t.

Question. Is there a partition P of A into k sets such that, if we denote P (w)
as the sequence of partitions [pi|wi ∈ pi, pi ∈ P ],∑

w∈W

(len(w) + order(w, P, W, f)) ∗ f(w) ≤ t

where len(w) is the length of the sequence w and order(w, P, W, f) is the size
of {s ∈ W |P (s) = P (w) ∧ f(s) ≤ f(w) ∧ s < w}, which is the set of sequences
which map to the same sequence of partitions, but are not more popular, and are
lexicographically smaller than w.

This problem is in NP , as any assignment may be verified to require fewer than
t button pushes in time proportional to the total length of all the words in
W . To prove completeness, however, we first prove the NP-completeness of an
intermediate problem: UniquePathColoring.

Problem 6 (UniquePathColoring)

Instance A graph G = (V, E), a set of paths P , and a parameter k. A path p
is a sequence of vertices in which adjacent vertices in p are also adjacent in the
edge set E.

Question. Is there a k-coloring of G such that every path p ∈ P has a unique
coloring? If we consider the coloring function χ(v) to map vertices to colors,
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then we can extend this notation by having χ(p) map a path p = [v1, v2, . . .] to
the sequence χ(p) = [χ(v1), χ(v2), . . .]. Is there a coloring χ of V such that

| {χ(p) ∀p ∈ P} | = |P | ?

Theorem 7. UniquePathColoring is NP-complete.

Proof. To prove that UniquePathColoring is NP-complete, we begin by not-
ing that any coloring of V may be verified, in polynomial time, to map each path
to a unique sequence of colors. Therefore, the problem is in NP . To prove com-
pleteness, we reduce from GraphColoring[3].

An instance of GraphColoring consists of a graph G = (V, E) and a
parameter k. We then ask the question of whether there is a k-coloring χ of
the vertices of the graph such that ∀(u, v) ∈ E, χ(u) �= χ(v). We transform an
instance of GraphColoring into an instance of UniquePathColoring in the
following manner:

Given G = (V, E) and k from GraphColoring, we create

G′ = (V ∪ {0, 1}, E ∪ {(0, 1), (1, 0), (0, 0), (1, 1)} ∪ {(v, 0) ∀v ∈ V })

We then uniquely number each edge in E with the numbers 1 . . . |E|. For each
edge e = (u, v) numbered i, we create the path set

pi = {[v, 0, b1(i), b2(i), b3(i), . . . b�log2 i	],
[u, 0, b1(i), b2(i), b3(i), . . . b�log2 i	]}

where b1(i) is the first digit of i in binary, b2(i) is the second digit of i in binary,
and so on. Now we create our path set

P = {[0, 1], [1, 0]} ∪
|E|⋃
i=1

pi .

We then ask the question of whether G′ and P can be unique-path colored using
only k colors.

If there is a k-coloring χ of G, then we use that coloring to generate a k-unique-
path coloring of G′ and P in the following manner: First, assign vertices 0 and
1 different colors from the range of χ. Next, assign each vertex to the color it
received in the k-coloring of G′. Now, every element of our path set corresponds
to a unique color sequence. [0, 1] and [1, 0] are the only sequences of length two,
and because we assigned these two vertices different colors, χ([0, 1]) �= χ([1, 0]). If
path x and path y are not from the same pi, then they have a different sequence
of zeroes and ones. Therefore, because 0 and 1 are assigned different colors, the
only possible path that a given path in some pi might be confused with is the
other path in that pi. But each pi corresponds to an edge in E, and we know for
all edges in (u, v) ∈ E that χ(u) �= χ(v). Therefore, both paths within a given



60 P. Boothe

pi also have a distinct color sequence. Therefore, given a k-coloring of G, we can
generate a k-unique-path coloring of G′ and P .

Now we prove that given a k-unique-path coloring of G′ and P we can create
a k-coloring of G. Given a k-unique path coloring, we are guaranteed that no
path in P has the exact same coloring as any other path in P . This means that,
for all i, the two paths in pi are distinct. The only difference between the two
paths in pi is in the first vertex of the path. Therefore, for every pi, the vertices
of corresponding edge in must be given distinct colors, and this is true for all i
and e ∈ E. Therefore, for all (u, v) ∈ E, the color assigned to u is distinct from
the color assigned to v. Therefore, from a k-unique-path coloring of G′ and P ,
we have a k-coloring of G = (V, E). ��

This proof implies not just that UniquePathColoring is NP-complete, but
that it is NP-complete even when we restrict ourself to just 3 colors, because the
number of colors in the UniquePathColoring is exactly equal to the number
of colors in the instance of GraphColoring, and 3-coloring a graph is an NP-
complete problem[4].

Now that we have proven UniquePathColoring to be NP-complete, we
immediately use it in a reduction.

Theorem 8. MinimumT9Keystrokes (as specified in Problem 5) is NP-
complete.

Proof. As we noted on page 58, MinimumT9Keystrokes is in NP . To prove
completeness, we reduce from UniquePathColoring. An instance of Unique

PathColoring consists of a graph G = (V, E), a set of paths P , and a parameter
k. We then ask the question of whether there is a vertex coloring of G using k colors
where each path in P ends up with a unique sequence of colors.

We transform an instance of UniquePathColoring into an instance of Min-

imumT9Keystrokes in the following way: We make A be the set of vertices V ,
and we make W be the set of paths P , and we assign each of these new ‘words’
a frequency of 1. We then ask the question of whether there exists a partition of
A into k sets such that the total number of button presses required is no greater
than t =

∑
w∈W len(w).

Nowweprove that if there is aUniquePathColoringusingkcolors, then there
exists a solution to the corresponding instance of MinimumT9Keystrokes. In
particular, a k-unique-path coloring if G give us a partition of the vertices V into k
sets. We map each set to a single key in our solution to MinimumT9Keystrokes.
Because each path has a unique coloring, each word in the corresponding Mini-

mumT9Keystrokes has a unique pattern of button presses. Therefore, the num-
ber of more popular words with the same keystrokes as a given word is exactly zero.
Thus, because each word in the corpus has a frequency of one, to type in the entire
corpus only requires exactly as many keystrokes as there are words in the corpus,
and therefore, the kunique path coloring ofV corresponds exactly to an assignment
of letters to keys such that the total number of keystrokes is exactly

∑
w∈W len(w),

which is exactly t.
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Next, we prove that a solution to the MinimumT9Keystrokes problem in-
stance implies a solution to the corresponding UniquePathColoring problem.
If there exists a partition of A into k partitions such that∑

w∈W

(len(w) + order(w, P, W, f)) ∗ f(w) ≤ t =
∑

w∈W

len(w)

then, because f(w) = 1, ∀w ∈ W , it must be true that order(w, P, W, f) = 0,
∀w ∈W . Therefore, every word w ∈W has a unique sequence of button presses
if we partition A into k partitions according to P . To generate our k-unique-path
coloring of G, we color each set in P a single unique color. Because each word
in w has a unique sequence of partitions, each path has a unique coloring, and
therefore we can color the corresponding instance of G using k colors. Thus, a
partition of V into k partitions which allows the corpus to be entered in less
than t keystrokes implies a k-unique path coloring of G. Therefore, because
UniquePathColoring can be reduced to MinimumT9Keystrokes and is in
NP , MinimumT9Keystrokes is NP-complete. ��

This proof of NP-completeness is of a relatively strong form: just like Unique

PathColoring, our problem remainsNP-complete even if we restrict ourselves
to k = 3 (only 3 buttons on the cell phone keyboard).

Because our problem is NP-complete, we will not try to find a general solu-
tion. In our specific instance, with 26 letters and an eight key keyboard (1 and
0 are reserved for other uses), we must choose the best layout from among(

26
8

)(
18
8

)(
10
8

)
= 3, 076, 291, 325, 250

different possibilities. Given that, currently, it takes around a tenth of a second
to count the button presses required to enter the BNC, an exhaustive search will
take 307,629,132,525 seconds, or 9.75 millennia. Therefore, we have two remain-
ing avenues of attack: find the best answer possible using stochastic methods,
or solving a simpler problem. Using stochastic methods (a simple genetic algo-
rithm), the best layout we found was

{{eb}, {lcd}, {sh}, {zmx}, {fayg}, {toj}, {unpv}, {irkwq}}

which required 441,612,049 button presses to enter the entire corpus. Our ge-
netic algorithm was quite simple: From an initial gene pool of random layouts,
we discarded all but the best layouts (the survivors). Then, we added to the
gene pool random mutations of the survivors to fill out the gene pool back to
its original size, and repeated the process of selection and mutation for some
time. As compared to the requirements of the default layout (443,374,079), this
represents a savings of less than 1%, and is thus not a very attractive alternative
to existing layouts. This low amount of improvement, while not good news for
our proposed reordering, is excellent news for all current cell phone users: the
default cell phone keyboard layout seems relatively efficient for T9 text entry in
English!
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2.1 Alphabetic Order

Our arbitrary remappings of the keyboard may be quickly deemed unusable,
simply because it is almost impossible to tell where a given key is located with-
out memorizing the entire new layout. Therefore, we define a refinement of the
keyboard layout problem, in which the characters are required to be kept in
alphabetical order as a sequence, and our only choices are about how to divide
the subsequence into key assignments. The default layout can be described as
the partition abc|def |ghi|jkl|mno|pqrs|tuv|wxyz. Is this partition optimal? To
decide this, we define the problem MinimumKeystrokePartition as:

Problem 9 (MinimumKeystrokePartition)

Instance A sequence of letters A = {a1, a2, . . .}, a set of words and their
associated probabilities W , and a set of keys K = {2, 3, 4, . . .} (|A| > |K|).

Question. What is the mapping f of A → K which minimizes the expected
number of characters to type a word from W , and where f(a1) = 2 and if f(ai) =
k, then either f(ai+1) = k or f(ai+1) = k + 1?

The number of partitions of a sequence of size n into k subsequences is equal
to

(
n−1
k−1

)
, and in the particular case of the 26 letter alphabet and the eight keys

available on a cell phone keyboard, we find that there are
(26−1

8−1

)
= 480, 700

possible sequences. This means that, in the case of our corpus which requires
tenths of a second to test against a proposed solution, we can test every possible
sequence in just 480,700 seconds. Therefore, our final result comes from simply
generating and testing every single partition of the alphabet into 8 sets. We
found that the best partition was

{{ab}, {cde}, {fghij}, {klm}, {nop}, {qrs}, {t}, {uvwxyz}}

which required 442,717,436 button presses, yet again for a savings of less than
1% over the default layout.

3 Conclusion

We have developed three problems based on the idea of making cell phone key-
board more efficient for typing text messages. Different text entry methods yield
problems with very different levels of solvability. If we restrict ourselves to the
basic text entry method, then a greedy algorithm will work for finding the opti-
mal layout. Even better, the greedy algorithm works whether we want to restrict
ourselves to rearranging the order of letters on a single key, or to rearranging
all letters on all keys. On the other hand, if we try to optimize against the more
complex T9 input method, then we find that the problem is NP-complete. After
proving completeness, we gave numerical results which indicate that it will be
difficult (or perhaps impossible) to significantly improve on the default layout
of letters. This stands in sharp contrast to the simpler input method, where we
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were able to improve by more than 27% just by reordering the letters on the
keys, but never moving a letter from one key to another.

We have also discovered a new NP-complete problem UniquePathColor-

ing, which may be of use in other contexts. In particular, it is rare in the
literature to find an NP-complete problem that contains both partitions and
sequences, which is why we had to invent a new one here. The hope, as always,
is that this problem will prove useful to others.

We left as future work any exploration of the issue of needing to pause be-
tween letters in the basic typing method, and, while there do exist even more
sophisticated input methods[6], we have left them unmentioned and unexamined.
Optimizing a keyboard for the basic text input method was relatively straight-
forward, but, for the T9 input method, optimally using a cell phone keyboard is
NP hard.
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A A Genetic Algorithm for Discovering Efficient T9
Layouts

#include <algorithm>

#include <iostream>

#include <fstream>

#include <map>

#include <string>

#include <vector>

#include <sys/time.h>

#define POPULATION 32

#define GENERATIONS 20

using namespace std;

typedef pair<int, string> pis;

vector<pis> words;

long long total;

bool piscompare(pis a, pis b) { return a.first > b.first; }

long long quality(vector<string> &partition)

{

map<char,string> rmap;

int i = 0;

string buttons = "23456789";

for (vector<string>::iterator s = partition.begin();

s != partition.end();

++s, ++i) {

for (string::iterator c = s->begin(); c != s->end(); ++c) {

rmap[*c] = buttons[i];

}

}

map<string, vector<pis> > typing;

for (vector<pis>::iterator fw = words.begin();

fw != words.end();

++fw) {

int freq = fw->first;

string word = fw->second;

string presses = "";

for (string::iterator c = word.begin(); c != word.end(); ++c) {

presses += rmap[*c];

}

if (typing.count(presses) == 0)

typing[presses] = vector<pis>();

typing[presses].push_back(*fw);

}

for (map<string, vector<pis> >::iterator w = typing.begin();

w != typing.end();

++w) {

sort(w->second.begin(), w->second.end(), piscompare);

}

long long totalpresses = 0;

for (map<string, vector<pis> >::iterator w = typing.begin();

w != typing.end();

++w) {

int wordsize = w->first.size();

for (int i = 0; i < w->second.size(); i++) {

totalpresses += (wordsize + i) * w->second[i].first;

}

}

return totalpresses;

}

void printpart(vector<string> &p)

{

for (vector<string>::iterator i = p.begin();

i != p.end();

++i)

cout << *i << " ";

cout << endl;

}

vector<string> randompartition(string in)

{

vector<string> p;

for (int i = 0; i < 8; i++)

p.push_back("");

while (in.size() > 0) {

int pos = random() % in.size();

int key = random() % 8;

p[key].append(1, in[pos]);

in.erase(pos, 1);
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}

return p;

}

typedef pair<long long, vector<string> > pllvs;

bool lvscompare(pllvs a, pllvs b) { return a.first < b.first; }

vector<vector<string> > cull(vector<vector<string> > &pop)

{

vector<pllvs> fitness;

for (vector<vector<string> >::iterator i = pop.begin();

i != pop.end();

++i) {

fitness.push_back(pllvs(quality(*i), *i));

}

sort(fitness.begin(), fitness.end(), lvscompare);

vector<vector<string> > newpop;

for (int i = 0;

i < fitness.size() / 4;

++i) {

cout << fitness[i].first << " ";

printpart(fitness[i].second);

newpop.push_back(fitness[i].second);

}

return newpop;

}

vector<string> mutate(vector<string> in)

{

for (int count = 0; count < 2; count++) {

int i;

do { i = random() % in.size(); } while (in[i].size() == 0);

int c = random() % in[i].size();

in[random() % in.size()].append(1, in[i][c]);

in[i].erase(c, 1);

}

printpart(in);

return in;

}

int main()

{

ifstream win("words/wordlist");

win >> total;

string word;

win >> word;

int freq;

while (win >> freq) {

win >> word;

words.push_back(pis(freq,word));

}

// Seed it

timeval t1;

gettimeofday(&t1, NULL);

srandom(t1.tv_usec * t1.tv_sec);

string alphabet = "abcdefghijklmnopqrstuvwxyz";

vector<vector<string> > population;

for (int i=0; i < POPULATION; i++)

population.push_back(randompartition(alphabet));

for (int i=0; i < GENERATIONS; i++) {

population = cull(population);

while (population.size() < POPULATION) {

population.push_back(mutate(population[random() % population.size()]));

}

}

return 0;

}

B Code for Analyzing All Alphabetic-Order T9 Layouts
#include <algorithm>

#include <iostream>

#include <fstream>

#include <map>

#include <string>
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#include <vector>

using namespace std;

typedef pair<int, string> pis;

vector<pis> words;

long long total;

bool piscompare(pis a, pis b) { return a.first > b.first; }

long long quality(vector<string> &partition)

{

map<char,string> rmap;

int i = 0;

string buttons = "23456789";

for (vector<string>::iterator s = partition.begin();

s != partition.end();

++s, ++i) {

for (string::iterator c = s->begin(); c != s->end(); ++c) {

rmap[*c] = buttons[i];

}

}

map<string, vector<pis> > typing;

for (vector<pis>::iterator fw = words.begin();

fw != words.end();

++fw) {

int freq = fw->first;

string word = fw->second;

string presses = "";

for (string::iterator c = word.begin(); c != word.end(); ++c) {

presses += rmap[*c];

}

if (typing.count(presses) == 0)

typing[presses] = vector<pis>();

typing[presses].push_back(*fw);

}

for (map<string, vector<pis> >::iterator w = typing.begin();

w != typing.end();

++w) {

sort(w->second.begin(), w->second.end(), piscompare);

}

long long totalpresses = 0;

for (map<string, vector<pis> >::iterator w = typing.begin();

w != typing.end();

++w) {

int wordsize = w->first.size();

for (int i = 0; i < w->second.size(); i++) {

totalpresses += (wordsize + i) * w->second[i].first;

}

}

return totalpresses;

}

int start = 0;

int end = -1;

void genallpartitions(string &s, int count, int index,

vector<string> &part)

{

if (count == 0) {

if (--start > 0) {

--end;

} else {

// Analyze it

cout << quality(part) << " ";

for (vector<string>::iterator i = part.begin();

i != part.end();

++i)

cout << *i << " ";

cout << endl;

if (--end == 0) exit(0);

}

} else if (count == 1) {

part.push_back(s.substr(index, s.size()-index));

genallpartitions(s, count-1, s.size(), part);

part.pop_back();

} else {

for (int size = 1; size < s.size() - index - count + 2; size++) {

part.push_back(s.substr(index, size));

genallpartitions(s, count-1, index+size, part);

part.pop_back();

}

}

}

int main(int argc, char** argv)

{
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if (argc == 3) {

start = atoi(argv[1]);

end = atoi(argv[2]);

}

ifstream win("words/wordlist");

win >> total;

string word;

win >> word;

int freq;

while (win >> freq) {

win >> word;

words.push_back(pis(freq,word));

}

string alphabet = "abcdefghijklmnopqrstuvwxyz";

vector<string> partition;

genallpartitions(alphabet, 8, 0, partition);

return 0;

}
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Abstract. You are an urban hitchhiker. All drivers are willing to give
you a ride, as long as they do not have to alter their trajectories to
accommodate your needs. How (and how quickly) can you get to your
destination? We analyze two scenarios, depending on whether hitchhikers
have a global picture of who is going where through some information
infrastructure, or only a local picture - i.e. they can only ask cars passing
by where they are going.

1 Introduction

You are an urban hitchhiker. All drivers are willing to give you a ride, as long as
they do not have to alter their trajectories to accommodate your needs. How (and
how quickly) can you get to your destination? This is a fundamental question
in the area of dynamic ride-sharing, which is attracting ever more attention
due to soaring oil prices and increasing pollution concerns [1,2,3,4,5,8,9]. The
answer (not surprisingly) depends mainly on whether you have a global picture
of who is going where (most likely through some information infrastructure),
or only a local picture - i.e. you can only ask cars passing by where they are
going. We examine the two cases respectively in Section 4 and Section 3 after
presenting, in Section 2, our city traffic model. Section 5 concludes the paper
with a brief analysis of the significance of our results and of the many problems
this preliminary work leaves open.

2 A Simple City Traffic Model

There is a vast number of traffic models in the literature (see [6] for a review);
however, most of them focus on congestion control and are too complex to be
solved analytically at the city level. Our model is much simpler, although it is
still sufficiently rich to produce non-trivial results and, we feel, to capture the
essence of the problem.

We model the city and its periphery as a circle of radius R (see Figure 2),
where the unit of space is the contact distance - the maximum distance at which
a hitchhiker can signal a car “passing by” to stop and query it for information
(indicatively ≈ 30 meters, the range of class 2 Bluetooth devices present on most
of today’s mobile phones and perhaps half a city block). The contact distance is
also the minimum distance for which we assume that a hitchhiker may seek a ride

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 68–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The city (radius r) containing source and destination, and the city plus the
periphery (radius R > r). Cars travel in a straight trajectory (dashed line) from a
random source to a random destination, and the hitchhiker may hop into them if they
pass within unit distance of him. The hitchhiker may also walk (solid line) towards the
destination or towards a good ride.

instead of simply resorting to walking. We set the time scale so that traveling 1
unit of space takes a car 1 unit of time, and a pedestrian P units.

The city itself is a smaller, concentric circle of radius r. We only consider
hitchhiking within the city. The periphery - the annulus around the city proper -
simply serves as an abstraction for the sources and sinks of traffic outside of the
city. Cars enter the traffic system of the city and its periphery at points chosen
uniformly at random within the (larger) circle of radius R according to a Poisson
process with intensity of 1

G cars per unit of area per unit of time; each car then
heads in a straight line towards a destination also chosen uniformly at random. It
is easy to verify that the process describing arrivals/departures of cars in transit
through any unit circle is poissonian, with an intensity Θ(R

G) = Θ(ρ) that is
within a factor 1 − r

R for any such area within the city. The rest of the paper
assumes 1 − r

R = Θ(1), which is equivalent to the (realistic) assumption that a
constant fraction of the city’s traffic has a source or a destination outside the
city proper.
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The hitchhiker wants to move, within the city, from an arbitrary source to
an arbitrary destination at distance d ≥ 1 from the source. While a private
car allows the hitchhiker to cover this distance in time d with only one leg,
hitchhiking requires, in general, more time (and perhaps more legs). In the rest
of the paper, we will often state results in terms of effective speed, i.e. the average
speed of the hitchhiker from the source to the destination.

3 Hitchhiking with Local Information Only

This section examines the case of a hitchhiker equipped only with local knowl-
edge - i.e. who can only query nearby cars (those within distance 1) about their
destination. A strictly optimal strategy is beyond the scope of this work; we
can, however, provide a simple strategy that is optimal in terms of effective
speed (and among effective speed-optimal strategies, in terms of legs) within a
small constant factor.

Let a ride be good if it can take the hitchhiker at least twice as close to the
destination as he currently is; and let it be better than another ride if it can
take the hitchhiker closer to the destination. Consider the following three simple
hitchhiking rules:

1. Initially, walk towards the destination taking the first good ride encountered.
2. When encountering a new potential ride, take it if and only if a) it is better

than any ride seen so far and b) the current ride, if any, is no longer good.
3. As soon as the current ride is no longer making progress towards the desti-

nation dismount and start walking towards the destination.

We can prove that:

Theorem 1. If the hitchhiker’s current distance from the destination is d > 1
ρ ,

he will reach within distance 1
ρ of the destination in O(d) time (only O( 1

ρ ) of
which spent walking) and O(1) legs. If the hitchhiker’s current distance is d with
1

Pρ < d ≤ 1
ρ , he will halve his current distance in expected O( 1

ρ ) time and O(1)

legs, and will reach within distance 1
Pρ of the destination in O( log(P )

ρ ) time and
O(log(P )) legs. If the hitchhiker’s current distance is d ≤ 1

Pρ , he will reach the
destination in time O(dP ).

Proof. First of all note that, if the hitchhiker is not moving, the probability
density (in time) of witnessing a previously unseen car pass by that will take
him within distance δ of the destination is within a constant factor (see Section
2) of a function p(δ/d) that depends solely on the ratio between δ and the current
distance d to the destination: p = Θ(ρ · δ

d ), where δ
d is (within a small constant

factor) the ratio between the length of the circumference of radius d centered
on the current position and passing through the destination and the length δ of
its arc centered on the destination. The expected time to witness a ride which
carries the hitchhiker within distance δ of the destination is then 1/p = O( 1

ρ ·
d
δ ).
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The same holds, within a small constant factor, when the hitchhiker is walking,
since the speed of cars relative to him will be between 1 + 1/P (for cars with
the same trajectory but opposite direction) and 1− 1/P (for cars with the same
trajectory and the same direction).

This is no longer true while riding, since the probability density of witness-
ing a ride depends on the angle its trajectory makes with the trajectory of the
current ride. In particular, the probability density of witnessing a ride with a
trajectory at an angle α < π

2 from that of the hitchhiker is ρ sin(α). Let x be
the current distance between the hitchhiker and the point of the ride closest
to the destination, d′ be the distance of this point from the destination. The
probability density of witnessing a ride that would take the hitchhiker within d′′

of the destination depends on the sine of the angle formed by the current tra-
jectory and the direction of destination (which for x > 2d′ can be approximated
by d′/x) and the angle formed by the circle of radius d′′ (which for x > 2d′ can
be approximated by d′′/x). Therefore, the hitchhiker witnesses approximately
ρ · d′′

x ·
d′
x rides per time unit that would carry him within distance d′′ of the

destination. While the current ride is still good (i.e. for d ≤ x ≤ 2d′), the to-
tal number of witnessed rides that would carry within d′′ of the destination is∫ d

d′ ρ · d′′
x ·

d′
x dx = Θ(ρd′′); and thus the best witnessed ride carries the hitchhiker

within an expected distance Θ(1/ρ). Once the ride is no longer good, the hitch-
hiker (now at distance Θ(d′) from the destination) has to wait or walk Θ( 1

ρ)
time units in expectation to witness a ride better than any ride seen so far.
Therefore, in expected O(d) time and O(1) legs, the hitchhiker reaches within
distance O(1/ρ) and, with an additional constant number of good legs (as we
will prove now), he reaches within distance 1/ρ from the destination.

Once within distance d = O(1/ρ) from the destination, the probability density
of witnessing a good ride is Θ(ρ). Then the expected time to witness a good ride is
O(1/ρ), while the ride time is Θ(d) = O(1/ρ), and therefore wait time dominates
travel time. This means that, while riding, the hitchhiker witnesses O(1) good
rides, and thus the best ride seen so far would carry him, in expectation, within a
distance from the destination which is a constant factor smaller than the current
distance. Therefore, the hitchhiker has to wait O(1/ρ) time units in expectation
to hop into the next ride, which halves its distance from the destination in
O(1/ρ) expected time and O(1) expected legs. The hitchhiker can then reach
within distance 1

Pρ of the destination in Θ(log(P )) legs and O(log(P )/ρ) time.
Once within distance 1

Pρ of the destination, walking to it requires time 1/ρ,
within a constant of that required to witness a ride.

In a nutshell, Theorem 1 says that a hitchhiker with only local information can
expect to make progress towards the destination at a speed within a constant
factor of that achievable with a private car, up to a distance 1

ρ from the desti-
nation - approximately the expected distance a car can travel before passing by
another car. Within that range, the hitchhiker’s effective speed drops propor-
tionally with the distance to the destination, until at range 1

Pρ it reaches within
a constant factor of walking speed.
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It is natural to ask whether a hitchhiker aware of all car traffic - rather than
only of that passing nearby - can reduce his travel time and/or the number of
legs he will need. We prove this is indeed the case in Section 4.

4 Hitchhiking with Global Information

This section examines strategies for a hitchhiker armed with global knowledge of
the position and destination of all cars that are currently moving. This could be
the case, for example, when a central authority continuously gathers all the traffic
information and provides directions to hitchhikers. It turns out that (unlike
the case of local information) with global information two-leg trips are always
asymptotically optimal, and indeed even one-leg trips are asymptotically optimal
except for a relatively narrow interval of source-destination distances.

4.1 One-Leg Trips

In these scenario, the hitchhiker attempts to reach his destination using at most
a single ride. His strategy is extremely simple. Armed with global knowledge of
car traffic, he can compute for each car the minimum time required to hop onto
it (by walking and/or waiting), ride on it, and finally walk to the destination.
He then chooses the car yielding the shortest time to the destination - unless,
of course, simply walking directly to the destination is faster. We can prove the
following:

Theorem 2. For d < 1√
Pρ

the hitchhiker moves at the pedestrian’s speed 1
P .

For 1√
Pρ
≤ d < P√

ρ , the hitchhiker moves at an effective speed Θ(
3√

d2

3√
d2+ 3
√

P 2/ρ
).

For d ≥ P√
ρ , the hitchhiker moves at an effective speed Θ(1).

Proof. Assume the hitchhiker is willing to spend t time units walking or waiting
around the source before hopping into a ride, and t time units walking to the
destination after hopping off the ride. He can walk a distance x ≤ t

P from a in
every direction, and then wait t − x time units; thus he witnesses t2ρ

P distinct
rides in expectation, and the fraction of rides that carry the hitchhiker to within
distance t/P from the destination, ensuring him a walk time no greater than t, is
proportional to t/P

d in expectation. Therefore the expected number of such rides

is t2ρ
P

t/P
d = t3ρ

P 2d ; when this quantity is 1, which holds for t = 3

√
P 2d

ρ , we have at
least a constant probability of witnessing a ride. This gives us the critical time
tc = 3

√
P 2d

ρ , i.e. the expected time to witness a useful ride.
We can now find the values of d which correspond to “phase transitions” in

the effective speed. For d small enough, the critical time tc dominates the time
dP required to walk to the destination: 3

√
P 2d

ρ ≥ dP , which gives d ≤ 1√
Pρ

.

Below this distance, the hitchhiker can at best move at speed 1
P by walking.



Urban Hitchhiking 73

For d large enough, the traveling time dominates the waiting time: d ≥ 3

√
P 2d

ρ ,

which gives d ≥ P√
ρ . Above this distance, the hitchhiker moves at an effective

speed Θ(1).
Between the two thresholds, i.e. for 1√

Pρ
≤ d < P√

ρ , the effective speed grows

as Θ( d
d+tc

) = Θ( d

d+ 3
√

P 2d/ρ
) = Θ(

3√
d2

3√
d2+ 3
√

P 2/ρ
).

According to Theorem 2, as the distance between source and destination in-
creases, the hitchhiker’s expected speed grows from walking speed to within a
constant factor of the unit speed achievable with a private car. In fact, we can
prove a stronger result: as the distance increases, the hitchhiker’s effective speed
tends to 1 with probability that also tends to 1:

Theorem 3. The hitchhiker moves at an effective speed ≥ 1 − k 3

√
P 2

d2ρ with

probability ≥ 1− e−k3
.

Proof. The total time spent by the hitchhiker is the sum of the traveling time
(which is approximately d) and the walking/waiting time (which is approxi-
mately t). When the former dominates the latter, the effective speed is approx-

imately d
d+t = 1 − t

d which, for t = ktc, becomes 1 − k 3
√

P2d
ρ

d = 1 − k 3

√
P 2

d2ρ .
According to the proof of the previous theorem, waiting a time t gives a proba-

bility of witnessing a ride of at least 1− e−
t3ρ

P2d = 1− e−k3 t3cρ

P2d = 1− e−k3
.

4.2 Two-Leg Trips

In this scenario, the hitchhiker can employ up to two rides to reach the desti-
nation. Again, the strategy is very simple. Armed with global knowledge of car
traffic, the hitchhiker computes for every pair of cars the shortest total time
required to reach the first, ride on it, walk to/wait for the second car, ride on it
and finally walk to the destination. It turns out that this does not reduce - com-
pared to the single ride case - the critical distance 1√

Pρ
at which the hitchhiker

is better off walking. However, at distances greater than that, two-leg trips yield
better effective speeds than one-leg trips. More specifically, we show that:

Theorem 4. For d < 1√
Pρ

the hitchhiker moves at the pedestrian’s speed 1
P .

For 1√
Pρ
≤ d <

√
P√
ρ , the hitchhiker moves at an effective speed Θ( d

d+
√

P/ρ
). For

d ≥
√

P√
ρ , the hitchhiker moves at an effective speed Θ(1).

Proof. Assume the hitchhiker is willing to spend t time units walking or waiting
around the source before hopping onto a car, t time units waiting for the second
ride once he leaves the first, and t time units walking to the destination after
dismounting from the second ride. As in the case of Theorem 2, the hitchhiker
witnesses t2ρ

P distinct rides around the source in expectation, and a constant
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fraction of these carry him within a constant angle from the source-destination
axis. Therefore the expected number of such rides is t2ρ

P ; when this quantity is 1,
which holds for t =

√
P/ρ, we have at least a constant probability of witnessing

a ride. This gives us the critical time tc =
√

P/ρ, i.e. the expected time to
witness a useful ride. Note that this holds also for a ride which travels towards
the destination, and thus with constant probability there will be two rides which
spatially intersect and give a feasible 2-leg solution.

We can now find the values of d which correspond to “phase transitions” in
the effective speed. For d small enough, the critical time tc dominates the time
dP required to walk to the destination:

√
P
ρ ≥ dP , which gives d ≤ 1√

Pρ
. Below

this distance, the hitchhiker can at best move at speed 1
P by walking. For d large

enough, the traveling time dominates the waiting time: d ≥
√

P
ρ , which gives

d ≥
√

P/ρ. Above this distance, the hitchhiker moves at an effective speed Θ(1).
Between the two thresholds, i.e. for 1√

Pρ
≤ d <

√
P/ρ, the effective speed grows

as Θ( d
d+tc

) = Θ( d

d+
√

P/ρ
).

Again, we can easily prove that, as the travel distance grows beyond the mini-
mum distance yielding effective speed Θ(1), the effective speed of the hitchhiker
converges to 1 with probability that also converges to 1 - and this convergence
is slightly faster than in the case of single rides:

Theorem 5. The hitchhiker moves at an effective speed ≥ 1 − k 3

√
P

d2ρ with

probability ≥ 1− e−k3
.

Proof. The total time spent by the hitchhiker is the sum of the waiting time t
and the traveling time ≤ d(1 + α), where α is the angle that the trajectories of
the legs form with the source-destination axis. We want dα ≈ t. This yields an

effective speed of approximately d
d+t = 1 − t

d = 1 −
k 3
√

Pd
ρ

d = 1 − k 3

√
P

d2ρ . The

expected number of rides within the angle is then t2ρ
P

t
d = t3ρ

Pd , and the critical

time to witness at least one becomes tc = 3

√
Pd
ρ ; therefore, when t = ktc, the

probability of witnessing at least one such ride is 1− e
k3t3cρ

Pd = 1− e−3.

Figure 2 summarizes the results of this Section, plotting effective speed as a func-
tion of the distance between source and destination, depending on whether the
hitchhiker is constrained to use at most one ride, or at most two rides. Note that,
when global traffic information is available, hitchhiking on three or more rides
cannot asymptotically improve effective speed: the time spent by the “two-leg”
hitchhiker (see Theorem 4) is the sum of two terms — the first asymptotically
equal to the time d necessary for a private car to reach the destination, and
the other asymptotically equal to the time Θ(

√
P
ρ ) necessary (even with full

knowledge of future car traffic) to find any car at all.
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Fig. 2. The hitchhiker’s expected effective speed as a function of the source-destination
distance in the case of one-leg trips (solid) and two-leg trips (dashed)

5 Conclusions

Urban hitchhiking - assuming a wide base of collaborating drivers - can be ex-
tremely efficient, particularly for long distances. A centralized infrastructure is
beneficial, but even without it a hitchhiker can advance towards the destination
at an effective speed within a small constant factor of that achievable with a
private vehicle, changing car only O(1) times - at least until he reaches within
a distance 1

ρ of the destination, i.e. within the average distance a car can drive
before encountering another car. Below this threshold the effective speed of a
hitchhiker with purely local information decreases proportionally to the distance
to the destination, until it reaches walking speed, and car changes become more
frequent.

An infrastructure providing information about all moving cars improves a
hitchhiker’s effective speed, allowing him to travel to the destination almost as
fast as with a private vehicle - and, importantly, changing cars at most once
- as long as he starts at a distance from the destination that is at least

√
P
ρ .

This distance is mean proportional between the average distance 1
ρ one can drive

before encountering another car, and the average distance P one can drive in
the time to walk the few meters of a “contact distance”. Thus, under realistic
choices of P and ρ, access to global traffic information allows one to travel almost
as efficiently through hitchhiking as through the use of a private vehicle when
moving more than a few hundred meters.
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This brief, preliminary work can be expanded in many directions. First, it
might be interesting to enrich the model to take into account that the source-
destination pairs might not be chosen uniformly, but perhaps according to some
“small world” power law distribution [7]; and that cars do not travel along
straight lines, but tend instead to concentrate along major traffic arteries. At
first glance, neither change significantly appears to affect our results, at most
making hitchhiking, especially without an infrastructure, slightly more efficient.
Much more interesting, however, would be validating our model and conclusions
on real traffic data; these are unfortunately hard to obtain, since very few sys-
tems keep track of the trajectories of large numbers of individual cars. Of course,
the ultimate test of our results would be an implementation of a dynamic ride-
sharing system based on them!
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Abstract. The way memory hierarchy has evolved in recent decades
has opened new challenges in the development of indexing structures in
general and spatial access methods in particular. In this paper we pro-
pose an original approach to represent geographic data based on compact
data structures used in other fields such as text or image compression. A
wavelet tree-based structure allows us to represent minimum bounding
rectangles solving geographic range queries in logarithmic time. A com-
parison with classical spatial indexes, such as the R-tree, shows that our
structure can be considered as a fun, yet seriously competitive, alterna-
tive to these classical approaches.

Keywords: geographic data, MBR, range query, wavelet tree.

1 Introduction

The ever-increasing demand for services that allow users to find the geographic
location of some resources in a map has emphasized the interest in the field of
Geographic Information Systems (GIS). The huge size of geographic databases
has made the development of spatial access methods one of the most important
topics of interest in this field. Even though many classical spatial indexes [7]
provide an excellent performance, the way the memory hierarchy has evolved
in recent decades has opened new opportunities in this topic. New levels have
been added (e.g., flash storage) and the sizes at all levels have been consider-
ably increased. In addition, access times in upper levels of the hierarchy have
decreased much faster than in lower levels. Thus, reducing the size of spatial
indexes is a topic of interest because placing these indexes in upper levels of the
memory hierarchy reduces access times considerably, in some cases by several
orders of magnitude. Nowadays it is feasible to place complete spatial indexes in
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main memory. Note that spatial indexes do not contain the real geographic ob-
jects but a simplification of them. The most common simplification is the MBR
(Minimum Bounding Rectangle).

In this paper we aim at the development of compact spatial indexes that
can be placed in upper levels of the memory hierarchy. We build on previous
solutions for two-dimensional points using a structure called a wavelet tree [9],
and generalize them to an index able of answering range queries on rectangle
data. Wavelet trees are interesting because they offer a compact-space solution
to various point indexing problems. In previous work [3] we presented a spatial
index for two-dimensional points based on wavelet trees. The generalization to
support queries over MBRs, which we present here, turns out to be a rather
challenging problem not arising in other domains where wavelet trees have been
used. Our experiments, featuring GIS-like scenarios, show that our index is a
relevant and funnier alternative to classical spatial indexes, such as the R-tree
[10], and that it can take advantage of the fashionable research in compressed
data structures.

2 Related Work

A great variety of spatial indexes have been proposed supporting the different
kinds of queries that can be applied to spatial databases (exact match, adjacency,
nearest neighbor, etc.). In this paper we focus on a very common kind of query,
named range query, on collections of two-dimensional geographic objects. The
problem is formalized as follows. In the 2-dimensional Euclidean space E2, we
define the MBR of a geographic object o, MBR(o) = I1(o)×I2(o) where Ii(o) =
[li, ui](li, ui ∈ E1) is the minimum interval describing the extent of o along the
dimension i. In the same way, we define a rectangle query q = [lq1, u

q
1]× [lq2, u

q
2].

Finally, the range query to find all the objects o having at least one point in
common with q is defined as RQ(q) = {o | q ∩MBR(o) �= ∅}.

The R-tree [10] is one of the most popular multidimensional access methods
used to solve range queries in GIS. It consists of a balanced tree “derived from the
B-tree” that decomposes the space into hierarchically nested, possibly overlap-
ping, MBRs. Object MBRs are associated with the leaf nodes, and each internal
node stores the MBR that contains all the nodes in its subtree. The algorithm to
solve range queries using this structure goes down the tree from the root visiting
those nodes whose MBR intersects the query window. Most of the numerous vari-
ants [13] of the original Guttman’s proposal aim at improving the performance of
the R-tree both in the general case and in particular applications (static collec-
tions). Two of these variants (the R*-tree [2] and the STR R-tree [12]) are used in
Section 4 to compare the performance of our proposal.

The problem of solving two-dimensional range queries on points has also been
tackled in other research fields. The seminal computational geometry work by
Chazelle [4] offers several space-time tradeoffs, including one that in two di-
mensions requires O(N log U) bits of space and answers range queries in time
O(log N + k logε N), where N is the total number of points in [1, U ]× [1, U ], k
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is the output size, and 0 < ε < 1 is a constant affecting memory consumption.
The wavelet tree [9] can be regarded as a compact version of Chazelle’s data
structure, which requires exactly N log2 U + o(N log U) bits to index N points
in the range [1, U ]. Recently [3], we adapted the basic approach where the points
form a permutation to handle an arbitrary set of points in a continuous space,
following Gabow’s arguments [6].

A basic tool in compact data structures is the rank operation: given a sequence
S of length N , drawn from an alphabet Σ of size σ, ranka counts the occurrences
of symbol a ∈ Σ in S[1, i]. The dual operation, selecta(S, i), finds the i-th
occurrence of a symbol a ∈ Σ in S. For the special case Σ = {0, 1} (S is a bit-
vector B), both rank and select operations can be implemented in constant time
and using little additional space on top of B (o(n) in theory [14,8]). For example,
given a bitmap B = 1000110, rank0(B, 5) = 3 and select1(B, 3) = 6. In addition,
the symbol a can be extended to a finite number of sequences with similar
techniques. For instance, given two bitmaps B = 1000110 and C = 0011010,
rank00(B, C, 7) = 2 and select00(B, C, 1) = 2 (00 represents occurrences of the
symbol 0 in both bitmaps simultaneously).

3 Our Fun Structure

In this section we introduce our technique for range queries on MBRs. Recall
our formal definition of the problem from the previous section. The following,
easy to verify, observation provides a basis for our next developments. It says,
essentially, that an intersection between a query q and an object o occurs when,
across each dimension, the query finishes not before the object starts, and starts
not after the object finishes.

Observation 1. o ∈ RQ(q) iff ∀i, uq
i ≥ li ∧ lqi ≤ ui.

3.1 Index Construction

In the upcoming discussion, we assume that the first dimension represents the
rows of the grid (y-axis or latitudes) and the second represents the columns (x-
axis or longitudes). Assume now the set of MBRs g = {m1,. . . ,mN} does not
contain any MBR mi whose projection in the x-axis is within the projection over
the x-axis of other MBR mj in the set (i.e., ∀i, j if li2 < lj2 then ui

2 ≤ uj
2). We

name g a maximal set and describe now a structure to represent a maximal set of
MBRs. If the set of MBRs is not a maximal set, the problem can be decomposed
into k independent maximal sets (see Section 3.4).

Then, let N be the number of MBRs in a maximal set, each one described
by two pairs {(l1,l2),(u1,u2)} (the coordinates of two opposite vertices). These
MBRs can be represented in a 2N × 2N grid with only one point in each row
and column. Gabow et al. [6] proved that the orthogonal nature of the problem
makes possible to work with the ranks of the coordinates instead of working with
the coordinates themselves.
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Fig. 1. Representing N MBRs using a wavelet tree

A wavelet tree with �log2 2N� can be used to store this matrix (the permu-
tation from the order of the MBRs in the x-axis to their order in the y-axis)
with little storage cost (Figure 1). This is a binary tree where each node covers
a range of positions in the Y lY u array that represents the first half of the range
covered by its parent, in the case of a left child, and the second half in the case
of a right child. The range covered by the root node is [1,2N ].

Each node in the tree stores two bitmaps B1 and B2 of the same length, and
each position in these bitmaps corresponds with a MBR (in the figure, these
positions have been annotated with the identifier of the corresponding MBR).
The MBRs in each node are ordered by the x-axis. Let MBRi be the MBR
stored at the position i of a node, bB1

i the bit i in the bitmap B1, and bB2
i the

bit i in the bitmap B2. Then, bB1
i = 1 if the MBRi is processed in the left

child and bB2
i = 1 if MBRi is processed in the right child. A MBR is processed

in a node if, in the y-axis, it finishes not before the range covered by the node
starts, and starts not after the range covered by the node finishes. Let lB and
uB be the lower and upper bounds of the range covered by a node in Y lY u,
then Equations 1 and 2 define the value of the bit i of this node in the first
and second bitmap respectively. Note that a MBR can be processed in both the
left and right child of a node and thus both bB1

i and bB2
i can store the value 1

simultaneously.

bB1
i =

{
1 if lMBRi

1 ≤ lB+uB
2

0 otherwise
(1) bB2

i =
{

1 if uMBRi
1 > lB+uB

2
0 otherwise

(2)

We also need to store the real coordinates of the MBRs to perform the translation
from the geographic space to the rank space. The order of the lower (X l) and
upper (Xu) coordinates in the x-axis is the same because we assume the matrix
represents a maximal set. Thus, we use two sorted arrays with the lower (X l) and
upper (Xu) x-coordinates and an array storing the identifiers of the MBRs in the
same order. Y-coordinates are stored also in an ordered array, Y lY u, containing
both lower (Y l) and upper (Y u) y-coordinates. Each position in the Y lY u array
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of the figure has been annotated with the identifier of the corresponding MBR
for clarity, but these identifiers are not stored.

As such, this structure may require quadratic space, however. The reason is
that a MBR with a large extent in y can be represented in a linear number of
nodes at the same level. In order to solve this problem Equation 3 presents a
slight modification in the way the structure is created. When a MBRi completely
contains the range covered by the node both bitmaps store a 0 in the position i,
and thus, this MBR is not stored in the nodes of this subtree. Then each MBR
can be stored at most four times per level and we can guarantee logarithmic
bit-space per MBR.

bB1
i = bB2

i =
{

0 if (lMBRi
1 ≤ lB) and (uMBRi

1 ≥ uB)
use (1) and (2) otherwise

(3)

3.2 Solving Queries

This structure can be used to solve range queries in the rank space derived
from the translation of the original queries in the geographic space using the
ordered arrays of coordinates (X l, Xu, and Y lY u). A leftSearch(S, ti) finds
the lowest si ≥ ti in an ordered array S by means of a binary search. In a
similar way, a rightSearch(S, ti) returns the largest si ≤ ti. Thus, a query in the
geographic space q = [yl, yu]×[xl, xu] is translated into the equivalent query q′ =
[y′

l, y
′
u]× [x′

l, x
′
u] (y′

l = leftSearch(Y lY u, yl), y′
u = rightSearch(Y lY u, yu), x′

l =
leftSearch(Xu, xl), and x′

u = rightSearch(X l, xu)) in the rank space (yes, the
upper x coordinates of the MBRs are searched for the lower x coordinate of the
query, and vice versa). For example, the query q = [2.0, 2.75]×[2.0, 3.5] translates
into q′ = [4, 5]×[3, 5] (leftSearch(Y lY u, 2.0) = 4, rightSearch(Y lY u, 2.75) = 5,
leftSearch(Xu, 2.0) = 3, and rightSearch(X l, 3.5) = 5).

Algorithm 1 shows the recursive method to solve range queries once they have
been translated into the rank space. The interval [x′

l, x
′
u] determines the valid

range inside the root node of the wavelet tree and the interval [y′
l, y

′
u] determines

nodes that can be pruned (because the wavelet tree maps from the order in the
x-axis to the order in the y-axis). This algorithm recursively projects a range,
[x′

l, x
′
u] at the beginning, onto the child nodes using rank1 operations over the

two different bitmaps. The first bitmap B1 is used to project onto the left child
and the second bitmap B2 is used to project onto the right child. The recursive
traversal stops when the result of the two child nodes has been computed. Note
that the same MBR can be reported by both child nodes but no repeated results
should be reported by their parent node. Thus, the results of both siblings are
merged to compute the result of their parent node. In addition, there can be local
results in a node corresponding with MBRs that completely contain the range
covered by the node (i.e., all the MBRs in a position i where bB1

i = bB2
i = 0),

which are added to the result in the merge stage.
Figure 1 highlights the nodes visited to solve the query of the example q =

[2.0, 2.75] × [2.0, 3.5]. As we noted before, this query is translated into the
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Algorithm 1. Range query algorithm in the rank space.
Require: cNode,pmin,pmax,lB,uB; current node, valid node positions [pmin,pmax],

query range [lB,uB]
result ← []; leftResult ← []; rightResult ← []; localResult ← []
if cNode.range ⊆ [lB, uB] then

for i = pmin to pmax do
add i to localResult

end for
else

if cNode.leftChild.range ∩ [lB, uB] �= ∅ then
leftResult ← recursive call with:

pmin ← rank1(cNode.B1, pmin − 1) + 1
pmax ← rank1(cNode.B1, pmax)
cNode ← cNode.leftChild

end if
if cNode.rightChild.range ∩ [lB, uB] �= ∅ then

rightResult ← recursive call with:
pmin ← rank1(cNode.B2, pmin − 1) + 1
pmax ← rank1(cNode.B2, pmax)
cNode ← cNode.rightChild

end if
for i = rank00(cNode.B, pmin − 1) + 1 to rank00(cNode.B, pmax) do

add select00(cNode.B, i) to localResult
end for

end if
for all lR ← leftResult.next(),j ← rightResult.next(),k ← localResult.next() do

merge(select1(cNode.B1, i), select1(cNode.B2, j), k)
end for
return result

ranges [3, 5] (valid positions in the root node) and [4, 5] (interval to prune the
tree traversal). The first range is projected onto the child nodes of the root
node as [rank1(B1, 3 − 1) + 1, rank1(B1, 5)] = [2, 4] and [rank1(B2, 3 − 1) +
1, rank1(B2, 5)] = [3, 4] but the second one is not accessed because it covers the
range [9,16] which does not intersect the query range [4,5]. In the same way
the range [2, 4] of the left child is projected onto its children as [rank1(B1, 2 −
1) + 1, rank1(B1, 4)] = [1, 1] and [rank1(B2, 2− 1) + 1, rank1(B2, 4)] = [2, 4]. In
the next level, the first node accessed is the second one that covers the range
[3,4]. The result of this node comes from the local result that is computed in
this way: there is one local result (because rank00(B, 1) = 1) that is at the
position 1 (because select00(B, 1) = 1). When the recursive call returns the con-
trol to the parent of this node, its result is computed using the merge of the
left child result (an empty set), the right child result (select1(B2, 1) = 1) and
the local result (an empty set). In the parent of this node, there are no local
results and the left result ([1]) and right result ([2]) reference the same MBR
(select1(B1, 1) = select1(B2, 2) = 2). Finally, in the root node the result comes
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from the left child and it is computed as select1(B1, 2) = 3. Note that the MBR
at position 3 is b, the result of the query.

3.3 Coordinate Encoding

We introduce a compressed storage scheme to store the ordered arrays of coor-
dinates (X l, Xu, and Y lY u). We assume that these coordinates can be repre-
sented with four bytes, which is sufficient for the finite precision used in GIS.
Geographic coordinates can be represented in degrees or meters and in most
cases it is possible to round the coordinates to integer values, after appropriate
scaling, without losing any precision. We make use of this assumption, as it holds
in most practical applications.

Let A = a1a2 . . . aN be one of the arrays of integers to encode. Then, we
encode A as a sequence of non-negative differences between consecutive values
bi+1 = ai+1 − ai and b1 = a1. Let B = b1b2 . . . bN be this sequence, so that
ai =

∑
1≤j≤i bj . The array B is a representation of A that can be compressed by

exploiting the fact that consecutive differences are smaller numbers. These small
numbers can be encoded with different coding algorithms. We compare four
different well-known coding algorithms [15]: Elias-Gamma, Elias-Delta, Rice,
and VBytes.

Given a value v, we are interested in finding the largest ai ≤ v and the
lowest ai ≥ v. These operations are the rightSearch and leftSearch described
in Section 3.2. In order to solve them efficiently we store a vector that stores the
accumulated sum at regularly sampled positions (say every hth position, thus
the vector stores all values xi·h). The search algorithm first performs a binary
search in the vector of sampled sums, and then it carries out a sequential scan
in the resulting interval of B.

3.4 Decomposition into Maximal Sets

In the general case, a maximal set is not enough to properly encompass the
dataset but k maximal sets are needed. Each such set must be queried separately.
We use a single shared Y lY u array for all of them, to reduce the number of
binary searches. Thus the query time complexity can be bounded by O(k log N).
Therefore, minimizing the number of maximal sets k is a key factor to improve
the performance of our structure.

We can in fact decompose a general set of MBRs into the optimal number k
of maximal sets, at indexing time, within O(N log N) complexity, as follows. We
first order the MBRs by the left x-axis value, and process them in that order.
We start with an empty set of maximal sets, which is kept sorted by rightmost
x value in the set. Each new segment can be inserted into any such maximal set
whose rightmost value does not exceed the rightmost x value of the new segment.
From those, we search the one with maximum rightmost value. If no candidate
exists, the new segment creates its own new maximal set.

This solution is not new. It is well known to find the longest increasing subse-
quence in a stream of numbers, and is also related to the problem of decomposing
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a permutation Π over {1 . . .N} into the minimum number of Shuffled (i.e., not
consecutive) UpSequences [1] (the rightmost values of the MBRs correspond to
the permutation values). Our algorithm is equivalent to Fredman’s [5] one to
find the optimal number of Shuffled UpSequences.

4 Experiments

Our machine is an Intel Core2Duo with two processors Intel Pentium 4 CPU
3.00GHz, with 4GB of RAM. It runs GNU/Linux (kernel 2.6.27). We compiled
with gcc version 4.3.2 and option -O9. Both synthetic and real datasets were used
in our experiments. The three synthetic collections have one million MBRs each,
the first one with a uniform distribution, the second one with a Zipf distribution
(world size = 1000× 1000, ρ = 1), and the third one with a Gauss distribution
(world size = 1000×1000, μ = 500, σ = 200). We created four query sets for each
dataset, with different selectivities that represent 0.001%, 0.01%, 0.1%, and 1%
of the area of the space where the MBRs are located. They contain 1,000 queries
with the same distribution of the original datasets and the ratio between the
horizontal and vertical extensions varies uniformly between 0.25 and 2.25. The
algorithm generating these query sets is based on the one used in the evaluation of
the R*-tree [2]. The first real collection, named Tiger dataset, contains 2,249,727
MBRs from California roads and it is available at the U.S. Census Bureau1. In
addition, six smaller real collections available at the same place were used as
query sets: Block (groups of buildings), BG (block groups), AIANNH (Ameri-
can Indian/Alaska Native/Native Hawaiian Areas), SD (elementary, secondary,
and unified school districts), COUSUB (country subdivisions), and SLDL (state
legislative districts). The second real collection, named EIEL dataset, contains
569,534 MBRs from buildings in the province of A Coruña, Spain2. Five smaller
collections available at the same place were used as query sets: URBRU (urban-
ized rural places), URBRE (urbanized residential places), CENT (population
centers), PAR (parishes), and MUN (municipalities).

4.1 Coordinate Encoding

Coordinate encoding does not have a key influence in search time performance
(these arrays are only used to translate the queries from the geographic space to
the rank space). Thus we can tolerate a small loss in performance in exchange
for better compression. We performed experiments with four coding algorithms
(Elias-Gamma, Elias-Delta, Rice, and VBytes) and five sampling rates h. Figure
2 shows the results of these experiments in the Zipf, Tiger, and EIEL datasets
respectively. Query sets contained 1,000 uniformly distributed queries in the
surface covered by each dataset with a selectivity that represents the 0.01% of
the area. The four lines correspond to the coding algorithms and each point in
these lines represents a different sampling rate (10, 50, 100, 1,000 and 10,000 are
the different h values from left to right).
1 http://www.census.gov/geo/www/tiger
2 http://www.dicoruna.es/webeiel
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Fig. 2. Influence of the coordinate encoding

All the coding algorithms provide a good compression rate (the size is sig-
nificantly lower than the 4 bytes per coordinate necessary without encoding).
Elias-Gamma and Elias-Delta provide the best performance when the differ-
ences are very small (e.g., Zipf dataset), but their performance is quite worse
in the EIEL dataset where the differences are larger. VBytes coding provides
better time performance than the rest of the algorithms but its compression rate
is not competitive. Note that VBytes works at the byte level whereas the rest
work at the bit level. Hence, Rice coding can be identified as the algorithm that
offers a better space/time trade-off in the majority of the situations. In addition,
an interval of sampling rates providing an optimal space/time trade-off can be
identified around 500. In the rest of the experiments we use a sampling rate
h = 500 and a preprocessing stage to choose the best coding algorithm.

4.2 Space Comparison

We compare now our structure with two variants of the R-tree in terms of space
needed to store the structure. The space needed by an R-tree over a collection
of N MBRs can be estimated considering a certain arity (M). Dynamic versions
of this structure, such as the R*-tree, estimate that nodes are 70% full whereas
static versions, such as the STR R-tree, assume that nodes are full. Therefore,
an R*-tree needs N

0.7×M−1 nodes and an STR R-tree needs N
M−1 nodes. Each

node needs M × sizeof(entry) bytes. The size of an entry is the size of an MBR
plus a pointer to the child (or to the data if the node is a leaf). In order to
compare these variants with our structure we assume that MBRs are stored in
16 bytes (4 coordinates with numbers of 4 bytes) and the pointer in 4 bytes.
Hence, the total size of an R*-tree is N

0.7×M−1 × 20×M whereas the size of an
STR R-tree is N

M−1 × 20×M . In our experiments the best time performance of
the R*-tree and STR R-tree is achieved with an effective M value of 30. Note
that the coordinates stored by the R-tree are not sorted, thus it is not possible
to apply our differential encoding.

On the other hand, our structure stores the encoded coordinates of the N
MBRs, their identifiers (N 4-byte numbers) and the wavelet tree bitmaps (see
grayed data in Figure 1). The wavelet tree needs �log2 2N� levels but the number
of times a MBR appears in each level is not constant (four times per level is a
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pessimistic upper bound). In addition, in order to perform rank operations in
constant time, some auxiliary structures are needed that use an additional space.
In our experiments we use the classical two-level solution to perform rank1 and
select1 over the bitmaps B1 and B2 (37.5% in addition to the bitmaps) and a
simpler one level solution to perform rank00 and select00 over the virtual double
bitmap that is composed of B1 and B2 (an additional 5%). A description and
empirical comparison of these solutions can be found in [8]. As well as the size
of the wavelet tree the effectiveness of the coordinates compression also varies
across datasets, so we show the results for each dataset in Figure 3.
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Fig. 3. Space comparison

These results show that our structure, named SW-tree (from spatial wavelet
tree) in the graphs, can index collections of MBRs in less space than the R*-tree
in both synthetic and real scenarios, and it also needs less space than the STR
R-tree in real scenarios and a comparable space in synthetic ones. This is due
to the compressed encoding of the coordinates and the little space required by
the wavelet tree.

4.3 Time Comparison

To perform the time comparison we implemented our structure as described in
Section 3 and used the R-tree implementation provided by the Spatial index
library [11]. This library provides several implementations of R-tree variants
such as the R*-tree and the STR packing algorithm to perform bulk loading.
In addition, all these variants can run in main memory. In our experiments we
run both the R*-tree and the STR R-tree in main memory with a load factor
M = 30.

We first perform experiments with the three synthetic collections. Figures
4(a), 4(b), and 4(c) show the results obtained with uniform data, Gauss dis-
tributed data, and Zipf distributed data, respectively. The main conclusion that
can be extracted from these results is that our structure is competitive with
respect to query time efficiency. It outperforms both variants of the R-tree with
the uniform dataset. In the other two datasets the performance of the three
structures is very similar. The R-tree variants outperform our structure when
the queries are very selective and in less selective queries the results are the
opposite.
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Fig. 4. Time comparison in three synthetic datasets with different distributions

Finally, we present the results with the two real datasets. Figures 5(a) and 5(b)
present the results with the Tiger and EIEL datasets respectively. In these graphs
the real query sets have been sorted accordingly with their selectivity (from left
to right the query selectivity is looser). Note that all of them are meaningful
queries. For example, in the EIEL dataset the query set CENT contains queries
of the form which buildings are contained in the population center X. In the same
way as Zipf and Gauss datasets the performance of the three structures is quite
similar. Our structure outperforms both R-tree variants in less selective queries
and it is less competitive in the more selective ones.
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Fig. 5. Time comparison in two real datasets

5 Further Fun

The minimum number k of maximal sets that cover the MBRs can be thought
of the difficulty of the problem, thus our O(k log N) time query algorithm is
adaptive to this difficulty. Yet, the situation is indeed more complex (and fun).
As a simple example, the number could be different if we rotated the data. For
example, in the TIGER data set, we obtain 19 maximal sets in the x-axis and 36
in the y-axis. This difference is also reflected in the query time performance (for
example, using the Block query set, the time is almost the double in the second
option). A finer consideration is as follows. Assume N1, N2, . . . , Nk are the sizes
of the k maximal sets. Then,

∑
Ni�log Ni� is the space necessary to store the

wavelet tree that solves the queries in
∑
�log Ni� time. This is interesting because

the space is a convex function whereas the time is a concave function. Therefore,
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balancing the number of elements in the maximal sets improves the size of the
structure whereas the opposite improves the query time performance. Hence,
we can design heuristics to create the maximal sets based on this tradeoff. For
example, the algorithm to create the maximal sets decomposition can choose
the set that, without violating the constraints, contains fewer/more elements,
minimizes Ni�log Ni�, etc. Finally, the analysis of the query time performance
can be refined by defining the complexity of the problem k as the number of
maximal sets accessed to solve a query (and not all the maximal sets necessary to
represent the dataset). In this case, heuristics that minimize the overlap between
maximal sets can improve the query time performance. This leads us to a band-
decomposition of the space very typical in some packing algorithms for spatial
indexes.
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Abstract. Given a string s, the Parikh vector of s, denoted p(s), counts
the multiplicity of each character in s. Searching for a match of Parikh
vector q (a “jumbled string”) in the text s requires to find a substring
t of s with p(t) = q. The corresponding decision problem is to ver-
ify whether at least one such match exists. So, for example for the al-
phabet Σ = {a, b, c}, the string s = abaccbabaaa has Parikh vector
p(s) = (6, 3, 2), and the Parikh vector q = (2, 1, 1) appears once in s in
position (1, 4). Like its more precise counterpart, the renown Exact String
Matching, Jumbled Pattern Matching has ubiquitous applications, e.g.,
string matching with a dyslectic word processor, table rearrangements,
anagram checking, Scrabble playing and, allegedly, also analysis of mass
spectrometry data. We consider two simple algorithms for Jumbled Pat-
tern Matching and use very complicated data structures and analytic
tools to show that they are not worse than the most obvious algorithm.
We also show that we can achieve non-trivial efficient average case behav-
ior, but that’s less fun to describe in this abstract so we defer the details
to the main part of the article, to be read at the reader’s risk. . . well, at
the reader’s discretion.

1 Prologue

Last month, I happened to organize a workshop at my university. We ended up
being 20 people, so, for a little social dinner, I decided to call a friend who owns
a restaurant in town, and asked him to prepare a table for 20 people.

My friend, who always likes to make jokes, decided to tease me a bit and on
arrival at the restaurant we found a table laid for 100 people. However, instead
of having exactly one fork, one knife, and one spoon at each plate, my friend
� Part of this work was done while F.C. and Zs.L. were visiting the Alfréd Rényi

Institute of Mathematics in Budapest, Hungary, within the EU Marie Curie Transfer
of Knowledge project “Hungarian Bioinformatics (HUBI).”
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had put all the 300 pieces of cutlery 3 by 3 but completely at random. I was
about to faint. What would my scholarly friends think of me! What a horrible
impression they would get of my country’s hospitality! So I hurried to my friend
and told him to solve the problem immediately. I said, “unless you find a way
to have us all sit next to each other, we are all going to McDonald’s!”

My friend got pale at the prospect of losing 20 customers, but did not lose his
spirit. He knew we were computer scientists, so, “in order to speed up things,”
he said, “please quickly check whether there are 20 consecutive places where you
can find 20 knives, 20 forks and 20 spoons, and I will proceed to rearrange them
properly.” Of course we found the task amusing, and we ended up spending the
rest of the evening discussing the following article . . . .

2 Definitions and Problem Statement

Caveat: Since this is a fun paper on jumbled pattern matching, the paper itself
is also jumbled. Readers who prefer a more classic structure are advised to read
Section 6 first, which details motivations and related work.

Given a finite ordered alphabet Σ = {a1, . . . , aσ}, a1 ≤ . . . ≤ aσ. For a string
s ∈ Σ∗, s = s1 . . . sn, the Parikh vector p(s) = (p1, . . . , pσ) of s defines the
multiplicities of the characters in s, i.e. pi = |{j | sj = ai}|, for i = 1, . . . , σ. For
a Parikh vector p, the length |p| denotes the length of a string with Parikh vector
p, i.e. |p| =

∑
i pi. An occurrence of a Parikh vector p in s is an occurrence of a

substring t with p(t) = p. (An occurrence of t is a pair of positions 0 ≤ i ≤ j ≤ n,
such that si . . . sj = t.) A Parikh vector that occurs in s is called a sub-Parikh
vector of s. The prefix of length i is denoted pr(i) = pr(i, s) = s1 . . . si, and the
Parikh vector of pr(i) as prv(i) = prv(i, s) = p(pr(i)).

For two Parikh vectors p, q ∈ N
σ, we define p ≤ q and p + q component-wise:

p ≤ q if and only if pi ≤ qi for all i = 1, . . . , σ, and p + q = u where ui = pi + qi

for i = 1, . . . , σ. Similarly, for p ≤ q, we set q − p = v where vi = qi − pi for
i = 1, . . . , σ.

Jumbled Pattern Matching (JPM). Let s ∈ Σ∗ be given, |s| = n.
For a Parikh vector q ∈ N

σ (the query), |q| = m, find all occurrences
of q in s. The decision version of the problem is where we only want to
know whether q occurs in s.

We assume that K many queries arrive over time, so some preprocessing may
be worthwhile.

Note that for K = 1, both the decision version and the occurrence version can
be solved worst-case optimally with a simple window algorithm, which moves a
fixed size window of size m along string s. Maintain the Parikh vector c of the
current window and a counter r which counts indices i such that ci �= qi. Each
sliding step costs either 0 or 2 update operations of c, and possibly one incre-
ment or decrement of r. This algorithm solves both the decision and occurrence
problems and has running time Θ(n), using additional storage space Θ(σ).
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Precomputing, sorting, and storing all sub-Parikh vectors of s would lead to
Θ(n2) storage space, since there are non-trivial strings with a quadratic number
of Parikh vectors over arbitrary alphabets [11]. Such space usage is unacceptable
in many applications.

For small queries, the problem can be solved exhaustively with a linear size
indexing structure such as a suffix tree, which can be searched down to length
m = |q| (of the substrings), yielding a solution to the decision problem in time
O(σm). For finding occurrences, report all leaves in the subtrees below each
match; this costs O(M) time, where M is the number of occurrences of q in s.
Constructing the suffix tree takes O(n) time, so for m = o(log n), we get a total
runtime of O(n), since M ≤ n for any query q.

3 Decision Problem in the Binary Case

In [10], an algorithm (Interval Algorithm) was presented which solved the deci-
sion problem on binary alphabets in constant time per query, using linear storage
space. However, it needed Θ(n2) time for the preprocessing phase. In this section,
we improve that preprocessing time to O(n2/ logn). We first recall the Interval
Algorithm, which makes use of the following property of binary strings:

Lemma 1 ([10], Lemma 3). Let s ∈ {a, b}∗ with |s| = n. Fix 1 ≤ m ≤ n. If
the Parikh vectors (x1, m − x1) and (x2, m − x2) both occur in s, then so does
(y, m− y) for any x1 ≤ y ≤ x2.

This means that the Parikh vectors of substrings of s of length m build a set of
the form {(x, m−x) | x = pmin(m), pmin(m)+1, . . . , pmax(m)} for appropriate
pmin(m) and pmax(m). The algorithm computes these values in a preprocess-
ing step; then, when a query q = (x, y) arrives, it answers yes if and only if
x ∈ [pmin(x + y), pmax(x + y)]. The query time is O(1). We now show how
to reduce the preprocessing problem to a (min,+)-convolution problem, giving
subquadratic running time.

Let x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) be two real vectors. The
(min,+)-convolution, minimum convolution or simply min-convolution of x and
y is the vector z = x� y = (z0, z1, . . . , z2n) with zm = min(xi + ym−i), where the
minimum is taken over all possible values of i . (Standard convolution or (+, ·)-
convolution is obtained if min is replaced by

∑
and xi + ym−i by xi · ym−i.) We

note that there are variants of the definition, e.g. the index m− i is sometimes
understood mod n or z is of the same length as x and y. These are easily reducible
to each other.

Min-convolution has first been used in optimization problems [3], but it also
has applications in computer vision and signal processing [2], sequence align-
ment [13] and sequential data analysis [15]. The currently known best algorithm
(in worst-case sense and in the RAM model) was introduced in [7] and runs in
slightly subquadratic time: O(n2/ log n). This algorithm reduces min-convolution
to a problem in computational geometry, that of finding dominating pairs, which
is discussed and analyzed in [9].
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We briefly describe how the problem of determining the values pmin(m) and
pmax(m) for m = 1, 2, . . . , n can be reduced to min-convolution. Let s be a
string of length n, and let xi be the number of characters a in pr(i), yn−i = −xi

for i = 0, 1, . . . , n. Then

pmin(m) =
n−m
min
i=0

(xi+m − xi) =
n−m
min
i=0

(xi+m + yn−i) = zn+m , (1)

where z = x � y. The maximum can be calculated analogously.
In order to make the presentation self-contained, we also describe the problem

of finding dominating pairs, and how min-convolution can be solved by it. For
the analysis of running times, we refer to [9,7].

An instance of the dominating pairs problem consists of a red set and a blue
set of points in d-dimensional space as input, and asks for all pairs of points
(α, β), where α is red and β is blue and α ≤ β componentwise, that is αi ≤ βi

for i = 1, 2, . . . , d. Chan [9] solves the problem with the following divide-and-
conquer algorithm. If there is only one point, there’s nothing to do. If d = 0, then
all red-blue pairs are dominating. Otherwise calculate the median ζ of the d-th
coordinates of all points and divide red and blue points into left and right sets
Rl, Rr and Bl, Br according to the relationship of their d-th coordinates to ζ.
Finally, solve the problem recursively for Rl∪Bl, Rr ∪Br and for the projection
of Rl ∪Br to the first d− 1 coordinates. It turns out that for any ε ∈ (0, 1) the
running time of the algorithm is O(cd

εn
1+ε +D), where n is the number of input

points, D is the number of dominating pairs, and cε = 2ε/(2ε − 1).
Let x and y be two vectors whose min-convolution has to be computed. Fix d

(to be defined later). For each δ ∈ {0, 1, . . . , d− 1} we define a dominating pairs
problem for the following set of red and blue points:

R = {αi = (xi+δ − xi, xi+δ − xi+1, . . . , xi+δ − xi+d−1) | i = 0, d, . . . , �n/dd}
B = {βj = (yj − yj−δ, yj−1 − yj−δ, . . . , yj−d+1 − yj−δ) | j = 0, 1, . . . , n}

For indices out of range, take the components of x and y to be ∞. We get a domi-
nating pair (αi, βj) if and only if xi+δ +yj−δ ≤ xi+k +yj−k for k = 0, 1, . . . , d−1.
We collect all dominating pairs for all δ. Then, in the min-convolution calcula-
tion of zi+j only those values xi+δ +yj−δ have to be considered that come from a
dominating pair. For each pair (i, j) (i a multiple of d and j arbitrary), only one
such δ exists1, therefore we gain a factor of d in the calculation of the minima.
Choosing d = log2 n/2 gives an overall running time of O(n2/ log n).

Example 2. Let the two characters of the alphabet be a and b, and let s = aabba.
Then x = (0, 1, 2, 2, 2, 3), y = (−3,−2,−2,−2,−1, 0). We agree on breaking
ties the following way: if xi + yj = xi′ + yj′ , i + j = i′ + j′, then xi + yj is
considered smaller if and only if i < i′. For the presentation we choose d =
3. For δ = 0 we list the red and blue sets R = {(0,−1,−2), (0, 0,−1)} and
B = {(0,∞,∞), (0,−1,∞), (0, 0,−1), (0, 0, 0), (0,−1,−1), (0,−1,−2)}. The

1 We assume that ties are broken in a consistent manner.
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dominating pairs (i + δ, j− δ) are {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (3, 0),
(3, 2), (3, 3)}. For δ = 1 the dominating (i + δ, j − δ) are {(4, 0), (4, 3), (4, 4),
(4, 5)} and for δ = 2, {(5, 5)}. We then calculate z based on these pairs. For
example, z5 = min{x0 + y5, x3 + y2} = 0 and z7 = min{x4 + y3} = 0. Thus,
for the computation of pmin(2) = z7, we needed to consider only 1 sum instead
of 4 acc. to 1, namely z7 = min{x2 + y5, x3 + y4, x4 + y3, x5 + y2}. We get
z = (−3,−2,−2,−2,−1, 0, 0, 0, 1, 2, 3). We conclude that pmin(m) = 0, 0, 1, 2, 3
for m = 1, 2, 3, 4, 5. Note that if needed, the corresponding positions can be
obtained.

In [10] it was conjectured that no subquadratic algorithm for this preprocessing
phase exists. Informally, the reason to believe so was that if one computes the
minimum for a single value m, the optimal running time is trivially linear (be-
cause one has to read the string), and knowing the minimum for one value does
not give any useful information for the others. There is, however, some locality
in the problem: if the substring si . . . si+m−1 has at least pmin(m)+2 characters
equal to a, then it is not the position for a minimal substring of length m + 1
either. This is the kind of locality that is exploited in the above algorithm. The
logarithmic gain is too small for most practical applications, however. It remains
open if an O(n2−ε) algorithm exist for the calculation of pmin and pmax.

4 General Alphabets

An algorithm for the general case was presented in [10], whose expected running
time was shown to be O(n( σ

log σ )1/2 log m√
m

), using O(n) space, with preprocessing
time O(n). In this section, we show how to use wavelet trees to implement this
algorithm, and thus improve the average runtime to O(n( σ

log σ )1/2 1√
m

), mak-
ing it competitive with the window algorithm as soon as m = ω(σ/ log σ), i.e.
in practically all cases. Space requirements and preprocessing time remain the
same.

4.1 The Jumping Algorithm

We give a brief explanation of the algorithm. For an illustration and the pseu-
docode, refer to Figs. 1 and 2.

Recall that prv(j) = p(s1 . . . sj) is the Parikh vector of the prefix of s of length
j. The algorithm makes use of the simple observation that q has an occurrence at
position (i+1, j) if and only if prv(j)−prv(i) = q. Imagine moving two pointers
L and R along s, which point to these potential positions i and j. We alternate
in updating L and R: In each update, either L or R is moved to the right. The
invariant is that p(R − L) ≥ q after each update of R, and p(R − L) ≤ q after
each update of L (Lemma 2 of [10]). We need the following function:

firstfit(p) := min{j | prv(j) ≥ p}. (2)

The update rules are as follows:
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– update R: Both prv(L) and q must fit before the new positions of R, so move
R to the first index j s.t. prv(j) ≥ prv(L)+q. So R ← firstfit(prv(L)+q).

– update L: L ← L + 1 if a match was found, else:
Some characters of p(R−L) are unnecessary and have to be accommodated
before the new position of L: L ← firstfit(prv(R) − q).

After each update of R or L, we check whether there is a match by checking
whether R−L = |q|. This is correct due to the invariants above. So no matching
or accessing the string s is ever done. The complexity of the algorithm depends
on how the functions prv(j) and firstfit are implemented.

Example 3. Consider the string s = bbacaccababbabccaaac and query q = (3, 1, 2),
which has 3 occurrences in s, namely (5, 10), (13, 18), and (14, 19). R assumes the
values 8, 10, 13, 18, 19, and thus, the while-loop is executed 5 times (see Fig. 2).

L R

pr(L) q' >= q

L R

q' >= q

q'' <= q

Fig. 1. The situation after the update of R (above) and after the update of L (below).
R is placed at the first fit of prv(L) + q, thus q′ is a super-Parikh vector of q. Then L
is placed at the beginning of the longest good suffix ending in R, so q′′ is a sub-Parikh
vector of q.

4.2 Improved Running Time Using Wavelet Trees

In [10] we used an inverted table for computing the two functions prv(j) and
firstfit. It is very easy to understand and to implement, takes O(n) space and
O(n) time to construct (both with constant 1), and can replace the string. Here
we replace this data structure with a wavelet tree [17].

A wavelet tree on s ∈ Σ∗ allows rank, select, and access queries in time
O(log σ). For ak ∈ Σ, rankk(s, i) = |{j | sj = ak, j ≤ i}|, the number of
occurrences of character ak up to and including position i, while selectk(s, i) =
min{j | rankk(s, j) ≥ i}, the position of the i’th occurrence of character ak.
When the string is clear, we just use rankk(i) and selectk(i). Notice that

– prv(j) = (rank1(j), . . . , rankσ(j)), and
– for a Parikh vector p = (p1, . . . , pσ), firstfit(p) = maxk=1,...,σ{selectk(pk)}.

So we can use a wavelet tree of string s to implement those two functions. We
give a brief recap of wavelet trees, and then explain how to implement the two
functions above in O(σ) time each.
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Algorithm Jumping Algorithm
Input: query Parikh vector q
Output: A set Occ containing all beginning positions of occurrences of q in s
1. set m ← |q|; Occ ← ∅; L ← 0;
2. while L < n − m
3. do R ← firstfit(prv(L) + q);
4. if R − L = m
5. then add L + 1 to Occ;
6. L ← L + 1;
7. else L ← firstfit(prv(R)− q);
8. if R − L = m
9. then add L + 1 to Occ;
10. L ← L + 1;
11. return Occ;

Fig. 2. Pseudocode of Jumping Algorithm

A wavelet tree is a complete binary tree with σ = |Σ| many leaves. To
each inner node, a bitstring is associated which is defined recursively, start-
ing from the root, in the following way. If |Σ| = 1, then there is nothing
to do (in this case, we have reached a leaf). Else split the alphabet into two
roughly equal parts, Σleft and Σright. Now construct a bitstring of length n
from s by replacing each occurrence of a character a by 0 if a ∈ Σleft, and
by 1 if a ∈ Σright. Let sleft be the subsequence of s consisting only of charac-
ters from Σleft, and sright that consisting only of characters from Σright. Now
recurse on the left child with string sleft and alphabet Σleft, and on the right
child with sright and Σright. An illustration is given in Fig. 3. At each inner
node, in addition to the bitstring B, we have a data structure of size o(|B|),
which allows to perform rank and select queries on bit vectors in constant time
([21,12,22]).

Now, using the wavelet tree of s, any rank or select operation on s takes time
O(log σ), which would yield O(σ log σ) time for both prv(j) and firstfit(p).
However, we can implement both in a way that they need only O(σ) time:
In order to compute rankk(j), the wavelet tree, which has log σ levels, has
to be descended from the root to leaf k. Since for prv(j), we need all values
rank1(j), . . . , rankσ(j) simultaneously, we traverse the complete tree in O(σ)
time.

For computing firstfit(p), we need maxk{selectk(pk)}, which can be com-
puted bottom-up in the following way. We define a value xu for each node u. If u
is a leaf, then u corresponds to some character ak ∈ Σ; set xu = pk. For an inner
node u, let Bu be the bitstring at u. We define xu by xu = max{select0(Bu, xleft),
select1(Bu, xright)}. The desired value is equal to xroot.

Example 4. Let s = bbacaccabaddabccaaac (cp. Fig. 3). We demonstrate the
computation of firstfit(2, 3, 2, 1) using the wavelet tree. We have firstfit

(2, 3, 2, 1) = max{selecta(s, 2), selectb(s, 3), selectc(s, 2), selectd(s, 1)}, where in
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slight abuse of notation we put the character in the subscript instead of its num-
ber. Denote the bottom left bitstring as Ba,b, the bottom right one as Bc,d, and
the top bitstring as Ba,b,c,d. Then we get max{select0(Ba,b, 2), select1(Ba,b, 3)} =
max{4, 6} = 6, and max{select0(Bc,d, 2), select1(Bc,d, 1)} = max{2, 4} = 4.
So at the next level, we compute max{select0(Ba,b,c,d, 6), select1(Ba,b,c,d, 4)} =
max{9, 11} = 11.

0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1

1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0

b b a c a c c a b a d d a b c c a a ca

1 2 63 84 5 7 9 10 11 12 13 1514 16 17 18 19 20

b b a a a ba a b a aa

1 2 63 84 5 7 9 10 11 12

cc c d d c c c

1 2 63 84 5 7

a,b c,d

Fig. 3. The wavelet tree for string bbacaccabaddabccaaac. For clarity, the leaves have
been omitted. Note also that the third line at each inner node (the strings over the
alphabet {a, b, c, d}) are only included for illustration.

Analysis: Let J denote the number of times the while-loop in line 2 (see Fig. 2)
is executed. The work done in each iteration is dominated by the computa-
tion of firstfit(prv(L + q)) (line 3) and firstfit(prv(R − q)) (line 7). Since
both firstfit and prv can be computed in O(σ) time, we have that the to-
tal runtime of the algorithm is O(Jσ). Since in every iteration, R is moved
forward, J = O(n); however, since there are cases where J = n/2, such as
searching for (2, 0) on string (ab)n, we also have J = Θ(n). So worst-case run-
ning time of the Jumping Algorithm is Θ(σn), i.e., slower than the window
algorithm.

In [10], the expected value of J was shown to be E(J) = O( n√
m

√
σ log σ

) on
uniformly distributed strings and queries. This yielded an expected runtime of
O(( σ

log σ )1/2 log m√
m

n) using the inverted prefix table. With the wavelet tree im-

plementation, we get expected runtime O(( σ
log σ )1/2 1√

m
n), i.e., we save a log m

factor. Moreover, the new version is sublinear as soon as m = ω(σ/ logσ). Pre-
processing is still linear in n, since the wavelet tree of s can be constructed in
O(n) time.

The space required by the wavelet tree is �log σ�(n + o(n)) bits, since each
level requires n + o(n) bits. Our previous implementation needed n log n bits
for the inverted prefix table. With the usual assumptions on the RAM model,
namely that log n fits into a computer word, both are O(n); however, on a bit
level, we improve.



On Table Arrangements, Scrabble Freaks, and Jumbled Pattern Matching 97

5 Variations: Sub-Parikh Vectors and Scrabble-Like
Games

Consider the following game, which can be played using the Scrabble set you
probably have at home. The only other thing you need is a random text, maybe
from a newspaper or from the Internet. Each player draws 8 letters from the
sack of letters. When it is her turn, she aligns a word made with her letters to a
position in the text, trying to maximize the total score, which is the sum of the
scores of the individual letters used. Then she draws new letters from the sack,
until she has again 8 letters in front of her. Overlapping alignments are allowed,
so the same position in the text can be matched more than once. The game ends
when all letters finish, or when no player can move, and is won by the player
with the highest total score.

If we refer to the player’s current Parikh vector (the contents of the tray) as
q, then the task is to find a jumbled match of a sub-Parikh vector q′ of q to
the text, under the constraint that the substring matched be a word of English.
Moreover, we want to maximize the score of q′.

Note that in the game described above, maximizing the score in a single move
does not necessarily result in an optimal game strategy, since you might save a
letter for the next round if a lucky new letter allows for a much higher score.
However, for our purposes, we will assume the simple strategy of maximizing
in each move. Further, let us drop the constraint of the substring being a word
of English—these simplifications will render the game more tractable (in the
non-technical sense).

So, given a weight function w : Σ → R
+ on the characters (the scores), we

have the following problem:

Jumbled sub-Pattern Matching (JSPM). Let s ∈ Σ∗ be given,
|s| = n. For a Parikh vector q ∈ N

σ (the query), |q| = m, find all
occurrences q′ in s s.t. q′ ≤ q with maximum weight.

Like the original JPM also this variant can be solved in linear time (in n) with the
following simple variant of the window-algorithm. Slide a variable sized window
over s, keeping the Parikh vector of the current window content in a vector
c. Start with both pointers L and R pointing to the beginning of s, so c =
(0, 0, ..., 0). While c ≤ q, move R towards the right one character at a time. Now
make a note of w(c), the weight of the current vector, increment R, and move
L to the right until again c ≤ q. Move again R as long as c ≤ q. Now check the
value of w(c) against the previous value, replace if greater, and so on.

Clearly the above procedure finds all maximal (non-extendable) sub-Parikh
vectors q′ of q that occur in s, and thus also those with maximum w(q′).

Naturally, the reader might wonder whether the Jumping Algorithm might
be also adapted to this optimization problem. In fact, it is not hard to come up
with a simple variant of the Jumping Algorithm which solves JSPM.
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First note that the movement of L is exactly as in the Jumping Algorithm,
namely L ← firstfit(prv(R)− q). Next, define tiftsrif(p) as firstfit(p) on
the reverse string srev, and vrp(i) as the prefix Parikh vector of position n−i+1
in the reverse string! Then, R is updated to tiftsrif(vrp(L)−q). This is because
R is now moved the same way as L usually is, but from the back: R is moved to
the position furthest from L such that the current window is still a sub-Parikh
vector of q. After each such jump of R, check w(c) and keep track of maximum
so far. If all occurrences are needed, make note of positions, too. So the loop is:
R++, update L, update R, check and maybe update w(c).

For the implementation, we need a way to compute tiftsrif and vrp, which
can be easily achieved without increasing time or space complexity by using
a second wavelet tree for the reverse string. However, this still results in dou-
bling the storage space. Instead, one can implement these functions using only
the wavelet tree of the string itself by noting that tiftsrif(vrp(L) − q) =
mina{selecta(prv(L)a +qa +1)}−1, i.e., R is updated to the left of the first posi-
tion where the allowed number of characters a is exceeded for at least one a. We
can compute prv(L) first in O(σ) time, and then compute the above minimum
bottom-up, also in O(σ) time, analogously to the maximum for firstfit.

