

Lecture Notes in Computer Science 6081
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ching-Hsien Hsu Laurence T. Yang
Jong Hyuk Park Sang-Soo Yeo (Eds.)

Algorithms
and Architectures
for Parallel Processing

10th International Conference, ICA3PP 2010
Busan, Korea, May 21-23, 2010
Proceedings, Part I

13

Volume Editors

Ching-Hsien Hsu
Chung Hua University, Department of Computer Science
and Information Engineering
Hsinchu, 300 Taiwan, China
E-mail: chh@chu.edu.tw

Laurence T. Yang
St. Francis Xavier University, Department of Computer Science,
Antigonish, NS, B2G 2W5, Canada
E-mail: ltyang@stfx.ca

Jong Hyuk Park
Seoul National University of Technology
Department of Computer Science and Engineering
Nowon-gu, Seoul, 139-742, Korea
E-mail: parkjonghyuk1@hotmail.com

Sang-Soo Yeo
Mokwon University, Division of Computer Engineering
Daejeon 302-729, Korea
E-mail: ssyeo@mokwon.ac.kr

Library of Congress Control Number: 2010926694

CR Subject Classification (1998): F.2, H.4, D.2, I.2, H.3, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13118-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13118-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

It is our great pleasure to welcome you to the proceedings of the 10th annual event of
the International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP).

ICA3PP is recognized as the main regular event covering the many dimensions of
parallel algorithms and architectures, encompassing fundamental theoretical ap-
proaches, practical experimental projects, and commercial components and systems.
As applications of computing systems have permeated every aspect of daily life, the
power of computing systems has become increasingly critical. Therefore, ICA3PP
2010 aimed to permit researchers and practitioners from industry to exchange infor-
mation regarding advancements in the state of the art and practice of IT-driven ser-
vices and applications, as well as to identify emerging research topics and define the
future directions of parallel processing.

We received a total of 157 submissions this year, showing by both quantity and
quality that ICA3PP is a premier conference on parallel processing. In the first stage,
all papers submitted were screened for their relevance and general submission re-
quirements. These manuscripts then underwent a rigorous peer-review process with at
least three reviewers per paper. In the end, 47 papers were accepted for presentation
and included in the main proceedings, comprising a 30% acceptance rate. To encour-
age and promote the work presented at ICA3PP 2010, we are delighted to inform the
authors that some of the papers will be accepted in special issues of the Journal of
Grid Computing, the Journal of Parallel and Distributed Computing, the International
Journal of High Performance Computing and Networking, the Journal of Database
Management and the Journal of Information Processing Systems. All of these journals
have played a prominent role in promoting the development and use of parallel and dis-
tributed processing.

An international conference of this scale requires the support of many people. First
of all, we would like to thank the Steering Committee Chairs, Andrzej Goscinski, Yi
Pan and Wanlei Zhou, for nourishing the conference and guiding its course. We ap-
preciate the participation of the keynote speakers, Wanlei Zhou and Rajkumar Buyya,
whose speeches greatly benefited the audience. We are also indebted to the members
of the Program Committee, who put in a lot of hard work and long hours to review
each paper in a professional way. Thanks to them all for their valuable time and effort
in reviewing the papers. Without their help, this program would not be possible. Spe-
cial thanks go to Tony Li Xu and Sang-Soo Yeo for their help with the conference
web, paper submission and reviewing system and a lot of detailed work, which facili-
tated the overall process. Thanks also go to the entire local arrangements committee
for their help in making the conference a wonderful success. We take this opportunity
to thank all the authors, participants and session chairs for their valuable efforts, many
of whom traveled long distances to attend this conference and make their valuable
contributions. Last but not least, we would like express our gratitude to all of the

 Preface

VI

organizations that supported our efforts to bring the conference to fruition. We are
grateful to Springer for publishing the proceedings.

The conference was held in the beautiful city of Busan. Besides the academic na-
ture of the conference, the whole city is ample with beautiful scenic spots and cultural
sources. We hope that all our academic entertainments and at the same time you were
able to see the magnificent natural beauty.

This conference owed its success to the support of many academic and industrial
organizations. Most importantly, we owe a lot to of inspiration all conference partici-
pants for their contributions to the conference the participants enjoyed

May 2010

Laurence T. Yang
Jong Hyuk Park
J. Daniel Garcia

Ching-Hsien (Robert) Hsu
Alfredo Cuzzocrea

Xiaojun Cao

Conference Committees

Honorary Chair

Doo-soon Park SoonChunHyang University, Korea

Steering Committee Chairs

Andrzej Goscinski Deakin University, Australia
Yi Pan Georgia State University, USA
Wanlei Zhou Deakin University, Australia

Advisory Committee

H.J. Siegel Colorado State University, USA
Shi-Jinn Horng National United University, Taiwan
Young-Sik Jeong Wonkwang University, Korea
Kai Hwang University of Southern California, USA

General Chairs

Laurence T. Yang St. Francis Xavier University, Canada
Jong Hyuk Park Seoul National University of Technology, Korea
J. Daniel Garcia University Carlos III of Madrid, Spain

General Vice-Chairs

Sang-Soo Yeo Mokwon University, Korea
Tony Li Xu St Francis Xavier University, Canada
Ki-Ryong Kwon Pukyung National University, Korea

Program Chairs

Alfredo Cuzzocrea ICAR, National Research Council and University of
Calabria, Italy

Ching-Hsien Hsu Chung Hua University, Taiwan
Xiaojun Cao Georgia State University, USA

VIII Organization

Workshop Chairs

Kuo-Chan Huang National Taichung University, Taiwan
Yu Liang Central State University, USA

Publication Chairs

Deok Gyu Lee ETRI, Korea
Jongsung Kim Korea Universtiy, Korea
Soo-Kyun Kim PaiChai University, Korea

Publicity Chairs

Roland Wagner Univ. of Linz, Austria
Tohru Kikuno Osaka University, Japan
Kuan-Ching Li Providence University, Taiwan

Local Arrangements Chairs

Kyung Hyun Rhee Pukyong National University, Korea
Changhoon Lee Hanshin University, Korea
Howon Kim Pusan National University, Korea

International Program Committee

Jemal Abawajy Deakin University, Australia
Ahmad S. AI-Mogren AI Yamamah University, Saudi Arabia
Hüseyin Akcan Izmir University of Economics, Turkey
Giuseppe Amato ISTI-CNR, Italy
Cosimo Anglano Università del Piemonte Orientale, Italy
Alagan Anpalagan Ryerson University, Canada
Amnon Barak The Hebrew University of Jerusalem, Israel
Novella Bartolini University of Rome "La Sapienza", Italy
Alessio Bechini Alessio Bechini, University of Pisa, Italy
Ladjel Bellatreche ENSMA, France
Ateet Bhalla Technocrats Institute of Technology, India
Taisuke Boku University of Tsukuba, Japan
Angelo Brayner University of Fortaleza, Brazil
Massimo Cafaro University of Salento, Lecce, Italy
Mario Cannataro University “Magna Græcia” of Catanzaro, Italy
Jiannong Cao Hong Kong Polytechnic University, Hong Kong
Andre C.P.L.F.

de Carvalho

Universidade de Sao Paulo, Brazil

Denis Caromel University of Nice Sophia Antipolis-INRIA-CNRS-IUF,
France

 Organization IX

Tania Cerquitelli Politecnico di Torino, Italy
Hangbae Chang Daejin University, Korea
Ruay-Shiung Chang National Dong Hwa University, Taiwan
Yue-Shan Chang National Taipei University, Taiwan
Jinjun Chen Swinburne University of Technology, Australia
Tzung-Shi Chen National University of Tainan, Taiwan
Zizhong Chen Colorado School of Mines, USA
Allen C. Cheng University of Pittsburgh, USA
Francis Chin University of Hong Kong, Hong Kong
Michele Colajanni Università di Modena e Reggio Emilia, Italy
Carmela Comito University of Calabria, Italy
Raphaël Couturier University of Franche Comte, France
Mieso Denko University of Guelph, Canada
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Julius Dichter University of Bridgeport, USA
Der-Rong Din National Changhua University of Education, Taiwan
Susan K. Donohue The College of New Jersey, USA
Shantanu Dutt University of Illinois at Chicago, USA
Todd Eavis Concordia University, Canada
Giuditta Franco University of Verona, Italy
Karl Fuerlinger University of California, Berkeley, USA
Jerry Zeyu Gao San Jose State University, USA
Jinzhu Gao University of the Pacific, Stockton, CA, USA
Irene Garrigós University of Alicante, Spain
Amol Ghoting IBM T. J. Watson Research Center, USA
Harald Gjermundrod University of Nicosia, Cyprus
Janice Gu Auburn University, USA
Hyoil Han Drexel University, USA
Houcine Hassan Universidad Politecnica de Valencia, Spain
Pilar Herrero Universidad Politécnica de Madrid, Spain
Michael Hobbs Deakin University, Australia
JoAnne Holliday Santa Clara University, USA
Ching-Hsien Hsu Chung Hua University, Taiwan
Tsung-Chuan Huang National Sun Yat-sen University, Taiwan
Yo-Ping Huang National Taipei University of Technology, Taiwan
Young-Sik Jeong Wonkwang University, Korea
Qun Jin Waseda University, Japan
Xiaolong Jin University of Bradford, UK
Soo-Kyun Kim PaiChai University, Korea
Jongsung Kim Kyungnam University, Korea
Dan Komosny Brno University of Technology, Czech Republic
Gregor von Laszewski Rochester Institute of Technology, USA
Changhoon Lee Hanshin University, Korea
Deok Gyu Lee ETRI, Korea
Yang Sun Lee Chosun University, Korea
Laurent Lefevre INRIA, University of Lyon, France

X Organization

Casiano Rodriguez Leon Universidad de La Laguna, Spain
Daniele Lezzi Barcelona Supercomputing Center, Spain
Jikai Li The College of New Jersey, USA
Keqin Li State University of New York, USA
Keqin Li SAP Research, France
Keqiu Li Dalian University of Technology, China
Minglu Li Shanghai Jiaotong University, China
Xiaofei Liao Huazhong University of Science and Technology, China
Kai Lin Dalian University of Technology, China
Jianxun Liu Hunan University of Science and Technology, China
Pangfeng Liu National Taiwan University, Taiwan
Alexandros V.

Gerbessiotis

New Jersey Institute of Technology, USA

Yan Gu Auburn University, USA
Hai Jiang Arkansas State University, US A
George Karypis University of Minnesota, USA
Eun Jung Kim Texas A&M University, USA
Minseok Kwon Rochester Institute of Technology, USA
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Alberto

Marchetti-Spaccamela
Sapienza University of Rome, Italy

Toma Margalef Universitat Autonoma de Barcelona, Spain
María J. Martín University of A Coruña, Spain
Michael May Fraunhofer Institute for Intelligent Systems, Germany
Eduard Mehofer University of Vienna, Austria
Rodrigo Fernandes

de Mello

University of Sao Paulo, Brazil

Peter M. Musial University of Puerto Rico, USA
Amiya Nayak University of Ottawa, Canada
Leandro Navarro Polytechnic University of Catalonia, Spain
Andrea Nucita University of Messina, Italy
Leonardo B. Oliveira Universidade Estadual de Campinas, Brazil
Salvatore Orlando Ca' Foscari University of Venice, Italy
Marion Oswald Hungarian Academy of Sciences, Budapest, Hungary
Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece
George A. Papadopoulos University of Cyprus, Cyprus
Deng Pan Florida International University, USA
Al-Sakib Khan Pathan BRAC University, Bangladesh
Dana Petcu West University of Timisoara, Romania
Rubem Pereira Liverpool John Moores University, UK
María S. Pérez Universidad Politécnica de Madrid, Madrid, Spain
Kleanthis Psarris The University of Texas at San Antonio, USA
Pedro Pereira Rodrigues University of Porto, Portugal
Marcel-Catalin Rosu IBM, USA
Paul M. Ruth The University of Mississippi, USA
Giovanni Maria Sacco Università di Torino, Italy

 Organization XI

Lorenza Saitta Università del Piemonte Orientale, Italy
Frode Eika Sandnes Oslo University College, Norway
Claudio Sartori University of Bologna, Italy
Erich Schikuta University of Vienna, Austria
Martin Schulz Lawrence Livermore National Laboratory, USA
Seetharami R. Seelam IBM T. J. Watson Research Center, USA
Erich Schikuta University of Vienna, Austria
Edwin Sha The University of Texas at Dallas, USA
Rahul Shah Louisiana State University, USA
Giandomenico Spezzano ICAR-CNR, Italy
Peter Strazdins The Australian National University, Australia
Domenico Talia Università della Calabria, Italy
Uwe Tangen Ruhr-Universität Bochum, Germany
David Taniar Monash University, Australia
Christopher M. Taylor University of New Orleans, USA
Parimala Thulasiraman University of Manitoba, Canada
A Min Tjoa Vienna University of Technology, Austria
Paolo Trunfio University of Calabria, Italy
Jichiang Tsai National Chung Hsing University, Taiwan
Emmanuel Udoh Indiana University-Purdue University, USA
Gennaro Della Vecchia ICAR-CNR, Italy
Lizhe Wang Indiana University, USA
Max Walter Technische Universität München, Germany
Cho-Li Wang The University of Hong Kong, China
Guojun Wang Central South University, China
Xiaofang Wang Villanova University, USA
Chen Wang CSIRO ICT Centre, Australia
Chuan Wu The University of Hong Kong, China
Qishi Wu University of Memphis, USA
Yulei Wu University of Bradford, UK
Fatos Xhafa University of London, UK
Yang Xiang Central Queensland University, Australia
Chunsheng Xin Norfolk State University, USA
Neal Naixue Xiong Georgia State University, USA
Zheng Yan Nokia Research Center, Finland
Sang-Soo Yeo Mokwon University, Korea
Eiko Yoneki University of Cambridge, UK
Chao-Tung Yang Tunghai University, Taiwan
Zhiwen Yu Northwestern Polytechnical University, China
Wuu Yang National Chiao Tung University, Taiwan
Jiehan Zhou University of Oulu, Finland
Sotirios G. Ziavras NJIT, USA
Roger Zimmermann National University of Singapore, Singapore

XII Organization

External Reviewers

Some of the names listed below came from second hand data sources, so it was not
always possible to confirm correct spellings. With apologies to reviewers not accu-
rately listed

George Pallis
Amirreza Tahamtan
Fengguang Song
Zhanpeng Jin
Joseph Oresko
Eugenio Cesario
Uwe Tangen
Todd Gamblin
Soo-Kyun Kim
Giuseppe M. Bernava
Humberto Ortiz-Zauzaga
Rodrigo Mello
Rafael Arce-Nazario
Martin Koehler
Sotirios Ziavras
Anastasios Gounaris
Bo Wang
Wuu Yang
Heng Qi
Yu Wang
Santosh Kabbur
Chris Kauffman
Le Dinh Minh
Emmanuel Udoh

Amirreza Tahamtan
Chris Taylor
Houcine Hassan
Kathryn Mohror
Joseph Oresko
Zhanpeng Jin
Fengguang Song
Hongxing Li
Ruay-Shiung Chang
Amnon Barak
Judit Bar-Ilan
Henrique Kawakami
Gianluigi Folino
Alexandro Baldassin
Diego F. Aranha
Claudio Vairo
Ahmad Al-Mogren
Casiano Rodriguez-Leon
Rubem Pereira
Dakai Zhu
Marcel Rosu
Max Walter
Paul Ruth
Wei Huang

Table of Contents – Part I

Keynote Papers

Efficient Web Browsing with Perfect Anonymity Using Page
Prefetching . 1

Shui Yu, Theerasak Thapngam, Su Wei, and Wanlei Zhou

InterCloud: Utility-Oriented Federation of Cloud Computing
Environments for Scaling of Application Services . 13

Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros

Parallel Algorithms

Scalable Co-clustering Algorithms . 32
Bongjune Kwon and Hyuk Cho

Parallel Pattern Matching with Swaps on a Linear Array 44
Fouad B. Chedid

Parallel Prefix Computation in the Recursive Dual-Net 54
Yamin Li, Shietung Peng, and Wanming Chu

A Two-Phase Differential Synchronization Algorithm for Remote
Files . 65

Yonghong Sheng, Dan Xu, and Dongsheng Wang

A New Parallel Method of Smith-Waterman Algorithm on a
Heterogeneous Platform . 79

Bo Chen, Yun Xu, Jiaoyun Yang, and Haitao Jiang

Improved Genetic Algorithm for Minimizing Periodic Preventive
Maintenance Costs in Series-Parallel Systems . 91

Chung-Ho Wang and Te-Wei Lin

A New Hybrid Parallel Algorithm for MrBayes . 102
Jianfu Zhou, Gang Wang, and Xiaoguang Liu

Research and Design of Deployment Framework for Blade-Based Data
Center . 113

Haiping Qu, Xiuwen Wang, Lu Xu, Jiangang Zhang, and
Xiaoming Han

Query Optimization over Parallel Relational Data Warehouses in
Distributed Environments by Simultaneous Fragmentation and
Allocation . 124

Ladjel Bellatreche, Alfredo Cuzzocrea, and Soumia Benkrid

XIV Table of Contents – Part I

Parallel Architectures

Function Units Sharing between Neighbor Cores in CMP 136
Tianzhou Chen, Jianliang Ma, Hui Yuan, Jingwei Liu, and
Guanjun Jiang

A High Efficient On-Chip Interconnection Network in SIMD CMPs 149
Dan Wu, Kui Dai, Xuecheng Zou, Jinli Rao, and Pan Chen

Network-on-Chip Routing Algorithms by Breaking Cycles 163
Minghua Tang and Xiaola Lin

A Fair Thread-Aware Memory Scheduling Algorithm for Chip
Multiprocessor . 174

Danfeng Zhu, Rui Wang, Hui Wang, Depei Qian,
Zhongzhi Luan, and Tianshu Chu

Efficient Partitioning of Static Buses for Processor Arrays of Small
Size . 186

Susumu Matsumae

Formal Proof for a General Architecture of Hybrid Prefix/Carry-Select
Adders . 193

Feng Liu, Qingping Tan, Xiaoyu Song, and Gang Chen

An Efficient Non-Blocking Multithreaded Embedded System 205
Joseph M. Arul, Tsung-Yun Chen, Guan-Jie Hwang,
Hua-Yuan Chung, Fu-Jiun Lin, and You-Jen Lee

A Remote Mirroring Architecture with Adaptively Cooperative
Pipelining . 215

Yongzhi Song, Zhenhai Zhao, Bing Liu, Tingting Qin,
Gang Wang, and Xiaoguang Liu

SV: Enhancing SIMD Architectures via Combined SIMD-Vector
Approach . 226

Libo Huang and Zhiying Wang

A Correlation-Aware Prefetching Strategy for Object-Based File
System . 236

Julei Sui, Jiancong Tong, Gang Wang, and Xiaoguang Liu

An Auxiliary Storage Subsystem to Distributed Computing Systems
for External Storage Service . 246

MinHwan Ok

Table of Contents – Part I XV

Grid/Cluster Computing

Checkpointing and Migration of Communication Channels in
Heterogeneous Grid Environments . 254

John Mehnert-Spahn and Michael Schoettner

On-Line Task Granularity Adaptation for Dynamic Grid
Applications . 266

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and
Rajkumar Buyya

Message Clustering Technique towards Efficient Irregular Data
Redistribution in Clusters and Grids . 278

Shih-Chang Chen, Tai-Lung Chen, and Ching-Hsien Hsu

Multithreading of Kostka Numbers Computation for the BonjourGrid
Meta-desktop Grid Middleware . 287

Heithem Abbes, Franck Butelle, and Christophe Cérin

Adaptable Scheduling Algorithm for Grids with Resource Redeployment
Capability . 299

Cho-Chin Lin and Chih-Hsuan Hsu

Using MPI on PC Cluster to Compute Eigenvalues of Hermitian
Toeplitz Matrices . 313

Fazal Noor and Syed Misbahuddin

Cloud Computing/Virtualization Techniques

idsocket: API for Inter-domain Communications Base on Xen 324
Liang Zhang, Yuein Bai, and Cheng Luo

Strategy-Proof Dynamic Resource Pricing of Multiple Resource Types
on Federated Clouds . 337

Marian Mihailescu and Yong Meng Teo

Adapting Market-Oriented Scheduling Policies for Cloud Computing . . . 351
Mohsen Amini Salehi and Rajkumar Buyya

A High Performance Inter-VM Network Communication Mechanism 363
Yuebin Bai, Cheng Luo, Cong Xu, Liang Zhang, and
Huiyong Zhang

On the Effect of Using Third-Party Clouds for Maximizing Profit 381
Young Choon Lee, Chen Wang, Javid Taheri,
Albert Y. Zomaya, and Bing Bing Zhou

A Tracing Approach to Process Migration for Virtual Machine Based
on Multicore Platform . 391

Liang Zhang, Yuebin Bai, and Xin Wei

XVI Table of Contents – Part I

GPU Computing and Applications

Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 404
Hailong Yang, Bo Li, Yongjian Wang, Zhongzhi Luan,
Depei Qian, and Tianshu Chu

Optimizing Sweep3D for Graphic Processor Unit . 416
Chunye Gong, Jie Liu, Zhenghu Gong, Jin Qin, and Jing Xie

Modular Resultant Algorithm for Graphics Processors 427
Pavel Emeliyanenko

A Novel Scheme for High Performance Finite-Difference Time-Domain
(FDTD) Computations Based on GPU . 441

Tianshu Chu, Jian Dai, Depei Qian, Weiwei Fang, and Yi Liu

Parallel Programming, Performance Evaluation

A Proposed Asynchronous Object Load Balancing Method for Parallel
3D Image Reconstruction Applications . 454

Jose Antonio Alvarez-Bermejo and Javier Roca-Piera

A Step-by-Step Extending Parallelism Approach for Enumeration of
Combinatorial Objects . 463

Hien Phan, Ben Soh, and Man Nguyen

A Study of Performance Scalability by Parallelizing Loop Iterations on
Multi-core SMPs . 476

Prakash Raghavendra, Akshay Kumar Behki, K. Hariprasad,
Madhav Mohan, Praveen Jain, Srivatsa S. Bhat, V.M. Thejus, and
Vishnumurthy Prabhu

Impact of Multimedia Extensions for Different Processing Element
Granularities on an Embedded Imaging System . 487

Jong-Myon Kim

Fault-Tolerant/Information Security and
Management

Reducing False Aborts in STM Systems . 499
Daniel Nicácio and Guido Araújo

Fault-Tolerant Node-to-Set Disjoint-Path Routing in Hypercubes 511
Antoine Bossard, Keiichi Kaneko, and Shietung Peng

AirScope: A Micro-scale Urban Air Quality Management System 520
Jung-Hun Woo, HyungSeok Kim, Sang Boem Lim, Jae-Jin Kim,
Jonghyun Lee, Rina Ryoo, and Hansoo Kim

Table of Contents – Part I XVII

Wireless Communication Network

Design of a Slot Assignment Scheme for Link Error Distribution on
Wireless Grid Networks . 528

Junghoon Lee, Seong Baeg Kim, and Mikyung Kang

Wireless Bluetooth Communications Combine with Secure Data
Transmission Using ECDH and Conference Key Agreements 538

Hua-Yi Lin and Tzu-Chiang Chiang

Robust Multicast Scheme for Wireless Process Control on Traffic Light
Networks . 549

Junghoon Lee, Gyung-Leen Park, Seong-Baeg Kim,
Min-Jae Kang, and Mikyung Kang

A Note-Based Randomized and Distributed Protocol for Detecting
Node Replication Attacks in Wireless Sensor Networks 559

Xiangshan Meng, Kai Lin, and Keqiu Li

Author Index . 571

Table of Contents – Part II

The 2010 International Symposium on Frontiers of
Parallel and Distributed Computing (FPDC 2010)

Parallel Programming and Multi-core Technologies

Efficient Grid on the OTIS-Arrangment Network . 1
Ahmad Awwad, Bassam Haddad, and Ahmad Kayed

Single Thread Program Parallelism with Dataflow Abstracting
Thread . 11

Tianzhou Chen, Xingsheng Tang, Jianliang Ma, Lihan Ju,
Guanjun Jiang, and Qingsong Shi

Parallel Programming on a Soft-Core Based Multi-core System 22
Liang-Teh Lee, Shin-Tsung Lee, and Ching-Wei Chen

Dynamic Resource Tuning for Flexible Core Chip Multiprocessors 32
Yongqing Ren, Hong An, Tao Sun, Ming Cong, and Yaobin Wang

Ensuring Confidentiality and Integrity of Multimedia Data on
Multi-core Platforms . 42

Eunji Lee, Sungju Lee, Yongwha Chung, Hyeonjoong Cho, and
Sung Bum Pan

A Paradigm for Processing Network Protocols in Parallel 52
Ralph Duncan, Peder Jungck, and Kenneth Ross

Real-Time Task Scheduling on Heterogeneous Two-Processor
Systems . 68

Chin-Fu Kuo and Ying-Chi Hai

Grid/Cluster Computing

A Grid Based System for Closure Computation and Online Service 79
Wing-Ning Li, Donald Hayes, Jonathan Baran,
Cameron Porter, and Tom Schweiger

A Multiple Grid Resource Broker with Monitoring and Information
Services . 90

Chao-Tung Yang, Wen-Jen Hu, and Bo-Han Chen

Design Methodologies of Workload Management through Code
Migration in Distributed Desktop Computing Grids 100

Makoto Yoshida and Kazumine Kojima

Dynamic Dependent Tasks Assignment for Grid Computing 112
Meddeber Meriem and Yagoubi Belabbas

XX Table of Contents – Part II

Implementation of a Heuristic Network Bandwidth Measurement for
Grid Computing Environments . 121

Chao-Tung Yang, Chih-Hao Lin, and Wen-Jen Hu

Parallel Algorithms, Architectures and Applications

An Efficient Circuit-Switched Broadcasting in Star Graph 131
Cheng-Ta Lee and Yeong-Sung Lin

Parallel Domain Decomposition Methods for High-Order Finite
Element Solutions of the Helmholtz Problem . 136

Youngjoon Cha and Seongjai Kim

Self-Organizing Neural Grove and Its Distributed Performance 146
Hirotaka Inoue

A Massively Parallel Hardware for Modular Exponentiations Using the
m-ary Method . 156

Marcos Santana Farias, Sérgio de Souza Raposo, Nadia Nedjah, and
Luiza de Macedo Mourelle

Emulation of Object-Based Storage Devices by a Virtual Machine 166
Yi-Chiun Fang, Chien-Kai Tseng, and Yarsun Hsu

Balanced Multi-process Parallel Algorithm for Chemical Compound
Inference with Given Path Frequencies . 178

Jiayi Zhou, Kun-Ming Yu, Chun Yuan Lin, Kuei-Chung Shih, and
Chuan Yi Tang

Harnessing Clusters for High Performance Computation of Gene
Expression Microarray Comparative Analysis . 188

Philip Church, Adam Wong, Andrzej Goscinski, and
Christophe Lefèvre

Mobile Computing/Web Services

Semantic Access Control for Corporate Mobile Devices 198
Tuncay Ercan and Mehmet Yıldız

A New Visual Simulation Tool for Performance Evaluation of MANET
Routing Protocols . 208

Md. Sabbir Rahman Sakib, Nazmus Saquib, and
Al-Sakib Khan Pathan

A Web Service Composition Algorithm Based on Global QoS
Optimizing with MOCACO . 218

Wang Li and He Yan-xiang

Table of Contents – Part II XXI

Distributed Operating System/P2P Computing

Experiences Gained from Building a Services-Based Distributed
Operating System . 225

Andrzej Goscinski and Michael Hobbs

Quick Forwarding of Queries to Relevant Peers in a Hierarchical P2P
File Search System . 235

Tingting Qin, Qi Cao, Qiying Wei, and Satoshi Fujita

iCTPH: An Approach to Publish and Lookup CTPH Digests in
Chord . 244

Zhang Jianzhong, Pan Kai, Yu Yuntao, and Xu Jingdong

Fault-Tolerant and Information Security

Toward a Framework for Cloud Security . 254
Michael Brock and Andrzej Goscinski

Cluster-Fault-Tolerant Routing in Burnt Pancake Graphs 264
Nagateru Iwasawa, Tatsuro Watanabe, Tatsuya Iwasaki, and
Keiichi Kaneko

Edge-Bipancyclicity of All Conditionally Faulty Hypercubes 275
Chao-Ming Sun and Yue-Dar Jou

The 2010 International Workshop on High
Performance Computing Technologies and
Applications (HPCTA 2010)

Session I

Accelerating Euler Equations Numerical Solver on Graphics Processing
Units . 281

Pierre Kestener, Frédéric Château, and Romain Teyssier

An Improved Parallel MEMS Processing-Level Simulation
Implementation Using Graphic Processing Unit . 289

Yupeng Guo, Xiaoguang Liu, Gang Wang, Fan Zhang, and Xin Zhao

Solving Burgers’ Equation Using Multithreading and GPU 297
Sheng-Hsiu Kuo, Chih-Wei Hsieh, Reui-Kuo Lin, and
Wen-Hann Sheu

Support for OpenMP Tasks on Cell Architecture . 308
Qian Cao, Changjun Hu, Haohu He, Xiang Huang, and Shigang Li

XXII Table of Contents – Part II

Session II

A Novel Algorithm for Faults Acquiring and Locating on Fiber Optic
Cable Line . 318

Ning Zhang, Yan Chen, Naixue Xiong, Laurence T. Yang,
Dong Liu, and Yuyuan Zhang

A Parallel Distributed Algorithm for the Permutation Flow Shop
Scheduling Problem . 328

Samia Kouki, Talel Ladhari, and Mohamed Jemni

A Self-Adaptive Load Balancing Strategy for P2P Grids 338
Po-Jung Huang, You-Fu Yu, Quan-Jie Chen, Tian-Liang Huang,
Kuan-Chou Lai, and Kuan-Ching Li

Embedding Algorithms for Star, Bubble-Sort, Rotator-Faber-Moore,
and Pancake Graphs . 348

Mihye Kim, Dongwan Kim, and Hyeongok Lee

Session III

Performance Estimation of Generalized Statistical Smoothing to Inverse
Halftoning Based on the MTF Function of Human Eyes 358

Yohei Saika, Kouki Sugimoto, and Ken Okamoto

Power Improvement Using Block-Based Loop Buffer with Innermost
Loop Control . 368

Ming-Yuan Zhong and Jong-Jiann Shieh

An Efficient Pipelined Architecture for Fast Competitive Learning 381
Hui-Ya Li, Chia-Lung Hung, and Wen-Jyi Hwang

Merging Data Records on EREW PRAM . 391
Hazem M. Bahig

The 2010 International Workshop on Multicore
and Multithreaded Architecture and Algorithms
(M2A2 2010)

Session I

Performance Modeling of Multishift QR Algorithms for the Parallel
Solution of Symmetric Tridiagonal Eigenvalue Problems 401

Takafumi Miyata, Yusaku Yamamoto, and Shao-Liang Zhang

A Parallel Solution of Large-Scale Heat Equation Based on Distributed
Memory Hierarchy System . 413

Tangpei Cheng, Qun Wang, Xiaohui Ji, and Dandan Li

Table of Contents – Part II XXIII

A New Metric for On-line Scheduling and Placement in Reconfigurable
Computing Systems . 422

Maisam Mansub Bassiri and Hadi Shahriar Shahhoseini

Session II

Test Data Compression Using Four-Coded and Sparse Storage for
Testing Embedded Core . 434

Zhang Ling, Kuang Ji-shun, and You zhi-qiang

Extending a Multicore Multithread Simulator to Model Power-Aware
Hard Real-Time Systems . 444

José Luis March, Julio Sahuquillo, Houcine Hassan,
Salvador Petit, and José Duato

Real-Time Linux Framework for Designing Parallel Mobile Robotic
Applications . 454

Joan Aracil, Carlos Domı́nguez, Houcine Hassan, and Alfons Crespo

Author Index . 465

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 1–12, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Efficient Web Browsing with Perfect Anonymity
Using Page Prefetching

Shui Yu, Theerasak Thapngam, Su Wei, and Wanlei Zhou

School of Information Technology
Deakin University

Burwood, VIC 3125, Australia
{syu,tthap,suwei,wanlei}@deakin.edu.au

Abstract. Anonymous web browsing is a hot topic with many potential applica-
tions for privacy reasons. The current dominant strategy to achieve anonymity
is packet padding with dummy packets as cover traffic. However, this method
introduces extra bandwidth cost and extra delay. Therefore, it is not practical
for anonymous web browsing applications. In order to solve this problem, we
propose to use the predicted web pages that users are going to access as the
cover traffic rather than dummy packets. Moreover, we defined anonymity level
as a metric to measure anonymity degrees, and established a mathematical
model for anonymity systems, and transformed the anonymous communication
problem into an optimization problem. As a result, users can find tradeoffs
among anonymity level and cost. With the proposed model, we can describe
and compare our proposal and the previous schemas in a theoretical style. The
preliminary experiments on the real data set showed the huge potential of the
proposed strategy in terms of resource saving.

Keywords: perfect anonymity, web browsing, prefetch.

1 Introduction

The purpose of this paper is to present an efficient and novel way for web browsing
with perfect anonymity, moreover, we also target on solving the contradictory con-
straints between high anonymity and low delay in the applications of web browsing.
Anonymous web browsing becomes a hot topic recently because of the booming of
Internet based applications, such as information retrieval, online shopping, online vot-
ing. In order to meet the privacy needs of these kinds of activities, a number of anony-
mous systems have been proposed, implemented and practiced on the Internet, such as,
mix and mix networks [1], crowds [2], onion routing [3], tor [4]. The best solution
against attacks is to design a system with perfect anonymity which can never be
breached in any condition, and it is possible according to Shannon’s perfect secrecy
theory (we use perfect anonymity to replace perfect secrecy in this paper)[5], however,
the cost for perfect anonymity is extremely high, and it may not be achievable in
practice under some constraints, for example, the delay constraint for web browsing.

2 S. Yu et al.

The anonymity issue on web browsing has been widely explored in recent years,
such as various attacks and defenses on the tor system [6],[7]. Traffic analysis is the
most powerful tool against anonymous communications. The traffic analysis attack
includes two categories: profiling attack [8], [9] and timing attack [10],[11],[12].
Rather than obtaining the content of communication, adversaries who use traffic analy-
sis attacks usually target on finding whether two entities communicate with each other;
which web sites that target users access, and so on. They try to derive such information
as much as possible from traffic metadata, such as message lengths, number of packets,
packet arrival time intervals. In terms of profiling attack, adversaries have a list of
possible web sites and the profiles respectively. The task is to find which ones the
target user accesses. Timing attacks [10],[11] based on the fact that low-latency
anonymous systems, such as onion routing, do not introduce any delays or significant
alter on the timing patterns of an anonymous connection. The time interval of arrival
packets of html text and http objects usually similar for the target user and the adver-
sary if they access the same webpage, then it is easy for the adversary to figure out
which web site the target user accessed from the list.

Researchers currently employ dummy packet padding technique to fight against
traffic analysis. Usually, dummy packets are injected into the intended network traffic
to change the patterns or fingerprints of the actual traffic to achieve anonymity
[13],[14]. In order to disguise the timing information of connections, the packet rate of
a connection should be the same all the time, then we need to add dummy packets
when the real traffic is low or none, on the other hand, when the actual traffic rate is
high, we have to drop some packets to align with the planed packet rate. This is called
link padding [15],[16],[17]. Wright, Coull and Monrose recently proposed a traffic
morphing method to protect the anonymity of communication [18]. This work is quite
creative, however, it also uses dummy packet padding strategy and requires extra net-
work resources, such as bandwidth.

The strategy of dummy packet padding results in two major problems in communi-
cation: extra delay and extra bandwidth demands [19]. These disadvantages are ex-
traordinarily challenging in wireless, ad hoc, and sensor networks [14]. Because of the
strict delay constraint from web viewers, high level of anonymization on web browsing
may not always be achievable using dummy packet padding.

In this paper, we are motivated by these challenges and propose a novel strategy to
resolve the challenges in anonymous web browsing. Our proposal comes from the
following fact: users usually access a number of web pages at one web site according
to their own habits and interests, and this has been confirmed by the applications of
web caching and web page prefetching technologies [20],[21],[22]. Therefore, we can
use prefetched data to replace dummy packets for padding. This novel strategy funda-
mentally solves the problems of extra delay and extra bandwidth cost of packet pad-
ding; moreover, our proposal makes it possible to achieve perfect anonymity of web
browsing.

The contributions of this paper are summarized as follows.

• We proposed a novel strategy for packet padding using prefetched data as cover
traffic for anonymous web browsing. The proposed strategy makes it possible to
achieve perfect anonymity in web browsing under rigorous delay constraint;

 Efficient Web Browsing with Perfect Anonymity Using Page Prefetching 3

• We transformed the anonymous communication problem into an optimization
problem based on our model. As the result, we can figure out the tradeoffs be-
tween the anonymity level and the cost for applications. This makes it possible
for users to find the best anonymity level once the delay constraint is known.

• The proposed schema can reduce bandwidth waste and network delay significantly.
• We established a mathematical model to describe and analyze the anonymization

systems.

The rest of this paper is organized as follows. Related work and background are pre-
sented in Section 2. We setup the problem formally in Section 3. In Section 4 we
present the details of system modeling and analysis, followed by performance evalua-
tion in Section 5. Finally, we summarize and paper and point out the future work in
Section 6.

2 Related Work

The HTTP protocol document [23] shows clearly that when a client submits an http
request to an URL, the corresponding server will deliver the html text to the client, and
the html text includes the references of the related objects, e.g. images, flashes. The
objects will be downloaded to the client one after the other. Therefore, each web page
has its own fingerprint. Some web server may encrypt the content of packets, however,
an observer can clearly see the packet head, which includes critical information of the
server, such as IP address.

A number of works have been done in terms of traffic analysis. Sun et al. tried to
identify encrypted network traffic using the http object number and size. Their investi-
gation shows it is sufficient to identify a significant fraction of the World Wide Web
sites quite reliably [8]. Following this direction, Wright, Monrose and Masson further
confirmed that websites can be identified with high probability even it is encrypted
channel [9]. Hintz [13] suggested to add noise traffic (also named as cover traffic in
some papers) to users which will change the fingerprints of the server, and transparent
pictures are employed to add extra fake connections against fingerprint attacks.

Researchers also explored profiling attacks and proposed solutions. Coull et al.
evaluated the strength of the anonymization methodology in terms of preventing the
assembly of behavioral profiles, and concluded that anonymization offers less privacy
to web browsing traffic than what we expected [24]. Liberatore and Levine used a
profiling method to infer the sources of encrypted http connections [25]. They applied
packet length and direction as attributes, and established a profile database for individ-
ual encrypted network traffic. Based on these information, they can infer the source of
each individual encrypted network traffic. The adversary obtained the features of the
target network traffic and then compared it with the individual record in the profile
database, and inferred the possible source of the target traffic. The match technique
based on a similarity metric (Jaccard’s coefficient) and a supervised learning technique
(the naïve Bayesian classifier). The extensive experiments showed that the proposed
method can identify the source with the accuracy up to 90%.

Wright, Coull and Monrose recently proposed a traffic morphing method to
protect the anonymity of communication [18]. They transformed the intended
website (e.g. www.webmd.com) fingerprint to the fingerprint of another website

4 S. Yu et al.

(e.g. www.espn.com). The transformation methods that they took include packet
padding, packet splitting. Optimal techniques are employed to find best the cover
website (in terms of minimum cost for tranformation) from a list. They tested their
algorithm against the data set offered in Liberatore and Levine’s work [25], and
found that the proposed method can improve the anonymity of web site accessing
and reduce overhead at the same time. Venkitasubramaniam, He and Tong [14]
notice the delay caused by adding dummy packets into communication channel, and
proposed transmission schedules relay nodes to maximize network throughput given
a desired level of anonymity. Similar to the other works, this work is also based on
the platform of dummy packet padding.

Web caching and prefetching are effective and efficient solutions for web browsing
when bandwidth is a constraint. Award, Khan and Thuraisingham tried to predict
user web surfing path using a hybrid model, which combines Markov model and
Supporting Vector Machine [22]. The fusion of the two models complements each
other’s weakness and worked together well. Montgomery et al. found that the infor-
mation of users’ web browsing path offers important information for a transaction,
and a successful deal usually followed by a number of same path accessing [26].
Teng, Chang and Chen argued that there must be an elaborate coordinating between
client side caching and prefetching, and formulated a normalized profit function to
evaluate the profit from caching an object [20]. The proposed function integrated a
number of factors, such as object size, fetching cost, reference rate, invalidation cost,
and invalidation frequency. Their event-driven simulations showed that the proposed
method performed well.

3 Problem Setting

3.1 Background of the Problem

We suppose that an adversary (Bob) focuses on finding which website that the moni-
tored user (Alice) accesses from a list of possible websites. We suppose Bob has the
knowledge of all the websites in the list, and he also captures all the network traffic of
Alice’s computer.

In general, every web page is different from the others, such as length of html text,
number of web objects, timing of packet transportation, number of packets for each
web object. We use web fingerprint to represent the uniqueness of a web site. The
web service may be accessed in an encrypted way for users, such as using SSL. How-
ever, encryption brings limited changes on the fingerprint.

We suppose there are n possible web sites that Alice accesses, nwww ,...,, 21 , and

this is known to Bob. The a priori of iw (ni ≤≤1) is denoted as)(iwp (ni ≤≤1).

For each website iw (ni ≤≤1), we denote its fingerprint with k
iii ppp ,...,, 21 . For exam-

ple, for a given web site iw , if we count the number of packets for every web object,

such as html text, different images, et al., and save them as kxxx ,...,, 21 . We unify this

vector and obtain the distribution as k
iii ppp ,...,, 21 , where

1

1

−

=
⎟
⎠

⎞
⎜
⎝

⎛⋅= ∑
k

m
mj

j
i xxp , kj ≤≤1 .

 Efficient Web Browsing with Perfect Anonymity Using Page Prefetching 5

Bob monitors Alice’s local network, and obtains a number of observations

,...},,{ 321 ττττ =

Based on these observations and Bayesian Theorem, Bob can claim that Alice ac-

cesses website iw with the following probability.

)(
)|()(

)|(
τ

ττ
p

wpwp
wp ii

i

⋅=

On the other hand, the task for defenders is to decrease)|(τiwp to the minimum by

anonymization operations, such as packet padding, link padding.
According to Shannon’s perfect secrecy theory [5], an adversary cannot break the

anonymity if the following equation holds.

)()|(ii wpwp =τ

Namely, the observation τ offers no information to the adversary. However, the cost
for perfect anonymity is extremely expensive by injecting dummy packets according
to the perfect secrecy theory.

3.2 Anonymity Measurement

Because of the strict delay constraint of user perception, we cannot always achieve
perfect anonymity in web browsing cases. Suppose that user perception threshold is
Δ in terms of seconds, we can bear this constraint in mind and try our best to improve
the anonymity of web browsing. In order to measure the degree of anonymity, we
make the following definition.

Definition 1. Anonymity level. Let S be the original network traffic for a given a ses-
sion of network activity, S may be encrypted or covered by the sender, therefore, the
adversary can only obtain an observation τ about S. We define a measure for the
degree of anonymity as follows.

)(
)|(

SH

SH τα =

Where)(SH is the entropy [27] of the random variable S, which is defined as follows.

∑
∈

−=
χs

spspSH)(log)()(

where)(sp is the distribution of S and χ is the probability space of S.)|(τSH is

the conditional entropy [27] of S givenτ , which is defined as follows.

)|()()|(ii SHpSH
i

ττττ
τ

== ∑
Γ∈

where)(ip τ is the distribution of τ and Γ is the probability space of τ .

Because)()|(SHSH ≤τ [27], we have 10 ≤≤ α . Following the definition, we

obtain 1=α when)()|(SHSH =τ holds, namely, S and τ are independent from

each other, the adversary can infer no information about S from τ , we therefore

6 S. Yu et al.

achieve perfect anonymity. If S=τ , then we have 0=α , namely the adversary is
completely sure about session S, and there is no anonymity to him at all.

Let S be the intended traffic. In order to achieve a given anonymity levelα , we
need a cover traffic Y. We use function)(XC to represent the cost of network traffic

X. The cost could be bandwidth, delay or number of packets, etc. Therefore, the cost
for the intended traffic is C(S), and the cost of cover traffic under anonymity level
α is),|(αSYC . We define a measure for the cost as follows.

Definition 2. Anonymity cost coefficient. For a given network traffic S, in order
to achieve an anonymity level α , we inject a cover traffic Y. The anonymity cost
coefficient is defined as

)(
),|(

SC

SYC αβ =

We expect β as small as possible in practice.

4 System Modelling and Analysis

In this section, we will model the anonymization system with our definitions and
compare the proposed strategy against the dummy packet padding schemas based on
our model.

4.1 System Modelling

In real applications, situations and accessing patterns could be very complex. In this
paper, we target on showing the novelty of our proposal on anonymization mechanism
and the potentials that the proposed strategy can achieve, therefore, we bound our
research space with the following conditions in order to make our mechanisms to be
understood smoothly.

• We only study the cases that the adversary focuses on one target user in this paper,
and the adversary knows the possible list of web sites that the target user accesses.

• We focus on anonymity of network traffic sessions, and ignore link padding issue
in this paper.

• We only discuss the cases on making anonymity by packet padding, and there is
no packet splitting operations in this study. In case of packet splitting, the cost is
the extra delay, rather than bandwidth.

• We only analyze the attack method of packet counting in this paper, however,
our model and strategy is also effective for the other attack methods, such as at-
tacks using packet arrival time intervals.

• We suppose Alice accesses one web site for one session, and she opens the de-
fault web page (index.html) of the website first, and then follows the hyperlinks
to open other web pages at the website. Our model and strategy can deal with
other accessing patterns, we just need more time and computing.

A typical anonymous communication with packet padding is shown in Figure. 1. As
a user, Alice sends http request to a web server wi via an anonymous channel. The
web server returns the intended traffic }P,…,P,{P=P k21

, where Pi represents the

 Efficient Web Browsing with Perfect Anonymity Using Page Prefetching 7

P

Q

Wi

web server

cover traffic

V

encrypted

channel

adversaryuser

anonymization

system

de-anonymization

system

Fig. 1. A packet padding system for anonymous communication

number of packets of web object i . Let ∑
=

=
k

i
iPP

1

|||| denote the total number of packets

of the intended traffic P, and we extract the fingerprint of this session

as },,...,,{ 21 kpppp = where kiPPp ii ≤≤= 1||,||/ , and 1
1

=∑
=

k

i
ip . In order to make

it anonymous to adversaries, we create the cover traffic }Q,…,Q,{Q=Q k21
at the

server side, where Qi denotes the number of packets that is assigned to cover Pi, and let

∑
=

=
k

i
iQQ

1

|||| . Similar to the intended traffic P, the fingerprint of Q is

},...,,{ 21 kqqqq = . We use ⊕ to represent the anonymization operations, and

QPV ⊕= is the output of the anonymization operation on P and Q. The fingerprint

of V is },,...,,{ 21 kvvvv = 1
1

=∑
=

k

i
iv , and |||| V is the total packet number of V. The

adversary’s observation τ is the mix of V and other network background traffic. Once
V arrives the user side, there is a de-anonymization operation to recover P from V.

In previous works, dummy packets are employed to work as the cover traffic Q; In
this paper, we propose to use prefetching web pages as the cover traffic, rather than
dummy packets. Let W be the set of all possible content of web site wi, and S be a traffic
sessions of accessing wi, Δ be the threshold of maximum cost that users can tolerate.
Then the anonymization problem can be transformed to an optimization issue as follows.

 Maximize α

 s. t.

bCY

WY

WS

YSC

≤
∈
∈

Δ≤⊕

||||

)(

Where Cb is the storage capacity of the client, and we suppose ∞=bC in this paper.

In the previous dummy packet padding solutions, WY ∉ and φ=∩YS .

8 S. Yu et al.

4.2 System Analysis

Following the definitions and expressions in the previous section, in order to achieve
perfect anonymity, the following equations must hold.

kvvv === ...21

Suppose },...,,max{ 21 km pppp = , then the minimum cover traffic to achieve perfect

anonymity is given as follows.

||}||)(||,...,||)(||,||){(21 PppPppPppQ kmmm ⋅−⋅−⋅−=

We have fingerprint of Q as

)}(),...,(),{(},...,,{ 2121 kmmmk ppppppqqqq −−−==

Then the anonymity cost coefficient in terms of number of packet is

||||

||||

1

1

P

Q

P

Q

k

i
i

k

i
i

==
∑

∑

=

=β

In general, given an intended traffic P and an anonymity level α (10 ≤≤ α), the cost
of the cover traffic could be expressed as

()α,| PQC

For dummy packet padding strategies, the anonymity cost coefficient dβ could be

denoted as follows

)(
),|(

PC

PQC
d

αβ =

In our proposed strategy, the cover traffic is part of P in long term viewpoint. The
extra cost is caused by the data that we prefetched but not used. We suppose the
prefetch accuracy is)10(≤≤ηη , then the extra cost from the cover traffic is as
follows.

)1(' η−⋅= PQ

Then pβ , the anonymity cost coefficient of our strategy is

()
)(

,|)1(
)(

),|('

PC

PPC

PC

PQC
p

αηαβ −⋅==

If 0=η , then dp ββ = , namely the anonymity cost coefficient of our strategy is the

same as the others; on the other hand, if 1=η , then 0|||| =Q , and we have 0=pβ ,

 Efficient Web Browsing with Perfect Anonymity Using Page Prefetching 9

in other words, there is no waste of resources at all. In general, for 10 ≤≤η , if the

cost function)(⋅C is a linear function, then we can simplify pβ as follows.

αηβ ⋅−=)1(p

5 Performance Evaluation

In order to show the potentials of the proposed strategy, we extract the relationship
between anonymity level and cost against the real data set used in [25], the data set was
also used in [18] in order to indicate the cost efficiency of their morphing strategy.

The data set includes the tcpdump files of 2000 web sites from February 10, 2006
to April 28, 2006, which are sorted by popularity from site0 to site1999 from the most
to the least. There are a few different sessions everyday for each web site respec-
tively, for each session users may access different web pages in the same day. We
take site0, site500, and site1999 as three representatives from the data set. For a given
network session, we use the number of packets of web objects as fingerprints (For the
same website, user may access different web pages, therefore, the fingerprint for each
session is only a part of the entire fingerprint). The fingerprints of the aforementioned
6 sessions are shown in Fig. 2.

Fig. 2. Fingerprints of network sessions

In the case of perfect anonymity, the number of packets for every web object is the
same since we added cover traffic to the intended traffic. In order to obtain different
level of anonymity, we start the perfect anonymity operation partially, and pad the
related cover traffic to intended traffic one web object after the other, and start from
the first web object to the last. This is a simple way for anonymization with 1≺α .
The result of the anonymity level against the progress of anonymization is shown in
Figure 3. The results show that α approaches 1 when we process more and more web
objects. This indicates that higher anonymity level demands more cover traffic, this
matches our analysis in the previous sections.

10 S. Yu et al.

Fig. 3. Anonymity level against anonymization progress on web objects

In order to directly show the relationship between anonymity level and anonymity
cost coefficient, we extract this information from the 6 network sessions carefully,
and the results are presented in Figure 4.

From Figure 4 we find that the cost for perfect anonymity is extremely expensive.
For example, the volume of cover traffic for site1999-2 is more than 120 times of that
of the intended traffic; it is more than 10 times for simple web site, such as site500,
which has small number of packets as indicated in Figure 2. These preliminary ex-
periments showed the huge potential of resource saving of our proposed strategy.

Moreover, the experiments on site0 in Figure 4 show an anomaly at the beginning:
more cover traffic results lower anonymity level. We are very interested to investigate
this as a future work.

Fig. 4. Anonymity cost coefficient (ACC) against anonymity level

 Efficient Web Browsing with Perfect Anonymity Using Page Prefetching 11

6 Summary and Future Work

We noticed that the cost for dummy packet padding is very expensive for anonymous
web browsing. Therefore, a novel strategy is proposed to reduce the cost significantly
for web browsing – taking web prefetched data as cover traffic rather than dummy
packets. Moreover, it is hard to achieve perfect anonymous in some web browsing
cases, we therefore defined a measure, anonymity level, to be a metric to measure
user requirements on anonymity. We modeled the anonymous system in a theoretical
way, and described the relationship between anonymity level and the cost in theory.
Furthermore, we transformed the anonymity problem into an optimization problem,
and this transform brings numerous possible solutions from the optimization field. We
believe that this model offers a solid platform for the further researches. Some pre-
liminary experiments have been done to show the great potential of the proposed
strategy.

As the future work, we expect to extend the model to multiple user scenario, and
we will also include link padding with the multiple user cases. Web prefetching algo-
rithms will be integrated into the model, and extensive tests against the data set are
expected in the near future. More effort is desired on the process of de-anonymization
at the client side efficiently and accurately.

References

1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM 4 (1981)

2. Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transaction on In-
formation and System Security 1 (1998)

3. Reed, M., Syverson, P., Goldschlag, D.: Anonymous connections and onion routing. IEEE
Journal on Selected Areas in Communications 16, 482–494 (1998)

4. http://www.torproject.org
5. Shannon, C.E.: Communication Theory of Secrecy Systems. Journal of Bell System Tech-

nology 28, 656–715 (1949)
6. Yu, W., Fu, X., Graham, S., Xuan, D., Zhao, W.: DSSS-Based Flow Marking Technique

for Invisible Traceback. In: Proceedings of IEEE Symposium on Security and Privacy
(S&P), Oakland, California, USA (2007)

7. Jia, W., Tso, F.P., Ling, Z., Fu, X., Xuan, D., Yu, W.: Blind Detection of Spread Spectrum
Flow Watermarks. In: IEEE INFOCOM 2009 (2009)

8. Sun, Q., Simon, D.R., Wang, Y.-M., Russell, W., Padmanabhan, V.N., Qiu, L.: Statistical
Identification of Encrypted Web Browsing Traffic. In: The 2002 IEEE Symposium on Se-
curity and Privacy. IEEE, Berkeley (2002)

9. Wright, C., Monrose, F., Masson, G.: On Inferring Application Protocol Behaviors in En-
crypted Network Traffic. Journal of Machine Learning Research 2006, 2745–2769 (2006)

10. Shmatikov, V., Wang, M.: Timing analysis in low-latency mix networks: Attacks and de-
fenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 18–33. Springer, Heidelberg (2006)

11. Murdoch, S., Zielinski, P.: Smapled traffic analysis by internet-exchange-level adversaries.
In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–183. Springer, Hei-
delberg (2007)

12. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Proceedings of ACM
Conference on Computer and Communication Security, Athens, Greece, pp. 25–32 (2000)

12 S. Yu et al.

13. Hintz, A.: Fingerprinting websites using traffic analysis. In: Dingledine, R., Syverson, P.F.
(eds.) PET 2002. LNCS, vol. 2482, pp. 171–178. Springer, Heidelberg (2003)

14. Venkitasubramaniam, P., He, T., Tong, L.: Anonymous Networking Amidst Eavesdrop-
pers. IEEE Transactions on Information Theory 54, 2770–2784 (2008)

15. Venkitasubramaniam, P., He, T., Tong, L.: Relay secrecy in wireless networks with eaves-
droppers. In: Proceedings of Allerton Conference on Communication, Control and Com-
puting (2006)

16. Venkitasubramaniam, P., He, T., Tong, L.: Anonymous networking for minimum latency
in multihop networks. In: IEEE Symposium on Security and Privacy (2008)

17. Wang, W., Motani, M., Srinivasan, V.: Dependent link padding algorithms for low latency
anonymity systems. In: Proceedings of ACM Conference on Computer and Communica-
tion Security, pp. 323–332 (2008)

18. Wright, C., Coull, S., Monrose, F.: Traffic Morphing: An efficient defense against statisti-
cal traffic analysis. In: The 16th Annual Network and Distributed Security Symposium
(2009)

19. Edman, M., Yener, B.: On Anonymity in an Electronic Society: A Survey of Anonymous
Communication Systems. ACM Computer Survey (to appear)

20. Teng, W.-G., Chang, C.-Y., Chen, M.-S.: Integrating web caching and web prefetching in
client-side proxies. IEEE Transactions on Parallel and Distributed Systems 16, 444–454
(2005)

21. Zeng, Z., Veeravalli, B.: Hk/T: A novel server-side web caching strategy for multimedia
applications. In: Proceedings of IEEE International Conference on Communications, pp.
1782–1786 (2008)

22. Award, M., Khan, L., Thuraisingham, B.: Predecting WWW surfing using multiple evi-
dence conbination. The VLDB Journal 17, 401–417 (2008)

23. RFC2616, http://www.w3.org/Protocols/rfc2616/rfc2616.html
24. Coull, S.E., Collins, M.P., Wright, C.V., Monrose, F., Reiter, M.K.: On Web Browsing

Privacy in Anonymized NetFlows. In: The 16th USENIX Security Symposium, Boston,
USA, pp. 339–352 (2007)

25. Liberatore, M., Levine, B.N.: Inferring the Source of Encrypted HTTP Connections. In:
ACM conference on Computer and Communications Security (CCS), pp. 255–263 (2006)

26. Montgomery, A.L., Li, S., Srinivasan, K., Liechty, J.C.: Modeling Online Browsing and
Path Analysis Using Clickstream Data. Marketing Science 23, 579–595 (2004)

27. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience, Hoboken
(2007)

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 13–31, 2010.
© Springer-Verlag Berlin Heidelberg 2010

InterCloud: Utility-Oriented Federation of
Cloud Computing Environments for Scaling of

Application Services

Rajkumar Buyya1,2, Rajiv Ranjan3, and Rodrigo N. Calheiros1

1 Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
2 Manjrasoft Pty Ltd, Australia

3 School of Computer Science and Engineering
The University of New South Wales, Sydney, Australia

Abstract. Cloud computing providers have setup several data centers at differ-
ent geographical locations over the Internet in order to optimally serve needs of
their customers around the world. However, existing systems do not support
mechanisms and policies for dynamically coordinating load distribution among
different Cloud-based data centers in order to determine optimal location for
hosting application services to achieve reasonable QoS levels. Further, the
Cloud computing providers are unable to predict geographic distribution of us-
ers consuming their services, hence the load coordination must happen auto-
matically, and distribution of services must change in response to changes in the
load. To counter this problem, we advocate creation of federated Cloud comput-
ing environment (InterCloud) that facilitates just-in-time, opportunistic, and
scalable provisioning of application services, consistently achieving QoS targets
under variable workload, resource and network conditions. The overall goal is
to create a computing environment that supports dynamic expansion or contrac-
tion of capabilities (VMs, services, storage, and database) for handling sudden
variations in service demands.

This paper presents vision, challenges, and architectural elements of Inter-
Cloud for utility-oriented federation of Cloud computing environments. The
proposed InterCloud environment supports scaling of applications across multi-
ple vendor clouds. We have validated our approach by conducting a set of rig-
orous performance evaluation study using the CloudSim toolkit. The results
demonstrate that federated Cloud computing model has immense potential as it
offers significant performance gains as regards to response time and cost saving
under dynamic workload scenarios.

1 Introduction

In 1969, Leonard Kleinrock [1], one of the chief scientists of the original Advanced
Research Projects Agency Network (ARPANET) project which seeded the Internet,
said: “As of now, computer networks are still in their infancy, but as they grow up
and become sophisticated, we will probably see the spread of ‘computer utilities’

14 R. Buyya, R. Ranjan, and R.N. Calheiros

which, like present electric and telephone utilities, will service individual homes and
offices across the country.” This vision of computing utilities based on a service pro-
visioning model anticipated the massive transformation of the entire computing indus-
try in the 21st century whereby computing services will be readily available on
demand, like other utility services available in today’s society. Similarly, computing
service users (consumers) need to pay providers only when they access computing
services. In addition, consumers no longer need to invest heavily or encounter
difficulties in building and maintaining complex IT infrastructure.

In such a model, users access services based on their requirements without regard to
where the services are hosted. This model has been referred to as utility computing, or
recently as Cloud computing [3]. The latter term denotes the infrastructure as a
“Cloud” from which businesses and users are able to access application services from
anywhere in the world on demand. Hence, Cloud computing can be classified as a new
paradigm for the dynamic provisioning of computing services, typically supported by
state-of-the-art data centers containing ensembles of networked Virtual Machines.

Cloud computing delivers infrastructure, platform, and software (application) as
services, which are made available as subscription-based services in a pay-as-you-go
model to consumers. These services in industry are respectively referred to as Infra-
structure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). A Berkeley Report in Feb 2009 states “Cloud computing, the long-held dream
of computing as a utility, has the potential to transform a large part of the IT industry,
making software even more attractive as a service” [2].

Clouds aim to power the next generation data centers by architecting them as a
network of virtual services (hardware, database, user-interface, application logic) so
that users are able to access and deploy applications from anywhere in the world on
demand at competitive costs depending on users QoS (Quality of Service) require-
ments [3]. Developers with innovative ideas for new Internet services no longer re-
quire large capital outlays in hardware to deploy their service or human expense to
operate it [2]. It offers significant benefit to IT companies by freeing them from the
low level task of setting up basic hardware (servers) and software infrastructures and
thus enabling more focus on innovation and creating business value for their services.

The business potential of Cloud computing is recognised by several market re-
search firms including IDC, which reports that worldwide spending on Cloud services
will grow from $16 billion by 2008 to $42 billion in 2012. Furthermore, many appli-
cations making use of these utility-oriented computing systems such as clouds emerge
simply as catalysts or market makers that bring buyers and sellers together. This cre-
ates several trillion dollars of worth to the utility/pervasive computing industry as
noted by Sun Microsystems co-founder Bill Joy [4]. He also indicated “It would take
time until these markets to mature to generate this kind of value. Predicting now
which companies will capture the value is impossible. Many of them have not even
been created yet.”

1.1 Application Scaling and Cloud Infrastructure: Challenges and
Requirements

Providers such as Amazon [15], Google [16], Salesforce [21], IBM, Microsoft [17],
and Sun Microsystems have begun to establish new data centers for hosting Cloud

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 15

computing application services such as social networking and gaming portals, busi-
ness applications (e.g., SalesForce.com), media content delivery, and scientific work-
flows. Actual usage patterns of many real-world application services vary with time,
most of the time in unpredictable ways. To illustrate this, let us consider an “elastic”
application in the business/social networking domain that needs to scale up and down
over the course of its deployment.

Social Networking Web Applications
Social networks such as Facebook and MySpace are popular Web 2.0 based applica-
tions. They serve dynamic content to millions of users, whose access and interaction
patterns are hard to predict. In addition, their features are very dynamic in the sense
that new plug-ins can be created by independent developers, added to the main system
and used by other users. In several situations load spikes can take place, for instance,
whenever new system features become popular or a new plug-in application is de-
ployed. As these social networks are organized in communities of highly interacting
users distributed all over the world, load spikes can take place at different locations at
any time. In order to handle unpredictable seasonal and geographical changes in sys-
tem workload, an automatic scaling scheme is paramount to keep QoS and resource
consumption at suitable levels.

Social networking websites are built using multi-tiered web technologies, which
consist of application servers such as IBM WebSphere and persistency layers such as
the MySQL relational database. Usually, each component runs in a separate virtual
machine, which can be hosted in data centers that are owned by different cloud com-
puting providers. Additionally, each plug-in developer has the freedom to choose
which Cloud computing provider offers the services that are more suitable to run
his/her plug-in. As a consequence, a typical social networking web application is
formed by hundreds of different services, which may be hosted by dozens of Cloud
data centers around the world. Whenever there is a variation in temporal and spatial
locality of workload, each application component must dynamically scale to offer
good quality of experience to users.

1.2 Federated Cloud Infrastructures for Elastic Applications

In order to support a large number of application service consumers from around the
world, Cloud infrastructure providers (i.e., IaaS providers) have established data cen-
ters in multiple geographical locations to provide redundancy and ensure reliability in
case of site failures. For example, Amazon has data centers in the US (e.g., one in the
East Coast and another in the West Coast) and Europe. However, currently they (1)
expect their Cloud customers (i.e., SaaS providers) to express a preference about the
location where they want their application services to be hosted and (2) don’t provide
seamless/automatic mechanisms for scaling their hosted services across multiple,
geographically distributed data centers. This approach has many shortcomings, which
include (1) it is difficult for Cloud customers to determine in advance the best loca-
tion for hosting their services as they may not know origin of consumers of their ser-
vices and (2) Cloud SaaS providers may not be able to meet QoS expectations of
their service consumers originating from multiple geographical locations. This neces-
sitates building mechanisms for seamless federation of data centers of a Cloud

16 R. Buyya, R. Ranjan, and R.N. Calheiros

provider or providers supporting dynamic scaling of applications across multiple do-
mains in order to meet QoS targets of Cloud customers.

In addition, no single Cloud infrastructure provider will be able to establish their
data centers at all possible locations throughout the world. As a result Cloud applica-
tion service (SaaS) providers will have difficulty in meeting QoS expectations for all
their consumers. Hence, they would like to make use of services of multiple Cloud
infrastructure service providers who can provide better support for their specific
consumer needs. This kind of requirements often arises in enterprises with global op-
erations and applications such as Internet service, media hosting, and Web 2.0 appli-
cations. This necessitates building mechanisms for federation of Cloud infrastructure
service providers for seamless provisioning of services across different Cloud provid-
ers. There are many challenges involved in creating such Cloud interconnections
through federation.

To meet these requirements, next generation Cloud service providers should be
able to: (i) dynamically expand or resize their provisioning capability based on sud-
den spikes in workload demands by leasing available computational and storage ca-
pabilities from other Cloud service providers; (ii) operate as parts of a market driven
resource leasing federation, where application service providers such as Sales-
force.com host their services based on negotiated Service Level Agreement (SLA)
contracts driven by competitive market prices; and (iii) deliver on demand, reliable,
cost-effective, and QoS aware services based on virtualization technologies while
ensuring high QoS standards and minimizing service costs. They need to be able to
utilize market-based utility models as the basis for provisioning of virtualized soft-
ware services and federated hardware infrastructure among users with heterogeneous
applications and QoS targets.

1.3 Research Issues

The diversity and flexibility of the functionalities (dynamically shrinking and growing
computing systems) envisioned by federated Cloud computing model, combined with
the magnitudes and uncertainties of its components (workload, compute servers, ser-
vices, workload), pose difficult problems in effective provisioning and delivery of
application services. Provisioning means “high-level management of computing, net-
work, and storage resources that allow them to effectively provide and deliver ser-
vices to customers”. In particular, finding efficient solutions for following challenges
is critical to exploiting the potential of federated Cloud infrastructures:

Application Service Behavior Prediction: It is critical that the system is able to pre-
dict the demands and behaviors of the hosted services, so that it intelligently under-
take decisions related to dynamic scaling or de-scaling of services over federated
Cloud infrastructures. Concrete prediction or forecasting models must be built before
the behavior of a service, in terms of computing, storage, and network bandwidth re-
quirements, can be predicted accurately. The real challenge in devising such models is
accurately learning and fitting statistical functions [31] to the observed distributions
of service behaviors such as request arrival pattern, service time distributions, I/O
system behaviors, and network usage. This challenge is further aggravated by the ex-
istence of statistical correlation (such as stationary, short- and long-range dependence,
and pseudo-periodicity) between different behaviors of a service.

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 17

Flexible Mapping of Services to Resources: With increased operating costs and en-
ergy requirements of composite systems, it becomes critical to maximize their effi-
ciency, cost-effectiveness, and utilization [30] . The process of mapping services to
resources is a complex undertaking, as it requires the system to compute the best soft-
ware and hardware configuration (system size and mix of resources) to ensure that
QoS targets of services are achieved, while maximizing system efficiency and utiliza-
tion. This process is further complicated by the uncertain behavior of resources and
services. Consequently, there is an immediate need to devise performance modeling
and market-based service mapping techniques that ensure efficient system utilization
without having an unacceptable impact on QoS targets.

Economic Models Driven Optimization Techniques: The market-driven decision
making problem [6] is a combinatorial optimization problem that searches the optimal
combinations of services and their deployment plans. Unlike many existing multi-
objective optimization solutions, the optimization models that ultimately aim to
optimize both resource-centric (utilization, availability, reliability, incentive) and
user-centric (response time, budget spent, fairness) QoS targets need to be developed.

Integration and Interoperability: For many SMEs, there is a large amount of IT as-
sets in house, in the form of line of business applications that are unlikely to ever be
migrated to the cloud. Further, there is huge amount of sensitive data in an enterprise,
which is unlikely to migrate to the cloud due to privacy and security issues. As a re-
sult, there is a need to look into issues related to integration and interoperability be-
tween the software on premises and the services in the cloud. In particular [28]: (i)
Identity management: authentication and authorization of service users; provisioning
user access; federated security model; (ii) Data Management: not all data will be
stored in a relational database in the cloud, eventual consistency (BASE) is taking
over from the traditional ACID transaction guarantees, in order to ensure sharable
data structures that achieve high scalability. (iii) Business process orchestration: how
does integration at a business process level happen across the software on premises
and service in the Cloud boundary? Where do we store business rules that govern the
business process orchestration?

Scalable Monitoring of System Components: Although the components that con-
tribute to a federated system may be distributed, existing techniques usually employ
centralized approaches to overall system monitoring and management. We claim that
centralized approaches are not an appropriate solution for this purpose, due to con-
cerns of scalability, performance, and reliability arising from the management of mul-
tiple service queues and the expected large volume of service requests. Monitoring of
system components is required for effecting on-line control through a collection of
system performance characteristics. Therefore, we advocate architecting service
monitoring and management services based on decentralized messaging and indexing
models [27].

1.4 Overall Vision

To meet aforementioned requirements of auto-scaling Cloud applications, future ef-
forts should focus on design, development, and implementation of software systems

18 R. Buyya, R. Ranjan, and R.N. Calheiros

and policies for federation of Clouds across network and administrative boundaries.
The key elements for enabling federation of Clouds and auto-scaling application ser-
vices are: Cloud Coordinators, Brokers, and an Exchange. The resource provisioning
within these federated clouds will be driven by market-oriented principles for efficient
resource allocation depending on user QoS targets and workload demand patterns. To
reduce power consumption cost and improve service localization while complying
with the Service Level Agreement (SLA) contracts, new on-line algorithms for en-
ergy-aware placement and live migration of virtual machines between Clouds would
need to be developed. The approach for realisation of this research vision consists of
investigation, design, and development of the following:

• Architectural framework and principles for the development of utility-
oriented clouds and their federation

• A Cloud Coordinator for exporting Cloud services and their management
driven by market-based trading and negotiation protocols for optimal QoS
delivery at minimal cost and energy.

• A Cloud Broker responsible for mediating between service consumers and
Cloud coordinators.

• A Cloud Exchange acts as a market maker enabling capability sharing across
multiple Cloud domains through its match making services.

• A software platform implementing Cloud Coordinator, Broker, and Ex-
change for federation.

The rest of this paper is organized as follows: First, a concise survey on the existing
state-of-the-art in Cloud provisioning is presented. Next, the comprehensive descrip-
tion related to overall system architecture and its elements that forms the basis for
constructing federated Cloud infrastructures is given. This is followed by some initial
experiments and results, which quantifies the performance gains delivered by the pro-
posed approach. Finally, the paper ends with brief conclusive remarks and discussion
on perspective future research directions.

2 State-of-the-Art in Cloud Provisioning

The key Cloud platforms in Cloud computing domain including Amazon Web Ser-
vices [15], Microsoft Azure [17], Google AppEngine [16], Manjrasoft Aneka [32],
Eucalyptus [22], and GoGrid [23] offer a variety of pre-packaged services for moni-
toring, managing and provisioning resources and application services. However, the
techniques implemented in each of these Cloud platforms vary (refer to Table 1).

The three Amazon Web Services (AWS), Elastic Load Balancer [25], Auto Scaling
and CloudWatch [24] together expose functionalities which are required for under-
taking provisioning of application services on Amazon EC2. Elastic Load Balancer
service automatically provisions incoming application workload across available
Amazon EC2 instances. Auto-Scaling service can be used for dynamically scaling-in
or scaling-out the number of Amazon EC2 instances for handling changes in service
demand patterns. And finally the CloudWatch service can be integrated with above
services for strategic decision making based on real-time aggregated resource and
service performance information.

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 19

Table 1. Summary of provisioning capabilities exposed by public Cloud platforms

Manjrasoft Aneka is a platform for building and deploying distributed applications

on Clouds. It provides a rich set of APIs for transparently exploiting distributed re-
sources and expressing the business logic of applications by using the preferred pro-
gramming abstractions. Aneka is also a market-oriented Cloud platform since it allows
users to build and schedule applications, provision resources and monitor results using
pricing, accounting, and QoS/SLA services in private and/or public (leased) Cloud en-
vironments. Aneka also allows users to build different run-time environments such as
enterprise/private Cloud by harness computing resources in network or enterprise data
centers, public Clouds such as Amazon EC2, and hybrid clouds by combining enter-
prise private Clouds managed by Aneka with resources from Amazon EC2 or other
enterprise Clouds build and managed using technologies such as XenServer.

Eucalyptus [22] is an open source Cloud computing platform. It is composed of
three controllers. Among the controllers, the Cluster Controller is a key component
to application service provisioning and load balancing. Each Cluster Controller is
hosted on the head node of a cluster to interconnect outer public networks and inner
private networks together. By monitoring the state information of instances in the
pool of server controllers, the Cluster Controller can select the available ser-
vice/server for provisioning incoming requests. However, as compared to AWS,
Eucalyptus still lacks some of the critical functionalities, such as auto scaling for
built-in provisioner.

Fundamentally, Windows Azure Fabric [17] has a weave-like structure, which is
composed of node (servers and load balancers), and edges (power, Ethernet and serial
communications). The Fabric Controller manages a service node through a built-in ser-
vice, named Azure Fabric Controller Agent, which runs in the background, tracking the
state of the server, and reporting these metrics to the Controller. If a fault state is re-
ported, the Controller can manage a reboot of the server or a migration of services from
the current server to other healthy servers. Moreover, the Controller also supports service
provisioning by matching the services against the VMs that meet required demands.

GoGrid Cloud Hosting offers developers the F5 Load Balancers [23] for distribut-
ing application service traffic across servers, as long as IPs and specific ports of these
servers are attached. The load balancer allows Round Robin algorithm and Least
Connect algorithm for routing application service requests. Also, the load balancer is

Cloud Platforms Load Balancing Provisioning Auto Scaling

Amazon Elastic Compute Cloud √ √ √

Eucalyptus √ √ ×

Microsoft Windows Azure √
√

(fixed templates so far)

√

(Manual)

Google App Engine √ √ √

Manjrasoft Aneka
√ √ √

GoGrid Cloud Hosting √ √
√

(Programmatic way
only)

20 R. Buyya, R. Ranjan, and R.N. Calheiros

able to sense a crash of the server, redirecting further requests to other available serv-
ers. But currently, GoGrid Cloud Hosting only gives developers programmatic APIs
to implement their custom auto-scaling service.

Unlike other Cloud platforms, Google App Engine offers developers a scalable plat-
form in which applications can run, rather than providing access directly to a custom-
ized virtual machine. Therefore, access to the underlying operating system is restricted
in App Engine. And load-balancing strategies, service provisioning and auto scaling
are all automatically managed by the system behind the scenes. However, at this time
Google App Engine can only support provisioning of web hosting type of applications.

However, no single Cloud infrastructure providers have their data centers at all possi-
ble locations throughout the world. As a result Cloud application service (SaaS) provid-
ers will have difficulty in meeting QoS expectations for all their users. Hence, they would
prefer to logically construct federated Cloud infrastructures (mixing multiple public and
private clouds) to provide better support for their specific user needs. This kind of re-
quirements often arises in enterprises with global operations and applications such as
Internet service, media hosting, and Web 2.0 applications. This necessitates building
technologies and algorithms for seamless federation of Cloud infrastructure service
providers for autonomic provisioning of services across different Cloud providers.

3 System Architecture and Elements of InterCloud

Figure 1 shows the high level components of the service-oriented architectural
framework consisting of client’s brokering and coordinator services that support
utility-driven federation of clouds: application scheduling, resource allocation and

Cloud Exchange
(CEx)

Directory

Bank

Auctioneer

Negotiate/Bid
Request
Capacity

Cloud Broker N

User

.
Publish Offers

Compute Cloud Cluster (VM Pool)

Pool node

VM

VM VM

Pool node

VM

VM

VM
Manager

Pool node

VM VM

Cluster (VM Pool)

Pool node

VM

VM VM

Pool node

VM

VM

VM
Manager

Pool node

VM VM

Pool node

VM

VM VM

Pool nodePool node

VM

VM VM

Pool node

VM

VM

Pool nodePool node

VM

VM

VM
Manager

Pool node

VM VM

Pool nodePool node

VM VM

Storage Cloud

Compute CloudStorage Cloud

Enterprise
Resource

Server
(Proxy)

Enterprise IT Consumer

User

Cloud Broker 1

Cloud
Coordinator

Cloud
Coordinator

Cloud
Coordinator

Fig. 1. Federated network of clouds mediated by a Cloud exchange

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 21

migration of workloads. The architecture cohesively couples the administratively and
topologically distributed storage and computes capabilities of Clouds as parts of sin-
gle resource leasing abstraction. The system will ease the cross-domain capabilities
integration for on demand, flexible, energy-efficient, and reliable access to the
infrastructure based on emerging virtualization technologies [8][9].

The Cloud Exchange (CEx) acts as a market maker for bringing together service
producers and consumers. It aggregates the infrastructure demands from the applica-
tion brokers and evaluates them against the available supply currently published by the
Cloud Coordinators. It supports trading of Cloud services based on competitive eco-
nomic models [6] such as commodity markets and auctions. CEx allows the partici-
pants (Cloud Coordinators and Cloud Brokers) to locate providers and consumers with
fitting offers. Such markets enable services to be commoditized and thus, would pave
the way for creation of dynamic market infrastructure for trading based on SLAs. An
SLA specifies the details of the service to be provided in terms of metrics agreed upon
by all parties, and incentives and penalties for meeting and violating the expectations,
respectively. The availability of a banking system within the market ensures that finan-
cial transactions pertaining to SLAs between participants are carried out in a secure
and dependable environment. Every client in the federated platform needs to instantiate
a Cloud Brokering service that can dynamically establish service contracts with Cloud
Coordinators via the trading functions exposed by the Cloud Exchange.

3.1 Cloud Coordinator (CC)

The Cloud Coordinator service is responsible for the management of domain specific en-
terprise Clouds and their membership to the overall federation driven by market-based

Scheduling & Allocation

Monitoring

Allocator

Scheduler

Market & Policy Engine

Accounting

SLA

Pricing
Billing

Virtualization Sensor

Hypervisor

Virtual

Machine

VM

Manager

Power

Cloud Coordinator

Data Center Resources

Heat

Utilization

Discovery &

Monitoring

Querying

Updating

Mobility

Manager

Application Composition Engine

User

Interface
Deployer

Database
Application

Server Remote

interactions

S
 e

 r
 v

 i
c

e
s

e-Business
Workflow

e-Science
Workflow CDN Parameter

sweep

Web
Hosting

Social
Networking

Programming Layer

Application Programming Interface (API)

Workload

Models

Performance

Models

Fig. 2. Cloud Coordinator software architecture

22 R. Buyya, R. Ranjan, and R.N. Calheiros

trading and negotiation protocols. It provides a programming, management, and deploy-
ment environment for applications in a federation of Clouds. Figure 2 shows a detailed
depiction of resource management components in the Cloud Coordinator service.

The Cloud Coordinator exports the services of a cloud to the federation by imple-
menting basic functionalities for resource management such as scheduling, allocation,
(workload and performance) models, market enabling, virtualization, dynamic
sensing/monitoring, discovery, and application composition as discussed below:

Scheduling and Allocation: This component allocates virtual machines to the Cloud
nodes based on user’s QoS targets and the Clouds energy management goals. On re-
ceiving a user application, the scheduler does the following: (i) consults the Applica-
tion Composition Engine about availability of software and hardware infrastructure
services that are required to satisfy the request locally, (ii) asks the Sensor component
to submit feedback on the local Cloud nodes’ energy consumption and utilization
status; and (iii) enquires the Market and Policy Engine about accountability of the
submitted request. A request is termed as accountable if the concerning user has
available credits in the Cloud bank and based on the specified QoS constraints the
establishment of SLA is feasible. In case all three components reply favorably, the
application is hosted locally and is periodically monitored until it finishes execution.

Data center resources may deliver different levels of performance to their clients;
hence, QoS-aware resource selection plays an important role in Cloud computing.
Additionally, Cloud applications can present varying workloads. It is therefore essen-
tial to carry out a study of Cloud services and their workloads in order to identify
common behaviors, patterns, and explore load forecasting approaches that can poten-
tially lead to more efficient scheduling and allocation. In this context, there is need to
analyse sample applications and correlations between workloads, and attempt to build
performance models that can help explore trade-offs between QoS targets.

Market and Policy Engine: The SLA module stores the service terms and condi-
tions that are being supported by the Cloud to each respective Cloud Broker on a
per user basis. Based on these terms and conditions, the Pricing module can deter-
mine how service requests are charged based on the available supply and required
demand of computing resources within the Cloud. The Accounting module stores the
actual usage information of resources by requests so that the total usage cost of each
user can be calculated. The Billing module then charges the usage costs to users
accordingly.

Cloud customers can normally associate two or more conflicting QoS targets with
their application services. In such cases, it is necessary to trade off one or more QoS
targets to find a superior solution. Due to such diverse QoS targets and varying
optimization objectives, we end up with a Multi-dimensional Optimization
Problem (MOP). For solving the MOP, one can explore multiple heterogeneous opti-
mization algorithms, such as dynamic programming, hill climbing, parallel swarm
optimization, and multi-objective genetic algorithm.

Application Composition Engine: This component of the Cloud Coordinator encom-
passes a set of features intended to help application developers create and deploy [18]
applications, including the ability for on demand interaction with a database backend
such as SQL Data services provided by Microsoft Azure, an application server such as

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 23

Internet Information Server (IIS) enabled with secure ASP.Net scripting engine to host
web applications, and a SOAP driven Web services API for programmatic access
along with combination and integration with other applications and data.

Virtualization: VMs support flexible and utility driven configurations that control
the share of processing power they can consume based on the time criticality of the
underlying application. However, the current approaches to VM-based Cloud comput-
ing are limited to rather inflexible configurations within a Cloud. This limitation can
be solved by developing mechanisms for transparent migration of VMs across service
boundaries with the aim of minimizing cost of service delivery (e.g., by migrating to a
Cloud located in a region where the energy cost is low) and while still meeting the
SLAs. The Mobility Manager is responsible for dynamic migration of VMs based on
the real-time feedback given by the Sensor service. Currently, hypervisors such as
VMware [8] and Xen [9] have a limitation that VMs can only be migrated between
hypervisors that are within the same subnet and share common storage. Clearly, this
is a serious bottleneck to achieve adaptive migration of VMs in federated Cloud
environments. This limitation has to be addressed in order to support utility driven,
power-aware migration of VMs across service domains.

Sensor: Sensor infrastructure will monitor the power consumption, heat dissipation,
and utilization of computing nodes in a virtualized Cloud environment. To this end,
we will extend our Service Oriented Sensor Web [14] software system. Sensor Web
provides a middleware infrastructure and programming model for creating, accessing,
and utilizing tiny sensor devices that are deployed within a Cloud. The Cloud Coordi-
nator service makes use of Sensor Web services for dynamic sensing of Cloud nodes
and surrounding temperature. The output data reported by sensors are feedback to the
Coordinator’s Virtualization and Scheduling components, to optimize the placement,
migration, and allocation of VMs in the Cloud. Such sensor-based real time monitor-
ing of the Cloud operating environment aids in avoiding server breakdown and
achieving optimal throughput out of the available computing and storage nodes.

Discovery and Monitoring: In order to dynamically perform scheduling, resource al-
location, and VM migration to meet SLAs in a federated network, it is mandatory that
up-to-date information related to Cloud’s availability, pricing and SLA rules are made
available to the outside domains via the Cloud Exchange. This component of Cloud
Coordinator is solely responsible for interacting with the Cloud Exchange through re-
mote messaging. The Discovery and Monitoring component undertakes the following
activities: (i) updates the resource status metrics including utilization, heat dissipation,
power consumption based on feedback given by the Sensor component; (ii) facilitates
the Market and Policy Engine in periodically publishing the pricing policies, SLA rules
to the Cloud Exchange; (iii) aids the Scheduling and Allocation component in dynami-
cally discovering the Clouds that offer better optimization for SLA constraints such as
deadline and budget limits; and (iv) helps the Virtualization component in determining
load and power consumption; such information aids the Virtualization component in
performing load-balancing through dynamic VM migration.

Further, system components will need to share scalable methods for collecting and
representing monitored data. This leads us to believe that we should interconnect and

24 R. Buyya, R. Ranjan, and R.N. Calheiros

monitor system components based on decentralized messaging and information index-
ing infrastructure, called Distributed Hash Tables (DHTs) [26]. However, implement-
ing scalable techniques that monitor the dynamic behaviors related to services and
resources is non-trivial. In order to support a scalable service monitoring algorithm
over a DHT infrastructure, additional data distribution indexing techniques such as
logical multi-dimensional or spatial indices [27] (MX-CIF Quad tree, Hilbert Curves,
Z Curves) should be implemented.

3.2 Cloud Broker (CB)

The Cloud Broker acting on behalf of users identifies suitable Cloud service providers
through the Cloud Exchange and negotiates with Cloud Coordinators for an allocation
of resources that meets QoS needs of users. The architecture of Cloud Broker is
shown in Figure 3 and its components are discussed below:

User Interface: This provides the access linkage between a user application interface
and the broker. The Application Interpreter translates the execution requirements of a
user application which include what is to be executed, the description of task inputs in-
cluding remote data files (if required), the information about task outputs (if present),
and the desired QoS. The Service Interpreter understands the service requirements
needed for the execution which comprise service location, service type, and specific
details such as remote batch job submission systems for computational services. The
Credential Interpreter reads the credentials for accessing necessary services.

Job MonitorJob Dispatcher

Persistence

Database

Execution Interface

User Interface

Core Services

Cloud Coordinator 1

Application
Interpreter

Service
Interpreter

Credential
Interpreter

Global
Cloud MarketService

Monitor
Service

Negotiator Scheduler

Cloud Coordinator n.

Fig. 3. High level architecture of Cloud Broker service

Core Services: They enable the main functionality of the broker. The Service Nego-
tiator bargains for Cloud services from the Cloud Exchange. The Scheduler determines
the most appropriate Cloud services for the user application based on its application
and service requirements. The Service Monitor maintains the status of Cloud services
by periodically checking the availability of known Cloud services and discovering
new services that are available. If the local Cloud is unable to satisfy application

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 25

requirements, a Cloud Broker lookup request that encapsulates the user’s QoS parame-
ter is submitted to the Cloud Exchange, which matches the lookup request against the
available offers. The matching procedure considers two main system performance met-
rics: first, the user specified QoS targets must be satisfied within acceptable bounds
and, second, the allocation should not lead to overloading (in terms of utilization,
power consumption) of the nodes. In case the match occurs the quote is forwarded to
the requester (Scheduler). Following that, the Scheduling and Allocation component
deploys the application with the Cloud that was suggested by Cloud market.

Execution Interface: This provides execution support for the user application. The
Job Dispatcher creates the necessary broker agent and requests data files (if any) to
be dispatched with the user application to the remote Cloud resources for execution.
The Job Monitor observes the execution status of the job so that the results of the job
are returned to the user upon job completion.

Persistence: This maintains the state of the User Interface, Core Services, and Execu-
tion Interface in a database. This facilitates recovery when the broker fails and assists
in user-level accounting.

3.3 Cloud Exchange (CEx)

As a market maker, the CEx acts as an information registry that stores the Cloud’s
current usage costs and demand patterns. Cloud Coordinators periodically update their
availability, pricing, and SLA policies with the CEx. Cloud Brokers query the registry
to learn information about existing SLA offers and resource availability of member
Clouds in the federation. Furthermore, it provides match-making services that map
user requests to suitable service providers. Mapping functions will be implemented by
leveraging various economic models such as Continuous Double Auction (CDA) as
proposed in earlier works [6].

As a market maker, the Cloud Exchange provides directory, dynamic bidding
based service clearance, and payment management services as discussed below.

• Directory: The market directory allows the global CEx participants to locate
providers or consumers with the appropriate bids/offers. Cloud providers can
publish the available supply of resources and their offered prices. Cloud consum-
ers can then search for suitable providers and submit their bids for required
resources. Standard interfaces need to be provided so that both providers and con-
sumers can access resource information from one another readily and seamlessly.

• Auctioneer: Auctioneers periodically clear bids and asks received from the
global CEx participants. Auctioneers are third party controllers that do not repre-
sent any providers or consumers. Since the auctioneers are in total control of the
entire trading process, they need to be trusted by participants.

• Bank: The banking system enforces the financial transactions pertaining to
agreements between the global CEx participants. The banks are also independent
and not controlled by any providers and consumers; thus facilitating impartiality
and trust among all Cloud market participants that the financial transactions are
conducted correctly without any bias. This should be realized by integrating with
online payment management services, such as PayPal, with Clouds providing
accounting services.

26 R. Buyya, R. Ranjan, and R.N. Calheiros

4 Early Experiments and Preliminary Results

Although we have been working towards the implementation of a software system for
federation of cloud computing environments, it is still a work-in-progress. Hence, in
this section, we present our experiments and evaluation that we undertook using
CloudSim [29] framework for studying the feasibility of the proposed research vision.
The experiments were conducted on a Celeron machine having the following configu-
ration: 1.86GHz with 1MB of L2 cache and 1 GB of RAM running a standard Ubuntu
Linux version 8.04 and JDK 1.6.

4.1 Evaluating Performance of Federated Cloud Computing Environments

The first experiment aims at proving that federated infrastructure of clouds has poten-
tial to deliver better performance and service quality as compared to existing non-
federated approaches. To this end, a simulation environment that models federation of
three Cloud providers and a user (Cloud Broker) is modeled. Every provider instanti-
ates a Sensor component, which is responsible for dynamically sensing the availabil-
ity information related to the local hosts. Next, the sensed statistics are reported to
the Cloud Coordinator that utilizes the information in undertaking load-migration
decisions. We evaluate a straightforward load-migration policy that performs online
migration of VMs among federated Cloud providers only if the origin provider does
not have the requested number of free VM slots available. The migration process in-
volves the following steps: (i) creating a virtual machine instance that has the same
configuration, which is supported at the destination provider; and (ii) migrating the
applications assigned to the original virtual machine to the newly instantiated virtual
machine at the destination provider. The federated network of Cloud providers is cre-
ated based on the topology shown in Figure 4.

PublicCloud Provider 1

PublicCloud Provider 2

PublicCloud Provider 0

Cloud
Coordinator

Cloud
Coordinator

Cloud
Coordinator

Load
Status

Application

Cloud
Broker

Monitors:

Resource Utilization

Network Traffic

DiskReads/Writes...

T1

T3

T4

T2
T

T T

T

Fig. 4. A network topology of federated Data Centers

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 27

Every Public Cloud provider in the system is modeled to have 50 computing hosts,
10GB of memory, 2TB of storage, 1 processor with 1000 MIPS of capacity, and a
time-shared VM scheduler. Cloud Broker on behalf of the user requests instantiation
of a VM that requires 256MB of memory, 1GB of storage, 1 CPU, and time-shared
Cloudlet scheduler. The broker requests instantiation of 25 VMs and associates one
Cloudlet (Cloud application abstraction) to each VM to be executed. These requests
are originally submitted with the Cloud Provider 0. Each Cloudlet is modeled to have
1800000 MIs (Million Instrictions). The simulation experiments were run under the
following system configurations: (i) a federated network of clouds is available, hence
data centers are able to cope with peak demands by migrating the excess of load to
the least loaded ones; and (ii) the data centers are modeled as independent entities
(without federation). All the workload submitted to a Cloud provider must be
processed and executed locally.

Table 2 shows the average turn-around time for each Cloudlet and the overall
makespan of the user application for both cases. A user application consists of one or
more Cloudlets with sequential dependencies. The simulation results reveal that the
availability of federated infrastructure of clouds reduces the average turn-around time
by more than 50%, while improving the makespan by 20%. It shows that, even for a
very simple load-migration policy, availability of federation brings significant bene-
fits to user’s application performance.

Table 2. Performance Results

Performance Metrics With
Federation

Without
Federation

%
Improvement

Average Turn Around
Time (Secs)

2221.13 4700.1 > 50%

Makespan (Secs) 6613.1 8405 20%

4.2 Evaluating a Cloud Provisioning Strategy in a Federated Environment

In previous subsection, we focused on evaluation of the federated service and
resource provisioning scenarios. In this section, a more complete experiment that also
models the inter-connection network between federated clouds, is presented. This
example shows how the adoption of federated clouds can improve productivity of a
company with expansion of private cloud capacity by dynamically leasing resources
from public clouds at a reasonably low cost.

The simulation scenario is based on federating a private cloud with the Amazon
EC2 cloud. The public and the private clouds are represented as two data centers in
the simulation. A Cloud Coordinator in the private data center receives the user’s
applications and processes them in a FCFS basis, queuing the tasks when there is
available capacity for them in the infrastructure. To evaluate the effectiveness of a
hybrid cloud in speeding up tasks execution, two scenarios are simulated. In the first
scenario, tasks are kept in the waiting queue until active tasks finish (currently
executing) in the private cloud. All the workload is processed locally within the
private cloud. In the second scenario, the waiting tasks are directly sent to available

28 R. Buyya, R. Ranjan, and R.N. Calheiros

public cloud. In other words, second scenario simulates a Cloud Bursts case for
integrating local private cloud with public cloud form handing peak in service
demands. Before submitting tasks to the Amazon cloud, the VM images (AMI) are
loaded and instantiated. The number of images instantiated in the Cloud is varied in
the experiment, from 10% to 100% of the number of machines available in the private
cloud. Once images are created, tasks in the waiting queues are submitted to them, in
such a way that only one task run on each VM at a given instance of time. Every time
a task finishes, the next task in the waiting queue is submitted to the available VM
host. When there were no tasks to be submitted to the VM, it is destroyed in the
cloud.

The local private data center hosted 100 machines. Each machine has 2GB of
RAM, 10TB of storage and one CPU run 1000 MIPS. The virtual machines created in
the public cloud were based in an Amazon's small instance (1.7 GB of memory, 1
virtual core, and 160 GB of instance storage). We consider in this example that the
virtual core of a small instance has the same processing power as the local machine.

The workload sent to the private cloud is composed of 10000 tasks. Each task takes
between 20 and 22 minutes to run in one CPU. The exact amount of time was
randomly generated based on the normal distribution. Each of the 10000 tasks is
submitted at the same time to the scheduler queue.

Table 3 shows the makespan of the tasks running only in the private cloud and with
extra allocation of resources from the public cloud. In the third column, we quantify the
overall cost of the services. The pricing policy was designed based on the Amazon’s
small instances (U$ 0.10 per instance per hour) pricing model. It means that the cost per
instance is charged hourly in the beginning of execution. And, if an instance runs during
1 hour and 1 minute, the amount for 2 hours (U$ 0.20) will be charged.

Table 3. Cost and performance of several public/private cloud strategies

 Makespan (s) Cloud Cost (U$)

Private only 127155.77 0.00

Public 10% 115902.34 32.60

Public 20% 106222.71 60.00

Public 30% 98195.57 83.30

Public 40% 91088.37 103.30

Public 50% 85136.78 120.00

Public 60% 79776.93 134.60

Public 70% 75195.84 147.00

Public 80% 70967.24 160.00

Public 90% 67238.07 171.00

Public 100% 64192.89 180.00

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 29

Increasing the number of resources by a rate reduces the job makespan at the same
rate, which is an expected observation or outcome. However, the cost associated with
the processing increases significantly at higher rates. Nevertheless, the cost is still
acceptable, considering that peak demands happen only occasionally and that most
part of time this extra public cloud capacity is not required. So, leasing public cloud
resources is cheapest than buying and maintaining extra resources that will spend
most part of time idle.

5 Conclusions and Future Directions

Development of fundamental techniques and software systems that integrate
distributed clouds in a federated fashion is critical to enabling composition and
deployment of elastic application services. We believe that outcomes of this research
vision will make significant scientific advancement in understanding the theoretical
and practical problems of engineering services for federated environments. The
resulting framework facilitates the federated management of system components and
protects customers with guaranteed quality of services in large, federated and highly
dynamic environments. The different components of the proposed framework offer
powerful capabilities to address both services and resources management, but their
end-to-end combination aims to dramatically improve the effective usage,
management, and administration of Cloud systems. This will provide enhanced
degrees of scalability, flexibility, and simplicity for management and delivery of
services in federation of clouds.

In our future work, we will focus on developing comprehensive model driven ap-
proach to provisioning and delivering services in federated environments. These mod-
els will be important because they allow adaptive system management by establishing
useful relationships between high-level performance targets (specified by operators)
and low-level control parameters and observables that system components can control
or monitor. We will model the behaviour and performance of different types of ser-
vices and resources to adaptively transform service requests. We will use a broad
range of analytical models and statistical curve-fitting techniques such as multi-class
queuing models and linear regression time series. These models will drive and possi-
bly transform the input to a service provisioner, which improves the efficiency of the
system. Such improvements will better ensure the achievement of performance tar-
gets, while reducing costs due to improved utilization of resources. It will be a major
advancement in the field to develop a robust and scalable system monitoring infra-
structure to collect real-time data and re-adjust these models dynamically with a
minimum of data and training time. We believe that these models and techniques are
critical for the design of stochastic provisioning algorithms across large federated
Cloud systems where resource availability is uncertain.

Lowering the energy usage of data centers is a challenging and complex issue
because computing applications and data are growing so quickly that increasingly
larger servers and disks are needed to process them fast enough within the required
time period. Green Cloud computing is envisioned to achieve not only efficient
processing and utilization of computing infrastructure, but also minimization of
energy consumption. This is essential for ensuring that the future growth of Cloud
Computing is sustainable. Otherwise, Cloud computing with increasingly pervasive

30 R. Buyya, R. Ranjan, and R.N. Calheiros

front-end client devices interacting with back-end data centers will cause an enormous
escalation of energy usage. To address this problem, data center resources need to be
managed in an energy-efficient manner to drive Green Cloud computing. In
particular, Cloud resources need to be allocated not only to satisfy QoS targets
specified by users via Service Level Agreements (SLAs), but also to reduce energy
usage. This can be achieved by applying market-based utility models to accept
requests that can be fulfilled out of the many competing requests so that revenue can
be optimized along with energy-efficient utilization of Cloud infrastructure.

Acknowledgements. We acknowledge all members of Melbourne CLOUDS Lab
(especially William Voorsluys) for their contributions to InterCloud investigation.

References

[1] Kleinrock, L.: A Vision for the Internet. ST Journal of Research 2(1), 4–5 (2005)
[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patter-

son, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of
Cloud Computing. University of California at Berkley, USA. Technical Rep UCB/EECS-
2009-28 (2009)

[3] Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th
Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

[4] London, S.: Inside Track: The high-tech rebels. Financial Times (September 6, 2002)
[5] The Reservoir Seed Team. Reservoir – An ICT Infrastructure for Reliable and Effective

Delivery of Services as Utilities. IBM Research Report, H-0262 (Febuary 2008)
[6] Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource

Management and Scheduling in Grid Computing. Concurrency and Computation: Prac-
tice and Experience 14(13-15), 1507–1542 (2002)

[7] Weiss, A.: Computing in the Clouds. NetWorker 11(4), 16–25 (2007)
[8] VMware: Migrate Virtual Machines with Zero Downtime,

http://www.vmware.com/
[9] Barham, P., et al.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM

Symposium on Operating Systems Principles. ACM Press, New York (2003)
[10] Buyya, R., Abramson, D., Venugopal, S.: The Grid Economy. Special Issue on Grid

Computing. In: Parashar, M., Lee, C. (eds.) Proceedings of the IEEE, vol. 93(3), pp. 698–
714. IEEE Press, Los Alamitos (2005)

[11] Yeo, C., Buyya, R.: Managing Risk of Inaccurate Runtime Estimates for Deadline Con-
strained Job Admission Control in Clusters. In: Proc. of the 35th Intl. Conference on Par-
allel Processing, Columbus, Ohio, USA (August 2006)

[12] Yeo, C., Buyya, R.: Integrated Risk Analysis for a Commercial Computing Service. In:
Proc. of the 21st IEEE International Parallel and Distributed Processing Symposium,
Long Beach, California, USA (March 2007)

[13] Sulistio, A., Kim, K., Buyya, R.: Managing Cancellations and No-shows of Reservations
with Overbooking to Increase Resource Revenue. In: Proceedings of the 8th IEEE Inter-
national Symposium on Cluster Computing and the Grid, Lyon, France (May 2008)

[14] Chu, X., Buyya, R.: Service Oriented Sensor Web. In: Mahalik, N.P. (ed.) Sensor Net-
work and Configuration: Fundamentals, Standards, Platforms, and Applications, January
2007. Springer, Berlin (2007)

 InterCloud: Utility-Oriented Federation of Cloud Computing Environments 31

[15] Amazon Elastic Compute Cloud (EC2), http://www.amazon.com/ec2/ (March
17, 2010)

[16] Google App Engine, http://appengine.google.com (March 17, 2010)
[17] Windows Azure Platform, http://www.microsoft.com/azure/ (March 17, 2010)
[18] Spring.NET, http://www.springframework.net (March 17, 2010)
[19] Chappell, D.: Introducing the Azure Services Platform. White Paper,

http://www.microsoft.com/azure (January 2009)
[20] Venugopal, S., Chu, X., Buyya, R.: A Negotiation Mechanism for Advance Resource

Reservation using the Alternate Offers Protocol. In: Proceedings of the 16th International
Workshop on Quality of Service (IWQoS 2008), Twente, The Netherlands (June 2008)

[21] Salesforce.com, Application Development with Force.com’s Cloud Computing Platform
(2009), http://www.salesforce.com/platform/ (Accessed December 16,
2009)

[22] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorod-
nov, D.: The Eucalyptus Open-Source Cloud-Computing System. In: Proceedings of the
9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid
2009), Shanghai, China, May 18-May 21 (2010)

[23] GoGrid Cloud Hosting, F5 Load Balancer. GoGrid Wiki (2009),
http://wiki.gogrid.com/wiki/index.php/F5_Load_Balancer
(Accessed September 21, 2009)

[24] Amazon CloudWatch Service, http://aws.amazon.com/cloudwatch/
[25] Amazon Load Balancer Service,

http://aws.amazon.com/elasticloadbalancing/
[26] Lua, K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey and Comparison of Peer-

to-Peer Overlay Network Schemes. In: Communications Surveys and Tutorials, Wash-
ington, DC, USA, vol. 7(2) (2005)

[27] Ranjan, R.: Coordinated Resource Provisioning in Federated Grids. Ph.D. Thesis, The
University of Melbourne, Australia (March 2009)

[28] Ranjan, R., Liu, A.: Autonomic Cloud Services Aggregation. CRC Smart Services Re-
port (July 15, 2009)

[29] Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and Simulation of Scalable Cloud
Computing Environments and the CloudSim Toolkit: Challenges and Opportunities. In:
Proceedings of the 7th High Performance Computing and Simulation Conference (HPCS
2009), Leipzig, Germany, June 21-24. IEEE Press, New York (2009)

[30] Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., Sharma, N.: Towards Auto-
nomic Workload Provisioning for Enterprise Grids and Clouds. In: Proceedings of the
10th IEEE International Conference on Grid Computing (Grid 2009), Banff, Alberta,
Canada, October 13-15 (2009)

[31] Feitelson, D.G.: Workload Modelling for Computer Systems Performance Evaluation (in
preparation), http://www.cs.huji.ac.il/~feit/wlmod/ (Accessed March
19, 2010)

[32] Vecchiola, C., Chu, X., Buyya, R.: Aneka: A Software Platform for .NET-based Cloud
Computing. In: Gentzsch, W., Grandinetti, L., Joubert, G. (eds.) High Speed and Large
Scale Scientific Computing, pp. 267–295. IOS Press, Amsterdam (2009), ISBN: 978-1-
60750-073-5

Scalable Co-clustering Algorithms

Bongjune Kwon1 and Hyuk Cho2

1 Biomedical Engineering, The University of Texas at Austin,
Austin, TX 78712, USA
junenim@cs.utexas.edu

http://www.cs.utexas.edu/~junenim/
2 Computer Science, Sam Houston State University,

Huntsville, TX 77341-2090, USA
hyukcho@shsu.edu

http://www.cs.shsu.edu/~hxc005/

Abstract. Co-clustering has been extensively used in varied applica-
tions because of its potential to discover latent local patterns that are
otherwise unapparent by usual unsupervised algorithms such as k-means.
Recently, a unified view of co-clustering algorithms, called Bregman
co-clustering (BCC), provides a general framework that even contains
several existing co-clustering algorithms, thus we expect to have more
applications of this framework to varied data types. However, the amount
of data collected from real-life application domains easily grows too big
to fit in the main memory of a single processor machine. Accordingly,
enhancing the scalability of BCC can be a critical challenge in practice.
To address this and eventually enhance its potential for rapid deploy-
ment to wider applications with larger data, we parallelize all the twelve
co-clustering algorithms in the BCC framework using message passing
interface (MPI). In addition, we validate their scalability on eleven syn-
thetic datasets as well as one real-life dataset, where we demonstrate
their speedup performance in terms of varied parameter settings.

Keywords: Co-clustering, Message Passing Interface, Distributed
Co-clustering, Scalable Co-clustering, Parallel Co-clustering.

1 Introduction

Clustering has played a significant role in mining hidden patterns in a data.
Usual k-means clustering assumes rows (or columns) of similar/relevant func-
tion in a data matrix share similar profiles across all the given columns (or
rows). Therefore, it may fail to identify local patterns, each of which consists
of subsets of rows (or columns) co-regulated only under specific columns (or
rows). Co-clustering, on the other hand, aims to find such latent local patterns
and thus may provide the key to uncovering latent local patterns that are oth-
erwise unapparent. Because of its potential to discover latent local patterns,
co-clustering has been proven to be very useful for an extensive set of applica-
tions such as text mining [8], microarray analysis [5][4], recommender system [9],

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 32–43, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.utexas.edu/~junenim/
http://www.cs.shsu.edu/~hxc005/

Scalable Co-clustering Algorithms 33

and so on. Co-clustering involves optimizing over a smaller number of parame-
ters and thus could lead to several orders of magnitude reduction in the running
time [8]. Recently, Banerjee et al. [2] formulated a unified view of co-clustering,
called “Bregman co-clustering” (BCC), which includes six Euclidean distance
and six I-divergence co-clustering algorithms. We expect to have more appli-
cations of this general framework to varied types of data being collected at an
ever-increasing pace from observations and experiments in business and scientific
domains. However, in case that the data is too big to fit in the main memory of a
single processor, its scalability can become an inevitable challenge to overcome.

We have witnessed much research on parallelization of machine learning algo-
rithms (e.g., [6] and [13]). In particular, the following approaches directly moti-
vate this research and also provide technical inspiration. Dhillon and Modha [7]
designed a parallel k-means algorithm, based on the message-passing model of
parallel computing. Their implementation provides a general framework for par-
allelizing k-means-like clustering algorithms. This parallel k-means algorithm
has nearly linear speedup. Nagesh et al. [11] presented a density and grid based
clustering algorithm, pMAFIA, which introduces an adaptive grid framework to
reduce computation overload and improve the quality of clusters. In addition,
pMAFIA explores data as well as task parallelism to scale up to massive data
sets and large set of dimensions. Recently, Pizzuti and Talia [12] presented a
parallel clustering algorithm, p-AutoClass, to distributed memory minicomput-
ers for Bayesian clustering. They defined a theoretical performance model of
p-AutoClass to predict its execution time, speedup, and efficiency. Ahmad et
al. [1] developed a parallel biclustering algorithm, called SPHier, based on bi-
graph crossing minimization. George and Merugu [9] proposed incremental and
parallel co-clustering algorithm for collaborative filtering-based recommender
system, based on the combination of Euclidean co-clustering algorithms with
basis 5. Zhou and Khokar [14] parallelized the co-clustering algorithm in Cho
et al. [5] (i.e., Euclidean co-clustering with basis 2) and showed scalable perfor-
mance with near linear speedup.

We implement the parallel versions of all the twelve co-clustering algorithms
in the unified BCC framwork using MPICH and C++ and measure their per-
formance on the Sun Linux Cluster with 16 nodes. Each computing node has
8GB (2GB per core) of memory and two dual-core AMD Opteron(tm) proces-
sors, connected with InfiniBand interconnect. For validation purpose, we use
the same synthetic dense data sets used by Zhou and Khokar [14] , two more
dense data sets, and also one real-life sparse data, the Netflix movie data. We
evaluate speedup performance with varied parameter settings such as data sizes
and processor numbers. The overall experimental results support that our im-
plementations are scalable and able to obtain nearly linear speedup with respect
to the considered parameter settings.

The rest of the paper is organized as follows. In section 2, we present the
general framework of BCC. In section 3, we describe the parallelization of the
framework. In section 4, we discuss the experimental results. Finally, we conclude
with summary of the proposed work and future research in section 5.

34 B. Kwon and H. Cho

Algorithm 1. Sequential Bregman Co-clustering (SBCC) Algorithm
SBCC(A, k, �, ρ, γ)1

Input: A ∈ R
m×n, k, �, ρ ∈ {1, · · · , k}m×1, and γ ∈ {1, · · · , �}n×1

Output: Clustering indicator vectors ρ and γ
begin2

Initialize cluster assignment of ρ and γ (INIT)3

Update cluster statistics and AR and AC , to reflect ρ and γ4

newobj ← largeNumber5

τ ← 10−5‖A‖2; {Adjustable parameter}6

repeat7

for 1 ≤ i ≤ m do8

ρ(i)← arg min
1≤r≤k

EV |u
[
dφ

(
A,AR

)]
(RB)

9

end10

Update cluster statistics and AR to reflect new ρ11

for 1 ≤ j ≤ n do12

γ(j)← arg min
1≤c≤�

EU|v
[
dφ

(
A,AC

)]
(CB)

13

end14

Update cluster statistics and AC to reflect new γ15

oldobj ← newobj16

newobj ← EU|v
[
dφ

(
A, AC

)]
17

until |oldobj − newobj| > τ18

end19

2 Sequential Bregman Co-clustering Algorithm

Algorithm 1 describes the batch update algorithm of the BCC framework in [2],
which contains the two Minimum Sum-Squared Residue Co-clustering (MSS-
RCC) algorithms [5] with basis 2 and basis 6, respectively, and Information
Theoretic Co-clustering (ITCC) [8] with basis 5, as special cases. The two key
components in formulating a co-clustering problem include (i) choosing a set of
critical co-clustering-based statistics to be preserved and (ii) selecting an ap-
propriate measure to quantify the information loss or the discrepancy between
the original data matrix and the compressed representation provided by the
co-clustering. For example, in Biclustering [3] and MSSRCC [5], the row and
column averages of each co-cluster are preserved and the discrepancy between
the original and the compressed representation is measured in terms of the sum
of element-wise squared difference. In contrast, ITCC [8], applicable to data
matrices representing joint probability distributions, preserves different set of
summary statistics, i.e., the row and column averages and the co-cluster av-
erages. Further, the quality of the compressed representation is measured in
terms of the sum of element-wise I-divergence. Refer to [2] for the details of
the matrices, the Bregman divergence dφ, and the expected Bregman divergence
E [dφ (·, ·)].

Scalable Co-clustering Algorithms 35

For the given data matrix A ∈ R
m×n, number of row clusters k, and number

of column clusters �, it begins with the initial clustering in the row and column
clustering indicator vectors ρ and γ at step (INIT). Each iteration involves
finding the closest row (column) cluster prototype, given by a row of AR and
a column of AC , at step (RB) for every row and step (CB) for every column,
respectively. Meanwhile, the row and column clustering is stored in ρ and γ, re-
spectively. Step (RB) takes O (mk�) (in the optimized way suggested in both [5]
and [2]), since every row seeks for the best row cluster of the row prototype ma-
trix AR ∈ k×�. Similarly, we can show that step (CB) takes O (nk�). Therefore,
overall computation time is O (mn + mk� + nk�).

Note that similar analysis for the parallel version of Euclidean co-clustering
with basis 5 can be found in [9]. In fact, basis 1 of BCC makes use of only
row cluster average and column cluster average, thus basis 1 requires much less
computation time than the other bases because it doesn’t utilize the co-cluster
average. Note also that we can implement the BCC algorithms efficiently with
the recipe in [2]. To appreciate this generalization, researchers (e.g., Dhillon et
al. [8] and Banerjee et al. [2]) viewed partitional co-clustering as a lossy data
compression problem, where given a specified number of rows and column clus-
ters, one attempts to retain as much information as possible about the original
data matrix in terms of statistics based on the co-clustering.

3 Distributed Bregman Co-clustering Algorithm

Given the matrix averages, the separability of the row and column update cost
functions allows us to separately find the optimal assignment for each row and
column. Using this inherent data parallelism, we propose a parallel version of
the co-clustering algorithm (Algorithm 2).

To obtain a parallel version of the co-clustering algorithm, we note that there
are three main steps in each iteration of the co-clustering algorithm: (1) com-
puting cluster statistics (i.e., line 5, line 14, and line 20 of Algorithm 2); (2)
obtaining row cluster assignments (RB); and (3) obtaining column cluster as-
signments (CB). The key idea is to divide the rows and columns among the
processors so that the steps (RB) and (CB) can be completely performed in
parallel. For updating statistics, each processor first computes its partial con-
tribution and then all values are reduced to obtain the overall cluster statistics
(i.e., various matrix averages).

Furthermore, we divide processing steps at each row (or column) batch it-
eration as follows: (step 1) the existing row (or column) mean vectors and a
subset of the row (or column) points are taken into each subnode in distributed
systems; (step 2) in each subnode, the distance between each row (or column)
point and each mean vector is computed and then the point is assigned to the
closest cluster; and (step 3) all the assigned cluster labels are collected and new
cluster mean vectors are computed. Note that steps 1 and 2 are equivalent to
the “map” task and step 3 to the “reduce” task in [13].