More delicate is the question of whether the above variant of the Jumping
Algorithm is also competitive in running time with the window algorithm. As
we will immediately see, in the worst case there is again an additional factor σ.

Again each iteration of the loop needs O(σ) time. So we have O(σJ), with J
denoting the number of iterations of the while-loop. Since R and L are always
incremented, we have J ≤ n, thus the running time is O(σn). In fact, it is not
hard to see that this is also a lower bound: Consider the case Σ = {a, b, c}, with
s = an−2bc and q = (0, 1, 1).

5.1 Average Case: Skewed Distributions and Skewed Patterns Help

Assume that each character of the string s is generated independently according
to some fixed probability distribution μ = (μ1, . . . , μσ), where the probability of
seeing character ak is μk, for k = 1, . . . , σ.

Let q = (x1 − 1, . . . , xσ − 1) be the pattern Parikh vector, thus 1 < xk, for
each k = 1, . . . , σ. Let Tj be the random variable which takes value i if the
Parikh vector of the substring sj+1sj+2 . . . sj+i−1 is a sub-Parikh vector of q but
p(sj+1 . . . sj+i) is not. Note that this means that i is the first position where
one of the entries of q is exceeded. Because of the i.i.d. model we chose for the
generation of the string s, it follows that Ti ∼ Tj and thus E[Ti] = E[Tj ], for any
i, j. So we can use E[T ], making explicit the independence from the position in
the string.

By the results in [19,20] (see also [16]) we have that, if xk >> μk for k =
1, . . . , σ, then (asympotically with |q|),

E[T ] ≈ min
k=1,...,σ

xk

μk
. (3)
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We can recast the above problem in a generalization of the classical Problem
of the Points, originating from a correspondence between Pascal and Fermat
or, equivalently, of the Banach match-box problem: Given is a die with σ faces,
where the k’th face appears with probability μk. There are σ players, and player
k gets a point if the k’th face comes up and wins as soon as she accumulates xk

points. The question is to find the expected number of tosses before the game
ends (i.e., some player wins). The distribution of the finishing time for each
player, i.e., the time when she has accumulated the required number of points,
follows the negative binomial distribution, with expectation given by xk

μk
. The

results mentioned above and summarized by Eq. (3) are to the effect that the
expected time when some player wins is asymptotically equal to the minimum
of the expected victory time of the individual players.

We can use this to provide a bound on the expected running time of our
algorithm. First assume that the minimum in (3) is attained by exactly one k∗.
Then, k∗ = argmink=1,...,σ

xk

μk
, and we have that the expected position where the

algorithm places the pointer R is given by E[T ] = xk∗
μk∗ . Moreover, sR = ak∗ and

prv(R)− prv(L) contains exactly xk∗ − 1 many ak∗ ’s.
Now pointer L is moved towards the right until the first new ak∗ is encoun-

tered. The average length of this displacement is 1
μk∗ . Then the right pointer R

is moved again to the furthest position from L such that the Parikh vector of
the string between L and R is a sub-Parikh vector of q, and then incremented
by 1. It is the difference between this new position of the right pointer and its
previous position which is significant for our analysis. Because of the assumption
of an i.i.d. model, the expected new position of the pointer R given by E[TL] is
equal to E[T ] = xk∗

μk∗ . Thus the pointer R jumps by 1
μk∗ . The same argument is

clearly also valid for the following jumps.
If there is more than one index attaining the minimum in (3), then set k∗ =

argmaxl{μl | xl

μl
= mink=1,...,σ

xk

μk
}. Then the above analysis goes through as an

upper bound on the expected number of jumps. The above discussion leads to:

Proposition 5. Let s be a randomly generated string over Σ = {a1, . . . , aσ}
such that Pr(si = ak) = μk, for each i = 1, . . . , n and k = 1, . . . , σ. Let q =
(x1 − 1, . . . , xσ − 1) be the query Parikh vector, and let k∗ = argmaxl{μl | xl

μl
=

mink=1,...,σ
xk

μk
}. Then the expected running time of the Jumping Algorithm on

this instance of the JSPM problem is O(nσμk∗ ).

6 Epilogue

Armed with our solutions, we quickly solved our table rearrangement problem,
had a very satisfying dinner and FUN. The next day, a famous colleague who
had enjoyed the restaurant’s wine assortment the most, phoned me to commu-
nicate the following—I am quoting literally, since I haven’t checked, trusting the
everlasting “In vino veritas” [Pliny the Elder, Naturalis historia 14, 141].

Applications of our algorithms, apart from Scrabble and table cutlery arrange-
ment, can be found in molecular biology, notably in interpretation of mass spec-
trometry data. The output of an experiment consists of the molecular masses
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of sample molecules, whose molecular composition (e.g., the multiplicities of the
different amino acids for proteins, or of nucleotides for DNA) can in certain
cases be determined efficiently up to a few candidates [6]. In other words, sev-
eral candidate Parikh vectors can be computed, and then those matched against a
database of sequences. Parikh vectors have also been used in other bioinformatics
applications, among them alignment [4] (there referred to as compositions), SNP
discovery [5] (compomers), repeated pattern discovery [14] and gene clusters [23]
(permuted patterns, πpatterns).

Jumbled pattern matching is a special case of approximate pattern match-
ing. It has been used as filtering step in approximate pattern matching algo-
rithms [18], but rarely considered in its own right.

Three of the authors of the present paper described two algorithms for JPM
in [10], Interval Algorithm and Jumping Algorithm, both of which have been
crucially improved here. The authors of [8] presented an algorithm for finding
all occurrences of a Parikh vector in a runlength encoded text. The algorithm’s
time complexity is O(n′ + σ), where n′ is the length of the runlength encoding
of s. Obviously, if the string is not runlength encoded, a preprocessing phase of
time O(n) has to be added. However, this may still be feasible if many queries
are expected. To the best of our knowledge, this is the only other algorithm that
has been presented for the problem we treated here.

An efficient algorithm for computing all Parikh fingerprints of substrings of a
given string was developed in [1]. Parikh fingerprints are Boolean vectors where
the k’th entry is 1 if and only if ak appears in the string. The algorithm involves
storing a data point for each Parikh fingerprint, of which there are at most
O(nσ) many. This approach was adapted in [14] for Parikh vectors and applied
to identifying all repeated Parikh vectors within a given length range; using it to
search for queries of arbitrary length would imply using Ω(P (s)) space, where
P (s) denotes the number of different Parikh vectors of substrings of s. This is
not desirable, since there are strings with quadratic P (s) [11].

6.1 Postscriptum (for Those Who Read the Technical Parts)

On the agenda for future work is refining the analysis of the Jumping Algorithm
and the preprocessing time for the Interval Algorithm.

We remark that our new implementation of the Jumping Algorithm using
rank/select operations only, opens a new perspective on the study of Parikh
vector matching. We have made another family of approximate pattern matching
problems accessible to the use of self-indexing data structures [22]. We are in
particular interested in compressed data structures which allow fast execution
of rank and select operations, while at the same time using reduced storage
space for the text. Thus, every step forward in this very active area can provide
improvements for our problem.

Acknowledgements. Thanks to Gonzalo Navarro for fruitful discussions.
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Yu-Feng Chien and Wing-Kai Hon

Department of Computer Science
National Tsing Hua University
{cyf,wkhon}@cs.nthu.edu.tw

Abstract. Gradwohl et al. (2007) gave a zero-knowledge proof for Su-
doku that can be implemented physically using common tools like en-
velopes and bags, and the procedures are so simple that they can be
executed solely by kids. In this paper, we work along with this direc-
tion, and first propose some simple physical zero-knowledge proofs for
Nonogram (which was a very popular puzzle game in the 1990s).

1 Introduction

Since Stephen Cook’s discovery of the first NP-complete problem in 1971 [1],
many problems are now known to be NP-complete (See Garey and Johnson [3]
for a quick reference). No polynomial-time algorithms are known for any of these
problems. In other words, finding a solution to an instance of an NP-complete

problem could be time-consuming.
Suppose some person has solved a particular instance of some NP-complete

problem, and he would like to convince some listener that he has known the
solution. The simplest way is to tell the listener directly the solution. However,
this solution may be hard to obtain, so the solver would normally prefer keeping
the solution a secret to himself. This gives rise to the notion of zero-knowledge
proof, in which the target is under the condition that no extra knowledge about
the solution is revealed, the solver can show the listener that (i) there is a
solution, and (ii) he knows the solution. In particular, zero-knowledge proof for
the NP-complete problem called 3-Colorability is known [4]. Consequently,
there exists a zero-knowledge proof for every NP-complete problems, via a
reduction to the 3-Colorability problem.

Some popular logic puzzles, such as Sudoku [12], Nonogram [10], and
Minesweeper [7], are known to be NP-complete. However, if a solver attempts
to give a proof via a reduction to 3-Colorability, it will appear unnatural
and unconvincing. For such kinds of puzzles which are accessible to the vast
community, it is better to design a more direct and more comprehensible zero-
knowledge proof. Gradwohl et al. [6] gave a zero-knowledge proof for Sudoku that
can be implemented physically using common tools like envelopes and bags, and
the procedures are so simple that they can be executed solely by kids. In this
paper, we work along with this direction, and first propose a simple physical
zero-knowledge proof for Nonogram.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 102–112, 2010.
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1.1 What Is Nonogram?

Nonogram is a picture logic puzzle played on a grid with m × n cells, in which
cells in the grid have to be colored black or white according to some simple rules.
For a particular Nonogram puzzle, each row and each column has a sequence of
numbers associated to it; the sequence is used to indicate the number of blocks
formed by consecutive black cells, the number of black cells in each block, and the
order in which these blocks would appear in the corresponding row or column.
Precisely, if the sequence has k numbers, say (x1, x2, . . . , xk), it means there are
k blocks of black cells, the lengths of the blocks are respectively x1, x2, . . ., and
xk, and these blocks appear in the same order as in the sequence. (See [11] for
an example.)

Let Nonogram be the language that contains all Nonogram puzzles with a
solution. It is known that Nonogram is NP-complete [10]. In this paper, we
propose some simple physical zero-knowledge proofs for Nonogram. Essentially,
the framework of our protocols are the same as the one in [6] for Sudoku puzzles.
However, due to the difference in nature of the Nonogram and Sudoku puzzles,
the actual implementation of the protocols are quite different.

2 Zero-Knowledge Proof

Zero-knowledge proof (ZKP) [5] is a special case of an interactive proof system,
where the latter consists of a communication protocol (i.e., a series of well-
defined steps) executed between a prover P and a verifier V which allows P to
convince V that a particular statement is true. For our concern, the statement
to be proven will be “the prover P knows a solution of the input Nonogram
puzzle”. At the end of the execution, the verifier must output either accept or
reject. The protocol is probabilistic, in a sense that the messages exchanged
between the two parties P and V are functions of the input, the messages sent
so far, and the private random bits associated to each party. If an interactive
proof system is designed properly, then when both the prover and the verifier
follow the protocol, it should achieve the following:

1. If the prover knows a solution to the Nonogram puzzle, the verifier will
have “high” probability to output accept. This probability is called the
completeness of the protocol.

2. If the prover does not know a solution to the Nonogram puzzle, the verifier
will have “low” probability to output accept. This probability is called the
soundness of the protocol.

If an interactive proof system has the following property, it will become a zero-
knowledge proof:

Zero-Knowledge Property: The verifier learns nothing new from the
prover about the statement; anything that the verifier acquires is beyond
his computational ability.
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In addition, the protocol should also be proof-of-knowledge: if the prover can
succeed in making the verifier accept, and further if the prover always uses the
same random bits, then we can run the protocol several times and obtain the
solution ourselves.

2.1 Cryptographic ZKP versus Physical ZKP

Traditional ZKP may use some cryptographic tools to support the extra func-
tionalities. For instance, Naor [9] shows that we can implement a fairly efficient
commitment protocol based on any one-way function, so that a committed bit
(or message) cannot be read or changed without the other party’s notice. We call
such kind of zero-knowledge proofs which make use of the cryptographic tools
the cryptographic ZKPs.

In contrast, there is a recent study for implementing a protocol when the
prover and the verifier are actual human beings, with the help of some “phys-
ical tools”. Examples include the use of playing cards [2], sealed envelopes [8],
scratch-off cards [6] and more (See [8] for a short survey). In particular, sealed
envelopes and scratch-off cards allow us to achieve the same function offered by
the above commitment protocol. When ZKPs are implemented based on physical
tools, we call them physical ZKPs.

3 Framework of Our Protocols

Our physical ZKPs are implemented with two physical tools—scratch-off cards
and bags. Scratch-off cards are commonly used in many lottery games, in which
some information that determines if we are winning is marked on the cards,
but the information is hidden by some protective coating. In our protocols, the
scratch-off cards will be specially designed, which are used as a communication
means between the prover and the verifier. Each card is blank at the beginning,
which does not have any protective coating, and inside which some entries are
to be filled. Once the entries are filled, the card is sealed so that each entry is
covered by the protective coating. All sealed cards have the same appearance,
so that there is no way to distinguish one from the other. After sealing, we may
selectively open a specific entry by scratching off the corresponding coating, while
keeping the other entries still covered. Bags, on the other hand, will simply
be used for random shuffling of the cards. Based on these tools, we propose
two physical ZKPs for the Nonogram puzzles. The common framework of our
protocols is described as follows:

Framework of Our Protocols

Prover Commitment Phase:
Step 1: Prover assigns 2 random IDs to each cell of puzzle.
Step 2: Prover distributes blank scratch-off cards to the cells.
Step 3: Prover fills out the scratch-off cards and seals them.

Verifier Checking Phase:
Step 4: Verifier selects a random checking.
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Step 5: According to the selected checking, Prover opens some specific
entries of each card.

Step 6: Verifier accepts if the checking passes; else rejects.

3.1 Our Scratch-Off Cards

For a Nonogram puzzle with m × n cells, all of our protocols will make use of
O(m × n) scratch-off cards, each card has the same set of entries as shown in
Figure 1. After distributing blank cards to the cells, the prover will need to fill
in the entries in the cards. Before describing the meaning of the entries, we have
the following two definitions:

Definition 1. Consider a row (or a column) in the Nonogram puzzle, and let
(v1, v2, . . . , vk) be the corresponding sequence, so that in the solution to this puz-
zle, the row (or the column) contains a block with v1 black cells, followed by a
block with v2 black cells, and so on, if we scan from left to right (or from top to
bottom). The jth block is called an odd-ranked block if j is odd; otherwise, it
is called an even-ranked block.

Definition 2. Consider the solution of the Nonogram puzzle. If a cell is the �th
leftmost black cell in a row, we say its black order within the row is �. Similarly,
if a cell is the �th topmost black cell in a column, we say its black order within
the column is �.

Fig. 1. Scratch-off card in our protocols

Now, we explain the commitment phase of our first protocol in details and show
how the entries in the cards are filled (there are only minor variations in the other
two protocols). Our intuitive idea is to create a virtual coordinate system for
the cells, so that adjacency between cells are preserved. As a result, the original
coordinates of a cell can be hidden.

Step 1: Prover prepares 2mn distinct numbers, and randomly distributes these
numbers evenly to the mn cells in the Nonogram puzzle, so that each cell
will have exactly two numbers. For each cell, one number is chosen as row
ID while the other as column ID.

Step 2: Prover places one blank scratch-off card in each cell.
Step 3: Prover fills the entries of the card in each cell c as follows:

– (x, y): The x- and y-coordinates of the cell in the Nonogram puzzle;
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– Color: The color of the cell c in the solution;
– Row.ID: The row ID of the cell c;
– Row.Ptr(A): The row ID of the cell immediately on the right of c. In

case c is the rightmost cell in the row, Row.Ptr(A) is ×.
– Row.Ptr(O): The entry is filled based on the odd-ranked blocks in the

row containing c. There are three cases:
1. If c is immediately on the left of any cell in an odd-ranked block,

Row.Ptr(O) is set to Row.Ptr(A);
2. If c is immediately on the right of the last cell in an odd-ranked

block, Row.Ptr(O) is ×;
3. If neither of the above, Row.Ptr(O) is left empty.

– Row.Ptr(E): Analogous to Row.Ptr(O), filled based on the even-
ranked blocks.

– Row.OrderB: The black order of c in the row if the color of c is black;
empty otherwise.

– Column.*: Filled as in Row.* analogously (by replacing the keywords
“row, left, right” to “column, top, bottom”, respectively)1.

– Black/After: It contains two 2-dimensional arrays R[1..2][1..n] and
C[1..2][1..m]. The row IDs of all cells to the right of c will each be filled
at a random entry of R[1][1..n]. In addition, if c is a black cell, then
R[2][j] is � if R[1][j] is the row ID of some black cell, and is left empty
otherwise. If c is a white cell, all R[2][1..n] are left empty. Note that some
entries of R[1][1..n] may not be filled.
The entries of C are filled analogously.

Fig. 2. Filling Row.Ptr(A), Row.Ptr(O), Row.Ptr(E): The first row of the figure
indicates the black cells in a row of the solution. The second row indicates the row ID
of each cell assigned by Prover. The remaining rows show the three values to be filled
in the scratch-off cards in each cell.

Fig. 3. Filling Black/After in a particular scratch-off card

The row and column IDs give a virtual coordinate to a cell, and the various
pointers ensure that the adjacency of the cells in the grid, or the adjacency
of the black cells, are preserved. The OrderB and Black/After contains

1 We use Column.* as a shorthand notation to denote the collection of Column.ID,
Column.Ptr(A), Column.Ptr(O), Column.Ptr(E).
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information about the order of a black cell among its row or its column. See
Figures 2 and 3 for an example.

Based on the definition of the scratch-off cards, we have a necessary and
sufficient condition for Prover to know the solution of the Nonogram puzzle, as
shown in the two theorems below. Briefly speaking, the condition includes seven
statements which are related to the random checking offered to Verifier during
the checking phase.

Theorem 1. If the scratch-off cards can be filled such that all statements below
are satisfied:

S1: The (x, y) entry of each card is correct;
S2: All IDs are different and all Ptr(A), and (x, y) entries, are consis-

tent;
S3: The Black/After entry /contains the correct set of IDs;
S4: Each row/column contains the correct number of black cards;
S5: For each row/column, the IDs and OrderB entries of all cards with

black color are consistent with the set of IDs marked by � in their
Black/After entries;2

S6: For each row/column, each odd-ranked block has the correct number
of black cells with correct OrderB entries;

S7: For each row/column, each even-ranked block has the correct num-
ber of black cells with correct OrderB entries;

then, Prover must know the solution of the Nonogram puzzle.

Theorem 2 (Converse of Theorem 1). If Prover knows the solution of the
Nonogram puzzle, then the scratch-off cards can be filled such that all statements
S1 to S7 can be satisfied.

3.2 Minor Modification to Input Puzzle

To simplify the design of our protocol, we hope that in the solution of the
Nonogram puzzle, each block of black cells in a row is enclosed by two white
cells, one immediately to its left and one immediately to its right. Similarly, we
hope that each block of black cells in a column is enclosed by two white cells,
one immediately to its top and one immediately to its bottom. However, this
is not true in general, as the solution may require a block to be attached to
the boundary of the grid. To deal with the general case, we will alter the input
puzzle P slightly to create a puzzle P ′ with 4 more rows and 2 more columns in
a straightforward manner (Details are deferred to full paper). See Figure 4 for
an example.

Theorem 3. Let P denote the input Nonogram puzzle and P ′ denote the trans-
formed Nonogram puzzle. Then, a person can obtain a solution of P if and only
if he can obtain a solution of P ′.
2 For instance, if a black card has Column.ID = 5 and Column.OrderB = 4, then

Column.ID, 5, must appear once in C[1][1..m] entries of exactly 3 black cards, and
each of the corresponding C[2] entry is �.
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(a) before modification (b) after modification

Fig. 4. Modification of Input Puzzle

4 Physical ZKP for Nonogram Puzzles

4.1 First Protocol

After the Prover Commitment Phase, our protocol enters the Verifier
Checking Phase. At Step 4, Verifier begins by choosing one of the seven tests,
uniformly at random. Then at Step 5, Prover opens specific entries in each card
according to Verifier’s choice. After that, at Step 6, Verifier checks if there are
inconsistencies using the opened entries, and accept if and only if none is found.
The details of these seven tests, and their corresponding responses, are shown
as follows:

(T1) Testing S1, S2, and S3
Prover’s action: Each card remains in the corresponding cell, while Prover

opens the following entries of each card: (x, y), ID, Ptr(A), R[1][1..n]
and C[1][1..m] of Black/After.
/* R[2][1..n] and C[2][1..m] remain covered */

Verifier’s action: Examine all cards and check if (i) (x, y) is correct, (ii)
IDs are distinct, (iii) Ptr(A) is consistent with IDs, and (iv) R[1][1..n]
and C[1][1..m] are consistent with IDs. Output accept if no inconsisten-
cies found.

(T2) Testing the row parts of S4 and S5
Prover’s action: Prepare m bags, one for each row. Collect all cards of

the same row to its corresponding bag. After that, shuffle each bag, and
open Color entry of each card.
Next, for each black card, open Row.ID, Row.OrderB, and R[2][1..n]
of Black/After. Finally, open R[1][j] if R[2][j] is �.

Verifier’s action: Examine all cards in each bag. Check if the number of
black cards in each bag (i.e., row) matches with the sum of the corre-
sponding sequence of that row. Next, check if Row.ID, Row.OrderB,
and the opened entries of Black/After in each bag are consistent.
Output accept if no inconsistencies found.

(T3) Testing the column parts of S4 and S5 (Analogous to T2)
(T4) Testing the row part of S6
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Prover’s action: Prepare m bags, one for each row. Collect all cards of
the same row to its corresponding bag. After that, shuffle each bag, and
open Row.Ptr(O) entry of each card.
Next, for each card whose Row.Ptr(O) is not empty and not marked
by ×, open Color, Row.ID, Row.Ptr(A). However, if Row.Ptr(O)

is ×, just open Color and Row.ID.
Finally, for those cards with Color opened, if Color is black, open
Row.OrderB.

Verifier’s action: Examine all cards in each bag. Check if the entries
Row.Ptr(O) and Row.Ptr(A) are consistent. Next, arrange the black
cards in each row based on Row.OrderB, check if each odd-ranked
block has the desired number of black cells, and check if each block is
enclosed by two white cells at its ends. Output accept if no inconsisten-
cies found.

(T5) Testing the column part of S6 (Analogous to T4)
(T6) Testing the row part of S7 (Analogous to T4)
(T7) Testing the column part of S7 (Analogous to T4)

This completes the description of our first protocol, and we have:

Theorem 4. Our first protocol has perfect completeness, 6/7 soundness, and
zero-knowledge property.

Corollary 1. By re-running the first protocol Θ(log(1/ε)) times, we obtain a
protocol that has perfect completeness, ε soundness, and zero-knowledge property,
for any ε > 0.

4.2 Second Protocol: Duplicating the Cards

In the Prover Commitment Phase of our second protocol, after assigning
the row ID and column ID to each cell of the Nonogram puzzle, Prover will now
place two blank scratch-off cards in each cell, fill in the entries accordingly, and
seal them afterwards. The entries of the two cards in each cell should be filled
identically, except Prover has a freedom to fill in Black/After in a different
manner. Note that because of the use of duplicate cards, Theorems 1 and 2 will
be modified slightly to include to following statement (in addition to the original
statements S1 to S7):

S0: The two cards in each cell are filled identically.

After the commitment phase, our protocol enters the Verifier Checking Phase
as in the first protocol. At Step 4, Verifier begins by choosing one of the nine
new tests, randomly according to some predetermined probability. Then at Step
5, Prover opens specific entries in each card according to Verifier’s choice. After
that, at Step 6, Verifier checks if there are inconsistencies using the opened
entries, and accept if and only if none is found. The details of these nine new
tests, and their corresponding responses, are shown as follows:
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(T1’) Testing S1, S2, and S3, and their related part of S0
Prover’s action: Each card remains in the corresponding cell, while Prover

opens the following entries of each card: (x, y), ID, Ptr(A), R[1][1..n]
and C[1][1..m] of Black/After.
/* R[2][1..n] and C[2][1..m] remain covered */

Verifier’s action: Examine all cards and check if (i) (x, y) is correct, (ii)
IDs are distinct, (iii) Ptr(A) is consistent with IDs, and (iv) R[1][1..n]
and C[1][1..m] of each card is consistent with IDs. Examine if the opened
entries in the two cards in each cell are identical. Output accept if no
inconsistencies found.

(T2’) Testing Color, R[2][1..n] and C[2][1..m] of Black/After, OrderB of
S0
Prover’s action: Prepare mn small bags, one for each cell. Collect all two

cards of the same cell to its corresponding small bag. Put the mn bags
into a larger bag, and shuffle the mn bags using the large bag.
Open Color, R[2][1..n] and C[2][1..m] of Black/After, OrderB en-
tries in each card. At this point, each small bag contains two cards that
are originally from the same cell.

Verifier’s action: Examine each bag and check if the opened entries in the
two cards are identical. Output accept if no inconsistencies found.

(T3’) Testing Row.Ptr(O) of S0 (Analogous to T2’)
(T4’) Testing Row.Ptr(E) of S0 (Analogous to T2’)
(T5’) Testing Column.Ptr(O) of S0 (Analogous to T2’)
(T6’) Testing Column.Ptr(E) of S0 (Analogous to T2’)
(T7’) Testing S4 and S5

Prover’s action: Prepare m bags, one for each row. In each bag, collect one
card of each cell from the corresponding row. Then, shuffle the cards in
each bag.
Next, prepare n bags, one for each column. In each bag, collect one card
of each cell from the corresponding column. Again, shuffle the cards in
each bag.
For each bag in each row, open Color entries of each card. Next,
for each black card, open Row.ID, Row.OrderB, and R[2][1..n] of
Black/After. Finally, open R[1][j] if R[2][j] is �.
Similarly, for each bag in each column, open Color entries of each card.
Next, for each black card, open Column.ID, Column.OrderB, and
C[2][1..n] of Black/After. Finally, open C[1][j] if C[2][j] is �.

Verifier’s action: For each bag in each row, examine all its cards. Check
if the number of black cards in each bag matches with the sum of the
corresponding sequence. Next, check if Row.ID, Row.OrderB, and the
opened entries of Black/After in each bag are consistent. Similarly,
check for each bag in each column. Output accept if no inconsistencies
found.
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(T8’) Testing S6
Prover’s action: Prepare m bags, one for each row. In each bag, collect

one card of each cell in the corresponding row.
After that, shuffle each bag, and open Row.Ptr(O) entry of each card.
Next, for each card whose Row.Ptr(O) is not empty and not marked
by ×, open Color, Row.ID, Row.Ptr(A). However, if Row.Ptr(O)

is ×, just open Color and Row.ID.
Finally, for those cards with Color opened, if Color is black, open
Row.OrderB.
Similarly, prepare n bags, one for each column. In each bag, collect one
card of each cell in the corresponding column. After that, we proceed
analogously for the preparation for T5.

Verifier’s action: For each bag in each row, examine all its cards. Check if
Row.Ptr(O)and Row.Ptr(A) are consistent. Next, arrange the black
cards in each row according to Row.OrderB order, check if each odd-
ranked block has the desired number of black cells, and check if each
block is enclosed by two white cells at its ends. Similarly, check for each
bag in each column. Output accept if no inconsistencies found.

(T9’) Testing S7 (Analogous to T8’)

This completes the description of our second protocol, and we have:

Theorem 5. Our second protocol has perfect completeness, 8/9 soundness, and
zero-knowledge property.

Despite using duplicate cards, our second protocol fails to achieve a better (i.e.,
smaller) soundness probability than the first one. Nevertheless, in our full paper,
we will show that with extra resources (such as using carbon paper and having
trusted third parties), we can enhance the second protocol to obtain a physical
ZKP with 0 soundness.

5 Further Discussions

We have proposed two physical protocols for the Nonogram puzzle which have
perfect completeness, constant soundness, and zero-knowledge property. The
framework of our protocols is adapted from the one in [6] for Sudoku puzzles.
We utilize the advantage of a scratch-off card that we can selectively open its
entries in specific order; this may open up the possibilities to simplify some of the
existing protocols. However, our use of scratch-off cards, and their preparation,
are much more involved than that in [6], making our protocols much harder to
be implemented3.

3 The protocol of [6] uses only 9 different kinds of scratch-off cards, so that these cards
can be prepared in advance. For our protocol, the scratch-off cards have to be filled
on the spot, as there are exponential number of variations. This is one of the major
drawbacks of our protocol.
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Abstract. Suppose we have a set of materials — e.g., drugs or genes —
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a maximal subset that does not. This problem is equivalent to finding
a maximal independent set (or minimal vertex cover) in a hypergraph
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that adds vertices one by one; after adding each vertex, the algorithm
tests whether the subset now contains any edges and, if so, removes that
vertex and discards it. We call this the “bouncer’s algorithm” because
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given total preference order, then its solution is the unique optimum
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that produces the same solution but uses fewer tests when few vertices
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1 Introduction

Our departmental parties are plagued with arguments about politics, religion
and P vs. NP. This seems not to be the fault of a single person but rather to
be the effect of putting certain groups of people together in the same room. For
example, it might be that any two of three particular professors get along happily
but, when all three of them are present, a discussion breaks out. Unfortunately,
arguments in our department tend to draw in any bystanders, making it difficult
to determine exactly which groups should not be put together. While pondering
this probem one evening, we glance out the window at the bar across the street
and notice how orderly it seems in comparison. Curious how the bouncer keeps
the peace, we wander over and ask him his secret. He replies that he admits
patrons one by one — VIPs, friends and regulars first, of course — and, whenever
he hears the sounds of raised voices inside, he throws them out again in the
reverse order until calm is restored [1].

Back in our office, we start thinking about our next departmental party as
a combinatorial problem, rather than a social one, and decide to analyze the
bouncer’s algorithm. We model the faculty, staff and students as n vertices
v1, . . . , vn in a hypergraph with unknown edges, with the edges representing
the minimal groups who will argue. (We make the simplifying assumption that,
once an arguing group is assembled, adding more people will not prevent the
argument; this seems to be the case in many departments.) We can test whether
a subset of vertices contains any edges, since this is equivalent to putting the cor-
responding people together and seeing if they argue. For example, the bouncer’s
algorithm starts with an empty set and adds vertices one by one; after adding
each vertex, the algorithm tests whether the subset now contains any edges and,
if so, removes that vertex and discards it. Our abstraction makes it clear the
most obvious goal — maximizing the number of people at the party while avoid-
ing an argument — is intractable even when we know the arguing groups since
it is equivalent to finding a maximum independent set in the hypergraph [4,6,7]
(i.e., a subset of the vertices that does not completely contain any edge). We
notice, however, that the bouncer’s algorithm always finds a maximal indepen-
dent set using exactly n tests. This is the best bound possible in terms of only
n: when each vertex is an edge by itself (i.e., when each member of our de-
partment will argue even when by himself or herself), we need n tests to rule
out the individual vertices and return the empty set. When some vertices are
edges by themselves and the others form an independent set, finding the unique
maximal independent set is equivalent to finding the defectives in a set using
group tests that indicate their presence [5]. Since the complement of a maximal
independent set is a minimal vertex cover, we can also use the bouncer’s algo-
rithm to find one of those. Finally, given black-box access to a monotone Boolean
formula, we can use the bouncer’s algorithm to find a minimal satisfying truth
assignment.

Thinking of the bouncer’s rule “VIPs, friends and regulars first”, we decide
to impose a total preference order v1 � · · · � vn on the vertices (i.e., we
prefer each vertex to its successor). In this setting, one subset S1 of vertices
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dominates another S2 if S1 ∩ {v1, . . . , vi} ⊃ S2 ∩ {v1, . . . , vi} for some i. We
realize that, if the bouncer’s algorithm processes the vertices in order of pref-
erence, then it finds the independent set that dominates all the others, i.e.,
the unique optimum with respect to that order. Naturally, we are impressed.
Nevertheless, worried the people in our department might not be as patient
as the average bar patron and optimistic that only a few of them argue while
alone, we start thinking about whether we can find the optimum using fewer
tests when few vertices are discarded. The algorithm we present in this pa-
per produces the same solution as the bouncer’s algorithm but uses at most
d(�log2 n�+1)+1 tests, where d is the number of discarded vertices. As it takes
nearly d log2 n bits in the worst case to specify the vertices discarded by the
bouncer’s algorithm, our algorithm is within lower order terms of optimality.
Once we recover from the stresses of our next departmental party, we hope to
apply our algorithm to problems in bioinformatics where it is necessary, e.g., to
combine drugs or genes while avoiding unwanted interactions. For more back-
ground, we refer readers to Damaschke and Muhammad’s recent paper [2] on
using group tests to find small vertex covers in graphs, which is similar to the
special case of our problem in which interactions depend only on the presence
of pairs.

2 Algorithm

We start with S = ∅ and p = 0 and maintain the invariant that S contains
the optimum independent set that is a subset of {v1, . . . , vp}. At each step of
our algorithm, we check whether S ∪ {vp+1, . . . , vn} contains an edge and, if
so, we use binary search in vp+1, . . . , vn to find the smallest value i such that
S ∪ {vp+1, . . . , vi−1} does not contain an edge but S ∪ {vp+1, . . . , vi} does; if
not, we set i = n + 1. Once we have found i, we add vp+1, . . . , vi−1 to S and
set p = i. Notice we discard one vertex at each step (except possibly the last);
therefore, if we discard d vertices, we use a total of at most d(�log2 n�+ 1) + 1
tests. If we are given d in advance, we need only d�log2 n� tests: we need not
test S ∪ {vp+1, . . . , vn} at the beginning of each step, because it will contain an
edge until we discard d vertices.

For example, suppose the hypergraph’s vertex set is {v1, . . . , v8}, its edge set
is

{
{v1, v4, v8}, {v2, v5}, {v3, v6, v8}

}
and the preference order is v1 � · · · � v8.

The bouncer’s algorithm performs the eight tests

1) {v1} � 5) {v1, . . . , v5} ×
2) {v1, v2} � 6) {v1, . . . , v4, v6} �
3) {v1, . . . , v3} � 7) {v1, . . . , v4, v6, v7} �
4) {v1, . . . , v4} � 8) {v1, . . . , v4, v6, . . . , v8} ×

and returns {v1, . . . , v4, v6, v7}; the checkmarks and crosses above indicatewhether
or not the induced subgraph on those vertices is an independent set, respectively.
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Our algorithm, on the other hand, performs the six tests

1) {v1, . . . , v8} ×
2) {v1, . . . , v4} �
3) {v1, . . . , v6} ×
4) {v1, . . . , v5} ×
5) {v1, . . . , v4, v6, . . . , v8} ×
6) {v1, . . . , v4, v6, v7} �

and still returns {v1, . . . , v4, v6, v7}. The first four tests are for the first step, in
which we discard v5, and the last two are for the second, in which we discard v8.

A standard induction on the number of vertices processed shows the bouncer’s
algorithm selects the unique optimum with respect to the preference order, and
a standard induction on the number of steps shows our algorithm produces the
same solution. Naturally, we leave the details for the full version of this paper.

Theorem 1. Consider a preference order on the n vertices of a hypergraph with
unknown edges, and let d be the number of vertices not present in the independent
set optimum with respect to that order. If we are allowed to perform group tests
on subsets of the vertices to determine whether they contain edges then, with-
out knowing d, we can find the optimum independent set (which is necessarily
maximal) using at most d(�log2 n�+ 1) + 1 tests.

Notice a truth assignment satisfies the Boolean formula (v1∨v4∨v8)∧(v2∨v5)∧
(v3 ∨ v6 ∨ v8) if and only if it corresponds to a vertex cover of the hypergraph
in our example. Having black-box access to the formula (i.e., being able to test
whether truth assignments are satisfying) is equivalent to being able to test
whether subsets of vertices cover all the edges; since the complement of a vertex
cover is an independent set, both are equivalent to being able to test whether
subsets of vertices contain any edges. It follows that we can find a minimal
satisfying truth assignment using the complements of the six tests listed above:

1) v1, . . . , v8 ×
2) v1, . . . , v4, v5, . . . , v8 �
3) v1, . . . , v6, v7, v8 ×
4) v1, . . . , v5, v6, . . . , v8 ×
5) v1, . . . , v4, v5, v6, . . . , v8 ×
6) v1, . . . , v4, v5, v6, v7, v8 �

More generally, for any monotone Boolean formula on n variables, there is a
hypergraph on n vertices such that satisfying truth assignments correspond to
vertex covers. (It is easy to build the hypergraph once we put the formula into
conjunctive normal form; we are not concerned with the explosion of clauses
that could result, as they will be contained within the black box.) Therefore,
our theorem has the following corollary:

Corollary 1. Given black-box access to a monotone Boolean formula on n vari-
ables, we can find a minimal satisfying truth assignment using at most d(�log2 n�+
1) + 1 tests, where d is the number of variables set to true.
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If we drop the assumption of monotonicity, of course, the problem becomes in-
tractable, even when we know the formula and do not care whether the satisfying
truth assignment is minimal [6].

3 (Non)adaptivity

Naturally, we would like to develop a nonadaptive version of our algorithm, i.e.,
one that uses O(d log n) tests batched into as few stages as possible. It may not
be feasible to batch tests if that involves, say, somehow putting a professor in
several rooms at the same time — perish the thought! — but it is feasible and
very useful in many bioinformatics applications [3]. When every edge contains
exactly two vertices — i.e., when the hypergraph is a graph — there is a single-
stage algorithm that finds all minimal vertex covers of at most a given size k using
O
(
k3 log n

)
tests [2]; however, it depends on the fixed-parameter tractability of

finding a minimum vertex cover in a graph and, thus, cannot be applied efficiently
to hypergraphs in general [4].

So far, we have had only a little success proving upper bounds. If we use q-ary
search in our algorithm for some q > 2, instead of binary search, then we use
at most d(�logq n� + 1) + 1 stages but at most (q − 1)d(�logq n� + 1) + 1 tests.
For example, if we set q = nε for some positive constant ε ≤ 1, then we use
O(d) stages and O(dnε) tests. The most interesting case may be when, in each
stage, we perform enough tests to be sure of finding a vertex to discard, if there
is one left. In that case, we use at most d + 1 stages and at most (d + 1)n tests.
If the last vertex is discarded, then we use only d stages; if we somehow know
d in advance, then we use only d stages and need never test subsets including
vn−d+1, . . . , vn.

In the first stage, we test each subset of the form {v1, . . . , vi} for 1 ≤ i ≤ n;
if {v1, . . . , vr1} is the first such subset to contain an edge, then vr1 is the first
vertex the bouncer’s algorithm discards. For j > 1, in the jth stage we test
each subset of the form {v1, . . . , vi} − {vr1 , . . . , vrj−1} for rj−1 < i ≤ n, where
vr1 , . . . , vrj−1 are the vertices we already know are discarded by the bouncer’s
algorithm; if {v1, . . . , vrj} − {vr1 , . . . , vrj−1} is the first such subset to contain
an edge, then vrj is the jth vertex the bouncer’s algorithm discards. We stop
when none of the subsets we test includes an edge. On our running example, this
algorithm performs the eleven tests

1) {v1} � 7) {v1, . . . , v7} ×
2) {v1, v2} � 8) {v1, . . . , v8} ×
3) {v1, . . . , v3} � 9) {v1, . . . , v4, v6} �
4) {v1, . . . , v4} � 10) {v1, . . . , v4, v6, v7} �
5) {v1, . . . , v5} × 11) {v1, . . . , v4, v6, . . . , v8} ×
6) {v1, . . . , v6} ×

and returns {v1, . . . , v4, v6, v7}. The first eight tests are performed in the first
stage and the last three in the second stage; since we discard the last vertex, v8,
we do not use a third stage.
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Let r0 = 0 and rd+1 = n. Then for 0 ≤ j ≤ d and rj < i ≤ rj+1 and
0 ≤ k ≤ j, we test each subset {v1, . . . , vi} − {vr1 , . . . , vrk

} once. It follows that
we use

∑d
j=0(j + 1)(rj+1 − rj) ≤ (d + 1)n tests. Calculation shows the left-hand

side of this inequality is n− d + d(d + 1)/2 + b, where b is the number of times
we need to swap neighbouring bits to sort the n-bit binary string with ones in
positions r1, . . . , rd. In our example, since we discard two of eight vertices and
need to swap neighbouring bits twice in order to sort the binary string 00001001,
we use eleven tests. Interestingly, if we can choose the preference order and try
to guess an arrangement in which discarded vertices appear toward the end, then
the better our guess, the fewer tests we use.

Suppose T0 is the set of sets we perform in some stage and, if we then discard
vi, then Ti is the set of tests we perform in the next stage. Then we can combine
the stages by performing

⋃
0≤i≤n Ti instead of T0. It follows that, for any constant

c ≥ 1, we can use O(d/c + 1) stages and O((d/c + 1)nc) tests. (For non-integer
c, we combine the stages of an algorithm that uses O(d) stages and O(dnε) tests,
choosing ε such that c/ε is an integer.) Notice this tradeoff can also be viewed
as a kind of q-ary search, with q = nc. If we collapse all the possible stages into
one, then we end up using exhaustive search: 2n − 1 tests if we do not know d
in advance, and

(
n
d

)
if we do.

Theorem 2. Without knowing d in advance, we can find the optimum indepen-
dent set using

– d + 1 stages and at most (d + 1)n tests;
– for any positive constant ε ≤ 1, O(d) stages and O(dnε) tests;
– for any constant c ≥ 1, O(d/c + 1) stages and O((d/c + 1)nc) tests.

If we know d, we need only d stages and at most d(n− d) tests.

Sadly, we have had more luck with lower bounds. For example, if we use a single
stage without knowing d in advance, then we must test all 2n − 1 non-empty
subsets in order to be certain of finding a maximal independent set. To see why,
suppose we do not test some subset S and that, of those we do test, we find
that only subsets of S are independent. Furthermore, suppose every vertex in
{v1, . . . , vn}−S is an edge by itself. Then we cannot tell whether S is the unique
maximal independent set or whether it is an edge.

If we use a single stage but somehow know d in advance, then we must still
test all but one of the subsets of size n− d. To see why, suppose we do not test
two subsets S1 and S2 of size n−d and that, of those we do test, we find that only
the subsets of S1 and S2 are independent. Furthermore, suppose every vertex in
{v1, . . . , vn} − S1 − S2 is an edge by itself, one of S1 and S2 is an independent
set and the other is an edge. We cannot tell which of S1 and S2 is independent
and, so, cannot return either; for the sake of guaranteeing maximality, we also
cannot return a strict subset of either. It follows that we must test at least

(
n
d

)
−1

subsets, a bound which is achievable via exhaustive search but exponential in
d log n when d � n. Notice that, if we know d = 1, then the algorithm we
described earlier in this section uses one stage and n − 1 tests, matching our
lower bound.
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If we use a single stage but know only an upper bound d′ on d, then we must
test all but one of the subsets of size n − d′ (for the same reason we must test
them when we know d exactly) and also all the subsets of size between n−d′ +1
and n. To see why we need to test the latter subsets, suppose we do not test
a subset S of size between n − d′ + 1 and n and that, of those we do test, we
find that only the subsets of S are independent. Furthermore, suppose every
vertex in {v1, . . . , vn} − S is an edge by itself. Then we cannot tell whether S
is independent and d = n− |S| or whether S is an edge and d = n− |S|+ 1. It
follows that we must test at least

∑d′

i=0

(
n
i

)
− 1 subsets, a bound which is again

achievable by exhaustive search but exponential in d log n when d � n. Notice
that, if we know d ≤ 1, then algorithm we described earlier in this section uses
one stage and n tests, again matching our lower bound.

Lemma 1. If we use a single stage without knowing d in advance, then we need
2n−1 tests. If we know d in advance, then we still need

(
n
d

)
−1 tests. If we know

only an upper bound d′ on d, then we need
∑d′

i=0

(
n
i

)
− 1 tests.

Now suppose we use two stages without knowing d in advance, and test t subsets
in the first stage, each of which contains an edge. We claim that, after the first
stage, there remains a subset of size at least n− t about which we know nothing.
To see why, let v′1, . . . , v′t be a list of vertices, one from each tested subset. Every
superset of a tested subset is also a superset of at least one of {v′1}, . . . , {v′t} and,
therefore, not {v1, . . . , vn} − {v′1, . . . , v′t}. Since all the subsets we test contain
edges and we do not know d, we learn nothing about {v1, . . . , vn}−{v′1, . . . , v′t}.
Therefore, by Lemma 1, we still need at least 2n−t − 1 tests to finish in the
second stage.

Finally, suppose we want to be sure of using O(d log n) tests in total but with-
out knowing d in advance. As we noted in Section 1, when some vertices are edges
by themselves and the others form an independent set, finding the unique max-
imal independent set is equivalent to finding the defectives in a set using group
tests that indicate their presence. Therefore, since we need Ω(log d/ log log d)
stages to find d defectives with O(d log n) tests [2], the same lower bound holds
for finding a maximal independent set. Suppose we want to be sure of using
at most c1d log n + c2 tests in total, for some constants c1 and c2, and let
ti = c1

(∑i−1
j=1 tj

)
log n + c2. If we do not know d in advance then, for any

i, we can use at most ti tests in the ith stage, since we cannot be certain at
that point whether d is greater than the number of tests we have already per-
formed. It follows that, after o(log n/ log log n) stages, there remains a subset of
size at least n− no(1) such that none of its subsets have been tested; therefore,
by Lemma 1, in the worst case we still need at least 2n−no(1)

tests to finish in
the next stage — even though d log n could be in no(1).

Lemma 2. If we use o(log n/ log log n) stages without knowing d in advance,
then we need 2n−no(1)

tests.
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Combining Lemmas 1 and 2 — and rephrasing them slightly to highlight, rather
optimistically, their similarity to lower bounds for group testing with defectives
— we have the following theorem:

Theorem 3. If we use a single stage then, whether we know d in advance or not,
we need ω(d log n) tests. If we use o(log n/ log log n) stages but without knowing
d in advance, then we still need ω(d log n) tests.

Naturally, we leave as future work proving tighter bounds for the case in which
we use multiple stages while knowing d in advance, as that turned out to be
the most interesting case for group testing with defectives [3] but this section is
already somewhat longer than we anticipated.
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Abstract. We consider a variant of the graph searching games that is
closely related to the routing reconfiguration problem in WDM networks.
In the digraph processing game, a team of agents is aiming at clearing,
or processing, the vertices of a digraph D. In this game, two important
measures arise: 1) the total number of agents used, and 2) the total num-
ber of vertices occupied by an agent during the processing of D. Previous
works have studied the problem of minimizing each of these parameters
independently. In particular, both of these optimization problems are
not in APX. In this paper, we study the tradeoff between both these
conflicting objectives. More precisely, we prove that there exist some in-
stances for which minimizing one of these objectives arbitrarily impairs
the quality of the solution for the other one. We show that such bad
tradeoffs may happen even in the case of basic network topologies. On
the other hand, we exhibit classes of instances where good tradeoffs can
be achieved. We also show that minimizing one of these parameters while
the other is constrained is not in APX.

Keywords: Graph searching, process number, routing reconfiguration.

1 Introduction

In this paper, we study the digraph processing game analogous to graph searching
games [9]. This game aims at clearing the vertices of a contaminated directed
graph D. For this, we use mobile agents that are sequentially put to and removed
from the vertices of D. We are interested in two different measures and their
tradeoffs: the minimum number of vertices that must be covered (i.e., visited
by an agent) and the minimum number of agents required to clear D. This
game is closely related to the routing reconfiguration problem in Wavelength
Division Multiplexing (WDM) networks. In this context, the goal is to reroute
some connections that are established between pairs of nodes in a communication
network, which unfortunately can lead to interruptions of service. Each instance
of this problem may be represented by a directed graph called its dependency
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digraph D such that the reconfiguration problem is equivalent to the clearing of
D. More precisely, the two measures presented above respectively correspond to
the total number of requests disrupted during the rerouting of the connections,
and to the number of simultaneous disruptions during the whole process. The
equivalence between these two problems is detailed in Section 5.

The digraph processing game has been introduced in [5] for its relationship
with the routing reconfiguration problem. This game is defined by the three
following operations (or rules), which are very similar to the ones defining the
node search number [1, 9, 12, 14] of a graph and whose goal is to clear, or to
process, all the vertices of a digraph D :

R1 Put an agent at a vertex v of D;
R2 Remove an agent from a vertex v of D if all its outneighbors are either

processed or occupied by an agent, and process v;
R3 Process an unoccupied vertex v of D if all its outneighbors are either pro-

cessed or occupied by an agent.

A graph whose vertices have all been processed is said processed. A sequence
of such operations resulting in processing all vertices of D is called a process
strategy. Note that, during a process strategy, an agent that has been removed
from a vertex can be reused. The number of agents used by a strategy on a
digraph D is the maximum number of agents present at the vertices of D during
the process strategy. A vertex is covered during a strategy if it is occupied by an
agent at some step of the process strategy.

Fig. 1 illustrates two process strategies for a symmetric digraph D of 7 vertices.
The strategy depicted in Fig. 1(a) first put an agent at vertex x1 (R1), which
enables to process y1 (R3). A second agent is then put at r allowing the vertex
x1 to be processed, and the agent on it to be removed (R2). The procedure goes
on iteratively, until all the vertices are processed after 11 steps. The depicted
strategy uses 2 agents and covers 4 vertices. Another process strategy is depicted,
Fig. 1(b), uses 3 agents and covers 3 vertices. Note that the latter strategy
consists in placing agents at the vertices of a feedback vertex set (FVS)1 of
minimum size.

Clearly, any digraph can be processed by placing simultaneously an agent at
every node. However, Rule R3 allows to process some vertices without placing
an agent on it. More precisely, to process a digraph D, it is sufficient to put
an agent at every vertex of a feedback vertex set F of D, then the vertices
of V (D) \ F can be processed using Rule R3, and finally all agents can be
removed. In particular, a Directed Acyclic Graph (DAG) can be processed using
0 agents and thus covering no vertices. Indeed, to process a DAG, it is sufficient
to process sequentially its vertices starting from the leaves. Remark that any
process strategy for a digraph D must cover all vertices of a feedback vertex set
of D (not necessarily simultaneously). In general, the minimum number of agents
required to process a digraph D (without constraint on the number of covered

1 F ⊆ V of a digraph D = (V, A) is a FVS if removing all vertices in F makes D
acyclic.
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(a) A (2, 4)-process strategy for D.
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(b) A (3, 3)-process strategy for D.
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Fig. 1. Different process strategies for a symmetric digraph D

vertices) is called the process number [5, 6, 4], while the minimum number of
covered vertices required to process D (without constraint on the number of
agents) equals the size of a minimum feedback vertex set of D.

We are interested in tradeoffs between the minimum number of agents used
by a strategy and the minimum number of vertices covered during it.

1.1 Definitions and Previous Results

Let D be a n-node digraph. A (p, q)-process strategy denotes a process strategy
for D using at most p agents and covering at most q vertices. When the number
of covered vertices is not constrained, we write p-process strategy instead of
(p, n)-process strategy. Similarly, when the number of agents is not constrained,
q-process strategy replaces (n, q)-process strategy.

Process Number. The problem of finding the process number of a digraph D
was introduced in [5] as a metric of the routing reconfiguration problem (see
Section 5). Formally :

Definition 1. Let pn(D) denote the smallest p such that there exists a p-process
strategy for D.
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For instance, the digraph Fig. 1 satisfies pn(D) = 2. Indeed, Fig. 1(a) describes
a process strategy using 2 agents, and it is easy to check that no strategy can
process D using at most 1 agent. While digraphs with process number 0, 1,
and 2 can be recognized in polynomial time [6], computing the process number
is NP-complete and not in APX (i.e., admitting no polynomial-time approxi-
mation algorithm up to a constant factor, unless P = NP ) [5]. A distributed
polynomial-time algorithm to compute the process number of trees (or forests)
with symmetric arcs has been proposed in [3]. Furthermore the first heuristic for
computing the process number of any digraph is described in [4]. In [16], Solano
conjectured that computing the process number of a digraph can be solved in
polynomial time if the set of covered vertices is given as part of the input. We
disprove this conjecture, showing that computing the process number of a di-
graph remains out of APX (and so is NP-complete) even when the subset of
vertices at which an agent will be put is given (see Theorem 1).

The node search number and the pathwidth are graph invariants closely related
to the notion of process number for undirected graph. The node search number
of a graph G, denoted by sn(G), is the smallest p such that rules R1 and R2 (R3
is omitted) are sufficient to process G using at most p agents. See [1, 9, 12, 14]
for more details. The notion of pathwidth was introduced by Robertson and
Seymour in [15]. It has been proved in [8] by Ellis et al. that the pathwidth
and the node search number are equivalent, that is for any graph G, pw(G) =
sn(G) − 1, and in [5] that pw(G) ≤ pn(G) ≤ pw(G) + 1 (and so sn(G) − 1 ≤
pn(G) ≤ sn(G)), where the graph G is considered as a symmetric digraph. Since
the problem of determining the pathwidth of a graph is NP-complete [13] and
not in APX [7], these two parameters behave similarly.

Minimum Feedback Vertex Set. Given a digraph D, the problem of finding a
process strategy that minimizes the number of nodes covered by agents is similar
to the one of computing the size of a minimum feedback vertex set (MFVS) of D.
Computing such a set is well known to be NP-complete and not in APX [10]. We
define below the parameter mfvs(D), using the notion of (p, q)-process strategy,
corresponding to the size of a MFVS of D.

Definition 2. Let mfvs(D) denote the smallest q such that there exists a q-
process strategy for D.

As an example, for the digraph of Fig. 1, mfvs(D) = 3. As mentioned above,
mfvs(D) ≥ pn(D). Moreover, the gap between these two parameters may be
arbitrarily large. For example a symmetric path Pn of n ≥ 4 nodes is such that:
mfvs(Pn) = �n

2  while pn(Pn) = 2.

Tradeoff Metrics. We introduce new tradeoff metrics in order to study the loss
one may expect on one parameter when adding a constraint on the other. In
particular, what is the minimum number of vertices that must be covered by
a process strategy for D using pn(D) agents? Similarly, what is the minimum
number of agents that must be used to process D covering mfvs(D) vertices?
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Definition 3. Given an integer q ≥ mfvs(D), we denote by pnq(D) the mini-
mum p such that a (p, q)-process strategy for D exists. We define pnmfvs(D) =
pnq(D) when q = mfvs(D).

Definition 4. Given an integer p ≥ pn(D), we denote by mfvsp(D) the mini-
mum q such that a (p, q)-process strategy for D exists. We define mfvspn(D) =
mfvsp(D) when p = pn(D).

Note that mfvspn(D) is precisely the minimum number of vertices that must
be covered by a process strategy using the minimum number of agents, and that
pnmfvs(D) is the minimum number of agents required by a process strategy
minimizing the number of covered vertices.

To illustrate the pertinence of these tradeoff metrics, consider the digraph D
of Fig. 1. Recall that pn(D) = 2 and mfvs(D) = 3. We can easily verify that
there does not exist a (2, 3)-process strategy for D, that is a process strategy
minimizing both p and q. On the other hand, we can exhibit a (2, 4)-process
strategy (Fig. 1(a)) and a (3, 3)-process strategy (Fig. 1(b)) for D. Hence, we
have: pnmfvs(D) = 3 while pn(D) = 2, and mfvspn(D) = 4 while mfvs(D) = 3.
Intuitively for these two process strategies, we can not decrease one value without
increasing the other.

We generalize this concept through the introduction of the notion of minimal
values for a digraph D. We say that (p, q) is a minimal value for a digraph
D if p = pnq(D) and q = mfvsp(D). Remark that (pn(D), mfvspn(D)) and
(pnmfvs(D), mfvs(D)) are both minimal values by definition (and may be the
same). Clearly for a given digraph D, the number of minimal values is linear
in the number of nodes n = |V (D)|. For the digraph of Fig. 1, there are two
minimal values: (2, 4) and (3, 3). Fig. 2 represents the shape of minimal values
for a digraph D. More precisely, Fig. 2 depicts the variations of the minimum
number q of vertices covered by a p-strategy for D (p ≥ pn(D), i.e., mfvsp(D) as
a function of p. Clearly, it is a non-increasing function greater than by mfvs(D).

p

q

mfvs(D)

pn(D)

(D)pnmfvs

(D)q = mfvs p

(D)qp = pn pn mfvs(D)

Fig. 2. Representation of minimal values

1.2 Our Results

Our results constitute an analysis of the behaviour of the two given measures
both in general digraphs and in symmetric digraphs. In general, as mentioned
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above, no process strategy minimizes both the number of agents and the number
of covered vertices (see, e.g., Fig. 1). Hence, we are interested in the loss on
one measure when the other is constrained. In particular, we are interested in
the ratios pnmfvs(D)

pn(D) , and mfvspn(D)
mfvs(D) . This study involves various theorems on

the complexity of estimating this loss (Sec. 2) and the existence of digraphs
for which it can be arbitrarily large (Sec. 3 and Sec. 4). More precisely, we
first disprove the conjecture of Solano [16] (Th. 1). Then, we prove that all
parameters pnmfvs(D), mfvspn(D), pnmfvs(D)

pn(D) , and mfvspn(D)
mfvs(D) are not in APX

(Th. 2). Then, we prove that pnmfvs(D)
pn(D) and mfvspn(D)

mfvs(D) are not bounded in general
digraphs even in the class of bounded process number digraphs (Th. 3 and 4).
However, mfvspn(D)

mfvs(D) ≤ pn(D) for any symmetric digraph D (Lemma 1). Due to
lack of space most of the proofs are sketched and can be found in [2].

2 Complexity Results

Before proving that computing the tradeoff parameters introduced in Section 1.1
are NP-complete and not in APX, we disprove a conjecture of Solano about the
complexity of computing the process number of a digraph D.

Indeed a possible approach for computing the process number, proposed
in [16], consists of two phases: 1) finding the subset of vertices of the digraph at
which an agent will be put, and 2) deciding the order in which the agents are put
at these vertices. Solano conjectures that the complexity of the process number
problem resides in Phase 1 and that Phase 2 can be solved or approximated in
polynomial time [16]. We disprove this conjecture.

Theorem 1. Computing the process number of a digraph D is not in APX (and
thus NP-complete), even when the subset of covered vertices is given.

Sketch of the Proof. Let D = (V, A) be a symmetric digraph with V = {u1,
. . . , un}. Let D′ = (V ′, A′) be the symmetric digraph with V ′ = V ∪ {v1, . . . , vn}
obtained from D by adding 2 symmetric arcs between ui and vi (i = 1, . . . , n). It
is easy to show that there exists an optimal process strategy for D′ such that the
set of occupied vertices is V . Now, consider the problem of computing an optimal
process strategy for D′ when the set of vertices covered by agents is constrained to
be V . It is easy to check that this problem is equivalent to the one of computing the
node search number (and so the pathwidth) of the underlying undirected graph
of D which is NP-complete [13] and not in APX [7].

Theorem 2. Given a digraph D, the problems of determining pnmfvs(D),
mfvspn(D), pnmfvs(D)

pn(D) , and mfvspn(D)
mfvs(D) are not in APX (and thus NP-complete).

Proof. From Theorem 1, we know that the problem of determining pnmfvs is
not in APX. Indeed, in the class of graphs D′ defined in the proof of Theorem 1,
pn(D′) = pnmfvs(D′) = pw(D) + 1 = sn(D) (where the relationship between D
and D′ is described in this proof).
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Let Hn be a symmetric directed star with n branches each of which contains
two vertices, excluding the central node r (e.g., Fig. 1 for n = 3). Let Kn be a
symmetric n-node clique digraph, and D be any n-node digraph.

Let D′ be the disjoint union of Kn and D. Clearly, pn(D′) = pn(Kn) =
n − 1.Thus mfvspn(D′) = n − 1 + mfvs(D) since when we process D we can
use n− 1 agents. Since computing mfvs(D) is not in APX, computing mfvspn

is not in APX. To show that pnmfvs

pn is not in APX, let D′ be the digraph
composed of two components Hn and D. Let us do some trivial remarks: (1) the
neighbors of r belong to any MFVS of D′. (2) Moreover, r does not belong to a
MFVS of D′. Hence, to process r while occupying at most mfvs(D′) vertices, all
neighbors of r must be simultaneously occupied. This leads to pnmfvs(D′) = n.
To conclude, it is sufficient to remark that pn(D′) = max{pn(D), pn(H)}. Hence,
pnmfvs(D′)

pn(D′) = n
max{pn(D),2} . However, computing pn(D) is not in APX [5].

To prove that mfvspn

mfvs is not in APX, let D′ be the digraph composed of
Kn, Hn, and D. It is easy to show that pn(D′) = pn(Kn) = n − 1. Hence,
mfvspn(D′)
mfvs(D′) = (n−1)+(n+1)+mfvs(D)

(n−1)+n+mfvs(D) . Indeed to process Hn using n − 1 agents,
we must cover n + 1 nodes by agents: the central node r and successively its n
neighbors (see Fig. 1 for n = 3). Furthermore, the minimum number of nodes
covered by agents when we process D is mfvs(D) because we have n−1 available
agents. Thus mfvspn(D′)

mfvs(D′) = 2n+mfvs(D)
2n−1+mfvs(D) . To get this ratio we must compute

mfvs(D) which is not in APX.

Corollary 1. Let p ≥ pn(D), q ≥ mfvs(D) be integers, and D a digraph.
Computing pnq(D), mfvsp(D), pnq(D)

pn(D) , or mfvsp(D)
mfvs(D) is not in APX.

3 Behaviour of Ratios in General Digraphs

We study in this section behaviours of parameters introduced in Section 1.1 and
their ratios, showing that, in general, good tradeoffs are impossible.

Theorem 3. ∀C > 0, q ∈ N, there exists a digraph D s.t. pnmfvs+q(D)
pn(D) > C.

Sketch of the Proof. Let Hn be a symmetric directed star with n ≥ 3 branches
each of which containing two vertices, excluding the central node r. H3 is repre-
sented in Fig. 1. It is easy to check that pn(Hn) = 2 (e.g., Fig. 1(a)). Moreover,
since the single MFVS of Hn is the set X of the n vertices adjacent to r, it is
easy to check that pnmfvs(Hn) = n (e.g., Fig. 1(b)). We now build D with q +1
copies of Hn. Hence, pnmfvs+q(D) = n while pn(D) = 2. Taking n > 2C, we get
pnmfvs+q(D)

pn(D) > C.

Corollary 2. For any C > 0, there exists a digraph D s.t. pnmfvs(D)
pn(D) > C.

We now prove similar results for the other ratio. To do it, let us consider the
digraph D of Fig. 3(a). K1

n+1 is a symmetric clique of n + 1 nodes x1, . . . , xn, u.
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pattern P n+1 K n+1
1 2pattern P

x1

x2

xn

u v

y

y

y

1

2

n

z

z

z

1

2

n

IS 1
n IS n

2 IS n
3 IS n

2k−1

copy ofK

(a) D of Theorems 4 and 5.

here go

(b) D of Theorem 4 (n = 2, k = 3).

Fig. 3. Digraph D described in Theorems 4 and 5

IS1
n and IS2

n are two independent sets of n nodes each: respectively y1, . . . , yn

and z1, . . . , zn. In D, there is an arc from xi to yj , i = 1, . . . , n, j = 1, . . . , n,
if and only if j ≥ i. There is an arc from yi to zj, i = 1, . . . , n, j = 1, . . . , n,
if and only if i ≥ j. The other arcs of D are built in such a way for other
independent sets IS3

n, . . . , IS2k−1
n and the symmetric clique K2

n+1. These arcs
and the independent sets form the pattern P (see Fig. 3(a)). Between K2

n+1 and
K1

n+1, the same pattern is built. Fig. 3(b) represents D when n = 2 and k = 3.

Theorem 4. For any C > 0, there exists a digraph D s.t. mfvspn(D)
mfvs(D) > C.

Sketch of the Proof. Let D be the digraph described in Fig. 3(a) with n = 2.
We prove that mfvs(D) = 4, and that for any (3, q)-process strategy for D,
q ≥ 2k + 3. Taking k > 4C−3

2 , we get mfvspn(D)
mfvs(D) ≥

2k+3
4 > C.

By setting n = p + 2 in the digraph of Fig. 3(a) (details in [2]), we get:

Theorem 5. For any C > 0 and any integer p ≥ 0, there exists a digraph D

such that mfvspn+p(D)
mfvs(D) > C.

The digraph described in proof of Theorem 4 has process number 3 while
mfvspn(D)
mfvs(D) is unbounded. Lemma 1 in Section 4 shows that, in the class of sym-

metric digraphs with bounded process number, mfvspn(D)
mfvs(D) is bounded.

4 Behaviour of Ratios in Symmetric Digraphs

We address the behaviour of mfvspn(D)
mfvs(D) for symmetric digraphs D. Note that the

behaviours of pnq, pnmfvs, and the different ratios, have been already studied
in Sec. 3 for symmetric digraphs with bounded process number. Due to lack of
space the proof of Lemma 1 is omitted and can be found in [2].

Lemma 1. For any symmetric digraph D, mfvspn(D)
mfvs(D) ≤ pn(D).

Lemma 2. ∀ε > 0, there exists a symmetric digraph D s.t. mfvspn(D)
mfvs(D) ≥ 3-ε.
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2

2,n K n+1 K n,2
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n
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z
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n

1

K

(a) D (b) D when n = 5.

Fig. 4. Symmetric digraph D of Lemma 2 (a) and D when n = 5 (b)

Sketch of the Proof. Let D be the symmetric digraph of Fig. 4(a). Let IS1
n

and IS2
n be two independent sets of n nodes each: respectively x1, . . . , xn and

z1, . . . , zn. Let Kn+1 be a symmetric clique of n+1 nodes y1, . . . , yn, v. In D, there
are two symmetric arcs between xi and yj , and between zi and yj , i = 1, . . . , n,
j = 1, . . . , n, if and only if j ≥ i. Furthermore the two right nodes of K1,2
and nodes of IS1

n form a complete symmetric bipartite subgraph (the same
construction for K2,1 and IS2

n). The symmetric digraph of Fig. 4(b) represents
D when n = 5. We prove that mfvs(D) = n+4, and that, any (n+1, q)-process
strategies must cover at least 3n+2 nodes, that is q ≥ 3n+2. Taking n > 10

ε −4,
we get mfvspn(D)

mfvs(D) ≥
3n+2
n+4 ≥ 3− ε.

Conjecture. For any symmetric digraph D, mfvspn(D)
mfvs(D) ≤ 3.

5 Processing Game Out of Routing Reconfiguration

The routing reconfiguration problem occurs in connection-oriented networks such
as telephone, MPLS, or WDM [2, 4, 5, 6, 16, 17]. In such networks, a connection
corresponds to the transmission of a data flow from a source to a destination,
and is usually associated with a capacited path (or a wavelength in WDM op-
tical networks). A routing is the set of paths serving the connections. To avoid
confusion, we assume here that each arc of the network has capacity one, and
that each connection requires one unit of capacity. Consequently, no two paths
can share the same arc (valid assumption in WDM networks). When a link of the
network needs to be repaired, it might be necessary to change the routing of the
connection using it, and incidentally to change the routing of other connections
if the network has not enough free resources. Computing a new viable routing
is a well known hard problem, but it is not the concern of this paper. Indeed,
this is not the end of our worries: once a new routing not using the unavailable
edges is computed, it is not acceptable to stop all the connections going on, and
change the routing, as it would result in a bad quality of service for the users
(such operation requires minutes in WDM networks). Instead, it is preferred that
each connection first establishes the new path on which it transmits data, and
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b

c fd e

g h i j

a

(a) Old set of routes S1.

b

c fd e

g h i j

a

(b) New set of routes S2.

(i,j)

(h,i) (e,j)(h,c)

(d,b)(d,c)

(e,b)

(c) Dependency digraph
D from S1 to S2.

Fig. 5. Instance of the reconfiguration problem consisting of a network with 10 nodes
and symmetric arcs, 8 connections (h, i), (h, c), (d, c), (d, b), (e, b), (e, j), (i, j), (g, i) to
be reestablished. Fig. 5(a) depicts the old set of routes S1, Fig. 5(b) the new set S2,
and Fig. 5(c) the dependency digraph.

then stops the former one. This requires a proper scheduling to avoid conflicts in
accessing resources (resources needed for a new path must be freed by other con-
nections first). Furthermore, cyclic dependencies might force to interrupt some
connections during that phase. The aim of the routing reconfiguration problem
is to optimize tradeoffs between the total number and the concurrent number of
connections to interrupt.

As an example, a way to reconfigure the instance depicted in Fig. 5 may be to
interrupt connections (h, c), (d, b), (e, j), then set up the new paths of all other
connections, tear down their old routes, and finally, set up the new paths of con-
nections (h, c), (d, b), (e, j). Such a strategy interrupts a total of 3 connections.
Another strategy may consist of interrupting the connection (h, i), then sequen-
tially: interrupt connection (h, c), reconfigure (d, c) without interruption for it,
set up the new route of (h, c), then reconfigure in the same way first (d, b) and
(e, b) without interruption for these two requests, and then (e, j) and (i, j). Fi-
nally, set up the new route of (h, i). The second strategy implies the interruption
of 4 connections, but at most 2 connections are interrupted simultaneously.

Indeed, possible objectives are (1) to minimize the total number of disrupted
connections [11], and (2) to minimize the maximum number of concurrent inter-
ruptions [4, 5, 16, 17]. Following [5, 11], these two problems can be expressed
through the theoretical game described in this paper, on the dependency digraph
[11]. Given the initial routing and the new one, the dependency digraph contains
one node per connection that must be switched. There is an arc from node u to
node v if the initial route of connection v uses resources that are needed by the
new route of connection u. Fig. 5 shows an instance of the reconfiguration problem
and its corresponding dependency digraph. In Fig. 5(c), there is an arc from vertex
(d, c) to vertex (h, c), because the new route used by connection (d, c) (Fig. 5(b))
uses resources seized by connection (h, c) in the initial configuration (Fig. 5(a)).
Other arcs are built in the same way. The next theorem proves the equivalence
between instances of the reconfiguration problem and dependency digraphs. Due
to the lack of space, the proof can be found in [2].
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Theorem 6. Any digraph D is the dependency digraph of an instance of the
routing reconfiguration problem.

Note that a digraph may be the dependency digraph of various instances of the
reconfiguration problem. Since any digraph may be the dependency digraph of
a realistic instance of the reconfiguration problem, Th. 6 shows the relevance of
studying these problems through the notion of dependency digraph.

A feasible reconfiguration may be defined by a (p, q)-process strategy for the
corresponding dependency digraph. Problem (1) is equivalent to minimizing q
(Sec. 1.1) and Problem (2) is similar to the one of minimizing p (Sec. 1.1).
Consider the dependency digraph D of Fig. 5. From Sec. 1.1, we can not minimize
both p and q, that is the number of simultaneous disrupted requests and the total
number of interrupted connections. Indeed there does not exist a (2, 3)-process
strategy while (2, 4) and (3, 3) exist (Fig. 1).

It is now easy to make the relation between tradeoffs metrics introduced in
Section 1.1 and tradeoffs for the routing reconfiguration problem. For example,
pnmfvs introduced in Definition 3 represents the minimum number of requests
that have to be simultaneously interrupted during the reconfiguration when the
total number of interrupted connections is minimum. Also Section 2 shows that
the problems of computing these new tradeoffs parameters for the routing recon-
figuration problem are NP-complete and not in APX. Finally Section 3 proves
that the loss one can expect on one parameter when minimizing the other may
be arbitrarily large.

For further research, we plan to continue our study for symmetric digraphs
in order to (dis)prove Conjecture 1. Moreover, it would be interesting to design
exact algorithms and heuristic to compute (p, q)-process strategies.
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Abstract. UNO R© is one of the world-wide well-known and popular card games.
We investigate UNO from the viewpoint of combinatorial algorithmic game the-
ory by giving some simple and concise mathematical models for it. They include
cooperative and uncooperative versions of UNO, for example. As a result of an-
alyzing their computational complexities, we prove that even a single-player ver-
sion of UNO is NP-complete, while it becomes in P in some restricted cases. We
also show that uncooperative two-player’s version is PSPACE-complete.

1 Introduction

Playing games and puzzles is a lot of fun for everybody, and analyzing games and
puzzles has long been attracted much interests of both mathematicians and computer
scientists [5,8]. Among various interests and directions of researchers in mathematics
and computer science, one of the central issues is their computational complexities,
that is, how hard or easy to get an answer of puzzles or to decide the winner (loser) of
games [2,4,10]. Such games and puzzles of interests include Nim, Hex, Peg Solitaire,
Tetris, Geography, Amazons, Chess, Othello, Go, Poker, and so on. Recently, this field
is sometimes called ‘algorithmic combinatorial game theory’ [2] to distinguish it from
games arising from the other field, especially the classical economic game theory.

In this paper, we focus on one of the well-known and popular card games called
UNO1 and investigate it from the viewpoint of algorithmic combinatorial game the-
ory to add it to the research list. More specifically, we propose mathematical models of
UNO, which is one of the main purposes of this paper, and then examine their computa-
tional complexities. As a result, even a single-player version of UNO is computationally
intractable, while we can show that the problem becomes rather easy under a certain re-
striction.

We organize this paper as follows: Section 2 introduces two mathematical models of
UNO and their variants, and also defines UNO graphs. Among those models, Section 3

1 UNO R© is a registered trademark of Mattel Corporation.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 133–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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focuses on a single-player version of UNO, and investigates its complexities. In Section
4, we argue with two-players’ version of UNO, and show that it is PSPACE-complete.
Finally, Section 5 concludes the paper.

2 Preliminaries

Games are often categorized from several aspects of properties that they have when we
research it theoretically. Typical classifications are, for example, if it is multi-player or
single-player, imperfect-information or perfect-information, cooperative or uncooper-
ative, and so on [2,8]. A single-player game is automatically perfect-information and
cooperative, and is sometimes called a puzzle.

2.1 Game Settings

UNO is one of the world-wide well-known and popular card games. It can be played
by 2–10 players. Each player is dealt equal number of cards at the beginning of the
game, where each (normal) card has its color and number (except for some special
ones called ‘action cards’). The basic rule is that each player plays in turn, and one
can discard exactly one of his/her cards at hand in one’s turn by matching the card
with its color or number to the one discarded immediately before one. The objective
of a single game is to be the first player to discard all the cards in one’s hand before
one’s opponents. Thus, UNO is a (i) multi-player, (ii) imperfect-information, and (iii)
uncooperative combinatorial game (see [3] for detailed rules of UNO).

In the real game setting of UNO, it is quite true that action cards play important
roles to make this game complicated and interesting. However, in this paper, when
we model the game mathematically, we concentrate on the most important aspect of
the rules of UNO that a card has a color and a number and that one can discard a
card only if its color or number match the card discarded immediately before one’s
turn. In addition to obeying this fundamental property, for theoretical simplicity, we set
following assumptions on our mathematical models: (a) we do not take into account
either action cards nor draw pile, (b) all the cards dealt to and at hand of any player
are open during the game, i.e., perfect-information, (c) we do not necessarily assume
that all the players have a same number of cards at the beginning of a game (unless
otherwise stated), (d) any player acts rationally, e.g., any player is not allowed to skip
one’s turn intentionally, and (e) the first player can start a game by discarding any card
he/she likes at hand.

2.2 Definitions and Notations

An UNO card has two attributes called color and number, and in general, we define a
card to be a tuple (x, y) ∈ X×Y, where X = {1, . . . , c} is a set of colors and Y = {1, . . . , b}
is a set of numbers. Finite number of players 1, 2, . . . , p (≥ 1) can join an UNO game.
At the beginning of a single game of UNO, each card of a set of n cards C is dealt
to one player among p players, i.e., each player i is initially given a set Ci of cards;
Ci = {ti,1, . . . , ti,ni} (i = 1, . . . , p). By definition,

∑p
i=1 ni = n. Here, we assume that C is a
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multiple set, that is, there may be more than one card with the same color and the same
number. We denote a card (x, y) dealt to player i by (x, y)i. When the number of players
is one, we omit the subscript without any confusion. Throughout the paper, we assume
without loss of generality that player 1 is the first to play, and players 1, 2, . . . , p play in
turn in this order.

Player i can discard (or play) exactly one card currently at hand in his/her turn if the
color or the number of the card is equal to each of the card discarded immediately before
player i. In other words, we say that a card t′ = (x′, y′)i′ can be discarded immediately
after a card t = (x, y)i if and only if (x′ = x∨y′ = y)∧i′ = i + 1 (mod p). We also say that
a card t′ matches a card t when t′ can be discarded after t. A discarded card is removed
from a set of cards at hand of the player. A discarding (or playing) sequence (of cards)
of a card set C is a sequence of cards (ts1 , . . . , tsk ) such that tsi ∈ C and tsi � ts j (i � j).
A discarding sequence (ts1 , . . . , tsk ) is feasible if ts j+1 matches ts j for j = 1, . . . , k − 1.

In our mathematical models of UNO, we specify the problems by four parameters:
number of players p, number of total cards n, number of colors c and the number of
numbers b. Two values c and b are assumed to be unbounded unless otherwise stated.

2.3 Models

We now define two different versions of UNO, one is cooperative and the other is un-
cooperative.

Uncooperative Uno
Instance: the number of players p, and player i’s card set Ci with c colors and
b numbers.
Question: determine the first player that cannot discard one’s card any more.

We refer to this Uncooperative UNO with p players as Uncooperative Uno-p. This
problem setting makes sense only if p ≥ 2 since UNO played by a single player be-
comes automatically cooperative.

Cooperative Uno
Instance: the number of players p, player i’s card set Ci with c colors and b
numbers.
Question: can all the players make player 1 win, i.e., make player 1’s card set
empty before any of the other players become finished.

We abbreviate Cooperative Uno played by p players as Cooperative Uno-p, or simply
as Uno-p. This problem setting makes sense if the number of players p is greater than or
equal to 1. In Uncooperative/CooperativeUno, when the number of players is given by
a constant, such as Uno-2, it implies that p is no longer a part of the input of the prob-
lem. In addition to the assumptions (a)–(e) on game settings described in Subsec. 2.1,
we set one additional assumption which changes depending on whether the game is
cooperative or uncooperative: any player that cannot discard any card at hand (f1) skips
one’s turn but still remains in the game and waits for the next turn in cooperative games,
and (f2) is a loser in uncooperative games.

We define UNO-p graph as a directed graph to represent ‘match’ relationship be-
tween two cards in the entire card set. More precisely, a vertex corresponds to a card,
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and there is a directed arc from vertex u to v if and only if their corresponding cards
tv matches (can be discarded immediately after) tu. Let us consider UNO-1 graph, i.e.,
UNO-p graph in case that the number of players p = 1. In this case, a card t′ matches
t if and only if t matches t′, that is, the ‘match’ relation is symmetric. This implies
that UNO-1 graph becomes undirected. For UNO-2 graph, a card t′ = (x′, y′)2 matches
t = (x, y)1 if and only if t matches t′, and therefore, UNO-2 graph also becomes undi-
rected. Furthremore, since a player cannot play consecutively when the number of play-
ers p ≥ 2, UNO-2 graph becomes bipartite. In general, since n cards of a card set C is
dealt to p players at the beginning of a single UNO game, i.e., C is partitioned into
Ci = {(x, y)i}, UNO-p graph becomes a (restricted) p-partite graph whose partite sets
correspond to Ci.

3 Cooperative UNO

In this section, we focus on the cooperative version of UNO, and discuss its complexity
when the number of players is two or one.

3.1 Two-Players’ Case

We first show that Uno-2 is intractable.

Theorem 1. Uno-2 is NP-complete.

Proof. Reduction from Hamiltonian Path (HP).
An instance of HP is given by an undirected graph G. The problem asks if there is a

Hamiltonian path in G, and it is known to be NP-complete [7]. Here, we assume without
loss of generality that G is connected and is not a tree, and hence that |V(G)| ≤ |E(G)|.
We transform an instance of HP into an instance of Uno-2 as follows. Let C1 and C2

be the card set of players 1 and 2, respectively. We define C1 = {(i, i) | vi ∈ V(G)} and
C2 = {(i, j) | {vi, v j} ∈ E(G)}. Then, notice that the resulting UNO-2 graph G′, which
is bipartite, has partite sets X and Y (X ∪ Y = V(G′)) corresponding to V(G) and E(G),
respectively, and represents vertex-edge incidence relationship of G (Fig. 1). Now we
show that the answer of an instance of HP is yes if and only if the answer of an instance
of Uno-2 is yes. If there is a Hamiltonian path, say P = (vi1 , vi2 , . . . , vin ), in the instance
graph of HP, then there is a feasible discarding sequence alternatively by player 1’s
and 2’s as ((i1, i1)1, (i1, i2)2, (i2, i2)1, . . . , (in−1, in−1)1, (in−1, in)2, (in, in)1), which ends up
player 1’s card before player 2’s. Conversely, if there is a feasible discarding sequence
((i1, i1)1, (i1, i2)2, (i2, i2)1, . . . , (in−1, in−1)1, (in−1, in)2, (in, in)1), it visits all the vertices in
X of G′ exactly once, and thus the corresponding sequence of vertices (vi1 , vi2 , . . . , vin )
is a simple path visiting all the vertices in V(G) exactly once, that is, a Hamiltonian path
in G.

The size of an instance of Uno-2 is proportional to |C1| + |C2|. Since |C1| = |V(G)|
and |C2| = |E(G)|, the reduction is done in polynomial size in |V(G)| + |E(G)|, which is
the input size of an instance of HP. This completes the proof. ��
Corollary 1. Uno-2 is NP-complete even when the number of cards of two players are
equal.
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v1

v2 v3

v4
(1, 1)1

(2, 2)1

(3, 3)1

(4, 4)1

(1, 2)2

(2, 3)2

(1, 3)2

(3, 4)2

(1, 4)2

Fig. 1. Reduction from HP to Uno-2

Proof. Reduction from Hamiltonian Pathwith specified starting vertex, which is known
to be NP-complete [7].

We consider the same reduction in the proof of Theorem 1. As in that proof, we
can assume |C1| ≤ |C2| without loss of generality. When |C1| = |C2|, we are done. If
|C1| < |C2|, add |C2| − |C1| cards (n + 2, n + 2) and a single card (n + 2, n + 1) to C1, a
single card (i, n+1) (i ∈ {1, . . . , n}) to C2, and player 1 starts with card (n+2, n+2). This
forces the original graph G to specify a starting (or an ending) vertex of a Hamiltonian
path to be vi. ��

3.2 Single-Player’s Intractable Case

In single-player’s case, two different versions of UNO, cooperative and uncooperative
ones, become equivalent. We redefine this setting as the following:

Uno-1 (Solitaire Uno)
Instance: a set C of n cards (xi, yi) (i = 1, . . . , n), where xi ∈ {1, . . . , b} and
yi ∈ {1, . . . , c}.
Question: determine if the player can discard all the cards.

Example 1. Let the card set C for player 1 is give by C = {(1, 3), (2, 2), (2, 3), (2, 3),
(2, 4), (3, 2), (3, 4), (4, 1), (4, 3)}. Then, a feasible discarding sequence using all the cards
is ((1, 3), (2, 3), (2, 4), (3, 4), (3, 2), (2, 2), (2, 3), (4, 3), (4, 1)) in this order, for example,
and the answer is yes. The corresponding UNO-1 graph is depicted in Fig. 2.

(1, 3)

(4, 3)

(4, 1)
(2, 3)

(2, 3)

(2, 4)
(2, 2)

(3, 4)

(3, 2)

Fig. 2. An example of UNO-1 graph

We here investigate some basic properties of UNO-1 graphs. In UNO-1 graphs, all
the vertices whose corresponding cards have either the same color or number form a
clique. A line graph L(G) of a given graph G is a graph whose vertices are edges of G
and {e, e′} ∈ E(L(G)) for e, e′ ∈ V(L(G)) if and only if e and e′ share endpoints in G. A
graph that contains no induced K1,3 is called claw-free, and line graphs are claw-free.



138 E.D. Demaine et al.

It is not so difficult to see that UNO-1 graphs are claw-free since at least two of the
three cards that match a card must have the same color or number. Furthermore, we can
observe the following fact.

Observation 1. A graph is UNO-1 if and only if it is a line graph of a bipartite graph.

Now we can easily understand that Uno-1 is essentially equivalent to finding a Hamil-
tonian path in UNO-1 graph. However, the following fact is known.

Theorem 2. [9] Hamiltonian Path for line graphs of bipartite graphs is NP-complete.

Therefore, as a corollary of this theorem, we unfortunately know that UNO is hard even
for a single player.

Theorem 3. Uno-1 is NP-complete.

Here, we give a direct and concise proof of Theorem 3 for self-containedness and com-
pleteness instead of the one in [9], which further depends on [1].

Proof. A cubic graph is a graph each of whose vertex has degree 3. We reduce Hamil-
tonian Path for cubic graphs (HP-C), which is known to be NP-complete [6], to Uno-1.

Let an instance of HP-C be G. We transform G into a graph G′, where

V(G′) = {(x, e) | x ∈ V(G), e = {x, y} ∈ E(G)},
E(G′) = {((x, e), (y, e)) | e = {x, y} ∈ E(G)} ∪ {((x, ei), (x, e j)) | ei � e j}.

This transformation implies that any vertex x ∈ V(G) is split into three new vertices
(x, ei) (i = 1, 2, 3) to form a clique (triangle), while each incident edge ei (i = 1, 2, 3)
to x becomes incident to a new vertex (x, ei). (We call it a “node gadget” as shown in
Fig. 3.) Then we prepare the card set C of the player of Uno-1 to be the set V(G′), where
the color and the number of (x, e) are x and e, respectively. We can easily confirm that
there is an edge e = (t, t′) in G′ if and only if t and t′ match, i.e., G′ is the corresponding
UNO-1 graph for card set C. Now it suffices to show that there is a Hamiltonian path in
G of an instance of HP-C if and only if there is a Hamiltonian path in G′.

Suppose there is a Hamiltonian path, say P = (vi1 , . . . , vin ), in G. We construct a
Hamiltonian path P′ in G′ from P as follows. Let vi j−1 , vi j , vi j+1 be three consecutive
vertices in P in this order, and let e1 = {vi j−1 , vi j }, e2 = {vi j , vi j+1 } and e3 = {vi j , vik }
(k � j − 1, j + 1). Then we replace these three vertices by the sequence of vertices
(vi j−1 , e1), (vi j , e1), (vi j , e3), (vi j , e2), (vi j+1 , e2) in G′ to form a subpath in P′. For the
starting two vertices vi1 and vi2 , we replace them by the sequence of vertices (vi1 , e1)
(e1 � {vi1 , vi2}), (vi1 , e2) (e2 � {vi1 , vi2}), (vi1 , {vi1 , vi2 }), (vi2 , {vi1 , vi2}) (same for the ending
two vertices). We can now confirm that the resulting sequence of vertices P′ in G′ form
a Hamiltonian path.

For the converse, we have to show that if there is a Hamiltonian path P′ in UNO-1
graph G′, then there is in G. If P′ visits (v, ei) (i = 1, 2, 3) consecutively in any order
(call it “consecutiveness”) for any v (as shown in Fig. 4 (a1) or (a2)), then P′ can be
transformed into a Hamiltonian path P in G in an obvious way. Suppose not, that is, a
Hamiltonian path P′ in G′ does not visit (v, ei) (i = 1, 2, 3) consecutively. It suffices to
show that such P′ can be transformed into another path to satisfy the consecutiveness.
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v
e1

e2

e3
(v, e1)

(v, e2)
(v, e3)

Fig. 3. A node gadget splits a vertex into three vertices to form a triangle

(v, e1)

(v, e2)
(v, e3)

(a1)

(b’) (c’)

(a2) (b) (c)

(v, e1)

(v, e2)
(v, e3)

(v, e1)

(v, e2)
(v, e3)

(v, e1)

(v, e2)
(v, e3)

(v, e1)

(v, e2)
(v, e3)

(v, e1)

(v, e2)
(v, e3)

Fig. 4. Possible tours passing through a node gadget

There are two possible cases as shown in Fig. 4 (b’) and (c’), both of which contain at
least one end point of P′ in (v, ei). In case (b’), we can resolve this inconsecutiveness
in (v, ei) as shown in (b), which may result in case (c’) in adjacent set of three vertices.
In case (c’), in order to resolve it, we can transform it into (c), which does not contain
inconsecutiveness any more.

The reduction can be done in the size proportional to the size of an instance of HP-C.
Thus, the proof is completed. ��

3.3 Single-Player’s Tractable Case

In the remaining part of this section, we will show that such an intractable problem
Uno-1 becomes tractable if the number of colors c is bounded by a constant. It will be
solved by dynamic programming (DP) approach. To illustrate the DP for Uno-1, we
first introduce a geometric view of UNO-1 graphs.

Since an UNO card (x, y) is an ordered pair of integer values standing for its color
and number, it can be viewed as a (integer) lattice point in the 2-dimensional lattice
plane. Then an UNO-1 graph is a set of points in that plane, where all the points with
the same x- or y-coordinate form a clique. We call this way of interpretation a geometric
view of UNO-1 graphs. The geometric view of an instance in Example 1 is shown in
Fig. 5 (a). Now the problem Uno-1, which is equivalent to finding a Hamiltonian path in
UNO-1 graphs, asks if, for a given set of points in the plane and starting and ending at
appropriate different points, one can visit all the points exactly once under the condition
that only axis-parallel moves are allowed at each point (Fig. 5 (b)).

Strategy. Let C be a set of n points and G be an UNO-1 graph defined by C. Then a
subgraph P forms a Hamiltonian path if and only if it is a single path that spans G.
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x (color)

y (number)

1 2 3 4

1

2

3

4

x

y

1 2 3 4

1

2

3

4

x
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Fig. 5. (a) Geometric view of a UNO-1 graph, where all the edges are omitted, (b) a Hamiltonian
path in the UNO-1 graph, and (c) a set of subpaths in the subgraph of the UNO-1 graph induced
by the first 6 points; it shows h{1,2} = 1, v(2,3) = 1 and d{4,4} = 1

Suppose a subgraph P is a spanning path of G. If we consider a subset C′ of the point
set C, then P[C′] (the subgraph of P induced by C′) is a set of subpaths that spans
G[C′] (Fig. 5 (c)). We count and maintain the number of sets of subpaths by classifying
subpaths into three disjoint subsets according to the types of their two endpoints.

Starting with the empty set of points, the DP proceeds by adding a new point accord-
ing to a fixed order by updating the number of sets of subpaths iteratively. Finally when
the set of points grows to C, we can confirm the existence of a Hamiltonian path in G by
checking the number of sets of subpaths consisting of a single subpath (without isolated
vertices). Remark that, throughout this DP, we regard for convenience that an isolated
vertex by itself contains a (virtual) path starting and ending at itself that spans it.

Mechanism. To specify a point to be added in an iteration of the DP, we define a re-
lation ≺ on the point set C, where x(t) and y(t) are x- and y-coordinates of a point
t, respectively: Let t and t′ be two points in C, then t ≺ t′ ⇐⇒ y(t) < y(t′) or
(y(t) = y(t′) ∧ x(t) < x(t′)). When t = t′, a tie breaks arbitrary. This relation ≺ defines
a total order on C, and we refer n points in C to t1, . . . , tn according to the increasing
order of ≺. We also define C� = {ti | 1 ≤ i ≤ �}. Now points are added from t1 to tn, and
consider when a new point t� = (x(t�), y(t�)) is added to C�−1. It must be added either to
two, one or zero endpoints of different subpaths to form a new set of subpaths.

Now let P(�) be a family of sets of subpaths spanning G[C�]. (Recall that we regard
that an isolated vertex contains a path spanning itself.) Then we classify subpaths in
a set of subpaths P ∈ P(�) in the following manner: for any subpath P ∈ P and the
y-coordinates of its two endpoints, either (i) both equal y(t�) (type-h), (ii) exactly one of
two equals y(t�) (type-v), or (iii) none equals y(t�) (type-d) holds. We count the number
of such three types of subpaths in P further by classifying them by the x-coordinates
of their endpoints. (Notice that types-h, -d are symmetric but type-v is not with respect
to x-coordinate.) For this purpose, we prepare some subscript sets: a set of subscripts
K = {1, . . . , c}, sets of unordered pair of subscripts I =

(
K
2

)
and I+ = I ∪ {{i, i} | i ∈ K},

and sets of ordered pair of subscripts J = K × K and J− = J − {(i, i) | i ∈ K}.
We now introduce the following parameters h, v and d to count the number of sub-

paths in P (∈ P(�)) (see Fig. 5 (c)):
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h{i,i′} : #subpaths in P with endpoints (xi, y(t�)) and (xi′ , y(t�)) for {i, i′}∈ I+,
v(i,i′) : #subpaths in P with endpoints (xi, y(t�)) and (xi′ , y′) for (i, i′)∈ J and y′<y(t�),
d{i,i′} : #subpaths in P with endpoints (xi, y′) and (xi′ , y′′) for {i, i′}∈ I+ and y′, y′′<y(t�).

Then we define a (2|I+| + |J|)-dimensional vector z(P) for a set of subpaths P (∈ P(�))
as z(P) = (h; v; d) = (〈h{1,1}, . . . , h{1,c}, h{2,2}, . . . , h{2,c}, h{3,3}, . . . , h{c,c}〉; 〈v{1,1}, . . . , v{1,c},
v{2,1}, v{2,2}, . . ., v{2,c}, v{3,1}, . . . , v{c,c}〉; 〈d{1,1}, . . . , d{1,c}, d{2,2}, . . . , d{2,c}, d{3,3}, . . . , d{c,c}〉).
Finally, for a given vector (h; v; d), we define the number of sets P satisfying z(P)
= (h; v; d) in a family P(�) by f (�, (h; v; d)), i.e., f (�, (h; v; d)) =

∣∣∣{ P | P ∈ P(�),
z(P) = (h; v; d) }∣∣∣. Now the objective of the DP is to determine if there exists a vector
(h; v; d) such that f (n, (h; v; d)) ≥ 1, where all the elements in h, v and d are 0 except
for exactly one element is 1.

Recursion. As we explained, the DP proceeds by adding a new point t� to C�−1. When t�
is added, it is connected to either 0, 1 or 2 endpoints of existing different paths, where
each endpoint has y(t�) or x(t�) in its coordinate. The recursion of the DP is described
just by summing up all possible combinations of these patterns. We treat it by dividing
them into three cases, one of which has two subcases: (a) a set of base cases; (b) a case
in which t� is added as the first point whose y-coordinate is y(t�), and (b1) as an isolated
vertex, or (b2) as to be connected to an existing path; (c) all the other cases.

Now we can give the DP formula for computing f (�; (h; v; d)), however, we just
explain the idea of the DP in Fig. 6 by illustrating one of the cases appearing in the DP
(see [3] for full description of this recursion). In this example, consider a subpath in a
graph induced by C� whose two endpoints have xi′ and x j in their x-coordinates. It will
be counted in h{i′ , j}. Then this subpath can be generated by adding point t� to connect to
two paths in a graph induced by C�−1, the one whose one endpoint is (xi, y(t�)) (counted
in v(i,i′)), and the other whose one endpoint is (k, y) (y < y(t�)) (counted in d{ j,k}). The
number of such paths is the sum of those for all the combinations of i, i′ and j.

i′i j k

y(t�)

v(i,i′)

d( j,k)

t� = (k, y(t�))

Fig. 6. An example case of the DP

Timing analysis. We first count possible combinations of arguments for f . Since � varies
from 0 to n, there are Θ(n) possible values. All of h, v and d have Θ(c2) elements,
each of which can have O(n) possible values, and therefore O(nc2

) possible values in
all. To compute a single value of f , it requires O(n4) lookups of previously computed
values of f in case (c), while O(n3c2

) × O(n2) lookups and check-sums in cases (b1)
and (b2), which is greater than O(n4). Therefore, the total running time for this DP is



142 E.D. Demaine et al.

Θ(n) × O(n3c2
) × O(n3c2+2) = O(n6c2+3) = nO(c2), which is polynomial in n when c is a

constant.

Since the role of colors and numbers are symmetric in UNO games, we have the fol-
lowing results.

Theorem 4. Uno-1 is in P if b (the number of numbers) or c (the number of colors) is
a constant.

4 Uncooperative UNO

In this section, we deal with the uncooperative version of UNO. Especially, we show
that it is intractable even for two player’s case. For this purpose, we consider the fol-
lowing version of Generalized Geography, which is played by two players.

Generalized Geography
Instance: a directed graph, and a token placed on an initial vertex.
Question: a turn is to move the token to an adjacent vertex, and then to remove
the vertex moved from from the graph. Player 1 and 2 take turns, and the first
player unable to move loses. Determine the loser.

It is well-known that Generalized Geography is PSPACE-complete [10], and a stronger
result is presented.

Theorem 5. [10] Generalized Geography for bipartite graphs is PSPACE-complete.

Now we show the hardness result for Uncooperative Uno-2.

Theorem 6. Uncooperative Uno-2 is PSPACE-complete.

Proof. Reduction from Generalized Geography for bipartite graphs (GG-B).
Let (directed) bipartite graph G with V(G) = X ∪ Y be an instance of GG-B, where

X and Y are two partite sets, and let r (∈ X) be an initial vertex. To construct a cor-
responding Uncooperative Uno-2 instance, we first transform G into another graph G′
where

V(G′) = {us, ut, uc | u ∈ V(G)},
E(G′) = {(ut, uc), (uc, us) | u ∈ V(G)} ∪ {(us, vt) | (u, v) ∈ E(G)}

(Fig. 7). By construction, we can confirm that G′ is a bipartite graph with V(G′) =
X′ ∪Y′, where X′ = {us, ut | u ∈ X}∪ {uc | u ∈ Y} and Y′ = {us, ut | u ∈ Y}∪ {uc | u ∈ X}.
We let r′ = rt (∈ X′) be an initial vertex. It is easy to confirm that player 1 can win the
game GG-B on G if and only if the player wins on G′. Then we prepare card sets Ci for
players i (= 1, 2) by

C1 = {(x, e), (e, y) | e = (x, y) ∈ E(G′), x ∈ X′, y ∈ Y′}
∪{(e, e) | e = (y, x) ∈ E(G′), x ∈ X′, y ∈ Y′},

C2 = {(y, e), (e, x) | e = (y, x) ∈ E(G′), x ∈ X′, y ∈ Y′}
∪{(e, e) | e = (x, y) ∈ E(G′), x ∈ X′, y ∈ Y′}.

This means that we prepare three cards for each arc e in E(G′), one for player i and two
for player 3 − i (Fig. 8).
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u ut uc us

Fig. 7. Split a vertex into two edges so
that edges correspond to cards

x y

(x, e)1

(e, e)2

(e, y)1 x y

(x, e)2

(e, e)1

(e, y)2

Fig. 8. Prepare three cards (x, e)1, (e, e)2 and (e, y)1

for an arc e = (x, y), and three cards (e, y)2, (e, e)1

and (x, e)2 for an arc e = (y, x)

Now we show that player 1 can win in an Uncooperative Uno-2 instance if and only
if player 1 can win in an GG-B instance G′ and s′. To show this, it suffices to show
that any feasible playing sequence by players 1 and 2 in an GG-B instance corresponds
to a feasible discarding sequence alternatively by players 1 and 2 in the corresponding
Uncooperative Uno-2 instance, and vice versa.

Suppose a situation that player 2 has just discarded a card. The discarded card be-
longs to either one of the following five cases: (i) (e, x) for e = (y, x), (ii) (y, e) for
e = (y, x), (iii) (e, e) for e = (x, y). Among those, for cases (ii) and (iii), since player
1 starts the game (player 1 always played before player 2’s turn), there exists exactly
one card (outgoing arc) that matches the one discarded by player 2 from the end vertex
of the arc corresponding to the card. This forces to traverse G′ along the directed arc
(in forward direction), which implies to remove corresponding end vertex from G′. The
only case we have to care about is case (i), where there may be multiple choices for
player 1. In this case, once player 1 discarded one of match cards, the player will never
play another match card afterwards, since the only card that can be discarded immedi-
ately before it has played and used up. This implies that vertex x is removed from G′.
(The argument is symmetric for player 1 except that the initial card is specified.)

Now we verify that Uncooperative Uno-2 is in PSPACE. For this, consider a search
tree for Uncooperative Uno-2, whose root is for player 1 and every node has outgoing
arcs corresponding to each player’s possible choices. Since the number of total cards
for the two players is n, the number of choices at any turn is O(n) and since at least one
card is removed from either of the player’s card set, the number of depth of the search
tree is bounded by O(n). Therefore, it requires polynomial space with respect to the
input size. Thus the proof is completed. ��

5 Concluding Remarks

In this paper, we focused on UNO, the well-known card game, and gave two mathe-
matical models for it; one is cooperative (to make a specified player win), and the other
is uncooperative (to decide the player not to be able to play). As a result of analyzing
their complexities, we showed that these problems are difficult in many cases, however,
we also showed that a single-player’s version is solvable in polynomial time under a
certain restriction.

As for an obvious future work, we can try gaining speedup in dynamic programming
for Uno-1 with constant number of colors by better utilizing its geometric properties.
In this direction, it may be quite natural to ask if Uno-1 is fixed-parameter tractable.
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Another probable direction is to investigate UNO-1 graphs from the structural point
of view, since they form a subclass of claw-free graphs and seem to have interesting
properties by themselves. It is also quite probable to modify our models more realistic,
e.g., to take draw pile into account (as an additional player), to make all players’ cards
not open, and so on.

Based on our mathematical models, it is not so difficult to invent several variations or
generalizations of UNO games, even for Uno-1 (single-player’s version). Among them,
we can generalize an UNO card from 2-tuple (2-dimensional) to d-tuple, that is, D-
dimensional Uno-1 with appropriate modifications to ‘match’ relation of cards. Another
one is Minimum Card Fill-in, that is, given a no instance for Uno-1, find a minimum
number of cards to be added to make it to be a yes instance.

Acknowledgments. We deeply appreciate Nicholas J. A. Harvey at University of Wa-
terloo, Canada, for fruitful discussions with his deep insight at the early stage of this
manuscript. We also thank for the anonymous referees for their valuable comments.
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Abstract. We propose a model for level-ups in Heroes of Might and
Magic III, and give an O

(
1
ε2 ln

(
1
δ

))
learning algorithm to estimate the

probabilities of secondary skills induced by any policy in the end of the
leveling-up process. We develop software and test our model in an exper-
iment. The correlation coefficient between theory and practice is greater
than 0.99. The experiment also indicates that the process responsible
for the randomization that takes place on level-ups generates only a few
different pseudo-random sequences. This might allow exploitation tech-
niques in the near future; hence that process might require reengineering.

Keywords: learning, reverse engineering, inverse coupon collector’s
problem, software reengineering, Heroes of Might and Magic.

1 Introduction

Heroes of Might and Magic III (HoMM3) is a turn-based strategy and role-playing
video game. It was developed by New World Computing for Microsoft Windows
and was released by the 3DO Company in 1999. The game has been popular since
its release and there is a big community worldwide. One of the major complaints
of the players since the release of the game is that the manual was incomplete;
in some cases facts were omitted, in other cases the phrasing was vague, and
sometimes the descriptions were simply wrong1. In 2003 3DO went bankrupt,
the rights of the game were sold to Ubisoft, and unfortunately, there has never
been an update on the manual or answers to questions about mechanisms of the
game. Typically players in the online community devise techniques which aim
to uncover certain mechanisms, usually through excessive testing.

This paper has similar flavor. However, we want to minimize time-consuming
human testing with the aid of algorithmic techniques. Section 2 has a brief de-
scription of the game, some fundamental definitions, and the two major problems
related to this paper. Section 3 gives a model regarding a (fundamental from the
players’ perspective) mechanism of the game. Section 4 presents a Monte Carlo
approach on learning efficiently the probabilities of certain attributes under that
model. Section 5 has an experiment with a dual impact. First, we examine how
� Research partially supported by NSF Grant CCF 0916708.
1 For example, http://heroescommunity.com/viewthread.php3?TID=17267 has a

collection of more than 250 such examples.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 145–155, 2010.
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close theory and practice are. Second, we derive quantitative estimates on the
number of certain pseudo-random sequences generated by the actual game using
the inverse version of the coupon collector’s problem. Section 6 gives ideas about
future work and extensions to our current open-source software2.

Finally, note that a team of enthusiasts, since 2007, is reengineering the game
under the title Tournament Edition. Hence, the content of the paper has inde-
pendent interest since a process of the game that generates randomness might
require reengineering for a more balanced game.

2 A Brief Description of the Game and Related Problems

The game allows from 2 up to 8 players to take part in the game, possibly
forming allied teams. Each player rules a kingdom that belongs to one of nine
different factions; not necessarily different. Each kingdom is composed primarily
by different cities and armies. The goal for each player (or team of players) is
to eliminate all the opponents. The army can be split into different parts and
each part is guided by some hero. There are two classes of heroes per faction,
which we call mighty and magic for reasons that will soon be apparent. Hence,
we have 18 different hero classes.

Heroes have abilities, called primary and secondary skills, that mainly rein-
force the battles or help in the exploration of uncharted territory. Through victo-
ries in battles heroes acquire experience. As more experience is accumulated and
certain values are surpassed, heroes gain levels. This leveling-up process typically
enhances both the primary and the secondary skills, which, in principle, results
in a stronger overall army.

There are four different primary skills;attack,defense,power, andknowledge.
Mighty heroes develop their attack and defense with higher probability, while
magic heroes develop their powerand knowledge (which are associatedwith magic
spells) with higher probability. Moreover, there are 28 secondary skills, and each
hero can acquire and store in different slots at most 8 during each game. Secondary
skills have 3 different levels of expertise: basic < advanced < expert which are
obtained in that order. Typically heroes start with two basic secondary skills or
one advanced secondary skill, and some low non-negative integer values on the
primary skills. We focus on mighty heroes of these two kinds only. We examine the
different heroes between the starting level 1 and level 23; at level 23 the heroes have
8 expert secondary skills for the first time. Figure 1 gives an example of the start-
ing configuration for one popular hero of the game that starts with two secondary
skills at basic level.

Every time a hero gains a level, some primary skill is incremented by one;
moreover, the user is presented with two secondary skills among which he has
to choose one. We refer to the presented options as left and right option since
they appear respectively on the left and right part of the user’s screen. Figure
2 gives an example of the dialogue that is shown on the user’s screen during a

2 See http://www.math.uic.edu/~diochnos/software/games/homm3/index.php

http://www.math.uic.edu/~diochnos/software/games/homm3/index.php
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primary skill value
attack 4
defense 0
power 1
knowledge 1

slot secondary skill expertise
1 offense basic

2 artillery basic

3
4
5
6
7
8

Fig. 1. Skills at level 1 for Gurnisson; hero class: Barbarian (mighty hero)

attack +1
advanced offense basic earth magic

Fig. 2. Sample level-up dialogue when Gurnisson (see Fig. 1) reaches level 2. The left

option is advanced offense; the right is a new secondary skill (basic earth magic).

sample level-up. The details that determine the left and right option are given
in Sect. 3.

Definition 1 (Level-Up). Level-Up is the process that determines the pair
(primary skill, (left secondary skill, right secondary skill)) which is presented
to the user when some hero gains a new level.

Figure 2 implies the pair (attack, (offense, earth magic)). The expertise is
omitted for simplicity; it is straightforward to be computed. The pair which
is presented on every level-up is called level-up offer. An action a ∈ A =
{left, right} determines which secondary skill is selected on a level-up. A state
κ ∈ K on a particular level for a particular hero contains the history of all the
level-up offers up to this level, as well as the actions that were performed on
every level.

Definition 2 (Policy [6]). A policy π is a mapping π (κ, a) from states κ ∈ K

to probabilities of selecting each possible action a ∈ A.

A policy is called deterministic if there is a unique a ∈ A with π (κ, a) = 1 for
every κ ∈ K. Otherwise, the policy is called stochastic.

Clearly, not all secondary skills have the same importance; different secondary
skills enhance different abilities of the heroes. Since the release of the game there
are two main problems that have tantalized the players.

Prediction Problem: The first problem has to do with the prediction of the
offered skills during level-ups. We present a model in Sect. 3 and we focus
on the secondary skills.

Evaluation Problem: The second problem has to do with the computation of
the probabilities of acquiring secondary skills by level 23 given the policy
the players are bound to follow; see Sect. 4.
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3 A Model for the Prediction Problem

We are now ready to examine a model for the level-ups as this has been formed
by observations and testing throughout the years. A crucial ingredient is the ex-
istence of integer weights associated with the secondary skills. These weights can
be found in the file hctraits.txt. On every level-up the model first determines
the left option and then the right.

3.1 The Basic Mechanism on Secondary Skills

Case A: The hero has at least one free slot. We have two subcases.

1. At least one of the secondary skills the hero currently has is not expert.
On the next level-up the hero will be offered an upgrade of one of the ex-
isting secondary skills as the left option, while the right option will be a
secondary skill the hero does not already have.

2. All the secondary skills the hero currently has are expert. On the next
level-up the hero will be offered two new secondary skills.

Case B: The hero does not have a free slot. We have three subcases.

1. The hero has at least two secondary skills not expert. On the next level-up
the hero will be offered two different choices in order to upgrade one of the
secondary skills that are not expert.

2. The hero has only one secondary skill not expert. On the next level-up the
hero will be offered only this secondary skill upgraded.

3. All 8 slots of the hero are occupied by secondary skills at expert level. No
secondary skills will be offered on level-ups from now on.

3.2 Presenting Secondary Skills on Level-Ups at Random

It is unclear who discovered first the data of the file hctraits.txt and how.
However, these weights appear in forums and various pages about the game for
many years now. The interpretation is that the weights are directly related to
the probability of acquiring a specific (left, right) secondary skill offer during
a level-up. In particular, consider a set S of secondary skills, and to each s ∈ S we
have a weight ws associated with it. We say that a secondary skill s is presented
at random from the set S and we imply that s is selected with probability

Pr (selecting s) =
ws∑

s′∈S ws′
. (1)

We implement (1) the usual way; i.e. a pseudo-random number generated on
run-time is reduced mod

∑
s′∈S ws′ , and then an ordering on secondary skills

determines which s ∈ S is selected. In principle we have two sets of secondary
skills that we are interested in; the set A of secondary skills the hero already has
but are not expert, and the the set U of the secondary skills that the hero does
not have in any of his slots.
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3.3 Two Groups of Secondary Skills Appear Periodically

Two groups of secondary skills appear periodically and hence the randomized
scheme presented in Sect. 3.2 is not always applied on level-ups; the limitations
of Sect. 3.1 are always applied. These two groups are:

– The Wisdom group which is composed by one secondary skill; wisdom.
– The Magic Schools group which is composed by the secondary skills air

magic, earth magic, fire magic, and water magic.

Let TWisdom be the period for the Wisdom group, and TMagic be the period
for the Magic Schools group. Hence, every at most TWisdom level-ups, if the
hero does not have expert wisdom, wisdom will be offered; as basic if wisdom
does not appear in one of the slots (and clearly there is at least one empty
slot), otherwise as an upgrade of the current expertise. Similarly, every at most
TMagic level-ups a secondary skill from the Magic Schools group has to appear.
We refer to these events respectively as Wisdom Exception and Magic School
Exception; i.e. exceptions to the randomized scheme of Sect. 3.2. When these
two exceptions coincide on a particular level-up, then Wisdom is treated first;
if necessary, Magic School Exception propagates to the next level-up. Hence it
might take TMagic + 1 level-ups until Magic School Exception is applied; read
below.

The model first determines the left option and then the right option. Hence,
the model first attempts to apply the Wisdom Exception on the left option, and
if this is impossible (e.g. Case A1 of Sect. 3.1 but the hero does not have wisdom
in any of the slots) then the model attempts to apply the Magic School Exception
on the left option (which might be impossible again). If the above two steps
do not yield a solution, then the randomized scheme of Sect. 3.2 determines the
left option. The model then works in the same fashion in order to determine
the right option. Note that each exception can be applied in at most one of
the options on every level-up. For mighty heroes it holds TWisdom = 6 and
TMagic = 4.

3.4 The Leveling-Up Algorithm

Algorithm 1 gives the overall prediction scheme by incorporating the descriptions
of Sects. 3.1, 3.2, and 3.3. There are four functions of primary interest during
the level-ups since they handle randomness. RndNew returns a secondary skill
at random from the set U. RndNewMagic returns a secondary skill at random
from the set of Magic Schools that the hero does not already possess. RndUp-

grade returns an upgrade of a secondary skill at random among the skills the
hero has but not at expert level. RndUpgradeMagic returns an upgrade of
a Magic School secondary skill at random. Clearly, if there are two calls on the
same function on a level-up, then, the skill that appears due to the first call is
excluded from the appropriate set in the computations of the second call.

The function WisdomException returns true if at least TWisdom level-
ups have passed since the last wisdom offer and the hero does not have expert
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Algorithm 1. Determine Skills on a Level-Up.
Input: Appropriate amount of experience points to gain a level.
Output: A level-up offer.
level ← level + 1;1

primary ← GetPrimarySkill ();2

if AllSecondarySkillsExpert () then3

if not HasFreeSlots () then return (primary, (null,null));4

if HasWisdom () then5

if MagicException () and MagicSkillsAreAvailable () then6

left ← RndNewMagic ();7

else left ← RndNew ();8

right ← RndNew ();9

else10

if WisdomException () then11

left ← wisdom;12

if MagicException () and MagicSkillsAreAvailable () then13

right ← RndNewMagic ();14

else right ← RndNew ();15

else16

if MagicException () and MagicSkillsAreAvailable () then17

left ← RndNewMagic ();18

else left ← RndNew ();19

right ← RndNew ();20

else21

if WisdomException () and HasWisdomToUpgrade () then22

left ← wisdom;23

else if MagicException () and HasMagicToUpgrade () then24

left ← RndUpgradeMagic ();25

else left ← RndUpgrade ();26

if CanAcquireMoreSkills () then27

if WisdomException () and not HasWisdom () then28

right ← wisdom;29

else if MagicException () and MagicSkillsAreAvailable () and30

(AllMagicAreExpert () or WisdomException () ) then
right ← RndNewMagic ();31

else right ← RndNew ();32

else if NumberOfSkillsToUpgrade () > 1 then33

if WisdomException () and MagicException () and34

HasMagicToUpgrade () then
right ← RndUpgradeMagic ();35

else right ← RndUpgrade ();36

else right ← null;37

return (primary, (left, right));38
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wisdom. Similarly, MagicException returns true if at least TMagic level-ups
have passed since the last offer of a Magic School and the hero does not have
all the Magic Schools (with non-zero weight) at expert level. In any other case
these two functions return false. HasWisdomToUpgrade returns true if the
hero has wisdom in one of the slots but not expert, otherwise false. Similarly,
HasMagicToUpgrade returns true if the hero has at least one Magic School
not expert in one of the slots, otherwise false. HasWisdom returns true if the
hero has wisdom in one of the slots, otherwise false. CanAcquireMoreSkills

returns true if the hero has at least one empty slot, otherwise false. Mag-

icSkillsAreAvailable returns true if there are Magic Skills with nonzero
weight that the hero does not already possess, otherwise false. AllMagicA-

reExpert returns true if all the Magic Schools the hero has are expert, other-
wise false. HasFreeSlots returns true if the hero has at least 1 slot empty,
otherwise false. Finally, NumberOfSkillsToUpgrade returns the number
of secondary skills that occupy one of the hero’s slots but are not expert.

4 Evaluating Policies

We resort to a Monte Carlo approach (Theorem 1) so that we can compute
efficiently the probabilities of acquiring secondary skills by level 23 given any
policy with bounded error and high confidence.

Proposition 1 (Union Bound). Let Y1, Y2, . . . , YS be S events in a probability
space. Then Pr

(⋃S
j=1 Yj

)
�

∑S
j=1 Pr (Yj) .

Proposition 2 (Hoeffding Bound [3]). Let X1, . . . , XR be R independent ran-
dom variables, each taking values in the range I = [α, β]. Let μ denote the mean
of their expectations. Then Pr

(∣∣∣ 1
R

∑R
i=1 Xi − μ

∣∣∣ � ε
)

� e−2Rε2/(β−α)2 .

Theorem 1 (Monte Carlo Evaluation). We can compute the probabilities
of secondary skills induced by any policy π using O

( 1
ε2 ln

( 1
δ

))
simulation runs

such that the aggregate error on the computed probabilities is at most ε with
probability 1 − δ.

Proof. Let X
(j)
i be the indicator random variable that is 1 if the secondary skill

j appears in the i-th run while following a policy π, and 0 otherwise. After R

simulation runs, any skill j has been observed with empirical probability p̃j =
1
R

∑R
i=1 X

(j)
i . We apply Proposition 2 to each p̃j with α = 0, β = 1, ε = ε/28,

we require to bound the quantity from above by δ/28, and solve for R. We get
R �

⌈
282

2·ε2 ln
( 28

δ

)⌉
. Let Yj be the event that p̃j is not within ε/28 of its true value

μj. The above analysis implies Pr (Yj) � δ/28 for every skill j. None of these bad

events Yj will take place with probability 1 − Pr
(⋃28

j=1 Yj

)
. By Proposition 1

this quantity is at least 1 −
∑28

j=1(δ/28) = 1 − δ. We now sum the errors of all
the 28 computed probabilities. ��
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5 An Experimental Study

In 2006 a player named Xarfax111 suggested that the number of different se-
quences of secondary skill offers is actually fairly limited. An experimental study
was conducted in order to verify the validity of the claim as well as test the ef-
fectiveness of the model.

The experiment consisted of 200 tests with Crag-Hack (mighty hero, class:
Barbarian). Crag-Hack starts with advanced offense but has zero weight on
two secondary skills (one of which is a skill from the Magic Schools group)
and hence these two can not be obtained. During the first 7 level-ups the new
secondary skill that appeared was picked in every case, thereby filling all 8 slots
of the hero by level 8; hence, all 8 secondary skills that appear in level 23 are
determined by level 8. We call this policy AR (Always Right) since the user
selects the (new) secondary skill that appears on the right of every level-up
offer. Later in this section we examine estimates on the amount of different
right sequences generated by the game; all imply expected values of at most
256. Note that the model allows more. For example, if we consider the cases
where a Magic School appears every 4 levels and wisdom every 6 levels due to
exceptions (see Sect. 3.3), and allow only very heavy skills (with weights equal
to 7 or 8) in between, there are 7 · 6 · 3 · 5 · 1 · 4 · 3 = 7, 560 different ordered
combinations of new secondary skills until level 8. A similar calculation allowing
all possible skills in between gives 7, 325, 640 different combinations.

Out of the 200 tests, only 128 yielded different sequences of new secondary
skills; 76 sequences occurred once, 33 sequences occurred twice, 18 sequences oc-
curred three times, and 1 sequence occurred four times. Figure 3 presents graph-
ically the probabilities of the secondary skills in three cases; the expectations
according to the model, the values as these were recorded on the 200 tests, and
the values when we consider only the 128 distinct sequences. The correlation
coefficient between the expected probabilities and the ones computed empiri-
cally after 200 tests was 0.9914. Moreover, the correlation coefficient between
the expected probabilities and the ones formed by the 128 unique sequences was
0.9946.

We now turn our attention to the second part of the experiment. We want to
estimate the amount of different sequences of new secondary skills that appear
when we follow this policy up to level 8 based on our observations on the collisions
of the various sequences. This problem is essentially the inverse version of the
Coupon Collector’s Problem, and is well studied in Statistics; see e.g. [1,2]. We
will follow the simple route of working with expectations, assume equal selection
probability for each coupon, and in the end we will arrive to the same formula
for prediction as in [1]; see also [5, Sect. 3.6]. Let HN be the N-th harmonic
number. The expected time Ti to find the first i different coupons is given by

Ti =

N∑

j=N−i+1

N

j
=

N∑

j=1

N

j
−

N−i∑

j=1

N

j
= N(HN − HN−i) . (2)
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Fig. 3. Probabilities of secondary skills; Crag-Hack, AR policy. The boxes indicate
the expected values based on Sect. 3, the +’s present the values computed on all 200
tests, while the ×’s present the values computed on the 128 different sequences. The
secondary skills are shown in lexicographic ordering; i.e. 1: air magic, 2: archery,
etc. Note that 28: wisdom and in every test wisdom was offered by at most level 6.

Lemma 1. Let N � 3 and k be fixed such that k ∈ {2, 3, . . . , N − 1}. Then, the
quantity Q(N) = N (HN − HN−k) is monotone decreasing.

Proof. We want Q(N) > Q(N+1) or equivalently N
(
− 1

N+1 + 1
N+1−k

)
> HN+1−

HN+1−k. However, HN+1−HN+1−k =
∑N+1

i=N+2−k
1
i < k

N+2−k . It suffices to show
kN

(N+1)(N+1−k) > k
N+2−k , which holds since k > 1. ��

The history of the 128 different sequences of new secondary skills is shown with
a thick solid line in Fig. 4. Let Di be the number of different new secondary skill
combinations that have occurred on the i-th test. Working only with expectations
we want to use (2), set Ti = Di, and solve for N. This is precisely the solution
asserted by the maximum likelihood principle. Typically, this is a floating point
number; both the floor and the ceiling of that number are candidates for the
solution; see [1]. We draw the average of those candidates with a thin solid line
in Fig. 4. In order to get a better picture we apply Lemma 1 and calculate all
the values of N such that Ti ∈ [Di − 0.5, Di + 0.5); note that Ti rounded to the
closest integer is equal to Di. We get a lower and upper bound on the above
mentioned values of N and we plot them with dashed lines in Fig. 4.

Another heuristic estimate can be obtained by looking at the ratio

λ(x, t) = λx(t) =
new sequences found in the last x tests

x
. (3)
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Fig. 4. New sequences and estimates on the amount of different sequences

We use the ratios λx(200) for x = 10, 20, 40, and 80 as heuristic approximations
of the true probability of discovering a new sequence at test t = 200. All four
of them lie in the interval [0.4, 0.5] which implies an estimate of 213 � N � 256
different sequences in total.

6 A Glimpse Beyond

All the estimates of Sect. 5 are interesting since they are at most 256; a single
byte can encode all of them. Quite recently (2009), a player named AlexSpl has
developed similar software3 and according to the descriptions we have4 there are
255 different cases to be evaluated; there is a description of the random num-
ber generator too. Our model and AlexSpl’s description differ in the function
RndUpgradeMagic of Sect. 3.4 where AlexSpl suggests treating all the par-
ticipating skills with weights equal to 1. Compared to our 0.9914 and 0.9946
values for the correlation coefficient in the experiment of Sect. 5, AlexSpl’s ap-
proach achieves 0.9959 and 0.9974 respectively. AlexSpl’s software is not open-
source, and there is no description about his method on attacking the problem.
In any case, we embrace relevant software; at the very least it promotes more
robust software for everyone. Both Sect. 5 and AlexSpl’s description imply a
small space to be explored in practice. This suggests techniques of exploita-
tion that will allow us to predict most, if not all, sequences online after a few
level-ups, at least for a few popular heroes and policies followed in tournaments.

3 http://heroescommunity.com/viewthread.php3?TID=27610
4 http://heroescommunity.com/viewthread.php3?TID=17812&pagenumber=12

http://heroescommunity.com/viewthread.php3?TID=27610
http://heroescommunity.com/viewthread.php3?TID=17812&pagenumber=12
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Unfortunately, this will greatly reduce the fun and the luck factor of the real
game! This is why reengineering is needed.

Coming back to our approach, perhaps the most important thing is to extend
the current implementations and compute probabilities for magic heroes too.
Another important extension is the computation of the probabilities for all the
intermediate levels. Moreover, there are policies closer to tournament play which
have not been implemented yet. In addition, we would like to ask questions
such as what is the probability of acquiring (tactics∧ air magic∧ offense)∨

(earth magic∧ logistics) under various policies ? Some work has been done
(ansaExtended); however, it is not part of the Monte Carlo approach. Also,
parallelize the computations with the inclusion of a library such as [4]. Finally,
is there a simpler alternative for Algorithm 1 of Sect. 3.4 ?

There are certainly exciting times ahead of both the developers and the play-
ers. We are eagerly looking forward into that future!
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Abstract. We introduce a new number system that supports increments
with a constant number of digit changes. We also give a simple method
that extends any number system supporting increments to support decre-
ments using the same number of digit changes. In the new number system
the weight of the ith digit is 2i−1, and hence we can implement a priority
queue as a forest of heap-ordered complete binary trees. The resulting
data structure guarantees O(1) worst-case cost per insert and O(lg n)
worst-case cost per delete , where n is the number of elements stored.

1 Introduction

The interrelationship between numerical representations and data structures is
efficacious. As far as we know, the issue was first discussed in the paper by
Vuillemin on binomial queues [14] and the seminar notes by Clancy and Knuth
[5]. However, in many write-ups such connection has not been made explicit. In
this paper, we introduce a new number system and use it to develop a priority
queue that, in a sense, utilizes the structure of Williams’ binary heap [15].

In the computing literature, many types of priority queues have been studied.
Sometimes it is sufficient to construct priority queues that support the elemen-
tary operations find-min, insert , and delete. Our binary-heap variant supports
find-min and insert at O(1) worst-case cost, and delete at O(lg n) worst-case
cost, n denoting the number of elements stored prior to the operation. In con-
trast, Ω(lg lg n) is known to be a lower bound on the worst-case complexity of
insert for the standard binary heaps [9].

In a positional numeral system, a sequence of digits 〈d0, d1, . . . , dk−1〉 is used
to represent a positive integer, k being the length of the representation. By con-
vention, d0 is the least-significant digit and dk−1 the most-significant digit. If wi

is the weight of di, 〈d0, d1, . . . , dk−1〉 represents the (decimal) number
∑k−1

i=0 diwi.
Different numerical representations are obtained by enforcing different invariants
for the values that di and wi can take for i ∈ {0, 1, . . . , k − 1}. In accordance,
the performance characteristics of some operations may vary for different num-
ber systems. Important examples of number systems include the binary system,
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Table 1. The number systems used in some priority queues and their effect on the
complexity of insert . All the mentioned structures can support find -min at O(1) worst-
case cost and delete at O(lg n) worst-case cost, n is the current size of the data structure.

Digits in use Binomial-queue variants Binary-heap variants

{0, 1} O(lg n) worst case
& O(1) amortized [14]

O
(
lg2 n

)
worst case [folklore]

{0, 1} & first non-zero
digit may be 2

O(1) worst case [3] O(lg n) worst case
& O(1) amortized [2,11]a

{0, 1, 2} O(1) worst case [4,7] O(lg n) worst case [13]b

& O(1) amortized [this paper]a

{1, 2, 3, 4} O(1) worst case [8]a

{0, 1, 2, 3, 4} O(1) worst case [this paper]

a borrow has O(1) worst-case cost.
b meld has O(lg m · lg n) worst-case cost, where m and n are the sizes of the data

structures melded.

where di ∈ {0, 1} and wi = 2i; the redundant binary system, where di ∈ {0, 1, 2}
and wi = 2i; the skew binary system, where wi = 2i+1 − 1; the canonical skew
binary system [10], where wi = 2i+1 − 1 and di ∈ {0, 1} except that the first
non-zero digit may also be 2; and the zeroless variants, where di �= 0. These
systems and some other number systems, together with some priority-queue ap-
plications, are discussed in [12, Chapter 9]. We have gathered the most relevant
earlier results related to the present study in Table 1.

A binomial queue is a forest of heap-ordered binomial trees [14]. If the queue
stores n elements and the binary representation of n contains a 1-bit at position
i, i ∈ {0, 1, . . . , �lg n}, the queue contains a tree of size 2i. In the binary number
system, an addition of two 1-bits at position i results in a 1-bit at position i+1.
Correspondingly, in a binomial queue two trees of size 2i are linked resulting
in a tree of size 2i+1. For binomial trees, this linking is possible at O(1) worst-
case cost. Since insert corresponds to an increment of an integer, insert may
have logarithmic cost due to the propagation of carries. Instead of relying on the
binary system, some of the aforementioned or other specialized variants could be
used to avoid cascading carries. That way a binomial queue can support insert
at O(1) worst-case cost [3,4,7,8]. A binomial queue based on a zeroless system
where di ∈ {1, 2, 3, 4} also supports the removal of an unspecified element—an
operation that we call borrow—at O(1) worst-case cost [8].

An approach similar to that used for binomial queues has been proposed for
binary heaps too. The components in this case are either perfect heaps [2,11]
or pennants [13]. A perfect heap is a heap-ordered complete binary tree, and
accordingly is of size 2i−1 where i ≥ 1. A pennant is a heap-ordered tree whose
root has one subtree that is a complete binary tree, and accordingly is of size
2i where i ≥ 0. In contrary to binomial trees, the worst-case cost of linking two
pennants of the same size is logarithmic, not constant. To link two perfect heaps
of the same size, we even need to have an extra node, and if this node is arbitrary
chosen the cost per link is as well logarithmic. When perfect heaps (pennants)
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are used, it is natural to rely on the skew (redundant) binary system. Because
of the cost of linking, this approach only guarantees O(lg n) worst-case cost [13]
and O(1) amortized cost per insert [2,11].

Our most interesting contribution is the new number system which uses five
symbols and skew weights. As the title of the paper indicates, it may look myste-
rious why the number system works as effectively as it does; a question that we
answer in Section 2. As a by-product, we show how any number system support-
ing increments can be extended to support decrements with the same number
of digit changes; we expect this simple technique to be helpful in the design of
new number systems. The application to binary heaps is discussed in Section 3.

2 The Number System

We represent an integer n as a sequence of digits 〈d0, d1, . . . , dk−1〉, least-signifi-
cant digit first, such that

– di ∈ {0, 1, 2, 3, 4} for all i ∈ {0, 1, . . . , k − 1},
– wi = 2i+1 − 1 for all i ∈ {0, 1, . . . , k − 1}, and
– the decimal value of n is

∑k−1
i=0 diwi.

Remark 1. In general, a skew binary number system that uses five symbols is
redundant, i.e. there is possibly more than one representation for the same inte-
ger. However, for our system, the way the operations are performed guarantees
a unique representation for any integer.

2.1 Operations

We define two operations on sequences of digits. An increment increases the
value of the corresponding integer by 1, and a decrement decreases the value
by 1. Each operation involves at most four digit changes. We say that a sequence
of digits is valid if it can be procured by repeatedly performing the increment
operation starting from zero. It follows from the correctness proof of Section 2.2
that every valid sequence in our number system has di ∈ {0, 1, 2, 3, 4}.

Increment. Assume that dj is equal to 3 or 4. We define how to perform a fix
for dj as follows:

1. Decrease dj by 3.
2. Increase dj+1 by 1.
3. If j �= 0, increase dj−1 by 2.

Remark 2. Since w0 = 1, w1 = 3, and 3wi = wi+1 +2wi−1 for i ≥ 1, the fix does
not change the value of the number.

To increment a number, we perform the following steps:

1. Increase d0 by 1.
2. Find the smallest j where dj ∈ {3, 4}. If no such digit exists, set j to −1.
3. If j �= −1, perform a fix for dj .
4. Push j onto an undo stack.
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Remark 3. When defining all valid sequences by means of increments, we make
the representation of every integer unique. For example, decimal numbers from
1 to 30 are represented by the following sequences: 1, 2, 01, 11, 21, 02, 12, 22,
03, 301, 111, 211, 021, 121, 221, 031, 302, 112, 212, 022, 122, 222, 032, 303, 113,
2301, 0401, 3111, 1211, 2211.

Remark 4. If we do not insist on doing the fix at the smallest index j where dj ∈
{3, 4}, the representation may become invalid. For example, starting from 22222,
which is valid, two increments will subsequently give 03222 and 30322. If we now
repeatedly fix the second 3 in connection with the forthcoming increments, after
three more increments we will end up at 622201. Actually, one can show that d0
can get as high as Θ(k2) for a k-digit representation.

Decrement. We define the unfix, as the reverse of the fix, as follows:

1. Increase dj by 3.
2. Decrease dj+1 by 1.
3. If j �= 0, decrease dj−1 by 2.

As a result of the increments, we maintain an undo stack containing the positions
where the fixes have been performed. To decrement a number, we perform the
following steps:

1. Pop the index at the top of the stack; let it be j.
2. If j �= −1, perform an unfix for dj .
3. Decrease d0 by 1.

Remark 5. Since a decrement is the reverse of an increment, the correctness of a
decrement operation (that it creates a valid sequence) directly follows from the
correctness of the increment.

Remark 6. After any sequence of increments and decrements, the stack size will
be equal to the difference between the number of increments and decrements,
i.e. the value of the number.

2.2 Correctness

To prove that the operations work correctly, we only need to show that by
applying any number of increments starting from zero every digit satisfies di ∈
{0, 1, 2, 3, 4}. In a fix, although we increase dj−1 by 2, no violations could happen
as dj−1 was at most 2 before the increment. So, a violation would only be possible
if, before the increment, d0 or dj+1 was 4.

Define a block to be a maximal sequence, none of its digits is 3 or 4 except
the last digit. Hence, any sequence representing a number consists of a sequence
of blocks, if any, followed by a sequence of digits not in a block, if any, called
the tail. Since every digit in the tail is less than 3, increasing any of its digits by
1 keeps the sequence valid.

To characterize valid sequences, we borrow some notions from the theory of
automata and formal languages. We use d∗ to denote the set containing zero or
more repetitions of the digit d. Let S = {S1, S2, . . .} and T = {T1, T2, . . .} be two
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sets of sequences of digits. We use S | T to denote the set containing all sequences
in S and T . We write S ⊆ T if for every Si ∈ S there exists Tj ∈ T such that
Si = Tj , and S = T if S ⊆ T and T ⊆ S. We also write S

+−→ T indicating that
the sequence T results by applying an increment to S, and S +−→ T if for each
Si ∈ S there exists Tj ∈ T such that Si

+−→ Tj. Furthermore, we write S for a
sequence that results from S by increasing its least-significant digit by 1 without
performing a fix, and S for {S1, S2, . . .}. To capture the intricate structure of
valid sequences, we recursively define the following sets of sequences.

τ
def= (1∗2∗)∗ (1)

α
def= 2∗1γ (2)

β
def= τ | 2∗3ψ (3)

γ
def= 1 | 2τ | 3β | 4ψ (4)

ψ
def= 0γ | 1α (5)

φ
def= (21 | 02 | 12)τ (6)

Remark 7. The intersections among the defined sets are non-empty.

The above definitions imply that

β = 1 | 2τ | 3τ | 32∗3ψ | 4ψ

= 1 | 2τ | 3(τ | 2∗3ψ) | 4ψ

= 1 | 2τ | 3β | 4ψ

= γ

ψ = 1γ | 2α

= 1γ | 22∗1γ

= α

Next, we show that any sequence representing an integer in our number system
can be fully characterized. More precisely, such sequences can be classified into a
fixed number of sets, that we call states, where every increment is equivalent to
a transition whose current and resulting states are uniquely determined from the
sequence. Since this state space is closed under the transitions, and each is char-
acterized by a set of sequences of digits with di ∈ {0, 1, 2, 3, 4}, the correctness
of the increment operation follows.

Define the following nine states: 12α, 22β, 03β, 30γ, 11γ, 23ψ, 04ψ, 31α, and
φ. Next, we show that the following are the only possible transitions.

1. 12α
+−→ 22β

12α = 122∗1γ = 122∗1(1 | 2τ | 3β | 4ψ)
+−→ 22τ | 222∗3(0β | 1ψ) = 22τ | 222∗3(0γ | 1α) = 22(τ | 2∗3ψ) = 22β

2. 22β
+−→ 03β

Obvious.
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3. 03β
+−→ 30γ

03β
+−→ 30β = 30γ

4. 30γ
+−→ 11γ

Obvious.
5. 11γ

+−→ φ | 23ψ
11γ = 11(1 | 2τ | 3β | 4ψ)
+−→ φ | 23(0β | 1ψ) = φ | 23(0γ | 1α) = φ | 23ψ

6. 23ψ
+−→ 04ψ

Obvious.
7. 04ψ

+−→ 31α

04ψ
+−→ 31ψ = 31α

8. 31α
+−→ 12α

Obvious.
9. φ

+−→ φ | 22β

φ = (21 | 02 | 12)τ +−→ φ | 22β

Remark 8. By Remark 3, the numbers from 1 up to 21 (whose decimal equivalent
is 5) are valid, so we may assume that φ is the initial state.

2.3 Properties

The following lemma directly follows from the definition of the sequence families.

Lemma 1

– The body of a block ending with 4 constitutes either 0 or 12∗1.
– The body of a block ending with 3 constitutes either 0, 12∗1, or 2∗.
– Each 4, 23 and 33 is followed by either 0 or 1.
– There can be at most one 0 in the tail, which must then be its first digit.

The next lemma bounds the average of the digits of any valid sequence to be at
most 2.

Lemma 2. If 〈d0, d1, . . . , dk−1〉 is a representation of a number in our number
system, then

∑k−1
i=0 di ≤ 2k. If k′ denotes the number of the digits constituting

the blocks of a number, then 2k′ − 1 ≤
∑k′−1

i=0 di ≤ 2k′.

Proof. We prove the second part of the lemma, which implies the first part fol-
lowing the fact that any digit in the tail is at most 2. First, we show by induction
that the sum of the digits of a subsequence of the form α, β, γ, ψ is respectively∑

α = 2�α,
∑

β = 2�β,
∑

γ = 2�γ + 1,
∑

ψ = 2�ψ − 1, where �α, �β, �γ , �ψ are the
lengths of the corresponding subsequences when ignoring the trailing digits that
are not in a block. The base case is for the subsequence solely consisting of the
digit 3, which is a type-γ subsequence with �γ = 1 and

∑
γ = 3. From definition

(2),
∑

α = 2(�α − �γ − 1) + 1 +
∑

γ = 2(�α − �γ − 1) + 1 + 2�γ + 1 = 2�α. From
definition (3),

∑
β = 2(�β− �ψ−1)+3+

∑
ψ = 2(�β− �ψ−1)+3+2�ψ−1 = 2�β.



162 A. Elmasry, C. Jensen, and J. Katajainen

From definition (4),
∑

γ = 3 +
∑

β = 3 + 2�β = 3 + 2(�γ − 1) = 2�γ + 1. Al-
ternatively,

∑
γ = 4 +

∑
ψ = 4 + 2�ψ − 1 = 4 + 2(�γ − 1) − 1 = 2�γ + 1. From

definition (5),
∑

ψ =
∑

γ = 2�γ + 1 = 2(�ψ − 1) + 1 = 2�ψ − 1. Alternatively,∑
ψ = 1 +

∑
α = 1 + 2�α = 1 + 2(�ψ − 1) = 2�ψ − 1. The induction step is

accordingly complete, and the above bounds follow.
Consider the subsequence that constitutes the blocks of a number. Let k′ be

the length of such subsequence. Since any sequence of blocks can be represented
in one of the forms: 12α, 22β, 03β, 30γ, 11γ, 23ψ, 04ψ, 31α (excluding the tail).
It follows that �α, �β, �γ , �ψ = k′−2. A case analysis implies that

∑k′−1
i=0 di either

equals 2k′ − 1 or 2k′ for all cases. ��

3 Application: A Worst-Case Efficient Priority Queue

Let us now use the number system for developing a worst-case efficient priority
queue. Recall that a binary heap [15] is a heap-ordered binary tree where the
element stored at a node is no greater than that stored at its children. We rely
on perfect heaps that are complete binary trees storing 2h− 1 elements for some
integer h ≥ 1. Moreover, our heaps are pointer-based; each node keeps pointers
to its parent and children.

As in a binomial queue, which is an ordered collection of heap-ordered bi-
nomial trees, in our binary-heap variant we maintain an ordered collection of
perfect heaps. A similar approach has been used in several earlier publications
[2,11,13]. The key difference between our approach and the earlier approaches is
the number system in use; we rely on our new number system. Assuming that
the number of elements being stored is n and that

〈
d0, d1, . . . , d
lg n�

〉
is the

representation of n in this number system, we maintain the invariant that the
number of perfect heaps of size 2i+1 − 1 is exactly di.

To keep track of the perfect heaps, we maintain a resizable array whose ith
entry points to the roots of the perfect heaps of size 2i−1. Since it is important to
access the big digits 3 and 4 quickly, we maintain the big digits in a singly-linked
list by having an additional jump pointer at each array entry. In addition, to
support borrowing, we also need an undo stack holding the indexes corresponding
to the positions where fixes were made. To facilitate fast find-min, we maintain
a pointer to a root that stores the minimum among all elements.

The basic toolbox for manipulating perfect heaps is described in most text-
books on algorithms and data structures (see, for example, [6, Chapter 6]). We
need the function siftdown to reestablish the heap order when an element at a
node is made larger, and the function siftup to reestablish the heap order when
an element at a node is made smaller. Both operations are known to have log-
arithmic cost in the worst case; siftdown performs at most 2 lg n and siftup at
most lg n element comparisons. Note that in siftdown and siftup we never move
elements but whole nodes. This way the handles to nodes will always remain
valid and delete operations can be executed without any problems.

In our data structure a fix is emulated by taking three perfect heaps of the
same height h, determining which root stores the minimum element (breaking
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ties arbitrarily), making this node the new root of a perfect heap of height h+1,
and making the roots of the other two perfect heaps the children of this new
root. The old subtrees of the selected root become perfect heaps of height h− 1.
That is, starting from three heaps of height h, one new heap of height h + 1
and two new heaps of height h− 1 are created; this is exactly corresponding to
the digit changes resulting from a fix in the number system. After performing
the fix on the heaps, the respective changes have to be made in the auxiliary
structures (resizable array, jump pointers, and undo stack). The emulation of
an unfix is a reverse of these actions. The necessary information indicating the
position of the unfix is available at the undo stack. Compared to a fix, the only
new ingredient is that, when the root of a perfect heap of height h + 1 is made
the root of the two perfect heaps of height h−1, siftdown is necessary due to the
possible changes made in the perfect heaps between the fix and the corresponding
unfix; otherwise, it cannot be guaranteed that the heap order is satisfied in the
composed tree. Hence, a fix can be emulated at O(1) worst-case cost, whereas an
unfix has O(lg n) worst-case cost involving at most 2 lg n element comparisons.

Because of the minimum pointer, find-min has O(1) worst-case cost. In insert ,
a node that is a perfect heap of size 1 is first added to the collection. If the
element in that node is smaller than the current minimum, the minimum pointer
is updated to point to the new node. Additionally, if the added node creates a big
digit, the list of big digits is updated accordingly. Thereafter, the other actions
specified for an increment in the number system are emulated. The location of
the desired fix can be easily determined by accessing the first in the list of big
digits. The worst-case cost of insert is O(1) and it may involve at most three
element comparisons (one to compare the new element with the minimum and
two when performing a fix).

When removing a node it is important that we avoid any interference with
the number system and do not change the sizes of the heaps retained by the
number system. Hence, we implement delete by borrowing a node and then
using it to replace the deleted node in the associated perfect heap. This approach
guarantees that the number system should only support decrements and unfixes.
Now, borrow is performed by doing an unfix using the information available at
the undo stack, and thereafter removing a perfect heap of size 1 from the data
structure. Such a heap must always exist since a fix recorded in the undo stack
was preceded by an increment. Due to the cost of the unfix, the worst-case cost
of borrow is O(lg n) and it may involve at most 2 lg n element comparisons.

By the aid of borrow , it is quite straightforward to implement delete. As-
suming that the replacement node is different from the node to be deleted, the
replacement is done, and siftdown or siftup is executed depending on the value
stored at the replacement node. Because of this process, the root of the un-
derlying perfect heap may change. If this happens, we have to go through the
resizable array pointing to the roots of the heaps and update the pointer in one
of the entries to point to the new root instead of the old root. A deletion may
also invalidate the minimum pointer, so we have to scan all roots to determine
the current overall minimum and update the minimum pointer to point to this
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root. The worst-case cost of all these operations is O(lg n). In total, the number
of element comparisons performed is never larger than 6 lg n; borrow requires at
most 2 lg n, siftdown (as well as siftup) requires at most 2 lg n, and the scan over
all roots requires at most 2 lg n element comparisons.

Remark 9. As a consequence of Lemma 2, the number of perfect heaps in the
priority queue is at most 2 lg n.

Remark 10. We can incorporate O(lg2 m + lg n) worst-case meld , where m and
n are the number of elements in the two melded priority queues and m ≤ n.
In such case, insert will have O(lg n) worst-case cost. Following each insert or
meld , the idea is to perform a fix on every three heaps having the same height
until there are at most two heaps per height. Fixes can be performed in arbitrary
order; neither the number of fixes nor the resulting representation are affected
by the order in which the fixes are done.

To establish these worst-case bounds, we note that a fix on the highest index
j, where dj > 2, may propagate to the higher indexes at most lg n times. The
worst-case bound on the cost of insert follows. To analyse meld , we distinguish
between the fixes performed on the lower �lg m indexes and those performed
on the higher indexes. Since there are at most two heaps per height in each
queue prior to each meld , the number of possible fixes on d
lg m� is at most four
(we leave the verification of this fact for the reader); each of these fixes may
propagate forward resulting in at most lg n fixes on the higher indexes. Since
the sum of the heights of the heaps corresponding to the lower �lg m indexes is
O(lg2 m) and each fix on the lower indexes decreases this quantity by 1, there
are O(lg2 m) such fixes. The worst-case bound on the cost of meld follows.

By extracting the root of the smallest perfect heap and adding the subtrees
of that node, if any, to the collection of perfect heaps, this data structure can
support borrow at O(1) worst-case cost. In accordance, delete can use this kind
of borrowing instead.

For this implementation, the amortized costs are: O(1) per insert , O(lg m)
per meld , and O(lg n) per borrow and delete. To establish these bounds, we use
a potential function that is the sum of the heights of the heaps currently in the
priority queue. The key observation is that a fix decreases the potential by 1,
insert increases it by 1, borrow and delete increase it by O(lg n), and meld does
not change the total potential. Caveat, meld involves O(lg m) work since the
perfect heaps have to be maintained in height order.

4 Conclusions

We gave a number system that efficiently supports increments. A disturbance in
any of the digits may push the increments out of the orbit, resulting in an invalid
representation. In order not to disturb this sensitive system, we implemented
decrements as the reverse of increments. This undo-logging technique can be
applied to other number systems as well. On the other hand, one may still ask
whether there is another way of extending our system to incorporate efficient
decrements without using an undo stack.
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When applying the number system to implement a variant of Williams’ binary
heap, we obtained a priority queue that performs insert at O(1) worst-case cost
and delete at O(lg n) worst-case cost. This improves all earlier approaches that
implement binary-heap variants. However, there are other ways of achieving the
same bounds by using specialized data structures like binomial queues [3,4,7,8],
or via general data-structural transformations [1]. Also, the price we pay for O(1)
worst-case insert is relatively high; we cannot support polylogarithmic meld ,
and the bound on the number of element comparisons performed by delete is
increased from 2 lg n to 6 lg n. It would be natural to ask whether our approach
can be improved in any of these aspects.
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Abstract. We investigate the problem of getting to a higher instruction-
level parallelism in string matching algorithms. In particular, starting from
an algorithm based on bit-parallelism, we propose two flexible approaches
for boosting it with a higher level of parallelism. These approaches are
general enough to be applied to other bit-parallel algorithms. It turns out
that higher levels of parallelism lead to more efficient solutions in practical
cases, as demonstrated by an extensive experimentation.

Keywords: string matching, bit parallelism, text processing, design and
analysis of algorithms, instruction-level parallelism.

1 Introduction

Given a text t of length n and a pattern p of length m over some alphabet
Σ of size σ, the string matching problem consists in finding all occurrences of
the pattern p in the text t. This problem has been extensively studied in com-
puter science because of its direct applications to such diverse areas as text,
image and signal processing, speech analysis and recognition, information re-
trieval, computational biology and chemistry. String matching algorithms are
also basic components in many software applications. Moreover, they emphasize
programming methods that serve as paradigms in other fields of computer sci-
ence. Finally, they also play an important rôle in theoretical computer science
by providing challenging problems.

In this paper we focus on one of such engaging problems, namely the problem
of enhancing the instruction-level parallelism of string matching algorithms.

The instruction-level parallelism (ILP) is a measure of how many operations in
an algorithm can be performed simultaneously. Ordinary programs are typically
written under a sequential execution model, in which instructions are executed
one after the other and in the order specified by the programmer. ILP allows one
to overlap the execution of multiple instructions or even to change the order in
which instructions are executed. The extent to which ILP is present in programs
heavely depends on the application. In certain fields, such as graphics and scien-
tific computing, ILP is largely used. However, workloads such as cryptography
exhibit much less parallelism.

Consider, for instance, the sequences of instructions shown in Fig. 1. In se-
quence a, operation a3 depends on the results of operations a1 and a2, and thus it

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 166–177, 2010.
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sequence a
a1. p[j] ← p[j] + 2
a2. h ← p[i] × 3
a3. p[i] ← p[j] + h

sequence b
b1. a ← b ← 0
b2. for i = 1 to n do
b3. a ← a + (q[i] × p[i])
b4. b ← b + (3 × p[i])

sequence c
c1. j ← 0
c2. for i = 1 to n do
c3. j ← j + (p[i] × (3000 + q[i]))
c4. a ← j mod 1000
c5. b ← 
j/1000�

Fig. 1. Three sequences of instructions

cannot be calculated until both operations are completed. However, operations
a1 and a2 can be calculated simultaneously as they are independent of each other.
If we assume that each operation can be completed in one time unit, then these
three instructions can be completed in two time units, yielding an ILP of 3/2.

Two main techniques can be adopted to increase the ILP of a sequence of
instructions: micro-architectural and software techniques.

Micro-architectural techniques used to exploit ILP include, among others, in-
struction pipelining, where the execution of multiple instructions can be partially
overlapped, and superscalar execution, in which multiple execution units are used
to execute multiple instructions in parallel. For instance, in sequence b, operation
b3 and b4 are independent, so (if two different processors are available) they can
be calculated in parallel for each iteration of the cycle in b2, thus halving the
time needed for their execution.

Instead, software techniques are generally more challenging as they strongly
depend on the processed data. Consider again sequence b shown in Fig. 1. As-
suming that the sum

∑n
i=1 p[i]q[i] is less than 1000, a smart programmer could

modify the sequence in the form proposed in sequence c, achieving again an ILP
of 2 while using a single processor.

Several string matching algorithms have been proposed to take advantage of
micro-architectural techniques for increasing ILP (see for instance [6,7,10,5]).
However, most of the work has been devoted to develop software techniques
for ILP to simulate efficiently the parallel computation of nondeterministic
finite automata (NFAs) related to the search pattern, whose number of states is
about the pattern size (see for instance [2,8,9,3]). Such simulations can be done
efficiently using the bit-parallelism technique, which consists in exploiting the in-
trinsic parallelism of the bit operations inside a computer word [2]. In some cases,
bit-parallelism allows to reduce the overall number of operations up to a factor
equal to the number of bits in a computer word. Thus, although string matching
algorithms based on bit-parallelism are usually simple and have very low memory
requirements, they generally work well with patterns of moderate length only.

When the pattern size is small enough, in favorable situations it becomes
possible to carry on in parallel the simulation of multiple copies of a same NFA
or of multiple distinct NFAs, thus getting to a second level of parallelism.

In this paper we illustrate this idea in the case of BNDM-like algorithms. More
specifically, not satisfied with the degree of parallelism of the bit-parallel imple-
mentation of a variant of the Wide-Window algorithm, we present two different
approaches which yield a better ILP if compared with the original algorithm.
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The methods we present turn out to be quite flexible and, as such, can be applied
to other bit-parallel algorithms as well.1

The rest of the paper is organized as follows. In Section 2 we introduce the
notations and terminology used in the paper. In Section 3, we introduce the
bit-parallel technique and describe some string matching algorithms based on it.
Next, in Section 4, we present two techniques to enhance ILP and illustrate two
new algorithms resulting from their application. Experimental data obtained by
running the algorithms under various conditions are presented and compared in
Section 5. Finally, we draw our conclusions in Section 6.

2 Notations and Terminology

Throughout the paper we will make use of the following notations and terminol-
ogy. A string p of length m ≥ 0 is represented as a finite array p[0 . .m − 1] of
characters from a finite alphabet Σ of size σ (in particular, for m = 0 we obtain
the empty string, also denoted by ε). Thus p[i] will denote the (i+1)-st character
of p, for 0 ≤ i < m, and p[i . . j] will denote the factor or substring of p contained
between the (i + 1)-st and the (j + 1)-st characters of p, for 0 ≤ i ≤ j < m. A
factor of the form p[0 . . i], also written pi, is called a prefix of p and a factor of
the form p[i . . m− 1] is called a suffix of p for 0 ≤ i ≤ m− 1. We write Suff(p)
for the collection of all suffixes of p. In addition, we write p.p′ or, more simply,
pp′ to denote the concatenation of the strings p and p′. Finally, we denote the
reverse of the string p by p̄ , i.e. p̄ = p[m− 1]p[m− 2] . . . p[0].

The nondeterministic suffix automaton with ε-transition NSA(p) =
(Q, Σ, δ, I, F ) for the language Suff(P ) of the suffixes of p is defined as follows:

– Q = {I, q0, q1, . . . , qm} (I is the initial state)
– F = {qm} (F is the set of final states)
– the transition function δ : Q× (Σ ∪ {ε}) −→ Pow (Q) is such that δ(q, c) =
{qi+1}, if q = qi and c = p[i] (0 ≤ i < m); δ(q, c) = {q0, q1, . . . , qm}, if q = I
and c = ε; and δ(q, c) = ∅, otherwise.

We will also make use of the following C-like notations to represent some bitwise
operations. In particular, “|” represents the bitwise Or; “&” denotes the bitwise
And; “∼” represents the one’s complement; “ ” and “�” denote respectively
the bitwise right shift and the bitwise left shift.

3 Bit-Parallelism: Starting from the First Level

Bit-parallelism exploits the intrinsic parallelism of bit operations inside computer
words, allowing in favorable cases to cut down the overall number of operations
up to the number of bits in a computer word.
1 A similar technique has been exploited in [4] to boost the approximate search of a

pattern, under the edit distance; the algorithm proposed in [4] performs a left to
right scan of the text while processing �w/m� text segments simultaneously (w is
the word size in bits). We thank an anonymous referee for pointing this out to us.
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Among the several algorithms based on bit-parallelism which have been devel-
oped over the years, the Backward-Nondeterministic-DAWG-Matching algorithm
(BNDM, for short) deserves particular attention as it has inspired various other
algorithms and is still considered one of the fastest algorithms based on bit-
parallelism [8].

The BNDM algorithm uses bit-parallelism to simulate the nondeterministic
suffix automaton NSA(p̄) for the reverse of the search pattern p.

To this purpose, the states of the automaton (except states I and q0) are put in
a one-one correspondence with the bits of a bit mask D, having size equal to the
length L of the pattern p.2 In this context, in any automaton configuration bits
corresponding to active states are set to 1, while bits corresponding to inactive
states are set to 0. Additionally, for each character c of the alphabet Σ, the
algorithm maintains a bit mask B[c] whose i-th bit is set to 1 iff p[i] = c. Thus,
the array B requires |Σ| · L bits.

The BNDM algorithm works by shifting a window of length m over the text.
For each window alignment, it searches the pattern by scanning the current
window backwards, updating the automaton configuration for each character
read. Whenever bit (m− 1) of D is set, a suffix of p̄ (i.e., a prefix of p) has been
found and the current position is recorded. A search ends when either D becomes
zero or the algorithm has performed m iterations. The window is then shifted
to the start position of the longest recognized proper suffix of p̄.

Because of the ε-closure of the initial state I, at the beginning of any search
all states are active, i.e. D = 1m. A transition on character c is implemented
(with the exception of the first one3) as follows:

D ← (D� 1) & B[c] .

The BNDM algorithm scales in function of the number �m/ω� of words needed
to represent each of D and B[c], for c ∈ Σ, where ω is the size of the computer
word in bits. Its worst case time complexity is O(nm�m/ω�), though in practice
exhibits a sublinear behavior.

Several variants of the BNDM algorithm have been proposed over the years. In
what follows we briefly describe an efficient variant, the Wide-Window algorithm
(WW, for short) [3], which is particularly suitable for our purposes. However, we
slightly depart from its original version so as to make the algorithm parallelizable
in ways that will be explained in the next section.

3.1 The Wide-Window Algorithm

Let p be a pattern of length m and let t be a text of length n. The WW algorithm
locates �n/m attempt positions in t, namely positions j = km − 1, for k =
1, . . . , �n/m. For each such position j, the pattern p is searched for in the attempt
window of size 2m−1 centered at j, i.e. in the substring t[j−m+1 .. j +m−1].
Each of such search phases is divided into two steps.
2 Note that if L ≤ ω the entire bit mask D fits in a single computer word, otherwise
	L/ω
 computer words are needed to represent it.

3 The first transition is simply encoded as D ← D & B[c].
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In the first step, the right side of the attempt window, consisting of the last
m characters, is scanned from left to right with the automaton NSA(p). In this
step, the start positions (in p) of the suffixes of p aligned with position j in t are
collected in a set

Sj = {0 ≤ i < m | p[i .. m− 1] = t[j .. j + m− 1− i]} .

In the second step, the left half of the attempt window, consisting of the first m
symbols, is scanned from right to left with the automaton NSA(p̄). During this
step, the end positions (in p) of the prefixes of p aligned with position j in t are
collected in a set

Pj = {0 ≤ i < m | p[0 .. i] = t[j − i .. j]} .

Taking advantage of the fact that an occurrence of p is located at position
(j − k) of t if and only if k ∈ Sj ∩ Pj , for k = 0, . . . , m − 1, the number of all
the occurrences of p in the attempt window centered at j is readily given by the
cardinality |Sj ∩ Pj|.

Fig. 2(A) shows a simple schematization of the structure of an iteration of
the WW algorithm at a given position j in t. The two sequential phases are
represented by the arrows labeled 1 and 2, respectively.

It is straightforward to devise a bit-parallel implementation of the WW algo-
rithm. The sets P and S can be encoded by two bit masks P and S, respectively.
The nondeterministic automata NSA(p) and NSA(p̄) are then used for searching
the suffixes and prefixes of p on the right and on the left parts of the window, re-
spectively. Both automata state configurations and final state configuration can
be encoded by the bit masks D and M = (1� (m−1)), so that (D & M) �= 0 will
mean that a suffix or a prefix of the search pattern p has been found, depending
on whether D is encoding a state configuration of the automaton NSA(p) or of
the automaton NSA(p̄). Whenever a suffix (resp., a prefix) of length (� + 1) is
found (with � = 0, 1, . . . , m− 1), the bit S[m− 1 − �] (resp., the bit P[�]) is set
by one of the following bitwise operations:

S ← S | ((D&M) �) (in the suffix case)
P ← P | ((D&M) (m− 1− �)) (in the prefix case) .

If we are only interested in counting the number of occurrences of p in t, we
can just count the number of bits set in (S & P). This can be done in log2(ω)
operations by using a population count function, where ω is the size of the com-
puter word in bits (see [1]). Otherwise, if we want also to retrieve the matching
positions of p in t, we can iterate over the bits set in (S & P) by repeatedly
computing the index of the highest bit set and then masking it. The function
that computes the highest bit set of a register x is �log2(x), and can be imple-
mented efficiently in either a machine dependent or machine independent way
(see again [1]).

The resulting algorithm based on bit parallelism is named Bit-Parallel Wide-
Window algorithm (BpWw, for short). It needs �m/ω� words to represent the bit
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masks D, S, P, and B[c], for c ∈ Σ. The worst case time complexity of the BpWw

algorithm is O(n�m/ω�+ �n/m log2(ω)).
Additionally, we observe that the BpWw algorithm can be easily modified so

as to work on windows of size 2m. For the sake of clarity, we have just discussed
a simpler but slightly less efficient variant.

4 Bit-(Parallelism)2: Getting to the Second Level

In this section we present two different approaches which lead to a higher level
of parallelism. By way of demonstration we apply them to a bit-parallel version
of the Wide-Window algorithm,4 but our approaches can be applied as well to
other (more efficient) solutions based on bit-parallelism.

The two approaches can be summarized as follows:

– first approach: if the algorithm searches for the pattern in fixed-size text
windows then, at each attempt, process simultaneously two (adjacent or
partially overlapping) text windows by using in parallel two copies of a same
automaton;

– second approach: if each search attempt of the algorithm can be divided
into two steps (which possibly make use of two different automata) then exe-
cute simultaneously the two steps, by running the two automata in parallel.

Both variants use the SIMD (Single Instruction Multiple Data) paradigm. This
approach, on which vectorial instructions sets like MMX and SSE are based,
consists in executing the same instructions on multiple data in a parallel way.
Tipically, a register of size ω is logically divided into i blocks of k bits which are
then updated simultaneously.

In both variants of the BpWw algorithm, we divide a word of ω bits into
two blocks, each being used to encode a suffix automaton. Thus, the maximum
length of the pattern gets restricted to �ω/2. We denote with B the array of bit
masks encoding the suffix automaton NSA(p) and with C the array of bit masks
encoding the suffix automaton NSA(p̄).

4.1 The Bit-Parallel (Wide-Window)2 Algorithm

In the first variant, named Bit-Parallel (Wide-Window)2 (BpWw
2 , for short), two

partially overlapping windows in t, each of size 2m− 1, centered at consecutive
attempt positions j − m and j, are processed simultaneously. For the parallel
simulation two automata are represented in a single word and updated in parallel.

Specifically, each search phase is again divided into two steps. During the first
step, two copies of NSA(p) are operated in parallel to compute simultaneously
the sets Sj−m and Sj (lines 13-18). Likewise, in the second step, two copies of
NSA(p̄) are operated in parallel to compute the sets Pj−m and Pj (lines 20-25).

4 We chose the Wide-Window algorithm in our case study since its structure makes its
parallelization simpler.
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(A) The Bit-Parallel Wide-Window algorithm (B) The Bit-(Parallel)2 Wide-Window algorithm

(C) The Bit-Parallel (Wide-Window)2 algorithm

Fig. 2. Structure of a searching iteration at a given position j in the text t of (A) the
BpWw algorithm, (B) the Bp

2 Ww algorithm, and (C) the BpWw
2 algorithm

To represent the automata with a single word, the bit masks D, M, S, and P are
logically divided into two blocks, each of k = ω/2 bits.

During the first step, the most significant k bits of D encode the state of
the suffix automaton NSA(p) that scan the attempt window centered at j −m.
Similarly, the least significant k bits of D encode the state of the suffix automaton
NSA(p) that scans the attempt window centered at j. An analogous encoding
is used in the second step, but with the automaton NSA(p̄) in place of NSA(p).
Fig. 2(C) schematizes the structure of a search iteration of the BpWw

2 algorithm,
at given attempt positions j −m and j of t.

The most significant k bits of the bit mask S (resp., P) encode the set Sj−m

(resp., Pj−m), while the least significant k bits encode the set Sj (resp., Pj).
Thus, to properly detect suffixes in both windows, the bit mask M is initialized
(lines 8-9) with the value

M ← (1� (m + k − 1)) | (1� (m− 1))

and transitions of the automata are performed in parallel with the following
bitwise operations (lines 14-15 and lines 21-22)

D ← (D� 1) & ((B[t[j −m + �]]� k) | B[t[j + �]]) (in the first phase)
D ← (D� 1) & ((C[t[j −m− �]]� k) | C[t[j − �]]) (in the second phase) ,

for � = 1, . . . , m− 1 (when � = 0, the left shift of D does not take place).
The remaining bitwise operations are left unchanged, as the automata con-

figurations are updated using the same instructions. Since two windows are si-
multaneously scanned at each search iteration, the shift becomes 2m, therefore
doubling the length of the shift with respect to the WW algorithm. The pseu-
docode of the algorithm BpWw

2 is reported in Fig. 3 (on the left).
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4.2 The Bit-(Parallel)2 Wide-Window Algorithm

The second variant of the WW algorithm which we present next is called
Bit-(Parallel)2 Wide-Window algorithm (Bp

2 Ww, for short). The idea behind it
consists in processing a single window at each attempt (as in the original WW
algorithm) but this time by scanning its left and right sides simultaneously.
Fig. 2(B) schematizes the structure of a searching iteration of the Bp

2Ww algo-
rithm, while Fig. 3 (on the right) shows the pseudocode of the Bp

2Ww algorithm.

Bit-Parallel (Wide-Window)2 (p, m, t, n)
1. count ← 0
2. k ← ω/2
3. for c ∈ Σ do B[c] ← 0
4. for c ∈ Σ do C[c] ← 0
5. for i ← 0 to m − 1 do
6. B[p[i]] ← B[p[i]]|(1  i)
7. C[p[m − 1 − i]] ← C[p[m − 1 − i]]|(1  i)
8. H ← 1  (m − 1)
9. M ← (H  k) | H

10. j ← 2m − 1
11. while j < n − m do
12. D ← ∼ 0, l ← 0, S ← 0
13. while D �= 0 do
14. H ← (B[t[j − m + l]]  k)|B[t[j + l]]
15. D ← D & H
16. S ← S | ((D & M) � l)
17. D ← D  1
18. l ← l + 1
19. D ← ∼ 0, l ← 0, P ← 0
20. while D �= 0 do
21. H ← (C[t[j − m − l]]  k) | C[t[j − l]]
22. D ← D & H
23. P ← P | ((D&M) � (m − 1 − l))
24. D ← D  1
25. l ← l + 1
26. count ← count + popcount(P&S)
27. j ← j + 2m

Bit-(Parallel)2 Wide-Window (p,m, t, n)
1. count ← 0
2. k ← ω/2
3. for c ∈ Σ do B[c] ← 0
4. for c ∈ Σ do C[c] ← 0
5. for i ← 0 to m − 1 do
6. B[p[i]] ← B[p[i]] | (1  (k + i))
7. C[p[m − 1 − i]]←C[p[m − 1 − i]]|(1  i)
8. H ← 1  (m − 1)
9. M ← (H  k) | H

10. j ← m − 1
11. while j < n − m do
12. D ←∼ 0, l ← 0, PS ← 0
13. while D �= 0 do
14. H ← C[t[j − l]] | B[t[j + l]]
15. D ← D & H
16. PS ← PS | ((D & M) � l)
17. D ← D  1
18. l ← l + 1
19. P ← reverse(PS) � (ω − m)
20. S ← PS � k
21. count ← count + popcount(P&S)
22. j ← j + m

Fig. 3. The Bit-Parallel (Wide-Window)2 algorithm (on the left) and the Bit-(Parallel)2

Wide-Window algorithm (on the right) for the exact string matching problem

As above, let p be a pattern of length m, and t be a text of length n. The
bit masks B and C which are used to perform the transitions on both automata
NSA(p) and NSA(p̄) are computed as in the BpWw algorithm (lines 3-7).

Automata state configurations are again encoded simultaneously in a same
bit mask D. Specifically, the most significant k bits of D encode the state of the
suffix automaton NSA(p), while the least significant k bits of D encode the state
of the suffix automaton NSA(p̄). The Bp

2Ww algorithm uses the following bitwise
operations to perform transitions5 of both automata in parallel (lines 14-15,17):

D ← (D� 1) & ((B[t[j + �]]� k) | C[t[j − �]]) ,

for � = 1, . . . , m − 1. Note that in this case the left shift of k positions can be
precomputed in B by setting B[c] ← B[c]� k, for each c ∈ Σ.
5 For � = 0, D is simply updated by D ← D & ((B[t[j + l]] � k) | C[t[j − l]]).
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Using the same representation, the final-states bit mask M is initialized as

M ← (1� (m + k − 1)) | (1� (m− 1)) (lines 8-9) .

At each iteration around an attempt position j of t, the sets Sj and P∗
j are

computed, where Sj is defined as in the case of the BpWw algorithm, and P∗
j is

defined as P∗
j = {0 ≤ i < m | p[0 .. m− 1 − i] = t[j − (m − 1 − i) .. j]}, so that

Pj = {0 ≤ i < m | (m− 1− i) ∈ P∗
j }.

The sets Sj and P∗
j can be encoded with a single bit mask PS, in the rightmost

and the leftmost k bits, respectively. Positions in Sj and P∗
j are then updated

simultaneusly in PS by executing the following operation (line 16):

PS ← PS | ((D & M) l) .

At the end of each iteration, the bit masks S and P are retrieved from PS with
the following bitwise operations (lines 19-20):

P ← reverse(PS) (ω −m) , S ← PS k ,

where reverse denotes the bit-reversal function, which satisfies reverse(x)[i] =
x[ω−1− i], for i = 0, . . . , ω−1 and any bit mask x. In fact, to obtain the correct
value of P we used bit-reversal modulo m, which has been easily achieved by right
shifting reverse(PS) by (ω−m) positions. We recall that the reverse function can
be implemented efficiently with O(log2(ω)) operations (see [1]).

5 Experimental Results

We present next the results of an extensive experimental comparison of our
proposed variants Bp

2Ww and BpWw
2 with the BpWw and BNDM algorithms.

In particular, we have tested two different implementations of the Bp
2 Ww and

BpWw
2 algorithms, characterized by a different implementation of the population-

count function. One implementation uses the builtin version of the GNU C com-
piler (algorithms Bp

2 Ww and BpWw
2 ), while the second implementation uses the

population-count function described in [1] (algorithms Bp
2 Ww

bc and BpWw
2bc). Thus,

we compared the following string matching algorithms, in terms of running time:
– the Bit-Parallel Wide-Window algorithm (BpWw)
– the Bit-(Parallel)2 Wide-Window algorithm (Bp

2 Ww)
– the Bit-(Parallel)2 Wide-Window algorithm with bit-count (Bp

2 Ww
bc)

– the Bit-Parallel (Wide-Window)2 algorithm (BpWw
2 )

– the Bit-Parallel (Wide-Window)2 algorithm with bit-count (BpWw
2 bc)

– the Backward-Nondeterministic-DAWG-Matching algorithm (BNDM) .

All algorithms have been implemented in the C programming language and
tested on a PC with Intel Core2 processor of 1.66GHz running Linux and with a
32 bit word. In particular, all algorithms have been tested on seven Randσ prob-
lems, for σ = 2, 4, 8, 16, 32, 64, 128, where a Randσ problem consists of searching
a set of 400 random patterns of a given length in a 5Mb random text over a
common alphabet of size σ, with a uniform character distribution.

Only short patterns of length m = 2, 4, 6, 8, 10, 12, 14, 16 have been considered
in our tests, since the bit size of a word was 32 in our case. However, the same
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approach could be applied with 64-bit processors or using Intel Processors with
SSE instructions on 128 bit registers, to process patterns up to a length of 32 and
of 64, respectively. Moreover, we observe that �2m/ω� different words could be
used for representing our suffix automata in case of longer patterns, overcoming
the bound on the value of m, though at the price of an increased running time.