We assume that input data matrix, either in a dense or in a sparse format,
is equally partitioned among processors for easy implementation. To be more

36 B. Kwon and H. Cho

Algorithm 2. Distributed Bregman Co-clustering (DBCC) Algorithm
DBCC(AI·, AT

·J , k, �, ρI, γJ)1

Input: AI· ∈ R
m
P

×n, AT
·J ∈ R

n
P

×m, k, �, ρI ∈ {1, · · · , k}m
P

×1, and
γJ ∈ {1, · · · , �} n

P
×1

Output: Clustering indicator vectors ρI and γJ

begin2

P = MPI Comm size()3

Initialize cluster assignment of ρI and γJ (INIT)4

Update statistics SIJ to reflect ρI and γJ5

MPI Allreduce (SIJ , S,MPI SUM)6

Update row and column cluster prototypes, AR and AC according to S7

newobj ← largeNumber8

τ ← 10−5‖A‖2; {Adjustable parameter}9

repeat10

for 1 ≤ i ≤ m
P

do11

ρI(i)← arg min
1≤r≤k

EV |u
[
dφ

(
AI(i)·, A

R
r

)]
(RB)

12

end13

Update statistics SIJ to reflect ρI14

MPI Allreduce (SIJ , S, MPI SUM)15

Update column cluster prototype AC according to S16

for 1 ≤ j ≤ n
P

do17

γJ(j)← arg min
1≤c≤�

EU|v
[
dφ

(
AT

·J(j), A
C
c

T
)]

(CB)
18

end19

Update statistics SIJ to reflect γJ20

MPI Allreduce (SIJ , S, MPI SUM)21

Update row cluster prototype AR according to S22

oldobj ← newobj23

newobj ← EU|v
[
dφ

(
A, AR

)]
24

until |oldobj − newobj| > τ25

end26

specific, the dense data matrix A ∈ R
m×n is equally partitioned among P

processors so that each processor can own m
P rows (i.e., AI·) and n

P columns
(i.e., AT

·J). Notice that Algorithm 2 requires both partial rows and columns for
each processor. Since each processor only owns a fraction of the data matrix
A, the computation of the partial contributions to the various cluster averages
takes only O

(
mn
P

)
operations while the accumulation of these contributions re-

quires O (Pk�) operations. The row and cluster assignment operation further
require O

(
mk�
P + nk�

P

)
operations. Therefore, the overall computation time is

O
(

mn
P + mk�

P + nk�
P + Pk�

)
, which corresponds to near linear speedup, ignoring

the communication costs. Note that as for Algorithm 1, basis 1 requires less
computation time then the other cases.

Scalable Co-clustering Algorithms 37

Table 1. Synthetic Dense Datasets

Dataset Rows (= m) Columns (= n) Elements Actual Size
d2 131, 072(= 217) 64(= 26) 223 64MB
d4 262, 144(= 218) 64(= 26) 224 128MB
d5 524, 288(= 219) 64(= 26) 225 256MB
d17 1, 048, 576(= 220) 64(= 26) 226 512MB
d18 524, 288(= 219) 128(= 27) 226 512MB
d19 262, 144(= 218) 256(= 28) 226 512MB
d20 131, 072(= 217) 512(= 29) 226 512MB
d21 65, 536(= 216) 1, 024(= 210) 226 512MB
d22 32, 768(= 215) 2, 048(= 211) 226 512MB
d30 16, 384(= 214) 8, 192(= 213) 227 1GB
d31 16, 384(= 214) 16, 384(= 214) 228 2GB

4 Experimental Results

We now empirically study the characteristics of the proposed parallel framework
for co-clustering algorithms. Table 1 summarizes details dimensional informa-
tion of the synthetic dense datasets. For a given number of data points m and
number of dimensions n, we generate all the 11 synthetic datasets using the IBM
data generator [10]. The first nine synthetic dense data sets were also used by
Zhou and Khokar [14] and the remaining two additional dense data sets, d30
and d31 were newly generated. Note that Zhou and Khokar [14] generated these
data sets so that the resulting data sets have precisely specifiable character-
istics. In addition, we use the Netflix movie data to evaluate the scalability
performance on real-life sparse data, whose dimension is of 17, 770 rows, 480, 189
columns, and 100, 480, 507 non-zero values stored in the CCS sparse matrix
format.

We evaluate the speedup performance with varied parameter settings such as
data sizes, numbers of row and column clusters, and numbers of processors. Note
that data sizes range widely from 64MB to 2GB. Therefore, smaller ones can
be loaded in a single processor machine, however larger ones, especially d30 and
d31, are too big to fit in a main memory of one machine and thus they spend
quite a lot of time completing their job.

Notice in both Algorithms 1 and 2 that initial row and column clusterings are
taken as inputs since there are various ways to obtain the initial clustering. For
simplicity, throughout our experiments, execution time is measured in seconds
and averaged over 20 random initial clusterings. We use the same initial row
and column cluster assignments for both the sequential co-clustering algorithms
and the parallel co-clustering algorithm so that we compare performance based
on the same input conditions. We report four sets of experiments, where we
vary m, n, k, �, and P , respectively. For all our experiments, we have varied
the number of row cluster k = 1, 2, 4, 8, 16, and 32 and the number of column
cluster � = 1, 2, 4, 8, 16, and 32. However, because of space limitation, we only
report the results with a specific parameter setting, k = � = 32, since these

38 B. Kwon and H. Cho

1 2 4 8 16
0

2

4

6

8

10

12

14

16

18

Number of processors

T
im

e
p

er
 it

er
at

io
n

d2
d4
d5
d17
d18
d19
d20
d21
d22
d30
d31

1 2 4 8 16
0

2

4

6

8

10

12

14

16

Number of processors

S
p

ee
d

u
p

ideal
d2
d4
d5
d17
d18
d19
d20
d21
d22
d30
d31

(a) (b)

d2 d4 d5 d17 d18 d19 d20 d21 d22 d30 d31
0

2

4

6

8

10

12

14

16

Data sets

S
p

ee
d

u
p

p=2
p=4
p=8
p=16

2 4 8 16
0

2

4

6

8

10

12

14

16

Number of processors

S
p

ee
d

u
p

d2
d4
d5
d17
d18
d19
d20
d21
d22
d30
d31

(c) (d)

Fig. 1. Speedup of MSSRCCII (with basis 2) over varied data sets and processors

parameters clearly illustrate the characteristics of our parallel co-clustering al-
gorithms. The other combinations also showed similar performance with small
variations depending on data sets. Also, we have varied the number of processors
P = 1, 2, 4, 8, and 16.

Relative speedup is defined as T1
TP

, where T1 is the execution time for co-
clustring a data set into k row clusters and � column clusters on 1 processor
and TP is the execution time for identically co-clustering the same data set on P
processors. Therefore, speedup depicts a summary of the efficiency of the parallel
algorithm [7].

First, we study the speedup behavior when the number of data point m is
varied. Specifically, we consider all the 11 data sets in Table 1. As discussed,
we fixed the number of desired row clusters k = 32 and the number of desired
column clusters � = 32. We also clustered each data set on P = 1, 2, 4, 8, and 16
processors. The measured execution times of all the 11 data sets are reported in
plots (a) and (b) of Figures 1 and 2 for MSSRCC and ITCC, respectively. Observe

Scalable Co-clustering Algorithms 39

1 2 4 8 16
0

5

10

15

20

25

Number of processors

T
im

e
p

er
 it

er
at

io
n

d2
d4
d5
d17
d18
d19
d20
d21
d22
d30
d31

1 2 4 8 16
0

2

4

6

8

10

12

14

16

Number of processors

S
p

ee
d

u
p

ideal
d2
d4
d5
d17
d18
d19
d20
d21
d22
d30
d31

(a) (b)

d2 d4 d5 d17 d18 d19 d20 d21 d22 d30 d31
0

2

4

6

8

10

12

14

16

Data sets

S
p

ee
d

u
p

p=2
p=4
p=8
p=16

2 4 8 16
0

2

4

6

8

10

12

14

16

Number of processors

S
p

ee
d

u
p

d2
d4
d5
d17
d18
d19
d20
d21
d22
d30
d31

(c) (d)

Fig. 2. Speedup of ITCC (with basis 5) over varied data sets and processors

that we measure execution time per iteration. In other words, we obtained plots
by dividing the observed execution time by the number of iterations. This is
necessary since each algorithm may require a different number of iterations for a
different data set. The corresponding relative speedup results are also reported
in plots (c) and (d) of Figures 1 and 2, where we can observe the following facts:

– Both algorithms achieve linear speedup for all the considered data sets.
Speedups are linear with respect to the number of processors for all the
cases. ITCC shows a little bit better performance than does MSSRCC.

– Relative speedup increases as data sizes increases with fixed number of pro-
cessors. Speedups of both MSSRCC and ITCC come closer to the ideal
speedup as data size increases. It verifies that our parallel co-clustering al-
gorithms have a good sizeup behavior in the number of data points.

In particular, the plots (c) and (d) of Figures 1 and 2 illustrate the three different
performance groups of the data sets as follows:

40 B. Kwon and H. Cho

1. Group that shows similar speedup performance. We have very similar per-
formance with small or similar sized data sets such as d2, d4, and d5. Notice
that for these data, their column sizes are fixed (i.e., n = 64).

2. Group that shows increasing speedup performance, as row dimension de-
creases but column dimension increases. We have increasing speedups with
a group of data sets whose row and column dimensions varies differently. To
be more specific, for the data sets including d17 to d22, row dimensions are
decreasing from 220 down to 215, on the other hand, column dimensions are
increasing from 26 up to 211. By doing this way, we keep the overall matrix
size (i.e., m × n, fixed to 226, which is 512MB). As row sizes decrease but
column sizes increase, the overall speedups are improved. The similar result
has been reported in [14]. Since d22 has the smallest row size but the largest
column size among the datasets in this group, it pays the least computation
cost in the row cluster assignment phase. From this experiment, we observe
that the cost of computing column updates dominates the computation time.

1 2 4 8 16
0

50

100

150

200

250

300

Number of processors

T
im

e
p

er
 it

er
at

io
n

Basis 1
Basis 2
Basis 3
Basis 4
Basis 5
Basis 6

1 2 4 8 16
0

2

4

6

8

10

12

14

16

Number of processors

S
p

ee
d

u
p

ideal
Basis 1
Basis 2
Basis 3
Basis 4
Basis 5
Basis 6

(a) (b)

1 2 3 4 5 6
0

2

4

6

8

10

12

Basis

S
p

ee
d

u
p

p=2
p=4
p=8
p=16

2 4 8 16
0

2

4

6

8

10

12

Number of processors

S
p

ee
d

u
p

Basis 1
Basis 2
Basis 3
Basis 4
Basis 5
Basis 6

(c) (d)

Fig. 3. Speedup of Euclidean co-clustering algorithms for Neflix data

Scalable Co-clustering Algorithms 41

3. Group that shows relatively increasing speedup performance, as data sizes
increase (i.e., in both row and column dimensions). In plots (c) and (d) of
Figures 1 and 2, this pattern is more clearly observed for larger data sets
such as d30 and d31. It is because of the trade-off between communica-
tion time and computing time (i.e., communication overhead increases as
data size grows). In this case, we might have more benefit if we use more
processors.

Furthermore, Figures 1 and 2 demonstrate the relationship among speedups,
data sizes, and number of processors. It shows that the relative speedup sub-
stantially increases with the ratio of the number of used processors increases
regardless of the data size, when the number of processors is greater than 2.
These speedups are linear with respect to the number of processors for most
cases. For the two largest data sets, d30 and d31, we my obtain better speedups
by exploiting more parallelism with more processors.

1 2 4 8 16
0

100

200

300

400

500

600

700

Number of processors

T
im

e
p

er
 it

er
at

io
n

Basis 1
Basis 2
Basis 3
Basis 4
Basis 5
Basis 6

1 2 4 8 16
0

2

4

6

8

10

12

14

16

Number of processors

S
p

ee
d

u
p

ideal
Basis 1
Basis 2
Basis 3
Basis 4
Basis 5
Basis 6

(a) (b)

1 2 3 4 5 6
0

2

4

6

8

10

12

14

Basis

S
p

ee
d

u
p

p=2
p=4
p=8
p=16

2 4 8 16
0

2

4

6

8

10

12

14

Number of processors

S
p

ee
d

u
p

Basis 1
Basis 2
Basis 3
Basis 4
Basis 5
Basis 6

(c) (d)

Fig. 4. Speedup of I-divergence co-clustering algorithms for Neflix data

42 B. Kwon and H. Cho

For both dense and sparse matrices, we assume that input data matrix is
equally partitioned among processors for easy implementation. Through this
equal partitioning-based load balancing strategy, we are able to obtain near linear
speedup for all the considered dense data matrices. Note that for space limitation
we present the performance of distributed MSSRCC and ITCC on dense matrices
in Figures 1 and 2, respectively, however all the other co-clustering algorithms
result in the similar performance on all the considered dense matrices.

Figures 3 and 4 illustrate experimental results for sparse matrices. For this
experiment, we use the Netflix movie data in the CCS format. We are able
to obtain (sub-)linear speedup for most cases, whose performance is a little
bit worse than that of the dense cases. Interestingly, with small-size data sets,
the performances between dense and sparse cases are very close. However, as
shown in plots (c) and (d) in Figures 3 and 4, with larger data sets and more
processors, the performance gap between dense and sparse cases becomes bigger.
In particular, both Euclidean and I-divergence co-clustering algorithms with
basis 6 are not scaled well along with increased data size and processors. We
ascribe this experimental results to the trade-off between communication time
and computing time, since basis 6 requires more number of parameters than the
other five bases.

5 Conclusion

Although there have been numerous studies on cluster and co-cluster mining,
the study on parallel algorithms is limited to the traditional clustering problem.
Recently, a few approaches are proposed but still focus on specific co-clustering
algorithms. In this paper, we target the unified BCC framework and parallelize
all the twelve co-clustering algorithms using message passing interface. The rea-
sons of choosing Bregman co-clustering as a target in this research are manifold:
(1) it is less complex since it is partitional, where all the rows and columns
are partitioned into disjoint row and column clusters respectively; (2) it is more
adaptable to varied domains since it is a unified framework that contains the six
Euclidean co-clustering and the six I-divergence co-clustering algorithms, each
of which targets on specific statistics of a given data matrix during co-clustering;
and (3) it is more applicable and usable since given a specified row and column
clusters, we can attempt to retain as much information as possible about the
original data matrix in terms of the specific statistics for each of the algorithms.

With equal partitioning-based load balancing strategy, we are able to obtain
near linear speedup for all the considered dense datasets. However, we are able to
obtain (sub-)linear speedup for the sparse data. Therefore, for a sparse matrix,
we need to employ more sophisticated partitioning schemes to ensure that the
load can be evenly balanced in order to obtain better speedup.

The following is the list of some future research directions that we want to
pursue: (1) we apply the parallel co-clustering algorithms to eleven synthetic
datasets and one real-life dataset, and thus it is more desirable to apply the al-
gorithms to larger real-world data sets; (2) we focus only on parallelizing batch

Scalable Co-clustering Algorithms 43

update steps, however parallelizing local search step needs to be considered to
get better local minima; (3) we parallelize all the co-clustering algorithms us-
ing MPI, however we can employ more advanced parallelization platforms such
as “map-reduce” and “Hadoop”; (4) we emphasize more on experimental result
than theoretical analysis and thus rigorous theoretical analysis similar to the
analysis in [7] is desirable; and (5) performance comparison of the proposed ap-
proach with other existing co-clustering parallelization approaches are necessary
to characterize different approaches.

References

1. Ahmad, W., Zhou, J., Khokhar, A.: SPHier: scalable parallel biclustering using
weighted bigraph crossing minimization. Technical report, Dept. of ECE, Univer-
sity of Illinois at Chicago (2004)

2. Banerjee, A., Dhillon, I.S., Ghosh, J., Merugu, S., Modha, D.S.: A generalized
maximum entropy approach to Bregman co-clustering and matrix approximation.
Journal of Machine Learning Research 8, 1919–1986 (2007)

3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp.
93–103 (2000)

4. Cho, H., Dhillon, I.S.: Co-clustering of human cancer microarrays using minimum
sum-squared residue co-clustering. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (IEEE/ACM TCBB) 5(3), 385–400 (2008)

5. Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum sum squared residue based
co-clustering of gene expression data. In: SDM, pp. 114–125 (2004)

6. Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A., Olukotun, K.: Map-reduce
for machine learning on multicore. In: NIPS (2006)

7. Dhillon, I.S., Modha, D.S.: A data clustering algorithm on distributed memory mul-
tiprocessors. In: Zaki, M.J., Ho, C.-T. (eds.) KDD 1999. LNCS (LNAI), vol. 1759,
pp. 245–260. Springer, Heidelberg (2000)

8. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In:
SIGKDD, pp. 89–98 (2003)

9. George, T., Merugu, S.: A scalable collaborative filtering framework based on co-
clustering. In: ICDM, pp. 625–628 (2005)

10. IBM Quest synthetic data generation code for classification,
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data mining/

datasets/syndata.html

11. Nagesh, H., Goil, S., Choudhary, A.: Parallel alogrithms for clustering high-
dimensional large-scale datasets. In: Grossmen, R.L., Kamth, C., Kegelmeyer, P.,
Kumar, V., Namburu, R.R. (eds.) Data Mining for Scientific for Engineering Ap-
plications, pp. 335–356. Kluwer Academy Publishers, Dordrecht (2001)

12. Pizzuti, C., Talia, D.: P-AutoClass: scalable parallel clustering for mining large data
sets. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE) 15(3),
629–641 (2003)

13. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating
mapreduce for multi-core and multiprocessor systems. In: HPCA (2007)

14. Zhou, J., Khokar, A.: ParRescue: scalable parallel algorithm and implementation
for biclustering over large distributed datasets. In: ICDCS (2006)

http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/syndata.html
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/syndata.html

Parallel Pattern Matching with Swaps on a
Linear Array

Fouad B. Chedid

Department of Computer Science
Notre Dame University - Louaize

P.O. Box: 72 Zouk Mikael, Zouk Mosbeh, Lebanon
fchedid@ndu.edu.lb

Abstract. The Pattern Matching with Swaps problem is a variation
of the classical pattern matching problem in which a match is allowed
to include disjoint local swaps. In 2009, Cantone and Faro devised a
new dynamic programming algorithm for this problem that runs in time
O(nm), where n is the length of the text and m is the length of the pat-
tern. In this paper, first, we present an improved dynamic programming
formulation of the approach of Cantone and Faro. Then, we present an
optimal parallelization of our algorithm, based on a linear array model,
that runs in time O(m2) using � n

m−1
� processors.

1 Introduction

The classical Pattern Matching problem (PM for short) is one of the most widely
studied problems in computer science [9]. PM is defined as follows. Given a fixed
alphabet Σ, a pattern P ∈ Σ∗ of length m and a text T ∈ Σ∗ of length n ≥ m,
PM asks for a way to find all occurrences of P in T . Part of the appeal of PM
is in its direct real world applications. For example, applications in multimedia,
digital libraries and computational biology have shown that variations of PM
can be of tremendous benefit [17].

An early variant of PM appears in [11], where the authors allow a special
“don’t care” character that serves as a wild card. It matches every other alphabet
symbol. Another early variant of PM, in which differences between characters of
the pattern and characters of the text are allowed, appears in [14]. A difference is
due to either a mismatch between a character of the text and a character of the
pattern or a superfluous character in the text or a superfluous character in the
pattern. The authors of [14] presented serial and parallel algorithms for finding
all occurrences of the pattern in the text with at most k differences, for any fixed
integer k. We mention that the literature contains a great amount of work on
finding efficient algorithms for pattern matching with mismatches [1,4,10,13,15].

In this paper, we consider a variant of PM, named Pattern Matching with
Swaps (PMS for short), in which a match is allowed to include disjoint local
swaps. In particular, a pattern P is said to have a swapped match with a text T
ending at location j if adjacent characters in P can be swapped, if necessary, so
as to make P identical to the substring of T ending at location j. Here, all swaps

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 44–53, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Pattern Matching with Swaps on a Linear Array 45

P = b b a b a b a b
T = a b a b b b a a b b a
j = 0 1 2 3 4 5 6 7 8 9 10

Fig. 1. An example of a swap-match

must be disjoint; that is, each character can be involved in at most one swap,
and identical adjacent characters are not allowed to be swapped. This variant
of PM has important applications in many fields such as computational biology,
text and musical retrieval, data mining, and network security [8].

Example 1. We find it convenient to have an illustrative example for use through-
out the paper, and the example of size m = 8 and n = 11 with the pattern and
text shown in Fig. 1 is chosen for this purpose.

In our example, P has a swapped match with T ending at location j = 8
(swapped characters are shown in bold).

PMS was introduced in 1995 as an open problem in non-standard stringology
[16]. Up until 1997, it had been an open problem whether PMS can be solved
in time less than O(nm). In [2,3], Amir et al. gave the first algorithm whose
complexity beats the O(nm) bound. More recently, Amir et al. [6] solved PMS
in time O(n log m log σ), where σ is the size of the alphabet (= |Σ|). We note that
the above mentioned solutions to PMS are based on the Fast Fourier Transform
(FFT) method [8]. The first attempt to solve PMS without using FFT is due to
Iliopoulos and Rahman [12] who in 2008 devised an efficient algorithm, based
on bit-parallelism, that runs in time O((n + m) log m) if the pattern size is
comparable to the word size of the machine. In 2009, Cantone and Faro devised
a new approach for solving PMS which resulted in an algorithm that is O(nm).
Moreover, they showed an efficient implementation of their algorithm, based on
bit parallelism, that is O(n), if the pattern size is comparable to the word size
of the machine. Thus, for the first time, we have an algorithm that solves PMS
for short patterns in linear time.

Let Pi denote the prefix of P of length i + 1. The main idea behind the
work of Cantone and Faro is a new approach for finding all prefixes Pi of P , for
0 ≤ i ≤ m − 1, that have swapped matches with T ending at some location j,
for 0 ≤ j ≤ n − 1. This will be denoted as Pi ∝ Tj. The paper [8] defines the
following collection of sets Sj , for 0 ≤ j ≤ n− 1:

Sj = {0 ≤ i ≤ m− 1 : Pi ∝ Tj}
Thus, the pattern P has a swapped match with T ending at location j if and
only if m − 1 ∈ Sj . In the sequel, we use P [i] to denote the (i + 1)th character
of the string P ; that is, the first character of P is denoted as P [0].

To compute Sj, the authors of [8] define another collection of sets S′j, for
0 ≤ j ≤ n− 1, as follows.

S′j = {0 ≤ i ≤ m− 1 : Pi−1 ∝ Tj−1 and P [i] = T [j + 1]}

46 F.B. Chedid

Then, it is shown how to compute Sj in terms of Sj−1 and S′j−1, where S′j−1 is
computed in terms of Sj−2. This formulation of the solution gives a O(mn) time
algorithm for PMS named Cross-Sampling.

In this paper, we provide a simpler implementation of Cross-Sampling. In
particular, we present a much simpler approach to computing the sets Sj. Define
the Boolean matrix Si

j , for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, as follows.

Si
j = 1 if Pi ∝ Tj

= 0, otherwise.

Thus, the pattern P has a swapped match with T ending at location j if and
only if Sm−1

j = 1. Then, we show how to compute Si
j in terms Si−1

j−1 and Si−2
j−2.

This new formulation of the solution gives an improved presentation of Cross-
Sampling that is easier to be comprehended and implemented. We name our
algorithm Prefix-Sampling.

Then, we present an optimal parallelization of Prefix-Sampling, based on a
linear array model, that runs in time O(m2) using � n

m−1� processors. In our
parallel algorithm, we need to know when a suffix (rather than prefix) Si of
length i+1 of a pattern P has a swapped match with a text T beginning (rather
than ending) at some location j. Let wr denote the reversal of a string w (wr is
w spelled backwards). Then, it is easy to see that Si has a swapped match with
T beginning at location j if and only if Sr

i has a swapped match with T r ending
at location (n − 1 − j). Our parallel algorithm divides the text string T into
r = � n

m−1� parts T0, . . . , Tr−1. This idea is inspired by the work in [18] on suffix
automata for parallel string matching. Then, for each pair of consecutive parts
Ti, Ti+1 of T , for 0 ≤ i ≤ r − 2, in parallel, we run Prefix-Sampling on Ti and
T r

i+1. This finds all prefixes Pi (0 ≤ i ≤ |Ti|−1) of P that have swapped matched
with Ti ending at some location j in Ti, and all suffixes Si′ (0 ≤ i′ ≤ |Ti+1| − 1)
of P that have swapped matches with Ti+1 beginning at some location j′ in Ti+1.
With this information available, P has a swapped match with T if the following
conditions hold:

1. Prefix-Sampling(Ti) returns some prefix Pi ∝ Tj, where j is the index of the
last character in Ti.

2. Prefix-Sampling(T r
i+1) returns some suffixSi′ whose reversalSr

i′ ∝ T r
n−1−(j+1).

Here, (j + 1) is the index of the first character in Ti+1.
3. |Pi|+ |Si′ | = m or
4. Pi−1 ∝ Tj−1, Sr

i′−1 ∝ T r
n−1−(j+2), |Pi−1| + |Si′−1| = i + i′ = m − 2, and

P [i] = T [j + 1] and P [i + 1] = T [j].

This approach works because of the way we split the text T . That is, by dividing
T into r = � n

m−1� parts, we guarantee that each occurrence of the pattern P in
T must span two consecutive parts.

Then, this paper concludes with some remarks on how this work can be ex-
tended to solve the Approximate Pattern Matching with Swaps problem (APMS
for short). In APMS, we are to find for each text location 0 ≤ j ≤ n− 1 with a

Parallel Pattern Matching with Swaps on a Linear Array 47

swapped-match of the pattern P , the number of swaps needed to obtain a match
at that location.

The rest of the paper is organized as follows. Section 2 gives basic definitions.
Section 3 reviews the Cross-Sampling algorithm for PMS. Our Prefix-Sampling
algorithm is included in Section 4. Section 5 presents our optimal parallel Prefix-
Sampling algorithm. Section 6 is the conclusion.

2 Problem Definition

Let Σ be a fixed alphabet and let P be a string over Σ of length m. The string
P will be represented as a finite array P [0 . . .m− 1]. The prefix of P of length
i+1 will be denoted as Pi = P [0 . . . i], for 0 ≤ i ≤ m−1. We quote the following
definition from [8]:

Definition 1. A swap permutation of P is a permutation π : {0, . . . , m− 1} →
{0, . . . , m− 1} such that:

1. if π(i) = j then π(j) = i (characters are swapped).
2. for all i, π(i) ∈ {i− 1, i, i + 1} (only adjacent characters can be swapped)
3. if π(i) 	= i then P [π(i)] 	= P [i] (identical characters are not allowed to be

swapped)

The swapped version of P under the permutation π is denoted as π(P); that is,
π(P) is the concatenation of the characters P [π(i)], for 0 ≤ i ≤ m−1. For a given
text T ∈ Σ∗, we say that P has a swapped match with T ending at location j,
denoted P ∝ Tj, if there exists a swap permutation π of P such that π(P) has
an exact match with T ending at location j. For example, the swap permutation
that corresponds to our example in Fig. 1 is π(bbababab) = babbbaab. This swap–
match has two swaps: π(1) = 2, π(2) = 1 and π(4) = 5, π(5) = 4. In this case,
we write P ∝2 T8.

The Pattern Matching with Swaps Problem (PMS for short) is the following:

INPUT: A text string T [0 . . . n − 1] and a pattern string P [0 . . .m − 1] over a
fixed alphabet Σ.
OUTPUT: All locations j for m− 1 ≤ j ≤ n− 1 such that P ∝ Tj .

The Approximate Pattern Matching with Swaps Problem (APMS for short) is
the following:

INPUT: A text string T [0 . . . n − 1] and a pattern string P [0 . . .m − 1] over a
fixed alphabet Σ.
OUTPUT: The number of swaps k needed for each m − 1 ≤ j ≤ n − 1, where
P ∝k Tj .

3 The Cross-Sampling Algorithm

In [8], Cantone anf Faro propose a new approach to solving PMS. Their resultant
algorithm, named Cross-Sampling, runs in time O(nm), where n and m are the

48 F.B. Chedid

lengths of the text and pattern, respectively. Moreover, the paper [8] describes
an efficient implementation of Cross-Sampling based on bit parallelism [7] that
solves PMS in time O(n), if the pattern size is similar to the word size of the
machine. This section reviews the basics of Cross-Sampling for PMS.

The main idea behind Cross-Sampling is a new approach to computing the
swap occurrences of all prefixes of P in continuously increasing prefixes of T
using dynamic programming. Cross-Sampling computes two collections of sets
Sj and S′j , for 0 ≤ j ≤ n− 1, defined as follows.

Sj = {0 ≤ i ≤ m− 1 : Pi ∝ Tj}
S′j = {0 ≤ i ≤ m− 1 : Pi−1 ∝ Tj−1 and P [i] = T [j + 1]}

Thus, the pattern P has a swapped match with T ending at location j if and
only if m−1 ∈ Sj. The following lemma, quoted from [8], provides a simple way
for computing the sets Sj .

Lemma 1. Let T and P be a text of length n and a pattern of length m, respec-
tively. Then, for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, Pi ∝ Tj if and only if one of the
following two facts holds:

– P [i] = T [j] and Pi−1 ∝ Tj−1.
– P [i] = T [j − 1], P [i− 1] = T [j], and Pi−2 ∝ Tj−2.

Based on Lemma 1, the following recursive definitions of Sj+1 and S′j+1 are
proposed. For all 0 ≤ j < n− 1,

Sj+1 = {i ≤ m− 1|(i− 1 ∈ Sj and P [i] = T [j + 1]) or
(i− 1 ∈ S′j and P [i] = T [j])} ∪ λj+1

S′j+1 = {i < m− 1|i− 1 ∈ Sj and P [i] = T [j + 2]} ∪ λj+2

where λj = {0} if P [0] = T [j], and ∅ otherwise. The base cases of these recursive
relations are given by S0 = λ0 and S′0 = λ1.

Such recursive relations allow the computation of Sj and S′j in an iterative
fashion in time O(mn). Here, Sj is computed in terms of Sj−1 and S′j−1. S′j is
computed in terms of Sj−1.

4 A Simpler Implementation of Cross-Sampling

We propose a simpler implementation of the Cross-Sampling algorithm. In par-
ticular, we propose a much simpler formulation of the dynamic programming
relations used in the computation of the sets Sj .

Define the Boolean matrix Sj
i , for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, as follows.

Sj
i = 1, if Pi ∝ Tj

= 0, otherwise.

Parallel Pattern Matching with Swaps on a Linear Array 49

Algorithm Prefix-Sampling (P, m, T, n)
1. S[m, n]← {0} /* initially, all array elements are set to False
2. for j ← 0 to n− 1 do
3. S[0, j]← P [0] = T [j]
4. for j ← 1 to n− 1 do
5. S[1, j]← (S[0, j − 1] ∧ (P [1] = T [j]))
6. ∨((P [1] = T [j − 1]) ∧ (P [0] = T [j]))
7. for i← 2 to m− 1 do
8. for j ← i to n− 1 do
9. S[i, j]← (S[i− 1, j − 1] ∧ (P [i] = T [j]))
10. ∨(S[i− 2, j − 2] ∧ ((P [i] = T [j − 1]) ∧ (P [i− 1] = T [j])))
11. for j ← m− 1 to n− 1 do
12. if S[m− 1, j] then print j /* Here, P ∝ Tj */

Fig. 2. The Prefix-Sampling Algorithm for PMS

Thus, the pattern P has a swapped match with T ending at location j if and
only if Sj

m−1 = 1. The following recursive definition of Sj
i is inspired by Lemma

1. For 2 ≤ i ≤ m− 1, i ≤ j ≤ n− 1, we have

Sj
i ←(Sj−1

i−1 ∧ (P [i] = T [j]))

∨ (Sj−2
i−2 ∧ ((P [i] = T [j − 1]) ∧ (P [i− 1] = T [j])))

(1)

The base cases for i = 0 and i = 1 are given by

Sj
0 ←P [0] = T [j], for 0 ≤ j ≤ n− 1

Sj
1 ←(Sj−1

0 ∧ (P [1] = T [j]))
∨ ((P [1] = T [j − 1]) ∧ (P [0] = T [j])), for 1 ≤ j ≤ n− 1

This formulation for computing the sets Sj is much simpler than the formulation
used in Cross-Sampling (See the previous section). The recursive relations in
Equation 1 are readily translatable into an efficient algorithm for computing the
elements of the matrix Sn

m iteratively. Our resultant algorithm, named Prefix-
Sampling, is shown in Fig. 2. Clearly, this algorithm runs in time O(mn). We

Table 1. A Sample Run of Prefix-Sampling

i\j |0 1 2 3 4 5 6 7 8 9 10
0 |0 1 0 1 1 1 0 0 1 1 0
1 |0 0 0 0 1 1 0 0 0 1 0
2 |0 0 0 1 0 0 1 0 0 0 1
3 |0 0 0 0 1 0 1 0 0 0 0
4 |0 0 0 0 0 0 0 1 1 0 0
5 |0 0 0 0 0 0 1 0 1 1 0
6 |0 0 0 0 0 0 0 1 0 0 1
7 |0 0 0 0 0 0 0 0 1 0 1

50 F.B. Chedid

have traced Prefix-Sampling on our example in Fig. 1. The result is shown in
Table 1.

Table 1 shows that P has swapped matches with T ending at locations j = 8
and j = 10 in T . These values of j correspond to the True entries in the last row
(i = m− 1 = 7) of the array.

5 Parallel Prefix Sampling

We present an optimal parallelization of Prefix-Sampling based on a linear array
model. Our algorithm uses � n

m−1� processors and runs in time O(m2).
First, we state the following lemma:

Lemma 2. Let T and P be a text of length n and a pattern of length m, respec-
tively. Let Si denote the suffix of P of length i + 1. Then, for 0 ≤ i ≤ m− 1, 0 ≤
j ≤ n− 1, Si has a swapped match with T beginning at location j if and only if
Sr

i ∝ T r
n−1−j.

Proof. It follows from Lemma 1 and the definition of the reversal of a string.

Thus, a suffix Si of P has a swapped match with T beginning at location j if
and only if the reversal Sr

i of Si, or equivalently, the prefix of the reversal P r of
P of length i+1 (= P r

i), has a swapped match with the reversal T r of T ending
at location n− 1− j.

Our algorithm divides T into r = � n
m−1� parts T0, . . . , Tr−1. The part of T

of length h ending at location i is T [i − h + 1 . . . i]. For 0 ≤ j ≤ r − 1, let
lj denote the length of Tj. Observe that for 0 ≤ j ≤ r − 2, lj = m − 1, and
lr−1 = n%(m − 1). For each part Tj of T , for 0 ≤ j ≤ r − 1, in parallel, the
algorithm uses processor numbered j to execute Prefix-Sampling(P, lj, Tj, lj) and
Prefix-Sampling(P r, lj , T

r
j , lj). This finds all prefixes Pi, for 0 ≤ i ≤ lj − 1, of P

that have swapped matched with Tj ending at some location k, and all suffixes
Si′ , for 0 ≤ i′ ≤ lj − 1, of P that have swapped matches with Tj beginning at
some location k′. Then, P has a swapped match with T if the following conditions
hold:

1. Prefix-Sampling(P, lj, Tj, lj) returns some prefix Pi ∝ (Tj)lj−1.
2. Prefix-Sampling(P r, lj+1, T

r
j+1, lj+1) returns some suffix Si′ of P whose re-

versal Sr
i′ ∝ (T r

j+1)lj+1−1
.

3. |Pi|+ |Si′ | = i + i′ + 2 = m or
4. Pi−1 ∝ (Tj)lj−2, Sr

i′−1 ∝ (T r
j+1)lj+1−2

, |Pi−1|+ |Si′−1| = i + i′ = m− 2, and
P [i] = Tj+1[0] and P [i + 1] = Tj[lj − 1].

Our parallel prefix-Sampling algorithm for PMS, named Parallel-Prefix-Sampling,
is shown in Fig. 3.

The run time of Step 1 is O(m2). The run time of Step 2 is O(m). Thus, the
overall running time of Parallel-Prefix-Sampling is O(m2). Its cost is O(m2) ·
� n

m−1� = O(mn). Hence, this is an optimal parallelization of Prefix-Sampling.

Parallel Pattern Matching with Swaps on a Linear Array 51

Algorithm Parallel-Prefix-Sampling (P, m, T, n)
[0] Let r = � n

m−1
�.

[1] For each processor Pj , for 0 ≤ j ≤ r − 1, in parallel, do
Pj �=(r−1) considers the jth part of the text Tj = T [j(m− 1) . . . (j + 1)(m− 1) − 1].
Pr−1 considers the last part of the text Tr−1 = T [r(m− 1) . . . r(m− 1) + n%(m− 1) − 1].
Let lj equal the length of Tj , for 0 ≤ j ≤ r − 1.
Pj executes

Prefix-Sampling(P, lj , Tj , lj)
Prefix-Sampling(P r, lj , T

r
j , lj)

[2] For each processor Pj (0 ≤ j ≤ r − 2), in parallel, do
for i = 0 to m− 1 do

Let i′ = m− 2− i
if (Pi ∝ (Tj)lj−1 and P r

i′ ∝ (T r
j+1)lj+1−1

) or
(Pi−1 ∝ (Tj)lj−2 and P r

i′−1 ∝ (T r
j+1)lj+1−2

and
P [i] = Tj+1[0] and P [i + 1] = Tj [lj − 1]) then

P ∝ T(j+1)(m−1)+i′ .

Fig. 3. The Parallel-Prefix-Sampling Algorithm for PMS

P = b b a b a b a P r = b a b a
T0 = a b a b b b a T r

1 = a b b a
j = 0 1 2 3 4 5 6 j = 0 1 2 3

Fig. 4. Input to P0 is shown on the left; input to P1 is shown on the right

We have traced Parallel-Prefix-Sampling on our example in Fig. 1. Step 1
of the algorithm divides T into r = � n

m−1� = � 117 � = 2 parts T0 and T1 of
length m − 1 = 7 and n%(m − 1) = 4, respectively. Then, it runs processors
P0 and P1 in parallel executing Prefix-Sampling(P, 7, T0, 7) on P0 and Prefix-
Sampling(P r, 4, T r

1 , 4) on P1. Fig. 4 shows the inputs to P0 and P1. The outputs
of P0 and P1 are shown in Table 2 and Table 3, respectively.

Table 2 shows (See column numbered j = 6) that there are prefixes of length
3, 4, and 6 of P that have swapped matches with T0 ending at the last character
of T0. Table 3 shows (See column numbered j = 3) that there are prefixes
(suffixes) of length 2, 3, and 4 of P r (P) that have swapped matches with T1

ending (beginning) at the last (first) character of T r
1 (T1). Step 2 of Parallel-

Prefix-Sampling combines these results to conclude that P ∝ T8 and P ∝ T10.

Table 2. The Output of P0

i\j |0 1 2 3 4 5 6
0 |0 1 0 1 1 1 0
1 |0 0 0 0 1 1 0
2 |0 0 0 1 0 0 1
3 |0 0 0 0 1 0 1
4 |0 0 0 0 0 0 0
5 |0 0 0 0 0 0 1
6 |0 0 0 0 0 0 0

52 F.B. Chedid

Table 3. The Output of P1

i′\j |0 1 2 3
0 |0 1 1 0
1 |0 1 0 1
2 |0 0 1 1
3 |0 0 0 1

6 Conclusion

In this paper, we provided a simpler implementation of a recent dynamic pro-
gramming approach proposed for solving the Pattern Matching with Swaps prob-
lem. Also, we presented an optimal parallelization of our approach, based on a
linear array model, that runs in time O(m2) using � n

m−1� processors. We mention
that the work presented here can be easily extended to solve the Approximate
Pattern Matching with Swaps problem. In particular, our dynamic programming
formulation for PMS (Equation 1 from Section 4) can be adapted for APMS as
follows. Redefine Sj

i so that

Sj
i = k + 1, if Pi ∝k Tj

= 0, otherwise.

Thus, the pattern P has a swapped match with T with k swaps ending at location
j if and only if Sj

m−1 = k +1. The following recursive definition of Sj
i is inspired

by the following lemma quoted from [8]:

Lemma 3. Let T and P be a text of length n and a pattern of length m, respec-
tively. Then, for 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, Pi ∝k Tj if and only if one of
the following two facts holds:

– P [i] = T [j] and either (i = 0 and k = 0) or Pi−1 ∝k Tj−1.
– P [i] = T [j − 1], P [i− 1] = T [j], and either (i = 1 and k = 1) or Pi−2 ∝k−1

Tj−2.

For 2 ≤ i ≤ m− 1, i ≤ j ≤ n− 1, we have

Sj
i = Sj−1

i−1 , if Sj−1
i−1 ∧ (P [i] = T [j]).

= Sj−2
i−2 + 1, if Sj−2

i−2 ∧ ((P [i] = T [j − 1]) ∧ (P [i− 1] = T [j])).

= 0, otherwise.

The base case for i = 0, for 0 ≤ j ≤ n− 1, is given by

Sj
0 = (P [0] = T [j]).

The base case for i = 1, for 1 ≤ j ≤ n− 1, is given by

Sj
1 = 1, if Sj−1

0 ∧ (P [1] = T [j])
= 2, if (P [1] = T [j − 1]) ∧ (P [0] = T [j])
= 0, otherwise.

Parallel Pattern Matching with Swaps on a Linear Array 53

References

1. Abrahamson, K.: Generalized String Matching. SIAM Journal of Computing 16,
1039–1051 (1987)

2. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern
Matching With Swaps. In: 38th Annual Symposium on Foundations of Computer
Science, pp. 144–153. IEEE Press, Los Alamitos (1997)

3. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern
Matching With Swaps. Journal of Algorithms 37, 247–266 (2000)

4. Amir, A., Lewenstein, M., Porat, E.: Faster String Matching With k Mismatches.
In: 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 794–803
(2000)

5. Amir, A., Lewenstein, M., Porat, E.: Approximate Swapped Matching. Information
Processing Letters 83(1), 33–39 (2002)

6. Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap Matching.
Inf. Comput. 181(1), 57–74 (2003)

7. Baeza-Yates, R., Gonnet, G.H.: A New Approach to Text Searching. Communica-
tions of the ACM 35(10), 74–82 (1992)

8. Cantone, D., Faro, S.: Pattern Matching With Swaps for Short Patterns in Lin-
ear Time. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma,
P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 255–266. Springer,
Heidelberg (2009)

9. Galil, Z.: Open Problems in Stringology. In: Galil, Z., Apostolico, A. (eds.) Com-
binatorial Algorithms on Words. Nato. Asi. Series, Advanced Science Institutes
Series, Series F, Computer and Systems Sciences, vol. 12, pp. 1–8. Springer, Hei-
delberg (1995)

10. Galil, Z., Giancarlo, R.: Improved String Matching With k Mismatches. SIGACT
News 17, 52–54 (1986)

11. Fisher, M.J., Paterson, M.S.: String Matching and Other Products. In: Karp, R.M.
(ed.) SIAM–AMS Proceedings of Complexity of Computation, vol. 7, pp. 113–125
(1974)

12. Iliopoulos, C.S., Rahman, M.S.: A New Model to Solve the Swap Matching Problem
and Efficient Algorithms for Short Patterns. In: Geffert, V., Karhumäki, J., Bertoni,
A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910,
pp. 316–327. Springer, Heidelberg (2008)

13. Karloff, H.: Fast Algorithms for Approximately Counting Mismatches. Information
Processing Letters 48(2), 53–60 (1993)

14. Landau, G.M., Vishkin, U.: Efficient Parallel and Serial Approximate String Match-
ing. Computer Science Department Technical Report #221, New York University
(1986)

15. Landau, G.M., Vishkin, U.: Efficient String Matching With k Mismatches. Theo-
retical Computer Science 43, 239–249 (1986)

16. Muthukrishnan, S.: New Results and Open Problems Related to Non-Standard
Stringology. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 298–
317. Springer, Heidelberg (1995)

17. Pentland, A.: Invited talk. NSF Institutional infrastructure Workshop (1992)
18. Supol, J., Melichar, B.: Suffix Automata and Parallel String Matching. In: London

Algorithmics and Stringology (2007) (to appear)

Parallel Prefix Computation in the Recursive
Dual-Net

Yamin Li1, Shietung Peng1, and Wanming Chu2

1 Department of Computer Science
Hosei University

Tokyo 184-8584 Japan
{yamin,speng}@k.hosei.ac.jp

2 Department of Computer Hardware
University of Aizu

Aizu-Wakamatsu 965-8580 Japan
w-chu@u-aizu.ac.jp

Abstract. In this paper, we propose an efficient algorithm for paral-
lel prefix computation in recursive dual-net, a newly proposed network.
The recursive dual-net RDNk(B) for k > 0 has (2n0)2

k

/2 nodes and
d0 + k links per node, where n0 and d0 are the number of nodes and the
node-degree of the base network B, respectively. Assume that each node
holds one data item, the communication and computation time complex-
ities of the algorithm for parallel prefix computation in RDNk(B), k > 0,
are 2k+1 − 2 + 2k ∗ Tcomm(0) and 2k+1 − 2 + 2k ∗ Tcomp(0), respectively,
where Tcomm(0) and Tcomp(0) are the communication and computation
time complexities of the algorithm for parallel prefix computation in the
base network B, respectively.

Keywords: Interconnection networks, algorithm, parallel prefix
computation.

1 Introduction

In massively parallel processor (MPP), the interconnection network plays a cru-
cial role in the issues such as communication performance, hardware cost, com-
putational complexity, fault-tolerance. Much research has been reported in the
literature on interconnection networks that can be used to connect parallel com-
puters of large scale (see [1,2,3] for the review of the early work).

The following two categories have attracted a great research attention. One
is the networks of hypercube-like family that have the advantage of short diam-
eters for high-performance computing and efficient communication [4,5,6,7,8].
The other is the networks of 2D/3D meshes or tori that have the advantage
of small and fixed node-degrees and easy implementations. Traditionally, most
MPPs in the history including those built by NASA, CRAY, FGPS, IBM, use
2D/3D meshes or tori or their variations with extra diagonal links.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 54–64, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Prefix Computation in the Recursive Dual-Net 55

Recursive networks also have been proposed as effective interconnection net-
works for parallel computers of large scale. For example, the WK-recursive net-
work [9,10] is a class of recursive scalable networks. It offers a high-degree of
regularity, scalability, and symmetry and has a compact VLSI implementation.

Recently, due to advances in computer technology and competition among
computer makers, computers containing hundreds of thousands of nodes have
been built [11]. It was predicted that the MPPs of the next decade will contain
10 to 100 millions of nodes [12]. For such a parallel computer of very-large scale,
the traditional interconnection networks may no longer satisfy the requirements
for the high-performance computing or efficient communication.

For future generations of MPPs with millions of nodes, the node-degree and
the diameter will be the critical measures for the effectiveness of the intercon-
nection networks. The node-degree is limited by the hardware technologies and
the diameter affects all kinds of communication schemes directly. Other im-
portant measures include bisection bandwidth, scalability, and efficient routing
algorithms.

In this paper, we first describe a newly proposed network, called Recursive
Dual-Net (RDN). The RDN is based on recursive dual-construction of a regular
base-network. The dual-construction extends a regular network with n nodes and
node-degree d to a network with 2n2 nodes and node-degree d + 1. The RDN
is especially suitable for the interconnection network of the parallel computers
with millions of nodes. It can connect a huge number of nodes with just a small
number of links per node and very short diameters. For example, a 2-level RDN
with 5-ary, 2-cube as the base-network can connect more than 3-million nodes
with only 6 links per node and its diameter equals to 22. The major contribution
of this paper is to design efficient algorithm for parallel prefix computation in
RDN.

The prefix computation is fundamental to most of numerical algorithms. Let
⊕ be an associative binary operation. Given n numbers c0, c1, . . . , cn−1, prefix
computation is to compute all of the prefixes of the expression c0⊕ c1 . . .⊕ cn−1.

The rest of this paper is organized as follows. Section 2 describes the recursive
dual-net in details. Section 3 describes the proposed algorithm for parallel prefix
computation in RDN. Section 4 concludes the paper and presents some future
research directions.

2 Recursive Dual-Net

Let G be an undirected graph. The size of G, denoted as |G|, is the number of
vertices. A path from node s to node t in G is denoted by s→ t. The length of
the path is the number of edges in the path. For any two nodes s and t in G, we
denote L(s, t) as the length of a shortest path connecting s and t. The diameter
of G is defined as D(G) = max{L(s, t)|s, t ∈ G}.

For any two nodes s and t in G, if there is a path connecting s and t, we say
G is a connected graph. Suppose we have a symmetric connected graph B and
there are n0 nodes in B and the node degree is d0. A k-level Recursive Dual-Net
RDNk(B), also denoted as RDNk(B(n0)), can be recursively defined as follows:

56 Y. Li, S. Peng, and W. Chu

1. RDN0(B) = B is a symmetric connected graph with n0 nodes, called base
network;

2. For k > 0, an RDNk(B) is constructed from RDNk−1(B) by a dual-
construction as explained below (also see Figure 1).

RDNk−1(B) RDNk(B)

type

0

type

1

0 1 nk−1 − 1

0 1 nk−1 − 1

Cluster

Fig. 1. Build an RDNk(B) from RDNk−1(B)

Dual-construction: Let RDNk−1(B) be referred to as a cluster of level k and
nk−1 = |RDNk−1(B)| for k > 0. An RDNk(B) is a graph that contains 2nk−1

clusters of level k as subgraphs. These clusters are divided into two sets with
each set containing nk−1 clusters. Each cluster in one set is said to be of type
0, denoted as C0

i , where 0 ≤ i ≤ nk−1 − 1 is the cluster ID. Each cluster in the
other set is of type 1, denoted as C1

j , where 0 ≤ j ≤ nk−1 − 1 is the cluster ID.
At level k, each node in a cluster has a new link to a node in a distinct cluster
of the other type. We call this link cross-edge of level k. By following this rule,
for each pair of clusters C0

i and C1
j , there is a unique edge connecting a node

in C0
i and a node in C1

j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there are nk−1 nodes
within each cluster RDNk−1(B).

We give two simple examples of recursive dual-nets with k = 1 and 2, in which
the base network is a ring with 3 nodes, in Figure 2 and Figure 3, respectively.
Figure 2 depicts an RDN1(B(3)) network. There are 3 nodes in the base network.
Therefore, the number of nodes in RDN1(B(3)) is 2×32, or 18. The node degree
is 3 and the diameter is 4.

Figure 3 shows the RDN2(B(3)) constructed from the RDN1(B(3)) in
Figure 2. We did not show all the nodes in the figure. The number of nodes
in RDN2(B(3)) is 2× 182, or 648. The node degree is 4 and the diameter is 10.

Similarly, we can construct an RDN3(B(3)) containing 2× 6482, or 839,808
nodes with node degree of 5 and diameter of 22. In contrast, the 839,808-node

Parallel Prefix Computation in the Recursive Dual-Net 57

Fig. 2. A Recursive Dual-Net RDN1(B(3))

Fig. 3. A Recursive Dual-Net RDN2(B(3))

3D torus machine (adopt by IBM Blue Gene/L [13]) configured as 108×108×72
nodes, the diameter is equal to 54 + 54 + 36 = 144 with a node degree of 6.

We can see from the recursive dual-construction described above that an
RDNk(B) is a symmetric regular network with node-degree d0 + k if the base
network is a symmetric regular network with node-degree d0. The following the-
orem is from [14].

Theorem 1. Assume that the base network B is a symmetric graph with size
n0, node-degree d0, and the diameter D0. Then, the size, the node-degree, the
diameter and the bisection bandwidth of RDNk(B) are (2n0)2

k

/2, d0+k, 2kD0+
2k+1 − 2, and �(2n0)2

k

/8�, respectively.

The cost ratio CR(G) for measuring the combined effects of the hardware cost
and the software efficiency of an interconnection network was also proposed in
[14]. Let |(G)|, d(G), and D(G) be the number of nodes, the node-degree, and
the diameter of G, respectively. We define CR(G) as

CR(G) = (d(G) + D(G))/ lg |(G)|
The cost ratio of an n-cube is 2 regardless of its size. The CR for some RDNk(B)
is shown in Table 1. Two small networks including 3-ary 3-cube and 5-ary 2-cube

58 Y. Li, S. Peng, and W. Chu

Table 1. CR for some RDNk(B)

Network n d D CR

10-cube 1,024 10 10 2.00
RDN1(B(25)) 1,250 5 10 1.46
RDN1(B(27)) 1,458 7 8 1.43
3D-Tori(10) 1,000 6 15 2.11

22-cube 4,194,304 22 22 2.00
RDN2(B(25)) 3,125,000 6 22 1.30
RDN2(B(27)) 4,251,528 8 18 1.18
3D-Tori(160) 4,096,000 6 240 11.20

are selected as practical base networks. For INs of size around 1K, we set k = 1,
while for INs of size larger 1M, we set k = 2. The results show that the cost
ratios of RDNk(B) are better than hypercubes and 3D-tori in all cases.

A presentation for RDNk(B) that provides an unique ID to each node in
RDNk(B) is described as follows. Let the IDs of nodes in B, denoted as ID0, be
i, 0 ≤ i ≤ n0−1. The IDk of node u in RDNk(B) for k > 0 is a triple (u0, u1, u2),
where u0 is a 0 or 1, u1 and u2 belong to IDk−1. We call u0, u1, and u2 typeID,
clusterID, and nodeID of u, respectively. With this ID presentation, (u, v) is a
cross-edge of level k in RDNk(B) iff u0 �= v0, u1 = v2, and u2 = v1. In general,
IDi, 1 ≤ i ≤ k, can be defined recursively as follows: IDi = (b, IDi−1, IDi−1),
where b = 0 or 1. A presentation example is shown in Figure 4.

0 21 0 21 0 21

0 21 0 21 0 21

(0, 0, ∗) (0, 1, ∗) (0, 2, ∗)

(1, 0, ∗) (1, 1, ∗) (1, 2, ∗)

Fig. 4. RDN1(B(3)) presentation

The ID of a node u in RDNk(B) can also be presented by an unique integer
i, 0 ≤ i ≤ (2n0)2

k

/2 − 1, where i is the lexicographical order of the triple
(u0, u1, u2). For example, the ID of node (1, 1, 2) in RDN1(B(3)) is 1 ∗ 32 + 1 ∗
3 + 2 = 14 (see figure 5). The ID of node (1,(0,2,2),(1,0,1)) in RDN2(B(3)) is
1 ∗ 182 + 8 ∗ 18 + 10 = 324 + 144 + 10 = 478.

Parallel Prefix Computation in the Recursive Dual-Net 59

0 21 3 54 6 87

9 1110 12 1413 15 1716

Fig. 5. RDN1(B(3)) with integer node ID

3 Parallel Prefix Computation in Recursive Dual-Net

Let ⊕ be an associative binary operation. Given n numbers c0, c1, . . . , cn−1,
parallel prefix computation [15,16] is defined as simultaneously evaluating all of
the prefixes of the expression c0⊕c1 . . .⊕cn−1. The ith prefix is si = c0⊕c1 . . .⊕
ci−1.

The parallel prefix computation can be done efficiently in recursive dual-net.
Assume that each node i, 0 ≤ i ≤ nk − 1, in an RDNk(B) holds a number ci.
Let xi and yi are local variables in node i that will hold prefixes and total sum at
the end of the algorithm. The algorithm for parallel prefix (or diminished prefix
which excludes ci in si) computation in RDNk(B) is a recursive algorithm on
k. We assume that the algorithm RDN prefix(B, c, b) for prefix and diminished
prefix computation in the base network (b = 1 for prefix and b = 0 for diminished
prefix) is available. We describe it briefly below.

First, through a recursive call for every cluster of level k, we calculate the
local prefix xi and the local sum yi in node i, where local prefix and local sum
are the prefixes and the sum on the data items in each cluster of level k. To
get the prefix of the data items in other clusters, we calculate the diminished
prefix of all local sums of the clusters of the same type. This can be done by
transferring the local sum to its neighbor via the cross-edge of level k, and then
the prefix x′i and the sum y′i of all local sums of the same type can be computed
by the nodes in every cluster of the other type via a recursive call.

After the second recursive call, the missing parts of the prefixes are ready for
the nodes in clusters of type 0. Then, these values are transferred back to the
nodes in the cluster of the original type via the cross-edge of level k and are
added to its own local prefix. Finally, the algorithm adds the sum y′i of data
items in the nodes in clusters of type 0 to the current prefix of every node j in
cluster of type 1. Notice that the value y′i exists in every node j in the clusters
of type 1 when the second recursive call is done.

The details are specified in Algorithm 1. Examples of prefix sum in RDN1(B)
and RDN2(B) are shown in Figure 6 and Figure 7, respectively.

Theorem 2. Assume 1-port, bidirectional-channel communication model. As-
sume also that each node holds a single data item. Parallel prefix computation
in recursive dual-net RDNk(B), k > 0, can be done in 2k+1− 2 + 2k ∗ Tcomm(0)

60 Y. Li, S. Peng, and W. Chu

Algorithm 1. RDN prefix(RDNk(B), c, b)
Input: Recursive dual-net RDNk(B), an array of keys c with |c| = nk, and a boolean
variable b. Assume that node i holds ci.
Output: node i holds xi = c0 ⊕ c1 . . .⊕ c[i] if b = 1, c0 ⊕ c1 . . .⊕ ci−1 otherwise
begin

if k = 0 then RDN prefix(B, c, b)
/* Assume that RDN prefix(B, c, b) is available. */
else

for RDNk−1
j (B), 0 ≤ j ≤ nk−1 − 1, parallel do

/* j is the cluster ID. */
RDN prefix(RDNk−1

j (B), c, b);
/* The values xi and yi at node i are the local

prefix and the local sum in the clusters of
level k. */

for node i, 0 ≤ i ≤ nk − 1, parallel do
send yi to node i′ via cross-edge of level k;
tempi ← yi′ ;

for RDNk−1
j (B), 0 ≤ j ≤ nk−1 − 1, parallel do

RDN prefix(RDNk−1
j (B), temp, 0);

/* Compute the diminished prefix of temp */
/* The results are denoted as x′

i and y′
i. */

for node i, 0 ≤ i ≤ nk − 1, parallel do
send x′

i to node i′ via cross-edge of level k;
tempi ← x′

i′ ;
si ← si ⊕ tempi;

for node i, nk/2 ≤ i ≤ nk − 1, parallel do
si ← si ⊕ y′

i;
endif

end

communication steps and 2k+1 − 2 + 2k ∗ Tcomp(0) computation steps, where
Tcomm(0) and Tcomp(0) are communication and computation steps for prefix
computation in the base network, respectively.

Proof. At Step 1, the local prefix in each cluster of level k is computed. At
Steps 2 - 4, The part of the prefix located in other clusters of the same type is
computed. Finally, at Step 5, for clusters of type 1, part of the prefix located in
the clusters of type 0 is added to the nodes in the cluster of type 1. It is easy to
see the correctness of the algorithm.

Next, we assume that the edges in RDNk(B) are bidirectional channels, and
at each clock cycle, each node in Dn can send or get at most one message. In
Algorithm 1, Step 1 and Step 3 are recursive calls, Step 2 and Step 4 involve
one communication step each. Therefore, the complexity for communication sat-
isfies recurrence Tcomm(k) = 2Tcomm(k − 1) + 2. Solving the recurrences, we
get Tcomm(k) = 2k+1 − 2 + 2k ∗ Tcomm(0). Similarly, Steps 4 and 5 involve one
computation step each. The recurrence for computation time satisfies the same
concurrence.

Parallel Prefix Computation in the Recursive Dual-Net 61

1 2 3

10 11 12

4 5 6

13 14 15

7 8 9

16 17 18

(1,2,3, 4, 5, 6, 7, 8, 9,10,11,12,13, 14, 15, 16, 17, 18)

(1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171)

6
1 6

3

6
6

33
10

33
21 33

33

15
4 15

9

15
15

42
13

42
27 42

42

24
7 24

15

24
24

51
16

51
33 51

51

33 42 51

6 15 24

33 42 51

6 15 24

33 42 51

6 15 24

1 3 6

55 66 78

10 15 21

91 105 20

28 36 45

136 153 171

126
0 126

33

126
75

45
0

45
6 45

21

126
0 126

33

126
75

45
0

45
6 45

21

126
0 126

33

126
75

45
0

45
6 45

21

0 0 0

0 0 0

6 6 6

33 33 33

21 21 21

75 75 75

1 3 6

10 21 33

10 15 21

46 60 75

28 36 45

91 108 126

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

prefix_sum

=

(c) t[u] (top) and s[u] (bottom)

(b) Data distribution

(d) Send t[u] and receive temp[u]

(h) In type 1, s[u]← s[u]⊕ t′[u] (final result)

(e) t′[u] (top) and s′[u] (bottom) (f) Send s′[u] and receive temp[u]

(g) s[u]← s[u]⊕ temp[u]

(a) Presentation of RDN1(B(3))

Fig. 6. Example of prefix sum in RDN1(B(3))

Therefore, we conclude that the prefix computation in RDNk(B) for k > 0 can
be done in 2k+1−2+2k ∗Tcomm(0) communication steps and 2k+1 +2k ∗Tcomp(0)
computation steps, where Tcomm(0) and Tcomp(0) are communication and compu-
tation steps for prefix computation in the base network, respectively.
�
Extension of the parallel prefix algorithm to the general case where each node
initially holds more than one data item is straightforward. Let the size of array

62 Y. Li, S. Peng, and W. Chu

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

307 308 309 310 311 312 313 314

315 316 317 318 319 320 321 322

325 326 327 328 329 330 331 332

333 334 335 336 337 338 339 340

631 632 633 634 635 636 637 638

639 640 641 642 643 644 645 646

17

306

341

630

1 3 6 10 15 21 28 36

45 55 66 78 91 105 120 136

613 921 1230 1540 1851 2163 2476 2790

3105 3421 3738 4056 4375 4695 5015 5338

649 975 1302 1630 1959 2289 2620 2952

3285 3619 3954 4290 4627 4965 5304 5644

1261 1893 2526 3160 3795 4431 5068 5706

6345 6985 7626 8268 8911 9555 10200 10846

153

306

5985

630

1 3 6 10 15 21 28 36

45 55 66 78 91 105 120 136

47278 47586 47895 48205 48516 48828 49141 49455

49770 50086 50403 50721 51040 51360 51681 52003

52975 53301 53628 53956 54285 54615 54946 55278

55611 55945 56280 56616 56953 57291 57630 57970

199396 200028 200661 201295 201930 202566 203203 203841

204480 205120 205761 206403 207046 207690 208335 208981

153

46971

58311

198765

0

323

324

647

0

5661

324

11493

0

52326

52650

209628

(a) Data distribution

(b) s for k = 1

(c) s for k = 2 (final prefix result)

Fig. 7. Example of prefix sum in RDN2(B(3))

c be m > n. The algorithm consists of three stages: In the first stage, each node
do a prefix computation on its own data set of size m/n sequentially; In the
second stage, the algorithm performs a diminished parallel computation on the
RDN as describe in Algorithm 1 with b = 0 and ci equals to the local sum;
In third stage, for each node, the algorithm combines the result from this last
computation with the locally computed prefixes to get the final result. We show
the parallel prefix computation for the general case in theorem 3.

Parallel Prefix Computation in the Recursive Dual-Net 63

Theorem 3. Assume 1-port, bidirectional-channel communication model. As-
sume also that the size of the input array is m, and each node holds m/nk

numbers. Parallel prefix computation in recursive dual-net RDNk(B), k > 0,
can be done in 2k+1 − 2 + 2k ∗ Tcomm(0) communication steps and 2m/nk +
2k+1 − 3 + 2k ∗ Tcomp(0) computation steps, where Tcomm(0) and Tcomp(0) are
communication and computation steps for prefix computation in the base net-
work with each node holds one single number, respectively.

Proof. The first and the third stages of the algorithm contains only local compu-
tations inside each node and the total number of computations are (m/nk)− 1
and m/nk, respectively. In the second stage, the algorithm performs parallel
prefix computation in RDN with each node holding a single number. Follow-
ing Theorem 1, it requires 2k+1 − 2 + 2k ∗ Tcomm(0) communication steps and
2k+1−2+2k ∗Tcomp(0) computation steps. Therefore, we conclude that the par-
allel prefix computation of array of size m > nk in RDNk(B) requires 2k+1 −
2 + 2k ∗ Tcomm(0) communication steps and (2m/nk + 2k+1 − 3) + 2k ∗ Tcomp(0)
computation steps.
�

4 Concluding Remarks

In this paper, we showed an efficient algorithm for parallel prefix computation
in recursive dual-net. Recursive dual-net is a potential candidate for the super-
computers of next generations. It has many interesting properties that are very
attractive as an interconnection network of massively parallel computer. Design
efficient algorithms for basic computational problems in an interconnection net-
work is an important issue. The further research will include design of efficient
searching and sorting algorithms for recursive dual-net.

References

1. Aki, S.G.: Parallel Computation: Models and Methods. Prentice-Hall, Englewood
Cliffs (1997)

2. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, San Francisco (1992)

3. Varma, A., Raghavendra, C.S.: Interconnection Networks for Multiprocessors and
Multicomputers: Theory and Practice. IEEE Computer Society Press, Los Alami-
tos (1994)

4. Ghose, K., Desai, K.R.: Hierarchical cubic networks. IEEE Transactions on Parallel
and Distributed Systems 6, 427–435 (1995)

5. Li, Y., Peng, S.: Dual-cubes: a new interconnection network for high-performance
computer clusters. In: Proceedings of the 2000 International Computer Symposium,
Workshop on Computer Architecture, ChiaYi, Taiwan, pp. 51–57 (2000)

6. Li, Y., Peng, S., Chu, W.: Efficient collective communications in dual-cube. The
Journal of Supercomputing 28, 71–90 (2004)

7. Preparata, F.P., Vuillemin, J.: The cube-connected cycles: a versatile network for
parallel computation. Commun. ACM 24, 300–309 (1981)

64 Y. Li, S. Peng, and W. Chu

8. Saad, Y., Schultz, M.H.: Topological properties of hypercubes. IEEE Transactions
on Computers 37, 867–872 (1988)

9. Chen, G.H., Duh, D.R.: Topological properties, communication, and computation
on wk-recursive networks. Networks 24, 303–317 (1994)

10. Vicchia, G., Sanges, C.: A recursively scalable network vlsi implementation. Future
Generation Computer Systems 4, 235–243 (1988)

11. TOP500: Supercomputer Sites (2008), http://top500.org/
12. Beckman, P.: Looking toward exascale computing, keynote speaker. In: Interna-

tional Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT 2008), University of Otago, Dunedin, New Zealand (2008)

13. Adiga, N.R., Blumrich, M.A., Chen, D., Coteus, P., Gara, A., Giampapa, M.E., Hei-
delberger, P., Singh, S., Steinmacher-Burow, B.D., Takken, T., Tsao, M., Vranas,
P.: Blue gene/l torus interconnection network. IBM Journal of Research and De-
velopment 49, 265–276 (2005),
http://www.research.ibm.com/journal/rd/492/tocpdf.html

14. Li, Y., Peng, S., Chu, W.: Recursive dual-net: A new universal network for super-
computers of the next generation. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009.
LNCS, vol. 5574, pp. 809–820. Springer, Heidelberg (2009)

15. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. Addison-Wesley, Reading (2003)

16. Hillis, W.D., Steele Jr., G.L.: Data parallel algorithms. Communications of the
ACM 29, 1170–1183 (1986)

http://top500.org/
http://www.research.ibm.com/journal/rd/492/tocpdf.html

A Two-Phase Differential Synchronization
Algorithm for Remote Files

Yonghong Sheng1, Dan Xu2, and Dongsheng Wang1,3

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, P.R. China

shengyh04@mails.tsinghua.edu.cn
2 School of Computer Science and Technology, Beijing University of Posts and

Telecommunications, Beijing, P.R. China
xdbupt08@gmail.com

3 Tsinghua National Laboratory for Information Science and Technology,
Beijing, P.R. China

wds@tsinghua.edu.cn

Abstract. This paper presents a two-phase synchronization algorithm—
tpsync, which combines content-defined chunking (CDC) with sliding
block duplicated data detection methods. tpsync firstly partitions syn-
chronized files into variable-sized chunks in coarse-grained scale with
CDC method, locates the unmatched chunks of synchronized files using
the edit distance algorithm, and finally generates the fine-grained delta
data with fixed-sized sliding block duplicated data detection method.
At the first-phase, tpsync can quickly locate the partial changed chunks
between two files through similar files’ fingerprint characteristics. On
the basis of the first phase’s results, small fixed-sized sliding block du-
plicated data detection method can produce better fine-grained delta
data between the corresponding unmatched data chunks further. Ex-
tensive experiments on ASCII, binary and database files demonstrate
that tpsync can achieve a higher performance on synchronization time
and total transferred data compared to traditional fixed-sized sliding
block method—rsync. Compared to rsync, tpsync reduces synchroniza-
tion time by 12% and bandwidth by 18.9% on average if optimized pa-
rameters are applied on both. With signature cached synchronization
method adopted, tpsync can yield a better performance.

1 Introduction

Delta compression and file synchronization technology are widely used in net-
work data backup, software distribution, web application, P2P storage and mo-
bile computing, etc. The key issue of file synchronization is how to update the
file by using less time and with a minimal amount of network overhead between
the source-end and the destination-end. Under low bandwidth and flow-sensitive
network environment, such issues are especially important. Synchronization tech-
nology based on differential calculation and compression can satisfy the demands
of remote file synchronization. Taking a file of 10 MB which has been modified

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 65–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

66 Y. Sheng, D. Xu, and D. Wang

only 16 KB as an instance, the process of synchronization can be done within
3 seconds if only the differential data is transferred, while it requires about 25
minutes for a full copy.

Researchers have already introduced a lot of algorithms for differential cal-
culation and remote file synchronization. Delta compression algorithms, such
as diff [1], [2], [3], vcdiff [4], xdelta [5], BSDiff [6], and zdelta [7], may be used
to produce a succinct description of the differences between two similar files
if both the old version and the new version of the file are locally available to
the sender. However, in many cases, especially in distributed network environ-
ment, this assumption may be overly restrictive, since it is difficult or infeasible
to know the copies of files other nodes hold. To synchronize remote files over
network, researchers have put forward a lot of fast synchronization algorithms,
such as Andrew Tidwell’s rsync [8] algorithm, Microsoft’s ActiveSync [9], Puma
Technologies’ IntelliSync [10] and Palm’s HotSync [11]. rsync is one of the most
famous and open source software. It is quite simple and clear, but is sensitive to
the changing pattern of synchronized files and the block size parameter. Under
the worst case, rsync needs to transfer the whole file even if the two files have
much duplicated data, detailed analysis can been seen in Section 2.2. ActiveSync,
IntelliSync and HotSync are efficient two-way synchronization tools between PC
and Palm OS, Pocket PC and etc, but they are not suitable for synchronizing
remote files. In order to save bandwidth under low-bandwidth network environ-
ment, LBFS [12] exploits similarities among all files on both the server and the
client, and avoids sending the data which can already be found in the server’s
file system or the client’s cache over the limited-bandwidth network. Based on
LBFS, DFSR [13] uses three optimizing methods to achieve far smaller differ-
ential data amount transporting, which include local file similarity analyzing,
large file recursive signature transporting and more precisely file chunking. But
LBFS and DFSR both need to build index on local machine, bringing extra
consumption on computing and storage resources, and the transport protocol
is too complex. CVS [14] and SVN [15], the famous file version control tools,
implement fast differential calculation by storing the complete old versions of
files in client. They are suitable for the version control of ACSII file, such as
source code files, but not efficient for binary files.

To satisfy the twofold demands of fast differential calculating as well as reduc-
ing the overhead over network, this paper proposes a two-phase synchronization
algorithm—tpsync. In the first-phase, tpsync divides files into chunks based on
content and calculates the chunks’ signatures simultaneously at the source and
the destination. Then tpsync locates unmatched chunks and calculates their
differential data by fixed-sized sliding block duplicated data detection method,
which is called the second-phase, drawing on the basic idea of rsync. tpsync can
both quickly locate the changing range in files and generate much fine-grained
delta data between unmatched chunks. Extensive experiments on different work-
loads shows that tpsync can both speed up synchronization and reduce overhead
on network.

A Two-Phase Differential Synchronization Algorithm for Remote Files 67

The rest of this paper is organized as follows: Section 2 presents the design and
implementation in detail. Section 3 gives experimental evaluation and results.
Section 4 concludes this paper with a summary of our contributions and future
work.

2 Two-Phase Differential Synchronization Algorithm

File-level and block-level are two main granularities in duplicated data detection.
WFD (whole file detecting) is a duplicated data detection method in file-level.
WFD computes the hash value of the whole file, and then compares this value
to the stored hash values. If equivalence is detected, then WFD assigns the file a
pointer to the unique file, instead of allocating new space for it as for new files.
The fine-grained duplicated data detection technology, usually at block level, can
search the same blocks in a file, and store these blocks within only one copy. It usu-
ally uses FSP (fixed-sized partition) [16], VSP (variable-sized partition) [17], [18]
or sliding block [19] duplicated data detection methods to detect and eliminate re-
dundancies. FSP strategy employs a fixed block size to partition files into chunks,
independent of the content of the files being processed. It is used in
content-addressable systems such as Venti [20] and Oceanstore [21]. FSP is sen-
sitive to the sequence of consecutive versions file’s edition and change operation.
Hence, this technology is not popular in practice. In order to overcome this lim-
itation, researchers have put forward content-defined chunking technology, such
Rabin’s fingerprint [22], to divide files into variable-sized chunks [23].

2.1 CDC Based Duplicated Data Detection

The boundaries of variable-sized chunks are determined by Rabin’s fingerprint
algorithm. File’s contents are seen through a fixed-sized (overlapping) sliding
window from the beginning. At every position of the window, a fingerprint or
signature of its contents, f, is computed using hash techniques such as Rabin’s
fingerprints. When the fingerprint meets a certain criteria, such as f mod D = r,
where D is the divisor, and r is the predefined magic number(r<D), that position
of the window defines the boundary of the chunk. This process is repeated until
the complete file has been broken down into chunks. Figure 1 depicts Rabin’s
fingerprint chunking process. MD5, SHA-1 or higher SHA standard functions are
used to compute each chunk’s signature. Such signature is queried in index file
to determine duplicated chunks. New chunks are written into disk and the index
is updated with their chunks’ IDs and signatures. Contend-defined chunking
method can ensure changes made to consecutive versions are localized to a few
chunks around the region of change.

2.2 Sliding Block Based Duplicated Data Detection

A sliding-block duplicated data detection approach is used in protocols like rsync,
which is illustrated in Figure 3. The basic idea of rsync can be described as

68 Y. Sheng, D. Xu, and D. Wang

follows: First, the recipient, B, breaks its file F1 into non-overlapping, contiguous,
fixed-sized blocks and transmits hashes of those blocks to A. In return, A begins
to compute the hashes of all (overlapping) blocks of F2. If any of those hashes
matches one from F1, A avoids sending the corresponding sections of F1, but
telling B where to find the data in F1 instead.

According to the features of sliding block duplicated data detection technol-
ogy, we know that it is sensitive to the block size parameter and the changing
pattern of the file. In extreme conditions, even the changes are very slight, the
whole file need to be retransferred. As the example shown in Figure 2, if the
window size is set to 4, the whole version 2 would be retransmitted as no du-
plicated data detected. In fact, the duplicated data ratio is up to 75% between
version 1 and 2.

Sliding

 f mod D = r Boundary Boundary

Fig. 1. Rabin’s Fingerprint CDC Chunk-
ing Process

ABCD AXZD BHFG CNPZ
ABCK AXZS BHFJ CNPQ

Version 1

Version 2

Fig. 2. An Example for rsync’s Sensitivity
to Block Size Parameter

If we set the sliding window size to 3 in above example, the only transferring
data are (K, S, J, Q) and some extra indices information, which refers to the
‘differential data’ in rsync. This is also the reason why we choose smaller slid-
ing window size when using sliding block duplicated data detection method to
calculate the differential data in the second-phase.

2.3 Detailed Description of tpsync

This paper proposes tpsync, which combines the benefits of both Section 2.1
and 2.2. In large scale, tpsync exploits the similarity of fingerprint distribution
in similar files, and also makes use of the advantage in computing the minor
differential data by librsync between the corresponding unmatched chunks. As
is shown in Figure 4, the second version has been modified upon the first by in-
serting a few bytes at a region near the beginning of the file. The sub-chunks are
computed using a CDC implementation that identifies chunk boundaries by com-
puting Rabin’s fingerprints on a sliding window. Supposing the relative changes
occurred in C2 and C2’, then librsync is called to synchronize the differential
between C2 and C2’.

The edit distance algorithm [24] is introduced in tpsync to locate unmatched
chunks after files are partitioned by CDC. Given two strings A[1,m] and B[1,n],
the edit distance of string A and B refers to the least edit operations in changing
A to B. There are three common edit operations: insert, delete and replace.
To find unmatched chunks with edit distance, tpsync first converts the two
version files’ signatures into two strings, then calculates the shortest transfer path
by edit distance algorithm. Since the distributions of the files’ fingerprints are

A Two-Phase Differential Synchronization Algorithm for Remote Files 69

ABCD AXZD BHFG CNPZ

h1 h2 h3 h4

ABCDMN

h1 h2 h3 h4

Hash value

Look up
h1 M N

Version 1

Version

Fig. 3. rsync Algorithm on a Small Ex-
ample

Ci: Chunks after partitioned by CDC

File (version 1) File (version 2)

CDC CDC

C1 C2 C3 Cn C1 C2 C3 Cn

Change

Sliding block based synchronization (librsync)

D1 D2 Dn

Di: The differential data

Fig. 4. An Example of tpsync Synchro-
nization Process

basically similar after split, the strings transferred from signatures are basically
similar. The edit distance algorithm is suitable for the transport of two similar
strings, so it could also be applied in the second-phase of tpsync, detecting the
unmatched chunks between the two files with a high degree of similarity. It is
different from the traditional duplicated data detection technology, in which the
index of signatures is required and the duplicated data is detected through the
index.

Open source librsync module is used in tpsync to synchronize pairs of corre-
sponding unmatched chunks in the second-phase. For one specified pair, librsync
generates a delta file including literals and indices. In relation to the synchro-
nized files, librsync may produce many delta files. Just as Figure 4 shows, D1,
D2, . . . , Dn are delta files generated by librsync with synchronizing two versions
of files.

2.4 tpsync Algorithm Details

The tpsync algorithm details are shown in Figure 5.

2.5 Signature Cached Synchronization Method

Regardless of in rsync or tpsync, signature values on one end need to be sent
to the other end. If storage space permitted, the signature of the older version
can be stored in local machine. In this way, the differential data can be directly
calculated with the signatures of the old version and the new version. The differ-
ences between the method of signature cached synchronization (SCS) and that
of traditional one are shown in Figure 6.

As shown in Figure 6(a), in signature cached synchronization, the signature of
the version 2, SIG(V2), would be cached locally after synchronizing the version
2 to server. When the version 3 is synchronized to the server, what should be
done is only to diff the version 3 and SIG(V2) to calculate the delta data(Δ2),
and then send the delta data to the server. On the other hand, in the traditional
method shown in the Figure 6(b), the differential data cannot be calculated

70 Y. Sheng, D. Xu, and D. Wang

Algorithm 1: the first-phase: partition files
with CDC
1: First Phase of tpsync(basisfile,

cdc exp chunk size)
Input: basisfile, old File;
cdc exp chunk size; expected chunk
size of CDC
Output: h basis, List of basisfile
chunks;

2: begin
3: List h basis: =empty;
4: chunkMask: =calculateMask(cdc exp

chunk size);
5: firstpos: =0;
6: foreach byte position X in basisfile do
7: window: =substring(basisfile, X,

substring size);
8: fp: =fingerprint(window);
9: if fp % chunkMask==magic value

then
10: chunk: =substring(f, firstpos, X-

firstpos);
11: hashvalue: =hash(chunk);
12: h basis.add(firstpos, X-firstpos,

hashvalue);
13: firstpos: =X;
14: end if
15: end foreach
16: end

Algorithm 2: the second-phase: locates un-
matched chunks and sync them with li-

brsync

1: Second Phase of tpsync(h basis,
h newfile, bs)
Input: h basis, List of basisfile chunks;
h newfile, List of newfile chunks; bs,
parameter of block size set in librsync

Output: LD, list of delta data
2: begin

//Calculate the edit distance between
h basis and h newfile

3: m=h basis.size(); n=h newfile.size();
4: for (i=1; i<=m; i++) do
5: for (j=1; j<=n; j++) do
6: cost=(h basis[m].hashvalue==

h newfile[n].hashvalue)?0:1;
7: Distance[i][j]=min(D[i-1,j]+1,

D[i,j-1]+1, D[i-1,j-1]+cost);
8: end for
9: end for

//Traverse the operations of insertion,
deletion, replacement and copy accord-
ing to the edit distance.

10: step=distance[m][n];
11: while (step!=0) do
12: switch(step)
13: case 1: // replace or copy
14: if (step!=distance[m-1][n-1])

then
15: delta=librsync(h basis[m],h newfile[n]);
16: LD.add(delta);
17: m−−; n−−;
18: break;
19: case 2: // insert
20: LD.add (h basis[m]);
21: m−−;
22: break;
23: case 3: // delete
24: Delete(h basis[m]);
25: n−−;
26: step=distance[m][n];
27: end while
28: end

Fig. 5. tpsync Algorithm Details

until the signatures of version 2, SIG(V2), have been received. The storage of
the signatures of the old version needs to take some extra storage space. Taking
rsync as an example, for a file of 100 MB, if the block size is 700 bytes and the
signature is 20 bytes (128 bits strong checksum and 32 bits rolling checksum), it
would consume extra 2.86 MB storage. tpsync only needs to store the signatures
of the first-phase. If the expected chunk size of CDC in the first-phase is 2048
bytes, and it also takes 128 bits hash signature, then it will consume about 0.78
MB storage space.

A Two-Phase Differential Synchronization Algorithm for Remote Files 71

3 Experimental Evaluation

3.1 Experimental Environment

We have implemented a prototype of tpsync in C++. The first-phase algorithm
adopts CDC implementation of LBFS and the second-phase algorithm uses open
source librsync [25] module. Our experiments were conducted on two Pentium(R)
Dual-core E5200 2.50 GHZ computers with 4 GB DDR2 memory and 500GB
Seagate ST3500620AS hard disks, running Ubuntu 9.10 connected by full-duplex
1Gps Ethernet. We use three different kinds of workloads, including ASCII text,
binary and database files, to compare the performance of tpsync and rsync.
ASCII text workloads include versions of gcc (4.4.2 and 4.3.4) and emacs (22.3
and 23.1). Another type of data widely upgraded and replicated is binary files.
Binary files have different characteristics compared to ASCII files. We chose the
entire contents of usr/lib directory in Ubuntu 9.04 and Ubuntu 9.10 as binary
files. The database workload contains two snapshots, including data and log file,
generated by Benchmark Factory 5.0 based on TPC-C [26]. Table 1 details the
different workload characteristics giving the total uncompressed size and the
number of files.

Client Server

V1 V1

SIG(V1)

V2

 V2

SIG(V2)

V3

 V3

Client Serve

V1 V1

SIG(V1)

V2

 V2

SIG(V2)

V3

 V3

SIG(V1)

SIG(V2)

Vn

Vn

Vn

Vn

SIG(Vi) Signature of Version i Version i Delta data

Signature Cached Sync Transitional Sync

(a) (b)

Fig. 6. Difference between Signature
Cached Synchronization(SCS) and Tradi-
tional Synchronization Method

Table 1. Characteristic of the Different
Workloads

Data Sets Versions File NumbersTotal Sizes(KBytes)

workload1
gcc(4.4.2) 62,298 383,423

gcc(4.3.4) 58,212 364,173

workload2
emacs(23.1) 3907 146,746

emacs(22.3) 3,523 136,046

workload3
usr/lib(9.10) 13,919 936,910

usr/lib(9.04) 10,360 739,226

workload4
database(v1) 2 221,636

database(v2) 2 221,636

Each type of workload has its own size distribution of unique files. Figure 7
shows the frequency histogram and the cumulative histogram of the unique file
sizes of gcc 4.4.2, gcc 4.3.4, usr/lib (Ubuntu 9.04) and usr/lib (Ubuntu 9.10).
Figure 7 indicates most unique files of gcc have sizes ranging from 256 bytes to 8
KB (28 to 213 bytes) and most files are around 4K bytes, while usr/lib workload
has low characteristic of central distribution. Figure 7 also shows that different
versions of the same workload have similar unique file size distribution.

3.2 Results of rsync Synchronization

We first use rsync to synchronize different workloads. rsync uses a default block
size of 700 bytes except for very large files where a block size of

√
n is used, in

72 Y. Sheng, D. Xu, and D. Wang

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
er

ce
nt

ag
e

File Size in log2(Bytes)

File Size Distribution(gcc4.3.4)

Frequency
Cumulative

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
er

ce
nt

ag
e

File Size in log2(Bytes)

File Size Distribution(gcc4.4.2)

Frequency
Cumulative

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
er

ce
nt

ag
e

File Size in log2(Bytes)

File Size Distribution(ubunt9.04 usr/lib)

Frequency
Cumulative

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20
 0

 0.2

 0.4

 0.6

 0.8

 1

P
er

ce
nt

ag
e

File Size in log2(Bytes)

File Size Distribution(ubunt9.10 usr/lib)

Frequency
Cumulative

Fig. 7. Unique File Size Distributions of
Different Workloads

Fig. 8. Data Transmission and Synchro-
nization Time of rsync on gcc

which n is the size of file in bytes. Figure 8 shows the synchronization results of
rsync on gcc with default and pre-set parameters.

For rsync synchronization, we have carried out experiments for different block
sizes: 64, 128, 300, 500 and 700 bytes respectively. The hit ratio is the proportion
of matched data to the total file size; the differential data is produced by librsync
module, including literal data and indices; extra communication data refers to
the transmission data over network other than differential data.

Table 2 and Figure 8 show that the sensitive factor of rsync is the block size
parameter. The smaller the block size is, the higher the hit ratio and the smaller
the differential data it generates, but the amount of extra network communica-
tion data and the synchronization time increases. Taking gcc as an example, the
block size of 64 bytes gives the hit ratio of 52.8% and the differential data size of
51,633 KB, which is just 54% of that of the default block size, 700 bytes. How-
ever, in this case, the data caused by extra network communication is 3.72 times
and the synchronization time is about 2.5 times than that of the block size is
chosen to the default value in rsync. Thus, although smaller block size can bring
higher hit ratio and smaller differential data, it would also cause the increase of
numbers of blocks because of smaller size of each block. Thus, the extra overhead
will increase and the synchronization time will not decrease. The growth of syn-
chronization time mainly comes from the increasing time of indexing, searching
and matching of the signatures.

To text files, such as gcc and emacs, we can enhance the hit ratio and reduce
the differential data by reducing the size of blocks. However, to binary files, like
usr/lib, the hit ratio would not increase obviously when reducing the block size,
while the synchronization time increases dramatically. Compared to default block
size of 700 bytes, the hit ratio increased by 1.39%, while the synchronization time
prolonged 3 times when the block size is set to 64 bytes. To database data set,
the hit ratio would not increase more obviously, while the synchronization time
increases drastically when the block size is reduced. Compared to default size,
the hit ratio increased little, while the synchronization time prolonged nearly 10
times when the block size is set to 64 bytes, which has a higher growth than
binary files.

A Two-Phase Differential Synchronization Algorithm for Remote Files 73

Table 2. Results of rsync Synchronization on Different Workloads

Data Sets
Blocksize

(Bytes)
Hit ratio

T-data(KB) Total data

(KBytes)

Sync time

(s)d-data e-data

gcc4.4.2

/

gcc4.3.4

64 52.8% 51,633 78,835 130,469 476

128 43.1% 63,185 47,088 110,273 334

300 45.6% 77,984 28,889 106,873 218

500 43.0% 87.185 23,479 110,664 207

700 40.8% 95,354 21,156 116,510 190

usr/lib(9.10)

/

usr/lib(9.04)

64 10.6% 466,689 167,067 633,755 260

128 9.7% 488,083 86,564 574,647 161

300 8.6% 510,449 40,412 550,861 104

500 8.0% 523,935 26,671 550,606 93

700 7.6% 533,437 20,783 554,220 89

database(v1)

/

database(v2)

64 84.7% 35,279 41,560 76,839 355

128 83.6% 37,046 20,782 57,828 300

300 81.5% 41,408 8,869 49,917 79

500 80.0% 44,450 5,323 49,773 49

700 78.7% 47,417 3,803 51,220 37

According to the result of the three types of workloads, we can see that, in
rsync, if the block size is smaller, the delta data would be reduced, but the extra
communication data and the calculation overhead will increase, which leads to
the prolong of synchronization time, especially for binary files and databases.

3.3 Results of tpsync Synchronization

tpsync partitions the file into chunks with the method of CDC in the first-
phase. CDC is tied to three parameters: exp sz (expected chunk size), max sz
(maximum chunk size) and min sz (minimum chunk size). In the following ex-
periments, min sz is set to the half of exp sz while max sz 2 times of exp sz. In the
second-phase, the fixed-sized sliding window is applied. Let bs denote the length
of such fixed-sized sliding window. Since small bs value leads to fine-grained
matching and generates small differential data, two bs values were selected: 64
and 128 bytes respectively in our tpsync experiments. Table 3 and Table 4 show
the results of the synchronization tests on gcc, emacs and usr/lib under different
exp sz values. Table 5 gives out the results of synchronization of database when
exp sz was fixed, while bs varied from 64 bytes to 700 bytes.

Table 3. Result of Synchronization with tpsync (bs=64 bytes)

Workload
Parameter Ph1-data

(KBytes)

Ph2-data(KB) Total data

(KBytes)

Sync time

(s)(exp sz,bs) d-data e-data

gcc4.4.2

/

gcc4.3.4

(2048,64) 2,993 66,823 41,671 111,487 177

(4096,64) 2,231 66,788 49,265 118,285 175

(6144,64) 1,991 66,525 52,872 121,388 171

(8192,64) 1,879 66,673 55,797 124,350 156

usr/lib(9.10)

/

usr/lib(9.04)

(2048,64) 1,861 527,777 70,196 599,834 84

(4096,64) 1,036 527,516 72,284 600,835 66

(6144,64) 772 527,445 73,272 601,489 63

(8192,64) 632 527,531 74,436 602,600 62

74 Y. Sheng, D. Xu, and D. Wang

Table 4. Result of Synchronization with tpsync (bs=128 bytes)

Workload
Parameter Ph1-data

(KBytes)

Ph2-data(KB) Total data

(KBytes)

Sync time

(s)(exp sz,bs) d-data e-data

gcc4.4.2

/

gcc4.3.4

(2048,64) 2,993 78,628 20,922 102,543 154

(4096,64) 2,231 78,608 24,706 105,546 154

(6144,64) 1,991 78,343 26,504 106,839 140

(8192,64) 1,879 78,396 27,964 108,240 138

usr/lib(9.10)

/

usr/lib(9.04)

(2048,64) 1,861 534,727 35,122 571,710 60

(4096,64) 1,036 534,498 36,162 571,695 59

(6144,64) 772 534,401 36,656 571,829 58

(8192,64) 632 534,514 37,236 572,383 56

According to the analysis of the result of tpsync’s experiments on gcc, we
have observed:

(1) when bs is fixed, different exp sz values have slight effects on synchronization
time. For instance, if bs is fixed at 64 bytes, the synchronization time ranges
slightly from 156 seconds to 177 seconds with different exp sz values.

(2) tpsync consists of three parts of data over the network: the communicat-
ing data of CDC in the first-phase (Ph1-data); the differential data in the
second-phase (d-data) and the communication data other than the differ-
ential data in the second-phase (Ph2-data). When bs is fixed, if the exp sz
value increases, the Ph1-data would decline, the Ph2-data would increase,
the e-data would stay the same and the total amount of data(Total data)
transferred over network would increase, but slightly.

(3) When bs is 128 bytes, the synchronization time reduces by 13.6% compared
to the condition when bs is 64 bytes, and the amount of data transferred
over network reduces by 11%.

For tpsync, the synchronization time consists of five parts: the time of calculation
of CDC in the first-phase (cdc-time), the time of calculating differential data in
the second-phase (delta-time), the differential data patching time (patch-time),
the copying time (copy-time) and other extra consuming time (other). The copy-
time refers to the time consumed by directly copying files, which do not exist
in the other side, from one side to the other. Figure 9 shows different parts
of synchronization time of tpsync when bs are 64 and 128 bytes respectively.
According to Figure 9, we can see the average cdc-time for gcc with different
exp size parameter makes up 37.8% of the total synchronization time. If such
time can be reduced, the efficiency of tpsync can improve further. The method
of signature cached synchronization this paper proposed aims for reducing the
cdc-time, through fewer extra storage in exchange for a substantial reduction in
synchronization time.

Compared to rsync, tpsync has less synchronization time, when the same bs
lengths are selected in both algorithm. Taking gcc as an example, when bs is
64 bytes, synchronization time of rsync is 476 seconds, while that of tpsync
is 177 seconds, which is the worst case for tpsync among all bs values; when
bs is 128 bytes, rsync’s synchronization time is 344 seconds, while tpsync’s syn-
chronization time is 154 seconds. As shown in Figure 8(b), tpsync’s average

A Two-Phase Differential Synchronization Algorithm for Remote Files 75

Table 5. Result of Database Workload Synchronization with tpsync (exp sz=8192
Bytes)

Workload
Parameter Ph1-data

(KBytes)

Ph2-data(KB) Total data

(KBytes)

Sync time

(s)(exp sz,bs) d-data e-data

databasa(v1)

/

database(v2)

(8192,64) 553 34,983 26,959 62,494 32

(8192,128) 553 36,980 13,482 51,016 29

(8192,300) 553 41,750 5,757 48,060 24

(8192,500) 553 45,106 3,456 49,116 23

(8192,700) 553 48,138 2,471 51,162 23

synchronization times are 169 seconds and 190 seconds when bs are chosen to
64 bytes and 128 bytes respectively. They are both less than rsync’s best syn-
chronization time, 190 seconds, when bs is set 700 bytes in rsync.

When bs is 64 bytes, the amount of data over network of rsync is 130 MB,
while that of tpsync is 124 MB in the worst case (exp sz=8192 bytes), as is
shown in Figure 10 and Table 2, when bs is 128 bytes, the amount of data over
network of rsync is 110 MB, while that of tpsync is 108 MB in the worst case
(exp sz=8192 bytes). Meanwhile, the maximum amount of data transmission
over network is approximately 108MB when bs is 128 bytes in tpsync, which is
less than rsync’s least transmission data 117 MB when bs is 700 bytes. Obviously,
when the amounts of data over network are nearly the same, tpsync has a higher
performance in synchronization time than rsync.

Results of rsync’s experiments also show that when rsync chooses the default
block size of 700 bytes, its overall performance is the best, which has also been
validated in paper [8]. Results of tpsync’s experiment show that when exp sz is
2048 bytes and bs is 128 bytes, its overall performance is the best. Under this
case, tpsync has less synchronization time by 12% and bandwidth savings over
network by 18.9%, compared to rsync.

When exp sz is fixed at 8192 bytes and bs are chosen to 64, 128, 300, 500 and
700 bytes respectively, the result of experiments shows that tpsync’s average
amount of data over network is about 52 MB, while that of rsync is about 57

Fig. 9. Synchronizing Time of gcc with
Different exp sz Parameter in tpsync

Fig. 10. Amount of Data Transferred over
Network for gcc’s Synchronization with
Different exp sz Parameter in tpsync

76 Y. Sheng, D. Xu, and D. Wang

MB. When exp sz is 8192 bytes and bs is 300 bytes, tpsync’s amount of data over
network is about 48 MB and its synchronizing time is 24 seconds, both better
than those of rsync, which are respectively 51 MB and 37 seconds (bs=700
Bytes).

Compared to rsync, tpsync generates nearly the same amount of data over
network, but its synchronization time is much less than rsync especially with
small bs value. The following four reasons account for such better performance:

(1) When calculating the signature, rsync works in a serial manner. It first cal-
culates signatures on one side and then sends them to the other end. The
other side then calculates and matches subsequently; while tpsync utilizes
parallel calculation on both sides and then sends the signature from one side
to the other to conduct signature match process.

(2) To files of different versions, tpsync utilizes edit distance algorithm to locate
pairs of unmatched chunks between files, which is different from the index
and match method used within rsync. In the first-phase, tpsync partitions
files into chunks based on contents and calculates their corresponding sig-
nature. Because of the similarity of fingerprints of different versions of files,
the edit distance algorithm can locate changed segments quickly.

(3) tpsync utilizes large window size to locate changed data segments, thus it
has less extra communication overhead than rsync.

(4) To pairs of unmatched chunks of different files, tpsync calculates the differ-
ential data on small-grained chunks compared to the traditional way of rsync
to calculate the differential data on the whole file. Thus, the second-phase
of tpsync owns higher speed of synchronizing parts of the file than rsync
synchronizing the whole file.

3.4 Results of Signature Cached Synchronization

According to the analysis of Figure 6, it is obvious that the synchronizing time
can be reduced further if the transferring time of the CDC signature is reduced.
Table 6 shows the result of synchronization time of gcc using SCS and without
using SCS. Although cached signature consumes some extra storage space, it
can improve synchronization efficiency further. Cached signature can save the
computational overhead and the signature transferring time of the recipient side.
Compared to the method without caching signature, signature cached synchro-
nization method reduces its synchronization time by about 6.25% on average for
gcc, as shown in Table 6.

Table 6. Result of Signature Cached Synchronization Method

Parameter Ex-storage(MB) SCS time(s) No-SCS time(s) Improvement(%)

(2048,128) 2,993 156 145 6.9%

(4096,128) 2,231 154 144 6.5%

(6144,128) 1,991 140 131 6.1%

(8192,128) 1,879 137 129 5.5%

A Two-Phase Differential Synchronization Algorithm for Remote Files 77

4 Conclusion

The synchronization of remote files has been widely used in data back-up, web
caching and etc. This paper presents tpsync, a two-phase synchronization al-
gorithm, which introduces a two level redundancy elimination phases to reduce
synchronization time and bandwidth savings over network. Compared to rsync,
results of experiments show that tpsync has reduced synchronization time by
12% and bandwidth savings over network by 18.9%, when they are respec-
tively under their own best parameters. When signature cached synchronization
method is adopted, tpsync gets better performance further. In the future work,
we still try to improve tpsync’s performance with optimum choice of these pa-
rameters according to the sizes and the type of each file and widths of networks,
in order to balance the tradeoff between bandwidth savings and computation
overheads.

Acknowledgements. This research is sponsored in part by the National High
Technology Research and Development Program of China under Grant
No.2009A-A01Z104, the Notational Natural Science Foundation of China un-
der Grant No.60833004 and 60673145.

References

1. Ajtai, M., Burns, R., Fagin, R., Long, D., Stockmeyer, L.: Compactly encoding
unstructured inputs with differential compression. Journal of the ACM (JACM) 49,
318–367 (2002)

2. Whitten, A.: Scalable Document Fingerprinting. In: The USENIX Workshop on
E-Commerce (1996)

3. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Communications of the ACM 20, 350–353 (1977)

4. Korn, D., Vo, K.: Engineering a differencing and compression data format, pp.
219–228 (2002)

5. MacDonald, J.: File system support for delta compression. Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley, Berkeley,
CA, Master thesis (May 2000)

6. Percival, C.: Naive differences of executable code, Draft Paper,
http://www.daemonology.net/bsdiff

7. Trendafilov, D., Memon, N., Suel, T.: zdelta: An efficient delta compression tool.
Department of Computer and Information Science, Polytechnic University Techni-
cal Report (2002)

8. Tridgell, A.: Efficient algorithms for sorting and synchronization. PhD thesis, Aus-
tralian National University (1999)

9. Meunier, P., Nystrom, S., Kamara, S., Yost, S., Alexander, K., Noland, D., Crane,
J.: ActiveSync, TCP/IP and 802.11 b Wireless Vulnerabilities of WinCE-based
PDAs. In: Proceedings of Eleventh IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WET ICE 2002, pp.
145–150 (2002)

10. Whitepapers, P.: Invasion of the data snatchers (1999),
http://www.pumatech.com/enterprise/wp-1.html

http://www.daemonology.net/bsdiff
http://www.pumatech.com/enterprise/wp-1.html

78 Y. Sheng, D. Xu, and D. Wang

11. Palm: Palm developer knowledge base manuals (1999),
http://palmos.com/dev/support/docs/palmos/ReferenceTOC.html

12. Muthitacharoen, A., Chen, B., Mazieres, D.: A low-bandwidth network file sys-
tem. In: Proceedings of the eighteenth ACM symposium on Operating systems
principles, pp. 174–187. ACM, New York (2001)

13. Teodosiu, D., Bjorner, N., Gurevich, Y., Manasse, M., Porkka, J.: Optimizing file
replication over limited bandwidth networks using remote differential compression.
Technical report, Microsoft Corporation (2006)

14. Grune, D.: Concurrent Versions System, a method for independent cooperation.
Report IR-114, Vrije University, Amsterdam (1986)

15. Collins-Sussman, B., Pilato, C., Pilato, C., Fitzpatrick, B.: Version control with
subversion. O’Reilly Media, Inc., Sebastopol (2008)

16. Policroniades, C., Pratt, I.: Alternatives for detecting redundancy in storage sys-
tems data. In: Proceedings of the 2004 USENIX Annual Technical Conference, pp.
73–86 (2004)

17. Jain, N., Dahlin, M., Tewari, R.: Taper: Tiered approach for eliminating redun-
dancy in replica synchronization. In: Proceedings of the 4th Usenix Conference on
File and Storage Technologies (FAST 2005) (2005)

18. Denehy, T., Hsu, W.: Duplicate management for reference data. Research Report
RJ10305, IBM (2003)

19. Kulkarni, P., Douglis, F., LaVoie, J., Tracey, J.: Redundancy elimination within
large collections of files. In: The USENIX Annual Technical Conference, General
Track, 59–72 (2004)

20. Quinlan, S., Dorward, S.: Venti: a new approach to archival storage. In: Proceedings
of the FAST 2002 Conference on File and Storage Technologies, vol. 4 (2002)

21. Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon,
H., Weimer, W., Weimer, W., Wells, C., et al.: Oceanstore: An extremely wide-area
storage system. In: Proceedings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Citeseer, pp.
190–201 (2000)

22. Rabin, M.: Fingerprinting by random polynomials. Technical report, Technical Re-
port TR-15-81, Center for Research in Computing Technology, Harvard University
(1981)

23. Bobbarjung, D., Jagannathan, S., Dubnicki, C.: Improving duplicate elimination
in storage systems. ACM Transactions on Storage (TOS) 2, 424–448 (2006)

24. Levenshteiti, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. In: Soviet Physics-Doklady, vol. 10 (1966)

25. Martin Pool, D.B.: librsync, http://librsync.sourceforge.net
26. Council, T.: TPC BenchmarkTM C Standard Specification (2005)

http://palmos.com/dev/support/docs/palmos/ReferenceTOC.html
http://librsync.sourceforge.net

A New Parallel Method of Smith-Waterman
Algorithm on a Heterogeneous Platform

Bo Chen, Yun Xu, Jiaoyun Yang, and Haitao Jiang

Department of Computer Science, University of Science and Technology of China,
Key Laboratory on High Performance Computing, Anhui Province, China

cbo869@mail.ustc.edu.cn

Abstract. Smith-Waterman algorithm is a classic dynamic program-
ming algorithm to solve the problem of biological sequence alignment.
However, with the rapid increment of the number of DNA and protein
sequences, the originally sequential algorithm is very time consuming due
to there existing the same computing task computed repeatedly on large-
scale data. Today’s GPU (graphics processor unit) consists of hundreds
of processors, so it has a more powerful computation capacity than the
current multicore CPU. And as the programmability of GPU improved
continuously, using it to do generous purpose computing is becoming very
popular. In order to accelerate sequence alignment, previous researchers
use the parallelism of the anti-diagonal of similarity matrix to paral-
lelize the Smith-Waterman algorithm on GPU. In this paper, we design
a new parallel algorithm which exploits the parallelism of the column
of similarity matrix to parallelize the Smith-Waterman algorithm on a
heterogeneous system based on CPU and GPU. The experiment result
shows that our new parallel algorithm is more efficient than that of pre-
vious, which takes full advantage of the features of both the CPU and
GPU and obtains approximately 37 times speedup compared with the
sequential algorithm named OSEARCH implemented on Intel dual-core
E2140 processor.

1 Introduction

General purpose computing on GPU (GPGPU) is one of the hottest trends in
high performance computing. With the powerful computing capability, today’s
GPU is very suitable to solve the high parallel, computing-intensive problems,
especially the scientific computation, such as bioinformatics [1, 2, 3, 4], which
is an important interdiscipline of computer science and biological science. To
facilitate the programming on GPU for general purposes, Nvidia corporation
has developed a new GPGPU platform named CUDA (compute unified device
architecture) [5] which uses the language similar to standard C language to
program rather than graphics API (application programming interface), such as
OpenGL or DirectX. So it is easier to program on GPU using CUDA because it
doesn’t need to learn graphics knowledge.

Although today’s GPU becomes a programmable data-parallel processor, if
we can’t fully exploit the potential parallelism of the problem or the problem

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 79–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

80 B. Chen et al.

is inherently serial, the performance of the program implemented on GPU will
even be worse than that of CPU. In order to obtain the optimal performance,
building a heterogeneous system integrated with CPU and GPU is a very good
solution. For a given problem, the first step is to identify the parallel parts
through analysis of the relationship of data dependency, the next to employ
GPU to compute them in parallel, and the sequential parts are still computed
by CPU. In this way, it can take advantage of the strength of both CPU and
GPU.

In this paper, we will demonstrate how well the heterogeneous system inte-
grated with CPU and GPU can accelerate the process of biological sequence
alignment. And we designed a new parallel method of the Smith-Waterman al-
gorithm [6] which can compute all the elements in the same column of the Smith-
Waterman DP (dynamic programming) matrix independently of each other in
parallel rather than Liu’s algorithm [7] and Fumihiko Ino’s algorithm [8] which
compute all the elements in the same anti-diagonal independently of each other
in parallel. Also we will do experiment to demonstrate that our new parallel
algorithm is more efficient than the previous ones.

The remainder of this paper is organized as follows. Section 2 reviews the
related work about the problem of sequence alignment. Section 3 describes
this problem in details and proves why our new parallel method is reasonable.
Section 4 implements and optimizes our parallel algorithm on a heterogeneous
system. Section 5 gives an experimental result to evaluate the performance of
our algorithm. Finally, concludes and points the direction of our further work.

2 Related Work

The Smith-Waterman algorithm [6] is a classic dynamic programming algorithm
used to solve the problem of sequence alignment. However, it is a sequential and
time-consuming algorithm which makes it impractical for a large number of se-
quence alignments. A more practical solution is that using a heuristic approach
to generate a near optimal solution, such as FASTA [9] and BLAST [10] fami-
lies, but they are approximation algorithms and can’t give an optimal solution.
OSEARCH and SSEARCH [2] are two Smith-Waterman implementations that
are part of the FASTA program. All the algorithms above are implemented on
CPU.

To the best of our knowledge, Liu’s algorithm [7] is the first one which uses
GPU to accelerate biological sequence alignment. It is based on that all the
elements in the same anti-diagonal of the Smith-Waterman DP matrix can
be computed independently in parallel and implements both pairwise sequence
alignment and multiple sequences alignment on a single GPU. Fumihiko Ino’s
algorithm [8] is an extension of Liu’s algorithm on multiple GPUs.

Although both of the above algorithms implemented on GPU obtain a con-
siderable speedup compared with the serial algorithm implemented on CPU,
there is still room for further improvement of the program performance. Firstly,
the parallel granularity is the anti-diagonal of the Smith-Waterman DP matrix,

A New Parallel Method of Smith-Waterman Algorithm 81

so there is a workload imbalance case among kernels which invoked to parallel
compute all elements in the same anti-diagonal due to the different length of the
anti-diagonals. Secondly, limited by the GPU’s architecture at that time, Liu
employs texture memory to store the elements of the similarity matrix, as we
known, texture memory is off-chip and the latency of accessing it is much higher
than that of accessing the shared memory of current GPU [11].

In this paper, we take some steps to avoid the above factors affecting the
performance. After carefully analyzing the relationship of data dependency, we
can parallelize the column of the similarity matrix, so the problem of workload
imbalance doesn’t exist due to the each column has the same length. In addition,
in order to reduce the latency of access memory extremely, we maximize the use
of the on-chip memory such as registers and shared memory.

3 Sequence Alignment

There are two kinds of sequence alignment. One is global alignment which con-
verts a sequence A = a1a2 . . . an to another sequence B = b1b2 . . . bm by insertion
or elimination of sequence elements, where n and m represent the length of A
and that of B, respectively [8]. The other one is local alignment which recognizes
the most similar part in the pair of sequences. Here the similarity represents the
cost of alignment which correlated to the number of insertions and eliminations.
So the local alignment is a special case of sequence alignment. Also it consists of
pairwise sequence alignment and multiple sequences alignment (MSA). In this
paper, we just discuss the problem of local sequence alignment.

3.1 Sequential Pairwise Sequence Alignment

In general, given a biological sequence usually called query sequence and a
database which contains many sequences, each one is called a target sequence, the
purpose of pairwise sequence alignment is that we must extract the most similar
or identical subsequences from query sequence and target sequence by aligning
the query sequence with every target sequence in the database. The Smith-
Waterman algorithm is the most classic algorithm for solving the sequence local
alignment which uses a matrix called similarity matrix to store the similarity
values of every pair subsequence of query sequence and target sequence from the
first position. For example, let a sequence A = a1a2 . . . an be the query sequence,
a sequence B = b1b2 . . . bm be one of target sequence, matrix H(n+1)x(m+1) be the
similarity matrix and element H(i, j) represent the highest similarity between
a1a2 . . . ai and b1b2 . . . bj , namely a subsequences ending at element ai and bj ,
respectively, where 1 ≤ i ≤ n and 1 ≤ j ≤ m [8]. The similarity value H(i, j)
can be computed as follows:

H(i, j) = max{0, E(i, j), F (i, j), H(i− 1, j − 1) + s(ai, bj)},
E(i, j) = max {H(i, j − 1)− p, E(i, j − 1)− q} ,
F (i, j) = max {H(i− 1, j)− p, E(i− 1, j)− q} .

82 B. Chen et al.

Where, E(i, j) and F (i, j) are the optimal similarity values of subsequences
a1a2 . . . ai and b1b2 . . . bj but with a gap in sequence A and B. The s(ai, bj) is the
substitution cost of converting one element ai to another element bj . The p and
q represent the value of gap penalty. At the start, H(i, 0) = E(i, 0) = H(0, j) =
F (0, j), for all i ∈ [0, n] or j ∈ [0, m]. Usually, the substitution cost s(ai, bj)
and gap penalty p, q are replaced with a constant value, such as p = q = 1,
s(ai, bj) = 2 if ai = bj , otherwise s(ai, bj) = −1 [7]. In this way, the above
formula of compute H(i, j) can be simplified as:

H(i, j) =

⎧
⎨
⎩

max{0, H(i, j − 1)− 1, H(i− 1, j)− 1,
H(i− 1, j − 1)− 1}, if ai �= bj

H(i− 1, j − 1) + 2, if ai = bj

(1)

By the recursive formula (1), the similarity matrix of the query sequence A with
the target sequence B can be computed. An example is showed in figure 1.

A
G
C
C

C
A

C A C T A T G C

T

0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0

0 2 1 0 2 1 0 0
0 1 1 0 1 1 3 2
2 1 3 2 1 0 2 5
2 1 3 2 1 0 1 4
1 1 2 5 4 3 2 3
2 1 3 4 4 3 2 4
1 4 3 3 6 5 4 3

the pair of most similar subsequences:
C A C T A

C C T C A

Fig. 1. This example shows the similarity matrix H computed for a query sequence
A = AGCCTCA and a target sequence B = CACTATGC using Smith-Waterman al-
gorithm. And tracing back from the maximum value of the similarity matrix (H(7, 5) =
6), we can get the pair of most similar subsequences: CACTA and CCTCA.

3.2 Parallel Pairwise Sequence Alignment

From the figure 2(a), it can be seen that only the elements in the same anti-
diagonal painted the same color can be computed simultaneously and Liu [7]
and Fumihiko [8] just used this parallelism of anti-diagonal. However, through
unrolling the recursive formula (1), we find that the relationship of data depen-
dency among the same column can be eliminated, so the elements in the same
column can be computed in parallel. Now we will show why it is reasonable.

According to formula (1), if the condition ai = bj satisfies, H(i, j) is de-
termined by H(i − 1, j − 1) instead of any other element of the jth column.

A New Parallel Method of Smith-Waterman Algorithm 83

H(i, j)H(i, j-1)

H(i-1, j)H(i-1, j-1)

i

j

2(a)

n

i+1i
1

2

-1

n

i-1

depend depend

2(b)

Fig. 2. 2(a) The relationship of data dependency in the similarity matrix. Element
H(i, j) of the similarity matrix depends on its left element H(i, j − 1), upper element
H(i− 1, j) and the diagonal element H(i− 1, j− 1). 2(b) The new relationship of data
dependency in the similarity matrix. The elements of ith column only depend on the
elements of (i− 1)th (i ≥ 1) column.

Otherwise, H(i, j) depends on the maximum one of H(i, j − 1), H(i − 1, j)
and H(i − 1, j − 1)(we don’t consider the constant value 0 temporarily). Here,
it only needs to consider the case that H(i − 1, j) is maximum value because
whether H(i, j − 1) or H(i− 1, j − 1) is the maximum one, H(i, j) doesn’t de-
pend on the elements of the jth column. As the previous hypothesis, H(i, j) =
max {0, H(i− 1, j)− 1}. Considering the worst case that H(i − 1, j) − 1 > 0,
namely H(i, j) = H(i−1, j)−1, we can further recursively compute H(i−1, j) un-
til there is no data dependency in the jth column or i = 0(initially H(0, j) = 0).
Suppose ak (k > 0) is the first element encountered meeting with bj in the pro-
cess of the above recursion and H(r, j)− 1 (k ≤ r ≤ i− 1) is the maximum one
in every iteration, so

H(i, j) = max {0, H(k − 1, j − 1)− (i− k) + 2} . (2)

In order to prove the equation (2), we firstly use mathematical induction to
prove the theorem 1.

Theorem 1. If ak is the first element meeting with bj from ai to a1 and H(r, j)−1
(k ≤ r ≤ i− 1) is the maximum one in every iteration, then

H(i, j) = H(k, j)− (i− k),where 1 ≤ k < i. (3)

Proof

– Initially, when k = i − 1, H(i, j) = H(k, j) − (i − k) = H(i − 1, j) − 1,
established.

– Suppose the equation (3) is established when m = i − r (k < m < i − 1),
namely

H(i, j) = H(m, j)− (i−m). (4)

84 B. Chen et al.

– Now we will prove that when m = i−r−1 the equation (3) is still established.
According to the equation (4), furthermore, because am doesn’t meet with
bj , so

H(m, j) = H(m− 1, j)− 1. (5)

Take the equation (5) to the equation (4), H(i, j) = H(m−1)−(i−m)−1 =
H(m− 1, j)− (i− (m − 1)), so the hypothesis was established, namely the
theorem 1 is established. ��

According to theorem 1, it is easy to prove the equation (2). Because of ak

meeting with bj, so
H(k, j) = H(k − 1, j − 1) + 2. (6)

Take the equation (6) to the equation (3) and considering the constant value 0,
so

H(i, j) = max{0, H(k − 1, j − 1)− (i− k) + 2},
namely the equation (2) is established.