In the following tables, running times are expressed in hundredths of seconds.
The best results among all bit-parallel WW variants have been boldfaced and
underlined. Additionally, running times relative to the BNDM algorithm have
been boldfaced and underlined when the BNDM algorithm outperforms the other
algorithms.

m 2 4 6 8 10 12 14 16

BpWw 816.50 634.00 521.25 442.50 381.50 334.25 300.75 271.00

Bp
2 Ww 775.00 481.50 332.25 255.50 211.75 183.00 162.25 146.00

Bp
2 Ww

bc 642.25 455.50 353.50 287.50 243.00 210.75 186.50 167.25

BpWw
2 905.75 700.75 554.50 455.25 383.00 331.50 291.75 268.50

BpWw
2 bc 659.75 566.75 478.50 404.50 349.25 306.75 274.50 256.50

BNDM 690.75 545.75 410.50 308.00 244.50 201.50 172.00 150.00

Results for a Rand2 problem

m 2 4 6 8 10 12 14 16

BpWw 615.75 381.25 278.00 221.50 185.50 159.25 140.25 125.50
Bp
2 Ww 527.00 311.75 232.75 186.75 155.75 134.00 118.25 106.25

Bp
2 Ww

bc 503.50 342.75 260.00 207.50 172.75 148.25 130.50 116.50
BpWw

2 645.00 386.25 279.25 219.50 179.75 152.25 132.75 119.25

BpWw
2 bc 557.75 375.50 276.25 217.25 180.00 154.00 135.50 122.25

BNDM 555.50 312.00 215.75 166.25 137.00 117.00 102.00 90.50

Results for a Rand4 problem

m 2 4 6 8 10 12 14 16

BpWw 422.75 273.50 199.75 153.75 123.75 103.50 89.25 79.00

Bp
2 Ww 375.75 234.50 173.25 137.50 115.25 100.50 89.50 80.75

Bp
2 Ww

bc 378.25 252.25 186.00 147.50 123.25 107.25 95.25 86.00

BpWw
2 407.75 239.00 164.75 126.25 103.25 89.00 78.25 70.75

BpWw
2 bc 398.50 249.25 172.25 131.00 107.50 92.00 81.50 73.25

BNDM 369.25 236.50 167.75 124.50 99.25 81.25 69.75 61.00

Results for a Rand8 problem

m 2 4 6 8 10 12 14 16

BpWw 353.75 204.00 154.75 127.50 108.25 92.75 80.75 69.50
Bp
2 Ww 258.25 185.00 145.00 114.25 94.00 78.75 67.75 59.00

Bp
2 Ww

bc 265.00 193.50 151.50 118.50 98.25 82.00 71.00 62.00
BpWw

2 278.50 173.50 129.00 99.25 79.75 65.75 56.25 48.50

BpWw
2 bc 282.75 181.25 134.25 103.25 82.75 68.25 58.00 50.25

BNDM 265.00 169.0 132.00 108.50 91.00 77.00 66.00 57.25

Results for a Rand16 problem
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m 2 4 6 8 10 12 14 16

BpWw 273.75 160.75 119.25 98.25 85.00 76.00 68.50 62.75

Bp
2 Ww 191.50 136.50 114.75 95.75 81.50 71.50 63.00 56.00

Bp
2 Ww

bc 197.00 140.50 119.00 98.00 84.50 73.50 64.25 56.75

BpWw
2 215.00 129.00 98.75 82.00 70.50 61.00 53.50 46.25

BpWw
2 bc 219.50 132.50 101.25 83.25 72.00 62.50 54.75 47.50

BNDM 218.75 128.25 98.00 82.00 72.00 64.50 58.25 52.75

Results for a Rand32 problem

m 2 4 6 8 10 12 14 16

BpWw 250.00 136.75 98.50 79.50 67.50 59.50 53.75 49.25
Bp
2 Ww 160.00 107.00 89.00 75.00 65.25 59.75 54.00 50.25

Bp
2 Ww

bc 162.75 111.50 91.50 75.00 67.50 60.50 54.25 50.00
BpWw

2 184.25 104.25 77.00 63.25 55.25 49.50 45.00 41.25

BpWw
2 bc 186.00 105.75 78.25 64.25 55.75 49.75 45.50 41.75

BNDM 197.50 109.00 79.25 64.25 55.25 49.50 45.00 41.75

Results for a Rand64 problem

m 2 4 6 8 10 12 14 16

BpWw 238.50 126.25 88.25 69.25 58.00 50.00 44.50 40.25
Bp
2 Ww 145.75 92.75 73.50 61.50 53.00 49.00 43.50 41.50

Bp
2 Ww

bc 148.00 96.00 76.00 61.50 54.75 49.00 43.00 41.00
BpWw

2 168.25 91.25 65.25 52.50 44.25 39.25 36.00 33.00

BpWw
2 bc 169.00 92.00 65.75 52.50 45.00 39.75 36.00 33.00

BNDM 187.25 99.50 70.25 55.50 46.75 40.75 36.50 33.50

Results for a Rand128 problem

The above experimental results show that the algorithms obtained by apply-
ing a second level of parallelism perform always better then the original BpWw

algorithm. The gap is more evident in the case of short patterns or small al-
phabets. In particular the Bp

2Ww algorithm achieves its best performances with
small alphabets, while the BpWw

2 algorithm turns out to be the best choice for
patterns with a length greater than 4.

The BNDM algorithm obtains the best results in some cases and it performs
always better than the BpWw algorithm. It is interesting to observe that the
BNDM algorithm is outperformed by the Bp

2Ww algorithm when the alphabet is
small and by the BpWw

2 algorithm in the case of large alphabets.

6 Conclusions

We have presented two variants of the Bit-Parallel Wide-Window algorithm which
use a second level of parallelization inspired by the Single Instruction Multiple
Data paradigm. While the Bp

2 Ww variant is quite entangled to the original al-
gorithm, as it uses two different automata in parallel, the other one (BpWw

2 ) is
quite general and much the same approach can possibly be applied to other bit-
parallel algorithms. As the experimental results show, this technique provides
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a non negligible speedup; this is particularly true for the second variant as it
allows to double the size of window shifts.
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Abstract. The Honey-Bee game is a two-player board game that is
played on a connected hexagonal colored grid, or in a generalized setting,
on a connected graph with colored nodes. In a single move, a player calls
a color and thereby conquers all nodes of that color that are adjacent to
his own territory. Both players want to conquer the majority of the nodes.
We show that winning the game is PSPACE-hard in general, NP-hard
on series-parallel graphs, but easy on outerplanar graphs. The solitaire
version, where the goal is to conquer the entire graph with a minimum
number of moves, is NP-hard on trees and split graphs, but can be solved
in polynomial time on co-comparability graphs.

1 Introduction

The Honey-Bee game is a popular two-player board game that shows up in
many different variants and at many different places on the web (the game is best
played on a computer); for a playable version we refer the reader for instance
to Axel Born’s web-page [1], see Fig. 1 for a screenshot. The playing field in
Honey-Bee is a connected grid of hexagonal honey-comb cells that come in
various colors. At the beginning, each player controls a single cell in some corner
of the playing field. Usually, the playing area is symmetric and the two players
face each other from symmetrically opposite start cells. In every move a player
may call a color c and thereby gain control over all connected regions of color
c that have a common border with the area already under his control. The
only restriction on c is that it cannot be one of the two colors used by the two
players in their most recent move before the current move, respectively. A player
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Fig. 1. Born’s Biene game. The human started at the
top-left, the computer at the bottom-right corner.

�3

b0a0

u2 u3
u1 u4

�2
�1

Fig. 2. An outerplanar graph. A
has conquered the cyan nodes,
B the red nodes. We have U = 2
and L = 2, and B cannot reach
�1.

wins when he controls the majority of all cells. On Born’s web-page [1] one can
play against a computer, choosing between four different layouts for the playing
field. The computer uses a simple greedy strategy: “Always call the color c that
maximizes the immediate gain.” This strategy is not strong, and an alert human
player usually beats the computer after a few practice matches.

In this paper we study the complexity of finding winning strategies for the
Honey-Bee game when played on arbitrary connected graphs instead of the
hex-grid of the original game. We will show in Section 4 that the game is NP-
hard even on series-parallel graphs, and that it is PSPACE-complete in general.
On outerplanar graphs, however, it is easy to compute a winning strategy.

In the solitaire (single-player) version of Honey-Bee the goal is to conquer
the entire playing field as quickly as possible. Intuitively, a good strategy for
the solitaire game will usually be a strong heuristic for the two-player game. For
the solitaire version, our results draw a sharp separation line between easy and
difficult cases. In particular, we show in Section 3 that Honey-Bee-Solitaire

is NP-hard for split graphs and for trees (and thus also for bipartite, chordal,
and perfect graphs), but polynomial-time solvable on co-comparability graphs
(which include interval graphs and permutation graphs).

2 Definitions

We model Honey-Bee in the following graph-theoretic setting. The playing field
is a connected, simple, loopless, undirected graph G = (V, E). There is a set C of
k colors, and every node v ∈ V is colored by some color col(v) ∈ C; we stress that
this coloring does not need to be proper, that is, there may be edges [u, v] ∈ E
with col(u) = col(v). For a color c ∈ C, the subset Vc ⊆ V contains the nodes of
color c. For a node v ∈ V and a color c ∈ C, we define the color-c-neighborhood
Γ (v, c) as the set of nodes in Vc either adjacent to v or connected to v by a



180 R. Fleischer and G.J. Woeginger

path of nodes of color c. Similarly, we denote by Γ (W, c) =
⋃

w∈W Γ (w, c) the
color-c-neighborhood of a subset W ⊆ V . For a subset W ⊆ V and a sequence
γ = 〈γ1, . . . , γb〉 of colors in C, we define a corresponding sequence of node sets
W1 = W and Wi+1 = Wi ∪ Γ (Wi, γi), for 1 ≤ i ≤ b. That is, calling a color c
always conquers all connected components induced by Vc that are adjacent to
the current territory. We say that sequence γ started on W conquers the final
node set Wb+1 in b moves, and we denote this situation by W →γ Wb+1. Nodes in
V −Wb+1 are called free nodes. It would be easier to define the game on weighted
nodes, instead, and with a proper node coloring; however, not all graph classes
we study later are closed under edge contractions (e.g., the hex-grid graph of
the original Honey-Bee game).

In the solitaire version of Honey-Bee, the goal is to conquer the entire play-
ing field with the smallest possible number of moves. Note that Honey-Bee-

Solitaire is trivial in the case of only two colors. As we will see in Section 3,
the case of three colors can already be difficult.

Problem Honey-Bee-Solitaire

Input: A graph G = (V, E); a set C of k colors and a coloring col : V → C;
a start node v0 ∈ V ; and a bound b.

Question: Does there exist a color sequence γ = 〈γ1, . . . , γb〉 of length b
such that {v0}→γ V ?

In the two-player version of Honey-Bee, the two players A and B start from
two distinct nodes a0 and b0 and then extend their regions step by step by
alternately calling colors. Player A makes the first move. One round of the game
consists of a move of A followed by a move of B. Consider a round, where at the
beginning the two players control node sets WA and WB , respectively. If player
A calls color c, then he extends his region WA to W ′

A = WA ∪ (Γ (WA, c)−WB).
If afterwards player B calls color d, then he extends his region WB to W ′

B =
WB ∪ (Γ (WB , c)−W ′

A). Note that once a player controls a node, he can never
lose it again. The game terminates as soon as one player controls more than half
of all nodes. This player wins the game.

There are two important restrictions on the colors that a player is allowed to
call:

1. A player may never call the color that had just been called by the other
player. This is a technical condition that arises from the graphical imple-
mentation of the game [1]: Whenever a player calls a color c, his current
region is entirely recolored to color c. This makes it visually easier to recog-
nize the regions controlled by both players.

2. A player may never call the color that he had called in his preceding move.
A player could not gain new territory by repeatedly calling the same color,
but with rule (1) he could block his opponent forever from calling this color.
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Problem Honey-Bee-2-Players

Input: A graph G = (V, E) with an odd number of nodes; a set C of
colors and a coloring col : V → C; two start nodes a0, b0 ∈ V .

Question: Can player A enforce a win when the game is played according
to the above rules?

Note that Honey-Bee-2-Players is trivial in the case of only three colors:
The players have no freedom to choose the next color, and always must call the
only available color that is neither blocked by rule (1) nor by rule (2). However,
we will see in Section 4 that the case of four colors can already be difficult.

3 The Solitaire Game

3.1 The Solitaire Game on Co-comparability Graphs

A co-comparability graph G = (V, E) is an undirected graph whose nodes V
correspond to the elements of some partial order, <, and whose edges E connect
any two elements that are incomparable in that partial order, i.e., [u, v] ∈ E if
neither u < v nor v < u holds. For simplicity, we identify the nodes with the
elements of the partial order. Golumbic et al. [3] showed that co-comparability
graphs are exactly the intersection graphs of continuous real-valued functions
over some interval I. If two function curves intersect, the corresponding elements
are incomparable in the partial order; otherwise, the curve that lies completely
above the other one corresponds to the larger element in the partial order. The
function graph representation readily implies that the class of co-comparability
graphs is closed under edge contractions. This can be seen as follows. Assume
curves f and g intersect. Contracting the edge (f, g) corresponds to replacing
f and g by a single curve h that rapidly zig-zags between f and g. Clearly, h
intersects exactly those curves that intersect f or g (or both).

Therefore, we may w.l.o.g. restrict our analysis of Honey-Bee-Solitaire

to co-comparability graphs with a proper node coloring, i.e., adjacent nodes
have distinct colors (in the solitaire game we do not care about the weight
of a node after an edge contraction). In this case, every color class is totally
ordered because incomparable node pairs have been contracted. For any color
c, let Min(c) and Max(c) denote the smallest and the largest node of color c,
respectively. We can further assume that the start node v0 is colorless (because
we do not need to conquer it anymore).

Consider an instance of Honey-Bee-Solitaire with a start node v0. The
function graph representation implies that conquering a node v will simultane-
ously conquer all nodes of the same color between (in the total order of the color
class) v and v0.

For a color sequence γ = 〈γ1, . . . , γb〉, we define the length of γ as |γ| = b. We
also define the essential length ess(γ) of γ as |γ|minus the number of steps where
γ conquers the second extremal node of some color class (even if both extremal
nodes are conquered in the same step). This definition is motivated by the fact
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that any color sequence γ conquering the entire graph must spend one step to
conquer the second extremal node of each color class, i.e., |γ| = ess(γ) + k.

For a node v below v0 or incomparable to v0 and a node w above v0 or
incomparable to v0, let D(v, w) denote the essential length of the shortest color
sequence γ that can conquer v and w when starting at v0. Note that we do
not need to keep track of which first extremal nodes of a color class have been
conquered because there is no difference in the cost between conquering the
second extremal node in the same step together with the first extremal node, and
the first extremal node having been conquered in an earlier step. In particular,
we can compute D(v, w) recursively by D(v0, v0) = 0 and

D(v, w) = min
c

(D(v, minw(c)) + δw(v), D(maxv(c), w) + δv(w)) ,

where minw(c) denotes the smallest node of color c connected to w, if such nodes
exist, maxv(c) denotes the largest node of color c connected to v, if such nodes
exist, and δv(w) = 0 if and only if w is an extremal node of some color class
c and the other extremal node of color class c is either between v and w, or
incomparable to either v or w, or both (it was either conquered earlier, or it
will be conquered in this step); otherwise, δv(w) = 1. Then we can compute the
optimal cost of solving Honey-Bee-Solitaire as minv,w(D(v, w) + k), where
we minimize over all minimal nodes v and all maximal nodes w. This is true
because after conquering v and w, γ only needs to conquer all free nodes Min(c)
and Max(c) to conquer the entire graph, and all these nodes are connected to
the conquered subgraph at that time.

Theorem 1. Honey-Bee-Solitaire can be solved in polynomial time on co-
comparability graphs. ��

3.2 The Solitaire Game on Split Graphs

A split graph is a graph whose node set can be partitioned into an induced clique
and into an induced independent set. We will show that Honey-Bee-Solitaire

is NP-hard on split graphs. Our reduction is from the NP-hard Feedback Vertex
Set (FVS) problem in directed graphs; see for instance Garey and Johnson [2].

Problem FVS

Input: A directed graph (X, A); a bound t < |X |.
Question: Does there exist a subset X ′ ⊆ X with |X ′| = t such that the
directed graph induced by X −X ′ is acyclic?

Theorem 2. Honey-Bee-Solitaire on split graphs is NP-hard.

Proof. Consider an instance (X, A, t) of FVS. We construct an instance (V, E, b)
of Honey-Bee-Solitaire by forming a clique from the vertices in X together
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with a new node v0, where node x has color cx. Each arc (x, y) ∈ A be-
comes a node of color cy with a single incident edge to x in the clique. Finally,
we set b = |X | + t. We claim that the constructed instance of Honey-Bee-

Solitaire has answer YES, if and only if the instance of FVS has answer
YES.

Assume that the FVS instance has answer YES. Let X ′ be a smallest feed-
back set whose removal makes (X, A) acyclic. Let π be a topological order of
the nodes in X − X ′, and let τ be an arbitrary ordering of the nodes in X ′.
Consider the color sequence γ of length |X |+ t that starts with τ , followed by
π, and followed by τ again. It is easy to see that {v0}→γ V .

Next assume that the instance of Honey-Bee-Solitaire has answer YES.
Let γ be a color sequence of length b = |X |+ t conquering V . Define X ′ as the
set of nodes x such that color cx occurs at least twice in γ; clearly, |X ′| ≤ t.
Consider an arc (x, y) ∈ A with x, y ∈ X −X ′. Since γ contains color cy only
once, it must conquer the independent node (x, y) (of color cy) after the clique
node x (of color cx). Hence, γ induces a topological order of X −X ′. ��

The construction in the proof above uses linearly many colors. What about
the case of few colors? On split graphs, Honey-Bee-Solitaire can always be
solved by traversing the color set C twice; the first traversal conquers all clique
nodes, and the second traversal conquers all remaining free independent set
nodes. If we have only a few colors, we can just try all color sequences of length
2|C|.

Theorem 3. If the number of colors is bounded by a fixed constant, Honey-

Bee-Solitaire on split graphs is polynomial-time solvable. ��

3.3 The Solitaire Game on Trees

In this section we will show that Honey-Bee-Solitaire is NP-hard on trees,
even if there are at only three colors. We reduce Honey-Bee-Solitaire from a
variant of the Shortest Common Supersequence (SCS) problem which is know
to be NP-complete (see Middendorf [4]).

Problem SCS

Input: A positive integer t; finite sequences σ1, . . . , σs with elements from
{0, 1}with the following properties: (i) All sequences have the same length.
(ii) Every sequence contains exactly two 1s, and these two 1s are separated
by at least one 0.

Question: Does there exist a sequence σ of length t that contains
σ1, . . . , σs as subsequences?

If we replace every occurrence of the element 0 by two consecutive elements
0 and 2, we see that the following variant of SCS is also NP-complete.
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Problem Modified SCS (MSCS)
Input: A positive integer t; finite sequences σ1, . . . , σs with elements from
{0, 1, 2} with the following property: In every sequence any two consecu-
tive elements are distinct, and no sequence starts with 2.

Question: Does there exist a sequence σ of length t that contains
σ1, . . . , σs as subsequences?

Since we can interpret the sequences as paths of labeled nodes attached to a
common root, we see that Honey-Bee-Solitaireis difficult on trees.

Theorem 4. Honey-Bee-Solitaire is NP-hard on trees, even in case of only
three colors. ��

4 The Two-Player Game

4.1 The Two-Player Game on Outer-Planar Graphs

A graph is outer-planar if it contains neither K4 nor K2,3 as a minor. Outer-
planar graphs have a planar embedding in which every node lies on the boundary
of the so-called outer face. For example, every tree is an outer-planar graph.

Consider an outer-planar graph G = (V, E) as an instance of Honey-Bee-2-

Players with starting nodes a0 and b0 in V , respectively. The starting nodes di-
vide the nodes on the boundary of the outer face F into an upper chain u1, . . . , us

and a lower chain �1, . . . , �t, where u1 and �1 are the two neighbors of a0 on F ,
while us and �t are the two neighbors of b0 on F . We stress that the upper and
lower chains are not necessarily disjoint (for instance, articulation nodes may
occur in both chains).

Now consider an arbitrary situation in the middle of the game. Let U (re-
spectively L) denote the largest index k such that player A has conquered node
uk (respectively node �k). See Fig. 2 to illustrate these definitions. Since outer-
planar graphs are K4-minor free, none of the free nodes among u1, . . . , uU and
�1, . . . , �L can have a neighbor among uU+1, . . . , us, b0, �t, . . . , �L+1.

Theorem 5. Honey-Bee-2-Players on outer-planar graphs is polynomial-
time solvable.

Proof. The two indices U and L encode all necessary information on the future
behavior of player A. Eventually, he will own all nodes u1, . . . , uU and �1, . . . , �L,
and the possible future expansions of his area beyond uU and �L only depend
on U and L. Symmetric observations hold true for player B.

As every game situation can be concisely described by just four indices, there
is only a polynomial number O(|V |4) of relevant game situations. The rest is
routine work in combinatorial game theory: We first determine the winner for
every end-situation, and then by working backwards in time we can determine
the winners for the remaining game situations. ��
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Note that the game is even easier for trees. The crucial battlefield is the path
between a0 and b0, and for both players the optimal strategy is to move along
this path as quickly as possible. Thus, we can solve Honey-Bee-2-Players on
trees in linear time.

4.2 The Two-Player Game on Series-Parallel Graphs

A graph is series-parallel if it does not contain K4 as a minor. Equivalently, a
series-parallel graph can be constructed from a single edge by repeatedly dou-
bling edges, or removing edges, or replacing edges by a path of two edges with
a new node in the middle of the path. Note that we do not know whether the
two-player game is in the class NP on series-parallel graphs (we believe it is not),
so we can only claim NP-hardness.

Theorem 6. For four (or more) colors, problem Honey-Bee-2-Players on
series-parallel graphs is NP-hard.

Proof. We use the color set C = {0, 1, 2, 3}. A central feature of our construction
is that player B will have no real decision power: In even rounds, player A will
call color 0 or 1, and player B must call the other color in {0, 1}, or waste his
move. In odd rounds, player A will call color 2 or 3, and player B must call the
other color in {2, 3}, or waste his move. Note that wasting a move by calling a
‘wrong’ color may actually block the other player in the next round; in this case
we may have one round where both players do not make progress, but then the
next round will be back to normal.

The proof is by reduction from the supersequence problem SCS with binary
sequences, see Fig. 3 for an example. Consider an instance (σ1, . . . , σs, t) of SCS,
and let n denote the common length of all sequences σi. We first construct two
start nodes a0 and b0 of colors 2 and 3, respectively. For each sequence σi we
construct a path Pi consisting of 2n − 1 nodes which is attached to a0. The n
nodes with odd numbers mimic sequence σi, while the n − 1 nodes with even
numbers all receive color 2. The first node of Pi is adjacent to a0, and its last
node is connected to a honey pot Hi. This is a long path consisting of 4st nodes
of color 3. Intuitively, we may think of a honey pot as a single node of large
weight, because conquering one of the nodes will simultaneously conquer the
entire path.

Each Hi can also be reached from b0 by a path Qi consisting of 2t− 1 nodes.
Nodes with odd numbers get color 0, and nodes with even numbers get color
3. The first node of Qi is adjacent to b0, and its last node is connected to Hi.
Furthermore, we create for each node of color 0 a (new) twin node of color 1
that has the same two neighbors as the color 0 node. Note that for every path
Qi there are t twin pairs. Finally, we connect b0 to a private honey pot HB of
color 2 for player B that consists of 4s(s− 1)t + (2n− 1)s nodes.

It is easy to verify that A wins if and only if he conquers all the Hi. It is then
straightforward to show that A has a winning strategy if and only if the SCS

instance has answer YES. ��



186 R. Fleischer and G.J. Woeginger

HB

H1

H2

H3

3

3

1010
a0

2

1 2 0 2

1 0 1 0

3 3310 2
2

b0

Fig. 3. The graph constructed in the proof of Thm. 6 for σ1 = 1001, σ2 = 0101,
σ3 = 1010, and t = 4. The optimal SCS solution is 10101. Thus, B can win this game.

4.3 The Two-Player Game on Arbitrary Graphs

In this section we will show that problem Honey-Bee-2-Players is PSPACE-
complete on arbitrary graphs. Our reduction is from the PSPACE-complete
Quantified Boolean Formula (QBF) problem; see for instance Garey &
Johnson [2].

Problem QBF

Input: A quantified Boolean formula with 2n variables in conjunctive
normal form: ∃x1∀x2 · · · ∃x2n−1∀x2n ∧j Cj , where the Cj are clauses of
the form ∨kljk, where the ljk are literals.

Question: Is the formula true?

Theorem 7. For four (or more) colors, problem Honey-Bee-2-Players on
arbitrary graphs is PSPACE-complete.

Proof. We prove the claim by reduction from QBF. Let F = ∃x1∀x2 · · · ∃x2n−1
∀x2n(∧jCj) be an instance of QBF. We now construct a bee graph GF = (V, E)
with four colors (white, cyan, red, and black) such that player A has a winning
strategy if and only if F is true. Let a0, colored cyan, and b0, colored red,
denote the start nodes of players A and B, respectively. Each player controls a
pseudo-path, called PA and PB . On such a path some nodes may be duplicated as
parallel nodes in a diamond-shaped structure, called a choice pair ; see Fig. 4(a).
The start nodes are at one end of the respective pseudo-paths, and each player
can conquer (nearly all) the nodes on his own path without interference from
the opponent. However, they must do so in a timely manner because each path
ends at a large honey pot, denoted by HA and HB, respectively, which is a large
clique of equally-colored nodes. Both cliques will have the same size but different
color, namely black (HA) and white (HB), and they are connected by an edge.
Therefore, both players will try to reach their honey pot in the same round
to prevent the other player from winning by conquering both pots. The nodes
between the last variable gadgets and the honey pots are denoted by af and bf ,
respectively.

A variable gadget (see Fig. 4(a)) is a part of the two pseudo-paths corre-
sponding to a pair of variables ∃x2i−1∀x2i, for some i ≥ 1. On PA, the gadget
starts at node ai−1 with a choice pair aF

2i−1 and aT
2i−1, colored white and black,

respectively. The first node conquered by A will determine the truth value for
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Fig. 4. The gadgets in the proof of Thm. 7

variable x2i−1. In the same round, player B has a choice on PB between nodes
bF
2i−1 and bT

2i−1, also colored white and black, so he must select the other color
not chosen by A.

Three rounds later, there is a choice pair bF
2i and bT

2i on PB , where player B
can assign a truth value to variable x2i. In the next step (which is in the next
round), player A has a choice pair aF

2i and aT
2i with the same colors as B’s choice

pair for x2i, so he must select the color not chosen by B in the previous step.
Since we want A to conquer those clauses containing a literal set true by player
B (the clause gadgets are defined below), the colors in B’s choice pair have been
switched, i.e., bF

2i is black and bT
2i is white.

Note that all the nodes a0, a1, . . . , an have color cyan and all the nodes
b0, b1, . . . , bn have color red. This allows us to concatenate as many variable
gadgets as needed. Further note that af is white, while bf is cyan.

For each clause Cj , there is a clause gadget consisting of a small honey pot
Hj of color white. These honey pots are smaller than the large pots HA and
HB, but large enough such that player A loses if he misses one of them. Player
A should conquer Hj if and only if Cj is true in the assignment chosen by the
players while conquering their respective pseudo-paths. Therefore, the variable
gadgets are connected to the clause gadgets via delay gadgets. Let a�

k denote the
node on PA right after the choice pair aF

k and aT
k , for k = 1, . . . , 2n; similarly,

b�
k are the nodes on PB right after B’s choice pairs. A delay gadget Wk consists

of two copies WF
k and WT

k of the sub-path of PA starting at a�
k and ending at
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Fig. 5. The reduction in the proof of Thm. 7 would construct this graph for the formula
F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)
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an, see Fig. 4(b). If clause Cj contains literal xk, Hj is connected to the node
wT

n corresponding to an in WT
k ; if Cj contains literal xk, Hj is connected to the

node wF
n corresponding to an in WF

k . If k = 2i− 1 (i.e., an existential variable
x2i−1 whose value is assigned by player A), then aF

2i−1 and bF
2i−1 are connected

to w�F
2i−1, and aT

2i−1 and bT
2i−1 are connected to w�T

2i−1. If k = 2i (i.e., a universal
variable x2i whose value is assigned by player B), then aF

2i and b�
2i are connected

to w�F
2i , and aT

2i and b�
2i−1 are connected to w�T

2i .
Finally, we connect bf with all clause honey pots Hj so that player B can

conquer all clauses without a true literal. This finishes the construction of GF ,
see Fig. 5 for an example.

We claim that player A has a winning strategy on GF if and only if F is true
if the clause honey pots have size 2n2 and the two large honey pots have size
2n3. It is easy to verify that player A can indeed conquer all honey pots and
win if F is true. It is important to note that player B can never block a move
by player A (except when player B selects a value for a universal variable).1 ��

5 Conclusions

We have modeled the Honey Bee game as a game on colored graphs. We have
analyzed the complexity of the solitaire version on many classes of perfect graphs.
We have also shown that it is hard to compute a winning strategy in the two-
player version, even in the highly restricted case of series-parallel graphs.
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Abstract. We consider a class of highly dynamic networks modelled on
an urban subway system. We examine the problem of creating a map of
such a subway in less than ideal conditions, where the local residents
are not enthusiastic about the process and there is a limited ability
to communicate amongst the mappers. More precisely, we study the
problem of a team of asynchronous computational entities (the mapping
agents) determining the location of black holes in a highly dynamic
graph, whose edges are defined by the asynchronous movements of mobile
entities (the subway carriers). We present and analyze a solution proto-
col. The algorithm solves the problem with the minimum number of
agents possible. We also establish lower bounds on the number of carrier
moves in the worst case, showing that our protocol is also move-optimal.

1 Introduction

Computer networks are not necessarily safe. They often contain dangerous ele-
ments such as computers that have undetectably crashed or network equipment
that is malfunctioning or misconfigured. There is a large body of research into
distributed algorithms for finding these faults, which are often referred to in the
literature as black holes and black links, or, more generally, as dangerous ele-
ments (e.g., see [2,3,4,5,6,7,8,9,10,12,13,14,15]). All these investigations on find-
ing dangerous elements assume that the network itself is static and connected.

There are several classes of networks that have dynamic topologies that change
as a function of time, and that might be disconnected at times. They include
wireless mobile ad hoc networks where the network’s topology may change
dramatically over time due to the movement of the network’s nodes; sensor
networks where links only exist when two neighbouring sensors are awake and
have power; and vehicular networks, similar to mobile ad hoc networks, where
the topology changes constantly as vehicles move. Indeed there is a large amount
of research on these networks (which are called delay-tolerant, challenged, op-
portunistic, evolving, etc.) focusing mostly on broadcasting and routing (e.g.,
see [1,16,17,18,19]). At least one study [11] has looked at how to explore one
class of these networks: periodically-varying graphs. In the periodically-varying
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graph (PV graph) exploration problem, agents ride carriers between sites in
the network. A link only exists between sites when a carrier is passing between
them. The agents explore the network by moving from carrier to carrier when
their routes meet at a site. These dynamic networks are no less prone to faults
than static networks. The question is, how does one find a dangerous element in
a time-varying network?

Imagine a group of tourists are visiting the unfriendly capital of Dystopia—
perhaps not the best travel destination. Although the city has a subway system,
there are no maps because the local population wants to limit their capital’s appeal
to tourists (Dystopians are grumpy by nature). The tourists want to map the
subway system without the local population knowing. They agree on a location in
each station where they will leave notes for each other. The problem is that there
are good stations and there are bad stations. Tourists arriving at good stations
can easily leave notes for each other. Tourists arriving at bad stations get lost
when they try to leave notes, eventually giving up on the whole map-making
process. The group wants to complete the map while minimizing the number of
their group lost to the frustration of the bad stations.

We look at black hole search in a class of time-varying network based on a
similar scenario. Instead of tourists, we have agents. Instead of subway trains, we
have carriers. Instead of stations, we have sites, where the bad stations are black
hole sites that eliminate the agents arriving at them without leaving a discernable
trace. The class of networks described by this subway model is much larger than
the set of real subway systems. We look at the asynchronous version of the black
hole search problem where the calculations of the agents and movements of the
carriers take a finite but unpredictable amount of time. To measure complexity in
this environment, we look at the number of carrier moves needed to complete the
search. We show that our solution has a complexity O(k · n2

C · lR) + O(nC · l2R)
carrier moves where nC is the number of carriers and lR is the length of the
longest carrier route. We prove that the lower bound on the worst case complexity
is Ω(k · n2

C · lR) + Ω(nC · l2R) carrier moves, making our solution worst-case
optimal.

2 Model

We consider a set C of nC carriers that move among a set S of nS sites. A
carrier c ∈ C follows a route R(c) between all the sites in its domain S(c) =
{s0, s1, . . . , snS(c)−1} ⊆ S. A carrier’s route R(c) = 〈r0, r1, . . . , rl(c)−1〉 is a
cyclic sequence of stops: after stopping at site ri ∈ S(c), the carrier moves
to ri+1 ∈ S(c), where operations on the indices are modulo l(c) = |R(c)|
called the length of the route. Carriers move asynchronously, taking a finite but
unpredictable amount of time to move between stops. Each carrier is labelled
with a distinct id and the length of its route. A route is simple if nS(c) = l(c),
and complex otherwise. A transfer site is any site that is in the domain of two or
more carriers; each transfer site is labelled with the number of carriers stopping at
it. A carrier’s route R(c) = 〈r0, r1, . . . , rl(c)−1〉 defines an edge-labelled directed
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multigraph G(c) = (S(c), E(c), λ(c)), called carrier graph, where there is an edge
labeled (c, i + 1) from ri to ri+1, and the operations on indices and inside labels
are modulo l(c). The entire network is then represented by the edge-labelled
directed multigraph G = (R, E, λ), called subway graph, where R = ∪c∈CR(c),
E = ∪c∈CE(c), and λ = {λ(c) : c ∈ C}. Associated with the subway graph is the
transfer graph of G which we define as the edge-labelled undirected multigraph
H(G) = (C, ET ) where the nodes are the carriers and, ∀c, c′ ∈ C, s ∈ S, there
is an edge between c and c′ labeled s iff s ∈ S(c) ∩ S(c′), i.e., s is a transfer
site between c and c′. In the following, when no ambiguity arises, we will omit
the edge labels in all graphs.See Figure 1c. Working in the network is a team A
of k computational agents that start at unpredictable times from the same site,
called the homebase. Agents can only communicate with each other using shared
memory, available at each site in the form of a whiteboard, which is accessed in
fair mutual exclusion. The agents are asynchronous in that they take a finite
but unpredictable amount of time to perform computations at a site. All agents
execute the same protocol and know the number of carriers nC . The agents move
around the network using the carriers. An agent can move from a carrier to a
site (disembark at a stop) or from a site to a carrier (board a carrier), but not
from one carrier to another directly. An agent on a transfer site can board any
carrier stopping at it. When on a site, an agent can access the whiteboard, and
can read the number of the carriers stopping at that site; furthermore, it can
read the labels of any carrier stopping there. When travelling on a carrier, an
agent can count the number of stops that the carrier has passed, and can decide
whether or not to disembark at the next stop. Once disembarked, the agent can
later board the same carrier at the same point in its route.

Among the sites there are nB < nS black holes: sites that eliminate agents dis-
embarking on them without leaving a discernable trace; black holes do not affect
carriers. The black hole search (Bhs) problem is that of the agents determining
the locations of the black holes in the subway graph. A protocol solves the Bhs

problem if within finite time at least one agent survives and all the surviving
agents know which stops are black holes. There are some basic limitations for
the Bhs problem to be solvable: the transfer graph must be connected once the
black holes are removed, and the homebase must be a safe site. Hence we will
assume these conditions to hold. Because of asynchrony, slow computation by
an agent exploring a safe stop is indistinguishable from an agent having been
eliminated by a black hole stop, so, with only knowledge of nC , termination
is impossible unless each carrier has at least one safe transfer site. Hence the
agents’ knowledge of nC will be assumed.

As in traditional mobile agent algorithms, the basic cost measure used to
evaluate the efficiency of a Bhs solution protocol is the size of the team that
is the number k of agents needed by the protocol. Let γ(c) = |{i : ri ∈ R(c)
is a black hole}| be the number of black holes among the stops of c; and let
γ(G) =

∑
c∈C γ(c), called the faulty load of subway graph G, be the total number

of stops that are black holes. The faulty load γ(G) of subway graph G is the
number of stops that are black holes. To solve Bhs, it is obviously necessary
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Fig. 1. A route, the corresponding carrier graph, and a transfer graph (edge labels are
the corresponding transfer site ids)

to have more agents than the faulty load of the network, i.e. k > γ. A solution
protocol is agent optimal if it solves the Bhs problem for k = γ + 1. The other
cost measure is the number of carrier moves: when an agent is waiting for a
carrier or riding on a carrier, each move made by that carrier is counted as a
carrier move for the agent. A solution protocol is move optimal in the worst case
if the total number of carrier moves incurred by all agents in solving the Bhs

problem is the best possible.

3 Exploration Algorithm

In this section we present the proposed algorithm SubwayExplore; as we will
show later, our algorithm works correctly with any number of agents k ≥ γ + 1.

Informally, algorithm SubwayExplore works as follows. All the agents start at
unpredictable times from the same site s, called the homebase. An agent’s work
involves visiting a previously unexplored stop on a carrier’s route and returning,
if possible, to report what was found there. Every carrier is searched from a work
site and the work sites are organized into a logical work tree that is rooted in
the homebase. The first agent to access the homebase’s whiteboard sets up the
homebase as a work site (Sect. 3.1). It and the agents awaking after it then begin
to do work by visiting the stops of the carriers stopping at the homebase (Sect.
3.2). If an exploring agent finds a previously unexplored transfer site, the agent
“competes” to add the transfer site to the work tree. If the agent succeeds, the
transfer site becomes a work site for other carriers stopping at it and the work
site from which it was discovered becomes its parent in the work tree (Sect. 3.3).
When the carrier that the agent is exploring has no more unexplored stops, it
tries to find another carrier with work in the work tree. It looks for work in the
subtree rooted in its current work site and if there is no work available it moves
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to the work site’s parent and tries again (Sect. 3.4). An agent terminates if it is
at the homebase, there is no work, and there are nC carriers in the work tree.

3.1 Initialization

When an agent awakes for the first time on the homebase, it tries to initialize the
homebase as a work site. Only the first agent succeeds and executes Initialize

Work Site. All other agents proceed directly to trying to find work.
The Initialize Work Site procedure is used to set up each work site in

the work tree. The procedure takes as input the parent of the work site and
the carriers to be worked on or serviced from the work site. For the homebase,
the parent is null and the carriers to be accessed are all those stopping at s. The
procedure initializes the work site’s whiteboard with the information needed to
find work, do work, and compete to add work. More precisely, when a work site
ws is initialized, its parent is set to the work site from which it was discovered
(null in the homebase’s case) and its children are initially null. The carriers it
will service are added to Csubtree, the set of carriers in the work tree at and below
this work site. The same carriers are also added to Cwork, the set of carriers in
the subtree with unexplored stops, and Clocal, the set of carriers serviced by this
work site. For each carrier c added to Clocal, the agent setting up the whiteboard
creates three sets Uc, Dc, and Ec. The set Ec of explored stops is initialized with
the work site at r0 = ws (r0 is always the work site servicing the carrier). The
set Uc of unexplored stops is initialized with the rest of the stops on the carrier’s
route {r1, r2, . . . , rl(c)−1}, which is possible because each carrier is labelled with
its length as well as its id. The set Dc of stops being explored (and therefore
potentially dangerous sites) is initially empty.

3.2 Do Work

We now discuss how the agents do their exploration of unexplored stops (proce-
dure Do Work shown in Algorithm 1). To limit the number of agents eliminated
by black holes, we use a technique similar to the cautious walk technique used in
static networks. Consider an agent a on the work site ws of a carrier c that still
has unexplored stops, i.e. Uc �= ∅. The agent does the following. It chooses an
unexplored stop r ∈ Uc for exploration, removes r from Uc, and adds it to the
set Dc of stops being explored. It then takes c to r and disembarks. If the agent
survives, it returns to ws using the same carrier c and disembarks. The agent
can make the trip back to ws because it knows the index of r and l(c) and can
therefore calculate the number of stops between r and ws. At ws, it removes r
from Dc and adds it to the set Ec of explored stops. At this point, the agent also
adds the site id and any other information of interest. If r is a transfer site and a
is the first to visit it (its whiteboard is blank), then, before returning to ws, the
agent proceeds as follows. It records on r’s whiteboard all the carriers that pass
by r, including their id and lengths of their route. It initializes two sets in its
own memory: the set of new carriers initially containing all the carriers stopping
at r; and the set of existing carriers, initially empty. These sets are used in the
next procedure that we discuss: competing to add work.
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Algorithm 1. Do work
Agent a is working on carrier c from work site ws.

1: procedure Do Work(carrier c)
2: while Uc �= ∅ do
3: choose a stop r from Uc

4: Uc ← Uc \ {r} � Remove r from the set of unexplored stops
5: Dc ← Dc ∪ {r} � Add r to the set of stops being explored
6: take c to r and disembark

� If not eliminated by black hole
7: if r is a transfer site ∧ whiteboard is blank then
8: a.newC ← ∅ � Initialize agent’s set of new carriers
9: a.existingC ← ∅ � Initialize agent’s set of existing carriers

10: for each carrier c stopping at r do
11: record c on whiteboard
12: a.newC ← a.newC ∪ {c} � Add carrier to agent’s set of new carriers
13: end for
14: end if
15: take c to ws and disembark
16: Dc ← Dc \ {r} � Remove r from the set of stops being explored
17: Ec ← Ec ∪ {r} � Add r to the set of explored stops
18: if r was a transfer site then
19: Compete to Add Work

20: end if
21: end while
22: end procedure

3.3 Compete to Add Work

When an agent a discovers that a stop r is an unvisited transfer site, that stop is
a potential new work site for the other carriers stopping at it. There is a problem,
however: other agents may have independently discovered some or all of those
carriers stopping at r. To ensure that each carrier has only one associated work
site in the work tree, in our algorithm agent a must compete with all those other
agents before it can add r as the new work site in the tree for those carriers. We
use Csubtree on the work sites in the work tree to decide the competition (if any).

Let us describe the actions that agent a performs; let a have just finished
exploring r on carrier cws from work site ws and found that r is a new transfer
site. The agent has a set of new carriers that initially contains all the carriers
stopping at r, a set of existing carriers that is initially empty, and is currently
on its work site ws. The agent walks up the work tree from ws to s checking
the set of new carriers against Csubtree on each work site. If a new carrier is not
in Csubtree, the agent adds it. If a new carrier is in Csubtree, the agent moves it
to the set of existing carriers. The agent continues until it reaches s or its set
of new carriers is empty. The agent then walks down the work tree to ws. It
adds each carrier in its set of new carriers to Cwork on each work site on the
way down to ws. For each carrier in its set of existing carriers, it removes the
carrier from Csubtree on the work site if it was the agent that added it. When
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it reaches ws, it removes the existing carriers and if there are no new carriers,
it continues its work on cws. If there are new carriers, the agent adds r as a
child of ws and goes to r. At r, the agent initializes it as a work site using the
Initialize Work Site procedure with ws as its parent and the set of new
carriers as its carriers. The agent then returns to ws and continues its work on
cws. The procedure Compete to Add Work, shown in Algorithm 2, ensures
the following properties:

Lemma 1. All new work is reported to the root.

Lemma 2. If a new carrier is discovered, it is added to the work tree within
finite time.

Lemma 3. A carrier is always serviced from a single work site.

3.4 Find Work

Now that we have seen work being done and new work added to the tree, it is
easy to discuss how an agent a finds work. When a work site is initialized, its
parent is set to the work site from which it was discovered (null in the homebase’s
case) and its children are initially null. As mentioned before, each work site has
a set Cwork that contains the carriers in its subtree with unexplored stops.

If Cwork on the current work site is not empty, an agent a looking for work
chooses a carrier c and walks down the tree until it reaches the work site ws
servicing c or it finds that c is no longer in Cwork. Assume that agent a reaches
ws without finding c missing from Cwork. Then a works on c until it is either
eliminated by a black hole or Uc is empty. If the agent survives and is the first
agent to discover that Uc is empty, it walks up the tree from ws to s removing c
from Cwork along the way. So, it is possible for an agent descending to do work
on c to find out before it reaches ws that the work on c is finished. In that case,
the agent starts over trying to find work.

If agent a looking for work finds that Cwork at the current work site is empty,
it moves to the work site’s parent and tries again. If it reaches the root without
finding work but the termination condition is not met (there are fewer than
nC carriers in the work tree), the agent waits (loops) until new work arrives or
the termination condition is finally met. The procedure Find Work, shown in
Algorithm 3, ensures the following property:

Lemma 4. Within finite time, an agent looking for work either finds it or waits
on the root.

3.5 Correctness

Let us now prove the correctness of algorithm SubwayExplore. To do so, we need
to establish some additional properties of the Algorithm:

Lemma 5. Let ri ∈ R(c) be a black hole. At most one agent is eliminated by
stopping at ri when riding c.



Mapping an Unfriendly Subway System 197

Algorithm 2. Compete to Add Work
Agent a has found a new transfer site r while exploring carrier cws from work site
ws and is competing to add it to the work tree with ws as r’s parent.

1: procedure Compete to Add Work

� Walk up tree
2: repeat
3: take the appropriate carrier to parent and disembark
4: for c ∈ a.newC do
5: if c ∈ Csubtree then
6: a.newC ← a.newC \ {c} � Remove from set of new carriers
7: a.existingC ← a.existingC ∪ {c} � Add to set of existing carriers
8: else
9: Csubtree ← Csubtree ∪ {c}

10: end if
11: end for
12: until (on s) ∨ (a.newC = ∅)

� Walk down tree
13: while not on ws do
14: for c ∈ a.newC do
15: Cwork ← Cwork ∪ {c} � Add new carriers with work in subtree
16: end for
17: for c ∈ a.existingC do
18: if a added c to Csubtree then
19: Csubtree ← Csubtree \ {c} � Remove carrier from subtree set
20: end if
21: end for
22: take appropriate carrier to child in direction of ws and disembark
23: end while

� Remove any existing carriers on ws
24: for c ∈ a.existingC do
25: if a added c to Csubtree then
26: Csubtree ← Csubtree \ {c} � Remove carrier from subtree set
27: end if
28: end for

� Add any new carriers to the tree with r as their work site
29: if a.newC �= ∅ then
30: children ← children ∪ {r}
31: for c ∈ a.newC do
32: Cwork ← Cwork ∪ {c}
33: end for
34: take carrier cws to r and disembark
35: Initialize Work Site(ws, a.newC)
36: take carrier cws to ws and disembark
37: end if
38: Do Work(cws) � Keep working on original carrier
39: end procedure
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Algorithm 3. Find work
Agent a is looking for work in the work tree. The agent knows nC , the number of
carriers, which is needed for termination. Let ws be the current work site.

1: procedure Find Work

� Main loop
2: while (not on s) ∨ (Cwork �= ∅) ∨ (|Csubtree| < nC) do

� Choose carrier to work on and go there
3: if Cwork �= ∅ then
4: choose carrier c from Cwork

5: while (c /∈ Clocal) ∧ (c ∈ Cwork) do
6: take appropriate carrier to child in direction of c and disembark
7: end while
8: if c ∈ Clocal then � On the work site servicing c
9: Do Work(c)

10: if c ∈ Cwork then � The first agent to find no work left on c
11: while not on s do
12: Cwork ← Cwork \ {c}
13: take appropriate carrier to parent and disembark
14: end while
15: Cwork ← Cwork \ {c}
16: end if
17: end if
18: else � No work in subtree
19: take appropriate carrier to parent and disembark
20: end if
21: end while
22: end procedure

Lemma 6. There is at least one agent alive at all times before termination.

Lemma 7. An agent that undertakes work completes it within finite time.

Lemma 8. If there is work available, an agent eventually does it.

Lemma 9. All carriers are eventually added to the tree.

We can now state the correctness of our algorithm:

Theorem 1 Protocol SubwayExplore correctly and in finite time solves the map-
ping problem with k ≥ γ(G) + 1 agents in any subway graph G.

4 Bounds and Optimality

We now analyze the costs of our algorithm, establish lower bounds on the
complexity of the problem and prove that they are tight, showing the optimality
of our protocol.



Mapping an Unfriendly Subway System 199

Theorem 2 The algorithm solves black hole search in a connected dangerous
asynchronous subway graph in O(k ·n2

C · lR +nC · l2R) carrier moves in the worst
case.

We now establish some lower bounds on the worst case complexity of any protocol
using the minimal number of agents.

Theorem 3 For any α, β, γ, where α, β > 2 and 1 < γ < 2αβ, there exists
a simple subway graph G with α carriers with maximum route length β and
faulty load γ in which every agent-optimal subway mapping protocol P requires
Ω(α2 ·β ·γ) carrier moves in the worst case. This result holds even if the topology
of G is known to the agents.

Proof. Consider a subway graph G whose transfer graph is a line graph; all α
routes are simple and have the same length β; there exists a unique transfer stop
between neighbouring carriers in the line graph; no transfer site is a black hole,
and the number of black holes is γ. The agents have all this information, but do
not know the order of the carriers in the line.

Let P be a subway mapping protocol that always correctly solves the problem
within finite time with the minimal number of agents k = γ + 1. Consider an
adversary A playing against the protocol P . The power of the adversary is the
following: 1) it can choose which stops are transfers and which are black holes; 2)
it can “block” a site being explored by an agent (i.e., delay the agent exploring
the stop) for an arbitrary (but finite) amount of time; 3) it can choose the order
of the carriers in the line graph. The order of the carrier will be revealed to the
agents incrementally, with each revelation consistent with all previous ones; at
the end the entire order must be known to the surviving agents.

Let the agents start at the homebase on carrier c1. Let q = � k−2
β−2�. Assume

that the system is in the following configuration, which we shall call Flip(i), for
some i ≥ 1: (1) carrier c1 is connected to c2, and carrier cj (j < i) is connected to
cj+2; (2) all stops of carriers c1, c2, . . . , ci have been explored, except the transfer
stop ri+1, leading from carrier ci−1 to carrier ci+1, and the stop ri+2 on carrier
ci+1, which are currently being explored and are blocked by the adversary; and
(3) all agents, except the ones blocked at stops ri+1 and ri+2, are on carrier ci.
See Fig. 2. If the system is in configuration Flip(i), with i < α− q, the adversary
operates as follows.

(1) The adversary unblocks ri+1, the transfer site leading to carrier ci+1. At
this point, all k− 1 unblocked agents (including the k− 2 currently on ci) must
move to ri+1 to explore ci+1 without waiting for the agent blocked at ri+2 to
come back. To see that all must go within finite time, assume by contradiction
that only 1 ≤ k′ ≤ k − 2 agents go to explore ci+1 within finite time, while
the others never go to ri+1. In this case, the adversary first reveals the order of
the carriers in the line graph by assigning carrier cj to be connected to cj+1 for
α > j > i. Then the adversary chooses the following stops to be black holes:
ri+2, the first k′ non-transfer stops visited by the k′ agents, and other k− k′− 2
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Fig. 2. Transfer graph in the lowerbound proof

non-transfer stops arbitrarily chosen in those carriers. Notice this can be done
because, since q = � k−2

β−2�, the number of non-transfer stops among these carriers
is q(l − 2) + 1 ≥ k − 1. Thus all k′ agents will enter a black hole. Since none
of the other agents will ever go to ci+1, the mapping will never be completed.
Hence, within finite time all k − 1 non blocked agents must go to ri+1, with a
total cost of O(k · i · β) carrier moves.

(2) The adversary blocks each stop of ci+1 being explored, until k − 1 stops
are being explored. At that point, it unblocks all those stops except one, ri+3.
Furthermore, it makes ri+2 the transfer stop leading to carrier ci+2.

Notice that after these operations, the system is precisely in configuration
Flip(i+1). Further observe now that, from the initial configuration, when all
agents are at the homebase and the protocol starts, the adversary can create
configuration Flip(0) by simply blocking the first two stops of c1 being explored,
and making one of them the transfer to c2. In other words, within finite time, the
adversary can create configuration Flip(0); it can then transform configuration
Flip(i) into Flip(i+1), until configuration Flip(α−q−1) is reached. At this point
the adversary reveals the entire graph as follows: it unblocks rα−q+1, the transfer
site leading to carrier cα−q+1; it assigns carrier cj to be connected to cj+1 for
α > j > α − q; finally it chooses k − 1 non-transfer stops of these carriers to
be black holes; notice that they can be chosen because, since q = � k−2

β−2�, the
number of non-transfer stops among these carriers is q(l − 2) + 1 ≥ k − 1.

The transformation from Flip(i) into Flip(i+1) costs the solution protocol P
at least Ω(k·i·β) carrier moves, and this is done for 1 ≤ i ≤ α−q; since α(l−2) ≥
(k − 2) it follows that α− q = α− � k−2

β−2� ≥ α− k−2
β−2 ≥

α
2 ; hence,

∑
1≤i≤α−q i =

O(α2). In other words, the adversary can force any solution protocol to use
Ω(α2 · β · γ) carrier moves.

Theorem 4 For any α, β, γ, where α, β > 2 and 1 < γ < β − 1, there exists a
simple subway graph G with α carriers with maximum route length β and faulty
load γ in which every subway mapping protocol P requires Ω(α·β2) carrier moves
in the worst case. This result holds even if the topology of G is known to the
agents,

Theorem 5 Protocol SubwayExplore is agent-optimal and move-optimal.
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Cracking Bank PINs by Playing Mastermind�
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Abstract. The bank director was pretty upset noticing Joe, the system
administrator, spending his spare time playing Mastermind, an old use-
less game of the 70ies. He had fought the instinct of telling him how to
better spend his life, just limiting to look at him in disgust long enough
to be certain to be noticed. No wonder when the next day the director fell
on his chair astonished while reading, on the newspaper, about a huge
digital fraud on the ATMs of his bank, with millions of Euros stolen by
a team of hackers all around the world. The article mentioned how the
hackers had ‘played with the bank computers just like playing Master-
mind’, being able to disclose thousands of user PINs during the one-hour
lunch break. That precise moment, a second before falling senseless, he
understood the subtle smile on Joe’s face the day before, while training
at his preferred game, Mastermind.

Keywords: Security APIs, PIN processing, Hardware Security Modules,
Mastermind.

1 Introduction

The Mastermind game was invented in 1970 by Mordecai Meirowitz. The game
is played as a board game between two players or as a one player game between
a single player and the computer (in both cases called the codebreaker and the
codemaker, respectively) [19]. The codemaker chooses a linear sequence of colored
pegs and conceals them behind a screen. Duplicates are allowed. The codebreaker
has to guess, in different trials, both the color and the position of the pegs. Dur-
ing each trial he learns something and based on this he decides the next guess: in
particular, a response consisting of a black peg (which we will call black marker)
represents a right guess of the color and the position of a peg (but the marker does
not indicate which one is correct), a response consisting of a white peg (called white
marker) represents only the right guess of a color but at the wrong position.

An apparently completely unrelated problem is the one of protecting user’s
Personal Identification Number (PIN) when withdrawing some money at an Au-
tomated Teller Machine (ATM). International bank networks are structured in
such a way that an access to an ATM implies that the user’s PIN is sent to
the issuing bank for the verification. While travelling, the PIN is decrypted and
� Work partially supported by Miur’07 Project SOFT: “Security Oriented Formal

Techniques”.
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Fig. 1. Bank network

re-encrypted by special tamper-resistant devices called Hardware Security Mod-
ules (HSMs) which are placed on the traversed network switches, as illustrated
in figure 1. The first PIN encryption is performed by the ATM keypad which is
an HSM itself, using a symmetric key k1 shared with the neighbour acquiring
bank. While travelling from node to node, the encrypted PIN is decrypted and
re-encrypted with another key shared with the destination node, by the HSM
located in the switch. The final verification and acceptance/refusal of the PIN
is done by the issuing bank.

Although this setting seems to be secure, several API-level attacks have been
discovered on these HSMs in the last years [5,6,10]. These attacks work by as-
suming that the attacker is an insider gaining access to the HSM at some bank
switch and performing subtle sequences of API calls from which he is able to
deduce the value of the PIN. There are many examples of such attacks, the one
we are considering in this paper is the so-called dectab attack [6], which we will
illustrate in the detail in the next section. Intuitively, while verifying the PIN,
the PIN verification API at the issuing bank HSM takes as an input different
parameters, some of which are public. One of these parameters is a decimaliza-
tion table that maps an intermediate hexadecimal representation of the user PIN
into a decimal number. By manipulating some information, e.g., by modifying
the way numbers are decimalized and by observing if this affects the result of
the verification, the attacker can deduce which are the actual PIN digits. The
position of the guessed PIN digits is reconstructed by manipulation another pub-
lic parameter, i.e., the offset of the PIN. By combining all this information the
attacker is able to reconstruct the whole PIN.

Our contribution. In this paper we show that decimalization attacks can be
seen as playing an extended Mastermind game. Each API call represents a trial
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of the codebreaker and the API return value is the corresponding answer of the
codemaker. Manipulating the dectab and the offset together is similar to asking
the codemaker to disclose the color and the position of one PIN digit, in case the
guess is correct, similarly to what happens with a black marker of Mastermind.
Modifying the dectab only, instead, corresponds to asking for the presence of
certain digits in the PIN, analogously to the white marker in the game.

We make the above intuition formal by showing how PIN cracking and Mas-
termind can be seen as instances of a more general problem, or game. This
extended problem suggests a new way of improving the dectab attack. The idea
is to allow the player (i.e, the attacker) to ask for sets of colors (i.e., digits),
instead of just single colors, for each position. This, in fact, can be implemented
in the PIN cracking setting by modifying multiple entries of the dectab, as we
will show in detail. We show that this reduces the known bounds on the number
of average API calls for performing the attacks from 16.145 to 13.463 which is
very close to the optimal value of 13.362.

To this aim, we develop a computer program that optimizes a well known tech-
nique presented by Knuth in [15] for the standard Mastermind game and extend
it to our setting. We perform experiments showing that the program is almost as
precise as state-of-the-art Mastermind solvers [13] but faster, being it able to com-
pute strategies for cases not yet covered. More interestingly, the very same solving
strategy is adapted to the PIN cracking problem proving the above mentioned new
bound on the average number of API calls required in dectab attacks.

Paper structure. In section 1.1 we briefly summarize the related literature. In
section 2 we formally define the two problems, i.e., the Generalized Mastermind
Problem and the PIN Cracking Problem. In section 3 we introduce the Extended
Mastermind Problem, i.e., a general problem whose instances are the Generalized
Mastermind Problem and the PIN Cracking Problem. In section 4 we expose
some experimental results, and we conclude in section 5.

1.1 Related Literature

Mastermind. In [15] Donald Knuth presented an algorithm for the solution of
the standard Mastermind game, which is played using pegs of 6 different colors,
in a sequence of length 4. He showed how the codebreaker can find the pattern
in five moves or fewer, using an algorithm that progressively reduces the number
of possible patterns. Each guess is made so that it minimizes the maximum
number of remaining possibilities. The expected number of guesses is 4.478. In
1993 Kenji Koyama and Tony W. Lai proposed a technique that uses at most 6
guesses but decreases the expected number to 4.340 or to 4.341 if only 5 guesses
are allowed [17]. In [4,14], the authors apply evolutionary and genetic algorithms
to solve the Mastermind problem.

Different variants of the game have been proposed, e.g, in [9], Chvatal men-
tions a problem, suggested by Pierre Duchet, called the static Mastermind. This
problem consists of finding the minimum number of guesses made all at once (i.e.,
without waiting for the responses), that are required to determine the code.
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In [8] the authors propose a bound for finding a hidden code by asking ques-
tions. This problem relates to the Generalized Mastermind Game with N colors
and sequences of length k. The authors show that

⌈
k
N

⌉
+ 2NlogN + 2N + 2

guesses are sufficient to solve the problem.
Finally, in [13] the authors present some new bounds to the Generalized Mas-

termind Game. Using a computer program they compute some new exact values
of maximum number of guesses. They also provide theoretical bounds for the
case of sequences of length 2, 3 and 4, and for the general case of N colors and
length k.

PIN cracking. API-level attacks on PINs have recently attracted attention from
the media [1,3]. This has increased the interest in studying formal methods
for analysing PIN recovery attacks and API-level attacks in general [18]. In
particular, different models have been proposed, e.g., in [6] the authors prove that
in average 16.5 API calls are required to reconstruct the PIN and this bound was
decreased to 16.145 in [18]. In [7] we have presented, together with other authors,
a language-based setting for analysing PIN processing API via a type-system. We
have formally modelled existing attacks, proposed some fixes and proved them
correct via type-checking. These fixes typically require to reduce and modify the
HSM functionality by, e.g., sticking on a single format of the transmitted PIN
or adding MACs for the integrity of user data. Notice, in fact, that the above
mentioned attack is based on the absence of integrity on public user data such
as the dectab and the offset. As upgrading the bank network HSMs worldwide
is complex and very expensive in [11] we have also have proposed a low-impact,
easily implementable fix requiring no hardware upgrade which makes attacks
50000 times slower, but yet not impossible.

2 The Two Problems

In this section we give a formal definition of the two problems we will be relating.
We first define the Generalized Mastermind Problem (GMP), i.e., the problem
of solving a Generalized Mastermind Game, and we then present the problem of
attacking a PIN using the decimalization table, and we call it the PIN Cracking
Problem (PCP).

2.1 The Generalized Mastermind Game

The Generalized Mastermind Problem is a game that is played between a player
(the “codebreaker”) and a computer or another player (the “codemaker”). The
codemaker chooses a linear sequence of k colored pegs, which we call secret and
conceals them behind a screen. The colors range in a set {0, 1, . . . , N − 1}. The
codebreaker has to guess the secret, i.e., both the color of the pegs and their
exact position. The game is played in steps, each of which consists of a guess of
the codebreaker and a response of the codemaker. The response can be empty,
can contain a black or a white marker, i.e., is a sequence of at most 4 markers
chosen in the set {B, W}. The black marker represents a correct guess both of
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Fig. 2. An example of a Mastermind game

the color and the position of a peg, there is no indication however of its position,
the white marker only represents the correct guess of the color.

An example of the standard Mastermind game, i.e., played with N = 6 colors
and k = 4 pegs, is shown in figure 2 taken from [2]. In this example black
markers are depicted in red. We have added numbers to identify different colors.
At the first step the codebreaker only finds a right color, i.e., a cyan peg (2), in
a wrong position, thus the response is a white marker, i.e., W . At the next step
he correctly guesses a red peg (3) in the right position and a purple peg (4) in
a wrong position, thus the response is a black and a white peg, i.e., B, W , an so
on. At the last step the response are 4 black markers, i.e., B, B, B, B.

Note that in the standard Mastermind game the set of all possible solutions
has size 64, in the Generalized Mastermind Game the size explodes to Nk, thus
running plain exhaustive search techniques might become problematic when N
and k increase too much.

We can now formulate our problem.

The Generalized Mastermind Problem (GMP). Given a Generalized Mastermind
Game played on N colors and k pegs, devise a minimal sequence of guesses for
the correct disclosure of the secret.

2.2 API-Level Attacks in Bank Networks

In this section we show in detail a real API-level attack to the bank PINs. As
we have mentioned in the introduction, a PIN travelling along the network has
to be decrypted and re-encrypted under a different key, and this is done using
a so called translation API. While the PIN reaches the issuing bank, its corre-
spondence with the validation data, i.e., a value that is typically an encoding of
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Table 1. The verification API

PIN V(PAN ,EPB , len, offset , vdata, dectab) {

x1 := encpdk (vdata);
x2 := left(len, x1 );
x3 := decimalize(dectab, x2 );
x4 := sum mod10(x3 , offset);
x5 := deck (EPB);
x6 := fcheck(x5 );
if (x6 =⊥) then return(′′format wrong ′′);
if (x4 = x6 ) then return(′′PIN correct′′);

else return(′′PIN wrong′′)}

the user Personal Account Number (PAN) and possibly other ‘public’ data, such
as the card expiration date or the customer name, is checked via a verification
API. We focus on this latter API, called PIN V and reported in table 1, that
checks the equality of the actual user PIN, derived through the PIN derivation
key pdk , from the public data offset , vdata, dectab, and the trial PIN inserted at
the ATM that arrives encrypted under key k as EPB (Encrypted PIN block).
The API returns the result of the verification or an error code.

PIN V behaves as follows:

– The user PIN of length len is computed by first encrypting validation data
vdata with the PIN derivation key pdk (x1 ) and obtaining a 16 hexadecimal
digit string. Then, the first len hexadecimal digits are chosen (x2 ), and dec-
imalised through dectab (x3 ), obtaining the ‘natural’ PIN assigned by the
issuing bank to the user. decimalize is a function that associates to each pos-
sible hexadecimal digit (of its second input) a decimal one as specified by its
first parameter (dectab). Finally, if the user wants to choose her own PIN, an
offset is calculated by digit-wise subtracting (modulo 10) the natural PIN
from the user-selected one (x4 ).

– To recover the trial PIN EPB is first decrypted with key k (x5 ), then the PIN
is extracted by the formatted decrypted message (x6 ). This last operation
depends on the specific PIN format adopted by the bank. In some cases, for
example, the PIN is padded with random digits so to make its encryption
immune from codebook attacks. In this case, extracting the PIN involves
removing this random padding.

– Finally, if x6 fails (⊥ represents failure) then a message is returned, moreover
the equality between the user PIN and the trial PIN is verified.

An API attack on PIN V. We now illustrate a real attack on PIN V first
reported in [6]. The attack works by iterating the following two steps, until the
whole PIN is recovered:
1. To discover whether or not a decimal digit d is present in the user ‘natural’ PIN
contained in x3 the intruder picks digit d, changes the dectab function so that
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values previously mapped to d now map to d+1 mod 10, and then checks whether
the system still returns ‘PIN correct ’. If this is the case d is not contained in the
‘natural’ PIN.
2. To locate the position of the digit previously discovered by a ‘PIN wrong ’
output the intruder also changes the offset until the API returns again that the
PIN is correct.

We illustrate the attack through a simple example.

Example 1. Assume len=4, dectab=5753108642143210, as

0 1 2 3 4 5 6 7 8 9 A B C D E F
5 7 5 3 1 0 8 6 4 2 1 4 3 2 1 0

offset=4732. The correct solution, unknown to the intruder, is the following.

x2 = left(4, AD7295FDE32BA101) = AD72
x3 = decimalize(dectab, AD72) = 1265
x4 = sum mod10(1265, 4732) = 5997
x5 = deck ({|5997, r|}k) = (5997, r)
x6 = fcheck(5997, r) = 5997

Since x6 is different from ⊥ and x4 = x6 , the API returns ‘PIN correct ’.
The attacker, unaware of the value of the PIN, first changes the dectab, which

is a public parameter, as dectab ′=5753118642143211, i.e., it replaces the two 0’s
by 1’s. The aim is to discover whether or not 0 appears in x3. Invoking the API
with dectab ′ we obtain decimalize(dectab′, AD72) = decimalize(dectab, AD72) =
1265, that is 0 does not appear in x3. The attacker proceeds by replacing the 1’s of
dectab by 2’s: with dectab ′′=5753208642243220 he has decimalize(dectab′′, AD72)
= 2265 �= decimalize(dectab, AD72)=1265, reflecting the presence of 1’s in the
original value of x3. Then, x4=sum mod10(2265, 4732) =6997 instead of 5997
returning ‘PIN wrong’.

The intruder now knows that digit 1 occurs in x3, and to discover its position
and multiplicity, he now varies the offset so to ‘compensate’ for the modification
of the dectab. In particular, he tries to decrement each offset digit by 1. For
example, testing the position of one occurrence of one digit amounts to trying
the following offset variations: 3732, 4632, 4722, 4731. Notice that, in this specific
case, offset value 3732 makes the API return again ‘PIN correct’.

The attacker now knows that the first digit of x3 is 1. Given that the offset
is public, he also calculates the first digit of the user PIN as 1 + 4 mod 10 = 5.

We can now formulate our problem.

The PIN Cracking Problem (PCP ). Given a bank network the PCP consists
of recovering an encrypted (i.e., secret) PIN by devising a malicious sequence of
calls to the verification API.
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3 Extended Mastermind

We exend the Generalized Mastermind Problem presented in previous section,
by allowing the codebreaker to pose an extended guess composed of k sets of
colored pegs, instead of just k pegs. Intuitively, the sets represent alternative
guesses, i.e., it is enough that one of the peg in the set is correct to get a black
or a white marker.

More formally, let C={0, 1, . . . , N−1} be the set of colors. We note (S1, S2, . . . ,
Sk), with S1, . . . , Sk ⊆ C, an extended guess, and (c1, c2, . . . , ck), with c1, . . . , ck ∈
C, the secret.

Intuitively, the number of black markers represents the number of colors in
the secret belonging to the corresponding set. Formally:

Definition 1 (Black markers). The number b of black markers is computed
as b = |{i ∈ [1, k] | ci ∈ Si}|.

The number of white markers, instead, corresponds to the number of colors in
the secret belonging to sets in the guess, but not the ones in the corresponding
position. To formalize this we first compute the number of occurrences of a color
j ∈ C in the secret code as pj = |{i ∈ [1, k] | j = ci}|, and in the guess as
qj = |{i ∈ [1, k] | j ∈ Si}|. Now min(pj , qj) represents the number of matching
pegs of color j. If we sum over all the colors we obtain the overall number of
matching pegs. From this we need to subtract the ones giving black markers, in
order to obtain the number of white markers.

Definition 2 (White markers). The number w of white markers is computed
as w =

∑N
j=1 min(pj, qj)− b.

Let show the above definitions with a simple example

Example 2. Let N = 6, (1, 2, 3, 1) be the secret and (1, 3, 1, 3) be the guess1 We
compute b = |{i ∈ [1, k] | ci ∈ Si}| = |{1}| = 1. In fact only the first ‘1’ is in the
right position, giving a black marker. Then we have

p0 = |{}| = 0 q0 = |{}| = 0
p1 = |{1, 4}| = 2 q1 = |{1, 3}| = 2
p2 = |{2}| = 1 q2 = |{}| = 0
p3 = |{3}| = 1 q3 = |{2, 4}| = 2
p4 = |{}| = 0 q4 = |{}| = 0
p5 = |{}| = 0 q5 = |{}| = 0

Now
∑N

j=1 min(pj , qj) = 3 meaning there are 3 matching pegs (the two 1’s and
one of the 3), but one of them is already counted as a black. Thus we obtain
w = 3 − b = 2. Notice that the two 3’s in the guess are counted just once, as
only one 3 appears in the secret code. This is why we need to take min(pj, qj).

1 We omit the set notation for singletons, i.e., we write (1, 3, 1, 3) in place of
({1}, {3}, {1}, {3}).
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To see how this scales to set consider the extended guess (1, 3, 1, {1, 3}). In
this case we have b = 2 (the first and the last pegs) and w = 3− b = 1, i.e., there
is one peg in the wrong position (i.e., the ‘3’).

Definition 3 (The Extended Mastermind Problem - EMP). Given an
Extended Mastermind Game played on N colors and k pegs, devise a minimal
sequence of guesses for the correct disclosure of the secret.

We now show how the two previous problem can be seen as instances of EMP.

Lemma 1. GMP is an instance of EMP.

Proof. It is sufficient to restrict sets in guesses to singletons to recover the Gen-
eralized Mastermind Game.

More interestingly, we see how the PIN cracking problem can be seen as partic-
ular instance of GMP.

Lemma 2. PCP is an instance of EMP.

Proof. We restrict the extended guesses (S1, . . . , Sk) so that ∩k
i=1Si = ∅, i.e., the

sets are disjoint. This is related to how the guess is implemented via the PIN
verification API. Given a guess (S1, . . . , Sk), with disjoint sets, we modify the
dectab of each digit d ∈ Si by mapping it into d+i. This mapping is well-defined
given that sets Si are disjoint. At the same time we modify the i-th digit of the
offset by decreasing it by i. As a result, since we have changed the offset, the only
way to obtain a ‘PIN correct’ is that the digit of the PIN at the i-th position
has been increased by i and this only holds if it appears in Si. Iterating this on
all the sets we easily see that ‘PIN correct’ corresponds to having ci ∈ Si for all
i = 1, . . . , k, i.e., having four black markers. Thus, we say that the codemaker
answers ‘yes’ when the answer is 4 black markers and ‘no’ otherwise. Notice
that the player can use extended guesses and ask for sets of values and not just
singletons, so it is not necessary to guess the exact code to get a ‘yes’.

4 Experimental Results

We have devised a program which is an optimized extension of the original
program for Mastermind presented by Knuth in [15]. It works as follows:

1. Tries all the possible guesses. For each guess, computes the number of ‘sur-
viving’ solutions related to each possible outcome of the guess;

2. Picks the guess from the previous step which minimizes the maximum num-
ber of surviving solutions among all the possible outcomes and performs the
guess:
(a) For each possible outcome, stores the corresponding surviving solutions

and recursively calls this algorithm;
(b) stops whenever the number of surviving solutions is 0 (impossible out-

come) or 1 (guessed the right sequence).
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Table 2. Our optimization of Knuth’s algoritm

Colours/Pegs 2 3 4 5 6 7 8 9 10
2 3 4 4 5 6 6 7 7 8

3 4 4 4 4 5 6 6

4 4 4 4 5 6
5 5 5 5
6 5 5 5
7 6 6 6
8 6 6 6
9 7 7 7
10 7 7 8

Table 3. Bounds from [13]

Colours/Pegs 2 3 4 5 6 7 8
2 3 3 4 4 5 5 6
3 3 4 4 4 5 5
4 4 4 4 5 5
5 4 5 5 5
6 5 5 5
7 5 6 6
8 6 6 6
9 6 6 7
10 7 7 7

In order to reduce the complexity of the exhaustive search over all possible
guesses we have implemented an optimization which starts working on a subset
of the colors (the one used up to the current guess) and adds new colors only
when needed by the guesses. This is similar, in the spirit, to what is done in [13].

We first show some results obtained by running this optimized algorithm to
the Generalized Mastermind Problem. Note that most computations took few
seconds, others few minutes, and we were also able to find new upper bounds on
the minimal number of moves for unknown values (see Table 2, values in bold).
As a matter of fact, as it is mentioned in [12], Knuth’s idea does not define an
optimal strategy, it is however very close to the optimal. In [13] some empir-
ical optimal values were computed (see Table 3) and some theoretical bounds
were presented. Note that our values differ at most by one from the exact ones.
Moreover, we were able to efficiently find bounds on 2 colors and 9 and 10 pegs
and 3 colors and 8 pegs, and to list the exact sequence of moves to be followed,
whereas the program of [13], as the authors state, would probably take “many
weeks” of computation.

We have then applied the very same algorithm to the PIN cracking problem.
In this case we have noticed that using sets with more than two elements in
the guesses did not improve the solutions. With sets of size at most two the
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algorithm performs quite well and we have been able to slightly improve the
results of [18] by finding a strategy with an average number of calls of 15.2
instead of 16.145. This improvement is based on the idea of extended guesses, in
which sets of values can be queried by simultaneously changing their mapping in
the dectab of a same quantity. This idea is new, and extends the attack strategy
illustrated in [6] and studied in [18]. We have then extended the algorithm so to
also consider a special ‘dectab-only’ API call, where the offset is left untouched.
This kind of call, exploited in [6,18], allows for discovering whenever a digit
appears as one of the PIN digits. By extending this kind of call to sets we have
been able to lower the bound to an average of 13.463 calls with a worst case of
15. We also found a new bound for PINs of length 5 giving an average of 16.81
calls and a worst case of 19. It is worth noticing that our results are very close
to the optimal partitioning of the solutions into an almost-balanced binary tree.
In fact, it can be easily computed that this would give a number of average calls
of 13.362 and 16.689 for PINs of length 4 and 5, respectively.

All the files containing the detailed strategies for Mastermind and PIN crack-
ing can be downloaded at http://www.dsi.unive.it/∼focardi/MM PIN/ .

5 Conclusion

In this paper we have considered two rather different problems, Mastermind
and PIN cracking, and we have shown how they can be seen as instances of an
extended Mastermind game in which guesses can contain sets of pegs. We have
implemented an optimized version of a classic solver for Mastermind and we have
applied it to PIN cracking, improving the known bound on the number of API
calls. The idea of using sets in the guesses has in fact suggested a new attacking
strategy that reduces the number of required calls. By combining ‘standard’
attacks with this new strategy we have been able to reduce the average number
of calls from 16.145 to 13.463, with a new worst case of 15. We also found a new
bound for PINs of length 5 giving an average of 16.81 calls and a worst case of
19. Both average cases are very close to the optimum.

As a future work we intend to study the extension of more involved techniques
such as the ones of [13] to the PIN cracking setting. As a final note, we would
solicit the bank director of our abstract, and other serious people to be more
open-minded and never assume that something is useless just because it is funny,
“sooner or later society will realize that certain kinds of hard work are in fact
admirable even though they are more fun than just about anything else” [16].

Acknowledgements. We would like to thank Graham Steel for his helpful com-
ments and suggestions.
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Abstract. We analyze the computational complexity of various two-
dimensional platform games. We state and prove several meta-theorems
that identify a class of these games for which the set of solvable levels is
NP-hard, and another class for which the set is even PSPACE-hard. No-
tably CommanderKeen is shown to be NP-hard, and PrinceOfPersia

is shown to be PSPACE-complete.
We then analyze the related game Lemmings, where we construct a set

of instances which only have exponentially long solutions. This shows that
an assumption by Cormode in [3] is false and invalidates the proof that
the general version of the Lemmings decision problem is in NP. We then
augment our construction to only include one entrance, which makes our
instances perfectly natural within the context of the original game.

1 Overview

The area of two-player combinatorial games, and one-player games and puzzles
has already been well researched. The earliest mathematical results are more
than a century old (e.g., the analysis of the game NIM 1 [1]). The most important
mathematical results related to two-player combinatorial games are the Sprague-
Grundy theory [18,8] and Conway’s surreal numbers [2].

In recent decades researchers returned to this area with a new point of view:
investigating the computational complexity of these puzzles and games. It turned
out that almost all “interesting” puzzles and games are hard – if P �= NP then
there is no efficient algorithm to solve/play them optimally. It was shown that
many of the two-player games are EXPTIME-complete (e.g., the generalizations
of Go and Checkers to an n× n board, [15,16]), and many single-player puzzles
are either PSPACE-complete (e.g., solving Sokoban [4]) or NP-complete (e.g.,
checking whether a Minesweeper configuration is valid [10]). For more of these
results, we recommend one of the survey papers [11,6,7].

In Section 2 of this article we analyze the computational complexity of a class
of previously ignored single-player games: two-dimensional platform games.
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One of the already researched games is the game Lemmings, initially addressed
by Cormode [3] and later by Spoerer [17]. In Section 3 we continue in the anal-
ysis of this game, disproving an assumption made by Cormode, and thereby
invalidating his proof that Lemmings is in NP.

2 Hardness of 2D Platform Games

When researching the computational complexity of a given puzzle, we usually
expect the puzzle to be hard – after all, the puzzles are designed with the goal to
challenge the solver and to push her cognitive processes to the limit. However,
when we turn to computer games, not all of them are puzzles. Many other games
are perceived as simple in terms of necessary thinking. An example of such a set
of games are the 2-dimensional platform games. In this section we will take a
closer look at the computational complexity of these games, and surprisingly we
will show that many of these games are actually very difficult to solve in general.

For many platform games we will prove that the set of all solvable instances
(levels) is difficult: in some cases NP-hard, in some cases even PSPACE-hard.
We will now define 2-dimensional platform games, identify a set of common
features they exhibit, and then prove that some subsets of these features imply
that solving the game is difficult.

A 2-dimensional platform game is a single-player game in which the player
sequentially solves a set of levels. Each level is represented by a 2-dimensional
map representing a vertical slice of a virtual world.2 The player’s goal is to
move her avatar (i.e., the game character controlled by her) from its starting
location into the designated final location. The player controls the avatar by
issuing simple commands (step, jump, climb up/down, etc.), usually by pressing
keys or buttons of an input device. Within the game world, the avatar is affected
by some form of gravity. As a consequence the maximum jump height is limited.

Additionally, many of these games share the following features:
– long fall: The height of the longest safe fall (that does not hurt the avatar)

is larger than the maximum jump height.
– opening doors: The game world may contain a variable number of doors

and suitable mechanisms to open them.
– closing doors: The game world contains a mechanism to close doors, and

a way to force the player to trigger such a mechanism.
– collecting items: The game world contains items that must be collected.
– enemies: The game world contains enemy characters that must be killed or

avoided in order to solve the level.
We will now show that some of these features are easy from the algorithmic
point of view, but others imply that solving the game automatically is hard
– regardless of other details of the particular game. These results can be seen
as “meta-theorems”: for any particular game we can take the construction and
adjust it to the details of the particular game.

2 The world usually consists of horizontal platforms, hence the name “platform game”.
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Meta-theorem 1. A 2D platform game where the levels are constant and there
is no time limit is in P, even if the collecting items feature is present.

Proof. The level and the set of allowed movements of the avatar uniquely deter-
mine a directed reachability graph. In this graph we label the vertices that cor-
respond to locations of items. Additionally, we execute two depth-first searches
to determine the set of vertices that are both reachable from the entrance and
allow us to reach the exit. If there is a labeled vertex that is not in this set,
we reject. Otherwise we drop the vertices that are not in the reachable set and
then contract each strongly connected component into a single vertex, preserv-
ing labels. We accept iff all the labeled vertices in the resulting DAG lie on a
single path from the entrance to the exit. This can be verified by considering the
labeled vertices in topological order and verifying reachability for each adjacent
pair. The algorithm is linear in the instance size if implemented properly. ��

Meta-theorem 2. A 2D platform game where the collecting items feature is
present and a time limit is present as a part of the instance is NP-hard.

Proof. Itai et al. in [9] prove that the set of grid graphs with Hamilton cycles
is NP-complete. This problem can be reduced to solving our platform game as
follows: Given a grid graph G, locate the leftmost of its topmost vertices and call
it u. The vertex u has degree at most 2. If this degree is less than 2, we reject.
(I.e., produce an unsolvable instance of our game and terminate.) Otherwise,
let v be the right neighbor of u. Obviously the edge uv must be a part of every
Hamilton cycle in G. Hence there is a Hamilton cycle in G iff there is a Hamilton
path that starts at u and ends at v. We now design the level in such a way that
the map of the level corresponds to G. We place an item into each location that
represents a vertex of G, except for u and v. We place the level entrance at u,
the level exit at v, and set the time limit to α(|VG| − 1), where α is the time
needed to travel between any two adjacent locations. ��

Meta-theorem 3. Any 2D platform game that exhibits the features long fall
and opening doors is NP-hard.

Proof. We will show how to reduce 3-Cnf-Sat to such a game. The main idea
of the proof is that the door opening mechanism can be used for a non-local
transfer of information. Given an instance of 3-Cnf-Sat, we can construct an
instance of the game as follows:

The instance will be divided into two parts: the key part, where the avatar
starts, and the door part it reaches after exiting the key part. The door part will
be a vertical concatenation of door gadgets (Figure 1 left), each corresponding
to a single clause in the 3-Cnf-Sat instance. The door gadget for the clause
cn ≡ (ln,1 ∨ ln,2 ∨ ln,3) contains three doors labeled (n, l1), (n, l2), and (n, l3).

The key part will be a vertical concatenation of variable gadgets (Figure 1
right). Each variable gadget will correspond to a single variable used in the
3-Cnf-Sat instance. For the variable xi the keys represent mechanisms that
unlock doors. The keys in the left part unlock the doors (n, xi) for all n, and the
keys in the right part unlock the doors (n,¬xi) for all n.
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Fig. 1. The door gadget (left) and the variable gadget (right)

Clearly each valid solution of the 3-Cnf-Sat instance corresponds to a valid
way how to traverse the level. On the other hand, if the vertical unit size of our
gadgets exceeds the maximum jump height, we can easily verify that the player
has no other reasonable choice. Finally, the game level can easily be created from
the 3-Cnf-Sat instance in polynomial time. ��

Note 1. Both gadgets in Figure 1 were designed so that no jumping is necessary
anywhere in the final instance. Hence Meta-theorem 3 does also apply to games
that do not include any jumping. For example, it can be extended to dungeon
exploration games that involve one-way trapdoors to lower levels.

Corollary 1. The following famous 2D platform games are NP-hard:
Commander Keen, Crystal Caves, Secret Agent, Bio Menace (switches that ac-
tivate moving platforms), Jill of the Jungle, Hocus Pocus (switches that toggle
walls), generalized3 Duke Nukem (keycards), Crash Bandicoot, Jazz Jackrabbit
2 (crates that activate sets of new floor tiles once broken).

2.1 Prince of Persia Is PSPACE-Complete

In this section we state our main meta-theorem. Instead of a generic proof we
opt to present the construction for the popular platform game Prince of Persia.

Meta-theorem 4. Any 2D platform game that exhibits the features long fall,
opening doors and closing doors is PSPACE-hard.