Through the above proof, we eliminate the data dependency among the same
column of similarity matrix and transform the parallel granularity of anti-diagonal
to that of column, as seen in figure 2(b). So the element H(i, j) can be computed as:

H(i, j) =

⎧
⎨
⎩

max{0, H(i, j − 1)− 1, H(i− 1, j − 1)− 1,
H(k − 1, j − 1)− (i− k) + 2}, if ai �= bj

H(i− 1, j − 1) + 2, if ai = bj

where k = max{n, for 0 < n < i and an = bj}.
When programming, an array called pre dependence is used to store the index
of the element in query sequence which is the first one meeting with a given
element in target sequence from current position to 1.

4 Implement the Parallel Algorithm on a Heterogeneous
System

4.1 Load Partition

In order to take advantage of the strengths of both CPU and GPU in our het-
erogeneous system respectively, we must identify the sequential parts and the
parallel parts of the whole program, and make the former computed by GPU,
the later computed by CPU. For the problem of sequence alignment, the paral-
lelism derived from the computation of the similarity matrix which is also the
most time consuming parts. To enhance the parallelism, like Liu’s algorithm, we
exploit both the task-level parallelism and the data-level parallelism. The task-
level parallelism is that one thread block tackles the alignment of one target
sequence with the query sequence, so there will be dozens of target sequences
is aligned simultaneously because our GPU has 14 SMs (stream multiprocessor)
and each one can process eight thread blocks in parallel at most [11].

A New Parallel Method of Smith-Waterman Algorithm 85

The data-level parallelism is that one column of similarity matrix can be
computed in parallel, namely one thread of a thread block aligns one character
of target sequence with that of query sequence. This way of parallel computing
is shown in figure 3. After all alignments completed, we can get a similarity
value for every target sequence with the query sequence, and transfer them from
global memory to host memory, then select the maximum one among them and
compute the most similar subsequences on CPU, and this is the sequential parts
which computed by CPU because the time consumed in this step can be ignored
related to that of former step.

Block k

Block 0

Thread 0

Thread n

grid

0 1 m

Target sequence 0

Target sequence k

0

1

n

Fig. 3. The way of parallel process in kernel. The m and n represent the length of
target sequence and query sequence respectively.

4.2 Pseudocodes of the Algorithm

We implement the new parallel algorithm of Smith-Waterman algorithm on a
heterogeneous system integrated with CPU and GPU. The pseudocodes of the
algorithm implemented both on CPU and GPU are illustrated in figure 4(a) and
figure 4(b).

4.3 Some Optimization Strategies

Circularly Use Shared Memory. In order to find the optimal target sequence
from the database which contains a subsequence having the highest similarity
value with the subsequence of query sequence, it needs to check each target
sequence and compute the corresponding similarity matrix. This is the most
time consuming step, so we invoke a kernel executed on GPU to complete it.
However, the shared memory of GPU is just 16KB which is too small to store the
entire similarity matrix, unless using the global memory to replace it. Yet, the
latency of accessing global memory is about 400 ∼ 600 clock cycles compared to
that of shared memory’s 4 cycle if there is no bank conflict [11]. Furthermore,
the problem of local alignment is memory intensive, so access global memory
frequently will affect the performance of the whole program greatly. Fortunately,
there is no need to store the entire similarity matrix, just two columns of it

86 B. Chen et al.

1. Randomly generate the query protein sequence
 and many target protein sequences;
2. Calculate the pre_dependence array for query
 sequence;
3. Copy query sequence and pre_dependence array
 to constant array, also target sequences to global
 memory on GPU;
4. Invoke kernel to compute the similarity value of
 query sequence with each target sequence on
 GPU;
5. Copy the sequence number with maximum
 similarity value back to CPU memory;
6. Compute the most similar subsequences on CPU.

4(a)

1. Allocate an array called target_seq on shared
 memory to store one target sequence;
2. Allocate two arrays named pre_col and cur_col
 on shared memory to store the elements of the
 column which was computed completely in the
 previous iteration and that will be computing in
 current iteration respectively;
3. Threads in the same block load one target
 sequence to array target_seq, one thread loads
 one element of the sequence;
4. For i=0 to m // for each column
 Calculate the element of the current column
 according to the arrays pre_col and
 pre_denpendence;
 __syncthreads();
 Copy the elements of cur_col to pre_col
 preparing for the next iteration;
 Compute the maximum value of the current
 column using reduce-likely method;
5. Store the sequence number with maximum
 similar value to global memory.

4(b)

Fig. 4. 4(a) The pseudocode of the algorithm implemented on CPU. 4(b) The pseu-
docode of the algorithm implemented on GPU.

will be enough. The reason is that the parallel granularity is the column of
the similarity matrix, namely, only the elements located at the current column
can be computed simultaneously and they just depend on that of the previous
column, the following columns can’t be computed before the computation of
current column is completed. So we use two arrays named pre col and cur col
in the shared memory to store the column computed completely in the previous
iteration and the column will be computed in the current iteration respectively.
As seen in figure 5, the use of the two arrays is cyclic.

the ith iteration

 0

1

 n

depend depend depend

the (i+1)th iteration the (i+2)th iteration

pre_col cur_col pre_colcur_col cur_colpre_col

Fig. 5. Shows the cyclic use of arrays pre col and cur col in the different iterations

A New Parallel Method of Smith-Waterman Algorithm 87

Use Reduce-Likely Method to Compute the Maximum Value. When
the current column is computed completely, it needs to compute the maximum
value of the column in order to determine whether it is a currently maximum
value. We use a reduce-likely method to compute the maximum value of the
current column which is very efficient. Figure 6 gives an illustration of this
method.

6 4 1 9 7 10 8 2

7 10 8 9

10

8 10

1 2 3 4 5 6 7 8

Fig. 6. This example shows the process of select the maximum value of an array which
contains eight elements using reduce-likely method. When the element number of array
equals 2n, it only needs n iterations to get the maximum value and the ith iteration is
executed parallel by 2(n−i) threads.

Coalesced Access to Global Memory. The global memory is not cached, and
the latency of accessing it is around 400 ∼ 600 clock cycles. So it is more impor-
tant to take the appropriate access pattern to get maximum memory bandwidth
because the bandwidth for non-coalesced accesses is around 2 ∼ 10 times lower
than that for coalesced accesses. Fortunately, GPU is capable of reading 32-bit,
64-bit, or 128-bit words from global memory into registers in a single instruction,
and the global memory bandwidth can reach the maximum value when simulta-
neous memory accesses by thread in a half-warp can be coalesced into a single
memory transaction. The size of a memory transaction can be either 32 bytes
(for compute capability 1.2 and higher only), 64 bytes, or 128 bytes [11]. The
protein sequence consists of many specific characters, and the size of a character
in global memory is 1 bytes. So if the data type of protein sequence is defined
as char, reading or writing global memory can’t achieve coalesced access. But
we can use the build-in vector type uchar4 which makes four characters together
to represent the protein sequence. In this way, it can obtain coalesced access to
global memory due to the type uchar4 requires 4 bytes memory space and each
thread in a half-warp access 4 bytes resulting in one 64-byte memory transaction.

5 Experiment Results

In order to show our parallel algorithm is more efficient than previous ones, we
implemented the above algorithms on a heterogeneous system which consists
of an Intel dual-core E2140 processor and an Nvidia 9800GT graphics card. In

88 B. Chen et al.

this experiment, we generated 176, 469 protein sequences as the target sequences
randomly and the length of every sequence is 361, and also five query sequences
with different length (from 63 to 511).

In addition, Liu’s algorithm [7] and Fumihiko Ino’s algorithm [8] implemented
on GPU both are using the graphics API which increases the complexity of
programming and decreases performance, thus we use the more convenient and
efficient platform of Nvidia’s CUDA to implement our algorithm instead. The
experiment results can be seen from table 1 (all the time in table 1 is measured
in second).

Table 1. OSEARCH is a straightforward implementation of Smith-Waterman algo-
rithm. All data in the Liu’s algorithm comes from [7]. And the speedup of Liu’s algo-
rithm represents the ratio that the runtime of OSEARCH implemented on Pentium 4
3.0GHz CPU to that of Liu’s parallel algorithm implemented on Geforce 7900 GTX.
Similarly, the speedup of our algorithm is the ratio that the runtime of OSEARCH
implemented on Intel dual-core E2140 processors to that of our parallel algorithm
implemented on Geforce 9800 GT.

Query
sequence
length

Liu’s algorithm Our algorithm

OSEARCH
on

Pentium 4
3.0GHz
runtime

Geforce
7900 GTX
runtime

Speedup OSEARCH
on Intel
dual-core
E2140

runtime

Geforce
9800 GT
runtime

Speedup

63 91 14 6.5 90 2.3 39.1

127 184 20 9.2 183 4.9 37.3

255 375 31 12.1 375 10.7 35.0

361 533 44 12.1 537 14.3 37.6

511 732 56 13.1 768 21.6 35.6

Besides, we also compared our algorithm with Fumihiko Ino’s [8] which extends
Liu’s algorithm to multiple GPUs. In [8], the authors scan SWISS-PROT database
of release 51.0, which contains 241, 242 protein sequences and the average length
is 367 which is the same with that of the query sequence. For a single scan of the
database, the fastest running time is 18s on the Geforce 8800 GTX which contains
128 processor cores [8]. In experiment we also scan the same scale of the target
sequences generated randomly, and the running time is 19.12s on Geforce 9800
GT which contains 112 processor cores. Intuitively, our algorithm taken more time
than Fumihiko Ino’s, but Fumihiko Ino’s GPU has 16 processor cores more than
ours. When considering the time spent by the signal processor core, our algorithm
is more efficient than Fumihiko Ino’s due to our signal processor core consumed
2141.44s compared with that of Fumihiko Ino’s 2304.0s.

A New Parallel Method of Smith-Waterman Algorithm 89

7(a) 7(b)

Fig. 7. 7(a) Shows the different running times of different implementations. 7(b) Il-
lustrates the speedup of Liu’s algorithm and our algorithm respectively. And the data
comes from the table 1.

6 Conclusion

In this paper, we designed a new parallel method of Smith-Waterman algorithm
to solve the problem of biological sequence alignment and implemented the al-
gorithm on a heterogeneous system based on CPU and GPU through CUDA
platform. The experiment results show that our new parallel algorithm is more
efficient than previous ones. And the result of this work also indicates that a het-
erogeneous system integrated with CPU and GPU (or other computing devices,
such as FPGA) has a powerful computation capability and superior generality,
so it will be applied to more fields [12].

In the future, we will research the performance optimization of high perfor-
mance computing on a heterogeneous system integrated with CPU and GPU,
and further improve the performance of our algorithm through decreasing the
number of access the global memory [13]. Furthermore, we also plan to solve
more scientific computing problems on the heterogeneous platform.

Acknowledgments

We thank Yuzhong Zhao and Da Teng, who provided many helpful suggestions
for our article.

Funding:

– The Key Project of The National Nature Science Foundation of China, under
the grant No. 60533020 and No. 60970085.

– The Key Subproject of The National High Technology Research and Devel-
opment Program of China, under the grant No. 2009AA01A134.

90 B. Chen et al.

References

1. Yu, L., Xu, Y.: A Parallel Gibbs Sampling Algorithm for Motif Finding on GPU.
In: 2009 IEEE International Symposium on Parallel and Distributed Processing
with Applications, pp. 555–558 (2009)

2. Horn, D., Houston, M., Hanrahan, P.: ClawHMMer: A Streaming HMMer-Search
Implementation. In: Proc. ACM/IEEE Conf. Supercomputing, SC 2005 (2005)

3. Liu, W., Schmidt, B., Voss, G.: Bio-Sequence Database Scanning on a GPU. In:
Proc. 20th IEEE Int’l Parallel and Distributed Processing Symp (High Performance
Computational Biology (HiCOMB) Workshop) (2006)

4. Liu, W., Schmidt, B., Voss, G.: GPUClustalW: Using Graphics Hardware to Ac-
celerate Multiple Sequence Alignment. In: Proc. 13th Ann. IEEE Int’l Conf. High
Performance Computing (HiPC 2006), pp. 363–374 (2006)

5. NVidia CUDA, http://www.nvidia.com/cuda
6. Smith, T., Waterman, M.: Identification of Common Molecular Subsequences. J.

Molecular Biology 147, 195–197 (1981)
7. Liu, W., Schmidt, B., Voss, G.: Streaming algorithms for biological sequence align-

ment on GPUs. IEEE Trans. Parallel and Distributed Systems 18(9), 1270–1281
(2007)

8. Ino, F., Kotani, Y., Hagihara, K.: Harnessing the Power of idle GPUs for Accel-
eration of Biological Sequence Alignment. In: IEEE International Symposium on
Parallel & Distributed Processing, 2009. IPDPS 2009, pp. 1–8 (2009)

9. Pearson, W.R.: Searching protein sequence libraries: comparison of the sensitivity
and selectivity of the Smith and Waterman and FASTA algorithms. Genomics 11,
635–650 (1991)

10. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215, 403–410 (1990)

11. NVIDIA Corporation. CUDA Programming Guide Version 2.0 (July 2008)
12. Owens, J.: HCW 2009 keynote talk: GPU computing: Heterogeneous computing

for future systems. In: IEEE International Symposium on Parallel & Distributed
Processing, IPDPS 2009, pp. 1–1 (2009)

13. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.-Z., Baghsorkhi, S.S.,
Hwu, W.-m.W.: Program optimization carving for GPU computing. J. Parallel
Distrib. Comput., 1389–1401 (2008)

http://www.nvidia.com/cuda

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 91–101, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Improved Genetic Algorithm for Minimizing Periodic
Preventive Maintenance Costs in Series-Parallel Systems

Chung-Ho Wang and Te-Wei Lin

Department of Power Vehicle and Systems Engineering
Chung Cheng Institute of Technology, National Defense University

No. 190, Sanyuan 1st St, Tahsi, Taoyuan, Taiwan 335. R.O.C.

Abstract. This work presents an improved genetic algorithm (IGA) for mini-
mizing periodic preventive maintenance costs in series-parallel systems. The in-
trinsic properties of a repairable system, including the structure of reliability
block diagrams and component maintenance priorities are considered by the
proposed IGA. The proposed component importance measure considers these
properties, identifies key components, and determines their maintenance priori-
ties. The optimal maintenance periods of these important components are then
determined to minimize total maintenance cost given the allowable worst reli-
ability of a repairable system. An adjustment mechanism is established to solve
the problem of chromosomes falling into infeasible areas. A response surface
methodology is further used to systematically determine crossover probability
and mutation probability in the GA instead of using the conventional trial-and-
error process. A case study demonstrates the effectiveness and practicality of
the proposed IGA for optimizing the periodic preventive maintenance model in
series-parallel systems.

Keywords: Periodic preventive maintenance; Reliability; Importance measure;
Genetic algorithms; Response surface methodology.

1 Introduction

Establishing a superior maintenance strategy for a complex repairable system re-
quires that the maintenance priority of subsystems or components and their mainte-
nance periods given limited maintenance resources be determined simultaneously.
As preventive maintenance consumes human resources and time, and has associated
costs, nonessential services or an inadequate maintenance schedule wastes the lim-
ited maintenance resources. Furthermore, to meet practical requirements, numerous
studies have constructed maintenance models and optimization algorithms [7].
However, the complexity of optimizing a maintenance model in a series-parallel
system increases significantly as the number of components in a system increases.
In such situations, obtaining the exact global optimum using analytical approaches
via mathematical inference is impractical. Therefore, meta-heuristic algorithms, such
as a genetic algorithm (GA) [2][3], ant colony optimization [12]and simulated

92 C.-H. Wang and T.-W. Lin

annealing [7], are commonly employed to optimize these models and approach the
global optimum.

This study aims to propose an improved genetic algorithm (IGA) that efficiently
optimizes the periodic preventive maintenance (PM) model for series-parallel sys-
tems. The improved mechanisms mainly overcome the weaknesses in conventional
GA. Since the structure of a repairable series-parallel system markedly impacts sys-
tem reliability, the properties of a preventive maintenance model in series-parallel
systems subjecting to the allowable worst system reliability are considered to create
the improved mechanisms. The proposed IGA has two stages. The first stage identi-
fies important components for a repairable series-parallel system. A novel importance
measure of components is developed to overcome the drawbacks of past importance
measures of components [1][17][4] and appropriately assess the importance of com-
ponents in a PM model during mission duration. The second stage determines the
optimal maintenance periods of important components using the IGA search mecha-
nism. An adjustment mechanism is established to make the chromosomes move back
to feasible area in case the chromosomes fall into infeasible area. Doing so can en-
hance the exploring ability of conventional GA. The response surface methodology
(RSM) [10] from the design of experiments is employed to systematically determine
the crossover probability and mutation probability—instead of using the trial-and-
error approach—to enhance IGA search capability. A case from the study by
Bris et al. [2], subsequently applied by Samrout et al. [12], demonstrates the effec-
tiveness and practicality of the proposed IGA in optimizing the periodic preventive
maintenance model in series-parallel systems.

2 Maintenance Strategy of a Series-Parallel System

Maintenance is defined as activities that retain or restore the operational status of a
system. Normally, maintenance can be classified as e-maintenance [11], corrective
maintenance (CM) and preventive maintenance [8]. E-maintenance is a new concept
of maintenance. It contains predictive prognostics and condition-based monitor, and
integrates existing telemaintenance principles with Web services and modern e-
collaboration principles. CM includes minimal repairs and corrective replacement
when a system fails. PM includes simple preventive maintenance and preventive
replacement when a system is operating. The maintenance policies of a repairable
deteriorating system are (1) age-dependent PM policy, (2) periodic PM policy, (3)
failure limit policy, (4) sequential PM policy, (5) repair limit policy, and (6) repair
number counting and reference time policy[16]. Periodic PM is widely used in prac-
tice simply because of its ease of implementation and management. This maintenance
policy, applied in a series-parallel system with multiple components, received much
attention. For example, Tsai et al. [14] developed a periodic PM schedule for a system
with deteriorating electro-mechanical components and optimized it using a GA. Leou
[7] proposed a novel algorithm for determining a maintenance schedule for a
power plant. This algorithm combines the GA with simulated annealing to optimize

 IGA for Minimizing Periodic Preventive Maintenance Costs 93

maintenance periods and minimize maintenance and operational cost. Tsai et al. [15]
also proposed a preventive maintenance policy for a multi-component system. Main-
tenance activities for components in each stage of PM were determined by maximiz-
ing the availability of the system for maintenance. Busacca et al. [3] focused on a
high-pressure injection system at a nuclear power plant to establish a multi-objective
optimization model to obtain a maintenance strategy using GA. Bris et al. [2] pro-
posed a periodic PM model that minimizes maintenance costs under the reliability
constraint. The optimal maintenance period of each components after the first mainte-
nance task for that component was determined using a GA. Samrout et al. [12] opti-
mized the Bris et al. [2] using the same procedure, but the ant colony optimization
was adopted to optimize the maintenance periods for all components.

3 Developed Importance Measures

This work extends the underlying concept of the Birnbaum importance measure [1] to
a novel measure of component importance. The Birnbaum importance measure [1]
considers the adverse effects of failed components on system reliability. However,
component failure/operational probabilities are directly related to the reliability of
individual components, which is a function of time. Failure/operational probabilities
vary over time. Therefore, the developed importance measure considers this probabil-
ity by calculating the expected values of component effects on system reliability to
assess the importance of components for PM. The calculation of the expected values
of effects is as follows.

() ((1, ()) ()) () (() (0, ()) (1 ())j S j S j S S j jI t R r t R t r t R t R r t r t= − × + − × − (1)

where ()SR t is the reliability of a system at time t; (1, ())S jR r t is the reliability of a

system when the jth component is operating at time t; (0, ())S jR r t is the reliability of

a system when the jth component fails at time t; ()jr t is the probability when the jth

component is operating at time t; (1 ())jr t− is the probability when the jth component

fails at time t; The value of ((1, ()) ())S j SR r t R t− indicates the positive effect when the

jth component is operating at time t; (() (0, ())S S jR t R r t− is the negative effect when

the jth component is failed at time t; ()jI t is the expected value of system effect at

time t. The integration of ()jI t values over mission duration is determined as the im-

portance measure of components for PM, as follows.

0
()

TT
j jI I t dt= ∫ (2)

where T
jI is the importance measure of the jth component during the mission duration

T. The developed importance measures can be used in determining the maintenance
priority of components for PM.

94 C.-H. Wang and T.-W. Lin

4 Proposed IGA

The following sections describe the proposed IGA for minimizing periodic PM cost in
series-parallel systems.

4.1 Construction of Periodic PM Model of the Series-Parallel System

The PM cost model is based on the work of Bris et al. [2], as follows.

Minimize
(,)

1 1 1

((,))
e i kK

nEK

PM j
k i j

C C e i k
= = =

=∑∑ ∑ (3)

Subject to 0()SR t R≥ (4)

1 1

() [1 (1 ())]
KEK

S i
k i

R t R t
= =

= − −∏ ∏ (5)

where PMC is total maintenance cost; (,)e i k is the ith component of the kth parallel

subsystem; (,)e i kn is the total number of instances of maintenance of the ith component

of the kth parallel subsystem; ((,))jC e i k is the cost of the jth instance of maintenance

of the ith component in the kth parallel subsystem; KE is the number of components in

the given kth parallel subsystem; K is the number of parallel subsystems; 0R represents

the allowable worst reliability value, and ()SR t is the reliability of the system at time t.

4.2 Construction of IGA

This study adopts real encoding to represent maintenance periods. Hence, each gene
represents the maintenance period for a component. A chromosome comprises the
maintenance periods of all components. A different combination of maintenance peri-
ods of all components forms a different chromosome. The proposed IGA has the
following two stages.

Stage 1: Identify the combinations of important components
The values of importance measure, T

jI , for all components are calculated using Eqs. (1)

and (2). Accordingly, the importance sequence of components is determined as follows:

1
{ }

n

i
i

s
=

=S ∪ (6)

where
iS is the ith important component; n is the number of components in a system; and

S is a set of importance sequence of components. According to S , the important
components of a series-parallel system is determined in the following iteration procedure.

 IGA for Minimizing Periodic Preventive Maintenance Costs 95

1. Given the first one component in S, optimize the periodic preventive maintenance
model using the GA to obtain a total maintenance cost if feasible solutions exist.

2. Add a component according to the importance priority in S , optimize the peri-
odic preventive maintenance model using the GA to obtain a total maintenance
cost if feasible solutions exist.

3. Repeat iteration 2 until all the components are involved when optimizing the
periodic preventive maintenance model.

The combination of components with the lowest total maintenance cost is identified
as the important components of a series-parallel system. The equation for identifying
the important components can be expressed as

() min () , 1, 2, ..., , ..., PM m PM jC C j m n⎡ ⎤= =⎣ ⎦S S (7)

where ()PM jC S is the optimized total maintenance cost given the first j components

in S ; ()PM mC S is the lowest maintenance cost of the first m components in S ,

1 m n≤ ≤ . These m important components are substituted in the second stage to es-
tablish initial GA population and thereby optimize their maintenance periods. The
other unimportant components do not implement maintenance work for the mission
duration.

Additionally, this study employs the faced center cube central composite design
(FCCD) from the RSM [10] in which crossover probability and mutation probability
are two experimental factors to systematically perform experiments. The optimal
settings of crossover probability and mutation probability are therefore determined.

Stage 2: Optimize the maintenance periods.
The combination of the first m important components and the optimal parameters of
crossover probability and mutation probability obtained from stage 1 form the basis to
optimize the maintenance periods of a periodic PM model, performed by the
following steps.

Step 1: Randomly generate maintenance periods of the first m important components
to form initial population of chromosomes.

Step 2: Apply reproduce procedure, crossover procedure, and mutation procedure to
breed the chromosomes for offspring.

Step 3: Perform the adjustment mechanism

An adjustment mechanism is established to make the chromosomes move back to
feasible area in case the chromosomes fall into infeasible area. Doing so can enhance
the exploring ability of conventional GA. In the constructed series-parallel
maintenance model, the chromosomes with reliability lower than the allowable worst
system reliability represent infeasible solutions. The proposed adjustment mechanism
includes the following two procedures.

(1) Shorten the maintenance periods of components
The maintenance period of the component scheduled to be maintained at the time

the occurrence of the lowest reliability is shortened to increase system reliability.

96 C.-H. Wang and T.-W. Lin

(2) Determine if the reliability greater than allowable worst system reliability
Recompute the system reliability after shortening the maintenance period of compo-
nents. If the computed reliability does not meet the system minimum requirement,
then repeat (1) and (2) until the reliability greater than system requirement, namely
the chromosome moves back into feasible area.

Step 6: Perform elitist conservation strategy
If the total maintenance cost during each generation is lower than a recorded best
fitness value (namely, the elitism), the elitism is replaced by the champion; otherwise,
the chromosome with highest total maintenance cost (namely, worst fitness value) in
each generation is replaced by the elitism.

Step 7: Terminate the IGA
Terminate the IGA and output the optimized maintenance periods of all components if
the total iterations surpass a predetermined value or the fitness does not improve in
continually maximum iterations.

5 Case Study

The PM model of a series-parallel system that was proposed by Bris et al. [2] is adopted
herein to confirm the feasibility and practicality of the proposed algorithm. This system
consists of four subsystems and 11 components. Components 1, 2, 3, 4 and 5 constitute
the first subsystem. Component 6 is the second subsystem, which has a single unit.
Components 7, 8, and 9 constitute the third subsystem. Components 10 and 11 consist
of the fourth subsystem. Figure 1 displays the reliability block diagram. Table 1 presents
the component parameters, including the probability distribution, mean time to failure
(MTTF), and maintenance cost for each component. The mission duration of 50 years is
simulated. The allowable worst system reliability is 0.9. The goal is to optimize the
maintenance times and minimize the maintenance cost during the mission duration.

Fig. 1. Reliability block diagram [2]

Via the proposed IGA, this case was optimized in a stage-by-stage manner as follows.

Stage 1: Identify the combinations of important components.

The importance measures of 11 components, T
jI values, are computed using Eqs.

(1) and (2), and thereby form the importance sequence S = {5, 6, 11, 3, 1, 2, 10, 8, 9,
7, 4} using Eqs. (6). Table 2 lists the importance measures of all components for
mission duration of 50 years. According to the proposed iteration procedure, the
conventional GA is then applied with 5 repetitions under an initial population of 200

 IGA for Minimizing Periodic Preventive Maintenance Costs 97

Table 1. Component parameters [2]

chromosomes—crossover probability is 0.86 and mutation probability is 0.13 ob-
tained from RSM—to identify the important components. The GA is terminated at
200 iterations. Hence, five total maintenance costs can be obtained to calculate the
average total maintenance cost when feasible solutions exist. First, for the case in-
volving the first important component, the fifth component, no feasible solution
exists. For the case involving the first two components, components five and six, no
feasible solution was found. This iteration procedure is performed by adding one
component according to the importance priority in the importance sequence until all
components are involved. Table 3 summarizes the optimized average total mainte-

nance cost for all iterations. Via Eq. (7), the set of 7S , iteration seven, which has the

lowest average total maintenance cost of 218.5, was identified as the combination of

important components, 7S = {5, 6, 11, 3, 1, 2, 10}. These important components,

components 1, 2, 3, 5, 6, 10 and 11, are then substituted into stage two to establish an
initial population and thereby optimize their maintenance periods. The components

that are not included in 7S do not implement maintenance works for the mission

duration.
Noticeably, the determination of GA with a crossover probability of 0.86 and mu-

tation probability of 0.13 using RSM is determined based on the follow fitted model:

2 2
1 2 1 2 1 2ˆ 283.9 178.9 53.8 60.0 98.2 46.2y x x x x x x= − − + + + (8)

where ŷ is the predicted total maintenance cost; and 1x and 2x are the crossover and

mutation probabilities, respectively. The coefficient of determinant for this model
is 2 0.933R = .

Number
of components

Probability
distribution

MTTF
(years)

Maintenance
cost

1 exponential 12.059 4.1

2 exponential 12.059 4.1

3 exponential 12.2062 4.1

4 exponential 2.014 5.5

5 exponential 66.6667 14.2

6 exponential 191.5197 19

7 exponential 63.5146 6.5

8 exponential 438.5965 6.2

9 exponential 176.0426 5.4

10 exponential 13.9802 14

11 exponential 167.484 14

98 C.-H. Wang and T.-W. Lin

Table 2. Importance measures and priority for MT =50 years

Table 3. Combinations of important components

Stage 2: Optimize maintenance periods
The randomly generated maintenance periods of seven components obtained from
stage one form an initial population of chromosomes with seven genes. Each gene
is a maintenance period of a component. Thus, the initial population of 200 chromo-
somes is established. The optimal settings of parameters obtained from RSM, includ-
ing crossover probability is 0.86 and mutation probability is 0.13, are then substituted
into the IGA search mechanism to approach the global optimum of the total mainte-
nance cost solution. The magnitude of the adjustment mechanism to heighten system
reliability by shortening component maintenance periods is set to 0.1 in this case.
The IGA is terminated at 200 iterations. The optimized total maintenance cost
for this case is 178.1. Table 7 lists the optimal maintenance periods of components
for mission duration of 50 years. Figure 3 shows the corresponding reliability

Number of
components

Importance
measures

Priority

1 1.1957 5
2 1.1957 5
3 1.2268 4
4 0.0039 11
5 8.8588 1
6 6.0445 2
7 0.0948 10
8 0.1538 8
9 0.1359 9

10 0.9415 7
11 5.4180 3

Iterations mS The combinations
The average total
maintenance cost

1 1S 5 No feasible solutions
2 2S 5, 6 No feasible solutions
3 3S 5, 6, 11 427.8
4 4S 5, 6, 11, 3 280.3
5 5S 5, 6, 11, 3, 1 241.2
6 6S 5, 6, 11, 3, 1, 2 225.3
7 7S 5, 6, 11, 3, 1, 2, 10 218.5
8 8S 5, 6, 11, 3, 1, 2, 10, 8 226.8
9 9S 5, 6, 11, 3, 1, 2, 10, 8, 9 235.5

10 10S 5, 6, 11, 3, 1, 2, 10, 8, 9, 7 244.7
11 11S

 5, 6, 11, 3, 1, 2, 10, 8, 9, 7, 4 253.1

 IGA for Minimizing Periodic Preventive Maintenance Costs 99

Table 4. Optimized maintenance periods (50MT = years, () 0.9SR t ≥)

Fig. 2. Reliability curve (50MT = years, () 0.9SR t ≥)

curve. All reliability values exceed 0.9, satisfying the constraint of allowable worst
reliability.

The IGA optimization results are further compared to those obtained by Bris et al.
[2] and Samrout et al. [12]. Table 5 summarizes comparison results. The optimized
total maintenance cost in this study is reduced to 178.1 from 238, which was obtained
by Bris et al. [2]—resulting in a reduction of 59.9 for mission duration of 50 years.
Compared with that acquired by Samrout et al. [12], the optimized total maintenance
cost is reduced to 178.1 from 224.2, a reduction of 46.1 for mission duration of 50
years. The proposed IGA outperforms the approaches developed by Bris et al. [2] and
Samrout et al. [12].

Table 5. Comparisons of the total maintenance cost in mission duration of 50 years

6 Conclusions

Some superior meta-heuristic algorithms and improved algorithms have been pro-
posed to resolve large complex problems in recent years. However, due to the diver-
sity of the problems, a customized algorithm typically outperforms a general

Number of
components

1 2 3 5 6 10 11

Maintenance
periods

21.47 17.08 9.63 25.78 13.40 32.04 11.24

Compare with
Bris et al.[2]

Compare with
Samrout et al.[12]

Bris
et al.[2]

Samrout
et al.[12]

This
study
(IGA) Reduction Reduction

50MT = 238.0 224.2 178.1 59.9 46.1

100 C.-H. Wang and T.-W. Lin

algorithm in solving specific problems. This study proposes an improved GA to
minimize total periodic PM cost. A novel importance measure of component is pro-
posed for PM. Furthermore, an adjustment mechanism is established to move the
chromosomes from infeasible to feasible areas in order to enhance the exploratory
ability of conventional GA. A case adopted from a previous study demonstrates the
problem solving efficacy of the proposed IGA. This algorithm can be extended to
solve large problems with complex series-parallel systems comprised of many subsys-
tems or components. Moreover, the proposed IGA can be modified for non-periodic
maintenance and imperfect maintenance models.

References

1. Birnbaum, Z.: On the importance of different components in a multicomponent system:
Multivariate Analysis 11. In: Krishnaiah, P.R. (ed.), Academic Press, London (1969)

2. Bris, R., Chatelet, E., Yalaoui, F.: New method to minimize the preventive maintenance
cost of series–parallel systems. Reliability Engineering and system safety 82, 247–255
(2003)

3. Busacca, P., Marseguerra, M., Zio, E.: Multiobjective optimization by genetic algorithms:
application to safety systems. Reliability Engineering and system safety 72, 59–74 (2001)

4. Fussell, J.: How to calculate system reliability and safety characteristics. IEEE Transac-
tions on Reliability 24, 169–174 (1975)

5. Goldberg, D.: Genetic Algorithms in Search and Optimization. Addison-Wesley, Reading
(1989)

6. Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor (1975)

7. Leou, R.: A new method for unit maintenance scheduling considering reliability and op-
eration expense. International Journal of Electrical Power and Energy Systems 28, 471–
481 (2006)

8. Lie, C., Chun, Y.: An algorithm for preventive maintenance policy. IEEE Transactions on
Reliability 35, 71–75 (1986)

9. Marseguerra, M., Zio, E.: Optimizing maintenance and repair policies via a combination of
genetic algorithms and Monte Carlo simulation. Reliability Engineering and system
safety 68, 69–83 (2000)

10. Montgomery, D.: Design and analysis of experiments. Wiley, Hoboken (2005)
11. Muller, A., Crespo Marquez, A., Iung, B.: On the concept of e-maintenance: review and

current research. Reliability Engineering and system safety 93, 1165–1187 (2008)
12. Samrout, M., Yalaoui, F., Chatelet, E., Chebbo, N.: New methods to minimize the preven-

tive maintenance cost of series–parallel systems using ant colony optimization. Reliability
Engineering and system safety 89, 346–354 (2005)

13. Shieh, H., May, M.: Solving the capacitated clustering problem with genetic algorithms.
Journal-Chinese Institute of Industrial Engineers 18, 1–12 (2001)

14. Tsai, Y., Wang, K., Teng, H.: Optimizing preventive maintenance for mechanical compo-
nents using genetic algorithms. Reliability Engineering and system safety 74, 89–97
(2001)

 IGA for Minimizing Periodic Preventive Maintenance Costs 101

15. Tsai, Y., Wang, K., Tsai, L.: A study of availability-centered preventive maintenance for
multi-component systems. Reliability Engineering and system safety 84, 261–270 (2004)

16. Wang, H.: A survey of maintenance policies of deteriorating systems. European Journal of
Operational Research 139, 469–489 (2002)

17. Rausand, M., Hoyland, A.: System reliability theory: models, statistical methods, and ap-
plications. Wiley-IEEE (2004)

A New Hybrid Parallel Algorithm for MrBayes

Jianfu Zhou, Gang Wang, and Xiaoguang Liu

Nankai-Baidu Joint Laboratory, Nankai University, Tianjin, China
jugeombu@gmail.com, wgzwp@163.com, liuxg74@yahoo.com.cn

Abstract. MrBayes, a popular program for Bayesian inference of phy-
logeny, has not been fast enough for Biologists when dealing with large
real-world data sets. This paper presents a new parallel algorithm that
combines the chain-partitioned parallel algorithm with the chain-parallel
algorithm to obtain higher concurrency. We test the proposed hybrid al-
gorithm with the two old algorithms on a heterogeneous cluster. The
results show that, the hybrid algorithm actually converts more CPU
cores into higher speedup compared with the two control algorithms for
all of four real-world DNA data sets, therefore is more practical.

Keywords: MrBayes; hybrid; parallel; algorithm.

1 Introduction

MrBayes is a widely-used program for phylogenetic inference. It uses Bayes’s
theorem to estimate the posterior probability of a phylogenetic tree, which is
called Bayesian inference of phylogeny [1,2]. The posterior probability, although
easy to formulate, involves a summation over all trees and, for each tree, inte-
gration over all possible combinations of branch lengths and substitution model
parameter values. The explicit solution of such a problem is computationally in-
tractable for trees of biologically significance, so heuristics must be used to sim-
plify the problem. MrBayes uses Markov chain Monte Carlo (MCMC) method
to approximate the posterior probability of a phylogenetic tree. Standard imple-
mentations of MCMC can be prone to entrapment in local optima, so a variant
of MCMC, known as Metropolis-coupled MCMC (MC3), is proposed. It allows
peaks in the landscape of trees to be more readily explored. However, both the
standard MCMC and the MC3 methods are suffering from the unacceptable
execution time when dealing with large data sets. Fortunately, some effective
methods are available that can execute MrBayes in parallel. A chain-partitioned
parallel algorithm for MrBayes [3] distributes Markov chains among processes.
It is based on the fact that a relatively small amount of messages are needed
to be exchanged among those chains during a run of MC3. However, this algo-
rithm has a fatal drawback. It can not break the upper bound of concurrency
caused by the typically small number of chains during a run, which is enough for
most of real-world applications. Another chain-parallel algorithm exclusively fo-
cuses on element-level parallelism in the Phylogenetic Likelihood Functions [5].
Although it solves the problem of the chain-partitioned algorithm, the chain-
parallel algorithm has higher interaction overhead. This paper presents a new

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 102–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A New Hybrid Parallel Algorithm for MrBayes 103

hybrid parallel algorithm for MrBayes, which tries to combine the advantages
of the chain-partitioned and chain-parallel algorithms. Then, this paper empiri-
cally compares the proposed algorithm with the two previous algorithms on four
real-world DNA data sets.

2 The Hybrid Algorithm

2.1 The Chain-Partitioned Parallel Algorithm

Metropolis-coupled MCMC (MC3) algorithm runs one cold Markov chain with
some heated Markov chains to sample the posterior probability distribution of
a phylogenetic tree [2,4]. Relatively small amount of information is exchanged
among these chains during a run. So we can distribute these chains among pro-
cesses, and run them in parallel efficiently [3]. A process just performs all com-
putation associated with chain(s) assigned to it. This algorithm exchanges heat
values instead of complete state information between cold chains and heated
chains to reduce communication overhead. Another advantage of this algorithm
is only local instead of global synchronization is needed.

Considering its data partition method and synchronization mechanism, the
chain-partitioned parallel algorithm is very suitable for Message-Passing Inter-
face (MPI) implementing. Of course it can also be implemented in shared mem-
ory platforms (multi-core systems) easily and efficiently.

2.2 The Chain-Parallel Algorithm

According to the profiling of MrBayes’s execution, the functions CondLikeDown,
CondLikeRoot and CondLikeScaler spend more than 85% of the total execution
time. Fortunately, the main part of each function is independent vector/matrix
operations. So a chain-parallel algorithm that executes these operations by mul-
tiple threads in parallel is presented [5]. In this algorithm, the likelihood vec-
tor elements (therefore the associated computational work) are distributed over
threads evenly. During a run of MrBayes, these three functions are called it-
eratively. Since the results of CondLikeDown or CondLikeRoot are used by
CondLikeScaler in each iteration, and the result of CondLikeScaler is used by
the next iteration, a global synchronization must be done in each iteration which
is the major overhead of this algorithm.

Apparently, the chain-parallel algorithm ismore suitable for the shared-memory
mode than the message-passing mode.

2.3 The Proposed Hybrid Parallel Algorithm

The proposed hybrid parallel algorithm combines the advantages of the chain-
partitioned and the chain-parallel algorithms. First, the chain-partitioned strat-
egy is used, that is, each chain is assigned to a unique process. Then each chain is

104 J. Zhou, G. Wang, and X. Liu

calculated by its owner process and auxiliary threads using chain-parallel strat-
egy. For load balance, the number of chains (processes) assigned to a physical ma-
chine is approximately proportional to its relative computing power. Since cores
in a machine are typically homogeneous, computational work in CondLikeDown,
CondLikeRoot and CondLikeScaler of a chain is evenly distributed over its
owner process and auxiliary threads.

In a word, the proposed algorithm breaks through the concurrency limit of
the chain-partitioned algorithm caused by the relatively small number of Markov
chains involved in MrBayes. It exploits two-level parallelism to make its concur-
rency greater than the total number of chains.

3 Experiments

This section compares the performance of the proposed hybrid parallel algorithm
with the chain-partitioned and the chain-parallel algorithms on a heterogeneous
cluster with a head node and five computation nodes. The head node has one
Intel Core i7 920 processor and 2GB*3 of DDR3 1333 memory. The first com-
putation node has one AMD Phenom II X4 945 processor and 2GB*2 of DDR3
1333 memory. The second one has one Intel Core 2 Quad Q6600 processor and
2GB*2 of DDR2 1066 memory. Both the third one and the fourth ones have one
Intel Core 2 Duo E4400 processor and 1GB*2 of DDR2 800 memory. The fifth
one has one Intel Core i7 920 and 2GB*3 of DDR3 1333 memory. These nodes
are connected by gigabit Ethernet. The operating system is Red Hat Enterprise
Linux 5. MPICH2 1.1 was used to compile and execute the hybrid algorithm
and the chain-partitioned algorithm. For the chain-parallel algorithm program,
GCC 4.3 was used. Table 1 shows the DNA data sets used in our experiments.
These data sets come from real-world DNA data used in the research projects of
the College of Life Sciences, Nankai University. Each data point is the average
of 10 executions. Each execution computed 2 runs with 4 chains, which is a typ-
ical setting for MrBayes executions. All the executions used the 4by4 nucleotide
substitution model and lasted 10000 generations.

We first performed a baseline test. As Fig. 1 on the next page shows, the orig-
inal serial version of MrBayes runs fastest on the head node. In our experiments,
the speedup of a parallel algorithm is defined as the result of the average run-
ning time of the original serial version of MrBayes on the head node divided by
the average running time of a parallel algorithm program on our heterogeneous
cluster for the same problem.

Table 1. Data sets used in our experiments

Number of taxa Number of characters

Data set 1 26 1546
Data set 2 37 2238
Data set 3 100 1619
Data set 4 111 1506

A New Hybrid Parallel Algorithm for MrBayes 105

0 100 200 300 400 500 600 700

26x1546

37x2238

100x1619

111x1506

Average Running Time (S)

D
at

a
Se

ts fifth node

fourth node

third node

second node

first node

head node

Fig. 1. Performance of different nodes

3.1 Comparison on the Same Number of Cores

Fig. 2 shows the performance of the proposed hybrid parallel algorithm and the
chain-parallel algorithm on the head node. For the chain-parallel algorithm, the
likelihood vector elements were assigned among 8 threads (including the main
thread). Therefore, 8 (logical) CPU cores were used. For the hybrid algorithm,
the 8 Markov chains were distributed evenly among 4 processes. Then each

0

0.5

1

1.5

2

2.5

3

3.5

26x1546 37x2238 100x1619 111x1506

Sp
ee

du
p

Data Sets

chain-parallel algorithm

hybrid algorithm

Fig. 2. The hybrid algorithm vs. the chain-parallel algorithm on a single node

106 J. Zhou, G. Wang, and X. Liu

process created a child thread. The likelihood vector elements were distributed
to the process (namely the main thread) and its child thread. Hence the hybrid
algorithm also used 8 cores.

Fig. 3 shows the performance of the proposed hybrid parallel algorithm and
the chain-partitioned parallel algorithm. For the chain-partitioned algorithm, the
8 Markov chains were distributed evenly over 8 processes. 4 of these processes
were assigned to the head node, and the remaining processes were distributed
evenly between the first and the second nodes. For the hybrid algorithm, the 8
Markov chains were distributed evenly over 4 processes, of which 2 were assigned
to the head node and the remaining were distributed evenly between the first and
the second nodes. Then each process created a child thread and the likelihood
vector elements were assigned between the process and its child thread evenly.
Therefore, both algorithms used 8 cores.

0

0.5

1

1.5

2

2.5

3

3.5

4

26x1546 37x2238 100x1619 111x1506

Sp
ee

du
p

Data Sets

chain-partitioned algorithm

hybrid algorithm

Fig. 3. The hybrid algorithm vs. the chain-partitioned algorithm on a cluster

We can see that the performance of the hybrid algorithm is between the chain-
parallel algorithm and the chain-partitioned algorithm. This result is expected.
The global synchronization in element-level parallelism causes much higher over-
head than the local synchronization in chain-level parallelism. The hybrid algo-
rithm mixes the two parallel formulations, therefore has mixed synchronization,
and the other two both have pure synchronization pattern.

3.2 The Hybrid Algorithm on More CPU Cores

Although the chain-partitioned algorithm performs slightly better than the hy-
brid algorithm in the previous test, as mentioned above, it can not break through
the concurrency limit caused by the total number of Markov chains involved. In

A New Hybrid Parallel Algorithm for MrBayes 107

0

1

2

3

4

5

6

26x1546 37x2238 100x1619 111x1506

Sp
ee

du
p

Data Sets

chain-partitioned algorithm

hybrid algorithm

Fig. 4. High concurrency of the hybrid algorithm

our experiments, the total number of chains was 8. When the chain-partitioned
algorithm assigned all the chains to 8 processes, it reached its maximum concur-
rency. There would be no more performance increase even if more processors are
available. By contrast, the hybrid algorithm does not have this problem. Even
if it has distributed the 8 chains among 8 processes, it can use the element-level
parallelism to improve its concurrency. Moreover, the number of the likelihood
vector elements is generally large. In our experiments, to achieve higher concur-
rency, we distributed all the chains among 8 processes, of which 4 were assigned
to the head node and the remaining were distributed evenly between the first and
the second nodes. Then each process created a child thread. The elements were
distributed between the process and its child thread. The hybrid algorithm used
16 threads in total, thus reached the maximum concurrency (namely 16 cores)
provided by these nodes. Fig. 4 shows that, the hybrid algorithm indeed uses
extra CPU cores effectively and gains higher speedup than the chain-partitioned
algorithm.

3.3 Load Balance for the Hybrid Parallel Algorithm

As Fig. 1 on page 105 shows, inside our heterogeneous cluster, the computing
power of each node is different with each other. Without considering the differ-
ence, it will result in load imbalance and therefore a poor performance.

The relative computing power of cores on nodes is about:

Head : First : Second : Third : Fourth : Fifth = 2 : 2 : 1 : 1 : 1 : 2 . (1)

Comparison on the same number of cores. Fig. 5 on the following page
shows the performance of the hybrid algorithm without or with load balance on

108 J. Zhou, G. Wang, and X. Liu

the same number of cores. As a control group, the hybrid algorithm without load
balance just assigned the 8 Markov chains evenly among 8 processes, which were
distributed evenly to the head, the first, the second and the fifth nodes. Then each
process created a child thread. The likelihood vector elements were distributed
to the process and its child thread. Hence the computation associated with one
chain was performed by two threads (namely a process and its child thread),
both of which used one core respectively. So, 16 cores were used. We denote the
“relative load” (load divided by computing power - roughly the equivalent of the
running time) of node X by RX :

Rhead : Rfirst : Rsecond : Rfifth

=
2 chain

8 power
:

2 chain

8 power
:

2 chain

4 power
:

2 chain

8 power

= 1 : 1 : 2 : 1 ,

(2)

which implies serious load imbalance.
The hybrid algorithm with load balance also assigned the 8 Markov chains

among 8 processes. Considering the computing power of one core on each node,
3 of the 8 processes were assigned to the head node, 1 to the second node, and
the remaining were divided evenly between the first and the fifth nodes. Each of
the processes assigned to the head node, the first node and the fifth node just
created a child thread respectively. And the process assigned to the second node
created 3 child threads. For all of the four nodes, the likelihood vector elements
were distributed to the process and its child thread(s). Therefore, for the head
node, the first node and the fifth node, the computational work associated with

0

1

2

3

4

5

6

7

8

26x1546 37x2238 100x1619 111x1506

Sp
ee

du
p

Data Sets

without load balance

with load balance

Fig. 5. Performance of the hybrid algorithm with or without load balance on the same
number of cores

A New Hybrid Parallel Algorithm for MrBayes 109

one chain was performed by two threads, both on one core respectively. For the
second node, the computation associated with one chain was performed by four
threads, each on one core respectively. Note that, although the head node has
only 4 physical cores, it is arguably that each thread run on unique physical core
since hyper-threading is supported by Intel i7 CPU. Therefore, this test also
used 16 cores, and:

Rhead : Rfirst : Rsecond : Rfifth

=
3 chain

12 power
:

2 chain

8 power
:

1 chain

4 power
:

2 chain

8 power

= 1 : 1 : 1 : 1 ,

(3)

which implies approximate load balance.
The result shown in Fig. 5 on the preceding page verifies our analysis. Load

balance strategy actually achieves a higher speedup. In particular, when dealing
with the relatively large data sets (i.e. data set 3 and 4), load balance strategy
increases performance by about 25%.

Comparison on different numbers of cores. Fig. 6 shows the speedup
of the hybrid algorithm with or without load balance on different numbers of
cores. For the hybrid algorithm without load balance, the 8 Markov chains were
assigned evenly among 8 processes, of which 4 were distributed to the head node,
and the remaining were divided evenly between the first and the second nodes.
Then each process created a child thread. And the likelihood vector elements
were distributed to the process and its child thread. So the computational work

0

1

2

3

4

5

6

26x1546 37x2238 100x1619 111x1506

Sp
ee

du
p

Data Sets

without load balance

with load balance

Fig. 6. Performance of the hybrid algorithm with or without load balance on different
numbers of cores

110 J. Zhou, G. Wang, and X. Liu

associated with each chain was performed by two threads, both of which used
one core respectively. Hence 16 cores were used, and:

Rhead : Rfirst : Rsecond =
4 chain

16 power
:

2 chain

8 power
:

2 chain

4 power
= 1 : 1 : 2 , (4)

which implies serious load imbalance.
For the hybrid algorithm with load balance, the 8 Markov chains were divided

into 3 groups. The first group included 4 chains, while the remaining two groups
included 2 chains respectively. Then the first group was assigned to the head
node, while one of the remaining two groups was distributed to the first node,
and the other to the second node. On the head node, the 4 chains were assigned
evenly between 2 processes; on the first node, the 2 chains were assigned to
1 process; on the second node, the 2 chains were assigned evenly between 2
processes. And all of these processes created a child thread respectively. The
likelihood vector elements were distributed to the process and its child thread.
Therefore, on the head node and the first node, each thread group (a process and
its auxiliary thread) calculated 2 chains in sequential; on the second node, each
thread group calculates only one chain. Each thread run on a unique real core.
So the hybrid algorithm with load balance only used 10 cores in total, which
was less than the number of cores used by the hybrid algorithm without load
balance. And:

Rhead : Rfirst : Rsecond =
4 chain

8 power
:

2 chain

4 power
:

2 chain

4 power
= 1 : 1 : 1 , (5)

which implies rough load balance.
As Fig. 6 on the previous page shows, although using less physical cores, the

hybrid algorithm with load balance achieved approximately the same speedup
as the hybrid algorithm without load balance. When dealing with the relatively
large data set (i.e. data set 4), the hybrid algorithm with load balance achieves
even a little higher speedup than the hybrid algorithm without load balance.

All in all, with load balance, the proposed hybrid parallel algorithm can yield
better performance.

4 Related Works

As far as the authors know, except PBPI [7], that conducts multigrain Bayesian
inference on the BlueGene/L, no result has been published on hybrid paral-
lelization for MrBayes. PBPI basically represents a proof-of-concept work rather
than a production level parallelization. It is not qualified for real-world analyses
required urgently by Biologists. However, some results are known for the chain-
partitioned parallelization or the chain-parallel parallelization for MrBayes,
which both accelerate the execution of MrBayes for large data sets.

Gautam Altekar et al. [3] presented a parallel algorithm for Metropolis-coupled
MCMC. This algorithm keeps the advantage to explore multiple peaks in the pos-
terior distribution of trees while getting a shorter running time. This algorithm

A New Hybrid Parallel Algorithm for MrBayes 111

was implemented using both message passing parallel programming model and
sharedmemoryparallel programmingmodel. Experiment results showed speedups
in both programming models for small and large data sets.

Frederico Pratas et al. [5] proposed a chain-parallel algorithm for MrBayes and
its Phylogenetic Likelihood Functions using different architectures. The experi-
ments compared the scalability and performance achieved using general-purpose
multi-core processors, the Cell/BE, and Graphics Processor Units (GPU). The
results showed that the general-purpose multi-core processors resulted in the
best speedup, and yet GPU and Cell/BE processors both got poor performance
because of data transfers and the execution of the serial portion of the code.

5 Conclusion and Future Work

A new hybrid parallel algorithm has been proposed for MrBayes. On our het-
erogeneous cluster, when using more processors (namely 16 processors), the pro-
posed algorithm without load balance runs maximum 3.67 times faster than
the chain-parallel algorithm and maximum 1.447 times faster than the chain-
partitioned parallel algorithm on four read-world DNA data sets. With load
balance strategy, a further up to 25% performance increment was achieved.
Therefore, the proposed hybrid parallel algorithm is very practical for many
real biological analyses.

In this paper, a static, manual load balance method was used. Dynamic and
automatic load balance algorithms are worth studying in the future. GPU for
general purpose computing has shown its great power in many areas. Accelerat-
ing MrBayes using GPU is also planned.

Acknowledgement. This work was supported in part by the National High
Technology Research and Development Program of China (2008AA01Z401),
NSFC of China (60903028), RFDP of China (20070055054), and Science and
Technology Development Plan of Tianjin (08JCYBJC13000). In order to get the
four real-world DNA data sets, in addition to the chance to do this research,
we would like to thank Professor Xie Qiang with the College of Life Sciences in
Nankai University.

References

1. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian inference of
phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001)

2. Huelsenbeck, J.P., Ronquist, F.: MrBayes: Bayesian inference of phylogenetic trees.
Bioinformatics 17, 754–755 (2001)

3. Altekar, G., Dwarkadas, S., Huelsenbeck, J.P., Ronquist, F.: Parallel Metropolis
coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinfor-
matics 20, 407–415 (2004)

4. Ronquist, F., Huelsenbeck, J.: MrBayes 3: Bayesian Phylogenetic Inference under
Mixed Models. Bioinformatics 19, 1572–1574 (2003)

112 J. Zhou, G. Wang, and X. Liu

5. Pratas, F., Trancoso, P., Stamatakis, A., Sousa, L.: Fine-grain Parallelism Using
Multi-core, Cell/BE, and GPU Systems: Accelerating the Phylogenetic Likelihood
Function. In: The 38th International Conference on Parallel Processing, Vienna,
Austria, pp. 9–17 (2009)

6. Stamatakis, A., Ott, M.: Load Balance in the Phylogenetic Likelihood Kernel. In:
The 38th International Conference on Parallel Processing, Vienna, Austria, pp.
348–355 (2009)

7. Feng, X., Cameron, K.W., Buell, D.A.: PBPI: a High Performance Implementa-
tion of Bayesian Phylogenetic Inference. In: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, p. 75. ACM Press, New York (2006)

8. Larget, B., Simon, D.: Markov chain Monte Carlo algorithms for the Bayesian
analysis of phylogenetic trees. Molecular Biology and Evolution 16, 750–759 (1999)

9. Yang, Z., Rannala, B.: Bayesian phylogenetic inference using DNA sequences: a
Markov chain Monte Carlo method. Molecular Biology and Evolution 14, 717–724
(1997)

10. Mau, B., Newton, M., Larget, B.: Bayesian phylogenetic inference via Markov chain
Monte Carlo methods. Biometrics 55, 1–12 (1999)

11. Ott, M., Zola, J., Stamatakis, A., Aluru, S.: Large-scale Maximum Likelihood-
based Phylogenetic Analysis on the IBM BlueGene/L. In: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, pp. 1–11. ACM Press, New York
(2007)

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 113–123, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Research and Design of Deployment Framework for
Blade-Based Data Center

Haiping Qu1,2, Xiuwen Wang1,2, Lu Xu1, Jiangang Zhang1, and Xiaoming Han1

1 Institute of Computer Technology, Chinese Academy of Sciences,
100190 Beijing, China

2 Graduate University of the Chinese Academy of Sciences,
100039 Beijing, China

quhp2314@gmail.com,
{wangxiuwen,xulu,zhangjiangang,hanxiaoming}@nrchpc.ac.cn

Abstract. For those outsourcing data centers hosting different applications or
services, blade server is becoming the most popular solution. But the
deployment of systems in such data centers will be a time-consuming and
cumbersome task. Moreover, the service provided by the servers in data center
changed frequently, which require a flexible service management system to
reduce the burden of the system administrator. This paper presents the Bladmin
(Blade Admin) system to provide dynamic, flexible and quick service and
operation system deployment. It can build a Virtual Environment (VE) for each
service. All the nodes in the VE serves for one certain kind of application and
some nodes have to be shift from one VE to another to adopt the varying
workloads. Experiment results demonstrate that system-level performance has
been greatly improved and the running of one Paradigm job also show the
efficiency of Bladmin framework.

Keywords: blade server, service deployment, virtual environment.

1 Introduction

Large outsourcing data centers that host many third party applications are receiving
more and more attention recent years. These applications are mutually independent
and require different guarantees of SLA (Service Level Agreement) performance. For
such data centers, blade server indisputably ranks the most popular solution with
which higher performance in unit cost and unit power as well as unit spatial
performance can be obtained. Compared with general 1U frame server, blade server is
easier for management and requires fewer TCO cost. Tests show that the processor
density of blade server can be increased by four times, while the power consumption
can be reduced by 20-30%. Gartner predicted that the production scale of blade will
reach 2.30 million by 2011, and its percentage in the whole server market will reach
nearly 22%.

With the extension of computation scale increasing, more effective rapid deployment
and dispatchment has become the inevitable requirement for full utilization of

114 H. Qu et al.

calculation resources, energy-consumption reduction and cost maintenance as well as
the basis to secure the high-efficiency and steady operation for data centers which are
constructed with blade servers.

The rest of the paper is organized as follows. In Section 2, we first review the
development of blade server, then the related works in the area of service deployment
technology. In Section 3, we present the details of system architecture and
correlations of software modules. Section 4 presents the work flow of the system
through life cycle of VE. Section 5 demonstrates the experiment results in on-spot
blade server data center. Concluding remarks and discussion about the future work are
given in Section 6.

2 Related Work

2.1 Overview of Blade Server

Blade server refers to high-performance server in which multiple module-type server
units are plugged in a frame-style case with standard height in order to achieve high
usability and density [1]. Each module-type server unit is known as a blade which has
CPU, memory, Ethernet controller and running independent operation system and
private application. So a blade is an independent host system in reality.

First-generation blade server was launched in 2000 which aims at ultra-high
calculation-intensity. However, to support this intensity, low-power CPU such as PIII
and Transmeta Crusoe must be used. So high computing density and poor computing
performance are the main characteristics of these blade servers. With the blade called
“Blade Center” introduced by IBM in 2003 as the division line, the main
characteristics of blade servers later no longer overstressed on calculation density;
instead, a proper equilibrium point was selected between calculation density and
single-blade performance. Under the precondition of improving calculation density
properly, the performance of single blade server was raised; meanwhile, the
integration, reliability and manageability of whole system were improved greatly.

2.2 Technology of Service Deployment

Service deployment of data center is a time-consuming and complicated work,
especially with the dramatic increase of the number of computers managed by the
system administrator. Therefore, the issue of service deployment has become a
research focus in academe and industrial community. Related approaches can be
classified into disk-mirror techniques and non-disk deployment techniques.

Disk-mirror techniques have become important owing to their simplicity and high
efficiency, such as Ghost of Symantec [2], Tivoli of IBM [3] and COD (Cluster-On-
Demand) of Duke University [4]. All these related systems generally preserve local
storage equipment and accomplish local installation of disk mirrors from network
through disk-mirror clone, network multicast and other techniques to realize large-
scale and automatic deployment of services. Generally there is a centralized memory
at the backstage of these systems for saving original disk mirrors, while the data
specifically requested by each client are stored in the local disk of the client. Although
client performance has little difference with the general system after deployment with

 Research and Design of Deployment Framework for Blade-Based Data Center 115

this method, the disk-mirror data are required to be downloaded during deployment to
local environment via network before startup, which affects the service deployment
rate and increases the time of service switching; the requirements of those application
environments requiring frequent dynamic adjustment can not be fully satisfied.

With the development of non-disk technologies and extensive application of
networked storage such as NAS and SAN, it has been possible for non-disk service
deployment system based on centralized storage to emerge. These systems include
emBoot [5], Blutopia [6] and SonD [7]. In this approach, all client system and user
data are saved in a backstage storage system in a centralized manner, and system
services are initiated and offered to network through non-disk technologies. Its
characteristic lies in immediate initiation via network without the process of data
download to local environment, which greatly reduces the time for service
deployment; meanwhile, centralized data storage facilitates data management and
backup, and makes it possible to save storage resources. Besides, data services are
offered via network directly, which facilitates dynamic service mapping and binding,
and becomes more flexible in comparison with mirror technology.

3 Architecture of the Bladmin System

As a cluster management system developed to solve various problems existing in
present blade server clusters, Bladmin (Blade Admin) is an extension version of SonD
[7] and can create a VE (Virtual Environment) for each running service and dispatch
physical resources (calculating and storing resources) according to catch the quick
variation in workloads of service. It meets the SLA targets of service and improves
serving capability of the whole system.

VE Management System

VSVM System

Virtual Disks Pool

Storage Virtualization

Physical Storage

Disk Disk Disk

Physical Servers Pool
（No use local sytem）

Server Server Server

On-demand Virtual Servers
Pool

VS VS VS

 VE Monitor

Virtual Environments

VE Instance1
VE Instance2

Bladmin System

Maps of Physical server
and virtual disk

S
to

ra
ge

C

on
fi

g

 VE Scheduler

 VE Executor

 VE Queue

Client System

Fig. 1. Bladmin is composed of backstage VSVM System, forestage client system and VEMS

116 H. Qu et al.

3.1 System Framework

As a typical service deployment management system based on centralized storage,
Bladmin is composed of backstage VSVM [8], forestage client system [9] and VEMS
(VE Management System), which is shown as Fig. 1. The main functions of VEMS
involve monitoring of the whole system, establishment of dynamic mapping relation
for the logical volumes in calculation resources and virtual disk pools to construct
virtual server, and deploying services dynamically. The main functions of VSVM
involve management of storage equipment and provision of network storage services
for logical volumes of calculation resources. Calculation resources interact with
VEMS during initiation and obtain mapped logical volumes through client system;
meanwhile, VSVM exports the logical volume as being accessed to the calculation
resources. Thus, one cycle of dynamic service deployment is accomplished.

3.2 VEMS Architecture

Realizing VE management is the major aim of VEMS and it is specifically subdivided
into four modules: VE Queue for applying and approving VE; VE Monitor for
monitoring VE operation; VE Scheduler for performing decision management on VE
operation; VE Executor plays the role of decision execution unit, as shown in Fig. 2.

After a certain time elapsed, VEMS will check all VEs’s statuses and judge the
service’s satisfaction, such a time period is called “control interval”. As shown in
Fig. 3, Performance Monitor acquires and stores original load data of system, and
calculates the comprehensive load of current VE according to the load calculation
formula of a service. Workload Forecaster receives and analyzes current workload

VE Queue VE MonitorVE Scheduler

Virtual Environment Instance

VE Executor

Service Server

Virtual Environment Instance

Service Server

DiskDiskDiskDisk Disk

DiskDiskDiskDisk Disk

DiskDiskDiskDisk Disk

Storage Resources

Computing Resources

Data Flow

Fig. 2. The architecture of VEMS is subdivided into four modules: VE Queue, VE Monitor, VE
Scheduler and VE Executor. Each VE has a Service Server to make scheduling decisions and
dispatch requests from the incoming queue onto certain servers in VE.

 Research and Design of Deployment Framework for Blade-Based Data Center 117

Decision Generator

Policy register

Performance Monitor

Dispatchment Executor

VE Queue

SLA targets

VE Monitor

Workload Forcaster

VE Scheduler

VE Executor

Fig. 3. Correlations of main function modules of VEMS

together with history workload information, and forecasts the load intensity in the
next control interval.

Policy register provides an interface for service dispatching policy and defines the
upper and the lower load thresholds as well as dispatching grades. The upper and the
lower load thresholds are the basis to determine whether VE is overloaded or lightly
loaded, and dispatching grades signify whether dynamic adjustment can be performed
on the VE as well as adjustment granularity.

Decision Generator calculates the service level for each VE combining its SLA
targets and comparison of current and future comprehensive load, and evaluates the
candidate dispatching instructions according to dispatching grades and sends them
concurrently to Dispatchment Executor.

Once receives the adjust instructions, Dispatchment Executor starts to perform VE
adjustment action through change the mapping of blades and VEs.

3.3 Bladmin’s Technical Characteristics

In this section, instead of describing Bladmin technicality in detail, only its technical
characteristics are roughly introduced.

(1) Usability. Dynamic deployment based on IP storage is realized, with which
blades are initiated through simulation of SCSI disks via network;
supporting various existing OS versions of Windows and Linux, and
application layers and file systems are completely compatible.

(2) High performance. High-performance backstage snapshot technology
enables duplication of 128 service system mirrors within 30s; forestage
nodes can achieve inter-VE switching within seconds so that real-time
dynamic dispatchment of nodes becomes possible.

(3) High usability. Hot-standby deployment server; backstage storage system
with support of inside Cache synchronization; heart-beat blade monitoring
and support of automatic blade failure switching.

(4) Expandability. Modularized framework design and pluggable module
design interface; equipment management based on standard SNMP;
provision of expandable API programming interface.

118 H. Qu et al.

4 Life Cycle of VE

The work flow of system is described following the sequence of VE life cycle.

4.1 VE Preparation

(1) VE application. Users submit job requests via VE Queue, including service
attributes such as blade number, hardware limit, OS and running software
for service template, and running time, as well as related dispatching
policies registered via policy register.

(2) VE approval. Based on current situation of resource utilization and the
workload forecast of next control interval, administrators examine the
applied jobs via VE Queue and give decisions of consent or rejection.

4.2 VE Construction

VE construction includes three steps: template fabrication, service deployment and
concurrent initiation.

(1) Template fabrication. The transfer tool provided by Bladmin can copy the
software environment in local harddisk to backstage network disk
conveniently and set it as a service template. Take Linux for example, the
key points of transfer tool we called “ltranfer” include create connection
with network disk, load needed modules, get and configure IP address of
node, make the new initrd, copy and configure needed OS and applications
from harddisk , remake grub and so on.

(2) Service deployment. VE Scheduler chooses corresponding blade nodes for
prepared jobs and issues construction orders to VE Executor which clones
multiple snapshots rapidly according to the service template and deploys the
snapshots to blades. This is a mapping action between blades with VEs.

(3) VE initiation. VE Scheduler starts blades via network remotely, and the
preconfigured application processes begin to work after the system is started
according to the deployed relation. Then the service takes into action.

4.3 VE Monitoring

To get the service level of the running VE, VE Monitor need to do three things:
monitor the current status of VE, calculate the comprehensive load of VE and forecast
the future workload of the service.

VE Monitor adopts the open monitoring framework of Nagios [10] so that
administrators can have an overall apprehension and grasp the working state of
specific process in specific node. It reports the state information of hosts and services
through external plug-in units and can inform administrators by various means (send
messages or email) when incidents occur. Failure points can be well analyzed and
positioned if a hierarchical resource model can be adopted.

(1) Access to system load. Three levels of load data in nodes, VE and data
center can be acquired in real time through the monitoring mechanism of
Nagios’s host and host-group.

 Research and Design of Deployment Framework for Blade-Based Data Center 119

(2) Ensure of service status. Each VE has given service status to be monitored
which specified by the VE user ahead of time. They can be monitored
through the monitoring mechanism of Nagios’s service and service-group.

To calculate the VE load calculation, a simple calculation mechanism is provided in
default to perform weighted average on the CPU load on each node of the VE in order
to obtain VE load, and the process authorization on monitored data is opened so that
users can add alternative load calculation formulas that can better satisfy demands. To
forecast the load intensity, an aggressive first-order method is adopted, which makes
prediction based on the workload variation of past two intervals and always tends to
assume heavier load in the next interval.

4.4 VE Adjustment

VE Scheduler performs corresponding dynamic adjustment on VE according to the
monitored and forecasted data from VE Monitor and specific plug-in unit so as to
satisfy specific service SLA targets. VE Scheduler provides an easily-expanding plug-
in mechanism which can meet the requirement of specific service.

(1) VE decision generation. VE Scheduler provides three decision mechanisms:
GROW, SHRINK and DO_NOTHING, and then generates corresponding
decisions by comparing system load with upper and lower threshold values.

(2) VE dispatching mechanism. VE Scheduler provides two dispatching
mechanisms for decision execution: EnforcePolicyHandler and Recommend
Policyhandler. The former is responsible for issuing dispatching instructions
and carrying out VE adjustment in real time; the latter only issues alerting
suggestions to administrators which will decide whether actual adjustment
should be performed.

4.5 VE Termination

VE will be normally exited when it reaches the running time submitted in VE
application. Also VE will be forced terminated which the end time can be set by both
users and administrators. VE termination involves deletion of related snapshots to
release backstage memory and deletion of related VE records to release blade nodes.

5 Experiments

In order to evaluate the Bladmin system described in the previous sections, we
applied it to blade-based data center in Geophysical Research Institute which belongs
to Xinjiang Oil Co.’s Exploration and Development Institute. The system value and
validity was verified through two on-spot tests which are VE construction time and
running of Paradigm job.

5.1 Environment Construction

The architecture of test environment is shown in Fig. 4, and we can see that there
are totally two sets of primary-standby Bladmin servers in the test environment:
server1 (server2) and server3 (server4). The primary-standby servers perform

120 H. Qu et al.

heartbeat

Server1
Server2

heartbeat

Server3

Server4

SNMP

Fig. 4. Architecture of test environment

primary-standby switching through heartbeat when primary server is down, where
server1 serves as the managing server and operates server3 via SNMP interface.

All these four servers are HP 1U Proliant DL360 and the configuration can be seen
from Table 1. Each set of Bladmin server is configured a LSI 3992 Double Controller
Disk Array. The disks are Hitachi FC 400G * 16 and are configured as RAID5 (15 *
disks + 1 * Hotspare disk). We use three types of blade servers in the following tests
which are IBM 32bit (BladeCenter 8832I1C), IBM 64bit (BladeCenter 8843IFG) and
VerariServer(Verari BladeRack 2).

Table 1. Bladmin server configuration

Component Specific
CPU Intel Xeon 5310 1.6G*1

Memory 1G * 4
Ethernet Controller Broadcom C373i Gigabit *3

Disk Subsystem SAS 73G *2
OS linux-2.6.17 x86_64

5.2 Test of VE Construction

To isolate applications, nodes are dedicated for a certain VE and to adapt to varying
workload, some nodes need to be shift from one VE to another. If it takes too long to
complete provisioning before the node can work normally, the SLA targets of service
will be violated which leads to low efficiency. The speed of service switch is mainly
determined by the time of service deployment, so in this section we run the test of VE
construction time to decide whether the Bladmin system can support the quickly
service deployment or not.

It can be seen from Section 4.2 that the VE construction includes three steps:
template fabrication, service deployment and concurrent initiation. The original
environment requires the local systems on nodes to produce mirrors which are put

into a mirror server; then, the mirrors are sent out to local disks of nodes via network.

 Research and Design of Deployment Framework for Blade-Based Data Center 121

Fig. 5 shows the comparison of the VE construction time under the original
environment and the Bladmin environment with 64 nodes of IBM 32bit and 10GB of
template scale to deploy.

About 1h was needed to produce a 10GB mirror template under the original
environment, and the operation was complex as well. The time for producing template
under Bladmin environment was reduced greatly, and transfer of a 10GB local system
disk required only around 30min.

The deployment time under the original environment is the time used to distribute
mirrors. To 10GB OS image, it needs about 30min when distribute 6 blades of
VerariServer and needs about 40min when 64 IBM blades were distributed. The
deployment time under Bladmin environment is the time for creating snapshots, and
the time for creating 64 snapshots is less than 5min.

Node initiation from local disk costs around 2min without reference to the number
of nodes in concurrent initiation. In contrast, data in network disk need to be read
under Bladmin environment, and the number of nodes for concurrent initiation may
affect the initiation duration. Fig. 6 shows the times for node concurrence under

0

20

40

60

80

100

120

Original Bladmin

t
i
m
e
/
m

Template Fabrication Service Deployment

Concurrent Initiation

Fig. 5. Difference of VE construction time

0

100

200

300

400

500

600

700

1 12 25 39 52 65 73 90 102 113 136

nodes

t
i
m
e
/
s

time/s

Fig. 6. Boot time for node concurrence under Bladmin

122 H. Qu et al.

Bladmin, totally eleven groups were tested and increased at the pace of around twelve
nodes. It can be seen that concurrent initiation of 64 blades cost around 5min, while
simultaneous initiation of over one hundred blades required about 10min.

It can be seen from Fig. 5 and Fig. 6 that even in construction of VE with more
than one hundred nodes, the construction rate under Bladmin was increased over one
time in comparison with that under the original environment.

5.3 Test of Paradigm Job

For centralized storage, data centralization also leads to centralized system load,
which affects system usability and expandability. Accordingly, this section presents
Paradigm job (Inline57-160) which ran in the original environment and the Bladmin
environment separately for verification.

In Bladmin environment, except for swap and scratch on which local harddisks are
mounted, all other programs adopt network harddisks, including around 5.6GB of
Paradigm applications in /opt. IBM 64bit and VerariServer blades were choose to run
the job and three times of testing are 64 nodes in Original and Bladmin Environments,
and 128 nodes in Bladmin Environment which can be seen from Table 2. When the
node number was fixed, the time needed in the original and Bladmin was close; under
the same Bladmin, the running time for 128 nodes was around one half of that for 64
nodes, and the node number bore a linear relation with the running time. Therefore,
Bladmin can fully satisfy the requirement of Paradigm application running.

Table 2. Running time of Paradigm job

 time/h
Original Environment (64 nodes) 30.27

Bladmin Environment (64 nodes) 30.34

Bladmin Environment (128 nodes) 16.38

Fig. 7 depicts part of results of the CPU load of Bladmin server1 when the job ran
on 128 nodes. It can be seen that the application mode produced slight pressure on
server, and the CPU was generally idle, indicating that Bladmin system can support
running of hundred-scale services and has excellent usability and expandability.

0

20

40

60

80

100

120

0
5
6

1
1
2

1
6
8

2
2
4

2
8
0

3
3
6

3
9
2

4
4
8

5
0
4

5
6
0

6
1
6

6
7
2

7
2
8

7
8
4

8
4
0

8
9
6

9
5
2

1
0
0
8

time/s

C
P
U

L
o
a
d
(
%
)

CPU Load

Fig. 7. CPU Load of Bladmin Server

 Research and Design of Deployment Framework for Blade-Based Data Center 123

6 Conclusions and Future Work

This paper presents the design, implementation and evaluation of the deployment
framework for blade-based data center: Bladmin. It can construct wanted VE based on
the job applications submitted by users automatically, rapidly and flexibly, and its
dynamic service deployment mechanism improve the overall data center performance
by shorting VE deployment time greatly. Its various technical characteristics satisfy
the SLA targets of the service while reducing costs for management and maintenance,
and improve the resource utilization rate of whole data center.

In the near future, we intend to further develop and deploy our Bladmin system into
our blade server finally solution, which integrates multiple existing products of blade
server companies. It also needs to further evolution of our Bladmin system both in
real-world environment and prototype system. And we plan to integrate more load
prediction techniques and further study of system performance model to fit real-world
workload more precisely. Bladmin system is to be introduced in the idea of
autonomous computing so as to dispatch nodes automatically among services
according to service requests and system load, and to enhance the system’s capability
to counteract dynamic changes in service requests.

Acknowledgments. This work was supported by Major State Basic Research
Development Program of China (No. 2004CB318205) and National High Technology
Research and Development Program of China (No. 2007AA01Z402 and 2007AA
01Z184). We would also like to thank the anonymous reviewers for their comments.

References

1. Qiu, S., Wang, C., Zhen, Y.: Standardization Analysis of Blade Server. Information
Technology and Standardization 11 (2006)

2. SYMANTEC, http://sea.symantec.com/content/article.cfm?aid=99
3. Tivoli, http://www.rembo.com/index.html
4. Chase, J., Grit, L., Irwin, D., Moore, J., Sprenkle, S.: Dynamic Virtual Clusters in a Grid

Site Manager. In: Proceedings of the 12th IEEE International Symposium on High
Performance Distributed Computing(HPDC-12), Seattle, WA (2003)

5. Emboot, http://www.emboot.com/products_netBoot-i.htm
6. Oliveira, F., Patel, J., Van Hensbergen, E., Gheith, A., Rajamony, R.: Blutopia: Cluster

Life-cycle Management. Technical Report, IBM
7. Liu, Z., Xu, L., Yin, Y.: Blue Whale SonD: A Service-on-Demand Management System.

Chinese Journal of Computers 28(7), 1110–1117 (2005)
8. Yin, Y., Liu, Z., Yang, S.: Vsvm-enhanced: a volume manager based on the evms

framework. In: Grid and Cooperative Computing Workshops, 2006, pp. 424–431 (2006)
9. Tang, H., Feng, S., Zhang, H.: NVD: the Network Virtual Device for HA-SonD. In:

Proceedings of International Workshop on Networking, Architecture, and Storages,
Shenyang, China (2006)

10. Nagios, http://www.nagios.org

Query Optimization over Parallel Relational
Data Warehouses in Distributed Environments
by Simultaneous Fragmentation and Allocation

Ladjel Bellatreche1, Alfredo Cuzzocrea2, and Soumia Benkrid3

1 LISI/ENSMA Poitiers University,
Futuroscope, France

bellatreche@ensma.fr
2 ICAR-CNR and University of Calabria,

Cosenza, Italy
cuzzocrea@si.deis.unical.it

3 National High School for Computer Science (ESI),
Algiers, Algeria

s benkrid@esi.dz

Abstract. Parallel database technology has already shown its efficiency
in supporting high-performance Online Analytical Processing (OLAP)
applications. This scenario implies achieving query optimization over re-
lational Data Warehouses (RDW) on top of which typical OLAP func-
tionalities, such as roll-up, drill-down and aggregate query answering,
can be implemented. As a result, it follows the emerging need for a
comprehensive methodology able to support the design of RDW over
parallel and distributed environments in all the phases, including data
partitioning, fragment allocation, and data replication. Existing design
approaches have an important limitation: fragmentation and allocation
phases are performed in an isolated manner. In order to overcome this
limitation, in this paper we propose a new methodology for designing
parallel RDW over distributed environments, for query optimization pur-
poses. The methodology is illustrated on database clusters, as a noticeable
case of distributed environments. Contrary to state-of-the-art approaches
where allocation is performed after fragmentation, in our approach we
propose allocating fragments just during the partitioning phase. Also, a
naive replication algorithm that takes into account the heterogeneous
characteristics of our reference architecture is proposed.

1 Introduction

In this paper, we focus the attention to the context of query optimization tech-
niques over relational Data Warehouses (RDW) developed on top of cluster
environments [14]. A RDW is usually modeled by means of a star schema con-
sisting of a huge fact table and a number of dimension tables. Star queries are
typically executed against RDW. Star queries retrieve aggregate information
from measures stored in the fact table by applying selection conditions on joint

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 124–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Query Optimization over Parallel RDW in Distributed Environments 125

dimension table columns, and they are extensively used as conceptual basis for
more complex OLAP queries, which, in turn, are exploited to extract useful
summarized knowledge from RDW for decision making purposes.

Unfortunately, evaluating OLAP queries over RDW typically demands for a
high-performance that is difficult to ensure over large amounts of multidimen-
sional data, even because such queries are usually complex in nature [2]. This
complexity is mainly due to the presence of joins and aggregation operations
over huge fact tables, which very often involve billions of tuples to be accessed
and processed. In order to speed-up OLAP queries over RDW, several optimiza-
tion approaches, mainly inherited from classical database technology, have been
proposed in literature. Among others, we recall materialized views [12], indexing
[20], data partitioning [5], data compression [8] etc. Despite this, it has been
demonstrated that the sole use of these approaches singularly is not sufficient
to gain efficiency during the evaluation of OLAP queries over RDW [21]. As a
consequence, in order to overcome limitations deriving from these techniques,
high-performance in database technology, including RDW [11,9], has tradition-
ally been achieved by means of parallel processing methodologies [16].

Following this major trend, the most important commercial database systems
vendors (e.g., Oracle, IBM, Microsoft, NCR, Sybase etc.) have recently proposed
solutions able to support parallelism within the core layer of their DBMS. Unfor-
tunately, these solutions still remain expensive for small and medium enterprises,
so that database cluster technology represents an efficient low-cost alternative to
tightly-coupled multiprocessing database systems [14]. A database cluster can be
defined as a cluster of personal computers (PC) such that each of them runs an
off-the-shelf sequential DBMS [14]. The set of DBMS relying in the cluster are
then orchestrated by means of an ad-hoc middleware that implements parallel
processing mechanisms and techniques, being this middleware able to support
typical DBMS functionalities/services (e.g., storage, indexing, querying etc) in a
transparent-for-the-user manner, just like end-users were interacting with a sin-
gleton DBMS. Starting from this low-cost technology solution, in our research
we focus the attention on the application scenario represented by the so-called
parallel relational Data Warehouses (PRDW) over database clusters, i.e. RDW
that are developed on top of a cluster of databases that implements parallel
processing mechanisms and techniques. Database clusters are thus assumed to
be the reference distributed environment for our research.

Similarly to the traditional context of distributed and parallel databases [16],
the design of a PRDW on a database cluster can be achieved by means of a gen-
eral design methodology consisting by the following steps: (i) fragmenting the
input data warehouse schema; (ii) allocating the so-generated fragments; (iii)
replicating fragments in order to ensure high-performance during data manage-
ment and query evaluation activities. By examining the active literature, a few
work on how to design a PRDW on a database cluster exists [14,11]. These
approaches can be classified into two main classes. The first class of proposals
assume that data are already partitioned and allocated, and propose solutions
to route OLAP queries across nodes of the database cluster in order to improve

126 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

query performance [17,18]. The other class of proposals instead propose solu-
tions to partition and allocate data across database cluster nodes [14]. Most
importantly, the majority of approaches devoted to the design of a PRDW over
a database cluster assume that all nodes of the cluster are homogenous, i.e.
they have the same processing power and storage capacity. By looking at the
peculiarities of the target application scenario, it is easy to understand how this
assumption is not always true, as a cluster of PC with heterogeneous character-
istics in terms of storage and processing capacity may exist. Therefore, it clearly
follows the interest for PRDW design methodologies over database clusters char-
acterized by heterogeneous nodes, which is the main goal of our research.

Data fragmentation1 is a fundamental phase of any PRDW design methodol-
ogy, and can also be considered as a pre-condition for PRDW design [1]. Data
fragmentation can be of the following two kinds [16]: (i) horizontal fragmenta-
tion, according to which table instances are decomposed into disjoint partitions ;
(ii) or vertical fragmentation, according to which table instances are split into
disjoint sets of attributes. Horizontal partitioning is the most popular solution
used to design PRDW [1,21,22,11,14]. In previous PRDW design methodologies
research efforts, horizontal partitioning algorithms do not control the number of
generated fragments, except [1,6]. As a consequence, the number of fragments
generated by the partitioning phase can be larger than the number of nodes of
the database cluster. In turn, this causes flaws in the allocation and replication
phases.

Allocation is the phase that places fragments generated by the partition phase
across nodes of the database cluster. Allocation can be either redundant, i.e.
with replication, or non redundant, i.e. without replication [16]. Some literature
approaches advocate a full replication in order to ensure a high intra-query par-
allelism [14]. This solution demands for the availability of very large amounts of
disk space, as each node must be ideally able to house the entire data warehouse.
As a consequence, data updates become prohibitively expensive. On the basis of
this main observation, we assert that replication must be partial, meaning that
database cluster nodes house portions of the original data warehouse. Once frag-
ments are placed and replicated, global OLAP queries against the target PRDW
are re-written over fragments and evaluated on the parallel machine.

State-of-the-art PRDW design methodologies on database clusters propos-
als suffer from the following two main limitations. First, they focus the atten-
tion on homogenous database clusters, i.e. database clusters where nodes have
the same processing power and storage capacity. Second, fragmentation and al-
location phases are usually performed in an isolated manner (or iteratively),
meaning that the designer first partitions his/her data warehouse using his/her
favorite fragmentation algorithm and then allocates generated fragments on the
parallel machine using his/her favourite allocation algorithm. This approach
completely ignores the inter-dependency between fragmentation and allocation
phases, which, contrary to this, can instead seriously affect the final performance
of data management and OLAP query evaluation activities performed against

1 In this paper, we use the terms “fragmentation” and “partitioning” interchangeably.

Query Optimization over Parallel RDW in Distributed Environments 127

the PRDW. Starting from these breaking evidences, in this paper we propose
and experimentally assess an innovative methodology for designing PRDW on
database clusters overtaking the limitations above. To the best of our knowl-
edge, our research is the first one in literature that addresses the issue of design-
ing PRDW on heterogeneous database clusters via a combined fragmentation /
allocation strategy.

2 Related Work

In this Section, we provide a brief overview on state-of-the-art approaches fo-
cusing on fragmentation and allocation techniques for supporting PRDW over
database clusters [11,14,17,18].

Furtado [11] discusses partitioning strategies for node-partitioned data ware-
houses. The main suggestion coming from [11] can be synthesized in a “best-
practice” recommendation stating to partition the fact table on the basis of the
larger dimension tables (given a ranking threshold). In more detail, each larger
dimension table is first partitioned by means of the Hash mode approach via
its primary key. Then, the fact table is partitioned by means of the Hash mode
approach via foreign keys referencing the larger dimension tables. Finally, the so-
generated fragments are allocated according to two alternative strategies, namely
round robin and random. Smaller dimension tables are instead fully-replicated
across the nodes of the target data warehouse. The fragmentation approach [11]
does not take into account specific star query requirements, being such queries
very often executed against data warehouses, and it does not consider the critical
issues of controlling the number of generated fragments, like in [5,22].

In [14], Lima et al. focus the attention on data allocation issues for database
clusters. Authors recognize that how to place data/fragments on the different
PC of a database cluster plays a critical role in data allocation, and that, in this
respect, the following two straightforward approaches can be advocated: (i) full
replication of the target database on all the PC, or (ii) meaningful partition of
data/fragments across the PC. Starting from this main intuition, authors propose
an approach that combines partition and replication for OLAP-style workloads
against database clusters. In more detail, the fact table is partitioned and repli-
cated across nodes using the so-called chained de-clustering, while dimension
tables are fully-replicated across nodes. This comprehensive approach enables
the middleware layer to perform load balancing tasks among replicas, with the
goal of improving query response time. Furthermore, the usage of chained de-
clustering for replicating fact table partitions across nodes allows the designer
not to detail the way of selecting the number of replicas to be used during the
replication phase. Just like [11], [14] does not control the number of generated
fact table fragments.

To summarize, the most relevant-in-literature approaches related to our re-
search are mainly oriented towards the idea of performing the fragmentation and
allocation phases over database clusters in an isolate and iterative manner.

128 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

Fig. 1. Iterative PRDW Design over Heterogeneous Database Clusters

3 PRDW Design over Heterogeneous Database Clusters

In this Section, we introduce a rigorous formalization of the PRDW design prob-
lem on heterogeneous database clusters, which will be used as reference formal-
ism throughout the paper. Formally, given:

– a data warehouse schema DWS composed by d dimension tables D =
{D0, D1, . . . , Dd−1} and one fact table F – as in [11,14], we suppose that all
dimension tables are replicated over the nodes of the database cluster and
are fully-available in main memories of cluster nodes;

– a database cluster machine DBC with M nodes N = {N0, N1, . . . , NM−1},
each node Nm, with 0 ≤ m ≤M −1, having a proper storage Sm and proper
processing power Pm, which is modeled in terms of the number of operations
that Nm can process in the reference temporal unit;

– a set of star queriesQ = {Q1, Q2, . . . , QL−1} to be executed over DBC, being
each query Ql, with 0 ≤ l ≤ L− 1, characterized by an access frequency fl;

– a maintenance constraint W : W > M representing the number of fragments
W that the designer considers relevant for his/her target allocation process,
called fragmentation threshold ;

the problem of designing a PRDW described by DWS over the heterogeneous
database cluster DBC consists in fragmenting the fact table F into NF fragments
and allocating them over different DBC nodes such that the total cost of executing
all queries in Q can be minimized while storage and processing constraints are
satisfied across nodes in DBC, under the maintenance constraint W .

Based on the formal statement above, it follows that our investigated problem
is composed of two sub-problems, namely data partitioning and fragment alloca-
tion. Each one of these problems is known to be NP-complete [5,19,13]. In order
to deal with the PRDW design problem over database clusters, two main classes

Query Optimization over Parallel RDW in Distributed Environments 129

of methodologies are possible: iterative design methodologies and combined de-
sign methodologies. Iterative design methodologies have been proposed in the
context of traditional distributed and parallel database design research. The idea
underlying this class of methodologies consists in first fragmenting the RDW us-
ing any partitioning algorithm, and then allocating the so-generated fragments
by means of any allocation algorithm. In the most general case, each parti-
tioning and allocation algorithm has its own cost model. The main advantage
coming from these traditional methodologies is represented by the fact they are
straightforwardly applicable to a large number of even-heterogenous parallel and
distributed environments (e.g., Peer-to-Peer Databases). Contrary to this, their
main limitation is represented by the the fact they neglect the inter-dependency
between the data partitioning and the fragment allocation phase, respectively.
Figure 1 summarizes the steps of iterative design methodologies.

To overcome limitations deriving from using iterative design methodologies,
the combined design methodology we propose in our research consists in per-
forming the allocation phase/decision at fragmentation time, in a simultaneous
manner. Figure 2 illustrates the steps of our approach. Contrary to the iterative
approach that uses two cost models (i.e., one for the fragmentation phase, and
one for the allocation phase), the proposed combined approach uses only one
cost model that monitors whether the current generated fragmentation schema
is “useful” for the actual allocation process.

Fig. 2. Combined PRDW Design over Heterogeneous Database Clusters

4 A Combined PRDW Design Methodology over
Heterogeneous Database Clusters

In this Section, we describe in detail our combined PRDW design methodology
over heterogeneous database clusters. We first focus the attention on the critical
aspect represented by the data partitioning phase, which, as stated in Section 1,
is a fundamental and critical phase for any PRDW design methodology [1]. A

130 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

particularity of our proposed methodology is represented by the fact that, simi-
larly to [1,6], it allows the designer to control the number of generated fragments,
which should be a mandatory requirement for any PRDW design methodology
in cluster environments (see Section 1). Then, we move the attention on data
allocation issues and, finally, we provide the main algorithm implementing our
proposed methodology.

4.1 Data Partitioning

In our proposed methodology, we make use of horizontal (data) partitioning,
which can be reasonably considered as the core of our PRDW design. Specifi-
cally, our data partitioning approach consists in fragmenting dimension tables
Dj in D by means of selection predicates of queries in Q, and then using the so-
generated fragmentation schemes, denoted by FS(Dj), to partition the fact table
F . Formally, a selection predicate is of kind: Ak θ Vk, such that: (i) Ak models
an attribute of a dimensional table Dj in D; (ii) Vk models an attribute value
in the universe of instances of DWS; (iii) θ models an equality or comparison
predicate among attributes/attribute-values, i.e. θ ∈ {=, <, >,≤,≥}. The fact
table partitioning method that derives from this approach is known-in-literature
under the term “referential partitioning”, which has recently been incorporated
within the core layer of the DBMS platform Oracle11G [10].

Based on the data partitioning approach above, the number of fragments NF

generated from the fact table F is given by the following expression:
NF =

∏d−1
j=0 Φj , such that Φj , with 0 ≤ j ≤ d − 1, denotes the number of

horizontal fragments of the dimension table Dj in D, and d denotes the number
of dimension tables inDWS. Such a decomposition of the fact table may generate
a large number of fragments [21,3,5].

4.2 Naive Solution

In our proposed PRDW design methodology on database clusters, we introduce
the concept of fragmentation scheme candidate of a dimensional table Dj in D,
denoted by FSC(Dj). Intuitively enough, a fragmentation scheme candidate is
a fragmentation scheme generated during the execution of the algorithm imple-
menting the proposed methodology and that may belong to the final solution
represented by the set of NF fact-table fragments allocated across nodes of the
target database cluster.

A critical role in this respect is played by the solution used to represent-in-
memory fragmentation scheme candidates as this, in turn, impacts on the per-
formance of the proposed algorithm. In our implementation, given a dimensional
table Dj in D, we model a fragmentation scheme candidate of Dj as a multi-
dimensional array Aj such that rows in Aj represent so-called fragmentation
attributes of the partitioning process (namely, attributes of Dj), and columns
in Aj represent domain partitions of fragmentation attributes. Given an at-
tribute Ak of Dj , a domain partition PD(Ak) of Ak is a partitioned represen-
tation of the domain of Ak, denoted by Dom(Ak), into disjoint sub-domains of
Dom(Ak), i.e. PD(Ak) = {dom0(Ak), dom1(Ak), . . . , dom|PD(Ak)|−1(Ak)}, such

Query Optimization over Parallel RDW in Distributed Environments 131

that domh(Ak) ⊆ Dom(Ak), with 0 ≤ h ≤ |PD(Ak)| − 1, denotes a sub-domain
of Dom(Ak), and the following property holds:
∀ hp, hq : hp �= hq, domhp(Ak)

⋂
domhq (Ak) = ∅. Given an attribute Ak of Dj ,

a number of alternatives for generating a domain partition PD(Ak) of Dom(Ak)
exist. Among all the available solutions, in our proposed methodology we make
use of the set of queries Q to this end (see Section 3). Coming back to the
structural definition of Aj , each cell of Aj , denoted by Aj [k][h], stores an in-
teger value that represents the number of attribute values of Ak belonging to
the sub-domain domh(Ak) of Dom(Ak). It is a matter of fact to notice that
Aj [k][h] ∈ [0 : |PD(Ak)|].

Based on the multidimensional representation model for fragmentation scheme
candidates above, for each dimension table Dj in D, the final fragmentation
scheme of Dj, FS(Dj), is generated according to the following semantics:

– all cells in Aj of a fragmentation attribute Ak of Dj have different values
Aj [Ak][h], then all sub-domains of Dom(Ak) will be used to partition Dj ;

– all cells in Aj of a fragmentation attribute Ak of Dj have the same value
Aj [Ak][h], then the attribute Ak will not participate to the fragmentation
process;

– a sub-set of cells in Aj of a fragmentation attribute Ak of Dj have the same
value Aj [Ak][h], then the corresponding sub-domains of Dom(Ak) will be
merged into one sub-domain only, and then used to partition Dj .

Based on the formal model of fragmentation scheme candidates above, the naive
solution to the PRDW design problem over database clusters we propose, which
represents a first attempt of the algorithm implementing our methodology, makes
use of a hill climbing heuristic, which consists of the following two steps [4]:

1. find an initial solution I0 – I0 may be obtained via using a random distri-
bution for filling cells of fragmentation scheme candidates Aj of dimensional
tables Dj in D;

2. iteratively improve the initial solution I0 by using the hill climbing heuristic
until no further reduction in the total query processing cost due to evaluating
query in Q can be achieved, and the storage and processing constraints are
satisfied, under the maintenance constraint W .

It should be noted that, since the number of fragmentation scheme candidates
generated from DWS is finite, the hill climbing heuristic will always complete
its execution, thus finding the final solution IF .

On the basis of these operators running on fragmentation schemes of dimen-
sional tables, the hill climbing heuristic still finds the final solution IF , while
the total query processing cost can be reduced and the maintenance constraint
W can be satisfied.

4.3 Data Allocation

The data allocation phase of our proposed PRDW design methodology on
database clusters is performed simultaneously to the data fragmentation/

132 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

partitioning phase. Basically, each fragmentation scheme candidate generated by
the algorithm implementing our methodology is allocated across nodes of the tar-
get database cluster, with the goal of minimizing the total query processing cost
over all nodes, while satisfying the storage and processing constraints on each
node. In more detail, during the allocation phase the following concepts/data-
structures are used:

– Fragment Placement Matrix (FPM) MP , which stores the positions of a
fragment across nodes (recall that fragment replicas may exist). To this end,
MP rows model fragments, whereasMP columns model nodes.MP [i][m] =
1, with 0 ≤ i ≤ NF − 1 and 0 ≤ m ≤M − 1, if the fragment Fi is allocated
on the node Nm, otherwiseMP [i][m] = 0.

– Fragment Size Size(Fi), which models the size of the fragment Fi in terms
of the number of its instances across the nodes. Size(Fi) is estimated by
means of selection predicates. Since each node Nm in N has its own storage
capacity Sm, the storage constraint associated to Fi across all nodes of the
target database cluster can be formally expressed as follows:

∀m ∈ [0 : M − 1] :
NF−1∑
i=0

MP [i][m]× Size(Fi) ≤ Sm (1)

– Fragment Usage Matrix (FUM) [15] MU , which models the “usage” of
fragments by queries in Q. To this end, MU rows model queries, whereas
MU columns model fragments. MU [l][i] = 1, with 0 ≤ l ≤ L − 1 and
0 ≤ i ≤ NF − 1, if the fragment Fi is involved by the query Ql, otherwise
MU [l][i] = 0. An additional column is added to MU for representing the
access frequency fl of each query Ql (see Section 3). In order to evaluate a
query Ql in Q on a node Nm in N , Nm must store relevant fragments for
Ql. Based on our theoretical framework, a fragment Fi is relevant iff the
following property holds:MP [i][m] = 1∧MU [l][i] = 1, with 0 ≤ i ≤ NF −1,
0 ≤ m ≤M − 1 and 0 ≤ l ≤ L− 1.

– Fragment Affinity Matrix (FAM) MA, which models the “affinity” between
two fragments Fip and Fiq . To this end,MA rows and columns both model
fragments, hence MA is a symmetric matrix. MA[ip][iq], with 0 ≤ ip ≤
NF − 1 and 0 ≤ iq ≤ NF − 1, stores the sum of access frequencies of queries
in Q that involve Fip and Fiq simultaneously.

4.4 PRDW Design Algorithm

On the basis of the data partitioning phase and the data allocation phase de-
scribed in Section 4.1 and Section 4.4, respectively, and the naive solution and
improved solution to the PRDW design problem over database clusters provided
in Section 4.2 and Section 4.3, respectively, for each fragmentation scheme can-
didate FSC(Dj) of each dimensional table Dj in D, the algorithm implementing
our proposed methodology performs the following steps:

1. Based on the FUM MU and the FAM MA, generate groups of fragments
Gz by means of the method presented in [15].

Query Optimization over Parallel RDW in Distributed Environments 133

2. Compute the size of each fragment group Gz, as follows: Size(Gz) =∑
i Size(Fi), such that Size(Fi) denotes the size of the fragment Fi.

3. Sort nodes in the target database cluster DBC by descendent ordering based
on their storage capacities and processing power.

4. Allocate “heavy” fragment groups on powerful nodes in DBC, i.e. nodes with
high storage capacity and high processing power, in a round-robin manner
starting from the first powerful node. The allocation phase must minimize
the total query processing cost due to evaluating queries in Q while max-
imizing the productivity of each node, based on the following theoretical
formulation:

max

L−1∑
l=0

M−1∑
m=0

NF−1∑
i=0

MU [l][i]×MP [i][m]× Size(Fi) (2)

such that: (i) L denotes the number of queries against DBC; (ii) M denotes
the number of nodes of DBC; (iii) NF denotes the number of fragments
belonging to the solution; (iv) MU denotes the FUM; (v) MP denotes the
FPM; (vi) Size(Fi) denotes the size of the fragment Fi. In formula (2), we
implicitly suppose that the response time of any arbitrary query Ql in Q
is superiorly bounded by the time needed to evaluate Ql against the most-
loaded node in DBC, thus we can consider it as a constant and omit it in
formula (2).

5. Replicate on non-powerful nodes groups of fragments that require high com-
putation time, in order to ensure a high performance.

5 Conclusions and Future Work

In this paper, we have introduced an innovative PRDW design methodology on
distributed environments, while adopting database clusters as a specialized case.
The final goal of our research consists in devising query optimization solutions
for supporting resource-intensive OLAP over such environments. The proposed
methodology encompasses a number of advancements over state-of-the-art simi-
lar approaches, particularly (i) the fact it considers heterogeneous cluster nodes,
i.e. nodes having heterogeneous storage capacities and processing power, and (ii)
the fact it performs the fragmentation and allocation phases simultaneously. This
methodology can be applied in a various environments such as parallel machines,
distributed databases, etc. Future work is mainly oriented towards performing
comprehensive experimental studies on both synthetic and real-life data sets in
order to show the efficiency of our proposed design methodology, and making it
able to deal with next-generation Grid Data Warehouse Environments [7].

References

1. Bellatreche, L., Benkrid, S.: A joint design approach of partitioning and allocation
in parallel data warehouses. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.)
DaWaK 2009. LNCS, vol. 5691, pp. 99–110. Springer, Heidelberg (2009)

134 L. Bellatreche, A. Cuzzocrea, and S. Benkrid

2. Bellatreche, L., Boukhalfa, K.: An evolutionary approach to schema partitioning se-
lection in a data warehouse environment. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK
2005. LNCS, vol. 3589, pp. 115–125. Springer, Heidelberg (2005)

3. Bellatreche, L., Boukhalfa, K., Abdalla, H.I.: Saga: A combination of genetic and
simulated annealing algorithms for physical data warehouse design. In: Bell, D.A.,
Hong, J. (eds.) BNCOD 2006. LNCS, vol. 4042, pp. 212–219. Springer, Heidelberg
(2006)

4. Bellatreche, L., Boukhalfa, K., Richard, P.: Referential horizontal partitioning se-
lection problem in data warehouses: Hardness study and selection algorithms. In-
ternational Journal of Data Warehousing and Mining 5(4), 1–23

5. Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data warehouses:
Hardness study, heuristics and oracle validation. In: Song, I.-Y., Eder, J., Nguyen,
T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87–96. Springer, Heidelberg (2008)

6. Cuzzocrea, A., Darmont, J., Mahboubi, H.: Fragmenting very large xml data ware-
houses via k-means clustering algorithm. International Journal of Business Intelli-
gence and Data Mining 4(3-4), 301–328 (2009)

7. Cuzzocrea, A., Kumar, A., Russo, V.: Experimenting the query performance of a
grid-based sensor network data warehouse. In: Hameurlain, A. (ed.) Globe 2008.
LNCS, vol. 5187, pp. 105–119. Springer, Heidelberg (2008)

8. Cuzzocrea, A., Serafino, P.: LCS-hist: taming massive high-dimensional data cube
compression. In: 12th International Conference on Extending Database Technology,
EDBT 2009 (2009)

9. DeWitt, D.J.D., Madden, S., Stonebraker, M.: How to build a high-performance
data warehouse, http://db.lcs.mit.edu/madden/high_perf.pdf

10. Eadon, G., Chong, E.I., Shankar, S., Raghavan, A., Srinivasan, J., Das, S.: Sup-
porting table partitioning by reference in oracle. In: SIGMOD 2008 (2008)

11. Furtado, P.: Experimental evidence on partitioning in parallel data warehouses. In:
DOLAP, pp. 23–30 (2004)

12. Gupta, H.: Selection and maintenance of views in a data warehouse. Technical
report, Stanford University (1999)

13. Karlapalem, K., Pun, N.M.: Query driven data allocation algorithms for distributed
database systems. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, pp. 347–356.
Springer, Heidelberg (1997)

14. Lima, A.B., Furtado, C., Valduriez, P., Mattoso, M.: Improving parallel olap query
processing in database clusters with data replication. Distributed and Parallel
Database 25(1-2), 97–123 (2009)

15. Navathe, S.B., Ra, M.: Vertical partitioning for database design: a graphical algo-
rithm. ACM SIGMOD, 440–450 (1989)

16. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

17. Röhm, U., Böhm, K., Schek, H.: Olap query routing and physical design in a
database cluster. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.)
EDBT 2000. LNCS, vol. 1777, pp. 254–268. Springer, Heidelberg (2000)

18. Röhm, U., Böhm, K., Schek, H.: Cache-aware query routing in a cluster of
databases. In: Proceedings of the International Conference on Data Engineering
(ICDE), pp. 641–650 (2001)

19. Saccà, D., Wiederhold, G.: Database partitioning in a cluster of processors. ACM
Transactions on Database Systems 10(1), 29–56 (1985)

http://db.lcs.mit.edu/madden/high_perf.pdf

Query Optimization over Parallel RDW in Distributed Environments 135

20. Sarawagi, S.: Indexing olap data. IEEE Data Engineering Bulletin 20(1), 36–43
(1997)

21. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for paral-
lel data warehouses. In: Proceedings of the International Conference on Very Large
Databases, pp. 273–284 (2000)

22. Stöhr, T., Rahm, E.: Warlock: A data allocation tool for parallel warehouses. In:
Proceedings of the International Conference on Very Large Databases, pp. 721–722
(2001)

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 136–148, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Function Units Sharing between
Neighbor Cores in CMP

Tianzhou Chen, Jianliang Ma, Hui Yuan, Jingwei Liu, and Guanjun Jiang

College of Computer Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China
{tzchen,majl,libbug}@zju.edu.cn,
{richieln,ljw850216}@gmail.com

Abstract. Program behaviors reveal that programs have different sources re-
quirement at different phases, even at continuous clocks. It is not a reasonable
way to run different programs on constant hardware resources. So sharing fea-
sible degree of hardware may get more benefits for programs.

This paper proposes architecture to share function units between neighbor
cores in CMP to improve chip performance. Function units are central units on
the core, it take little area and is not the performance critical part of core, but
improving function units’ utilization can improve other units’ efficiency and
core performance. In our design, share priority guarantees the local thread
would not be influenced by threads in neighbor cores. Share latency is resolved
by early share decision made and direct data path. The evaluation shows that
the proposal is good for function unit intensive program and can drive other
units more efficient.

1 Introduction

With the development of electric industry, more and more transistors can be used and
the processor design is more complex. Many kinds of technologies are used to im-
prove program performance, so that performance improvement becomes saturation.
Single thread execution is not efficient enough for modern processors and processors
try to execute multi-thread at the same time.

SMT (Simultaneous Multi-Threading) share hardware resources aggressively be-
tween threads, but meanwhile brings more resource competition. Instructions
from more than one thread can be executed in any given pipeline stage at a time. SMT
can share hardware to more than one thread and improve processor throughput. But
concurrent threads, sharing the same on chip memory system, causes access conflicts
and cache pollution. Bus and function units competition need extra manager unit.
SMT increases chip design complexity. The number of concurrent thread is decided
by chip designer, and chip complexity has limited the number to two for most SMT
implementations.

CMP (Chip Multi-Processor) separates chip resources into cores to implement
thread isolation, but cannot improve performance for single thread application effec-
tively. CMP integrates more than one core to a chip. It can simplify chip design com-
plexity, decrease chip frequency and voltage and implement real parallelism. But

 Function Units Sharing between Neighbor Cores in CMP 137

CMP is not fit for legacy code very well. The legacy code bases on single thread
processor and is executed in sequence. It cannot make use of the parallelism benefits
of CMP. Meanwhile CMP usually has lower frequency and simpler architecture for
each core. So CMP may get performance degradation for single thread.

SMT tries to share vast hardware resource between threads and CMP isolates
threads on the chip from each other. These two technologies are two extreme of chip
resource sharing to pursue high utilization ratio and isolation to pursue high parallel-
ism. How to combine advantages and avoid flaws of SMT and CMP is an interesting
topic.

FU (Function Unit) utilization ratio reflects chip resource usage indirectly. In a ro-
bust processor, different units should be able to consist with each other. For example,
instruction fetch unit should consist with execution and commit unit; branch predic-
tion unit should consist with branch rollback and execution unit; namely, it is unrea-
sonable for a processor to have a wild instruction fetch bandwidth, but only few
instruction execution unit, so better FU utilization ratio indirectly reflects better chip
resource usage and better thread performance on chip.

Observation of program behavior provides more proofs. Compute-intensive pro-
grams require more ALUs and registers, but I/O-intensive programs require more I/O
ports and Load/Store units. For a same program, different periods also have different
behavior. Program needs more I/O at some periods and more computing at other peri-
ods. T. Sherwood et al classify similar periods as program phases [8]. Moreover, for
any program at any clock, FU requirement is also unstable-some clocks fluctuant and
some clocks lacking. These characters illustrate single SMT or CMP is not enough.

In this paper we propose a structure to share function units between neighbor cores
in CMP. Function units in this paper include Integer ALU, Integer Multiplier/Divider,
Load/Store unit, FP ALU and FP Multiplier/Divider. The share is compromising of
SMT and CMP, which is not SMT-like aggressive share and is not CMP-like resource
isolation. The proposed architecture tries to improve program performance and over-
come flaws of SMT and CMP. Function unit only takes little chip die area and is not
the bottle neck of current processor, but improving FU usage can lead to improve
usage of other resource and improve thread performance.

The proposal bases on CMP architecture. Any core on chip can access the neighbor
core’s function units (except Load/Store units) and registers, and be accessed by
neighbors. The key problem of function units sharing is share delay, which include
delay of share decision making, instruction issue and data transmission. If the instruc-
tion issued to neighbor core is later than local issue, share would be meaningless.

2 Related Work

As the number of transistor is increasing on a die, how to use these resources more
effective is a problem people explore. Single processor is out of date and SMT and
CMP turn up. L. Hammond et al simulates three kind of superscalar, SMT and CMP
processor to compare the efficiency of transistor using[1]. It indicates CMP is not
only the easiest implementation, but also offer excellent performance. But Tullsen
shows a different result[2]. It illustrates that both superscalar and fine-grain multi-
threaded architectures are limited in their ability to utilize the resources of a wide-
issue processor, but SMT has potential advantages.

138 T. Chen et al.

So SMT and CMP have their own excellence. J. Burns et al tests the area and sys-
tem clock effects to SMT and CMP[4]. The result is that the wide issue SMT delivers
the highest single thread performance with improved multi-thread throughput and
multiple smaller cores deliver the highest throughput. Is a compromise of SMT and
CMP good choice of billions transistors? Krishnan explores a hybrid design, where a
chip is composed of a set of SMT processors[3]. The evaluation concludes that such a
hybrid processor represents a good performance-complexity design point. But it is
just physical combination and does not improve the substrate.

The new solution is feasible resources sharing between cores of a CMP chip. R.
Dolbeau et al proposes a intermediate between SMT and CMP called CASH[5].
CASH is a parallel processor altering between SMT and CMP. It shares caches,
branch predictors and divide units. But it does not exploit the complete dynamic shar-
ing of resources enabled on SMT. Meanwhile CASH does not consider area effect.

 Rakesh Kumar et al proposes conjoined-core chip multiprocessing to reduce die
area and improve overall computational efficiency with resource sharing[6]. It shares
crossbar, I-Cache, D-Cache and FPU. The goal of area saving is made, but the side
effect is performance degradation.

The essence of resource sharing possibility is the resource require of program when
it is running. T. Sherwood explores the program behavior and finds that programs
change behaviors drastically, switching between periods of high and low perform-
ance[8]. But some periods have similar characters. He classifies similar behavior
periods as program phases and, presents an architecture that can efficiently capture,
classify and predict program phases[7]. The behavior differences let the chip resource
usage be intensive or loose, so the loose phases can provide resource to intensive
phases. J. Adam et al explores the value degree of use[9]. It implies that function units
are idle sometimes and have the potential to be shared.

3 Motivation

The program performance is decided by hardware and itself. Hardware includes I/O
speed, cache size, clock frequency, pipelining, function unit, and so on. Program itself
means program logic and instruction dependences. For a compiled program, program
logic and instruction dependences do not change any more, and the program perform-
ance is definitely decided by hardware structure.

FU utilization ratio reflects the core efficiency of a processor. An efficient core
should be harmonious and any part of core would not be the bottle neck at general
condition. So high FU utilization ratio means high core utilization ratio and improving
FU utilization can improve the core efficiency. Figure 1 plots the relationship between
FU and 4 other logic units on the core. Those units are representation of other units on
core. In this graph, we set a 16 integer ALUs core as the baseline, and other logic
units are configured to match. Then we configure the upper limit of integer ALU
number, which can be used, to 8, 4 and 2 to observe the change of other units’ utiliza-
tion ratio during const time. In this figure, we ignore the influences from other FUs,
such as Load/Store units and FP units.

From the graph, we can see that 4 units’ utilization ratio degrade dramatically
when number of IALU is 4 and 2, but when IALU is 8, the degradation is not clear.

 Function Units Sharing between Neighbor Cores in CMP 139

The reason is the thread performance is mainly constrained by instruction dependence
after IALU is more than 8. Lower IALU utilization ratio leads other units’ utilization
ratio to be low, and thus the core efficiency is low and many resources are wasted. On
the contrary, improving FU utilization ratio can bring more benefits besides FU itself.

In this paper, we try to share FU between neighbor cores. The purpose is not only
to improve FU usage, but more importantly is to improve most resource utilization on
the core. Actually, FU only takes little chip area and is not the important area con-
sumption unit and does not have complex logic or policy. But why dose we chose FU
and is FU share possible in real program?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8

Cache Access

Bypass

Pridictor

Fetch Unit

N
om

orlized
utilization ratio

Fig. 1. Utilization ratio relationship between FU and other units

For a compiled program, program performance is constrained by hardware re-
sources at first, but when the core has enough resources for the program, the perform-
ance is constrained by the program itself. This introduces a problem that cores are
designed for wide range programs, but the program behaviors are always different for
different ones. So resources are wasted for resource-relaxing programs and resources
are not enough for resource-intensive programs in the same core. Taking FU as an
example, some program needs more FUs and some have FU redundant under the
same hardware environment.

It is obvious that different programs have different behaviors, but the same pro-
gram also has different behaviors at different periods. T. Sherwood et al collects peri-
ods with similar behavior as program phase[8]. Table 1 presents the different FU
utilization ratio of mesa’s periods. The numbers in first row are unit number on core.
On the whole, the FU utilization ratio is low. Integer ALU is best used at periods, but
integer multiplier/divider never be used at first two periods, floatpoint multi-
plier/divider also be used infrequently at last three periods. This indicates many FUs
are idle at program running time. Besides, FU usage is different at different clock
cycles, even those clock cycles are in the same phase.