Proof. The proof is a natural generalization of the proof presented below. ��

We will now define the PrinceOfPersia decision problem. An instance of this
problem is a 2-dimensional map of the level, with some additional information.
On the map, each cell contains one of a fixed set of tiles. For our construction,
we need the following types: {nothing, entrance, exit, floor tile, floor tile with
a pressure plate, door}.4 Additionally, the doors have unique labels from some
set D, and each pressure plate is assigned a single label: “d” if it opens door d,
“-d” if it closes the door d. Multiple plates may open/close the same door. The
avatar (Prince) moves in the following ways:5 single step left/right; jump over
3 The original only has keycards of 4 colors and it is in P. From Meta-theorem 1 it

follows that the set of perfectly solvable Duke Nukem levels is in P as well.
4 The actual game includes other tiles as well, such as walls and spikes.
5 Again, the description is simplified, but the differences do not matter for our proof.
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at most three empty tiles left/right; climb to a floor tile diagonally above, if the
above tile is empty; and descend into a pit ≤ 2 tiles deep.

Theorem 1. The set PrinceOfPersia of solvable instances of the game de-
fined above is PSPACE-hard.

Proof. To prove that PrinceOfPersia is PSPACE-hard, we reduce the word
problem for linear bounded automata WordLBA to our problem.

Consider an instance (M, w) of WordLBA with M = (Q, Σ, Γ, δ, q0, L, R, F )
and |w| = n. W.l.o.g. we may assume that the input and work alphabets are
binary, i.e., Σ = Γ = {0, 1}. Q is the set of states, F ⊆ Q is the set of final
states. The symbols L and R are the left and right endmarker, respectively, δ is
the non-deterministic transition function, and w is the input word.

We will now construct an instance of PrinceOfPersia that will be solvable
if and only if M accepts w. The general layout of our instance is shown in Figure
2. The instance will consist of several gadgets. The gadgets will be designed in
such a way that the only allowed way in which the avatar will be able to navigate
the level will correspond to arrows in Figure 2.

Fig. 2. Layout of gadgets in the PrinceOfPersia instance

Our instance will contain several sets of doors that will represent various parts
of the given word and LBA:
– the “accept” door a,
– two sets of “head location” doors {hi, hi | 0 ≤ i ≤ n + 1},
– a set of “stored symbol” doors {si,j | 1 ≤ i ≤ n, j ∈ {0, 1}},
– a set of “δ-function state” and “δ-function symbol” doors: {qπ, xπ | π ∈ δ},
– a set of “head movement” doors {mi,j | 0 ≤ i ≤ n + 1, − 1 ≤ j ≤ 1},
– and a set of “write symbol at location” doors {wi,j | 1 ≤ i ≤ n, j ∈ {0, 1}}.

The gadgets shown in Figure 2 will be constructed in such a way that the fol-
lowing invariant holds for each x: Let S be the set of doors open at the moment
when the avatar enters the ReadSymbol gadget for the x-th time. Then there is
a configuration (q, w, k) of M such that:
– (q, w, k) is reachable in x− 1 steps from (q0, w, 1),
– out of the head location doors, only doors hk and hk may be open,
– out of the stored symbol doors, only doors si,wi may be open, for all i,
– out of the state doors qπ, only doors that correspond to q may be open,
– all other doors, including the accept door a, are closed.

From this invariant it immediately follows that the only way in which the avatar
can solve the level is by simulating an accepting computation of M . The only
thing left to prove is to show how to construct the individual gadgets that will
enforce the above invariant.
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Figure 3 shows the set of tiles we will use in our constructions, and the con-
struction of two helper gadgets. The one in the center (denoted MC below) forces
the avatar to choose one of the available paths, without the option to return later
and change the choice. The right one (denoted FA(x)) forces the avatar to ac-
tivate the pressure plate −x. This gadget will be used to enforce closing doors.
Without the pressure plate this gadget can be used as a simple one-way wire
(denoted by an arrow outside of a box). Using these helper gadgets we will now
construct the gadgets in Figure 2.

Fig. 3. Left: the set of four tiles we use – floor, pressure plate, door, and entrance/exit.
Center and right: helper gadgets: multiple choice and forced activation of a plate.

Three of the gadgets are simple. The Start gadget contains pressure plates
that open doors corresponding to the configuration (q0, w, 1). The Finish gadget
contains the door a, blocking the way to the level exit. The Cleanup gadget
consists of a series of FA gadgets that close all of the doors mi,j , wi,j , and xπ .

si,0

x�,0

hi

si,1

x�,1

qπ xπ

∀π : FA(qπ) some qi m�,a w�,b

Fig. 4. Gadgets: a part of ReadSymbol (left); a part of ChooseStep (right)

The ReadSymbol gadget contains a MC gadget with n + 2 outputs. Each of
these outputs starts with one of the hi doors. The rest of the gadget for one hi

door is shown in Figure 4 on the left. (Doors h0 and hn+1 are special, their parts
do not contain the symbol doors.)

Clearly, if the avatar wants to traverse this gadget, it must follow a path that
corresponds to the LBA’s current head location and the symbol underneath the
head. On this path, the avatar is allowed to open any or all of those xπ doors
that correspond to the current symbol.

The ChooseStep gadget contains a MC gadget with |δ| outputs, each of them
corresponding to one element π ∈ δ. When crossing this gadget the avatar is
forced to choose one of the (possibly multiple) paths that correspond to elements
of δ for the LBA’s current state and read symbol. If the new chosen state is final,
the avatar is allowed to open the door a. Otherwise the avatar is forced to enter
a gadget shown in Figure 4 on the right. When crossing this gadget the avatar
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is forced to close all open qi doors, and then allowed to open those doors qi,
mi,a and wi,b that correspond to the new state, symbol b to write, and head
movement a.

The WriteAndMove gadget contains a MC gadget with n + 2 outputs. Each
output starts with one of the hi doors, which forces the avatar to pick a path
corresponding to the old head location. The rest of the gadget for a single output
is shown in Figure 5. In the first part (omitted for head positions 0 and n + 1)
the avatar crosses the correct write symbol door wi,b, closes the door si,1−b and
opens si,b. In the second part the avatar closes the current head location doors
hi and hi, crosses the correct movement door mi,a, and opens the new head
location doors hi+a and hi+a.

FA(si,1)

FA(si,0)

FA(hi) FA( hi )

wi,0

si,0

hi
wi,1

si,1 mi,1

mi,0

mi,−1

hi+1, hi+1

hi, hi

hi−1, hi−1

Fig. 5. Gadget: a part of WriteAndMove

That concludes the construction. An example of a full instance constructed
in this way is shown in Appendix A. ��

Note 2. In the original Prince of Persia game, there is an additional parameter
of the instance: the amount of steps T after which an open door starts to close.
Our construction can easily be modified to include this parameter, and it is even
possible to set T to a small value approximately equal to the map size by adding
a “refresh” block where the avatar can re-open any currently open door.

Corollary 2. PrinceOfPersia is PSPACE-complete.

Proof. Follows from Theorem 1, Savitch’s theorem that NSPACE=PSPACE,
and the obvious fact that PrinceOfPersia is in NSPACE. ��

3 Hardness of the Lemmings Problem

One particular 2D game that is in many ways similar to our 2D platform games
from the previous section is the game Lemmings. Already in 1998 McCarthy [13]
mentions this game as a challenge for artifical intelligence. In [3] Cormode defines
the Lemmings decision problem and argues that this problem is NP-complete.
This claim is later repeated in [17] and it is conjectured that a variation of this
problem is NP-complete as well.

However, Cormode’s proof only holds for a restricted version of the Lemmings

problem. This restriction is introduced on page 3 of [3] where an instance is
defined. One element of the instance is the time limit, which Cormode defines
as follows: “limit, the time limit, in discrete time units. For technical reasons,
we will insist that the time limit is bounded by a polynomial in the size of the
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level. We conjecture that this restriction is unnecessary, by claiming that if it is
not possible to complete the level in time polynomial in the level size, then it is
not possible to complete the level at all.”

The “technical reasons” are, in fact, just one reason: Cormode’s proof that
Lemmings ∈ NP is trivial – guess the solution and verify it. This approach
obviously fails if the number of theoretically possible configurations is not poly-
nomial in the input size. Hence Cormode needs the restriction to artifically limit
the number of reachable configurations.

In this section, we show that Cormode’s conjecture is false by constructing a
class of solvable Lemmings instances of increasing sizes such that their shortest
solution length can not be bounded by a polynomial in the input size. We then
conclude that the general Lemmings problem is NP-hard, as proved by Cormode,
but so far we cannot tell whether it is in NP. The existence of instances with
only exponentially long solutions leads us to conjecture that the general version
of this decision problem is in fact not in NP.

3.1 Constructing the Instances

In this section we construct a class of Lemmings instances for which the length of
the shortest correct solution is not polynomial in the input size. Our construction
is based on the idea of lemming synchronization – in order to solve the level,
events in different places will have to happen at the same time. And for our
instances, this will only occur after an exponential number of steps has elapsed.

To construct our instances, we will only need a very small subset of the Lem-
mings universe: entrances, permeable walls, and an exit. The only lemming skill
we will use will be the digger. We will build two types of gadgets: a release gad-
get, that will only be able to release a lemming in certain points in time, and
a synchronization gadget that must be reached by all lemmings in (almost) the
same moment in time. The release gadget is shown in Figure 6 on the left, and
the synchronization gadget is shown in Figure 6 on the right.

Fig. 6. The release gadget (left) and the synchronization gadget (right)

Lemma 1. Let the release gadget be x steps wide. Assuming that no other lem-
ming can reach the gadget, the lemming inside must start digging at a time that
is an integer multiple of 2x in order to survive.

Proof. At time 0 the entrance releases a lemming, at time 1 the lemming reaches
the ground and starts walking towards the right. Without any interaction the
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lemming will keep on bouncing off walls, and reenter the same state every 2x
ticks. In order to save it we have to give it the digger skill sooner or later. The
bottom part of the gadget is in such a height that the lemming must dig in
the leftmost place, otherwise the fall will kill it. Additionally, the lemming must
be walking in the correct direction (left to right), otherwise it falls to its death
immediately after reaching the bottom part of this gadget. This configuration
will appear precisely at ticks that are positive integer multiples of 2x. ��

Lemma 2. For a single lemming entering the synchronization gadget, the only
way to survive is to dig at B and leave the gadget at D.

Proof. If the lemming does not dig anywhere, it will reach the right end of the
top ledge and fall to its death. The only safe place where to dig is point B,
anywhere else the dig ends in a fall that is too high. ��

Lemma 3. If for each lemming the only way to the exit leads through the point
A of a single synchronization gadget, then the lemmings can only survive if all
other lemmings arrive at A at 2 to 8 ticks after the first one.

Proof. Consider the first lemming that arrives at A. From Lemma 2 it follows
that this lemming has to start digging at B. As soon as this lemming digs a
hole that is deep enough, no other lemming will be able to cross this gadget –
regardless of what it does, it will fall and die somewhere. Hence there is only one
way how the other lemmings may survive: they must arrive during the constant
amount of time when the first lemming digs – and enter the hole below B while it
is shallow enough. On the other hand, a delay of at least 2 ticks is necessary. The
hole must be already deep enough so that the other lemmings can not escape it.

Note that when the digger finishes the hole, some of the other lemmings fall
out of it walking in the opposite direction. This is fixed by the wall at C that
turns these lemmings around. ��

Given an integer n, we will now create an instance In of Lemmings as follows:
The only skill available will be the digger, and the number of times it can be
used will be n+1. We will have n lemmings, each of them starting in a separate
release gadget. The lengths of the release gadgets will be 5p1, . . . , 5pn, where pi

is the i-th prime number. The outgoing paths from these gadgets will be merged
together in such a way that the number of steps from each of the gadgets to
the common meeting point will be the same – except for one gadget that will
be two steps closer. The path from the meeting point will lead onto point A of
a single synchronization gadget, and the synchronization gadget will output the
lemmings from point D straight to the exit.

The instance I4 is shown in Appendix B.

Lemma 4. Let pn# be the primorial, i.e., the product of the first n primes.
Then n
n/2� ≤ pn# ≤ 2 · n2n.

Proof. Obviously follows from the bounds on pn proved in [14]. ��
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Theorem 2. Each instance In is solvable. The shortest number of ticks in which
In can be solved exceeds 10n
n/2�.

Proof. In order to save all lemmings in In they all have to start digging out
of their release gadgets at the same time. To prove this, assume the contrary.
The release gadget lengths are multiples of 5, so by Lemma 1 the period of each
lemming in the gadget is a multiple of 10. Hence if lemmings do not start digging
at the same time, then the last lemming will leave the release gadget at least 10
ticks after the first one. Then the last lemming will arrive at A at least 8 ticks
after the first one, and by Lemma 3 it will die, which is a contradiction.

Hence the lemmings must start digging at some time T that is a multiple of
the period of each lemming. By the Chinese Remainder Theorem, the smallest
such T is T = 10pn#, and by Lemma 4 we have T > 10n
n/2�.

We can easily verify that once all lemmings start digging at time T , the rest
of the solution is short and unique. ��

Theorem 3. The instance In can be described by Θ(n2 log n) bits.

Proof. The width of the level is Θ(n+pn) = Θ(n log n), hence we need Θ(n2 log n)
bits to store the map. We also need to set a suitable time limit for the level. Clearly,
the time limit 10pn# + 47n logn + 47 is sufficient. By Lemma 4 this number is
O(n2n), hence O(log(n2n)) = O(n log n) bits are sufficient to encode it. The skills
vector, the total number of lemmings, and the number of lemmings to save can all
be stored in O(n) bits, even if using unary coding. ��

Corollary 3. From Theorems 2 and 3 it follows that for the sequence of in-
stances {In}∞n=1 the length of the shortest solution grows exponentially in the
instances’ input sizes. Hence this sequence of instances is a counterexample to
Cormode’s proof that Lemmings ∈ NP.

Note 3. Our construction requires the player to do n actions at the same time
when releasing lemmings from their gadgets. If we assume that the player can
only make one action per tick, this is easily fixed by moving release gadget x
exactly x steps away from the meeting point, for each x. In this situation the
player’s actions must occur in immediately consecutive steps.

Note 4. Both our construction and Cormode’s original proof of NP-hardness
involve multiple entrances. This is an unnatural construction, as most levels
in the original Lemmings games only have a single entrance that releases all
lemmings sequentially at a fixed rate. Below we prove that our result are true
for Lemmings instances with a single entrance.

3.2 The Distribution Gadget

Our proof is based on the construction of a distribution gadget that takes a
stream of lemmings (such as the one leaving a single entrance) and breaks it
into individual lemmings, each on a separate path. The construction uses a
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method similar to the one used by the first lemming in the synchronization
gadget: digging in a suitable place may decrease the height of the lemming’s fall.

The distribution gadget for n lemmings is a generalization of the one shown
in Figure 7. When employing this gadget we need to add n additional diggers to
the skill vector, and create a separate exit path for each of the lemmings. Note
that the bottom part of the gadget is placed exactly in such a height that a fall
from the top of the top ledge would kill a lemming, whereas the fall from the
bottom of the ledge is safe.

Theorem 4. The only way in which all lemmings survive the distribution gadget
is that the player makes each of them dig above one of the exit points.

Proof. A lemming that is never assigned the digger skill will fall to its death –
either at the end of the top ledge, or into a hole dug by some previous lemming.
Hence each lemming must dig in order to survive, and there are precisely n places
where a lemming can dig and survive the resulting fall. Note that the places for
digging must be assigned right to left, i.e., the first lemming to get out of the
entrance must be the one reaching point 1 in Figure 7. ��

Fig. 7. The distribution gadget for four lemmings

Corollary 4. In our construction of an instance In, we can start by using the
distribution gadget. Then we can easily construct paths that will lead the sepa-
rated lemmings to enter each of the individual release gadgets from above. Hence
even if we restrict Lemmings to instances with only one entrance, there will still
be instances with exponentially long solutions only.

4 Conclusions and Open Problems for Further Research

We have shown a general point of view on platform games that allowed us to find
two classes of NP-hard platform games and one class of PSPACE-hard platform
games. These classes include many well-known examples.

For the Lemmings problem, we have disproved Cormode’s original assump-
tion by constructing instances with only exponentially long solutions. Our con-
struction works even if we limit ourselves to instances with only one entrance.

Clearly, Lemmings ∈ PSPACE, as the number of reachable configurations
is always at most exponential in the input size. An open question is whether
Lemmings can actually be shown to be PSPACE-complete. Our intuition sug-
gests that this may indeed be the case. One observation is that the miner skill
together with a combination of permeable and impermeable terrain can be used
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to free a trapped lemming from the outside. This may be exploited to “store”
lemmings in various part of the level, to use their presence/absence as memory,
and to have one “master” lemming that can alter this memory.

As for the general research of the computational complexity of games and
puzzles, we are convinced that our approach from Section 2 is the correct direc-
tion for the future. As we documented in the overview, there are already many
results on the hardness of individual puzzles. What we now need to discover
are patterns in these results. What are the common features that make games
and puzzles hard? Can then these observations help us analyze other games and
puzzles? The recent Constraint Logic framework by Demaine and Hearn [5] is
probably one of the first steps in this direction.

The topic of platform games is not exhausted in this article. While most of
the games we examined are either obviously in P or covered by one of our meta-
theorems, there are some exceptions. Notably, so far we ignored the presence of
enemies. We expect that in some cases the presence of enemies makes the games
hard to solve. If enemies are present, the number of possible configurations may
become exponential in the input size. If the enemies must be avoided, it should
be possible to create instances that require enemy synchronization in order to
be solvable, and this can force the solution to be exponentially long.
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A Example Construction for Prince of Persia

The following is a complete level for Prince of Persia, representing the in-
stance (M, w), where |w| = 2 and M is the smallest possible LBA with start-
ing state q0, single final state q2 and the δ-function: δ(q0, 0) = {(q0, 0, 1)},
δ(q0, 1) = {(q1, 0, 1)}, δ(q0, R) = {(q1, R,−1)}, and δ(q1, 0) = {(q2, 1, 0)}.

The level is broken into two parts to make it fit on a single page. The places
marked by a heart and a spade should be attached to form the correct picture.
Door and pressure plate labels were intentionally omitted, they can easily be
reconstructed from the description in the article, if needed.

Start

ReadSymbol

ChooseStep

Finish

Cleanup

WriteAndMove

♥

♠

♥

♠

B Example Instance for Lemmings

The image below shows the complete instance I4. The release gadgets have
lengths 10, 15, 25, and 35. The smallest release gadget is shifted 2 steps to
the right – the lemming from this gadget will be the one digging at the synchro-
nization gadget.
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Abstract. The Christmas gift exchange is a popular party game played
around Christmas. Each participant brings a Christmas present to the
party, and a random ordering of the participants, according to which
they will choose gifts, is announced. When a participant’s turn comes,
she can either open a new gift with unknown value, or steal an already
opened gift with known value from someone before her in the ordering;
in the second case, the person whose gift was stolen gets to make the
same choice.

We model the gift exchange as a sequential game of perfect infor-
mation and characterize its equilibria, showing that each player plays a
threshold strategy in the subgame perfect equilibrium of the game. We
compute the expected utility of players as a function of the position in
the random ordering; the first player’s utility is vanishingly small relative
to every other player. We then analyze a different version of the game,
also played in practice, where the first player is allowed an extra turn
after all presents have been opened—we show that all players have equal
utility in the equilibrium of this game.

1 Introduction

The practice of giving gifts to friends and relatives at Christmas is a centuries-
old tradition. Contrary to popular belief, gifts are not conjured up by Santa at
the North Pole, and the actual buying of gifts unfortunately must be done by
real people in real local marketplaces with no aid from Santa whatsoever. As
a result, the Christmas gift industry is now a huge multibillion dollar industry
much larger than online advertising, and is therefore clearly a subject deserving
of serious study.

The problem of Christmas gifting admits many interesting directions of re-
search drawing on various disciplines. For instance, the phenomenon of stores
beginning to play Christmas jingles annoyingly earlier and earlier in the year (to
subtly indicate gift-shopping time) is related to the phenomena of unraveling
markets studied in the economics literature [5]. Another obvious area is psychol-
ogy and sociology, analyzing the very noticeable impact of gifting and associated
customs on the behavior of otherwise normal individuals. We will, however, fo-
cus on a particular Christmas gifting tradition, the gift exchange, that leads
to increased welfare and significant computational and storage savings for each
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gifter: instead of buying one gift individually for each giftee, every gifter brings
a single gift, which are then collectively exchanged amongst the group.

The gift exchange mechanism represents a significant improvement for gifters
over the tradition of buying individual gifts, since only 1 present need be bought
rather than n — that is, the number of gift-choosing problems that need to be
solved, and the fear struck by the prospect of Christmas gift shopping, is now re-
duced to a constant rather than growing linearly with the size of an player’s neigh-
borhood in the Christmas-gifting-graph1. This also has the second-order benefit
of removing the incentive to limit the size of one’s social network due to the large
psychological and economic gifting costs, which in the limit could lead to smaller
and smaller tight-knit groups, eventually resulting in a catastrophic unraveling of
society. The gift exchange scheme also improves efficiency relative to the scheme
of one gift per neighboring node used widely in practice. Empirical and anecdo-
tal evidence suggests that most people, including the President [1], believe they
give better gifts than they get; the value obtained from the average received gift
is much lower than the sum of the costs of planning to buy, buying, and giving
the gift (and recovering from the experience). Since each gifting transaction leads
to negative utility on average, welfare is maximized by minimizing the number of
transactions— this means that, subject to the constraint that each person must
receive a gift, the gift exchange mechanism actually has optimal welfare.2

The protocol used to assign the n gifts amongst the n participants is known
by several different names including Chinese Christmas and White Elephant
gift exchange, and is a common party game around Christmas time[2,3,4]. Each
participant brings one gift (whose value is in some range prespecified by the
host) to the party, and the gifts are all placed in a pile (presumably under a
suitably large and well-decorated Christmas tree). We’ll assume that everyone
uses identical wrapping, so that they cannot identify the gift they brought once
it’s been put in the pile; the reason for this assumption will become clear once we
present our model. A random ordering of the participants is chosen, and when a
participant’s turn comes, she either opens a new gift, or steals an already opened
gift from someone before her in the ordering, in which case the person whose
gift was stolen gets to make the same choice. A person cannot steal back the gift
that was stolen from her immediately; also, to ensure that the last person is not
guaranteed to walk away with the best present, a rule that no present can be
stolen more than a certain number of times, say three or four times, is enforced.

In this paper, we study this gift exchange mechanism from a game theoretic
point of view. Since the mechanism itself is rooted in tradition, we do not address

1 This is based on the fairly reasonable assumption that the number of distinct Christ-
mas parties an player must attend and buy gifts for is 1 (or very small), that is, it
does not scale with the size of his Christmas-gifting neighborhood.

2 There is an interesting parallel between the VCG mechanism and the gift exchange
scheme — both mechanisms have excellent efficiency properties, but are nonetheless
not popular in the industry. While the reason for this is very obvious for the gift
exchange scheme (the gift producing industry has no reason to like this scheme which
leads to fewer gifts being bought), the case for the VCG auction is far more interesting
and subtle, see The Lovely but Lonely Vickrey Auction [6].
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the question of whether or not this is a good mechanism to fairly distribute
the gifts. Rather, we analyze the game from the participants perspective, and
investigate best response— given the gift exchange mechanism, how best should
a utility maximizing partygoer behave? (We mean best behave not in the sense
of being on one’s best behavior at the family party, but rather from the point
of view of maximizing the expected value of the final present she goes home
with). To do this, we model the Christmas party gift exchange as a sequential
game where each gift’s value is drawn uniformly at random and unknown until
unwrapped, and use backward induction to reason about the behavior of each
player in this game. The problem becomes technically interesting because in
addition to not knowing the value of an unopened present, an player also has
to contend with the fact that his present may be stolen away from him in the
future, depending on its desirability.

The remainder of the paper is organized as follows. We first present a formal
model for the gift exchange game in §2, and then derive the best response and
equilibrium in §3. Our results allow us to quantify the benefit of drawing a po-
sition towards the end of the list of participants, answering the question of how
loudly to sigh or squeal when learning of one’s position in the random order. Fi-
nally, we analyze a version of the game with slightly modified rules where the first
player gets a chance to steal a present at the end if she has not done so already;
this version is also sometimes played in practice. In contrast with the original
version, all players have equal expected utility in the equilibrium of this game.

2 Model

There are n players, and n unopened gifts. The gifts have a common value to
each player, that is, different players do not value the same gift differently (for
instance, this common value could be exactly the dollar value of the gift). Each
gift has a value vi drawn independently and uniformly at random from [0, 1].
The value of a gift remains unknown until the gift is opened, at which point its
value vi becomes known to all n players.

A random ordering is chosen amongst the n players and announced publicly—
this is the order in which players get to choose presents. We number the players
according to this order. We also adopt the rule from the actual party game that
each gift can be stolen only a limited number of times— we restrict the number
of times a gift can be stolen to 1, i.e., if a present has been stolen once, it cannot
be stolen again, and stays with its current owner. We will call a present that
has been opened but never stolen available, and an open present that has been
stolen once already unavailable. Limiting the number of times a present can be
stolen to 1 keeps the analysis tractable while still preserving the feature that an
player’s current choice affects the future decision of whether other players will
want to steal her gift in the future, affecting her final value.

When player i’s turn arrives, she has a choice between picking an unopened
present (with unknown value drawn UAR [0, 1]) from the pile, or stealing an
available present from the players 1, . . . , i− 1. If she opens a new gift, the game
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proceeds to player i + 1. If she steals an open available gift from some player
j < i, j again gets a choice between stealing an available present and opening
a new gift from the pile (note that j cannot steal back her own gift since it
has been stolen once and is now unavailable). Note that when player i’s turn
arrives, there are exactly n− (i− 1) unopened gifts in the pile, and each player
1, ..., i − 1 has an opened gift. The game continues this way until there is only
one unopened gift, at which point player n takes her turn and follows the same
sequence. Define a step to mean each time a gift has a new owner: the game is
guaranteed to terminate in at most 2n steps, since there are n gifts, and each
gift can be stolen only once, corresponding to at most 2 steps per gift in the
game.

We analyze the gift exchange game G as a sequential game with perfect in-
formation, where the players are rational utility maximizers— each player tries
to maximize the expected value of the final gift she is left with, given that each
player after her is a rational utility maximizer as well (the expectation is taken
over the random draws of unopened gifts). We point out that our model assumes
that players only value gifts and not time, and does not address players who are
running out of patience (or lacked it to start with), or want to get the gift ex-
change over with quickly. These can be modeled with a discount factor; we leave
this as an open direction for future work. Our results also only apply when there
are no externalities— they do not, for instance, predict the outcome of a game
where your coworker five places down the line might steal your present either out
of love for the present, or hate for you. While these assumptions are common in
the research literature, they (especially rationality) may not hold in practice —
to ensure applicability in practice, it is adequate to have your fellow partygoers
read and understand the best response derived in §3, and instruct them to act
according to it, before starting the gift exchange.

3 Analysis of the Game

In this section, we analyze the equilibrium of the gift exchange game. Before
beginning with the analysis, we first make some simple observations about the
game. We define round i as the sequence of steps starting from when player i
first gets a turn to the step immediately before player i + 1 first gets her turn.
Note that a new gift is opened in the last step of a round (a round can have only
one step), and exactly one gift is opened in each round. Round i has no more
than i steps, and the entire game terminates in no more than 2n steps. The last
player plays exactly once; the player in the ith position in the ordering plays at
most n− i + 1 times. Once a player steals a gift, she never plays another turn,
and the value of the gift she steals is her final value from the game.

We now give a complete analysis of the game G. We prove that in the solution
of the game, each player plays according to a threshold strategy of the following
form: if the value of the most valuable available gift is at least θ (where θ is the
threshold), then steal that gift; otherwise, open an unopened gift. The value of
the threshold θ depends on which round in the game is in progress—specifically,
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θ is a function of the number i of unopened gifts at the time. We define a sequence
θ1, . . . , θn recursively as follows:

θ1 = 1/2, θi = θi−1 −
θ2

i−1

2
for i > 1. (1)

Note that this recurrence defines a decreasing sequence. We prove the following
result.

Theorem 1. The following is a subgame perfect equilibrium of the gift exchange
game: for any player p and any time p gets to play, play the threshold strategy
with threshold θi, where i is the number of unopened gifts at the time. Fur-
thermore, the expected value that p receives by playing this strategy is equal to
max(θi, v), where v is the value of the most valuable available gift at the time.

Proof. We prove this by induction on i. We start with i = 1. This means that at
the time player p gets to play, only one unopened present is left. This player has
two choices: either to steal the most valuable available gift (of value v), or to open
the only remaining unopened gift, after which the game will end. Since the value
of a gift is drawn uniformly from [0, 1], the expected value of opening the un-
opened gift is 1/2. Thus, the player must steal if v ≥ 1/2 and open the unopened
gift if v < 1/2. The value that this strategy gets is precisely max(1/2, v).

Now, we assume the statement is proved for i−1, and prove it for i. Consider
the player p that is playing at a time that there are exactly i unopened gifts,
and the value of the most valuable available gift is v. At this point, p has two
options: either to steal the gift of value v, or to open an unopened gift. If p
opens an unopened gift, we denote the value of this gift by x, drawn uniformly
from [0, 1]. In the next step, by the induction hypothesis, the next player will
steal the highest value available gift if this gift has value at least θi−1. If she
does so, the player whose gift is just stolen will get to play, and again, by the
induction hypothesis, will steal the highest value avaliable gift if its value is at
least θi−1. This ensues a sequence of stealing the highest value available gifts,
until we reach a point that the highest value available gift has value less than
θi−1, at which point the person whose turn it is to play will open a new gift.

We now consider two cases: either the value x of the gift p just opened is at
least θi−1, or it is less than θi−1. In the former case, the sequence of stealings will
at some point include p. At this point, all the available gifts of value more than x
are already stolen. We denote by v(x) the highest value of an available gift of value
less than x. This is precisely the value of the most valuable gift that is still avail-
able at the time that the sequence of stealings reaches p. By induction hypothesis,
at this point, the maximum value that p gets is equal to max(θi−1, v(x)). In expec-
tation, the value of p in this case is max(θi−1, Exp[v(x)]), where the expectation
is over drawing x uniformly at random from [θi−1, 1].

The other case is when x is less than θi−1. In this case, since the sequence θ
is decreasing, by induction hypothesis the gift that p just opened will never be
stolen. Therefore, the expected value of the gift that p ends up with in this case
is precisely θi−1/2.
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Putting these together, the overall value of p, if she decides to open a new
gift can be written as

(1− θi−1)max(θi−1, Expx←U [θi−1,1][v(x)]) + θi−1 ×
θi−1

2
.

Now, we consider two cases: if v > θi−1, then we have v > θi−1/2 and v ≥ v(x)
(the latter inequality by the definition of v and v(x)). Therefore, the above ex-
pression is less than (1− θi−1)v + θi−1v = v, meaning that in this case, it is p’s
optimal strategy to steal the gift of value v. In the other case (v ≤ θi−1), by the
definition of v(x), for every x ∈ [θi−1, 1], v(x) = v ≤ θi−1. Therefore, the utility
that p obtains by opening a new present can be written as

(1− θi−1)θi−1 + θi−1 ×
θi−1

2
= θi.

Putting everything together, we obtain that the maximum utility p can obtain
is max(v, θi), and this utility is obtained by playing the threshold strategy with
threshold θi.

We cannot obtain an explicit formula for θi from the recurrence relation (1), but
the following theorem gives us the asymptotics.

Theorem 2. For every i, we have 2
i+2+Hi

≤ θi ≤ 2
i+3 , where Hi ≈ ln(i) + γ is

the i’th harmonic number.

Proof. Let yi = 2/θi. The recurrence (1) gives us:

yi =
2

2/yi−1 − (2/yi−1)2/2
=

y2
i−1

yi−1 − 1
= yi−1 + 1 +

1
yi−1 − 1

. (2)

Thus, since the term 1/(yi−1 − 1) is non-negative, we have yi > yi−1 + 1, which
together with y1 = 4 implies that yi > i + 3, proving the upper bound on θi.
To prove the lower bound, we use the inequality yi > i + 3 we just proved in
combination with (2). This gives us yi < yi−1 + 1 + 1

i+2 . This implies yi <

i + 3 +
∑i+2

j=4
1
j < i + 2 + Hi, proving the lower bound on θi.

That is, as we move along the random ordering, a player’s threshold for stealing
a gift keeps increasing: early in the game, players are willing to settle for gifts of
lower value than later in the game (recall that if a gift is stolen, that gift’s value
is the final utility to the player who steals the gift).

We make the following observations about the equilibrium play of the game,
which follow from the fact that the optimal strategy for each player is a threshold
strategy, and these thresholds increase through the play of the game:

– If a gift is not stolen immediately after it is opened, it is never stolen, since
the thresholds θ increase as the number of unopened gifts decreases.

– If a gift is stolen from a player, this player does not continue stealing, but
rather opens a new gift. That is, each round is of length at most 2, i.e.,
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there are no ’chains’ of gift stealing in any round. Each player i stealing a
gift therefore steals either from i− 1, if i− 1 opened a new gift, or else from
the player j < i− 1 from whom i − 1 stole her gift (and who consequently
opened a new gift), in this case, all players j + 1, j + 2, . . . , i have stolen the
gifts opened by j.

Therefore, when players play according to their optimal strategy (the threshold
strategies prescribed by Theorem 1), the game will proceed as follows: first,
player 1 opens a new present. If the value of this present is less than θn−1, this
present will not be stolen by player 2 (and by no other player, since θn−1 < θi

for i > n− 1), and player 2 opens a new present; otherwise, this present will be
stolen by player 2, and player 1 will open a new present. In either case, if the
value of the newly opened gift is less than θn−2, it will not be stolen by player 3
(and therefore by no other player after that), and instead, player 3 opens a new
present; but if this value is greater than θn−2, it will be stolen by player 3, and
the player who used to hold that gift will open a new present, and so on. When
it is turn for player i’s to play for the first time, it must be that in the last step,
one of the players has opened a new gift (unless i = 1). If the value of this gift
is more than θn−i+1, player i steals it, and the player who used to hold that gift
will open a new gift. Otherwise, player i opens a new gift.

Given this, we can calculate the expected utility of each player in this game:
for every i > 1, when player i gets to play for the first time, the only way the
value v of the most valuable available gift is greater than θn−i+1 is if this gift
is the one just opened by the last player who played before i. This happens
with probability 1− θn−i+1, and in this case, the value of the gift is distributed
uniformly in [θn−i+1, 1]. Therefore, by Theorem 1, the expected value that player
i derives in this game is precisely

Exp[max(θn−i+1, v)] = (1−θn−i+1)×
1 + θn−i+1

2
+θn−i+1×θn−i+1 =

1
2
+

θ2
n−i+1

2
.

Therefore, all players i > 1 derive a utility more than 1/2. This, however, is
at the expense of the first player. When player 1 plays for the first time, there
is no available gift. Therefore, by Theorem 1, the expected utility of player 1
is precisely θn, which by Theorem 2 is 2

n (1 + o(1)). This is summarized in the
following theorem.

Theorem 3. The expected utility of player i for i > 1 in the gift exchange
game is 1

2 + θ2
n−i+1

2 . For player 1, the expected utility of playing the game is
θn = 2

n (1 + o(1)).

3.1 A Fairer Game

The first player in the ordering might never get to steal a gift in the game G,
and as we saw above, receives very low utility relative to all other players: in this
sense, the game G is not very fair. To be more fair to the first player, a version
of the game is sometimes played where the first player gets a turn at the end to
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steal a gift. We next analyze this version of the game, and show that it is indeed
more fair for the first player — every player has equal expected utility in the
equilibrium of this game.

We define the game G′ to be the following modification of G: if the first player
never gets a chance to steal a gift through the course of the play, she gets a turn
at the end after all gifts have been opened, and can steal from amongst the
available gifts if she wishes. (Note that if player 1 has never stolen a gift, the
gift she holds is always available; if she chooses to keep her own gift at the end
of the game, we will call this equivalent to stealing her own available gift.) We
show the following about G′.

Theorem 4. In the subgame perfect equilibrium of G′, every player has expected
utility 1/2.

Proof. We claim that the following is a subgame perfect equilibrium of the mod-
ified game G′. Each player i other than player 1 uses the following strategy. If
player 1 has already stolen a gift, then play according to the optimal strategy
for G; if player 1 has not yet stolen a gift, steal the maximum value available
gift. For player 1, if her gift is stolen when there are 2 or more unopened items,
she steals the highest value available gift if its value v is greater than 1/2, else
opens a new gift. If there is only one unopened gift when her gift is stolen, she
opens the new gift, and if she gets a turn when there are no unopened gifts, she
steals the highest value available gift (including her own).

We prove this claim by backward induction. First, note that if player 1 does
play after all gifts have been opened, she must steal the highest value gift from
amongst the available gifts (including her own). If there is exactly one unopened
gift when her gift is stolen, there is no player who can steal the new gift she
opens from her: if the best available gift has value v1, she can get a value of
v1 by stealing, or max{v1, x} ≥ v1 if she opens a new gift (since v1 will still be
available). So she must open the new gift. Also, once player 1 steals a gift, it
is optimal for every player to play according to the strategy described for G in
Theorem 1. Consider a player j �= 1 when there is just one remaining unopened
gift, when 1 has not stolen a gift yet. She can either open a new gift with value
x, or steal the best available gift of value v1. If she steals, this gift cannot be
stolen from her, so her final value is v1. If she opens a new gift with value x > v1,
this gift becomes the highest value available gift, and will be stolen by player 1
in the next round, leaving her to steal the gift of value v1. If x < v1, she either
retains this gift or gets the next available gift with value less than x, depending
on whether x is smaller or larger than g, the value of the gift currently held by
player 1. In either case, if she opens a new gift, the final value she receives is
no larger than v1, so her best response is to steal the gift with value v1. (The
argument for player 1 is the same for all rounds in the game, and we do not
repeat it for this case with only one unopened gift).

Now assume that it is some player j �= 1’s turn to play when there is more than
one unopened gift, and the induction hypothesis holds for the remainder of the
game. Again, consider the case where 1 has not yet stolen a gift, so that her gift is
still available. Suppose the values of the available gifts are v1 ≥ v2 . . . and so on.
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If j steals, she gets a final value of v1. If she opens a new gift of value x, this gift
becomes available and can be stolen in the remainder of the game. If x > v1, by the
induction hypothesis x is immediately stolen by the next player and j steals v1,
for a final value of v1. If x ≤ v1, there is a sequence of stealing v1, v2, . . .; either j’s
gift of value x is never stolen in the remainder of the game, in which case her final
value is x ≤ v1, or it is stolen. Irrespective of when it is stolen— either when player
1 has not yet stolen a gift, or after 1 steals a gift— j’s final value is no larger than
x: suppose x is stolen when 1 has not yet stolen a gift; by the induction hypothesis,
j must steal the highest value available gift, which has value v(x) ≤ x. (Since x
was stolen, it was the highest value available gift at that point. Also note that such
a gift definitely exists since 1’s gift is available.) If j’s gift is stolen after player 1
steals a gift and there are i′ unopened gifts at this time, we must have x ≥ θi′ since
x was stolen, because all players are playing according to the optimal strategy in
G. By Theorem 1, j’s expected utility from playing her optimal strategy at this
point is max(v(x), θi′ ) ≤ x ≤ v1. Therefore, player j can never get expected utility
better than v1, so she should steal the highest value available gift.

For player 1, when there are 2 or more unopened gifts, she can either steal
the highest value available gift to obtain utility v1, or open a new gift of value
x. If she does not steal a gift now and never steals a gift in later rounds, by the
induction hypothesis, every remaining gift including the last one is opened by
1 (since other players will steal the highest value available gift and 1’s gift is
always available). Also, by the induction hypothesis, if she steals a gift after this
it has value greater than 1/2. In either case, she can ensure a expected utility of
at least 1/2, so she should not steal if v1 ≤ 1/2. If v1 > 1/2, then by opening the
new gift of value x, the maximum value she can hope to get is max(v(x), 1/2),
where v(x) is the value of the best available gift after x. Since v(x) ≤ v1, her
optimal strategy is to steal v1 if v1 > 1/2.

With these strategies, the optimal play of the game proceeds as follows: in the
first step, player 1 opens a gift, which is stolen immediately by player 2; since
the available set is empty, 1 opens a new gift, which is stolen immediately by 3,
and so on; finally, the n − 1th opened gift is stolen from 1 by player n. At this
point, there are no available gifts, so 1 opens and keeps the last unopened gift;
each gift, and therefore every player has expected value 1/2.
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Abstract. We follow the travails of Enzo the baker, Orsino the oven
man, and Beppe the planner. Their situation have a common theme:
They know the input, in the form of a sequence of items, and they are
not computationally constrained. Their issue is that they don’t know in
advance the time of reckoning, i.e. when their boss might show up, when
they will be measured in terms of their progress on the prefix of the
input sequence seen so far. Their goal is therefore to find a particular
solution whose size on any prefix of the known input sequence is within
best possible performance guarantees.

1 Doing OK When the Boss Shows Up: Prefix
Optimization

1.1 Enzo’s Order Signups: Prefix Interval Selection

Enzo groaned with his arms curled over his head: “I’m in a fix – big-time. He’s
going to catch me at the worst possible moment.”

“Who is?”, I inquire.
“My boss could show up at any moment, and if I haven’t signed up for my

share, I can kiss my confetteria dream goodbye.”
“So, why don’t you? You can do it. You’ve got the brawn to handle any set

of orders, and you’ve got the brains to figure out what is the maximum set that
can be handled by a single person. What’s holding you back?”

He slumps still lower in the seat. “It’s not a matter of processing or computa-
tional power. Yes, I can figure it all out. I even know all the orders in advance;
we always get the same set of orders on Fridays. So, of course, I could just find
an optimal solution. But that’s of no use.”

“Now you really got me. You know everything and you can do anything, what
could possibly be the problem?”

“Yeah, it’s kind of funny. Look, let me explain the whole setup. Orders to
the bakery arrive in a sequence. Each order has a given pickup time, and since
people expect it to straight from the oven when they pick it up, it really means
that the time for making it is fixed. “
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Instance spec: Given is a sequence In = 〈I1, I2, . . . , In〉, where each Ii

is an interval in 	.

“As soon as an order arrives, I have to either sign up for it or assign it to
somebody else. I can’t work on two orders at the same time; they need my total
concentration. We’ve got plenty of other guys that can handle those that I don’t
do. “

Solution spec: Produce a subsequence I ′ of intervals from In such that
no pair of intervals Ia, Ib in I ′ overlap, i.e. Ia ∩ Ib = ∅.
More generally, we seek an independent set in a given graph G; in the
above situation G is an interval graph.

“Actually, I can decide the whole thing in advance, because I do know all the
orders that arrive — we always get the same set of orders on that day of the
week. But, that stupid boss doesn’t know it, and he won’t believe it.”

“He insists on checking on me at any time to ’size me up for the big job’, as
he calls it. And, the frustrating thing is that when he does, all that matters to
him is how many orders I’ve then signed up for.”

This sort of makes sense to me. “So, you want to maintain always a good
efficiency index. I mean, that what you’ve gotten, when the boss shows up,
should be a large fraction of what could possibly be gotten if you’d knew when
he shows up. Right?”

“Yeah, that’s it. Or, maybe it’s more of a sloth index.”
“There’s a catch here, though: you can’t ever hope to get a good ratio! You

see, suppose the first order was so long that it took all of your available time.
Well, if you take it, you can’t take anything else, and you’re doomed. But if you
don’t take it, then if the boss shows up then, you’ve got an infinitely poor sloth
index!”

“I knew it, I’m doomed” he whined.
“No, relax. You just need to modify your expectations a bit. You do try to

minimize the ratio, but you count an empty solution as of size one. Which is
fair, what diff does a single order make?”

Performance evaluation: For each prefix Ip = 〈I1, I2, . . . , Ip〉, the
performance on the prefix is the quantity

ρp = ρp(I ′) =
α(Ip)

|I′ ∩ Ip|+ 1
,

where α(Ip) is the maximum set of disjoint intervals in Ip. The objective
is to minimize ρ = maxn

p=1 ρp, the worst performance on any prefix.

“Yeah, ok. But it’s still a Catch-22 situation: no matter what I do, I’m doomed.
If I start grabbing orders as soon as they arrive, I won’t be able to take on so
many of the later orders, and he’ll take me to task at the end of the day. But
if I try to wait until the best set of orders starts showing up, he’ll think I’m a
lazy SOB that can’t get started in the morning. There’s no point even trying to
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explain to him how thinking ahead could help. It’s so Kafkaesque it’s not even
funny,” he grumbles and shakes his head.

“Right, well, let’s think constructively, and at least try to do the best we can.
There is, by the way, a possibility that you can do better if you flip coins. “

“I’m not interested in some kind of average case.”
“This is different. It means that no matter what how tricky your boss may

be and even if he knows your solution strategy, you will always achieve some
performance guarantee at the time he stops by. However, the guarantee is in
expectation over the random coin flips, and not worst case...”

Randomized performance: In the randomized case, a solution is a
probability distribution π over the independent sets of the input graph
G. The expected solution size Eπ[Ip] on prefix Ip is the weighted sum
Eπ[Ip] =

∑
I′ Prπ[I ′] · |I ′ ∩Ip|, where I ′ ranges over all independent sets

in G. The performance ratio is then ρ = maxn
p=1

α(Ip)
Eπ[Ip] .

1.2 Other Prefix Problems

“Right. BTW, some of the other guys are in similar situations, although they all
have different types of tasks. For instance, Orsino the oven guy has to lay out the
goods to be baked onto the baking plates. Not everything can go onto the same
plate; it’s not just the temperature, but, for instance, the slushy items can’t go
with the dry ones, square items will mess up the round ones, and the fragrance
of certain items will affect other items, and so on. So, he needs to lay out all the
goods onto the plates, and to do so as soon as they’ve been prepared.”

“The problem is that if he uses more plates than necessary for the items ready
at that time, the boss will get angry.”

Prefix Coloring: Given an ordered graph G, i.e. with an ordered ver-
tex set V = 〈v1, v2, . . . , vn〉, find a coloring C of G such that ρ =
maxn

p=1
C(Gp)
χ(Gp) is minimized, where Gp is the graph induced by 〈v1, v2, . . . , vp〉,

C(Gp) is the number of colors that C uses on Gp and χ(Gp) is the chro-
matic number of Gp.

Something about this rang a bell with me. “Actually, this really reminds me of
this chap Beppe doing urban planning for the city. They had these new servers
being set up all the time, each having links to some of the earlier ones. They had
to have guards on one side of each link to protect against unauthorized entry.
As soon as a server was set up, they had to decide there and then whether to
make it a guard, because the cost of converting an older server into a guard was
prohibitive. Of course, they could have made every server a guard, but that not
only was time consuming but looked spectacularly stupid.”

“Every now and then, some wise-crack newspaper reporter would look at the
guard installations in the city and try to score point by discovering ‘waste in the
system’, that much fewer were needed for the situation at that time. Of course,
there never was any point in try to counteract by showing that this would be
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needed in the future; by the time such corrections came to light, nobody was
interested in the story any more.”

Prefix Vertex Cover: Given an ordered graph G, find a vertex cover
C of G such that ρ = maxn

p=1
C(Gp)

V C(Gp) is minimized, C(Gp) = C ∩ Vp

is the number of nodes from C in the prefix set Vp, and V C(Gp) is the
vertex cover number of Gp.

1.3 Related Work

Enzo now stands up and looks me straight in the eye: “What should I do? You’re
the math guy, can you solve this?”

I instinctively curl my shoulders, “I’m more of a CS guy, actually. In any case,
your problem doesn’t really fall into any of our usual categories. I mean, it’s not
really online, since you know the whole input in advance. It’s also not offline,
since we don’t know the length of the prefix where we will be measured. It’s also
not really a computational issue, since you’re not computationally bounded. It
is a question about robustness : performing well on all of a set of sub-instances;
here the sub-instances are the prefixes.”

Hassin and Rubinstein [12] gave a weighted matching algorithm that
gave a

√
2-performance guarantee for the total weight of the p-heaviest

edges, for all p.
There are various works where robustness is with respect to a class of
objective function. One prominent examples are those of scheduling un-
der any Lp-norm [3,2]. Goel and Meyerson [11] gave a general scheme for
minimizing convex cost functions, such as in load balancing problems.
Robust colorings of intervals were considered in [9], where throughput
in any prefix of the coloring classes went into the objective function.
Prefix optimization can be viewed as online algorithm with complete
knowledge of the future, or competing against a non-adaptive adversary.
Several lower bound constructions for online computation are actually
lower bounds on prefix computation; most prominent cases are for the
classical machine scheduling problems [8,4,1]. Prefix optimization cor-
responds to the extreme case of lookahead, and thus can perhaps shed
some light on properties of online computation.
As of yet, only few papers have explicitly addressed prefix optimiza-
tion. Faigle, Kern and Turán [8] considered online algorithms and lower
bounds for various online problems, giving a number of lower bounds in
the prefix style. They posed the question of a constant factor approxima-
tion for the Prefix Coloring problem. Dani and Hayes [6] considered on-
line algorithms for a geometric optimization problem and explicitly com-
pared the competitive ratios possible against adaptive and non-adaptive
adversaries.

“So, it relates to this online algorithms racket, but basically nobody has done
exactly this. I sure hope you can at least come up with some ideas, man.”
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1.4 Our Results

We give nearly tight results for the best possible performance ratios for prefix
versions of several fundamental optimization problems (in particular, those of
Enzo, Beppe and Orsino).

We first consider the Prefix IS problem and give an algorithm whose perfor-
mance ratio on interval graphs is O(log α), where α = α(G) is the independence
number of the graph. We derive a matching lower bound for any (randomized or
deterministic) algorithm for the problem on interval graphs. We further give a
randomized algorithm that achieves this ratio on general graphs. The algorithm
is shown to achieve a logarithmic performance ratio for a wide class of maxi-
mum subset selection problems in the prefix model, including maximum clique,
0/1-knapsack, maximum coverage, and maximum k-colorable subgraph. For all
of these problems the performance ratio is O(log(α(I)), where α(I) is the value
of an optimal solution for the complete input sequence I.

For the Prefix Vertex Cover problem we show that any algorithm has a
performance ratio of Ω(

√
n), where n is the size of G. We give a deterministic

algorithm that achieves this bound.
Finally, for Prefix Coloring we give an algorithm whose performance ratio

is 4. We further show that no algorithm achieves a ratio better than 2.

2 Enzo’s Effectiveness Issue: Prefix Independent Set

“So, my friend, here’s what I can tell you about your problem.”
Let α = α(G) be the independence number of the given graph G. We first present
an approximation algorithm for Prefix IS in interval graphs and then give a
simple algorithm for general graphs.

Suppose that G is an interval graph. Consider the following algorithm, Aint,
which uses as additional input parameter some t ≥ 1. For the ordered sequence of
intervals in G, let Gi be the shortest prefix satisfying α(Gi) ≥ αi/t, for 1 ≤ i ≤ t
Algorithm Aint proceeds in the following steps.

1. Find in G1 an IS of size α(G1).
2. For 2 ≤ i ≤ t in sequence, find for Gi an IS, Ii, of size at least α(Gi)/t,

such that Ii conflicts with at most a fraction of 1/t of the vertices in each
Ir, 1 ≤ r ≤ i− 1, and delete from Ir the vertices conflicting with Ii.

3. Output the solution I = ∪t
i=1Ii.

“Was there a message to this? I thought you’d come up with something
simpler. Why this sequence of solutions that you keep chipping off?”
Enzo quizzed.
“When you put it formally it starts to look more complicated than it
really is. The point is that we have to come up with some solution early
on, even if it would be better for the long haul to just wait. This early
piece of the input is G1. We try to find a small part of the solution that
doesn’t mess up the rest of the input sequence by too much.”
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“We then need to repeat this on several prefixes, picking some portion
of the available solution; if it requires smashing some of the family trea-
sures, so be it, but make sure it’s only a small fraction, ‘minor collateral
damage’ ”.

In analyzing Aint, we first need to show that a ‘good’ independent set can be
found in each iteration, as specified in Step 2.

Lemma 1. Let t and the interval graph Gi be defined as above, and let k be a
number between 1 and t. Let I be an independent set of Gk−1, partitioned into
sets I1, I2, . . . , Ik−1 where Ir ⊆ V (Gr), for 1 ≤ r ≤ k − 1. Then, there exists an
IS Ik in Gk of size at least (α(Gk) − 2α(Gk−1))/t which conflicts with at most
1/t-fraction of the intervals in each Ir, 1 ≤ r < k.

Proof. We say that an interval a flanks an interval b if a overlaps one of the
endpoints of b, i.e., a and b overlap but a is not contained in b. Let J be a
maximum IS of Gk, and let J ′ be the set of intervals in J that do not flank any
interval in I. Observe that |J ′| ≥ |J |−2|I| ≥ α(Gk)−2α(Gk−1). Note that each
interval in J ′ intersects at most one interval in I.

For sets A and B of intervals, let NB[A] = {b ∈ B|∃a ∈ A, a ∩ b �= ∅}
be the set of intervals in A that overlap some interval in B. For each interval
a in I let the weight of a be the number of intervals in J ′ intersecting a, or
wt(a) = |{b ∈ J ′ : a ∩ b �= ∅}| = |NJ′ [{a}]|. For each j = 1, . . . , k − 1 in parallel,
find a maximum weight subset Qj in Ij of size |Ij |/t, and let Q = ∪k−1

j=1Qj .
Finally, let Ik = NJ′ [Q] be the claimed set of intervals from Gk.

By construction, Ik is an IS and is of size at least
∑

a∈I wt(a)/t = |J ′|/t ≥
(α(Gk) − 2α(Gk−1))/t. Also, by definition, Ik conflicts with a set of size |Ir|/t
from each set Ir, r = 1, . . . , k − 1. Hence, the claim.

Theorem 1. Aint yields a performance ratio of O(log α) for Prefix IS on
interval graphs.

Proof. Let t = log3 α. Then, α(Gk) = 3α(Gk−1), for each 1 < k ≤ t. We
distinguish between two cases.
(i) Suppose that the prefix Ĝ presented to Aint is shorter than G1, then Aint

outputs an empty set, while OPT has an IS of size at most α1/t. We get that

OPT (Ĝ)
Aint(Ĝ) + 1

≤ α1/t ≤ 3 .

(ii) Otherwise, let k be the maximum value such that Gk ⊆ Ĝ. By the construc-
tion in Step 2, each IS reduces the size of any preceding IS at most by factor
1/t. Hence, by Lemma 1 we get that

|Ik| ≥
α(Gk)− 2α(Gk−1)

t

(
1− 1

t

)t−k

≥ αk/t

3t

(
1− 1

t

)t−k

≥ αk/t

3t
· e−1 .

Since OPT (Ĝ) ≤ α(Gk+1) = α(k+1)/t and Aint(Ĝ) ≥ |Ik|, we get a ratio of
O(tα1/t) = O(log α).
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“This may not be exactly what you were looking for, Enzo, but it is quite
interesting to some of us. Particularly the fact that the ratio is in terms
of the optimal solution size, α, rather than some general property of the
input, like the number of items, n.”

2.1 Matching Lower Bound

“You know, what you’ve come up with is alright. But, maybe if we think
a bit harder, we could get solutions that are always just a few percent off
the best possible. Can’t you get one of those really smart guys, like Luca
or Pino, to help you out? Or better yet, one of those hot-shot women,”
Enzo grinned.
“Easy, easy. There’re limits to everything. In fact, what we outlined above
is essentially the best possible.

Theorem 2. Any algorithm (even randomized) for Prefix IS in interval
graphs has performance ratio of Ω(log α).

Proof. Let α be a number, and let k = log α+1. Consider the graph G = (V, E)
which consists of k subsets of vertices, V1, . . . , Vk. The subset Vi consists of
2i−1 vertices numbered {vi,1, . . . , vi,2i−1}. The set of edges in G is given by
E = {(vi,h, vj,�)|1 ≤ i < j ≤ k, 1 ≤ h ≤ 2i−1, 2j−i(h − 1) + 1 ≤ � ≤ 2j−ih}.
In the ordered sequence representing G, all the vertices in Vi precede those in
Vi+1, for i = 1, 2, . . . , k−1. The graph G can be represented as an interval graph
where a vertex vi,h corresponds to the interval [(h− 1)2k−i, h2k−i); see Fig. 1.

0 2k-1 2k

V
1

V
2

V
3

V
4

V
5

Fig. 1. Interval graph that gives a Ω(log α) lower bound

In view of Yao’s lemma we give a probability distribution over the prefixes
of G and upper bound the expected performance of any deterministic algorithm
over this distribution. Let Ui = ∪i

j=1Vi. With probability 1/(2i(1 − 2−k)) the
prefix is Ĝ = G[Ui], for i = 1, 2, . . . , k.

First observe that

E[OPT (Ĝ)] =
k∑

i=1

Pr[Ĝ = G[Ui]] · |Ui| =
k∑

i=1

1
2i
· 2i−1 ≥ log α

2
.
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We now show that E[A(Ĝ)] ≤ 1, which yields the theorem.
Consider any given deterministic algorithm A that produces an independent

set IA on G. For any v ∈ Vi, let NIS(v) be the set of neighbors of v in V \ Ui

that are selected by A into IA, and let N̂IS(v) = NIS(v) ∪ {v}. We denote by
A(v) = |N̂IS(v)| the increase in |IA| due to the selection of vertices in N̂IS(v).
We say that vertex v ∈ Vi is possible for A if there are no edges between v and
any of the vertices selected by A in Ui−1.

Claim 1. Let v ∈ Vi be a possible vertex for A, 1 ≤ i ≤ k. Then, if v is not
selected for IA, we have that E[A(v)|v not selected] ≤ E[A(v)|v is selected] = 1.

Proof. The proof is by backward induction. For the base case we take i = k.
Clearly, if A does not select the vertex v then A(v) = 0, since Vk is the last
subset of vertices, and the claim holds. Now, assume that the claim holds for all
vertices v in Vi, then we show that it holds also for the vertices in Vi−1. It is easy
to show (details omitted) that Pr[Vi+1 ⊆ Ĝ|Vi ⊆ Ĝ] = 1/2, for i = 1, 2, . . . , k−1.
Observe that G is constructed so that if a vertex u ∈ Vi is adjacent to a vertex
v ∈ Vj and v is adjacent to vertex w ∈ Vk, for i < j < k, then u is also adjacent
to vk; namely, the presentation ordering of the graph is transitive. If a vertex
vi−1,h is not selected, then A can select its neighbors in Vi: vi,2h−1, vi,2h, and we
get that

A(vi−1,h) ≤ 1
2
(E[A(vi, 2h− 1)] + E[A(vi, 2h)]) .

From the induction hypothesis we have E[A(vi, 2h− 1)] = E[A(vi, 2h)] ≤ 1 .

To complete the proof of the theorem we note that, if A selects for the solution
the single vertex in V1 then A(Ĝ) = 1; else, by Claim 1, we get that A(Ĝ) ≤ 1.

2.2 Prefix IS in General Graphs

“Allow me to entertain ourselves by generalizing the problem you posed
to independent sets in general graphs.

For general graphs, we can argue tight bounds on performance guarantees. Let
G1 be the shortest prefix of the input graph G for which α(G1) = α1 where
α1 = �

√
α�. The algorithm Agen finds an independent set of size α1 in G1 and

simply outputs this set.
Theorem 3. Algorithm Agen yields a performance ratio of at most

√
α for Pre-

fix IS.

Proof. We distinguish between two types of prefixes given to the algorithm.
Suppose the prefix is strictly shorter than G1. Then an optimal algorithm yields
an IS of size at most α1 − 1, for a performance ratio of at most α1 − 1 ≤ √α.
On the other hand, if G1 is contained in the prefix Ĝ then the approximation
ratio is at most α/α1 ≤

√
α.

We can easily argue a matching lower bound.
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Theorem 4. The performance ratio of any deterministic algorithm for Prefix
IS is at least �

√
α�. It is also Ω(

√
n).

Proof. Let N = �
√

n�. Consider the following complete bipartite graph G =
(U, V, E). The vertices U are 1, 2, . . . , N , while V has N +1, . . . , n. The ordering
of the graph is by vertex number.

A deterministic algorithm A run on G can pick either vertices from U or from
V . If it picks vertices from U , then on the prefix B = G the optimal solution is
of size n −N , while the algorithm solution is of size at most N , giving a ratio
of at least n/N − 1 ≥ √n− 1. The ratio is also at least α/N ≥ α/�√α� ≥ √α.
On the other hand, if it picks vertices from V , then on the prefix B′ = G[U ],
the subgraph of G induced by U , A(B′) = 0 while α(G′) = N , for a ratio
of N = �

√
n� ≥ �

√
α�. Hence, the performance ratio of A on G is at least

N =
√

n ≥
√

α.

“You haven’t said anything here about coin flips. Can they help?”, Enzo
inquired.
“For your problem of intervals, they don’t. But, for the general problem,
on general graphs, a simple randomized approach does improve the situ-
ation dramatically. In fact, it’s kind of neat to phrase it in terms of still
more general problem framework.”

In the following we consider a wide class of maximization subset selection prob-
lems in the prefix model.

Definition 1. A problem Π is hereditary if for any input I of Π, if I ′ ⊆ I is a
feasible solution for Π, then any subset I ′′ ⊆ I ′ is also a feasible solution.

Note that many subset selection problems are hereditary. This includes maxi-
mum independent set, maximum clique, 0/1-knapsack, maximum coverage, and
maximum k-colorable subgraph, among others.

Given an input I for a subset selection problem Π , let α = α(I) be the size
of an optimal solution for I.
Theorem 5. Let Π be a hereditary maximum subset selection problem. Then,
there is an algorithm for Π with a performance ratio of O(log(α)) for the
prefix−Π problem.

Proof. Consider the following algorithm. Let P be an input for Π with optimal
value α and let k = �lg α�. Define prefixes P1, . . . , Pk of P where Pk = P and for
i = 1, . . . , k − 1, Pi is the shortest prefix with α(Pi) ≥ 2i−1. The algorithm now
selects one of the prefixes Pi uniformly at random, each with probability 1/k.

Let j be such that the prefix P̂ presented satisfies Pj ⊆ P̂ ⊆ Pj+1. Since P̂
is non-empty, it must contain the unit prefix P1. Then, the value of the optimal
solution is at most twice the value of the solution for Pj . With probability 1/k
our algorithm obtains an optimal solution on Pj . Hence, the expected size of the
solution found by the algorithm is at least 1/(2k) fraction of optimal.

Corollary 1. There is a randomized O(log α))-approximation algorithm for
Prefix IS.
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3 Beppe’s Guarding Business: Prefix Vertex Cover

“Beppe situation must be easier. I’ve heard this vertex cover problem, as
you call it, is much easier” Enzo remarked philosophically.
“It is in many respects easier. For instance, it’s easy when the optimal
solution is small (or Fixed Parameter Tractable, as we say), which the
general independent set problem is not. And it’s easily approximable
in polynomial time within factor 2, while the IS problem is notoriously
hard.”
“Yeah, you should know. You’re the one who keeps doing IS in one way
or another, in spite of these pathetic approximations.”
“Hey, no need to get personal here, buddy. We all do what we can. But,
back to Beppe’s problem, it turns out to be actually harder than your
prefix IS problem! Randomization won’t help him at all.”

Theorem 6. Any algorithm for Prefix Vertex Cover has performance ratio
of at least

√
n.

Proof. We use the complete bipartite graph G = (U, V, E) from Theorem 4,
where U has nodes 1, 2, . . .N = �√n� and V nodes N + 1, N + 2, . . . , n.

If any vertex in U is missing in a cover, then we need to select all the vertices
in V . Thus, the only minimal vertex covers for B are U and V . Any randomized
algorithm Rvc selects one of these solutions with probability at least 1/2. If
C = U with probability at least 1/2, then for a prefix B̂ that consists of all the
vertices in U we get that Rvc(B̂)

OPT (B̂)+1
= Ω(

√
n), since E = ∅. On the other hand,

if V is selected for the solution with probability at least 1/2, then for the prefix
B̂ = B, we have that Rvc(B̂)

OPT (B̂)+1
≥ n−√

n
2(

√
n+1) = Ω(

√
n), since an optimal solution

is C = U .

We now show that a matching upper bound is obtained by a deterministic al-
gorithm. Let G1 = (V1, E1) be the prefix graph for which the minimum vertex
cover is of size at least

√
n for the first time. Avc finds a minimum vertex cover

S ⊆ V1 for G1 and outputs S ∪ (V \ V1).

Theorem 7. Algorithm Avc yields a ratio of
√

n to the optimal for Prefix
Vertex Cover.

Proof. We note that if Ĝ ⊆ G1 then Avc outputs S′ ⊆ S where |S′| ≤
√

n, while
an optimal algorithm may output an empty set. If G1 ⊆ Ĝ then |S∪(V̂ \V1)| ≤ n,
while OPT (Ĝ) ≥ OPT (G1) ≥

√
n. The claim follows.

4 Orsino’s Oven Schedule: Prefix Graph Coloring

“What’s your take then on Orso’s situation?” Enzo asked me the following
evening. Is he dug as deep as Beppe?”
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“Actually, this looks much more promising” I replied. “We can use a
standard trick of the trade called doubling to come out pretty well.”
“Play double-or-nothing until we finally win” he suggested hopefully.
“If you like. We use the nice property of geometric sums, i.e. 1 + 2 + 4 +
8 + ... + 2k that they add up to not too much, or only twice the last
term.”
“Ah, so we first handle the first node, then the next two, then the next
four, and so on?”
“You’re catching on, Enzo, but we actually need to use it slightly differ-
ently. We first find the initial set of order that can be laid on a single
plate. Then, the next prefix that can be laid onto two plates. Third, the
sequence of the following orders for which four plates suffice. And so on,
doubling the number of plates in each step.”
“Ok! So we use new set of plates for each of these, uh, groups.”
“Exactly. And why is that ok?”
“Because they add up to not too much! Maybe I should try this CS
business; you think I might have a shot at a Gödel award?”

For k = 1, 2, . . ., let tk be the largest value such that α(Gtk
) ≤ 2k, and let t0 = 0

for convenience. The algorithm A simply colors each set Vtk
\Vtk−1 with 2k fresh

colors.

Theorem 8. The algorithm A yields a performance guarantee of 4 for Prefix
Coloring.

Proof. Let p be a number, 1 ≤ p ≤ n, and let k be the smallest number such
that 2k ≥ α(Gp). So, α(Gp) ≥ 2k−1 + 1. Observe that

A(Gp) ≤
k∑

i=0

2i = 2k+1 − 1 < 4 · 2k−1 < 4α(Gp) .

Since this holds for all p simultaneously, the theorem follows.

“Can we also do better here in the randomized case?”
“Actually, yes, a little.”

Let β be a uniformly random value from [0, 1], and let a0, a1, a2, . . . be the
sequence given by ai = �βei�. Let tk be the largest value such that α(Gtk

) ≤ ak.
Modify the algorithm A to use ak colors on each set Vtk

\ Vtk−1 .

Theorem 9. The modified algorithm A has randomized performance guarantee
of e for Prefix Graph Coloring.

The proof is similar to the arguments used for certain coloring problems with
demands [7,10].

“So, is that the best we can do.”
“It’s the best that I can come up with, but it’s also provably close to the
best possible.”
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Proposition 1. There is no algorithm with performance guarantee less than 2
for Prefix Graph Coloring.

“But, I’ll leave that for you to figure out, hot shot :-)”

5 Epilogue

“This is all cute’n stuff, but it ain’t mean nothin out there in the field, does it?”
“It’s always hard to say where theoretical results kick in. It does though tell us

something about how robust we can make computation. It doesn’t have to involve
your boss, of course; it could be any unpredictable event like the electricity going
off. You could think of this as a sort of defensive problem-solving. In these days
of global security threats, ain’t that what we all have to concern ourselves with?”

“Yeah, or you might have your little island economy suddenly going off the
cliff”, Enzo chuckles. “Good luck in cashing in on these ideas...”

References

1. Albers, S.: Better bounds for online scheduling. In: STOC, pp. 130–139 (1997)
2. Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel ma-

chines. In: STOC (2005)
3. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algo-

rithms. J. Algorithms 52, 120–133 (2004)
4. Bartal, Y., Karloff, H.J., Rabani, Y.: A better lower bound for on-line scheduling.

Inf. Process. Lett 50(3), 113–116 (1994)
5. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-

bridge University Press, Cambridge (1998)
6. Dani, V., Hayes, T.P.: Robbing the bandit: Less regret in online geometric opti-

mization against an adaptive adversary. In: SODA (2006)
7. Epstein, L., Levin, A.: On the Max Coloring Problem. In: Kaklamanis, C., Skutella,

M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)
8. Faigle, U., Kern, W., Turán, G.: On the performance of on-line algorithms for

partition problems. Acta Cybernetica 9, 107–119 (1989)
9. Fukunaga, T., Halldórsson, M.M., Nagamochi, H.: Robust cost colorings. In: SODA

(2008)
10. Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Approximating non-

preemptive open-shop scheduling and related problems. ACM Transactions on Al-
gorithms 2(1), 116–129 (2006)

11. Goel, A., Meyerson, A.: Simultaneous optimization via approximate majorization
for concave profits or convex costs. Algorithmica 44, 301–323 (2006)

12. Hassin, R., Rubinstein, S.: Robust matchings. SIAM J. Disc. Math. 15(4), 530–537
(2002)



Managing Change in the Era of the iPhone

Patrick Healy

Computer Science Department,
University of Limerick, Ireland

patrick.healy@ul.ie

Abstract. In spite of futurologists’ best predictions change has not gone
away, and it is probably prudent that we not expect this to change any
time soon. In this paper we consider the challenges of change, particularly
in today’s era of smartphones. We consider different types of change that
can arise such as when in the presence of cooperative or uncooperative
agents. We propose practical solutions for those who may have difficulty
coping with change or with feeling weighed down by it.

1 Introduction

It is likely that every person at some time in their life has, as they have stood
idly in line waiting to pay for items they wish to buy, mused on the different ways
they could pay for their goods. “Cash or credit card?” is the way this is usually
put when they reach the shop assistant at the head of the queue. Although the
futurologists have long predicted a cashless society [6,11] it has not come to pass
and we believe that that future is a long way off yet; in the meantime there will
be cash. With cash comes change, and it is the management of this change that
we consider here.

As the purchaser stands in line if cash is their preferred option it is also likely
that they will have looked in their purses or fished out a handful of coins from
their pocket and pondered exactly which coins to use for payment. Some are
happy to tender a coin or paper money that covers the amount and happily
accept the change, perhaps emptying their purse’s contents into a jar nightly.
Others, however, may be more weight-conscious. For them the goal is to keep
to a minimum at all times what is jangling in their pockets or purses. So they
find the selection of coins that adds up to the amount of the purchase and that
is heaviest. But this may not be a trivial task.

The more enterprising punter may even spot an opportunity: a 1.80e cup of
coffee can certainly be paid for with a 2e coin but with a 20c and 10c coin also
weighing their pocket down, tendering 2.30e yields a single 50c coin in return.
Laissez les bon temps rouler. But how should we most advantageously select from
the many probable ways of paying? And then, even, can we be sure of the shop
assistant’s assistance in our little scheme: after all, we rely on their willingness
to give us the change our way. Further, if we could devise an optimal algorithm
would it be transferable to an arbitrary currency: plug-and-pay?

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 249–259, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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In this paper we consider these questions. We develop optimal algorithms for
solving them, some being possible to execute by hand, with others requiring the
assistance of an electronic computing device. Such a computing device will need
to be readily available so we consider how some of today’s portable, hand-held
computers such as PDAs or smartphones could assist.

The remainder of the paper is as follows. In the following section we provide
background and related work, outlining the problem(s) and what is known about
them. We then propose a simple ILP-based model in Section 3 that, though
not practical, will be motivational for what comes later. In Section 4 we then
propose an efficient solution to the case of the cooperating sales assistant when
currencies allow, and more computationally intensive solutions otherwise. Since
a principle aim of this work was that it be implementable on one of today’s
hand-held computing devices, we then discuss in general terms the design of an
“app”, that we call ChangeManager in Section 5. We look at how the user might
interact with one and, in particular, how the information in the device is kept
current. We conclude the paper in Section 6.

2 Background and Related Work

As we have described, our goal can be simply described as paying an amount
using a collection of coins so that the resulting change in our pocket is as light
as possible. This may involve overpaying using heavier coins. However, there
may be other constraints on how we can select our coins. In Ireland, for one, a
transaction may be limited to 50 coins1, no matter how weight-advantageous it
would be to the buyer to pay with more. (Pity the poor punter who has just
won big on the “Penny Falls” in the local amusement arcade.)

Our problem has similarities to several classical (and related) problems. We
assume that we are using a single currency C comprising m coins of value 1 =
c1, c2, . . . , cm where ci < ci+1. Using the m-vector C = (c1, c2, . . . , cm) and
the inner (dot) product operation we can express any amount K as another
m-vector X = (x1, x2, . . . , xm) called a representation with K = X · C. Since
c1 = 1 there is always at least one representation of K and there may be several.
The size of a representation, |X | = X · (1, 1, . . . , 1), is the number of coins
used.

We might ask about the number of coins used to represent K and this gives
rise to the change making problem, our first classical problem.

Change Making

Find the representation of K of minimum size. Written as an integer linear
program this is

1 From Wikipedia [13]: According to the Economic and Monetary Union Act, 1998 of
the Republic of Ireland . . . No person, other than the Central Bank of Ireland and
such persons as may be designated by the Minister by order, shall be obliged to accept
more than 50 coins denominated in euro or in cent in any single transaction.
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min
m∑

i=1

xi

s. t.
m∑

i=1

cixi = K xi ∈ N

In this case note that there is no upper bound on the usage of a coin. The greedy
strategy turns out to be quite effective for solving Change Making heuristi-
cally, although it is no panacea. In order to make change for an amount K a
greedy solution uses the largest coin not greater than K and repeats recursively
on the remainder. To see that this strategy is not perfect consider a currency
comprising three coins 1, 5 and 6 and the amount K = 10. A greedy strategy
would take the 6-coin once and 4 uses of the 1-coin for a solution that uses 5
coins while the optimal strategy is to use the 5-coin twice.

The following definition clarifies this distinction.

Definition 1. Given a coin system, C, comprising coins 1 = c1 < c2 < · · · <
cm, of weight wi respectively, we denote by M(x) the number of coins in the
representation of x of smallest size. G(x) denotes the size of the representation
of x found by the greedy strategy.

A coin system (currency) is called canonical if the greedy coin selection strat-
egy yields the minimum number of coins. Canonical coin systems have been
considered by many people. Chang and Gill [4] first studied such coin sys-
tems and identified upper and lower bounds by showing that a system of coins
1 = c1 < c2 < · · · < cm is canonical when M(x) = G(x) for all x in the
range c3 ≤ x < cm(cmcm−1+cm−3cm−1)

cm−cm−1
. This interval is O(c3

m); Kozen and Zaks
[7] narrow this interval considerably by showing that if a counterexample to
M(x) = G(x) exists then it must exist in the range c3 + 1 < x < cm + cm−1.
They show, further, that it is it is possible to avoid having to compute the opti-
mal representation of every x in this range while searching for a counterexample,
which results in an O(mcm)-time algorithm. Pearson [9] presents a strongly poly-
nomial O(m3)-time algorithm. For the case of a tight coin system, Cai improves
this to O(m2) [3]; a system is tight if there exists no counterexample smaller
than cm.

Complete characterizations of coin systems for fixed m have been considered
by several authors [7,3]. Adamaszek and Adamaszek [1] provide such a char-
acterization for m = 5. They also consider the circumstances under which a
sub-currency (a subset of the currency’s coinage) of a canonical currency is, in
turn, canonical.

We will return to this problem later when we consider the optimality of our
algorithm.
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In order to pay for an item we will have a fixed number of coins of each type
in our pocket. We may express these bounds by a vector B = (b1, b2, . . . , bm)2.
We can tell if we can pay for goods exactly with the coins in our pocket and this
is called the subset sum problem.

Subset Sum

Given a set of numbers C = (c1, c2, . . . , cm), the number of occurrences of each
number B=(b1, b2, . . . , bm), and a number K, find a vector X = (x1, x2, . . . , xm),
0 ≤ xi ≤ bi, and X · C = K.

min 1

s. t.
m∑

i=1

cixi = K 0 ≤ xi ≤ bi

xi ∈ N

The Change Making and Subset Sum problems are special cases of the knap-
sack problem.

Knapsack

Given a set of items C = {ci : 1 ≤ i ≤ m}, each item ci of weight wi and of profit
pi, respectively, and a container of weight-limit W , find the most profitable way
of filling the container while not over-filling it.

max
m∑

i=1

pixi (1)

s. t.
m∑

i=1

wixi ≤ W 0 ≤ xi ≤ bi (2)

xi ∈ N (3)

By equating pi and wi we get Subset Sum and by setting pi = −1 with suffi-
ciently large bi, say, bi = �W

wi
�, we get Change Making. An alternative formu-

lation called 0-1 Knapsack distinguishes between the bi occurrences of item ci

in a multiset and restricts the resulting xis 0 or 1.

3 ILP-Based Solutions

Knapsack is a much-studied problem dating back to Dantzig’s 19573 dynamic
programming solution [5]. We can adapt the Knapsack formulation of Equa-
tions (1) – (3) to make a first model of our problem. Given a set of coins
C = {ci : 1 ≤ i ≤ m} of weight wi and an amount K, find the heaviest set
of coins that sums to K.
2 Technically, the problems we present here have bounds included in their definitions.

Similar problem statements exist without the bounds; their complexity is unchanged.
3 Among the items to feature in his knapsack in this paper was a geiger counter – for

the times that were in it, he wrote!
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max
m∑

i=1

wixi (4)

s. t.
m∑

i=1

cixi = K 0 ≤ xi ≤ bi (5)

xi ∈ Z (6)

With respect to the Knapsack formulation note that the roles of wi and ci (= pi)
have been reversed. In order to avoid confusion with a reversed knapsack (which
would be a forward facing knapsack) we call this problem Coin-Knapsack,
to coin a phrase. Equation (6) now allows xi to take on negative values, for
otherwise we would be forced to have exact change always. In tandem with this,
negative coefficients permit changing the ≤ relation of Equation (2) to equality.

This represents a nice, compact modelling of our problem. However, a goal of
ours is to implement ChangeManagerTM on a modern smartphone-type device
and to the best of our knowledge there is no implementation of any mathematical
programming library on devices of this size. In spite of this seeming dead end it
provides useful motivation.

The formulation of Coin-Knapsack given above in (4) – (6) can be more
usefully expressed by separating the positive xis from the negatives. This can be
written as

max
m∑

i=1

wixi −
m∑

i=1

wiyi

s. t.
m∑

i=1

cixi −
m∑

i=1

ciyi = K 0 ≤ xi ≤ bi

xi, yi ∈ N

The x variables now encode coins tendered by the buyer while y variables en-
code those returned as change. We can now add restrictions such as the 50-coin
(
∑m

i=1 xi ≤ 50) limit we saw earlier. Since the x and y variables are not mu-
tually constrained we can also separate the problem into the following pair of
optimization problems to be solved in sequence.

max z =
m∑

i=1

wixi

s. t.
m∑

i=1

cixi ≥ K 0 ≤ xi ≤ bi

m∑
i=1

xi ≤ 50

xi ∈ N
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and

min
m∑

i=1

wiyi

s. t.
m∑

i=1

ciyi = z −K

yi ∈ N

The second of this pair returns change for the amount that is K less than the
value of the first problem in the lightest possible way. The first of this pair is
bounded only by the availability of coins and will return the solution xi = bi. In
a blatant abdication of responsibility we are, in effect, saying to the shopkeeper,
“here’s what’s in my pocket, keep K for yourself and give me back the remainder
as lightly as is possible.” Irresponsible though it may be, from an algorithmic
point of view it is a useful strategy for, while the bounds on xi are rigid, it is very
reasonable to assume that the shopkeeper has an unbounded supply of each coin.
We call this – the second of the above pair – the Change Taking problem. We
can immediately see that it has as a special case the Change Making problem
where wi = 1, 1 ≤ i ≤ m.

4 The Change Taking Problem

From the preceding, the Change Taking problem is quite similar to the classic
Knapsack problem and so dynamic programming methods are likely to work;
a straightforward implementation [2] runs in pseudo-polynomial time O(nC),
where in this immediate case n is the number of coins we present to the shop-
keeper and C is the value of those coins, z, less the amount to pay, K. Pisinger
proposes a balancing extension to the dynamic programming algorithm that, for
bounded coin values, runs in time linear in the number of coins and the mag-
nitude of the largest coin, O(ncm). This reduces by a factor of n the running
time of the straightforward algorithm. With a more sophisticated algorithm,
memory requirements, which could likely be a problem on a small computing
device, is addressed also by Pisinger, where the space requirement is reduced
by an O(log m/m) factor, m being the larger of C and the value of the optimal
solution, z [10].

Can we do better than this? It turns out that, as with Change Making,
there are certain circumstances when the greedy solution is optimal. Recall
that Pearson showed that it is possible to test if a coin system is canonical
in polynomial time [9]. We conjecture that it is also true for a weighted set
of coins; we stop just short of it by exhibiting an O(mcm)-time bound analo-
gous to Kozen and Zaks [7] using an analysis similar to theirs. The following
definition specifies the weighted analogue of M(x) in the Change Making

problem without making any assumptions about coins’ weights with respect to
each other.
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Definition 2. Given a coin system, C, comprising coins 1 = c1 < c2 < · · · < cm,
of weight wi respectively, we denote by Mw(x) the minimum weight (lightest)
representation of x. Gw(x) denotes the weight of the representation of x found
by the greedy strategy. C is weight-canonical if Mw(x) = Gw(x).

Whereas M(x) and G(x) denote the number of coins in a representation of x;
Mw(x) and Gw(x) denote the weights of those representations, respectively.

When considering weighted greedy representations we must firstly ask if each
coin itself is weight-canonical. That is, is the coin ci itself the lightest represen-
tation of x = ci? Clearly this is a necessary condition for a weight-canonical coin
system. For arbitrary i this may be solved in pseudo-polynomial time. However,
by virtue of Theorem 1 and what follows it we need only concern ourselves with
a small number of base cases.

Lemma 1. It is possible to determine if c2 and c3 are weight-canonical in con-
stant time.

Proof. c2 is weight-canonical if and only if w2 ≤ c2 × w1.
The possible representations of x = c3 is one use of coin c3 or c3 uses of c1

or some combination of coins c1 and c2. For the latter we can represent c3 using
l = � c3

c2
� instances of c2 and c3 − lc2 instances of c1. Coin c3 is weight-canonical

if and only if w3 ≤ min{c3 × w1, l × w2 + (c3 − lc2)w1} (assuming that c2 is
weight-canonical).

All of the computations can be done in constant time. �

We now investigate when a coin system is weight-canonical. First, the following
lemma gives an upper bound on the lightest representation of any amount x.

Lemma 2. For all x and coins ci ≤ x in a coin system C,

Mw(x) ≤ Mw(x− ci) + wi. (7)

Further, equality holds if and only if there is an optimal representation of x that
uses coin ci.

Proof. The lightest representation of x cannot be greater than the sum of the
lightest representation of x− ci and the weight of ci so the inequality must hold.
If equality holds in equation (7) then there is an optimal representation of x
that derives from taking the optimal representation of x− ci with the additional
wi covered by the coin ci. If there is an optimal representation of x that uses ci

then by the inequality above Mw(x) − wi ≤ Mw(x − ci). By removing ci there
is a representation of x− ci of weight Mw(x)− wi. Thus equality holds.

If C is not weight-canonical then the following theorem establishes bounds on
where a counterexample must exist.

Theorem 1. Let C be a coin system. If there exists an x such that Mw(x) <
Gw(x), then the smallest such x must lie in the interval

c3 + 1 < x < cm + cm−1.
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Proof. Since there is only one representation of c1 < x < c2 then Gw(x) = Mw(x)
must hold. By virtue of Lemma 1 Gw(x) = Mw(x) holds for each of x = c1, c2
and c3. Likewise there is only one representation of c3 + 1.

The upper bound can be proved analogously to Kozen and Zaks [7]. Let
x ≥ cm−1 + cm. Using induction, assume that Gw(y) = Mw(y) for all y < x.
Suppose ci is a coin used in some optimal representation of x. If i = m then

Gw(x) = Gw(x− cm) + wm by definition of Gw

= Mw(x− cm) + wm by the inductive hypothesis
= Mw(x) by Lemma 2.

On the other hand, if i < m then

Gw(x) = Gw(x− cm) + wm by definition of Gw

= Mw(x− cm) + wm by the inductive hypothesis
= Mw(x− cm − ci) + wm + wi by Lemma 2
≤ Gw(x− cm − ci) + wm + wi by definition of Mw

= Gw(x− ci) + wi by definition of Gw

= Mw(x− ci) + wi by the inductive hypothesis
= Mw(x) by Lemma 2
≤ Gw(x) by definition of Mw

In either case Gw(x) = Mw(x). �

It is possible to search this interval in pseudo-polynomial time for a counterex-
ample, if it exists. This is based on the idea that we can easily compute re-
cursively Gw(x) = Gw(x − ci) + wi where ci ≤ x < ci+1, and then check that
Gw(x) ≤ Gw(x − ci) + wi for all ci < x. We do not pursue this here but we
reiterate that it may be possible to find a fully polynomial algorithm.

Further Conditions? In the proof of Lemma 1 we said that c2 was weight-
canonical if w2 ≤ c2 × w1. That is, w2/c2 ≤ w1/c1. Normalised weight appears
to play an important role in determining if a currency is weight-canonical.

Definition 3. We call C well-ordered if, for any two coins, ci < cj , w
∗
i =

wi/ci ≥ wj/cj = w∗
j . That is, for increasing coin values in C the normalised

weights w∗
i = wi/ci form a monotonically non-increasing sequence.

It is interesting to observe that examples exist where equality can hold amongst
the coins’ normalised weights. In the U.S. coin system the 5�, 10� and 25� coins
all have normalised weight of 0.044g/�. Thus 1kg of any mixture of these coins
has exactly the same value.

The well-ordered property is not a necessary condition for being weight-
canonical: C = {1, 2, 5, 10} with respective weights {1, 1, 2.6, 5.0} is not well-
ordered since w∗

3 =w3/c3 =0.52 > 0.5=w2/c2 =w∗
2 yet some quick calculations

in the interval given by Theorem 1, [7, 14], show that it is weight-canonical. On
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the other hand, if w∗
m is larger than some w∗

i then clearly Gw(x)|x=cmci > Mw(x).
Similarly c1’s normalised weight must be largest.

4.1 The Story So Far...

The situation now is that when localizing ChangeManager for a new currency,
the boys back in the lab determine if the currency is canonical using Lemma 1
and c1’s and cm’s normalised weights to check the preconditions, followed by the
search for a counterexample in the range given by Theorem 1. The linear-time
greedy algorithm will determine the correct change if the currency is canonical;
a dynamic programming implementation will be required otherwise.

The user consults ChangeManager, which already knows the contents of their
pocket, and tells it the amount required to pay. They then dump the contents
of our pocket on the counter and gently coax the attendant to give them the
change as advised by ChangeManager. Practicalities now arise. The attendant
may not wish to deal with 22 pennies, 4 two-cent coins, 3 5-cent coins, and a 2e
coin for a 1.95e purchase no matter how reassuring we are that a 50-cent coin
is the answer.

This greedy approach does not accommodate side constraints such as an up-
per bound on the number of coins tendered, also. It appears that it is necessary
to revert to the original goal where one tries to maximise the outflow (weight) all
the time subject to bounds on the number of instances of any coin. To solve this
we must again revert to a dynamic programming approach where it is straight-
forward to limit solutions to upper bounds on each coin type.

5 User-Interface Issues

The success of a tool like this will surely live or die on its ease of use. It is not
practical, every time you wish to use it, to have to tell it what is in your pocket,
in addition to the amount you wish to pay. Perhaps it might be acceptable to
reset the “bank” each morning and, throughout the day, either explicitly pay
through ChangeManager or update it for miscellaneous payments, such as, a tip
at the end of meal. Mornings can be hard for the best of people – especially
after the long night that added much to your pocket’s weight – and counting the
remains of one’s pockets can be hard.

We propose an aid to the job of counting the contents of the user’s pocket.
Though our solution is not quite at the stage of a robotic camera crawling in
to the user’s pocket and counting in situ we believe our solution has merit.
By laying out the coins in the user’s pocket on a flat surface we can use our
smartphone / PDA to take a picture of the contents. Figure 1 below is a typical
picture and illustrates some of the challenges that even this method faces –
although a colour representation may help.

With the resulting photograph we run an edge-detector to determine the
outlines of the coins. (As evidenced by face recognition software or the image
recognition service kooaba, http://www.kooaba.com/, edge-detection software

http://www.kooaba.com/


258 P. Healy

Fig. 1. A typical input to a coin recognition algorithm

for PDAs is at an advanced state; the popular OpenCV computer vision library
[12] has been ported to the iPhone.) Having determined the coins’ outlines and
their colour we may use such information as the relative diameters to assist in
differentiating amongst the possibilities, as illustrated in Table 1 below though
identifying coins based solely on their diameters is complicated by such proper-
ties as the diameter of the 10c coin being almost identical to the inner diameter
of the 2e coin and being the same colour also.

Though the problem is non-trivial, fruitful outcomes are possible. Nölle et al.
present a coin recognition system [8] though on a vastly bigger scale than we

Table 1. Relative diameters amongst coins of the Euro currency

2e 1e 50c 20c 10c 5c 2c 1c
2e 1.11 1.06 1.16 1.3 1.21 1.37 1.58
1e 0.96 1.04 1.18 1.09 1.24 1.43
50c 1.09 1.23 1.14 1.29 1.49
20c 1.13 1.05 1.19 1.37
10c 0.93 1.05 1.22
5c 1.13 1.31
2c 1.15
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propose here. In our case we can ask the user to disambiguate amongst possible
matches by shading all coins that, within appropriate error bounds, are the same,
by asking the user to identify this coin class. In effect, rather than sidelining the
user, use the user for what they are really good at.

6 Conclusion

In this paper we have motivated whimsically the development of an applica-
tion that would run on one of today’s smartphones / PDAs. More usefully, we
posed the Change Taking problem which is the weighted generalization of the
Change Making problem. We identified necessary preconditions, as well as a
pseudo-polynomial-time algorithm, for recognising when a greedy solution to the
problem of finding the minimum-weight decomposition of a value is optimal.
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Abstract. Martin Gardner in the early 1970’s described the game of
RaceTrack [M. Gardner, Mathematical games—Sim, Chomp and Race
Track: new games for the intellect (and not for Lady Luck), Scientific
American, 228(1):108–115, Jan. 1973]. Here we study the complexity of
deciding whether a RaceTrack player has a winning strategy. We first
prove that the complexity of RaceTrack reachability, i.e., whether the
finish line can be reached or not, crucially depends on whether the car can
touch the edge of the carriageway (racetrack): the non-touching variant
is NL-complete while the touching variant is equivalent to the undirected
grid graph reachability problem, a problem in L but not known to be
L-hard. Then we show that single-player RaceTrack is NL-complete,
regardless of whether driving on the track boundary is allowed or not, and
that deciding the existence of a winning strategy in Gardner’s original
two-player game is P-complete. Hence RaceTrack is an example of
a game that is interesting to play despite the fact that deciding the
existence of a winning strategy is most likely not NP-hard.

1 Introduction

RaceTrack is a popular multi-player simulation pencil-paper game of car rac-
ing. The origin of the game is not clear, but most people remember this game
from high school, where great effort and time was spent to become the Race-
Track champion, even at the expense of the said champion’s school results.
Variants of the game appeared all over the world under various names like, e.g.,
Le Zip in France or Vektorrennen in Germany. Here is the game description,
literally taken from Gardner [4]: The game is played on math-paper where a
racetrack is drawn. Then the cars are lined up at a grid position at the start
line, and at each turn a player moves his car along the track to a new grid
position subject to the following rules:
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1. The new grid point and the straight line segment joining it to the preceding
grid point must lie entirely within the track.

2. No two cars may simultaneously occupy the same grid point, i.e., no collisions
are allowed.

3. Acceleration and deceleration are simulated as follows: a car maintains its
speed in either direction or it can change its speed by only one distance unit
per move—see Figure 1 for illustration. The first move following this rule is
one unit horizontally or vertically, or both.

The first car to cross the finish line (point) wins. A car that collides with another
car or leaves the track is out of the race.

Here we investigate the complexity of RaceTrack when played as a 1-player
or 2-player game. Before describing our results, we note that the shape of the
racetrack border is a priori arbitrary. Thus, in some far-fetched settings, merely
verifying whether a move is valid, i.e., merely checking whether the new grid
point and the straight line segment joining it to the preceding grid point lies
entirely within the track, could be undecidable. To avoid such complications, we
stick to a discrete version of the racetrack border, where the track is drawn along
grid lines. This is a reasonable restriction, which does not change the practical
appeal of the game. Figure 1 shows the discretization of an arbitrarily shaped
track.

current position

choices for new position

red
green

blue

Fig. 1. (Left:) The arrow depicts the last move of the car—two squares east and three
squares south—on the racetrack (drawn in white); the gray shaded area is outside of
the racetrack. If the car maintains its speed it will follow the dashed line and go two
squares east and three squares south again, but it can also reach one extra square north,
south, east, or west of this point by changing speed. These extra points are marked by
black dots. (Middle:) One out of nine legal moves are shown. (Right:) Discrete version
of the RaceTrack game. Observe that certain movements of the car are not possible
anymore if the border is not allowed for driving; here 7 out of 9 movements remain.

Solitaire RaceTrack will refer to the problem of deciding whether a single
player can reach the finish line within an input-specified number of legal moves.
By RaceTrack reachability, we will mean the simpler problem of deciding
whether the single player can reach the finish line at all. In the first part of this
paper, we reduce the touching variant of RaceTrack reachability (i.e., with the
track border considered part of the driving area) to the undirected grid graph
reachability problem, and deduce from [1] that this touching variant is NC1-hard
and can be solved in deterministic logarithmic space. By contrast, and to our
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initial surprise, we then show that the non-touching reachability variant is NL-
complete, hence that the complexity of the RaceTrack reachability problem
crucially depends on whether the car is allowed to touch the racetrack border or
not. Finally, we settle that solitaire RaceTrack is NL-complete, too, regardless
of whether driving on the track boundary is allowed or not.

In the second part of the paper, we turn to the 2-player game and prove
that checking whether the first player has a winning strategy is P-complete. In
particular, the 2-player game is efficiently solvable (in polynomial time). Consider
the following “popular conjecture:”

Conjecture 1. All “fun and interesting” (2-player) games are NP-hard.

This “conjecture” attempts to capture when a “game” makes a game and it
is wildly accepted in the algorithmic game theory community: in order to be
interesting, a game purportedly needs enough complexity to be able to encode
interesting (NP-hard) computational problems. And a game in P supposedly
becomes boring because a player can quickly learn “the trick” to perfect play. The
2-player RaceTrack game, being fun and interesting to play, yet polynomial
time solvable, is a rare example of a game that violates the implication of this
conjecture.

2 Preliminaries

We assume familiarity with the basic concepts of complexity theory [7] such as
the inclusion chain AC0 ⊂ NC1 ⊆ L = SL ⊆ NL ⊆ AL = P. Here AC0 and
NC1 refer to the sets of problems accepted by polynomial size uniform families
of Boolean {AND, OR, NOT}-circuits having, respectively, unbounded fan-in
and constant depth, and, bounded fan-in and logarithmic depth. L is the set of
problems accepted by deterministic logarithmic-space bounded Turing machines.
SL and NL can be taken to be the sets of problems logspace-reducible to the
undirected graph reachability (UGR) and to the directed graph reachability
(GR) problems respectively. AL is the set of problems accepted by alternating
logspace bounded Turing machines and P is the set of problems accepted by
deterministic polynomial time bounded Turing machines. All the relationships
depicted in the inclusion chain have been known for a quarter of a century, except
for L = SL, shown by Reingold [8] in 2008.

Another particularly relevant reachability problem is undirected grid graph
reachability (UGGR): given an n × n grid of nodes such that an edge only
connects immediate vertical or horizontal neighbors, is there a path from node s
to node t, where s and t are designated nodes from the grid? UGGR is NC1-hard
under AC0 reducibility, it belongs to L, yet it is not known to be L-hard [1].
Finally, we recall the GEN problem (generability problem), known to be P-
complete [6] and defined as follows: given a finite set T , a binary operation ◦
on T presented as a table, a subset S of T , and an element g in T , determine
whether g is contained in the smallest subset of T that contains S and is closed
under the ◦-operation.
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The racetrack in a RaceTrack instance is encoded as a 2-dimensional array
R[i, j] indicating whether the grid point (i, j) is on the racetrack, on the racetrack
border, on the start line or on the finish line.1 When the grid point (i, j) happens
to be on the racetrack border, 8 further bits of information are required, as
follows: Fix a positive distance δ < 1. For each of the non-grid points (i + δ, j),
(i − δ, j), (i, j + δ), and (i, j − δ) we specify whether that point lies within the
racetrack or not, and whether that point lies on the racetrack border or not.

3 Complexity of Solitaire RaceTrack

The single-player variant of RaceTrack naturally relates to graph reachability.
Here we first analyse the touching and the non-touching variants of RaceTrack
reachability. Observe the following: (i) If a single car moves north, south, east,
or west by precisely one square, then the next move of the car can be a complete
stop, followed by another move north, south, east or west by precisely one square
(this is stop-and-go mode). (ii) Since the car starts the game by moving hori-
zontally or vertically by a single square, a car in stop-and-go mode can explore
every portion of its track, including its borders, without leaving the game grid.

Theorem 2. RaceTrack reachability, where the track boundary can be used
for driving, is equivalent to UGGR under AC0 reducibility. ��

Proof. The RaceTrack reachability problem reduces to UGGR by the above
observations on the stop-and-go car operation mode. Conversely, consider a
UGGR instance G. We first construct an equivalent UGGR instance G′, to
be easily transformed into a RaceTrack instance later. Assume line-column
coordinates for the vertices in the UGGR instance. For each vertex (i, j) in G
we add to G′ four vertices (2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j + 1) and
the four edges to form a square. Then a horizontal edge ((i, j), (i, j + 1)) in G
gives rise in G′ to the two horizontal edges ((2i + 1, 2j + 1), (2i + 1, 2j + 2)) and
((2i, 2j +1), (2i, 2j+2)). A vertical edge ((i, j), (i+1, j)) in G gives rise in G′ to
the two vertical edges ((2i+1, 2j), (2i+2, 2j)) and ((2i+1, 2j+1), (2i+2, 2j+1)).
The start and target vertices in G′ are set accordingly. Finally, the RaceTrack
instance is built from G′ by taking all vertices (grid points) in G′.

It remains to identify the grid points sitting on the track border and to pro-
vide for those points the extra 8 bits of information required to locate the track
relative to the track border. To this end we consider for each grid point its
Moore neighborhood consisting of all grid points that are immediate vertical
and horizontal neighbors. This forms a 3 × 3 subgraph of G′. By construction,
each such 3 × 3 subgraph contains at least one square-shaped subgraph arising

1 An alternative encoding of RaceTrack instances based on polygonal chains of
vertices representing the racetrack border is discussed in [3] and [9]. Because the
polygonal representation uses binary notation, the number of accessible grid points
can be exponential in the input length. Thus, the complexity results for the polygonal
encoding may vary significantly from the results presented here.
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Fig. 2. All possible 3×3 subgraphs, up to mirroring and rotation, that can occur during
the construction of G′ and their local RaceTrack situations shown underneath

from the four vertices in G′ corresponding to each vertex in G. Without loss
of generality assume that the square-shaped subgraph resides in the lower right
corner of the 3× 3 subgraph. Notice that the pair of vertices above this square
and the pair of vertices to the left of this square are each connected by an edge
since each such pair belongs to a square-shaped subgraph that is adjacent to the
3 × 3 area. Then we have to consider all further possible edge connections of
the nodes that are compatible with the construction of G′. Recall that a vertical
(horizontal, respectively) point in G induces two vertical (horizontal, respec-
tively) edges in G′. Hence we end up with 24 = 16 possible 3 × 3 subgraphs
that are compatible with the construction of the grid graph G′, since we may
introduce two independent single edges and two independent double edges. The
upshot is that for each of these subgraphs one can easily determine whether
the grid point at the center of the sugbraph is on the border or not, and where
the non-racetrack part resides. These 3 × 3 subgraphs and their local Race-
Track situation are shown in Figure 2.

Moreover, the start and finish points in the racetrack are the grid points
associated with the start and the target vertex in G′ The two reductions are
illustrated in Figure 3. ��

The UGGR problem and many related problems were studied at length: UGGR
is solvable in deterministic logspace by Blum and Kozen [2], which was known
long before Reingold [8] showed that general undirected graph reachability (UGR)

red
green

blue

Fig. 3. (Left:) Undirected grid graph with source and target node marked green and
red, respectively. Isolated vertices are not shown. (Middle:) Equivalent undirected grid
graph were the RaceTrack instance can be easily read off. The square 1×1 subgraphs
induced by construction from isolated vertices are drawn in light black. (Right:) Race-
Track instance with start and finish line (point).
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is in L. In contrast to UGR, which is L-complete [8], UGGR is only known to
be NC1-hard [1] and thus seems to be of lower complexity, because even gen-
eral grid-graph reachability (GGR) is not known to be hard for L under AC0

reductions.

Corollary 3. RaceTrack reachability, where the track boundary can be used
for driving, is NC1-hard under AC0reductions and belongs to L. ��

So why would disallowing the track borders (that is, causing a fatal crash and
ending the game when the car hits the track border) make any difference on the
complexity of RaceTrack reachability? The surprising answer is that stop-
and-go mode then no longer suffices to handle every situation: the car may now
need to balance its horizontal and vertical speeds in order to squeeze its way
through narrow track portions. This is illustrated by Figure 4.

red
green

blue

Fig. 4. (Left:) RaceTrack game situation. (Middle-left:) Reachable positions (green)
when restricted to stop-and-go-mode, but with drivable track borders. (Middle-right:)
Reachable (green) and unreachable positions (red) when restricted to stop-and-go-
mode and forbidding driving on the track borders. (Right:) Extending the reachable
positions (green) by using speed to traverse the narrow corridor diagonally.

In contrast to Corollary 3, a consequence of the following theorem is that under
the usual conjecture that L �= NL, the non-touching variant of RaceTrack
reachability is provably harder than its touching variant:

Theorem 4. RaceTrack reachability and solitaire RaceTrack, where the
track boundary cannot be used for driving, are NL-complete.

Proof. We only give the proof for RaceTrack reachability; handling the soli-
taire RaceTrack time bound adds no significant complication.

To prove that non-touching RaceTrack reachability is in NL, we reduce it
to GR. From a game instance, we build a directed graph whose nodes represent
all valid grid-position-speed-vector pairs and whose edges represent legal moves.
Thus, a vertex ((i, j), v) is connected to ((i, j) + v + Δ, v + Δ), where Δ ∈
{−1, 0, 1}2, if and only if the line segment starting at (i, j) and ending at (i, j)+
v+Δ is entirely on the racetrack excluding the boundary points. We further add a
source vertex s and an edge to the initial grid-position-speed-vector pair, a target
vertex t, and edges for every grid-point-speed-vector for every grid-point on the
finish line and any speed vector to vertex t. Then the car starting at the initial
position can drive to the finish line not touching the boundary points if and only
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Fig. 5. (Left:) From top to bottom: straight edges, X-crossing edges, up-route edges
(with dead ends), and split-join edges. (Middle:) Subgraph induced by an edge (2, 3) of
a directed graph G on four vertices. (Right:) Termination subgraph (slightly optimized
in length to fit the line) after all edges of G were considered.

if there is a path from s to t in the constructed graph. The construction can be
done in logspace since the grid positions and the speed vectors are polynomially
bounded in the size of the RaceTrack instance.

To prove that non-touching RaceTrack reachability is NL-hard, we reduce
GR to it. Let (G, s, t) be an instance of the GR problem, where G = (V, E)
is a directed graph with vertices V and edges E ⊆ V × V , and s and t are
the source and the target vertices, respectively. Without loss of generality we
may assume that V = {1, 2, . . . , n}, that s = 1 and t = n, and that node n
has a self-loop, i.e., edge (n, n) is in E. We will proceed in two stages. In stage
I, we reduce testing reachability in G to testing reachability in a layered di-
rected graph (LGR) constructed from four types of edge gadgets, namely straight
edges, X-crossing edges, up-route edges, and split-join edges. See Figure 5 for
a drawing of these four gadget types. The semantics of the X-crossing gadget
on Figure 5 is that crossing edges do not touch. In stage II, we will later im-
plement the effect of these connection gadgets in a non-touching RaceTrack
game.

STAGE I. The layered graph constructed will consist of a 2n × O(n4) rect-
angular grid of nodes whose lines (“rows”) are numbered 1, 2 . . . , 2n from top
to bottom. This grid is divided up into n identical blocks of size 2n × m,
where m ∈ O(n3). The construction will maintain the property that a path
of length k with k > 0 exists from node i to node j in G if and only if a path
of length at most k exists from node (i, 1) to node (j, m · k) in the rectangular
grid.

A block is itself the concatenation from left to right of O(n2) edge layers, fol-
lowed by a single termination layer. The edge layers are obtained from left to right
by considering every edge in the graph G (in any order). The layer corresponding
to edge (i, j) in G is constructed by first using a sequence of X-crossing gadgets
to “bend line i downwards” across the lines below it. As the (bent) line i crosses
the line n + j − 1, a split-join gadget is inserted to create a path from line i to
line n + j. Using further X-crossing gadgets, line i is then bent back upwards and
made to return to its original vertical position. The final (termination) layer in
the block uses up-route gadgets to safely create paths from line n + � to line �, for
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Fig. 6. (Left:) Acceleration tunnels for the 2-player RaceTrack game later used in the
proof of Theorem 7—the acceleration tunnel for the 1-player RaceTrack is the top
tunnel. (Right:) Blueprint of a 1-player RaceTrack subgame for implementing the
four types of gadgets by blocking the racetrack tunnel passages at A, B, C, and/or D,
respectively, with obstacles—see the description in the text.

1 ≤ � ≤ n. We illustrate the constructions of an edge layer and of a termination
layer in Figure 5.

The upshot of concatenating n identical blocks is that node n is reachable
from node 1 in G if and only if the rightmost node on line n is reachable from
the leftmost node on line 1 in the layered graph. Clearly this construction can
be done in logspace.

STAGE II. Here we must simulate the edge gadgets depicted in Figure 5 with
RaceTrack (sub)games. The idea is to build a tunnel, of small width to pre-
vent U-turns, which can only be traversed if the car speed (after an appropriate
acceleration phase) is within a certain interval. A blueprint of a RaceTrack
subgame which can be used to realize all edge gadgets is depicted in Figure 6;
the verification that there is no other way through the tunnels is left to the
reader. For the actual realization of each edge gadget one has to block some
tunnel passages by obstacles appropriately as follows:

– Straight edges: Block the tunnel passage at both B and C.
– X-crossing edges: Block the tunnel passage at both A and D.
– Up-route edges: Block the tunnel passages at A, B, and D.
– Split-join edges: Block only the tunnel passage at C.

Thus one builds in logspace a RaceTrack game for the above constructed
graph—the only missing part is an acceleration tunnel that is connected to the
game portion induced by the source node of the graph. The construction of an
acceleration tunnel is drawn in Figure 6. ��

The idea in the proof of Theorem 4 can be made to work for the touching variant
of solitaire RaceTrack, proving NL-completeness for that variant also. Indeed
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it suffices to slightly modify the gadgets in order to enforce maintaining the
driving speed (mostly by shrinking the tunnels as much as possible); deviating
from the prescribed speed results in the car not reaching the finish line in time.
We must leave the details to the reader. Complementing Theorem 4, we thus
have the following:

Theorem 5. Solitaire RaceTrack, where the track boundary can be used for
driving, is NL-complete. ��

4 Complexity of the Usual RaceTrack Game

In this section we consider the 2-player game. We first show the following (the
proof uses the AL characterization of P and is omitted):

Theorem 6. Deciding if the first RaceTrack player has a winning strategy
can be done in polynomial time, regardless of whether driving on the track bound-
ary is allowed or not. ��

Next we prove that the non-touching variant is in fact P-complete, thus capturing
the precise complexity of the game.

Theorem 7. Deciding if the first player has a winning strategy in the 2-player
RaceTrack game, when the track boundary cannot be used for driving, is P-
complete.

Proof. By Theorem 6, it suffices here to show P-hardness. We will reduce the
GEN problem to RaceTrack by adapting the reduction from GEN to GAME
(two-player game) mentioned by Greenlaw et al. in [5, page 208, A.11.1]. In
GAME, Blue attempts to prove that an element t is generated by S. Blue does
this by exhibiting two elements r and s, also claimed to be generated by S, such
that t = r ◦ s, while Red attempts to exhibit an element of the pair that is not
generated by S. The behaviours of Blue and Red will be simulated by (drum
roll!) a RaceTrack game.

Let T = {1, 2, . . . , n}, S ⊆ T , and g ∈ T be the GEN goal. Notice that g is
generated by S if and only if g would appear in a set X initialized to S after at
most n iterations of the informal operation X ← X ∪ (X ◦ X). The racetrack
will be a (n + n2 + 2) × O(n5) rectangular grid of nodes whose lines (“rows”)
are named w, 1, 2 . . . , n, (1, 1), (1, 2), . . . , (n, n), c from top to bottom, where w is
mnemonic for the “w inning” (blue) line and c is mnemonic for the “continuing”
(red) line.

At the meta-level, imagine the virtual edges (t, (r, s)), ((r, s), r) and ((r, s), s),
for r, s, t ∈ T such that t = r ◦ s. Initially, Blue’s goal is to prove that t = g is
generated (suppose that g /∈ S). The racetrack will consist of n identical blocks.
Each block will implement the following. Blue will be forced to traverse one of
the O(n2) virtual (t, (r, s)) edges. This will pin Blue to a choice of a pair (r, s)
such that t = r ◦ s. Red will come along and be forced to traverse either the
virtual ((r, s), r) edge or the virtual ((r, s), s) edge. This will pin Red to a choice
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Fig. 7. (Left:) Killer edge gadget or killer edges, for short—Blue is driving at the top
and Red at the bottom. (Middle and Right:) Parting gadget with selector gadget on
the left. Again Blue drives on the top and Red on the bottom.

of a challenge σ ∈ {r, s}. At this point, a gadget will force Blue to meet the
challenge, that is, to proceed on to the next block with t = σ.2

We now give the details. The behaviour of Blue choosing a virtual (t, (r, s))
edge can already be simulated with the edge gadgets depicted in the middle of
Figure 5, now viewing these gadgets as operating on virtual edges (t, (r, s)). To
implement Red’s behaviour, assume temporarily that we have at our disposal a
RaceTrack subgame implementing the following killer gadget: the gadget has
two entry points and two exit points, and whenever both cars enter, only Red
makes it through while Blue experiences the inconvenience of a fatal accident;
when a single car of either colour enters, that car makes it through safely. With
the help of such a killer gadget, we can construct a controlled parting gadget
with three input tunnels named (r, s), r, and s and with three output tunnels
named r, s, and c satisfying the following property:

– If Blue enters at (r, s) and Red enters at r (s, respectively), then Blue can
only exit at r (s, respectively) and Red exits at c.

See Figure 7 for the killer gadget icon and for the parting gadget. Assuming
proper operation of the killer gadget, the correct operation of the parting gadget
should be clear.

But the parting gadget is exactly the device required to implement Red’s
challenge of an element of the pair (r, s), in response to Blue’s choice of (t, (r, s)),
followed by the handing over of that challenge to Blue at the next move! In other
words, the parting gadget implements Red’s meta-level choice of a virtual edge
((r, s), r) or ((r, s), s): Blue can only proceed towards the line (r or s) selected
by Red.

Constructing a block in the reduction from GEN to RaceTrack therefore
consists, first, in aligning the devices for the virtual edges (t, (r, s)) in sequence,
describing possible driveways for the blue car, and additionally installing a par-
allel street c for the red car. Next, for all pairs (r, s), the devices for the virtual
edges ((r, s), r) and ((r, s), s) are aligned in sequence and the outputs r and s
are redirected to their respective initial lines. Finally, for all elements t ∈ S, a
branch-off to the line w is installed.
2 Technically, the gadget will connect Blue to the σ line and will connect Red to the c

line; this will be followed by an exit gadget connecting every � line with � ∈ S to the
w line, thus allowing Blue to speed off to a win when σ ∈ S.
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Once the n identical blocks are assembled, final details involve taking care of
the trivial case in which g happens to belong to S from the start (this requires
inserting an exit gadget before the first block), connecting appropriate acceler-
ation tunnels for both players and joining the c line to the finish line (so that
Red can make it to the finish line one step ahead of Blue if Blue after n steps
has not proven his point that the initial GEN goal is generated).

i
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Fig. 8. RaceTrack subgame for the killer gadget—the blue car (player 1) is blocked
by the red car (player 2) in the (i + 5)th turn at A. In the middle part of the gadget,
which is not shown, the tunnel for the blue car continues snake like and the tunnel for
the red car bends in an S-like fashion first slightly up, then down intersecting with the
snake like tunnel of blue, and finally towards the exit at the bottom of the subgame.

It remains to describe the implementation of the killer gadgets. We make
use of tunnels of small width and appeal to the RaceTrack rule that no two
cars may simultaneously occupy the same grid point. Crossing tunnels are of
course required. Note that we have used crossing tunnels before, namely when
implementing gadgets requiring the RaceTrack blueprint shown on Figure 6.
Collisions were not an issue when the blueprint was used in the single-player
context, but here we need the same blueprint to implement the crossings implicit
in Blue’s behavior, as explained above: Figure 6 shows that for such a purpose,
collisions can be avoided by construction. A killer gadget, on the other hand,
requires a crossing tunnel that allows collisions, as shown in Figure 8. To obtain
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the desired killer gadget effect, the red car must enter the gadget one step ahead
of the blue car: this property can be maintained throughout the racetrack by fine-
tuning the acceleration tunnels at the beginning of the game—see the drawing in
Figure 6. This completes the description of the (logspace-computable) reduction
from GEN to non-touching RaceTrack. ��

5 Conclusion

We investigated the complexity of RaceTrack and obtained precise complex-
ity characterizations in terms of completeness results for solitaire RaceTrack
and for (the non-touching variant of) 2-player RaceTrack. As to (1-player)
RaceTrack reachability, it turned out that having or not having access to the
boundary of the racetrack for driving affects the complexity of the problem. More
generally, we observed that 2-player RaceTrack is a polynomial time solvable
game (hence unlikely to be NP-complete), yet interesting and fun to play.

We have not settled the P-hardness of the touching variant of 2-player Race-
Track. We leave the latter question, as well as the study of the wealth of game
variants introduced by the gaming community over the years, as open problems
for further research.

Acknowledgements. We thank Martin Beaudry and Martin Kutrib for useful
discussions, and the anonymous referees for raising interesting issues, such as
the need to distinguish solitaire RaceTrack from RaceTrack reachability.
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Abstract. We prove that it is NP-hard to decide whether two points
in a polygonal domain with holes can be connected by a wire. This
implies that finding any approximation to the shortest path for a long
snake amidst polygonal obstacles is NP-hard. On the positive side, we
show that snake’s problem is ”length-tractable”: if the snake is ”fat”,
i.e., its length/width ratio is small, the shortest path can be computed
in polynomial time.

1 Introduction

s
f

Fig. 1. Only a self-overlapping thick path
exists

The most basic problem in VLSI and
printed circuit board design is to con-
nect two given points, s and t, by a
shortest ”thick” path avoiding a set of
polygonal obstacles in the plane. The
quarter-of-a-century-old approach to
the problem is to inflate the obstacles
by half the path width, and search for
the shortest s-t path amidst the in-
flated obstacles [9]. The found path,
when inflated, is the shortest thick s-t
path.

It went almost unnoticed that the
thick path built by the above proce-
dure may self-overlap (Fig. 1): apart from our recent work on thick paths [4], we
only found one mention of the possibility of the overlap — Fig. 4 in [13] (in a
different context, Bereg and Kirkpatrick [8, Fig. 2] also noted that Minkowski
sum of a disk and a path may be not simply-connected). When the path rep-
resents a thick wire connecting terminals on a VLSI chip or on a circuit board,
self-overlap is undesirable as the wire must retain its width throughout. Thus,
the objective in the basic wire routing problem should be to find the shortest
non-selfoverlapping thick path.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 272–283, 2010.
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The problem shows up in other places as well. For instance, one may be in-
terested in the optimal conveyor belt design: the belt is a non-selfoverlapping
thick path. Our particular motivation comes from air traffic management where
thick paths represent lanes for air traffic. Lane thickness equals to the minimum
lateral separation standard, so that aircraft following different lanes stay suffi-
ciently far apart to allow for errors in positioning and navigation. If an airlane
self-overlaps, two aircraft following the lane may come too close to each other;
thus it is desirable to find lanes without self-overlaps.

1.1 Our Contributions

We prove a surprisingly strong negative result (Section 4): it is NP-hard even
to decide whether there exists (possibly, arbitrarily long) s-t wire; this implies
that no approximation to the shortest wire can be found in polynomial time
(unless P=NP).
Short Snakes. Our intractability result means that in general it is NP-hard
for a snake to wriggle its way amidst polygonal obstacles (assuming the snake
is uncomfortable with squeezing itself). The good news for snakes is that in our
hardness proof the sought wire is considerably long; i.e., the hardness of path
finding applies only to long snakes. Our positive result (Section 3) is that
for a bounded-length snake, the shortest path can be found in polynomial time
(assuming real RAM and the ability to solve constant-size differential equations
in constant time) by a Dijkstra-like traversal of the domain.

1.2 Related Work

In VLSI numerous extensions and generalizations of the basic problem were
considered. These include routing multiple paths, on several levels, and with
different constraints and objectives.

In robotics thick paths were studied as routes for a circular robot. In this
context, path self-overlap poses no problem as even a self-overlapping path may
be traversed by the robot; that is, in contrast to VLSI, robotics research should
not care about finding non-selfoverlapping paths. In [9], Chew gave an efficient
algorithm for finding a shortest thick path in a polygonal domain. In a sense,
our algorithm for shortest path for a short snake (Section 3) may be viewed as
an extension of Chew’s.

Our bounded-length snake problem is reminiscent of path planning for a seg-
ment (rod) [5,14,6,17]. Short snakes are also relevant to more recent applications
of motor protein motion [10, 18].

2 Snake Anatomy and Physiology

In this section we introduce the notation and formulate our problem.
Let P be an n-vertex polygonal domain with obstacles. For a planar set S let

bdS denote the boundary of S, and for r > 0 let < S >(r) denote the Minkowski
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sum of S with the radius-r open disk centered at the origin. Let P r = P \
< bdP >(r) be P offset by r inside. The boundary of P r consists of straight-line
segments and arcs of circles of radius r centered on vertices of P . We call such
(maximal) arcs r-slides.

Let π be a path within P 1; let |π| denote its length. A thick path Π is the
Minkowski sum Π = < π >(1). The path π is called the reference path of Π ; the
length of Π is |π|.

A snake is a non-selfoverlapping thick path, i.e., a path which is a simply-
connected region of the plane. The reference path of the snake is its spine (Fig. 2).
One of the endpoints of the spine is the snake’s mouth m. The snake is a “rope”
that “pulls itself by the head”: imagine that there are little legs (or a wheel,
for a toy snake) located at m, by means of which the snake moves. The friction
between the snake’s body and the ground is high: any point p of the spine will
move only when the path from the mouth to p is a ”pulled-taut string“, i.e., is
a locally shortest path. That is, the snake always stays pulled taut against the
obstacles (or itself).

spine

antimouth

a

tail

m mouth

head
headcut

v(B)

layer-1
bend

layer-2
bend

tailed
bend

B
b1c1'

b1'

c1
B1

v(B1)

Fig. 2. Spine, mouth, head, headcut, antimouth, tail, bends. A layer-2 tailed bend B1

does not have a point connected to v(B1) with a length-2 segment fully lying within
the snake.

The input to our problem is the domain P , two points s, f ∈ P 1 – the “start”
and the “food”, a number L > 0 – the length of the snake, and the initial
direction of the snake at s. (Assume w.l.o.g. that s and f are at distance 1 from
some vertex of P .). The goal is to find a path for the snake such that the snake’s
mouth starts at s and ends at f ; the constraints are that the snake remains
pulled taut and non-selfoverlapping throughout the motion. The objective is to
minimize the distance traveled by the mouth, or equivalently, assuming constant
speed of motion, the time until the snake reaches the food.
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Remark. Whoever guesses that the above model of a snake was developed just for
FUN, is right. Nevertheless, the proposed problem formulation may be relevant
also in more serious circumstances. It models, e.g., the path of a rope being
pulled by its frontpoint through a polygonal domain. If it is a fire hose or a tube
delivering life-saving medicine [3, 11], minimizing the time to reach a certain
point seems like a natural objective (more important than, say, the work spent
on pulling the tube). For another application, consider a chain of robots moving
amidst obstacles. Each robot, except for the leader of the chain, has very simple
program of following its predecessor – just keeping the distance to it. Then the
robots form (approximately) a pulled taut thick string.

3 Shortest Path for a Fat Hippo

When the snake is relaxed and its spine is a straight-line segment, the snake is
the Minkowski sum of the length-L segment and the unit disk. Such sums are
known as hippodromes [16, 12, 7, 2, 1], or hippos for short. We say that a hippo
is fat if its length is constant: L = O(1). In this section we show that for a fat
hippo our problem can be solved in polynomial time.

Overview of the approach. Our algorithm is a Dijkstra-style search in an
implicitly defined graph G (Fig. 3): neither the nodes nor the edges of the graph
are known in advance. Instead, G is built incrementally, by propagating the labels
from the node v with the smallest temporary label (as in standard Dijkstra). The
labels are propagated to nodes in the ”L-visibility“ region of v, which is what
the snake ”sees“ while it slithers for distance L starting from v. In order to
discover the nodes in the region, we pull the snake from v for length L along
every possible combinatorial type of path; by a packing argument, there is only
a small number of types. The edges of G correspond to bitangents between the
paths and 1-slides. We prove that the algorithm is polynomial-time by observing
that the snake must travel for at least 2π − 2 before it “touches” itself with its
head; this implies that the snake never “covers” any point of bdP with more
than O(L/π) = O(1) “layers”, and hence there is a polynomial number of rele-
vant bitangents. In the reminder of the section we elaborate on the algorithm’s
details.

3.1 A Bit More Anatomy

Consider the unit disk < m >(1). The part of the boundary of < m >(1) that is
also the boundary of the snake is the unit semicircle whose diameter is perpen-
dicular to the spine at m; we call the part the head and the diameter the headcut.
The endpoint of the spine that is not the mouth is called the antimouth a. The
part of the boundary of < a >(1) that is also the boundary of the snake is called
the tail. Refer to Fig. 2.
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f

s

m

v

Fig. 3. v is a node of G; pull the snake from v for distance L along “every possible”
path. Endpoints of visibility edges (some of them are shown with solid circles) become
nodes of G.

3.2 Freeze!

Let us have a closer look at the structure of the pulled-taut snake at any moment
of time. Some pieces of the spine are straight-line segments. The segments are
bitangents between the other, non-segment pieces supported by vertices of P ,
possibly via several “layers” of the snake. We call each such (maximal) piece
B a bend ; we denote the vertex that supports B by v(B), and say that v is
responsible for B.

Snake layers. We show that each vertex v is responsible for O(1) bends. Say
that a bend B belongs to layer 1 if there exists a point b ∈ B such that |bv(B)| =
1. Recursively, B is layer-(k +1) bend if it is not layer-k and there exists a point
b ∈ B such that for some point b′ at layer k, we have |b′b| = 2 and b′b fully lies
within the (closure of the) snake (Fig. 2).

Let K be the maximum index of a layer. Because the snake has to wrap
around at least one obstacle before touching itself, we have:

Lemma 1. K ≤ �L/(2π − 2)�.

As a corollary, life is very simple for a fat enough hippo: for α ≥ 2π−2, an α-fat
hippo can follow a shortest thick path without self-overlap.

Tailed and headed bends. One may wonder why we did not opt for a simpler
definition of layer-k bend B as one having a point b such that |bv(B)| = 2k − 1
and bv(B) lies fully within the (closure of the) snake. The reason are two special
kinds of bends which make the snake’s portrait more complicated than in the
case of an infinite-length snake. Specifically, we say that a bend B at layer k is
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tailed (resp. headed) if < B >(2k−3) touches the tail (resp. head). The simpler
definition may not work for such bends (Fig. 2).

Any bend that is not tailed or headed is an arc of a circle (actually, it is part
of a slide). A tailed or headed bend B is a different shape – string pulled taut
against a ball touching v(B).

Snake configuration. The snake can be reconstructed in linear time as soon
as the following is specified: (1) list of the vertices responsible for the bends;
(2) for each bend, its layer; (3) for a headed bend – the vertex or the edge of P
in contact with the head, and the slope of the headcut; (4) similar information
for a tailed bend; (5) positions of the mouth m and antimouth a. We will call
(1)–(5) the configuration of the snake.

Because each vertex is responsible for at most K bends, we have:

Lemma 2. The list (1) contains O(n) vertices.

3.3 Move!

Suppose that we are given the configuration C of the snake at some time; let π
be the spine when the snake is in C and let mC be the position of the mouth in
C. Suppose we are also given a path γ for the mouth starting at mC . Assume γ
has the following properties: (1) it is consistent with C in that the tangent to γ
at mC coincides with the tangent to π at mC ; (2) it has a polynomial number
of pieces, each of constant description complexity; (3) |γ| ≤ L. In what follows
we assume that every path γ has these properties. We claim that in polynomial
time we can check whether γ is a feasible path for the mouth, i.e., whether the
snake stays obstacle-free when m is pulled along γ (say, at unit speed).

First we note that it is enough to check only whether the mouth moves feasibly.
Indeed, the first time that the snake (possibly) becomes infeasible as m follows γ,
the mouth is necessarily a part of “certificate of infeasibility”. This is so because
the only way that the snake experiences “side pressure” is due to appearance of
a headed bend. Other than that, any piece P of the snake is merely pulled by
the preceding piece, P ′: either P exactly follows the same path that just was
feasible for P ′, or P is a tailed bend B. Of course, the bend morphs as the time
passes, but only becomes “more feasible” with time, i.e., the free space around
B increases – B is pushed only by the tail, and the tail “moves away” with time.

Let now γ′ be a piece of γ. If we know how each piece P of the snake changes
with time, we can test whether m stays feasible while following γ′, by checking
the feasibility against each P in turn. That is, while neither the configuration
of the snake nor the piece γ′ of γ changes, the feasibility test can be done piece-
versus-piece in constant time (assuming real RAM). Observe that overall there
is only a polynomial number of configuration changes. Indeed, the configuration
may change only due to one of the following events : (1) the tail starts to follow
another feature of P , (2) a headed bend appears or changes its combinatorial
structure, (3) a tailed bend disappears or changes its combinatorial structure.
But each of the events (1)–(3) may happen only once per vertex-bend-layer
triple; thus, by Lemmas 1 and 2 there is only a polynomial number of events.



278 I. Kostitsyna and V. Polishchuk

Tracking the configuration changes is easy given the way each piece changes
with time. For event (1), we only have to know how the tail speed changes with
the time between consecutive events (the tail speed is not necessarily constant,
we elaborate on it in the next paragraphs). For event (2) we check what is the
first time that the head collides with a piece or when a headed bend hits a
vertex; all this can be done in polynomial time as there is only a linear number
of candidate collisions. Event (3) is similar. The next event time is then the
minimum of the event times over all the pieces.

It remains to show how to determine the way each piece changes. Here the
crucial role is played by the headed and tailed bends; again, it is the finiteness
of the snake length that makes things involved. Let B1 = b1b

′
1 be the first such

bend counting from m (Fig. 2). Assume that B1 is a layer-k tailed bend; the
situation with a headed bend is actually simpler (because the mouth speed is
constant). Let c1b1 and b′1c

′
1 be the pieces adjacent to B1 – both are bitangents

(straight-line segments, possibly of 0 length) to B1 and adjacent bends. Every
point of the spine between m and c1 moves at speed 1, and none of the bends
before B1 changes with time.

To figure out what happens after c1, we have to solve a constant-size dif-
ferential equation that describes the ”propagation” of speed of motion of the
spine. Specifically, let u(τ) denote the speed at which the antimouth moves at
time τ . Knowing u(τ) and knowing the initial position of the antimouth, we
can write the antimouth position as a function of time, and hence we know
< a >(2k−2) as a function of time. The points b1 and b′1 are points of tangency
to < a >(2k−2) from c1 and c′1; thus knowing < a >(2k−2) we know how the
length |c1b1|+ |π(b1b

′
1)|+ |b′1c′1| changes with time. Knowing that, and recalling

that at c1 the spine moves with unit speed, we can write what the spine speed
at c′1 is as a function of τ .

Now, the spine speed does not change between c′1 and the next point, c2, that
is the start of the tangent to the next headed or tailed bend, B2. We perform at
B2 the same operations as above, and get the speed of motion of the spine past
the bend B2. Continuing in this fashion, in the end, after going though all bends,
we obtain some expression, E(u(τ)) for the spine speed after the last bend.

Finally, to close the loop, we solve the equation

u(τ) = E(u(τ)) (1)

Since there is only a constant number of layers (Lemma 1), there is only a
constant number of the headed and tailed bends, and hence the expression E is
a sum of a constant number of terms (each containing u(τ) and

∫
u(τ)dτ), each

of constant description complexity. In our computation model, we can solve the
equation for u(τ) in constant time. Substituting u(τ) back into the formulae for
the different bends, we obtain the spine as a function of time, as desired.

3.4 See!

Assume that at some point the snake is in configuration C. What happens next, as
the snake follows the optimal path to f? Local optimality conditions imply that
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it will “wiggle around the obstacles” for some time and then “shoot” towards a
vertex of P . We formalize this below.
Final piece of anatomy. The eye of the snake is collocated with the mouth.
The snake can see a point x ∈ P 1 if the segment mx lies fully within P 1 and is
tangent to the spine at m. Recall that P 1 = P \< bdP >(1) where < bdP >(1)

is the Minkowski sum of bdP with open unit disk; hence mx can go along the
boundary of P 1 (with x being, e.g., an endpoint of a slide; see Fig. 3). The snake
itself is transparent for its eye: we do not forbid mx to intersect the snake.

Definition 1. A point p on bdP 1 is L-visible from mC if there exists a path
γ for the mouth ending in a point m∗ such that m∗ sees p and m∗p is tangent
to bdP 1 at p. We say that mCp is an L-visibility edge, or an L-edge for short.
We say that γ is the wiggle segment of mCp, and that m∗p is the visibility
segment of the edge. (We remind that we assume γ enjoys the properties listed
in the beginning of Section 3.2: tangent at mC consistent with C, polynomial-size
description, length ≤ L.)

To be on a (locally) optimal path, the mouth would like to follow an L-edge
also past m∗. This may not be feasible due to a conflict with the snake itself.
However, such conflicts can be discovered “on-the-fly”, as the mouth attempts
to move along m∗p. Specifically, try to move the mouth along m∗p, as described
in Section 3.3. If during the motion, the head collides with the snake, note what
kind of bend the head collides with. If this bend B is not tailed, adjust the path
for the mouth so that it is tangent to < B >(2), and follow the adjusted path.
If by the time the mouth reaches < B >(2), the bend B is “gone”, i.e., the head
“misses” the snake, we know that we are dealing with a tailed bend (or with the
tail itself). We identify the time and place of contact with the bend by solving
a differential equation similar to (1): assuming the speed of the tail is u(τ), we
know how the bitangent between m and the corresponding ball centered at a
changes; in particular, we know its length l(τ) as a function of time. The time
τ∗ when the head hits the tail is then the solution to the equation τ∗ = l(τ∗).
After solving the equation we know the configuration of the snake at τ∗, and
continue moving the mouth to p around the tail.

The above procedure essentially “develops” the path γ piece-by-piece. This
is consistent with Section 3.3 where we described how to pull the snake along a
given path γ for the mouth: the pulling was done piece-by-piece, which means
that it can be performed even if γ is not given in advance but instead is revealed
piece after piece. More importantly, using the procedure, we can develop all L-
edges incident to mC , piece-by-piece, in a BFS manner. We describe this below.

To initiate the developing, look at the visibility segment m′mC of the L-edge
that has led the mouth to mC . The segment is tangent to a slide S � mC .
The slide S down from mC (i.e., in the direction consistent with m′mC) is the
first (potential) piece of a new L-edge. We extend bitangents from the piece to
all other 1-slides and to all pieces of the spine inflated by 2. These bitangents
become the next potential pieces for the L-edges. After the bitangents, the next
potential pieces are the slides and the spine pieces at which the bitangents end.
We continue in this way (possibly adjusting the pieces of a particular edge to
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account for snake self-interaction) until for each edge its wiggle segment reaches
length L.

We now bound the time spent on developing all L-edges from mC . Each edge
has linear complexity; this can be proved identically to Lemma 2. Thus all edges
can be grown in polynomial time if the number of edges is polynomial. This is
what we prove next:

Lemma 3. Let E be the set of all L-edges incident to mC. |E| = O(n2).

Proof. By definition, every edge starts from a path γ for the mouth of length at
most L. Say that paths γ1, γ2 are the same combinatorial type if the sequence
of vertices visited by γ1 is a subsequence of that for γ2 (or vice versa). Being of
the same type is an equivalence relation that splits E into classes. For each class,
keep only the path with the longest sequence of visited vertices, and identify the
class with the path. Let E

∗ be the obtained collection of classes.
Let γ∗ ∈ E

∗. Any L-edge that has a path γ ∈ γ∗ as its wiggle segment is
obtained by extending a bitangent from γ (or equivalently from γ∗) to some slide.
Thus the total number of L-edges having a path in γ∗ as the wiggle segment is
at most the number of bitangents from γ∗ to the slides, which is O(n2) since γ∗

is O(n)-complexity.
It remains to prove that |E∗| = O(1). It is easy to see that |E∗| depends only

on the number H of the holes in P 1 reachable by length-L paths from mC (not
on the number of vertices). By a packing argument, H = O(1).

3.5 Label!

We are ready now to traverse the ”L-visibility” graph G of P , searching only the
relevant part of G and not building the whole graph explicitly. The label of each
node in G consists of two parts: the distance label (storing the distance from s)
and the configuration label (storing the snake configuration at which the node
was reached). That is, a node may have several labels – one per configuration.
However, since there is only a constant number of different configurations of
pulled-taut snakes that may reach the node, the total number of labels of any
node is constant.

Start from mC = s, and assign distance label 0 to s. The algorithm grows
the graph G whose edges are the discovered L-edges and whose nodes are the
endpoints of the L-edges. Note that by the definition of L-visibility (Definition 1),
all nodes of G reside on slides. At a generic step, take the node with the smallest
(temporary) distance label, make the label permanent, and construct L-edges
from the node. The endpoints of the edges join G and get their (temporary)
distance labels and configuration labels. In addition, each already existing node
over which the mouth passes, gets its distance label updated if the distance
label carried with the mouth is smaller than the node’s current label and the
configuration label carried with the mouth is the same as the node’s configuration
label. The search stops when f is reached.

We now prove that the algorithm terminates in a polynomial number of steps.
The visibility segments are bitangents between 1-slides and pieces of the wiggle
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segments. These latter pieces are of two types: (1) slides up to layer K and
(2) curves that are obtained as the head rolls over the tail, possibly padded
by up to K layers of the snake. There is in principle an uncountable number
of possible pieces of the second type. Nevertheless, every step of the algorithm
discovers at least one new visibility segment tangent to a piece of the first type.
Since the number of slides up to layer K is O(n), there is O(n2) of such visibility
segments. Each such segment may be discovered only a constant number of times
— once per homotopy type of the snake reaching the endpoint of the segment.
Thus overall there is O(n2) steps.

Theorem 1. Shortest path for a fat hippo can be computed in polynomial time.

4 Being a Long Snake Is Hard

In this section we show that if the snake length is not bounded, deciding existence
of a path for the snake is NP-hard. Specifically, our problem is: Given polygonal
domain P and points s, f , find a thick non-selfoverlapping s-f path.

To show the hardness, start from an instance I of planar 3SAT [15] embedded
so that all variables are aligned along a horizontal line. We identify the instance
with its (planar) graph, and the variables and clauses with the points in the
plane into which they are embedded.

We say that a clause C′ is a child of a clause C if C′ can be connected to C
without intersecting any variable-clause edge. Add to I all parent-child edges; if
a parent has only one child, connect them by 2 parallel edges (parallel in the
graph-theoretic sense, in the embedding they are not parallel). Add also edges
between siblings (Fig. 4). A clause that is noone’s child is an orphan. Assume all
orphans are aligned along a horizontal line, and connect consecutive orphans.

Add nodes s and f to I; add edges from s to x1 and from the leftmost orphan
to f . Add a parallel edge for each clause-variable edge. Add an extra connection

x1 x2 x3 x4 x5 x6 x7s

C4

C3

C5

C2

x8

f C1

Fig. 4. I is augmented with parent-child edges, sibling edges and an edge between the
last variable and the rightmost orphan. The walk is indicated with the arrows.
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True False

openings
1 2 3 ...

openings
1 2 3 ...

to/from
variable xj

to/from
variable xi

to/from
children
clauses

to/from
children
clauses

from
parent/
sibling
clause

to/from
variable xk

to
parent/
sibling
clause

Fig. 5. Top: Traversing a variable gadget sets the truth assignment. Bottom: When a
clause gadget is traversed, from right to left, one of the channels leading to variables
must be used. Otherwise, 3 subpaths go through the top of the gadget leading to a
self-overlap.

from the last variable to the rightmost orphan. Now I has an s-f walk that
traverses the variables and then the clauses, recursing to children in the DFS
manner, and revisiting variables from their clauses; refer to Fig. 4.

Next, convert I to an instance of finding a thick wire. The variable and clause
gadgets are shown in Fig. 5. The connections (channels) between variables and
clauses (Fig. 6) ensure that whenever a channel from a clause to a variable is used
by the wire, the variable satisfies the clause. The only s-f wire in the instance
is one that follows the walk in I; the wire exists if and only if I is satisfiable.

xi xj xk

to/from
children
clauses

to/from
children
clauses

from
parent/
sibling
clause

to
parent/
sibling
clause

xiV xjV xk

Fig. 6. If a clause-variable channel is used, the variable must satisfy the clause
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Abstract. A man walks into a men’s room and observes n empty uri-
nals. Which urinal should he pick so as to maximize his chances of main-
taining privacy, i.e., minimize the chance that someone will occupy a
urinal beside him? In this paper, we attempt to answer this question
under a variety of models for standard men’s room behavior. Our results
suggest that for the most part one should probably choose the urinal fur-
thest from the door (with some interesting exceptions). We also suggest
a number of variations on the problem that lead to many open problems.

1 Introduction

The question of digital privacy and how to protect it has a long history of study
in computer science and it raises a number of interesting algorithmic (as well as
other) research problems[7]. But it is also the case that algorithmic issues may
arise when considering physical privacy. A particular instance of this occurs
when one considers the use of a public men’s room. The standard design of a
men’s room contains a number of urinals which are generally located along one
wall with neighboring stations in full view of each other (Figure 1). (Although
recently there has been a trend to place dividers between adjoining positions [1].
For a history of privacy concerns in restroom design see [15].) In order to obtain
some amount of privacy while vacating one’s bladder it is desirable to have a
urinal such that its neighboring positions are unoccupied1.

This leads to the following algorithmic question: A man walks into a men’s
room and observes n empty urinals. Which urinal should he pick so as to maxi-
mize his chances of maintaining privacy, i.e., minimize the chance that someone
will occupy a urinal beside him? One’s intuition might suggest that choosing one
of the end urinals is the best choice. It turns out the answer depends on many
1 We hope that by focusing on the men’s room version of the problem we are not

leaving out our female readers. We chose this version since (1) we understand (not
from personal experience) that most women’s rooms contain only water closets which
already provide some amount of privacy beyond that afforded by urinals and (2) we
are more familiar with the behavior of men in a public restroom situation which we
shall see is an important aspect of our study. It has been pointed out to us that
women may also use urinals [2] and should this become a more prevalent behavior
our results may directly interest our female readers.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 284–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Standard men’s room urinal arrangement

things but in particular on how one models the behavior of the men who enter
later. In this paper, we consider a variety of models for men’s room behavior
and attempt to develop strategies for maintaining privacy under each. The re-
sults of this preliminary study suggest that for the most part one’s intuition is
correct (the ends are best) with some interesting exceptions. We also examine a
number of variations on the problem that might lead to a better understanding
of physical privacy concerns and which suggest many interesting open questions.

2 Related Work

As far as we know the problem we consider has not been studied before. If one
is interested in finding the most private position to place an object in the sense
of it being furthest from all other occupied positions in some space this can be
formulated as a version of the well-studied Obnoxious Facility Location Problem.
(See [13] for a survey of results in this area.) But in our case this question is
trivially solved by taking the position at the mid-point of the largest gap of
urinals (i.e., contiguous sequence of empty urinals) and it does not really answer
our question. The question of privacy in querying sensors in a sensor network
also shares some aspects of our question but again the concerns turn out to be
different [16].

Most closely related to our question (at least for the case where the men
behave randomly) seems to be the following “unfriendly seating arrangement”
problem posed by Freedman and Shepp [4]: There are n seats in a row at a
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luncheonette and people sit down one at a time at random. They are unfriendly
and so never sit next to one another (no moving over). What is the expected
number of persons to sit down? Solutions to this problem were provided by
Friedman, Rothman and MacKenzie [5,12] who show that as n tends to infinity
the expected fraction of the seats that are occupied goes to 1

2 −
1

2e2 . (For a nice
exposition of this and related problems see [3].) Georgihou et al. [6] consider the
following generalization of this problem (the unfriendly theatre seating arrange-
ment problem): People arrive one at a time to a theatre consisting of m rows
of length n. Being unfriendly they choose seats at random so that no one is in
front of them, behind them or to either side. What is the expected number of
people in the theatre when it becomes full, i.e., it can not accommodate any
more unfriendly people? They give bounds on the fraction of the theatre that is
full (in the limit) for all m and show that for m = 2 this limit is 1

2 −
1
4e .

While perhaps related to our problem in name only, our study was at least
partially inspired by Knuth’s Toilet Paper problem [11]. Don Knuth relates that
the toilet paper dispensers in the Stanford Computer Science public restrooms
are designed to hold two rolls of tissues either of which is available for use. This
led him to consider the following problem: A toilet stall contains two rolls of toilet
paper of n sheets each. The stall is used by people of two types: big choosers
and little choosers. They arrive to use the toilet randomly and independently, the
former with probability p and the latter with probability 1−p. Big (respectively,
little) choosers select exactly one sheet of paper from the roll with the most
(respectively, least) number of sheets. What is the expected number of toilet
sheets remaining just after one of the two rolls has emptied, defined to be the
residue Rn(p)?

Knuth used combinatorial techniques to prove that for fixed p and r, which
satisfy the condition 4p(1− p) < r < 1, we have that

E[Rn(p)] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p
2p−1 + O(rn) if p > 1/2

2
√

n
π −

1
4

1√
nπ

+ O(n−3/2) if p = 1/2

1−2p
1−p n + p

1−2p + O(rn) if p < 1/2

as n → ∞ where the constants implied by the O notation depend on p, r but
not on n. A high probability version of this result was recently used to prove
bounds on the time required for routing on a Markovian grid [9].

3 The Urinal Problem

For our initial study we assume that you are the first man to enter and all of the
urinals are available. We will discuss the case where some urinals are occupied
below. Further we assume that men enter one at a time and depending on one
of the strategies outlined below they make a choice of a urinal that provides
privacy (i.e., is unoccupied on either side) if possible. If this is not possible
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then we assume the random strategy for choosing a urinal where one chooses
uniformly at random among all unoccupied urinals. We note that other models
of how the remaining urinals are filled are possible and make some remarks on
some of them below. Finally, we assume that men enter at a constant rate of
one man every time unit and stay at their position until you have finished.

For each of the scenarios we consider, we are interested in maximizing the
expected time until your privacy will be violated, i.e., a man occupies one of
the urinals beside yours. We call a set of the occupied urinals a configuration.
We call a configuration saturated if the next man entering is forced to violate at
least one person’s privacy. It is fairly clear that, under the assumptions above,
the time until your privacy is violated can be divided into two phases: the time
until saturation is reached and time until a man violates your privacy once
the configuration is saturated. As such we divide our analysis for each of the
cases below into two parts: the time until saturation and the time until privacy
violation once saturation has been achieved.

3.1 Lazy Behavior

In this model one chooses the lowest number unoccupied urinal that provides
privacy, i.e., we assume that a urinal’s distance from the door of the men’s room
is directly proportional to its number and that men, being naturally lazy, will
always choose the first empty private spot. The analysis of the first phase divides
into two cases depending upon whether n is even or odd.

If n is even and you choose an odd numbered position then clearly the satu-
rated configuration will consist of all of the odd positions and will contain n/2
occupied urinals. If you choose an even numbered position, 2k, then the sat-
urated configuration consists of the k − 1 odd positions before you (excluding
2k − 1) and the n/2− k even positions after you. Again there are n/2 occupied
urinals at saturation. In the odd case, you are better off choosing an odd position
as in that case the saturated configuration consists of all of the odd positions
and contains (n + 1)/2 men versus (n − 1)/2 men in case you choose an even
position.

In either case, choosing any odd position yields �n/2� men in the saturated
configuration. At this point, if the remaining positions are filled randomly, there
is a distinct advantage to picking one of the positions at the end. The number of
men that enter before picking a urinal beside you follows a negative hypergeo-
metric distribution with parameters N = n− �n/2�, a where a is the number of
positions available beside you, i.e., a = 1 if you occupy position 1 or n and a = 2
otherwise. The expectation of such a random variable is given by (N +1)/(a+1)
so we get the expected time until your privacy is violated is

�n/2�+
�n/2�

2

if you choose positions 1 or n and

�n/2�+
�n/2�

3
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otherwise. Clearly, choosing an end position is to your advantage for all n. (We
discuss the case where urinals are filled in a lazy fashion after saturation is
reached below.)

3.2 Cooperative Behavior

In this model, all men cooperate to ensure that the configuration becomes satu-
rated at the last possible moment, by each choosing a position that guarantees
the maximum number of men have full privacy for as long as possible. It is easy
to establish that this case is very similar to the above in that as long as you
choose an odd position the saturated configuration will contain �n/2� men and
the best overall choice turns out to be either end.

3.3 Maximize Your Distance Behavior

In this model we assume that a new entrant to the washroom will choose the
urinal which maximizes his distance to any of the current occupants of urinals.
If more than one such urinal exists then a random one among them is chosen. If
no urinal with privacy exists then a random urinal is chosen.

First we observe that by symmetry the number and positions of the men when
saturation is first reached are independent of the random choices made among
equidistant positions and only depends on the choice that you make as the first
man. Let A(n, i) be number of men in the saturated state if the first man chooses
position i, i = 1, . . . , n. Let B(n) be the number of men in such a saturated state
assuming positions 1 and n are filled (not including the men at urinals 1 and n).

Assume n > 3. (The cases 1 ≤ n ≤ 3 are straightforward to analyze.) Observe
that if the first man chooses position 1 (respectively, n) then the second one will
choose n (respectively, 1) and the saturated configuration will contain 2 + B(n)
men. If the first man chooses 2 (respectively, n − 1) the second will choose n
(respectively, 1). If the first man chooses some position i between 3 and n − 2
then the second man will choose the further of 1 and n and eventually someone
will choose the other. This yields the following equation for A(n, i):

A(n, i) =

⎧⎨⎩
2 + B(n) i = 1, n
2 + B(n− 1) i = 2, n− 1
3 + B(i) + B(n− i + 1) 3 ≤ i ≤ n− 2.

Further observe that in any gap of k > 2 unoccupied urinals with the urinals at
either end occupied, the first of the unoccupied positions to be occupied will be
the middle one (or one of the two middle ones if k is even). This yields:

B(n) =
{

0 n ≤ 4
1 + B(� i+1

2 �) + B(� i+1
2 �) n > 4.

It is relatively straightforward to establish the following closed form solution for
B(n):
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B(n) = 2
log(n−1)�−1 + (� n− 1
2
log(n−1)�−1 � − 2)(n− 3 · 2
log(n−1)�−1 − 1)− 1

which in turn allows us to compute A(n, i) for any n, i. Unfortunately, we were
not able to establish a closed form expression for maxi A(n, i) or show that it
can be computed any faster than evaluating A(n, i) for all i. Note that this is
a pseudo-polynomial time algorithm as the input is just n. (See the discussion
below concerning different initial configurations for more on the analysis of this
algorithm.) While the function is reasonably well-behaved it does vary widely
for some values of n between the extremes of �n/3� and �n/2�.

If one was just concerned about maximizing the time until saturation occurs
it turns out that end positions are not optimal. In fact, for some values of n
position 1 is the worst choice in this regard. For example, for n of the form
3 · 2k + 1 for some k > 0, A(n, 1) = �n/3� while A(n, �n/3�) = �n/2�.

Fortunately, one can show that once again the end positions have an advantage
when we assume that the remaining positions are filled in random order. It is
fairly easy to show that A(n, i) ≥ �n/3� for all n (at least one of every three
urinals must be occupied) and that A(n, i) ≤ �n/2� (at most one of every pair
may be occupied) for all n and i and since

�n/3�+
n− �n/3�

2
> �n/2�+

�n/2�
3

we see that urinal number 1 (and n) is always (by a very slight margin in some
cases, e.g., for n of the form 3 · 2k + 1 for some k > 0 the difference is 1/6) the
optimal choice.

3.4 Random Behavior

In this model we assume that when a man enters if the configuration is not satu-
rated he chooses uniformly at random among all positions that provide him with
privacy on both sides and that once saturation is reached he chooses uniformly
among all available positions. If the first man chooses randomly like everyone
else then the question of how many men there are at the time of saturation
corresponds to the unfriendly seating arrangement problem discussed above. In
our case we are interested in computing whether it makes a difference which po-
sition you choose as the first man. And indeed it does. Consider the case n = 5.
If position 1 is chosen it is easy to calculate that the expected number of men at
saturation is 2.67 but if you choose position 3 you are guaranteed 3 men at satu-
ration so it would appear that position 3 is better. But as above it is during the
filling phase that the advantage of an end takes over. In this example, position
1 expects 4.33 men (including himself) before his privacy is violated versus the
situation for position 3 where the fourth man will certainly violate his privacy.

Let E(n, i) be the expected number of men entering before your privacy is
violated assuming you choose position i. Let pi,k be the probability that if you
choose position i the resulting saturated configuration has k men in it. Let qj,k,�

be the probability that, if there are k spots available after saturation and � = 1, 2
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depending on whether you are at an end or not (indicating the number of po-
sitions you have available beside you), your privacy is violated by the jth man
(j = 1, . . . , n − k) entering after saturation. As above we note that a saturated
configuration has between �n/3� and �n/2� positions taken and so we can cal-
culate:

E(n, i) =
n∑

s=�n/3	+1

s
∑

j+k=s,j>0,�n/3	≤k≤�n/2	
qj,n−k,�pi,k

=
�n/2	∑

k=�n/3	
(k +

n−k∑
j=1

j · qj,n−k,�)pi,k.

Using the fact that that qj,k,� is negative hypergeometrically distributed we get:

E(n, i) =

{
n+1

2 + (1/2)
∑�n/2	

k=�n/3	 kpi,k i = 1, n
n+1

3 + (2/3)
∑�n/2	

k=�n/3	 kpi,k i = 2, . . . , n− 1.

Let F (n, i) =
∑�n/2	

k=�n/3	 kpi,k. Note that F (n, i) is the expected number of urinals
occupied at saturation if position i is chosen first. But it is easy to see that

F (n, i) = 1 +

⎧⎨⎩
F (n− 2) i = 1, n
F (n− 3) i = 2, n− 1
F (i− 2) + F (n− i− 1) n = 3, . . . , n− 2

where F (n) =
∑n−1

i=0
(−2)i(n−1)

(i+1)! is the expected number of urinals at saturation
if all choices are random established in [5,12].

While F (n) is monotonic as we saw above for the case n = 5 it is not the case
that F (n, 1) > F (n, i) for all i. On the other hand, it is fairly straightforward
to show that F (n, 1) + 1 > F (n, i) and F (n, i) ≤ �n/2� for all i and n and from
this conclude (from the formula for E(n, i) above) that once again positions 1
(and n) are the optimal choice.

4 Variations on Our Theme

4.1 Different Filling Strategies

The above analysis assumes once saturation is reached the remaining positions
are filled uniformly at random. This may not be realistic as one could imagine
other approaches.

Consider, for example, a lazy filling strategy whereby a new entrant, finding
the configuration saturated, chooses the first available urinal. We say a position
is fully-private if the urinals on either side of it (if they exist) are unoccupied.
A non-end position is semi-private if only one of its neighbors is occupied. A
position is non-private if it is not fully private or semi-private. We say a man’s
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behavior is fully-private first if a man always chooses a fully-private position if
available. All of the behaviors we have been considering are fully-private first.

It is fairly straightforward to show that for any behavior that follows a fully-
private first initial strategy and a lazy filling strategy, the optimal choice is
always position n as in this case all urinals except n − 1 must be used before
your privacy is violated.

An interesting situation arises in the case where semi-private positions are
preferred to non-private positions when filling. The expected time until your
privacy is violated now depends on how many semi-private positions versus non-
private positions exist at saturation and what types of gaps exist beside you
(one or two unoccupied positions). Given this information the expected time of
your privacy can be calculated using the appropriate negative hypergeometric
distribution.

Consider what happens in the case of the distance maximizing behavior above
if (1) in the initial phase when choosing between two equi-distant alternatives
one always chooses the lower numbered urinal (i.e., the lazy choice) and (2) after
reaching saturation the men choose randomly first among semi-private positions
and only after they are filled they choose randomly among non-private positions.
In this case, the advantage held by the end positions disappears! If n = 8 the
expected time until privacy is violated for position 1 is 5 versus 6.33 if you choose
position 3. If n = 21 the expected length of your privacy for position 21 is 14.5
versus 15 if you choose position 3. In fact, one can construct infinitely many n
for which position 1 (or position n) is not the best choice. (n = 8 is the smallest
case for position 1 and n = 6 the smallest for the last position.) But in each of
these cases, we find that if the first urinal is not optimal, the last is, and vice
versa. We conjecture that under the behavior above it will always be the case
that either position 1 or position n will be optimal. Further we conjecture that
if instead of making a lazy choice for equidistant positions in the first phase but
make a random choice, the advantage for both position 1 and position n remains.
If your filling strategy is to always fill a randomly chosen gap of size 2 in order
to get a semi-private position (if one exists) in a lazy manner, then one can show
that position 1 is no longer optimal (already it fails for n = 4) but position n
is always optimal. For the random behavior and for any of the filling strategies
considered above one can show that position n remains optimal.

4.2 Non-empty Initial Configuration

More often than not when you enter a public men’s room in a busy area the
configuration you observe is not the empty one. What should one do in this
case?

A rule of thumb that follows from the discussion above is it likely the case
that if one of the end positions is open and its single neighbor is unoccupied,
you should choose that position. Note that this is not always the case! If we are
in a situation where one of the ends is available but choosing it will force a gap
of size 2 to form beside it, it may be the case that, if semi-private positions are
preferred after saturation, choosing the end is not a good idea.
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In general, the only way we know of to be certain you make the best choice is
to compute for each position the expected length of privacy using the formulas
provided above applying them to the subproblems created by the configuration.
For example, if one is analyzing the case where maximizing the distance behavior
is assumed, then one can compute the time to saturation by adding the times
resulting from each of the gaps in the configuration using the formula B(n) (or
an appropriate modification in the case where one end of a gap is position 1
or n). After saturation, the filling time can be computed using the appropriate
negative hypergeometric distribution. If the configuration is presented as {0, 1}
vector then this results in a O(n2) time algorithm for finding the best urinal
to choose. If the configuration is given as a list of positions then in general the
algorithm is only pseudo-polynomial. We conjecture there is a polynomial time
algorithm for each of the behaviors and filling strategies discussed above but
have not been able to determine one for all cases.

4.3 Dynamic Situation

Perhaps the least realistic assumptions we have made above are (1) the arrival
rate of men is constant and (2) the men stay indefinitely once they arrive rather
than leaving once they have completed their business. It is fairly evident that
both the arrivals and service times of the men are complex random processes. As
a first attempt, the use of queueing theory to model this aspect of the problem
seems warranted.

The simplest assumption in this regard would be that the arrival times form
a Poisson process and the time required to relieve oneself is exponential dis-
tributed. As there are n urinals, this leads to what is termed an M/M/n queue
in the standard queueing theory terminology [10,14]. Given 1/λ, the mean time
between arrivals, and 1/μ, the mean service time, it is straightforward to cal-
culate such quantities as the expected number of “customers” in the system
(either being serviced or waiting for a urinal to open up in case all are full), the
probability that k urinals are free, etc. and use this information to help devise
a strategy for picking a urinal.

For example, if λ
μ < n/2 then you are in a region where one expects that

saturation will not be reached during your visit (or even if it is the number of
filled positions after saturation will be small.) In this case, if one assumes the
maximizing distance behavior above then the advantage of the ends disappears.
One should use the algorithm above to estimate the position that prolongs the
time until saturation the longest. Generally, this will be somewhere in the largest
gap of urinals and not necessarily at the end. (Again, if we assume a configuration
is represented by a {0, 1} vector this will be a polynomial time algorithm.) On
the other hand, if one assumes random behavior then for most configurations
(ones with a sufficiently large gap) a search using a Python program suggests
the best choice is one that leaves three empty urinals between you and either
the beginning or the end of the largest gap. This appears to insure that the time
to saturation in that gap will be maximized.
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The above analysis assumes you have an good estimate of λ and μ which
seems unlikely2. Without this information one can make a maximum likelihood
estimate of λ

μ using the number of men in the configuration upon your arrival.
If the current configuration is not saturated you may as well assume that this
is the steady-state and follow the guidelines described in the last paragraph for
the case λ

μ < n/2. On the other hand if the configuration is saturated then
you have no choice but to pick a semi-private or even non-private position. It
might be interesting to investigate whether one such spot is better than another
for increasing your privacy. This would seem to depend on having an estimate
of the time remaining to service individuals currently in the configuration but
perhaps not.

4.4 Game-Theoretic Formulation

Another objection to the approach taken above is that those arriving after the
first arrival are limited to following a particular behavior. In reality they are
also interested in maximizing their private time. How might considerations of
more general strategies effect your choice? If the second man to enter is going to
maximize his privacy based upon your choice how does that effect your choice as
first. If k men enter simultaneously, is there a mechanism by which they might
be led to choose a configuration that maximizes the average or maxmin privacy?

These questions suggest that our problem is in reality some sort of game
played by multiple players in rounds and the tools of game theory might be
applied to establish better strategies. We leave it up to experts in algorithmic
game theory to formulate the right questions that might shed some light on this
problem. We are hopeful this might lead to some interesting lines of research.

4.5 Metric Space Generalizations

The urinal problem is just one of many situations where physical privacy might
be desirable, in a place where people are entering (and leaving) over time. The
unfriendly theatre seating arrangement problem described above is one such
example (as is any situation with open seating). Another might be called the
beach blanket problem: Frankie and Annette arrive at the beach early in the
morning and want to decide where to place their beach blanket to allow for
the most privacy throughout the day in order to engage in whatever activities
they have planned for the day. Under various assumptions about the behavior of
later arrivals, what place should they choose? We note that some old fashioned
urinals consist of one contiguous urinal with a single central drain. This would
correspond to the continuous version of our original urinal problem.

2 The designers of men’s rooms do make estimates of such quantities in order to decide
how many urinals are required for a given site. As one might expect this will depend
on the size of a building, what it is used for (e.g., office building, cinema, shopping
mall, etc.) and the expected mix of men versus women versus children. For tables of
the recommended number of fixtures required see [8].
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A natural generalization of the urinal problem that captures all of these might
be termed the metric space privacy problem. You are given a metric space (M, d),
an ε (the radius of privacy), and a deterministic or randomized behavior describ-
ing the choices of points in the space of later arrivals. Given a configuration (a
subset of points in M) choose a point that maximizes the (expected) time until
your privacy radius is violated, i.e., a later arrival chooses a point within distance
ε of your spot. In the theatre seating problem we take M to be the vertices of an
m× n grid with edge weights equal to 1 and ε = 1. In the beach blanket prob-
lem M may be modelled by a simple polygon (perhaps even a rectangle) with
the Euclidean distance measure and ε may depend upon how much privacy you
need. In the continuous urinal problem M is a unit interval and ε is a function
of a man’s width and privacy needs.

One suspects that some instances of these problems will turn out to be NP -
hard as it would appear that in some cases you would be forced to solve a version
of the obnoxious facility location problem that in some cases is known to be NP -
hard. Consideration of a given metric space can be combined with dynamics
and/or game theory to yield more problems. We feel there is the potential for
many interesting open questions in this area.

5 Conclusions

Our main conclusion is that when faced with the decision of what urinal to choose
upon entering the men’s room, in order to maximize your privacy, you should
probably choose the one furthest from the door if it is available and the one
next to it is unoccupied. For a vast majority of the (what we consider) natural
behaviors that men choosing urinals might follow, this choice is optimal (in the
sense defined above). Beyond this observation, we feel that this problem leads
to many interesting variations that are worthy of investigating further and we
encourage everyone to do more of their thinking while using public restrooms.
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Abstract. In countries such as China or Iran where Internet censorship
is prevalent, users usually rely on proxies or anonymizers to freely ac-
cess the web. The obvious difficulty with this approach is that once the
address of a proxy or an anonymizer is announced for use to the public,
the authorities can easily filter all traffic to that address. This poses a
challenge as to how proxy addresses can be announced to users without
leaking too much information to the censorship authorities. In this pa-
per, we formulate this question as an interesting algorithmic problem.
We study this problem in a static and a dynamic model, and give almost
tight bounds on the number of proxy servers required to give access to n
people k of whom are adversaries. We will also discuss how trust networks
can be used in this context.

1 Introduction

Today, Internet is playing an ever-increasing role in social and political move-
ments around the globe. Activists connect and organize online and inform ordi-
nary citizen (and the rest of the world) of the news of arrests and crackdowns
and other news that the political powers do not want to be spread. In particu-
lar, Web 2.0 has broken the media monopoly and has given voice to dissidents
and citizen journalists with no access to traditional media outlets. The role that
Twitter, Facebook, YouTube, CNN’s iReport and many other websites and blogs
have played in the recent events in Iran is a great example of this [9,10].

Threatened by this paradigm, repressive regimes have tried hard to control
and monitor their citizen’s access to the web. Sophisticated filtering and surveil-
lance technologies are developed or purchased by governments such as China or
Iran to disallow access to certain blacklisted websites (See Figure 1) or moni-
tor the activities of users [19]. Blacklisted websites include news websites such
as BBC or CNN, Web 2.0 websites, many blogs, and even Wikipedia. Internet
censorship activities are documented in great detail by organizations such as
Reporters Without Borders [18] or the OpenNet Initiative [16,5].

At the same time, users in such countries and supporters of free online speech
have looked for circumvention technologies to get around Internet censorship.
These range from secure peer-to-peer networks like Freenet [1,2] to anonymous
traffic routing softwares like The Onion Router (Tor) [6] to web proxy systems
such as Psiphon [17]. These tools sometimes use cryptographic protocols to pro-
vide security, but to elude detection and filtering, the common way is to route
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Fig. 1. A typical Internet browsing session in Iran involves multiple encounters with
pages like the above. The text in Persian reads: “According to the laws of the Islamic
Republic of Iran and directives from the judiciary access to this website is forbidden.”

traffic through intermediaries not known to the censorship authorities. For ex-
ample, when a user of Psiphon requests a webpage, this request is routed through
a proxy. The proxy is a computer outside the censored country, and therefore
can access the requested webpage and send it back to the user.1 This can be any
computer on the net whose owner is willing to contribute to the anti-censorship
network by installing the Psiphon software. Usually, this is done by people out-
side the censored country who have friends or relatives inside the censored coun-
try. They simply install the software on their machines (with full-time Internet
connectivity), and send an invitation (which is basically a link through which
the recipient can access the Internet) to their friends and family.2

This model works well for users who have friends outside the censored ter-
ritory. The challenge is to provide censorship-free Internet access to those who
have no direct connection to the outside world. In the case of Iran, sometimes
US-sponsored radio stations such as Voice of America or Radio Farda broadcast
URLs of anonymizers on their program. The obvious problem with this approach

1 This is a simplification of how Psiphon operates. In reality (starting from version
2.0), Psiphon is a 2-hop proxy system, where the first hop (the in-proxy) can be
any computer outside the censored country that runs the Psiphon software and
simply forwards the requests, and the second hop (the managed Psiphon server) is
a dedicated computer that serves and manages Psiphon requests. For the purpose
of our discussions, the simplified view is enough.

2 Freenet’s “darknet” mode operates similarly.
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is that the censorship authorities also listen to these radio stations and quickly
add the announced URL to their blacklist.

This motivates the main problem studied in this paper: how can a set of prox-
ies be distributed among n users, k of whom adversaries (agents of censorship),
in such a way that all legitimate users can have access to a proxy that is not
filtered. We give a more precise definition of our model in the next section, and
define a static (one-shot) version of this problem, as well as a (more realistic) dy-
namic problem. As we observe in Section 3, the static problem is equivalent to a
previously studied network design problem. The main contribution of this paper
is our solution for the dynamic model, which will be presented in Section 4. In
Section 5, we discuss the role of trust networks in building a user base, and how
this affects the algorithmic problem studied in this paper. We conclude with a
number of open problems and conjectures.

Related work. To the best of our knowledge, this is the first systematic study of
methods for proxy distribution. As we observe in Section 3, the static version of
this problem is essentially equivalent to finding union-free families of sets [13].
In coding theory, these objects are known as superimposed codes [12,8], and have
a wide range of applications (see, for example, [3,4,11]). The static case is also
closely related to the combinatorial group testing literature [7]. The dynamic
problem, however, does not fit within the group testing framework, as in our
problem the adversary can strategically delay compromising a proxy.

2 The Model

Consider a population of n users, k of whom are adversaries, and the remaining
n− k are legitimate users. We do not know the identities of the adversaries, but
throughout the paper we assume that k � n. We have a set of at most m keys
(representing proxies or anonymizers) that we can distribute among these users
in any way we want. If a key is given to an adversarial user, she can compromise
the key, meaning that from that point on, the key will be unusable. Our goal is
to distribute the keys in such a way that at the end, every legitimate user has
at least one uncompromised key.

This problem can be studied in a static (one shot) model, or in a dynamic
(adaptive) model. The static model is a one-round problem: we give each user
a set of keys at once, and then the adversarial users compromise the keys they
have received. In the dynamic model, there are multiple rounds. In each round
we distribute a number of keys to users who have no uncompromised key. The
next round starts when one or more of the keys given to an adversarial user
is compromised. Note that in this model the adversarial users do not have to
compromise a key as soon as they see them; instead, they can strategically de-
cide when to compromise a key. Also, observe that in this model we can assume
without loss of generality that in any round each user who has no uncompro-
mised key receives only one key (i.e., there is no point in giving more than one
uncompromised key to a user at any time).
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In both of the above models, if the number m of available keys is at least
n, the problem is trivially solvable: simply give each user her personal key. Our
objective is to find the smallest value of m for which the problem is solvable. As
we will see in the next sections, it is indeed possible to solve the problem with
only a sublogarithmic number of keys.

Variants of the problem. Several variants of our model can also be considered.
For example, what if instead of requiring all legitimate users to have access at
the end of the algorithm, we only require a 1 − ε fraction? Also, the dynamic
model can be defined not as an adversarial model but as a stochastic one: instead
of having a bound k on the number of adversarial nodes, we can assume that
each node is adversarial with probability p. As we will remark at the end of
Section 4, both of these variants are easily solvable using the same algorithms
that we propose for the main problem (with log(1/ε) replacing log n for the first
variant, and pn replacing k for the second).

A more challenging variant of the problem concerns situations where the nodes
can invite other users to join, forming a trust network structure. This gives rise
to a challenging algorithmic problem that will be discussed in Section 5.

3 Static Key Distribution

The static key distribution problem is equivalent to designing a bipartite graph
between the set of n users and the set of m available keys. An edge between a
user and a key means that the key is given to that user. k of the user nodes in
this graph are adversaries, and all of the neighbors of these nodes will be com-
promised. After that, a user is blocked if all its adjacent keys are compromised.

This is precisely equivalent to a secure overlay network design problem studied
by Li et al. [14], although the motivating application and therefore the terminol-
ogy in that problem are different from ours. Users in our problem are equivalent
to Access Points (APs) there, and keys are equivalent to servelets.

The result in [14] that is relevant to our case is Theorem 6 (the adversar-
ial model). That theorem exploits the connection between the solutions of our
problem to k-union-free families of sets [13], and proves the following (restated
using our terminology):

Theorem 1. (Restatement of Theorem 6 in [14]) For every m and k, the max-
imum value of n for which the key distribution problem has a solution is at least
(1− kk

(k+1)k+1 )−m/(k+1) and at most O(k2m/km−1/(2k)).

The lower bound in this theorem is proved using the probabilistic method (giv-
ing each key to each user independently with probability 1/(k + 1)), and the
upper bound is proved using Sperner’s theorem in extremal set theory. A simple
calculation from the above theorem gives the following.

Theorem 2. There is a solution for the static key distribution problem with at
most O(k2 log n) keys. Furthermore, no key distribution scheme with fewer than
Ω(k log(n/k)) keys can guarantee access to all legitimate users.
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4 Dynamic Key Distribution

In this section, we study the key distribution problem in the dynamic model, i.e.,
when the algorithm can respond to a compromised key by providing new keys
for affected users. The quantity of interest here is the expected number of keys
required before until every legitimate user gets access. The following theorem
shows that O(k log(n/k)) keys suffice.

Theorem 3. The dynamic key distribution problem has a solution with at most
k(1 + �log2(n/k)�) keys.

Proof. Consider the following algorithm: In the first round, all n users are divided
into k groups of almost equal size, and each group is given a distinct key. After
this, any time a key is compromised, the users that have that key (if there is
more than one such user) are divided into two groups of almost equal size, and
each group is given a new key (i.e., a key that has not been used before). This
completes the description of the algorithm.

One can visualize the above algorithm as a tree, where the root corresponds
to the set of all n users, and each node corresponds to a subset of users. The root
has k children and other nodes have 2. The sets corresponding to the children of
a node comprise an almost balanced partition of the corresponding set. In this
view, any time the key corresponding to a node is compromised, we move one
level down in the tree.