Figure 2 counts the average IALU taken for mesa and gcc at intervals of 1K clock
cycles. The figure pictures the program behavior changes, meanwhile, mesa and gcc
show opposite characters. mesa is IALU-intensive when gcc is IALU-relaxing, and
gcc is IALU-intensive when mesa is not eager for IALU so much. But the curve
marked as average fluctuates smoothly compared with mesa and gcc. So if those two
program sections are running at two cores at same time, one core’s IALUs are busy,

140 T. Chen et al.

Table 1. FU unilization ratio in different program periods

IALU(2) IMULT(1) LS-UNIT(2) FP-ALU(2) FP-MULT(1)
53.95% 0.00% 15.80% 31.70% 73.30%
54.45% 0.00% 15.95% 31.75% 73.70%
72.50% 22.00% 16.80% 19.00% 6.00%
68.70% 27.10% 19.45% 25.25% 7.60%
66.85% 27.70% 19.10% 24.15% 8.00%

0

0.5

1

1.5

2

2.5

3

3.5

4

1 5 9 13 17 21 25

mesa
gcc
average

N
um

berof IA
L

U
 taken every 1K

 C
C

continuous 25 intervals

Fig. 2. Average IALU taken for mesa and gcc at intervals of 1K clock

when another core’s IALUs have redundancy. Two cores sharing IALU to each other
may get benefits reciprocally. Not only, it can use redundant IALU for IALU-
intensive program to improve program performance, but also it is a butterfly effect to
improve other units’ efficiency on the core.

Resource sharing among cores is a way to improve resource usage and save chip
area. Researches done before put focuses on cache or long latency unit, and short
latency unit like IALU is hard to be shared, because sharing latency kill the advan-
tages got by share. Then Table 1 shows FUs have potential to share, so how to share
FUs between cores is work that will be done in this paper. FU is not the critical units
on the core, so even FU share is possible, it still seems meaningless, but this point
ignores an important fact that FU is central unit of all other units and improving FU
utilization is to improve other units’ utilization and core performance.

4 Architecture

This paper aims to share FUs between cores; the key problem of share is to solve
latency brought by share. If program performance declines after sharing, share is
meaningless. For example, the time to issue instruction to share is later than issued at
local, share is not useful any more.

4.1 Main Framework and Dataflow

In this paper, the core on chip shares two neighbor cores and is shared by other
two neighbor cores. The reason to only share neighbor cores is to cut down the share

 Function Units Sharing between Neighbor Cores in CMP 141

latency. Figure 3a presents the framework of core share. Arrows in figure is the share
direction, core A is shared by core B and core C, meanwhile core A is sharing FUs of
its left and downside cores.

Number on the arrow indicates the share priorities, first of all, local instructions
have the highest priority to use local FUs, then instructions from core C has higher
priority than core B to use A’s FU. The intention of share with priority is to guarantee
that local program would not be influenced by sharing and neighbor cores can use
shared FUs orderly.

Figure 3b includes the internal framework of every core and dataflow between
cores. The decision to share or not share FUs is made by Arbitrator. Firstly, Arbitrator
needs to guarantee share latency is short and program performance doesn’t degrade
after sharing. Secondly, Arbitrator needs to decide which instructions would be issued
to FU, according to share priority. Instructions from local thread have the highest
priority to use FU, from right core have higher priority and from upside core have the
lowest priority.

Core
A 1

2

Core
C 1

2

Core
B 1

2

2

1

1

2
(a)

(b)

Instruction
Queue

Arbitrator

Function
Unit

Register
File

Instruction
Queue

Arbitrator

Function
Unit

Register
File

Instruction
Queue

Arbitrator

Function
Unit

Register
File

Fig. 3. Main framework and data flow of FU share

The dataflow is important between cores. In order to reduce transmission delay, the
neighbor cores are connected directly to each other. Instruction Queue and Register
File can be accessed by its left and downside cores directly; Function Unit can read
and write its right and upside cores’ Register File directly; and Arbitrator can get
instructions from its right can upside cores directly.

4.2 Why Neighbor Two Cores

The share is meaningless if the start point of instruction execution on remote core is
later than execution on local. Adding the data and instruction transmission, the origi-
nal thread would suffer great degradation. So share latency has to be short enough.
This includes two aspects—fast share decision made and short transmission latency.

142 T. Chen et al.

The share decision is made by Arbitrator. Arbitrator in framework is a priority order
circuit. Priority is the key factor to guarantee that local thread performance is not
influenced by sharing and the remote instruction is executed only once. Firstly, the
local thread has the highest priority to use all local FUs. Secondly, instructions sent to
other core would be executed more than once if there is not constrained by priority.
The more cores share with each other, the more operations the Arbitrator should do,
and the longer latency the decision is made. So any core cannot be shared to too many
cores, in this paper, we tested that a core shared by two cores is reasonable. The tim-
ing sequence of Arbitrator is presented in figure 5.

The FUs’ execution period is short enough, after decision made by Arbitrator, in-
struction and data must be transmitted immediately. This means cores shared with
each other should be as close as possible, so the share is built between neighbor cores.
In order to transmit instruction and data with short delay, we set direct instruction and
data path to access neighbor core Instruction Queue(IQ) and Register File(RF) like
figure 3(b). We don’t change the number read port of IQ, but we add two read port
and one write to RF, because IQ has enough ports for all different kind FU and idle
ports can be used to transmit instruction to neighbor cores, but RF is not like this.

5 Implementation

5.1 Core Detail

Figure 4 is the detail of figure 3b. Four bi-directional arrows in the figure are
data paths with four neighbor cores, and the detailed connections are described in
figure 3b. This section cares about the internal core infrastructure and workflow. The
FUs shared in this paper doesn’t include I/O unit, because I/O unit share is complex
and it relate to cache, memory and cores connection.

The key factor to success FU share is share latency, the sharing instruction exe-
cuted at shared core should not be later than local execution. In our implementation,
all instructions in Instruction Queue (IQ) are judged whether it could be issued at next
clock. Usually, instruction knows it can be issued when all its source register are free,
but in this paper, we add a Register Status Unit (RSU) to mark how many cycles left
for every register being free. For example, the latency of integer multiplier is 4 cycles
and there is an instruction MUL R1, R2, R3, which just be issued, then RSU of regis-
ter R1 will be set by 4. It means R1 will be free after 4 cycles. RSU will decrease after
every cycle until the number in RSU is zero. Thus RSU indicates register will be free
at next cycle when the related RSU is 1, so instruction can knows whether its source
register would be ready and whether it can be issued at next cycles.

The Register Status Unit is to mortgage Arbitrator’s decision latency and instruc-
tion and data transmission. In our design, the decision can be made in a cycle, but
instruction and data transmission would be completed from one to two cycles accord-
ing to the data-path and read and write port. The decision made and transmission is
performed parallelism. So after having Register Status Unit, the Arbitrator can know
instructions are ready to issue one cycle early. In this paper, we set integer ALU as
the fastest function unit and it takes one cycle to execute. So decision made one cycle
early can satisfy the fastest function unit on the core to execute instructions on shared
core without share latency.

 Function Units Sharing between Neighbor Cores in CMP 143

Instruction Queue is composed of three parts, the first one is instruction word, the
second is NCR (Next Cycle Ready) flag, and the third one is CtI (Core to Issue) flag.
NCR means instruction can be issued at next cycle which is the AND of two related
register’s RSU, and CtI means instruction would be issued to which core. CtI could be
00(local core), 01(left core), 10(downside core), 11(reserved), and it is set by local
Arbitrator or sharing core Arbitrator. Arbitrator decides FUs assignment according to
local, right and upside core NCR. Only there are redundant FU after all local ready
instructions are issued, FU can be shared by right or upside core. If instruction in IQ
is LOAD and STORE instruction, they will only be issued to local core.

Instructions issued to FUs are recorded by Reservation Station (RS). The number
of entries in RS is the same as the number of FU. Entry is six-tuple like that:

OP, BUSY, CORE, DEST, SOURCE1, SOURCE2

OP is instruction operation code, BUSY represents FU is busy or not (if it is not zero,
it means the FU operation would be done after BUSY cycles; if it is zero, it means FU
is idle), CORE indicates where the instruction in this FU comes from (00, 01, 10),
DEST are destination register, SOURCE1 and SOURCE2 are source registers.

Arbitrator

Function Unit

Address Unit

instruction
queue

register
file

load and
store
queue

reservation
station

&

RSU
NCR CtI

Priority(itself, left)

Execution()

Feedback(itself, left) Feedback(upside)

Priority(upside)

t t+1/2 t+1 t+3/2 t+2

Core
A

Core
left

Core
downside

Getfrom(left)

Getfrom(upside)

Getfrom(left)

Getfrom(upside)

Fig. 4. Internal framework with detail Fig. 5. A one cycle instance of Core A

5.2 Core Workflow

The workflow of core at any clock cycle is showed as figure 5. We analyses one cycle
of Core A in the figure, and all core’s work is same as A. At the start of cycle T, A’s
NCR is set according to RSU, meanwhile A knows which FU will be free at next
cycle according to Reservation Station’s BUSY. So Arbitrator can decide which
instruction can be issue to FU at next cycle and the related CtI would be set. If there is
rest FU at next cycle, A gets the right core’s NCR and tries to share FU to right core.
If share succeed, the right core’s CtI would be set. This is the procedure Getfrom(left)
,Priority(itself, left), and Feedback(itself, left).

If there is local instruction that cannot be issued at next cycle because of lack of
FUs and the left core has redundant FU, the next-cycle-ready instructions will be
issued to the left core just like the right core issue instruction to A. This is the proce-
dure of Core left’s Getfrom(left).

144 T. Chen et al.

If there still has redundant FU after it is shared by the right core, then A tries to
share FU to upside core. If share succeed, the CtI of upside core will be set. This is
Getfrom(upside), Priority(upside) and Feedback(upside). Similarly, if Core A still has
instruction can be issued after sharing the left core; these instructions can share down-
side core’s FU. This is Core downside’s Getfrom(upside). When A is making issue
decision about next cycle, A is executing instructions decided at previous cycle. In-
struction and data transmission happens at next half cycle immediately after the deci-
sion made. So at the next cycle, instructions issued to neighbor cores can be executed.
The following five instructions is an example for figure 5.

All this 5 instructions use integer ALU and we assume latency of integer ALU is 1
cycle. Those instructions start at clock T and all dependences with earlier instructions
can be satisfied at clock T. Then if the core has enough IALU, 5 instructions can be
finished at T+1. The execution is presented with case Enough IALU. But if the core
only has 2 IALUs and the core cannot share other cores’ IALU, the execution is pre-
sented at third row of table 2 and instructions can be finished at T+2. Then if core use
share proposed in this paper, the situation will be changed. Firstly, at beginning of T-
1, core knows instruction 1, 2, 3 will be ready at clock T. Then Arbitrator decides that
instruction 1, 2 can be issued at cycle T, meanwhile it cannot offer any FU to be
shared by its right and upside core, so it does not accept any other cores’ instructions.

Secondly, at cycle T, if the left core have made the decision of local next-cycle-
issue(cycle T+1) instructions and find there has redundant IALUs, so it can execute
instruction 3 at cycle T+1, and the CtI of instruction 3 is set with 01. Similarly, if the
downside core have made the decision of local and right core next-cycle-issue instruc-
tions and find there has redundant IALUs and CtI of instruction 3 is not be set, so it
can execute instruction 3, and the CtI is set with 10. In those two cases, instruction 3
will be executed at left or downside core. Meanwhile, the core knows instruction 4, 5
would be ready at T+1 according to NCR and makes a decision to issue instruction 4,
5 at T+1. Meanwhile, instruction 1, 2 are executed at this cycle. The execution of this
case is presented at forth row of table 2.

Table 2. An Example of Figure 5

Clock T T+1 T+2
Enough IALU 1, 2, 3 4, 5 -

without sharing 1, 2 3, 4 5
share succeeds 1, 2 4, 5(local) - 2 IALUs

share fails 1, 2 3, 4 5

1 SUM R2, R1, R2
2 AND R3, R1, R3
3 OR R4, R1, R4
4 SUM R3, R2, R3
5 SUB R5, R2, R5

Core A

Core ICore HCore G

Core FCore ECore D

Core CCore B
1

2

1

2

1

1 1

2

1
2

2

2

2 1

1

2

Fig. 6. Share relationship in evaluation

 Function Units Sharing between Neighbor Cores in CMP 145

If the decision is instruction 3 cannot be issued to left or downside core, then the
core decides that instruction 3, 4 are issued at T+1 when instruction 1, 2 are executing
at cycle T. When instruction 3, 4 are executed at T+1, instruction 5 try to share left
and downside core’s IALU. If failed, it would be issued to local IALU at T+2. The
execution of this case is the last row of table 2.

6 Evaluation

The timing simulator used was derived from the Simplescalar 3.0 tool set, and we
modified sim-outorder.c and built a multicore architecture like figure 6. Arrows are
the share direction and numbers are share priority. We break the “share left and down-
side core” rule in order to let cores on the edge of chip share other cores. It does not
violate our share proposal. The baseline micro-architecture model of every core is
detailed in table 3.

The test benchmark is SPEC2000 and all benchmarks are compiled based on PISA.
We choose 11 benchmarks and they are 7 SPECINTs and 4 SPECFPs. Those bench-
marks are representative of all benchmarks with and without FU-intensive.

T. Sherwood et al illustrated program has different phases. Our observation to
phase is FU usage. We found that program is eager for FU at some phases and incom-
pact for FU at some other phases. We call phases that are eager for FU as Resource

Table 3. Baseline microarchitecture model of every core

I L1 cache 16K 4-way set-associative, 32 byte blocks, 1 cycle latency
D L1 cache 16K 4-way set-associative, 32 byte blocks, 1 cycle latency
L2 cache 256K 4-way set-associative, 64 byte blocks, 6 cycle latency
Branch Pred Hybrid(default set)
Execution Out-of-Order issue, Out-of-Order execution, In-Order commit
Function Unit 2 integer ALU, 1 integer MULT/DIV, 2 load/store units, 2 FP
Size(insts) IQ:4, RUU:32, LSQ:4
Width(insts/c) decode:4, issue:4, commit:4

0%

2%

4%

6%

8%

10%

12%

14%

16%
RPS

RUPS

N
orm

alized perform
ance im

provem
ent

Fig. 7. Performance improvement for RPS and RUPS with proposal proposed in this paper

146 T. Chen et al.

Popular Section (RPS) and the other phases as Resource Un-Popular Section (RUPS).
Figure 7 is the result of performance improvement to RPS and RUPS for benchmarks
with share. The baseline performance is a benchmark running at single core without
sharing. We pick the RPS and RUPS of a benchmark and run those sections 9 times
respectively at 9 different location of proposed architecture in figure 6. The result in
figure 7 is the average performance improvement compared to the baseline perform-
ance. The average improvement of RPS is 8.4% and the average improvement of
RUPS is 3.5%.

We can found that there is no benchmark performance degradation with share pro-
posed in this paper. There are two reasons. Firstly, sharing instruction would never
preempt shared core FUs when local instructions need to use those FUs. The priority
of local instruction is higher than sharing instruction and only redundant FUs can be
used to sharing instruction. Secondly, the start point to execute sharing instruction at
shared cores would never be later than local execution. The improvement of RPS is
always better than RUPS; this indicates RPS can get more benefits from FU share.
The reason is RPS has better instruction level parallelism and need to issue more
instruction at a cycle.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%
Fetch
Commit
Prediction
Cache_access
IQ
Bypass

N
orm

alized Im
provem

ent

Fig. 8. Six units’ utilization ratio is improvement comparing with baseline

0%
1%
1%
2%
2%
3%
3%
4%
4%
5%
5%

1 2 3 4 5 6 7 8

RPS-de
RUPS-de
All-de

Perform
ance degradation

Groups

Fig. 9. Performance degradation in random assignment compared with static assignment

 Function Units Sharing between Neighbor Cores in CMP 147

FU is not performance critical part and only take little of chip area, but FU is the
central part of the core and the efficiency of FU reflects efficiencies of other units on
the chip. Figure 8 is other units’ improvement based on figure 7. In this figure, we do
not distinguish RPS or RUPS, and it is the utilization improvement of whole bench-
mark. From the figure, we can see it is basically coherent with figure 7. Benchmark
with high performance in figure 7 has high utilization improvement in figure 8, such
as mcf and bzip. So FU sharing has benefits for whole chip performance.

The share efficiency is influenced by shared core. The program is hard to share
cores which are running RPS. So the schedule from program to core affects the whole
chip performance. We choose two methods to test this influence. The first method is a
static way. We choose 5 RPS benchmarks to be executed at core A, C, E, G and I in
figure 6 and choose 4 RUPS to be executed at rest cores. The mapping from bench-
mark to core for RPS and RUPS is random. The second method is all 9 chosen
benchmarks are mapped randomly.

We test 8 groups. Statistics of every group include average IPC for RPS, average
IPC for RUPS, average share instructions for RPS, average share instructions for
RUPS and average IPC for all 9 benchmarks. The result shows the static assignment
can get higher IPC than random assignment. Figure 9 is the performance degradation
in random assignment compared with static assignment. We can find that RPS has a
more serious impact than RUPS with different assignment. This is not to illustrate that
the static assignment is better than random assignment, but to illustrate that a reason-
able assignment can let whole chip be more effective.

Acknowledgement

This paper is supported by the Research Foundation of Education Bureau of Zhejiang
Province under Grant No. Y200803333, the State Key Laboratory of High-end Server
& Storage Technology(No. 2009HSSA10), National Key Laboratory OS Science and
Technology on Avionics System Integration, the Special Funds for Key Program of
the China No. 2009ZX01039-002-001-04, 2009ZX03001-016, 2009ZX03004-005.

References

1. Hammond, L., Basem, A.N., Olukotuna, K.: A Single-Chip Multiprocessor. Computer 30,
79–85 (1997)

2. Dean, M.T., Susan, J.E., Henry, M.L.: Simultaneous Multithreading Maximizing On-Chip
Parallelism. In: Proceedings of the 22nd Annual Int. Sym. on Computer Arch., Santa Mar-
gherita Ligure (1995)

3. Venkata, K., Josep, T.: A Clustered Approach to Multithreaded Processors. In: Proceed-
ings of the 12th International Parallel Processing Symposium (1998)

4. James, B., Gaudiot, J.: Area and System Clock Effects on SMT/CMP Processors. In: Inter-
national Conference on Parallel Architectures and Compilation Techniques (2001)

5. Dolbeau, R., Seznec, A.: CASH: Revisiting hardware sharing in single-chip parallel proc-
essor. IRISA Report 1491 (2002)

148 T. Chen et al.

6. Rakesh, K., Norman, P.J., Dean, M.T.: Conjoined-Core Chip Multiprocessing. In: Pro-
ceedings of the 37th annual IEEE/ACM International Symposium on Microarchitecture
(2004)

7. Timothy, S., Suleyman, S., Brad, C.: Phase tracking and prediction. In: Proceedings of the
30th annual international symposium on Computer architecture (2003)

8. Timothy, S., Erez, P., Greg, H., Suleyman, S., Brad, C.: Discovering and Exploiting Pro-
gram Phases. IEEE Micro (2003)

9. Butts, J.A., Sohi, G.S.: Characterizing and predicting value degree of use. In: Proceedings
of the 35th annual ACM/IEEE international symposium on Microarchitecture (2002)

10. Francis, T., Yale, N.P.: Achieving Out-of-Order Performance with Almost In-Order Com-
plexity. In: Proceedings of the 35th International Symposium on Computer Architecture
(2008)

11. Barroso, L.A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B.,
Smith, S., Stets, R., Verghese, B.: Piranha: a scalable architecture based on single-chip
multiprocessing. In: Proceedings of the 27th annual international symposium on Computer
architecture (2000)

12. Engin, I., Meyrem, K., Nevin, K., Jose, F.M.: Core fusion: accommodating software diver-
sity in chip multiprocessors. In: Proceedings of the 34th annual international symposium
on Computer architecture (2007)

A High Efficient On-Chip Interconnection
Network in SIMD CMPs

Dan Wu, Kui Dai�, Xuecheng Zou, Jinli Rao, and Pan Chen

Department of Electronic Science and Technology,
Huazhong University of Science and Technology,

1037 Luoyu Road, Wuhan, China
{dandan58wu,josh.maxview,escxczou,ary.xsnow,chenpan.maxview}@gmail.com

Abstract. In order to improve the performance of on-chip data com-
munications in SIMD (Single Instruction Multiple Data) architecture,
we propose an efficient and modular interconnection architecture called
Broadcast and Permutation Mesh network (BP-Mesh). BP-Mesh archi-
tecture possesses not only low complexity and high bandwidth, but also
well flexibility and scalability. Detailed hardware implementation is dis-
cussed in the paper. And the proposed architecture is evaluated in terms
of area cost and performance.

1 Introduction

Moore’s Law continues with technology scaling, and the integration capacity of
billions of transistors has already existed today. However, there is growing evi-
dence that wire delays and power dissipation become the dominant constraints
for present and future generations of microprocessors with shrinking feature
sizes and increasing clock frequencies [1-4]. Chip multiprocessors (CMPs) be-
come the mainstream by using the increasing transistor budgets to integrate
multiple processors on a single die while mitigating the negative effects of wire
delays and the power consumption. Parallelism is an energy-efficient way to
achieve performance [5]. Thus, to convert the rich transistor resources into appli-
cation performance, different degrees of parallelism are exploiting and those on-
chip processors are elaborately managed to provide powerful parallel processing
capacity.

Single Instruction Multiple Data (SIMD) architectures are able to exploit the
data-level parallelism, and the replicated structure offers not only efficient and
fast processing performance at relatively low power, but is also very scalable. The
communication among PEs has significant impact on the efficiency of parallel
computing in many parallel programs. Therefore, the interconnection structure
is very important in SIMD systems. This paper emphasizes on the architecture
and performance of the interconnection network in SIMD CMPs and proposes
an efficient interconnection architecture called Broadcast and Permutation Mesh

� Corresponding author.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 149–162, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

150 D. Wu et al.

(BP-Mesh). BP-Mesh architecture is a modular structure and can be hierarchi-
cally constructed to two-tier high-bandwidth, low-latency and scalable on-chip
network (NoC). At local level, 4 by 4 PEs are closely grouped as one Cell and
are connected by a two-dimensional (2-D) Mesh network with one broadcast and
permutation network (BPN) attached at each row and column, respectively. At
global level, Cells are also connected by a 2-D Mesh network with each row and
column completely connected by one BPN. Hence, each PE could communicate
with others (intra-Cell or inter-Cell) in a very flexible way with low hop latency.
The tiled architecture of PE array effectively approaches the challenges of wire
delay and the “power wall” and exhibits well scalability.

The implementation results show that the additional area cost of the proposed
BPN network is rather small. In order to evaluate the performance of BP-Mesh
architecture, two parallel application kernels such as dense matrix multiplication
and Fast Fourier Transform (FFT) are considered. By setup the experimental
environment with a prototype design system and a verified simulator, we use
the metric scalability to demonstrate the scalable property of the proposed BP-
Mesh architecture, and the performance improvements of the implementation
of double-precision floating-point 1-D FFT on the BP-Mesh SIMD over conven-
tional mesh SIMD can be 14.28%∼71.63%. Moreover, the experimental results
show that the BP-Mesh based SIMD multiprocessor system has strong compet-
itive strength in the fields of high performance computing.

The rest of paper is organized as follows. Related works are shown in Section 2,
followed by the introduction and implementation details of the architecture of
BP-Mesh in Section 3. The experimental results are presented in Section 4.
Finally, conclusion and future works are discussed in Section 5.

2 Related Works

Conventional SIMD machines are constructed as either the traditional two-
dimensional mesh or the modified mesh structure for the inter-PE communi-
cations, such as Illiac IV [6], MPP [7], and DAP 500 series [8]. MasPar [9]
architecture has an X-Net interconnection network connecting each PE with its
8 nearest neighbors in a 2-D mesh. The main component of MorphoSys [10]
is a SIMD fashion 8 × 8 RC (Reconfigurable Cells) Array with 2-D mesh and
complete row/column connectivity per quadrant.

IMAP-VISION chip of the IMAP system [11] contains 32 PEs that connected
in series to configure a one-dimensional SIMD processor array. Each PE has one
shared register where it can send or receive data to and from, and has only
the ability to access to its neighbors at left and right. A general purpose com-
putational accelerator, Clearspeed CSX600 [12], comprises 96 processing cores
operating in SIMD manner and communicating with one another via a linear
network named swazzle.

Imagine [13] is a SIMD processor which consists of eight arithmetic clusters
(PEs) with each PE including six ALUs to execute VLIW instructions and eight
clusters are fully connected. But the study in [14] has shown that the area of

A High Efficient On-Chip Interconnection Network in SIMD CMPs 151

the inter-PE communication unit (the interconnection network) in Imagine will
dominate the total area if the number of PEs beyond 64.

GRAPE-DR [15] is another example of high performance SIMD processor
with 512 processing cores integrated on the chip. To gain the compact integration
density, there is no communication network between PEs. PEs are organized into
blocks and the blocks are connected to a reduction network.

According to these previous works, mesh network is the most popular topol-
ogy for its low complexity and planar 2D-layout properties. However, the per-
formance is degraded with rapidly increasing diameter which is not suitable for
larger networks. Linear network, though is simple and power efficient, allows only
the communication between directly connected PEs which makes the communi-
cation with a non-direct neighbored PE a bottleneck. Fully connected network
has the highest flexibility, but occupies large die area and is power inefficient.
Furthermore, it scales poorly. The broadcast/reduction network in GRAPE-DR
is highly efficient to solve the problems such as N-body particle-based simu-
lations, but it is not powerful enough in some other parallel applications like
sorting and FFT.

In this paper, we propose a modular network topology taking advantage of the
communication locality and provides both efficiency and flexibility. The topol-
ogy can be used as building blocks to construct a hierarchical interconnection
network. The motivation of BP-Mesh architecture is inspired by the researches
in [16] and [17]. Hierarchical topology is energy efficient, and high radix topology
such as CMesh [16] is a good choice for locality. The optimized BP-Mesh network
presents high bandwidth, low local latency as well as excellent scalability.

Our proposed network topology is similar to MorphoSys, but is different in
that the row/column connectivity in MorphoSys is mainly used to broadcast
context words to implement the configuration whereas the BPN network in our
design is used to broadcast or exchange data information during the computation
in a fast and flexible way.

3 The Architecture of the BP-Mesh Network

In a SIMD multiprocessor, all PEs execute the single stream of instructions con-
currently, while each PE operates on data from its own local memory. An inter-
connection network connects PEs as the communication fabric for the exchange
of data and control information. The efficient exchange across the network is
crucial to overall system performance. Thus, the choice of the interconnection
network is very important. Different data parallel applications require different
communication patterns for maximum performance. It is, therefore, necessary
that the network structure is efficient and flexible for both regular and irregu-
lar communications to accommodate different applications. Scalability is another
significant characteristic of the interconnection network to scale the performance
with the increasing number of PEs.

All communications in SIMD architecture take place at the same step under
the explicit control of instructions, so there has no message contesting problems

152 D. Wu et al.

and the router logic is much simpler than the one in general NoC. In this sec-
tion, we propose the architecture of BP-Mesh network and discuss its detailed
hardware implementation.

Mesh topology has been widely used for its simplicity and regularity. Whereas
it scales poorly in terms of performance and power efficiency with the increase
of the number of PEs and average hop count. To approach these bottlenecks, a
pipelined broadcast and permutation network (BPN) is employed to provide low
hop latency and high parallelism of data transfer, and the combination of BPN
and mesh network can be constructed hierarchically to gain benefits of exploiting
communication locality and energy optimization. BPN network enables data
transferred from one PE to another or other indirect-connected PE/PEs in a
one-to-one or one-to-multiple mode, as well as enables data swapped between
PEs simultaneously. The “mesh + BPN” constitutes a new network topology
named BP-Mesh. The architecture of two-tier hierarchical BP-Mesh connecting
256 PEs is depicted in Fig. 1.

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

G
B

PN

Lo
gi

c

G
B

PN

Lo
gi

c

G
B

PN
Lo

gi
c

GBPN
Logic

GBPN
Logic

GBPN
Logic

GBPN
Logic

LBPN

LBPN

LBPN

LBPN

LB
PN

LB
PN

LB
PN

LB
PN

G
B

PN
Lo

gi
c Cell

Fig. 1. Hierarchical BP-Mesh Architecture

At local level, 16 PEs are closely grouped as a Cell unit and organized as
a 4 by 4 mesh array. Furthermore, a secondary network (BPN) with the func-
tions of data broadcasting and permutation among PEs is added at each row
and column of PE array, respectively. With this modular network topology, 4
by 4 Cells are connected at the same way to construct the higher level inter-
connection structure for global PE communications. The symmetric structure
with BPN at each row/column supports more convenient communications. BP-
Mesh architecture possesses not only low complexity and high bandwidth, but
also well flexibility and scalability. The cooperation of mesh and BPN network
provides high efficient inter-PE communication for various data parallel appli-
cations. Mesh network takes charge of neighbored communications while BPN
network mainly deals with hop communication, data broadcast (multicast) or
data exchange between PEs in parallel.

A High Efficient On-Chip Interconnection Network in SIMD CMPs 153

For detailed hardware implementation, each PE directly communicates with
its four neighbors (left/right/up/down) through the mesh connection in the net-
work. On each clock cycle, PE core can perform a register-to-register transfer to
one of its neighbors in one direction, while simultaneously receiving data from
the other neighbor in the opposite direction. The structure of BPN network
is shown in Fig. 2. It includes three main parts: the control logic, multiplexer
(MUX) sets, and the shared registers (SR). The number of multiplexers, as well
as the number of inputs for each multiplexer, is corresponding to the number of
PEs in the same row/column. Rather few numbers of shared registers are used in
the BPN to temporally store data during the pipelined operations. Control logic
module is the backbone of BPN. After configuring the contents of the configura-
tion register, the control logic generates control signals for each network pipeline
stage. When data has arrived, where it comes from, which shared register is its
destination, and what are the control bits for each multiplexer to transfer data
to desired PEs are all under the control of the control logic.

SR0 SR1 SR2 SR3

PE 0
(Cell 0)

PE 1
(Cell 1)

PE 2
(Cell 2)

PE 3
(Cell 3)

ctrl0 ctrl1 ctrl2 ctrl3

Config
Register

MUX MUX MUX MUX

Clock
Counter

Fig. 2. The Structure of Broadcast and Permutation Network

PE 0 PE 1 PE 2 PE 3

MUX MUX MUX MUX

PE 0 PE 1 PE 2 PE 3

MUX MUX MUX MUX

PE 0 PE 1 PE 2 PE 3

MUX MUX MUX MUX

FF
FF

FF

FF

FF
FF

FF

FF

FF
FF

FF

FF
FF

FF
FF

FF

FF
FF

FF

FF

FF
FF

FF

FF

Cell 0 Cell 1 Cell n

C
on

tro
l

 L
og

ic

Fa
br

ic

SR0 SR1 SR2 SR3 SR0 SR1 SR2 SR3 SR0 SR1 SR2 SR3

Fig. 3. The Structure of BPN Network for Cell Array in Flatten Way

154 D. Wu et al.

The BPN in each row or column of the Cell array can be implemented as either
the broadcast/permutation communications among PEs (in a flatten view) or
among Cells, according to the specified SIMD instruction set architecture and
the manufacture process. The first method (Method I) can be implemented as
in Fig. 3. The number of inputs of each MUX scales with the number of the
connected PEs, and the longest transfer path between shared register and the
multiplexer is increased accordingly. To address the wire delay problem, flip-
flops are inserted across the Cells. The second method (Method II) can be
implemented as the same way as we have described above (see Fig. 2), except
that the granularity has been changed from PE to Cell and the control logic is
responsible to establish physical links from one PE in a Cell unit with another
indirect-connected PE in a different Cell unit.

Though Method I has the advantage of simpler control logic, with the increas-
ing number of PEs and wider data path, the routing congestion will be the main
issue to practically implement this kind of network instead of the cost of gate
count. Method II is superior in term of scalability with more PEs integrated on
one single chip. Moreover, its hierarchical levels are identical and unified.

4 Experimental Results

This section presents some initial experimental results of the proposed BP-Mesh
network. Based on a real design case, we setup the evaluation platform and
environment. We first evaluate the area cost of the additional BPN network.
Then we test the function and performance of the proposed BP-Mesh network.

4.1 Experimental Platform and Environment

The BP-Mesh architecture proposed in Section 3 has been implemented on a
SIMD multiprocessor–ESCA (Engineering and Scientific Computation Acceler-
ator). ESCA acts as an attached device of a general purpose processor to acceler-
ate the compute-intensive parallel computing in high performance scientific and
engineering applications. The instructions run on ESCA processor are 128-bits
wide, and have a fixed RISC-like format. Up to 256 PEs can be integrated onto
one chip and the data communications among PEs are explicitly controlled by
the specified fields of the network instructions. Each PE has one private local
memory and four function units: the floating-point Multiply-and-Add (FMAC),
the integer Multiply-and-Add (IMAC), the arithmetic logic unit (ALU) and the
comparison unit (CMP). The word length of PE is 64-bits, and the supported
data types include IEEE 754 compatible double-precision and single-precision
floating-point, and the 64/32/16/8-bits integer. Instructions can be executed in
vector mode with maximum vector length 64. Dual-buffering mechanism has
been adopted to alleviate the external shared memory bandwidth pressure by
overlapping the external memory access latency with the computation of func-
tion unit.

Until now, we have completed the hardware design of PE, BP-Mesh network,
control unit and I/O communication mechanism. A prototype chip has been im-
plemented with Chartered 0.13 µm high-performance (HP) process in a 6mm by

A High Efficient On-Chip Interconnection Network in SIMD CMPs 155

Table 1. Key Parameters of ESCA Prototype Chip

Number of PEs 4 × 4
On-Chip-Network 2D-Torus + BPN at row/column
Private Local Memory Capacity of PEs Each 4KB, total 64 KB
Working Frequency 500 MHz
Number of Pipeline Stages of FMAC 5
Number of Pipeline Stages of ALU 1
Number of Pipeline Stages of BPN 3

6mm die size. Some key parameters of the chip are shown in Table 1. Since only
16 PEs are integrated on the chip, we implement the interconnection network at
local level and use Torus network instead of the Mesh network to achieve better
communication performance for edged PEs.

We have also developed a cycle-accurate simulator for ESCA. And the cor-
rectness of the simulator is verified by the prototype chip. The pipeline stages of
BPN at global level have increased to 7 in ESCA simulator, since the data com-
municated among the Cells need to be transferred through the shared registers
both in the local level and in the global level and the global interconnect wire
requires adding pipelines.

The experimental environment is made up of two parts:

– The ESCA-based test system (shown in Fig. 4), which consists of one ESCA
chip, one FPGA chip and four SRAM chips. FPGA chip is the bridge of the
SRAM and ESCA. Data and programs to be executed on ESCA have been
stored in the SRAM. The I/O interface on FPGA is responsible for reading
and writing the QDR SRAM and ESCA with DMA mode. Instructions are
first loaded into the instruction cache and then issued by the control unit to
ESCA. The communication bandwidth for the instruction stream is reduced
with vector mode. The working frequencies of the QDR SRAM and FPGA
are both 250MHz.

– The cycle-accurate simulator. Due to the limited number of PEs on ESCA
prototype chip, we use the simulator to evaluate the performance of hierar-
chical BP-Mesh network.

4.2 Area Cost

The routing strategy of the network is explicit and simple in our SIMD CMP
which has been implemented with hard-wired logic in ESCA. To estimate the
additional logic of BP-Mesh over mesh network, that is, the cost of BPN network,
we synthesize a 5-port SpecVC router (with 4 VCs per port and 4-flit-deep
cyclic buffers for each VC) [18] used in general NoCs under the same conditions
(Chartered 0.13µm HP process@500MHz) with the BPN logic. The synthesis
results are 33637.3772461 for our BPN network and 340715.712746 for the
5-port SpecVC router. Therefore, the area cost of BPN network is no more than
10% of that of the 5-port router, and the experiences from the physical design

156 D. Wu et al.

Instruction
Cache

Control
Unit

Computing Controller
instr

data

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

BPN

BPN

BPN

BPN

BPN BPN BPN BPN

ESCA Chip

64
64

128

FPGA Bridge

QDR SRAM

CY7C1472V33

DMA
Engine

Memory
Controller

I/O
Interface

address

data

ready
done

addr

Fig. 4. ESCA Chip Test System Block Diagram

of ESCA chip have proved that the routing resource needed for the BP-Mesh
architecture is acceptable.

4.3 Performance Evaluation and Comparison

In this part, we evaluate the performance of the proposed BP-Mesh network
and compare it with the performance of conventional mesh network and some
other referenced CMPs. We first describe the implementations of two selected
data-parallel scientific computing application kernels on ESCA. Then we use
scalability to demonstrate the scalable property of BP-Mesh architecture, and
use the metric speedup to compare the BP-Mesh network with mesh topology
to show the performance improvement. At last the two kernel performances
implemented on ESCA prototype system are presented and compared with some
other CMPs to indicate the high efficiency of the BP-Mesh architecture and its
implementation platform in a comprehensive way.

Application Kernels. In order to evaluate the performance of BP-Mesh archi-
tecture, two data parallel application kernels: dense matrix multiplication and
Fast Fourier Transform (FFT) are considered. They are basic kernels in parallel
computing. Moreover, these two kernels have close relations with data commu-
nications among PEs.

The basic operation of matrix multiplication is C=AB. We choose Cannon
algorithm [19] to implement the dense matrix-matrix multiplication and assume
A and B are both square matrix of size 1024 × 1024. The data type used in
this paper is single-precision floating-point to compare its performance later
with GPUs. Both matrix A and B are divided into blocks for computation due
to the limited PE local memory capacity. More specifically, sub-matrix A is
(8 × 4) and stored by column, sub-matrix B is (4 × 16) and stored by row.
After sub-matrices of A have been stored in the local memories of PEs, the
sub-matrices of B can be broadcasted. Then the standard Cannon algorithm

A High Efficient On-Chip Interconnection Network in SIMD CMPs 157

is computed with columns/rows of sub-matrices of A and B transferred among
PEs via the BP-Mesh network. By applying the dual-buffering technique, data
are communicated between the ESCA and external shared SRAM concurrently
with the matrix computation operations. Thus the communication overhead is
effectively hidden.

We choose the basic radix-2 decimation-in-time (DIT) 1-D FFT for the FFT
kernel since it’s simple to implement and the performance results can be com-
pared with other counterparts. Assume ESCA can manipulate up to N data
points for its limited on-chip memory capacity, and there are P processing ele-
ments (PEs) on chip. All data points are divided into N/P groups and cyclically
(a non-consecutive sequence) distributed into the private local memories of P
PEs. In addition, twiddle factors with a few redundancies are stored in the same
way as the data points. Therefore, the first log P stages are the butterfly trans-
form with data communications between PEs. Twiddle factors required for each
butterfly operation are broadcasted from the owner PEs to the destination PEs.
All data are exchanged synchronously among PEs via the BPN network. Then
SIMD parallel computations are executed by PEs in vector mode. During the
latter log (N/P) stages, both twiddle factors and data points needed for the
butterfly computation have been stored in the private local memory of the same
PE, and the transform computations can be done without any communication
overhead. In this paper, we implement this parallel FFT algorithm with two
kinds of data types: 1) double-precision floating-point for the evaluation of the
scalability and efficiency of BP-Mesh architecture; 2) 16-bit fixed-point for the
performance comparison with a published work with mesh network topology.

Scalability. We use ESCA simulator to evaluate the performance of dense ma-
trix multiplication and 1-D FFT with varied PE numbers.

The sustained performance of the implementation of matrix multiplication on
ESCA with the number of PEs varying from 1 to 256 is illustrated in Fig. 5.
With the increase of the number of PEs, the sustained performance increases
linearly. The evaluated matrix size is 1024× 1024.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Number of PEs (N)

S
us

ta
in

ed
 P

er
fo

rm
an

ce
(G

Fl
op

s)

Fig. 5. Dense Matrix Multiplication Performance Evaluation

158 D. Wu et al.

Table 2 shows the cycle counts for 1-D FFT application with data size varying
from 64-point to 16384-point and the PE configuration from 4×4 to 16×16. The
data type used here is double-precision floating-point. With the increasing of the
number of PEs, the completion time of the Fourier transform for the same point
size decreases. The Italic items in Table 2 demonstrate the condition that the
size of FFT applications exceeds the maximum private local memory capacity of
PE array. Thus the intermediate computing results should be exchanged between
the off-chip shared SRAM memory and on-chip local memory frequently which
dramatically degrades the performance.

Table 2. Cycle Counts with Different PEs at Different FFT Size

FFT Size
Cycle Count with different PEs
4 × 4 8 × 8 16 × 16

64 516 372 408
128 846 508 476
256 1528 718 544
512 2978 1128 682
1024 6092 1970 932
2048 34749 3740 1422
4096 104279 7494 2424
8192 276233 64169 4504
16384 423435 163839 8908

Speedup. Now we evaluate the performance improvement of BP-Mesh archi-
tecture over the mesh network. Speedup is defined as the ratio of the difference
between the time required to implement the kernel on the conventional mesh
SIMD and the time taken to implement the same kernel on BP-Mesh SIMD, to
the time required to implement the kernel on the conventional mesh SIMD.

The speedup of implementing double-precision floating-point 1-D FFT on
ESCA with or without BPN network can be 14.28%∼17.56% with FFT size
varying from 64 to 1024 on 16 PEs (tested on ESCA-based test system) as
shown in Fig. 6(a), and can be 14.28%∼71.63% with 4 points/PE while the
number of PE varies from 16 to 256 (tested by ESCA simulator) as shown in
Fig. 6(b). With the increasing of hop distance, the advantage of the BP-Mesh
architecture is more obvious.

Performance Comparison with Other CMPs. In order to indicate the high
efficiency of BP-Mesh architecture in a general way, we now compare the per-
formances of dense matrix multiplication and 1-D FFT implemented on ESCA
prototype system with some other CMPs.

Graphics Processing Units (GPUs) are high-performance many-core proces-
sors in which the stream processing units are arranged into SIMD arrays to
provide high parallel computation capability and are playing increasing role in
scientific computing applications. We choose the GPU platforms [20] both from

A High Efficient On-Chip Interconnection Network in SIMD CMPs 159

0 100 200 300 400 500
14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

0 50 100 150 200 250 300

10

20

30

40

50

60

70

80

 4x4 PESp
ee

du
p

(%
)

FFT Points (N)

N=64

N=256

N=512
N=1024

(b) Speedup with Different Number of PEs
Sp

ee
du

p
(%

)

Number of PEs (P)

 (N/P) = 4

4x4 PE

8x8 PE

16x16 PE

(a) Speedup with Different Points on (4x4) PE

Fig. 6. Speedup of Floating-point 1-D FFT

Table 3. Performance Comparison for 1024 × 1024 Matrix Multiplication

Platform [23] Core/Memory Clock (MHz) Processing Time (s)
NV 5900 Multi 350/500 0.713
NV 6800 Multi 350/500 0.469
ATI 9800 Multi 500/500 0.445
ATI X800 Multi 500/500 0.188

ESCA Chip 500/500 0.183

NVIDIA and ATI (now is AMD) with the clock frequency at the same order
of magnitude with ESCA chip. The performances of the matrix multiplication
of 1024 × 1024 matrices implemented on those GPU platforms and the ESCA
chip are measured by processing time (in seconds) and listed in Table 3. We also
exclude the overhead of repacking input matrices in system memory as in [20]
and count the time from the beginning of matrices A and B loaded into ESCA
local memories to the end of final computation results (matrix C) stored back
to the external shared SRAM memory. It can be concluded that ESCA with the
implementation of BP-Mesh network outperforms the referenced GPUs.

We compare the performance of 1-D FFT implemented on ESCA-based test
system with that of the implementation on a referenced mesh connected multi-
core NoC[21] (with 16 PEs on the chip), in which the data type used is 16-bit
fixed-point and the performance is presented in term of cycle count. We calculate
the clock cycles elapsed to implement different point size of FFT algorithm (from
64-points to 4096-points) on ESCA prototype system and the comparison with
the results in [21] is illustrated in Fig. 7. With the support of sub-word parallelism
in ALU, the performance of 1-D FFT implementation on ESCA processor is
about 7 times faster than the results in [21] on the average.

160 D. Wu et al.

0 1000 2000 3000 4000

0

10000

20000

30000

40000

50000

60000

70000

C
lo

ck
 C

yc
le

 C
ou

nt
s

(C
)

FFT Points (N)

Mesh on NoC
BP-Mesh on ESCA

Fig. 7. Performance Comparison of fixed-point FFT with a Mesh NoC[24] (4× 4 PEs)

5 Conclusion

In this paper, we present an effective interconnection architecture for inter-PE
communications in SIMD CMPs. BP-Mesh architecture inherits the low com-
plexity and high bandwidth advantages of mesh connection, while mitigates the
large hop latency and provides flexibility and parallelism for different communi-
cation patterns with a broadcast and permutation network. The basic BP-Mesh
structure is modular and symmetric, as well as scalable and high efficient. De-
tailed hardware implementation has been discussed. Based on a real design,
we evaluate the area cost and performance of the BP-Mesh architecture. The
scalability of the proposed architecture has been verified by a RTL-level consis-
tent simulator with more PEs integrated. The speedups in term of performance
improvement over conventional mesh connection have been tested with differ-
ent problem size and different number of PEs. Also, the performances of the
prototype chip implemented with our proposed BP-Mesh architecture have been
compared with some other CMPs to exemplify the high efficiency of the network.

More extensive testing with different applications, especially the irregular
communication pattern applications, is ongoing. The design of on-chip intercon-
nection network has proven to have a significant effect on overall system energy
consumption [22], since it is implemented using global wires with long delays
and high capacitance properties. We’ll estimate the energy consumed on the
BP-Mesh network and use the experience of designing a heterogeneous on-chip
interconnection network [23] [24] with varying latency, bandwidth and power
characteristics to achieve a better energy-efficient design.

Acknowledgements. The work of this paper was supported by the National
Science Foundation of China under grant No. 60773024 and No. 60973035,
The Central Special Fund for College Basic Scientific Research And Operation
(C2009Z028J), The 863 Hi-Tech Research and Development Program of China
(2009AA01Z105) and Special Research Fund of The Ministry of Education And

A High Efficient On-Chip Interconnection Network in SIMD CMPs 161

Intel For Information Technology (MOE-INTEL-08-05). We thank all members
of the ESCA project. Also we would like to thank reviewers for their helpful
feedback.

References

1. Bohr, M.T.: Interconnect scaling - the real limiter to high performance ULSI. In:
IEEE International Electron Devices Meeting, pp. 241–244 (1995)

2. Matzke, D.: Will physical scalability sabotage performance gains? IEEE Com-
puter 30, 37–39 (1997)

3. Wolfe, A.: Intel clears up post-tejas confusion. VARBusiness (May 17, 2004),
http://www.varbusiness.com/sections/news/

breakingnews.jhtml?articleld=18842588

4. Agarwal, V., Hrishikesh, M.S., Keckler, S.W., Burger, D.: Clock rate versus IPC:
The end of the road for conventional microarchitectures. In: Proc. Of IEEE 27th In-
ternational Symposium on Computer Architecture (ISCA-27), pp. 248–259 (2000)

5. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design.
IEEE Journal of Solid-State Circuits 27, 473–484 (1992)

6. Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., et al.: The Illiac IV computer.
IEEE Transactions on Computers C-17, 746–757 (1968)

7. Batcher, K.E.: Design of a massively parallel processor. IEEE Transactions on
Computers C-29, 836–840 (1980)

8. Parkinson, D., Hunt, D.J., MacQueen, K.S.: THE AMT DAP 500. In: Proc. Of
the 33rd IEEE International Conference of Computer Society, pp. 196–199 (March
1988)

9. Nickolls, J.R.: The design of the MasPar MP-1: A cost effective massively paral-
lel computer. In: Proc. Of the 35th IEEE International Conference of Computer
Society, pp. 25–28 (March 1990)

10. Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., et al.: MorphoSys: An integrated re-
configurable system for data-parallel and computation-intensive applications. IEEE
Transactions on Computers 49, 465–481 (2000)

11. Fujita, Y., Kyo, S., Yamashita, N., Okazaki, S.: A 10 GIPS SIMD processor for
PC-based real-time vision applications. In: Proc. Of the 4th IEEE International
Workshop on Computer Architecture for Machine Perception (CAMP 1997), pp.
22–32 (October 1997)

12. ClearSpeed Whitepaper: CSX Processor Architecture,
http://www.clearspeed.com/newsevents/presskit

13. Khailany, B., Dally, W.J., Kapasi, U.J., Mattson, P., et al.: Imagine: Media pro-
cessing with streams. IEEE Micro 21, 35–46 (2001)

14. Fatemi, H., Corporaal, H., Basten, T., Kleihorst, R., Jonker, P.: Designing area and
performance constrained SIMD/VLIW image processing architectures. In: Blanc-
Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS,
vol. 3708, pp. 689–696. Springer, Heidelberg (2005)

15. Makino, J., Hiraki, K., Inaba, M.: GRAPE-DR: 2-Pflops massively-parallel com-
puter with 512-core, 512-Gflops processor chips for scientific computing. In: Proc.
Of the 2007 ACM/IEEE Conference on Supercomputing (SC 2007), pp. 1–11 (2007)

16. Balfour, J., Dally, W.J.: Design tradeoffs for tiled CMP on-chip networks. In: Proc.
Of the 20th Annual International Conference on Supercomputing (ICS 2006), pp.
187–198 (June 2006)

http://www.varbusiness.com/sections/news/breakingnews.jhtml?articleld=18842588
http://www.varbusiness.com/sections/news/breakingnews.jhtml?articleld=18842588
http://www.clearspeed.com/newsevents/presskit

162 D. Wu et al.

17. Das, R., Eachempati, S., Mishra, A.K., Narayanan, V., Das, C.R.: Design and eval-
uation of a hierarchical on-chip interconnect for next-generation CMPs. In: Proc. of
IEEE 15th International Symposium on High Performance Computer Architecture
(HPCA 2009), pp. 175–186 (Febuary 2009)

18. Banerjee, A., Wolkotte, P.T., Mullins, R.D., Moore, S.W., Smit, G.J.M.: An energy
and performance exploration of network-on-chip architectures. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 17, 319–329 (2009)

19. Cannon, L.E.: A cellular computer to implement the kalman filter algorithm. Ph.D.
thesis, Montana State University (1969)

20. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency
of GPU algorithms for matrix-matrix multiplication. In: Proc. Of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 133–137
(August 2004)

21. Bahn, J.H., Yang, J., Bagherzadeh, N.: Parallel FFT algorithms on network-on-
chips. In: Proc. Of the 5th International Conference on Information Technology:
New Generations, pp. 1087–1093 (April 2008)

22. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in multi-core architec-
tures: understanding mechanism, overheads and scaling. In: Proc. Of the 32nd
International Symposium on Computer Architecture (ISCA 2005), pp. 408–419
(June 2005)

23. Cheng, L., Muralimanohar, N., Ramani, K., Balasubramonian, R., Carter, J.B.:
Interconnect-Aware Coherence Protocols for Chip Multiprocessors. In: Proc. of
the 33rd International Symposium on Computer Architecture (ISCA 2006), pp.
339–351 (2006)

24. Flores, A., Aragon, J.L., Acacio, M.E.: An energy consumption characterization of
on-chip interconnection networks for tiled CMP architectures. Journal of Super-
computing 45, 341–364 (2008)

Network-on-Chip Routing Algorithms by
Breaking Cycles

Minghua Tang1 and Xiaola Lin2,�

1 School of Information Science and Technology, Sun Yat-sen University, Guangzhou
510275, China

fractal218@126.com
2 School of Information Science and Technology, Sun Yat-sen University, Guangzhou

510275, China and
Key Laboratory of Digital Life (Sun Yat-sen University), Ministry of Education,

Guangzhou 510275, China
linxl@mail.sysu.edu.cn

Abstract. In this paper, we propose a methodology to design routing
algorithms for Network-on-Chip (NoC) which are customized for a set
of applications. The routing algorithms are achieved by breaking all the
cycles in the application specific channel dependency graph(ASCDG).
Thus, the result routing algorithms are ensured to be deadlock-free. The
proposed method can overcome the shortcomings of the method in [1]
which heavily depends on the order of the cycles being treated and has
high computational complexity. Simulation results show that the Rout-
ing Algorithms by Breaking Cycles (RABC) improves the performance
significantly.

1 Introduction

In the recent years, the so called Network-on-Chip (NoC) communication infras-
tructure has been proposed to replace the bus based communication architecture
[2,3]. Basing on this paradigm many research groups have proposed different NoC
architectures [4,5,6,7,8]. One NoC architecture differs from others by the network
topology and routing algorithm [9,10]. We mainly deal with routing algorithm
in this paper.

A large number of NoC routing algorithms either adding virtual channels
(VCs) [11,12] or not [13,14,15,16,17] have been proposed. On the whole, the
VCs added routing algorithms have higher routing adaptivity than those without
VCs. However, the VCs may consume considerable precious on chip resources.

Routing algorithms without VCs can be implemented by two distinct meth-
ods. Firstly, the routing algorithm is implemented by algorithmic method. If
every pair of cores in the network communicates then this is the suitable choice.
Nevertheless, there are many specialized NoC systems where the communication
happens between part of the pairs of cores. And the routing algorithms can in-
corporate the communication information to improve their adaptivity [1]. These
� Corresponding author.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 163–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

164 M. Tang and X. Lin

routing algorithms are suited to be implemented by the second method which
uses routing table.

With the routing table support the routing algorithms can be constructed
according to the applications and dynamically updated. However the routing
table may significantly consume the precious on chip resources. Fortunately,
many researchers have proposed effective techniques to shorten the routing table
and maintain the deadlock freedom of the routing algorithms [18,19].

M. Palesi et al. [1] present a methodology to design routing algorithms for
specific applications. The routing algorithms which do not need VCs are imple-
mented by routing table. And the result routing table is compressed to improve
the overall performance with the technique in [18]. It breaks all the cycles in
the channel dependency graph (CDG) to make the routing algorithms deadlock
free.

There are two main shortcomings of the methodology in [1]. Firstly, the rout-
ing algorithms are got by sequentially breaking all the cycles of CDG. Conse-
quently, the performance of the routing algorithms depends on the sequence of
the cycles in CDG (the detail is given in Section 3). Secondly, in the worst case,
all possible combinations of the cycles in CDG, have to be exhaustively pro-
cessed to find a feasible minimal routing for all communicating pairs [1]. The
computational complexity is O(n!), where n is the number of the cycles.

In this paper, we propose the method to develop routing algorithms by break-
ing cycles (RABC) to solve the problems of APSRA. The basic idea is that the
cycles in CDG is considered as a whole but no longer one by one. As a result,
the routing algorithms are not dependent on the order of the cycles. And the
computational complexity is decreased to O(n), n is the number of the cycles.

The rest of the paper is organized as follows: In Section 2, we first summarize
some major related work. Some basic concepts and the principle of the APSRA
are briefly introduced in Section 3. Then we illustrate the design methodology
and the various algorithms of RABC in Section 4. The experiment and the per-
formance achievement of the method under various traffic scenarios are detailed
in Section 5. Finally in Section 6 we draw some conclusions.

2 Related Work

In the NoC, under the given network topology, the overall performance of the
network depends on the switching technique, routing algorithm and flow control
strategy etc. The main topic of this paper is the routing algorithms. The routing
algorithm determines the number of pathes that can be traversed by the packets.

The routing algorithms can be classified into two categories: deterministic
routing and adaptive routing. In the deterministic routing, a pair of commu-
nicating cores has only one path, which is determined by the source address
and destination address. Although it is simple to implement, the overall perfor-
mance degrades sharply if the network has nonuniform traffic. Dimension-Order
Routing (DOR) [20] is an example of deterministic routing.

In contrast, in the adaptive routing the packets have a large number of se-
lectable paths. Consequently, the packets can choose the fastest path to the

Network-on-Chip Routing Algorithms by Breaking Cycles 165

destination according to the network status. The overall performance increases
significantly since the traffic is evenly distributed in the network.

Glass and Ni [13] present the turn model to develop adaptive deadlock free
routing algorithms for NoC. It shows that by prohibiting just enough turns
the routing algorithms gets deadlock free since no cycle can be formed. The
main drawback is that the adaptivity of the routing function is not uniformly
distributed.

Chiu [16] improves the turn model to propose the Odd-Even (OE) turn model
which make the routing adaptivity more evenly distributed. The Odd-Even turn
model ensures the deadlock freedom of the routing algorithms by restricting
the locations where the packets take turns. The OE turn model significantly
outperforms the turn model due to the evenly distributed routing adaptivity.

Hu and Marculescu [17] present a routing scheme to take the advantage of
both deterministic and adaptive routing algorithms. The router works in the
deterministic mode when there is no congestion in the network and switches to
adaptive mode when the network is heavily loaded. However, it is difficult to
precisely estimate the network contention status.

Although the adaptive routing algorithm provides lots of paths it does not
points out which one is the best. So, in order to fully take advantage of the
adaptive routing algorithm it is necessary to develop an effective selection strat-
egy which is responsible to select the proper path. When a packet needs to be
forwarded the router calls the routing function to calculate the set of admissible
output ports (AOP) then calls the selection function to choose the best one.
Ascia et al. [21] propose a selection strategy named Neighbors-on-Path (NoP),
which aims to choose the channel that allows the packet to be routed to its
destination as fast as possible. However, the NoP selection will encounter inef-
ficiency when combined with Odd-Even routing algorithm. M. Tang and X. Lin
[22] improve the NoP selection to design the Advanced NoP (ANoP) selection
strategy which is suitable for Odd-Even routing algorithm.

3 Introduction of Application Specific Routing
Algorithms (APSRA)

To design NoC routing algorithms, the application specific routing algorithms
(APSRA) is the first methodology which makes use of characteristics of commu-
nication traffic. To make the paper self-contained, we briefly describe the basic
idea of the APSRA methodology.

The framework of the APSRA methodology is shown in Table 1. It computes
the routing table (RT) according to the inputs of CG, TG, and M.

The first input is the communication graph (CG) which is a directed graph.
The vertexes of CG represent the tasks of the application and each directed arc
in CG stands for the communication of the two linked tasks.

The second input of topology graph (TG) which is also a directed graph is
the NoC architecture. Each vertex is a node of the on chip network and each
directed arc represents a physical unidirectional channel between two nodes.

166 M. Tang and X. Lin

Table 1. APSRA framework

1 APSRA(in: CG, TG, M, out: RT)
2 {
3 R=MinFullAdaptiveRouting(CG,TG,M);
4 ASCDG=BuildASCDG(CG, TG, M, R);
5 CYCLES=GetCycles(ASCDG);

6 RET = BreakCycles(CYCLES, ASCDG,
CG, TG, M, R);

7 ExtractRoutingTable(RET, R, RT);
8 }

The input of M is the mapping function which responsibility is mapping the
CG’s tasks onto the nodes of TG. The mapping result determines which pairs
of NoC nodes communicate and which never communicate. APSRA exploits the
information to help improving the routing adaptivity.

The main APSRA algorithms can be partitioned into three phases.
The first phase (from line 3 to line 5) which contains three steps completes the

task of preprocessing. In the first step (line 3) of this phase a fully adaptive and
minimal routing function is created. This routing function is not deadlock free
currently. In the second step (line 4) the channel dependency graph (CDG) [23] is
firstly constructed based on the previous routing function. Then the Application
Specific Channel Dependency Graph (ASCDG) [1] is extracted from CDG. The
ASCDG only contains those direct dependencies which are generated by the
application specific communication. In the third step (line 5) the set CYCLES
of all the cycles in the ASCDG are extracted.

The critical job is fulfilled in the second phase (line 6). Every cycle in CYCLES
needs to be broke to make the routing algorithm deadlock free. If a cycle’s size
is n then there are n dependencies in this cycle. It is sufficient to break the cycle
if any one of the n dependencies is removed. As for which one is the best choice,
the heuristic in [1] claims to remove the dependency which minimally impacts
routing adaptivity. The removed dependency is a restricting in the ultimate
routing function.

In the last phase (line 7) the routing table is constructed by the information
from the routing function and the CG.

The inefficiency of the BreakCycles procedure lies in that it depends on the
order in which the cycles are processed.

On the one hand, if a cycle can not be broken, that is, removing any depen-
dency will lead to a non-minimal routing function then it must try another order

Network-on-Chip Routing Algorithms by Breaking Cycles 167

of breaking the cycles. In the worst case all possible combinations of cycles have
to be exhaustively probed. Thus the computational complexity is O(n!), where
n is the number of the cycles.

On the other hand, the performance of final routing algorithms also heavily
depends on the order in which the cycles are treated. Figure 1 is the performance
of two routing algorithms. The curve labeled descend stands for the routing
algorithm by descendingly sorting the cycles according to the size of the cycles.
Whereas the curve labeled not-sorted represents the routing algorithm in which
the cycles are not sorted. The sequence of the cycles enormously impacts the
performance of the routing algorithms. But we do not in advance know which
order will produce the best performance routing function.

Fig. 1. Impact of cycle order on performance

4 Main RABC Algorithm

To overcome the shortcomings of the APSRA algorithm, we propose the Routing
Algorithms by Breaking Cycles (RABC) methodology. The RABC framework is
like that of APSRA in Table 1. The difference lies in the algorithm for the
BreakCycles procedure. The algorithms for the RABC BreakCycles procedure
is shown in Table 2.

The APSRA chooses the best suitable dependency among the candidates in
only one cycle. In contrast, RABC selects the best suitable dependency among
all the dependencies. So, the first step (line 3) is to find all the dependencies
(DEPENDS) in the ASCDG.

If there are cycles not yet be broken then some dependencies need to be
selected to be removed (line 4). In line 5, each dependency is graded. The score
of a dependency equals the number of cycles it can break.

The MAXDEPEND which has the highest score and keeps the routing func-
tion minimal is found in line 6. This dependency is stored as a restriction (RE-
STRICTION) in the ultimate routing function (line 8). Before that the cycles
broken by the MAXDEPEND is deleted from CYCLES (line 7).

The final routing algorithms is guaranteed to be deadlock free and minimal
when all the cycles in the ASCDG are broken [1].

168 M. Tang and X. Lin

Table 2. RABC BreakCycles Procedure

1RABCBreakCycles(CYCLES, ASCDG, CG, TG, M, R)
2 {
3 DEPENDS = GetDependencies(ASCDG);
4 while(CYCLES is not empty){
5 SCORES = GetScore(DEPENDS, CYCLES);
6 MAXDEPEND = MaxDepend(DEPENDS, CYCLES);
7 DeleteBrokeCycles(CYCLES, MAXDEPEND);
8 StoreMaxDepend(MAXDEPEND, RESTRICTION);
9 }
10 }

It is important to notice that not every dependency can be prohibited to
keep the result routing algorithm minimal. As shown in Figure 2, if the depen-
dency l12 → l24 has been forbidden then the the dependency l13 → l34 can
not be prohibited to ensure that there is minimal path from p1 to p4. On the
other hand, we can show that if the dependency l13 → l34 is not restricted
then the routing function is minimal. For example, the dependency l34 → l42
is chosen to be forbidden. The path from p1 to p4 is minimal. Since the path
from another arbitrary node pi to p1 is not affected by that dependency, the
path is still minimal. Consequently the minimal path from pi to p4 is still
preserved.

The same analysis is applied to other pair of nodes. It indicates that the
ultimate routing algorithm is minimal if the contradictory dependencies such as
l12 → l24 and l13 → l34 are not prohibited at the same time.

There are three main advantages of the RABC algorithm. Firstly, the new
algorithm of breaking cycles treats all cycles as a whole but not one by one

Fig. 2. Preserve minimal path

Network-on-Chip Routing Algorithms by Breaking Cycles 169

like the previous algorithm. As a result the performance of the ultimate routing
function does not depend on the order in which the cycles are stored in CYCLES
set. Secondly, its computational complexity is very low. Suppose the number of
cycles is n, the function of GetScore (line 5) and DeleteBrokeCycles (line 7) needs
to process every cycle. So their computational complexities are O(n). While the
operation of MaxDepend (line 6) and StoreMaxDepend (line 8) is irrelevant
to n. Their computational complexities are O(1). Moreover the running times
of the while loop (line 4) is also irrelevant to n. As a whole the computational
complexity of the proposed algorithm is lowered to O(n). Thirdly, the adaptivity
of the routing function is increased greatly.

5 Performance Evaluation

We first introduce the simulation configurations and then give the simulation
results.

5.1 Experimental Configurations

We extend the NoC simulator Noxim [24] developed in SystemC which is flit-
accurate and open source to evaluate the performance of the RABC method. The
performance of RABC is compared with that of APSRA. The packet injection
rate (pir) is taken as the load parameter. The performance metrics are average
packet latency and throughput which are defined as follows respectively:

Average packet latency =
1
K

K∑
i=1

lati

where K refers to the total number of packets arrived in their destinations and
lati is the latency of ith packet.

throughput =
total received flits

(number of nodes) ∗ (total cycles)

where total received flits represents the number of flits taken in by all destina-
tions, number of nodes is the number of network nodes, and total cycles ranges
from the start to the end of the simulation.

Each simulation goes on for 20,000 cycles following 1,000 cycles of initializa-
tion. The simulation at each pir is iterated a number of times to ensure accuracy.
The configurations of the simulation are shown in Table 3.

In this paper, we use three synthetic traffic scenarios to evaluate the perfor-
mance of the RABC methodology. In the transpose1 traffic, node (i, j) only sends
message to the symmetrical node (N-1-j, N-1-i), N is the size of the network. The
hotspot traffic scenarios, which are thought to be more realistic are also consid-
ered. In these traffic, some nodes are specified as hotspot nodes, which receive
the 20 percent hotsopt traffic except the normal traffic. In the first hotspot traf-
fic, which is shortened hs-c, the four hotspot nodes [(3, 3), (4, 3), (3, 4), (4,
4)] situate at the center of the mesh network. And the second hotspot traffic
scenario, which is abbreviated as hs-tr, has the four hotspot nodes [(6, 0), (7, 0),
(6, 1), (7, 1)] positioned at the top right corner of the mesh.

170 M. Tang and X. Lin

Table 3. Experimental configurations

Topology Mesh-based
Network size 8×8
Port buffer Four flits

Switch technique Wormhole switching
Selection strategy Buffer level
Traffic scenario transposed and hotspot

Packet size Eight flits
Traffic distribution Poisson

Simulator Noxim

5.2 Results

Routing adaptivity is an important metric for estimating the performance of
the adaptive routing algorithms [1]. High adaptivity routing algorithm has the
potential to provide more paths for the communication. Formally, it is defined as
the ratio of the number of the permitted minimal paths to the whole number of
minimal paths from the source to the destination node. Then the adaptivity for
all the communications is averaged to get the average adaptivity of the routing
algorithm.

Figure 3 compares the average routing adaptivity (normalized to APSRA) of
the APSRA and RABC routing algorithms from network size 5×5 to 8×8 under
uniform traffic. The improved routing adaptivity of the RABC over APSRA
ranges from 15.7% to 28.2%.

The simulation results for transpose1 traffic scenario are presented in Figure 4.
The maximum load that is sustainable by the network is greatly increased by the
RABC routing algorithm. At the same time the throughput is also improved.

The results for hs-c and hs-tr are respectively depicted in Figure 5 and
Figure 6. The packet latencies are decreased while the throughput is maintained
in both cases.

Fig. 3. Routing adaptivity of the APSRA and RABC routing algorithms

Network-on-Chip Routing Algorithms by Breaking Cycles 171

Fig. 4. (a) Latency and (b) throughput variation under transpose1 traffic scenario

Fig. 5. (a) Latency and (b) throughput variation under hs-c traffic scenario

Fig. 6. (a) Latency and (b) throughput variation under hs-tr traffic scenario

172 M. Tang and X. Lin

6 Conclusions

In this paper, we propose the RABC to design application specific routing algo-
rithms for NoCs. RABC makes use of the communication information of the ap-
plication to construct the ASCDG like APSRA methodology. In order to achieve
deadlock free routing algorithms the RABC considers the cycles in ASCDG as a
whole. The RABC has three advantages over APSRA. Firstly, the performance
of the ultimate routing algorithm does not depend on the order in which the
cycles are processed. Secondly, the computational complexity of the algorithm
itself is greatly decreased. At last, the adaptivity of the routing algorithm is
significantly increased.

Acknowledgments

This work was supported in part by NSFC under Projects 60773199, U0735001,
and 985 II fund under Project 3171310.

References

1. Palesi, M., Holsmark, R., Kumar, S., Catania, V.: Application Specific Routing Al-
gorithms for Networks on Chip. IEEE Trans. Parallel and Distributed Systems. 20,
316–330 (2009)

2. Dally, W.J., Towles, B.: Route Packets, Not Wires: On-Chip Interconnection Net-
works. In: Design Automation Conf., pp. 684–689 (2001)

3. Benini, L., De Micheli, G.: Networks on Chips: A New SoC Paradigm. Computer 35,
70–78 (2002)

4. Millberg, M., Nilsson, E., Thid, R., Kumar, S., Jantsch, A.: The Nostrum backbone
- a communication protocol stack for networks on chip. In: VLSI Design Conference,
pp. 693–696 (2004)

5. Rijpkema, E., Goossens, K., Wielage, P.: A router architecture for networks on
silicon. In: 2nd Workshop on Embedded Systems (2001)

6. Kumar, S., Jantsch, A., Soininen, J.P., Forsell, M., Millberg, M., Oberg, J., Tien-
syrja, K., Hemani, A.: A Network on Chip Architecture and Design Methodology.
In: Proc. IEEE CS Ann. Symp. VLSI, pp. 105–112 (2002)

7. Karim, F., Nguyen, A., Dey, S.: An Interconnect Architecture for Networking Sys-
tems on Chips. IEEE Micro. 22, 36–45 (2002)

8. Pande, P.P., Grecu, C., Ivanov, A., Saleh, R.: Design of a Switch for Network on
Chip Applications. In: Proc. IEEE Intl. Symp. Circuits and Systems, vol. 5, pp.
217–220 (2003)

9. Marculescu, R., Bogdan, P.: The Chip Is the Network: Toward a Science of
Network-on-Chip Design. Foundations and Trends in Electronic Design Automa-
tion, 371–461 (2009)

10. Bjerregaard, T., Mahadevan, S.: A Survey of Research and Practices of Network-
on-Chip. ACM Computing Surveys, 1–51 (2006)

11. Mello, A., Tedesco, L., Calazans, N., Moraes, F.: Virtual Channels in Networks
on Chip: Implementation and Evaluation on Hermes NoC. In: Proc. 18th Symp.
Integrated Circuits and System Design, pp. 178–183 (2005)

Network-on-Chip Routing Algorithms by Breaking Cycles 173

12. Pullini, A., Angiolini, F., Meloni, P., Atienza, D., Srinivasan MuraliRaffo, L., De
Micheli, G., Benini, L.: NoC Design and Implementation in 65 nm Technology. In:
Proc. First Intl. Symp. Networks-on-Chip, pp. 273–282 (2007)

13. Glass, C.J., Ni, L.M.: The Turn Model for Adaptive Routing. J. Assoc. for Com-
puting Machinery 41, 874–902 (1994)

14. Chien, A.A., Kim, J.H.: Planar-Adaptive Routing: Low-Cost Adaptive Networks
for Multiprocessors. J. ACM 42, 91–123 (1995)

15. Upadhyay, J., Varavithya, V., Mohapatra, P.: A Traffic-Balanced Adaptive Worm-
hole Routing Scheme for Two-Dimensional Meshes. IEEE Trans. Computers 46,
190–197 (1997)

16. Chiu, G.M.: The Odd-Even Turn Model for Adaptive Routing. IEEE Trans. Par-
allel and Distributed Systems 11, 729–738 (2000)

17. Hu, J., Marculescu, R.: DyADSmart Routing for Networks-on-Chip. In: Proc. 41st
Design Automation Conf., pp. 260–263 (2004)

18. Palesi, M., Kumar, S., Holsmark, R.: A Method for Router Table Compression
for Application Specific Routing in Mesh Topology NoC Architectures. In: Proc.
Sixth Intl. Workshop Systems, Architectures, Modeling, and Simulation, pp. 373–
384 (2006)

19. Bolotin, E., Cidon, I., Ginosar, R., Kolodny, A.: Routing table minimization for
irregular mesh NoCs. In: Proc. Conf. Des., Autom. Test Eur., pp. 942–947 (2007)

20. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Mor-
gan Kaufman, San Mateo (2004)

21. Ascia, G., Catania, V., Palesi, M., Patti, D.: Implementation and Analysis of a
New Selection Strategy for Adaptive Routing in Networks-on-Chip. IEEE Trans.
Computers 57, 809–820 (2008)

22. Tang, M.H., Lin, X.L.: An Advanced NoP Selection Strategy for Odd-Even Routing
Algorithm in Network-on-Chip. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009.
LNCS, vol. 5574, pp. 557–568. Springer, Heidelberg (2009)

23. Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor intercon-
nection networks. IEEE Trans. Comput. 36, 547–553 (1987)

24. Sourceforge.net, Noxim: Network-on-chip simulator (2008),
http://noxim.sourceforge.net

http://noxim.sourceforge.net

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 174–185, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Fair Thread-Aware Memory Scheduling Algorithm
for Chip Multiprocessor*

Danfeng Zhu, Rui Wang, Hui Wang, Depei Qian, Zhongzhi Luan, and Tianshu Chu

Sino-German Joint Software Institute
School of Computer Science and Engineering,

Beihang University,
100191, Beijing, P.R. China

{danfeng.zhu,rui.wang,hui.wang,depei.qian,
zhongzhi.luan}@jsi.buaa.edu.cn

Abstract. In Chip multiprocessor (CMP) systems, DRAM memory is a critical
resource shared among cores. Scheduled by one single memory controller,
memory access requests from different cores may interfere with each other.
This interference causes extra waiting time for threads and leads to negligible
overall system performance loss. In conventional thread-unaware memory
scheduling patterns, different threads probably experience extremely different
performance; one thread is starving severely while another is continuously
served. Therefore, fairness should also be considered besides data throughput in
CMP memory access scheduling to maintain the overall system performance.
This paper proposes a Fair Thread-Aware Memory scheduling algorithm
(FTAM) that ensures both the fairness and memory system performance.
FTAM algorithm schedules requests from different threads by considering mul-
tiple factors, including the source thread information, the arriving time and the
serving history of each thread. As such FTAM considers the memory character-
istic of each thread while maintains a good fairness among threads to avoid per-
formance loss. Simulation shows that FTAM significantly improves the system
fairness by decreasing the unfairness index from 0.39 to 0.08 without sacrific-
ing data throughput compared with conventional scheduling algorithm.

1 Introduction

Chip multiprocessor (CMP) [1,2] architecture is now believed to be the dominant
trend for future computers. In CMP systems multiple independent processing cores
share the same DRAM memory system. Different threads running on different cores
send memory access requests simultaneously and may interfere with each other while
accessing the shared resources. As the number of cores on a chip increases, the pres-
sure on the DRAM system also increases. The limited bandwidth therefore becomes
the bottleneck of the whole system and poses a severe resource management issue on
memory access scheduling.

* This work is supported by National Science Foundation of China under grant No. 60873053,

No. 60673180 and National Hi-tech R&D Program (863 program) of China under grant No.
2009AA01Z107.

 A Fair Thread-Aware Memory Scheduling Algorithm for Chip Multiprocessor 175

Conventional DRAM memory controllers are designed for maximizing the data
throughput obtained from the DRAM. It is essentially a sequential scheduling scheme
that simply gathers all the memory access requests from different threads into one
queue and employs existing scheduling algorithm onto this queue. They do not take
the source thread of requests into consideration and thus are thread-unaware. This
unawareness leads to a severe unfairness among the cores. Unfairly prioritizing some
threads over others may increase the access latency and lead to a substantial perform-
ance loss of CMP systems. If a thread generates a stream of requests that access the
same row in the same bank, another thread that requests for data in another row will
not be served until the first thread’s requests are completed. This results in big per-
formance loss as some cores have to spend lots of time waiting for their requests to be
served.

Therefore, for a scalable CMP system, memory access scheduling techniques that
control and minimize inter-thread interference are necessary. Not only the effective-
ness of memory scheduler should be taken into consideration but also the fairness
should be provided among threads.

In this paper, we propose a new memory scheduling algorithm, the Fair Thread-
Aware Memory scheduling algorithm (FTAM) for CMP systems. FTAM takes into
account the locality each thread exhibits and provides fairness among cores without
sacrificing overall memory system throughput. Source-thread, Arriving-time and
Serving-History are the three metrics for computing each thread’s priority in memory
scheduling.

The rest of this paper is organized as follows: Section 2 gives related works on
memory scheduling algorithm of multi-core processor; Section 3 introduces the pro-
posed FTAM algorithm; we gives the simulation methodology and simulation results
in section 4 and section 5, respectively; finally, we conclude in Section 6.

2 Related Works

2.1 DRAM Architecture

A modern DRAM chip is a 3-D device with dimensions of bank, row and column, as
shown in Fig.1. The memory access identifies the address that consists of the bank,
row and column fields. Each bank has a single row-buffer, which can contain at most
one row. The data in a bank can be accessed only from the row-buffer. So an access to
the memory may require three transactions before the data transfer: bank pre-charge,
row activate and column access. A pre-charge charges and prepares the bank. An
activate copies an entire row data from the array to the row-buffer. Then a column
access can access the row data. The amount of time it takes to service a DRAM re-
quest depends on the status of the row-buffer and falls into three categories:

− Row hit: when the requested row is currently open in the row-buffer;
− Row closed: if there is no open row in the row-buffer;
− Row conflict: if the requested row differs from the current one in the row-buffer.

176 D. Zhu et al.

Fig. 1. A Modern 3-D DRAM Chip

2.2 DRAM Memory Controller

A memory controller is the interface between processors and memory system, trans-
lating memory requests into memory commands. The basic structure of a modern
memory controller consists of a memory scheduler, a request buffer, and write/read
buffers.

The memory scheduler is the core of the memory controller. The scheduler reor-
ders requests based on the implemented scheduling policy. Memory schedulers have
two levels. The first level is the per-bank schedulers. Each bank owns its per-bank
scheduler, prioritizing requests to this bank and generating a sequence of DRAM
commands (while respecting the bank timing constraints). The second level is the
across-bank channel scheduler. It receives the banks’ ready commands and issues the
one with the highest priority (while respecting the timing constraints and scheduling
conflicts in the DRAM address and data buses). The request buffer contains each
memory request’s state, e.g., the address, type and identifier of the request. The
write/read buffers contain the data being written to/read from the memory.

The controller’s function is to satisfy memory requests by issuing appropriate
DRAM commands. Yet how to optimize the memory controller to alleviate the gap
between the processing ability and memory bandwidth is not an easy task. First of all,
state-of-the-art DDR2 SDRAM chips may have over 50 timing constraints [3] includ-
ing both local (per-bank) and global (across banks due to shared resources between
banks) timing constraints. All these must be obeyed when scheduling commands.
Second, the controller should intelligently reorder the memory access requests it re-
ceives in the request buffer by its prioritizing rules to optimize system performance.
Scheduling decision must be carefully made because it has significant impact on not
only DRAM throughput and latency but also the whole system performance.

Modern memory controllers use FR-FCFS [4,5] policy to schedule memory access
requests. FR-FCFS prioritizes memory requests that hit in the row-buffer over others.
If no request hits the row-buffer, older requests are prioritized over younger ones. For
single-threaded systems FR-FCFS policy was shown to provide the best average per-
formance. But this scheduling algorithm is thread-unaware, i.e., it does not take
into account the interference among different threads on scheduling decisions. Al-
though it may achieve high system throughput, some threads may suffer from extreme

 A Fair Thread-Aware Memory Scheduling Algorithm for Chip Multiprocessor 177

starvation. For example if one thread continuously issues requests that have a very
high row-buffer hit rate, then FR-FCFS scheduling will unfairly prioritize these re-
quest in series, and other threads have to be delayed for long time and sacrifice their
processing power. Therefore, in CMP systems FR-FCFS cause unfairness among
cores, as different threads running together on the same chip can experience ex-
tremely different memory system performance. This is a big performance loss for
CMP systems. So in CMP systems scheduling policy should consider more than just
throughput.

2.3 Related Works on Memory Scheduling Algorithms

Many memory scheduling policies were proposed to optimize memory scheduling,
but most of them are thread-unaware. Recent years the focus has been shifted to pro-
viding fairness to multi-core and multi-threaded processors. Several memory schedul-
ing policies with features adapted to multi-threaded environment have been proposed.

Zhu et al. [6] evaluated thread-aware memory access scheduling schemes and
found that thread-aware DRAM access scheduling schemes may improve the overall
system performance by up to 30%, on workload mixes of memory-intensive applica-
tions. The considered thread states include the number of outstanding memory re-
quests, the reorder buffer occupancy, and the issue queue occupancy. While this work
mainly focused on SMT system and was tested in a single core processor, it has not
specifically considered the scenario of CMP system. Nesbit et al. [7] proposed a
memory scheduler based on the network fair queuing (FQ) concept. Its objective is to
ensure that each thread is offered its allocated share of aggregate memory system and
distribute any excess memory bandwidth to threads that have consumed less excess
bandwidth in the past. Mutlu et al. [8] proposed a Stall-Time Fair Memory scheduler
(STFM) to provide quality of service to different threads sharing the DRAM memory
system. This scheme can reduce the unfairness in the DRAM system while also
improving system throughput (i.e. weighted speedup of threads) on a variety of work-
loads and systems. The goal of the proposed scheduler is to “equalize” the DRAM-
related slowdown experienced by each thread due to interference from other threads,
without hurting overall system performance. However quite a lot of additional work is
introduced in this STFM policy to estimate the slowdown of each thread thus compli-
cated the implementation. Zheng et al. [9] evaluated a set of memory scheduling poli-
cies and proposed a memory efficiency-based scheduling scheme called ME-LREQ
for multi-core processors. Based on the conventional least-request scheme, ME-
LREQ considers the memory-efficiency of application running on each core to
improve the memory bandwidth and latency. Mutlu et al. [10] proposed a parallelism-
aware batch scheduling policy for CMP systems. Based on the finding that inter-
thread interference can destroy bank-level parallelism of individual threads and leads
to throughput degradation, this parallelism-aware policy optimizes conventional FR-
FCFS scheme for intra-thread bank-parallelism. Fang et al. [11] presents a core-aware
scheduling scheme similar to our work, but provide no fairness consideration for
different threads.

Different from these ideas, our algorithm is a balance between fairness and
throughput. We pick multiple metrics which are simple but tested useful to achieve
this balance: the Source-thread, the Arriving-time, and the Serving-history of these

178 D. Zhu et al.

threads. Requests from different threads are grouped in different queues and an arbiter
window is used to flexibly control queues, and compute the priority of each request
according to the above three factors. These metrics are very easy to get and maintain,
so our proposed algorithm is very easy to implement and only need extreme low
hardware consumption.

3 Fair Thread-Aware Memory Scheduling Algorithm

In this section, we introduced a novel fair thread-aware memory access scheduling for
CMP systems, Fair Thread-Aware Memory Scheduling Algorithm (FTAM). In
FTAM, memory requests from different threads are maintained in different queues
according to their arriving time. An Arbiter Window is placed on the head of all the
queues and the headmost requests are grouped inside the arbiter window to be priori-
tized before the outside ones. In the arbiter window, we use multiple factors to calcu-
late their priority including Source-thread, Arriving-time and Serving-history.

Source-thread prioritizes requests from the same thread as the former scheduled
one over others guaranteeing the scheduling efficiency and memory system through-
put. Arriving-time prioritizes old requests over young requests avoiding starvation.
Serving-history prioritizes requests from the thread that have been serviced least of
times over others providing fairness among all the threads. Once the thread with high-
est priority is serviced, the queue moves forwards and the above procedure is re-
peated. The use of the arbiter window and the synthesis priority metrics assures both
performance and fairness of FTAM.

3.1 FTAM Scheduling Policy

Our proposed scheduling algorithm FTAM is an efficient memory scheduling solution
which incorporates thread information into scheduling decisions and provides high
CMP system performance while keeping fairness among different threads. In FTAM,
memory access requests from different treads are in different queues according to
their source thread. An arbiter window is used to group the headmost requests of each
queue as the candidates for next serving.

Let n represent the number of threads. For the n candidate requests in the arbiter
window, FTAM calculates their priority based on following three factors: source-
thread, arriving-time and serving-history. The request with the highest priority is
moved out of the window and serviced first. Then its queue moved forward to the
arbiter window and the scheduler repeats the above procedure. If two or more re-
quests in the window have the same priority then FC-FRFS rule is applied.

3.2 Factors for Priority Calculation

We choose three factors to calculate the thread’s priority: Source-thread, Arriving-
time and Serving-History.

− Source-thread: Requests from the same thread probably have better locality than
the ones from different threads, so prioritizes requests from the same thread as the
former scheduled one over others is a guarantee for higher row-hit thus to decrease
memory access latency and improve the memory system throughput.

 A Fair Thread-Aware Memory Scheduling Algorithm for Chip Multiprocessor 179

− Arriving-time: Always scheduling requests from the same thread results in starva-
tion of other threads. High row-hit rate may be achieved though, the overall sys-
tem performance is hurt because some cores wastes long time waiting. So we use
Arriving-Time to prioritize old requests over young requests avoiding possible
starvation of some threads.

− Serving-history: This metric prioritizes requests from thread that has been serviced
least times over others providing fairness among all the threads.

We use waiting time as the measurable parameter to stand for arriving-time. Let WTi
represents the waiting time of thread i. In terms of serving-history we use accumu-
lated serving times as the measurable parameter counting how many requests of
this thread has been serviced. Let ASTi represents the accumulated serving times of
thread i.

We define the weight of the three factors in the calculation of priority as follows:

α : the weight of waiting time;

β : the weight of accumulated serving times;

γ : the weight of source thread factor (with high row-hit probability).

3.3 Algorithm Description

1. Queue requests according to their source thread.
2. Refresh the accumulated serving times of each thread.
3. Calculate the priority for each request located in the arbiter window.

The priority calculation formula of thread i is:

* *i i iP WT ASTα β γ= + + (1)

After the calculation, the request with highest priority will be selected to be serviced
before others.

3.4 Example

In this section, we give a simplified example illustrating how FTAM works. Let’s
assume that we have four cores running threads T1, T2, T3 and T4. The last serviced
request is from T2. At the point of scheduling they have been serviced 25, 20, 5 and
10 times respectively since the threads starts, and the headmost memory access re-
quests of these four threads, R1, R2, R3 and R4 have been waiting for 30ns, 10ns,
20ns and 20ns. As shown in Fig.2, memory requests from each thread are grouped in
their request queues. The accumulated serving times are stored for each thread. The
headmost requests of all the threads are grouped in an arbiter window for priority
calculation.

For simplicity, we assume 1,α = 1,β = − and 10γ = in (1). So the priority of R1,

R2, R3 and R4 are:

PriorityR1 = 1*30 + -1*25 + 0 = 5
PriorityR2 = 1*10 + -1*20 + 10 = 0
PriorityR3 = 1*20 + -1*5 + 0 = 15
PriorityR4 = 1*20 + -1*10 + 0 = 10

180 D. Zhu et al.

Fig. 2. Priority calculation with FTAM

So R3 from thread T3 is serviced first for it has the highest priority among all the
requests in the arbiter window. While using FCFS, R1 will be first serviced and using
FR-FCFS, R2 will be serviced first.

3.5 Implementation Analysis

The algorithm only needs a very small extra space to store the waiting time for each
memory access request and the accumulated serving times for each thread. Assuming
the request buffer size of the controller is L, 4L bytes are needed to store the arriving
time for each request. For an n-core processor, 2n bytes are needed to store the accu-
mulated serving times for each thread. Compared with other complicate algorithms,
FTAM has the least hardware resource requirement. Meanwhile FTAM does not need
extra pre-calculation for information collection.

3.6 Pseudo Code of FTAM

Following is the pseudo code of our FTAM memory access request scheduling
algorithm:

INPUT: request queues according to the source thread
QUEUE[number_of_threads]
OUPUT:the next request to be issued
BEGIN
 priority <- 0
 min_priority <- MAX
 min_where <- -1
 i <- 0
 While i<number_of_threads
 If (QUEUE[i] not empty) Then
 If i == the thread number called last time Then
 priority <- Same_Thread
 priority <- priority – the request's wait
 periods(cycles)
 priority <- priority + the thread's called time
 Select min_priority, min_where
 End While
 Service the request at min_where
 last called thread's number < min_where

 A Fair Thread-Aware Memory Scheduling Algorithm for Chip Multiprocessor 181

 thread[min_where]'s called time + 1
 Select min_call <- min{thread[i]'s called time,
 0<=i<number_of_threads}
 While i<number_of_threads
 thread[i]'s called time -= min_call
 End While
END

4 Simulation Setup

4.1 Simulation Methodology

First we define the metrics to measure the performance of the FTAM algorithm, and
compare it with the FR-FCFS. The metrics take both system fairness and memory
access speed into consideration.

Our fairness metric is the unfairness index of the system, which is the standard de-
viation of each thread’s interference ratio. Assuming that the individual execution
time of a thread is Texclusive when the memory access is exclusive, the execution time of
a thread is Tshared when multiple threads run simultaneously, and the extra stall time
caused by inter-thread interference that a thread experiences is Tinterfere, so we have
Tshared = Texclusive + Tinterfere. A thread’s interference ratio, IR, is defined as IR = Tinterfere
/ Texclusive. This interference ratio reflects the impact caused by inter-thread interfer-
ence in memory access on the thread. Bigger the difference between each thread’s
interference ratio is, more unfair the system is. Our goal is to minimize the gap be-
tween the interference ratio of different threads to maintain a good fairness in the
CMP system. So the unfairness index of the system, F, is defined as the standard
deviation of each thread’s interference ratio, as shown in (1), where IRi is the interfer-
ence ratio of thread i, is the average value of interference ratio of all the threads and n
is the number of the threads. A smaller unfairness index indicates better system fair-
ness. The unfairness index is 0 in a perfectly fair system.

()2

1

n

i
i

IR IR
F

n
=

−
=
∑

(2)

With respect to the throughput measurement, we use the average memory accessing
latency. The memory access delay time from all the threads is recorded and their
average value is computed for both FTAM and FR-FCFS algorithm.

4.2 Simulation Setup

We use M5 [12] as the base architectural simulator and extend its memory scheduling
part to simulate the conventional scheduling algorithm and our proposed FTAM algo-
rithm. The detailed parameters are listed in Table 1.

In our experiments, each processor core is single-threaded and runs a distinct appli-
cation. We use FFT and Cholesky benchmark in the SPLASH-2 [13] suite, and use two
test application we developed, a data density application named DDT and a computa-
tion density application named CDT. The value of α , β and γ is set as 1, -1 and 10.

182 D. Zhu et al.

Table 1. Simulation Setup

Parameters Value

Processor
4 core, 2GHz,,x issue per core,y-stage

pipleline
Functional Unit 4 ALU

L1 cache(per core)
64KB, Inst/64KB Data,2-way,64B line, hit

latency: 1 cycle Inst/3-cycle Data
L2 cache(share) 256KB,4-way,64B line,15-cycle hit latency

Memory
4/2/1-channels,2-DIMMs/channel,2-

ranks/DIMM,8-banks/rank,9-devices/rank
Memory contoller 64-entry buffer,15ns overhead

5 Simulation Result

To evaluate the performance of FTAM, firstly each application is executed alone
and the Texclusive is recorded, then the four applications are executed concurrently
respectively scheduled by FR-FCFS and FTAM and the Tshared of each thread is
recorded. Thus we get the Tinterfere of each thread under both FR-FCFS and FTAM
scheduling.

Fig.3 shows the execution time of the four applications under FR-FCFS and
FTAM. From the results we can see that the execution time of different threads are
quite various under FR-FCFS scheduling, ranging from 32ms to 72ms, as FR-FCFS
probably schedules requests from one thread continuously for higher row-hit and
results in long waiting time of the others. While under FTAM all the application runs
with roughly equal chance to get the memory access but meanwhile tries to maintain
high row-hit possibility. So though FFT and DDT takes even a little bit longer execu-
tion time than under FR-FCFS, significant decrease is achieved in Cholesky and
CDT, the execution time varies within a smaller range from 37ms to 51ms, showing
that a significant performance loss is saved on these two cores.

Fig.4 and Fig.5 shows the different impact of inter-thread interference in memory
access under FTAM and FR-FCFS scheduling. Fig.4 is the interference time and Fig.5
is the interference ratio of these four applications under our FTAM scheduling algo-
rithm and FR-FCFS. From the results we can see that under FR-FCFS scheduling the

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

FR-FCFS FTAM

Scheduling Algorithm

E
x
e
c
u
ti
o
n
 T
im
e
(n
s
)

Cholesky FFT DDT CDT

Fig. 3. Comparison of fairness between FTAM and FR-FCFS

 A Fair Thread-Aware Memory Scheduling Algorithm for Chip Multiprocessor 183

interference time and interference ratio different threads experience are quite differ-
ent, ranging from 8.6ms to 36ms and from 35.92% to 106.84% respectively, as FR-
FCFS never considers fairness. While under FTAM though FFT and DDT have even
a little bit longer interference time and larger interference ratio than under FR-FCFS,
significant decrease is achieved in Cholesky and CDT, and the difference of the inter-
ference time and interference ratio among these four threads are quite small. The
ranges are from 13ms to 17ms and from 40.31% to 58.11% respectively. It is obvious
that FTAM significantly reduces the interference time for some threads and evens the
interference ratio among different threads.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

Cholesky FFT DDT CDT

Applications

In
te
rf
e
re
 T
im
e
(n
s
)

FR-FCFS FTAM

Fig. 4. Comparison of interference time between FTAM and FR-FCFS

0%

20%

40%

60%

80%

100%

120%

Cholesky FFT DDT CDT

Applications

R
a
ti
o
 o
f
In
te
rf
e
re
 T
im
e

FR-FCFS FTAM

Fig. 5. Comparison of interferece time ratio between FTAM and FR-FCFS

From these figures we can get the unfairness index of the system under FTAM and
FR-FCFS, FFTAM and FFR-FCFS. Calculated by (1), we have FFTAM = 0.08 and FFR-FCFS =
0.39, proving that FTAM provides much better system fairness among threads.

Though FTAM provides better fairness than FR-FCFS, the system throughput
should never be ignored. Fig.6 shows the comparison of throughput measured in av-
erage memory access latency between FTAM and FR-FCFS. From the results we can
see that under FTAM though the average memory access latency is increased in the
case of FFT and DDT than FC-FRFS, it is reduced in Cholesky and CDT. The
total average memory access latency is increased from 22.5ns to 22.85ns. This negli-
gible 0.05ns shows that FTAM has very little negative impact on the total system
throughput.

184 D. Zhu et al.

0

5

10

15

20

25

30

Cholesky FFT DDT CDT

Applications

A
v
e
ra
g
e
 M
e
m
o
ry
 A
c
c
e
s
s
 L
a
te
n
c
y
(n
s
)

FR-FCFS FTAM

Fig. 6. Comparison of memory accessing time between FTAM and FR-FCFS

6 Conclusion

In this paper, we present a memory scheduling algorithm, FTAM, for CMP systems.
FTAM prioritizes memory access requests based on their source-thread, arriving-time
and serving-history. With the concerning of these three above factors simultaneously,
FTAM algorithm provides a good balance between system throughput and threads
fairness. Simulation results show that FTAM algorithm can achieve better fairness
than the widely used FR-FCFS algorithm without sacrificing data throughput. With
the tuning on parameters, FTAM can be switched to fulfill different requirement with
respect to the fairness and throughput.

References

1. Krewell, K.: Best Servers of 2004: Multicore is Norm. Microprocessor Report (January
2005), http://www.mpronline.com

2. Olukotun, K., Nayfeh, B.A., et al.: The case for a single-chip multiprocessor. In: Proc. of
the 7th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS (October 1996)

3. Micron. 512Mb DDR2 SDRAM Component Data Sheet: MT47H128M4B6-25 (March
2006), http://download.micron.com/pdf/-datasheets/
dram/ddr2/512MbDDR2.pdf

4. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory access schedul-
ing. In: Proc. of the 27th ACM/IEEE International Symposium on Computer Architecture,
ISCA (2000)

5. Rixner, S.: Memory controller optimizations for web servers. In: MICRO-37 (2004)
6. Zhu, Z., Zhang, Z.: A Performance Comparison of DRAM Memory System Optimizations

for SMT Processors. In: Proc. of the 11th International Symposium on High-Performance
Computer Architecture (2005)

7. Nesbit, K.J., Aggarwal, N., Laudon, J., Smith, J.E.: Fair Queuing Memory Systems. In:
Proc. of the 39th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, Los Alamitos (2006)

8. Mutlu, O., Moscibroda, T.: Stall-Time Fair Memory Access Scheduling for Chip Multi-
processors. In: Proc. of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society, Los Alamitos (2007)

 A Fair Thread-Aware Memory Scheduling Algorithm for Chip Multiprocessor 185

9. Hongzhong, Z., Jiang, L., Zhao, Z., Zhichun, Z.: Memory Access Scheduling Schemes for
Systems with Multi-Core Processors. In: 37th International Conference on Parallel Proc-
essing, ICPP 2008 (2008)

10. Mutlu, O., Moscibroda, T.: Parallelism-Aware Batch Scheduling: Enhancing both Per-
formance and Fairness of Shared DRAM Systems. SIGARCH Comput. Archit.
News 36(3), 63–74 (2008) (ISCA 2008)

11. Fang, Z., Sun, X.-H., Chen, Y., Byna, S.: Core-Aware Memory Access Scheduling
Schemes. In: Proc. of IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2009 (2009)

12. Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.: The
M5 simulator: Modeling networked systems. IEEE Micro 26(4), 52–60 (2006)

13. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs: Char-
acterization and Methodological Considerations. In: The 22nd Annual International Sym-
posium on Computer Architecture, ISCA 1995 (1995)

Efficient Partitioning of Static Buses for
Processor Arrays of Small Size

Susumu Matsumae

Saga University, Saga 840-8502, Japan
matsumae@is.saga-u.ac.jp

Abstract. This paper shows an efficient partitioning of static row/
column buses for tightly coupled 2D mesh-connected processor arrays
(mesh for short) of small size. With additional O

(
n
m

(
n
m

+ log m
))

time
slowdown, it enables the mesh of size m×m with static row/column
buses to simulate the mesh of larger size n× n with reconfigurable row/
column buses (m ≤ n). This means that if a problem can be solved in
O (T) time by the mesh of size n× n with reconfigurable bus, then the
same problem can be solved in O

(
T · n

m

(
n
m

+ log m
))

time on the mesh
of smaller size m×m without reconfigurable function. This time-cost is
optimal when the relation n ≥ m log m holds (e.g., m = n1−ε for ε > 0).

1 Introduction

The mesh-connected processor array (mesh for short) is one of fundamental
parallel computational models. The architecture is suitable for VLSI implemen-
tation and allows a high degree of integration. However, the mesh has a crucial
drawback that its communication diameter is quite large due to the lack of broad-
casting mechanism. To overcome this problem, many researchers have considered
adding broadcasting buses to the mesh [1,2,3,4,5,6].

Consider a linear processor array of n processing elements (PEs) where each
adjacent PEs can communicate each other via the local communication link. If
it has a global bus spanning the entire array, it takes only one step to perform
a data broadcast operation, while it would take O (n) steps if it has no global
bus. Also, if it has a global bus spanning the entire array, it takes O

(
n1/2

)
steps to perform a fundamental prefix semi-group computations, while it would
take O (n) steps again if it has no global bus. Thus, the power of broadcasting
capability is inevitable for the mesh architecture to be an efficient computational
model.

To avoid write-conflicts on a global bus and to make effective use of it, the
global bus may be partitioned into smaller bus segments. It is an interesting
problem that decides the effective/optimal length used for such partitioning of
a bus. As for the simulation problem discussed in [7], we successfully proved
that the problem can be solved optimally in O

(
n1/3

)
steps if we partition

every row/column buses into sub-buses of length n2/3. However, in general, the
effective/optimal bus length depends on the problem to be solved, and hence
can not be fixed in advance.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 186–192, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Partitioning of Static Buses for Processor Arrays 187

Recently, the dynamically reconfigurable bus systems gain much attention
due to its powerful computational power [8]. It can dynamically change its bus
configuration during the execution of programs. The reconfigurable function en-
ables the models to make efficient use of broadcast buses, and to solve many
important, fundamental problems efficiently, mostly in a constant or polyloga-
rithmic time. Such reconfigurability, however, makes the bus systems complex
and causes negative effects on the communication latency of global buses [9].

In this paper, we investigate an efficient partitioning of static row/column
buses for the mesh of small size. In [10], we have shown that the mesh of
size n× n with static row/column buses can simulate the mesh of the same
size n× n with reconfigurable row/column buses with additional O (log n) step
slowdown. This means that if a problem can be solved in O (T) time by the
mesh of size n× n with reconfigurable row/column buses, then the same prob-
lem can be solved in O (T · log n) time on the mesh of the same size n× n
without reconfigurable function. Here in this paper, we extend the result to
the case where the simulating mesh is of smaller size. It is practical to con-
sider such a case, because we cannot always have the mesh of arbitrary large
size in hand. We prove that the mesh of size m×m with static row/column
buses to simulate the mesh of larger size n× n with reconfigurable row/column
buses with additional O

(
n
m

(
n
m + log m

))
slowdown (m ≤ n). This time-cost

is optimal when the relation n ≥ m log m holds (e.g., m = n1−ε for ε > 0),
because the time-cost becomes O

(
n2

m2

)
which matches the trivial lower bound

derived from the ratio of the number of simulated processors to that of simulating
ones.

This paper is organized as follows. Section 2 explains several models of mesh-
connected parallel computers with global buses. Section 3 defines the problem
formally and introduces the basic approach to solve it. Section 4 describes our
algorithm. And finally, Section 5 offers concluding remarks.

2 Models

An n× n mesh consists of n2 identical SIMD processors or processing elements
(PEs) arranged in a two-dimensional grid with n rows and n columns. The PE
located at the grid point (i, j), denoted as PE[i, j], is connected via bi-directional
unit-time communication links to those PEs at (i± 1, j) and (i, j ± 1), provided
they exist (0 ≤ i, j < n). PE[0, 0] is located in the top-left corner of the mesh.
Each PE[i, j] is assumed to know its coordinates (i, j).

An n× n mesh with separable buses (MSB) and an n× n mesh with parti-
tioned buses (MPB) are the n× n meshes enhanced with the addition of broad-
casting buses along every row and column. The broadcasting buses of the MSB,
called separable buses, can be dynamically sectioned through the PE-controlled
switches during execution of programs, while those of the MPB are statically
partitioned in advance. (Figure 1 and 2).

188 S. Matsumae

�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �

� � � � � � � � � � � �

Sectioning Switch

�
R/W-Port

���
R/W-Port���

��
n

Fig. 1. A separable bus along a row of the n× n MSB. Each PE has access to the bus
via the two ports beside the sectioning switch.

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�

�� n

��
n1/2

��
n1/2

��
n1/2

Fig. 2. A partitioned bus along a row of the n× n MPB. Here, the bus is equally
partitioned by length

√
n.

A single time step of the MSB and the MPB is composed of the following three
substeps:
Local communication substep: Every PE communicates with its adjacent

PEs via local links.
Broadcast substep: Every PE changes its switch configurations by local de-

cision (this operation is only for the MSB). Then, along each broadcasting
bus segment, several of the PEs connected to the bus send data to the bus,
and several of the PEs on the bus receive the data transmitted on the bus.

Compute substep: Every PE executes some local computation.

The bus accessing capability is similar to that of Common-CRCW PRAM model.
If there is a write-conflict on a bus, the PEs on the bus receive a special value ⊥
(i.e., PEs can detect whether there is a write-conflict on a bus or not). If there
is no data transmitted on a bus, the PEs on the bus receive a special value φ
(i.e., PEs can know whether there is data transmitted on a bus or not).

3 Problems

In this paper, we consider (scaling) simulation of the n× n MSB by the m×m
MPB (m < n). To simplify the exposition, we assume that n mod m = 0.
We define the processor mapping as follows: each PE[i, j] of the m×m MPB
simulates PE[x, y] of the n× n MSB (i n

m ≤ x < (i + 1) n
m , j n

m ≤ y < (j + 1) n
m).

We assume that the computing power of PEs, the bandwidth of local links,
and that of broadcasting buses are equivalent in both simulated and simulating
meshes. Throughout the paper, we assume that the simulation is done by step-
by-step, that is, we consider how to simulate any single step of the MSB by using
the MPB.

Efficient Partitioning of Static Buses for Processor Arrays 189

�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �
�
�

�
�

� �

P0 P1

1
↓

P2 P3 P4 P5 P6 P7 P8

2
↓

P9

3
↓

P10

4
↓

P11 P12

5
↓

P13 P14 P15

(a) Broadcasts to be simulated. The processors P1, P9, P10, and P12

respectively send data

� �
φ φ 1φ φ φ φ φ φ φ φφ φφ φ φ 2φ 3 φ φ 4 φφ φ 5 φ φ φ φ φφ

(b) The corresponding port-connectivity graph G with initial labels

� �
φ 1 1φ φ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 φ φ 4 4 4 4 4 4 φ φ φ φφ

(c) After connected-component labeling, vertices in each component
C is labeled by the smallest initial label of all the vertices in C,
with regarding φ as the greatest element

Fig. 3. Broadcasts on a separable bus along a row of the n× n MSB are simulated by
connected-component labeling of the port-connectivity graph. Here, n = 16.

In what follows, we focus on how to mimic the broadcast substep of the MSB
using the MPB, because the local communication and the compute substeps of
the MSB can be easily simulated in O

(
n2

m2

)
steps by the MPB.

Here, the problem of simulating the broadcast substep of the MSB is ex-
plained by connected-component labeling (CC-labeling) for a port-connectivity
graph (pc-graph). See Figure 3 for an example. Vertices of the pc-graph cor-
respond to read/write-ports of PEs, and edges stand for the port-to-port con-
nections. Each vertex is initially labeled by the value which is sent through the
corresponding port by the PE at the broadcast substep. If there is no data sent
through the port, the vertex is labeled by φ. The CC-labeling is done in such
a way that vertices in each component C is labeled by the smallest initial label
of all the vertices in C, with regarding φ as the greatest value. These labels are
called component labels. Obviously, the simulation of the broadcast substep of
the MSB can be achieved in O (T) steps on the MPB if the CC-labeling of the
corresponding port-connectivity graph can be executed in O (T) steps by the
MPB.

In this paper, we solve the CC-labeling problem by divide-and-conquer strat-
egy composed of the following three phases:

Phase 1: { local labeling}
Divide the pc-graph into subgraphs, and label vertices locally within each of
the subgraphs. The labels are called local component labels. In each subgraph,
check whether the two vertices located at the boundary of the subgraph is
connected to each other or not.

190 S. Matsumae

Phase 2: { global labeling of boundary vertices}
Label those vertices located at the boundary of each subgraph with compo-
nent labels.

Phase 3: { local labeling for adjustment}
Update vertex labels with component labels within each of subgraphs for
the consistency with Phase 2

See Figure 4 for an example.

(Input) G0 G1 G2 G3

� �
φφ 1φ φφ φφ φ φ φφ φφ φ φ 2 φ 3φ φ 4 φ φ φ 5 φ φ φ φ φφ

(Output) ↓ ↓ ↓ ↓
� �
φ 1 1φ φφ φφ φ φ φφ φφ φ φ 2 2 2 φ φ 4 4 4 5 5 5 φ φ φ φφ

Phase 1: Connected-component labeling is locally executed within each
subgraph Gi. Vertices are labeled by local component labels

(Input) G0 G1 G2 G3

� �
φ φ φ φ 2 4 5 φ

(Output) ↓ ↓ ↓ ↓
� �
φ 2 2 2 2 4 4 φ

Phase 2: Every boundary vertices is labeled by component label

(Input) G0 G1 G2 G3

� �
φ 1 1φ φφ φ 2 2 φ φφ φφ φ 2 2 2 2 φ φ 4 4 4 4 5 5 φ φ φ φφ

(Output) ↓ ↓ ↓ ↓
� �
φ 1 1φ φ 2 2 2 2 2 2 2 2 2 2 2 2 2 2φ φ 4 4 4 4 4 4 φ φ φ φφ

Phase 3: Connected-component labeling is executed within each subgraph
Gi for the consistency with Phase 2. Every vertex is labeled by compo-
nent label

Fig. 4. An example for the connected-component labeling algorithm. The algorithm
consists of three phases.

4 Scaling-Simulation of the MSB by the MPB

In this section, we prove that any one step of the n× n MSB can be simulated
in O

(
n
m

(
n
m + log m

))
steps by the m×m MPB (m ≤ n).

Efficient Partitioning of Static Buses for Processor Arrays 191

To begin with, we introduce the following theorem:

Theorem 1. [10] Any step of the n× n MSB can be simulated in O (log n)
steps by the n× n MPB.

Each row separable bus of the n× n MSB is simulated by the m×m MPB
as follows (the case for a column separable bus is similar). To simulate the
broadcasts taken along a row separable bus of the simulated n× n MSB, the
CC-labeling problem of the corresponding pc-graph is solved by the simulating
m×m MPB. Here, we divide the pc-graph into m disjoint subgraphs of width
n
m

1 so that each subgraph is locally stored in a single PE of the MPB. Then,
Phase 1 and 3 of CC-labeling can be executed in O

(
n
m

)
steps locally in each

PE by a sequential algorithm that scans the vertex information from left to right
and then from right to left. Phase 2 is essentially the same as the problem of
labeling a pc-graph of width m on the m×m MPB, and hence it can be done
in O (log m) steps (Theorem 1). Since each row of the MPB has to simulate the
assigned n

m row separable buses of the MSB, as a whole the time cost becomes
O

(
n
m (n

m + log m)
)

steps. Hence, we have the following lemma:

Lemma 1. Any broadcasts taken along rows of the n× n MSB can be simulated
in O

(
n
m

(
n
m + log m

))
steps by the m×m MPB (m ≤ n).

Local communication and compute substeps can be simulated in O
(

n2

m2

)
steps

locally in each PE of the m×m MPB. Broadcast substep is simulated by first
simulating broadcasts along rows and then simulating those along columns. As a
whole, the simulation completes in O

(
n2

m2 + n
m

(
n
m + log m

))
steps (Lemma 1).

Now, we can obtain the main theorem of this paper:

Theorem 2. Any step of the n× n MSB can be simulated in O
(

n
m

(
n
m +logm

))
steps by the m×m MPB (m ≤ n).

5 Concluding Remarks

We have presented an algorithm that simulates the n× n MSB on the m×m
MPB in O

(
n
m

(
n
m + log m

))
steps (m ≤ n). If the relation n ≥ m log m holds

(e.g., m = n1−ε for ε > 0), the time-cost is optimal because it matches the lower
bound Ω

(
n2

m2

)
derived from the ratio of the number of simulated PEs and that

of simulating ones.
From a practical viewpoint, our scaling simulation algorithm can simulate

the MSB model in which the concurrent write is resolved by the MIN rule [11]
where the minimum among the sent values is received when a write-conflict
occurs. This is because our algorithm simulate the broadcast operation of the
MSB by connected-component labelling of the corresponding port-connectivity
1 We say that a subgraph of pc-graph is of width w if it has 2w vertices corresponding

to the R/W-ports of w consecutive PEs.

192 S. Matsumae

graph [11]. This fact may make up the slowdown required for the simulation
because the MSB with MIN-bus model is very powerful, for example, it can find
the minimum among the values distributed over the mesh in a constant time.

Acknowledgements

This work was partly supported by the MEXT Grant-in-Aid for Young Scientists
(B) (20700014).

References

1. Prasanna-Kumar, V.K., Raghavendra, C.S.: Array processor with multiple broad-
casting. J. of Parallel Distributed Computing 4, 173–190 (1987)

2. Maeba, T., Sugaya, M., Tatsumi, S., Abe, K.: Semigroup computations on a pro-
cessor array with partitioned buses. IEICE Trans. A J80-A(2), 410–413 (1997)

3. Miller, R., Prasanna-Kumar, V.K., Reisis, D., Stout, Q.F.: Meshes with reconfig-
urable buses. In: Proc. of the fifth MIT Conference on Advanced Research in VLSI,
Boston, pp. 163–178 (1988)

4. Wang, B., Chen, G.: Constant time algorithms for the transitive closure and some
related graph problems on processor arrays with reconfigurable bus systems. IEEE
Trans. Parallel and Distributed Systems 1(4), 500–507 (1990)

5. Maeba, T., Tatsumi, S., Sugaya, M.: Algorithms for finding maximum and selecting
median on a processor array with separable global buses. IEICE Trans. A J72-A(6),
950–958 (1989)

6. Serrano, M.J., Parhami, B.: Optimal architectures and algorithms for mesh-
connected parallel computers with separable row/column buses. IEEE Trans. Par-
allel and Distributed Systems 4(10), 1073–1080 (1993)

7. Matsumae, S., Tokura, N.: Simulating a mesh with separable buses. Transactions
of Information Processing Society of Japan 40(10), 3706–3714 (1999)

8. Vaidyanathan, R., Trahan, J.L.: Dynamic Reconfiguration. Kluwer Aca-
demic/Plenum Publishers (2004)

9. Maeba, T., Sugaya, M., Tatsumi, S., Abe, K.: An influence of propagation delays
on the computing performance in a processor array with separable buses. IEICE
Trans. A J78-A(4), 523–526 (1995)

10. Matsumae, S.: Polylogarithmic time simulation of reconfigurable row/column buses
by static buses. In: Proc. of IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2010 (2010)

11. Matsumae, S., Tokura, N.: Simulation algorithms among enhanced mesh models.
IEICE Transactions on Information and Systems E82–D(10), 1324–1337 (1999)

Formal Proof for a General Architecture of
Hybrid Prefix/Carry-Select Adders

Feng Liu1, Qingping Tan1, Xiaoyu Song2, and Gang Chen3

1 National Lab of Parallel Distributed Processing, Hunan, Chian
2 ECE department, Portland State University, Portland, OR, USA

3 Lingcore Lab, Portland, OR, USA

Abstract. In this paper, we present a general architecture of hybrid
prefix/carry-select adder. Based on this architecture, we formalize the
hybrid adder’s algorithm using the first-order recursive equations and
develop a proof framework to prove its correctness. Since several previ-
ous adders in the literature are special cases of this general architecture,
our methodology can be used to prove the correctness of different hy-
brid prefix/carry-select adders. The formal proof for a special hybrid
prefix/carry-select adder shows the effectiveness of the algebraic struc-
tures built in this paper.

1 Introduction

Addition is a crucial arithmetic function for most digital systems. In the area of
computer arithmetic, a great number of addition algorithms have been proposed.
With the shrinking feature size and the growing density, the costs of VLSI circuit
manufacturing are soaring, so do the costs of circuit errors. Therefore, the logic
correctness of binary addition algorithm becomes extremely important.

In the past few years, some adders based on hybrid carry-lookahead and carry-
select scheme have been reported [1,2,3,4]. In the hybrid scheme, two conditional
addition results are pre-computed for each specific block and each global carry
is used to select one of the two results [3]. Therefore, the delay of the local carry
generation is eliminated in the hybrid adder architecture.

To improve the speed, based on the algorithm of hybrid carry-lookahead/
carry-select adder, some new adders with the hybrid parallel prefix adder/
carry-select scheme are designed, such as [5]. For simplicity, the hybrid carry-
lookahead/carry-select adders and its variations are called hybrid prefix/carry-
select adders. Unfortunately, their algorithms are always described based on a
few elegant properties, which are often accepted by intuition. Formal analysis
on their correctness is limited. The details of their proofs are incomplete or hard
to find. In this paper, we propose a general architecture for the design of hybrid
prefix/carry-select adder. Based on the traditional notions such as propagated
carry and generated carry, a detailed proof of the general architecture’s correct-
ness is described. Using this general architecture, we formalize a special hybrid
prefix/carry-select adder which is implemented as a part of the IBM POWER6

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 193–204, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

194 F. Liu et al.

microprocessor’s floating-point unit. The formal proof of this special adder’s
correctness shows the effectiveness of the proposed algebraic structures. In our
approach, the representation of the algorithm is given in the form of first-order re-
cursive equations, which are widely adopted in computer arithmetic community.
It is our belief that these proofs would be helpful to get a better understanding
about the nature of the adder’s algorithms. Another aim is to make it convenient
for further formal investigations.

The rest of this paper is organized as follows. Section 2 is a review of some
related works. In Section 3, we present a general architecture for hybrid prefix/
carry-select adders and develop a framework for its formal proof. In Section 4,
we formalize a special hybrid prefix/carry-select adder and describe its formal
proof. Section 5 concludes the paper.

2 Related Work

Some hybrid prefix/carry-select adders have been designed in the past few
years. T. Lynch et al [1] proposed a 64-bit spanning tree carry-lookahead adder
(STCLA) with a hybrid carry lookahead/carry-select structure. A follow-up work
of the STCLA which used Manchester chain of various lengths was reported
by [2]. By replacing the ripple-carry blocks with parallel prefix blocks, Tyagi pro-
posed a hybrid parallel prefix/carry-select adder scheme and derived a lemma
to reduce the area with intra-block rippling [6]. C. Arijhan et al [7] proposed
a new hybrid scheme using irregular parallel-prefix and carry-select structures.
A general form of a new lemma and its proof were presented. Yuke Wang et
al [4] also proposed a new hybrid carry- lookahead/carry-select scheme based on
Ling’s carries and complemented the group carry terms to gain speed. All of the
above works used some traditional formal notations to describe the algorithms.
But there were no complete formalization and correctness proofs.

On the other hand, concerning the correctness proof, J. O’Donnell and G.
Rnger [8] employed high-order functional combinators to represent carry looka-
head adder and the correctness is established by algebraic transformations. D.
Kapur and M. Subramaniam described adder’s algorithms using the language of
RRL and verified the correctness by term rewriting in a rewrite-rule based the-
orem prover [9]. M. Sheeran recently made a profound formal investigation into
parallel prefix computation using the Haskell language [10]. R. Hinze employed
the Haskell as the meta language and introduced an algebra of scans which can be
used in formal analysis of parallel prefix circuits [11]. These works use many jar-
gons of formal verification specialists and mainly focus on the correctness proof
of prefix adders. Jungang Han and G. Stone formulated the Conditional Sum
addition algorithm and used Gordon’s HOL system to do the formal verification
of the CMOS implementation of the Conditional Sum adder [12]. K. M. Elleithy
and M. A. Aref presented a rule-based framework for formal hardware verifica-
tion [13]. Basic circuits such as carry-select adder and carry lookahead carry are
verified. They didn’t concern the correctness proof of hybrid prefix/carry-select
adder. In this paper, we adopt the first-order recursive equations to formalize
the algorithm of hybrid prefix/carry select adders and to prove their correctness.

Formal Proof for a General Architecture 195

3 Hybrid Prefix/Carry-Select Adder

3.1 Preliminaries

We use the following notations and definitions in this paper. Let the symbols
0 and 1 denote Boolean False and True, or digital number Zero and One; the
symbol ∧ denotes the Boolean AND; ∨ denotes the Boolean OR; ⊕ denotes
the Boolean Exclusive OR. A binary number of length n(n ≥ 0) is an ordered
sequence of binary bits where each bit can assume one of the values 0 or 1. Let
the operands in addition are two N-bit binary numbers x = (xn−1xn−2...x0) and
y = (yn−1yn−2...y0). The sum is s = (sn−1sn−2...s0) and c = {cn, cn−1, ..., c0} is
the set of carries where c0 is the initial incoming carry, ci denotes the carry from
the bit position i− 1. xi, yi, si denote the binary bits of x, y, s at position i.

The correctness of an integer adder can be expressed by:

n−1∑
i=0

xi2i +
n−1∑
i=0

yi2i + c0 =
n−1∑
i=0

si2i + cn2n (1)

The main idea behind prefix addition is to calculate all carries in parallel. To
describe its algorithm, some standard notions such as propagated carry Pi =
xi ⊕ yi and generated carry Gi = xi ∧ yi are introduced as in Koren [14]. For
the algorithm of parallel prefix adders, we also need to introduce the notations
of group-propagated carry Pi:j and group-generated carry Gi:j . Their definition
can also be found in [14].

Pi:j and Gi:j can be used to develop a general representation of the prefix’s
algorithms as follows:

ci = Gi−1:j ∨ (Pi−1:j ∧ cj), si = Pi ⊕ ci (2)

where 0 ≤ j ≤ i− 1 ≤ n− 1.
G. Chen et al [15] gave an elegant correctness proof of equation (2). To make

the calculation of Pi:j and Gi:j simple, the so-called fundamental carry operator
◦ is introduced by [16]. G. Chen et al [15] also proved that the fundamental carry
operator enjoys two properties: associativity and idempotency. These properties
allows us to compute the Pi:j , Gi:j as follows:

(Gi:j , Pi:j) = (Gi:m, Pi:m)◦ (Gv:j , Pv:j) = (Gi:m∨{Pi:m∧Gv:j}, Pi:m∧Pv:j) (3)

where i ≥ v ≥ m− 1 ≥ j ≥ 0.
Assume that the N-bit operands of an adder are divided into non-overlapping

groups of possible different lengths. For the gourp of bit positions i, i − 1, ..., j
(with i ≥ j), a carry select adder takes the operand bits of this group as inputs
and generates two sets of outputs. One set assumes that the incoming carry into
the group is 0 while the other assumes that it is 1. In carry select adder, the
corresponding sum si, si−1, ..., sj and the outgoing carry ci+1 are selected by
incoming carry into this group cj as follows:

sm = (s0
m ∧ cj) ∨ (s1

m ∧ cj) (m = j, j + 1, ..., i)

ci+1 = (c0
i+1 ∧ cj) ∨ (c1

i+1 ∧ cj)
(4)

196 F. Liu et al.

s0
m (or s1

m) is the sum bit at the m bit position and c0
i+1 (or c1

i+1) is the group
outgoing carry under the condition that the incoming carry into the group is 0
(or 1). cj is the one’s complement code of cj .

3.2 Formalization of General Architecture

We propose a general architecture for the hybrid prefix/carry-select adder in
Fig.1. The prefix adder unit takes x, y and the incoming carry c0 as the inputs
and generates global carries at different positions. Usually, tree architectures
are used as prefix adder unit for fastest computation of the global carries. The
prefix adder unit does not generate all carries, instead only part of the global
carry signals. Let xi:j , yi:j , si:j denote the bit pieces (xixi−1...xj), (yiyi−1...yj)
and (sisi−1...sj) respectively, where i ≥ j. The carry-select adders compute the
sum bits to be selected. Each global carry selects one of the two results of the
corresponding carry-select adder. The general block diagram of each carry-select
adder in Fig.1 is shown in Fig.2.

1 2 0(...)n nx x x x− −=

1 2 0(...)n ny y y y− −=

0c

1:0jx

1:0jy

2 1: 1j jy +

2 1: 1j jx +

11: 1kn jx
−− +

11: 1kn jy
−− +

1 1jc +

1 1kj
c

− +

11: 1kn js
−− +

2 1: 1j js +

1:0js

Fig. 1. General architecture of hybrid Prefix/Carry-Select adder

In Fig.2, we use csai:j to denote the carry select adder. It constitutes of
two prefix adders: the Conditional 0 adder and the Conditional 1 adder. The
Conditional 0 adder takes xi:j , yi:j , the incoming carry 0 as the inputs and
generates the sum s0

i:j , the output carry c0
i+1; the Conditional 1 adder takes

xi:j , yi:j , the incoming carry 1 as the inputs and generates the sum s1
i:j , the

output carry c1
i+1. In hybrid prefix/carry-select adder, the Conditional 0 adder

and Conditional 1 adder can be implemented as any “correct prefix adder”. So,
the following correctness statements are hold for them:

i∑
m=j

xm2m +
i∑

m=j

ym2m + 0 =
i∑

m=j

s0
m2m + c0

i+12
i+1

i∑
m=j

xm2m +
i∑

m=j

ym2m + 2j =
i∑

m=j

s1
m2m + c1

i+12
i+1

(5)

Formal Proof for a General Architecture 197

, ...,i jx x,...,i jy y

0 0,...,i js s

1 1, ...,i js s

0
1ic +

1
1ic +

, ...,i js s

1ic + jc

Fig. 2. Carry-Select adder

The above formulas can be used to prove the correctness of carry-select adder’s
algorithm. Since the correctness of carry-select adder has been discussed by other
researchers. In this paper, we just list this fact as follows:

Lemma 1 (Correctness of Carry Select Adder [12]). For the Carry Select
Adder (CSA) whose architecture is shown by Fig.2, let xi:j = (xi...xj), yi:j =
(yi...yj), cj be the input arguments and the outputs be defined by equation (4),
then we have:

i∑
m=j

xm2m +
i∑

m=j

ym2m + cj2j =
i∑

m=j

sm2m + ci+12i+1 (6)

For the addition of two N-bit binary numbers, the operands x = (xn−1xn−2...x0),
y = (yn−1yn−2...y0) are possibly divided into some non-overlapping groups of
different lengths. The carry select adder csai:j can only deal with the sub-group
of bit positions i, i− 1, ..., j. Assume that the incoming carry is cj , by equation
(4), we know the output carry is ci+1 = (c0

i+1 ∧ cj) ∨ (c1
i+1 ∧ cj). By equation

(2), we know for the same group, the prefix adder calculates the output carry as
follows: ci+1 = Gi:j ∨ (Pi:j ∧ cj). In the following, we will study the relationship
between these two expressions.

Lemma 2. For the group of bit positions i, i− 1, ..., j, let ci+1 = (c0
i+1 ∧ cj) ∨

(c1
i+1∧cj) be the output carry of carry select adder csai:j, let ci+1 = Gi:j∨(Pi:j∧

cj) be the carry calculated by the general prefix algorithm, then: ci+1 = ci+1.

Proof. If cj = 0, we have: ci+1 = Gi:j ∨ (Pi:j ∧ cj) = Gi:j . By equation (4),
we have: ci+1 = (c0

i+1 ∧ cj) ∨ (c1
i+1 ∧ cj) = c0

i+1. Since Conditional 0 adder is
implemented by prefix adder, and the incoming carry is 0, so, we have: c0

i+1 =
Gi:j ∨ (Pi:j ∧ 0) = Gi:j . Therefore, ci+1 = ci+1 for the case cj = 0. The case
cj = 1 can be proved similarly. So, ci+1 = ci+1.

Lemma 2 is the basis of using prefix adder to compute the global carries in hybrid
prefix/carry-select scheme. In the following, we will explain how to formalize the
hybrid adder’s algorithm.

198 F. Liu et al.

,...,j kx x,...,j ky y

0 0, ...,j ks s

1 1,...,j ks s

0
1jc +

1
1jc +

1,...,i jx x +1,...,i jy y +

0 0
1, ...,i js s +

1 1
1,...,i js s +

0
1ic +

1
1ic +

kc

,...,j ks s

1jc +1jc +′1ic +′

1,...,i js s +′ ′

,...i ks s� �

1ic +�
kc

Fig. 3. Connection of adjacent carry select adders

For two adjacent bit pieces si:j+1 = (sisi−1...sj+1), sj:k = (sjsj−1...sk), the
bit pieces concatenation operator “�” can be defined as follows: si:j+1 � sj:k =
(sisi−1...sk) = si:k. We use adderj:k to denote an adder whose addends are xj:k =
(xjxj−1...xk) and yj:k = (yjyj−1...yk). With the help of bit pieces concatenation
operator, we define adder concatenation operator as follows:

Definition 1 (Adder concatenation operator). Let adderi:j+1 and adderj:k

be two adders. Let ck, sj:k = (sjsj−1...sk) be the incoming carry and sum
of adderj:k; cj+1 = Gj:k ∨ (Pj:k ∧ ck) and si:j+1 = (sisi−1...sj+1) be the in-
coming carry and sum of adderi:j+1. Then the adder concatenation operator
� is defined as follows: the new adder ˜adderi:k=adderi:j+1 � adderj:k takes
xi:j+1 � xj:k, yi:j+1 � yj:k and the incoming carry ck as inputs and generates
(s̃is̃i−1...s̃k) = si:j+1 � sj:k as the sum bits, c̃i+1 = ci+1 as the output carry.

The adder concatenation operator can be used to connect two adjacent carry
select adders. Fig.3 shows the block diagram of csai:j+1 � csaj:k. If we use adder
concatenation operator to connect more than one carry select adders, we should
ensure that the resulting adder is correct.

Lemma 3. Assume there are n adjacent carry select adders csai:i1 , csa(i1−1):i2 ,
..., csa(in 1−1):k, where i ≥ i1 > ... > in−1 > k. Let c̃sai:k = csai:i1 � ... �
csa(in 1−1):k be the concatenation of them. Then, c̃sai:k is correct:

i∑
m=k

xm2m +
i∑

m=k

ym2m + ck2k =
i∑

m=k

s̃m2m + c̃i+12i+1

where xi:k, yi:k are the operands of csai:k, ck is the incoming carry, s̃i:k is the
sum, c̃i+1 is the output carry.

Proof. Induction on the numbers of adder concatenation operators: z = n− 1.

Formal Proof for a General Architecture 199

Base case. (z=0). There is only one carry select adder csai:i1 . So, c̃sai:i1 = csai:i1 .
By lemma 1, c̃sai:i1 is correct.

Induction case. Assume that the induction hypothesis is true for z = j (c̃sai:ij

is correct):

i∑
m=ij

xm2m +
i∑

m=ij

ym2m + cij 2
ij =

i∑
m=ij

sm2m + ci+12
i+1

where si:ij
is the sum of c̃sai:ij ; ci+1 is the output carry of c̃sai:ij .

We need to show that the assertion is valid for z = j + 1: c̃sai:ij+1 = c̃sai:ij �
csa(ij−1):ij+1

By lemma 1, we know carry select adder csa(ij−1):ij+1 is correct. By lemma 2
and Definition 1, for csa(ij−1):ij+1 , we have:

ij−1∑
m=ij+1

xm2m +
ij−1∑

m=ij+1

ym2m + cij+12
ij+1 =

ij−1∑
m=ij+1

sm2m + cij 2
ij

=
ij−1∑

m=ij+1

sm2m + [G(ij−1):ij+1 ∨ (P(ij−1):ij+1 ∧ cij+1)]2
ij

(7)

For c̃sai:ij+1 = c̃sai:ij �csa(ij−1):ij+1 , by Definition 1, we know that the incoming
carry of c̃sai:ij is set to be G(ij−1):ij+1 ∨ (P(ij−1):ij+1 ∧ cij+1).

Due to the induction hypothesis, we have:

i∑
m=ij

xm2m +
i∑

m=ij

ym2m + cij 2
ij

=
i∑

m=ij

xm2m +
i∑

m=ij

ym2m + [G(ij−1):ij+1 ∨ (P(ij−1):ij+1 ∧ cij+1)]2
ij

=
i∑

m=ij

sm2m + ci+12
i+1

(8)

Let s̃i:ij+1 be the sum of c̃sai:ij+1 , c̃i+1 be the output carry of c̃sai:ij+1 . By
Definition 1, we know that s̃i:ij+1 = si:ij

� s(ij−1):ij+1 , c̃i+1 = ci+1, So, plus the
left sides and right sides of equation (7) and equation (8) respectively, we get:

sumi
m=ij+1

xm2m +
i∑

m=ij+1

ym2m + cij+12
ij+1 =

i∑
m=ij+1

s̃m2m + c̃i+12i+1

The induction case is proved. So, c̃sai:k = csai:i1 � csa(i1−1):i2 ... � csa(in 1−1):k

is correct.

The adder concatenation operator enjoys associativity when it is used to connect
carry select adders.

200 F. Liu et al.

Lemma 4. Let csai:j+1 , csaj:k+1 and csak:p be carry select adders, where i ≥
j + 1 > j ≥ k + 1 > k ≥ p, then:

(csai:j+1 � csaj:k+1) � csak:p = csai:j+1 � (csaj:k+1 � csak:p)

Proof. By Definition 1, it is known that the central of carry select adder con-
catenation operator � is to set the proper incoming carry for each carry select
adder. Therefore, we prove its associativity by looking insight into the incoming
carry of each carry select adder. Let c̃sai:p = (csai:j+1 � csaj:k+1) � csak:p and
c̃sai:k+1 = csai:j+1 � csaj:k+1. For c̃sai:k+1, the incoming carry of csaj:k+1 is
ck+1 and the incoming carry of csai:j+1 is cj+1 = Gj:k+1 ∨ (Pj:k+1 ∧ ck+1). Since
c̃sai:p = c̃sai:k+1 � csak:p, therefore, for c̃sai:p, the incoming carry of csak:p is cp,
the incoming carry of csaj:k+1 is ck+1 = Gk:p ∨ (Pk:p ∧ cp), the incoming carry
of csai:j+1 is as follows:

cj+1 = Gj:k+1 ∨ (Pj:k+1 ∧ ck+1) = Gj:k+1 ∨ {Pj:k+1 ∧ [Gk:p ∨ (Pk:p ∧ cp)]}

Let c̃sai:p = csai:j+1 � (csaj:k+1 � csak:p) and c̃saj:p = csaj:k+1 � csak:p. For

c̃saj:p, the incoming carry of csak:p is cp and the incoming carry of csaj:k+1 is

ck+1 = Gk:p∨(Pk:p∧cp). Since c̃sai:p = csai:k+1� c̃sak:p, therefore, for c̃sai:p, the
incoming carry of csak:p is cp, the incoming carry of csaj:k+1 is ck+1 = Gk:p ∨
(Pk:p ∧ cp), the incoming carry of csai:j+1 is cj+1 = Gj:p ∨ (Pj:p ∧ cp). Therefore,

for c̃sai:p and c̃sai:p, the incoming carry are both cp, and ck+1 = ck+1 = Gk:p ∨
(Pk:p ∧ cp). We just need to prove that cj+1 = cj+1. By equation (3), we have
(Gj:p, Pj:p) = (Gj:k+1, Pj:k+1) ◦ (Gk:p, Pk:p), Gj:p = Gj:k+1 ∨ (Pj:k+1 ∧ Gk:p),
Pj:p = Pj:k+1 ∧ Pk:p. So, we have:

cj+1 = Gj:p ∨ (Pj:p ∧ cp) = [Gj:k+1 ∨ (Pj:k+1 ∧Gk:p)] ∨ [(Pj:k+1 ∧ Pk:p) ∧ cp]

= Gj:k+1 ∨ {(Pj:k+1 ∧Gk:p) ∨ [(Pj:k+1 ∧ Pk:p) ∧ cp]}
= Gj:k+1 ∨ {(Pj:k+1 ∧Gk:p) ∨ [Pj:k+1 ∧ (Pk:p ∧ cp)]}
= Gj:k+1 ∨ {Pj:k+1 ∧ [Gk:p ∨ (Pk:p ∧ cp)]} = cj+1

Since all the incoming carries for each carry select adder in c̃sai:p and c̃sai:p are
equal, therefore, we have:

(csai:j+1 � csaj:k+1) � csak:p = csai:j+1 � (csaj:k+1 � csak:p)

When using adder concatenation operator � to connect carry select adders, the
incoming carries into each carry select adder are very important. They are the
global carries are used to select one of the two results of each specific carry select
adder block. The associativity of � is actually based on the associativity of the
group carry of prefix adder which makes it possible to calculate the carry signals
at different bit positions in parallel. Therefore it can speed up the computation
of global carries in hybrid prefix/carry select adder. The associativity of adder
concatenation operator also makes it possible to use these global carries to select

Formal Proof for a General Architecture 201

the correct results for each carry select adder block in parallel. It ensures that
the scheme of hybrid prefix/carry select adder can work correctly. We believe
that this is the key of the hybrid prefix/carry select adder.

Therefore, the general algorithm of hybrid prefix/carry select adder can be
formalized using adder concatenation operator.

Definition 2. For a N-bit hybrid prefix/carry select adder adder(n−1):0 which
divides the operands x(n−1):0, y(n−1):0 into k(k ≥ 1) non-overlapping groups of
possibly different lengths. Each group is implemented by a carry select adder.
The global carries are computed by a prefix adder. Then this hybrid prefix/carry
select adder is defined as follows:

addern−1:0 = csaik:(ik 1+1) � csaik 1:(ik 2+1) � ... � csai1:0

where n− 1 = ik > ik−1 > ... > ii ≥ 0.

Using the notations and algebraic properties discussed above, the correctness
of hybrid prefix/carry-select adder whose architecture is shown in Fig.1 can be
proved easily.

Theorem 1 (Correctness of Hybrid Adder). The hybrid prefix/carry select
adder which is formalized in Definition 2 is correct.

Proof. By Definition 2, lemma 1, lemma 3 and lemma 4, the correctness of hybrid
prefix/carry-select adder can be proved immediately.

4 Formal Proof of Special Hybrid Adders

In the following, we choose a typical hybrid prefix/carry select adder as a case
study to show the effectiveness of our proof framework.

In IBM POWER6 microprocessor, a 128-bit end-around-carry (EAC) adder is
an important part of the floating-point unit [5]. The 128-bit binary adder is di-
vided into three sub-blocks: four 32-bit adder blocks, the end-around-carry logic
block and the final sum selection block. Each 32-bit adder block is implemented
as a hybrid prefix/carry select adder. Fig.4 shows the architecture of the 32-bit
adder block.

Each 32-bit adder block itself is partitioned into three sub-components. The
first are four 8-bit adder blocks. Each 8-bit adder block is a carry select adder
in which the Conditional 0 adder and Conditional 1 adder are implemented as
8-bit prefix-2 Kogge-Stone trees [17]. The second sub-component is a Kogge-
Stone tree with sparseness of 8 which generates the global carry signals. The
last sub-component is a sum selection block.

Fig.5 shows the block diagram of 8-bit adder block. Since Kogge Stone tree be-
longs to prefix adders, its correctness proof has been presented in [17], therefore,
due to lemma 1, the adder block shown in Fig.5 is correct:

j+7∑
m=j

xm2m +
j+7∑
m=j

ym2m + cj2j =
j+7∑
m=j

sm2m + cj+82j+8

202 F. Liu et al.

7 :

7 :

0

1
j j

j j

s

s

+

+

15 :8

15 :8

0

1
j j

j j

s

s

+ +

+ +

23 :16

23 :16

0

1
j j

j j

s

s

+ +

+ +

31 :24

31 :24

0

1

j j

j j

s

s

+ +

+ +

_ 0 0j
inc =

_1 1j
inc =

8
_1

j
inc +

8
_ 0

j
inc +16

_ 0
j

inc +

16
_1

j
inc +24

_1
j

inc +

24
_ 0

j
inc +

1
7 :j js +

0
7 :j js +

0
15 :8j js + +

1
15 :8j js + +

1
23 :16j js + +

0
23 :16j js + +0

31 :24j js + +
1
31 :24j js + +

31 30 ...j j jx x x+ + 31 30 ...j j jy y y+ +

Fig. 4. 32-bit adder Block

7 , ...,j jx x+7 1...j j jy y y+ +

0 0
7 ,...,j js s+

1 1
7 ,...,j js s+

1
8jc +

0
8jc +

8jc +

jc

7 ,...,j js s+

Fig. 5. 8-bit adder block

The 32-bit adder block shown in Fig.4 is built on the 8-bit adder block shown
in Fig.5. For the adder in Fig.4, the inputs are two 32-bit binary numbers which
are divided into four 8-bit groups as the inputs of each 8-bit adder block. These
four 8-bit adder blocks are connected and the second-level kogge stone is used to
calculate the global carry signals which are used to select the correct result. In
fact, in IBM’s design, the 32-bit adder block itself composes a carry select adder
which generates two conditional sums: s031+j:j with assuming that the incoming
carry into the 32-bit adder block is cj

in 0 = 0 and s131+j:j with assuming that the
incoming carry is cj

in 1 = 1. Fig.6 shows the block diagram of the 32-bit adder
block with incoming carry is 0.

Since IBM uses Kogge Stone tree which is on the second level in Fig.4 to
compute the global carries, so the carries can be expressed using equation (2).
We can use adder concatenation operator to formalize the adder shown in Fig.6.
Therefore, by theorem 1, it is easy to prove the correctness of adder block of
Fig.6:

31+j∑
m=j

xm2m +
31+j∑
m=j

ym2m + cj
in 02

j =
31+j∑
m=j

s0m2m + c32+j
in 0 232+j

For the case that the incoming carry cj
in 1 = 1, we can do the similar formal

analysis and show its correctness:

31+j∑
m=j

xm2m +
31+j∑
m=j

ym2m + cj
in 12

j =
31+j∑
m=j

s1m2m + c32+j
in 1 232+j

In this way, the correctness of the adder block shown in Fig.4 can be proved
using the framework developed in this paper.

Formal Proof for a General Architecture 203

_ 0 0j
inc =

8
_ 0
j

inc +16
_ 0

j
inc +24

_ 0
j

inc +

31 30 ...j j jx x x+ + 31 30 0...j j jy y y+ + +

31 :240 j js + + 23 :160 j js + + 15 :80 j js + + 7 :0 j js +

0
7:j js +

1
7:j js +

0
31 :24j js + +

1
31 :24j js + +

0
23 :16j js + +

1
23 :16j js + +

1
15 :8j js + +

0
15 :8j js + +

Fig. 6. 32-bit adder block with incoming carry is 0

5 Conclusion

In this paper, we propose a general architecture for the design of hybrid prefix/
carry-select adder. Based on the traditional notions such as propagated carry and
generated carry, we develop a proof framework for the correctness of the general
architecture. Several previous adders in the literature are all special cases of this
general architecture. They differ in the way Boolean functions for the carries are
implemented. Therefore, using our framework, we can formalize special hybrid
prefix/carry-select adders and prove their correctness. We choose a hybrid adder
which is implemented in IBM POWER6 microprocessor’s floating-point unit as
a case study. The formal proof for the correctness of the IBM’s hybrid adder
shows the effectiveness of our algebraic structures.

References

1. Lynch, T., Swartzlander, E.: A spanning tree carry lookahead adder. IEEE Trans.
Comput. 41, 931–939 (1992)

2. Kantabutra, V.: A recursive carry-lookahead/carry-select hybrid adder. IEEE
Trans. Comput. 42, 1495–1499 (1993)

3. Kwon, O., Swartzlander Jr., E.E., Nowka, K.: A Fast Hybrid Carry-
Lookahead/Carry-Select Adder Design. In: Proceedings of the 11th Great Lakers
symposium on VLSI, pp. 149–152 (2001)

4. Wang, Y., Pai, C., Song, X.: The Design of Hybrid Carry-Lookahead/Carry-Select
Adders. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal
Proessing 49, 16–24 (2002)

5. Yu, X.Y., Fleischer, B., Chan, Y.H., et al.: A 5GHz+ 128-bit Binary Floating-
Point Adder for the POWER6 Processor. In: Proceedings of the 32nd European
Solid-State Circuits Conference, pp. 166–169 (2006)

6. Tyagi, A.: A reduced-area scheme for carry-select adders. IEEE Trans. on Com-
puters. 42, 1163–1170 (1993)

204 F. Liu et al.

7. Arjhan, A., Deshmukh, R.G.: A Novel Scheme for Irregular parallel-prefix adders.
In: Proceedings of IEEE Southeastcon 1997, ‘Engineering new New Century’, pp.
74–78 (1997)

8. O’Donnell, J., Rnger, G.: Derivation of a carry lookahead addition circuit. Journal
of Functional Programming 14, 127–158 (2004)

9. Kapur, D., Subramaniam, M.: Mechanical verification of adder circuits using
rewrite rulelaboratory. Formal Methods in System Design 13, 127–158 (1998)

10. Sheeran, M.: Hardware design and functional programming: a perfect match. Jour-
nal of Universal Computer Science 11, 1135–1158 (2005)

11. Hinze, R.: An algebra of scans. In: Kozen, D. (ed.) Proceedings of the Seventh
International Conference on Mathematics of Program Construction, pp. 186–210
(2004)

12. Han, J.: Stone, G.: The implementation and verification of a conditional sum adder.
Technical Reports, Department of Computer Science, University of Calgary, Cal-
gary, Alberta, Canada (1988)

13. Elleithy, K.M., Aref, M.A.: A Rule-based Approach for High Speed Adders Design
Verification. In: 37th Midwest Symposium on Circuits and Systems, pp. 274–277
(1994)

14. Koren, I.: Computer Arithmetic Algorithms, 2nd edn. A.K.Peters, Natick (2002)
15. Chen, G., Liu, F.: Proofs of correctness and properties of integer adder circuits.

IEEE Trans. on Computers 59, 134–136 (2010)
16. Brent, R.P., Kung, H.T.: A regular layout for parallel adders. IEEE Trans. on

Computers C-31, 260–264 (1982)
17. Kogge, P.M., Stone, H.S.: A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations. IEEE Trans. on Computers C-22, 786–793
(1973)

An Efficient Non-blocking Multithreaded
Embedded System

Joseph M. Arul, Tsung-Yun Chen, Guan-Jie Hwang, Hua-Yuan Chung,
Fu-Jiun Lin, and You-Jen Lee

Fu Jen Catholic University, Department of Computer Science and Information
Engineering, Hsin Chuang, Taipei, Taiwan, R.O.C.

arul@csie.fju.edu.tw

Abstract. Most embedded systems are designed to perform one or fewer
specific functions. It is important that the hardware and the software
must closely interact to achieve maximum efficiency in all of these realms
and overcome the drawbacks found in each aspect. This research focuses
on designing a totally new Instruction Set Architecture (ISA) as well
as hardware that can closely tie together with the new emerging trend
such as multithreaded multicore embedded systems. This new ISA can
efficiently execute simple programs in a much efficient way as well as
have a better cache performance with less cache misses due to the way
the program is split into non-blocking multithreading paradigm. This
particular research is aimed to compare the performance of this new non-
blocking multithreaded architecture with the ARM architecture that is
commonly used in an embedded environment. It has a speedup of 1.7 in
general compared to the MIPS like ARM architecture.

1 Introduction

Multithreading has become a mainstream trend in many multicore architectures.
Besides, to achieve high level parallelism, it creates several simultaneous mul-
tithreading executions, which can be scheduled on different cores at the same
time. In control flow execution paradigm, a memory access may occur anywhere
inside one thread, which might cause the processor to stall for the memory ac-
cess, thus increasing the overall execution time of the program. Hence, it is
necessary to identify memory accesses and to use non-blocking thread where the
data is pre-loaded before the execution. By using non-blocking multithreaded
model, the system makes sure that the data needed by the thread are brought
into memory and remain as long as it is needed by a thread. As mentioned in
[1] the hardware/software component must be loaded into an embedded system
which is known as Component Based Development (CBD) that is appropriate
for embedded systems.

1.1 Multicore Multithreaded Embedded System

In the year 2008, June 12th issue by William wongś article [2] on electronic
design for embedded system announced “Multicore Multithreaded goes Embed-
ded”. This design will be able to consume less power by running multiple cores

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 205–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

206 J.M. Arul et al.

simultaneously at a slower speed. In this architecture, each core contains dual-
port cache tag memory, allowing simultaneous access by each processing element.
However, the cache coherence mechanism and memory interface allows only one
processing element to access at a time. In multicore architectures, cache misses
can have great impact. The details of how this architecture is built by Intel can
be found on the webpage [2]. This architecture has a maximum speed of 800
MHz. It has typically two to four cores, Virtual Processing Element (VPE) with
32-Kbyte L1 caches about 3.3 mm2.

Rest of the paper is organized as follows: section two presents some back-
ground and suitable architectures that have been discussed by various research
communities. Section three presents the unique features that are used in this ar-
chitecture. Section four presents the environment in which the experiments were
conducted. Section five presents the results and comparison of this architecture
with ARM that is commonly used. Final section will present the conclusion.

2 Background and Related Research

Each architecture aims to enhance one aspect of embedded processors such
as memory efficiency, power efficiency or silicon area consumption. The “Syn-
chroscalar” architecture [3] which has a multicore embedded processor mainly
evaluates its performance for multimedia applications. The synchroscalar ar-
chitecture uses number of Processing Elements (PE) up to 16 PE where each
processing element can be mapped to the application in a synchronous dataflow
(SDF) model. The synchronous dataflow model has been supported in many
architectures. Synchroscalar architecture focuses on increasing efficiency rather
than performance. Synchroscalar architecture uses 256 bits wide bus grouped
into 8 32 bits separable vertical buses separated in between each of the tiles.
The main advantage of this architecture is that, different portions of applica-
tions can be mapped to different processors. However, one drawback of this
architecture is the area consumption that would increase as we try to reduce the
power consumption by increasing the tile size.

Stanford has proposed register pointer architecture for efficient embedded ar-
chitecture [4]. In this architecture, the register is accessed indirectly through the
register pointer. In the conventional architecture, register file capacity can not
be increased without restoring the longer instruction words. By using register
pointer, without increasing the instruction word, it allows large register file us-
age. Thus, number of registers used can be increased. By having large number
of registers, number of loads and stores can be increased. Many techniques such
as loop unrolling, register renaming and reuse registers require large number of
registers, in order to improve the performance of the execution of the program.
It mainly provides large register file capacity and flexibility in register renaming.
It only extends the ARM instruction set to support register pointer architecture.
For this research, they modified the ARM version of the Simplescalar architec-
ture to implement register pointer architecture (RPA). The results show that the
RPA leads to 46% average performance improvement and 32% average reduction
in energy consumption. However, it increases the code size.

An Efficient Non-blocking Multithreaded Embedded System 207

The IEEE Micro May/June 2009 issue was mostly dedicated to the articles
on embedded multicore processors and systems. There are many potential ap-
proaches to solve the numerous multicore related issues. This issue mainly fo-
cuses on solving some of the issues related to multicore multithread embedded
system. In this issue, the guest editor, Markus Levy, writes, “unlike desktop
PC or server applications, multicore devices used in embedded systems are as
devices as the stars in the universe” [5]. Hence, it has lot of issues that need
to be addressed and solved. Thomas bergs article [6] on “Maintaining I/O data
Coherence in Embedded Muticore Systems” focuses on solving the communi-
cation problem that exists in passing data between the I/O peripheral devices
and on chip CPUs. One of the main issues is solving the problem that exists
in multithreaded multicore architectures is the bottleneck associated with the
shared memory and other shared resources such as CPUs, multithreads and so
on. This particular research and aim is to focus on addressing the proper usage
of multithread and memory access delays involved in multicore architectures.

This research [7] presents software standards for the multicore era. The au-
thors say that, even though the multicore hardware platform emerges faster, it
is necessary to define some software standards for these multicore systems. This
paper also states that it is impossible to achieve parallelism using standards de-
fined for symmetric multiprocessing on a heterogeneous multicore. In the mul-
ticore architecture, top priority must be inter-core communication. Hence, the
consortiums working group has completed the multicore’s communication API.

3 Non-blocking Multithreaded Embedded System

Decoupled architectures have not commonly been used in general purpose com-
puting due to their inability to tolerate control intensive code that exists in
wide range of scientific applications. However, with the multithreading concept
that is becoming more common, it can overcome the loss of decoupling dependen-
cies. Combining multithreading and decoupling can provide memory and control
latency hiding, parallel instruction execution, and efficient resource utilization
with a minimal amount of complexity. In this particular architecture, there are
two processes, which are known as Synchronization Process (SP) and Execution
Process (EP) as shown in figure 1. Only SP is responsible for data access by exe-
cuting the LOAD instructions as well as storing of data by executing the STORE
instructions. Only SP is linked to the memory unit. It is possible to do in multi-
threaded architectures, where the application is divided by the compiler such as,
all the LOAD and STORE instructions which are responsible for fetching and
storing of data from memory. Every application is divided into several threads,
where each thread has three portions to execute. As you can see in figure 1, SP
has two queues and EP has one queue where all the threads go through these
three queues at least ones. Some threads may go through these queues more
than ones, depending on the program execution. The left queue on SP is basi-
cally for the initiated threads awaiting SP to fetch and load the data needed for
the thread. When all the data needed for the thread is loaded, it is moved to

208 J.M. Arul et al.

Fig. 1. Decoupled Architecture for Embedded System

the EP queue for execution. It fetches the threads from its queue and executes
all the instructions. All the data needed for the execution are already loaded
onto the thread. It is called non-blocking multithreaded architecture, since all
the data needed for a thread are loaded onto the thread before execution. When
a thread completes execution, it is placed onto the right queue of SP.

3.1 Execution Paradigm of This Non-blocking Multithreaded
Architecture

In this system, the instruction of every thread cannot retain functional prop-
erties. Figure 2 shows the nature of a simple program that can be scheduled
into multiple threads by the compiler. It is a simple program, where the main
thread loads all the data (x, y, a and b) needed for this simple program. Thread
1 loads all the data and creates thread 2, 3 and 4 during execution phase of
the program. Thread 2 receives X and Y to perform multiplication operation.
Similarly, thread 3 receives A and B to perform addition operation. Thread 1
needs to pass the data to thread 2 and 3 in order to perform their tasks. One way
of passing the data between threads is to store the data into the relative frame
memory of each thread. When thread 1 finishes its execution, it stores X and Y
into the frame memory of thread 2. When Thread 2 starts execution, it loads
its data from frame memory. Similarly, thread 1 stores A and B into the frame
memory of Thread 3. When thread 3 starts execution, it loads A and B from its
frame memory. However, efficient way of passing of data from one thread to the
other would be storing into its relative register context. When thread 1 finishes
execution, it stores X and Y into the registers of thread 2. Thus, it eliminates
the load operations of thread 2. Similarly, thread 3 can also eliminate the load
operations which can perform the execution operation without much delay. The

An Efficient Non-blocking Multithreaded Embedded System 209

Fig. 2. Execution process of an application using several Non-blocking multithread

whole application can save several cycles, and as a result, it can increase the
performance of the whole application program. The memory access operation
would be reduced in this efficient way of passing of data in a multithreaded
architecture.

3.2 Scheduling Unit

To create a thread in this architecture, FALLOC instruction is used, whose main
function is to allocate frame reference by a Frame Pointer (FP) X for a thread
to use. At the same time, a frame is initialized by storing Instruction Pointer
(IP) and a Synchronization Pointer (SC). Each thread, when being created, will
be assigned a SC, which is to record the value that each thread is supposed
to receive. With the reception of a value, SC is accordingly reduced by one
value until SC finally turns zero. When SC reaches zero, it suggests that the
reception of all values of a thread’s need is completed. In order to accelerate
frame allocation, we do the allocating of the frame necessary for the thread,
fixing the frame size at a certain length and setting the allocated frame in the
stack. It is the SU that controls the stack. Whenever frame allocation is to be
carried out for the thread to use, SU will come out of the stack to pop a frame.
On the other hand, when a thread reaches the end, FFREE instruction will
be performed. During that time SU will push the frame into the stack for the
following thread to use. FALLOC and FFREE instructions are set to take two
instruction cycles while FORKEP and FORKSP instructions are set to be four
instruction cycles. The instruction cycles of FALLOC, FFREE, FORKEP and
FORKSP are set to two due to the platform Sparcle [8] as a frame of reference.
Besides, this architecture is set to be with multiple EP and SP, and SU is to do
the scheduling of pre-load (PLC) and post-store (PSC).

210 J.M. Arul et al.

4 ARM Architecture

The ARM is a 32 bit RISC special purpose embedded Instruction Set Architec-
ture (ISA) started in 1983 as a development project by Acron computers Ltd. It
is most widely used microprocessor and microcontroller for embedded systems.
ARM processors are used extensively in modern electronics such as PDA, iPods,
mobile phones and other handheld devices. The StrongARM was a collabora-
tive project between DEC and ARM to create a faster processor based on the
existing one. As a result, StrongARM is a faster and somewhat different version
of ISA. For the purpose of research and comparison of the newly designed non-
blocking multithreaded embedded systems, SimIt ARM was used. SimIt ARM
is a free open source software available under GNU general public license. This
simulator supports both system and user level ARM programs. It supports ba-
sic ARM memory management and I/O devices. SimIt ARM simulator and the
non-blocking multithreaded architecture are both developed using C++. The
non-blocking multithreaded architecture was developed in order to compare the
performance of the existing control flow MIPS like ARM architecture. Similar
benchmarks were used in both of the simulators to compare the performance
as well as the data cache in some programs. The non-blocking multithreaded
architecture cache performance seems to be better than the ARM architecture,
due to the nature of splitting the program into several threads as well as the
efficient way of passing of data in a multithreaded architecture. In order to have
a fair comparison on both simulators, the same parameters are identically set
on them and same cache sizes were set for both environments. The instruction
cycle count is set to 1 in both simulators. When a thread finishes its execution, it
uses FFREE to release the thread and its related resources. The experiments on
the next section were run on SimIt ARM as well as the new non-blocking archi-
tecture using a different ISA that is suitable for the non-blocking multithreaded
multicore embedded system.

5 Performance Evaluation of Non-blocking Multithreaded
Architecture

Table 1 presents the data collected after running the summation program. From
the table we can note that the non-blocking multithreaded architecture has bet-
ter performance than the simple ARM architecture using the control flow like
programs. With the usage of various data sizes from 10,000 to 80,000 we can see
that the speedup remains close to 2. This is a simple benchmark with one simple
loop to add the loop variable and sum the result. In case of ARM architecture,
every time the index value is added to the total, it is stored in a new memory ad-
dress and it needs to retrieve the total value from the memory. Several memory
accesses to the same value have to be stalled in case of cache miss. However, in
the non-blocking multithreaded architecture, since it is using the multithreaded
architecture and implementing efficient way of passing of data, the new value is
passed to the thread in its register contexts rather than storing into the frame

An Efficient Non-blocking Multithreaded Embedded System 211

Table 1. Comparison of Cycle count for
the Summation Program

N
NBM
(clock
cycle)

ARM
(clock
cycle)

Speedup

10000 86228 177242 2.055504
20000 172228 347242 2.016176
30000 258228 517242 2.003044
40000 344228 687242 1.996473
50000 430228 857242 1.99253
60000 516228 1027242 1.9899
70000 602228 1197242 1.988021
80000 688228 1367242 1.986612

Table 2. Address Book Data Retrieval
Program

N
NBM
(clock
cycle)

ARM
(clock
cycle)

Speedup

100 3731 5395 1.708016
500 16131 27552 1.765325
1000 31631 55839 1.771297
1500 47131 83483 1.774313
2000 62631 111127 1.775569
2500 78131 138727 1.776879
3000 93631 166371 1.777817
3500 109131 194015 1.42851
4000 155168 221659 1.778757
4500 140131 249259 1.778643
5000 155631 276812 1.708016

memory and retrieving. In this case, it not only improves the performance of
this architecture, but also less memory access helps towards cache performance
of this architecture. For some of the benchmarks, cache performance is also in-
cluded in the later part of this section in order to evaluate the cache miss ratio
between ARM and this new non-blocking multithreaded architecture.

Table 2 presents the results of running a database retrieval program, which
is often used in many embedded systems such as cell phone, PDA and other
small devices. The above program presents the database with limited number
of fields such as last name, first name and phone number and so on. For this
particular experiment, worst case scenario was chosen to observe the number of
cycles needed while running this program. Rest of the programs were run using
efficient way of passing of data in a multithreaded architecture as explained in
the previous example. From table 2 one can note that the speedup of roughly
1.7, which remains the same for all the data size except 3500. For this program,
to search for the particular data in a database, sequential search was used.
Most embedded systems would have rather less amount of data at any time,
hence sequential search would be sufficient to use. It also clearly shows that the
multithreaded architecture would be suitable for an embedded system that is
also a multithreaded multicore system.

Table 3 shows the results of sequential search program. For the non-blocking
architecture, random numbers are stored in an ‘istructure’ memory. For the non-
blocking architecture the ‘istructure’ memory is used, since it uses data flow like
engine. For the ARM architecture, the random numbers are stored in an array.
Since, search is one of the necessary operations that has to be performed in a
handheld device too, like the computer systems; this benchmark is also taken
into consideration for the performance. Even though the sequential search is not
an efficient search algorithm, it can be used in handheld devices where minimum
amount of data is stored due to its memory constraints. This program does not
show great improvement since the involvement of the frame memory access as

212 J.M. Arul et al.

Table 3. Sequential Search Program

N
NBM
(clock
cycle)

ARM
(clock
cycle)

Speedup

1000 29247 30402 1.039491
5000 145247 152325 1.048731
10000 290247 304723 1.049875
15000 435247 457070 1.050139
20000 580247 609419 1.050275
25000 725247 761521 1.050016
26000 754247 791920 1.049948

Table 4. Greatest Common Divisor
program

N
NBM
(clock
cycle)

ARM
(clock
cycle)

Speedup

100 33637 85911 2.554062
200 67452 172179 2.552615
300 101162 258178 2.552124
400 135257 345315 2.553029
500 169037 431662 2.553654
600 203342 519256 2.553609
700 237367 606092 2.553396
800 272022 694610 2.553507
900 306642 783071 2.553698
1000 341857 873214 2.554325

Table 5. Prime Factorization Program
Written in a Non-Recursive Fashion

N
NBM
(clock
cycle)

ARM
(clock
cycle)

Speedup

10000 7657 25891 3.38135
50000 54284 130066 2.396028
100000 143458 303799 2.117686
150000 268795 523756 1.948533
200000 431803 791983 1.83413
250000 605260 1073899 1.774277
300000 819940 1407533 1.716629

Table 6. Image Zooming Program

N
NBM
(clock
cycle)

ARM
(clock
cycle)

Speedup

8x8 29374 20941 0.712909
16x16 114486 140676 1.228762
32x32 453286 554583 1.223473

well as the ‘istructure’ memory which has a basic operation of store ones, retrieve
as many times as you want. Similar to the above benchmarks, GCD program
was run on both non-blocking multithreaded and ARM architecture. For this
program, the speedup remains constant (about 2.6) for all data size that are
used. The results for the GCD program are presented in table 4.

Table 5 presents the results of running prime factorization program. This pro-
gram finds the entire prime factor given an N. It is similar to finding all the prime
numbers; however, it differs a bit from the finding prime number. For example,
given N=10, it can be multiplied by 2 * 5 =10. Similarly, for a given N, it finds
the entire prime factor that can be used to obtain the result. From the table it
can be observed that when N is small, we can get a speedup of 3.3. As the data
size is increased, the speedup comes up to 1.7. Most of the embedded systems are
designed to run rather small programs than large scientific programs. Hence, for
our experiments too, we did not consider running large scientific programs.Table 6
presents the results of image zooming program. Since the memory size is limited in
an embedded system, only small size of data can be used for this program. Hence,
the data sizes vary from 8x8 to 32x32 array size. For this program too, unrolling

An Efficient Non-blocking Multithreaded Embedded System 213

Table 7. Cache Hit Ratio Shown in
Percentage for Address book database
Program

N
NBM

(dcache hit
ratio)

ARM
(dcache hit

ratio)

Diff. in
Cache Hit

Ratio
100 96.0784 70.4 25.6784
500 98.008 71.502 26.506
1000 98.2036 72.696 25.5076
1500 98.269 73.814 24.455
2000 98.3017 74.825 23.4767
2500 98.3213 75.745 22.5763
3000 98.3678 76.584 21.7838
3500 98.3724 77.352 21.0204
4000 98.42 78.059 20.361
4500 98.3785 78.712 19.6665
5000 98.3806 79.321 19.0596

Table 8. Cache Performance of Sequen-
tial Search Program (dcache)

N
NBM

(dcache hit
ratio)

ARM
(dcache hit

ratio)

Diff. in
Cache Hit

Ratio
1000 98.4 50.206 48.194
5000 98.42 55.043 43.377
10000 98.43 59.874 38.556
15000 98.4333 63.735 34.6983
20000 98.435 66.891 31.544
25000 98.436 69.52 28.916
26000 98.4346 69.993 28.4416

of loop was performed in order to increase the instruction level for each thread. As
the array size is increased, the speedup in performance shows improvement of 1.2.
In many handheld devices, image manipulation as well as enlarging and zooming
of images are very common. Hence, this program was picked to see the impact of
performance of this non-blocking architecture against the ARM embedded archi-
tecture. One of the main characteristics of non-blocking architecture is the spawn-
ing of many threads, each thread having more workload improves the performance
of a multithreaded architecture.

Even though cache miss cycles were set same in both the architectures, ARM
architecture shows that the hit ratio is very low. Difference in hit ratio ranges be-
tween 19 to 25. This could also contribute significantly to the execution perfor-
mance of the non-blocking mulithreaded architecture. Table 7 shows the cache hit
ratio for ARM and non-blocking multithreaded architecture. When the data size
is 5000, it still has the difference of 19%. In the new architecture, the hit ratio re-
mains almost 96% to 98%. Similarly, we can note from table 8 for the sequential
search program. In this case, the array is stored in ‘istructure’ or array memory.
Every time the array has to be searched, it fetches the data from memory and
stores in cache memory. We can see that the multithreaded architecture, cache hit
ratio remains constant about 98.4%. It has very less cache miss ratio. For the ARM
architecture, the cache hit ratio improves slowly. However, the improvement is not
that great. Hence, we can conclude that the non-blocking multithreaded architec-
ture which divides the program into several threads not only improves cache hit
ratio, but also improves the overall performance of the program.

6 Conclusion

From section 5 we can conclude that, the new architecture can be suitable for
a multithreaded multicore embedded system with limited memory size. This

214 J.M. Arul et al.

architecture reduces the memory access compared to the existing architectures.
As a result, it also shows fewer cache misses compared to ARM architecture.
On the average, the benchmark results show that it is to get a speedup of 1.5
or more. Since this new architecture has limited number of registers, the future
aim is to use instruction pointer architecture as proposed by some researchers
which can allow us to use several registers. There are several SOC researches
using VHDL like language to measure the exact hardware complexity and the
execution time accurately. One of our future aim is to develop this architecture
using VHDL like language to calculate the exact amount of hardware complexity
and the performance in microseconds.

References

1. Juncao, L., et al.: Embedded Architecture Description Language. In: The 32nd An-
nual IEEE International conference on Computer Software and Applications (2008)

2. Multicore, Multithreaded Goes Embedded,
http://electronicdesign.com/Articles/ArticleID/19022/19022.html

3. Oliver, J., Rao, R., Sultana, P., Crandall, J., Czernikowski, E., Jones, L.W.I.,
Franklin, D., Akella, V., Chong, F.T.: Synchroscalar: a multiple clock domain,
power-aware, tile-based embedded processor. In: The 31st Annual International
Symposium on Computer Architecture (2004)

4. JongSoo, P., Sung-Boem, P., Balfour, J.D., Black-Schaffer, D., Kozyrakis, C., Dally,
W.J.: Register Pointer Architecture for Efficient Embedded Processors. In: Design,
Automation & Test in Europe Conference & Exhibition (2007)

5. Levy, M., Conte, T.M.: Embedded Multicore Processors and Systems. IEEE Mi-
cro 29, 7–9 (2009)

6. Berg, T.B.: Maintaining I/O Data Coherence in Embedded Multicore Systems.
IEEE Micro 29, 10–19 (2009)

7. Holt, J., Agarwal, A., Brehmer, S., Domeika, M., Griffin, P., Schirrmeister, F.: Soft-
ware Standards for the Multicore Era. IEEE Micro 29, 40–51 (2009)

8. Agarwal, A., Kubiatowicz, J., Kranz, D., Lim, B.H., Yeung, D., DSouza, G., Parkin,
M.: Sparcle: An Evolutionary Processor Design for Multiprocessors. IEEE Micro 13,
48–61 (1993)

http://electronicdesign.com/Articles/ArticleID/19022/19022.html

A Remote Mirroring Architecture with
Adaptively Cooperative Pipelining�

Yongzhi Song, Zhenhai Zhao, Bing Liu, Tingting Qin,
Gang Wang, and Xiaoguang Liu

Nankai-Baidu Joint Lab, College of Information Technical Science, Nankai University
94 Weijin Road, Tianjin 300071, China

syzcch@sina.com, zhaozhenhai1985@gmail.com, liubing87@126.com,

paula qin 1987@126.com, wgzwp@163.com, liuxg74@yahoo.com.cn

Abstract. In recent years, the remote mirroring technology has at-
tracted increasing attention. In this paper, we present a novel adaptively
cooperative pipelining model for remote mirroring systems. Unlike the
traditional pipelining model, this new model takes the decentralization of
processors into account and adopts an adaptive batching strategy to al-
leviate imbalanced pipeline stages caused by this property. To release the
heavy load on CPU exerted by compression, encryption, TCP/IP pro-
tocol stack and so on, we design fine-grained pipelining, multi-threaded
pipelining and hybrid pipelining. We implement a remote mirroring pro-
totype based on Linux LVM2. The experimental results show that, the
adaptively cooperative pipelining model balances the primary and the
backup sites - the two stages of the pipeline effectively, and fine-grained
pipelining, multi-threaded pipelining and hybrid pipelining improve the
performance remarkably.

Keywords: remote mirroring, cooperative pipelining, adaptive batching,
fine-grained, multi-threaded.

1 Introduction

Consistently, data protection is a hot topic in IT academia and industry. Espe-
cially in recent years, after several great disasters, some enterprises with perfect
data protection resumed quickly, while many others went bankrupt because of
data loss. So data protection technologies have attracted increasing attention.
Remote mirroring is a popular data protection technology that tolerates local
natural and human-made disasters by keeping a real-time mirror of the primary
site in a geographically remote place. There are two typical remote mirroring
strategies: synchronous and asynchronous [1]. The latter is preferable due to the
former’s heavy sensitivity to the Round Trip Time (RTT) [2].
� Supported partly by the National High Technology Research and Development Pro-

gram of China (2008AA01Z401), NSFC of China (60903028), SRFDP of China
(20070055054), and Science and Technology Development Plan of Tianjin (08JCY-
BJC13000).

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 215–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

216 Y. Song et al.

In this paper, we present a new cooperative pipelining model to depict remote
mirroring systems. By “cooperative” we mean that the pipeline is across the pri-
mary site, the network and the remote backup site. Since each subtask naturally
has an “owner”, so we cannot distribute them arbitrarily to balance the pipeline
stages. For this, we present an adaptive batching algorithm. Write requests are
propagated to the backup site in batches and the batch size (interval) is adjusted
dynamically according to the processing speed of the primary and the backup
sites. We implement data compression and encryption in our prototype to reduce
network traffic and enhance security respectively. These operations put a lot of
pressure on CPU. For this, we design three accelerating methods: fine-grained
pipelining, multi-threaded pipelining and hybrid pipelining.

The rest of this paper is organized as follows: In Section 2, we focus on the
related work in the recent years. In Section 3, we illustrate the basic architec-
ture of our system and present the adaptive cooperative pipeline. In Section 4,
we introduce the implementation and evaluate it from results of a quantity of
experiments. Finally, the conclusions and future work is given in Section 5.

2 Related Work

EMC Symmetrix Remote Data Facility (SRDF) [3] is a synchronous block-level
remote replication technique that will switch to semi-synchronous mode if the
performance is below the threshold. Veritas Volume Replicator (VVR) [4] is a
logical volume level remote replication technique. It supports multiple remote
copies and performs asynchronous replication using a log and transaction mech-
anism. Dot Hill’s batch remote replication service [5] schedules point-in-time
snapshots of the local volume, then transfers the snapshot data changes to one
or more remote systems.

Network Appliance’s SnapMirror [1] uses snapshot to keep the backup volume
up to date. The WAFL file system is used to keep track of the blocks that have
been updated. Seneca [6] delays sending a batch of updates to the remote site,
in the hope that write coalescing will occur. Writes is coalesced only within a
batch, and batches must be committed atomically at the remote site to avoid
inconsistency.

Our prototype is also implemented in the logical volume level like VVR and
Dot Hill’s remote replication service. Like Seneca, the updates are sent to the
backup site in batches for performance reasons. Our prototype also adopts an
adaptive mechanism. However, it is based on asynchronous mode and for pipeline
stage balancing rather than network conditions adapting.

There are many other remote replication products, such as IBM’s Extended
Remote Copy (XRC) [7], HP Continuous Access Storage Appliance (CASA) [8]
and so on. In recent academic studies, [9] presents a prototype in which the syn-
chronous and asynchronous mode are specified by the upper level applications or
the system. [2] uses Forward Error Correction (FEC) and “callback” mechanism
for high reliability.

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 217

3 Adaptively Cooperative Pipelining

Fig. 1 shows the architecture of our prototype. It is an asynchronous remote
mirroring system implemented in Linux LVM2 [10]. NBD (the Network Block
Device) [11] is used for data transmission between the primary and the backup
sites. When a write request arrives, it is duplicated, and then the original enters
the local queue and the replica enters the remote queue. The requests in the
remote queue are sent to the backup site in batches at intervals. Since NBD
transfers messages using TCP, the consistency is guaranteed as long as each
batch is committed atomically in the backup site. In order to reduce the net-
work traffic, requests are compressed before they are being sent. They are also
encrypted to provide good security. It is easy to see that the order of compressing
before encrypting is superior to the reverse order in computational complexity.
Therefore, in the backup site, the requests are decrypted and then decompressed
before being committed.

Upper Layer Application

LVM2

Device Mapper

Remote
Mirroring
Module

Local Disk

ioctrl, /proc interfaces

NBD
Client

Primary Site

Remote Queue

Backup

Site

NNBBDD
SSeerrvveerr

Disk

Compress

Encrypt

Fig. 1. Prototype architecture

3.1 Cooperative Pipelining

In order to maximize the throughput, an obvious way is to overlap the operations
in the primary site and the operations in the backup site. That is, after a batch is
sent, instead of waiting the reply, the primary site immediately throws itself into
processing the next batch while the backup site processes the previous one. So
we can describe the processing of the requests by a two-stage pipelining model.
We call the two stages the primary stage and the backup stage respectively. This
pipeline is “cooperative”, that is, each batch is processed by the primary site
and the backup site cooperatively. We know that, for a given task, the more
the stages and the nearer the size of the stages, the higher the performance

218 Y. Song et al.

of the pipeline is. However, the cooperative pipelining model has some unique
properties against this.

For traditional pipelining, to increase the speed of a single pipeline, one would
break down the tasks into smaller and smaller units. For example, pipelines
in modern CPUs typically have more than 20 stages. However, a cooperative
pipeline is naturally composed of eight subtasks including batch assembling,
compression, encryption, batch transmission, decryption, decompression, disk
writing and reply. Since it is a software pipeline, further task decomposition
will induce significant interaction overhead. Moreover, we can not accurately
predict the execution time of some stages (primarily the disk operations and
the network transmission whose performance depend on the current state of the
system heavily). This is a serious obstacle to high efficient pipelining.

Typical distributed pipelining models, such as the pipelined gaussian elimi-
nation algorithm [12], break down the tasks into subtasks with the same size
and assign them to proper processors. However, each subtask in a cooperative
pipeline has a specific “owner” so that it can not be assigned to other processors.
For example, the backup site can not perform data compression which must be
done at the primary site. This inherently immutable task mapping contributes
to the difficulty in load balancing. We must equal the speed of the primary stage
and the backup stage for perfect load balance. Otherwise, processor will still be
idle even if we break down the task into smaller subtasks with the same size.
Moreover, if we want to improve performance by deepening the pipeline, we must
further divide the primary stage and the backup stage identically.

3.2 Adaptive Batching

As mentioned above, the primary site can process the next batch immediately
after the previous batch is sent. In a single-user system, this “best-effort” strategy
guarantees the optimal performance. However, it has some drawbacks.

If the speed of the two stages are different, for instance, the primary stage
is faster than the backup stage, the two sites are out of step under best-effort
strategy. If the user application keeps up the pressure on the storage subsystem,
the gap between the primary site and the backup site becomes wider and wider
until the primary site exhausts system resource. Then the primary site will slow
down to wait for the replies from the backup site to release enough resource.
This brings unsteady user experience (response time of the primary site). More-
over, exhausting system resource by one process is not good for a multi-user
system. This will impact the stability of the system and the performance of
other processes seriously.

In a word, best-effort strategy does not coordinate the primary site and the
backup site well. Or, it “coordinates” the two sites by exhausting system re-
source. So we introduce an adaptive batching algorithm for coordination. We set
a batch interval when system initializing. This interval defines the request accu-
mulating and the batch processing periods. That is, the requests accumulated
in the previous period are processed in batches in the next period. Every time
a batch finishes, we adjust the batch interval to approach the execution time of

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 219

the primary stage and the execution time of the backup stage. Therefore, if the
batch interval converges to a stable condition eventually, the primary stage and
the backup stage will have the same execution time (both equal to the batch
interval). Note that the execution time of disk operations and network transmis-
sion is not proportion to the batch size. So, although interval adjusts lengthens
(or shortens) of both stages, the increment of the faster one (generally the pri-
mary stage) may be longer than that of the slower one (generally the backup site
which contains disk operations and network transmission), therefore the batch
interval converges.

Primary Site

Batch Assembling

Compression
Encryption
Sending

Backup Site

Decryption
Decompression

Disk Writing

Reply

req

reply

Initialization

If wait

Reply Received

curr priT T−curr priT T>
(1)next curr priT T Tα α= − × + ×

(1)next next backT T Tβ β= − × + ×
/next total total nextN N T T= ∗

priT

backT

Fig. 2. Adaptive batching algorithm

Unlike best-effort strategy, adaptive batching algorithm lets the faster site
sleep for a while instead of processing the next batch immediately when the two
sites are out of step, that is, slows down the faster site to force the two sites in
step. The advantage of this strategy is obvious: the faster site will not exhaust
system resource, therefore it does not impact other processes in the system.
Another advantage of adaptive batching is the good adaptability to change of
network conditions. If network fluctuates, by interval adjusting, the primary site
and the backup site adapt to the speed of network automatically and timely.
The following adaptive formulas are used to adjust the batch interval.

Tnext = (1 − α) × Tcurr + α × Tpri (1)
Tnext = (1 − β) × Tnext + β × Tback (2)

where Tcurr and Tnext denote the current and the next intervals respectively, and
Tpri and Tback denote the execution time of the primary stage and the backup
stage respectively. In our implementation, Tpri includes time spent in batch
assembling, compression, encrypting and batch sending, and Tback includes time
spent in batch receiving, decryption, decompression, disk write and reply. α and

220 Y. Song et al.

β are adjusting factors which are real numbers between 0 and 1. They control
how fast the batch interval approaches to real processing time and how fast the
pipeline adapts to network change. To counter continuous heavy load, we use a
batch size threshold to control the maximum number of requests in a batch:

Nnext = Ntotal/Ttotal × Tnext (3)

where Ntotal denotes the total number of requests that have been processed,
and Ttotal denotes the total processing time. That is, the processing capacity
is estimated by statistics and is used to set the next threshold Nnext. Fig. 2
illustrates the adaptive batching algorithm. When the primary stage finishes,
Formula 1 is used to adjust the batch interval and the primary site will sleep a
while if the primary stage is shorter than the current interval. Formula 2 is used
when the reply is received.

The adaptive batching algorithm has several variants for different purposes.
For example, we can set lower and higher thresholds for batch interval. This
implies the range of acceptable RPO (recovery point objective [13]). Moreover,
the batch size threshold can be used to provide QoS. We can fix the ratio of
threshold to interval which implies the fixed processing speed, therefore we fix
the resource occupation.

3.3 Accelerating Techniques

Data compression/decompression and encryption/decryption put a lot of pres-
sure on CPU. Considering the popularity of multi-core systems, accelerating
adaptively cooperative pipelines using parallel techniques is a natural idea. So
we design two accelerating approaches: fine-grained pipelining and multi-threaded
pipelining. A combination of these two approaches called hybrid pipelining is also
considered.

Fine-Grained Pipelining. A common way to accelerate a single pipeline is
to deepen the pipeline, that is, breaking down the tasks into smaller units, thus
lengthening the pipeline and increasing overlap in execution. However, as men-
tioned above, for a cooperative pipeline, we can not re-decompose the task arbi-
trarily. Instead, we must decompose the primary stage and the backup stage into
the same number of smaller stages with the same size. It is difficult to decompose
the two existing stages identically. We adopt two strategies for this:

- We decompose the two existing stages manually by experience. In our imple-
mentation, the primary stage is decomposed into two sub-stages: the com-
pression stage containing batch assembling and data compression, and the
encryption stage containing data encryption and batch sending. The backup
stage certainly is also decomposed into two sub-stages: the computation stage
containing batch receiving, data decryption and decompression, and the I/O
stage containing disk write and reply. Both primary and backup sites invoke
two threads. Each thread is responsible for a sub-stage.

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 221

- Obviously, experience only guarantees that the four stages are approximately
equal. In order to make them nearer and counter their dynamic change,
adaptive batching algorithm is used again. After each stage finishes, the cor-
responding adaptive formula is applied to adjust the batch interval.

Multi-threaded Pipelining. Another intuitive accelerating approach is to
decompose the each existing stage into subtasks in parallel instead of smaller
stages. Since each batch contains dozens to hundreds of requests, a simple and
effective decomposition technique is data decomposition. In our implementation,
each batch is decomposed into two sub-batches with the same size. Both primary
and backup sites invoke two threads. Each thread is responsible for a sub-batch.
They process the sub-batches in parallel, and then send them in serial for con-
sistency reasons.

Like fine-grained pipelining, multi-threaded pipelining also faces the difficulty
in load balancing. Fortunately, the problem is much easier in this method. Note
that the computation time of a request is proportional to the number of data
bytes in it. So, if the workload contains requests all of the same size (for ex-
ample, the workload in our experiments generated by Iometer), load balance is
guaranteed simply by partitioning sub-batches according to the number of re-
quests. Otherwise, we can partition sub-batches according to the total number of
bytes.

Serial network transmission seems to be a drawback of multi-threaded pipelin-
ing. However, time spent in this operation is only a small part of the total
execution time, thus serial network transmission does not impact the overall
performance much. Our experimental results verified this point.

In addition, multi-threaded pipelining is more flexible than fine-grained
pipelining. It can even be used to deal with unequal cooperative stages. For
example, if the backup stage is twice as long as the primary stage, the backup
site can use twice the threads than primary site to equal the execution time of
the two stages.

Hybrid Pipelining. Our experimental results showed that neither four-stage
pipelining nor double-threaded pipelining fully occupies CPU. Theoretically,
deepening the pipeline further or using more threads will make full use of CPU
power. However, as mentioned above, very deep pipeline will introduce significant
interaction overhead. For the latter strategy, decomposing a batch into too many
sub-batches may induce load imbalance and too many threads may increase inter-
action overhead. So we combine these two techniques. Both primary and backup
stages are decomposed into two sub-stages, and each sub-stage is accelerated
further by multi-thread technique. We call this method hybrid pipelining.

In fact, fine-grained pipelining is an inter-batch parallelization, that is, each
batch is processed by only one processor at a time, and several batches are
processed by multiple processors simultaneously. Multi-threaded pipelining is an
inner-batch parallelization, that is, batches are processed one-by-one, and each
batch is processed by multiple processors simultaneously. Hybrid pipelining is a
two-dimensional parallelization.

222 Y. Song et al.

4 Experimental Evaluation

4.1 Prototype Implementation

We implemented adaptive batching algorithm as a “remote copy” module in
Linux LVM2. Like snapshot module in LVM2, this module treats the remote
mirror as an attached volume of the original volume. Three accelerating tech-
niques were also implemented. The underlying OS was RedHat AS server 5 (ker-
nel version 2.6.18-128.el5). LVM2 2.02.39, device mapper 1.02.28 and NBD 2.8.8
were used. LZW algorithm [14] was chosen as the compression/decompression
algorithm, and AES algorithm [15] was chosen as the encryption/decryption al-
gorithm. A log mechanism was implemented in backup site for batch automatic
committing.

4.2 Experimental Setup

All experiments were performed on two single-core 2.66GHz Intel Xeon nodes.
One acted as the primary site, and another acted as the backup site. Each ma-
chine has 2GB of memory and a hardware RAID-5 composed of six 37GB SAS
disks. The two nodes were connected by a Gigabit Ethernet. In order to test
three parallel models, we turned off log mechanism in backup site to put enough
pressure on CPU. Both α and β were set to 0.5. The batch interval was initial-
ized to 30ms. Iometer [16] was used to generate workload. Since write requests
trigger remote mirroring module, we only test write workload. Unless otherwise
expressly stated, sequential write workload was used. In order to eliminate the
impact of asynchronous mode on performance, we recorded the experimental re-
sults after the performance curve reported by Iometer becomes stable over time.
Each data point is the average of three samples.

4.3 Experimental Results

We first performed a baseline test. Fig.3 shows the result. “Pri” denotes the
RAID-5 devices in the primary site and “back” denotes the RAID-5 devices in
the backup site.“LVM” denotes the original volume in the primary site. “Async”
denotes the asynchronous remote mirroring system without adaptive batching,

0
20
40
60
80

100
120
140
160

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

back LVM pri simple batch async

Fig. 3. Baseline test

0
20
40
60
80

100
120
140

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

compression batch encryption

Fig. 4. Computation pressure

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 223

0
20
40
60
80

100
120
140

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
(M

B
/s)

Request size(KB)

batch thread hybrid fine-grained

Fig. 5. Parallel models

0
5

10
15
20
25
30
35
40

1 3 5 7 9 11 13 15 17 19

B
at

ch
 si

ze

Periods

T_init=30 ms T_init=15 ms

Fig. 6. Batch converging

0
10
20
30
40
50
60
70
80
90

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

batch thread hybrid fine-grained

Fig. 7. 50% random write

0
10
20
30
40
50
60
70

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

batch thread hybrid fine-grained

Fig. 8. 100% random write

“simple batch” denotes the one with adaptive batching but without data com-
pression and encryption. We can see that adaptive batching algorithm improves
performance greatly though it is far below raw devices yet.

Fig.4 shows the impact of data compression and encryption on performance.
“Compression” means with data compression but without encryption, “encryp-
tion” means with encryption but without decompression, and “batch” means
with both compression and decryption. As we expected, introducing compres-
sion improves performance significantly due to network traffic decreasing, and
encryption impacts performance seriously due to high computational complexity.
The complete version is between the other two versions.

Fig.5 shows how greatly the three parallel models improve performance. We can
see that all three models accelerate the pipeline remarkably. Fine-grained pipelin-
ing and Multi-threaded pipelining exhibit almost the same performance. Hybrid
pipelining improves the performance further because CPU is not overloaded - we
observed an about 87% CPU occupation during hybrid pipelining test.

We also traced the batch interval (batch size). The results are showed in Fig.6.
The batch interval was initialized to 30ms and 15ms respectively. The request
size is 4KB. The batch sizes of the first 20 periods were recorded. We can see
that the adaptive batching algorithm indeed coordinates the primary and the
backup sites well. The batch interval converged to a stable condition quickly.

We also test random write performance. As Fig.7 and Fig.8 shows, compared
with the result of sequential write test, the performance gap between the serial

224 Y. Song et al.

version and the parallel versions narrows. The reason is that the proportion of
I/O part in the total running time increases and three parallel models accelerate
only the computation part.

5 Conclusion and Future Work

In this paper, we presented a novel cooperative pipelining model for remote mir-
roring systems. Unlike traditional pipelining models, this new model considers
the decentralization of processors. To solve the imbalance between the primary
and the backup stages, we proposed an adaptive batching algorithm. To re-
lease the heavy load on CPU exerted by compression, encryption and TCP/IP
protocol stack, we designed three parallel models: fine-grained pipelining, multi-
threaded pipelining and hybrid pipelining. We implemented these techniques in
our prototype. The experimental results showed that, the adaptively cooperative
pipelining model balances the primary and the backup stages effectively, and the
three parallel models improve performance remarkably.

All the experiments were performed in a LAN environment. Testing our pro-
totype in the (emulated) WAN environment is an important future work. FEC
(Forward Error Correcting) by using efficient erasure codes is also planned.

References

1. Patterson, R.H., Manley, S., Federwisch, M., Hitz, D., Kleiman, S., Owara, S.:
SnapMirror: File-System-Based Asynchronous Mirroring for Disaster Recovery. In:
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST
2002, Monterey, California, USA, January 2002, pp. 117–129 (2002)

2. Weatherspoon, H., Ganesh, L., Marian, T., Balakrishnan, M., Birman, K.: Smoke
and Mirrors: Reflecting Files at a Geographically Remote Location Without Loss of
Performance. In: Proceedings of the 7th USENIX Conference on File and Storage
Technologies, FAST 2009, San Francisco, California, USA, February 2009, pp. 211–
224 (2009)

3. EMC SRDF - Zero Data Loss Solutions for Extended Distance Replication. Tech-
nical Report P/N 300-006-714, EMC Corporation (April 2009)

4. VERITAS Volume Replicator (tm) 3.5 Administrator’s Guide (Solaris). Technical
Report 249505, Symantec Corporation, Mountain View, CA, USA (June 2002)

5. Secure Data Protection With Dot Hills Batch Remote Replication. White Paper,
dot Hill Corporation (July 2009)

6. Ji, M., Veitch, A.C., Wilkes, J.: Seneca: Remote Mirroring Done Write. In: Pro-
ceedings of the General Track: 2003 USENIX Annual Technical Conference, San
Antonio, Texas, USA, pp. 253–268 (June 2003)

7. DFSMS/MVS Version 1 Remote Copy Administrator’s Guide and Reference 4th
edition. Technical Report SC35-0169-03, IBM Corporation (December 1997)

8. HP OpenView continuous access storage appliance. White Paper, Hewlett-Packard
Company (November 2002)

9. Liu, X., Niv, G., Shenoy, P.J., Ramakrishnan, K.K., van der Merwe, J.E.: The
Case for Semantic Aware Remote Replication. In: Proceedings of the 2006 ACM
Workshop on Storage Security and Survivability, StorageSS 2006, Alexandria, VA,
USA, October 2006, pp. 79–84 (2006)

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 225

10. LVM, http://sources.redhat.com/lvm/
11. Breuer, P.T., Lopez, A.M., Ares, A.G.: The Network Block Device. Linux Jour-

nal 2000(73), 40 (2000)
12. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-

ing, 2nd edn. Addison-Wesley, Essex (2003)
13. Keeton, K., Santos, C.A., Beyer, D., Chase, J.S., Wilkes, J.: Designing for Disasters.

In: Proceedings of the 3rd USENIX Conference on File and Storage Technologies,
FAST 2004, San Francisco, California, USA, March 2004, pp. 59–72 (2004)

14. Welch, T.A.: A Technique for High-Performance Data Compression. IEEE Com-
puter 17(6), 8–19 (1984)

15. NIST Advanced Encryption Standard (AES). Federal Information Processing Stan-
dards Publication (2001)

16. Iometer, http://www.iometer.org/

http://sources.redhat.com/lvm/
http://www.iometer.org/

SV: Enhancing SIMD Architectures via
Combined SIMD-Vector Approach

Libo Huang and Zhiying Wang

School of Computer, National University of Defense Technology,
Changsha 410073, China

{libohuang,zywang}@nudt.edu.cn

Abstract. SIMD architectures are ubiquitous in general purpose and
embedded processors to achieve future multimedia performance goals.
However, limited to on chip resources and off-chip memory bandwidth,
current SIMD extension only works on short sets of SIMD elements.
This leads to large parallelization overhead for small loops in multimedia
applications such as loop handling and address generation. This paper
presents SIMD-Vector (SV) architecture to enhance SIMD parallelism
exploration. It attempts to gain the benefits of both SIMD instructions
and more traditional vector instructions which work on numerous val-
ues. Several instructions are extended that allows the programmer to
work on large vectors of data and those large vectors are executed on
a smaller SIMD hardware by a loop controller. To preserve the register
file size for holding much longer vectors, we introduce a technique that
the long vector references are performed on only one SIMD register in
many iterations. We provide a detailed description of the SV architec-
ture and its comparison with traditional vector architecture. We also
present a quantitative analysis of the dynamic instruction size decrease
and performance improvement of SV architecture.

Keywords: SIMD, vector, performance, loop.

1 Introduction

In the past few years, technology drivers changed significantly. Multimedia ap-
plication has become the mainstream computing in driving microprocessor tech-
nology instead of scientific applications alone. In this situation, an increasingly
popular way to provide more performance is through data level parallelism
(DLP). This kind of parallelism performs operations in a single instruction mul-
tiple data (SIMD) fashion. The reason behind this is multimedia applications
contain a lot of inherent parallelism which can easily be exploited by using SIMD
instructions at low cost and energy overheads. Adopting it into general purpose
processors results in SIMD extension architectures [1]. There are many exam-
ples of SIMD extension such as Intel’s SSE, AMD’s 3DNow!, IBM’s VMX and
Motorola’s AltiVec.

Despite of their superior theoretic performance for multimedia applications,
full potential of SIMD accelerator are not exploited effectively. Compared with

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 226–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

SV: Enhancing SIMD Architectures via Combined SIMD-Vector Approach 227

conventional vector computer, one of the constraints for current SIMD archi-
tectures is that due to hardware cost, the supported vector are short, which is
very small amount of datapath work to represent with each instruction. This
forces the use of a complex superscalar instruction issue mechanism to keep an
array of functional units busy. Furthermore, short vector implementations intro-
duce large parallelization overhead such as loop handling and address generation
which is not well supported by current SIMD architectures [2].

Therefore, we introduce hybrid SIMD-Vector (SV) architecture, which com-
bines the main features of the two architectures, supporting vector processing
with variable lengths. It uses shorter SIMD unit (i.e. 4-way SIMD) to do compu-
tations on longer vectors (i.e. 16-way SIMD) by loops. This variable length vector
interface brings many advantages to the processor architecture: 1) each SIMD
instruction can be assigned to do more computations which reduces the SIMD
code size; 2) Conventional loop controlling instructions are transformed into the
internal states of SIMD unit, thus eliminating large overhead instructions intro-
duced by loop controlling. 3) using shorter SIMD unit allows the hardware cost
to a feasible range as SIMD units consume much die area; 4) the memory band-
width can be effectively utilized especially for emerging processor architecture
with on chip memory [3]. The SV architecture also possesses many optimization
opportunities due to its new vector interface. We employ a stream-like mem-
ory system which can overlap the computation and memory access leading to
efficient utilization of SIMD unit.

Compared with assembly programming of wide out-of-order superscalar ar-
chitectures, or tightly-coupled multiprocessors, or VLIW machines with exposed
functional unit latencies, SV architecture offer a compact, predictable, single-
threaded assembly programming model with loop unrolling performed automat-
ically in hardware. Moreover, scheduled vector object code can directly benefit
from new implementations with greater parallelism.

The main contribution of this paper is proposing and evaluating a new archi-
tecture for SIMD extension which brings new levels of performance and power
efficiency. The remainder of this paper is organized as follows. In Section 2, the
motivations of this work is introduced. Section 3 provides detailed description of
the proposed SV architecture and its comparison with conventional vector archi-
tecture. Then the evaluation results are presented in Section 4. Finally, Section 5
gives the conclusion of the whole work.

2 Motivation

While the SIMD extension and vector architectures have many similarities, they
differ principally in implementation of instruction control and communication
between memory and the execution units. Figure 1 highlights the differences be-
tween these two DLP architectures. For SIMD extensions, vector length is short,
instruction latency is roughly one cycle per instruction, strided memory accesses
are not supported and memory accesses are usually required to be aligned. The
vector processors can overlap load, computation, and store operations of vector

228 L. Huang and Z. Wang

elements by pipelining technology. So the vector length can be very long and
variable but the instruction latency is roughly more longer with one cycle per
vector element. This kind of parallelism is called vertical parallelism. On the
contrary, the SIMD extension architecture use many duplicated function units
to perform parallel operations on all the elements in vectors, which called hori-
zontal parallelism. As the number of functional units can not be extensible due
to the hardware cost, the vector length of SIMD extension is fixed and short.

Inst.
Ctrl

Memory

PE PE PE

Vector
memory unit

Vector Register File
(usually VL > 64)

Lane n Lane 0...

Inst.
Ctrl

SIMD
Unit

Memory
Conventional
memory unit

Vector Register File
(usually VL ≤ 32)

(a) Vector architecture (b) SIMD architecture

Multiple
iterations One

iteration

Fig. 1. Vector and SIMD architectures

Many advantages can be obtained from long vector. Firstly, it is very compact,
which decrease the code size. Secondly, it is very expressive, which can specify a
large number of operations and decrease the dynamic instruction count. Thirdly,
it is scalable, which can benefit from the new hardware implementation and does
not introduce binary compatibility problem. So adopting long vector into SIMD
extension will result in an elegant solution. Figure 2 illustrates the advantage of
long vector interface for the motivating example. It can be seen that when the
supported vector length is longer than the number of iteration, the loop overhead
instructions can be totally eliminated leading to high performance.

However, some barriers need to be conquered when introducing long vector
processing into SIMD extension architecture: 1) the bandwidth of memory sys-
tem in general purpose processor is limited for long vector operation; 2) due to

for (int i = 0; i < 128; i++) {
c[i] = a[i] + b[i]

}

for (int i = 0; i < 128; i+=4) {
 vc[i+3:i] = va[i+3:i] + va[i+3:i]
}

lvc[127:0] = lvc [127:0] + lvc [127:0]

Loop body

Loop
controller

(a) Scalar form

(b) SIMD form

(c) Long vector form

instruction
overhead

Overhead
elimination

Fig. 2. Motivation example: eliminating the loop control overhead

SV: Enhancing SIMD Architectures via Combined SIMD-Vector Approach 229

the die size, the vector length that vector register file can hold and SIMD unit
can handle is short; 3) not all the multimedia application can benefit from long
vector interface. This occurs when vectors in applications are shorter than the
supported length. So how to take advantage of long vector interface is still an
open issue.

This paper presents the SIMD-Vector architecture to address this challenge. It
preserves the original datapath of SIMD architectures and adds efficient support
for long vector memory accesses and computations without changing existing
ISA. The SV architecture combines the advantages of SIMD extension and vector
architectures, which can further exploit the data-level parallelism.

3 SIMD-Vector Architecture

In this section we describe SV architecture in detail, looking first at its ar-
chitecture design, and then describing the new extended instructions and its
programming, finally discussing the comparison with other DLP architectures.

3.1 Architecture Overview

Some parameters for describing SV architecture are listed in Table 1. Generally,
the bit sizes of SIMD unit (SS), VRF (SR) and memory unit (SM) are the same
to obtain data bandwidth balance of the whole system. In the example, 128-bit
are configured, which is popular in many SIMD extensions such as IBM’s AltiVec
ISA [4], ARM’s Neon SIMD ISA [5] and Intel’s SSE ISA. As the supported SE

is variable, so one vector register (VR) may have different register lengths. For
example, the 128-bit VR can contains 4 32-bit word, 8 16-bit halfword, or 16
8-bit byte, so LR could be 4, 8, or 16. The vector length LV is also variable,
which is specified by program.

Table 1. Architectural parameters

Factors Description Example
SS Bit size of SIMD unit 128
SR Bit size of vector register file 128
SM Bit size of load/store unit 128
SE Bit size of vector element 8,16,32
LV Vector length variable
LR Register length (SR/SE) 4,8,16

Naive Structure. To support variable vector length, a straightforward ap-
proach is using iterative algorithm like in conventional vector architectures.
Figure 3(a) shows the block diagram of naive SV structure. It preserves cur-
rent memory system, and there is virtually no performance penalty for mingling
scalar integer, FPU and SIMD operations. The SIMD unit is the functional unit
to perform SIMD operations. It remains the same as conventional SIMD unit.

230 L. Huang and Z. Wang

Decode Fetch

SIMD
Unit

DCache

ICacheVRF

VC
Cache

Loop
Controller

Address
generatorLD/ST

Decode Fetch

SIMD
Unit

DCache

ICacheVRF

Loop
Controller

LD/ST

(a) Naïve SV structure (b) Proposed SV structure

Fig. 3. SIMD-Vector Architecture

VOP1
VOP2
VOP3
VOP4
VOP5

(a) Naïve SV execution (b) Proposed SV execution
4 8 12 160 20 0 10 15 20

PC
VOP1
VOP2
VOP3
VOP4
VOP5

5

PC

Fig. 4. Execution mechanisms for SV architecture

The modified part is presented in gray color. Only one component called loop
controller is added. It generates control signals for loops to complete long vector
operations. To eliminate the loop overhead, the configured LV should be equal
to the numbers of iterations in the loop. When LR can not divide LV, then the
SIMD execution times would be �LV/LR�.

Figure 4(a) shows the execution mechanism for naive SV structure. It com-
pletes operations for all the elements in long vector by loops before doing the
next long vector operations. To store the long vector in VRF, a efficient way is to
using several short VRs to represent long vectors. This implementation of long
vector interface potentially gives many optimization opportunities. For example,
we can select only the true operations as the SIMD element operations and skips
over the false operations similar to vector architecture. This allows the SIMD
unit to do more useful operations and save the unnecessary power consumption.
Though the naive execution mechanism is simple to implement in existing SIMD
architecture, it consumes large number of VRs and gives some limitations to the
vector length of long vectors. Furthermore, it makes the long vector memory
instructions can not be executed parallel with computation instruction which
would degrades the performance.

Proposed Structure. To overlap the memory accesses with computations, a
better method using vertical execution mechanism to support long vector oper-
ations as shown in Figure 4(b). For a given set of long vector operations, each
time the SV architecture executes them with the length of SIMD unit vertically,
and then execute another portion of long vector operations in a similar fashion.

SV: Enhancing SIMD Architectures via Combined SIMD-Vector Approach 231

(a) Constant access :

(b) Sequential access :

(c) Misaligned access :

(d) Strided access :

(e) Strided access :

A0 A0 A0 A0 A0

A0 A1 A2 A3 AN

A0+1 A1+1 A2+1 A3+1 AN+1

vperm

vperm
horizontally

A0 A1*2 A2*2 A3*2 AN*2

vperm

vperm
vperm

vertically

A0 A0+1*N A0+2*N A0+3*N A0+N*N

Fig. 5. Memory access patterns

This type of execution mechanism offers a natural way to overlap the memory
accesses with computations. Vertical execution also does not need extra VRs
to represent long vector since each time the element values are loaded into the
same VRs. So there is no length limitation for long vectors in vertical execution
mechanism. In order to store the set of long vector operations, a small vector
code cache (VCCache) is required. We restrict the capacity of VCCache to 1KB,
which is 256 operations for 32-bit instruction encoding. This is fit for most of
the key loops in multimedia applications.

The resulting block diagram of proposed SV structure is shown in Figure 3(b).
The modified hardware consists of loop controller, vector code cache (VCCache)
and address generator. The loop controller generates control signals for loops
to complete long vector operations based on a loop granularity. The VCCache
is used to store the instructions for vertical execution. Since it mostly used for
inner loops, so the size could be not very large. The VRF has the same structure
with conventional one, possibly with larger number of entries.

It is critical to provide adequate memory bandwidth for long vector oper-
ations. Since the long vector memory access is totally use original memory
system, the conventional vector memory access can not be provided by the
existing hardware. However, conventional SIMD address generation consumes
many supporting instructions [6]. To decrease this kind of overhead instructions,
automatic address generation for load and store operations are needed. This is
achieved by the address generator connected to load/store unit. We define four
types of memory access commonly used in multimedia applications as shown
in Figure 5: constant access, sequential access, misaligned sequential access and
strided access [6]. They are not exclusive and a loop may take accesses from all
four categories. Supporting them using general-purpose instruction sets is not
very efficient, as the available addressing modes are limited. Furthermore, there
is not enough support for keeping track of multiple strides efficiently in general
purpose processors. So in SV architecture, only sequential access is supported,
but other three types of memory accesses can be efficiently accomplished by the

232 L. Huang and Z. Wang

Table 2. Extended instructions

Instructions Description
StartLVMode(mode, LV, VR) Start SV execution with configured mode

EndLVMode() Stop SV execution
SetStride(offset,stride) Set stride of strided access

sequential access via permutation instructions exists in any SIMD ISA [1]. For
example, vperm operation in AltiVec provides extremely flexible data permu-
tation functionality, which can combine elements of two source registers in any
permutation pattern [4].

3.2 Programming Issues

Extended Instructions. Provided the previous hardware support, Table 2
defines new SV interface instructions for configuration. Three instructions are
defined. The StartLVMode instruction is used to set the internal execution states
for loop controller. It has three source parameters: The 1-bit mode specifies the
loop condition. When ‘1’, then the vector length is used to guard the loop con-
troller, which is specified by the second parameter, 16-bit LV. Otherwise, false
value of register is used to stop the loop execution, which is specified by the
third parameter VR. The EndLVMode instruction is used to end the SV execu-
tion. From the definition of extended instructions, we can see that SV execution
needs configuration first, and later vector computations can be proceeded in the
configured way. So any long vector instructions should be placed between the in-
struction pair StartLVMode and EndLVMode. The SetStride instruction is used
to set the strided memory access. It has two source parameters: offset specifies
the offset of instruction in vector code, stride specifies its stride. This instruction
is very useful for strided memory access.

(a) Constant and
sequential accesses (b) Misaligned access

for (int i = 0; i < 128; i++) {
 b[i] = a[i] * C[0]
}

for (int i = 0; i < 128; i++) {
 b[i] = a[i] * b[i+1]
}

for (int i = 0; i < 128; i++) {
 b[i] = a[i] * b[2i]
}

(c) Strided access

Vload (V3, C)
StartLVMode(3, 32, 0)
Vload (V1, a)
V2 = V1 * V3
Vstore (V2, b)
EndLVMode()

Loop
body

Vload (V2, b)
StartLVMode(3, 32, 0)
Vload (V1, a)
Vload (V3, b+4)
V4=Vperm (V2, V3, p1)
V2 = V1 * V4
Vstore (V2, b)
V2=V3
EndLVMode()

Constant

sequential
Misaligned

Setstride(2, 8)
Setstride(3, 8)
StartLVMode(3, 32, 0)
Vload (V1, a)
Vload (V2, b)
Vload (V3, b+4)
V4=Vperm (V2, V3, p1)
V2 = V1 * V4
Vstore (V2, b)
EndLVMode()

strided

Fig. 6. SIMD-Vector programming example

SV: Enhancing SIMD Architectures via Combined SIMD-Vector Approach 233

SIMD-Vector Programming. The main task of SV programming is to deter-
mine the loop body and its execution mode. Three examples are given to show the
programming of SV architecture as shown in Figure 6. They represent different
memory access pattern discussed previously. We assume that SS=SR=SM=128
and SE=32. Figure 6(a) shows the constant and sequential memory access. The
constant access can be accomplished before loop which would stored as a reg-
ister inside loop. The sequential memory access is the default memory access
pattern. Only two instructions StartLVMode and EndLVMode are added to con-
figure the execution mode. This leaves the SIMD unit to perform more actual
computations. Figure 6(b) shows the misaligned memory access. Through vperm
instruction, it can be well supported. Special case with strided access is shown
in Figure 6(c), where SetStride should be used to configure the stride different
from default sequential access.

3.3 Comparison with Other DLP Architectures

The SV architecture tries to combine the good features of SIMD and vector
architectures. Table 3 shows the comparison result of these three architectures.
We can see that compared to vector architecture, including the vector architec-
ture implemented in some recent single chip processors [9, 10, 11], the width of
SV VRF is much smaller. This makes the long vector support feasible. The SV
architecture also has advantages over SIMD architecture, which support efficient
long vector operation and SIMD address generation.

Table 3. Architecture comparison

Features SV SIMD extension Vector
Vector length any � 32 > 64
Memory access automatic address gen. aligned access strided access
Instruction latency ∼1 cycle/SIMD elements ∼1 cycle/instuction ∼1 cycle/element
Data Parallelism Combined Vertical parallelism Horizontal parallelism
VRF width = Ss = Ss = V L

4 Evaluation

To test the SV architecture, we designed a multimedia processor based on the TTA
(Transport Triggered Architecture) [7]. It has includes all the techniques discussed
above. It has 128-bit wide SIMD datapath with four 32-bit vector elements. The
TTA-based architecture makes the processor can integrate abundant arithmetic
functional units in a very simple way, and gives flexible and fine-grained explo-
ration of SIMD parallelism for compiler. It has four SIMD ALU, MAC and FPU
units seperately. The processor is utilized for accelerating core processing of mul-
timedia applications like data compression and graphics functions.

We study only kernels as opposed to entire applications. This is because
they represent a major portion of many multimedia applications. All the bench-
marks [8] are shown in Table 4. They ranging from fairly simple algorithms like

234 L. Huang and Z. Wang

Table 4. Benchmark Description

Name Description
FFT 16-bit fast fourier transform

MATMUL 16-bit matrix multiplication
MAXIDX 16-bit index of max value in array

IDCT 8-bit IDCT
FIR 16-bit complex finite impulse response filter
IIR 16-bit infinite impulse response filter

MAXIDX and MATMUL to more complex digital signal processing algorithms
like FFT.

Figure 7 shows the dynamic instruction count comparison result. Three code
versions are provided: scalar, conventional SIMD and proposed SV. We observe
that, compared to conventional SIMD version, the proposed SV architecture can
reduce the number of dynamic instructions by 16.8% on average. This is due
to that SV architecture can overlap different iterations of one loop body and
execute SIZE-1 copies of the loop automatically, so SIZE-1 copies of the loop
handling and memory address generation overhead are eliminated, and only the
start and the exist instructions of the loop body are retained.

0

0.2

0.4

0.6

0.8

1

FFT MATMUL MAXIDX IDCT FIR IIR

N
or

m
al

iz
ed

 in
st

ru
ct

io
n

co
un

t

Scalar

SIMD

SV

Fig. 7. Dynamic instruction count comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

FFT MATMUL MAXIDX IDCT FIR IIR

N
or

m
al

iz
ed

 s
pe

ed
up

Scalar

SIMD

SV

Fig. 8. Speedup over scalar code comparison

SV: Enhancing SIMD Architectures via Combined SIMD-Vector Approach 235

Figure 8 displays the obtained speedups for the different benchmarks. All re-
sults show SV architecture has a significant speedup over conventional SIMD
which ranges from 1.15 to 1.38. Compared to scalar codes, most of these bench-
marks saw a speedup of five to ten, with exceptional results for IDCT. This is
because only 8-bit data are handled for IDCT. However, in all cases the theoret-
ical limit is not reached, due to overhead introduced by packing and unpacking
the data.

5 Conclusion and Future Work

This paper presents SV architecture for exploiting data-level parallelism. By
leveraging variable vector lengths, much of the loop overhead is eliminated and
developers can see dramatic acceleration in the benchmarks. For the future it
might be interesting to automatically generate SIMD code in a compiler for
SV architecture. Furthermore, it would be interesting to integrate hardware en-
hancement for packing and unpacking of data into SV architecture, which could
improve performance.

Acknowledgements

We gratefully acknowledge the supports of the National Basic Research Program
of China under the project number 2007CB310901 and the National Natural
Science Foundation of China under Grant No. 60803041 and No. 60773024.

References

1. Lee, R.: Multimedia Extensions for General-purpose Processors. In: SIPS 1997, pp.
9–23 (1997)

2. Shin, J., Hall, M.W., Chame, J.: Superword-Level Parallelism in the Presence of
Control Flow. In: CGO 2005, pp. 165–175 (2005)

3. Patterson, D., et al.: A Case for Intelligent RAM: IRAM. IEEE Micro 1997 17(2),
33–44 (1997)

4. Diefendorff, K., et al.: Altivec Extension to PowerPC Accelerates Media Processing.
IEEE Micro 2000 20(2), 85–95 (2000)

5. Baron, M.: Cortex-A8: High speed, low power. Microprocessor Report 11(14), 1–6
(2005)

6. Talla, D.: Architectural techniques to accelerate multimedia applications on
general-purpose processors, Ph.D. Thesis, The University of Texas at Austin (2001)

7. Zivkovic, V.A., et al.: Design and Test Space Exploration of Transport-Triggered
Architectures, pp. 146–152 (2000)

8. TMS320C64x DSP Library Programmer’s Reference, Texas Instruments Inc.
(2002)

9. Corbal, J., Espasa, R., Valero, M.: Exploiting a New Level of DLP in Multimedia
Applications. In: MICRO 1999 (1999)

10. Kozyrakis, C.E., Patterson, D.A.: Scalable Vector Processors for Embedded Sys-
tems. IEEE Micro 23(6), 36–45 (2003)

11. El-Mahdy, A., Watson, I.: A Two Dimensional Vector Architecture for Multimedia.
In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001.
LNCS, vol. 2150, p. 687. Springer, Heidelberg (2001)

A Correlation-Aware Prefetching Strategy for
Object-Based File System�

Julei Sui, Jiancong Tong, Gang Wang, and Xiaoguang Liu

Nankai-Baidu Joint Lab, College of Information Technical Science, Nankai University
94 Weijin Road, Tianjin 300071, China

{nkujulei,lingfenghx}@gmail.com, wgzwp@163.com, liuxg74@yahoo.com.cn

Abstract. The prefetching strategies used in modern distributed stor-
age systems generally are based on temporal and/or spatial locality of
requests. Due to the special properties of object-based storage systems,
however, the traditional tactics are almost incompetent for the job. This
paper presents a new prefetching approach, which takes the correlation-
ship among objects into account. Two orthogonal replica distribution
algorithms are proposed to aggregate prefetching operations. A moving
window mechanism is also developed to control prefetching. We imple-
ment these approaches in our object-based file system called NBJLOFS
(abbreviated for Nankai-Baidu Joint Lab Object-based File System). The
experimental results show that these approaches improves throughput by
up to 80%.

Keywords: object-based storage, prefetching, object duplication,
orthogonal layout.

1 Introduction

With the continuous growth of storage device capacity and the rapid devel-
opment of applications, traditional block-based storage systems can no longer
meets the demand. Object-based storage technology emerged and has attracted
increasing attention. Generally, “object-based” means that the basic storage unit
is object instead of block. An object is a combination of file data and a set of
attributes [1]. In a distributed object-based file system, a file may be divided
into many objects, which are distributed over several storage nodes.

In modern computer systems, I/O time often dominates the total running
time. Cache and prefetching technologies are the standard way to alleviate the
performance gap between disk and main memory/CPU. Traditional prefetch-
ing strategies typically read additional blocks physically adjacent to the cur-
rent read request. That is, they assume that logically adjacent blocks are also

� Supported partly by the National High Technology Research and Development Pro-
gram of China (2008AA01Z401), NSFC of China (60903028), SRFDP of China
(20070055054), and Science and Technology Development Plan of Tianjin (08JCY-
BJC13000).

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 236–245, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Correlation-Aware Prefetching Strategy for Object-Based File System 237

physically adjacent. However, these strategies do not work in distributed object-
based storage systems because objects are distributed over many storage nodes.
Moreover, these strategies can not deal with prefetching based on other relation-
ship among objects. This paper puts forward an innovative prefetching strategy
taking objects’ correlation into account. It gains “prefetching aggregating” by
an orthogonal object duplication layout. The experimental results show that this
new strategy increases throughput and decreases network traffic.

The rest of this paper is organized as follows. In Section 2, we briefly de-
scribe NBJLOFS and namespace splitting algorithm. In Section 3, we intro-
duce our prefetching approach together with details of our implementation. In
section 4, we present the experimental results. Section 5 discusses related work
and Section 6 concludes the paper.

2 NBJLOFS

NBJLOFS is a distributed object-based file system based on IP-SAN [2]. It
employs FUSE [3] as filesystem interface and Berkeley DB [4] as storage infras-
tructure. Every file in NBJLOFS is split into objects. Each object is uniquely
represented by a quintuple (fnso, fno, offset, type, flag) called object identifier
(OID). NBJLOFS has no metadata servers. The clients provide a standard file
system interface to the users, and the storage nodes (called Object-based Storage
Devices, OSDs for short) are in charge of object storing and accessing. When a
file is stored, the system splits it into fixed-size objects and distributes them over
OSDs. When a read request arrives, the client node dispatches it to the proper
OSD. The OSD will acknowledge the client with the required object and main-
tains a copy in its local cache. Objects are distributed according to a namespace
splitting algorithm. As shown in Fig. 1, a 32 bits identifier space is divided into
several segments. Each segment corresponds to a unique OSD. Every object is
mapped to a value in the identifier space using MD5 algorithm (Message-digest
Algorithm 5). Then the object is assigned to the corresponding OSD.

0 232

object

MD5(oid)

OSD

Procedure map_object(object_id , osd_num)
x � MD5(object_id) & 0xffffffff

region � (uint32_t)(~0)

interval_span � region / osd_num

position � x / interval_span

Distribute the object to osd[position]

end procedure

Fig. 1. Namespace splitting algorithm

3 Correlation-Aware Prefetching

In a Distributed Object-based File System, objects are dispersed. The objects
stored on a single OSD may not be logically consecutive parts of a single file

238 J. Sui et al.

according to the object distributed algorithm mentioned above. So the tradi-
tional prefetching strategy that reads additional disk blocks adjacent to the cur-
rent request no longer works. Instead, we should fetch logically related objects
from different OSDs. Since objects are distributed over OSDs, inevitably, lots of
prefetching requests are launched to many OSDs to prefetch a batch of logically
adjacency objects. Therefore, as the system size increases, the network traffic
will dramatically increases. In order to solve this problem, this paper presents a
“file-centralized” duplication strategy. This strategy aggregates the replicas be-
longing to the same file, so only one request is need to be issued for a prefetching
operation.

3.1 Object Duplication

We do not create mirror for each OSD like RAID-1 [5]. Instead, we adopt object-
oriented duplication. Moreover, we aggregate replicas according to their corre-
lationships. In this paper, we consider the “file-belonging” correlationship, that
is, replicas with the same “fno” field in OID are aggregated. Note that we can
easily aggregate replicas using other correlationships.

For each object, we make and maintain a replica for it and guarantee that
these two copies of the object are stored on different OSDs. For clarity, we
call them the original object and the replica object respectively. The former is
assigned to a OSD using the namespace splitting algorithm mentioned in Section
2. The replica is assigned to the OSD determined by the MD5 digest of its file
identifier (“fno”). As objects belonged to the same file share the same value in
field “fno”, the replica objects of a file aggregated in a specific OSD and the
original objects are distributed over other OSDs. For a certain file, we call the
specific OSD where all its replica objects aggregated as its replica OSD or replica
node, and other OSDs as its original OSDs or original nodes.

Fig. 2 shows an example of orthogonal distribution. We use Xi denote the
i-th original object of file X and Xi′ denote the replica. In this example, there
are four files A, B, C and D. Note that in NBJLOFS the objects are not really
indexed in this way, the indices are just used to illustrate this problem simply. We
can see that all replicas of file A are assigned to OSD1, and its original objects
are distributed over other OSDs. From Fig. 2, we can find that the replica objects
of a certain file didn’t reside with any of its original objects in the same OSD.

osd0 osd2osd1 osd3

A0

D3
C3
B3
A3

C2
B2
A2

D1
C1
B1
A1

D0
C0
B0

osd0 osd2osd1 osd3

A0

D0
D2
B0

C0'

C3'
C2'
C1'

B3

D1
C1
B1

A0'

A3'
A2'
A1'

A2

A1
C2
B2

D0'

D3'
D2'
D1'

A3

D3
C3
C0

B0'

B3'
B2'
B1'

D2

Fig. 2. Orthogonal distribution

osd0 osd2osd1 osd3

2

11
10
6
3

14
13
4
1

12
8
5
0

15
9
7

osd0 osd2osd1 osd3

1

11
10
6
3

8
5
4
0

9
7
2

11'
10'
9'
8'

3'
2'
1'
0'

15'
14'
13'
12'

7'
6'
5'
4'

15
14 12 13

Fig. 3. Migration strategy

A Correlation-Aware Prefetching Strategy for Object-Based File System 239

0 232

object

MD5(oid)

OSD

R

Fig. 4. Repartition namespace

osd0 osd2osd1 osd3

2

11
10
6
3

13
4
1

12
8
5
0

15
9
7

osd0 osd2osd1 osd3

2

9
5
1

13
6
7
0

8
4
3

11'
10'
9'
8'

3'
2'
1'
0'

15'
14'
13'
12'

7'
6'
5'
4'

11
15 12 14

14 10

Fig. 5. Repartition strategy

We call this way of distribution as orthogonal layout. The original objects and
replicas of other files are distributed in a similar way. Nevertheless, guaranteeing
orthogonal distribution is not straightforward. We can see that, compared with
the layout without duplication, some objects must be redistributed to avoid
conflicting with their replicas. We extend namespace splitting algorithm in two
ways for this purpose.

Migration Strategy. This strategy does not remap all original objects. Instead,
it just redistributes those original objects on the replica node at the very start.
Fig. 3 illustrates this strategy. The replica node is OSD2 in this example. We
can see that the objects originally stored on ODS2, i.e., 1, 4, 13, 14 are migrated
to other OSDs.

Repartition Strategy. This strategy repartitions the 32 bits identifier names-
pace into several segments. As shown in Fig. 4, the number of segments is just
one less than the number of OSDs. For each file, each segment corresponds to one
of its original nodes. By applying the namespace splitting algorithm, each orig-
inal object is mapped to a unique segment. Then the original object is assigned
to the corresponding original OSD. And all the replica objects are stored in its
exclusive replica node(mark as R in Fig. 4). The replica node of the file is not
involved in the process of namespace splitting. In other words, the replica OSD
is simply omitted when we distribute the original objects. Therefore original-
replica conflicts never occur. Fig. 5 illustrates this strategy.

At first glance, it seems that there is a serious load-imbalance among OSDs
because of replica objects’ aggregation and original objects’ dispersion of a single
file. However, from the perspective of the whole system, since there are huge
number of files, the load is essentially balanced. For each OSD, it plays not only
the role of the replica node of some files but also the role of a original node of
many other files.

Our experimental results show that both repartition and migration strategy
distributes original and replica objects over OSDs evenly. However, if we create a
duplication for an existing single-copy system, the repartition strategy must re-
distribute all objects, while the migration strategy only redistributes the objects
on their replica nodes. So, we select the latter as our distribution algorithm.

240 J. Sui et al.

3.2 Moving Windows

Prefetching excessively or incorrectly certainly could be helpless, even harmful
to system efficiency. In order to maximize the virtue of prefetching, we introduce
the dynamic window mechanism. We treat the batch of to-be-prefetched objects
as a window, and denote the number of objects in the window by window size.
This idea comes from the moving window concept in TCP/IP protocol. The
window extent will be dynamically changed according to the on the fly object
rather than keep stationary all the time. Here are also two alternative strategies:
forward window, which only prefetches the objects that following the current
request, and wing window, which prefetches both the previous and the following
objects. These two strategies have the same window size. Fig. 6(a) and Fig. 6(b)
illustrate the two strategies respectively, where the dark areas are prefetching
windows. Since spatial locality involves both forwards and backwards, we select
the wing window strategy as the moving windows mechanism of NBJLOFS. Both
“wings” have the same length, that called the wing length. This implies that the
wing length is equal to half of the value of window size.

 … oidx … oidx+50 … oidx+99 …

(a) forward window

 … oidx-49 … oidx … oidx+50 …

(b) wing window

Fig. 6. Two moving window strategies(window size = 100)

In NBJLOFS, the replica node of a file maintains a unique wing window for
each client that accesses this file, i.e., we have not implemented data sharing
window. Each client maintains a wing window for every file it accesses. The
windows in replica nodes and clients are always consistent. Any time a window
in the OSD changed, it notifies the corresponding client to synchronize. Objects
in the same file can be identified by their in-file offsets. We call the difference of
two objects’ offsets distance. For each window, we call the central object pivot.
For example, the oidx in Fig. 6(b) is the pivot.

On the client side, whenever an object is accessed, NBJLOFS will determine
whether it is within the wing window extent or not by comparing the wing length
with the distance between the pivot and the demanded object. If the latter is
numerically smaller, which means that the object has been already prefetched
from disk in the replica node, the client node will then send a request to the
replica node, and correspondingly moves the window when reply is received. On
the contrary, the client node will send a request to the original node.

Whenever an original OSD receive an access request, it implies that the re-
quired object has not been prefetched. The original OSD will read the required
object from disk, send it back to the client and issue a prefetching request to
the replica node.

A Correlation-Aware Prefetching Strategy for Object-Based File System 241

On the replica node, if a request arrives, there are two cases.

i) The request is received from a client node. This implies that the required ob-
ject is within the window extent, which means that the previous prefetching
operation works. So the window size will remain unchanged. The required
object will be sent to the client node. This object is chosen as the new pivot,
and the difference between the new and the old windows, i.e., the objects
within the new window but out of the old window, will be prefetched from
disk. Fig. 7(a) shows the change of the window, where the dark area denotes
the newly prefetched objects.

ii) Otherwise, the request is received from an original node. This implies that
the distance is larger than the wing length, showing that the current win-
dow is not wide enough. So the replica node doubles the window size. In
our implementation, the initial value of window size is 1, and its maximum
is limited to 40 objects (amount to 5MB data). Similar with case i, the
required object is chosen as the new pivot and the difference of the new
and the old window is prefetched from disk. Fig. 7(b) shows this case. In
addition, the replica node will inform the related client to synchronize the
window.

oidx-49 oidx ... oidy ... oidx+50

oidy-49 ... oidx ... oidy ... oidx+50 ... oidy+50

... ...

... ...

(a) case 1: within the window’s range

oidx-49 oidx oidx+50

oidy-99 oidy-49 ... oidx+50 ... oidy ... oidy+50 ... oidy+100

(b) case 2: out of the window’s range

Fig. 7. Two window changing cases

3.3 Analysis

In our prototype, a traditional spatial locality based prefetching approach was
also implemented for comparison. It is very similar to the read-ahead strategy in
Linux kernel. We call it SPA. Now we analyze this algorithm and our correlation-
aware prefetching algorithm (COR for short).

Assume that the window size is W (W ≥ 1) and the number of OSDs is N
(N > 1). For simplicity, assume that N > W . When an OSD receives an access
request from client, it should prefetch W objects. For SPA, since objects are
not duplicated, the OSD has to issue W prefetching requests to other W OSDs
assuming that the to-be-prefetched objects are evenly distributed. In contrast,
COR issues only one prefetching request to the replica node. In a single-user
system, COR may have no advantage over SPA if only a single file is accessed
simultaneously. After all, SPA also offers timely prefetching. However, if the
two algorithms are deployed in a multi-user system and many files are accessed

242 J. Sui et al.

simultaneously, COR will show its superiority. Since it induces lighter network
traffic than SPA, there would be less occurrence of network saturation. Moreover,
since COR stores all replicas of a file in a single OSD and just these replicas are
prefetched, disk operations induced by prefetching requests are more likely to be
large sequential read operations. In contrast, disk operations in SPA system are
all small discontinuous (random) read operations. Our experimental results show
that these two advantages of COR lead to significant performance advantage over
SPA.

4 Experiment

4.1 Experimental Environment

All experiments were performed on a cluster of seven single-core 3.06GHz Intel
Celeron nodes. Each machine has 512MB of memory and a 80GB hard disk.
Each node runs Red Hat Enterprise Linux AS 4. All the nodes are connected by
a Gigabit Ethernet. One of them acts as the client node, while other six nodes
act as OSDs.

4.2 Performance Evaluation

We used a modified Bonnie to generate sequential and random workload. In
each test, we first wrote five 100MB files, then tested sequential or random read
performance. Each data point is the average of 5 runs. Each file was composed
of 800 objects, that is, the object size was 128KB. The request generated by
Bonnie is of size 16KB. However, each read/write operation in NBJLOFS deals
with a complete object, namely is of size 128KB.

In pervious version of NBJLOFS, common requests and prefetching requests
are processed in serial. This strategy apparently does not make full use of CPU.
So we implemented a double-threaded version. One thread processes only com-
mon requests and another processes prefetching request. Fig. 8 shows the re-
markable improvement of read performance. In this test, a single client read all
five files in a round robin fashion.

multi-threaded serial

50

60

/s
)

multi-threaded serial

40

50

60

t (
M

B/
s)

multi-threaded serial

20

30

40

50

60

ug
hp

ut
 (M

B/
s)

multi-threaded serial

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (M

B/
s)

multi-threaded serial

0

10

20

30

40

50

60

20 40 60 80 100

Th
ro

ug
hp

ut
 (M

B/
s)

multi-threaded serial

0

10

20

30

40

50

60

20 40 60 80 100

Th
ro

ug
hp

ut
 (M

B/
s)

Cache Size (MB)

multi-threaded serial

0

10

20

30

40

50

60

20 40 60 80 100

Th
ro

ug
hp

ut
 (M

B/
s)

Cache Size (MB)

multi-threaded serial

Fig. 8. Serial vs. Multi-threaded

20

30

40

50

60

ou
gh

pu
t (

M
B/

s)

correlation spatial wo/ prefetching

0

10

20

30

40

50

60

20 40 60 80 100

Th
ro

ug
hp

ut
 (M

B/
s)

Cache Size (MB)

correlation spatial wo/ prefetching

Fig. 9. The Impact of Cache Size

A Correlation-Aware Prefetching Strategy for Object-Based File System 243

20

30

40

50

gh
pu

t (
M

B/
s)

correlation sequential spatial sequential

correlation random spatial random

0

10

20

30

40

50

5 10 15 20 25

Th
ro

ug
hp

ut
 (M

B/
s)

Window Size

correlation sequential spatial sequential

correlation random spatial random

Fig. 10. The Impact of Window Size

10

20

30

40

50

ug
hp

ut
 (M

B/
s)

Correlation sequential spatial sequential

correlation random spatial random

0

10

20

30

40

50

2 3 4 5 6

Th
ro

ug
hp

ut
 (M

B/
s)

Number Of OSDs

Correlation sequential spatial sequential

correlation random spatial random

Fig. 11. Scalability

400

600

800

1000

ic
 (p

ac
ke

ts
/S

)

spatial rxpck correlation rxpck

spatial txpck correlation txpck

0

200

400

600

800

1000

4 8 16 32 64 128

Tr
af

fic
 (p

ac
ke

ts
/S

)

Object Size (KB)

spatial rxpck correlation rxpck

spatial txpck correlation txpck

(a) traffic in packets/s

spatial rxbyt correlation rxbyt

l b l b

1000000

spatial rxbyt correlation rxbyt

spatial txbyt correlation txbyt

800000

1000000

ts
/S

)

spatial rxbyt correlation rxbyt

spatial txbyt correlation txbyt

400000

600000

800000

1000000

fic
 (B

yt
s/

S)

spatial rxbyt correlation rxbyt

spatial txbyt correlation txbyt

200000

400000

600000

800000

1000000

Tr
af

fic
 (B

yt
s/

S)

spatial rxbyt correlation rxbyt

spatial txbyt correlation txbyt

0

200000

400000

600000

800000

1000000

4 8 16 32 64 128

Tr
af

fic
 (B

yt
s/

S)

spatial rxbyt correlation rxbyt

spatial txbyt correlation txbyt

0

200000

400000

600000

800000

1000000

4 8 16 32 64 128

Tr
af

fic
 (B

yt
s/

S)

Object Size (KB)

spatial rxbyt correlation rxbyt

spatial txbyt correlation txbyt

0

200000

400000

600000

800000

1000000

4 8 16 32 64 128

Tr
af

fic
 (B

yt
s/

S)

Object Size (KB)

spatial rxbyt correlation rxbyt

spatial txbyt correlation txbyt

(b) traffic in bytes/s

Fig. 12. Network Traffic

Next, we tested the impact of the cache size on the read performance. We used
a fixed window size 10 and files are still read in a round robin fashion. Fig. 9 shows
that no matter how big the cache, correlation-aware prefetching outperform sim-
ple spatial locality based prefetching and NBJLOFS without prefetching. For a
certain system, the minor performance difference is induced by cache replacement.