We now show that this procedure uses at most k(1 + �log2(n/k)�) keys. Con-
sider the k adversarial users. At any point in time, each such node is contained
in one group. At the end of the first round, the size of this group is n/k, and
after that, every time this adversary compromises a key, the size of this group
is divided in half. Therefore, each of the k adversaries can compromise at most
�log2(n/k)�) keys. Putting this together with the fact that we started with k
keys in the first round gives us the result.

It is not hard to show that in the above algorithm, dividing the users initially
into k groups and then into 2 groups in subsequent rounds is essentially the
best possible for this style of algorithms. That is, we cannot asymptotically im-
prove the bound given in the above theorem by devising a different partitioning
scheme. This might lead one to believe that the bound in the above theorem
is asymptotically optimal. However, this is not true. As the following theorem
shows for the case of k = 1, it is possible to solve the problem with a sublog-
arithmic (O(log n/ log log n)) keys. The idea is to “reuse” keys that are already
given to people in other branches. The following theorem will later guide us (and
will serve as a basis of induction) to a solution for general k with sublogarithmic
dependence on n.

Theorem 4. For k = 1, the dynamic key distribution problem has a solution
with O( log n

log log n ) keys.

Proof. Let � = � log n
log log n�. As in the proof of the previous theorem, the algorithm

proceeds in a tree-like fashion. At first, the set of all users is divided into �
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groups of almost equal size, and a distinct key is given to each set. Once a key is
compromised, we would know that the single adversary is among the users in the
group that has that key. We call this group the suspicious group. Since k = 1,
we know that all users in remaining groups are legitimate users; we call these
users trusted users. We divide the suspicious group into � subgroups of almost
equal size. But instead of giving each subgroup its distinct new key (as was the
case in the proof of Theorem 3), we give one subgroup a new key, and give the
remaining �−1 subgroups the other �−1 keys that are already in use by trusted
users.

Similarly, when another one of the keys fail, we would know which subgroup
the adversary belongs to; so now only users in that subgroup are suspicious, and
the remaining �− 1 subgroups become trusted. Again, we divide the suspicious
subgroup into � almost equal-sized subsubgroups. One of these subsubgroups
is given a new key, and the remaining � − 1 are given the keys already in use.
We also need to give keys to trusted users whose key is compromised (since
there could be trusted users that use the same key as the users in the suspicious
subgroup). We give these users an arbitrary uncompromised key already in the
system. This process continues until the size of the suspicious group reaches 1,
at which point we stop.

Since in each round, the algorithm divides the size of the suspicious group
by �, and in each round exactly one key is compromised, the total number of
compromised key in this algorithm is at most log� n. This, together with the fact
that there are precisely �− 1 keys that remain uncompromised, shows that the
total number of keys used by our algorithm is at most

�− 1 +
log n

log �
≤ log n

log log n
+

log n

log�log n/ log log n� = O(
log n

log log n
).

This completes the proof.

We are now ready to give a sublogarithmic bound for the number of required
keys for general k.

Theorem 5. For any k, there is a solution for the dynamic key distribution
problem that uses O(k2 log n/ log log n) keys in expectation.

Proof. First, note that we can assume without loss of generality that k <
log log n, since for larger values of k, Theorem 3 already implies the desired
bound. We use induction on k. The k = 1 case is already solved in Theorem 4.
For k > 1, we proceed as follows. The structure of the first stage of our algorithm
is similar to the algorithm in the proof of Theorem 4: we fix � = � log n

log log n�, and
start by dividing the users into � groups of almost equal size (to do this, we
can put each user in one of the � groups uniformly at random). At any point
in this stage, there are precisely � uncompromised keys in the system. Once a
key is compromised, we replace it by a new key, split all groups that have the
compromised key into � groups and give each group one of the � available keys.
In other words, once a key is compromised, it is replaced by a new one and each
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user who was using that key receives a random key among the � available keys.
This process is repeated for R rounds, where R will be fixed later.

The sketch of the rest of the proof is as follows: for any legitimate user, in each
round the probability that the user receives a key shared by an adversary is at
most k/� (since there are k adversaries and � keys available, and key assignments
are random). Therefore, in expectation, after R rounds, this user has had at most
Rk/� compromised keys. However, at least one of the k adversaries has had at
least R/k compromised keys in this stage (since each compromised key is given to
an adversary). By setting the right value for R and using the Chernoff bound, we
will be able to show that the set of users that have had at least R/k compromised
keys contains at least one adversary and almost surely no legitimate user. Given
this, we can give each user in this set her personal key, and solve the problem
recursively (with at least one fewer adversary) for the remaining set of users.

We now formalize the proof. Consider an arbitrary legitimate user u, and
define a sequence of random events that determine the number of times this
user’s key is compromised. Every time u is given a new key, there is probability
of at most k/� (independent of all the previous events) that she receives a key
that one of the adversaries in the system already has. If this event occurs, we wait
until this key is compromised (if at all) and a new key is given to u; otherwise,
the next event corresponds to the next time one of the adversaries compromises
a key. At that time, one or more adversaries will receive other random keys.
The next event, whose probability can also be bounded by k/� is that one of
the keys given to the adversaries is the one u already has. We proceed until the
end of the R rounds. This gives us a sequence of events at most R, each with
probability k/� of occuring independent of the previous events, and the number
of time u’s key is compromised can be bounded by the number of events that
occur in this sequence. Therefore, this number can be bounded by the sum of
R Bernoulli random variables, each with probability k/� of being one. Let this
sum be denoted by X . We have μ := Exp[X ] = Rk/�. By the Chernoff bound
(Theorem 4.1 in [15]) with 1 + δ = �/k2 we have:

Pr[X > R/k] = Pr[X > (1 + δ)μ] <

[
eδ

(1 + δ)1+δ

]μ

<

(
ek2

�

)R/k

.

Setting R = ck log n/ log log n for a large constant c, the above probability can
be bounded by:

exp
(

c logn

log log n
log(

ek2 log log n

log n
)
)

< exp(− c

2
log n) = n−c/2,

where the inequality follows from the fact that k < log log n and therefore asymp-
totically, log( ek2 log log n

log n ) < − 1
2 log log n. By the above inequality, we know that

the probability that the set S of users whose key is compromised at least R/k
times contains u is at most n−c/2. Therefore, the expected cardinality of this set
is at most k + n1−c/2, and hence we can afford to give each user in this set her
personal proxy (just in the case of the unlikely event that there is a legitimate



Fighting Censorship with Algorithms 303

user in this set). On the other hand, with probability 1 there is at least one
adversary in S. Hence, by removing S, our problem reduces to one with fewer
adversaries. We use induction to solve the remaining problem.

The expected total number of keys required by the above procedure is at
most � (the initial keys) plus R (the number of keys that replace a compromised
key) plus k + n1−c/2 (for the set S), plus keys that are needed for the recursive
procedure. It is easy to see that this number is O(k2 log n/ log log n).

Our last result is a lower bound that shows that the upper bound in the above
theorem is tight upto a factor of k, i.e., as a function of n, the optimal solution
to the dynamic key distribution problem grows precisely as log n/ log log n. This
theorem is proved using a simple entropy argument.

Theorem 6. Any solution to the dynamic key distribution problem requires at
least Ω( k log(n/k)

log k+log log n ) keys.

Proof. Consider an oblivious adversary: initially k random users are adversarial,
and in each stage a random adversarial user compromises her key. Let � denote
the number of keys used by the algorithm. Since the algorithm eventually proves
access to all legitimate users, it must be able to identify the set of all adversarial
users. There are

(
n
k

)
such sets, and they are all equally likely. The information

that the algorithm receives in each round is the index of the key that is compro-
mised. This index has one of the � values, and therefore can be written in log �
bits. Since the total number of rounds is at most �, all the information that the
algorithm receives can be written as an � log � bit binary sequence. Since this
information is enough to find the k adversarial nodes, we must have

� log � ≥ log
(

n

k

)
= Ω(k log(n/k)).

A simple calculation from the above inequality implies the lower bound.

Variants of the problem. It is not hard to see that if we only require access for
a 1− ε fraction of the legitimate users, the upper bounds in the above theorems
can be improved significantly. Namely, Theorem 3 can be adapted to solve the
problem with only O(k log(1/ε)) keys.

Also, the upper bounds in this section do not require a precise knowledge of
the value of k. Therefore, for the stochastic version of the problem, the same
upper bounds hold with k replaced by pn. Furthermore, since the lower bound
proof only uses a simple randomized adversary, a similar lower bound holds for
the stochastic model. The details of these proofs are left to the final version of
the paper.

5 Trust Networks

A common way to build a user base in a country under censorship is through
personal trust relationships: the system starts with a few trusted users, and
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then each trusted user will be allowed to invite new users whom she trusts to
the system. In this way, the set of users grows like a trust network, a rooted
tree on the set of users with the initial trusted users as the children of the root,
and edges indicating trust relationships. In fact, newer versions of the Psiphon
system rely on an invitation-based method very similar to this to build a user
base and a tree structure of trusts among them [17].

Using trust networks to build the user base poses an additional risk to the
system: if an adversary infiltrates the network, she can invite new adversarial
users (perhaps even fake accounts controlled by herself) to the network, increas-
ing the value of k for the algorithms in the previous section to an unacceptable
level. In this section, we formulate this problem theoretically. We will leave it as
an open problem for the most part; but for k = 1, we give non-trivial solutions,
exhibiting that the general problem is interesting and possibly tractable.

The model. We have a population of n users that are nodes of a rooted tree
(called the trust network) T . We assume that the depth of the tree T is small
(e.g., at most O(log n)).3 The adversary controls at most k nodes in this tree
and all nodes descending from them. Our objective is to design a dynamic key
distribution scheme that eventually guarantees that each legitimate user receives
an uncompromised key. The challenge is to do this with the minimum number
of keys.

In the following theorem, we show that for k = 1, it is possible to solve this
problem with O(log n) keys. We leave the problem for k > 1 as an open question.

Theorem 7. For k = 1, there is a solution for the dynamic key distribution
problem on a trust network that uses at most O(log n) keys.

Proof (Proof Sketch). We use a binary division method similar to the one used
in Theorem 3, except here we keep the divisions consistent with the trust tree T .
Recall that the algorithm in the proof of Theorem 3 maintains a suspicious group
of users, and every time a new key is compromised, it divides the suspicious
group into two subgroups of almost equal size, giving a distinct key to each
subgroup. We do the same, except we maintain the following invariant: at any
point, the suspicious group consists of some children u1, . . . , ur (r ≥ 2) of a node
u (we call u the root of the suspicious group), and all descendants of ui’s. Of
course we cannot be sure that u and its ancestors are legitimate, but if any of
them is an adversary, we have already achieved the goal of giving access to all
legitimate users. Therefore, we treat them as if they are legitimate. However, we
need to be careful about the possibility that the are adversarial, and will try to
get our algorithm to use too many keys after all legitimate nodes already get
access. This can occur if we see the key that is given to nodes that our algorithm
already assumes to be legitimate is compromised. In this case, we simply give

3 This assumption is necessary. For example, if the trust structure is a long path, it is
easy to see that the problem has no non-trivial solution, even for k = 1. Furthermore,
this is a realistic assumption since trust networks are generally small-world networks
and have small diameter.
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new personal keys to all the nodes on the path from the root of the tree to the
root of the suspicious subtree, and stop the algorithm.

It is not hard to show that since the number of nodes in the suspicious group
reduces by a constant factor in each iteration, and the depth of T is at most
logarithmic, the total number of keys used by the above algorithm is at most
logarithmic in n.

6 Conclusion and Open Problems

In this paper we studied a key distribution problem motivated by applications in
censorship circumvention technologies. The algorithms we give for the problem
are simple and intuitive, and therefore have a chance at being useful in practice.
From a theoretical point of view, still a few questions remain open:

– In the dynamic model, what is the optimal dependence of the number of
required keys on k? There is a gap of roughly O(k) between our best lower
and upper bounds. Our conjecture is that (at least for k up to O(log n)),
O(k log n/ log log n) is the right answer for this problem.
A similar question can be asked for the static problem, but given the con-
nection between this problem and a long-standing open problem in extremal
set theory on k-union-free families of sets [13], this problem is unlikely to
have a simple solution.

– Our upper bound in Theorem 5 is on the expected number of keys used,
whereas the weaker bound in Theorem 3 holds with probability 1. Is it pos-
sible to prove a bound similar to Theorem 5 with probability 1? This is
mainly a theoretical curiosity, since the bound in Theorem 5 holds not only
in expectation but also with high probability.

– The key distribution problem with trust networks for k > 1.
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Abstract. We study the complexity of the popular one player combi-
natorial game known as Flood-It. In this game the player is given an
n×n board of tiles, each of which is allocated one of c colours. The
goal is to fill the whole board with the same colour via the shortest
possible sequence of flood filling operations from the top left. We show
that Flood-It is NP-hard for c � 3, as is a variant where the player
can flood fill from any position on the board. We present deterministic
(c−1) and randomised 2c/3 approximation algorithms and show that no
polynomial time constant factor approximation algorithm exists unless
P=NP. We then demonstrate that the number of moves required for
the ‘most difficult’ boards grows like Θ(

√
c n). Finally, we prove that for

random boards with c � 3, the number of moves required to flood the
whole board is Ω(n) with high probability.

1 Introduction

In the popular one player combinatorial game known as Flood-It, each tile of
an n×n board is allocated one of c colours, where c is a parameter of the game.
Two left/right/up/down adjacent tiles are said to be connected if they have the
same colour and a (connected) region of the board is defined to be any maximal
connected component. The standard version of the game starts with the player
‘flooding’ the region that contains the top left tile. The flooding operation simply
involves changing the colour of all the tiles in the region to be some new colour.
However, this also has the effect of connecting the newly flooded region to all
neighbouring regions of this colour. The overall aim is to flood the entire board,
that is connect all regions, in as few flooding operations as possible. Figure 1
gives an example of the first few moves of a game. The border shows the outline
of the region which has so far been flooded.

Fig. 1. A sequence of five moves on a 6×6 Flood-It board with 3 colours
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We show that not only are natural greedy approaches bad, but in fact finding
an optimal solution for Flood-It is NP-hard for c � 3 and that this also holds
for a variant of the game we call Free-Flood-It where the player can perform
flooding operations at any position on the board. Next we show how a (c − 1)
approximation and a randomised 2c/3 approximation algorithm can be derived.
However, no polynomial time constant factor, independent of c, approximation
algorithm exists unless P=NP. We then consider how many moves are required
for the most difficult boards and show that the number grows as fast as Θ(

√
c n).

Finally we investigate boards where the colours of the tiles are chosen at random
and show that for c � 3, the number of moves required to flood the whole board
is Ω(n) with high probability.

Publicly available versions, including our own implementation, can be found
linked from http://floodit.cs.bris.ac.uk. Our implementation provides two
novelties relevant to the reader. First, we have included playable versions of both
the NP-completeness embeddings described in the paper. Second, the reader can
watch the various algorithms discussed play Flood-It.
History and related work: Perhaps the most famous recent hardness result in-
volving a popular game is the NP-completeness of Tetris [3]. Flood-It seems to
be a somewhat newer game than Tetris, first making its appearance online in
early 2006 courtesy of a company called Lab Pixies. Since then numerous ver-
sions have become available for almost every conceivable platform. We have very
recently become aware of a sketch proof by Elad Verbin posted on a blog of the
NP-hardness of Flood-It with 6 colours [11]. Although our work was completed
independently, it is interesting to note that there is some similarity to the tech-
niques used in our NP-hardness proof for c � 3 colours. The most closely related
game whose complexity has been studied in detail is known as Clickomania [2].
A rectangular board is initialised in the same way as in Flood-It. On each move,
the player chooses a connected monochromatic component of at least two tiles to
remove after which any tiles above it fall down as far as they can. NP-hardness
results were given for particular board shapes and numbers of colours. Flood-It
can also be thought of as a model for a number of different (possibly not entirely)
real world applications. For example, our results supplement that of recent work
on zombie infestation [9] if one regards the flooding operation as one where the
minds of neighbouring non-zombies are infected by those who have already been
turned into zombies. A separate but no less significant line of research considers
the complexity of tools commonly provided with Microsoft Windows. Previous
work has shown that aspects of Excel [4] and even Minesweeper [6] are NP-
complete. Our work extends this line of research by showing that flood filling in
Microsoft’s Paint application is also NP-hard.

1.1 Notation and Definitions

Let Bn,c be the set of all n×n boards with at most c colours. We write m(B)
for the minimum number of moves required to flood a board B ∈ Bn,c. We will
refer to rows and columns in a board in the usual manner. We further denote

http://floodit.cs.bris.ac.uk
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(a) (b)

Fig. 2. (a) An alternating 4-diamond
and (b) a cropped 6-diamond

Fig. 3. A 10×10 board where a greedy
approach is bad

the colour of the tile in row i and column j as B[i, j]; colours are represented by
integers between 1 and c. Throughout we assume that 2 � c � n2.

We define a diamond to be a diamond-shaped subset of the board (see Fig-
ure 2a). These structures are used throughout the paper. The centre of the dia-
mond is a single tile and the radius is the number of tiles from its centre to its
leftmost tile. We write r-diamond to denote a diamond of radius r. A single tile
is therefore a 1-diamond. For i ∈ {1, . . . , r}, the ith layer of an r-diamond is the
set of tiles at board distance i−1 from its centre. We will also consider diamonds
which are cropped by intersection with the board edges as in Figure 2b.

2 A Greedy Approach Is Bad

An obvious strategy for playing the Flood-It game is the greedy approach. There
are two natural greedy algorithms: (1) we pick the colour that results in the
largest gain (number of acquired tiles), or (2) we choose the colour dominating
the perimeter of the currently flooded region. It turns out that both these ap-
proaches can be surprisingly bad. To see this, let B be the 10×10 board on three
colours illustrated in Figure 3. The number of moves required to flood B is three.
However, either greedy approach given would first pick the colours appearing on
the horizontal lines before finally choosing to flood the left-hand vertical column.
In both cases, this requires 10 moves to fill the board. It should be clear how
this example can easily be extended to arbitrarily large n×n boards.

3 The Complexity of Flood-It

Let c-Flood-It denote the problem which takes as input an n×n board B
of c colours and outputs the minimum number of moves m(B) in a Flood-
It game that are required to flood B. Similarly, let c-Free-Flood-It denote
the generalised version of c-Flood-It in which we are free to flood fill from an
arbitrary tile in each move. Although we have seen that a straightforward greedy
algorithm fails, it is not too far-fetched to think that a dynamic programming
approach would solve these problems efficiently, but the longer one ponders over
it, the more inconceivable it seems. To aid frustrated Flood-It enthusiasts, we
prove in this section that both c-Flood-It and c-Free-Flood-It are indeed
NP-hard, even when the number of colours is as small as three.
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To show NP-hardness, we reduce from the shortest common supersequence
problem, denoted SCS, which is defined as follows. The input is a set S of k
strings over an alphabet Σ. A common supersequence s of the strings in S is a
string such that every string in S is a subsequence of s. The output is the length
of a shortest common supersequence of the strings in S. The decision version
of SCS takes an additional integer � and outputs yes if the shortest common
supersequence has length at most �, otherwise it outputs no.

Maier [8] showed in 1978 that the decision version of SCS is NP-complete
if the alphabet size |Σ| � 5. A couple of years later, Räihä and Ukkonen [10]
extended this result to hold for |Σ| � 2. For a long time, various groups of people
tried to approximate SCS but no polynomial-time algorithm with guaranteed
approximation bound was to be found. It was not until 1995 that Jiang and
Li [5] settled this open problem by proving that no polynomial-time algorithm
can achieve a constant approximation ratio for SCS, unless P = NP. The follow-
ing lemma proves the NP-hardness of both c-Flood-It and c-Free-Flood-It

when the number of colours is at least four. The inapproximability of both prob-
lems also follows immediately from the approximation preserving nature of the
reduction. We will need a more specialised reduction for the case c = 3, which
is given in Lemma 2.

Lemma 1. For c � 4, c-Flood-It and c-Free-Flood-It are NP-hard (and
the decision versions are NP-complete). Further, for an unbounded number of
colours c, there is no polynomial-time constant factor approximation algorithm,
unless P = NP.

Proof. The proof is split into two parts; first we prove the lemma for c-Flood-It

in which we flood fill from the top left tile in each move, and in the second part
we generalise the proof to c-Free-Flood-It in which we can flood fill from any
tile in each move.

We reduce from an instance of SCS that contains k strings s1, . . . , sk each of
length at most w over the alphabet Σ. Suppose that Σ = {a1, . . . , ar} contains
r � 2 letters and let Σ′ = {b1, . . . , br} be an alphabet with r new letters. For
i ∈ {1, . . . , k}, let s′i be the string obtained from si by inserting the character bj

after each aj and inserting the character b1 at the very front. For example, from
the string a3a1a4a3 we get b1a3b3a1b1a4b4a3b3.

Let Σ∪Σ′ represent the set of 2r colours that we will use to construct a board
B. First, for i ∈ {1, . . . , k}, we define the |s′i|-diamond Di such that the jth layer
will contain only one colour which will be the jth character from the right-hand
end of s′i. Thus, the colour of the outermost layer of Di is the first character
of s′i (which is b1 for all strings) and the centre of Di is the last character of
s′i. The reason why we intersperse the strings with letters from the auxiliary
alphabet Σ′ is to ensure that no two adjacent layers of a diamond have the same
colour. This property is crucial in our proof. Let B be a sufficiently large n×n
board constructed by first colouring the whole board with the colour b1 and then
placing the k diamonds Di on B such that no two diamonds overlap. Since each
of the k diamonds has a radius of at most 2w + 1, we can be assured that n
never has to be greater than k(4w + 1).
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Suppose that s is a shortest common supersequence of s1, . . . , sk and suppose
its length is �. We will now argue that the minimum number of moves to flood
B is exactly 2�, first showing that 2� moves are sufficient. Let s′ be the 2�-long
string obtained from s by inserting the character bj after each aj . We make 2�
moves by choosing the colours in the same order as they appear in s′. Note
that we flood fill from the top left tile in each move. From the construction of
the diamonds Di it follows that all diamonds, and hence the whole board, are
flooded after the last character of s′ has been processed.

It remains to be shown that at least 2� moves are necessary to flood B. Let s′′

be a string over the alphabet Σ ∪Σ′ that specifies a shortest sequence of moves
that would flood the whole board B. From the construction of the diamonds Di

it follows that the string obtained from s′′ by removing every character in Σ′

is a common supersequence of s1, . . . , sk and therefore has length at least �. By
symmetry (replace every aj with bj in the strings s1, . . . , sk), the string obtained
from s′′ by removing every character in Σ has length at least � as well. Thus,
the length of s′′ is at least 2�.

Since the decision version of SCS is NP-complete even for a binary alphabet
Σ, it follows that c-Flood-It is NP-hard for c � 4, and the decision version
is NP-complete. The inapproximability result in the statement of the lemma
follows immediately from the reduction.

Now we show how to extend these results to c-Free-Flood-It. The reduction
from SCS is similar to the previously presented reduction. However, instead of
constructing only one board B, we construct 2kw + 1 copies of B and put them
together to one large n′×n′ board B′. If necessary in order to make B′ a square,
we add sufficiently many n×n boards that are filled only with the colour b1.
Note that (2kw + 1)n and hence (2kw + 1)k(4w + 1) is a generous upper bound
on n′.

From the construction of B′ it follows that exactly 2� moves are required to
flood B′ if we flood fill from the top left tile in each move; all copies of B will be
flooded simultaneously. The question is whether we can do better by flood filling
from tiles other than the top left one (or any tile in its connected component).
That is, can we do better by picking a tile inside one of the diamonds? We
will argue that the answer is no. First note that 2� � 2kw. Suppose that we
do flood fill from a tile inside some diamond D for some move. This move will
clearly not affect any of the other diamonds on B′. Suppose that this move would
miraculously flood the whole of D in one go so that we can disregard it in the
subsequent moves. However, there were originally 2kw + 1 copies of D, which
is one more than the absolute maximum number of moves required to flood B′,
hence we can use a recursive argument to conclude that flood filling from a tile
inside a diamond will do us no good and would only result in more moves than
if we choose to flood fill from the top left tile in each move. ��

The reduction in the previous proof is approximation preserving, which allowed
us to prove that there is no efficient constant factor approximation algorithm.
We reduced from an instance of SCS by doubling the alphabet size, resulting in
instances of c-Flood-It and c-Free-Flood-It with c � 4 colours. To establish
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(a)

(b)

= Colour 1 = Colour 2 = Colour 3 (c)

. . .

Fig. 4. An example of (a) a diamond, (b) a rectangle and (c) a board constructed in
the proof of Lemma 2

NP-hardness for c = 3 colours, we need to consider a different reduction. We
do this in the lemma below by reducing from the decision version of SCS over a
binary alphabet to the decision versions of 3-Flood-It and 3-Free-Flood-It.
Note that this reduction is not approximation preserving.

Lemma 2. 3-Flood-It and 3-Free-Flood-It are NP-hard (and the decision
versions are NP-complete).

Proof. We reduce from an instance of the decision version of SCS on k strings
s1, . . . , sk of length at most w over the binary alphabet {1, 2} and an integer �.
The yes/no question is whether there exists a common supersequence of length
at most �.

For i ∈ {1, . . . , k}, let s′i be the string obtained from si by inserting the new
character 3 at the front of si and after each character of si. Let the set {1, 2, 3}
represent the colours that we will use to construct a board B. First, for each of
the k strings s′i we define the diamond Di exactly as in the proof of Lemma 1
(see Figure 4a). We define R to be the following rectangular area of the board
of width 4� + 5 and height 2� + 3. Let x be the middle tile at the bottom of R.
Around x we have layers of concentric half rectangles (see Figure 4b). We refer to
these layers as arches, with the first arch being x itself. As demonstrated in the
figure, the first arch has the colour 1 and the second arch has the colour 2. All
the remaining odd arches have the colour 3, and all the remaining even arches
are coloured 2 everywhere except for the tile above x which has the colour 1.
As described in detail below, the purpose of these arches is to control which
minimal sequences of moves would flood B.

Let B be a sufficiently large n×n board constructed as follows. First colour
the whole board with the colour 3. Then, at the bottom of B starting from the
left, place 2�+3 copies of R one after another without any overlaps. Finally place
the k diamonds Di on B such that no two diamonds overlap and no diamond
overlaps any copy of R. Figure 4c illustrates a board B. Since a diamond has
a radius of at most 2w + 1 and � � kw, k(4w + 1) + (2kw + 3)(4kw + 5) is an
upper bound on n.

The reason why we place copies of R on the board B is to make sure that
at least 2� + 2 moves are required to flood B, even in the absence of diamonds.
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To see this, suppose first that we flood fill from the top left square in each
move. From the definition of the arches of R, disregarding the diamonds on B,
a minimal sequence of moves will consist of � 1s or 2s interspersed with a total
of �− 1 3s, followed by the three moves 3, 2 and 1, respectively. Note that only
one copy of R on B would be enough to achieve this. However, having several
copies of R on B does not affect the minimum number of moves as all copies
will get flooded simultaneously. The idea with the 2� + 3 copies of R is to make
sure that at least 2�+2 moves are required to flood B even when we are allowed
to choose which tile to flood fill from in each move. To see this, suppose that
we choose to flood fill from a tile inside one of the copies of R. Since there are
2� + 3 copies, similar reasoning to the end of the proof of Lemma 1 tells us that
we will do worse than 2� + 2 moves.

We will now argue that the number of moves required to flood B is 2� + 2 if
and only if there is a common supersequence of s1, . . . , sk of length at most �.
We choose to flood fill from the top left tile in each move.

Suppose first that there is a common supersequence s of length �′ � �. Let s′

be the string s followed by �− �′ 1s. Let s′′ be the (2� + 2)-long string obtained
from s′ by inserting a 3 after each character of s′ and adding the two additional
characters 2 and 1 to the end. We make 2� + 2 moves by choosing the colours in
the same order as they appear in s′′. Note that all diamonds are flooded after
2�′ moves, and by the last move we have also flooded every copy of R, and hence
the whole board B.

Suppose second that B can be flooded in 2� + 2 moves. The centre of each
diamond has the colour 3 and therefore the first 2� moves flood the diamonds.
The subsequence of these first 2� moves induced by the the colours 1 and 2 is
an �-long common supersequence of s1, . . . , sk. ��

We can now summarise Lemmas 1 and 2 in the following theorem.

Theorem 3. For c � 3, c-Flood-It and c-Free-Flood-It are NP-hard (and
the decision versions are NP-complete). Further, for an unbounded number of
colours c, there is no polynomial-time constant factor approximation algorithm,
unless P = NP.

4 Approximating the Number of Moves

As we have seen, c-Flood-It and c-Free-Flood-It are not efficiently approx-
imable to within a constant factor for an unbounded number of colours c. How-
ever, a (c − 1)-approximation for c-Flood-It, c � 3, can easily be obtained as
follows. Suppose that B is a board on the colours 1, . . . , c. Clearly, if we repeat-
edly cycle through the sequence of colours 1, . . . , c then B will be flooded after
at most c×m(B) moves. We can do a little better by first cycling through the
ordered sequence of colours 1, . . . , c and then repeatedly alternating between a
cycle of the sequence (c − 1), . . . , 1 and a cycle of 2, . . . , c until there are only
two distinct colours left on the board, after which we alternate between the two
remaining colours. Note that there are always exactly two distinct colours left
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before the final move. The board B is guaranteed to be flooded after at most
c + (c − 1)(m(B) − 2) + 1 � (c − 1)m(B) moves, which gives us a (c − 1)-
approximation algorithm.

A randomised approach with an expected number of moves of approximately
2c/3 × m(B) is obtained as follows. Suppose that s is a minimal sequence of
colours that floods B (flood filling from the top left square in each move). We
shuffle the c colours and process them one by one. If B is not flooded then
we shuffle again and repeat. Thus, if m(B) = 1 then the algorithm takes c
moves. If m(B) = 2 then it takes c + 1

2c = 3c/2 expected number of moves;
with probability a half, both moves in s appear (in correct order) during the
first c moves, otherwise we need c additional moves for the last move in s.
We generalise this as follows. Let T (m) be (an upper bound on) the expected
number of moves it takes to produce a fixed sequence of m moves. We have
T (m) = c + 1

2T (m − 1) + 1
2T (m − 2). Solving the recurrence with the values

of T (1) and T (2) above gives us a solution in which T (m) is asymptotically
(2c/3)m for a fixed c.

5 General Bounds on the Number of Moves

Recall that we denote the minimum number of moves which flood some board
B as m(B). In this section we investigate bounds on the maximum m(B) over
all boards in Bn,c which we denote max{m(B) |B ∈ Bn,c}. Intuitively, this can
be seen as the minimum number of moves to flood the ‘worst’ board in Bn,c.

For motivation, consider an n×n checker board of two colours as shown in
Figure 5. First observe that as the board has only two colours, the player has no
choice in their next move. Consider a diagonal of tiles in the direction top-right
to bottom-left where the 0th diagonal is the top-left corner. Further observe that
move k floods exactly the kth diagonal, so the total number of moves is 2(n−1).
Thus we have shown that max{m(B) |B ∈ Bn,c} � 2(n− 1).

Fig. 5. Progression of a 6×6 checker board

We now give an overview of a simple algorithm which floods any board in
Bn,c in at most c(n− 1) moves. The algorithm performs n stages. The purpose
of the ith stage is to flood the ith row. Stage i repeatedly picks the colour of the
leftmost tile in row i which is not in the flooded region, until row i is flooded.

First observe that Stage 1 performs at most n − 1 moves to flood row i (we
can flood at least one tile of row 1 per move). When the algorithm begins Stage
i � 2, observe that row i − 1 is entirely flooded as well as any tiles in row i



The Complexity of Flood Filling Games 315

S0
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S2

S3

y(0)

y(1)

y(2)

�q/2�

q + 1

q

�q/2�

Fig. 6. The board decomposition used in
the proof of Theorem 4

Fig. 7. 4-diamonds packed into a
20×20 board

which match the colour of row i − 1. Therefore when a new colour is selected,
all tiles in row i of this colour become flooded. Hence at most c − 1 moves are
performed by Stage i. Summing over all rows, this gives the desired bound that
max{m(B) |B ∈ Bn,c} � c(n−1). Observe that from the previous example with
the checker board on c = 2 colours, the bound c(n−1) is tight. Thus, the checker
board is the ‘worst’ board in Bn,2.

As motivation, we have given weak bounds on max{m(B) |B ∈ Bn,c}. We
now tighten these bounds for large c by providing a better algorithm for flood-
ing an arbitrary board. We will also give a description of ‘bad’ boards which
require many moves to be flooded. It will turn out that max{m(B) |B ∈ Bn,c}
is asymptotically Θ(

√
c n) for increasing n and c.

Theorem 4. There exists a polynomial time algorithm for Flood-It which can
flood any n×n board with c colours in at most 2n + (

√
2c)n + c moves.

Proof. For a given integer � (to be determined later), we partition the board
horizontally into �+1 contiguous sections, denoted S0, . . . , S� from top to bottom,
as follows. Let q = �n/�� and r = n mod �. Section S0 consists of the first �q/2�
rows, S1, . . . , Sr contain (q + 1) rows each (if r > 0), and Sr+1, . . . , S�−1 contain
q rows each (if r < � − 1). Section S� contains �q/2� rows. See Figure 6 for an
illustration. We let y(i) denote the final row of Si.

The algorithm performs the following three stages. Stage 1: Flood the first
column. Stage 2: Flood row y(x) for all 0 � x < �. Stage 3: Cycle through the c
colours until the board is flooded.

The correctness of our algorithm is immediate as Stage 3 ensures that the
board is flooded by cycling colours. Stage 1 can be implemented to perform at
most n − 1 moves as argued for the simple algorithm above. Similarly, Stage 2
can be completed in �(n− 1) moves. We now analyse Stage 3.

First consider S0. At the start of Stage 3, row y(0) is entirely in the top-left
region, so a single cycle of the c colours suffices to expand the region to include
row y(0) − 1. Each subsequent cycle of c colours expands the region to include
an additional row. Therefore, after c(�q/2� − 1) � cq/2 moves of Stage 3, all
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rows above y(0) are included in the top left region. Similarly, the section S� will
be included in the top-left region as it contains �q/2� � q/2 rows.

Now consider section Si for some 0 < i < �. Observe that there are at most q
rows in Si which are not already completely in the top-left section (after stage
2). Further observe that any cycle of c colours expands the region to include two
more of these rows. One row is gained from the region bordering the top of the
section (which is in the top-left region from stage 2). The second is gained from
the region bordering the bottom of the section (which is again in the top-left
region). Therefore after at most c�q/2� moves of Stage 3 the board is flooded.

Over all three stages this gives a total of at most n + �n + c�q/2� moves. We
pick � = �

√
c/2� to minimise this number of moves. By recalling that q = �n/��

and simplifying we have that this total is less than 2n +
√

2c n + c moves. ��

Theorem 5. For 2 � c � n2, there exists an n×n board with (up to) c colours
which requires at least

√
c− 1n/2− c/2 moves to flood.

Proof. Suppose first that c is even. For a given integer r � 1, let D(x,y) be an
r-diamond where odd layers are coloured x and even layers are coloured y. Any
board containing D(x,y) requires at least r moves of colours x and y. Further,
observe that as long as the centre of D(x,y) is in the board, even if it is cropped
by at most two edges of the board, at least r moves of colours x and y are still
required (see Figure 2b). We refer to such an r-diamond as good. The central
idea is to populate the board with good r-diamonds, D(1,2), D(3,4), . . . , D(c−1,c).
As each r-diamond uses two colours (or one colour if r = 1) which do not occur
in any other diamond, the board must take at least rc/2 moves to flood.

It is not difficult to show that at least (n2 − r2)/(2r2) good r-diamonds can
be embedded in an n×n board. An example of such a packing for a 20×20
board is given in Figure 7 (which shows only the edges of diamonds and not
their colouring). This scheme generalises well to an n×n board but the details
are omitted in the interest of brevity.

We now take r = �n/
√

c� < n/2 and note that r � 1. As r < n/2, the r-
diamonds are cropped by at most two board edges as required. Therefore we have
at least (n2 − r2)/(2r2) � c/2 − 1/2 good r-diamonds in our board. However,
as the number of good r-diamonds is an integer, this is at least c/2 as required.
Therefore, at least rc/2 > n

√
c/2− c/2 moves are required to flood this board.

Finally, in the case that c is odd we proceed as above using c−1 of the colours
to give the stated result. ��

Corollary 6. (
√

c− 1 n− c)/2 � max{m(B) |B ∈ Bn,c} � 2n +
√

2c n + c .

6 Random Boards

In this section, we try to understand the complexity of a random Flood-It board
– that is, a board where each tile is coloured uniformly at random. Intuitively,
such boards should usually require a large number of moves to flood. We will see
that this intuition is indeed correct, for boards of three or more colours: in fact,
almost all such boards need Ω(n) moves, as formalised in the following theorem.
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Theorem 7. Let B ∈ Bn,c be a board where the colour of each tile is chosen
uniformly at random from {1, . . . , c}. Then, for c � 4, Pr[m(B) � 2(3/10 −
1/c)(n− 1)] < e−Ω(n). For c = 3, Pr[m(B) � (n− 1)/22] < e−Ω(n).

In order to prove this theorem, we will use two lemmas concerning paths in
Flood-It boards. Let P be a simple path in a Flood-It board, i.e. a simple path
on the underlying square lattice1, where tiles are vertices on the path. Note that
a path of length k includes k + 1 tiles. We say that a simple path P is non-
touching if every tile in P is adjacent to at most two tiles that are also in P .
Define the cost of P , cost(P ), to be the number of monochromatic connected
components of the path, minus one (so a monochromatic path has cost 0). For
proofs of the following two lemmas, see [1].

Lemma 8. For any B ∈ Bn,c, there is a non-touching path from (1, 1) to (n, n)
with cost at most m(B).

Lemma 9. For any integer � � 3, there are at most 4 · 7(�−1)/2 < 2 · (
√

7)�

non-touching paths of length � from any given tile.

Before proving Theorem 7, the last result we will need is the following standard
Chernoff bound.

Fact 10. Let Xi, 1 � i � m, be independent 0/1-valued random variables with
Pr[Xi = 1] = p. Then Pr[ 1

m

∑m
i=1 Xi � p + ε] � e−D(p+ε||p)m � e−2ε2m, where

D(x||y) = x ln(x/y)+(1−x) ln((1−x)/(1−y)) is the Kullback-Leibler divergence.

Proof (of Theorem 7). For any k � 0, and for any board B such that m(B) � k,
by Lemma 8 there exists a non-touching path from (1, 1) to (n, n) with cost at
most k. So consider an arbitrary non-touching path P in B of length � between
these two tiles, and let Pi denote the ith tile on the path, for 1 � i � � + 1.
Note that � � 2(n − 1). Then cost(P ) = |{i : Pi+1 �= Pi}|, or equivalently
cost(P ) = � − |{i : Pi+1 = Pi}|. Define the 0/1-valued random variable Xi by
Xi = 1 ⇔ Pi+1 = Pi. Then, as the colours of tiles are uniformly distributed,
Pr[Xi = 1] = 1/c for all i, and

Pr[cost(P ) � k] = Pr

[
�∑

i=1

Xi � �− k

]
� e−D(1−k/� || 1/c)�,

where we use Fact 10. Thus, using the union bound over all paths of length at
least 2(n− 1) from (1, 1) to (n, n), we get that the probability that there exists
any path of cost at most k is upper bounded by

2
∞∑

�=2(n−1)

(
√

7)�e−D(1−k/� || 1/c)� = 2
∞∑

�=2(n−1)

e((1/2) ln 7−D(1−k/� || 1/c))�, (1)

1 Simple paths on square lattices have been intensively studied, and are known as
self-avoiding walks [7]. There are known upper bounds, which are slightly stronger
than Lemma 9, on the number of self-avoiding walks of a given length; however, we
avoid these here to keep our presentation elementary.
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where we use the estimate for the number of paths which was derived in Lemma 9.
In the final part of the proof, we consider the cases c � 4 and c = 3 separately.

First suppose that c � 4. We take k = 2(3/10− 1/c)(n− 1) � (3/10− 1/c)�,
as in the statement of the theorem, and use D(1−k/� || 1/c) � 2(1−k/�−1/c)2

(from Fact 10) to obtain the bound

2
∞∑

�=2(n−1)

e((1/2) ln 7−2(1−k/�−1/c)2)� � 2
∞∑

�=2(n−1)

e((1/2) ln 7−49/50)�.

As 49/50 > (1/2) ln 7 ≈ 0.973, this sum is exponentially small in n.
Lastly, suppose that c = 3. In this case, our choice of k above is negative.

Instead we take k = (n − 1)/22, which implies 1 − k/� � 43/44. In order to
obtain a sufficiently tight bound on D(1−k/� || 1/c), we use the explicit formula
in Fact 10 to show that D(43/44 || 1/3) > 0.974 > (1/2) ln 7, which implies
that there is a bound in Equation (1) which is exponentially small in n. This
completes the proof. ��
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Abstract. We present a new proof of NP-completeness for the problem
of solving instances of the Japanese pencil puzzle Kakuro (also known
as Cross-Sum). While the NP-completeness of Kakuro puzzles has been
shown before [T. Seta. The complexity of CROSS SUM. IPSJ SIG Notes,
AL-84:51–58, 2002], there are still two interesting aspects to our proof:
we show NP-completeness for a new variant of Kakuro that has not
been investigated before and thus improves the aforementioned result.
Moreover some parts of the proof have been generated automatically,
using an interesting technique involving SAT solvers.

1 Introduction

Pencil puzzles have gained considerable popularity during recent years. The ar-
guably most prominent example is the game of Number Place (jap. Sudoku), but
there are also many other logic puzzles, which are especially popular in Japan.
Here, we are going to take a closer look at the so-called Kakuro puzzle.

Kakuro (also known as Cross-Sum) is a pencil puzzle that could be described
as the mathematical version of a crossword puzzle. The difference to the cross-
word puzzle is that in a Kakuro puzzle, we have to fill numbers into the empty
fields instead of letters, and the hints that are used to describe words in a cross-
word puzzle are also replaced by numbers, namely the sum of the corresponding
number sequence.

For a computer scientist, pencil puzzles are especially interesting from the
computational complexity point of view. The probably most basic problem is
finding a solution for a given puzzle, and in most cases, the corresponding de-
cision problem (“is there a solution?”) turns out to be NP-complete. Here NP
denotes the class of problems solvable in polynomial time on a nondeterministic
Turing machine. To our knowledge, the first result on pencil puzzles is due to
Ueda and Nagao [9], who showed that Nonogram is NP-complete. Since then,
a number of other pencil puzzles have been analyzed and also found to be NP-
complete, too, e.g., Corral [2], Cross-Sum (jap. Kakkuro) [7,8], Fillomino [11],
Heyawake [4], Slither Link [11], Sudoku [11], to mention a few.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 319–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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More formally, a Kakuro puzzle is played on a finite, rectangular grid that
contains blank cells and black cells. The objective is to fill numbers into the
blank cells, according to the following rules:

1. A sum is associated with every horizontal or vertical sequence of white cells.
Only maximal sequences are considered, i.e., sequences that do not have a
horizontal/vertical neighboring blank cell at either end.

2. Sequences have a minimum length of 2.
3. Only the numbers 1, 2, . . . , 9 can be placed into the blank cells.
4. Each horizontal respectively vertical sequence has a black cell left of resp.

above its first cell, and that black cell contains as hint the sum that is
associated with the sequence. Black fields may contain 0, 1 or 2 hints.

5. In each horizontal/vertical sequence of cells, every number may occur at
most once.

6. The sum of the numbers of a sequence must equal the number that is denoted
in the corresponding hint.

An example of a Kakuro puzzle is shown in Figure 1. The NP-completeness of
solving these puzzles has originally been shown in [7,8]. The reduction developed
there is rather complicated, and derived from a very special problem. In this work,
we will instead show an alternative reduction that is based on the problem of pla-
nar 3SAT, which is well-known to be NP-complete [5], and constitutes a slight im-
provement to the original proof. We are going to prove the following theorem:

Theorem 1. Deciding whether a Kakuro puzzle has a solution or not is NP-
complete, even if the sequence of white cells is at most of length 4.

We assume the reader to be familiar with the theory of NP-completeness as
contained in, e.g., [3].

26 04

20
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04

17
11

16 03
24

23
14

29
34

08

09 12
24

06 06
16

03
16

06
04

09

14

12

(a) Example puzzle

26 04

20
04 3 1 04

17
11 5 2 3 1 16 03

24 9 8 7 23
14 3 9 2

29 8 7 5 9 34
08 7 1

09 12
24 9 8 7 06 06

16 7 9 03
16 6 4 1 5

06 2 3 1 04
09 6 2 1

14 2 1 8 3
12 3 9

(b) Solution

Fig. 1. Kakuro example puzzle with its solution

2 Kakuro Is Intractable

To prove Theorem 1, we have to show that the Kakuro problem is contained
in NP, and that it is NP-hard. Containment in NP is immediate, since we can guess
an assignment of numbers to empty cells and verify that the result is correct.
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To show NP-hardness, we will emulate a planar 3SAT circuit using wires,
input nodes, NOT gates, and OR gates, and there will also be some supporting
gadgets like the phase shifting gadget, a pattern inverter, and a signal shifter.
In the gadget diagrams, we will use a chess-like coordinate system to refer to
specific cells. Whenever there is a number that is predetermined because of the
Kakuro rules, that number will be preinserted into the diagram.

Figure 2 shows the input node gadget. The actual information generated in
the gadget is the position of the 1’s and 2’s, and all in all, there are only two
solutions: the sum 6 in a three cell sequence can only be built by summing
up the numbers 1, 2, 3, so we know that the 3 must occur somewhere in the
fields b3, c3, d3 and somewhere in the fields c2, c3, c4. But there can be no 3
at c2, because the horizontal sum 3 can only be the result of summing 1 and 2,
and the analogous argumentation shows that the 3 is not at b3 either. The sum 7
in a sequence of three fields can only be built by summing up the numbers 1, 2, 4,
so no 3 is allowed in the corresponding sequences, thus the 3 cannot be placed
at d3 and c4, and the only position that is left for the 3 is then c3, as shown.
The alternative solution is created by exchanging the 2’s and 1’s.

The “output” of this gadget is located at the lower right corner, the cor-
responding interface fields are shown as gray shaded boxes. Gadgets will be
connected to each other such that the interface fields overlap. All of our gadgets
can be rotated arbitrarily in steps of 90 degrees, as well as mirrored diagonally.

3 6
3

7
6 3

7

1
2
3
4

a b c d

(a) Input node

3 6
3 1 2 7
6 2 3 1

7 1

1
2
3
4

a b c d

(b) “true”

3 6
3 2 1 7
6 1 3 2

7 2

1
2
3
4

a b c d

(c) “false”

Fig. 2. The input node (a), with its two solutions (b) and (c)

The wire gadget is depicted in Figure 3. It simply transports the alternating
pattern of 1’s and 2’s. Other gadgets will be attached to both ends such that the
interface fields overlap, which explains where the number 4, which is apparently
neither defined by horizontal nor vertical hints, comes from: we assume that a
horizontal respectively vertical sum of value 7 is defined for the corresponding
sequences, and all of our gadgets will be designed such that this will be the case.
As an example, imagine how this would work out in a combination of an input
node gadget and a wire gadget. Information flow is from the top left corner to
the lower right corner. Rotated versions of the gadget will obviously work as
well.

Figure 4 shows the bending device, which allows us to change the direction
of signals by 90 degrees. Note that the output of the gadget is inverse to the
input, which is an unwanted side effect, but not really a problem since we can
simply attach a negation gadget to restore the original signal. The predefined
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(a) Wire gadget

1 6

1 4 2 7
6 2 3 1

7 1

1
2
3
4

a b c d

(b) “true”

2 6

2 4 1 7
6 1 3 2

7 2

1
2
3
4

a b c d

(c) “false”

Fig. 3. The wire gadget (a), and its two solutions (b) and (c) corresponding to the two
different boolean values, respectively

numbers in the diagram can be explained as follows: the horizontal sum 15 which
is defined at c1 is the smallest possible sum for 5 cells and can only be the result
of summing the numbers from 1 to 5. Thus, the highest possible number in this
vertical sequence is a 5. Since the horizontal sum defined at b4 is 14, we must
place this 5 at c4, because otherwise there would be a value larger than 10 in
the field at d4. This also determines the 9 at d4, which means that there can
only be the values 1 and 2 at d3 and d5, which in turn determines the 3 and 4
at c3 and c5.
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(a) Bending gadget
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(b) “true”
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6 1 3 2

6
14 5 9

7
7 2 4 1

1 3 2
1
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3
4
5
6
7

a b c d e

(c) “false”

Fig. 4. The bending gadget (a) and its two solutions (b) and (c)

The mentioned negation gadget is shown in Figure 5. There are lots of prede-
termined numbers in the diagram, and for a reader without Kakuro experience
it might not be clear why this is the case, so we will explain it in detail. The 4’s
and 3’s at b2, c3 and h8 should need no further explaining. The next interest-
ing value is the 7 at f5. The reasoning goes as follows: the vertical sum that is
defined there is 24, which is the highest value that can the result of summation
over three fields, and thus must be the sum of 9, 8 and 7. But it is not possible
to place a 9 or a 8 at f5, because then the remaining horizontal sum would be
reduced to 4 or 5, and it is not possible to have a sum of such small value in three
fields, as the lowest possible sum is 1 + 2 + 3 = 6. With analogous reasoning, we
can determine the numbers at e6, f6, g6 and f7. The 3 and 4 at e5 and g7 are
forced because the remaining horizontal and vertical sums are 6 and 7, thus the
previous argument about the other predefined 3’s and 4’s can be applied. Note
that even though the values in the interface fields take on the same values, the
pattern of 1’s and 2’s is shifted, which is what we actually wanted to achieve.
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(a) Negation device
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(b) Input “true”
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06 1 3 2 14

07 2 4 1 24 13
13 1 3 7 2

23 8 9 6 06
15 2 8 4 1 07

06 1 3 2
07 2

1
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3
4
5
6
7
8
9

a b c d e f g h i

(c) Input “false”

Fig. 5. The negation gadget (a) with its solutions (b) and (c)

There is one problem with the negation gadget: the alternating pattern of 3’s
and 4’s that occur in the middle of our gadgets is shifted by 1, and this might
be problematic when we try to combine gadgets. What we need here is a phase
shifter gadget, and this is shown in Figure 6. The gadget transports the alternat-
ing pattern of 1’s and 2’s without modifying it. The 4 at b2 is enforced because
there has to be a 4 at b1, b2 or b3 (recall that we can assume that a vertical
sum of 7 is defined there), but it cannot be at b2 (a horizontal sum of value
6 = 1 + 2 + 3 will be defined there) and not at b4, so the only possible position
is b3. The next predefined field is c3 with a value of 3. That 3 cannot be at d3,
because then the horizontal sum of 10 of the vertical sequence would be reduced
to 7, which is the lowest number that can possibly appear at d5 because of the
horizontal sum 24 = 9 + 8 + 7 there. But this would mean that we would have
to put a 0 at d5, which is not allowed. The 7 at d4 is determined because if we
would place a 9 or 8 there, the corresponding vertical sum would be reduced to 2
or 1, and such a small value is obviously not possible as the result of summation
in the two remaining fields. The argumentation for the other predefined fields is
completely analogous.

One of the most important—and usually also most complicated—gadgets
needed in a proof like ours is the splitter gadget, which creates a copy of an
input signal. The authors tried quite hard to manually create a puzzle that
served this purpose, but did not succeed. However, having a very fast Kakuro
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(a) Phase shifter
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(c) “false”

Fig. 6. The phase shifter gadget (a) and the two possible solutions (b) and (c)

solver at disposal (this solver will be described in the latter part of the paper), it
was possible to do an exhaustive search for a puzzle that fulfills the desired prop-
erties, and this search was indeed successful. The result is shown in Figure 7(a).
Note that the output of the puzzle is “inverted,” in that the pattern no longer
consist of 1’s and 2’s, but 8’s and 9’s instead. But it is easy to transform this
modified pattern back into the standard one, and this will be explained later.
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(a) Splitter
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4
5
6
7
8
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(b) Input “true”

Fig. 7. The splitter gadget (a) duplicates its input. An example is shown in (b).

As usual, we begin by explaining the predetermined numbers in the puzzle.
The 4 at c2 should be clear, the argumentation is the same as in the previous
cases. At d1, a vertical sum of value 6 is defined, which means that a 3 must
appear either at d3 or d4. But it cannot be at d4, because the vertical sum defined
there is 6, which means that another 3 at e4 would be enforced, which is not
allowed. Analogous argumentation shows that the 7 belonging to the sum 24 that
is defined at a7 can only be at c7. Determining the position for the 7 belonging
to the horizontal sum defined at f4 is a little bit more complicated: there is no
obvious reason why it cannot be at g4, so we have to fill out the puzzle until a
conflict arises. If we assume the 7 is placed at g4, then we would have a 6 at g5
and another 7 at h5, which already makes a sum of 13, and the remaining value
of the horizontal sum there is 28 − 13 = 15. But 15 can only be the result of
9 + 6 or 8 + 7, and both 6 and 7 already occur at g5 resp. h5, which means that
it is not possible to solve the puzzle any more, and so the 7 has to be at h4.
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By now, we already know a lot about this sub-puzzle: the sum of fields e3
and e4 will be 6, thus the remaining horizontal sum for fields e5 and e6 is
14 − 6 = 8. For the fields e5 and f5, we have a sum of 28 − 13 = 15 left,
because the numbers at g5 and h5 will always build the sum 13. With analogous
reasoning, we see that the fields e6 and e7 must contain a sum of 21 − 14 = 7.
All in all, we have a sub-puzzle in the fields e5, f5, e6, f6 that corresponds to
the puzzle shown in Figure 8.

08 14
15

07

1
2
3

a b c

(a) Core puzzle

08 14
15 6 9
07 2 5

1
2
3

a b c

(b) Solution 1

08 14
15 7 8
07 1 6

1
2
3

a b c

(c) Solution 2

Fig. 8. The center of the splitter gadget (a), and its two solutions (b) and (c)

It is easy to see that this puzzle has exactly two solutions: the vertical sum 14
defined at c2 means that the value at c3 is at least 5, but the horizontal sum 7
also tells us that the value cannot be bigger than 6. Looking at cell e3 in the
splitter puzzle, we see that there is either a 1 or a 2, and this obviously determines
the solution chosen in the center of the gadget because of Rule 5. This solution
in turn determines the numbers chosen at h5 and d6 (in the original gadget),
effectively synchronizing all values. Thus, we have shown that the splitter gadget
performs as desired. One example of the full solution is shown in Figure 7(b).

What we still need now is some gadget to transform the 8/9 output pattern
into a corresponding 1/2 pattern. In addition to that, we need to shift the pattern
vertically or horizontally by one cell, to assure that it can be connected to other
gadgets. A gadget that has this effect is shown in Figure 9. The diagram shows
a gadget that shifts the signal down vertically by one cell, but by mirroring it
on the diagonal we can obtain a gadget that shifts the signal right by one cell.
As usual, rotated versions of the device will also work.

The number 7 at b2 can be explained with standard reasoning, as well as the 6
at c3. The first more difficult number is the 7 at d4: because of the horizontal
sum of 24 defined there, a 7 has to appear either at d4 or e4. But it cannot be
at e4, because then, there would be a 9 or 8 at d4, and we already know that
there will be a 8 resp. 9 at d3, and this means that the sum of fields d3 and d4
would already be 17, leaving 0 for d5, which is of course not allowed. With the 7
fixed at d4, we also know that there can only be the values 1 or 2 at d5, and
this in turn determines the 3 at e5. The 7 at h8 is determined there because the
horizontal sum that is defined there can only be the result of adding 9 and 7,
but if the 9 were placed here, the vertical sum would be reduced to 5, which
is too small for the three remaining fields. This also forces the 9 at g8. The
remaining 3’s and 4’s should need no explicit explanation, since the can all be
explained with the standard argumentation.

A puzzle that emulates an OR-gate is shown in Figure 10. Its basic layout
is identical to that of the splitter gadget, and it was found using the same
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(a) Inverter/Shifter
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(b) “true”
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(c) “false”

Fig. 9. The inverter/shifter gadget (a) and solutions (b) and (c)

exhaustive search method. The device does not produce an output signal that
corresponds to the OR of two input signals, but instead it takes three input
signals and enforces that not all of these signals are “false.”

The predefined numbers at c7 and h4 should need no further explaining. The
placement of the 3 at d3 is not obvious, it could also be placed at e3 without
a direct resulting conflict. In that case however, a 4 would be enforced at e4,
and the vertical sum so far is 7, which leaves 12 − 7 = 5. But 5 can only be
partitioned as 5 = 1 + 4 or 5 = 2 + 3, and both 3 and 4 already occur in the
vertical sequence, so this is where the conflict occurs.

As in the case of the splitter gadget, a sub-puzzle in the fields e5, f5, e6, f6
emerges, and this sub-puzzle is shown in Figure 11(a). It is easy to derive the
three shown solutions to this gadget: there are 4 possibilities to partition the 6
that is defined at a2: 1 + 5, 2 + 4, 4 + 2, 5 + 1. By simply trying all of these, we
see that a 1 is impossible at c2, which prevents a solution in the last case, while
all the other cases lead to a valid solution.

To prove that the gadget works as described we would need to verify that
there is no solution if all the input patterns are “false,” and that there is a
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(a) OR gadget
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(b) all inputs false

Fig. 10. The OR gadget (a), and the situation when all inputs are false (b)
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(a) Core puzzle
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(b) Solution 1
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1
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a b c

(c) Solution 2

05 11
06 4 2
10 1 9

1
2
3

a b c

(d) Solution 3

Fig. 11. The core puzzle of the OR gadget (a) has three solutions (b), (c), and (d)

solution in all other cases. This is a cumbersome exercise, so we will show the
former property and one example for the latter property.

Now let us assume that all input values are “false,” which means that the
number 2 resp. 9 appears in the interface fields. The situation is shown in Fig-
ure 10(b). When we fill out the puzzle, there will be a 2 at e3, which means that
only the solutions 1 and 3 shown in Figure 11 are possible for the core puzzle.
But there will also be a 5 at g5, which means that solution 1 is also not possible,
and solution 3 will also not be possible since there will be a 9 at c6.

Next, let us see what happens if we change the upper left input to “true,”
in which case a solution should be possible. Then there would be a 1 at e3,
which means that we have to choose solution 2 for the core puzzle. But with this
core puzzle solution, there will be no restrictions on the other two input values,
because, e.g., at g5 and h5 the only possible values are 5 and 9 or 6 and 8, neither
of which conflicts with the core puzzle solution. This means that arbitrary input
values are allowed at the upper right corner, and with analogous reasoning, we
can show that the same holds for the lower left input. Thus, we have already
shown that all input combinations where the upper left input is “true” are valid
solutions. Showing that all remaining input combinations lead to valid solutions
is done completely analogous.

It is clear now that we have developed all the gadgets that are needed to
emulate arbitrary planar 3SAT instances, and thus we have proven the first
part of Theorem 1. Moreover, the result also constitutes an improvement to the
original proof in [7,8], in that the maximum sequence length of white cells needed
is 4 instead of 5. This can be achieved by replacing the bending gadget with a
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splitter gadget and simply attaching an input node to the superfluous output,
effectively discarding the unneeded signal. This finally proves the second part of
our main result.

The reduction developed herein is parsimonious, which means that we have
also proven a stronger result: Checking a Kakuro puzzle for unique solvabil-
ity is DP-complete under randomized polynomial time many-one reductions by
employing Valiant and Vazirani’s [10] result on unique satisfiability. Here DP
denotes the class of differences of any two NP sets [6]—note that DP is equal to
the second level of the Boolean Hierarchy over NP.

3 Automatic Gadget Generation

As has been mentioned before, some of the gadgets that have been used for the
proof have been generated automatically, using an efficient Kakuro solver. That
solver actually translates the Kakuro instance into a SAT instance, and applies
a SAT-solver to the result, in our case Minisat [1]. That principle has become a
standard approach in recent years, and SAT-solvers as well as constraint-based
solvers have been used to tackle many pencil puzzles.

What we have done now to find gadgets that implement certain functionalities
is the following: we knew how we would like our signals to be transmitted, i.e.,
the shape of the wire gadgets was already known. Furthermore, we knew that
all of the gadgets we were looking for (splitter, OR) have three wire gadgets
connected, so we tried to find a shape that connects three wires and is as small
as possible. Figure 12 shows the puzzle shape we came up with.

1 2
2 3 1 9 8

1 � 8 7 9
� � � 8

8 � � �

9 7 8
8 9

1
2
3
4
5
6
7
8
9

a b c d e f g h i j

Fig. 12. The search pattern used for the OR gadget

The actual search then worked like this: the fields containing a � symbol have
been used as wildcards, which means that we simply exhaustively generated
all possible puzzles by filling in numbers greater or equal to 1 into the fields
containing the � symbol. Note that the input to the puzzle solver consists only
of the sums of number sequences, not of the numbers themselves. Thus, even
though the search mask shown in Figure 12 looks as though some numbers were
fixed, they actually are not, and there might be solutions where the numbers
turn out differently.
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So after generating all the puzzles by filling in numbers, we ran the Kakuro

solver on each of them, and had the solver find alternative solutions. The first
step then was filtering out all puzzles that did not have the correct total number
of solutions, which is 7 for the OR gate. It is clear that the OR gadget must
have exactly 7 solutions, since all possible input value assignments are allowed
except for all input values being “false.” After filtering out merely by number of
solutions, 2472 potential candidates for the OR gadget were left. For the puzzles
that had 7 solutions, we then looked at the values of those solutions at the
critical positions c2, i3 and b8, sorting out puzzles that had redundant solutions.
Thus, we were able to find not only one, but a handful of puzzles that fulfilled
the requirements, and we chose one of those puzzles as our gadget.

Automatically finding gadgets for the splitter device was done analogously.
The program source codes used will be made available upon request.

4 Conclusion

In this paper we have developed a new proof showing that the pencil puzzle
Kakuro is NP-complete. Though the result was known before, our proof is still
interesting, because it is based on a reduction from a better known problem, and
also because some parts of the proof have been generated automatically. Fur-
thermore, we were able to show that the Kakuro puzzle remains NP-complete if
only sequences of white cells of length at most 4 are used. It is not clear how the
complexity of the problem is affected if number sequences have length at most 3,
but observe, that Seta has shown in [7] that Kakuro puzzles with sequences
that have length at most 2 can be efficiently solved in linear time.
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Symmetric Monotone Venn Diagrams with
Seven Curves

Tao Cao, Khalegh Mamakani�, and Frank Ruskey��
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Abstract. An n-Venn diagram consists of n curves drawn in the plane in
such a way that each of the 2n possible intersections of the interiors and
exteriors of the curves forms a connected non-empty region. A k-region in
a diagram is a region that is in the interior of precisely k curves. A n-Venn
diagram is symmetric if it has a point of rotation about which rotations of
the plane by 2π/n radians leaves the diagram fixed; it is polar symmetric
if it is symmetric and its stereographic projection about the infinite outer
face is isomorphic to the projection about the innermost face. A Venn
diagram is monotone if every k-region is adjacent to both some (k − 1)-
region (if k > 0) and also to some k+1 region (if k < n). A Venn diagram
is simple if at most two curves intersect at any point. We prove that the
“Grünbaum” encoding uniquely identifies monotone simple symmetric n-
Venn diagrams and describe an algorithm that produces an exhaustive
list of all of the monotone simple symmetric n-Venn diagrams. There
are exactly 23 simple monotone symmetric 7-Venn diagrams, of which 6
are polar symmetric.

Keywords: Venn diagram, symmetry.

1 Introduction

1.1 Historical Remarks

The familiar three circle Venn diagram is usually drawn with a three-fold rota-
tional symmetry and the question naturally arises as to whether there are other
Venn diagrams with rotational symmetry. Grünbaum [5] discovered a rotation-
ally symmetric 5-Venn diagram. Henderson [7] proved that if an n-curve Venn
diagram has an n-fold rotational symmetry then n must be prime. Recently,
Wagon and Webb [11] cleared up some details of Henderson’s argument. The
necessary condition that n be prime was shown to be sufficient by Griggs, Kil-
lian and Savage [4] and an overview of these results was given by Ruskey, Savage,
and Wagon [10].

A Venn diagram is simple if at most two curves intersect at any point. There
is one simple symmetric 3-Venn diagram and one simple symmetric 5-Venn di-
agram. Edwards wrote a program to exhaustively search for polar symmetric
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7-Venn diagrams and he discovered 5 of them, but somehow overlooked a 6-th
[3]. His search was in fact restricted to monotone Venn diagrams, which are those
that can be drawn with convex curves [1].

A program was written to search for monotone simple symmetric 7-Venn di-
agrams and 23 of them were reported in the original version of the “Survey of
Venn Diagrams” (Ruskey and Weston [9]) from 1997, but no description of the
method was ever published and the isomorphism check was unjustified. Later
Cao [2] checked those numbers, and provided a proof of the isomorphism check,
but again no paper was ever published. In this paper, we justify the isomor-
phism check and yet again recompute the number of symmetric simple 7-Venn
diagrams, using a modified version of the algorithm in [2].

1.2 Definitions

Let C = {C0, C1, . . . , Cn−1} be a collection of n finitely intersecting simple closed
Jordan curves in the plane. The collection C is said to be an n-Venn diagram
if there are exactly 2n nonempty and connected regions of the form X0 ∩X1 ∩
· · · ∩Xn−1 determined by the n curves in C, where Xi is either the unbounded
open exterior or open bounded interior of the curve Ci. Each connected region
corresponds to a subset S ⊆ {0, 1, . . . , n − 1}. A region enclosed by exactly k
curves is referred as a k-region or a k-set.

A simple Venn diagram is one in which exactly two curves cross each other
at any point of intersection. In this paper we only consider simple diagrams. A
Venn diagram is called monotone if every k-region (0 < k < n) is adjacent to
both a (k − 1)-region and a (k + 1)-region. It is known that a Venn diagram
is monotone if and only if it is isomorphic to some diagram in which all of the
curves are convex [1].

A Venn diagram is rotationally symmetric (usually shortened to symmetric)
if there is a fixed point p in the plane such that each curve Ci, for 0 ≤ i < n, is
obtained from C0 by a rotation of 2πi/n about p. There is also a second type of
symmetry for diagrams drawn in the plane. Consider a rotationally symmetric
Venn diagram as being projected stereographically onto a sphere with the south
pole tangent to the plane at the point of symmetry p. The projection of the
diagram back onto the parallel plane tangent to the opposite pole is called a
polar flip. If the polar flip results in an isomorphic diagram then the diagram
is polar symmetric. Figure 1 shows a 7-set polar symmetric Venn diagram (this
diagram is known as “Victoria” [3]). In conceptualizing polar flips the reader
may find it useful to think of the symmetric diagram as being projected on a
cylinder, with the region that intersects all of the sets at the bottom of the
cylinder and the empty region at the top of the cylinder. Then the polar flip is
akin to turning the cylinder upside-down (see Figure 5).

Two Venn diagrams are generally said to be isomorphic if one of them can be
changed into the other or its mirror image by a continuous transformation of the
plane. However, when discussing rotationally symmetric diagrams we broaden
this definition to allow for polar flips as well. Thus the underlying group of
potential symmetries has order 4n.
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As was pointed out earlier, if an n-Venn diagram is symmetric then n is prime.
Simple symmetric diagrams for n = 2, 3, 5, 7 have been found. The main purpose
of this paper is to determine the total number of simple monotone symmetric
7-Venn diagrams. A nice poster of the set of resulting diagrams may be obtained
at http://www.cs.uvic.ca/~ruskey/Publications/Venn7/Venn7.html.

Fig. 1. “Victoria”: a simple monotone polar symmetric 7-Venn diagram

The paper is organized as follows. In Section 2 we outline the classical com-
binatorial embedding of planar graphs, which is our basic data structure for
storing the dual graphs of Venn diagrams. In Section 3 we discuss the represen-
tation of Venn diagrams as strings of integers, focussing on those which were
used by Grünbaum to manually check whether purported Venn diagrams were
Venn diagrams or not, and, if so, whether they were isomorphic.

2 2-Cell Embedding

In this section we outline some of the theory that is necessary for the combina-
torial embedding of Venn diagrams in the following sections.

Given a graph G and a surface S, a drawing of G on the surface without
edge crossing is called an embedding of G in S. The embedding is 2-cell, if
every region of G is homomorphic to an open disk. For a 2-cell embedding of a
connected graph with n vertices, m edges and r regions in an orientable surface
Sh with h handles we have Euler’s formula n−m + r = 2− 2h.

Let G = (V, E) be a finite connected (multi)graph with V = {v1, v2, · · · , vn}.
For each edge e ∈ E, we denote the oriented edge from vi to vj by (vi, vj)e and
the opposite direction by (vj , vi)e. For each vertex vi, let Ei be the set of edges
oriented from vi; i.e., Ei = {(vi, vj)e : e ∈ E for some vj ∈ V }. Let Φi be the set
of cyclic permutations of Ei. The following theorem proved in [12] shows that
there is a one to one correspondence between the set of 2-cell embedding of G
and the Cartesian product

∏
Φi.

http://www.cs.uvic.ca/~ruskey/Publications/Venn7/Venn7.html
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1

0

(c)

Fig. 2. Examples of normal and non-normal families of intersecting closed curves: (a)
is a NFISC, (b) and (c) are not

Theorem 1. Let G = (V, E) be a finite connected (multi)graph. Define Ei and
Φi as above. Then each choice of permutations (φ1, φ2, . . . , φn) of Φ1 × Φ2 ×
· · · × Φn determines a 2-cell embedding of G in some orientable surface Sh.
Conversely, for any 2-cell embedding of G in Sh, there is a corresponding set of
permutations that yields that embedding.

3 Representations of Symmetric Monotone Venn
Diagrams

3.1 G-Encoding

A family of intersecting simple closed curves (or a FISC) is a collection of simple
closed curves enclosing a common non-empty open region and such that every
two curves intersect in finitely many points [1].

Definition 1. A normal FISC (or NFISC) is a FISC satisfying the following
additional conditions:

– Every curve touches the infinite face,
– The collection is simple, i.e., exactly two curves meet at every point of in-

tersection and they cross each other (each intersection is transverse).
– The collection is convex drawable; i.e., it can be transformed into a FISC

with all curves convex by a homeomorphic transformation of the plane.

Let C be an NFISC consisting of n Jordan curves and call the diagram consisted
of these n curves an n-diagram. Choosing an arbitrary curve as curve 0, we label
all n curves by their clockwise appearance on the outmost region. Let M be
the number of times the curves touch the infinity face, M ≥ n. A G-encoding
consists of M + 1 sequences and an M × n matrix F . The first sequence, call it
I = I0, I1, . . . , IM−1 has length M . Starting with curve 0, it specifies the curves
encountered as we walk around the outer face of the n-diagram in clockwise
direction. Thus, Ii ∈ {0, 1, . . . , n− 1}. Each element of I corresponds to a curve
segment in the outer face of the diagram. For each curve c, the first segment is the
one which corresponds to the first appearance of c in I. The other M sequences
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(a)

i Ii wi

0 0 1 2 2 2 1 2 1 1
1 1 2 0 2 0 0 2 2 0
2 2 0 1 1 1 0 0 0 1
3 0 1 1 1 2 2 2 1 2
4 1 0 2 2 0 2 0 2 0

0 1 2 3 4 5 6 7

(b)

0 1 2
0 ∞ 4 5
1 7 ∞ 2
2 4 7 ∞
3 ∞ 6 7
4 3 ∞ 6

Fig. 3. (a) G-encoding of Figure 2(a). (b) The corresponding F -matrix.
.

are denoted w0, w1, . . . , wM−1. Sequence wi records intersections along curve
Ii as a sequence of integers, indicating the curves encountered at intersection
points. As usual, the curves are traversed in a clock-wise order.

Among all intersections of the traversal starting at Ii with curve j, let F [i, j]
be the index of the first intersection with curve j after curve j touches the outer
face for the first time. That is, if p1, p2, . . . , pt are the indices of the intersections
with curve j in sequence wi, the first segment of curve j will eventually hit the
outer face, say between intersections at positions ps−1 and ps; then F [i, j] = ps.

Figure 3 shows the G-encoding of the 3-diagram of Figure 2(a). The first table
shows the I and wi sequences. The second table is the F matrix. Since the curves
are not self intersecting, we define F [i, j] = ∞ if j = Ii. It is worth noting that
in general the wi sequences may have different lengths.

By constructing a circular list of oriented edges for each vertex (point of
intersection), it can be shown that there is a correspondence between a 2-cell
embedding of an NFISC n-diagram and its G-encoding.

Theorem 2. Each G-encoding of an NFISC of n Jordan curves uniquely deter-
mines a 2-cell embedding of the n-diagram in some sphere S0.

Note that for a non-NFISC, the G-encoding does not necessarily determine a
unique diagram. For example the two non-NFISC diagrams (b) and (c) in Figure
2 have the same G-encoding.

3.2 The Grünbaum Encoding

Grünbaum encodings were introduced by Grünbaum as a way of hand-checking
whether two Venn diagrams are distinct. However, no proof of correctness of
the method was ever published. The Grünbaum encoding of a simple symmetric
monotone Venn diagram consists of four n-ary strings, call them w, x, y, z.
String w is obtained by first labeling the curves from 0 to n − 1 according to
their clockwise appearance on the outer face and then following curve 0 in a
clockwise direction, starting at a point where it touches the outermost region
and meets curve 1, recording its intersections with the other curves, until we
reach again the starting point.

String x is obtained by first labeling the curves in the inner face starting at
0 in a clockwise direction and then by following curve 0 in a clockwise direction
starting at the intersection with curve 1.
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Strings y and z are obtained in a similar way but in a counter-clockwise
direction. First, curves are re-labeled counter-clockwise as they appear on the
outer face. Then strings y and z are obtained by following curve 0 in a counter-
clockwise direction starting from the outermost and innermost regions respec-
tively and recording its intersection with other curves. The Grünbaum encoding
of the Venn diagram shown in Figure 1 is given below.

w: 1 4 2 5 3 6 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6
x: 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6 1 4 2 5 3 6
y: 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6 1 4 2 5 3 6
z: 1 4 2 5 3 6 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6

Property 1. Each string of the Grünbaum encoding of a simple symmetric mono-
tone n-Venn diagram has length (2n+1 − 4)/n.

Proof. Clearly each string will have the same length, call it L. An n-Venn dia-
gram has 2n regions, and in a simple diagram every face in the dual is a 4-gon. We
can therefore use Euler’s relation to conclude that the number of intersections
is 2n − 2. By rotational symmetry every intersection represented by a number
in the encoding corresponds to n − 1 other intersections. However, every inter-
section is represented twice in this manner. Thus nL = 2(2n − 2), and hence
L = (2n+1 − 4)/n. ��

According to the definition of Grünbaum encoding, each string starts with 1 and
ends with n−1. Given string w of the Grünbaum encoding, we can compute the
other three strings. Let L = (2n+1 − 4)/n denote the length of the Grünbaum
encoding, and let w[i], x[i], y[i] and z[i] be the ith element of w, x, y and z,
respectively, where 0 ≤ i ≤ L− 1. Then, clearly,

y[i] = n− w[L − i− 1] and z[i] = n− x[L− i− 1].

To obtain x, we first find out the unique location in w where all curves have
been encountered an odd number of times (and thus we are now on the inner
face), then shift w circularly at this location. The string z can be easily inferred
from y in a similar manner.

Three isomorphic Venn diagrams may be obtained from any Venn diagram
by “flipping” and/or “polar flipping” mappings. The strings x, y and z are the
first strings of the Grünbaum encodings of these isomorphic diagrams. So we can
easily verify isomorphisms of any Venn diagram using the Grünbaum encoding.
Due to space limitations the proof of the following theorem is omitted.

Theorem 3. Each Grünbaum encoding determines a unique simple symmetric
monotone n-Venn diagram (up to isomorphism).

Using Grünbaum encoding of a Venn diagram, we can also verify whether it is
polar symmetric or not by the following theorem.

Theorem 4. An n-Venn diagram is polar symmetric if and only if the two string
pairs (w, z) and (x, y) of its Grünbaum encoding are identical.
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Proof. For a given Venn diagram D with Grünbaum encoding (w, x, y, z) there
are three isomorphic Venn diagram obtained by horizontal, vertical and po-
lar flips with Grünbaum encodings (y, z, w, x), (x, w, z, y) and (z, y, x, w) respec-
tively. Let D′ denotes the Venn diagram obtained by polar flip mapping of D.
If D is polar symmetric, then it remains invariant under polar flips So D and
D′ must have the same Grünbaum encoding, that is, (w, x, y, z) = (z, y, x, w).
Therefore, for a polar symmetric Venn diagram we have w = z and x = y.

Conversely, suppose we have a Venn diagram D with Grünbaum encoding
(w, x, y, z) such that w = z and x = y. Then (w, x, y, z) = (z, y, x, w). So the
isomorphic Venn diagram D′ obtained by polar flip mapping of D, has the same
Grünbaum encoding as D. So by Theorem 3 D and D′ are equivalent and the
diagram is polar symmetric. ��

3.3 The Matrix Representations of Monotone Diagrams

Because of the property of symmetry, an n-Venn symmetric diagram may be par-
titioned into n identical sectors. Each sector is a pie-slice of the diagram between
two rays from the point of symmetry offset by 2π/n radians from each other. So
the representation of one sector is sufficient to generate the whole diagram.

Given a sector of a simple monotone n-Venn diagram, one can map it to a
graph consisting of n intersecting polygonal curves (which we call polylines), as
shown in Figure 4. Putting 0s between these n polylines and 1s at the intersec-
tions gives us a 0/1 matrix. We then can expand the matrix by appending iden-
tical matrix blocks to generate a matrix that represent the whole Venn diagram.

An n-Venn diagram has exactly 2n regions. Among them one is most inside
(inside all curves) and one is most outside (outside all curves). The rest of 2n−2
regions are evenly distributed in each sector. Hence in each sector there are (2n−
2)/n regions. We use a 1 to indicate the starting point of a region and the ending
point of the adjacent region. This implies that there are exactly (2n−2)/n 1’s in
the matrix. So one can always use a (n−1)× (2n−2)/n 0/1 matrix to represent
one sector and use a (n−1)×(2n−2) 0/1 matrix to represent the whole diagram.

If a matrix (aij), i = 0, 1, · · · , n−2, j = 0, 1, · · · , (2n−2)/n−1, is a represen-
tation of a Venn diagram, then any matrix obtained by a shift of some number of
columns is also a representation of the same diagram. Therefore we can always
shift the representation matrix so that a00 = 1. The matrix with 1 at the first
entry is called the standard representation matrix.

The matrix representation of a simple symmetric monotone Venn diagram of
n curves has the following properties:

(a) The total number of 1’s in the matrix is (2n − 2)/n, with one 1 in each
column.

(b) There are
(
n
k

)
/n 1s in the kth row, for k = 1, 2, . . . , n− 1.

(c) There are no two adjacent 1’s in the matrix.

Note that different 0/1 matrices could represent isomorphic Venn diagrams. How
do we know whether a given 0/1 matrix represents a “new” Venn diagram? The
Grünbaum encoding provides a convenient way to solve this problem.
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Fig. 4. Matrix representation of Victoria

4 The Algorithm

The algorithm to find all symmetric monotone Venn diagrams consists of the
following four steps.

1. Step one: Generate all possible standard 0/1 matrices with n− 1 rows and
(2n − 2)/n columns that satisfy (a), (b) and (c). To generate each row we
are generating restricted combinations; e.g., all bitstrings of length 18 with
k 1s, no two of which are adjacent.

2. Step two: Check validity. For each matrix V generated in step one, by
appending it n − 1 times, we first extend the matrix to a matrix X that
represents the whole potential Venn diagram. A valid matrix must represent
exactly 2n − 2 distinct regions of the corresponding Venn diagram. The two
other regions are the outermost and the innermost regions. Each region is
specified by its rank defined as

rank = 20x0 + 21x1 + · · ·+ 2n−1xn−1,

where xi = 1 if the curve i is outside of the region and xi = 0 otherwise.
In order to check the regions and generate the Grünbaum encoding, an n×
(2n − 2) matrix C called the P-matrix is generated. The P-matrix gives us
another representation of the curves of the Venn diagram (see Table 1). The
first column of C is set to [0, 1, . . . , n − 1]T and for each successive column
j, 1 ≤ j < 2n − 2, we use the same entries of column j − 1 and then swap
Cij , C(i+1)j if Xi(j−1) = 1.
To check the validity of matrix X , we scan it column by column from left
to right. Each 1 indicates the end of one region and start of another re-
gion. The entries in the same column of matrix C are used to compute
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the rank of the regions. The generated matrix is a valid representation
of a Venn diagram if 2n − 2 distinct regions are found by scanning the
whole matrix, which will only occur if each of the rank calculations are
different.

Table 1. The first 18 columns of the P-matrix of Victoria

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5
2 2 3 0 2 2 2 2 5 5 5 5 3 6 6 2 2 2
3 3 2 2 0 4 4 5 2 2 2 6 6 3 2 6 6 4
4 4 4 4 4 0 5 4 4 4 6 2 2 2 3 3 4 6
5 5 5 5 5 5 0 0 0 6 4 4 4 4 4 4 3 3
6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0

Fig. 5. Cylindrical representation of Victoria

Adelaide Hamilton Manawatu

Massey Palmerston North Victoria

Fig. 6. All simple monotone polar symmetric 7-Venn diagrams
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Fig. 7. All 17 simple monotone non-polar symmetric 7-Venn diagrams
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3. Step three: Generate the Grünbaum encoding. To generate Grünbaum
codes, we first relabel the polylines by the order of appearances in the
first row so that they are labeled with 0, 1, ..., n − 1 (for Table 1 the
relabeling permutation is 0124536). Following polyline 0 and recording its
intersections with the other polylines, we have the first string w of the
Grünbaum encoding. The other three strings, x, y and z, are computed
from w.

4. Step four: Eliminate isomorphic solutions. By sorting the four strings of
the Grünbaum encoding of each produced Venn diagram into lexicographic
order and comparing them with the encodings of previously generated Venn
diagrams, we eliminate all isomorphic solutions. If the current diagram is not
isomorphic to any of previously discovered diagrams, then it will be added
to the solution set.

Checking all possible 0/1 matrices for n = 7, we found exactly 23 non-isomorphic
symmetric monotone Venn diagrams, of which 6 diagrams are polar symmetric.
See Figures 6 and 7.

5 Drawing

The polyline diagram in figure 4 shows one sector of the cylindrical projection
of Victoria. So given the matrix representation of a Venn diagram, one can
easily get its cylindrical projection by computing the cylindrical coordinates of
each intersection point. Because of the symmetry, it is sufficient to compute the
coordinates only for the first curve. We also need extra points to specify peeks
and valleys. To get a visually pleasing shape, we moved the points in such a way
that at each point the line segments are perpendicular to each other. Figure 5
shows the resulting representation for Victoria.

The Cartesian coordinates of each point on the plane can be obtained from
its cylindrical coordinates. Then we draw the first curve by applying spline in-
terpolation to the computed coordinates. The other six curves are simply drawn
by rotating the first curve about the point of symmetry. Figures 7 and 6 show
drawings of all 23 diagrams, as constructed by this method.

6 Conclusions and Open Problems

A matrix representation of simple symmetric monotone Venn diagrams has been
introduced. We proved that Grünbaum encoding can be used to check the iso-
morphism and polar symmetry of simple symmetric monotone Venn diagrams.
Using an exhaustive search algorithm we verified that there are exactly 23 non-
isomorphic simple symmetric monotone 7-Venn diagrams, which 6 of them are
polar symmetric. Below is the list of some related open problems: (a) Find the
total number of simple symmetric non-monotone 7-Venn diagrams. (b) Is there
a simple symmetric Venn diagram for n = 11?
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1. Bultena, B., Grünbaum, B., Ruskey, F.: Convex Drawings of Intersecting Fam-
ilies of Simple Closed Curves. In: 11th Canadian Conference on Computational
Geometry, pp. 18–21 (1999)

2. Cao, T.: Computing all the Simple Symmetric Monotone Venn Diagrams on Seven
Curves. Master’s thesis, Dept. of Computer Science, University of Victoria (2001)

3. Edwards, A.W.F.: Seven-set Venn Diagrams with Rotational and Polar Symmetry.
Combinatorics, Probability, and Computing 7, 149–152 (1998)

4. Griggs, J., Killian, C.E., Savage, C.D.: Venn Diagrams and Symmetric Chain De-
compositions in the Boolean Lattice. Electronic Journal of Combinatorics 11(1),
#R2 (2004)
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The Feline Josephus Problem

Frank Ruskey� and Aaron Williams

Dept. of Computer Science, University of Victoria, Canada

Abstract. In the classic Josephus problem, elements 1, 2, . . . , n are
placed in order around a circle and a skip value k is chosen. The problem
proceeds in n rounds, where each round consists of traveling around the
circle from the current position, and selecting the kth remaining element
to be eliminated from the circle. After n rounds, every element is elim-
inated. Special attention is given to the last surviving element, denote
it by j. We generalize this popular problem by introducing a uniform
number of lives �, so that elements are not eliminated until they have
been selected for the �th time. We prove two main results: 1) When n
and k are fixed, then j is constant for all values of � larger than the nth
Fibonacci number. In other words, the last surviving element stabilizes
with respect to increasing the number of lives. 2) When n and j are
fixed, then there exists a value of k that allows j to be the last survivor
simultaneously for all values of �. In other words, certain skip values en-
sure that a given position is the last survivor, regardless of the number
of lives. For the first result we give an algorithm for determining j (and
the entire sequence of selections) that uses O(n2) arithmetic operations.