We tried to figure out how the window size will impact the overall system
efficiency. Cache size was set to 40MB in this test (we just choose it randomly).
The window size was set changeless in every single run and varied from 5 to 25
in different runs. Beside sequential read test mentioned above, we also tested
completely random read. The 5 files were also read in a round robin fashion. As
shown in Fig. 10, the throughput keeps increasing as the window size grows until
reaches 15. Fig. 10 also shows that the random read benefits from big prefetching
window too.

Scalability is important metrics for distributed systems. We tested different
system sizes. As illustrated in Fig. 11, the correlation-aware prefetching always
exhibits the best performance, regardless of the system size.

To prove that correlation-aware approach indeed decreases network traffic com-
pared with traditional one, we traced real network traffic of a single OSD using
Sysstat utilities. Fig. 12 shows the result. Since objects are distributed over OSDs
evenly and prefetching and common requests are evenly distributed too in the
sense of probability, we can conclude that correlation-aware approach decreases
both the number of packets sent and the number of bytes sent effectively.

244 J. Sui et al.

5 Related Work

Many literals about caching and prefetching have been published. Some of them
focused on utilizing the existence of locality in disk access patterns, both spatial
locality and temporal locality [6][7]. The modern operating system design con-
cept attempts to prefetching consecutive blocks from disk to reduce the cost of
on-demand I/Os [8][9]. However, when a file is not accessed sequentially or the
whole data of a file are not stored consecutive, prefetching can probably result
in extra I/Os. Thus numerous works have been done to find other prefetching
strategies. By implementing history log and data mining technique, [10][11][12]
detect access patterns which can be put to use in the future access. J.R.Cheng et
al [13] has considered semantic links among objects to prefetching data in object-
oriented DBMSs, while [1] tracking multiple per-object read-ahead contexts to
performance prefetching.

Besides, existing studies have aimed at changing the prefetching extent dy-
namically and adaptively without manual intervention. A window covers all the
objects has semantic link was proposed in [13]. Also, Linux kernel adopts read-
ahead window to manage its associated prefetching [8].

Our approach differs from these works. In NBJLOFS, since a file may be
scattered over many storage nodes, and the correlation among objects can be
determined easily by the object attributes, so the correlation-aware prefetching
with orthogonal layout is a natural solution. Our moving window mechanism is
largely derived from these previous works.

6 Conclusions and Future Work

This paper proposed an innovative prefetching strategy for distributed object-
based file system. The correlationship among objects was used to determine
which objects should be prefetched. We designed an orthogonal replica layout,
it reduces network traffic effectively compared with the scattered layout. We
presented two distribution algorithms to guarantee this kind of layouts. We also
designed two moving window strategies to adjust the size and the content of
the prefetching window automatically. Compared with the traditional spatial
based prefetching approach, our new approach decreases network traffic and may
produce large sequential instead of small random disk operations. We admit, the
introducing of the prefetching mechanism bring some negative impacts along
with the dramatically benefits. The way object clustering only guarantees global
load balance, while load imbalance will occur locally. However, the experiment
results show that the benefits are far beyond the side effects. In the distributed
object-based file system, our new prefetching approach exhibited much higher
performance than the traditional spatial locality based approach.

This research can be extended in several directions. For example, in order to
alleviate the workload of replica node, we are thinking about dividing duplication
to several OSDs other than one single OSD. As a result, the migration strategy
also needs to be redesigned. Moreover, by studying the access pattern, more
works can be done to investigate other correlations among objects.

A Correlation-Aware Prefetching Strategy for Object-Based File System 245

References

1. Tang, H., Gulbeden, A., Zhou, J., Strathearn, W., Yang, T., Chu, L.: The Panasas
ActiveScale Storage Cluster: Delivering Scalable High Bandwidth Storage. In: Pro-
ceedings of the 2004 ACM/IEEE Conference on Supercomputing, Pittsburgh, PA,
USA, November 2004, pp. 53–62 (2004)

2. Wang, P., Gilligan, R.E., Green, H., Raubitschek, J.: IP SAN - From iSCSI to
IP-Addressable Ethernet Disks. In: Proceedings of the 20th IEEE/11 th NASA
Goddard Conference on Mass Storage Systems and Technologies, San Diego, CA,
USA, April 2003, pp. 189–193 (2003)

3. Lonczewski, F., Schreiber, S.: The FUSE-System:an Integrated User Interface De-
sign Environment. In: Proceedings of Computer Aided Design of User Interfaces,
Namur, Belgium (June 1996) 37–56

4. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley DB. In: Proceedings of the annual
conference on USENIX Annual Technical Conference, Monterey, California, USA,
June 1999, pp. 183–192 (1999)

5. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive
disks (RAID). In: Proceedings of the 1988 ACM SIGMOD international conference
on Management of data, Chicago, Illinois, United States, June 1988, pp. 109–116
(1988)

6. Liu, H., Hu, W.: A Comparison of Two Strategies of Dynamic Data Prefetching
in Software DSM. In: IEEE Proceedings of the 15th International Parallel and
Distributed Processing Symposium, San Francisco, CA, USA, April 2001, pp. 62–
67 (2001)

7. Jiang, S., Ding, X., Chen, F., Tan, E., Zhang, X.: DULO: an Effective Buffer
Cache Management Scheme to Exploit both Temporal and Spatial Locality. In:
Proceedings of the 4th conference on USENIX Conference on File and Storage
Technologies, San Francisco, CA, USA, December 2005, pp. 101–114 (2005)

8. Butt, A.R., Gniady, C., Hu, Y.C.: The performance impact of kernel prefetching
on buffer cache replacement algorithms. In: Proceedings of the 2005 ACM SIG-
METRICS international conference on Measurement and modeling of computer
systems, Banff, Alberta, Canada, June 2005, pp. 157–168 (2005)

9. Pai, R., Pulavarty, B., Cao, M.: Linux 2.6 Performance Improvement through
Readahead Optimization. In: Proceedings of the Linux Symposium, Ottawa, On-
tario, Canada, July 2004, pp. 391–401 (2004)

10. Soundararajan, G., Mihailescu, M., Amza, C.: Context-aware prefetching at the
storage server. In: USENIX 2008 Annual Technical Conference on Annual Technical
Conference, Boston, Massachusetts, June 2008, pp. 377–390 (2008)

11. Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., Zelenka, J.: Informed
Prefetching and Caching. In: Proceedings of the fifteenth ACM symposium on Op-
erating systems principles, Copper Mountain, Colorado, United States, December
1995, pp. 79–95 (1995)

12. Amer, A., Long, D.D.E., Burns, R.C.: Group-Based Management of Distributed
File Caches. In: Proceedings of the 22 nd International Conference on Distributed
Computing Systems, Vienna, Austria, July 2002, pp. 525–534 (2002)

13. Cheng, J.R., Hurson, A.R.: On The Performance Issues of Object-Based Buffering.
In: Proceedings of the First International Conference on Parallel and Distributed
Information Systems, Miami Beach, FL, USA, December 1991, pp. 30–37 (1991)

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 246–253, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Auxiliary Storage Subsystem to Distributed
Computing Systems for External Storage Service

MinHwan Ok

Korea Railroad Research Institute,
Woulam, Uiwang, Gyeonggi, Korea

panflute@informatics.krri.re.kr

Abstract. Demands for efficient and effective utilization of computing re-
sources have derived distributed computing systems of the large scaled such as
Grid for scientific computing and Cloud for utility computing. In these distrib-
uted computing systems the total capacity of consolidated storages should ex-
pand as the amount of user data grows. The user’s data are necessarily kept in
the distributed computing system such as the Grid and the Cloud, which some
users don’t allow the system to. In this work, an auxiliary storage subsystem is
proposed to provide external storages to the distributed computing system. The
storage subsystem lets the iSCSI devices be connected to the distributed com-
puting system as needed. As iSCSI is a recent, standard, and widely deployed
protocol for storage networking, the subsystem is able to accommodate many
types of storages outside of the distributed computing system. The proposed
subsystem could transmit data by streams attaining high bit rate of the network
capacity in the experiment.

Keywords: Distributed Computing System, Storage Subsystem, iSCSI, External
Storage, Storage Cloud.

1 Introduction

Computing resources commonly comprises one for programs of their executing, and
the other for data of their storage. These two sorts of resources are of course essential
in distributed computing including Grid computing and Cloud computing. The re-
sources for programs and those for data are closely coupled for performance consid-
erations at the execution time. In the distributed computing systems such as Grid or
Cloud these days, the user data are necessarily transmitted to the Grid system or the
Cloud system in order to be processed in the system. In such systems there should be
two fundamental pitfalls. The first one comes from the case the amount of user data is
larger than the amount of available space left in the distributed computing system.
This is a well-known problem in the areas of scientific computing[1,8]. One solution
straightforward is consolidating the data center in which the user data is stored
into the Grid or the Cloud. It seems a similar solution that Open Cirrus federates
distributed data centers[2]. Open Cirrus covers locations of data centers distributed

 An Auxiliary Storage Subsystem to Distributed Computing Systems 247

worldwide. The data center would be consolidated, after the data center has agreed on
the consolidation. The second one comes from the case the owner of the user data
never allow the data is dealt under the control of the Cloud or the Grid, although the
data center has agreed, even though the amount of user data is small.

One solution would be that the data transmitted become transient, which the re-
quested part of the data is available at the execution time only. The part of data is not
valid after the execution. The whole data is not remained in the system without the
user’s approval. An auxiliary storage is required to the distributed computing systems,
analogous to the removable devices of personal computers, in this manner. As it is an
auxiliary storage, it is desirable to use a widely deployed protocol to be attached or
detached to or from the distributed computing system. In this work, a storage subsys-
tem is proposed to supply external storages to the distributed computing system. The
storage transfers user data in the transient state with a widely deployed protocol,
iSCSI, Internet SCSI. The subsystem could support even personal storages of private
data. The details are continued in the next section.

Another solution to the first pitfall is a confederation of volunteer PCs to gain
unlimited storage capacity, such as Storage@home[1]. The members of consolidation
are PCs providing irresponsible storages and thus Storage@Home is a formation of
the opposite property to Open Cirrus with its members providing responsible storages.
It exploits aggregate spaces and bandwidths of volunteering PCs however it has an
indigenous trustworthiness problem as its members are volunteering PCs. Further
Storage@home isn’t a solution to the second pitfall.

A storage cluster has focused on database transactions toward the storage Cloud,
DataLab[3]. Although it does not provide external storages but provide fault tolerant
storage, all the data could be open to the users only in the form of transactions for
those recorded in the databases. DataLab supplies data transactions for distributed job
executions in the distributed computing system, making use of a special hardware
named Active Storage Unit.

2 Storage Subsystem for External Storage Service

Since the storages to be attached or detached are outside of the distributed computing
system, only a registered user should be able to attach an external storage to the dis-
tributed computing system. An auxiliary storage subsystem would take the trustwor-
thiness part on the side of the distributed computing system. The storage subsystem
should also play a manager role on the external storages. The storage subsystem is
depicted in Fig. 1.

The storage subsystem is an additional trustworthiness part and the owner should
register an external storage in which the user data located, as a registrant of the dis-
tributed computing system. It has also a manager role on the external storage includ-
ing connection, disconnection, and loading data, which is an additional one to the
basic storage management of the distributed computing system. The procedure to
access user data is shown in Fig. 2.

248 M. Ok

Data Data Data

SAN Disk Bunch

Internet

Storage Server

Router

Data Data

SAN Disk Bunch

Application Server Application Server

Router

Massively Collected
Data

Private Data
Data

Personal Storage

Storage-array Bridge

Organizational Storage

Fig. 1. The storage subsystem resides in the distributed computing system (right) and manages
external storages to be attached or detached (left)

Fig. 2. The application client logs-in the auxiliary storage subsystem for the second

The storage subsystem supplies external storages including personal storages and
organizational storages as depicted in Fig.1. For the personal storages containing
private data, it is presumed in this work that the amount of user data is relatively
small. Upon the user’s application opens a file, requested blocks are transmitted from
the personal storage by the application at the application server. Conventionally the
file is not transmitted as a whole although it is dependent on the memory usage of the
application. Note that the transmitted blocks do not constitute a regular file on the
application server’s local storage. The whole blocks could be transmitted to the appli-
cation server and stored as a regular file for performance considerations in the case
the user approved. Direct transmission from or to the personal storage is depicted in
Fig. 3 and 4.

 An Auxiliary Storage Subsystem to Distributed Computing Systems 249

Personal
Storage

Storage
Server

Application
Server

Original Data

Personal
Storage

Storage
Server

Application
Server

Updated Data

Fig. 3. Direct read from an external storage Fig. 4. Direct write to an external storage

For the organizational storages containing massively collected data, it is presumed
in this work that the amount of user data is relatively large. Conventionally the file is
not transmitted as a whole although it is dependent on the memory usage of the appli-
cation. However as the amount of user data is massive, parts of all the blocks need be
transmitted to the storage server and stored as regular files for performance considera-
tions with the user’s approval. In this case the user’s application opens the files stored
in the storage server. As those files are transmitted from the organizational storage to
be stored, the process called preloading is performed[7]. Indirect transmission from or
to the organizational storage is depicted in Fig. 5 and 6. When a file is to be written,
the application server stores it in the storage server and then the storage server
transmits the file to the organizational storage.

Storage-
array

Storage
Server

Application
Server

Original
Data

Original Data

Storage-
array

Storage
Server

Application
Server

Updated
Data

Updated Data

Fig. 5. Indirect read via the storage server Fig. 6. Indirect write via the storage server

3 Storage Subsystem Architecture

Almost all the software support TCP/IP over Internet, and Gigabit Ethernet is a domi-
nantly deployed LAN technology with the IP stack. SCSI, Small Computer System
Interface, have been the basic disk interface for server systems. iSCSI is the protocol
for transmissions of data on SCSI disks over Internet. iSCSI is a recent, standard, and
widely deployed protocol for storage networking. The storage subsystem proposed is
founded on the iSCSI technology. The storage space prepared by iSCSI is not adher-
ent to a specific file system, but the owner of the storage space determines which file
system at the time the storage space is prepared.

250 M. Ok

The iSCSI protocol can make clients access the SCSI I/O devices over IP network,
and a client can use the remote storage transparently[4]. The owner’s personal storage
is recognized as a part of the storage server’s local storage by a particular network
device driver[5]. Once the software requests a file to the network device driver, iSCSI
Initiator, it relays the request to the other network device driver, iSCSI Target, of the
storage or the iSCSI device itself. The target storage starts to transfer the file to the
storage server via the network device drivers.

When the target storage transfers data to the storage server, data blocks are deliv-
ered via iSCSI Target/Initiator or iSCSI device/iSCSI Initiator. For the performance
reason, block I/O was adopted[6] that provides necessary blocks of an opened file to
the storage server and updates corresponding blocks when modification occurs. Block
I/O outperforms file I/O and does not adhere to a certain file system. The architecture
of the storage subsystem is shown in Fig. 7.

Storage Server

Data Data Data

Storage
Manage

ment

SCSI
Driver

iSCSI
Target

File System

Application Server

iSCSI
Initiator

SCSI
Driver

Identi
fier

File System

Applicati
on

Pre-
loader

Internet

Data

Target
Storage-array

Data Data Data

Target Storage

iSCSI
Initiator

Pre-
loader

Fig. 7. The storage server or the application server connects to the external storages by iSCSI
protocol

Storage Management module integrates its disk spaces and makes up volumes for
preloading. The disk spaces can be interleaved to speed up the transfer, suchlike
RAID(Redundant Array of Inexpensive Disks)s. Identifier module monitors connec-
tions with the client and maintains each connection, i.e. connection re-establishment
and transfer recovery. It also manages user login or logout to or from the auxiliary
storage subsystem from or to the distributed computing system. The user among the
registrant of the distributed computing system is allowed to transmit data by the auxil-
iary storage subsystem. Pre-loader module caches the user data from the external
storage for the application server. On arrival a new job invokes its application but
waits for data to process, while other jobs are processing their data. Pre-loader loads

 An Auxiliary Storage Subsystem to Distributed Computing Systems 251

data from an external storage and stores it in the storage server with the user’s
approval, once the job has started and becomes asleep waiting for the data to be
loaded. Further on the Pre-loader is detailed in our previous work[7].

4 Subsystem Evaluation onto the External Storage

The storage service is composed of the storage server and clients, with iSCSI target
and iSCSI initiator as respective network device drivers. The storages server is im-
plemented and evaluated through Gigabit Ethernet concatenated to Fast Ethernet. For
evaluation of the subsystem, only one storage server exists on Gigabit Ethernet and
only one client exists on Fast Ethernet. After logged into the storage server, the client
declares NTFS on a volume mounted from the external storage.

Table 1. Summary of Experimentation Environment

 Storage Server Client
OS Redhat-Linux kernel 2.6 MS-Windows 2000 Professional
CPU Intel Xeon 2.8GHz Intel Pentium M 1.5GHz
Memory 1GB 512MB
HDD Ultra320 SCSI 10,000RPM EIDE ATA-100 4,200RPM
NIC Gigabit Ethernet Fast Ethernet

Only one drive of the storage server is used in the experiment. A SCSI disk drive

nowadays is capable of pumping up data, in a bulk transfer mode, sufficient to fill up
the Gigabit Ethernet capacity. However multiple data streams would be required to
fully utilize the available bandwidth on TCP/IP networks. The multiple transmission
streams are generated by storing a file into multiples of a few allocation units. It is
very similar to that of RAID. Two sizes of allocation units, 64kB and 1kB, are chosen
in this experiment as shown in Fig. 8.

0

5

10

15

20

25

1 2 3 4 5

Number of Streams for One File

T
ra

ns
m

is
si

on
 ti

m
e

(s
ec

)

0

2

4

6

8

10

12

Transmission time_128MB Transmission time_64MB

Highest usage_128MB Highest usage_64MB

0

5

10

15

20

25

1 2 3 4 5

Number of Streams for One File

0

2

4

6

8

10

12

H
ighest usage (M

B
/s)

Transmission time_128MB Transmission time_64MB

Highest usage_128MB Highest usage_64MB

(a) Lavish allocation unit (64kB) (b) Compact allocation unit (1kB)

Fig. 8. Transmission time and the highest usage during transmission of one file

252 M. Ok

The transmission times extend by file sizes. A tendency is shown that the smaller
file gets the higher bandwidth usage. The transmission times are reciprocally propor-
tional to the bandwidth usages. The bandwidth of Fast Ethernet would dominate the
transmission time despite the superior bandwidth of Gigabit Ethernet.

The size of an allocation unit is 64kB in the left of Fig. 8. The bandwidth usage is
attained to 6.3MB/s for both transmissions of 128MB and 64MB. By multiplying the
number of transmission streams the bandwidth usage is attained to nearly 9.1MB/s for
both transmissions. Due to the limit in capacity of Fast Ethernet and the protocol
interactions, no more bandwidth usage is attained after doubling the transmission
stream. The size of an allocation unit is 1kB in the right of Fig. 8. The bandwidth
usages are attained to 9.4MB/s and 10.1MB/s for transmissions of 128MB and 64MB,
respectively. By multiplying the number of transmission streams the bandwidth usage
is shrunk to nearly 6.4MB/s for both transmissions. Due to the limit in capability with
a single drive and the overhead from the protocols, the attained bandwidths shrank by
multiplying the number of the transmission streams.

In the case each storage server is equipped with very large main memory, i.e. 1TB,
a file is preserved in the main memory without storing it on storage after transmitted
as a whole. Such storage management originally aims at high performance[8], and it
would be also positive to the second pitfall. Currently the auxiliary storage subsystem
is not for data sharing between users, but there are an alternative for multiple users in
the relative study[8]. Another issue to consider could be effective placements of the
auxiliary storage subsystems. The broker intervenes in efficient allocations of the
distributed storages[9], and this method would be helpful to the subsystem placements
in future work.

5 Conclusion

As the amount of user data grows the total capacity of consolidated storages should
expand in the distributed computing system. It is an unlikely surmise that all the com-
puting sites or data centers would agree on consolidation into the Grid or the Cloud.
Further all the data stored are not continuously used in the distributed computing
system and in this sense the Grid or the Cloud is not efficient on storage. The storage
subsystem proposed is founded on iSCSI, a recent, standard, and widely deployed
protocol for storage networking. The iSCSI protocol can make clients access the SCSI
I/O devices over IP network, and a client can use the remote storage transparently.
The storage subsystem lets the iSCSI devices be connected to the distributed comput-
ing system as needed. In the experiment, the transmission streams gained about 80%
of Fast Ethernet capacity. Since the result came from an experiment that only the
storage server and the client is connected to Gigabit Ethernet and Fast Ethernet, re-
spectively, the other traffic could make the attained usage lower when passing
through Internet. The pre-loader is an important module on this respect. It exploits
idle network bandwidth while other applications are processing data since their data
are loaded.

All the users do not like to let their data under control of the Cloud or the Grid sys-
tem. The concept of Cloud or Grid would not appeal to these users since possessing
their data is not an acceptable premise. This is a big blockage in the developments of

 An Auxiliary Storage Subsystem to Distributed Computing Systems 253

applications for the Grid and the Cloud. In the proposed subsystem the transmitted
blocks do not constitute a regular file in the application server or the storage server
without the user’s approval. This feature is oriented to the users’ view but not to the
developers’ view.

References

[1] Campbell, R., Gupta, I., Heath, M., Ko, S.Y., Kozuch, M., Kunze, M., Kwan, T., Lai, K.,
Lee, H.Y., Lyons, M., Milojicic, D., O’Hallaron, D., Soh, Y.C.: Open CirrusTM Cloud
Computing Testbed: Federated Data Centers for Open Source Systems and Services Re-
search. In: Workshop on Hot topics in Cloud computing, pp. 1–5. USENIX (2007)

[2] Beberg, A.L., Pande, V.S.: Storage@home: Petascale Distributed Storage. In: IEEE Int.
Parallel and Distributed Processing Symposium, pp. 1–6 (2007)

[3] Rich, B., Thain, D.: DataLab: transactional data-parallel computing on an active storage
cloud. In: Int. Symp. on High Performance Distributed Computing, pp. 233–234. ACM,
New York (2008)

[4] Lu, Y., Du, D.H.C.: Performance study of iSCSI-based storage subsystems. Communica-
tion Magazine 41, 76–82 (2003)

[5] Ok, M., Kim, D., Park, M.-s.: UbiqStor: A remote storage service for mobile devices.
In: Liew, K.-M., Shen, H., See, S., Cai, W. (eds.) PDCAT 2004. LNCS, vol. 3320,
pp. 685–688. Springer, Heidelberg (2004)

[6] Block Device Driver Architecture,
http://msdn.microsoft.com/library/en-us/wceddk40/
html/_wceddk_system_architecture_for_block_devices.asp

[7] Ok, M.: A Sharable Storage Service for Distributed Computing Systems in Combination of
Remote and Local Storage. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009. LNCS,
vol. 5574, pp. 545–556. Springer, Heidelberg (2009)

[8] Nicolae, B., Antoniu, G., Bouge, L.: Distributed Management of Massive Data: An Effi-
cient Fine-Grain Data Access Scheme. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M.,
Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS, vol. 5336, pp. 532–543. Springer,
Heidelberg (2008)

[9] Secretan, J., Lawson, M., Boloni, L.: Efficient allocation and composition of distributed
storage. Jour. of Supercomputing 47(3), 286–310 (2009)

Checkpointing and Migration of Communication
Channels in Heterogeneous Grid Environments

John Mehnert-Spahn and Michael Schoettner

Heinrich-Heine University, Duesseldorf, NRW 40225, Germany
John.Mehnert-Spahn@uni-duesseldorf.de,
Michael.Schoettner@uni-duesseldorf.de

Abstract. A grid checkpointing service providing migration and trans-
parent fault tolerance is important for distributed and parallel appli-
cations executed in heterogeneous grids. In this paper we address the
challenges of checkpointing and migrating communication channels of
grid applications executed on nodes equipped with different checkpointer
packages. We present a solution that is transparent for the applications
and the underlying checkpointers. It also allows using single node check-
pointers for distributed applications. The measurement numbers show
only a small overhead especially with respect to large grid-applications
where checkpointing may consume many minutes.

1 Introduction

Fault tolerance can be achieved for many distributed and parallel applications,
particularly for scientific ones, using a rollback-recovery strategy [1]. Here, pro-
grams are periodically halted to take a checkpoint that can be used to restart the
application in the event of a failure. As nodes may fail permanently the restart
implementation must support restarting checkpoints on new healthy nodes. The
latter is also important for application migration, e.g. to realize load balancing.

Checkpointing solutions have been available for many years, mainly used in
high performance computing and batch processing systems. As grid applications
are getting into mainstream there is an emerging need for a transparent check-
pointing solution. Right now there is a great variety of different checkpointing
packages such as single node checkpointers, e.g. BLCR (with MPI support) [8],
OpenVZ [9]. Virtual machine technologies, e.g. VMware [4] and XEN [7] are also
used as checkpointers. Furthermore, there are distributed checkpointers such as
LinuxSSI [5], DCR [12] and DMTCP [2]. All these implementations come with
different capabilities and there is no ultimate best checkpointer.

Therefore, we have designed XtreemGCP - a grid checkpointing service capa-
ble of checkpointing and restarting a grid job running on nodes equipped with
different checkpointing packages [13]. Each grid job consists of one or multiple
job units. Each job unit represents a set of processes of a job on one grid node.
Checkpointing a distributed job does not only require to take a snapshot of
all process states on all involved nodes but also to handle in-transit messages
as well. Otherwise, orphan messages and lost messages can lead to inconsistent

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 254–265, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Checkpointing and Migration of Communication Channels 255

checkpoints. Orphan messages occur if the reception of a message is part of the
receiver side checkpoint, however the message send event is not part of the sender
side checkpoint. In case of a restart the sender will send this message again which
may cause faults.

Lost messages occur if reception of a message is not part of the receiver side
checkpoint, however the message send event is part of the sender side checkpoint.
During restart this message will not be sent again and the receiver may block and
run into a failure situation. Obviously, in-transit messages need to be handled by
all involved checkpointers. As the latter have not been designed to cooperate with
each other, e.g. BLCR does not cooperate with DMTCP, we need a subordinated
service transparently flushing all communication channels at checkpoint time
avoiding in-transit messages. And this service must also support channel re-
connections in case of a job migration. The contributions of this paper are the
concepts and implementation of a transparent grid channel checkpointing (GCC)
facility for a heterogeneous setup with various existing checkpointer packages.
We address TCP sockets used by a great range of distributed applications. As
UDP communication inherently tolerates lost messages we do not take care of
in-transit UDP messages.

The outline of this paper is as follows. In Section 2 we present an overview
of grid channel checkpointing followed by Section 3 describing the architecture
in detail. The different phases to checkpoint, restart and migrate channels are
discussed in Section 4 followed by an evaluation. Related work is discussed in
Section 6 followed by conclusions and future work.

XtreemGCP is implemented within XtreemOS - a Linux-based distributed OS
for next generation grids [3]. This work is funded by the European Commision
under FP6 (FP6-033576).

2 Grid Channel Checkpointing Overview

The main idea of the GCC approach is to flush all TCP channels of a dis-
tributed application before a checkpoint operation in order to avoid lost and
orphan messages. Flushing of TCP channels is achieved by preventing all appli-
cation threads from sending and receiving messages as well as from creating new
channels during the checkpointing operation.

Concurrent GCC protocol execution is achieved by using separate threads for
channel control and flushing. Once, appropriate controller threads have been in-
stalled at both peer processes of an application TCP channel, a marker message
is sent through the channel, signaling the marker receiver that the channel is
empty. Potential in-transit messages received by a controller thread in the con-
text of channel flushing are stored in a so-called channel draining buffer at the
receiver side.

No messages can get lost since all in-transit messages will be assigned to the
current checkpoint on the receiver side. No orphan message can occur since send-
ing of application messages is blocked until the checkpoint operation has finished
and all received messages have been recognized as being sent on the sender side.

256 J. Mehnert-Spahn and M. Schoettner

To support checkpointers incapable of saving/restoring socket descriptors,
sockets may need to be closed before a checkpoint operation and recreated after
a taken checkpoint. A recent version of LinuxSSI failed during restart, since sock-
ets that were open during checkpointing time could not be reconstructed. But of
course,whenever possiblewe leave sockets up and running for performance reasons.

Before an application resumes with its normal execution, potentially closed
sockets will be recreated and reconnected. Furthermore, any blocked channel
creation system calls and formerly blocked send and recv calls will be released.
Messages formerly stored in the channel draining buffer get consumed by appli-
cation threads before new messages can be received.

Finally, GCC also needs to handle changed IP-addresses caused by job-unit
migration. To handle changing IP-addresses we introduce a GCC manager com-
ponent that can be contacted by all involved GCC controller instances.

3 GCC Architecture

In the following text we describe the Grid Channel Checkpointing (GCC) archi-
tecture and its components in detail. Fig. 1 presents all GCC components.

GCC marks TCP sockets because UDP sockets are not relevant. It also de-
termines the current socket usage mode, indicating whether being in receive or
in send mode. The socket usage mode may change dynamically as TCP sockets
can be used in a bidirectional fashion. If a process sends and receives messages
over one TCP socket it is called to be in duplex mode.

For application-transparent channel checkpointing network system calls such
as send, recv, connect, accept, listen, etc. must be controlled. Application threads
must neither send or receive messages nor create new channels while check-
pointing is in progress. However, GCC threads must be able to exchange GCC-
messages on application channels (to be flushed) and on GCC control channels.

The library interposition technique is used, to achieve these features in an
application-transparent way. Therefore, we initialize the environment variable
LD PRELOAD with the path to our interposition library. Thus, all network
calls of the application end up in the interposition library. The contained network
function wrappers pass the calls to the original library. Therewith we are able,
e.g. to block a send call within the associated function wrapper.

As previously mentioned, sockets may have to be re-connected to new IP
addresses in case of process migration. Sockets must also be closed and recre-
ated on nodes whose checkpointers are incapable of handling open socket de-
scriptors. Both tasks can be handled using the callback mechanism provided by
XtreemGCP [13]. The latter explicitly executes registered callbacks before and
after a checkpoint or after a restart.

In addition these callbacks are used to integrate the channel flushing protocol.
GCC callbacks are registered in an application-transparent way, realized by a
fork-wrapper included in the above mentioned interposition library.

Two control threads are created per process, the send-controller thread and
the recv-controller thread, see Fig. 1. If a socket is shared by multiple processes

Checkpointing and Migration of Communication Channels 257

Fig. 1. GCC components

on one node, the send- or recv-controller thread of one process becomes channel
leader of it. The channel leader exclusively supervises channel flushing and recon-
nection, but relies on cooperation with the remaining controller threads. More
precisely, the send-controller takes control over sockets of TCP channels being
in send mode. At checkpoint and restart time it is in active mode which means
it initiates flushing and reconnection with the remote recv-controller. The recv-
controller takes control over TCP channels being in receive mode. It is in passive
mode and reacts on flushing and reconnection request from a send-controller.

Distinguishing send- and recv-controllers allows handling situations where two
communicating processes are server and client for different channels at the same
time. No deadlock can occur during restart e.g. if one server socket on each
side, recreated by the relevant send-controller, waits for the opposite node to
reconnect, since the relevant recv-controller is ready to handle a reconnection
request.

Migrated sockets must be detected before a controller thread tries to initi-
ate a socket reconnection. Thus, each socket creation, recreation and any other
socket state changes are registered at the distributed channel manager (DCM).
Therefore, all controller threads can use a TCP control channel to the channel
manager. Currently, we have a central channel manager implementation (one
manager for each grid job) that will be replaced by a distributed version for
scalability reasons.

GCC execution is triggered by callbacks triggered before and after checkpoint-
ing and immediately after a restart.

3.1 Shared Sockets

As mentioned before a socket formerly shared by multiple processes must be recre-
ated with special care, just one process must recreate it. Thus, in a multi-process

258 J. Mehnert-Spahn and M. Schoettner

Fig. 2. Process-wide shared soclets and descriptor passing

application the channel leader exclusively recreates the socket in the kernel within
the post-checkpoint or restart callback. For the remaining application processes
to see the newly recreated socket we use the UNIX descriptor passing mechanism
[10]. Using the latter allows the channel leader to pass recreated socket descriptors
to controller threads of other processes using UNIX domain socket connections,
see Fig. 2.

The channel manager assigns a unique key per channel to involved controller
threads for a UNIX domain socket connection setup and descriptor exchange.
The key remains the same also after a potential migration. While the descriptor
is sent, a corresponding entry is made in the process-owned descriptor table.
Process socket descriptors assigned to a logical channel must be matched with
those being valid before checkpointing. Socket descriptors are assigned in an
increasing order during normal runtime. If an intermediate descriptor gets closed,
a gap exists, and the highest descriptor number is bigger than the total number
of sockets currently used. During socket rebuild, descriptors will be assigned
in an increasing number, without gaps by taking the association of channel and
descriptor number into account saved during pre-checkpoint time and descriptors
will be rearranged to the correct order using the dup2 system call.

Thus, this approach avoids false multiple recreations of a shared socket and
the latter do not need to be reestablished exclusively via process forking and
inheritance in user space. Additionally kernel checkpointer based process recre-
ation, which excludes the calling of fork at user space, is supported as well.

4 GCC Phases

4.1 Pre-checkpoint Phase

Blocking channel creation: Since there is a short time gap between pre-checkpoint-
callback execution and process synchronization in the checkpoint phase, the

Checkpointing and Migration of Communication Channels 259

creation of new TCP channels must be blocked. This is realized by blocking the
socket calls accept and connect until the checkpoint operation is finished.

Determining channel leaders: Sending on TCP channels must be prevented
to drain channels in finite time. Two challenges need to be addressed in this
context. First, if multiple processes use a shared socket, each of them may send
a marker, many could receive one or multiple markers. Obviously, it is unclear
when the last message has been received. Second, application threads could be
blocking on send and recv calls which would prevent the protocol to start.

This first challenge is addressed by determining a so-called channel leader
whose task is to exclusively treat sockets shared by multiple processes. More
precisely, one send controller will be installed per process and out-going channel,
one recv controller thread will be installed per process and in-coming channel.
Each controller sends a channel-leader-request to the channel manager. Thus,
e.g. a two-process application, whose child inherited socket descriptors of its
parent, sends two requests to the channel manager. The channel manager selects
one of the requesting controller threads as the channel leader and informs all
about this decision.

The second challenge is solved by the controller threads sending a SIGALRM
signal to applications threads blocking on send or recv calls. Application and
controller threads can be distinguished such that just application threads will
be put asleep in the signal handler routine while controller threads can start
with channel draining. Finally, no application thread is able to send or receive
messages along TCP channels anymore until the end of the post-checkpoint
phase, see Section 4.2.

Before channel flushing can be initiated by a send controller, a recv controller
must contact the DCM to learn on which socket it is supposed to listen for the
marker. Both use a handshake to agree on which channel is to be flushed. Channel
flushing: The send controller being the channel leader at the same time sends a
marker. The marker is the last message received by the remote recv controller

Fig. 3. Channel flushing with marker message

260 J. Mehnert-Spahn and M. Schoettner

which is the channel leader on the peer node. Messages received before the
marker are in-transit messages. Marker and in-transit content will be separated.
The latter will be put in a channel draining buffer. The buffer data is assigned to
the appropriate receiving application thread. Usually, just one thread waits for
messages on a peer. However, multiple threads can do so as well. In the latter
case the OS scheduler decides non-deterministically which thread receives the
message. Thus, the channel checkpointing protocol copies received data into the
receive buffer of the application thread that has been listening to this channel
recently. This equals a possible state during fault-free execution.

Marker recognition can be achieved at different levels. Currently, a special
marker message is sent along the application channel, see Fig. 3. Since the under-
lying TCP layer fragments application data independent of application semantics
a marker message can overlap with two or multiple TCP packages. Thus, at each
byte reception the recently received and buffered data must be matched back-
wards against the marker. In the future we plan to replace this first approach by
another alternative, e.g. extending each application network packet by a GCC
header which is removed at receiver side or using a socket shutdown to enforce
the sending of a TCP FIN message to be detected in the kernel.

Furthermore, we optionally need to close open sockets for checkpointer pack-
ages that cannot handle them. This is no problem for the application threads as
they are blocked and sockets will be re-opened in the post-checkpoint phase, see
Section 4.2. The final step of the pre-checkpoint phase is saving the association
of socket descriptor and channel key, needed during post-checkpoint and restart
time.

4.2 Post-checkpoint Phase

Unblocking channel creation: This GCC phase aims at unblocking the network
communication just after a checkpoint has been taken. At first, channel creation
blocking is released, unblocking system calls such as connect and accept.

Recreating (shared) sockets: Sockets need to be recreated only if they had
been closed before checkpointing or in case of a restart. There is no need to
adapt server socket addresses, since no migration took place.

Socket recreation becomes more complex if sockets are shared by multiple
processes, see Section 4.1.

Release send/recv barriers: The last step of this GCC phase is to unblock
formerly blocked send and recv calls and to wake up application threads. Fur-
thermore, any buffered in-transit messages need to be consumed before any new
messages.

4.3 Migration and Restart Phase

The GCC restart is similar to the post-checkpoint phase but both differ from
the location of execution and migration-specific requirements. The first step
here includes the release of the channel creation blockade (unblocking connect

Checkpointing and Migration of Communication Channels 261

and accept calls). Furthermore, we need to address different checkpointer (CP)
capabilities:

1. CPs capable of saving, restoring and reconnecting sockets (for changed IP
addresses),

2. CPs capable of saving and restoring sockets, but not supporting socket
migration,

3. CPs being unable to handle sockets at all.

Obviously, we need to address cases 2 and 3, only. Here sockets are recreated,
their descriptors are rearranged as described under Section 3.1. Before a client
socket can reconnect to a server socket, we must check if a migration took place
recently and if the server is already listening for reconnections. The latter is the
task of the channel manager which receives any changed server addresses from
the control threads, see Section 3. Thus, a client just queries the DCM to learn
the reconnection state.

The last step in this phase includes releasing any formerly blocked send and
recv calls and waking up application threads.

5 Evaluation

The GCC pre- and post-checkpoint phases have been measured using a synthetic
distributed client server application running on nodes with heterogeneous and
homogeneous checkpointer packages installed. The test application sends peri-
odically 100 Byte packets in five second intervals. At client and server side each
channel is handled by a separate thread.

In the first test case the server part is executed and checkpointed on one
node part of a LinuxSSI cluster (v2.1), the client part on grid node with BLCR
(v0.8.2) installed. The channel manager is executed on a separate node inside the
LinuxSSI cluster. In the second test case client and server have been executed
and checkpointed on nodes with BLCR installed.

The testbed consists of nodes with Intel Core 2 DUO E6850 processors (3
GHz) with 2 GB RAM interconnected with a Gigabit Ethernet network.

5.1 Test Case 1: Heterogeneous Checkpointers and GCC

Fig. 4 indicates the times taken at a client and a server for flushing, closing and
reestablishing channels on top of LinuxSSI and BLCR checkpointers (no shared
sockets have been used). The pre-checkpoint phase takes up to 4.25 seconds to
handle 50 channels. The duration is mainly caused by the serial synchronization
of the send and recv controller threads via the channel manager. An improved
channel manager is on the way handling requests concurrently. Furthermore,
the duration includes memory buffering and consumption of potential in-transit
messages.

Fig. 4 also shows the time needed for the post-checkpoint phase taking about
half of the time as the pre-checkpoint phase. This is due to less interaction with

262 J. Mehnert-Spahn and M. Schoettner

Fig. 4. GCC behavior on top of LinuxSSI
andBLCRwith closing and reestablishing
channels

Fig. 5. Same scenario as in Fig. 5
but without closing and reestablishing
channels

the channel manager and of course no channels need to be flushed. As expected
if necessary, rebuilding and reconnecting of sockets is costly.

Fig. 5 indicates the times for the same scenario as shown in Fig. 4 but with-
out closing and reestablishing channels. Here the pre-checkpoint phase takes less
time (about 3.25 seconds to handle 50 channels). Furthermore, without socket re-
building and reconnecting this post-checkpoint phase is also significantly shorter
than the one from above just taking about 120 milliseconds for 50 channels.

Another aspect is that GCC is working on top of heterogeneous callback im-
plementations without major performance drawbacks. While BLCR comes with
its own callback implementation implicitly blocking applications threads, Lin-
uxSSI does not. For the latter we have to use the generic callback implementation
provided by XtreemGCP.

5.2 Test Case 2: Homogeneous Checkpointers and GCC

Fig. 6 indicates the times taken for the client and server to flush, close and
reestablish channels based on the mere usage of BLCR checkpointers. The pre-
checkpoint phase takes up to 2.75 seconds to handle 50 channels. It is faster
than the pre-checkpoint phase of test case 1 because both grid nodes run native
Linux there is no SSI-related overhead caused by LinuxSSI. The post-checkpoint
phase is significantly shorter than the one of test case 1 because no native SSI
structures must be updated when sockets are being recreated and reconnected.

Fig. 7 indicates the times taken for a client and server to flush open channels.
It takes less time during the pre- and post-checkpoint phase compared to the
previous setup of test case 2.

Overall we see that the current implementation of GCC consumes more time
when checkpointing more channel connections per grid node. Although we do
not expect thousands of connections per grid node as the typical case we plan
to optimize the GCC solution to be more scalable.

Checkpointing and Migration of Communication Channels 263

Fig. 6. GCC with BLCR only, with clos-
ing and reestablishing channels

Fig. 7. Same scenario as in Fig. 6
but without closing and reestablished
channels

Another aspect is that the amount of messages in-transit to be drained during
checkpointing operation will also influence GCC times. But as the bandwidth of
grid networks is typical several Mbit/s or even more, we do not expect an ex-
tensive time overhead here. Furthermore, though checkpointing communication
channels may consume several seconds we think this is acceptable because check-
pointing large grid applications may take many minutes to save the application
state to disk.

6 Related Work

Overall there is only one other project working on checkpointing in heterogeneous
grid environments while there are different projects implementing checkpointing
for MPI applications [11]. However, there are many publications proposing so-
phisticated checkpointing protocols but that are not related to heterogeneity
challenges addressed by this paper.

The CoreGRID grid checkpointing architecture (GCA) [14] proposes a sim-
ilar architecture like XtreemGCP aiming to integrate low-level checkpointers.
However, the current GCA implementation supports Virtual Machines (VMs),
only, and does not support checkpointing communication channels of distributed
applications.

The Open Grid Forum (OGF) GridCPR Working Group has published a
design document for application-level checkpointing [6] that is not addressing
transparent channel checkpointing.

DMTCP [2] is most close to the approach proposed in this paper. It is a
distributed library checkpointer able to checkpoint and migrate communication
channels. They also use a marker message to flush in-transit messages but the
latter will be sent back to the original sender at checkpoint time and forth to
the receiver at resume/restart time. In contrast we store in-transmit messages at

264 J. Mehnert-Spahn and M. Schoettner

the receiver side. Furthermore, DMTCP supports only one specific checkpointer
whereas our approach is designed for heterogeneous grid environments. Finally,
shared sockets are recreated during restart by a root process in user space which
inherits them to children processes created later. In contrast to our approach
processes with disturbed original parent-child relations cannot be recreated.

In [12] communication states are saved by modifying the kernel TCP protocol
stack of the OS. The approach is MPI specific, does not support shared sockets,
and is designed for one checkpointer (BLCR) and not for a heterogeneous setup.

7 Conclusions and Future Work

Transparent checkpointing and restarting distributed applications requires han-
dling in-transit messages of communication channels. The approach we propose
flushes communication channels at checkpoint time avoiding orphan and lost
messages. The contribution of this paper is not a new checkpointing protocol
but concepts and implementation aspects how to achieve channel flushing in a
heterogeneous grid where nodes have different checkpointer packages installed.

The proposed solution is transparent for applications and existing check-
pointer packages. It also allows to use single node checkpointers for distributed
applications without modifications because GCC takes care of checkpointing
communication channels.

GCC is a user mode implementation not requiring kernel modifications. It also
offers transparent migration of communication channels and supports recreation
of sockets shared by multiple threads of one or more processes. Our measure-
ments show that the current implementation can handle dozens of connections
in reasonable time, especially with respect to checkpointing times of huge appli-
cations which can be many minutes.

Future goals include implementation optimizations to improve scalability and
channel flushing support for asynchronous sockets.

References

1. Elnozahy (Mootaz), E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34(3),
375–408 (2002)

2. Ansel, J., Arya, K., Cooperman, G.: DMTCP: Transparent checkpointing for clus-
ter computations and the desktop. In: 23rd IEEE International Parallel and Dis-
tributed Processing Symposium, Rome, Italy (May 2009)

3. http://www.xtreemos.eu

4. Sugarman, J., Venkitachalam, G., Lim, B.H.: Virtualizing I/O devices on VMWare
Workstations Hosted Virtual machine Monitor (2001)

5. Fertre, M., Morin, C.: Extending a cluster ssi os for transparently checkpointing
message-passing parallel application. In: ISPAN, pp. 364–369 (2005)

6. Stone, N., Simmel, D., Kilemann, T., Merzky, A.: An architecture for grid check-
point and recovery services. Technical report (2007)

http://www.xtreemos.eu

Checkpointing and Migration of Communication Channels 265

7. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, J., Warfiled, A.: XEN and the art of virtualization (2003)

8. Duell, J.: The design and implementation of berkeley lab’s linux checkpoint/restart
(2003)

9. http://download.openvz.org/doc/openvz-intro.pdf

10. Stevens, W.R., Fenner, B., Rudoff, A.M.: UNIX Network programming The Sockets
Networking API, vol. I. Addison-Wesley, Reading (2004)

11. Sankaran, S., Squyres, J.M., Barrett, B., Lumsdaine, A., Duell, J., Hargrove, P.,
Roman, E.: The LAM/MPI checkpoint/restart framework: System-intiated check-
pointing. International Journal of High Performance Computing Applications 19(4)
(2005)

12. Ma, C., Huo, Z., Cai, J., Meng, D.: Dcr: A fully transparent checkpoint/restart
framework for distributed systems (2009)

13. Mehnert-Spahn, J., Ropars, T., Schoettner, M., Morin, C.: The Architecture of the
XtreemOS Grid Checkpointing Service Euro-Par. Delft, The Netherlands (2009)

14. Jankowski, G., Januszewski, R., Mikolajczak, R., Stroinski, M., Kovacs, J., Kertesz,
A.: Grid checkpointing architecture - integration of low-level checkpointing capa-
bilities with grid. Technical Report TR-0036, CoreGRID, May 22 (2007)

http://download.openvz.org/doc/openvz-intro.pdf

On-Line Task Granularity Adaptation for Dynamic
Grid Applications�

Nithiapidary Muthuvelu1, Ian Chai1, Eswaran Chikkannan1,
and Rajkumar Buyya2

1 Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
{nithiapidary,ianchai,eswaran}@mmu.edu.my

2 Dept. of Computer Science and Software Engineering,
The University of Melbourne, 3053 Carlton, Victoria, Australia

raj@csse.unimelb.edu.au

Abstract. Deploying lightweight tasks on grid resources would let the commu-
nication overhead dominate the overall application processing time. Our aim is
to increase the resulting computation-communication ratio by adjusting the task
granularity at the grid scheduler. We propose an on-line scheduling algorithm
which performs task grouping to support an unlimited number of user tasks, ar-
riving at the scheduler at runtime. The algorithm decides the task granularity
based on the dynamic nature of a grid environment: task processing requirements;
resource-network utilisation constraints; and users QoS requirements. Simula-
tion results reveal that our algorithm reduces the overall application processing
time and communication overhead significantly while satisfying the runtime con-
straints set by the users and the resources.

1 Introduction

A grid application contains a large number of tasks [1] and a scheduler at the user site
transmits each task file to a grid resource for further execution and retrieves the pro-
cessed output file(s) [2][3]. A lightweight or fine-grain task requires minimal execution
time (i.e. 15 seconds to one minute). Executing a computation-intensive application
with a large number of lightweight tasks on a grid would result in a low computation-
communication-ratio due to the overhead involved in handling each task [4]; the term
computation refers to the task execution time, whereas communication refers to the user
authentication, and task and output file transmission time. There are two issues involved
in this matter:

1. The communication overhead increases proportionally with the number of tasks.
2. A resource’s processing capability and the network capacity may not be optimally

utilised when dealing with fine-grain tasks. For example:
(a) Assume that a high-speed machine allows a user to use the CPU power for x

seconds. Executing lightweight tasks one at a time would not utilise the full pro-
cessing speed (i.e. x×Million Instructions per Second) of the machine within
x seconds due to the overhead involved in invoking and executing each task.

� This research is partially supported by e-ScienceFund, Ministry of Science, Technology and
Innovation, Malaysia, and Endeavour Awards, Austraining International.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 266–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On-Line Task Granularity Adaptation for Dynamic Grid Applications 267

(b) Transmitting task/output files (of very minimal sizes) one by one between the
user and the resources would underutilise the relevant achievable bandwidth.

In short, deploying lightweight tasks on grid would lead to inefficient resource-network
utilisation, and unfavourable application throughput. This statement is proven with ex-
periments in Sec. 5 of this paper. In our previous work [5], we showed that task grouping
reduces the overall application processing time significantly. In our current work, we
present an on-line scheduling algorithm for deciding the task granularity. The scheduler
has no knowledge on the total number of tasks in the application as the tasks come on a
real-time basis, arriving at the scheduler at runtime (e.g. processing data arriving from
sensors).

Upon receiving the tasks, the scheduler selects and groups a number of tasks into a
batch, and deploys the grouped task on a grid resource. The task granularity is deter-
mined as to maximise the resource-network utilisation and minimise the overall appli-
cation processing time. Hence, the decision highly depends on the dynamic nature of a
grid environment:

1. The processing requirements of each task in a grid application.
2. The utilisation constraints imposed by the resource providers to control the resource

usage [6].
3. The varying bandwidths of the networks interconnecting the scheduler and the re-

sources [7].
4. The quality of service (QoS) requirements for executing an application [8].

Our proposed scheduling algorithm focuses on computation-intensive, bag-of-tasks ap-
plications. It assumes that all the tasks in an application are independent and have sim-
ilar compilation platform. The algorithm considers the latest information from the grid
resources, decides the task granularity, and proceeds with task grouping and deploy-
ment. Our ultimate goal is to reduce the overall application processing time while max-
imising the usage of resource and network capacities.

The rest of the paper is organised as follows: Section 2 presents the related work.
The factors and issues involved in task grouping in grid are described in Sec. 3. Section
4 explains the strategies and the process flow of the proposed scheduler system which
is followed by the relevant performance analysis in Sec. 5. Finally, Sec. 6 concludes the
paper by suggesting future work.

2 Related Work

Here, we focus on the work related to batch processing in distributed computing which
involve task granularity adaptation. James et al [9] grouped and scheduled equal num-
bers of independent jobs using various scheduling algorithms to a cluster of nodes. This
induced an overhead as the nodes were required to be synchronised after each job group
execution iteration. Simulations were conducted to optimise the number of jobs in a
batch for a parallel environment by Sodan et al [10]. The batch size is computed based
on average runtime of the jobs, machine size, number of running jobs in the machine,
and minimum/maximum node utilisation. However, these simulations did not consider

268 N. Muthuvelu et al.

the varying network usage or bottleneck, and it limits the flexibility of the job groups
by fixing the upper and lower bounds of the number of jobs in the group.

Maghraoui et al [11] adapted the task granularity to support process migration (upon
resource unavailability) by merging and splitting the atomic computational units of the
application jobs. The jobs are created using a specific API; special constructs are used
to indicate the atomic jobs in a job file which are used as the splitting or merging points
during job migration.

A number of simulations had been conducted to prove that task grouping reduces the
overall grid application processing time. The authors in [5][12] grouped the tasks based
on resource’s Million Instructions Per Second (MIPS) and task’s Million Instructions
(MI); e.g. for utilising a resource with 500 MIPS for 3 seconds, tasks were grouped
into a single task file until the maximum MI of the file was 1500. MIPS or MI are not
the preferred benchmark matrices as the execution times for two programs of similar
MI but with different program locality (e.g. program compilation platform) can differ
[13]. Moreover, a resource’s full processing capacity may not be available all the time
because of the I/O interrupt signals.

In our previous work [14], task grouping was simulated according to the parameters
from users (budget and deadline), applications (estimated task CPU time and task file
size), utilisation constraints of the resources (maximum allowed CPU and wall-clock
time, and task processing cost per time unit), and transmission time tolerance (max-
imum allowed task file transmission time). The simulations show that the grouping
algorithm performs better than the conventional task scheduling algorithm by 20.05%
in terms of overall application throughput when processing 500 tasks. However, it was
assumed that the task file size is similar to the task length which is an oversimplification
as the tasks may contain massive computation loops.

In this paper, we treat the file size of a task separately from its length or processing
needs. We also consider two additional constraints: space availability at the resource;
and output file transmission time. In addition, the algorithm is designed to support an
unlimited number of user tasks arriving at the scheduler at runtime.

3 Factors Influencing the Task Granularity

Figure 1 shows the implementation focus of our scheduling algorithm in a grid environ-
ment. The factors influencing the task granularity are passed to the scheduler from the
(1) user application, (2) grid resources, and the (3) scheduler. The user application is a
bag-of-tasks (BOT) with QoS requirements. Each task is associated with three require-
ment properties: size of the task file (TFSize); estimated size of the output file (OFSize);
and the estimated CPU time (ETCPUTime). The QoS includes the budget (UBudget)
and deadline (UDeadline) allocated for executing all the user tasks.

Each resource (R) from a set of participating grid resources (GR) provides its utili-
sation constraints to the scheduler:

1. Maximum CPU time (MaxCPUTime) allowed for executing a task.
2. Maximum wall-clock time (MaxWCTime) a task can spend at the resource. This

encompasses the CPU time and the processing overhead (waiting time and task
packing/unpacking overhead) at the resource.

On-Line Task Granularity Adaptation for Dynamic Grid Applications 269

Task Requirements

User Application
Tasks

Instruction, Libraries,
Tasks, Data

Task/Output File Size,
Estimated Task

CPU Time

Scheduler

Resource-
Network

Repository

Scheduling
Algorithm

Output
Collection

Grid Resources
Resource 1(1)

(2) Resource
Utilisation
Constraints

(3) Network
Utilisation
Constraint

(4)

(5)
(6) Grouped

Tasks

(7) Output Files(8)QoS
Budget, Deadline

Resource
Utilisation
Constraints

Task Processing Cost,
Maximum Allowed

Task CPU Time,
Task Wall-Clock Time,

Storage Space

Resource 2
Resource M

Fig. 1. Scheduler Components and their Information Flow

3. Maximum storage space (MaxSpace) that a task or a set of tasks (including the
relevant output files) can occupy at a time.

4. Task processing cost (PCost) per unit time charged by a resource.

Finally, the network utilisation constraint is the maximum time that a scheduler can wait
for the task/output files to be transmitted to/from the resources (MaxTransTime). It is
the tolerance threshold that a scheduler can accept in terms of file transmission time.

Having these information, we derived the seven objective functions for determining
the granularity of a task group, TG, for a resource, Ri, as follows:

Objective 1: TG CPU time ≤MaxCPUT imeRi

Objective 2: TG wall-clock time ≤MaxWCTimeRi

Objective 3: TG and output transmission time ≤MaxTransT imeRi

Objective 4: TG and output file size ≤MaxSpaceRi

Objective 5: TG turnaround time ≤ Remaining UDeadline
Objective 6: TG processing cost ≤ Remaining UBudget
Objective 7: Number of tasks in TG ≤ Remaining BOTTOTAL

where, BOTTOTAL = total number of tasks waiting at the scheduler.

However, there are three issues that affect the granularity according to these seven ob-
jective functions.

ISSUE I: A resource can be a single node or a cluster. The task wall-clock time is
affected by the speed of the resource’s local job scheduler and the current processing
load. In order to obey the objectives 2 and 5, one should know the overheads of the
resources’ queuing systems in advance.

ISSUE II: The task CPU time differs according to the resources’ processing capabilities.
For example, a group of five tasks can be handled by Resource A smoothly, whereas it
may exceed the maximum allowed CPU time or wall-clock time of Resource B, in spite
of having a similar architecture as Resource A; the processing speed of a resource cannot
be estimated in advance based on the hardware specification only. Moreover, the task
CPU time highly depends on the programming model or compilation platform. Hence,

270 N. Muthuvelu et al.

we should learn the resource speed and the processing need of the tasks prior to the
application deployment.

ISSUE III: Task grouping increases the resulting file size to be transmitted to a re-
source, leading to an overloaded network. Moreover, the achievable bandwidth and la-
tency [7][15] of the interconnecting network are not static; e.g. the bandwidth at time
tx may support the transmission of a batch of seven tasks, however, at time ty , this may
result in a heavily-loaded network (where x < y). Hence, we should determine the
appropriate batch size that can be transferred at a particular time.

4 Scheduler Implementation

In our scheduling algorithm, the issues mentioned in Sec. 3 are tackled using three ap-
proaches in the following order: Task Categorisation; Task Category-Resource Bench-
marking; and Average Analysis. The following subsections explain the three approaches
respectively and present the process flow of the entire scheduler system.

4.1 Task Categorisation

The tasks in a BOT vary in terms of TFSize (e.g. a non-parametric sweep application),
ETCPUTime, and OFSize. When adding a task into a group, the resulting total TFSize,
ETCPUTime, and OFSize of the group get accumulated. Hence, the scheduler should
select the most appropriate tasks from the BOT (without significant delay) and ensure
that the resulting group satisfies all the seven objective functions.

We suggest a task categorisation approach to arrange the tasks in a tree structure based
on certain class interval thresholds applied to the TFSize, ETCPUTime, and OFSize.
The tasks are divided into categories according to TFSize class interval (TFSizeCI),
followed by ETCPUTime class interval (ETCPUT imeCI), and then OFSize class in-
terval (OFSizeCI).

Algorithm 1 depicts the level 1 categorisation in which the tasks are divided into
categories (TCat) based on TFSize and TFSizeCI. The range of a category is set ac-
cording to TFSizeCI. For example, the range of:

TCat0: 0 to (TFSizeCI + TFSizeCI/2)
TCat1: (TFSizeCI + TFSizeCI/2) to (2× TFSizeCI + TFSizeCI/2)
TCat2: (2×TFSizeCI +TFSizeCI/2) to (3×TFSizeCI +TFSizeCI/2)

The category ID (TCatID) of a task is 0 if its TFSize is less than the TFSizeCI (line
2,3). Otherwise, the mod and base values (line 5,6) of the TFSize are computed to
determine the suitable category range.

For example, when TFSizeCI = 10 size units, then a task with,
TFSize = 12 belongs to TCat0 as TCat0(0 < TFSize <15)
TFSize = 15 belongs to TCat1 as TCat1(15 ≤ TFSize <25)
TFSize = 30 belongs to TCat2 as TCat2(25 ≤ TFSize <35)

On-Line Task Granularity Adaptation for Dynamic Grid Applications 271

Algorithm 1. Level 1 Task Categorisation
Data: Requires TFSize of each T and TFSizeCI

for i← 0 to BOTTOTAL do1

if Ti−TF Size < TFSizeCI then2

TCatID← 03

else4

ModV alue← Ti−TF Size mod TFSizeCI5

BaseV alue← Ti−TF Size −ModV alue6

if ModV alue < TFSizeCI/2 then7

TCatID← (BaseV alue/TFSizeCI)− 18

else9

TCatID← ((BaseV alue + TFSizeCI)/TFSizeCI)− 110

Ti belongs to TCat of ID TCatID11

This is followed by level 2 categorisation; TCat(s) from level 1 is further divided into
sub-categories according to ETCPUTime and ETCPUT imeCI. The similar categori-
sation algorithm is applied with ETCPUTime of each task and ETCPUT imeCI. Sub-
sequently, level 3 categorisation divides the TCat(s) from level 2 into sub-categories
based on OFSize and OFSizeCI .

Figure 2 shows an instance of categorisation with TFSizeCI = 10,
ETCPUT imeCI = 6, OFSizeCI = 10. The category(s) at each level is created when
there is at least one task belonging to the particular category. For each
resulting TCat, the average requirements are computed: average TFSize (AvgTFSize);
average ETCPUTime (AvgETCPUTime); and average OFSize (AvgOFSize).

When a new set of tasks arrives at the scheduler, each task is checked for its re-
quirements and assigned to the appropriate TCat; new categories with certain ranges
are created as needed. Having this organisation, the scheduler can easily locate the task
files (for a group) that obey the utilisation constraints and QoS requirements.

0:0<TFSize<15

1:15<=TFSize<25

2:25<=TFSize<35

0:0<ETCPUTime<9
1:9<=ETCPUTime<15
0:0<ETCPUTime<9
1:9<=ETCPUTime<15

0:9<=ETCPUTime<15
2:15<=ETCPUTime<21

0:0<OFSize<15
1:15<=OFSize<25
0:0<OFSize<15
1:25<=OFSize<35
2:35<=OFSize<45
3:45<=OFSize<55
.................................

Task Category List
:TCat0
:TCat1
:TCat2
:TCat3
:TCat4
:TCat5
..........

The average
requirement
details are
computed

for eact TCat:
-AvgTFSize

-AvgETCPUTime
-AvgOFSizeLevel 1: TFSize

based categorisation
Level 2: ETCPUTime
based categorisation

Level 3: OFSize
based categorisation

B
O

T

Fig. 2. Task Categorisation

272 N. Muthuvelu et al.

4.2 Task Category-Resource Benchmarking

In this benchmark phase, the scheduler selects a few tasks from the categories for further
deployment on the resources before scheduling the entire user application. This helps
the scheduler to study the capacity, performance, and overhead of the resources and the
interconnecting network over the user tasks. It selects p tasks from the first m dominat-
ing categories (based on the total number of tasks in each category) and sends to each
resource. The total number of benchmark tasks, BTasksTOTAL, can be expressed as:

BTasksTOTAL = m× p×GRTOTAL (1)

Upon retrieving the processed output files, the remaining UBudget and UDeadline are
updated accordingly, and the following seven actual deployment matrices of each task
are computed:

task file transmission time (scheduler-to-resource); CPU time; wall-clock time;
processing cost; output file transmission time (resource-to-scheduler); process-
ing overhead; and turnaround time.

Finally, the average of each deployment matrix is computed for each task
category-resource pair. For a category k, the average deployment matrices on a re-
source j are expressed as average deployment matrices of TCatk − Rj , which
consist of:

average task file transmission time (AvgSTRT imek,j); average CPU time
(AvgCPUT imek,j); average wall-clock time (AvgWCT imek,j); average pro-
cessing cost (AvgPCostk,j); average output file transmission time
(AvgRTST imek,j); average processing overhead (AvgOverheadk,j); and av-
erage turnaround time (AvgTRT imek,j).

The average deployment matrices of those categories which did not participate in the
benchmark phase are then updated based on the average ratio of the other categories.
Assume that m categories have participated in the benchmark phase, then the average
matrices of a category can be formulated in the following order:

AvgST RTimei, j = (∑m−1
k=0 (AvgT FSizei×AvgST RTimek, j/AvgT FSizek))/m

AvgCPUTimei, j =(∑m−1
k=0 (AvgETCPUTimei×AvgCPUTimek, j/AvgETCPUTimek))/m

AvgRT STimei, j = (∑m−1
k=0 (AvgOFSizei×AvgRT STimek, j/AvgOFSizek))/m

AvgPCosti, j = (∑m−1
k=0 (AvgCPUTimei, j×AvgPCostk, j/AvgCPUTimek, j))/m

AvgOverheadi, j = (∑m−1
k=0 AvgOverheadk, j)/m

AvgWCTimei, j = AvgCPUTimei, j +AvgOverheadi, j
AvgT RTimei, j = AvgWCTimei, j +AvgST RTimei, j +AvgRT STimei, j

where,
k = 0,1,2,...,TCatTOTAL − 1; TCat ID participated in benchmark.
j = 0,1,2,...,GRTOTAL − 1; grid resource ID.
i = 0,1,2,...,TCatTOTAL − 1; TCat ID did not participate in benchmark.
m = Total categories participated in benchmark.

In short, the benchmark phase studies the response and performance of the resources
and the interconnecting network on each category.

On-Line Task Granularity Adaptation for Dynamic Grid Applications 273

Task
Categorisation

(2) Tasks, Task
Requirements

(3)

User Application

Scheduler
Flow

Grid Resources

Benchmark

Constraint
Fetching

Task
Granularity

Output
Fetching

Average
Analysis

Task Grouping-
Dispatching

(10) Resource-
Network Constraints

(4)

(5) (14) Tasks/
Grouped Tasks

(6) (15) Output
Files

(7)

(9)
(8)(12)

(11)(13)

Controller
(1) QoS

Fig. 3. Process Flow of the Scheduler System

4.3 Average Analysis

Knowing the behaviour of the resources and network, we can group the tasks according
to the seven objective functions of task granularity. However, as grid resides in a dy-
namic environment, the deployment matrices of the categories may not reflect the latest
grid status after a time period. Therefore, the scheduler should update the deployment
matrices of each TCatk − Rj pair periodically based on the latest arrived processed
task groups.

First, it gets the ‘actual’ deployment matrices of the latest arrived processed groups.
Using the previous TCatk−Rj average matrices, it computes the deployment matrices
that each task group ‘supposed’ to get. Then, the ratio ‘supposed’:‘actual’ of each de-
ployment matrix is computed to estimate and update the TCatk−Rj average matrices.
For those categories which did not participate in the latest task groups, their TCatk−Rj

average matrices get updated based on the ratio of the other categories as explained in
Sec. 4.2.

4.4 Scheduler Process Flow

Figure 3 presents the process flow of the entire scheduler system. (1) The Controller
manages the scheduler activity in terms of the flow and periodic average analysis. It en-
sures that the QoS requirements are satisfied at runtime. (2) The Task Categorisation cat-
egorises the user tasks. (3) It then invokes the Benchmark which selects BTasksTOTAL

from the categorised BOT for (4,5) further task deployment on the grid resources. (6)
The Output Fetching collects the processed benchmark tasks and (7,8) the Average Anal-
ysis module studies the task category-resource or TCatk − Rj average deployment
matrices. (10) The Constraint Fetching retrieves the resource-network utilisation con-
straints periodically to set the task granularity objective functions. (9,11,12) Having the
categorised tasks, TCatk−Rj average deployment matrices, and the resource-network
utilisation constraints, the Task Granularity determines the number of tasks from various
categories that can be grouped for a particular resource.

When selecting a task from a category, the expected deployment matrices of the
resulting group are accumulated from the average task deployment matrices of the

274 N. Muthuvelu et al.

particular category. The final granularity must satisfy all the seven objective functions
mentioned in Sec. 3 of this paper. The task categorisation process derives the need for
enhancing objective 7 to control the total number of tasks that can be selected from a
category k:

Objective 7: Total tasks in TG from a TCatk ≤ size of(TCatk)

(13,14) Upon setting the granularity, the Task Grouping-Dispatching selects and groups
the tasks, and transfers the batch to the designated resource. (15) The processed task
groups are then collected by the Output Fetching; the remaining UBudget and UDead-
line are updated accordingly. The cycle (10-15) continues for a certain time period and
then the Controller signals the Average Analysis to update the average deployment ma-
trices of each TCatk − Rj to be used by the subsequent task group scheduling and
deployment iterations.

5 Performance Analysis

The scheduling algorithm is simulated using the GridSim [16]. There are 400-2500
tasks involved in this performance analysis with TFSize (6-40 size units), ETCPUTime
(70-130 time units), and OFSize (6-40 size units). The TFSizeCI, ECPUT imeCI ,
OFSizeCI are of 10 size units each. The QoS constraints are UDeadline (200K-600K
time units) and UBudget (6K-8K cost units).

The grid is configured with eight cluster-based resources, each with three processing
elements. The processing capacity of a cluster is 200-800 MIPS and the associated
utilisation constraints: MaxCPUTime (30-40 time units), MaxWCTime (400-700 time
units), MaxSpace (1K-5K size units), MaxTransTime (8K-9K time units), and PCost
(3-10 cost units per a time unit). For benchmarking, two tasks are selected from the
first four dominating categories. The user submits 400 tasks to the scheduler at start-
up time and periodically submits 200 tasks at intervals set by Poisson distribution with
λ=1.0 time unit. Figure 4 depicts the performance table/charts of the scheduler from the
following experiments.

EXPERIMENT I: First, we trace the performance of the scheduler with three resources
(R0-R2), UBudget=6000 cost units, and UDeadline=200K time units. Table 1 depicts
the number of remaining tasks in each TCat during the deployment iterations. Initially,
13 categories are created as indicated in Column I. Column II shows the tasks upon the
benchmark phase (BTasksTOTAL = 24) with remaining UDeadline=190K time units
and UBudget=5815 cost units.

After the benchmark, the task granularity is computed for each resource based on
TCatk − Rj average deployment matrices. The resulting task groups for the three
resources:

R0 : TCat0(24), R1 : TCat0(13)+Tcat1(56), R2 : TCat1(4)+TCat2(20)
e.g. TCat0(24) indicates 24 tasks from TCat0

Table 2 shows how the estimated granularities for R0 and R1 adhere to the constraints
in the objective functions. The actual deployment matrices of the relevant processed

On-Line Task Granularity Adaptation for Dynamic Grid Applications 275

Table 2. The Validation of Task Granularity

R Estimated Average Matrices according

to the Task Granularity vs Objective

Functions

Actual Deployment

Matrices of the

Processed Task

Groups (Proposed

Scheduler)

Average

Deployment

Matrices of the

Processed

Individual Tasks

(Conventional

Scheduler)

R0 AvgCPUTime:29 vs MaxCPUTime:30 CPU time:22 CPU time:1.6

AvgWCTime:31 vs MaxWCTime:700 Wall-clock time:25 Wall-clock time:2

AvgTrantTime:1600 vs

MaxTransTime:9500

Transmission

time:1712

Transmission

time:634

AvgSpace:336 vs MaxSpace:5000 Space:355 Space:20

AvgPCost:88 vs UBudget:5815 Processing cost:66 Processing cost:4.8

AvgTRTime:965 vs UDeadline:190K

R1 AvgCPUTime:49 vs MaxCPUTime:50 CPU time:34 CPU time:1.1

AvgWCTime:53 vs MaxWCTime:700 Wall-clock time:38 Wall-clock time:2

AvgTrantTime:7310 vs

MaxTransTime:8000

Transmission

time:4900

Transmission

time:564

AvgSpace:1274 vs MaxSpace:10000 Space:1113 Space:20

AvgPCost:299 vs UBudget:5727 Processing cost:204 Processing cost:6.6

AvgTRTime:7365 vs UDeadline:190K

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

Processed Task at Time Intervals

With
Grouping
Without
Grouping

Time Intervals

N
um

be
r

of
 T

as
ks

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

Processed Task and Task Group Counts
Tasks
Task
Groups

Time Intervals

N
um

be
r

of
 T

as
ks

Chart (b)Chart (a)

Table 1. Remaining Category Tasks

TCat 0 1 2 3 4 5 6 7 8 9 10 11 12 Total

I 37 66 80 67 2 62 16 35 29 1 3 1 1 400

II 37 60 74 61 2 56 16 35 29 1 3 1 1 376

III 0 0 54 61 2 56 16 35 29 1 3 1 1 259

IV 0 0 20 9 2 56 16 35 29 1 3 1 1 173

V 15 45 63 38 3 82 23 51 44 2 4 2 1 373

VI 0 0 0 0 0 31 11 83 74 4 6 4 1 214

Fig. 4. Performance Tables and Charts of the Proposed Scheduler

276 N. Muthuvelu et al.

task groups prove that the scheduling algorithm fulfills all the seven objective functions
for deploying 117 tasks (Table 1, Column III) in batches. The next iteration uses the
same average deployment matrices, resulting in groups with R0 : TCat1(17), R1 :
TCat2(17) + Tcat3(19), R2 : TCat3(33); Column IV indicates the remaining 173
tasks.

After this point, a new set of 200 tasks arrived at the scheduler (Column V). The
subsequent iteration is guided by the average analysis and task groups are formed
based on the latest grid status; R0 : TCat0(15) + TCat1(14), R1 : TCat1(31) +
TCat2(19), R2 : TCat2(44) + TCat3(1). The scheduler flow continues with average
analysis, task granularity, grouping, deployment and new task arrival. At the end, the
scheduler managed to complete 786 tasks out of 1000 within the UDeadline (Column
VI). For comparison purpose, a similar experiment was conducted with conventional
task scheduling (deploying tasks one-by-one). The scheduler deployed only 500 tasks
out of 1000 within the UDeadline.

An instance of average deployment matrices of the conventional scheduler is shown
in Table 2. R0 manage to process 24 tasks (in a group) in 1759 time units which can be
averaged as 73.29 time units per task. However, the conventional scheduler spent 637.6
time units to process one task; 99.4% of the deployment time is used for file transmis-
sion purpose. This indicates that a grid environment is not suitable for lightweight tasks.
Hence, there is a strong need for the proposed scheduler which can adaptively resize the
batch size for efficient grid utilisation.

EXPERIMENT II: Here, we conduct the simulation in an environment of eight re-
sources with UDeadline=600K time units and UBudget=8000 cost units. The charts in
Fig. 4 show the performance based on the observations at eight time intervals upon
scheduler start-up. After the second interval, the scheduler produced better outcome
throughout the application deployment in terms of total processed tasks as shown in
Chart (a). For example, our scheduler successfully executed 1181 tasks by interval 8,
whereas the conventional scheduler executed only 800 tasks, resulting in a performance
improvement of 47.63%. Chart (b) depicts the task and task group counts processed by
the proposed scheduler. For example, 716 tasks are successfully processed by our sched-
uler at interval 5 (Chart (a)). Interval 5 on Chart (b) indicates that there are only 113
file transmissions needed to process the 716 tasks (24 benchmark tasks and 89 groups).
However, the conventional scheduler had 560 file transmissions by this interval (Chart
(a)), an additional communication overhead of 20.18%.

6 Conclusion

The proposed scheduling algorithm uses simple statistical computations to decide on
the task granularity that satisfies the current resource-network utilisation constraints
and user’s QoS requirements. The experiments prove that the scheduler leads towards
an economic and efficient usage of grid resources and network utilities. The scheduler
is currently being implemented for real grid applications. In future, the algorithm will
be adapted to support work-flow application models. The scheduler will be improved to
deal with unforeseen circumstances such as task failure and migration as well.

On-Line Task Granularity Adaptation for Dynamic Grid Applications 277

References

1. Berman, F., Fox, G.C., Hey, A.J.G. (eds.): Grid Computing - Making the Global Infrastruc-
ture a Reality. Wiley and Sons, Chichester (2003)

2. Baker, M., Buyya, R., Laforenza, D.: Grids and grid technologies for wide-area distributed
computing. Softw. Pract. Exper. 32, 1437–1466 (2002)

3. Jacob, B., Brown, M., Fukui, K., Trivedi, N.: Introduction to Grid Computing. IBM Publica-
tion (2005)

4. Buyya, R., Date, S., Mizuno-Matsumoto, Y., Venugopal, S., Abramson, D.: Neuroscience
instrumentation and distributed analysis of brain activity data: a case for escience on global
grids: Research articles. Concurrency and Computation: Practice and Experience (CCPE) 17,
1783–1798 (2005)

5. Muthuvelu, N., Liu, J., Soe, N.L., Venugopal, S., Sulistio, A., Buyya, R.: A dynamic job
grouping-based scheduling for deploying applications with fine-grained tasks on global grids.
In: Proceedings of the 2005 Australasian workshop on Grid computing and e-research, pp.
41–48. Australian Computer Society, Inc. (2005)

6. Feng, J., Wasson, G., Humphrey, M.: Resource usage policy expression and enforcement in
grid computing. In: Proceedings of the 8th IEEE/ACM International Conference on Grid
Computing, Washington, DC, USA, pp. 66–73. IEEE Computer Society, Los Alamitos
(2007)

7. Arnon, R.G.O.: Fallacies of distributed computing explained (2007),
http://www.webperformancematters.com/

8. Ranaldo, N., Zimeo, E.: A framework for qos-based resource brokering in grid computing.
In: Proceedings of the 5th IEEE European Conference on Web Services, the 2nd Workshop
on Emerging Web Services Technology, Halle, Germany, vol. 313, pp. 159–170. Birkhauser,
Basel (2007)

9. James, H., Hawick, K., Coddington, P.: Scheduling independent tasks on metacomputing
systems. In: Proceedings of Parallel and Distributed Computing Systems, Fort Lauderdale,
US, pp. 156–162 (1999)

10. Sodan, A.C., Kanavallil, A., Esbaugh, B.: Group-based optimizaton for parallel job schedul-
ing with scojo-pect-o. In: Proceedings of the 2008 22nd International Symposium on High
Performance Computing Systems and Applications, Washington, DC, USA, pp. 102–109.
IEEE Computer Society, Los Alamitos (2008)

11. Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: The internet operating system:
Middleware for adaptive distributed computing. International Journal of High Performance
Computing Applications 20, 467–480 (2006)

12. Ng, W.K., Ang, T., Ling, T., Liew, C.: Scheduling framework for bandwidth-aware job
grouping-based scheduling in grid computing. Malaysian Journal of Computer Science 19,
117–126 (2006)

13. Stokes, J.H.: Behind the benchmarks: Spec, gflops, mips et al (2000),
http://arstechnica.com/cpu/2q99/benchmarking-2.html

14. Muthuvelu, N., Chai, I., Chikkannan, E.: An adaptive and parameterized job grouping al-
gorithm for scheduling grid jobs. In: Proceedings of the 10th International Conference on
Advanced Communication Technology, vol. 2, pp. 975–980 (2008)

15. Lowekamp, B., Tierney, B., Cottrell, L., Jones, R.H., Kielmann, T., Swany, M.: A Hierarchy
of Network Performance Characteristics for Grid Applications and Services (2003)

16. Buyya, R., Murshed, M.M.: Gridsim: A toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. Concurrency and Computation:
Practice and Experience (CCPE) 14 (2002)

http://www.webperformancematters.com/
http://arstechnica.com/cpu/2q99/benchmarking-2.html

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 278–286, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Message Clustering Technique towards Efficient
Irregular Data Redistribution in Clusters and Grids

Shih-Chang Chen1, Tai-Lung Chen1,∗, and Ching-Hsien Hsu2

1 College of Engineering
Fax: +886-5186416

2 Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, R.O.C.
{scc,tai,robert}@grid.chu.edu.tw

Abstract. Efficient scheduling algorithms are essential to irregular data redis-
tribution in cluster grid. Cluster grid is an environment with heterogeneous
computing nodes and complex network. It is important for schedulers to keep
an eye on load balance and low communication cost while distributing different
size of data segment on various processors. High Performance Fortran Version
2 (HPF2) provides GEN_BLOCK distribution format which facilitates general-
ized block distributions. In this paper, we present a message clustering tech-
nique to derive low communication cost when performing such operation
in cluster grids. The main idea of the proposed technique is to cluster three
kinds of messages and normalize the cost. The performance evaluation is
given and show the proposed method successfully adapts to heterogeneous
environment.

1 Introduction

Researches on data redistribution can be classified into regular and irregular. Both
fields required efficient data redistribution scheduling algorithms to shorten the
communication cost. Before performing scheduling algorithms, array needs to be
specified by BLOCK, CYCLIC and BLOCK-CYCLIC(c) for regular distribution, and
user-defined function for irregular distribution such as GEN_BLOCK.

Cluster grids provide various processors and heterogeneous network environment
to execute scientific applications. While performing irregular data redistribution with
different ability of processors, different number of jobs and quantity of data should be
distributed accordingly. Message generators refer to distribution schemes given by
different computing phases of scientific applications to generate messages. Then,
schedulers give schedules with low communication cost to redistribute data for status
changed from current phase to next one.

∗ Corresponding author.

 Message Clustering Technique towards Efficient Irregular Data Redistribution 279

PARAMETER (previous = /23, 8, 8, 17, 21, 8/)

!HPF$ PROCESSORS P(6)

REAL A(85), P (6)

!HPF$ DISTRIBUTE A (GEN_BLOCK(previous)) onto P

!HPF$ DYNAMIC

next = /12, 6, 27, 8, 19, 13/

!HPF$ REDISTRIBUTE A (GEN_BLOCK(next))

A code segment of High Performance Fortran version 2 (HPF2) is given above
which provides GEN_BLOCK distribution format to perform generalized block distri-
bution. Two parameters for two phases of a scientific application are given such as
previous and next. The parameters represent the uneven data size on array. According
to the parameters, array is firstly distributed on six processors and then redistributed.
Both operations are performed by GEN_BLOCK function. To redistribute data with
low communication cost, efficient scheduling algorithms are essential.

Schedulers such as Two-Phase Degree Reduction algorithm (TPDR) [7] is an effi-
cient algorithm. TPDR provides two phases to achieve good performance. This
algorithm transforms communication relation between processors into a graph. The
vertexes represent the processors while the edges represent the communication in the
graph. According to color mechanism, the degree of in-fan or out-fan edges deter-
mines the number of communication steps, which is also the number of scheduling
steps given by TPDR. The idea of TPDR is to reduce a degree to derive a scheduling
step. The first phase of TPDR is a degree reduction phase, which reduce the degree of
the graph and derive a communication step recursively while the current degree is
larger than 2. The second phase is an adjustable coloring mechanism to derive the
last two steps for TPDR.

Local message reduction (LMR) [3] is an optimization technique which provides
better load balance during data redistribution. Authors of LMR observed that the cost
of messages is also data size generated by message generator. In fact, messages are
only transmitted in local memory or between two processors in one cluster. The
transmitting rate in local memory should be different from that between two proces-
sors. Then, messages are clustered in two sorts: one is local data access, which is
transmitted in local memory. The relative transmitting rate is defined as local access
time (LAT). The other one is remote data access, which is transmitted between two
different processors. Remote access time (RAT) is defined for the relative transmit-
ting rate. LMR defines RLR as RAT divided by LAT to normalize the cost of messages.

Both TPDR and LMR are discussed in single cluster. With the advancement of
network and parallel computational architecture, GEN_BLOCK array redistribution is
expected to be performed in grids. TPDR is doubted to adapt the topology and pro-
vide good schedules. In this paper, a message clustering technique (MCT) is proposed
for such environment. The idea of proposed method is to cluster three kinds of mes-
sages and normalized cost of each message. Then different kinds of messages are
scheduled in different steps to derive a low cost schedule.

280 S.-C. Chen, T.-L. Chen, and C.-H. Hsu

The rest of this paper is organized as follows. Section 2 presents a brief survey of
related work. Definitions and an example of schedule are given in Section 3. In
Section 4, the message clustering technique (MCT) for multiple clusters in grids is
introduced to reduce the cost of GEN_BLOCK redistribution. The example in Section 3
is used to explain the MCT. In Section 5, the simulation results and performance
analysis are given to weigh the pros and cons. Finally, the conclusions and future
works are presented in Section 6.

2 Related Work

Three kinds of researches are focused on regular array redistribution including the
communications set identification; message packing and unpacking techniques; com-
munication optimizations. The communication sets identification techniques were
proposed including the ScaLAPACK in [13], and CFS and ED in [12]. The message
packing and unpacking techniques including the ECC method [1], which were pro-
posed by Bai et al. to pack/unpack array elements efficiently. The communication
optimization techniques including the communication scheduling approaches pro-
posed by Desprez et al. [4] for avoiding node contention. Hsu et al. [6] proposed the
Generalized Basic-Cycle Calculation method to minimize the transmission overhead.
Huang et al. [8] proposed a flexible processor mapping method to improve data local-
ity. An efficient communication scheduling method [9] was proposed for processor
mapping technique. To support compiled communication, an MPI prototype, CC-MPI
[10], was proposed to allow user to manage network resources. Lim et al. [11] pre-
sented a general framework and discussed the direct, indirect, and hybird communica-
tion schedules for developing array redistributions. Sundarsan et al. [14] introduced a
framework and derived an algorithm to redistribute two-dimensional block-cyclic
arrays onto 2-D processor grids. With restrictions, contention free is guaranteed.

Two kinds of researches are focused on irregular array redistribution including the
message generation and communication scheduling algorithms. Guo et al. [5] pro-
posed communications optimization techniques for nested loops and introduced sym-
bolic analysis algorithms. HCS and HRS [2] were proposed to improve data access on
data grids. The communication optimization technique, called local message reduc-
tion (LMR) [3], was proposed to normalize the cost of communications and improve
the scheduling results. The two-phase degree reduction (TPDR) was proposed by Hsu
et al. [7] to minimize the communication for irregular array redistribution. TPDR
employs two phases, the first phase is a degree reduction method and the second
phase is a adjustable coloring mechanism. Both phases can successfully derive com-
munication steps with the number of minimal steps. Based on previous work, Wang
et al. [15] improved divide-and-conquer scheduling algorithm.

3 Preliminary

In Section 1, the code segment briefly introduces the processes of GEN_BLOCK redis-
tribution. Processors represent the senders and receivers while changing phases of
scientific applications. In such operation, communication scheduling algorithms are
required for efficient GEN_BLOCK redistribution.

 Message Clustering Technique towards Efficient Irregular Data Redistribution 281

For scheduling algorithms, two policies are required to avoid contentions: First, a
sender sends a message in one step. Second, a receiver receives a message in one step.
The length1 of each step is dominated by the message with largest data size. The
length of total steps2 represents the communication cost of the derived schedule for
GEN_BLOCK redistribution.

To simplify the presentation, definitions are given as follows.

Definition 1: N is the number of processors. Pi are given to represent index of proces-
sors, where 0 ≤ i < N.

Definition 2: The index of messages are given as mj, where 0 ≤ j < 2N-1.

Fig. 1 illustrates communication patterns on six processors on array for two phases
according the code segment in Section 1. Numbers in parentheses beside P0~5 are
required data segment size in both phases. The arrows are the messages, m1~11, repre-
sent the communication between each pair of nodes. Numbers in parentheses beside
messages are the size of data segment needed to be transmitted. Scheduling algo-
rithms must derive a schedule with at least four steps to perform GEN_BLOCK redis-
tribution since P2 has four messages to receive. The schedule with four steps is given
in Fig. 2. The messages are arranged in steps with data size given in parentheses and

Fig. 1. Communication patterns on six processors on array for two phases

A four-step schedule

No. of step No. of message Cost of step

Step 1 m1(12), m4(8), m8(3) 12

Step 2 m2(6), m5(8), m10(5) 8

Step 3 m3(5), m7(8), m9(16) 16

Step 4 m6(6), m11(8) 8

Total cost 44

Fig. 2. A schedule with four steps

1 Length of a step is equal to the maximal data size of messages in this step.
2 Length of total steps is the sum of length of all steps.

282 S.-C. Chen, T.-L. Chen, and C.-H. Hsu

the cost of each step is easy to find. For example, m1, m4 and m8 are scheduled in
step 1 with length which is dominated by m1. The length of total steps is 44 which is
the sum of costs of each step.

4 The Proposed Method

Grids, which are connected by internet, have a variation of message categories. As
described in introduction section, there are two clusters of messages, which are local
data access and remote data access. The local data access represents the transmissions
in memory while remote data access represents the transmissions between processors
in single cluster. Grid, which inherit characteristics of single cluster, also classify
messages into local data access and remote data access. In addition, the distant data
access is defined to represents the transmissions between clusters. Therefore, distant
access time (DAT) is defined for distant data access and the ratio of distant to remote
access time (DRR) is defined as DAT divide by RAT.

Assume the number of nodes that are employed in each cluster is the same and the
following definition is given.

Definition 3: Performing GEN_BLOCK redistribution on N processors between clus-
ters in grids. The value NC represents the number of nodes in every Ci while Ci
represents the ID of clusters, where 0 ≤ i ≤ ⌊N/NC⌋. SpeedCi,j represents the transmit-
ting rate from Ci to Cj.

With above description, DRR, the ratio of distant to remote access time, is formu-
lated as following equation:

DRR =
RAT

DAT
 =

ii

ji

SpeedC

SpeedC

,

,
 (1)

Definition 4: Given communication patterns on processors on array for two phases;
sender Pi and receiver Pj ∈ Cr, where 0 ≤ r ≤ ⌊N/NC⌋; message mk is given, where 1 ≤
k ≤ 2N−1. While sender Pi sends a message mk to receiver Pj between clusters Cr, mk
represents the messages of local data access if i = j; mk represents the messages of
distant data access if Pi and Pj belong to different Cr; otherwise mk represents remote
data access.

The proposed message clustering technique (MCT) for multiple clusters in grids
employs three scheduling levels which are defined as follows:

Process-1: The process which processes the arrangement of local data access.

Process-2: The process which is responsible for the arrangement of distant data
access.

Process-3: The process which arranges remote data access.

Fig. 3 shows the effect of DRR by giving a schedule which is based on Fig. 2. The
NC is assumed three, and then P0~2 and P3~5 are members of C0 and C1, respectively.
The difference between two schedules in Fig. 2 and 3 is that m6 is multiplied by DRR
which is assumed five, and m1, m5, m7, m9 and m11 is divided by LAT which is

 Message Clustering Technique towards Efficient Irregular Data Redistribution 283

assumed eight in Fig. 3. Two observations are found from the difference: (1) Domi-
nators of all steps are changed. Effect of original dominators no longer exists. For
example, m4 replace m1 in step 1; m2 replace m5 in step 2; m3 replaces m9 in step 3; m11
is replaced by m6 in step 4. (2) Cost of m6 is larger than half length of total steps. The
above observations show the possibility that the hidden cost of messages can influ-
ence the quality of scheduling results.

A four-step schedule

No. of step No. of message Cost of step

Step 1 m1(1.5), m4(8), m8(3) 8

Step 2 m2(6), m5(1), m10(5) 6

Step 3 m3(5), m7(1), m9(2) 5

Step 4 m6(30), m11(1) 30

Total cost 49

Fig. 3. A schedule based on Fig. 2, the costs of m4, m5, m6 and m7 are changed

Fig. 4 is a schedule given by MCT. The result shows that scheduling local data ac-
cess, remote data access and distant data access separately is helpful to arrange posi-
tions for messages and reduce total length of a schedule. Following the processes of
MCT, the messages of local data access are selected first. The candidates are m1, m5,
m7, m9 and m11, and are arranged in step 4 for process-1. Then process-2 arranges m6
in step 3. Other messages are scheduled by process-3 in step 1 and 2. The length is 45
and is better than the result in Fig. 3.

A schedule of MCT

No. of step No. of message Cost of step

Step 1 m2(6), m4(8), m8(3), m10(5) 8

Step 2 m3(5), 5

Step 3 m6(30) 30

Step 4 m1(1.5), m5(1), m7(1), m9(2), m11(1) 2

Total cost 45

Fig. 4. A schedule which is given by MCT

5 Performance Evaluation

To evaluate the performance of proposed methods, MCT were implemented along
with TPDR. NC was given from 2~6 to evaluate the performance of MCT and TPDR
on 32 nodes. There were 1,000 cases in each comparison; array size is 10,000 in each
GEN_BLOCK distribution scheme; α and β represent two ranges of node size, and are
shown in Fig. 5. The Avg represents the value of array size divided by N.

284 S.-C. Chen, T.-L. Chen, and C.-H. Hsu

Size range of each node

Symbol of ranges Lower bound Upper bound

α 0.5* Avg 2 * Avg

β 1 8 * Avg

Fig. 5. Lower bounds and upper bounds of two size ranges for each node

Fig. 6 shows the results of MCT and TPDR with α while NC was given from 2~6.
Three kinds of plots are given in this section to weigh the pros and cons of both meth-
ods. The plots show MCT gives good performance in most cases with α. The results
show that the MCT performs better while NC being smaller. The reason is that the
smaller NC represents the larger number of distant data access which influences the
estimation of MCT and TPDR. Unlike TPDR, the scheduling processes of MCT
augment the effect of DRR for real situation. MCT also utilizes the idea of message
clustering to arrange each kinds of message in specific level to decrease the length
of schedules. Another phenomenon is observed that the performance of MCT is
decreased while NC becoming larger due to less advantages for MCT.

Fig. 6. The results of comparisons with α on various NC

Fig. 7. The results of comparisons with β on various NC

 Message Clustering Technique towards Efficient Irregular Data Redistribution 285

The symbol β is expected to provide larger variation and more distant data access,
which are advantageous to MCT. The effect of DRR is augmented by the variation of
β and is utilized by MCT to derive better schedules for messages. With above advan-
tages, Fig. 7 shows greater improvement in 56.7% to 76.3% cases by MCT.

6 Conclusions and Future Works

In this paper, we have presented message clustering technique (MCT) in grids to
minimize the communication cost in GEN_BLOCK redistribution. The proposed tech-
nique adapts different data transmitting rate by applying RLR and DRR. Then, MCT
schedules three clusters of messages in process-1, process-2 and process-3, respec-
tively. The performance analyses show MCT performs better in most cases and adapts
to high variation of GEN_BLOCK redistribution between clusters in grids. Future
works of this technique are to develop improved algorithms for advanced computing,
propose power saving technique and design better optimization technique.

References

1. Bai, S.-W., Yang, C.-S.: Essential Cycle Calculation Method for Irregular Array Redistri-
bution. IEICE Transactions on Information and Systems E89-D(2), 789–797 (2006)

2. Chang, R.-S., Chang, J.-S., Lin, S.-Y.: Job scheduling and data replication on data grids.
Future Generation Computer Systems 23(7), 846–860 (2007)

3. Chen, S.-C., Hsu, C.-H.: ISO: Comprehensive Techniques Toward Efficient
GEN_BLOCK Redistribution with Multidimensional Arrays. In: Malyshkin, V.E. (ed.)
PaCT 2007. LNCS, vol. 4671, pp. 507–515. Springer, Heidelberg (2007)

4. Desprez, F., Dongarra, J., Petitet, A.: Scheduling Block-Cyclic Data redistribution. IEEE
Transactions on Parallel and Distributed Systems 9(2), 192–205 (1998)

5. Guo, M., Pan, Y., Liu, Z.: Symbolic Communication Set Generation for Irregular Parallel
Applications. The Journal of Supercomputing 25(3), 199–214 (2003)

6. Hsu, C.-H., Bai, S.-W., Chung, Y.-C., Yang, C.-S.: A Generalized Basic-Cycle Calculation
Method for Efficient Array Redistribution. IEEE Transactions on Parallel and Distributed
Systems 11(12), 1201–1216 (2000)

7. Hsu, C.-H., Chen, S.-C., Lan, C.-Y.: Scheduling Contention-Free Irregular Redistribution
in Parallelizing Compilers. The Journal of Supercomputing 40(3), 229–247 (2007)

8. Huang, J.-W., Chu, C.-P.: A flexible processor mapping technique toward data localization
for block-cyclic data redistribution. The Journal of Supercomputing 45(2), 151–172 (2008)

9. Huang, J.-W., Chu, C.-P.: An Efficient Communication Scheduling Method for the Proc-
essor Mapping Technique Applied Data Redistribution. The Journal of Supercomput-
ing 37(3), 297–318 (2006)

10. Karwande, A., Yuan, X., Lowenthal, D.K.: An MPI prototype for compiled communica-
tion on ethernet switched clusters. Journal of Parallel and Distributed Computing 65(10),
1123–1133 (2005)

11. Lim, Y.W., Bhat, P.B., Prasanna, V.K.: Efficient Algorithms for Block-Cyclic Redistribu-
tion of Arrays. Algorithmica 24(3-4), 298–330 (1999)

12. Lin, C.-Y., Chung, Y.-C.: Data distribution schemes of sparse arrays on distributed mem-
ory multicomputers. The Journal of Supercomputing 41(1), 63–87 (2007)

286 S.-C. Chen, T.-L. Chen, and C.-H. Hsu

13. Prylli, L., Touranchean, B.: Fast runtime block cyclic data redistribution on multiproces-
sors. Journal of Parallel and Distributed Computing 45(1), 63–72 (1997)

14. Sudarsan, R., Ribbens, C.J.: Efficient Multidimensional Data Redistribution for Resizable
Parallel Computations. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo,
M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 182–194. Springer, Heidelberg
(2007)

15. Wang, H., Guo, M., Wei, D.: Message Scheduling for Irregular Data Redistribution in Par-
allelizing Compilers. IEICE Transactions on Information and Sysmtes E89-D(2), 418–424
(2006)

Multithreading of Kostka Numbers Computation
for the BonjourGrid Meta-desktop

Grid Middleware

Heithem Abbes1,2, Franck Butelle2, and Christophe Cérin2

1 Unité de recherche UTIC / ESSTT
5, Av. Taha Hussein, B.P. 56, Bab Mnara, Tunis, Tunisia

heithem.abbes@esstt.rnu.tn
2 LIPN, UMR 7030, CNRS, Université Paris-Nord
99, avenue J.B Clément, 93430 Villetaneuse, France

franck.butelle@lipn.univ-paris13.fr,
christophe.cerin@lipn.univ-paris13.fr

Abstract. The aim of this paper is to show how to multithread a com-
pute intensive application in mathematics (Group Theory) for an insti-
tutional Desktop Grid platform coordinated by a meta-grid middleware
named BonjourGrid which is a fully decentralized Desktop Grid middle-
ware. The paper is twofold: first of all, it shows how to multithread a
sequential program for a multicore CPU which participates in the com-
putation of some parameters and second it demonstrates the effort for co-
ordinating multiple instances of the BonjourGrid middleware. The main
results of the paper are: a) we develop an efficient multi-threaded ver-
sion of a sequential program to compute Kostka numbers, namely the
Multi-kostka program and b) a proof of concept is given, centered on
user needs, for the incorporation into the BonjourGrid middleware of
Multi-kostka program.1

Keywords: High-performance Scientific Computing, Parallel Algorithms,
Parallel Scientific Application, Desktop Grids Case Study, Incorporation
of a Threaded Application with Desktop Grid Infrastructures.

1 Introduction and Motivations

Desktop Grids have been successfully used to address large applications with sig-
nificant computational requirements, including search for extraterrestrial intelli-
gence (SETI@Home [20]), global climate predication (Climatprediction.net [19]),

1 This work is supported by a grant of Regional Council of Ile-de-France under the
SETCI program. We also thank Arthur Guittet for his participation in coding and
testing the multithreaded approach. Experiments were conducted partly with the
Gaia cluster at Paris 13 and partly with the Grid’5000 testbed, an initiative from the
French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS
and RENATER and other contributing partners (see https://www.grid5000.fr).

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 287–298, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

288 H. Abbes, F. Butelle, and C. Cérin

and cosmic rays study (XtremWeb [9][14]). While the success of these appli-
cations demonstrates the potential of Desktop Grid, existing systems are often
centralized and suffer from relying on an administrative staff who guarantees the
execution with no faults for the master node. Moreover, although, in practice,
the crash of the master is not frequent and replication techniques can resolve this
problem when it occurs, we still believe in the need of decentralized approaches.

In this context, we have proposed a novel approach, called BonjourGrid [7,8],
which allow us to establish a specific execution environment for each user. In-
deed, BonjourGrid builds dynamically and in a decentralized way, a Computing
Element (CE – a CE is a set of workers managed by one master or an instance of
a local Desktop Grid middleware) when a user needs to run an application. Bon-
jourGrid orchestrates multiple instances of CEs in a decentralized manner. Our
approach does not rely on a unique static central element in the whole system,
since we dedicate a temporary central element for each running application, in
a dynamic way.

Furthermore, it is important to note that BonjourGrid is not only a decentral-
ized approach to orchestrate and coordinate local DG (Desktop Grids) but it is
also a system which is able, contrarily to classical DG, to build specific execution
environment on-demand (based on any combination of XtremWeb, Boinc, Con-
dor middlewares). This is the novelty of the BonjourGrid system. We consider
that it is a step forward regarding Desktop Grid systems. As referenced in many
other works [11,12], this kind of environment is called Institutional Desktop Grid
or Enterprise Desktop Grid (e.g in the same institution).

The application that we investigate in this paper to realize a proof of concept
based on a real application of our middleware is a compute intensive application
in the field of Group Theory. To our knowledge, there has been no attempt in the
past to derive a multi-threaded solution for the computation of Kostka numbers
on Desktop Grids, especially for Desktop Grid based on multi-core processors.
We derive an original and efficient solution to this difficult problem because it is
hard to predict on the fly the space where the solution is located in, as we will
see later in the paper.

Therefore, the paper is mainly organized according to two central discussions:
first of all the multithreading of the computation of Kostka numbers (section 2)
and second the integration of the solution into BonjourGrid (section 3). A related
work section follows as well as a conclusion section. The typical use case underlying
our work is the following: a mathematician needs to guess the property of some
numbers. Usually he uses the PCs in his institution to ’compute’ the properties of
the objects with the sequential implementation of Schur2 while colleagues work on
others problems. He would like to go further with the properties he guesses, so he
realizes that he is able to use the grid power. He also requires that it could be done
with a minimal effort for him (minimum of deployment, minimum of code lines
to launch the application) because he is not an expert in grid middleware. This
user belongs to the community of Boinc users, so he wants to use this middleware
whereas one of his colleague belongs to the Condor community.

2 See http://www.sourceforge.net/projects/schur/

Multithreading of Kostka Numbers Computation 289

Our solution allows any user to run the multi-threaded release of Kostkas
numbers computation that we introduce in this paper on its favorite middleware
(BOINC, CONDOR, XtremWeb), concurrently with other colleagues working
on the same problem i.e. with the same multithreaded code but with a different
Desktop Grid Middleware.

This idea, while closely related to the concept of ”Infrastructure on demand”
concept, which is central to the Cloud Computing paradigm and thus not com-
pletely new, may help in widening the spread of the Desktop Grid approach.
This article strives to demonstrate the feasibility of the solution using an appli-
cation inherited from mathematics namely the computation of Kostka numbers
because we still need to validate BonjourGrid through ’real applications’ and not
emulation as we have already done. We choose the Kostka application because it
is used by people in our laboratory, and because it is a central piece in the Schur
package that is a tool to ’guess’, for instance, properties of symmetric functions.
Note also that the problem is not a data intensive problem since we need to pass
only few numbers to the main procedure. It is only a compute intensive problem.

Again, the main result of this paper is not about a new Desktop Grid middle-
ware because in this case we need also to address, for the sake of completeness,
the problems of volatility (host churn) and heterogeneity but it is about a mul-
tithreaded code for the computation of Kostka numbers. The ultimate goal is
to demonstrate that BonjourGrid is able to coordinate multiple instances of the
same application on multiple instances of grid middlewares deployed over an
institution and also that a non specialist user may use this new environment.
The paper is devoted to show how it might be simple to deploy applications
with BonjourGrid and that the experiments could be efficient if we have at our
disposal a multi-treaded code.

2 A Multithreaded Computation for Kostka Numbers

The aim of this section is to explain the different ways we compute the Kostka
numbers in parallel. Two kinds of parallelization is under concern in this article
which are the multithreading on a single multicore CPU and the parallelization at
the Desktop Grid level. The goal is to replace the current sequential procedure
included in Schur3 by a multi-threaded one able to be integrated into a DG
middleware. Schur is recognized to be a powerful and efficient tool for calculating
properties of Lie groups and symmetric functions. Developing a parallel version
of Schur is challenging and we restrict our study to the computation of Kostka
numbers in parallel.

The mathematical problem may be reduced (thanks to the ”hives model”,
see [3]) to counting the number of integer points inside a polytope. The problem
is also related to the partition of an integer. A partition of a positive integer
N is a way of writing N as a sum of non increasing strictly positive integers.
For example λ = (4, 2, 2, 1) and μ = (2, 1) are partitions of n = 9 and n′ = 3
respectively. We write λ � n and μ � n′ or |λ| = n and |μ| = n′.
3 See http://www.sourceforge.net/projects/schur/

290 H. Abbes, F. Butelle, and C. Cérin

Littlewood-Richardson coefficients cν
λμ, which are closely related to Kostka

numbers, have a polynomial growth with respect to the dilatation factor N ∈ N:

cNν
Nλ,Nμ = P ν

λμ(N) ; P ν
λμ(0) = 1 (1)

where P ν
λμ is a polynomial in N with non negative rational coefficients depend-

ing on λ, μ and ν. This was first conjectured in [3]. Polynomials are obtained
considering a model known as the hive model. An n-integer-hive is a triangular
array of non negative integer variables ai

j with 0 ≤ i, j ≤ n where neighboring
entries have to respect inequality constraints (known as the ”three rhombus”).

The Littlewood-Richardson coefficient cν
λμ is the number of solutions for these

variables ai
j with border labeled as above by λ, μ and ν and according to the

inequalities constraints. Then, Kostka numbers (a particular case of Littlewood-
Richardson coefficients) are obtained by an enumerative process based on the
building of hives (each obtained from λ, μ, ν and N parameters) until we converge
to a ’stabilization’ property.

2.1 The Multithreading Approach

The way we are computing the Kostka numbers allows to split the enumerative
process of the feasible space in several parts. To do this, we use the Pthread
API, and divide the enumerative process in two pieces:

1. We assume that only n threads are allowed for the process. The first step of
the enumeration is to divide the feasible space in n parts. Since the enumer-
ation space is made of a product of intervals, we divide the first interval in
min(nb thread, interval size) of the same size, and for each part we attach
a thread. Note that we have also tested others splitting, but the experimental
results were not so good.

2. Each thread uses an optimized method to explore the feasible space and
returns the number of solutions. The method is an heuristics based on taking
the first interval not reduced to a single value. Once the enumeration is done
for all the threads, the main thread sends the result to the user.

2.2 Parallelization Using a Desktop Grid

The computation of Kostka polynomials can be achieved using multiple ma-
chines on a local network. The idea is to compute the Littlewood-Richardson
coefficients on various machines for a set of dilatation coefficients and to collect
the results to build the interpolating polynomial. The time needed to compute
one Kostka number depends on the initial partitions given to the program and
on the dilatation coefficient.

The four input parameters (λ, μ, ν, N) are given to the program, where N ∈ N

is the dilatation coefficient. For each computer on the network, a unique di-
latation coefficient is given. The result of each computation is the Littlewood-
Richardson coefficient cNν

Nλ,Nμ. Thus many interpolation points (N, cNν
Nλ,Nμ) are

computed. Each time a new interpolation point is produced, a new interpolating

Multithreading of Kostka Numbers Computation 291

polynomial is computed using all the available values. Thus, a set of polynomials
is built of the form:

(Pi
ν
λμ)i∈N = P1

ν
λμ(N), P2

ν
λμ(N), · · · , Pk

ν
λμ(N) , · · · (2)

The computation is stopped when the set becomes stationary. That means that
the equality Pi

ν
λμ = P(i+1)

ν
λμ

becomes true, and it holds for any j greater
than i. The main limit of the parallel computation for Kostka numbers is found
here. In fact, the complexity of the algorithm used to compute each Littlewood-
Richardson coefficient has the following writing:

c(N) =

(
m∏

k=1

|Ik|
)

Nm (3)

where m is the number of intervals in the hive (number of variables), |Ik| is
the number of elements in the interval Ik (the interval of values that the corre-
sponding variable may have) and N is the dilatation coefficient. Thus, the time
needed to compute a Littlewood-Richardson coefficient has a polynomial growth
of order m (see figure 1). This means that for high values of m, the time needed
to compute the coefficient N +1 will be greater than the time needed to compute
all the coefficients up to N . In other words, for such values of m, the time needed
for the whole computation (all the coefficients) is more or less the time needed
to compute the last coefficient. This explain why we need a finer grain.

Fig. 1. Polynomial growth of the computation time with respect to the dilatation
coefficient. The partitions are λ = (5, 3, 2, 2, 1), μ = (4, 3, 2, 2, 1) and ν = (7, 5, 4, 4, 3, 2).

2.3 Experimental Results

Performance gain on a single machine. The use of threads to compute
the Littlewood-Richardson coefficients leads to an improvement in the execu-
tion time. To compare the gain in performance, we use a multi-core processor.
In the remainder of the section, computation are done on a Bi-AMD Opteron

292 H. Abbes, F. Butelle, and C. Cérin

dual core at 2.8GHz, which means that 4 cores were available for the computa-
tion. The computation of Littlewood-Richardson coefficients was done for various
partitions and variable maximum number of threads. The first remark is that
the gain in time depends on the first interval (which is distributed among the
threads) and on the symmetry of the problem. For example if the first inter-
val is a single value, only one thread is launched, and the time needed for the
computation is the same than without threads. So we use the first interval of
size more than one (the corresponding variable is not yet fixed). The symme-
try of the feasible space is also important for the enumeration. To understand
this, the algorithm has to be explained again. As said before, the enumeration
method used by each thread is optimized, so that the whole feasible space is
not searched. Each step of the algorithm corresponds to one point of the hive.
For each feasible value of a point (a variable is fixed), the feasible space is up-
dated (reduced by constraints) so that useless values are not tried. Therefore,
the number of feasible values tried by each thread depends on the interval it
received from the first step, and some values inside these interval will introduced
more or less a reduction of the feasible space in the next steps. Consequently,
some threads will take some more time to achieve their work than others. This
phenomenon can be observed on Figure 2, which shows the results for the par-
titions λ = (5, 5, 3, 2, 1, 1), μ = (6, 6, 4, 2, 1) and ν = (6, 6, 6, 5, 5, 3, 2, 2, 1). The
computation time for the dilatation coefficient N = 7 does not decrease when
the number of threads increases.

However, the majority of the practical cases shows that threading the pro-
gram is useful. On the average, the computation time is divided by a factor of
3.5, and nearly four in the best cases. Increasing the number of threads has a
limited interest: we can see on the left diagram of figure 2 that the time needed
for the computation time is stationary for a number of threads greater than
10. This is explained by the fact that one of the threads is slower than the
others because the number of values it deals with is bigger than for the other
threads.

Fig. 2. Evolution of the computation time needed with the number of threads
allowed for partitions (λ = (5, 3, 2, 2, 1), μ = (4, 3, 2, 2, 1), ν = (7, 5, 4, 4, 3, 2)) and
(λ = (7, 6, 5, 4), μ = (7, 7, 7, 4), ν = (12, 8, 8, 7, 6, 4, 2))

Multithreading of Kostka Numbers Computation 293

For a very large number of threads, the performance mainly depends on the
operating system’s scheduler. We are using the Linux scheduler, and even with
a great number of threads (over 200 threads), the results are impressive. Note
also that our application is not a data intensive one since it requires only few
integer parameters as input.

3 Porting the Parallel Code on a Desktop Grid Platform

BonjourGrid [7,8] is a meta Desktop Grid middleware developed in our research
team that it is able to instantiate multiple Desktop Grid middleware in the same
infrastructure. The principle of the proposed approach is to create, dynamically
and in a decentralized way, a specific execution environment for each user to
execute any type of applications without any system administrator intervention.
An environment do not affect another one if it fails.

In this paper, we choose to use XW (XtremWeb) as the middleware for
the Computing Element. To run or deactivate an XW service (coordinator or
worker), the environment should be already installed. The procedure to install
a XW-Coordinator, in particular, is not currently simple enough, so we have
improved it. We would not want the user spends time configuring and installing
files and modules necessary to the XW installation. An installation consists in
installing a MySQL server, Java Development Kit, creating a specific database
for XW, making several directories and configuring system files. Consequently,
we set up an automatic installation of all the necessary packages. Such facilities
were not included in the current distribution of XW.

3.1 Experiments and Validation of BonjourGrid

From a user point of view, deploying an application on BonjourGrid starts with
preparing the executable code and data that are archived in a compressed file.
BonjourGrid enables the execution of applications with precedences between
tasks. Indeed, the user can describe the precedences constraints of a data flow
graph using an XML description; this is not trivial, especially, for complex
applications.

Hives1

Hives0

Hives2

BuildInter

HivesN

Interp

Fig. 3. Description of the data flow graph of Hives composed with 3 modules; Hives,
BuildInter and Interp

294 H. Abbes, F. Butelle, and C. Cérin

<Deployment>
 <Application ApplicationDescription="monapp" Client="heithem">
 <Module ModuleDescription="hives" ModuleDirIn="/bin/">
 <Binary BinaryCpuType="amd64" BinaryExecutable="hives"

BinaryOsName="Linux" BinarySubFolder="linux"/>
 </Module>
 <Module ModuleDescription="buildinter" ModuleDirIn="/bin/">
 <Binary BinaryCpuType="amd64" BinaryExecutable="buildinter"

BinaryOsName="Linux" BinarySubFolder="linux"/>
 </Module>
 <Module ModuleDescription="interp" ModuleDirIn="/bin/">
 <Binary BinaryCpuType="amd64" BinaryExecutable="interp"

BinaryOsName="Linux" BinarySubFolder="linux"/>
 </Module>
 </Application>

Fig. 4. Description of the flow data graph of the application Hive

SDAD is the system of deployment that we have introduced, it helps the
user in describing the data flow graph of his application according to an XML
syntax and using a graphical interface. It also helps user to put the different
files of his applications (i.e binary and data files) at the right places. SDAD
generates a compressed package ready to be deployed on BonjourGrid system.
Now, the user can submit his application to BonjourGrid. He can specify the
size of the computing element (CE) to run the application. BonjourGrid, then,
will construct the CE according to the criteria mentioned in the XML file.

To summarize, using the SDAD tool that we have developed, the user can
draw the task graph and put binary and data files in the suitable path in the
application tree. Thereafter, SDAD will generate the XML description of the
application which is used by XW and BonjourGrid.

As described in subsection 2, the first module of the application, Hives, can be
divided in several parallel tasks. The outputs of these tasks are forwarded to the
so called BuildInter module. Finally, the module Interp gives the interpolation.
Figure 4 shows the first part of this file which illustrates the description of the
three modules of the application (i.e, OS architecture, OS type, location of binary
files. . .). Here, the user can provide several binary files for different architectures
and OS types.

Now, Hives is ready to be submitted to the BonjourGrid system. In the follow-
ing, we illustrate snapshots picked out from a Hives execution using the Orsay
node of Grid5000 [18]. Specifically for this example, we are going to dissociate
the CE building phase from the effective submission to illustrate the different
steps. First, we initiate machines in idle state. We launch the coordinator, on
any machine, to start the building phase of a suitable CE. Figure 5 shows the
outputs of a construction of a CE with 2 workers (just for the sake of clarity
of reading). Indeed, the coordinator is started on the gdx-5 node, requiring two
workers as shown on Figure 5. For that, the coordinator gdx-5 searches for idle
machines matching the tasks requirements. Figure 5 shows that the coordinator
gdx-5 discovers, in this test, two idle machines gdx-9 and gdx-17 and asks them
to accept to work for it. Thereafter, the gdx-5 coordinator receives two con-
firmations from gdx-17 and gdx-9 as depicted in figure 6. On the coordinator
machine gdx-5, we effectively submit Hives application as shown in figure 7. It
is possible to control the execution of the different tasks of Hives application as

Multithreading of Kostka Numbers Computation 295

Fig. 5. Construction of a new CE with 2 workers

Fig. 6. Confirmation of two idle machines to work for the gdx-5 master

shown in figure 7. When the execution completes, we can invoke BonjourGrid to
download the results.

To summarize, the objective of this experiment was to present a use case
of BonjourGrid using a real application and from the user point of view. We
have already done experiments to analyze the performance of BonjourGrid in
[7,8] and [5] but the scope of this section is to demonstrate how BonjourGrid
can help users to construct, dynamically and without any intervention of a sys-
tem administrator, their own environments to deploy and running a parallel
application.

4 Related Work on Advanced Desktop Grid Architectures

Before concluding, we compare BonjourGrid with others systems. OurGrid [13]
system avoids the centralized server by creating the notion of the home machine
from which applications are submitted; the existence of several home machines
reduces the impact of failures at the same time. Moreover, OurGrid provides an
accounting model to assure a fair resources sharing in order to attract nodes to
join the system. However, the originality of BonjourGrid comparing to OurGrid

296 H. Abbes, F. Butelle, and C. Cérin

Fig. 7. Submission of the application “app-hives” using the new CE

is that it supports distributed applications with precedence between tasks, while
OurGrid supports only Bag-of-Tasks (BOT) applications (BOT applications are
independent divisible tasks). WaveGrid [6] is a P2P middleware which uses a
time-zone-aware overlay network to indicate when hosts have a large block of
idle time. This system reinforces the idea of BonjourGrid concept since changing
from a set of workers to another one depending on the time zone (Wave Grid) is
analogous to the principle of creating a CE from an application to another one
in BonjourGrid, and depending on users requirements.

Approaches based on publish/subscribe systems to coordinate or decentralize
Desktop Grid infrastructures are not very numerous according to our knowledge.
A similar project to ours is the Xgrid project [17]. In Xgrid system, each agent
(or worker) makes itself available to a single controller. It receives computational
tasks and returns the results of these computations to the controller. Hence, the
whole architecture relies on a single and static component which is the con-
troller. Moreover, Xgrid runs only on MacOS systems. In contrast with Xgrid,
in BonjourGrid, the coordinator is not static and is created in a dynamic way.
Furthermore, BonjourGrid is more generic since it is possible to “plug” inside it
any computing system (XW, Boinc, Condor) while Xgrid has its own computing
system. The key advantage of BonjourGrid is that the user is free to use his
favorite desktop grid middleware.

5 Conclusion and Future Works

In this work, we have proposed a novel algorithm to compute Kostka numbers
(by the Hive method) in parallel and we have shown how to run the code on top
of BonjourGrid. The aim of BonjourGrid is to orchestrate multiple instances of

Multithreading of Kostka Numbers Computation 297

computing elements, in a decentralized manner. BonjourGrid creates, dynam-
ically, a specific environment for the user to run his application. There is no
need for a system administrator. Indeed, BonjourGrid is fully autonomous and
decentralized. We have conducted several experimentations to show that Bon-
jourGrid operates well with a real world application. At this occasion, Bonjour-
Grid demonstrate its usefulness. Moreover, the deployment of the Hive code on
BonjourGrid, demonstrates that BonjourGrid may help users to create several
independent environments. Then, mathematicians, for instance, can create their
Desktop Grid easily to run their parallel applications.

So, we demonstrated that the approach for developping scientific applications
on such infrastructure is, in fine, as simple as we introduced it in the paper and
general enough to be applied in other contexts.

Several issues must be taken into account in our future work about meta-
Desktop Grid middlewares. The first issue is to build a fault-tolerant system for
the coordinators. In fact, it is important to continue the execution of the applica-
tion when the coordinator (user machine) fails (it is disconnected for instance).
This issue has been solved and it is currently tested over Grid’5000 and at a
large scale. Condor, Boinc plugins have also been built and are currently tested
with the Hive code, especially but not only. The second issue is the reservation
of participants. In the current version, BonjourGrid allocates available resources
for a user without any reservation rules. Thus, BonjourGrid may allocate to a
single user all the available resources. The third issue is to go to a wide area
network. The current version works only in a local network infrastructure, and
it is important to bypass this constraint. The new release of Bonjour, (Wide
Area Bonjour from Apple), seems to be a good solution to solve this problem.

We hope that this work helps to understand what is a possible future for
Desktop Grid middleware as well as the new efforts that users should make to
use such systems.

References

1. Rassart, E.: A polynomiality property for Littlewood-Richardson coefficients. J.
Combinatorial Theory, Ser. A 107, 161–179 (2004)

2. MacDonald, I.G.: Symmetric functions and Hall Polynomials, 2nd edn. Clarendon
Press/Oxford Science Publication (1995)

3. King, R.C., Tollu, C., Toumazet, F.: Stretched Littlewood-Richardson and Kostka
coefficients. In: CRM Proceedings and Lecture Notes, vol. 34, pp. 99–112. Amer.
Math. Soc., Providence (2004)

4. Steinberg, D., Cheshire, S.: Zero Configuration Networking: The Definitive Guide.
O’Reilly Media, Inc., Sebastopol (2005)

5. Abbes, H., Dubacq, J.-C.: Analysis of Peer-to-Peer Protocols Performance for Es-
tablishing a Decentralized Desktop Grid Middleware. In: César, E., et al. (eds.)
EuroPar 2008/SGS Workshop. LNCS, vol. 5415, pp. 235–246. Springer, Heidelberg
(2009)

6. Zhou, D., Lo, V.: WaveGrid: a scalable fast-turnaround heterogeneous peer-based
Desktop Grid system. In: IPDPS’20. IEEE Computer Society, Los Alamitos (2006)

298 H. Abbes, F. Butelle, and C. Cérin

7. Abbes, H., Cérin, C., Jemni, M.: BonjourGrid as a Decentralised Job Scheduler.
In: APSCC 2008: Proceedings of the 2008 IEEE Asia-Pacific Services Computing
Conference. IEEE Computer Society, Los Alamitos (2008)

8. Abbes, H., Cérin, C., Jemni, M.: BonjourGrid: Orchestration of Multi-instances
of Grid Middlewares on Institutional Desktop Grids. In: 3rd Workshop on Desk-
top Grids and Volunteer Computing Systems (PCGrid 2009), in conjunction with
IPDPS 2009, Roma, Italy, May 29 (2009)

9. Fedak, G., Germain, C., Néri, V., Cappello, F.: Xtremweb: A generic global com-
puting system. In: Proceedings of IEEE Int. Symp. on Cluster Computing and the
Grid (2001)

10. Thain, D., Livny, M.: Condor and the grid. In: Berman, F., Hey, A.J.G., Fox, G.
(eds.) Grid Computing: Making The Global Infrastructure a Reality. John Wiley,
Chichester (2003)

11. Domingues, P., Andrzejak, A., Silva, L.M.: Using Checkpointing to Enhance
Turnaround Time on Institutional Desktop Grids. In: e-Science, p. 73 (2006)

12. Kondo, D., Chien, A.A., Casanova, H.: Resource Management for Rapid Applica-
tion Turnaround on Enterprise Desktop Grids. In: SC 2004, p. 17. IEEE Computer
Society, Los Alamitos (2004)

13. Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., Mow-
bray, M.: Labs of the World, Unite!!! Journal of Grid Computing, 225–246 (2006)

14. Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V., Lodygen-
sky, O.: Computing on Large Scale Distributed Systems: XtremWeb Architecture,
Programming Models, Security, Tests and Convergence with Grid. FGCS 21(3),
417–437 (2005)

15. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.: The many faces of pub-
lish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

16. Bonjour protocol, http://developer.apple.com/networking/bonjour
17. Xgrid, http://gcd.udl.cat/upload/recerca/
18. Grid’5000, http://www.grid5000.fr
19. BOINC, http://boinc.berkeley.edu
20. Seti@home, http://setiathome.ssl.berkeley.edu

http://developer.apple.com/networking/bonjour
http://gcd.udl.cat/upload/recerca/
http://www.grid5000.fr
http://boinc.berkeley.edu
http://setiathome.ssl.berkeley.edu

Adaptable Scheduling Algorithm for Grids with
Resource Redeployment Capability�

Cho-Chin Lin and Chih-Hsuan Hsu

Department of Electronic Engineering
National Ilan University

Yilan 260, Taiwan
cclin@niu.edu.tw

Abstract. Two distinct characteristics of grid computing systems are
resource heterogeneity and availability variation. There are many well-
designed scheduling algorithms proposed for heterogeneous computing
systems. However, the availability variation is seldom considered in devel-
oping scheduling ongoing applications on a grid. In this paper, a schedul-
ing algorithm called AROF is proposed. It considers availability variation
as well as resource heterogeneity while scheduling applications to the
grids. An experiment has been conducted to demonstrate that AROF
algorithm outperforms the well-known scheduling algorithms Modified
HEFT and GS in most of the cases.

1 Introduction

Many well-designed scheduling algorithms [1,2,3,5,6,7,8,9,10,11,12,13,14] have
been proposed for distributed systems for achieving high performance comput-
ing. The computing resources in a grid are generally heterogeneous and, thus,
most of the scheduling algorithms have taken resource heterogeneity into con-
sideration. When an application is submitted to a grid, the application starts its
work as soon as the requested resources are available. After it has completed its
work, the requested resources will be released. Thus, the number of idle com-
puting nodes which can be deployed to an ongoing application varies with the
time. We use the term availability variation to indicate this phenomenon. To
the best of our knowledge, most of the scheduling algorithms do not consider
the availability variation in developing their scheduling strategies. The schedul-
ing algorithms which are sensitive to the variation in computing nodes is named
as adaptable scheduling (AS) algorithm. An AS algorithm needs to take resource
heterogeneity and availability variation into consideration while scheduling the
tasks of an ongoing application to computing nodes. A traditional scheduler
schedules all the tasks of an application to computing nodes before any compu-
tation can be performed. Thus, the application cannot employ the computing
nodes which are recently released from other complete applications even though
� This research is supported by National Science Council under the grant 98-2221-E-

197-014.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 299–312, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

300 C.-C. Lin and C.-H. Hsu

it still remains lots of computations to be performed. Contrary to the traditional
schedulers, an AS algorithm schedules an application in several iterations. Each
iteration maps the tasks of an ongoing application to the available computing
nodes based on a predefined criterion. By this way, an AS algorithm responds
to the availability variation and the work quality needed by the application can
be satisfied.

Except the case of releasing computing nodes voluntarily, availability varia-
tion can happen when a grid redeploys computing nodes for a set of ongoing
applications in response to an urgent event. The grid which employs AS algo-
rithms to reinforce (revoke) computing nodes to (from) an ongoing application
is called R2 grid. Scheduling an application to computing nodes of a R2 grid
takes several iterations. Each iteration consists of three steps: selection step,
ranking step and mapping step. The tasks which are qualified for mapping are
collected in the selection step. Then, the selected tasks are assigned priorities
in the ranking step. Finally, the mapper maps the selected tasks one by one to
available computing nodes based on the assigned priorities. This paper studies
the performance which can be achieved by our AS algorithm by comparing its
performance with those of other scheduling algorithms. The major contributions
of this paper are twofold: a framework of AS algorithms is developed and the
task selection strategies employed by various scheduling algorithms are assessed.

This paper is organized as follows. In Sect. 2, the models of workload and R2

grids are defined. In Sect. 3, related work is discussed. In Sect. 4, a framework of
AS algorithms is developed. An AS algorithm called AROF is proposed in Sect. 5.
In Sect. 6, the usefulness of AROF is demonstrated by comparing its performance
with those of the well-known scheduling algorithms GS and modified version of
HEFT. Finally, concluding remarks are given in Sect. 7.

2 Models

In this paper, an application is characterized by a workflow and the grid allows
computing nodes to be reinforced (revoked) to (from) an ongoing application.
We present our workload and grid models in this section.

2.1 Workload Model

A workflow application can be modeled using a diagraph G = (V, E), where V
is a vertex set and E is an edger set. Each vertex in V = {v0, v1, v2, . . . , vn−1}
represents a task in the application. The number of tasks in V is denoted as |V |.
The unique entry task and exit task of an application is vertex v0 and vertex
vn−1 in the diagraph, respectively. The weight of task vi is denoted as w(vi).
Edge (vi, vj) ∈ E if there is a dependency between tasks vi and vj . In this case,
vi is a predecessor of vj and vj is a successor of vi. The weight of edge (vi, vj) is
the number of data units sent from vi to its successor vj . Denote w((vi, vj)) as
the weight of the edge (vi, vj). Task vi, i �= 0, gets inputs from its predecessors
and stores its output at the computing node where it is mapped. Our model
assumes that a task needs to receive inputs from all of its predecessors before

Adaptable Scheduling Algorithm for Grids with Resource Redeployment 301

it proceeds to perform computations. This paper focuses on the applications
with one entry (exit) task. However, any application with more than one entry
(exit) task can be modified by adding a virtual task above (below) the actual
entry (exit) tasks with zero weight edges connecting the virtual task to the entry
(exit) tasks. Denote the start time and complete time of task vi as tsi and tfi ,
respectively. The makespan of an application is given by tfn−1 − ts0,

2.2 R2 Grid Model

The gird model captures two significant properties: resource heterogeneity and
availability variation. Resource heterogeneity means that some computing nodes
have special hardware for accelerating the computations of special types. Avail-
ability variation means that the set of computing nodes which are available to
an ongoing application can be variant. Let τcmp

ij be the cost of executing task vi

on computing node pj . Then, τcmp
ij = w(vi)/r(pj), where r(pj) is the processing

speed of computing node pj . Regarding the availability variation, the available
computing nodes may vary while an application continues its work. Let P be
a sequence of variation events (P0, P1, P2, . . . , Ps−1), where the ith event Pi is
the set containing the nodes available at time interval [ti, ti+1). Variation event
Pi provides an opportunity for an AS algorithm to reinforce (revoke) comput-
ing nodes to (from) an ongoing application at time interval [ti, ti+1). In the
sequence, Pi �= Pi+1. This study assumes that either Pi ⊂ Pi+1 or Pi+1 ⊂ Pi

for 0 ≤ i < s − 1. The scheduler in our model also decides the execution order
of the tasks on a computing node. When a computing node is revoked from
an application, all the tasks in the computing node migrate to other available
computing nodes except the one which is currently performing computations.
Nowadays, many techniques for end-to-end QoS guarantee to an individual net-
work have been proposed [4,15]. Our R2 grid model characterizes that a pair of
communicating nodes can reserve the required network bandwidth before they
start to communicate. Based on this, it is assumed that a computing node can
send and receive data concurrently, and it also can send (receive) data to (from)
multiple computing nodes simultaneously. Similar communication assumptions
are also used in [1,6,7,8,9,11,12]. Let the bandwidth between computing nodes
pi and pj as bij . Define τcmm

ij = w((vi, vj))/bij as the communication cost of
tasks vi and vj .

3 Related Works

Many algorithms for scheduling workflow applications adopt the list-scheduling
technique [2,7,11,12,14]. In the technique, task mapping is preceded by task
ranking. The ranking step assigns a priority to each task using a well designed
ranking function. The mapping step maps the ranked tasks to the computing
nodes one by one based on an appropriate mapping strategy. The upward rank
ranku(vi) and downward rank rankd(vi) are the attributes used in many list-
based scheduling algorithms for assigning priorities to tasks. Attribute ranku(vi)

302 C.-C. Lin and C.-H. Hsu

4

2

10

8 3

6 5

5
13

5 7 4

2 3

v0

v1 v2 v3

v4 v5

v6

(a) Diagraph of an application

tasks Ranku Rankd Ranku+Rankd

v0* 38 0 38

v1 19 13 32

v2* 27 11 38

v3 19 15 34

v4* 12 26 38

v5 12 22 34

v6* 4 34 38

(b) Attributes for task ranking

Fig. 1. Task ranking attributes of an application

is the length of the longest path from task vi (including vi) to the exit task and
attribute rankd(vi) is the length of the longest path from the entry task to task
vi (excluding vi). They are defined using the following formulae:

ranku(vi) = τcmp
i + max

vj∈succ(vi)
{ranku(vj) + τ cmm

ij } (1)

rankd(vi) = max
vj∈pred(vi)

{rankd(vj) + τ cmp
j + τ cmm

ij } (2)

where τcmp
i is the average computation cost of task vi and τ cmm

ij is the average
communication cost for sending data from task vi to task vj . A critical path of
a diagraph is the longest path from the entry task to the exit task. The length
of a critical path is ranku(vi) + rankd(vi) which is the sum on the weights of
the vertices and edges constituting the path [14]. A critical task is the task
on a critical path. Let vi be a critical task. Figure 1 shows the upward ranks,
downward ranks and a critical path in a diagraph. In the figure, the critical path
is illustrated by bold lines. The ranku + ranku values of critical tasks v0, v2, v4

and v6 are 38.
Heterogeneous Earliest Finish Time (HEFT) [12] has two major steps: ranking

step and mapping step. In the ranking step, the ranku of each task is computed.
In the mapping step, HEFT maps the tasks in the order of decreasing ranku val-
ues to their most suitable computing nodes. It also employs insertion-based strat-
egy [12] to improve the mapping solution. Critical-Path-on-a-Processor (CPOP)
[12] also has two major steps: ranking step and mapping step. The rank of task
vi is the sum of ranku(vi) and rankd(vi). In the mapping step, if the task in
consideration is a critical task, then CPOP maps it to the critical-path pro-
cessor. A critical-path processor is the computing node which can complete the
critical tasks earlier than the others. Otherwise, CPOP maps it to the most suit-
able computing node which can achieve the earliest finish time. Hybrid Heuristic
[11] consists of three major steps: task ranking, task grouping and group map-
ping. It is designed to be insensitive to ranking functions. The task ranking step

Adaptable Scheduling Algorithm for Grids with Resource Redeployment 303

computes ranku for each task. The task grouping step partitions the tasks into
groups based on the ranking values and the dependence between the tasks. The
group mapping step maps the tasks group by group using any appropriate map-
ping algorithm. DCP [7] is proposed for homogeneous computing environments
with unbounded computing nodes. DCP defines attribute mobility for each task.
The mobility of task vi is |Pct| − (ranku(vi) + rankd(vi)), where |Pct| is the
length of a critical path. The mobility of a critical task is zero [14]. The task
with the lowest mobility is mapped first. DCP uses looking-ahead strategy in
selecting appropriate computing nodes and adopts different mapping policies for
critical tasks and non-critical tasks. MCP [14] is designed for homogeneous com-
puting environment with bounded computing nodes. At first, MCP computes
the value of |Pct| − ranku(vi) for each task and then sorts the tasks in the order
of increasing computed values. MCP maps tasks with the smallest value to the
computing node which can achieve the earliest start time. Insertion-based policy
[12] is also employed to improve the mapping solution. DAGMap [2] consists of
three major phases: task ranking, task grouping and task scheduling. DAGMap
computes the rankd and ranku for all the tasks to determine a critical path.
In the algorithm, ranku(vi) is used as the rank value of task vi. DAGMap uses
two auxiliary scheduling algorithms Minmin and Maxmin [5]. The heterogeneity
factor (HF) is used to determine which auxiliary scheduling algorithms should
be employed. If the HF value of a group is large, then DAGMap adopts Maxmin
scheduling algorithm; otherwise, DAGMap adopts Minmin scheduling algorithm.

Some algorithms [3,8] schedule an ongoing application stage by stage; in each
stage, eligible tasks are selected for mapping. Generational scheduling (GS) al-
gorithm [3] is one of the stage scheduling algorithms proposed for heterogenous
computing environments. The strategy employed by GS is very simple. A task
is eligible for scheduling after all of its predecessors, if any, have completed their
works. The characteristics of GS algorithm is that it transforms the problem of
scheduling a workflow into many scheduling subproblems which can be solved
without considering the precedence constraints. GSTR [8] is an extended version
of the GS algorithm with two major modifications: (1) it does not map all tasks
at the beginning of each iteration as GS does and (2) a task will be replicated
to another computing node if the task has not completed its work after a long
time period.

4 A Framework for Adaptable Scheduling Algorithms

A framework for AS algorithms takes several iterations to schedule all the tasks
of an ongoing application to available computing nodes incrementally. Each it-
eration consists of three major steps: selection step, ranking step and mapping
step. Figure 2 shows the details of the framework. The input is the diagraph
of an application and the mapping solution is given by assignment matrix A
which is updated in each iteration. Entry Aij = t indicates task vi which has
been mapped to node pj can start its work at time t. In addition to scheduling
the tasks at a variation event (from step 20 to step 31), the framework migrates

304 C.-C. Lin and C.-H. Hsu

Input : A diagraph G of an application
Output: Assignment matrix A

Pnew ← ExtractAvailResource1
vfinish ← nil2
while vfinish �= vexit do3

if ResourceChangeEvent() = true then4
Pold ← Pnew5
Pnew ← ExtractAvailResource6
Prevoked ← (Pold − Pnew)7
if Prevoked �= ∅ then8

L← CollectScheduledTask(Prevoked)9
L← Ranker(L)10
repeat11

max← ExtractMaxPriorityTask(L)12
revoked← GetOriginalP(vmax , A)13
Amax,revoked ← −114
best← Mapper(max,Pnew, A)15
Amax,best ← GetStartTime(vmax , pbest, A)16

until L = ∅17
end18

end19
if any task vi has finished or starts to receive input data then20

if task vi has finished then21 vfinish ← vi22
end23
L← Selector(G, A)24
L← Ranker(L)25
repeat26

vmax ← ExtractMaxPriorityTask(L)27
pbest ← Mapper(max,Pnew , A)28
Amax,best ← GetStartTime(vmax , pbest, A)29

until L = ∅30
end31

end32

Fig. 2. A framework for AS algorithms

the scheduled tasks to other nodes (from step 4 to step 19) if their original nodes
are revoked.

The information regarding the available computing nodes for application G
is acquired using ExtractAvailResource at step 1. Variable vfinish stores the
most recently complete task and its initial value is set to nil at step 2. Resource
ChangeEvent returns true if a variation in the available computing nodes occurs.
In this case, the set of revoked computing nodes Prevoked is determined at steps
5, 6 and 7. If Prevoked is not empty, CollectScheduledTask collects the tasks
which are previously scheduled to the revoked computing nodes, then inserts
the tasks into list L at step 9. At step 10, Ranker computes the priorities again
for the tasks in L. The task vmax with the highest priority is extracted using
ExtractMaxPriorityTask at step 12. The revoked computing node to which the
task is originally mapped is found at step 13. The previous mapping solution
regarding task vmax is discarded at step 14. At step 15, Mapper determines the
most suitable computing node pbest for task vmax. The new mapping solution
for task vmax is recorded at step 16. The steps from 12 to 16 repeat until all the
tasks in L have been considered.

Adaptable Scheduling Algorithm for Grids with Resource Redeployment 305

The process of scheduling tasks to computing nodes is triggered if a task vi

has completed its work or starts to receive input data as shown at step 20. In this
case, variable vfinish is set to vi at step 22. At step 24, the Selector selects the
tasks based on a specified selection strategy, then inserts the selected tasks into
list L. At step 25, Ranker computes priority for each selected task. At step 27,
ExtractMaxPriorityTask extracts task vmax with the highest priority from L.
At step 28, Mapper schedules task vmax to computing node pbest which achieves
the minimal completion time for the task. The mapping solution regarding task
vmax is recorded at step 29. The process of mapping the selected tasks repeats
until all of the tasks in L have been considered. Scheduling an application is
done when vfinish = vexit.

5 AS Algorithm: AROF

If the selector selects tasks based on an aggressive strategy then the tasks may
miss the most suitable computing nodes which are available in the near feature.
However, if the selector selects the tasks based on a conservative strategy then
the newly mapped tasks may have delayed their works due to waiting for a
severe condition to match. Either of these cases degenerates the performance of
a R2 grid. The timing for task vi to be selected can be defined by the states
of vi’s predecessors. A selector S uses two attributes α and β to select a task.
Let rpre

i denote the number that vi’s predecessors have received all or part of
their inputs and cpre

i denote the minimum number that vi’s predecessors have
completed their works. Selector S(α, β) selects a task whose predecessors satisfy
the following criterion: rpre

i = α and cpre
i = β. For example, a task will be

selected by S(4, 2) if four of its predecessors have received all or part of their
inputs and at least two of them have completed their works. The selector of our
AS algorithm is S(|pre(vi)|, 1), where |pre(vi)| denotes the number of all the
task vi’s predecessors. It indicates that a task is selected if all of its predecessors
have received all or part of their inputs, and at least one of them has finished its
work. Our AS algorithm is named AROF which means All Receive One F inish.
Furthermore, the selectors of HEFT algorithm and GS algorithm are S(0, 0) and
S(|pre(vi)|, |pre(vi)|), respectively.

The ranking step of a scheduling algorithm computes the priority for each
selected task. Based on their priorities, the tasks are mapped to the available
computing nodes one by one in the mapping step. The ranking functions used in
many scheduling algorithms are either too simple or too complex. For example,
GS [3] ranks the selected tasks randomly and DCP [7] ranks the selected tasks
using a complex strategy. HEFT [12] is a low complexity and high performance
scheduler. However, the availability variation and known execution costs of the
scheduled tasks have not be used to precisely compute the upward rank values
for the newly selected tasks. Thus, a revised ranking function reranku(vi) is
proposed. It takes the availability variation and known costs of the scheduled
tasks into consideration. Function reranku is defined as follows: reranku(vi) =
X + maxvj∈succ(vi){reranku(vj) + Y}, where

306 C.-C. Lin and C.-H. Hsu

X =
{

τcmp
ik if task vi has been mapped to computing node pk

τ cmp
i otherwise (3)

Y =
{

τcmm
ij if both task vi and task vj have been mapped

τcmm
i otherwise

(4)

There are two major differences between the ranking step of AROF and that of
HEFT. Firstly, HEFT computes the upward rank values of all the tasks at the
beginning for determining the mapping priorities of the tasks. Since the available
computing nodes are variant, the value of rerank(vi) is not computed until task
vi has been selected. Thus, the upward rank values of the selected tasks can be
computed using the most recently information. Secondly, some tasks assigned
to the revoked computing nodes need to migrate to other available computing
nodes. In order to keep the upward rank values precise for scheduled tasks, the
upward rank values of the migrant tasks and their predecessors are modified
using reranku(vi). The mapping step maps tasks to computing nodes such that
the completion times of the tasks are minimized. The insertion-based technique
[12] is also adopted to improve the mapping solution.

6 Experimental Results and Analysis

Our AROF scheduling algorithm is compared with HEFT [12] and GS [3] to
demonstrate its effectiveness. In this section, the parameter settings used in the
simulations are given and the results are presented and analyzed.

6.1 The Workload Parameters

The random graph generator adopted in [12] is used to create diagraphs of
different types. The shape of a diagraph is defined by the number of task layers
(height) and the average number of independent tasks in one layer. Attributes
used to generate the diagraphs are given as follows.

In our simulations, an application consists of |V | tasks, where |V | =50, 100
or 150. The entry and exit tasks are included in V . The height of a diagraph
is �√|V |/shape�. Except for the first (last) layer which only has one task, the
widths for the other layers are random numbers generated from a uniform dis-
tribution with a mean value �shape

√|V |�, where shape = 0.5, 1.0, or 2.0. If the
number of total tasks is less or more than |V | then tasks are added to or deleted
from randomly selected layers subject to that the number of tasks in any layer
cannot be less than one. Each task has three successors which are randomly
selected from the next layer if the layer consists of at least three tasks. Other-
wise, all the tasks in the next layer are the successors of those in the previous
layer. If any task in a layer has not been assigned as a successor then a task
in the previous layer is randomly selected as its predecessor. Communication to
computation ratio (CCR) is the ratio of average task communication cost to
average task computation cost. In our simulations, CCR =0.5, 1.0 or 2.0. De-
note b as the average bandwidth among all the pairs of computing nodes. The

Adaptable Scheduling Algorithm for Grids with Resource Redeployment 307

number of data units for task vi to communicate with any of its successors is a
random number within the range between 1 and 2bτcmp

i CCR. Note that τ cmp
i

is the average computation cost of task vi. The values of τ cmp
i and b depend on

the parameter settings for the grid model. Thus, a diagraph is generated layer
by layer after the parameter settings for the gird model have been known.

6.2 The R2 Grid Parameters

Heterogeneity factor HF , where HF < 1, defines the variance in the execution
costs of a task on different computing nodes. If HF is large, the variance in the
execution costs is high. The execution cost of task vi on computing node pj is
denoted as τcmp

ij . For a given i, τEcmp
i is a random number selected from the range

between 1 and 1000. For a selected τEcmp
i , τcmp

ij for each computing node pj is a
number randomly selected from the range between τEcmp

i (1−HF) and τEcmp
i (1+

HF). In our simulations, we have HF = 0.5. The reasons are given as follows.
Firstly, the computing node with extremely slow speed should not be dispatched
by the R2 grid as a reinforcing node. Secondly, the performances achieved by
scheduling algorithms cannot be effectively evaluated if extremely fast computing
nodes are available. The reserved bandwidth for a pair of computing nodes is
randomly selected from the range between 10 and 50.

In the simulations, the number of available computing nodes alters once while
an application is performing computations. Thus, the sequence of variation
events is given as (P0, P1), where P0 is the initial set of available computing
nodes and P1 is the set of available computing nodes after reinforcement or re-
vocation. In the reinforcement case, |P0| = 2, 4, 6, 8 or 10 and |P1| = |P0|+5. In
the revocation case, |P0| = 7, 9, 11, 13 or 15 and |P1| = |P0| − 5. The time du-
ration that an algorithm schedules the tasks of application A to the computing
nodes in P0 is denoted as δA. In our experiment, we set δA as the interval of time
for application A to complete forty percent of its tasks under HEFT algorithm.
For comparison purpose, we measure the performances of AROF and GS under
the same variation event sequence (P0, P1) and the same time duration δA for
switching variation event P0 to variation event P1.

6.3 Experimental Results

In this section, AROF algorithm is compared with the well-known scheduling
algorithms HEFT [12] and GS [3]. The traditional HEFT performs very well on
the platform where there is no variation in computing nodes. However, the design
of the traditional HEFT does not consider the necessity of migrating the sched-
uled tasks previously mapped on the revoked nodes. Thus, a modification to the
traditional HEFT is needed for an application to complete its work in case a
revocation of computing nodes can happen. The modified version is called Mod-
ified HEFT. The strategy employed by the modified HEFT to migrate tasks is
very simple. It just randomly maps the scheduled tasks on revoked computing
nodes to the available computing nodes. The strategy employed by the tradi-
tional HEFT does not suspend an ongoing application in the case of reinforcing

308 C.-C. Lin and C.-H. Hsu

0
5000

10000
15000
20000
25000
30000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(a) (100, 1, 0.5, increase)

0

5000

10000

15000

20000

25000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(b) (100, 1, 0.5, decrease)

0
5000

10000
15000
20000
25000
30000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(c) (100, 1, 1, increase)

0
5000

10000
15000
20000
25000
30000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(d) (100, 1, 1, decrease)

0
5000

10000
15000
20000
25000
30000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(e) (100, 1, 2, increase)

0
5000

10000
15000
20000
25000
30000
35000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AFOR GS Modified HEFT

(f) (100, 1, 2, decrease)

Fig. 3. The makespans under various CCR values

computing nodes. Thus, under our Modified HEFT, the newly jointed comput-
ing nodes will not be used by an ongoing application, either. For comparison
purpose, the steps for ranking and mapping used by AROF are also employed
by GS algorithm. In our simulations, a 4-tuple (|V |, shape, CCR, variation) is
used to indicate a combination of parameter settings, where variation can be
either increase or decrease. The result of each parameter combination presented
in the figures is given by averaging 30 simulation outcomes.

Figure 3 illustrates the makespans of the applications scheduled under AROF,
GS and Modified HEFT with CCR =0.5, 1 and 2. In general, the makespan of
an application with a high CCR value is longer than that with a low CCR
value. The reason is that an application with a high CCR value takes more
time to perform communications. In the case of reinforcement, the performance
gap between AROF and Modified HEFT is wide for a small initial set such
as |P0| = 2. The reason is that the the total computing power provided by
the computing nodes in P1 has been significantly enhanced compared to that
provided only by the computing nodes in P0. The performance gap becomes

Adaptable Scheduling Algorithm for Grids with Resource Redeployment 309

narrow when CCR is high. An obvious instance can be observed in the case
of |P0| =4 in which the gap for CCR = 2 is obviously narrow than that for
CCR = 0.5 and 1. The reason is that an application is communication-intensive
if its CCR is high. Thus, the advantage of assigning more computing nodes
to an application can be offset by the increasing communication costs among
the nodes in P1. Their performance gap becomes narrow when the number of
initial computing nodes in P0 is large. The major reason is that the ratio of
|P1| to |P0| becomes small when |P0| is large. In this case, the computing power
provided by the newly jointed computing nodes does not increase significantly
compared with that provided by the initial computing nodes in P0. Another
reason is that our grid model is defined for heterogeneous systems. Thus, the
most suitable computing node for each of the remaining tasks may not be found
in the newly jointed computing nodes. GS performs worst compared with the
others in most cases because of its conservative task selection strategy. The
conservation selection strategy of GS prohibits any complete predecessor of a
task from sending data to the task before all of its predecessors have completed
their work. When the CCR value increases, the performance gap between GS and
any other scheduling algorithm widens. The reason is that, under GS algorithm,
many tasks may have suffered from a long waiting time before they can be
selected for mapping. In the case of revocation, the performance achieved by
Modified HEFT is worst for |P0| ≥ 9. The reason is that the scheduled tasks on
the revoked computing nodes are randomly mapped to the computing nodes in
P1. Thus, the tasks may not migrate to their most suitable computing nodes.
On the contrary, AROF performs well because its mapper schedules the tasks
previously mapped on the revoked computing nodes to the available computing
nodes which minimize the completion time of the tasks.

Figure 4 illustrates the makespans of the applications scheduled under AROF,
GS and Modified HEFT with |V | = 50, 100 and 150. We observe that the makespan
of the application consisting of more tasks is longer than that consisting of less
tasks.The attained performances as shown in Fig.4 have the similar trends as those
in Fig.3. In the case of reinforcement, the performance gap between AROF and
HEFT is significantly wide for |P0| ≤ 4. We also observe that the gap increases in
direct proportion to the number of tasks in an application. The reason is that the
more the tasks constitute an application, the more the tasks remain unscheduled
as the R2 grid switches from event P0 to event P1. In this case, the newly jointed
computing nodes can be fully utilized by the application scheduled by AROF al-
gorithm. The performance achieved by GS is worst in most cases except |P0| = 2.
For |P0| = 2, the computing power provided by the computing nodes in P1 over-
whelms the adverse effect of conservative selection strategy employed by GS. In
the case of revocation, AROF outperforms the modified HEFT and GS algorithms
because the appropriate selection strategy is employed by AROF. GS outperforms
Modified HEFT except for the instance |P0| = 7atwhich they have the similar per-
formance. The reason is that the strategy for GS to map tasks to computing nodes
cannot maintain its advantage when the number of available computing nodes in
P1 is small.

310 C.-C. Lin and C.-H. Hsu

0

5000

10000

15000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(a) (50, 1, 1, increase)

0

5000

10000

15000

20000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(b) (50, 1, 1, decrease)

0
5000

10000
15000
20000
25000
30000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(c) (100, 1, 1, increase)

0
5000

10000
15000
20000
25000
30000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(d) (100, 1, 1, decrease)

0
5000

10000
15000
20000
25000
30000
35000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(e) (150, 1, 1, increase)

0
5000

10000
15000
20000
25000
30000
35000
40000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(f) (150, 1, 1, decrease)

Fig. 4. The makespans under various task numbers

Figure 5 illustrates the makespans of the applications scheduled under AROF,
GS and Modified HEFT with shape =0.5, 1 and 2. The figure shows that the
makespan of an application with a small shape value is longer than that with
large shape value. Note that the height of a diagraph equals �√|V |/shape�.
Thus, the total communication cost of an application increases as the applica-
tion is defined by a high diagraph. The attained performances as shown in Fig.4
have the similar trends as those in Fig.3. In the case of reinforcement, the per-
formance gaps between AROF and HEFT are wide for |P0| = 2. GS performs
worst compared with the others in most cases because of its conservative task
selection strategy. However, when shape = 2 and |P0| = 2, GS performs best
compared with the others. The reason is that the adverse effect of the conserva-
tive selection strategy employed by GS is offset by the large number of tasks in a
layer. Another reason is that the tasks mapped to a small number of computing
nodes can reduce the communication costs. In the case of revocation, AROF
still outperforms the other algorithms. Modified HEFT performs worst in most
cases. The performance gaps between AROF and GS become narrow when shape

Adaptable Scheduling Algorithm for Grids with Resource Redeployment 311

0
5000

10000
15000
20000
25000
30000
35000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AFOR GS Modified HEFT

(a) (100, 0.5, 1, increase)

0
5000

10000
15000
20000
25000
30000
35000
40000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AFOR GS Modified HEFT

 (b) (100, 0.5, 1, decrease)

0
5000

10000
15000
20000
25000
30000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(c) (100, 1, 1, increase)

0
5000

10000
15000
20000
25000
30000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(d) (100, 1, 1, decrease)

0
5000

10000
15000
20000
25000
30000

2 4 6 8 10
The number of initial computing nodes

M
ak

es
pa

n

AROF GS Modified HEFT

(e) (100, 2, 1, increase)

0

5000

10000

15000

20000

25000

7 9 11 13 15
The number of initial computing nodes

M
ak

es
pa

n

AFOR GS Modified HEFT

(f) (100, 2, 1, decrease)

Fig. 5. The makespans under various shape values

value increases. The reason is that the communication cost decreases when an
application is modeled by a short diagraph.

According to the experimental results, it leads to a conclusion as follows.
Modified HEFT still can achieve high performance when the ratio of |P1| to
|P0| is small even though it cannot employ the newly jointed computing nodes
in the case of reinforcement. However, it cannot perform well in the case of
revocation. GS usually performs worst in the case of reinforcement except for
|P0| = 2 with which the adverse effect of its conservative task selection strategy
is not obvious. AROF algorithm achieves best performance in most of the cases
under the computing environment in which the set of available computing nodes
can be variant.

7 Conclusions and Future Work

In this paper, we have demonstrated that AROF outperforms the well-known
scheduling Modified HEFT and GS algorithms in most cases. In the future, we

312 C.-C. Lin and C.-H. Hsu

will study the optimal number of computing nodes assigned to an application by
AS algorithms for achieving maximum performance under difference sequences
of variation events in the R2 grid.

References

1. Baskiyar, S., SaiRanga, P.C.: Scheduling Directed A-cyclic Task Graphs on Het-
erogeneous Network of Workstations to Minimize Schedule Length. In: Proc. The
Int’l Conf. Parallel Processing Workshops, pp. 97–103 (2003)

2. Cao, H., et al.: DAGMap: Efficient Scheduling for DAG Grid Workflow Job. In:
The 9th IEEE/ACM Int’l Conf. Grid Computing, pp. 17–24 (2008)

3. Carter, B.R., et al.: Generational Scheduling for Dynamic Task Management in
Heterogeneous Computing Systems. J. Information Sciences series 106, 219–236
(1998)

4. Chang, J.-Y., Chen, H.-L.: Dynamic-Grouping Bandwidth Reservation Scheme for
Multimedia Wireless Networks. IEEE J. Selected Areas in Communications 21,
1566–1574 (2003)

5. Freund, R.F., et al.: Scheduling Resources in Multi-user, Heterogeneous, Comput-
ing Environments with SmartNet. In: Proc. Heterogeneous Computing Workshop,
pp. 184–199 (1998)

6. Ilavarasan, E., Thambidurai, P., Mahilmannan, R.: Performance Effective Task
Scheduling Algorithm for Heterogeneous Computing System. In: Proc. The 4th
Int’l Symp. Parallel and Distributed Computing, pp. 28–38 (2005)

7. Kwok, Y.-K., Ahmad, I.: Dynamic Critical-Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multiprocessors. IEEE Trans. Parallel and
Distributed Systems series 7, 506–521 (1996)

8. de O. Lucchese, F., et al.: An Adaptive Scheduler for Grids. J. Grid Computing se-
ries 4, 1–17 (2006)

9. Maheswaran, M., et al.: Dynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing System. J. Parallel and Distributed Computing 59, 107–
131 (1999)

10. Rauber, T., Rünger, G.: Anticipated Distributed Task Scheduling for Grid Envi-
ronments. In: Proc. The 20th Int’l Parallel and Distributed Processing Symposium
(2006)

11. Sakellariou, R., Zhao, H.: A Hybrid Heuristic for DAG Scheduling on Heteroge-
neous Systems. In: Proc. The 18th Int’l Parallel and Distributed Processing Sym-
posium (2004)

12. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing. IEEE Trans. Parallel and Dis-
tributed Systems series 13, 260–274 (2003)

13. Wang, L., et al.: Task Matching and Scheduling in Heterogeneous Computing Envi-
ronments Using a Genetic-Algorithm-Based Approach. J. Parallel and Distributed
Computing series 47, 8–22 (1997)

14. Wu, M.-Y., Gajski, D.D.: Hypertool: A Programming Aid for Message-Passing
Systems. IEEE Trans. Parallel and Distributed Systems 1, 330–343 (1990)

15. Yang, M., et al.: An End-to-End QoS Framework with On-Demand Bandwidth
Reconfiguration. Computer Communications series 28, 2034–2046 (2005)

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 313–323, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Using MPI on PC Cluster to Compute Eigenvalues of
Hermitian Toeplitz Matrices

Fazal Noor and Syed Misbahuddin

College of Computer Science and Engineering,
Computer Science and Software Engineering Department,

University of Hail, Hail, Saudi Arabia
{fnoor,smisbah}@uoh.edu.sa

Abstract. In this paper MPI is used on PC Cluster to compute all the eigenval-
ues of Hermitian Toeplitz Matrices. The parallel algorithms presented were im-
plemented in C++ with MPI functions inserted and run on a cluster of Lenovo
ThinkCentre machines running RedHat Linux. The two methods, MAHT-P one
embarrassingly parallel and the other MPEAHT using master/ slave scheme are
compared for performance and results presented. It is seen that computation
time is reduced and speedup factor increases with the number of computers
used for the two parallel schemes presented. Load balancing becomes an issue
as number of computers in a cluster are increased. A solution is provided to
overcome such a case.

Keywords: Parallel processing, load-balancing, MPI, Speedup, PC cluster,
Hermitian Toeplitz Matrices, Eigenvalues.

1 Introduction

The Message Passing Interface Standard (MPI) is a message passing library. MPI is
widely used in writing programs in which distributed computing is necessary. Nowa-
days with affordable personal computers a cluster of PCs can be setup with LINUX or
MS-Windows operating system. A cluster of PCs can be used to run a program in
parallel to solve computationally intensive complex problems. Such a problem arises
in array signal processing where a process is stationary and the covariance matrix is
Hermitian Toeplitz. In this case matrices formed are of large order and problem re-
duces to compute eigenvalues. In this paper we have implemented an algorithm using
MPI to run in parallel on a cluster of Pentium machines to compute all the eigenval-
ues of a given Hermitian Toeplitz matrices. In 1989, Trench[1] presented a numerical
solution of eigenvalue problem for Hermitian Toeplitz matrices and later a modified
version of Trench’s method with Hu’s method[2][5] was presented in [3].

The idea of parallel eigenvalue computation for real Toeplitz matrices was first
presented by Hu[5]. Badia and Vidal[8] presented parallel methods for the case of real
symmetric Toeplitz matrices using Parallel Virtual Machine (PVM). In this work, we
deal with Hermitian Toeplitz matrices and use MPI. In Section 2, we present the
mathematical background and in Section 3 we present the results.

314 F. Noor and S. Misbahuddin

2 Mathematical Development

Given a Hermitian Toeplitz matrix nC of order n,

* *
0 1 1

*
1 0 2

1 2 0

...

...

. . .

. . .

. . .

...

n

n

n

n n

c c c

c c c

C

c c c

−

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (1)

where 0c is real and 1c , 2c , …, 1nc − are complex, the problem is to find the com-

plete eigenspectrum. Since nC is Hermitian, * , 0,1,..., 1.i ic c i n− = = − The princi-

pal submatrix of nC of order k is defined as [: 0 , 1],k i jC c i j k−= ≤ ≤ −

1,2,..., .k n=

Consider the following linear system involving the shifted Hermitian Toeplitz co-
efficient matrix n nC Iλ− :

[]
1

1
() () 0 0

()
T

n n n
n

C I Eλ λ
λ−

⎛ ⎞
− = ⋅⋅⋅⎜ ⎟−Φ⎝ ⎠

 (2)

where λ is treated as a continuous real variable. We assume all principal subma-
trices ,k kC Iλ− 1, 2, , ,k n= are nonsingular. This implies that the Levinson-

Durbin(L-D) recursion can be applied to * *
1 1 0 1 1()

T

n n nC I c c cλ− − −⎡ ⎤− Φ = ⎣ ⎦
.

In order to find the elements 1, ,n iφ − 1,2, , 1,i n= − of 1()n λ−Φ in a recursive

fashion we use the following L-D algorithm:

Initialization:

0 0E c λ= − ,

For 1 1.k n≤ ≤ −
Compute:

1

1,
11

1 k

k k k i k i
ik

c c
E

ρ φ
−

− −
=−

⎡ ⎤= −⎢ ⎥
⎣ ⎦

∑

kk kφ ρ=
*

1, 1, , 1 1kk k i k k k i i kφ φ ρ φ− − −= − ≤ ≤ −

2

1(1 | |).k k kE E ρ−= − (3)

 Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices 315

The parameters kρ and kE are known as the reflection coefficient and prediction

error, respectively, at the kth recursive step. Note that all the quantities in equation (3)

depend on the parameter λ through the initialization 0E . The sequential algorithm

is summarized below.

Modified-Algorithm-Hermitian Toeplitz Matrices [3]

Step 1-Select: Find the eigenvalues 1, , , ,p p qλ λ λ+ 1 .p q n≤ < ≤ Using trial

and error, select an interval (,)a b by bisection such that () 1,nNeg a p≤ −

() .nNeg b q≥ Note: Neg (λ) is the number of negative elements)(λiE equals the

number of eigenvalues iλ of C that are less than λ .

For i p= To 1.q −

Step 2-Search: Search for the endpoint iU ξ not captured by trial and error such

that (,)i iL Uξ ξ contains iλ . This is done by bisection and by keeping count of the

negative signs of 1 2{ (), (), , ()}i i n iE U E U E Uξ ξ ξ . During this search proc-

ess, keep tightening, capturing, and storing the locations of other desired eigenvalues,

while also retaining the values (),n iE Lξ (),n iE U ξ and 1()n iE Lξ + .

Step 3-Refine: Once all the intervals iLξ < iλ < iU ξ , ,p i q≤ ≤ are obtained:

For j=p To q

(a) Set jLα ξ= , ()n jE E Lα ξ= and jUβ ξ= , ()n jE E Uβ ξ= .

(b) For multiple eigenvalues, set the matrix order n to n-m+1 and work with the

submatrix 1n mC − + . By trial and error, refine the interval (,)α β to

(', ')α β by bisection such that the following conditions hold:

i. (') 1nNeg jα = − and (')nNeg jβ =

ii. (') 0nE α > and (') 0nE β < .

(c) Switch to Modified Rayleigh Quotient Iteration (MRQI) or PEGASUS

method to find jλ .

Next j
End.

Parallelism in the above algorithm can be accomplished several ways. Some of the

methods are as follows:

Method 1). The above algorithm MAHTM is executed in parallel on each computer
(node) in the cluster for different range of eigenvalues [5][8]. So in parallel each node
finds for p=my_rank*n/psize +1 to q=(my_rank +1) * n/psize range of eigenvalues,

316 F. Noor and S. Misbahuddin

where my_rank is the rank of each computer in the group, psize is the number of
computers or nodes in a group, and n is the size of the matrix. We will call this
method MAHT-P. This method has almost no communication overhead and falls in
the category of embarrassingly parallel algorithms [10].

Method 2). Master Computer: Performs Step1-Select and Step2-Coarse Search then
once all intervals are obtained then in parallel these intervals may be sent to the slaves

to extract the eigenvalues. Slave computers: Each xslave in parallel receives an in-

terval and uses either MRQI or Pegaus method to find jλ . In other words, parallelism

is done at Step 3 of MAHTM and slaves are idle the whole time Master Computer
performs step 1 and 2.

Method 3). Master and Slave Computers: All computers master and slave participate
in obtaining the coarse intervals and pass the intervals to the master which acts as a
coordinator. The master then sends one interval to each slave and waits for the result.
Once the result is received it sends another interval to the same slave. The process is
repeated until there are no more intervals to send.

Method 3 is summarized as follows:

MPI-Parallel-Eigen Algorithm Hermitian Toeplitz (MPEAHT) Matrices

Step 1: In parallel each computer (master and slaves) finds the range of intervals
from p to q each containing an eigenvalue according to their rank . Each has range
from p= my_rank*n/psize + 1 to q=(my_rank + 1) * n / psize intervals to find, where
my_rank is rank of each computer in the group, psize is the number of computers in
the group, and n is the size of the matrix.

Step 2: Intervals found are sent to master computer and then master computer acting

as a coordinator sends an interval to a slave to find jλ . Each slave receives a single

interval at a time. The slave computes an eigenvalue and sends back a signal to mas-
ter to send another single interval containing an eigenvalue. In this scenario, there is
communication between master and slave but slaves are load balanced. Time spent
 by slave to compute an eigenvalue exceeds the time taken to communicate with the
master.

In MPI-Parallel-Eigen (MPEAHT) the master and slave computers perform the coarse
search in which non-contiguous intervals, in general, are obtained containing an ei-
genvalue per interval. In the Appendix a skeleton of the MPI program used with the
above algorithm is provided.

In MPEAHT the master dispatches intervals among the slaves and waits to receive
result and then sends another interval. In this case load is balanced in time among the
slaves, therefore some slaves may compute more eigenvalues than others.

We implemented MPEAHT in C++ with MPI functions and ran it on our cluster
under LAM environment. With LAM, a LINUX cluster acts as one parallel computer
solving one compute-intensive problem as in our application.

 Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices 317

3 Experimental Results

We implemented the above algorithms MAHT-P (Method 1) and MPEAHT
(Method 3) in C++ with MPI functions and ran it on a 30 node cluster. Speedup is
defined as

where sT is the sequential execution time on one computer, and pT is the execution

time on P computers consisting of computation and communication time. Note com-
munication time is negligible for MAHP-T algorithm compared to computation time.
In case of MPEAHT algorithm the effect of communication time diminishes as num-
ber of computers increase in the cluster. Communication time in our sample runs was

around 510 − seconds. Computation time complexity is on order of)(ikMtΟ where

k is number of eigenvalues searched per computer, M is average number of iterations

required of Levinson-Durbin (L-D) algorithm per eigenvalue, and it is time taken by

one iteration of L-D algorithm. For MAHT-P algorithm k is known and is defined as
k=n/p (number of eigenvalues to be searched per computer) with n being the order of
the matrix and p being the number of computers but for MPEAHT algorithm k is not
known beforehand. For MPEAHT communication time would be approximately k

times 510− seconds. We formed matrices of order 500 in which the off diagonal
elements were randomly chosen having uniform distribution. Ideal speedup that
can be achieved with p identical computers working is at most p times faster

Fig. 1. Speedup vs number of computers in a cluster for MAHT-P and MPEAHT algorithms

Communicationcomputation

s

p

s
p TT

T
T

T
S

+
==

 (4)

318 F. Noor and S. Misbahuddin

 Table 1a. Shows a sample run of algorithm MPEAHT in a cluster of size 6

Machine No. Roots No. Iter Seconds
P1 62 287 5.72
P2 86 410 5.5
P3 96 419 5.34
P4 93 431 5.52
P5 82 356 5.25
P6 81 406 5.7
 500 2309 5.505

 Table 1b. Shows another sample run of algorithm MPEAHT in a cluster of size 6

Machine No. Roots No. Iter Seconds
P1 60 293 5.85
P2 96 443 5.56
P3 60 285 5.66
P4 96 438 5.51
P5 100 450 5.7
P6 88 400 5.35
 500 2309 5.605

than a single computer [10]. From Figure 1 with 30 computers the ideal speedup
would be 30 times that of sequential time, however, it is approximately 12 to 14 range
which is less than half the ideal. Also from Figure 1, the MAHT-P speedup graph
shows more linearity than that of MPEAHT.

Tables 1a and 1b, below show two sample runs of algorthim MPEAHT on six
slaves for a matrix of size 500. Note, same computer may have different number of
intervals at different runs resulting in imbalance in number of roots. Also note some
computers may be slower than others, for example, P1 although has less number of
iterations than P2, P1 takes more time than P2. Similar conclusions can be made for
other computers.

Figure 2 shows average time in seconds taken by number of computers in a
cluster for matrix of size 500. As seen for number of computers less than 4 in a cluster
MPEAHT took longer time than MAHT-P and as number of computers in a cluster
increases time decreases and the difference between the two diminish.

Figures 3 and 4 show a sample run on a cluster of 30 computers. The horizontal
axis shows the i-th computer in a cluster. Figure 3 shows the number of iterations
taken for each computer and Figure 4 shows the corresponding average time taken for
each computer. Figure 4 shows MAHT-P more stable in number of iterations than
MPEAHT. However in Figure 4 MPEAHT shows more stability in time than MAHT-
P. In our sample runs and the type of matrices used, MAHT-P performed a little better
than MPEAHT.

 Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices 319

Fig. 2. Average time vs. number of computers in a cluster for MAHT-P and MPEAHT
algorithms

Fig. 3. Iterations on the i-th computer node of MAHT-P and MPEAHT algorithms

We also noted that in the case of MPEAHT (master/slave) fair load balancing de-
graded as number of computers in a cluster increased beyond 24. In practice fair load
balance becomes poor because multiple slaves when finish their work contend to
communicate at the same time with master for more work and it may happen a few
slaves get fewer work than others. This is due to Carrier Sense Multiple Access with
Collision Detection (CSMA-CD) technology being used on Ethernet networks.
A solution to this problem would be to provide multiple communication channels to
the master computer. Providing such communication channels would eliminate the
contention problem.

320 F. Noor and S. Misbahuddin

Fig. 4. Average time on i-th computer node of MAHT-P and MPEAHT algorithms

3 Conclusion

We have presented two methods for parallel computation of eigenvalues of Hermitian
Toeplitz Matrices, namely MAHT-P and MPEAHT. MAHT-P and MPEAHT both
use non-contiguous intervals but MAHT-P distributes equal amount of intervals to the
workers whereas MPEAHT uses a master-slave scheme to distribute the intervals. It is
seen that the results depend on the distribution of eigenvalues in an interval and
MAHT-P gave better results in terms of time than the master-slave method of
MPEAHT. Further we noted MPEAHT needs better ways to have fair load balancing
specially as number of computers participating in a cluster increase. A solution to this
problem is providing multiple hardware interfaces for handling multiple contentions.

Acknowledgments. The authors would like to thank the University of Hail research
center and the reviewers for their helpful comments.

References

1. Trench, W.F.: Numerical Solution of the Eigenvalue Problem for Hermitian Toeplitz Ma-
trices. SIAM J. Matrix Anal. Appl. 10(2), 135–146 (1989)

2. Hu, Y.H., Kung, S.Y.: Toeplitz Eigensystem Solver. IEEE Trans. Acoust. Speech, Signal
Processing ASSP-33, 1264–1271 (1985)

3. Noor, F., Morgera, S.D.: Recursive and Iterative Algorithms for Computing Eigenvalues
of Hermitian Teoplitz Matrices. IEEE Transcations on Signal Processing 41(3), 1272–1279
(1993)

 Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices 321

4. Noor, F., Morgera, S.D.: Construction of a Hermitian Toeplitz Matrix from an Arbitrary
Set of Eigenvalues. IEEE Trans. Siganl Processing 40(8), 2093–2094 (1992)

5. Hu, Y.H.: Parallel Eigenvalue Eecomposition for Toeplitz and related Matrices. In: Proc.
ICASSP 1989, Glasgow, Scotland, pp. 1107–1110 (1989)

6. Cybenko, G., Van Loan, C.: Computing the Minimum Eigenvalue of a Symmetric Positive
Definite Teoplitz Matrix. SIAM J. Sci. Stat. Comput. 7, 123–131 (1986)

7. Beex, A.A., Fargues, M.P.: Highly Parallel Recursive Iterative Toeplitz Eigenspace De-
composition. IEEE Trans. Acoust. Speech, Signal Processing 37(11), 1765–1768 (1989)

8. Badia, J.M., Vidal, A.M.: Parallel Algorithms to Compute the Eigenvalues and Eigenvec-
tors of Symmetric Toeplitz Matrices. Parallel Algorithms and Applications 13, 75–93
(2000)

9. Golub, E.H., Van Loan, C.: Matrix Computations, pp. 305–312. John Hopkins University
Press, Baltimore (1983)

10. Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using Net-
worked Workstations and Parallel Computers, 2nd edn. Pearson Education Inc., London
(2005)

Appendix

Below is the skeleton of the MPI program used with the above algorithm.

void intervals(int p, int q);
void roots(int kkk);

int main(int argc, char** argv)
{
 int WORKTAG = 1;
 int EXITTAG = 2;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &psize);
for (rank = 0; rank < psize; ++rank)
 { if (my_rank == rank)
 { intervals (p, q);
 if (my_rank != 0)
 { for (kkk=p; kkk<=q; ++kkk)
 {

// Each slave P_i have found intervals will send from p
to q intervals to Master
// Sending intervals back to Master with rank = 0
MPI_Send(&work, 5, MPI_DOUBLE, 0, 22, MPI_COMM_WORLD);
 } /* end-for kkk */
 } /* end if rank not 0 */
 } /* if my rank == rank */
 } /* for loop rank = 0 */

322 F. Noor and S. Misbahuddin

 if (my_rank == 0)
 { n1=nn/psize + 1;
 for (l=n1; l<=nn; ++l)
 {

MPI_Recv(&work,5,MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG,MP
I_COMM_WORLD, &status);
 } /* end for l=n1 */
 } /* end-if my rank == 0 */

//Range of eigenvalues to search
 p = 1; q = nn;

//Master is finding the coarse intervals containing an
eigenvalue
 if (my_rank == 0)
 { intervals (p, q);

//Sending intervals to processors with rank 1 to psize -1
 for(rank=1; rank<psize; ++rank)

{MPI_Send(&work,5,MPI_DOUBLE,rank,WORKTAG,PI_COMM_WORLD);
 }

// While there are intervals send them to find
eigenvalues in them
 i=psize;
 while (i != nn+1)

{MPI_Recv(&result,4,MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG
,MPI_COMM_WORLD, &status);

MPI_Send(&work,5,MPI_DOUBLE,status.MPI_SOURCE,WORKTAG,
MPI_COMM_WORLD);
 } /* end-while */

// No More Intervals left so recieve all that is still
being worked upon
 for (rank=1; rank < psize; ++ rank)

{MPI_Recv(&result,4,MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG
,MPI_COMM_WORLD, &status);
 }

// Broadcast signal to slaves to indicate no more jobs
therefore exit
 for (rank =1; rank < psize; ++rank)
 {MPI_Send(0,0,MPI_INT,rank,EXITTAG, MPI_COMM_WORLD);
 }
 } /* end-if my rank equals 0 */
else {

// Slaves do the work; Processor i receives the lower
and upper intervals
// slave returns with result array containing,
eigenvalue, no of iterations, time elapsed in seconds.
 while (1) {

 Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices 323

/*Receive information from Master */
MPI_Recv(&work,5,MPI_DOUBLE,
0,MPI_ANY_TAG,MPI_COMM_WORLD, &status);
/* Check the tag of the received message */
 if (status.MPI_TAG == EXITTAG)
 { MPI_Finalize();
 return 0;
 }
/* Do the work */
 roots(kkk);
 MPI_Send(&result,4,MPI_DOUBLE,0,0, MPI_COMM_WORLD);
 } /* end while (1) */
 } /* end-if my rank equals 0 else */
 MPI_Finalize();
 return (0);
}

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 324–336, 2010.
© Springer-Verlag Berlin Heidelberg 2010

idsocket: API for Inter-domain Communications
Base on Xen

Liang Zhang, Yuein Bai, and Cheng Luo

School of Computer Science, Beihang University,
100191 Beijing, China

l_zhang@cse.buaa.edu.cn

Abstract. In virtualization environment, all physical hardware resource is main-
tained by virtual machine monitor (VMM). And as more and more applications
and software deployed on virtual machine are communication intensive, they
have a demand for communicate with each other. In-built communication abil-
ity between virtual machines is a necessary component of a mature virtual envi-
ronment and is often easy to use, however, the performance of native in-built
inter virtual machine communication is often not so good. At the same time,
in virtual environment such as Xen hypervisor, a delicate approach, shared
memory and event channel mechanism is provided. And this mechanism can be
utilized for inter domain communication but not so easy to use. And to get a
balance between performance and convenience, in this paper, we design and
implement idsocket, an API suite for inter domain communication based on
Xen using shared memory and event channel mechanism, bypassing the tradi-
tional front-back driver model. Benchmark evaluations and program tests have
demonstrated that it has a better performance and a lower resource cost than the
in-built front-back driver model for inter domain communication in Xen. Mean-
while, the rule and philosophy behind the design and implementation of
idsocket is almost universal in any type of virtual machine.

1 Introduction

Recently, with the rapid development of hardware and software, virtualization tech-
nology is becoming mainstreamed. In virtualization environment, all physical hard-
ware resource is maintained by virtual machine monitor (VMM), and above it, several
virtual machines residing on the same physical server are logically isolated. This type
of design makes the virtual environment more robust and secure [7][10]. However, as
more and more communications intensive applications and software, such as web
service, database centre, and gateway or name server, deployed in virtualized envi-
ronment, communication mechanism of high performance must be offered by the
VMM to make them run properly. In most VMM, this may be a very resource-
consuming process because the barrier of isolation between virtual machines and the
performance of communication between virtual machines is usually poor [1] [11],
comparing with that in a physical environment.

In this paper, we propose and design an API suite for inter domain communication
based on Xen hypervisor, named idsocket, which is short for inter domain socket, and

 idsocket: API for Inter-domain Communications Base on Xen 325

it is easy to use and has an performance enhancement comparing to the in-built com-
munication mechanism of Xen. Meanwhile, the rule and philosophy behind the design
and implementation of idsocket is almost universal in any type of virtual machine.

The rest part of this paper is organized as follows. Section 2 states the motivation
of our work. And in Section 3, a briefly introduction to the relative structure of the
network architecture of Xen is presented. Section 4 discusses the design and imple-
mentation of idsocket. Performance evaluation is presented in Section 5. And relative
works are mentioned in Section 6. Finally, Section 7 introduces future works and
concludes.

2 Motivation

In virtual environment, communication request between applications and software is
increasingly more; however, as a part of virtualized I/O, the in-built communication
mechanism of most virtual machine monitor is seriously poor. Take Xen as an exam-
ple. In the environment of Xen, there are two ways to do inter domain communica-
tion, the first way is that each virtual machine can be assigned an IP address and
communicates with each other as they are in a same LAN. Although it is easy to use,
due to the internal principle of Xen, it can be time-and-resource-consuming and inef-
ficient. The poor performance makes the virtualized network communication of Xen a
bottleneck when deploying network-sensitive application. And the second way is to
use share memory and event channel mechanism. Shared memory is used to copy and
read data while event channel is used to pass signals to notify domains that something
has happened (such as data copy has ended, data is ready to be read and so on). This
mechanism is more efficient and delicate but has a short coming that it is not so easy
to use by user space program. All the operation is done through hypercalls which are
kernel-level interface and any illegal use of them may cause fatal system error or
failure.

And now, our research mainly focus on developing a new type of inter domain
communication mechanism which provides high performance and is easy-to-use. And
with this mechanism, inter domain communication is achieved through direct memory
copy and it provides API in user space to make it easy to invoke.

3 Background

3.1 Architecture of Xen about Inter Domain Communication

Xen hypervisor is a virtual machine monitor of the powerful open source industry
standard for virtualization [4]. Xen is a software layer which resides directly on the
underlying hardware. There are guest domains above Xen. Domain 0 (Dom0), also
known as privileged domain, is the most important domain, providing device drivers,
user interface and tools, while other domains are unprivileged Domain U (DomU).
Xen provides an environment that allowing multiple operating systems run concur-
rently as DomUs in an unprivileged way. All the privileged requests from DomU(s)
are transformed to and proceed by Dom0 [8].

326 L. Zhang, Y. Bai, and C. Luo

In the socket communication, Xen provides the front-back spilt driver model. In
this model, DomU hosts the front-end and Dom0 hosts the back-end. All the device
drivers are installed in Dom0, and DomU just has an abstract interface. Packages for
inter domain communication travel from source DomU to Dom0 in the path of front-
end to back-end. And then travel from Dom0 to destination DomU in the path of
back-end to front-end [8]. Fig 1 shows the architecture of front-back driver model in
Xen.

Fig. 1. Front-Back Driver Model Architecture in Xen Hypervisor

In the shared memory and event channel mechanism communication, Xen provides
hypercalls for this function [8]. Shared memory is measured in page, whose size is
4KB, and can be created and granted by one domain and then be mapped by another
domain. Shared memory is just lockless main memory space without any synchroni-
zation, and the task is for event channel. Event channel is a type of software interrupt,
and it is a one-bit notification indicating something has happened, such as there is
waiting data or memory space is ready to be rewritten.

3.2 Data Sharing and Security Issues in a Virtual Machine Environment

All the virtual machines reside on a same physical server and share the memory space
of the physical machine. Every virtual machine has its own memory address space
virtualized by the virtual machine monitor, and from the view of virtual machine, it
monopolizes all the memory assigned to it. As one of the issues about isolation, the
in-memory data must be protected by some security rules to make it safe and only
accessible to the virtual machine owing it. Also, during the communication process
between two virtual machines based on the way of shared memory, memory pages
used for transferring data should be only written by the sender and then granted to the
particular virtual machines, and also, these memory pages are only allowed to be
mapped and read by the legal receiver. It is illegal and prohibited that other virtual
machines either map or read to these memory regions without any grants.

As a mature virtual machine monitor, it must be designed to address these prob-
lems. “Physical” memory address of any virtual machine, which is actually virtual
address, is maintained by the virtual machine monitor. And in the inter-domain com-
munication of shared memory based way, the virtual machine monitor also should
provide some functions for virtual machines to control memory access privilege, in
form of interfaces or system calls and so on to guarantee the in-memory data isolation
and security [14].

 idsocket: API for Inter-domain Communications Base on Xen 327

4 Design and Implementation

4.1 General Architecture of idsocket

idsocket is resided both on Dom0 and DomUs as kernel modules and therefore,
idsocket can run without any modification of domains’ kernel. In Dom0, there is a
module for discovering DomUs and dispatching configuration messages for commu-
nication preparations between DomUs, named dis2-module. And in each DomU, there
is a configuration module, named conf-module and a communication module, named
com-module, respectively meet the requests of configuration negotiation and data
transportation. dis2-module and conf-module contact with Xenstore, which is a small
database with a tree-like structure storing configuration of all living domains [5].
DomU has a capacity of reading and writing their own Xenstore content while Dom0
can fully control Xenstore of all domains. And com-module in DomU exchanges data
and notification with shared memory and event channel. The architecture of idsocket
is illustrated in Fig 2.

Fig. 2. General Architecture of idsocket

4.2 Discovering and Dispatching - Module in Dom0

4.2.1 Discovering DomUs
One DomU wants to communicate with other DomU, but the lack of the information
of other DomUs makes it difficult to start a communication. And we design a module
for discovering all DomUs for any DomU choosing from them. Meanwhile, commu-
nicating DomUs must share some configuration information to negotiation connection
and they must be transport automatically between DomUs. These tasks are the re-
sponsibility of dis2-module.

When dis2-module begins to work, it firstly creates an entry “idsocket” with three
keys “domlist”, “tohv” and “fromhv” in every DomU’s Xenstore. Then, it cyclically
scans Xenstore to acquire domid and name of all DomUs and collect them in a string
with [domid, name] pairs and then write it to the key “domlist” of each DomU.

4.2.2 Dispatching Function, Ways to Forward Configuration Message
Also, dis2-module cyclically scans the “tohv” key of each DomU, and then parses
the content as a configuration message and forwards it to the destination DomU by

328 L. Zhang, Y. Bai, and C. Luo

writing the message to the key “fromhv” in its Xenstore. The scanning frequency can
be configured as desired, and now we set it to one scanning per second.

With dis2-module, all DomUs can get the latest status about other DomUs which
are potential communication targets, and any message between two domains in the
communication process can be parsed and forwarded in time. As a result, one DomU
is no longer bothered by the barrier of lack of information about other DomUs and
configuration messages can be easily exchanged.

Configuration negotiation between DomUs with the assistance of Dom0 uses mes-
sage of types listed in Table 1. The messages ending with “FWD” stands for “for-
ward” which implies that the message is forwarded by Dom0. The whole process of
configuration negotiation is illustrated in Fig 3.

Table 1. Message Type in Communication Negotiation

IDS_MSG_BAD_UNO Unknown message,
error occurred

IDS_MSG_SND_FWD Send request message
forward

IDS_MSG_RCV_REQ Receive request message IDS_MSG_RCV_RSP Receive response message
IDS_MSG_RCV_FWD Receive request message

forward
IDS_MSG_RCV_ACK Receive response message

forward
IDS_MSG_SND_REQ Send request message IDS_MSG_SND_CLR Send finish message

4.3 Configuration and Transportation - Module in DomU

4.3.1 Configuration Negotiation, Preparing or Destroying the Data Channel
Configuration negotiation is the first step of communication. In this step, sender Do-
mU allocates shared memory pages and grants them, getting an integer value gntref as
an identifier. After that, sender DomU allocates an unbound event channel and an
integer portnum is returned as an indicator. And then, sender DomU writes the two
integers to key “tohv” in Xenstore, and they are forwarded to receiver DomU. Re-
ceiver DomU reads them from key “fromhv”, and shared memory is mapped with
gntref, and event channel is bound with portnum. This process is much like a simple

Fig. 3. Configuration Negotiation between DomUs

 idsocket: API for Inter-domain Communications Base on Xen 329

hand-shaking protocol, and through this process, the sender and receiver DomUs
build up a data channel and get ready to data transportation.

And if there is no longer any data to transport, sender DomU also writes a request
for removing the data channel into Xenstore. And once this message is forwarded to
receiver DomU, receiver DomU tries to unbind from event channel and unmap the
shared memory region. Then receiver DomU writes a response message which is to
be forwarded to sender DomU into Xenstore. After this message reaches sender
DomU, it frees the shared memory pages and withdraws the unbound event channel.

4.3.2 Data Transportation, together with Notification
Data is transported by copying into and reading from shared memory regions. Shared
memory is memory pages linking one by one in a cycling-queue with a buffer head
and two pointers which represent the sender position and the receiver position, as
shown in Fig 4. At first, shared memory is empty so receiver DomU blocks waiting
for a notification from sender DomU. Sender DomU writes data to shared memory if
only there is free space, that is, that the sender pointer does not reach the buffer head
again. When shared memory is full, sender DomU blocks on a wait queue and notifies
receiver DomU that shared memory is ready to be read. Then after being notified, the
blocked receiver DomU wakes up and takes the data away from shared memory and
notifies sender DomU and blocks itself again. If at one time, sender DomU cannot
fill all the shared memory pages, it also notifies receiver DomU to wake it up and
receiver DomU just copy data from the buffer head to the current sender pointer
position.

Fig. 4. Buffer for Data Transportation with Sender and Receiver Points

Until now, in our design, the data transportation is unidirectional but not bi-
directional. As our main target is to prove that our memory-copying pattern for inter
domain communication is effective and to offer a suite of convenient API for user
space and our in our future work we will improve the underlying data transportation
mechanism to be two-way mode.

4.4 Porting API Suite into User Space

As we mentioned above, idsocket is an API suite for the demand of inter domain
communication based on Xen, so all these function must be ported into and accessible
in user space. Also, inter domain communication can be treated as one form of

330 L. Zhang, Y. Bai, and C. Luo

network transportation, so we choose the way of registering a new network protocol
family in Linux kernel to make the interfaces to shared memory and event channel
available from user space. At the same time, we also choose /proc file system as the
inter-medium to fill the gap between user space and kernel space in configuration
negotiation message exchange process.

Table 2. API List in idsocket

Categories Sender APIs Pack Receiver APIs Pack
Configuration Negotiation get_domlist() send_conf()
 send_conf() get_conf()
 get_conf()
Data Transportation new_socket() new_socket()
 ids_wait() ids_conn()
 ids_send() ids_receive()
 ids_shut() ids_shut()

The API suite consists of two parts, the sender pack and the receiver pack. And

some APIs for configuration negotiation are shared by both sides, and the API list is
shown below in Table 2.

And the hierarchy between user space API and kernel space is illustrated in Fig 5.
It’s easy to use idsocket API suite as it’s similar to common BSD style socket in-

terfaces except that some interfaces about configuration negotiation is added in.

Fig. 5. Hierarchy between User Space API and Xen Component

5 Performance Evaluation

5.1 Test Environment

Performance Evaluation is carried out on a Dell® Optiplex® 760MT Workstation
with Intel® Core™2 Quad Q9400 four-core processor, and 2GB main memory. We
deployed Xen-3.2.0 and installed CentOS 5.3 as Dom0 and DomUs. And in every
DomU, we assign one virtual CPU and 256MB memory, also, DomUs work in text
mode and any unnecessary service is stop or removed.

 idsocket: API for Inter-domain Communications Base on Xen 331

5.2 Benchmarks and Tests

In our experiments, we mainly measure the data transportation rate between DomUs
and the processors utilization rate of Dom0.

To test the data transportation rate, we use ttcp as our main benchmark. Ttcp is a
"quick-hit" benchmark which is simple tests to measure a certain aspect of perform-
ance, but usually do not give a larger perceptive of system performance [6]. “Quick-
hit” benchmarks are more suitable for our test in that as an API suite, we believe
that idsocket is to be used in “real-world” style data traffic rather than measuring the
maximum capacity of transportation most of time.

We measure inter domain communication using idsocket and then compare it with
in-built front-back driver inter domain communication in Xen.

By shared memory and event channel mechanism, data sent from one DomU to an-
other does not have to go through the front-back driver model and be transited by
Dom0. So we want to prove that this will greatly save the computing resource of
Dom0 by observing the processor utilization rate of Dom0. The processors utilization
information is reported by xm top command.

All the experiments are taken at least five times and the average results are
reported.

5.3 Data Transportation Performance

To make a comparison, we run unmodified ttcp and then modify it to use our APIs for
data transportation, and the buffer size of a socket in idsocket is one page (4KB), so
we configure ttcp also use a socket buffer of same size with -b 4096 switch. The
shared memory of idsocket is set to 32 pages (128KB) and total data amount ranges
from 4MB to 1GB.

Fig 6 shows the test result of data transportation rate evaluation. idsocket archived
a speed of around 15000*10^6 bits/s (1788MBps) in data sending while in-built front-
back driver model only has a sending speed less than 5000*10^6 bits/s (596MBps).
And in the receiver side, idsocket has a speed about 370*10^6 bits/s (44MBps), which

(a) Data Send Rate (b) Data Receive Rate

Fig. 6. Data Transportation Rate Evaluation (128KB Shared Memory)

332 L. Zhang, Y. Bai, and C. Luo

(a) Data Send Rate (b) Data Receive Rate

Fig. 7. Data Transportation Rate Evaluation (256KB Shared Memory)

(a) Data Send Rate (b) Data Receive Rate

Fig. 8. Data Transportation Rate Evaluation (512KB Shared Memory)

is higher than the receive speed less than 340*10^6 bits/s (40MBps) in front-back
model. The efficiency of shared memory and event channel mechanism can be
proved.

Then, we modify the shared memory size from 32 pages (128KB) to 64 pages
(256KB) and 128 pages (512KB), and perform the same test. The results are illus-
trated in Fig 7 and Fig 8. And at sending side, idsocket at least has about five times
higher than traditional front-back mode. Also, at receiving side, idsocket has an obvi-
ous better performance when data size is less than 128MB. From the evaluation test
results, we can see that idsocket can send data at a faster speed and in less time, also,
idsoket can receive data more quickly when shared memory size is larger than 64KB.
But memory resource is rare in kernel mode, so it is recommended that shared mem-
ory size is no more than 256KB.

It is obviously seen that, idsocket outperformance in inter-domain communication
in throughout, especially in sending data than the front-back network model. This is
mainly because the design mechanism which idsocket applies. With UNIX-styled

 idsocket: API for Inter-domain Communications Base on Xen 333

socket, data of inter-domain communication in sending DomU must travel through
the protocol stack to Dom0, in which it is forwarded to receiving DomU. During this
procedure, serious long time is cost due to data packaging and depacketization plus
privileged/unprivileged operation alternation, such as page flip, privileged I/O re-
quests, between Dom0 and DomU [12]. Every bit must follow this way and extra time
is added, resulting in the prolonged total transportation time [8]. In contrast, Socket
created with interface new_socket() is a socket which bypass the traditional Linux
network stack, and consequently, the send interface ids_send() and the receive inter-
face ids_receive() have nothing to do with network stack either. They just operate
directly on shared memory, whose reading and writing speed is absolutely fast com-
paring to the time-consuming protocol stack traveling. As a result, no extra time as
what UNIX-style socket to do is attached to, the total transportation time is short
enough to make a much higher throughout in the way of shared memory-based
idsocket.

5.4 Processor Utilization Evaluation

After that, we continue our test focusing on the processor utilization of Dom0 to vali-
date whether the shared memory and event channel mechanism saves processor cost
in Dom0 when data transportation is ongoing. This time, we just write two simple
client-server programs with traditional BSD socket using Xen’s front-back driver
model and idsocket respectively. The programs run in DomU with xm top keeping
observing the information about processor utilization. The xm top command is a part
of Xen management tool xm written in Python Language. We design our test programs
to pause before send/receive function is called. Tests are performed in two scenes, and
in the first scene, a pair of DomUs is communicating, and in the second, two pairs of
DomUs are communicating respectively.

In the first scene, with front-back driver model, CPU cost of Dom0 is less than 10%
only when total data to transport is 4MB, and when the total data size is 512MB, CPU
cost raise to about 50%. Fig 9 illustrates this result. This is a serious problem that
almost half of the CPU resource is used for inter domain communication and CPU
resource left for other task is less and the overall performance of system inevitably
decrease. Meanwhile, with idsocket, even if 1GB data is transporting between
DomUs, CPU cost in Dom0 keeps steady at about 1%. And in the second scene,
which is illustrated in Fig 10, the CPU utilization is no less than 10% in all data size,
and when data size is 1GB, the cost raise to about 55%, meaning that more than half
of the CPU resource is cost. But with idsocket, CPU utilization also keeps steady at
about 3%. Although this is higher than that in the first scene, this CPU cost is still
quite small and acceptable.

Consequently, this is also a result of bypassing network protocol stack in virtual-
ized environment. The high resource cost of traditional BSD socket communication in
virtualized environment is that virtualized I/O system is implemented in the front-
back model, and that is to say that I/O requests from DomUs must be ported to Dom0
and I/O operation, certainly including network communication, is finished with the
assistance from Dom0. In Dom0, many data packages come one by one, each of
them causing a software interruption, and these interruptions are dealt by the physical
processor [12]. This is very resource-consuming since operations like privileged/

334 L. Zhang, Y. Bai, and C. Luo

Fig. 9. CPU Utilization Rate Evaluation I Fig. 10. CPU Utilization Rate Evaluation II

unprivileged commands alternation is triggered and executed for every single data
pack, and lots of processor resource is wasted to handle interruption, leaving only a
small percentage of free processor resource for other works [8]. As a result, the virtual
machine monitor, together with domains, has to endure communication of low
throughout and inefficient resource utilization. Meanwhile, as a comparison, the
situation in communication between domains with idsocket API suite is quite differ-
ent. This is because in the shared memory based communication mechanism, Dom0
is not involved in the communication procedure like the in-built communication
mechanism does in Xen. Data only transport between DomUs, that is, no network I/O
request is generated in the bottom of protocol stack and ported to Dom0. Hence,
Dom0 does have to handle any interruption, of type of virtualized network I/O request
generated in DomUs, which requires a great deal of processor resource. Not only the
processor utilization ratio can keep low in Dom0 and resource in Dom0 is saved for
more other works, but also that Dom0, together with DomUs, can get a better running
environment.

6 Related Works

In the past few years, new progress and trend on virtualize inter-domain communica-
tion appeared. The mostly applied approach, which is also applied by our work, is
based on the direct memory copy to bypass the cost made by push data to and pull
data from network protocol stack. Recently, there have been some other works and
research about inter domain communication, such as XenLoop [2], XWay [3], Xen-
Socket [13], and IVC [9]. XenLoop and XWay provide transparent mechanism for
inter domain communication, and XenLoop works as Linux kernel whereas Xway
needs to patch Xen source code and rebuild. Both of them have a great performance
increase in maximum capacity test, but in "real-world" workload, they may not have
such an obvious performance enhancement. Xensocket is an API style implementa-
tion for inter domain communication which is much like our works; however, it is a
little simple and does not consider anything about configuration negotiation and even
requires manually passing parameters to programs. Certainly, it is not convenient for

 idsocket: API for Inter-domain Communications Base on Xen 335

use. IVC provides shared memory communication library for HPC applications in
virtual machines residing on a same physical machine. It provides socket-style APIs
which an IVC-aware application can invoke.

7 Future Works and Conclusion

As virtualization technology becomes more and more mainstream and popular, it is
nowadays deployed widely. Operating systems offering particular function such as web
services, data base service and gateway or name server can reside on a same physical
machine of high performance but be made isolated running in respectively in different
virtual machines. In this way, isolation and security issue is easily resolved than when
no virtualization is introduced. However, virtualized I/O mechanism has been proved
producing a poor performance. When processes in different virtual machines need to
communication with each other, the low band width and throughout make them cannot
enjoy the communicate rate in traditional no-virtualized environment.

To resolve this critical problem, in the paper, we present the design and implemen-
tation of idsocket, which is an API suite for inter domain communication based on
Xen. And the benchmark evaluation and program tests have demonstrated that it has a
better performance and a lower resource cost than the in-built front-back driver model
for inter domain communication mechanism in Xen. The design principle behind
idsocket, memory-sharing and notification mechanism can also be applied to any
virtualization environment other than Xen. Prior researches focus on either perform-
ance increase or convenience for programmer. But the two sides are contradictory,
high performance is easy to archived in kernel level but not in user space yet conven-
ience in user space inevitably has an impact on high performance. Our work has just
only begun, and in the future, we will continue investigating on a balance between
high performance and convenience, and enhance the implementation of idsocket to
make it more efficient in transportation and more convenient to use.

Acknowledgment

This work is supported by the National High Technology Development 863 Program
of China under Grant No.2007AA01Z118.

References

1. Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing network virtualization in Xen. In:
USENIX Annual Technical Conference, Boston, Massachusetts (2006)

2. Wang, J., Wright, K.-L., Gopalan, K.: XenLoop: A Transparent High Performance Inter-
VM Network Loopback. In: Proceedings of the 17th International Symposium High Per-
formance Distributed Computing (June 2008)

3. Kim, K., Kim, C., Jung, S.-I., Shin, H., Kim, J.-S.: Inter-domain Socket Communications
Supporting High Performance and Full Binary Compatibility on Xen. In: Virtual Execution
Environments, VE 2008 (2008)

4. Xen-3.2.0, http://www.xen.org

336 L. Zhang, Y. Bai, and C. Luo

5. Xenbus, http://wiki.xensource.com/xenwiki/XenBus
6. Ttcp, http://www.pcausa.com/Utilities/pcattcp.htm
7. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future

Trends. Computer 38, 39–47 (2005)
8. Chisnall, D.: The Definitive Guide to the Xen Hypervisor, 2nd edn. Prentice Hall, Engle-

wood Cliffs (2007)
9. Huang, W., Koop, M., Gao, Q., Panda, D.K.: Virtual machine aware communication li-

braries for high performance computing. In: Proc. of SuperComputing (SC 2007), Reno,
NV (November 2007)

10. Kourai, K., Chiba, S.: HyperSpector: Virtual Distributed Monitoring Environments for Se-
cure Intrusion Detection. In: Proc. of Virtual Execution Environments (2005)

11. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing per-
formance overheads in the xen virtual machine environment. In: Proc. of Virtual Execution
Environments (2005)

12. Muir, S., Peterson, L., Fiuczynski, M., Cappos, J., Hartman, J.: Proper: Privileged Opera-
tions in a Virtualised System Environment. In: USENIX Annual Technical Conference
(2005)

13. Zhang, X., McIntosh, S., Rohatgi, P., Griffin, J.L.: Xensocket: A high-throughput interdo-
main transport for virtual machines. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware
2007. LNCS, vol. 4834, pp. 184–203. Springer, Heidelberg (2007)

14. Cheng, P., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.: Fuzzy
multi-level security: An experiment on quantified risk-adaptive access control. Technical
Report RC24190, IBM Research, Yorktown Heights, NY, USA (February 2007)

Strategy-Proof Dynamic Resource Pricing of
Multiple Resource Types on Federated Clouds

Marian Mihailescu and Yong Meng Teo

Department of Computer Science,
National University of Singapore,

Computing 1, 13 Computing Drive, Singapore 117417
{marianmi,teoym}@comp.nus.edu.sg

Abstract. There is growing interest in large-scale resource sharing with emerging
architectures such as cloud computing, where globally distributed and commodi-
tized resources can be shared and traded. Federated clouds, a topic of recent inter-
est, aims to integrate different types of cloud resources from different providers,
to increase scalability and reliability. In federated clouds, users are rational and
maximize their own interest when consuming and contributing shared resources,
while globally distributed resource supply and demand changes as users join and
leave the cloud dynamically over time. In this paper, we propose a dynamic pric-
ing scheme for multiple types of shared resources in federated clouds and evaluate
its performance. Fixed pricing, currently used by cloud providers, does not reflect
the dynamic resource price due to the changes in supply and demand. Using simu-
lations, we compare the economic and computational efficiencies of our proposed
dynamic pricing scheme with fixed pricing. We show that the user utility is in-
creased, while the percentage of successful buyer requests and the percentage of
allocated seller resources is higher with dynamic pricing.

1 Introduction

Currently, several technologies such as grid computing and cloud computing among
others, are converging towards federated sharing of computing resources [11]. In these
distributed systems, resources are commodities and users can both consume and con-
tribute with shared resources. In cloud computing [12], resources are provided over the
Internet on-demand, as a service, without the user having knowledge of the underlying
infrastructure. Public clouds are available to all users, while private clouds use similar
infrastructure to provide services for users within an organization. At the present, sev-
eral companies such as Amazon [1], Rackspace Cloud [5], and Nirvanix [3], provide
computing and storage services, using pay-per-use fixed pricing, and new capabilities,
such as .NET and database services [2] are expected in the near future. Cloud computing
usage is increasing both in breadth, such as the number of resource types offered, and
in depth, such as the number of resource providers. Thus, with an increasing number
of cloud users, it is expected that more providers will offer similar services. Further-
more, with interoperability between different providers [7], users will able to use the
same service across clouds to improve scalability and reliability. In this context, the
aim of federated clouds, a topic of recent interest, is to integrate resources from differ-
ent providers such that access is transparent to the user.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 337–350, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

338 M. Mihailescu and Y.M. Teo

A fundamental problem in any federated system is the allocation of shared resources.
Recent work in distributed systems acknowledges that users sharing resources are self-
interested parties with their own goals and objectives [28, 20, 16]. Usually, these par-
ties can exercise their partial or complete autonomy to achieve their objectives and to
maximize their benefit. They can devise strategies and manipulate the system to their
advantage, even if by doing so they break the rules of the system. To manage rational
users, economics [30] and mechanism design [24] offer market-based approaches for
pricing and allocation of shared resources. Although we cannot assume rational users
are trusted to follow the algorithm or protocols designed and deployed, we can assume
that they participate in sharing in order to maximize their personal gain, such that in-
centives may be used to induce the desired behaviour. Mechanism design studies how to
structure incentives such that users behave according to protocols. Thus, recent work in
peer-to-peer networking [28, 15], grid or cluster computing [20], Internet routing [18],
general graph algorithms [17], and resource allocation [10,31], use a form of incentives
to manage rational users.

In this paper we discuss a dynamic pricing scheme suitable for allocating resources
on federated clouds, where pricing is used to manage rational users. A rational user
may represent either an individual user, a group, or an organization, depending on the
application context. In federated clouds, users request more than one type of resources
from different providers. In contrast to fixed pricing, where users have to manually
aggregate resources from different providers, our pricing scheme is designed to allocate
a request for multiple resource types. Moreover, in a federated cloud, resource demand
and supply fluctuate as users join and leave the system. We show using simulations
that using the proposed dynamic scheme, the user welfare, the percentage of successful
requests, and the percentage of allocated resources is higher than using fixed pricing.

The remainder of this paper is structured as follows. Section 2 presents related works
from grid computing and distributed systems. We discuss dynamic pricing for cloud
computing and federated clouds in Section 3. Our auction framework is introduced in
Section 4, while in Section 5 we evaluate the economic efficiency, the individual user
welfare, the impact of multiple resource types and computational efficiency, measured
by the computational time incurred by the proposed algorithm. Finally, Section 6 con-
tains our conclusions and discusses our future work.

2 Related Works

Resource markets have been previously proposed for sharing computational resources
in the presence of rational users [32, 30, 31, 14, 26, 19]. A resource market consists of
the environment, rules and mechanisms where resources are exchanged. In this context,
related works have used either bartering or pricing to exchange resources. In bartering,
resources are exchanged directly, without using any form of currency. For example, in
BOINC [9], users donate their CPU cycles by running a software client which polls a
server for new jobs. In BitTorrent [15], rational users that behave selfishly and do not
cooperate in sharing files are punished by other users. In contrast, in OurGrid [10], each
user keeps track of other users that provide resources for their jobs, and prioritize their
requests when their own resources are idle. Bartering is simple to implement and allows

Strategy-Proof Dynamic Resource Pricing 339

several types of incentives for rational users: moral incentives (volunteer computing) or
coercive incentives (tit-for-tat, network of favors). However, bartering allows exchanges
of a single resource type. For example, BitTorrent exchanges blocks from the same file,
OurGrid is used for CPU cycles, etc. In order to exchange different types of resources,
pricing and a common currency is used to express the value of each resource type.

Pricing is the process of computing the exchange value of resources relative to a com-
mon form of currency. Economic models for the allocation of shared resources may use
fixed or dynamic pricing. When using fixed pricing, each resource type has a predefined
price, set by the seller. For example, Amazon provides disk space for $0.15/GB. In con-
trast, when using dynamic pricing, the resource price is computed for each request ac-
cording to the pricing mechanism used. More specifically, a resource type can have the
same price for all resource providers (non-discriminated pricing), or payment is com-
puted differently for each resource provider (discriminated pricing). Pricing schemes
use financial incentives in addition to payments to motivate rational users to be truthful.

Several market-based allocation systems for grids, such as Sorma [22] and Nim-
rod/G [13], use bargaining or negotiation to determine the resource price. The advantage
of this approach is that sellers and buyers communicate directly, without a third party
mediating an allocation. The seller attempts to maximize the resource price, while the
buyer strives to minimize it. However, communication constitutes the main disadvan-
tage of bargaining: in a large dynamic market, each buyer has to negotiate with all sell-
ers of a resource type in order to maximize his utility. The communication costs grow
further when a buyer requires more than one resource types. Thus, scalability becomes
a major issue when increasing the number of users or resource types in a request.

In contrast to resource sharing systems used in research and academic communi-
ties or for personal benefit, cloud computing has been put into commercial use and its
economic model is based on pricing. Previous unsuccessful cloud computing attempts,
such as Intel Computing Services, required users to negotiate written contract and pric-
ing. However, current online banking and currency transfer technologies allow cloud
providers to use fixed pricing, with buyer payments made online using a credit-card.
Federated clouds can be formed by combining private clouds to provide users with re-
sizeable and elastic capacities [11]. Currently, companies such as Amazon operate as
standalone clouds service providers. However, in a federated cloud, any globally dis-
tributed user can both offer and use cloud services. A user is either an individual, a
group, or an organization, depending on the application context.

3 Market-Based Pricing Mechanisms

Market-based resource allocation mechanisms based on pricing introduce several eco-
nomic and computational challenges. From a computational perspective, a mechanism
must compute in polynomial time the allocation of multiple resource types while max-
imizing the number of allocated resources and satisfied requests. However, an optimal
allocation mechanism for multiple resource types such as combinatorial auctions re-
quires a NP-complete algorithm [23]. Accordingly, many systems share only one re-
source type, such as CPU cycles in volunteer computing, and file blocks in file-sharing.

From an economic perspective, the desirable properties for resource allocation are:
individual rationality, incentive compatibility, budget balance and Pareto efficiency

340 M. Mihailescu and Y.M. Teo

[21]. In an individual rational allocation mechanism, rational participants gain higher
utility by participating in resource sharing than from avoiding it. Incentive compati-
bility ensures that the dominant strategy for each participant is truth-telling. Budget-
balance verifies that the sum of all payments made by buyers equal the total payments
received by the sellers. Pareto efficiency, the highest economic efficiency, is achieved
when, given an allocation, no improvement can be made that makes at least one par-
ticipant better off, without making any other participant worse off. However, according
to the Myerson-Sattherwithe impossibility theorem [21], no mechanism can achieve all
four properties together. Accordingly, related works have traded incentive compatibil-
ity [14, 30], economic efficiency [19] or budget-balance [23].

Our approach is designed to achieve individual rationality, incentive compatibility
and budget balance using a computationally efficient algorithm that can allocate buyer
requests for multiple resource types.

In a resource market, with a large number of providers (sellers) and users (buyers),
fixed pricing does not reflect the current market price resource price due to the changing
demand and supply. This leads to lower user welfare and to imbalanced markets, e.g.
under-demand. Figure 1 shows the welfare lost by a seller that uses fixed pricing. In
the case of under-demand, the fixed price tends to be higher than the market price and
buyers may look for alternative resources. In the case of over-demand, the fixed price
limits the seller welfare, which could be increased by using a higher resource price.

In a federated clouds market, dynamic pricing sets resource payments according to
the forces of demand and supply. Moreover, the use of dynamic pricing facilitates sell-
ers to provide multiple resource types. Early cloud services such as Sun Grid Compute
Utility were restricted to one resource type, e.g. CPU time [8]. More recent services,
such as Amazon S3 and EC2, introduced more resource types, i.e. storage and band-
width. Currently, Amazon has expanded its offer to 10 different virtual machine instance
configurations, with different prices for each configuration, and practice tiered pricing
for storage and bandwidth [1]. We see this as the first step towards dynamic pricing,
where users can request for custom configurations with multiple resource types.

Buyer Demand /

Welfare

Time

Pr
ic

e

Fixed Price

Seller Welfare Lost

Costs

Dynamic Price

Seller

Fig. 1. Fixed Pricing Limits Seller Welfare

Resource Type = Description
Publish = Seller Address, Resource Type, Items, Cost
Request = Buyer Address, (Resource Type, Items)+, Price

Fig. 2. Simplified Model for Multiple Resource Types Buyer Request

Strategy-Proof Dynamic Resource Pricing 341

The resource market in federated clouds consists of many resource types. Figure 2
shows a simplified resource model where a buyer request can consist of many resource
types and many resource items for each type. A resource type is loosely defined, and
can be a hardware resource, a service, or a combination. We consider the example of a
New York Times employee that used 100 EC2 instances to convert 4 TB of TIFF files
to the PDF format [6]. To complete his job, the user required multiple resource types
(storage from Amazon S3 and computational power from Amazon EC2), and multiple
items (100 Amazon EC2 instances) to complete his task. In this example, we assume
Amazon EC2 provides ten resource types, called instances. A small instance consists
of 1 EC2 compute unit (approx. 1 GHz CPU), 1.7 GB memory and 160 GB storage,
and is priced at $0.10/hour, while an extra-large instance consists of 8 EC2 compute
units, 15 GB memory and 1.6 TB storage, and is priced at $1.00/hour.

4 Achieving Strategy-Proof Resource Pricing

In the context of federated clouds, we propose a strategy-proof dynamic pricing mech-
anism for allocating shared resources with multiple resource types. We assume a fed-
erated cloud resource market where rational users can both provide (sellers) and utilize
resources (buyers). Rational users represent either an individual or an organization. In-
teroperability provides the buyers with uniformity and elasticity. Thus, a buyer request
for a large number of resources can be met by more than one seller.

In a previous paper, we propose a mechanism design problem which describes a
resource sharing system where rational users can be both buyers and sellers of re-
sources [29]. Given a set of alternative choices, a rational user selects the alternative
that maximizes the expected value of his utility function. In our mechanism design
problem, the utility functions are determined by the seller costs and the buyer budget,
respectively.

Definition (The Market-based Resource Allocation Problem). Given a market con-
taining requests submitted by buyers and resources offered by sellers, each participant
is modeled as a rational user i with private information ti. A seller has private informa-
tion trs, the underlying costs for the available resource r, such as power consumption,
bandwidth costs, etc. The buyer’s private information is tRb , the maximum price the
buyer is willing to pay such that resources are allocated to satisfy its request R. Seller’s
i valuation is tri if the resource r is allocated, and 0 if not. Similarly, buyer’s i valuation
is tRi of the request R is allocated, and 0 if not. For a particular request R, the goal is
to allocate resources such that the underlying costs are minimized.

To address the market-based resource allocation mechanism design problem in which
sellers and buyers are rational participants, we propose a reverse auction-based mech-
anism, which we prove formally to be individual rational, incentive compatible and
budget-balanced. A mechanism that is both individual rational and incentive compati-
ble is known as strategy-proof.

Auctions are usually carried out by a third party, called the market-maker, which col-
lects the bids, selects the winners and computes the payments. Since this paper focuses
on the economical and computational advantages of dynamic pricing, we consider for

342 M. Mihailescu and Y.M. Teo

Allocate()
while request = request queue .dequeue()
// determine winners
DetermineWinners(request, resource list ,

&winners, &cM s)

foreach seller in winners
// determine cM s=

resource list = resource list − seller.resources
DetermineWinners(request, resource list ,

nil , &cM s=)

// determine cM s=0

cM s=0 = cM s

foreach Resource Type rt in request
cM s=0 = cM s=0 − seller.rt.items ∗ seller.rt.price

end foreach
payment = cM s= − cM s=0

payments.add(seller, payment)
end foreach
// if the request is not allocated
// put it back in queue
if (request.price > payments.total)

then request queue .enqueue(request)
end if

end while
end Allocate

DetermineWinners(request, resource list ,
&winners, &payments)

foreach Resource Type rt in request as subreqest
resources = filter (resource list , Resource Type rt)
priceSort (resources)
while subreqest . items > 0 do
// determine sellers
seller = resources[rt].head().owner
if seller . rt . items ≥ subreqest.items

then itemsno = subrequest.items
else itemsno = seller. rt . items

end if
seller . rt . items = seller. rt . items − itemsno
subreqest . items = subrequest.items − itemsno
winners .add(seller, itemsno)
payments.add(seller, itemsno ∗ seller . rt . price)

end while
end foreach

end DetermineWinners

Fig. 3. Dynamic Resource Pricing Algorithm

simplicity a centralized market-maker, to which sellers publish resources, and buyers
send requests. In order to improve scalability, Section 6 shows our insights into dis-
tributed auctions, where more than one market-makers are able to auction at the same
time. Given that buyers and sellers are globally distributed, it is practical to adopt a
peer-to-peer approach, where, after pricing and allocation, buyers connect to sellers to
use the resources paid for.

The reverse auction contains two steps, winner determination and payment compu-
tation. Winner determination decides which sellers are selected for allocation, based on
the published price, such that the underlying resource costs are minimized. However, to
achieve strategy proof using financial incentives, the actual payments for the winning
sellers are determined in the second step, based on the market supply for each resource
type.

The payment for a seller is determined for each resource type using a VCG-based
[17] function, which verifies the incentive-compatibility property for sellers:

ps =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if seller s does not contribute with
resources to satisfy the request

cM|s=∞ − cM|s=0

if seller s contributes with
resources to satisfy the request

(1)

where:
cM|s=∞ is the lowest cost to satisfy the request without the resources from seller s;
cM|s=0 is the lowest cost to satisfy the request when the cost of resources from seller s
resources is 0.

Strategy-Proof Dynamic Resource Pricing 343

To achieve the incentive-compatibility property for buyers, we select the requests us-
ing the first-come-first-serve strategy [29]. To obtain budget-balance, the buyer payment
function is the sum of all seller payments:

pb = −
∑
s∈S

ps (2)

where S is the set of winner sellers.
Figure 3 shows the auction algorithm implemented by the centralized auctioneer. Re-

quests are sorted in a queue according to their arrival times and are processed according
to the first-come-first-serve policy (line 2). Next, the market-maker solves the winner
determination problem (line 4). Payments are computed for each winner (line 6) by de-
termining cM|s=∞ (line 9) and cM|s=0 (line 11). Finally, allocation may take place if
the buyer price is higher than the buyer payment, which is the sum of seller payments
(line 29). Winner determination (line 26) finds the best sellers for all resource types
(line 28) based on the published resource item price.

5 Impact of Dynamic Pricing

We evaluate the proposed pricing mechanism both for economic and computational ef-
ficiency. Using simulation, we compare our dynamic pricing scheme with fixed pricing,
currently used by many cloud providers.

We implement our framework as an application built on top of FreePastry [27], an
open-source DHT overlay network environment. FreePastry provides efficient lookup,
i.e. in O(log N) steps, where N is the number of nodes in the overlay. In addition,
FreePastry offers a discrete-event simulator which is able to execute applications with-
out modification of the source code. This allows us both to simulate large systems1, and
to validate the results in a deployment over PlanetLab [4].

For simplicity, we use a centralized market-maker to compare the economic and
computational advantages of dynamic pricing. A centralized implementation has the ad-
vantage of allowing the measurement of economic and computational efficiency with a
simple setup for a large simulated network. Moreover, the use of a peer-to-peer substrate
such as FreePastry allows us to address the scalability issue in our future work. Thus,
our simulated environment contains one market-maker and 10,000 nodes, where each
node can be seller and buyer. Publish and request messages are sent to the market-maker
node using the FreePastry routing process, which then performs the reverse auctions us-
ing the first-come-first-serve policy and computes the payments using the algorithm in
Figure 3.

5.1 Economic Efficiency

Traditionally, efficiency in computer science is measured using system-centric perfor-
mance metrics such as the number of completed jobs, average system utilization, etc.
All user applications are equally important and optimizations ignore the user’s valua-
tion for resources. Thus, resource allocation is unlikely to deliver the greatest value to

1 In our experiments, we were able to use up to 35,000 peers in the FreePastry simulator.

344 M. Mihailescu and Y.M. Teo

the users, especially when having a limited amount of resources. In contrast, economic
systems measure efficiency with respect to user’s valuations for resources (utility). Con-
sequently, in a Pareto efficient system, where economic efficiency is maximized, a user’s
utility cannot improve without decreasing the utility of another user.

Economic efficiency is a global measure and represents the total buyer and seller
welfare. More specifically, there are two factors that affect the economic efficiency: i)
average user welfare; and ii) number of successful requests, for buyers, and number of
allocated resources, for sellers.

Using fixed pricing, the average user welfare is constant, since the user utility is
also constant. In contrast, when using dynamic pricing, the average user welfare fluc-
tuates with the computed payments, according to the resource demand. Moreover, a
dynamic pricing scheme is able to balance the number of successful requests and the
number of allocated resources depending on the market condition. For example, re-
source contention in the case of over-demand is balanced by increasing the resource
price. Similarly, buyers are incentivized by a lower price when the market condition
is under-demand. Overall, dynamic pricing achieves better economic efficiency both
with higher average user welfare, and a higher number of successful buyer requests and
allocated seller resources.

5.2 User Welfare

The user welfare is determined by the difference between the user utility and payment.
In our proposed framework, the user utility is the same as the published price, since
both buyers and sellers are truthful, according to the incentive compatibility property of
our pricing algorithm. In the case of fixed pricing, we also consider a truthful buyer, i.e.
the published request price represents the buyer’s utility. However, we do not make the
same assumption about sellers, which have a fixed resource price that may differ from
the seller’s utility. Thus, in our experiment, we compare only the average buyer welfare
when using fixed and dynamic pricing, respectively.

For this experiment, we consider a balanced market, where supply and demand are
equal. Thus, we assume that the market-maker receives events with an interarrival time
of 1s, where an event has equal probability of being a buyer request or a seller resource
publish. Events are uniformly distributed between 10,000 FreePastry nodes, and contain
of a number of resource types uniformly distributed between 1 and 3, chosen randomly
from a total of 5 resource types. The number of items for each resource type is generated

Table 1. Dynamic Pricing Increases Buyer Welfare

Metric
%Price Pricing Scheme

Variation Fixed Dynamic

avg buyer welfare
10 3.5 4.6
20 7.4 9.3
50 18.8 23.3

%succ buyer
10 47.7 62.5
20 48.8 62.2
50 49.5 62.1

Strategy-Proof Dynamic Resource Pricing 345

according to an exponential distribution with mean 10. For sellers, we assume 100 as
the fixed price, while in the case of dynamic pricing we vary the price by 10%, 20% and
50%, i.e. the price is generated according to a uniform distribution between 90 and 110,
80 and 120, and 50 and 150, respectively. Buyer price is varied according to the same
percentage, shown in Table 1 as %Price Variation. The simulation runs for 600,000
events, which, for an arrival rate of 1s, give a total simulation time of approximately
seven days. To reduce sampling error, we run our experiments three times and compute
the average.

The results in Table 1 show that dynamic pricing increases the buyer welfare and
the percentage of successful buyer requests (%succ buyer). Given that the mean buyer
utility is 100, and a theoretical(the actual maximum welfare can be computed using
a NP-complete algorithm, and is smaller than the theoretical welfare.) maximum wel-
fare for an item is achieved when having the minimum payment, i.e. 100−Price Vari-
ation, we derive that the maximum welfare equals the price variation. Thus, using the
proposed dynamic pricing mechanism increases buyer welfare by approximately 10%,
when compared to fixed pricing.

5.3 Multiple Resource Types in Different Market Conditions

In contrast to fixed pricing, where users have to manually aggregate resources, the pro-
posed dynamic pricing scheme can allocate buyer requests for multiple resource types.
However, with the increase in the number of resource types in the request, it is reason-
able to assume that the overall user welfare will decrease. Another factor that influences
the user welfare is the market condition. Thus, when there is under-demand, the buyer
welfare should increase. Similarly, the seller welfare should increase when there is over-
demand. Next, we study the influence of multiple resource types and different market
conditions for the proposed dynamic scheme and compare to fixed pricing.

We vary the number of resource types in a request to 5, 10, and 20, while the price
variation is set to 20%. We consider 3 market conditions: Under-Demand, when supply

Table 2. Dynamic Pricing Increases Efficiency For Multiple Resource Types

Resource %succ buyer %succ seller avg seller welfare avg buyer welfare
Types fixed dynamic fixed dynamic fixed dynamic fixed dynamic

Under-Demand
5 48.4 82.3 24.1 41.8 N/A 2.9 6.2 10.9

10 47.4 86.3 23.4 44.1 N/A 3.0 4.7 9.4
20 46.5 89.7 22.1 46.4 N/A 3.2 3.3 8.1

Balanced Market
5 48.2 62.4 47.5 61.0 N/A 4.5 6.2 7.9

10 47.1 62.9 46.5 62.5 N/A 4.6 4.7 6.3
20 46.2 63.3 46.0 64.0 N/A 4.7 3.4 4.9

Over-Demand
5 48.2 42.1 95.4 75.5 N/A 5.9 6.2 6.1

10 47.4 41.4 93.1 74.2 N/A 5.8 4.7 4.8
20 46.2 40.4 91.7 73.0 N/A 5.6 3.4 3.7

346 M. Mihailescu and Y.M. Teo

is greater than demand, Balanced Market, when supply equals demand, and Over-
Demand, when supply is less than demand. To simulate different market conditions,
we vary the probability of a request event. Thus, in the case of a balanced market, the
probability is set to 50%, while for under-demand is 33%, and for over-demand is 66%.
We measure economic efficiency, i.e. avg seller welfare and avg buyer welfare, and
pricing scheme performance, i.e. %succ buyer and %succ seller. Table 2 presents our
results.

In the case of fixed pricing, the percentage of successful buyer request is close to
50% for all market conditions, since the buyer item price is uniformly distributed with
the mean equal to the seller item price. However, the percentage of successful buyer
requests decreases when the number of resource types increases since the number of
sellers that are allocated to satisfy a request also increases.

In contrast, when using dynamic pricing, the percentage of successful buyer requests
varies under different market conditions, according to the forces of supply and demand.
Thus, when supply is greater than demand, the percentage of successful buyer requests
is higher than in the case of a balanced market, while for over-demand the percentage
decreases further. Using the proposed auction mechanism achieves a higher percentage
of successful buyer requests and seller allocated resources, in the case of under-demand
and balanced market. When demand is higher than supply and the number of resource
types in a request increases, there is premise for monopolistic sellers [25], i.e. there
are not enough sellers in the market to compute payments using a VCG-based payment
function such as the seller payment used by our auction framework.

Similarly, using fixed pricing results in the same mean buyer welfare when varying
market conditions, and welfare decreases when increasing the number of resource types.
For the proposed pricing mechanism, the buyer welfare is higher when compared to
fixed pricing, and varies according to supply and demand: buyer welfare increases when
supply is greater than demand, and decreases when demand is higher.

5.4 Cost of Dynamic Pricing

Computational efficiency is a major design criteria in the allocation of shared resources.
Optimal mechanisms such as combinatorial auctions [23] are not feasible since the win-
ner determination algorithm is NP-complete. Fixed pricing has the advantage of elim-
inating the payment computation. To determine the time cost of the algorithm used by
the proposed mechanism, we analyze the run-time complexity of the winner determina-
tion and the buyer and seller payment functions. Without considering queuing time, the
total time incurred by our mechanism is then:

T = Twd + Tp

where Twd is the time taken to determine the winners, and Tp is the time for the payment
computation. We consider the following inputs: RT , the number of resource types in
a request; IRTk

, the number of items from the resource type RTk in a request; SRTk
,

the number of sellers with resource type RTk. We use
∑

k SRTk
to represent the total

number of published resources.
The winner determination algorithm in Figure 3 contains 2 loops (lines 28 and 31) for

the number of resource types in the request, and the number of items of each resource

Strategy-Proof Dynamic Resource Pricing 347

type, while the inner code (lines 32–41) takes a constant amount of time. Finding all
resources with the same type (line 29) depends on

∑
k SRTk

, while sorting resources
according to their price takes O(SRTk

log SRTk
). Thus, in the worst case, the complex-

ity of the winner determination algorithm is:

Twd = O(RT × (
∑

k

SRTk
+ SRTk

log SRTk
+ IRTk

)) (3)

Similarly, we compute the complexity of the payment algorithm (lines 6–18), which, in
the worst case scenario, is: Tp = O(IRTk

× Twd), when each winner seller provides
one item. Thus, the total time taken by the proposed allocation algorithm is:

T = Twd + O(IRTk
× Twd) = O(IRTk

× Twd) =

= O(IRTk
× RT × (

∑
k

SRTk
+ SRTk

log SRTk
+ IRTk

)) (4)

In conclusion, the complexity of the algorithm used by the proposed framework is a
polynomial function of the number of resource types in a request, RT ; the number of
items requested for each resource type, IRTk

; the total number of published resources,∑
k SRTk

; and the number of sellers with resource type k, SRTk
.

Figure 4 shows the mean request allocation time obtained in our simulations. We
run the simulator on a quad-core Intel Xeon 1.83 GHz CPU with 4 GB of RAM. The
figure shows the increase in allocation time due to the increase in number of resource
types, and the different market scenarios. In the case of over-demand, the number of
sellers is smaller and, consequently, the allocation time is smaller. Similarly, in the case
of under-demand, the allocation time increases.

While the allocation time for a small number of resource types is under 1 second, a
large number of resource types in the system leads to increased allocation times. Thus,

 0

 5

 10

 15

 20

 25

 5 10 15 20

A
llo

ca
tio

n
T

im
e

(s
)

Number of Resource Types

Under-Demand
Balanced Market

Over-Demand

Fig. 4. Allocation Time When Varying Resource Types Under Different Market Conditions

348 M. Mihailescu and Y.M. Teo

scalability becomes an issue both when the number of resource types, and the number
of sellers increases. To improve vertical scalability, i.e. when the number of resource
types increases, we are currently developing a distributed framework, where a peer-
to-peer network of nodes perform reverse auctions for different resource types at the
same time. Furthermore, to address horizontal scalability, i.e. when the number of users
increases, different peers maintain separate resource lists and request queues, such that
allocation of requests for different resource types is parallelized.