Keywords: Josephus problem, Fibonacci number, Chinese remainder
theorem, Bertrand’s postulate, number theory, algorithm.

“un gatto ha sette vite”

1 Introduction

1.1 A Fanciful Scenario

In this subsection we describe some of the history that lead to the classic Jose-
phus problem, and then invent a scenario that might have led to our version of
the Josephus problem.

During the first Jewish-Roman war, the military leader Josephus (ad 37 - c.
100) and 40 of his countrymen hid from the Romans in the fallen city of Yodfat.
With no hope for escape, the Jewish survivors agree to commit mass suicide
rather than be captured and enslaved by the enemy. Josephus does not agree
with the others, and instead convinces them to take part in a lethal game of
chance:
� Research supported in part by an NSERC discovery grant.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 343–354, 2010.
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“He whom the lot falls to first, let him be killed by him that hath the
second lot, and thus fortune shall make its progress through us all.”
(Book 3, Chapter 8, Section 7 in The Jewish War [10].)

Whether by chance or “by the providence of God” Josephus survives this ordeal,
and eventually becomes the Roman citizen and Jewish historian known as Titus
Flavius Josephus.

By 1539, Girolamo Cardano described the situation as a mathematical puzzle
[3]. Instead of drawing lots, the 41 men form a circle and then every 3rd person
around the circle is successively selected for elimination. Using this interpreta-
tion, Josephus is recast as an erudite scholar who quickly determined that he
should stand in the 31st position to avoid elimination.

In general, the classic Josephus problem has two parameters: n and k. A circle
of n people is formed, and successively every k-th person is selected for elimi-
nation. As people are killed off, the circle shrinks, and the goal is to determine
last surviving position j. In particular, Josephus solved the first instance of the
problem by determining that j = 31 when n = 41 and k = 3. In all versions of
the problem, including ours, Josephus knows where the circle begins and has the
right to stand in whatever position he wishes.

Now imagine that Josephus’s countrymen agree with his orderly method of
elimination, but suspect that Josephus has already determined where to stand.
For this reason, they introduce a third parameter � (for lives). Again the men
form a circle, but this time they do not die until they have been selected (also
called “hit”) for the �-th time. Inspired by the Italian saying that “un gatto ha
sette vite” (cats have seven lives)1, we call this generalization the Feline Josephus
problem. In the original problem � = 1.

To further complicate matters, Josephus’s countrymen hide the value of �
from their military leader. Undeterred, Josephus agrees to this change of plans,
but only under one of the following two conditions: (a) he gets to specify a lower
bound on �, or (b) he gives up his right to specify where he stands, in exchange
for choosing the value of k. Amazingly enough, Josephus continues to survive,
and the main purpose of this paper is to tell the reader how he manages to do
this.

In part, our motivation for studying (b) is the second bonus problem in Con-
crete Mathematics [6] which asks the following:

Suppose that Josephus finds himself in a given position j, but he has a
chance to name the elimination parameter k such that every kth person
is executed. Can he always save himself?

As we will show, the answer is yes, not only for � = 1, but for any � ≥ 1.

1.2 Notation

The parameters to the feline Josephus problem are n (the number of people), k
(the skip factor), and � (the number of “lives”). It is important to note that we
1 In some cultures the saying is “cats have nine lives.”
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make no assumptions about the parameters, other than that they are positive
integers. In particular, k or �, or both, could be larger than n.

When the parameters are fixed, as they usually are, we introduce the following
three notations. Let hit(i) be the ith person that is selected (or “hit”). The
sequence of all successive hits is called the hit sequence; it is

hit(1), hit(2), . . . , hit(� · n).

Let kill(i) be the ith person that is eliminated (or “killed”). Note that j =
kill(n) = hit(� · n) denotes the last surviving element. The kill sequence is

kill(1), kill(2), . . . , kill(n).

Let round(i) be the sequence of selections that take place after (but not includ-
ing) the (i− 1)st person is eliminated, up to (and including) the selection that
eliminates the ith person. Thus the hit sequence may be written as

round(1), round(2), . . . , round(n).

Finally, let �r(i) represent the remaining lives for person i at the end of round
r. In particular, �0(i) = � for all i, and the last surviving element is the unique
value of i such that �n−1(i) > 0.

Example 1: Let n = 5, k = 2, and � = 1. Then the hit sequence is

2, 4, 1, 5, 3,

which is the same as the kill sequence. If we now set � = 3, then we obtain the
hit sequence

2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2,︸ ︷︷ ︸
round(1)

4, 1, 5, 3,

and the same kill sequence as before. The first round is indicated by the under-
brace above; the other four rounds are singletons. This example is illustrated in
Figure 1; it starts at the outer 1 and works inwards. In the figure white filled dots

1

5

4
3

2
1

5

4 3

2

33

Fig. 1. The Josephus problem with n = 5, k = 2, � = 1 (left) and � = 3 (right)
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are persons passed over and not hit, filled dots are persons hit, and a partially
filled (red in color) dot is a person hit for the last time. The last survivor, person
3, is recorded in the center.

The reason that we did not continue with the circular arcs is that they would
have spiralled around several times before hitting 3. In general it is desirable to
avoid spiralling around the circle without hitting anybody. In round r this will
happen if k > n− r+1. Obviously the useless spirals can be eliminated by using
k mod n− r + 1 in round r instead of k; to save computation, this will be done
later on in an algorithm.

One consequence of the observation in the above paragraph is that we may
always reduce k to k mod lcm{1, 2, . . . , n} without changing the hit sequence. In
the OEIS lcm{1, 2, . . . , n} is sequence A003418 [14]. The prime number theorem
implies that lcm{1, 2, . . . , n} ∼ en(1+o(1)), so it grows much slower than n!.

Example 1 is trivial in a sense, because n and k are relatively prime, (which
we denote n ⊥ k, following [6]). For larger values of � in the example above, the
hit sequence will be (2, 4, 1, 3, 5)�−1, 2, 4, 1, 5, 3. More generally, whenever n ⊥ k
the hit sequence will have the form π�−1τ where π and τ are permutations of
{1, 2, . . . , n} and τ is the kill sequence for � = 1. Thus, the new problem is
only interesting when n and k are not relatively prime. In particular, 41 ⊥ 3 so
the original instance of the Josephus problem would have been no more inter-
esting with cats replacing humans. Next we will consider an example in which
n �⊥ k.

Example 2: In this example n = 6 and k = 4. See Figure 2. If � = 1, then the
hit sequence and the kill sequence are both 4, 2, 1, 3, 6, 5. If � = 2, then the hit
sequence is 4, 2, 6, 4, 2, 1, 1, 3, 5, 6, 5, 3, and the kill sequence is 4, 2, 1, 6, 5, 3 which
is different from the kill sequence when � = 1.

1
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3

2
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4

3

6

1

2

Fig. 2. The Josephus problem with n = 6, k = 4, � = 1 (left) and � = 2 (right)
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1.3 History

There are several related research problems for the original Josephus problem:
characterizing and computing the last survivor kill(n) [11],[12], or the ith-
last surviving element kill(n−i+1) [9],[16],[7],[15], studying the combinato-
rial properties of kill(1)kill(2) · · · kill(n) as a permutation of {1, 2, . . . , n}
[13],[4], when considering kill(n−r+1), . . . , kill(n) as an r-element subset of
{1, 2, . . . , n} [6] (especially when r = n/2 [5]). The problem plays an interesting
role in the history of combinatorics [2], and is used for mathematical recreation
[1] and education [8],[6]. Variations have also been examined [15], but the feline
version of the problem appears to be new.

2 Josephus Meets Leonardo of Pisa

When n and k have a common factor, then the value of the last survivor is
contingent upon the value of �. As shown in Example 2, when n = 6 and k = 4,
the last surviving element is kill(n) = 5 when � = 1, and changes to kill(n) =
3 when � = 2.

Example 3: For a more involved example, the values of kill(n) appears below
for n = 12, k = 14642, and � = 1, 2, . . . , 10 respectively:

kill(n) = 9, 1, 11, 11, 11, 5, 5, 5, 1, 1.

Given this example, it is natural to fix n and k, and to consider the value of
kill(n) as � → ∞. A priori, the ultimate behavior of kill(n) is not clear: it
could continue to fluctuate chaotically, or could settle into a repeating pattern.
The main result of this section is that there is a single limiting value for kill(n).
Furthermore, this limiting value holds whenever � exceeds the (n+2)nd Fibonacci
number.

To prove the result, we show that the value of �r(i) (the remaining lives for
element i at the end of round r) is contained in either an “increasing” set or a
“decreasing” set. By ensuring that these two sets do not overlap, it is possible to
give an explicit formula for each round(r) (the hits between the (r−1)st and rth
elimination). One consequence of this formula is the value of the last surviving
element. Define the increasing set and decreasing set respectively as

I(r) = {0, 1, 2, . . . , Fr} and D(r) = {�, �− 1, . . . , �− Fr+1 + 1},

where Fi denotes the ith Fibonacci number. As usual the Fibonacci numbers are
defined as, F0 = 0, F1 = 1, and Fi = Fi−2 + Fi−1 for all i ≥ 2. Note that

I(0) ⊆ I(1) ⊆ · · · ⊆ I(n) and D(0) ⊆ D(1) ⊆ · · · ⊆ D(n).

Lemma 1. Let n and k be fixed positive integers. Then for any i satisfying
1 ≤ i ≤ n and any r satisfying 0 ≤ r ≤ n,

�r(i) ∈ I(r) ∪ D(r). (1)
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Proof. Our proof is by induction on r. The result is true when r = 0 since
�0(i) = � and D(0) = {�}. Now assume that (1) holds for all rounds previous to
round r. We will use this assumption to prove that (1) holds for round r.

When I(r) and D(r) have a value in common then (1) certainly holds since
the union of these two sets includes {0, 1, . . . , �}. Therefore, we may assume that
the maximum value of I(r) is strictly less than the minimum value of D(r). It
is also safe to ignore the case when i has been eliminated, since then �r(i) = 0
and (1) clearly holds. Similarly, if i does not appear in round(r) then (1) holds
by induction.

In the remaining case, let y = kill(r). Notice that �r−1(y) ≤ �r−1(i). Fur-
thermore, i must appear in round(r) either the same number of times as y, or
one time fewer than y. That is,

�r(i) ∈ {�r−1(i)− �r−1(y), �r−1(i)− �r−1(y) + 1}.

Inductively,
{�r−1(i), �r−1(y)} ⊆ I(r − 1) ∪ D(r − 1)

and so there are four cases depending on which sets contain these two values.
However, it is not possible for �r−1(i) ∈ I(r − 1) and �r−1(y) ∈ D(r − 1) since
�r(y) ≤ �r(i) and our assumption that the maximum value of I(r) is strictly
less than the minimum value of D(r). Furthermore, if �r−1(i) ∈ I(r − 1) and
�r−1(y) ∈ I(r − 1) then obviously �r(i) ∈ I(r − 1) and so (1) follows from
I(r − 1) ⊆ I(r). This leaves two cases to consider.

If �r−1(i) ∈ D(r − 1) and �r−1(y) ∈ I(r − 1) then

�r(i) ≥ min(D(r − 1))−max(I(r − 1))
= �− Fr + 1− Fr−1

= �− Fr+1 + 1 = min(D(r)).

On the other hand, if �r−1(i) ∈ D(r − 1) and �r−1(y) ∈ D(r − 1) then

�r(i) ≤ max(D(r − 1))−min(D(r − 1)) + 1
= �− (�− Fr + 1) + 1
= Fr = max(I(r)).

Therefore, �r(i) ∈ I(r) ∪ D(r) as claimed, and so (1) is true by induction. ��

Lemma 1 proved that the remaining number of lives at the end of each round
are always contained in the increasing or the decreasing set. The next lemma
says that these two sets are disjoint, so long as � is chosen to be large enough.

Lemma 2. If � ≥ Fn+2, then the maximum value in I(r) is less than the min-
imum value in D(r) for all 0 ≤ r ≤ n.

Proof. max(I(r)) = Fr < Fr+2 − Fr+1 + 1 ≤ �− Fr+1 + 1 = min(D(r)). ��
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2.1 Algorithmic Implications

Assuming the parameter � is large enough, we will now show that it is possible
to represent the hit sequence by a data structure that uses O(n2) space and
that can be constructed in O(n2) time. For example, let us consider the scenario
discussed at the beginning of this section. When n = 12, k = 14642, and � ≥ 9,
we will show below that the hit sequence for the feline Josephus problem is the
following sequence of length n� = 12 · �.

(2, 4, 6, 8, 10, 12)�−1, 2, 3, 4, 6, 3, 1, 12, (3, 7, 9, 11)�−3, 3,

10, (1, 7, 9)2, 1, 7, 9, 1, 8, (1, 11, 5)2, 1, 11, 5�−2, 1�−8. (2)

Notice that this sequence immediately implies that the last surviving element is
1 whenever � ≥ 9. The remainder of this section describes how sequences of this
form can be constructed algorithmically. The strings are guaranteed to represent
the hit sequence for all � ≥ Fn+2, although the above example illustrates that
the string often represents the hit sequence for smaller values of � as well.

Recall that thehit sequence is obtainedby concatenating the sequencesround(r)
for r = 1, 2, . . . , n. We will show that the sequence for round(r) can be expressed
as πhτ where π is a sequence of unique elements from {1, 2, . . . , n}, as is τ . Either
π or τ may be empty.

Let us first consider the problem of constructing a table of the values of
�r(i) for i = 1, 2, . . . , n and r = 0, 1, . . . , n. This process is best illustrated by an
example, which is the same as the one that started this subsection. The following
table shows the values of n− r + 1 mod 14642.

mod 12 11 10 9 8 7 6 5 4 3 2 1
14642 2 1 2 8 2 5 2 2 2 2 0 0

Table 1 shows �r(i) for our example. The rounds are shown below. We discuss
how the table and rounds are obtained in the following paragraph.

round(1) = (2, 4, 6, 8, 10, 12)�−1, 2 round(2) = 3, 4
round(3) = 6 round(4) = 3, 1, 12

round(5) = (3, 7, 9, 11)�−3, 3 round(6) = 10

round(7) = (1, 7, 9)2, 1, 7 round(8) = 9

round(9) = 1, 8 round(10) = (1, 11, 5)2, 1, 11

round(11) = 5�−2 round(12) = 1�−8

The table is constructed column-by-column. Initially, we set �0(i) = �. To deter-
mine column r from column r− 1, one needs to know the following information:

– kill(r − 1) (the element eliminated at the end of the previous round)
– �r−1(i) (the remaining lives at the end of the previous round)
– k mod n− r + 1 (to determine the subset of elements that will be hit).
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Table 1. A table of �r(i) when n = 12, k = 14642, and � is sufficiently large. The dots
(·) indicate the value 0.

rounds r
�r(i) 0 1 2 3 4 5 6 7 8 9 10 11 12
i = 1 � � � � �−1 �−1 �−1 �−4 �−4 �−5 �−8 �−8 0
i = 2 � 0 · · · · · · · · · · ·
i = 3 � � �−1 �−1 �−2 0 · · · · · · ·
i = 4 � 1 0 · · · · · · · · · ·
i = 5 � � � � � � � � � � �−2 0 ·
i = 6 � 1 1 0 · · · · · · · · ·
i = 7 � � � � � 3 3 0 · · · · ·
i = 8 � 1 1 1 1 1 1 1 1 0 · · ·
i = 9 � � � � � 3 3 1 0 · · · ·

i = 10 � 1 1 1 1 1 0 · · · · · ·
i = 11 � � � � � 3 3 3 3 3 0 · ·
i = 12 � 1 1 1 0 · · · · · · · ·

Starting at kill(r− 1), some subset of survivors will be repeatedly and cyclicly
hit until some survivor’s life is reduced to one — the exact subset, call it S,
depending on the value of k mod n−r+1. That sequence of hits can be written
as πh where π is a permutation of S and h = −1 + min{�r−1(i) : i ∈ S}.
Thereafter, the hitting continues in the order π until the first person with one
life is hit; this person is kill(r). This last sequence of hittings is some prefix of
π, call it τ . The elements of τ form some subset of S, call it T . (When h = 0,
it is natural to write round(r) = πhτ = τ . Similarly, when π = τ , it is natural
to write round(r) = πhτ = πh+1.) This technique for representing round(r) as
a sequence of the form πhτ can always be followed, regardless of the value of �.

It should also be clear that we can update the values of �r(i) from the infor-
mation that we obtained in determining round(r) = πhτ . First, if i �∈ S, then
�r(i) = �r−1(i). If i ∈ S and i ∈ τ , then �r(i) = �r(i) − �r−1(kill(r)). If i ∈ S
and i �∈ τ , then �r(i) = �r(i)− �r−1(kill(r)) − 1.

Lemmas 1 and 2 show that the values of �r(i) can be uniquely expressed as
g or �− g (where g ≤ Fn+1), regardless of the specific value of � ≥ Fn+2. That
is why we left � as a variable in Table 1. Furthermore, the values of the form g
are always less than the values of the form �− g whenever � ≥ Fn+2. Therefore,
τ is uniquely determined by π. The exponent h can also be uniquely expressed
as g or �− g, where g ≤ Fn+1. In particular, the last element of round(n) is the
final surviving element.

Theorem 1. Given fixed values of n and k, the last surviving element kill(n)
is constant in the feline Josephus problem for all � ≥ Fn+2.

We now argue that the values �r(i) for i = 1, 2, . . . , n can be determined in time
O(n). First we put the non-zero values of �r−1(i) into an array of size n− r + 1.
This will allow us to advance by k mod n− r +1 in constant time, which in turn
will allow us to determine the set S and then the set T in O(n) time. It should
be clear that the remaining part of the update is O(n). Thus the entire table
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can be computed in O(n2) operations. We can compute π and τ for each round
at the same time, also in O(n2) operations.

Of course other information can be efficiently recovered from the rounds if
they are stored in an appropriate data structure, say an array that indexes into
the information for each round. That information would include π, τ , and h.
In particular, the kill sequence can be recovered in O(n) time. To repeatedly
determine a single value of hit(t) we would want to keep a running total of the
number of elements occurring in previous rounds. These totals would be stored
as symbolic expressions of the form a� + b for some integers a and b. We could
then use binary search to determine the round r in which has the tth hit in time
O(log n). Once we have r, determining hit(t) takes constant time.

3 Saving Josephus

This section supposes that n is fixed, and that Josephus is assigned to a given
position around the circle. In Concrete Mathematics [6] it is shown that Josephus
can always save himself in this scenario, so long as he is allowed to choose the
value of k. We prove that this result can be extended to the feline Josephus
problem by constructing a suitable value of k. Furthermore, the constructed
value of k does not depend on the specific value of �.

As in [6], our solution relies on basic principles from number theory including
the Chinese Remainder Theorem (CRT), and Bertrand’s Postulate. We use a|b
when a divides b, and lcmS for the least common multiple of a set of integers
S. After the proof, we point out why the solution in [6] does not generalize to
the feline Josephus problem.

Theorem 2. Suppose n and j are fixed and satisfy 1 ≤ j ≤ n, and � is an
arbitrary positive integer. There exists a value of k such that kill(n) = j.

Proof. If j = n then k = 1 suffices. If j = 1 then k = lcm{1, 2, . . . , n} suffices.
If n = 2 then any even k suffices for j = 1, while any odd k suffices for j = 2.
Therefore, assume 1 < j < n and n > 2. Bertrand’s postulate implies there is a
prime p satisfying n/2 < p < n. Let P represent the non-empty set {2, 3, . . . , n}−
{p}. Notice that p ⊥ i for all i ∈ P. Therefore, p ⊥ lcmP. We now split our
construction into two cases depending on the value of j. Case One: n/2 ≤ j < n.
This case will be solved by constructing a value of k that results in the following
hit sequence

(1, 2, . . . , n)�−1, 1, 2, . . . , n−p, j+1, j+2, . . . , n, n−p+1, n−p+2, . . . , j. (3)

This string is valid for all � ≥ 1 and gives j as the last surviving element. To
achieve this hit sequence, we choose k so that it satisfies the following congru-
ences

k ≡ 1 mod lcmP (4)
k ≡ j + 1− n mod p. (5)
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This choice of k is possible by the CRT. The congruence (4) implies the following
congruences

k ≡ 1 mod i for all i ∈ P. (6)

Now that the values of k modulo 1, 2, . . . , n have been determined, we can verify
that (3) is indeed the hit sequence. This will be explained in three steps. First,
the prefix (1, 2, . . . , n)�−1, 1, 2, . . . , n−p follows immediately from (6). Second, (5)
implies that the next element selected and removed is j+1. Third, (6) implies
that j+2, j+3 . . . , n, n−p+1, n−p+2, . . . , j are the remaining elements selected
and removed.

Case Two: 1 < j < n/2. This case will be solved by constructing a value of k
that results in the following hit sequence

n�, (n−1)�, . . . , (p+1)�, π�−1, j−1, j−2, . . . , 1, p, p−1, . . . , j (7)

where π is a permutation of {1, 2, . . . , p} beginning with j − 1. This string is
valid for all � ≥ 1 and gives j as the last surviving element. To achieve this hit
sequence, we choose k so that it satisfies the following congruences

k ≡ 0 mod lcmP (8)
k ≡ j − 1 mod p. (9)

This choice of k is possible by the CRT. The congruence (8) implies the following
congruences

k ≡ 0 mod i for all i ∈ P. (10)

Now that the values of k modulo 1, 2, . . . , n have been determined, we can verify
that (7) is indeed the hit sequence. This will be explained in three steps. First,
the prefix n�, (n−1)�, . . . , (p+1)� follows immediately from (10). Second, (9) and
j − 1 ⊥ p imply that the next round is π�−1, j−1 where π is some permutation of
{1, 2, . . . , p} that begins with j−1. Third, (10) implies that j−2, j−3,. . . ,1, p, p−1,
. . . , j are the remaining elements selected and removed. ��

This section concludes with a result that holds for the Josephus problem but not
the feline Josephus problem. Consider the following hit sequences

3, 6, 4, 2, 5, 1 4, 1, 3, 5, 2, 6.

The hit sequence on the left is for n = 6 and k = 3 and � = 1, while the
hit sequence on the right is for n = 6 and k = 58 and � = 1. Notice that
respective values in these hit sequences sum to n + 1 = 7. In other words, k = 6
and k = 58 provide identical hit sequences except they proceed in opposite
clockwise/counter-clockwise directions around the circle. More generally, k and
lcm {1, 2, . . . , n} − k + 1 provide directionally-opposite hit sequences when n is
fixed and � = 1. On the other hand, consider the following hit sequences

3, 6, 3, 6, 4, 2, 1, 5, 4, 2, 5, 1 4, 2, 6, 4, 1, 5, 2, 5, 6, 3, 3, 1.
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The hit sequence on the left is for n = 6 and k = 3 and � = 2, while the hit
sequence on the right is for n = 6 and k = 58 and � = 2. Notice that the hit
sequences are no longer directionally-opposite, even when considering only the
last surviving element. This observation led to the two-case proof of Theorem 2
that was not necessary in [6].

4 Open Problems

This paper has introduced a new variation of the Josephus problem known as
the feline Josephus problem. Sections 2 and 3 have demonstrated that there are
fun algorithmic and number theoretic problems that can be asked and solved
within this generalized setting. This section suggests additional open problems
arising from different perspectives, and then closes with an application of the
algorithm from Section 2.1.

From an algorithmic perspective, it is natural to ask how efficiently the last
surviving element j can be computed for arbitrary values of n, k, and �. Similar
questions are also natural for the kill sequence, hit sequence, and σ(n) (discussed
below).

From a mathematical perspective, it is natural to ask when the value of the
last surviving element j can be characterized, either directly or in terms of the
original Josephus problem. For example, we have already seen that the value of
j does not depend on � whenever n and k are relatively prime. For this reason,
it may be useful to next consider situations where n is a prime power that is not
relatively prime with k.

From the perspective of a person who wishes to avoid any pain as long
as possible, what can be proven about the last person to be hit for the first
time? In the original � = 1 Josephus problem, the last person to be hit is
kill(n). However, this is not necessarily true for � > 1. For example, the
end of hit sequence for n = 12, k = 14642, and � > 8 is restated from (2) is
. . . 10, (1, 7, 9)2, 1, 7, 9, 1, 8, (1, 11, 5)2, 1, 11, 5�−2, 1�−8. Notice that kill(n) = 1,
whereas element 5 is the last element to be hit for the first time (in round 10). To
provoke further questions, consider the following hit sequence for n = 6, k = 10,
and � ≥ 2:

(4 2 6)�−1 4, 3�, 6, 1 2, 1�−1, 5�.

Notice that the last surviving element 5 is not hit until the final round. When
do situations like this occur, and is there at least one such value of k for every
value of n?

Perhaps the most natural open problem is motivated by running the algo-
rithm outlined in Section 2.1. For example, the table found at http://webhome.
cs.uvic.ca/~ruskey/Publications/Josephus/Table.pdf contains output for
n = 3, 4, 5, 6 and all k modulo lcm {1, 2, . . . , n}. From this table it is clear that
the Fibonacci bound discussed in Section 2 is not tight. For example, in the
n = 6 column of the table, �−2 is the exponent with the lowest negative integer.
Therefore, all of the hit sequences for n = 6 are valid for � ≥ 3, as opposed
to the bound � ≥ F8 = 55 from Theorem 1. More generally, let σ(n) be the

http://webhome.cs.uvic.ca/~ruskey/Publications/Josephus/Table.pdf
http://webhome.cs.uvic.ca/~ruskey/Publications/Josephus/Table.pdf
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lowest negative integer exponent in a hit sequence for n elements generated by
our algorithm. The following values show σ(n) in comparison with Fn+2 for
n = 1, 2, . . . , 14.

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
σ(n) 1 1 1 1 1 3 3 4 6 6 6 9 9 11 14 15
Fn+2 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584

Notice that for small values of n, the correct bound for σ(n) appears to be
closer to n than Fn+2. Tightening the bound on σ(n) promises further number
theoretic and algorithmic fun.
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Abstract. In job scheduling with precedence constraints, i ≺ j means
that job j cannot start being processed before job i is completed. In this
paper we consider selfish bully jobs who do not let other jobs start their
processing if they are around. Formally, we define the selfish precedence-
constraint where i ≺s j means that j cannot start being processed if i has
not started its processing yet. Interestingly, as was detected by a devoted
kindergarten teacher whose story is told below, this type of precedence con-
straints is very different from the traditional one, in a sense that problems
that are known to be solvable efficiently become NP-hard and vice-versa.

The work of our hero teacher, Ms. Schedule, was initiated due to an
arrival of bully jobs to her kindergarten. Bully jobs bypass all other nice
jobs, but respect each other. This natural environment corresponds to
the case where the selfish precedence-constraints graph is a complete
bipartite graph. Ms. Schedule analyzed the minimum makespan and the
minimum total flow-time problems for this setting. She then extended
her interest to other topologies of the precedence constraints graph and
other special instances with uniform length jobs and/or release times.

1 Bully Jobs Arriving in Town

Graham school is a prestige elementary school for jobs. Jobs from all over the
country are coming to spend their childhood in Graham school. Ms. Schedule is
the kindergarten teacher and everybody in town admires her for her wonderful
work with the little jobs. During recess, the jobs like to play outside in the
playground. Ms. Schedule is known for her ability to assign the jobs to the
different playground activities in a way that achieves many types of objectives
(not all of them are clear to the jobs or to their parents, but this is not the issue
of our story).

The jobs enjoy coming to school every morning. In addition to the national
curriculum, they spend lot of time learning and practicing the rules Ms. Schedule
is teaching them. For example, one of Ms. Schedules’s favorite rules is called LPT
[13]. They use it when playing on the slides in the playground. At first, each of
the n jobs announces how long it takes him to climb up and slide down. Then,
by applying the LPT rule they organize themselves quite fast (in time O(nlogn))
in a way that enables them to return to class without spending too much time
outside. Ms. Schedule once told them that she will never be able to assign them
to slides in a way that really minimizes the time they spend in the playground,
but promised that this LPT rule provides a good approximation.

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 355–367, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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For years, everything went well at school. The jobs and their parents were
very satisfied with the advanced educational program of Ms. Schedule, and the
enrollment waiting list became longer and longer. Until the bully jobs came to
town and joined the kindergarten.

Being very polite and well-mannered, the veteran jobs prepared a warm wel-
come party to the bully jobs. Ms. Schedule taught them the different kindergarten
rules, and for the first few days no one noticed that the new jobs are different. It
was only after a week that Ms. Schedule observed that the new bully jobs were not
obeying the rules. Other jobs complained that sometimes, when they were wait-
ing in lines, bully jobs passed them and climbed up the slide even if they were not
first in line. One of the nice jobs burst into tears claiming that “I’m a very fast
climber, according to SPT rule [21], I need to be first in line, but all these bully
jobs are bypassing me”. Indeed, Ms. Schedule herself noticed that the bully jobs
were bypassing others. She also noticed that as a result, the whole kindergarten
timetable was harmed. The jobs had to spend much more time outside until they
had all completed sliding.

Ms. Schedule decided to have a meeting with the bully jobs’ parents. In this
meeting, it came clear to her that she will need to make a massive change in
the kindergarten rules. The parents justified the inconsiderate behavior of their
kids. “Our kids are selfish”, they said, “they will never obey your current rules.
They will always bypass all the other kids. You should better not try to educate
them, just accept them as they are”. Ms. Schedule was very upset to hear it,
she was about to tell them that their kids must obey her rules, and otherwise
will be suspended from school, but she was a bit afraid of their reaction1, so
she promised them to devise new rules for the kindergarten. The parents were
satisfied and concluded: “Remember, bully jobs always bypass those that are in
front of them in line. They also move from one line to another. But we, bullies,
respect each other! bully jobs will not pass other bully jobs that were assigned
before them in line”.

Ms. Schedule came back home tired and concerned, feeling she must design
new rules for her kindergarten, taking into consideration what she have just
learnt about the bully jobs.

2 Ms. Schedule Defining Her Goals

Ms. Schedule relaxed with a cup of good green tea. She decided that the first thing
she needed is a formal definition of her new model. “In my setting”, she thought,
“there is a set J of jobs, and a set M of m identical machines (slides). Each job is
associated with a length (sliding time) pj . Some of the jobs are bully and the other
are nice. I will denote these sets B and N respectively, B∪N = J . My rules assign
jobs to slides, and determine the internal order of the jobs on each slide. The bully
jobs, however, do not obey my assignment. Specifically, if a bully job can reduce
its waiting time by passing other jobs in line or by moving to another line it will do
so. On the other hand, bully jobs respect each other. If I assign them in some order
1 Bully jobs tend to have bully parents.
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to some line then their internal order will be kept. Moreover, if a bully moves to a
different line, he will be last among the bullies who are already in line. Each of my
assignment methods produces a schedule s of jobs on the slides, where s(j) ∈ M
denotes the slide job j is assigned to. The completion time, or flow-time of job j,
denoted Cj , is the time when job j completes its processing. The load on a slide
Mi in an assignment s is the sum of the sliding times of the jobs assigned to Mi,
that is

∑
j|s(j)=Mi

pj . The makespan of a schedule, denoted Cmax, is the load on
the most loaded slide; clearly, this is also the maximal completion time of a job.”

2.1 Scheduling with Selfish Precedence-Constraints

Ms. Schedule thought that her problem, in some sense, is similar to the problem
of scheduling with precedence constraints. In scheduling with precedence con-
straints, the constraints are given by a partial order precedence relation ≺ such
that i ≺ j implies that j cannot start being processed before i has been com-
pleted. Selfish-precedence is different. It is given by a partial order precedence
relation ≺s such that i ≺s j implies that j cannot start being processed before
i is starting.

“I believe” she thought “that selfish precedence-constraints induces interesting
problems that should be studied, especially in these days when it is very popular
to deal with algorithmic game theory and selfish agents. A selfish job only cares
about his delay and his completion time, it is OK with him that others are also
doing well, but he is ready to hurt others in order to promote himself. This is
exactly reflected by the fact that if i ≺s j, then job i doesn’t mind if job j is
processed in parallel with him, as long as it doesn’t start being processed before
him”. Ms. Schedule decided to devote some of her valuable time to consider this
new type of selfish precedence-constraints. “I’m not aware of any early work on
this interesting setting”, she mentioned to herself.

“For a single machine, I don’t expect any interesting results.” Ms. Schedule
figured out, “It is easy to see that with a single machine, a schedule is feasible under
the constraints ≺ if and only if it is feasible under the constraints ≺s. Therefore
all the results I see in my favorite web-site [1], carry over to selfish precedence
constraints.”

“In fact, there is this issue of release times, which makes the precedence con-
straints different, already with a single machine” Ms. Schedule kept pondering
“since bully jobs only care about their delay, they let other jobs be processed
as long as they are not around (before their release time). It is only when they
show up that they bypass others. Upon being released they push a following job
away from the slide even if they already started climbing”. Ms. Schedule decided
to elaborate on that issue of release times later (see Section 5), and to set as a
primal goal the analysis of the basic problems of minimum makespan (Section 3)
and minimum total flow-time (Section 4) for the precedence constraint setting
she has in her kindergarten. In this paper we tell her story and reveal her results.
Ms. Schedule kindly provided us with her complete work, however, due to space
constraints, some of the proofs are missing and can be found in [22].
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2.2 Complete-Bipartite Selfish Precedence-Constraints

“What I actually face”, Ms. Schedule kept thinking, “is the problem in which
the selfish precedence-constraints graph is a complete bipartite Kb,n, where b =
|B|, n = |N |, and i ≺s j for every i ∈ B and j ∈ N .

As a first step, I would like to evaluate the potential loss from having bully jobs
in my kindergarten. Similar to other equilibria notions, a schedule is a Bully equi-
librium if no bully job can reduce its completion time by migrating to another ma-
chine or bypassing nice jobs. Indeed, since bully jobs bypass all nice jobs in their
line and can alsomigrate from one machine to another, a schedule respects the Kb,n

constraints if and only if no nice job starts before a bully job. In fact, a schedule
may respect the Kb,n constraints, but not be a bully-equilibrium. This can happen
if for example some machine is empty while another machine is loaded with more
than a single bully job – in this case the precedence constraints hold but bullies
will migrate to the empty machine. In general, if the gap between the completion
times of the last bullies on different machines is larger than the length of the last
bully on these machines, then this last bully will migrate. However, it is easy to see
that for every reasonable objective function, in particular, all objective functions
I’m about to consider, having a small gap between the completion times of the last
bullies on different machines is a dominant property. Therefore, w.l.o.g., I would
assume the following equivalence:”

Property 1. A schedule is a bully equilibrium if and only if it obeys the Kb,n

selfish precedence-constraints.

The Price of Bullying: Let S denote the set of all schedules, not necessarily
obeying the selfish precedence-constraints. For a schedule s ∈ S, let g(s) be
some measure of s. For example, g(s) = maxj Cj(s) is the makespan measure,
and g(s) =

∑
j Cj is the total flow time measure.

Definition 1. Let Φ(I) be the set of Bully equilibria of an instance I. The price
of bullying (PoB) for a measure g(·) is the ratio between the best bully equilibrium
and an optimal solution. Formally, PoB = mins∈Φ(I) g(s)/ mins∈S g(s).

Theorem 1. For the objective of minimizing the makespan, the price of bullying
is 2− 1

m .

Theorem 2. For the objective of minimizing the total flow-time, the price of
bullying is (n + b)/m.

3 Makespan Minimization: P |Kb,n, s-prec|Cmax

Ms. Schedule’s first goal was to minimize the recess length. She wanted all jobs to
have a chance to slide once. She knew that the problem P ||Cmax is strongly NP-
hard, therefore, the best she could expect is a PTAS. With regular precedence
constraints, an optimal solution for P |Kb,n, prec|Cmax consists of a concate-
nation of optimal solutions for each type of jobs, but with selfish precedence-
constraints, this approach might not lead even to a good approximation. To
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Fig. 1. The approximation ratio of double-OPT and double-LPT is at least 2 − 2
m+1

clarify this point better, Ms. Schedule drew Figure 1, and pointed out to her-
self that gluing independent optimal solutions to each type of jobs (denote this
method double-OPT) can be far by a factor of at least 2− 2

m+1 from an optimal
solution. The main reason for this relative poor performance of double-OPT is
that in an optimal schedule, the bully jobs might better be assigned in a non-
balanced way. Ms. Schedule decided to consider and analyze known heuristics
and also to develop a PTAS for a constant number of machines.

3.1 Adjusted List-Scheduling

Let the jobs stand in a single line, bully jobs first in arbitrary order followed by
the nice job in arbitrary order. Then assign them to slides greedily according to
this order. Each job goes to the first available slide. The starting times of the
jobs form a non-decreasing sequence; in particular, every bully job is starting not
later than every nice job. Therefore, the resulting schedule is feasible. Moreover,
it is a possible execution of the known List Scheduling algorithm [12], therefore
it produces a (2 − 1

m )-approximation to the makespan, even compared to the
makespan with no selfish precedence-constraints.

3.2 Double-LPT

Let the jobs stand in a single line, bully jobs first in non-increasing sliding-time
order, followed by the nice job in non-increasing sliding-time order. Then assign
them to slides greedily according to this order. Each job goes to the first available
slide. As this is a possible execution of the adjusted list-scheduling algorithm,
the resulting assignment is feasible. However, as was detected by Ms. Schedule
when considering double-OPT assignments, the actual approximation ratio of
this heuristic is not much better than the (2− 1

m )-guaranteed by list-scheduling,
and does not resemble the known bounds of LPT (of (4

3 −
1

3m ) [13] or (1 + 1
k )

where k is the number of jobs on the most loaded machine [5]). Note that for
the instance considered in Figure 1, the double-OPT schedule is achieved also
by double-LPT. As Ms. Schedule was able to show, this ratio of 2− 2

m+1 is the
worst possible for double-LPT. Formally,

Theorem 3. The approximation ratio of double-LPT for P |Kb,n, s-prec|Cmax

is 2− 2
m+1 .
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3.3 A PTAS for Pm|Kb,n, s-prec|Cmax

Ms. Schedule was familiar with several PTASs for the minimum makespan prob-
lem [15,10]. She was even working on implementing one with the little jobs in
their Drama class, hoping to have a nice show for the end-of-year party. How-
ever, knowing that double-OPT may be far from being optimal, she understood
that a similar double-PTAS approach will not lead to approximation ratio bet-
ter than 2− 2

m+1 , independent of ε. “I must develop a new PTAS, in which the
assignment of bully and nice jobs is coordinated”. She thought.

Ms. Schedule was able to solve the problem for a constant number of machines.
She used the idea of grouping small jobs, as introduced in the PTAS of Sahni for
Pm||Cmax [20]. Given an instance I = B ∪N , let P denote the total processing
time of all jobs, and let pmax denote the longest processing time of a job (bully
or nice). Let C = max(P/m, pmax).

“The first step of my scheme is to modify the instance I into a simplified
instance I ′. Given I, ε, partition the jobs into small jobs – of length at most εC,
and big jobs – of length larger than εC. Let PB

S , PN
S denote the total length of

small bully and small nice jobs, respectively. The modified instance I ′ consists
of all big jobs in I together with

⌊
PB

S /(εC)
⌋

bully jobs and
⌊
PN

S /(εC)
⌋

nice jobs
of length εC. The second step is to solve optimally the problem for I ′, while the
third step is to transform it back into a schedule of I.” thought Ms. Schedule.
“This final stage is the one in which my PTAS and its analysis are different from
Sahni’s.”

Theorem 4. There exists a PTAS for Pm|Kb,n, s-prec|Cmax.

4 Minimizing Total Flow-Time: P |Kb,n, s-prec|
∑

Cj

Before the bully jobs arrived, one of Ms. Schedule favorite rules was SPT [21]. She
used it when she wanted to minimize the total flow-time of the jobs. Ms. Schedule
kept in her cupboard a collection of dolls that she called dummy jobs and used
them from time to time in her calculations. Whenever Ms. Schedule wanted the
jobs to use SPT rule, she first added to the gang some of her dummy jobs, so
that the total number of (real and dummy) jobs divided m. The dummy jobs
did not require any time in the slides (i.e., their sliding time was 0) so it was
never clear to the little jobs why the dummies were needed, but Ms. Schedule
explained them that it helps her in her calculations. When applying SPT rule,
the jobs sorted themselves by their sliding time, and were assigned to heats. The
m fastest jobs formed the 1st heat, the m next jobs formed the 2nd heat and so
on. The internal assignment of jobs from the same heat to slides didn’t matter
to Ms. Schedule.

After the bully jobs arrived it was clear to everyone that these jobs must be
assigned to early heats, even if they were slow. For a single slide, it was not
difficult to find a schedule achieving minimum total flow-time.
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Theorem 5. The problem 1|Kb,n, s-prec|
∑

Cj is polynomially solvable.

On the other hand, for more than one slide. Ms. Schedule couldn’t come up
with an efficient assignment rule. She told the principal that this was one of the
problems she will never be able to solve. The principal couldn’t accept it. “I
know you are having a difficult quarter with these bullies, but you should try
harder. I suggest to simply extend the assignment rule for a single slide”, he told
Ms. Schedule, “Just let the bullies arrange themselves by SPT rule, and then let
the nice jobs join them greedily - also according to SPT order. Let me show you
the following for instances with a single nice job. As you will see, these selfish
precedence-constraints are totaly different from the regular ones”.

Theorem 6. P2|Kb,1, prec|
∑

Cj is NP-hard, but P |Kb,1, s-prec|
∑

Cj is solv-
able in polynomial time.

Proof. “For the hardness of P2|Kb,1, prec|
∑

Cj” said the principal, “I will use a
reduction from the bi-criteria problem P2||Fh(Cmax/

∑
Cj). In this problem, it

is desired to minimize the total flow-time as the primary objective and minimize
the makespan as the secondary objective. This problem is known to be NP-hard
[2]. Since the single nice job can only start its execution after all preceding jobs
complete their execution, it is easy to see that this bi-criteria problem can be
reduced to our problem.”

“And now, let me show you my optimal algorithm for P |Kb,1, s-prec|
∑

Cj”,
the principal continued. “First, using your dummy jobs, we can assume that the
number of bully jobs is zm for some integer z. Next, sort the bully jobs from
shortest to longest and assign them to the machines greedily - using SPT rule.
The jobs (k − 1)m + 1, . . . , km form the k-th heat. Each machine is getting in
turn one job from each heat. In particular, and this is the important part, the
shortest job from each heat goes to M1. Finally, assign the nice job to M1. To
complete the proof I will show you the following claim”, the principal concluded.

Claim. The resulting assignment is feasible and achievesminimumtotal flow-time.

“Now that we have a proof for a single nice job” said the principal, “we only need
to extend it by induction for any number of nice jobs”. Ms. Schedule was not im-
pressed. She drew Figure 2 on the whiteboard in the principal’s office and said: “For
more than a single nice job, your algorithm is not optimal”. The principal looked
at her doubtingly, but she continued, “as you can see, the total flow-time of the
bully jobs is not necessarily minimal in an optimal schedule. Interestingly, while
for a single nice job there is a distinction between regular and selfish precedence-
constraints, for many nice jobs, the problem is NP-hard in both settings.”

Theorem 7. The problem P2|Kb,n, s-prec|
∑

Cj is NP-hard.

Proof. Ms. Schedule used a reduction from the problem P2||Fh(Cmax/
∑

Cj).
“As you claimed five minutes ago”, she told the principal, “this bi-criteria prob-
lem is known to be NP-hard [2]. It remains NP-hard if the number of jobs and
their total length are even integers. Consider an instance I of 2k jobs having
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Fig. 2. (a) An optimal schedule. The bully jobs (in grey) are not scheduled according
to SPT,

∑
Cj = 65. (b) The best schedule under the constraint that bully jobs obey

SPT,
∑

Cj = 66.

lengthes a1 ≤ a2 ≤ . . . ≤ a2k, such that
∑

i ai = 2B”. “For this instance”, the
principal broke in, “the minimum total flow time is

T = k(a1 + a2) + (k − 1)(a3 + a4) + . . . + (a2k−1 + a2k),

and it is obtained by SPT”. “You are right”, Ms. Schedule nodded. ”However,
there are many ways to achieve this value. The hardness of P2||Fh(Cmax/

∑
Cj)

tells us that it is NP-hard to decide if among these optimal schedules there is a
one with makespan B.”

“Given I, I will build the following input for P2|Kb,n, s-prec|
∑

Cj : There
are 2k + 1 bully jobs whose lengthes are a1, . . . , a2k and B. In addition, there
are n = B nice jobs of length 1”. “It is easy to solve the problem for the bully
jobs only”, said the principal, “since you have an odd number of jobs, add one
of your dummy jobs of length 0, and apply SPT rule. I can tell you that the
resulting total flow-time will be

T ′ = (k + 1)a1 + k(a2 + a3) + (k − 1)(a4 + a5) + . . . + (a2k + B).”

“Once again, you are right”, said Ms. Schedule, “but the main issue here is
that the optimal solution for the whole instance is not necessarily achieved by
minimizing the total flow-time of the bully jobs. The more important question is
whether there is an assignment of the bullies with a particular gap in the loads
between the machines. The following claim completes my hardness proof.

Claim. The instance I has a schedule with total flow-time T and makespan B
if and only if the solution to P2|Kb,n, s-prec|

∑
Cj has value T + 3

2B2 + 5
2B.

5 Selfish Precedence-Constraints with Release Times

One significant difference between regular and selfish precedence-constraints is
the influence of release times. If a job i is not around yet, other jobs can start
their processing, even if i precedes them. However, if i is released while a job j
such that i ≺s j is processed, then i pushes j a way and starts being processed
right away (assuming that no job who precedes i was also released). Job j will
have to restart its processing on some other time (independent of the partial
processing it already experienced). This affect of release times is relevant for any
precedence-constraints topology, not only for complete bipartite graphs.

Example: Let J = {J1, J2, J3}, p1 = p2 = 2, p3 = 1, r1 = r2 = 0, r3 = 3,
and J3 ≺s J1, J3 ≺s J2. Then it is possible to process J1 in time [0, 2]. Indeed
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J3 ≺s J1, but J3 is not around yet along the whole processing. J2 may start its
processing at time 2, but will be pushed away by J3 upon its release at time 3.
J3 will be processed in time [3, 4], and J2 will be processed in time [4, 6]. Two
processing units are required for J2 even-though it was allocated one already.

Ms. Schedule noticed that when recess begins, the nice jobs were always out
in the playground on time, while the bully jobs tended to arrive late to the
playground2. She therefore decided to consider the case in which for every nice
job j ∈ N, rj = 0, while bully jobs have arbitrary release times. She denoted this
type of instance by rj(B). Recall that upon an arrival of a bully job, he must
start sliding right away (unless there are other bullies sliding, because, as we
already know, bully jobs respect each other). Ms. Schedule decided to consider
the minimum makespan problem for this setting.

5.1 Hardness Proof for a Very Simple Instance

It is known that 1|prec, rj |Cmax is solvable in polynomial time for any precedence-
constraints graph [16]. This is not the case with selfish precedence-constraints:
The problem is NP-hard already for Kb,n. In fact, already the special case of
K1,n which is an out-tree of depth 1, and when all nice jobs are available at time
t = 0, can be reduced from the subset-sum problem.

Theorem 8. The problem 1|K1,n, s-prec, rj(B)|Cmax is NP-hard.

5.2 A PTAS for 1|Kb,n, s-prec, rj(B)|Cmax

Ms. Schedule decided to develop a PTAS for a single slide for the problem
she is facing. Her first observation was that any feasible schedule of this type
alternates between sliding time of bullies and nice jobs (see Figure 3). Formally,
the schedule consists of alternating B-intervals and N -intervals. A B-interval
begins whenever a bully job arrives and no other bully is sliding, and continues as
long as some bully job is around. The N -intervals are simply the complement of
the B-intervals. During N -intervals, nice jobs may slide. In particular, during the
last N -interval (after all bullies are done) nice jobs who are still in line can slide.
The finish time of this interval, Nk, for some k ≤ b, determines the makespan of
the whole schedule. Given the release times and the sliding times of the bullies,
the partition of time into B− and N− intervals can be done in a straightforward
way – by assigning the bully jobs greedily one after the other whenever they are
available. “Given the partition into B- and N -intervals”, thought MS. Schedule,
“my goal is to utilize the N -intervals in the best possible way. In fact, I need to pack
the nice jobs into the N -intervals, leaving as few idle time of the slide as possible.
The slide might be idle towards the end of an N -interval, when no nice job can
complete sliding before a bully shows up. Given ε > 0, my PTAS consists of the
following steps:

2 Because they were busy pushing and calling names everybody on their way.
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N1 B2 N2 Bk-1 Nk-1 NkBk…B1 N1 B2 N2 Bk-1 Nk-1 NkBk…B1

Fig. 3. The structure of any feasible schedule

1. Assign the bully jobs greedily. This determines the B- and N -intervals. Let
k be the number of B-intervals.

2. Build the following instance for the multiple-knapsack (MK) problem:
– k − 1 knapsacks of sizes |N1|, |N2|, . . . , |Nk−1|.
– n items, where item j has size and profit pj (sliding time of nice job j).

3. Run a PTAS for the resulting MK problem [3], with ε as a parameter.
4. Assign the nice jobs to the first k − 1 N -intervals as induced by the PTAS.

That is, jobs that are packed into a knapsack of size |Ni| will be scheduled
during Ni. Assign the remaining nice jobs, which were not packed by the
PTAS, to Nk with no intended idle.

Let CALG denote the makespan of the schedule produced by the PTAS. Let C∗

denote the optimal minimum makespan.

Claim. Let ε > 0 be the PTAS parameter, then CALG ≤ (1 + ε)C∗.

6 Selfish Precedence-Constraints of Unit-Length Jobs

Summer arrived. The jobs prepared a wonderful end-of-year show. The parents
watched proudly how their jobs were simulating complex heuristics. No eye re-
mained dry when the performance concluded with a breathtaking execution of
a PTAS for the minimum makespan problem. At the end of the show they all
stood and saluted the jobs and Ms. Schedule for their efforts.

Ms. Schedule decided to devote the summer vacation to extending her research
on selfish precedence-constraints. During the school year, she only had time to
consider the complete bipartite-graph case, and she was looking forward for the
summer, when she will be able to consider more topologies of the precedence
graph.

That evening, she wrote in her notebook: The good thing about bully jobs is
that they do not avoid others be processed simultaneously with them. Among
all, it means that the scheduler is more flexible. If for example we have two
jobs and two machines, they can be processed simultaneously even if one of
them is bully. With regular precedence-constraints, many problems are known
to be NP-hard even if jobs have unit-length or if the precedence-constraints
have limited topologies. For example, P |pi = 1, prec|Cmax is NP-hard [23], as
well as P |pi = 1, prec|

∑
Cj [18]. These hardness results are not valid for selfish

precedence-constraints. Formally,

Theorem 9. The problems P |pi = 1, s-prec|Cmax and P |pi = 1, s-prec|
∑

Cj

are solvable in polynomial time.
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Proof. Let n, m be the number of jobs and machines, respectively. Consider any
topological sort of the selfish precedence-constraints graph. Since the graph is
induced by a partial order relation, such a sort always exist. An optimal schedule
simply assign the first m jobs in the first heat, that is, schedule them in time
[0, 1]. The next heat will consist of the next m jobs in the topological sort, and
so on. The makespan of this schedule is �n/m� which is clearly optimal. This
schedule is also optimal with respect to total flow-time, as it is a possible output
of algorithm SPT on the same input without the selfish precedence-constraints.
The schedule is feasible: if i ≺s j then i appears before j in the topological sort.
Therefore, i is not assigned to a later heat than j. They may be assigned to the
same heat, which is acceptable by job i.

7 Summary and Discussion

A new school year was about to begin. The jobs had wonderful time in the sum-
mer and were very excited to return to 1st-grade at Graham school. Ms. Schedule
summarized her results for the 1st-grade teacher, Ms. Worst-case, who was full
of concerns towards getting the bully jobs to her room.

“I focused on selfish precedence-constraints given by a complete bipartite
graph”, she started “essentially, this models the bully-equilibrium problem we
have at school. I first analyzed the price of bullying for the two objectives I found
most important: minimum makespan and total-flow time. Next, I analyzed the
well-known heuristics List-Scheduling and LPT, and I developed a PTAS for the
minimum makespan problem. I then considered the problem of minimizing the
total flow-time. I have a hardness proof for instances with many nice jobs and an
optimal algorithm for instances with a single nice job. I suggest that you consult
with the principal regarding this problem. He is not as dumb as he seems.

If the bully jobs keep being late also in 1st grade, you can use my PTAS
for minimizing the makespan when bullies have release times. Finally, while for
regular precedence-constraints, many problems are NP-hard already with unit-
length jobs and very restricted topologies of the precedence graph, I showed that
with selfish precedence-constraints, and any precedence graph, minimizing both
the makespan and the total flow-time can be solved in linear-time.

I trust you to consider the following problems during the next school year:”

(i) The only objectives I considered are minimum makespan and total flow-time.
It would be very interesting to consider instances in which jobs have due dates,
and the corresponding objectives of minimizing total or maximal tardiness and
lateness. For regular precedence-constraints, these problems are known to be NP-
hard already for unit-length jobs and restricted precedence topologies [18,19].
(ii) As I’ve just told you, the hardness of minimizing the total flow depends on
the number of nice job. Can you find the precise value of n for which the problem
becomes NP-hard? This value might be a constant or a function of m, b, or the
sliding times. Also, as the problem is closely related to the bi-criteria problem
P2||Fh(Cmax/

∑
Cj), it is desirable to check if heuristics suggested for it (e.g.,

in [6,9]) are suitable also for our setting.



366 T. Tamir

(iii) It would be nice to extend my PTAS for 1|Kb,n, s-prec, rj(B)|Cmax for par-
allel slides. Note that for this setting, a late-arriving bully pushes a way only a
single nice job (of his choice, or not, depending on your authorization).
(iv) As is the case with other scheduling problems, it would be nice to extend the
results to uniformly related or unrelated machines, and to consider additional
precedence-constraints graphs, such as chains and in/out-trees.
(v) Another natural generalization for the total flow-time objective, is when
jobs have weights. For regular precedence-constraints, the problem 1|prec|∑

wjCj is known to be NP-hard, and several approximation algorithms are
known [17,4].
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O(1)-Time Unsorting by Prefix-Reversals in a
Boustrophedon Linked List

Aaron Williams

Dept. of Computer Science, University of Victoria, Canada

Abstract. Conventional wisdom suggests that O(k)-time is required to
reverse a substring of length k. To reduce this time complexity, a sim-
ple and unorthodox data structure is introduced. A boustrophedon linked
list is a doubly-linked list, except that each node does not differenti-
ate between its backward and forward pointers. This lack of information
allows substrings of any length to be reversed in O(1)-time. This ad-
vantage is used to efficiently unsort permutations using prefix-reversals.
More specifically, this paper presents two algorithms that visit each suc-
cessive permutations of 〈n〉 = {1, 2, . . . , n} in worst-case O(1)-time (i.e.
loopless). The first visits the permutations using a prefix-reversal Gray
code due to Zaks [22], while the second visits the permutations in co-
lexicographic order. As an added challenge, both algorithms are non-
probing since they rearrange the data structure without querying its
values. To accomplish this feat, the algorithms are based on two integer
sequences: A055881 in the OEIS [17] and an unnamed sequence.

Keywords: unsorting, permutations, lexicographic order, prefix-reversal,
Gray code, loopless algorithm, boustrophedon linked list, BLL, integer
sequences.

1 Introduction

Suppose p = p1 . . . pn is a string containing n symbols. The following operations
replace its substring pipi+1 · · · pj−1pj where 1 ≤ i < j ≤ n. A transposition of the
ith and jth symbols replaces the substring by pjpi+1 . . . pj−1pi. A shift of the ith
symbol into the jth position replaces the substring by pi+1 . . . pj−1pjpi. A rever-
sal between the ith and jth symbols replaces the substring by pjpj−1 . . . pi+1pi.

Reversals are the most powerful of these operations. This is because any trans-
position or shift can be accomplished by at most two reversals. Similarly, rever-
sals are also the most expensive of these operations. More precisely, O(k)-time
is required to reverse a substring of length k in an array or linked list, whereas
O(1)-time is sufficient for array transpositions and linked list shifts.

Reversals are a bottleneck when unsorting permutations in lexicographic order.
Unsorting begins with the string 1 2 . . . n and concludes when this string has
been rearranged in all n! − 1 ways. (This is dual to sorting, which starts with
an arbitrary string over 〈n〉 and rearranges it into 1 2 . . . n.) In lexicographic
order, worst-case O(n)-time is required to create successive permutations of 〈n〉

P. Boldi (Ed.): FUN 2010, LNCS 6099, pp. 368–379, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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when the string is stored in an array or linked list. To illustrate why this is true,
consider the permutations of 〈8〉 given below in lexicographic order

1 2 3 4 5 6 7 8, . . . , 3 8 7 6 5 4 2 1, 4 1 2 3 5 6 7 8, . . . , 8 7 6 5 4 3 2 1.

Let p = 3 8 7 6 5 4 2 1 and q = 4 1 2 3 5 6 7 8. Notice that no positions match
in p and q (pi �= qi for all 1 ≤ i ≤ n). Therefore, if the string is stored in an
array then every entry needs to be changed when rearranging p into q. Similarly,
no substrings of length two match in p and q (i.e., {p1p2, p2p3, · · · , pn−1pn} ∩
{q1q2, q2q3, · · · , qn−1qn} = ∅). Therefore, if the string is stored in a linked list
then every forward pointer needs to be changed when rearranging p into q.

The object of this paper is to reduce the worst-case from O(n)-time to O(1)-
time. In other words, the object is to create a loopless algorithm for unsorting
permutations in lexicographic order. This goal is achieved by using two integer
sequences from Section 2, and a data structure from Section 4. The same goal
is achieved for a second order of permutations discussed in Section 3.

This section concludes with additional context on (un)sorting, permutations,
algorithms, and reversals. Reversing a prefix of a string is known as a prefix-
reversal. Pancake sorting refers to sorting algorithms that use prefix-reversals,
with focus on upper-bounds on the number of reversals used in sorting an ar-
bitrary permutation [7,2]. The minimum number of reversals needed to sort a
particular permutation is known as sorting by reversals. This problem arises
in biology when determining hereditary distance [1,6]. In burnt pancake sort-
ing [4] and signed sorting by reversals [9], each pancake or element has two
distinct sides; the boustrophedon linked list is an analogous data structure (ex-
cept individual nodes are unaware of their orientation). Algorithms for unsorting
permutations were surveyed as early as the 1960s [14]. The term loopless was
coined by Ehrlich [5], and loopless algorithms for unsorting permutations (using
non-lexicographic orders) exist using transpositions in arrays [18,8], and shifts in
linked lists [13,20]. However, lexicographic order has distinct advantages includ-
ing linear-time ranking [15]. The subject of combinatorial generation is devoted
to efficiently unsorting various combinatorial objects. Section 7.2.1 of Knuth’s
The Art of Computer Programming [10,11,12] is an exceptional reference.

2 Integer Sequences

This section defines two integer sequences, explains their connection to staircase
strings, and discusses their efficient generation. The first sequence is denoted R
and is known as OEIS A055881 [17], while the second sequence is denoted T and
is otherwise unnamed. The first 4! = 24 terms of each sequence appear below

R = 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, . . . (OEIS A055881)
T = 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, . . . (unnamed).

The ith values in each sequence are respectively denoted ri and ti. The first
n!− 1 values in each sequence are respectively denoted by Rn and Tn. That is,
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Rn = r1, r2, . . . , rn!−1 and Tn = t1, t2, . . . , tn!−1. The sequences can be defined
recursively as follows: Let R2 = r1 = 1 and T2 = t1 = 1, and then for n > 2,

Rn =

n total copies of Rn−1︷ ︸︸ ︷
Rn−1, n, Rn−1, n, . . . , Rn−1, n, Rn−1, n, Rn−1 (1)

Tn = Tn−1, 1, Tn−1, 2, . . . , Tn−1, n−2, Tn−1, n−1, Tn−1. (2)

To explain the origins of these sequences, let us consider the staircase strings of
length n − 1. A staircase string of length n − 1 is a string a = a1 a2 · · · an−1
with the property that 0 ≤ ai ≤ i for each 1 ≤ i ≤ n − 1. In other words, the
ith symbol can take on the i + 1 values in {0, 1, . . . , i}, and so staircase strings
are simply the mixed-radix strings with bases 2, 3, . . . , n. Notice that there are
n! staircase strings of length n− 1.

Sequences R and T can also be defined by their connection to staircase strings
in co-lex order. (Strings are ordered from right-to-left in co-lexicographic (co-lex )
order, and this order is often more convenient than lexicographic order.) When
the ith staircase string in co-lex order is followed by the (i+1)st staircase string
in co-lex order, then ri is the position of the rightmost symbol that changes value,
and ti is the new value. For example, 1 2 3 4 1 0 0 · · · is the 240th staircase string
in co-lex order and 0 0 0 0 2 0 0 · · · is the 241st staircase string in co-lex order.
Therefore, r240 = 5 and t240 = 2. For a more complete example, the staircase
strings of length 3 appear in column (a) of Table 1 in co-lex order, while columns
(b) and (c) containR4 and T4. (Table 1 appears on page 371 and columns (b) and
(c) have been offset by half a row to emphasize the transition between successive
staircase strings.) To generate R and T , one can simply augment Algorithm M
(Mixed-radix generation) in 7.2.1.1 of [10] while using mi = i for the bases, for
all 1 ≤ i ≤ n− 1.

To generate R and T by a loopless algorithm, we can again follow [10]. Algo-
rithm H in [10] generates multi-radix strings in reflected Gray code order. In this
order, successive strings differ in ±1 at a single position, and all “roll-overs” are
suppressed. Furthermore, the position whose value changes is simply the right-
most position whose value changes in co-lex order. Within Algorithm H, each
position is assigned a direction from {+1.−1}, and focus pointers determine the
positions whose value will change. TR(n) gives pseudocode for Algorithm H to
the right of Table 1 in a Fun function. Lines 10–15 output successive values of
R and T into arrays r and t, which are indexed by i = 1, 2, . . . , n! − 1. The
staircase strings are stored in array a, the directions are stored in array d, and
the focus pointers are stored in array f . Columns (d),(e), and (f) in Table 1
respectively provide the values stored in these three arrays when TR(n) is run
with n = 4. (Within our programs all array indexing is 1-based, and if a is an
array then a[i] denotes its ith entry.) Using TR(n), successive entries of R and T
can be computed in worst-case O(1)-time. In Section 5, we will modify TR(n) so
that its ith iteration provides the rith and tith pointers into a (boustrophedon)
linked list. The remaining columns in Table 1 are explained in Section 3.
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Table 1. Relationships between staircase strings, permutation orders, and sequences.
Columns (b), (c), (h), (j), (k), (m) respectively contain R4,T4,R4 + 1,T4,R4 + 1,R4.
Sequences Rn and Tn are generated by loopless algorithm TR(n) in arrays r and t.

staircase in staircase in perms in perms in
co-lex Gray code Zaks’ co-lex % Loopless Rn and Tn

Fun TR(n)
1: r := [−1, . . . ,−1] (size n!−1)

2: t := [−1, . . . ,−1] (size n!−1)

3: f := [1, 2, . . . , n] (size n)

4: d := [1, 1, . . . , 1] (size n − 1)

5: a := [0, 0, . . . , 0] (size n − 1)

6: i := 1
7: while f [1] < n
8: j := f [1]
9: f [1] := 1

10: r[i] := j
11: if d[j] = 1
12: t[i] := a[j] + 1
13: else
14: t[i] := j − a[j] + 1
15: end if
16: a[j] := a[j] + d[j]
17: if a[j] = 0 or a[j] = j
18: d[j] := −d[j]
19: f [j] := f [j + 1]
20: f [j + 1] := j + 1
21: end if
22: i := i + 1
23: end while

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
000

1 1
000 +++ 1234 4321

2
4321

1 2 1100
2 1

100 −++ 2234 3421
3

3421
1 3 2010

1 1
110 −++ 1234 2431

2
4231

1 2 1110
2 2

010 +++ 2234 4231
3

2431
2 3 2020

1 1
020 +−+ 1334 3241

2
3241

1 2 1120
3 1

120 −−+ 3234 2341
4

2341
1 4 3001

1 1
121 −−+ 1234 1432

2
4312

1 2 1101
2 1

021 +−+ 2234 4132
3

3412
1 3 2011

1 1
011 +−+ 1234 3142

2
4132

1 2 1111
2 2

111 −−+ 2234 1342
3

1432
2 3 2021

1 1
101 −++ 1334 4312

2
3142

1 2 1121
3 2

001 +++ 3234 3412
4

1342
2 4 3002

1 1
002 +++ 1234 2143

2
4213

1 2 1102
2 1

102 −++ 2234 1243
3

2413
1 3 2012

1 1
112 −++ 1234 4213

2
4123

1 2 1112
2 2

012 +++ 2234 2413
3

1423
2 3 2022

1 1
022 +−+ 1334 1423

2
2143

1 2 1122
3 3

122 −−+ 3234 4123
4

1243
3 4 3003

1 1
123 −−− 1244 3214

2
3214

1 2 1103
2 1

023 +−− 2244 2314
3

2314
1 3 2013

1 1
013 +−− 1244 1324

2
3124

1 2 1113
2 2

113 −−− 2244 3124
3

1324
2 3 2023

1 1
103 −+− 1434 2134

2
2134

1 2 1123 003 ++− 4234 1234 1234

3 Permutations of Permutations

This section discusses two orders (or permutations) of the permutations of 〈n〉.
The first is Zaks’ prefix-reversal Gray code [22], and the second is co-lex order.
These two orders can be created from the sequences found in Section 2. In
particular, R and T have been named after the Reversal and Transposition
operations that produce the two orders.

Zaks’ original paper describes a poor waiter who must flip n pancakes of
different sizes into all n! possible stacks. In order to do this, Zaks proposes an
order where “in 1/2 of these steps he will reverse the top 2 pancakes, in 1/3 of
them the top 3, and, in general, in (k-1)/k! of them he will reverse the top k
pancakes”. As Zaks points out, the waiter can achieve such an ordering directly
from sequenceR. In particular, his (i+1)st stack is obtained from his ith stack by
flipping the top ri+1 pancakes. In the parlance of permutations, Zaks proves that
a prefix-reversal Gray code for the permutations of 〈n〉 is obtained by successively
reversing the prefix of length ri +1 in the ith permutation. This is illustrated for
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n = 4 in Table 1, with columns (g) and (h) providing the permutations of 〈4〉 in
Zaks’ order and R4 +1. (For convenience, Rn +1 denotes the sequence obtained
by adding 1 to each entry in sequence Rn.) Zaks’ paper shows how to generate
Rn+1 using a loopless algorithm, and also proves that the average value ofRn+1
is less than e ∼= 2.8. For this reason, it is possible to generate Zaks’ prefix-reversal
Gray code with a constant amortized-time algorithm (CAT), meaning that each
successive permutation is created in amortized O(1)-time. Such an algorithm can
be constructed from TR(n) by initializing an array p = [1, 2, . . . , n], and then by
replacing lines 10–15 with a loop that reverses its first j + 1 entries.

As Knuth points out at the beginning of Section 7.2.1.2 in The Art of Com-
puter Programming [10], an iterative algorithm for creating the permutations of
〈n〉 in co-lex order dates back to the 14th-century. This historical algorithm is
based on scanning the current permutation. Less obviously, co-lex order can be
created using R and T . In particular, the (i + 1)st permutation can be obtained
from the ith permutation in two steps. In the first step, the symbols in positions
ti and ri+1 are transposed. In the second step, the prefix of length ri is reversed.
This is illustrated for n = 4 in Table 1. Column (i), (j), (k), and (l) provide the
permutations of 〈4〉 in co-lex order, T4, R4 + 1, and R4. As in the case of Zaks’
algorithm, TR(n) can be modified to provide an array-based CAT algorithm for
creating permutations in co-lex order.

By using sequences R and T , the difference between successive permutations
in Zaks’ order and co-lex order can be described in worst-case O(1)-time. Sec-
tion 4 will allow these differences to be performed in worst-case O(1)-time.

4 Boustrophedon Linked Lists

In Greek, βoυστρoϕηōóν means “as the ox turns while plowing”. In English,
boustrophedon is commonly used to describe ancient texts that are reflected
horizontally on every second line [19]. A variation from Rapa Nui is rongorongo
that rotates every second line 180◦.

�

�

�

�

First line of boustrophedon text.
Secondlineofboustrophedontext.

Third line of boustrophedon text.
Fourthlineofboustrophedontext.

�

�

�

�

Fourthlineofrongorongotext.

Third line of rongorongo text.

Secondlineofrongorongotext.

First line of rongorongo text.

The term boustrophedon also describes back-and-forth motion without reflec-
tions or rotations. For example, dot-matrix printers are more efficient when print-
ing boustrophedonically. Similarly, Major League Eating world-recorder holder
Jason “Crazy Legs” Conti often eats sweet corn in a boustrophedonic pattern
[21]. Scientifically, the boustrophedon transform and boustrophedon cellular de-
composition appear in mathematics [16] and computer science [3], respectively.

As in a standard doubly-linked list (dll), the first node of a boustrophedon
linked list (bll) is the head and the last node is the tail. Similarly, each node in a
bll has a value and is connected to its two adjacent nodes by a forward pointer
(.fwd) and a backward pointer (.bwd). However, in a bll the forward pointers do



O(1)-Time Unsorting in a Boustrophedon Linked List 373

not necessarily point towards the tail. In other words, the backward and forward
pointers of any node in a bll can be independently interchanged. This includes
the head (resp. tail), where one pointer must be null and the other is directed
to the second (resp. second-last) node. Nodes are normal or reversed if their
forward pointer is directed towards the tail or head, respectively.

Despite the uncertainty at each node, a bll containing n nodes can be tra-
versed in O(n)-time. Furthermore, this O(n)-time traversal could transform the
bll into a dll by “flipping” each reversed node. As in a dll, nodes in a bll

can be inserted, removed, transposed, and shifted in worst-case O(1)-time. How-
ever, a bll has a distinct advantage over a dll: any sublist can be reversed in
worst-case O(1)-time. This section describes these results, and builds a small
“boustrophedon toolkit” that includes the concepts of twin-pointers and bal-
ancing. Again it is stressed that no additional directional information is stored
within each node of the bll nor within an auxiliary data structure. (One can
consider bll alternatives that add an extra bit of information to each node of
a dll. This bit could not denote whether a node is normal or reversed without
precluding O(1)-time reversals. However, this worst-case time could be obtained
by having the first i bits determine whether the ith node is normal or reversed.)

Before discussing these results, let us have fun considering pictographic rep-
resentations for a bll. In each proposal the nodes appear left-to-right from
head-to-tail, with backward pointers in black ( ), forward pointers in white
( ), and null pointers omitted at the head and tail. Thus, normal and re-
versed internal nodes appear respectively as and . A bll storing
the permutation p = 1 6 2 7 5 3 4 is shown below in its standard representation

1 6 2 7 5 3 4 .

From the head 1 to the tail 4 , successive nodes are reached by traveling
backwards, forwards, backwards, backwards, forwards, and forwards (as seen
by the pointers on the top row). To draw attention to the reversed nodes, we
can also represent this bll using its boustrophedonic representation (where the
values of reversed nodes are reflected horizontally)

1 6 2 7 5 3 4

or its rongorongo representation (where reversed nodes values are rotated 180◦)

1

6

2 7

5 3

4

.

Rongorongo representation is nice since reversals are visualized as 180◦ rotations.
In a bll it is often helpful to use two pointers when one would suffice in a

dll. This twin-pointer approach is demonstrated for traversing the nodes in a
bll from head to tail. Say that pointers x and y are adjacent if they point to two
nodes that are adjacent in the bll. When x and y are adjacent pointers, then
x’s other node is its adjacent node that is not y. (If x is the head or tail of the
bll, then either x’s other node or y will be null.) The simple logic needed to
determine other(x, y) appears below, (All variables in this section are pointers to
nodes in a bll.) Using this routine we can easily traverse a bll in traverse(head),
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where pointer x traverses the bll while pointer y follows one node behind, and
t is a temporary variable.

% Traverse bll

Fun traverse(head)
y := null

x := head
while x �= null

t := x
x := other(x, y)
y := t

end while

% Other neighbor of x
Fun other(x, y)

if x.fwd = y
return x.bwd

else if x.bwd = y
return x.fwd

end if

% Flip reversed ↔ normal
Fun flip(x)

t := x.fwd
x.fwd := x.bwd
x.bwd := t

Clearly, traverse(head) takes O(n)-time when the bll contains n nodes. The
above code can be expanded to convert the bll into a dll in O(n)-time by re-
membering the orientation of successive nodes starting from head and “flipping”
those nodes that are reversed. Pseudocode for flip(x) appears above and also
changes normal nodes into reversed nodes.

Another way to overcome the lack of information in a bll is to make a portion
of the bll behave like a standard dll. In a dll, x.fwd = y implies y.bwd = x,
so long as y �= null. In other words, proceeding forwards and then backwards
will return you to the initial node, so long as the intermediate node exists. On
the other hand, the same statement is not true in a bll unless x and y both
point to normal nodes, or reversed nodes. We say that an adjacent pair of nodes
{x, y} is balanced or imbalanced depending on isBalanced(x, y).

% Is adjacent pair {x, y} balanced?
Fun isBalanced(x, y)

return (x = null) or (y = null) or

(x.fwd = y and y.bwd = x) or

(x.bwd = y and y.fwd = x)

% Balance pair {x, y}
Fun balance(x, y)

if not isBalanced(x, y)
flip(x)

end if

Pictorially, adjacent nodes are balanced if and only if there is one white and
one black pointer between them. For example, the previously-drawn bll for
p = 1 6 2 7 5 3 4 appears below (in its boustrophedonic representation)

1 6 2 7 5 3 4.

Notice that the only balanced pairs are the nodes containing {2, 7} and {5, 3}.
Any pair of adjacent nodes can be assured to be balanced by calling balance(x, y).
For example, flipping the node containing 2 causes the nodes containing {6, 2}
to become balanced at the expense of imbalancing the nodes containing {2, 7}

1 6 2 7 5 3 4.

When x is not in an imbalanced pair, then x is a balanced node. Otherwise, if x
is in an imbalanced pair, then x is an imbalanced node. To change a node from
imbalanced to balanced, either the node itself or one of its neighbors must be
flipped. Any node can be assured to be balanced by calling balance(x).
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% Balance x
Fun balance(x)

if not isBalanced(x, x.fwd) and not isBalanced(x, x.bwd)
flip(x)

else if not isBalanced(x, x.fwd)
flip(x.fwd)

else if not isBalanced(x, x.bwd)
flip(x.bwd)

end if
By balancing nodes and pairs of nodes, bll deletions and insertions proceed as in
a dll. In turn, these routines allow simple worst-case O(1)-time transpositions
and shifts. Balancing also allows simple worst-case O(1)-time reversals.

% Remove node x
Fun delete(x)

balance(x)
x.bwd.fwd := x.fwd
x.fwd.bwd := x.bwd

% Insert x between u v
Fun insert(x, u, v)

x.bwd := v
x.fwd := u
balance(u, v)
if u.fwd = v

u.fwd := x
v.bwd := x

else
u.bwd := x
v.fwd := x

end if

% Shift x between u v
Fun shift(x, u, v)

if x = u or x = v
return

end if
delete(x)
insert(x, u, v)

% Transpose x and y
Fun transpose(x, y)

if x = y
return

end if
if x = null

return
else if y = null

return
end if
balance(x)
fx := x.fwd
bx := x.bwd
delete(x)
if fx = y

insert(x, y, y.fwd)
else if bx = y

insert(x, y, y.bwd)
else

fy := y.fwd
by := y.bwd
delete(y)
insert(x, fy, by)
insert(y, fx, bx)

end if

% Reverse between u x
% through between y v
Fun reverse(u, x, y, v)

if x = y
return

end if
balance(u, x)
balance(y, v)
fx := x.fwd
fy := y.fwd
if fx = u

x.fwd = v
u.bwd = y

else
x.bwd = v
u.fwd = y

end if
if fy = v

y.fwd = u
v.bwd = x

else
y.bwd = u
v.fwd = x

end if

In shift(x, u, v), u and v are adjacent. In reverse(u, x, y, v), u and x are adjacent,
as are y and v; nodes between x and y are reversed while u and v are stationary.

5 Algorithms

At this point we have seen how Zaks’ order and lexicographic order can be created
using transpositions and reversals (Section 3), we have shown that the indices
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ri and ti that describe these transpositions and reversals can be computed in
worst-case O(1)-time (Section 2), and we have presented a data structure that
allows for worst-case O(1)-time transpositions and reversals (Section 4). This
section ties these results together by providing worst-case O(1)-time algorithms
for creating permutations in Zaks’ order and in lexicographic order.

The first hurdle is that TR(n) creates integers ri and ti, while pointers to
the rith and tith nodes are required for bll transpositions and reversals. As an
intermediate step, algorithms R(n) and T(n) create the sequences Rn and Tn

using a static linked list. In particular, head is initialized to 1 2 . . . n
which can be viewed as a standard dll or a bll with no reversed nodes. At each
iteration, a pointer points to its rith node (on line 17 in R(n)) and the tith node
(on line 17 in T(n)) while the linked list is never changed.

% Loopless generation of Rn in a bll

Fun R(n)
1: head := 1 2 . . . n
2: R :=[null,null, . . . ,null] (size n)

3: r := [−1,−1, . . . ,−1] (size n!−1)

4: f := [1, 2, . . . , n] (size n)

5: d := [1, 1, . . . , 1] (size n − 1)

6: a := [0, 0, . . . , 0] (size n − 1)

7: i := 1
8: while f [1] < n
9: j := f [1]

10: f [1] := 1
11: a[j] := a[j] + d[j]
12: if R[1] = null

13: R[1] := head
14: end if
15: Rnode := R[1]
16: R[1] := null

17: r[i] := Rnode.value
18: if a[j] = 0 or a[j] = j
19: d[j] := −d[j]
20: f [j] := f [j + 1]
21: f [j + 1] := j + 1
22: if R[j + 1] = null

23: R[j] := Rnode.fwd
24: else
25: R[j] := R[j + 1]
26: end if
27: R[j + 1] := null

28: end if
29: i := i + 1
30: end while

% Loopless generation of Tn in a bll

Fun T(n)
1: head := 1 2 . . . n
2: T :=[null,null, . . . ,null] (size n)

3: t := [−1,−1, . . . ,−1] (size n!−1)

4: f := [1, 2, . . . , n] (size n)

5: d := [1, 1, . . . , 1] (size n − 1)

6: a := [0, 0, . . . , 0] (size n − 1)

7: i := 1
8: while f [1] < n
9: j := f [1]

10: f [1] := 1
11: a[j] := a[j] + d[j]
12: if T [j] = null

13: T [j] := head
14: end if
15: Tnode := T [j]
16: T [j] := Tnode.fwd
17: t[i] := Tnode.value
18: if a[j] = 0 or a[j] = j
19: d[j] := −d[j]
20: f [j] := f [j + 1]
21: f [j + 1] := j + 1
22: T [j] := null

23: end if
24: i := i + 1
25: end while
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% Loopless permutations in Zaks’ order
Fun Zaks(n)
1: head := n . . . 2 1
2: R := [null,null, . . . ,null] (size n)

3: S := [null,null, . . . ,null] (size n)

4: f := [1, 2, . . . , n] (size n)

5: d := [1, 1, . . . , 1] (size n − 1)

6: a := [0, 0, . . . , 0] (size n − 1)

7: while f [1] < n
8: j := f [1]
9: f [1] := 1

10: a[j] := a[j] + d[j]
11: if R[1] = null

12: R[1] := head
13: S[1] := other(head,null)
14: end if
15: Rnode := R[1]
16: Snode := S[1]
17: R[1] := null

18: S[1] := null

19: if a[j] = 0 or a[j] = j
20: d[j] := −d[j]
21: f [j] := f [j + 1]
22: f [j + 1] := j + 1
23: if R[j + 1] = null

24: temp := R[j]
25: R[j] := S[j]
26: S[j] := other(S[j], temp)
27: else
28: R[j] := R[j + 1]
29: S[j] := S[j + 1]
30: end if
31: R[j + 1] := null

32: S[j + 1] := null

33: end if
34: temp := other(Snode, Rnode)
35: reverse(temp, Snode, head,null)
36: if f [j] = j + 1
37: R[j] := head
38: end if
39: head := Snode
40: visit(head)
41: end while

% Loopless permutations in co-lex order
Fun Lex(n)

1: head := n . . . 2 1

2: R := [null, null, . . . , null] (size n)

3: S := [null, null, . . . , null] (size n)

4: T := [null, null, . . . , null] (size n)

5: U := [null, null, . . . , null] (size n)

6: f := [1, 2, . . . , n] (size n)

7: d := [1, 1, . . . , 1] (size n − 1)

8: a := [0, 0, . . . , 0] (size n − 1)

9: while f [1] < n
10: j := f [1]
11: f [1] := 1
12: a[j] := a[j] + d[j]
13: if R[1] = null

14: R[1] := head
15: S[1] := other(head, null)
16: end if
17: Rnode := R[1]
18: Snode := S[1]
19: R[1] := null

20: S[1] := null

21: if T [j] = null

22: T [j] := head
23: U [j] := other(head, null)
24: end if
25: T [j] := Unode
26: U [j] := other(Unode, Tnode)
27: if a[j] = 0 or a[j] = j
28: d[j] := −d[j]
29: f [j] := f [j + 1]
30: f [j + 1] := j + 1
31: if R[j + 1] = null

32: temp := R[j]
33: R[j] := S[j]
34: S[j] := other(S[j], temp)
35: else
36: R[j] := R[j + 1]
37: S[j] := S[j + 1]
38: end if
39: R[j + 1] := null

40: S[j + 1] := null

41: T [j] := null

42: U [j] := null

43: end if
44: transpose(Snode, Tnode)
45: if Tnode = head
46: head := Snode
47: end if
48: if f [j] = j + 1
49: R[j] := Tnode
50: end if
51: if Rnode �= Tnode
52: reverse(Tnode, Rnode, head, null)
53: head := Rnode
54: else if Snode �= head
55: reverse(Tnode, Snode, head, null)
56: head := Snode
57: end if
58: visit(head)
59: end while

To understand R(n), observe that ri equals the first focus pointer in TR(n)
(see lines 8-10). Therefore, we mimic the focus pointers in f using real pointers
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in a new array R. More precisely, if f [i] = j then R[i] will point to the jth
node in the linked list. One caveat is that null is used when a focus pointer
points to itself. That is, R[i] = null when f [i] = i. This convention limits the
changes made to R when reversing prefixes in the final algorithms. Given this
description, we can equate instructions involving f with instructions involving
R in R(n). In particular, line 9 matches with lines 12-14, line 10 matches with
line 16, line 20 matches with lines 22-26, and line 21 matches with line 27. To
track the (ri +1)st node instead of the rith node, line 13 can simply be changed
to R[1] := other(head,null). In Lex(n) and Zaks(n), the rith node is tracked in
array R, the (ri +1)st node is tracked in array S, and the resulting twin-pointers
give a bll-friendly alternative to line 23.

To understand T(n) consider its recursive formula originally found in (2)

Tn = Tn−1, 1, Tn−1, 2, . . . , Tn−1, n−2, Tn−1, n−1, Tn−1.

The values in 1, 2, . . . , n−1, 1 are obtained by “marching” the pointers forward
in line 16, before “retreating” in line 22. To track the (ti + 1)st node instead of
the tith node, line 13 can simply be changed to T [j] := other(head,null). In
Lex(n), the tith node is tracked in array T , the (ti +1)st node is tracked in array
U , and the resulting twin-pointers give a bll-friendly alternative to line 16.

The second hurdle is to update these pointers during each transposition and
reversal. The updates are simplified by the fact that f [i] = i for 1 ≤ i < r[i]
during the ith iteration of TR(n). Therefore, the corresponding null values
in R, S, T , and U do not require updating. The additional code in the final
algorithms account for the remaining updates to R, S, T , U , and head. (A tail
pointer can also be easily updated.)

When investigating the final algorithms on page 376, notice the absence of
“.value”. We call the algorithms non-probing since they never query values stored
in any node. One application is that the algorithms will function regardless of
the initial values pointed to by head. In particular, co-lex and reverse co-lex are
created by initializing head := n . . . 2 1 and head := 1 2
. . . n respectively. Furthermore, lexicographic and reverse lexicographic are
created by maintaining tail and replacing visit(head) with visit(tail).

Both algorithms are implemented in C, and are available by request.

6 Open Problems

This paper uses a bll to unsort permutations in worst-case O(1)-time in lexi-
cographic order. Can this result be extended to multiset permutations? Where
else does a bll provide advantages over a dll? Do non-probing algorithms have
applications to privacy or security? What other combinatorial objects can be
generated without probing? TR(n) gives a common framework for understand-
ing lexicographic order and Zaks’ order. Which other orders of permutations
can be explained by the specialization of Algorithm H [10] to staircase strings
or downward staircase strings (using bases n, n− 1, . . . , 2)?
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