6 Conclusions and Future Work

In this paper, we discuss current resource allocation models for cloud computing and
federated clouds. We argue that dynamic pricing is more suitable for federated shar-
ing of computing resources, where rational users may both provide and use resources.
To this extent, we present an auction framework that uses dynamic pricing to allocate
shared resources. We define a model in which rational users, classified as buyers and
sellers, trade resources in a resource market. Our previous paper shows that the pay-
ment mechanism used by the proposed auction framework is individual rational, incen-
tive compatible and budget balanced. In this paper we use the defined model to study
both the economic and computational efficiency of dynamic pricing, in the context of
federated clouds. Our focus is a dynamic pricing scheme where a buyer request consists
of multiple resource types. We implement our framework in FreePastry, a peer-to-peer
overlay, and use the FreePastry simulator to compare our dynamic pricing mechanism
with fixed pricing, currently used by many cloud providers. We show that dynamic pric-
ing increases the buyer welfare, a measure of economic efficiency, while performing a
higher number of allocations, measured by the percentage of successful buyer requests
and allocated seller resources.

Even though the auction algorithm is polynomial, scalability becomes an issue as
the number of resource types in a request increases. We are currently implementing a
scheme that uses distributed auctions, where multiple auctioneers can allocate differ-
ent resource types at the same time. Specifically, by taking advantage of distributed
hash tables, we aim to create an overlay peer-to-peer network which supports resource
discovery and allocation using the proposed dynamic pricing mechanism.

Acknowledgments

This work is supported by the National University of Singapore under grant number
R-252-000-339-112.

References

1. Amazon Web Services (2009), http://aws.amazon.com
2. Microsoft Azure Services Platform (2009), http://www.microsoft.com/azure
3. Nirvanix Storage Delivery Network (2009), http://nirvanix.com
4. An open platform for developing planetary-scale services (2009),

http://planetlab.org

http://aws.amazon.com
http://www.microsoft.com/azure
http://nirvanix.com
http://planetlab.org

Strategy-Proof Dynamic Resource Pricing 349

5. The Rackspace Cloud (2009), http://www.rackspacecloud.com
6. Self-service, prorated super computing fun (2009),

http://open.blogs.nytimes.com/2007/11/01/
self-service-prorated-super-computing-fun

7. Sun Cloud Computing Initiative (2009),
http://www.sun.com/solutions/cloudcomputing

8. Sun Grid Compute Utility (2008), http://www.network.com
9. Anderson, D.P.: BOINC: A System for Public-Resource Computing and Storage. In: 5th

IEEE/ACM Intl. Workshop on Grid Computing, Pittsburgh, USA, pp. 4–10 (2004)
10. Andrade, N., Cirne, W., Brasileiro, F.V., Roisenberg, P.: OurGrid: An Approach to Eas-

ily Assemble Grids with Equitable Resource Sharing. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer, Heidelberg
(2003)

11. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of
Cloud Computing. Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, USA (2009)

12. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and
reality for delivering it services as computing utilities. In: Proc. of the 10th IEEE Intl. Conf.
on High Performance Computing and Communications, Dalian, China, pp. 5–13 (2008)

13. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An Architecture of a Resource Management
and Scheduling System in a Global Computational Grid. In: Proc. of the 4th Intl. Conference
on High Performance Computing in Asia-Pacific Region, Beijing, China, pp. 283–289 (2000)

14. Chun, B.N., Culler, D.E.: Market-based Proportional Resource Sharing for Clusters. Techni-
cal Report UCB/CSD-00-1092, EECS Department, University of California, Berkeley, USA
(2000)

15. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proc. of the 1st Workshop on Eco-
nomics of Peer-to-Peer Systems, Berkeley, USA (2003)

16. Dani, A.R., Pujari, A.K., Gulati, V.P.: Strategy Proof Electronic Markets. In: Proc. of the 9th
Intl. Conference on Electronic Commerce, Minneapolis, USA, pp. 45–54 (2007)

17. Elkind, E.: True Costs of Cheap Labor Are Hard to Measure: Edge Deletion and VCG Pay-
ments in Graphs. In: Proc. of the 7th ACM Conference on Electronic Commerce, Vancouver,
Canada, pp. 108–116 (2005)

18. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the Cost of Multicast Transmis-
sions. Journal of Computer and System Sciences 63, 21–41 (2001)

19. Lai, K., Huberman, B.A., Fine, L.R.: Tycoon: A Distributed Market-based Resource Alloca-
tion System. Technical Report cs.DC/0404013, HP Labs, Palo Alto, USA (2004)

20. Lin, L., Zhang, Y., Huai, J.: Sustaining Incentive in Grid Resource Allocation: A Reinforce-
ment Learning Approach. In: Proc. of the IEEE Intl. Symposium on Cluster Computing and
the Grid, Rio de Janeiro, Brazil, pp. 145–154 (2007)

21. Myerson, R.B., Satterthwaite, M.A.: Efficient Mechanisms for Bilateral Trading. Journal of
Economic Theory 29(2), 265–281 (1983)

22. Nimis, J., Anandasivam, A., Borissov, N., Smith, G., Neumann, D., Wirstrm, N., Rosenberg,
E., Villa, M.: SORMA - Business Cases for an Open Grid Market: Concept and Implemen-
tation. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS, vol. 5206,
pp. 173–184. Springer, Heidelberg (2008)

23. Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In: Proc. of the 2nd ACM
Conference on Electronic Commerce, Minneapolis, USA, pp. 1–12 (2000)

24. Nisan, N., Ronen, A.: Algorithmic Mechanism Design (extended abstract). In: Proc. of the
31st Annual ACM Symposium on Theory of Computing, Atlanta, USA, pp. 129–140 (1999)

http://www.rackspacecloud.com
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://www.sun.com/solutions/cloudcomputing
http://www.network.com

350 M. Mihailescu and Y.M. Teo

25. Pham, H.N., Teo, Y.M., Thoai, N., Nguyen, T.A.: An Approach to Vickrey-based Resource
Allocation in the Presence of Monopolistic Sellers. In: Proc. of the 7th Australasian Sym-
posium on Grid Computing and e-Research (AusGrid 2009), Wellington, New Zealand, pp.
77–83 (2009)

26. Regev, O., Nisan, N.: The Popcorn Market: An Online Market for Computational Resources.
In: Proc. of the 1st Intl. Conference on Information and Computation Economies, Charleston,
USA, pp. 148–157 (1998)

27. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object address, and Routing for
Large-Scale Peer-to-Peer Systems. In: Proc. of the IFIP/ACM Intl. Conference on Distributed
Systems Platforms, Heidelberg, Germany, pp. 329–350 (2001)

28. Shneidman, J., Parkes, D.C.: Rationality and Self-Interest in Peer to Peer Networks. In:
Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148. Springer, Hei-
delberg (2003)

29. Teo, Y.M., Mihailescu, M.: A Strategy-proof Pricing Scheme for Multiple Resource Type
Allocations. In: Proc. of the 38th Intl. Conference on Parallel Processing, Vienna, Austria,
pp. 172–179 (2009)

30. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing Market-Based Resource Allocation
Strategies for the Computational Grid. International Journal of High Performance Computing
Applications 15(3), 258–281 (2001)

31. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: G-commerce: Market Formulations Control-
ling Resource Allocation on the Computational Grid. In: Proc. of the 15th Intl. Parallel and
Distributed Processing Symposium, San Francisco, USA, pp. 46–54 (2001)

32. Yeo, C.S., Buyya, R.: A Taxonomy of Market-based Resource Management Systems for
Utility-driven Cluster Computing. Software: Practice and Experience 36, 1381–1419 (2006)

Adapting Market-Oriented Scheduling Policies
for Cloud Computing

Mohsen Amini Salehi and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
{mohsena,raj}@csse.unimelb.edu.au

Abstract. Provisioning extra resources is necessary when the local re-
sources are not sufficient to meet the user requirements. Commercial
Cloud providers offer the extra resources to users in an on demand man-
ner and in exchange of a fee. Therefore, scheduling policies are required
that consider resources’ prices as well as user’s available budget and dead-
line. Such scheduling policies are known as market-oriented scheduling
policies. However, existing market-oriented scheduling policies cannot be
applied for Cloud providers because of the difference in the way Cloud
providers charge users. In this work, we propose two market-oriented
scheduling policies that aim at satisfying the application deadline by ex-
tending the computational capacity of local resources via hiring resource
from Cloud providers. The policies do not have any prior knowledge
about the application execution time. The proposed policies are imple-
mented in Gridbus broker as a user-level broker. Results of the experi-
ments achieved in real environments prove the usefulness of the proposed
policies.

1 Introduction

In High Performance Computing (HPC), providing adequate resources for user
applications is crucial. For instance, a computing center that a user has ac-
cess to cannot handle the user applications with short deadlines due to limited
computing infrastructure in the center [2]. Therefore, to get the application
completed by the deadline, users usually try to get access to several computing
centers (resources). However, managing several resources, potentially with differ-
ent architectures, is difficult for users. Another difficulty is optimally scheduling
applications in such environment.

User-level brokers work on behalf of users and provide access to diverse re-
sources with different interfaces. Additionally, existing brokers such as Grid-
way [6] and Gridbus broker [11] optimally schedule user application on the
available resources. User-level brokers consider user constraints (such as dead-
line and budget) and user preferences (such as minimizing time or cost) in their
scheduling [11].

Recently, commercial Cloud providers offer computational power to users in
an on-demand manner and in exchange of a fee. These Cloud providers are

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 351–362, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

352 M.A. Salehi and R. Buyya

also known as Infrastructure as a Service (IaaS) providers and charge users
in a pay-as-you-go fashion. For instance, in Amazon Elastic Compute Cloud
(Amazon EC2) [1], which is a popular IaaS provider, users are charged in an
hourly basis for computational resources. In this paper, we term this charging
period as “charging cycle”.

The computational power offered by IaaS providers can compensate for the
limited computational capacity of non-commercial local resources when they are
not enough to meet the user deadline. However, as mentioned earlier, getting
access to this extra computational power incurs cost for the user. In fact, there
is a trade-off between spending budget to get resources from IaaS providers and
running the application on local resources.

Therefore, the problem we are dealing with is how scheduling policies inside
the broker can benefit from resources supplied by the IaaS providers in addition
to the local resources to get the user application completed by the requested
deadline and provided budget. Furthermore, we assume that the end user does
not have any knowledge about the application execution time. The problem is
more complicated when we consider the user preference in terms of time min-
imization or cost minimization in addition to the budget and deadline limita-
tions. Such scheduling policies are broadly termed market-oriented scheduling
policies [3].

Buyya et al. [3] propose scheduling policies to address the time minimization
and cost minimization problem in the context of Grid computing. They term
their proposed policies DBC (Deadline Budget Constraint) scheduling policies
and define them as follows:

– Time Optimization: minimizing time, within time and budget constraints.
– Cost Optimization: minimizing cost, within time and budget constraints.

However, Buyya et al. do not consider the mixture of non-commercial and com-
mercial resources. Moreover, there are some differences in hiring resources from
IaaS providers and assumptions in mentioned DBC policies. One difference is
that in the policies proposed by Buyya et al., the user is charged when a job
is submitted to a resource. Nevertheless, IaaS providers charge users as soon
as a resource is allocated to the user regardless of being deployed by the user
or not [10]. Another difference is that current IaaS providers charge users in an
hourly basis, whereas in these policies [3] user is charged in cpu-per-second basis.
These differences raise the need to propose new DBC scheduling policies to meet
the user constrains by hiring resources from IaaS providers.

In this work, we propose two scheduling policies (namely Cost Optimization
and Time Optimization) to increase the computational power of the local re-
sources and complete the application by the given deadline and budget.

In summary, our work makes the following contributions:

– We propose the Cost Optimization and the Time Optimization scheduling
policies that increase the computational capacity of the local resources by
hiring resources from IaaS providers to meet the application deadline within
a budget.

Adapting Market-Oriented Scheduling Policies for Cloud Computing 353

– We extend Gridbus broker (as a user-level broker) to hire resources from
Amazon EC2 (as an IaaS provider).

– We evaluate the proposed policies in a real environment by considering dif-
ferent performance metrics.

The rest of this paper is organized as follows. In Section 2, related works in
the area are introduced. Proposed scheduling policies are described in Section 3.
Details of implementation are described in Section 4. Then, in Section 5, we
describe the experiments for evaluating the efficiency of the new policies. Finally,
conclusion and future works are provided in Section 6.

2 Related Work

A number of research projects have been undertaken over the last few years on
provisioning resources based on IaaS providers. The approach taken in these re-
search projects typically consists of deploying resources offered by IaaS providers
in two levels. One approach is using resources offered by IaaS providers at re-
source provisioning level, the other approach deploys resources offered by the
IaaS provider at broker (user) level. In this section, a review of these works is
provided.

2.1 Deploying Cloud Resources at Resource Provisioning Level

The common feature of these systems is that they do not consider user constrains
such as deadline or budget in hiring resources from IaaS providers. In other
words, in these works resources offered by IaaS providers are used in order to
satisfy system level criteria such as handling peak load.

OpenNebula [5] is a system that can manage several virtualization platforms,
such as Xen, inside a cluster. OpenNebula is able to hire resources from IaaS
providers, such as Amazon EC2, in an on-demand manner. In OpenNebula hiring
resources from Amazon happens when the capacity of local resources is being
saturated. Llorente et al. [7] extend OpenNebula to provision excess resources
for high performance applications in a cluster or grid to handle peak load.

Table 1. Comparing different aspects of resource provisioning mechanisms from IaaS
providers

Proposed Policy Use Non-
Cloud Re-
sources

User con-
strains

User Trans-
parency

Scheduling
Level

Goal

OpenNebula [5] Local No Yes System-level Handling peak load
Llorenete et al. [7] Local and

grid(Globus
enabled)

No Yes System-level Provision extra resources to
handle peak load

Assunção et al. [4] Local Yes (Budget) Yes System level Handling peak load
Vazquez et al. [2] Local and

grid(Globus
enabled)

No No User level Federating several providers
from Grid and Cloud

Silva et al. [9] No Yes (Budget) No User level Run Bag-Of-Task applica-
tion on Cloud

Time and Cost Opti-
mization (this paper)

Local Yes (Budget
and Deadline)

Yes User level Minimizing completion time
and incurred cost within a
deadline and budget

354 M.A. Salehi and R. Buyya

Assunção et al. [4] evaluate the cost-benefit of deploying different scheduling
policies, such as conservative backfilling and aggressive backfilling for an orga-
nization to extend its computing infrastructure by allocating resources from an
IaaS provider. However, our work proposes cost and deadline aware scheduling
policies for user application.

2.2 Deploying Cloud Resources at Broker (User) Level

Vazquez et al. [2] propose dynamic provisioning mechanism by federating grid
resources from different domains with different interfaces along with resources
from IaaS providers. The federation is achieved through GridWay [6].

In this solution all the resources have to support Globus Toolkit (GT). Even
in the case of resources from IaaS providers, Gridway can just awake resources
with the Globus adapter. Since this work takes advantage of resources from IaaS
providers in the user-level broker, it is similar to our work. However, GridWay
neither considers the user constraint in terms of budget nor the user preferences
in terms of time or cost minimization. In the mentioned work [2], it is stated that
investigating cost-aware scheduling policies for resources from an IaaS provider
is required and, in fact, our work addresses this requirement.

Silva et al. [9] propose a mechanism for creating optimal number of resources
on Cloud based on the trade-off between budget and speedup. This work con-
siders Bag-of-Tasks applications where the run times are not known in advance.
In fact, heuristics proposed by Silva et al. [9] focus on predicting the workload.
Nonetheless, our work focuses on providing scheduling policies to satisfy user
preferences and we do not deal with workload prediction issues.

In Table 1 different systems that provision resources from IaaS providers are
compared from different aspects. This table also reveals the differences of our
proposed policies with similar works in the area.

3 Proposed Policy

Scheduling applications is complex when a user places constraints such as exe-
cution time and computation cost. Satisfying such requirements is challenging
specifically when the local resources are limited in computational capacity and
the execution time of the application is not known in advance. In this situation,
scheduling policies need to adapt to the changing load in order to meet the dead-
line and cost constraints. Moreover, the scheduling policy should consider the
user preference in terms of time or cost minimization.

To cope with the challenge, our solution relies on supplying more resources
from IaaS providers. Therefore, we propose two scheduling policies namely, Time
Optimization and Cost Optimization. In this section, details of these policies are
described.

3.1 Time Optimization Policy

The Time Optimization policy, as mentioned before, aims at completing the
application as quickly as possible, within the available budget. Therefore, ac-
cording to the pseudo code presented in Algorithm 1, the scheduler spends the

Adapting Market-Oriented Scheduling Policies for Cloud Computing 355

whole available budget for hiring resources from the IaaS provider (steps 1 to 3).
Available budget is defined according to equation (1) and indicates the amount of
money the scheduler can spend per hour. However, the number of hired resources
should not be more than the number of remaining tasks.

There is a delay between the time the request is sent to the IaaS provider and
the time resources become accessible1. After getting accessible, hired resources
are added to the list of available servers (step 4) and the scheduler can dispatch
tasks to them (steps 6, 7). AddAsServer() is a thread that keeps track of the
request sent to the IaaS provider to get accessible. To attain the minimum exe-
cution time, hired resources are kept up to the end of execution. At the end of
execution, all resources from the IaaS provider are terminated (step 8).

BudgetPerHour =
TotalBudget

�Deadline− CurrenrtT ime� (1)

Algorithm 1. Time Optimization Scheduling Policy.
Input: deadline, totalBudget,resourceCost

1 budgetPerHour =totalBudget / (deadline −currentTime);
2 reqCounter =budgetPerHour / resourceCost;
3 RequestResource(reqCounter);
4 availResources + = AddAsServer();
5 DoAccounting();
6 while TaskRemained() = True do
7 SubmitTask(availResources);

8 Terminate(reqCounter);

3.2 Cost Optimization Policy

The Cost Optimization policy completes the application as economically as pos-
sible within the deadline. According to the pseudo code presented in Algorithm 2,
In each scheduling iteration, a set of tasks are submitted to available resources
(step 4). Available resources refer to local resources plus resources hired from
IaaS provider so far. Then, in step 5 the scheduler estimates the completion
time of the remaining tasks based on the time taken for the tasks that have got
completed so far.

However, since we are not dealing with the workload prediction issues in
this work, we assume that all tasks of the high performance application have
the same execution time. Therefore, EstimateCompletionTime() in step 5 is a
function that estimates the completion time based on equation (2).

Estimation = TasksRemained ∗ TaskRunT ime (2)

1 The delay is actually because of the time taken to make (boot) a virtual machine
from machine image. For more details see [10].

356 M.A. Salehi and R. Buyya

If there is not any available resource (step 6), then a default initial estimation is
assumed (step 7) to make the policy hire one resource from the IaaS provider.

In each scheduling iteration, if it is realized that the deadline could not be
met and there is enough budget available (steps 9, 10), then just one resource is
hired from the IaaS provider. AddAsServer() add the hired resource to available
resources as soon as it becomes accessible.

Thus, in the Cost Optimization policy resources are requested from the IaaS
provider over time. This results in spending more time to get access to hired
resources rather than the Time Optimization policy. We investigate the impact
of this issue in the experiments in more details.

Termination of the hired resources happens when the estimated completion
time is smaller enough than the deadline (steps 15, 16). In fact, to maximize the
chance that the deadline can still be met after terminating one resource, termi-
nation is only done if the estimated completion time is smaller than a fraction of
the deadline (estimation < (deadline ∗ α) where α < 1). In the current imple-
mentation of Cost Optimization policy, we consider α as a constant coefficient
(0.7 in our experiments). However, as a future work, we plan to investigate an
adaptive value for α.

DoAccounting(), in both Time Optimization and Cost Optimization policies,
takes care of budgeting for hired resources and decreases the available budget
base on the price of the hired resources per hour. If there is not enough bud-
get, then DoAccounting() terminates each hired resource before it starts a new
charging cycle.

Note that the implementation of the above policies contains extra steps to
keep track of ordered resources to get accessible, accounting, and terminating
hired resources. All of these processes are done in separate threads to have the
minimum impact on the scheduling performance.

Time Optimization and Cost optimization policies are implemented in Grid-
bus broker. Moreover, Gridbus broker is extended to be able to interact with
Amazon EC2 as an IaaS provider. In the next section, details of extending the
broker to Amazon EC2 are discussed.

4 System Implementation

Gridbus broker mediates access to distributed resources running diverse mid-
dleware. The broker is able to interface with various middleware services, such
as Condor, and SGE [11]. In this work, we extend Gridbus broker to interact
with Amazon EC2 as an IaaS provider. Then, we incorporate the aforementioned
scheduling policies into the broker.

In our implemented architecturen (Fig. 1), EC2ComputesManager has a key
role in managing resources from Amazon EC2. EC2ComputesManager initiates
a thread that keeps track of resources requested by scheduling policy on Ama-
zon EC2. When a resource gets accessible, the resource is added to the available
resources as an EC2ComputeServer object and scheduler can submit task to it.
EC2ComputeServer also deals with the pricing model of the Amazon EC2 by

Adapting Market-Oriented Scheduling Policies for Cloud Computing 357

Algorithm 2. Cost Optimization Scheduling Policy.
Input: deadline, totalBudget,resourceCost

1 SetAvailBudget(totalBudget);
2 while TaskRemained() = True do
3 if availResources > 0 then
4 SubmitTask(availResources);
5 estimation = EstimateCompletionTime();

6 else
7 estimation = deadline + 1;

8 if estimation > deadline then
9 availBudget = GetAvailBudget();

10 if availBudget ≥ resourceCost then
11 RequestResource(1);
12 availResources + = AddAsServer();
13 DoAccounting();

14 else
15 if estimation < (deadline ∗ α) then
16 Terminate(1);

overriding the payment method in isPaid() method. Finally, EC2ComputeServer
terminates resources from IaaS provider when terminate() method is invoked by
the scheduler. EC2Instance contains all related attributes and relevant meth-
ods for managing resources from the IaaS provider. Particularly, isReadytoUse()
method determines if a requested resource from the Amazon EC2 is accessible
or not.

Fig. 1. Class diagram describing the implementation details of extending Gridbus roker
to Amazon EC2 as an IaaS provider

358 M.A. Salehi and R. Buyya

Results of our evaluation on the Time Optimization and the Cost optimization
policies in Gridbus broker are presented in the next section.

5 Performance Evaluation

5.1 Experiment Setup

The specification of the resources and applications used in the experiments are
described in this section. We use a cluster (Snowball.cs.gsu.edu) as the local
resource. The cluster has 8 Pentium III (XEON 1.9 GHZ) CPU, 1GB RAM,
and Linux operating system. We also use Amazon EC2 as the IaaS provider.

Amazon EC2 offers resources with different computational power. In the ex-
periments we use the cheapest resource type which is known as small computa-
tional unit (we call it small instance). Another reason for using small instances
is that, in terms of hardware specification, small instances are the most similar
resource types to our local resources in the cluster. Each small instance is equiv-
alent to 1.2 GHZ XEON CPU, 1.7GB RAM, Linux operating system, and costs
10 cents per hour.

We use a Parameter Sweep Application (PSA) in the experiments. A PSA
typically is a parameterized application which has to be executed independently
with different parameter values (each one is called a task). Pov-Ray [8] is a
popular parameter sweep application in image rendering and it is widely used in
testing distributed systems. In the experiments, we configure Pov-Ray to render
images with the same size. Therefore, we ensure that the execution time is almost
the same for all the tasks.

5.2 Experiment Results

The Impact of Budget Spent on Completion Time. In the first experi-
ment, we measure how the application completion time is affected based on the
different budget allocated by the user.

For this purpose, we consider the situation that the user wants to run Pov-Ray
to render 144 images in two hours (120 minutes) as the deadline. The overall
execution time when just Snowball.cs.gsu.edu cluster is used is 138 minutes and
since no cost is assigned to the cluster, the overall execution time does not vary
by increasing budgets (Baseline in Figure 2). Then, two proposed policies (Time
Optimization and Cost Optimization) are tested in the same situation.

As it can be understood from Figure 2, in the Time Optimization policy the
application completion time decreases by available budget almost linearly. How-
ever, in the Cost Optimization the completion time does not improve anymore
after a certain budget (100 cents in this case). In fact, this is the point that the
policy does not spend any more money to request more resources from the IaaS
provider even if there is some budget available. Moreover, for the budgets less
than 100 cents, Cost Optimization policy takes more time to complete rather
than Time Optimization with the same budget allocated. This is mainly because
the Cost Optimization policy does not spend all of the allocated budget. This

Adapting Market-Oriented Scheduling Policies for Cloud Computing 359

0 50 100 150 200 250

Fig. 2. The impact of allocating more budget on the application completion time with-
out resources from the IaaS provider (Baseline), with Time optimization policy (Time-
Opt) and with Cost Optimization policy (Cost-Opt)

issue is discussed more in the next experiment in which the efficiency of the two
policies is illustrated. Another reason is that, resources in the Cost Optimization
are added over the time and terminated as soon as the scheduler realizes that
the deadline can be met. However, in the Time Optimization all resources are
requested in the very first moments and kept up to the end of execution.

Efficiency of the Time Optimization and Cost Optimization Policy. In
this experiment, the efficiency of the Time Optimization and the Cost Optimiza-
tion scheduling policies are measured for different amount of allocated budget.
We define the efficiency as follows:

efficiency =
(α− β)

δ
(3)

Where α is the time taken to complete the application just by deploying Snow-
ball.cs.gsu.edu cluster. β is the completion time by using both Snowball.cs.gsu.
edu cluster and resources from the IaaS provider. Finally, δ indicates the budget
spent to hire resources from IaaS providers. Other experiment parameters are
the same as experiment 5.2.

According to Figure 3, in the Time Optimization policy, the decrease in ef-
ficiency (from 1.4 to 0.77 and from 1.38 to 0.89) happens because of the rapid
increase in spent budget. However, there is a sharp rise in efficiency (from 0.77
to 1.38) when the allocated budget increases to 100. This is mainly because
of the decrease in spent budget. In other words, by hiring five resources from
the IaaS provider, the application gets completed before another charging cycle
for resources from IaaS provider starts. Therefore, the spent budget decreases
sharply (from 80 to 50 cents) and the efficiency increases. We expect more simi-
lar sudden rises in the Time Optimization policy, specifically when the deadline
is long (several hours or days).

360 M.A. Salehi and R. Buyya

0 50 100 150 200 250

Fig. 3. Efficiency of Time Optimization and Cost Optimization policies with different
budget allocated

Similar behavior happens in Cost Optimization, when the allocated budget is
increased from 40 to 60 cents. In this case, again more resources (three resources
for one hour) are kept for less time instead of fewer resources for more time (two
resources for two hours when allocated budget is 40).

The Impact of the Time Optimization and Cost Optimization Schedul-
ing Policies on the Completion Time of Different Workload Types. In
this experiment, we investigate how the Time Optimization and the Cost Opti-
mization policies behave for different workload types. Doing this experiment, we
consider five workload types. According to Table 2, the number of tasks increase
exponentially whereas the run time for each task decreases at the same rate from
type 1 to type 5. All of these workloads have the same completion time (150 min-
utes) when just Snowball.cs.gsu.edu cluster is used. For all of these workloads,
we use the same deadline and budget (120 minutes and 100 cents respectively)
during the experiment.

This experiment demonstrates the applicability of the proposed policies for
different kinds of workloads. As it is illustrated in Figure 4, both policies can
get the application completed before the deadline. The only deadline violation
is in Cost Optimization policy for workload type 1. The reason is that there is
not enough scheduling iteration in which Cost Optimization policy can request
more resources from the IaaS provider, thus that workload get completed just
by two resources ordered from the IaaS provider.

The minimum difference in completion time between Time Optimization and
Cost Optimization is in the workload type 5. The reason is that the execution time
for each task is short (2.34 minutes according to Table 2). This results in more
frequent scheduling iterations. Hence, extra resources from the IaaS provider are
requested in the very first scheduling iteration and these additional resources can
contribute more for running tasks. However, the reason for difference in

Adapting Market-Oriented Scheduling Policies for Cloud Computing 361

Fig. 4. Application completion time for different workload types with the cluster as
local resource (Baseline) and with the resources from the IaaS provider in Time Opti-
mization (Time-opt) and Cost Optimization (Cost-opt) policies

Table 2. Different workload types used in the experiment 5.2

Workload No of Tasks Task Time (minutes)

Type 1 32 38
Type 2 64 18.75
Type 3 128 9.37
Type 4 256 4.65
Type 5 512 2.34

completion time is that in the Cost Optimization resources are not retained up to
the end of execution. Another reason for difference in completion time is the time
taken by the IaaS provider to make the resources accessible. Since in the CostOpti-
mization policy resources are requested over time, the overhead related to prepar-
ing resource by the IaaS provider is longer than the Time Optimization policy in
which all resources from the IaaS provider are requested at the same time.

6 Conclusion and Future Work

In this paper, two market-oriented scheduling policies are proposed to increase
the computational capacity of the local resources by hiring resources from an
IaaS provider. Both policies consider user provided deadline and budget in their
scheduling. Time Optimization scheduling policy minimizes the application com-
pletion time. On the other hand, Cost Optimization scheduling policy minimizes
the cost incurred for running the application. We evaluate these policies in real
environment using Gridbus broker as a user-level broker. We observed that in the
Time Optimization policy, completion time reduces almost linearly by increas-
ing the budget. However, in the Cost Optimization the completion time does
not improve after a certain budget (100 cents in our experiments). We can also
conclude that the efficiency of the Time Optimization and Cost Optimization

362 M.A. Salehi and R. Buyya

policies can potentially increase by increasing the budget. Finally, we observed
that different workload types can get completed before the deadline and within
the budget using the proposed policies.

As a future work we plan to extend the current work to a situation that there
are several IaaS providers with different prices for their resources.

References

1. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2
2. Blanco, C.V., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic provision of com-

puting resources from grid infrastructures and cloud providers. In: Grid and Per-
vasive Computing Conference, pp. 113–120 (2009)

3. Buyya, R., Murshed, M.M., Abramson, D., Venugopal, S.: Scheduling parameter
sweep applications on global grids: a deadline and budget constrained cost-time
optimization algorithm. Softw. Pract. Exper. 35(5), 491–512 (2005)

4. de Assunção, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of
using cloud computing to extend the capacity of clusters. In: Proceedings of the
18th ACM international symposium on High performance distributed computing,
pp. 141–150. ACM, New York (2009)

5. Fontán, J., Vázquez, T., Gonzalez, L., Montero, R.S., Llorente, I.M.: OpenNEbula:
The open source virtual machine manager for cluster computing. In: Open Source
Grid and Cluster Software Conference (2008)

6. Huedo, E., Montero, R.S., Llorente, I.M.: A framework for adaptive execution in
grids. Softw. Pract. Exper. 34(7), 631–651 (2004)

7. Llorente, I., Moreno-Vozmediano, R., Montero, R.: Cloud computing for on-
demand grid resource provisioning. Advances in Parallel Computing (2009)

8. The Persistence of Vision Raytracer, http://www.povray.org
9. Silva, J.N., Veiga, L., Ferreira, P.: Heuristic for resources allocation on utility com-

puting infrastructures. In: MGC, p. 9 (2008)
10. Sotomayor, B., Keahey, K., Foster, I.T.: Combining batch execution and leasing

using virtual machines. In: HPDC, pp. 87–96 (2008)
11. Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling e-science

applications on global data grids, Citeseer, vol. 18, pp. 685–699 (2006)

http://aws.amazon.com/ec2
http://www.povray.org

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 363–380, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A High Performance Inter-VM
Network Communication Mechanism

Yuebin Bai, Cheng Luo, Cong Xu, Liang Zhang, and Huiyong Zhang

School of Computer Science, Beihang University, Beijing 100191, China
byb@buaa.edu.cn

Abstract. In virtualization technology domain, researches mainly focus on
strengthening the isolation barrier between virtual machines (VMs) that are co-
resident within a single physical machine. At the same time, there are many
kinds of communication intensive distributed applications such as web services,
transaction processing, graphics rendering and high performance grid applica-
tions, which need to communicate with each other on the co-resident VMs.
Current inter-VM communication mechanisms can’t adequately satisfy the
requirement of such applications. In this paper, we present the design and im-
plementation of a high performance inter-VM communication mechanism
called IVCOM in Xen virtual machine environment. We propose IVCOM in
para-virtualization and also extend for full-virtualization. As a result of our sur-
vey, in Para-virtualization, there are mainly three kinds of overheads that con-
tribute to the poor performance: the TCP/IP processing cost in each domain,
page flipping overhead and long communication path between both sides of the
socket. IVCOM achieves high performance by bypassing protocol stacks, shun-
ning page flipping and providing a direct and high performance communication
path between VMs residing with the same physical machine. And in Full-
virtualization, frequent mode tuning between root mode and non-root mode
import too much overhead. IVCOM applies a direct communication channel be-
tween domain 0 and hardware virtual VM (HVM) and can greatly reduce the
VM entry/exit operations which can improve the HVM performance. In our
evaluation, we observe that IVOCM can reduce the inter-VM round trip latency
by up to 3 times and increase throughput by up to 3 times which prove the
efficiency of IVCOM in para-virtualized environment. In full-virtualized envi-
ronment, IVCOM can greatly reduce mode tuning times in the communication
between domain 0 and HVM.

1 Introduction

VM technologies were first introduced in the 1960s, and reached prominence in the
early 1970s. They can create virtual machines which can provide functional and per-
formance isolation across applications and services that share a common hardware
platform. At the same time, VMs can improve the system-wide utilization efficiency
and provide lower overall operational cost of the system. With the advent of low-cost
minicomputers and personal computers, the need for virtualization declined [1]. As
growing interests in improving the utilization of computing resources through server

364 Y. Bai et al.

consolidation, VM technologies are getting into the spotlight again and are wildly
used in many fields. Now, there are many virtual machine monitors (VMMs) such as
VMware [2, 3], Virtual PC [4], UML [5], KVM [22], and Xen [6]. Xen system devel-
ops one technique known as para-virtualization [7] which offers virtualization with
low overhead and has attracted a lot of attention from both the academic VM and the
enterprise market. However para-virtualized approach has its intrinsic shortcomings,
because it has to modify the OS kernel to shut down the processor’s virtualization
holes. To implement full virtualization [23] on x86 platform, some processor manu-
facturers propose hardware assisted technologies to support full virtualization such as
Intel’s VT technology, and AMD’s Pacifica technology.

In spite of the recent advance in the VM technologies, virtual network performance
remains a major challenge [8]. Some researches done by Menon et al [9] show that
Linux guest domain has far lower network performance than native Linux in the sce-
narios of inter-VM communication. The communication performance between two
processes in their own VMs on the same physical machine is even worse than we ex-
pected which is mainly due to the virtualization technologies’ main characteristic of
isolation. While enforcing isolation is an important requirement from the viewpoint of
security of individual software components, it also can result in significant communi-
cation overheads as different software components may need to communicate across
this isolation barrier to achieve application objectives in specific scenarios. For exam-
ple, a distributed HPC application may have two processes running in different VMs
that need to communicate using messages over MPI libraries. Another example is
network transaction. In order to satisfy a client transaction request, a web service run-
ning in one VM may need to communicate with a database server which is running in
another VM. Even routine inter-VM communication, such as file transfers may need
to frequently cross this isolation barrier. In these examples, it is not necessary to use
the traditional protocols for inter-VM communication as they are originally developed
to transfer data over unreliable WAN. When the VMs reside on the same physical
machine, we would like to use a direct and high performance communication mecha-
nism that can minimize the communication latency and maximize the throughput.

In this paper, basing on the research about virtualization technologies and multi-core
technologies, we combine both technologies and propose a high performance inter-VM
communication mechanism. The rest of this paper is organized as follow: Section 2
gives a brief view of Xen network background. Section 3 presents the design and im-
plementation of IVCOM. Section 4 discusses the overhead and the detailed perform-
ance evaluation of IVCOM. Section 5 presents the related work. Section 6 draws the
conclusion.

2 Xen Network Background

Xen is an open source hypervisor running between hardware and operating systems
(OS). It virtualizes all resources over the hardware and provides the virtualized re-
sources to OS running on Xen. Each OS is called guest domain or domain U and one
privileged domain for hosting the application level management software is called do-
main 0. Xen provides two virtualization ways: full-virtualization and para-virtualization.
Xen can provide close to native machine performance by using para-virtualization. In

 A High Performance Inter-VM Network Communication Mechanism 365

para-virtualization, Xen exports virtualized network devices to each domain U with the
actual network drivers that interact with the real network card within domain 0. Domain
0 communicates with Domain U by means of a split network driver architecture shown
in Figure 1.

Fig. 1. Xen architecture with hardware-assisted virtual machine support

The domain 0 hosts the backend of the split network driver called netback, and the
domain U hosts the frontend called netfront. They interact by using high level net-
work device abstraction rather than low level network hardware specific mechanisms.
That means, domain U only knows that it is using a network device, but doesn’t care
about what type the network card is. The split drivers communicate with each other
through using two producer- consumer ring buffers. The ring buffers are a standard
lockless shared memory data structure built on grant table and event channels which
are two primitives in Xen architecture.

The grant table can be used to share pages between domain U and domain 0. As
the frontend of the split driver in domain U can notify Xen hypervisor, by using
gnttabl_grant_foreign_access hypercall, that a memory page can be shared with do-
main 0. Domain U then passes a grant table reference through the event channel to
domain 0 that copies data to or from the memory page of domain U. Once complete
the page access, domain U removes the grant reference. Page sharing is useful for
synchronous I/O operations such as sending packets by a network device. Meanwhile,
domain 0 may not know the destination domain for an incoming packet until the en-
tire packet has been received. In this situation, domains 0 will first DMAs the packet
into its own memory page. Then, domain 0 can choose to copy the entire packet to the
domain U’ memory. If the packet is large, domain 0 will notify Xen hypervisor that
the page can be transferred to the target domain U. The domain U then initiates a
transfer of the received page and returns a free page back to hypervisor. By detailing
the network communication process between VMs, we can find there are too much
switching of a CPU between domains which can negatively impact the performance

366 Y. Bai et al.

due to increase in TLB and cache miss. At the same time, the frequent hypercalls,
equal to system calls for hypervisor, also increases the overhead greatly.

In full-virtualization, Intel VT technology defines two modes: root mode and non-
root mode for virtual machines. In root mode, virtual machine has whole privilege and
has full control of the processor(s) and other platform hardware. In non-root mode,
virtual machine can only operate with limited privilege. Corresponding to two modes,
VT provides a new form of processor operation called VMX (virtual machine exten-
sion) operation. There are two kinds of VMX operation: VMX root operation and
VMX nonroot operation. In general, a VMM will run in VMX root operation and
guest software will run in VMX non-root operation. Transitions between VMX root
operation and VMX non-root operation are called VMX transitions (also called mode
tuning). There are two kinds of VMX transitions. Transitions into VMX non-root op-
eration are called VM entries. Transitions from VMX non-root operation to VMX
root operation are called VM exits. In Xen, domain 0 runs in root mode and HVM
runs in non-root mode. When applications in HVM need to access hardware resources
such as IO, mode tuning will occur. First of all, the current running scene will be
saved into a virtual machine control structure (VMCS), and the root mode scene will
be load from it. By this way, the HVM domain is scheduled out and domain 0 is
scheduled in. Then it is time for handling the real IO request by device module. After
that, domain 0 is scheduled out and the domain switches back to HVM. After analys-
ing the process of mode tuning, we can find the actual IO handle cost only take little
part in the total overhead in one switch. As all privileged access such as IO access or
interrupt will be handled by this way, the performance of HVM certainly degrades.

3 Design and Implementation of IVCOM

3.1 IVCOM Architecture

In IVCOM architecture, there is a discovery module within domain 0 which is respon-
sible for collecting VM information and managing resources such as event channel
table and shared memory. In each domain U, there are manage module which is used
for the management of communication channels, communication module which is used
for the communication between VMs and an IVCOM switch that decides whether uses
IVCOM or not in specific scenarios. The details are illustrated in Figure 2.

As we have discussed in section 2, the traditional communication way requires the
involvement of domain 0 and results in lower performance. With IVCOM, we can
establish high performance communication channel between VMs with little mainte-
nance done by domain 0. The discovery module within domain 0 maintains an event
channel table which records necessary information for inter-VM communication.
When a new VM is created, first of all, it will send a registration message to discov-
ery module. This message includes the new VM’s IP and domain ID which is used to
identify each VM within the host OS. After receives this registration message, dis-
covery module will set up a record with several properties for the new VM in the
event channel table. Then the manage module in the new VM begins the channel
bootstrap process with each existing virtual machine by accessing the event channel
table. The process includes the allocation of event channel and the establishment of

 A High Performance Inter-VM Network Communication Mechanism 367

Fig. 2. IVCOM architecture

shared memory. After this, the new VM can exchange with any VMs residing within
the same physical computer and achieve high performance inter-VM communication
through the data structure of circular queue in the shared memory space.

3.2 Event Channel Table Design

In IVCOM, we use event channel [10] to deliver notifications between VMs. In Xen
architecture, events are the standard mechanism for delivering notifications from the
hypervisor to guests, or between guests. They are similar to UNIX signals, and can be
used for the inter-VM communication. Here we use event channels as part of the
communication channels between VMs, and set an event channel between each pair
of VMs.

As each VM has to connect with all other VMs residing within the host OS, there
are many event channels in each VM. VM needs to know which channel connects
with the communication target VM. Therefore, we set up a global event channels ta-
ble in XenStore to record the necessary information of VM as illustrated in Figure 3.
XenStore is a hierarchical namespace which is shared between VMs. It can be used to
store information about the VMs during their execution and as a mechanism of creat-
ing and controlling VM devices. There are several properties in the event channel
table as follow:

 IP: VM’s network address
 VM_ID: VM’s domain ID
 Port: event channel port num
 Status: VM’s status including running(r), pause(p), shutdown(s)

VMs can access “IP” in the event channels table to know the existence of other VMs
that reside in the same physical computer. “VM_ID” is used to identify each VM, and
“port” is used to identify each event channel in a VM. The terms “event channel” and
“port” are used almost interchangeably in Xen. Each event channel contains two ports.

368 Y. Bai et al.

One is in the VM that allocates the event channel and the other is used for remote VM
to bind. From the perspective of either VM, the local port is the channel; it has no other
means of identifying it. So the VM can access the event channels table to know which
port connects the target VM. “Status” shows the current status of VM. Only the VM is
in the running status that the corresponding event channel can be used.

Fig. 3. Event channels table design

To guarantee the validity of the information in the event table, the discovery mod-
ule will periodically collect the information of VMs to update the event channels ta-
ble. We set the discovery module to update every 5 minutes which can be adjusted to
keep the validity of records. Due to the event channels table being within hypervisor,
VMs need to communicate with hypervisor to access it which leads to too much over-
head and makes the table become the performance bottleneck. To solve this problem
and gain high performance access to the event channels table, we copy the table in
each VM. When the VM is created, domain 0 will send it a copy of the table and will
update the table periodically to keep the validity of the data. In this way, when a VM
has a requirement of communication, it can look up its local event channels table to
establish communication path which improves performance greatly.

3.3 Shared Memory Design

Xen’s grant tables provide a generic mechanism for memory sharing between VMs
which allows shared memory communications between unprivileged VMs. The data
transmission between inter-VMs is possible with data copy through the shared mem-
ory space. We use the data structure of circular queue to store data in the shared
memory space as illustrated in Figure 4. The circular queue is a producer-consumer
circular buffer that avoids the need for explicit synchronization between the producer
and the consumer endpoints. The circular queue resides in the shared memory be-
tween the participating VMs. Both front and back are atomically incremented by the
consumer and producer respectively, as they insert or delete data packets into or from

 A High Performance Inter-VM Network Communication Mechanism 369

the circular queue. When multiple producer threads might concurrently access the
front of the queue, we can use producer spinlocks to guarantee mutually exclusive
access which still do not require any cross-domain synchronization. The multiple con-
sumers concurrently access the back of the queue also can be solved by this way.

When a new VM is created, the manage module will set up a pair of virtual circular
queue for sending and receiving data (SQ and RQ) with each of the existing VM
within the host OS. At the same time, the existing VMs also set up a pair of virtual
circular queue for data exchange with the new VM. These virtual circular queues in
each VM do not have shared memory space. Actually, they are mapped to the physi-
cal circular queues which are set up by the discovery module in the shared memory
space between the VMs as illustrated in Figure 4. Consequently, a queue in the shared
memory space is mapped to the SQ in guest VM1 and also mapped to the RQ in the
VM2. In this way, the operation of putting the data into the SQ of VM1 is equal to the
operation of putting the data into the RQ of VM2 which achieve the transmission be-
tween VMs by one time memory copy [11]. Once the event channel and the circular
queues are set up, they won’t be destroyed until one of the VMs that the communica-
tion channel connects is destroyed.

Fig. 4. Shared memory design

3.4 Establish Communication Channel and Data Transmission

When a new VM is created, its manage module will send a register message to the
discovery module in domain 0 and receive a copy of event channel table. After that, it
begins to establish communication channel including one event channel and two
circular queues with each existing VMs. The establishing process is similar to the
“client-server” connection setup.

As illustrated in Figure 5, during the channel establishing process, we designate the
guest VM with the smaller guest ID as the role of “server”, whereas the other VM as
the role of “client”. First of all, the manage module of the server side send a connect
request message to hypervisor, and the hypervisor will send the domain id of server

370 Y. Bai et al.

Fig. 5. Channel establishing process

side to the manage module of client side. Client side accepts the request and returns
its domain id to the server side. Then the manage module of server side sets up send
circular queue and receive circular queue, and allocates an event channel. After this, it
will send a message containing the information of the circular queues and the event
channel. Receiving the message, the manage module of client side will set up receive
circular queue and send circular queue, and map them to the circular queues of server
side by the mapping method described in the shared memory design section. The cli-
ent side also needs to bind to the event channel allocated by the server side, and sends
an ack message to the server side. Since then, the channel establishing process is
complete. To protect against the loss of either message, the server side will time out if
the return ack does not arrive as expected and resend the create channel message 3
times before giving up.

When application in the sender VM has a communication requirement, the IVCOM
switch layer will look up the local event channel table to find whether the communi-
cation target is within the same physical computer. If the target does not reside within
the host OS or the status of the target is not running, IVCOM switch will let the front
driver handle the communication requirement. Otherwise, IVCOM will take over to
handle the requirement.

First of all, the communication module will access the event channel table to get
the right event channel port and the VM’s status that connects the target VM. Then
the VM will choose a virtual CPU to bind to the port. As only one core can bind to the
port at one time, so the virtual CPUs in the same VM need to negotiate to achieve
dynamically binding. The asynchronous communication between virtual CPUs in the
same VM is implemented basing on APIC (Advanced Programmable Interrupt Con-
troller) [12] which is developed by Intel and used in the communication in multi-core
platform. APIC is also adopted by Xen and used in the communication between vir-
tual CPUs. We define two functions that one is used for releasing the event channel
called release_evtch and another is used for virtual CPUs to bind to the event channel
called bind_evtch. Therefore, a core that wants to use the event channel can send an
inter-processor interrupt provided by APIC to the core that is binding to the event

 A High Performance Inter-VM Network Communication Mechanism 371

channel with release_evtch which will make the event channel available, and then
bind itself by using bind_evtch. By this way, the control of the event channel can be
transferred within virtual CPUs in a VM.

Once the virtual CPU gains the event channel, the direct data exchange can be
available between VMs. The sender VM copies its data packet into the SQ, and then it
signals the target VM with the event channel. The target VM intercepts the signal and
copies the data packet from the RQ, then frees up the space for future data and returns
an ack signal through the event channel.

3.5 Hardware Virtual Machine Extension

As we have discussed in section 2, if the applications in HVM try to access privileged
resources such as IO, the HVM will execute VM exit and the domain will switch to
root mode to handle the requests. After handling the request, the domain will execute
VM entry and it will switch back to HVM. The overhead of frequent transitions be-
tween root mode and non-root mode is considerable. According to analyzing the rea-
son of mode tuning, we know that HVM has some tasked done by domain 0 and they
need to communicate with each other. Then we are eager to find out if IVCOM is
suitable in HVM and the result proves the hypothesis. Although IVCOM cannot put
an end to tuning as using hypercalls also will cause mode tuning, it can reduce the
tuning time greately.

Fig. 6. IVCOM in HVM

The IVCOM cannot be available directly in HVM as it lacks under layer Xen sup-
port. Due to un-modified guest, HVM cannot use hypercalls applied by Xen, such as
event channel and grant tables, to send notification between guest domains. There-
fore, we need to insert a PCI module into the Linux kernel which can enable us to
access limited hypercalls. The PCI module enables HVM to access some hypercalls as
para-virtualized domain U by mapping its memory page to the hypercall page. After
that, HVM can access the memory address in the mapping page to get the entry
address of the hypercall.

372 Y. Bai et al.

After inserting PCI module into the Linux kernel as illustrated in Figure 6, we can
use IVCOM in HVM as what we do in para-virtualized domain. In HVM, IVCOM
can establish the direct communication channel between HVM and domain 0 to
achieve high performance communication. When applications in HVM have to access
privileged resources, it can use IVCOM to exchange information with domain 0 and
let domain 0 done the request instead of mode tuning which degrades the HVM per-
formance a lot.

4 Experiments in Para-Virtualization

In this section, we show the performance evaluation of IVCOM in para-virtualization
environment. We perform the experiments on a test machine with Intel Q9300
2.5GHz four core processor, 2 MB cache and 4GB main memory. We use Xen 3.2.0
for the hypervisor and para-virtualized Linux 2.6.18.8 for the guest OS. We configure
two guest VMs on the test machine with 512MB memory allocation each for inter-
VM communication experiments. We compare the following three scenes:

 IVCOM: Guest to guest communication through IVCOM inter-VM commu-
nication mechanism

 Split driver: Guest to guest communication through the split driver
 Host: Network communication between two processes within the Host OS.

This experiment works as a standard comparison for other scenes.

To carry out the experiments, we use two benchmarks: netperf [13], lmbench [14] and
ping. Netperf is a benchmark that can be used to measure the performance of many
different types of networking. It provides tests for both unidirectional throughput, and
end-to-end latency. The environments currently measureable by netperf include TCP
and UDP via BSD Sockets for IPv4 and IPv6, DLPI, Unix Domain Sockets and SCTP
for both IPv4 and IPv6. Lmbench is a set of utilities to test the performance of a Unix
system producing detailed results as well as providing tools to process them. It in-
cludes a series of micro benchmarks that measure some basic operating system and
hardware metrics.

4.1 The Impact of Message Size on Performance

We measure the throughput in three scenes by using netperf’s UDP_STREAM test
with the sending message size increases, the results are shown in Figure 7. Through-
put increases in all three communication scenes along with the increase of message
size. This is because a large number of system calls are used to send the same number
of bytes with smaller message size, which results in more crossings between user and
kernel. When the message size is larger than 512 bytes, IVCOM achieves higher
throughput than split driver. The split driver throughput increases slowly and reaches
its peak when the message size is 4k bytes. As we have discussed in section 2, split
driver uses share memory page to exchange data between VMs. Hence, the maximum
data size it can exchange for one time is one page which is 4k bytes. In IVCOM, we

 A High Performance Inter-VM Network Communication Mechanism 373

Fig. 7. Impact of message size on throughput

Fig. 8. Impact of circular queue size on throughput

set the circular queue size at 32K bytes, therefore, the throughput of IVCOM in-
creases linearly and reaches the top when the message size is 32k bytes. As there is no
shared memory space limitation in the Host scene, the throughput increases linearly
along with the increase of message size.

We set the circular queue at size 4K, 8K, 16K and 32K bytes, and then we test
IVCOM with different message size. The results are shown in Figure 8. When the
circular queue is 4K bytes, the throughput increases slowly and almost reaches
the peak at size 4K bytes. When the circular queue is 8K bytes, the throughput in-
creases faster than 4K, and reaches its peak at size 8K bytes. Similarly 16K increases
faster than 8K, and touches the top at size 16K bytes. With 32K bytes, we get the
similar results. From this experiment we know that increasing the circular queue size
has a positive impact on the achievable throughput. In other experiments, we set the
circular queue size at 32K bytes.

374 Y. Bai et al.

We also measure the latency of IVCOM and split driver by using netperf UDP_RR
test and netperf TCP_RR test as illustrated in Figure 9. When the message size is
smaller than 4K bytes, the latency of split driver keeps steady. Once the message size
is larger than 4K bytes, the latency increases rapidly. That is because split driver uses
one page (4K bytes) to exchange data each time. If the message size is larger than one
page size, then it needs to two pages or more to send data which leads to the rapid
latency increase. Comparing to split driver, IVCOM has a much smaller latency. The
latency keeps steady when the message size is smaller than the circular size. When the
message size is too large, the latency of IVCOM also increases a litter which is en-
durable comparing to split driver.

Fig. 9. Impact of message size on latency

4.2 The Impact of VM Amount and Virtual CPU Amount Per VM on
Performance

We continue to measure the throughput with the increase of VM amount. In these four
tests, each VM is assigned one virtual CPU. The test is based on netperf’s UDP_
STREAM test and the result is illustrated in Figure 10. We use the Host test result
which is of two processes in the same domain as a standard for comparison. From the
figure, we can see that as the VM amount is increased, the throughput is decreased
both in split driver and IVCOM and the throughput of Host is kept the same. It can be
concluded from the experiment that the throughput of IVCOM is remain unchanged
when the VM amount is less than or equal to four, and that is decreased in a linear
manner by the amount of VM when the VM amount is more than four.

Finally, our test is focus on the influence about virtual CPU amount per VM. In our
test, the machine on which domain0 is running has four processor cores, and at first,
we simply estimate that if the virtual CPU amount of a domain U is more than the
physical CPU amount, which is four in our experiment, the performance will de-
crease. The result can be seen from Figure 11. As the amount of virtual CPU in each

 A High Performance Inter-VM Network Communication Mechanism 375

VM increases but doesn’t reach the total amount of physical CPU, which is four CPU
in our machine, the throughput of IVCOM increases greatly. And when the amount of
virtual CPU is equal to or more than the physical CPU total amount, the throughput of
IVCOM almost remains the same. So increasing the throughput of IVCOM by in-
creasing the virtual CPU amount is effective only if that virtual CPU amount is less
than physical CPU amount and our prediction at the beginning is not so correct. Dur-
ing the entire test, the throughput in split driver and Host (same as the prior experi-
ment) keep steady regardless the amount of virtual CPU and its relationship with the
amount of physical CPU.

Fig. 10. Impact of VM number on throughput

Fig. 11. Impact of virtual CPU number in each domain on throughput

5 Experiments in Full-Virtualization

In this section, we show the performance evaluation of IVCOM in full-virtualization
environment. We configure the guest VMs on the test machine with 512MB memory.
We compare the following two scenes:

376 Y. Bai et al.

 HVM_IVCOM: HVM to domain 0 network communication through IVCOM
 HVM_Tuning: HVM to domain 0 network communication through mode

tuning

To carry out the experiments, we write a benchmark sending a 500M bytes data from
HVM to domain 0. We use Xentrace to calculate the tuning times in two scenes. In
our study, we focused on the total tuning times reduced by using IVCOM instead of
traditional communication ways in HVM.

5.1 Experiments and Analysis

First of all, we use the traditional way to send 500M bytes data from HVM to domain
0. In each time, we adjust the sending data size to test the impact of size on VMen-
try/exit times.

Fig. 12. Tuning times with HVM_Tuning

From Figure 12 we know that the VMentry/exit times increase along with the de-
crease of the message size. In another word, we can say VMentry/exit times increase
along with the increase of message package number. This is because the domain needs
to switch between HVM and domain 0 whenever there is a message package need to
send. Therefore, it is better for HVM to send data in a big size of message to reduce the
total tuning times. But, in most situations in HVM, the message size is small. For ex-
ample, message size in socket communication is about 1400 bytes. IVCOM can solve
this problem because it can use shared memory to exchange data between HVM and
domain 0. There is almost no message size limitation only if there is enough space.

We repeat the experiment with IVCOM and the results are shown in Figure 13. As
we have talked above, the message size is about 1400 bytes in traditional ways, and
the corresponding number of tuning times is about 4.95E+6. We take this number as a
reference for the results in Figure 13. When the shared memory is set to be one page,
(as we can make the message size as large as the whole shared memory), the number
of tuning times is 1.69E+6, which is only about one third of the number of tuning
times in traditional ways. When the shared memory is set to be two pages, the number
of tuning times is 8.85E+6, which is only about one fifth of the mode tuning times’

 A High Performance Inter-VM Network Communication Mechanism 377

Fig. 13. Tuning times with HVM_IVCOM

Fig. 14. Latency in traditional mode tuning

number. As the shared memory becomes larger, the number of mode tuning times
decreases rapidly. This is mainly because it can send more data during each mode
tuning. By this way, it will occur less mode tuning by using IVCOM instead of tradi-
tional ways when there is the same size data need to be exchanged between HVM and
domain 0. Therefore, IVCOM can improve the performance by reducing the number
of mode tuning times and improve the effective operations.

Through the experiments, we also find that the latency of IVCOM is bigger than
the latency of traditional mode tuning. And the size of shared memory in IVCOM also
affects the latency. The results are shown in Figure 14 and Figure 15.

From Figure 14 we know that the latency of traditional mode tuning is between
200 and 300 us while the latency of IVCOM is between 1300 and 1700 us when we
set the shared memory 16 memory pages (each page is 4096 bytes). To have a further
understand the effect of shared memory size on the latency, we repeat the experiment
and adjust the shared memory size; the results are shown in Figure 16.

378 Y. Bai et al.

Fig. 15. Latency in IVCOM

Fig. 16. Latency in IVCOM with different shared memory size

When the shared memory size is small, the latency of IVCOM is small. As when
the shared memory size is one page (4096 bytes), the latency is only about 400 us.
The latency is still endurable for most application. As the shared memory size in-
creases, the latency also increases. The latency can touch 1500us when the shared
memory size is 16 memory pages which is insufferable for many applications espe-
cially those latency sensitive applications.

Therefore, we have a further study on this problem and propose an N rank M/M/1
queuing module to reduce the communication latency for latency sensitive applica-
tions. The main idea of this module is to set up several IVCOM channels which have
different memory size. For example, there are N IVCOM channels; we take each one
as an M/M/1 queuing module. And the N channels make up of the N rank M/M/1
queuing module. When an application arrives, it calculates the average latency of
each sub-module and chooses one channel whose latency can match the need of the
application. By this way, it can solve the high latency problem in some extent. This is
not a perfect solution, we still need further study to work out a better solution to solve
the high latency problem.

 A High Performance Inter-VM Network Communication Mechanism 379

6 Related Work

There have been some researches to improve the inter-VM communication perform-
ance in virtualization environment. For example, XWay [15], XenSockets [16] and
IVC [17] have developed tools that are more efficient than traditional communication
path that needs to via domain 0. XWay provides transparent inter-VM communication
for TCP oriented applications by intercepting TCP socket calls beneath the socket
layer. It requires extensive modifications to the implementation of network protocol
stack in the core OS since Linux does not seem to provide a transparent netfilter-type
hooks to intercept messages above TCP layer. XenSockets is a one-way communica-
tion pipe between two VMs which is based on shared memory. It defines a new kind
of socket, with associated connection establishment and read-write system calls that
provide interface to the underlying inter-VM shared memory communication mecha-
nism. In order to use these calls, user applications and libraries need to be modified.
XenSockets is suitable for applications that are high throughput distributed stream
systems, in which latency requirement are relaxed, and that can perform batching at
the receiver side. IVC is a user level communication library intended for message
passing HPC applications. It can provide shared memory communication across VMs
that reside within the same physical machine. It also provides a socket-style user-API
using which an IVC aware application or library can be written. IVC is beneficial for
HPC applications that can be modified to explicitly use the IVC API. In other applica-
tion areas, XenFS [18] improves file system performance through inter-VM cache
sharing. HyperSpector [19] permits secure intrusion detection through inter-VM
communication. Prose [20] utilizes shared buffers for low-latency IPC in a hybrid
microkernel-VM environment. Proper [21] introduces techniques that allow multiple
PlanetLab services to cooperate with each other.

7 Conclusion

With the resuscitation of virtualization technologies and the development of multi-
core technologies, using virtualization to enforce isolation and security among multi-
ple cooperating components of complex distributed applications draws more and
more attention. This makes it imminently for the virtualization technologies to enable
high performance communication among them. In this paper, we presented the design
and the implementation of a high performance inter-VM communication mechanism
called IVCOM. It achieves high performance communication by bypassing the stan-
dard protocol stacks and establishing direct communication channel between VMs to
exchange data. Evaluation using a number of benchmarks demonstrates a significant
increase in communication throughput and reduction in inter-VM round trip latency.
For future work, we are presently investigating if IVCOM can have a better perform-
ance when the message size is small. We also want to get a further study about the
impact of multi-core and virtual multi-core on the performance of IVCOM which may
help us enhance its performance on multi-core. In full-virtualization, although
IVCOM can reduce the number of mode tuning times greatly, it also can import high
latency. How to solve this problem is also one of our future works.

380 Y. Bai et al.

References

1. Figueiredo, R., et al.: Resource Virtualization Renaissance. IEEE Computer 38(5), 28–31
(2005)

2. VMware, http://www.vmware.com/
3. Sugerman, J., Venkitachalam, G., Lim, B.: Virtualizing I/O devices on VMware Workstation’s

Hosted Virtual Machine Monitor. In: USENIX Annual Technical Conference (2001)
4. Windows Virtual PC, http://www.microsoft.com/windows/
 virtual-pc/default.aspx

5. The User-mode Linux Kernel, http://user-mode-linux.sourceforge.net
6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,

Warfield, A.: Xen and the Art of Virtualization. In: 19th ACM Symposium on Operating
Systems Principles (2003)

7. Whitaker, A., Shaw, M., Gribble, S.: Denali: Lightweight virtual machines for distributed
and networked applications. In: The USENIX Annual Technical Conference, Monterey,
CA (2002)

8. Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing network virtualization in Xen. In:
USENIX Annual Technical Conference, Boston, Massachusetts (2006)

9. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing per-
formance overheads in the xen virtual machine environment. In: Virtual Execution Envi-
ronments, VEE 2005 (2005)

10. Chisnall, D.: The definitive guide to the Xen Hypervisor. In: Chapter 7: Using Event
Channels, November 2007. Prentice Hall, Englewood Cliffs (2007)

11. Huang, W., Koop, M.J., Panda, D.K.: Efficient One-Copy MPI Shared Memory Commu-
nication in Virtual Machines. In: IEEE CLUSTER 2008 (2008)

12. Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System
Programming Guide, Part 1, Chapter 9: Advanced Programmable Interrupt Controller
(APIC), Order Number: 253668-029US (November 2008)

13. Netperf, http://www.netperf.org/netperf/
14. McVoy, L., Staelin, C.: lmbench: Portable tools for performance analysis. In: Proc. of

USENIX Annual Technical Symposium (1996)
15. Kim, K., Kim, C., Jung, S.-I., Shin, H., Kim, J.-S.: Inter-domain Socket Communications

Supporting High Performance and Full Binary Compatibility on Xen. In: Virtual Execu-
tion Environments, VEE 2008 (2008)

16. Zhang, X., McIntosh, S., Rohatgi, P., Griffin, J.L.: Xensocket: A high-throughput interdo-
main transport for virtual machines. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware
2007. LNCS, vol. 4834, pp. 184–203. Springer, Heidelberg (2007)

17. Huang, W., Koop, M., Gao, Q., Panda, D.K.: Virtual machine aware communication li-
braries for high performance computing. In: SuperComputing, SC 2007, Reno, NV
(November 2007)

18. XenFS, http://wiki.xensource.com/xenwiki/XenFS
19. Kourai, K., Chiba, S.: HyperSpector: Virtual Distributed Monitoring Environments for Se-

cure Intrusion Detection. In: Virtual Execution Environments, VEE 2005 (2005)
20. Hensbergen, E.V., Goss, K.: Prose i/o. In: First International Conference on Plan 9, Madrid,

Spain (2006)
21. Muir, S., Peterson, L., Fiuczynski, M., Cappos, J., Hartman, J.: Proper: Privileged Opera-

tions in a Virtualised System Environment. In: USENIX Annual Technical Conference,
Anaheim, California (2005)

22. Qumranet Inc. KVM: Kernel-based Virtual Machine,
http://kvm.sourceforge.net/

23. Adams, K., Agesen, O.: A comparison of software and hardware techniques for x86 virtu-
alization. In: Proceedings of 12th International Conference on Architectural Support for
Programming Languages and Operating Systems. San Jose, California, USA, October
21-25 (2006)

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 381–390, 2010.
© Springer-Verlag Berlin Heidelberg 2010

On the Effect of Using Third-Party Clouds for
Maximizing Profit

Young Choon Lee1, Chen Wang2, Javid Taheri1, Albert Y. Zomaya1,
and Bing Bing Zhou1

1 Centre for Distributed and High Performance Computing,
School of Information Technologies,

The University of Sydney,
NSW 2006, Australia

{yclee,javidt,zomaya,bbz}@it.usyd.edu.au
2 CSIRO ICT Center, PO Box 76,

Epping, NSW 1710, Australia
chen.wang@csiro.au

Abstract. Services in cloud computing systems are typically categorized into
three types—software as a service (SaaS), platform as a service (PaaS) and in-
frastructure as a service (IaaS). These services can be prepared in the form of
virtual machine (VM) images; and they can be deployed and run dynamically as
clients request. Since the cloud service provider has to deal with a diverse set of
clients, including both regular and new/one-off clients, and their requests most
likely differ from one another, the judicious scheduling of these requests plays a
key role in the efficient use of resources for the provider to maximize its profit.
In this paper, we address the problem of scheduling arbitrary service requests of
those three different types—taking into account the maximization of profit—in
cloud environments, and present the client satisfaction oriented scheduling
(CSoS) algorithm. Our algorithm effectively exploits different characteristics of
those three service types and the availability of third-party cloud service pro-
viders who have (or are capable of having) identical service offerings (using
virtual machine images). Our main contribution is the incorporation of client
satisfaction into our request scheduling; this incorporation enables to increase
profit by avoiding the discontinuation of service requests from those unsatisfied
clients due to the poor quality of service.

1 Introduction

Cloud computing has become a promising on-demand computing platform. A cloud is
an aggregation of resources/services—possibly distributed and heterogeneous—
provided and operated by an autonomous administrative body. Services offered by
cloud providers can be classified into software as a service (SaaS), platform as a ser-
vice (PaaS) and infrastructure as a service (IaaS). Typical examples of these three
types are service offerings of Salesforce.com [1], Microsft Azure [2], Google App
Engine [3], Amazon EC2 and S3 [4, 5]. The primary driving force of this new com-
puting paradigm is its cost effectiveness, i.e., the “pay-per-use” pricing model, which

382 Y.C. Lee et al.

allows clients/users to flexibly rent a variety of computing resources and software
packages as services. Typical examples of these service instances include processors,
storage capacities, network bandwidths and application software development suites.
Scalability, availability, fault-tolerance and flexibility are other key benefits [6, 7].

While IaaS requests are typically placed with fixed durations, requests of SaaS and
PaaS are often made, and serviced until the provider is notified their discontinuation.
This implies that, for a cloud service provider who has offerings of all three service
types (IaaS, SaaS and PaaS), resource allocation for service requests in the latter two
types may cause an inefficient use of resources leading to poor service to clients,
since service termination times of the latter two types are hardly determined a prior.

In this study, we address the problem of scheduling arbitrary service requests of
those three different types—taking into account the maximization of profit—in cloud
environments. The cloud service provider has to deal with a diverse set of clients,
including both regular and new/one-off clients, and their requests most likely differ
from one another. A cloud in this study consists of homogeneous resources (e.g., an
Amazon example; the homogeneity of a particular type of instances, such as small,
large and extra large) and service requests arrive in a Poisson process. Based on these
factors, dynamic scheduling/resource allocation is the only option.

We present the client satisfaction oriented scheduling (CSoS) heuristic as a
novel profit-driven service-request scheduling algorithm. Our approach effectively
exploits different characteristics of those three service types and the availability of
third-party cloud service providers. Specifically, service requests, for which their
deadlines cannot be met based on the current schedule of the provider, may be for-
warded/outsourced to other (perhaps larger) cloud service providers (e.g., Amazon
and Salesforce.com) transparently to clients. Here, our main objective is to maximize
profit by accommodating as many service requests as possible maintaining a certain
quality of service. This scenario might best suit to small and mid-size cloud providers.
Our main contribution is the incorporation of client satisfaction into our request sche-
duling (to the best of our knowledge, the work in this study is the first attempt); this
incorporation enables to increase profit by avoiding the discontinuation of service
requests from those unsatisfied clients due to the poor quality of service.

The remainder of the paper is organized as follows. Section 2 describes related
work. In Section 3, we define the profit model of a cloud service provider in detail.
Our CSoS algorithm is presented in Section 4 followed by experimental results in
Section 5. We summarize our work and draw a conclusion in Section 6.

2 Related Work

The cloud computing represents a trend of shifting data and computing away from
personal computers and local servers to large scale remote data centres. The problem
we deal with in this paper belongs to a common theme for efficiently managing data
centres that host a variety of third-party services. To achieve efficiency, [4] profiles
different types of services and uses the profiles to guide the placement of service
components.

Market-based resource allocation methods introduce valuation functions to charac-
terize the resource needs from different services [8, 10, 11, 12, 13, 14, 15, 16, 17, 18].

 On the Effect of Using Third-Party Clouds for Maximizing Profit 383

It is a promising approach as pricing can potentially reveal the needs of services accu-
rately. Pricing models differentiate resource allocation mechanisms. Muse [8] as-
sumes the service requests are small and the resource demand for service requests is
stable. The valuation function of a resource is therefore derived from the throughput
of request processing. The approaches in [10, 16] price a resource based on the pro-
portion the resource is allocated to a service. Chun et al. [17] introduced time-varying
resource valuation for jobs submitted to a cluster. The changing values of a resource
to services requesting it were used for prioritizing and scheduling batch sequential
and parallel jobs. The job with the highest value per time unit is put ahead of the
queue to run. Irwin et al. [18] extended the time-varying resource valuation function
to take account of penalty when the value was not realized. The optimization there-
fore also minimizes the loss due to penalty. The valuation function used in our model
is time-varying, but the penalty is represented as the dissatisfaction of a service
owner.

FirstPrice and FirstProfit are two common algorithms used in market-based re-
source allocation. FirstPrice orders the requests in the queue based on user-specified
time-varying bids [17]. The request with the highest bid is allocated the resource first.
FirstProfit, instead, maximizes the per-request profit for each request independently,
i.e., the service request with the maximum profit obtainable is selected and scheduled
onto a resource (resource/infrastructure instance) [15]. Our algorithm differs from
FirstPrice and FirstProfit in the way we handle user dissatisfaction. Our algorithm
minimizes the refusals of service requests as it incurs long term profit loss.

3 Profit Model of a Cloud Service Provider

A set of services S = {s1, s2, …, sn} is hosted in a set of shared cloud resources (infra-
structures) C = {c1, c2,…,cm} (more often than not, n > m). A service s can spawn in-
stances to run on any resource from a prepared VM image. We assume the following:

• The image of a service is available at any ci, 0 < i ≤ m, i.e., migrating a service
from ci to cj does not incur any communication cost;

• The performance of a service is linear to the number of instances it runs;
• The requests of starting a new instance arrive as a Poisson process and the utiliza-

tion of the instances of all services is similar (a service will not start a new in-
stance if the utilization of its existing instances is low);

• The instance lifetime follows a certain distribution;
• Each service values its instances differently and the value of running an instance i

is time-varying for a service as below:

⎪⎩

⎪
⎨
⎧

≥<
<≤−−

=
isis

isisisss

is STstSTst

STstSTSTstV
stv

,,

,,,

, ,,0

),(
)(

α
 (1)

in which, st is the time that instance (s, i) is activated, isST , and isST , are the lower

bound and the upper bound start times of instance (s, i), Vs is the maximum value
obtainable serving instance (s, i), and αs is the decay rate.

384 Y.C. Lee et al.

When isST , passes and (s, i) has not been activated, the request from s is consid-

ered as being refused, which may increase the dissatisfaction of the service owner and
cause him to reduce the average value of the requests sent to the infrastructure pro-
vider. We will evaluate this effect through simulation.

The profit of running instance (s, i) is proportional to equation (1) and can be rep-
resented as the following:

∑ ∑=
∈

−⋅= n

s
si

isisisis stetstvETSTP
1 ,,,,)()(),(,

(2)

where isis etst ,, , are the actual start time and finish time of instance (s, i), respec-

tively. The problem is to maximize the profit P(ST, ET) by producing a vector of

isst , .

4 Client Satisfaction Oriented Scheduling for Maximizing Profit

In this section, we begin by discussing the rationale behind our client satisfaction
oriented scheduling and detail the CSoS algorithm.

4.1 Rationale Behind CSoS

Clouds are primarily driven by economics—the pay-per-use pricing model similar to
that for basic utilities, such as electricity, water and gas. While this pricing model is
very appealing for both service providers and clients, fluctuation in service request
volume and conflicting objectives between the two parties hinder its effective applica-
tion. In other words, the service provider aims to accommodate/process as many re-
quests as possible with its main objective maximizing profit; and this may conflict
with client’s performance requirements (e.g., response time).

Since resource availability in this study is limited to a certain degree, the service
provider is likely to encounter situations in which it has to make decisions on the
acceptance/refusal of service requests. This decision making is inevitable for the pro-
vider to ensure its service quality to remain at an acceptable level, i.e., profit gain is
possible. In the meantime, service refusals may affect client satisfaction with the
provider. Client satisfaction in our economic-driven cloud scenario can lead to de-
creases in service request volume; and this in turn results in profit loss or deficit (no
profit at all).

We describe a typical case in our scenario as follows:
A cloud service provider offers a set of homogeneous resources for those three

types of services. Although each resource may be a virtualized resource instance, the
total number of resources in this study is assumed to be bounded. There are an arbi-
trary number of other cloud service providers for which identical or equivalent ser-
vices are also offered. We assume their pricing model is comparable; that is, at least
the provider pays no more than it receives from its clients.

Clients send service requests to the provider. The request rate of each client is mod-
elled in a Poisson process with a specific mean inter-request time. With IaaS requests

 On the Effect of Using Third-Party Clouds for Maximizing Profit 385

(processing times are specified/fixed) that a particular client sends, their processing
times are modelled on the basis of the client’s mean inter-request time to ensure the
provider is not overwhelmed with requests. Note that the provider in our study is not
very flexible with a number of available resources. Processing times of service requests
follow exponential distribution. Each service request is accompanied with four parame-
ters: (1) minimum processing time (TMIN), (2) allowable queuing delay (d), (3) maxi-
mum value (V), and (4) decay rate (α). Also note that SaaS and PaaS requests tend not
to be bound with pre-determined values for these parameters; however, we relax this
fact to a certain degree for the sake of problem complexity. That is, service requests of
these two types have (rough) estimates for those parameters.

The provider allocates a resource to a given service request based on the profit ob-
tainable. However, due primarily to the existence of services (of SaaS and PaaS) be-
ing processed, the decision is often difficult to make; and that request may be refused
to be processed. This service refusal can cause profit decreases or loss/deficit both
directly and indirectly. It is obvious that any profit obtainable from processing that
service request is lost. By indirectly we mean that the client who requested that ser-
vice may not return for some time or permanently, and thus, more and longer finan-
cial disadvantage incurs. This situation can be, however, alleviated to a certain degree
by exploiting other service providers. Each of these providers in this study is charac-
terized primarily by their service offerings and average queuing delay times. In order
to avoid any loss, the original provider should make a decision on when that service is
outsourced taking into account the average queuing delay of a given third-party pro-
vider and the allowable delay (specified by its client) associated with that service.
When a service is further outsourced to one of these third-party providers, we assume
no profit gain is possible for the original provider; however, this is still beneficial for
the provider in terms of long-term profit gain.

4.2 CSoS

CSoS (Figure 1) proactively deals with fluctuation in service request volume adopting
the use of third-party cloud service providers for service outsourcing. As mentioned
earlier, the purpose of this outsourcing is not to maximize the profit from a particular
service request, but to ensure client satisfaction to be maintained at an acceptable
level. Specifically, the service is assigned onto an in-premises resource only if the
assignment yields profit gain. Otherwise, the service is outsourced to a third-party
cloud service provider with an assumption that no additional costs (over the value
initially bound to that service request) incur.

A scheduling event in CSoS is initiated at the time a new service request arrives. If
a resource is available for this request upon its arrival, the actual scheduling decision
is made and finalized. However, if all resources are occupied with other services,
CSoS makes an interim scheduling decision allocating the resource—among those
processing SaaS and PaaS requests—for which the current service started the earliest
hoping to get this current service completed before the new service’s latest start time
elapses. The latest start time of service si is defined as:

iisis dSTST += ,, (3)

386 Y.C. Lee et al.

1. Let s* = a not-yet-started service for which os,i ≥ di
2. if s* ≠ Ø then
3. Outsource s* to a third-party cloud service provider
4. Go to Step 1
5. end if
6. Let s* = the service request with max unit value in Q
7. Let c* = the first resource available at the current time
8. if c* = Ø then
9. Let C' = a set of resources on which SaaS and PaaS requests are being processed
10. Let c* = the resource in C' for which the current service started the earliest
11. end if
12. Assign s* to c*

13. Go to Step 1

Fig. 1. The CSoS algorithm

If none of resources is able to accommodate the newly arrived request, it waits un-
til either a resource becomes available or the remaining time of its allowable delay
reaches the mean queuing delay of third-party cloud service providers. The latter case
triggers outsourcing. More formally, the outsourcing index of service si is defined as:

isis STto ,, −= (4)

where t is the current time.
Note that there might be more than one service requests in the service queue Q;

that is, more new requests may arrive while waiting for resource vacancies or out-
sourcing events. When there are more than one service requests waiting in the queue,
CSoS selects the request with the maximum unit value (profit). More formally, the
unit value of service si is defined as:

)(

)(
)(_

,

,
,

iis

is
is TMINSTt

tv
tvunit

+−
= (5)

5 Performance Evaluation

In this section, we first describe simulation settings and performance metrics,
then present and discuss results obtained from our comparative evaluation study. Our
performance evaluation study is conducted based on comparisons between two exist-
ing algorithms (FCFS and FirstProfit) and CSoS. FCFS is a simple, yet widely
used/accepted scheme, which basically processes service requests in a first-come
first-served fashion. FirstProfit prioritizes service requests by maximum value
(maximum profit gain). It selects the service request for which the unit value (profit)
is the largest.

 On the Effect of Using Third-Party Clouds for Maximizing Profit 387

5.1 Experimental Settings

The performance of CSoS was thoroughly evaluated based on a large set of simula-
tions with a diverse range of settings. Parameters and their values in these settings
were carefully chosen for realistic experiments. Simulations were facilitated using our
discrete-event cloud simulator developed in C/C++.

The total number of experiments carried out is 126,000 (42,000 for each algorithm)
using parameters as follows:

• 3 client satisfaction threshold values (90%, 95% and 99%)
• 5 discontinuation probabilities (10%, 20%, 30%, 40% and 50%)
• 4 different numbers of clients (100, 200, 400 and 800)
• 7 simulation durations (2,000, 4,000, 8,000, 12,000, 16,000, 20,000 and 30,000)

For each of these 420 base simulation settings, 100 variants were randomly generated
primarily with different processing and arrival times. Note that client satisfaction
threshold values and discontinuation probabilities are directly related. For example, in
simulations with a client satisfaction threshold of 95 percent and a discontinuation
probability of 20 percent, clients—whose service requests are refused or not proc-
essed for 5 or more percent of time—discontinue using the provider for their subse-
quent requests with a probability of 20 percent.

Now we describe and discuss the generation of parameters associated with service
requests including maximum values, maximum acceptable mean response times,
decay rates and arrival rates. The lower bound of maximum value of a service request
si in our evaluation study is generated based on the following:

uTMINV i
lower

i = (6)

where u is a unit charge set by the provider. u in our experiments was set to 1. The
maximum value of an application and/or u in practice may be negotiated between the
consumer and provider. While lower

iV computed using Equation 6 is an accurate esti-

mate, it should be more realistically modelled incorporating a certain degree of extra
value; this is mainly because the absolute deadline of a service request (TMINi) cannot
be practically met for various reasons including queuing delay. The extra value

extra
iV of si is defined as:

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

>≥−

≤

=

ii

it
i

ilower
i

lower
i

i
lower

i

extra
i

TMINd

dTMIN
TMIN

d
VV

dV

V

,0

0,

0,

 (7)

where di is an extra amount of delay time the client/service can afford. Now the upper
bound of maximum value of si is defined as:

extra
i

lower
i

upper
i VVV += (8)

The decay rate αi of si is negatively related to allowable delay di and defined as:

i

upper
i

i d

V=α (9)

388 Y.C. Lee et al.

Arrival times—for service requests from each client—are generated on a Poisson
process with a mean value randomly generated from a uniform distribution.

5.2 Performance Metrics

Experimental results are analyzed using three different performance metrics, the aver-
age profit rate, the average response rate, and the average refusal / outsourcing rate.
While profit is the primary performance index, response time and refusal / outsourc-
ing rate are also important performance indicators. The profit rate of service si is
defined as:

upper
i

i V

ETSTP
pr

),(=

(10)

The response rate of service si is defined as:

i

i
i TMIN

t
rr =

(11)

The response rate of service si indicates how much delay occurred based on the mini-
mum processing time of si; hence, the smaller the better.

The refusal rate and outsourcing rate for a certain timeframe are defined as:

N

R
rfr =

(12)

N

O
out =

(13)

where R is the number of refused service requests, O is the number of outsourced
service requests, and N is the total number of received service requests.

5.3 Results

Experimental results are summarized in Table 1 followed by results (Figure 2) based
on each of those three performance metrics. Note that results shown in Figure 2c for
FCFS and FirstProfit are based on their average refusal rates whereas those for CSoS
are based on average outsourcing rate. CSoS in terms of both profit and response time
demonstrated its superior performance compared with those two other algorithms. On
average, CSoS outperformed FCFS and FirstProfit —in terms of particularly profit—
by 48 percent and 26 percent, respectively. The major source of this performance
gain is from the incorporation of client satisfaction with outsourcing when service

Table 1. Overall comparative results

 algorithm
metric

FCFS FirstProfit CSoS

Average profit rate 52% 61% 77%
Average response rate 139% 177% 101%
Average refusal/outsourcing rate 23% / 0% 24% / 0% 0% / 29%

 On the Effect of Using Third-Party Clouds for Maximizing Profit 389

0.0

0.2

0.4

0.6

0.8

1.0

FCFS FirstProfit CSoS

av
er

ag
e

pr
o

fit
 ra

te

algorithm

0.0

0.5

1.0

1.5

2.0

FCFS FirstProfit CSoS

av
er

ag
e

re
sp

o
n

se
 ra

te

algorithm

0.0

0.1

0.2

0.3

0.4

0.5

FCFS FirstProfit CSoS

av
g

 re
fu

sa
l/o

u
ts

ou
rc

in
g

 ra
te

algorithm
 (a) (b) (c)

Fig. 2. Performance with respect to different metrics. (a) avg. profit rate. (b) avg. response rate.
(c) avg. refusal/outsourcing rate.

requests overwhelm the provider. Although service refusals made by FCFS and
FirstProfit are similar in the sense that no profit gain is possible from refused ser-
vices, these refusals tend to yield a lower average incoming rate of service requests;
this eventually contributes to decreases in profit.

6 Conclusion

In this paper, we have addressed the problem of scheduling service requests in cloud
computing systems taking explicitly into account client satisfaction. Since the cloud
service provider can hardly anticipate and/or model service request volume, there
might be occasionally situations in which the provider is unable to process incoming
service requests. We have investigated the effect of overloading with respect to profit
and response time and devised a novel client satisfaction oriented scheduling heuristic
adopting third-party service outsourcing. It has been identified that this outsourcing
strategy is particularly effective in dynamic cloud environments. Our experimental
results confidently confirmed this claim.

For our future work, we may consider a PaaS/IaaS request that requires multiple
resources. A multi-player (multiple cloud service providers) game scenario will be
investigated. Another issue that we need to look at is to identify the threshold point at
which the cloud provider should purchase more servers to reduce costs associated
with use of other clouds for outsourcing. For example, if costs using other clouds on
average exceed costs to purchase and operate additional servers, the cloud provider
should make a decision on how many additional servers he/she needs.

References

1. Salesforce.com, http://www.salesforce.com
2. Microsoft Azure Platform, http://www.microsoft.com/windowsazure/
3. Google App Engine, http://code.google.com/appengine/
4. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
5. Amazon Simple Storage Services, http://aws.amazon.com/s3/
6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G.,

Patterson, D.A., Rabkin, A., Stoica, I., Zahariam, M.: Above the clouds: A Berkeley view
of Cloud computing, Technical report UCB/EECS-2009-28, Electrical Engineering and
Computer Sciences, University of California at Berkeley, USA (2009)

390 Y.C. Lee et al.

7. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: to-
wards a cloud definition. ACM SIGCOMM Computer Comm. Review 39(1), 50–55
(2009)

8. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing Energy
and Server Resources in Hosting Centers. In: Proc. 18th ACM symp. Operating systems
principles (SOSP 2001), Banff, Canada, pp. 103–116 (2001)

9. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource Overbooking and application profiling in
shared hosting platforms. In: Proc. 5th Symp. Operating Systems Design and Implementa-
tion (OSDI 2002), Boston, MA, USA, pp. 239–254 (2002)

10. Chun, B.N., Culler, D.E.: Market-based proportional resource sharing for clusters, Techni-
cal Report CSD-1092, University of California at Berkeley (2000)

11. Ferguson, D.F.: The application of microeconomics to the design of resource allocation
and control algorithms, PhD thesis, Columbia University (1989)

12. Kurose, J.F., Simha, R.: A microeconomic approach to optimal resource allocation in dis-
tributed computer systems. IEEE Trans. on Computers 38(5), 705–717 (1989)

13. Lai, K., Rasmusson, L., Adar, E., Sorkin, S., Zhang, L., Huberman, B.A.: Tycoon: an Im-
plementation of a Distributed, Market-based Resource Allocation System. Multiagent and
Grid Systems 1(3), 169–182 (2005)

14. Yemini, Y.: Selfish optimization in computer networks. In: Proc. the 20th IEEE Conf. De-
cision and Control, pp. 281–285 (1981)

15. Popovici, F.I., Wilkes, J.: Profitable services in an uncertain world. In: Proc. the
ACM/IEEE Int’l Conf. High Performance Networking and Computing, SC 2005 (2005)

16. Sherwani, J., Ali, N., Lotia, N., Hayat, Z., Buyya, R.: Libra: a computational economy-
based job scheduling system for clusters. Softw. Pract. Exper. 34, 573–590 (2004)

17. Chun, B.N., Culler, D.E.: User-centric performance analysis of market-based cluster batch
schedulers. In: Proc. IEEE/ACM Int’l Symp. Cluster Computing and the Grid, pp. 30–38
(2002)

18. Irwin, D.E., Grit, L.E., Chase, J.S.: Balancing risk and reward in a market-based task ser-
vice. In: Proc. IEEE Symp. High Performance Distributed Computing, pp. 160–169 (2004)

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 391–403, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Tracing Approach to Process Migration
for Virtual Machine Based on Multicore Platform

Liang Zhang1, Yuebin Bai1, and Xin Wei2

1 School of Computer Science, Beihang University,
100191 Beijing, China

l_zhang@cse.buaa.edu.cn,
byb@buaa.edu.cn

2 Beijing Institution of Information Control,
100037 Beijing, China

weixin@cse.buaa.edu.cn

Abstract. Recently, multicore processor and virtualization become popular in
research and application. And an even newer tendency is to deploy virtualiza-
tion on multicore processor platform. This means on a physical server, several
isolated and high performance virtual environments are provided, and concur-
rent program has a chance to run in a multicore virtualized environment. But
most virtual processor (VCPU) scheduler in VMM is not efficient in scheduling
concurrent program with synchronization. And we have developed a VMM
with a new VCPU scheduler to reduce the synchronization cost in some scenar-
ios. As a component of this VMM, we need an approach to trace the processes
migration in virtual machine and the mapping relationship between VCPUs and
cores of physical processor to verify whether the new scheduler is effective and
consistent with our initial idea. In this paper, we present such an approach and a
demo Process Migration Tracing Engine for monitoring the migration of proc-
ess on VCPU(s) and VCPU(s) on the cores of physical processor based on
Linux 2.6 and Xen 3.2. We evaluate the impact of the engine on system per-
formance and the results shows that this tracing approach and the tracing engine
are effective and efficient.

1 Introduction

Nowadays, multicore processor is becoming more and more popular and mainstream
both in home-used computers and enterprise servers. As the biggest two processor
manufacturers in the world, Intel and AMD released their four-core processor lately
respectively. Multicore processor creates a new type of computing environment which
is more powerful, cheaper and more energy-saving than a common multiprocessor
environment. More cores mean more computing resources, programs have a chance
run in parallel concurrently and speed up comparing to former single-core environ-
ment. Also, virtualization is a broad term that refers to the abstraction of computer
resources. Virtualization technique is a framework which creates multiple isolated and
security functional partitions on a single physical machine in the manner of virtual
machines monitor (VMM) or virtual environments (VEs). Virtualization technology

392 L. Zhang, Y. Bai, and X. Wei

offers a mixing platform shared by different system offering different functions such
as database, web server, program debugging environment, running on a same hard-
ware machine. Also, virtualization finds its way in system protection, fault tolerances,
server integration and many other advanced enterprise level application. The popular
commercial productions of virtual machine monitors include VMWare ESX Server
[9] and so on, while there are also some open source VMMs such as Xen Hypervisor
[5] and KVM [10].

Also, recently, more and more researches begin to cover the topic about the com-
bining of the two, and this approach may be a good choice to exert their native power
and compensate the shortcoming of each other. In this type of VMM, more computing
resource is provided and every instance of virtual machine would also have a multi-
core environment, and in the term of virtual machine, it has more than one virtual
CPU (VCPU). VMM schedules VCPUs and treats them much like thread or process.
The VCPU schedule algorithm may be different in different VMMs, and in Xen hy-
pervisor, the main schedule algorithm in current version 3.2 and above are Credit and
SEDF (Simple Earlier Dead First) [6]. Credit tries to make every VCPU using CPU
resource fairly while SEDF dynamically adjusts VCPU priority according to the
workload. Both of them are proved effective and easy to implement in serial program
environment, however, may bring a reduced performance in parallel or multithread
applications.

So, at present, we have developed a new type of VMM with a new VCPU schedule
algorithm, called co-scheduling, to make better utilization of the hardware resources
on multicore system based on Xen hypervisor for concurrent program with synchroni-
zation in some special scenarios. As a component of this new VMM, we consequently
need a new approach to trace the processes migration in virtual machine and the map-
ping relationship between VCPUs and cores of physical CPU from the hypervisor’s
point of view, in order to verify whether the new scheduler is effective and the result
is consistent with our initial idea, and in this paper we introduce such a tracing ap-
proach in details and the implementation of a demo program, Process Migration Trac-
ing Engine, to visually show the results.

The rest of this paper is organized as follow, Section 2, the method discussion in
detail, Section 3, the experiment designed and implemented on Xen hypervisor 3.2.0
and Linux Kernel 2.6 to verify this tracing approach, and then we present the per-
formance evaluation and analysis in Section 4. Section 5 introduces the related works
about system status monitoring, and finally in Section 6, we conclude.

2 Approach to Trace Processes Migration for Virtual Machine

In this section, we explain our approach in detail. But at the very beginning, we must
shortly introduce the relative architecture of Xen hypervisor and the role of our trac-
ing approach in our new Xen-based experimental VMM in which the new schedule
algorithm is applied.

2.1 Overview of the Tracing Approach

Xen hypervisor resides directly on the underlying hardware and performs all the privi-
leged processor instructions [6]. Above the hypervisor, there are Xen guest domains.

 A Tracing Approach to Process Migration for Virtual Machine 393

Among them, Domain 0 (Dom0) is the most important domain providing device driv-
ers and user interface and tools while other domains are unprivileged, called Domain
U (DomU). All the privileged requests from DomU(s) are transformed to and proceed
by Dom0.

Related to our topic, Xen hypervisor emulates the virtual devices including virtual
processors (VCPU) for domains [6]. And in the domains, they see VCPUs only but
not underlying physical processors. Operating Systems (OSes) in domains schedule
processes running on VCPUs, meanwhile Xen schedules VCPUs and maps them to
the underlying physical processors. Our new under-developing VCPU schedule algo-
rithm will be applied inside the layer of Xen hypervisor and responsible for VCPUs
scheduling and mapping, then the approach presented in this paper is to monitor and
display the schedule results and in Dom0, showing the processes migrations on
VCPU(s) in DomU and the mapping relation between VCPU(s) and underlying physi-
cal processor cores in Xen hypervisor.

As a component of the VMM, the tracing approach will present both in Dom0 and
DomU as a Process Migration Tracing Engine, interacting with Xen manage inter-
faces and tool and VCPU scheduler, the structural view of the tracing engine is dis-
played in the part surrounded by dash line in Fig. 1.

Fig. 1. Tracing Approach Engine View in Xen-based Environment

Generally speaking, the tracing approach can be broken down into three parts.

 From DomU’s kernel, timely collect the runtime environment data then ex-
tract the information concerning processes and VCPU(s) schedule result;

 From DomU to Dom0, transport the information of processes and VCPU(s)
schedule result;

 In Dom0, through interfaces and functions provided by Xen hypervisor, time-
ly query the mapping relations between VCPU(s) in DomU and the core
number of the underlying multicore processor.

And in the following subsections, we discuss the three parts in detail.

394 L. Zhang, Y. Bai, and X. Wei

2.2 Collecting Information in DomU

In DomU, the OS schedules the VCPU(s) and assigns them to the processes to run on
it/them. And in the OS, every process is an instance of a program which contains a set
of instructions. In the way of construction, processes can be treated as an entry with
some elements such as process id, process status, program counter, memory pointer
and so on [7][8]. They, also can be called properties, tell a process from others during
its life time and can be used for OS’s control.

Minimally, a process must consist of the set of programs to execute and data asso-
ciated with them. Thus, a process should have sufficient memory to hold the programs
and data. Also, a stack is requested to trace the procedures calls and it is also a block
of memory. Finally, as we mentioned above, there are a collection of properties for
being controlled. In the way of implementation, these properties are represented by a
data structure, called process control block (PCB) [7][8]. PCB is generated by OS
when process is created. The information for identifying and scheduling a process is
in the PCB partition and typically, they can be categorized into three groups, (1) proc-
ess identification, they are static and seldom change during the process lifecycle, (2)
processor state information, and (3) process control information. The information in
group (2) and group (3) is changed frequently along with the processes schedule by
the OS. And we can refer the whole of program, data, stack and PCB as process im-
age [7]. In order to manage process images, OS organizes them in some manner,
usually a queue-like structure. When a process is ready to run, its process image will
be loaded into memory, and at other time, it, same with other process images, stays in
secondly memory. Process image is very the runtime environment of a process and
changes along with the process running and after being scheduled by the OS, some
values, certainly including the processor state information and process control infor-
mation, will be rewritten and new runtime environment information generated.

The OS manages where the processes list is located in memory, and most modern
OS uses a table structure, often called control table, to maintain information including
processes list. So, after getting the process table pointer in the control table entry, the
OS then knows where the process queue is located.

Thus, the right way to finish our first step is to find the control table in the OS and
get the entry of process table, then traverse the process table to extract the processor
and process information from runtime environment of every process. In Linux, a
process is presented with two data structures, one is task_struct, storing the static
information about the process such as processor id, parent processor id, whereas the
other is thread_info, containing the dynamic information about the process such as
process status, process stack pointer address and the processor number assigned to the
process after scheduling. The two data structure link to each other to be the role of
PCB. Also, all the task_struct data structure of the processes alive is organized in a
dual-cycled link list with the head list &init_task whose process id is 0, which is first
created when system boots.

2.3 Transporting Information from DomU to Dom0

In the point of Xen hypervisor, Dom0 and DomU is same in the concept of guest
domain except that Dom0 has the ability to access the function provided by Xen

 A Tracing Approach to Process Migration for Virtual Machine 395

hypervisor while DomU cannot. And no matter what information to transport, the
information transportation process actually is a process of communication between
two domains, or inter-domain communication.

For the demands of communications between domains, virtual network is a com-
mon approach applied by most VMMs. They are linked in a LAN and IP addressed
are assigned to them, so that domains can exchange information as they are in a same
physical network. A common socket is created, and then information is packed and
delivered through the network protocol stack.

D
om

ai
n

A

D
om

ai
n

B

Fig. 2. Transporting Data through Shared Memory and Event Channel Mechanism

In Xen hypervisor, network devices are provided to DomUs in an abstract view and
DomUs only know that they are using a network device but do worry about what
specific type the device is. The physical network device is accessible only to Dom0.
The communication between Dom0 and DomU is achieved by means of split-driver,
DomU hosting the front-end of split-driver while Dom0 hosting the back-end of it [6].

Xen hypervisor provides two blocks of memory ring buffer for bulk data transport
between Dom0 and DomU, one for sending and one for receiving. Shared memory
and event channel mechanism are the fundamental of ring buffer. Memory is shared
in granularity of page and is identified by an integer called grant reference (gref).
Communication is bidirectional and can be initiated by any domain, DomU or Dom0.
Assume that domain A is going to transport bulk data to domain B. Domain A firstly
allocates a block of memory pages as shared memory. Domain A also allocates an
unbound event channel and gets the port number (port_num). Then domain A passes
the gref and port_num to domain B. After that, domain B connects to the unbound
event channel by port_num, and notifies domain A that the event channel becomes

396 L. Zhang, Y. Bai, and X. Wei

bound. After that, domain A copies data to the memory pages pointed by the gref, and
when finishing, through event channel, it notifies domain B to fetch data from the
same memory region. Finally, domain B notifies domain A through event channel that
copying is over, and then domain A removes gref. Fig. 2 describes the whole process.

Our information transport process is similar to the scenario description above, and
here Dom0 is domain A and DomU is domain B in practice. Xen hypervisor, together
with Linux kernel, provides some hypercalls and interfaces to manager shared mem-
ory, grant table accessing control and event channel operation [3].

2.4 Querying the Relationship between VCPU and Processor Core from Xen
Hypervisor

As the most important part of common VMM, virtual processor scheduler is a critical
factor to keep all guest OSes receiving the processor resource equally and running
well [1]. And in VMM virtual processor(s) can be treated analogous to kernel
thread(s) in a non-virtualized OS, meanwhile the program running on the virtual proc-
essor(s) in guest OS is much like the user-space program in an OS has no virtualiza-
tion feature.

Processes in Xen domains are running on VCPU(s), it is the responsibility of Xen
hypervisor to create, assign and schedule VCPU(s). In a multicore hardware environ-
ment, actually, scheduling is mapping the thread of VCPU(s) to underlying physical
process cores.

Our new VCPU schedule algorithm is based on credit algorithm, so we must find
some clues from how credit algorithm works so as to query the mapping relationship
between VCPU(s) and processor core of multicore processor.

Every domain owns two properties, weight and cap, representing the share of over-
all physical processor time. Each physical processor (or each core in a multicore proc-
essor) manages a local queue containing the runnable VCPUs sorted by their priority.
Every VCPU also has a credit value for determining its priority. Credit algorithm uses
30ms as a schedule cycle, choosing the VCPU, which owns a credit value more than
0, at the head of the queue to run. The scheduled VCPU then receives a time quantum
of 30ms to run, and after that, it is inserted into the queue tail and waiting for another
time to be scheduled [6].

It seems that no VCPU will migrates among physical processor cores because
every VCPU is only dequeued and enqueued in the same run queue, but the fact is not
always like this. When a physical processor core cannot find a VCPU ready to run on
its local run queue, it will look for the queues on other processor cores for a ready
VCPU and fetch the VCPU to run on itself. This mechanism guarantees that no proc-
essor core in a multicore processor idles when there is runnable work in the system.
And also, due to this mechanism, VCPU migration will occur among processor cores
within Xen hypervisor.

In the source code of Xen 3.2.0, there are some data structures used for credit algo-
rithm for VCPU scheduling. The struct type variable vcpu is a fundamental one,
within which are the relative members vcpu_id and processor, representing the id of
the VCPU and the processor core number it is on during that runtime.

The migration of VCPU among physical processor cores happens within the hy-
pervisor, and we obtain the VCPU information in Dom0. As an easy and abstract way,

 A Tracing Approach to Process Migration for Virtual Machine 397

Xen hypervisor provides the function, together with other Xen manager functions, in
programmable form interfaces in C and python language, to obtain the VCPU infor-
mation in real-time. We can easy call these interfaces in program in Dom0 to talk to
the hypervisor, getting what we want.

3 Software Design and Implementation

In this section, we present the details of software design and implementation of our
tracing approach.

3.1 Function Module Level Design

The tracing approach is archived by the cooperation of Dom0 and DomU. As dis-
cussed in Section 2, in implementation, the idea of the tracing approach is presented
in the Process Migration Tracing Engine resides both in Dom0 and DomU. Taking
into account simplifying the implementation of the program and not modifying the
code of Xen hypervisor and domain OSs, all the things are done with Linux kernel
modules. And we define the basic function unit as a function module, in order to tell-
ing from the concept of module of Linux kernel. Fig. 3 shows the function module
structure of Process Migration Tracing Engine in Dom0.

Fig. 3. Function Modules of Process Migration Tracing Engine in Dom0

A kernel module resides on the Dom0’s kernel, responsible to the task of allocating
shared memory and event channel, passing the gref and port_num to DomU, passing
and getting notifications with DomU, copying data from shared memory, and then
removing the gref at the end. Fig. 4 shows the function module structure of Process
Migration Tracing Engine in DomU.

g g

Fig. 4. Function Modules of Process Migration Tracing Engine in DomU

398 L. Zhang, Y. Bai, and X. Wei

A kernel module resides on the DomU’s kernel, responsible to the task of timely
querying the processes and VCPU(s) schedule results, binding event channel accord-
ing to port_num, passing and getting notifications with Dom0 and then copying data
to shared memory.

Some configuration information such as gref and port_num should be transport
from Dom0 to DomU, we use Xenstore, which is a database of configuration informa-
tion shared between domains, to finish that. Xenstore is designed only for small piece
of data transportation rather than large bulk of data transportation, and for the trans-
portation of processes and VCPU(s) schedule results, we use shared memory and
event channel mechanism discussed in Section 2.3.

3.2 Dom0’s Kernel Module Overview

In the Dom0 kernel module, we use interfaces
__get_free_pages()and free_pages(), kmalloc() and kfree()to allocate and

free memory pages. We use hypercalls gnttab_grant_foreign_access(),
gnttab_end_foreign_access()and HYPERVISOR_grant_table_op() to control the
access of shared memory to get the value of gref. We use hypercall series HYPERVI-
SOR_event_channel_op() to operate the event channel and get the port_num and
exchange notification with DomU. We use xenbus_directory(), xenbus_read()and
xenbus_write() to operate Xenstore database to transport gref, port_num and other
configure data for negotiation with DomU.
Considering that the information transport from DomU to Dom0 is not so much, we
only allocate one page, whose size is 4KB, used for shared memory.

3.3 DomU’s Kernel Module Overview

In the DomU kernel module, we use interfaces
alloc_vm_area() and free_vm_area(), kmalloc() and kfree(), and hypercall
HYPERVISOR_grant_table_op()to map shared memory region. We use hypercall

series HYPERVISOR_event_channel_op() to bind event channel and exchange notifi-
cation with Dom0.

Information must be collect timely at a frequency, so we create a kernel thread and
make all the operation run on that kernel thread when the kernel module is inserted
into the kernel of DomU, using the interface kthread_run().

We use the same Xenstore interfaces as Dom0 to get gref of shared memory and
port_num of unbound event channel for configuration negotiation with Dom0.

Because the information is collected timely, it should be considered that how to
choose the interval. It cannot be too short, or a system performance reduce might be
brought, meanwhile, it cannot be too long, either, or the information cannot retrieve
the extract process schedule result. We choose this interval as long as the time quan-
tum, 30ms, in credit algorithm for VCPU schedule. And in the experiments, we also
change this interval and evaluate the impact on system performance.

 A Tracing Approach to Process Migration for Virtual Machine 399

4 Experiments and Performance Evaluation

4.1 Experiment Environment

All the experiments are performed on a Dell Optiplex 760MT Server with Intel®
Core™ 2 Quad Q9400 2.66GHz processor and 2GB RAM. The processor has four
cores and supports Intel® VT™ Technology. We install Novell openSUSE 11.0 on
this server machine as Dom0, and the kernel source version is 2.6.25.5-1.1, then con-
tinue to set up Xen hypervisor 3.2.1_16881 and install openSUSE 11.0 as DomU
without any unnecessary software installed and system services turned on. DomU has
two VCPUs and 512MB RAM, and only text mode is available. In some test, we
change the VCPU amount to one or the RAM amount to 256MB respectively.

4.2 Functional Verification

The basic test is to verify whether the function in the initial design can be achieved.
We write a simple C program which only has a while(true) infinity loop in DomU
and make it running in background.

After running all the kernel modules, we observe from Dom0, and we can get the
list in the form of [pid, vcpu_id, cpu_id], in which the three parameter stand for
process id, VCPU id in DomU, and core number of multicore processor to which this
VCPU is mapped at that time. After several observations, we can see that the C pro-
gram randomly migrates between two VCPUs and the VCPUs are also randomly
mapped among the four processor cores by Xen hypervisor.

And then we pin the C program to a VCPU and after several observations, we can
only see that the VCPUs are also randomly mapped among the four processor cores
whereas the C program remain running on the same VCPU.

4.3 Benchmark and Test Tools Summary

In the experiments, we mainly use these benchmarks.

Table 1. Benchmark Summary

Benchmark Evaluation Point

lmbench
Transportation throughout from DomU to Dom0
Memory operation latency in DomU when collecting information

MBW Memory bandwidth in DomU when collecting information

Lmbench [15] is a benchmark suite consisting of simple and portable benchmark

for comparing and measuring different kinds of UNIX-liked system performance, and
it is used in our experiment for evaluating transportation throughout from DomU to
Dom0. MBW [16] is a small memory bandwidth benchmark through memory opera-
tions, and it is used in our experiment for evaluating the influence of information
collecting on the memory operation in DomU.

And also, we use xentop command provided by Xen hypervisor to monitoring the
VCPU utilization rate during information collection in DomU and information trans-
portation from DomU to Dom0.

400 L. Zhang, Y. Bai, and X. Wei

4.4 Results and Analysis

We run all the tests at least five times with the same configuration and report the
average.

Firstly, we measure the VCPU cost with xentop command with the configuration
that Dom0 has four VCPUs and DomU has two VCPUs, and then change the VCPU
amount of DomU to one and perform the test again. All the tests are run without in-
formation data transportation from DomU to Dom0.

Fig. 5 shows the VCPU cost of Dom0 and DomU which has two VCPUs. With dif-
ferent information collecting interval, the Dom0’s VCPU cost keep almost steady at a
little more than 3.00%, whereas in DomU, the shorter the information collecting in-
terval is, the more VCPU cost is, and it ranges from less than 12.00% to more than
4.00%.

Then we change the VCPU amount in DomU to one with other configuration un-
changed and test the performance again. Same as the last test, Dom0’s VCPU cost is
holding at about 3.00% or a little more, and DomU’s VCPU cost experiences an over-
all small drops, ranging from no more than 9.00% to less than 3.00%, and Fig. 6
shows the results.

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

11.00%

12.00%

0.01 0.02 0.03 0.04 0.05
collecting interval (s)

V
C

P
U

 c
os

t

4vcp Dom0 2vcpu DomU

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0.01 0.02 0.03 0.04 0.05
collecting interval (s)

V
C

P
U

 c
os

t

4vcpu Dom0 1vcpu DomU

Fig. 5. VCPU cost (two VCPUs in DomU) Fig. 6. VCPU cost (one VCPU in DomU)

And what is interesting is that more VCPUs in DomU lead a higher global VCPU
cost. This experiment result helps us to determine how long the information collecting
interval should be. It is obvious that the VCPU cost is quit high when the interval is
0.01s (10ms) and if the collecting work is running all the time along with DomU, it is
a considerable system overhead which consumes ten percent of the global VCPU
resource, although more accurate schedule information can be collected. And accord-
ing to the principle of credit algorithm and our under-developing VCPU schedule
algorithm, a VCPU is most likely to be scheduled at the end of a 30 ms-quantum,
even if credit algorithm checks credit of VCPU every 10 ms. We also give up the
longer interval such as 0.04s or 0.05s, as they may collect the processes and VCPU(s)
schedule result with too much delay. So we choose 0.03s (30ms) as our default infor-
mation collecting time interval based on the analysis above, and the VCPU cost
whose value is around 5.00% is acceptable.

 A Tracing Approach to Process Migration for Virtual Machine 401

Table 2. Results of MBW benchmark

Data Size
(MB)

Method Collecting Only Collecting and Transporting

 Time (ms) Date Rate (MB/s) Time (ms) Date Rate (MB/s)
4 memcpy 3.21 1245.83 3.25 1229.97
 dumb 3.08 1297.40 2.82 1417.54
 mcblock 0.51 7815.55 0.51 7817.08
8 memcpy 5.92 1351.79 5.94 1347.78
 dumb 6.04 1323.61 6.12 1306.87
 mcblock 1.00 7995.20 1.01 7936.51
10 memcpy 7.05 1418.18 7.25 1379.23
 dumb 7.39 1352.89 7.40 1351.90
 mcblock 1.25 8009.61 1.24 8055.42
20 memcpy 13.88 1440.95 13.76 1453.09
 dumb 13.96 1432.64 14.08 1420.07
 mcblock 2.48 8063.54 2.47 8107.67

Secondly, we measure memory performance with lmbench and MBW with only

collecting information in DomU ongoing and then, measure it with both collecting
information in DomU and transporting information from DomU to Dom0 ongoing.

From this table, we can see that the memory performance change little in the two
conditions, with very tiny difference in operation time in microsecond level. This
indicates that the shared memory mechanism is effective and the frequent memory
reads and writes almost do not bring a memory performance decline. And the shared
memory region is only in size of one page, its impact on the whole memory can be
ignored.

Finally, we measure the throughput of information data transportation from DomU
to Dom0 with lmbench to check the transportation efficiency of shared memory and
event channel mechanism. The experiment is carried on with different data size every
time DomU/Dom0 writes to/read from the 4KB shared memory block (We define this
size as “package size” in the below analysis).

10000

10500

11000

11500

12000

12500

13000

13500

14000

14500

15000

1024 2048 4096 8192
package size (byte)

th
ro

ug
ho

ut
 (

M
bi

ts
/s

)

Fig. 7. Throughput of data transportation from DomU to Dom0

402 L. Zhang, Y. Bai, and X. Wei

Fig. 7 shows the throughput of DomU-Dom0 data transportation, and with the
package size increases, the throughout increases along with it. Based on this experi-
ment result, we choose 8192Byte as our default package size in DomU’s and Dom0’s
kernel modules.

5 Related Works

Some other works are done to monitor the system status, and in Linux system, /proc
directory provides some useful entries to retrieve the runtime statistic information
about OS. "Torsmo" developed by Hannu and Lauri [11] can show various informa-
tion about the system and it's peripherals including number of processes running or
sleeping, and its off-spring "conky" [12] achieves almost the same function. "sysstat"
[13] obtains CPU statistics (global, per CPU and per Linux task / PID), including
support for virtualization architectures. "htop" developed by Hisham Muhammad and
his colleagues [14] is an interactive process viewer which is like the command top in
Linux. However, these utilities do not focus on how to retrieve and trace the relation-
ship between the processes and the corresponding mapping core of physical proces-
sor, and much less that the relationship crossing the VMM mapping from the virtual
processor to physical processor. And our works not only pay close attention to trace
that which process belongs to which processor core along with the system runs, but
also expand this relationship from virtual processor to physical processor.

6 Conclusions

In order to verify the VCPU schedule algorithm in our under-developing VMM, in
this paper, we present an approach for tracing processes migration on virtual proces-
sor(s) in guest OS and the mapping relation between virtual processors and cores of
physical processor. And we also implement a demo program as a Process Migration
Tracing Engine in Linux 2.6 and Xen hypervisor 3.2. The tracing engine shows that
our approach can fill the gap between the guest OS and the underlying hardware by
crossing through the intermediate lay of virtual machine monitor. The tracing engine
shows it is an effective to trace process migration in virtual machine and the dynamic
mapping relationship between virtual processor and cores of processor. And it is also
effective to verify and display the VCPU schedule results of Xen and our newly de-
veloping Xen-based VMM.

We perform evaluations to measure the impact of the trace engine on system per-
formance. And the experiment results show that the Process Migration Tracing
Engine brings a very slim impact on the whole system performance and it is proved
that the Process Migration Tracing Engine applying the process migration tracing
approach is efficient.

References

1. Nesbit, K.J., Smith, J.E., Moreto, M., Cazorla, F.J., Ramirez, A., Valero, M.: Multicore
Resource Management. In: IEEE Micro, pp. 6–16 (May-June 2008)

2. Payne, B.D., de A. Carbone, M.D.P., Lee, W.: Secure and Flexible Monitoring of Virtual
Machines. In: Annual Computer Security Applications Conference (2007)

 A Tracing Approach to Process Migration for Virtual Machine 403

3. Shin, H.-S., Kim, K.-H., Kim, C.-Y., Jung, S.-I.: The new approach for inter-
communication between guest domains on Virtual Machine Monitor. Computer and In-
formation Sciences (2007)

4. Sweeney, P.F., Hauswirth, M., Diwan, A.: Understanding Performance of MultiCore Sys-
tems using Tracebased Visualization. In: STMCS 2006 (2006)

5. Xen Hypervisor Source Version 3.2.1 (2009), http://www.xen.org
6. Chisnall, D.: The Definitive Guide to the Xen Hypervisor. Prentice-Hall, Englewood Cliffs

(2007)
7. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 8th edn. John

Wiley & Sons, Chichester (2008)
8. Stallings, W.: Operating Systems: Internals and Design Principles, 5th edn. Prentice Hall,

Englewood Cliffs (2005)
9. VMWare ESX Server, http://www.vmware.com/products/vi/esx

10. Linux KVM, http://www.linux-kvm.org
11. Torsmo, http://torsmo.sourceforge.net/
12. Conky, http://conky.sourceforge.net/
13. sysstat, http://pagesperso-orange.fr/sebastien.godard/
14. htop, http://htop.sourceforge.net/
15. Lmbench, http://www.bitmover.com/lmbench/
16. MBW, http://ahorvath.home.cern.ch/ahorvath/mbw/

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 404–415, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Accelerating Dock6’s Amber Scoring with Graphic
Processing Unit

Hailong Yang, Bo Li, Yongjian Wang, Zhongzhi Luan, Depei Qian,
and Tianshu Chu

Department of Computer Science and Engineering,
Sino-German Joint Software Institute, Beihang University,

100191 Beijing, China
{hailong.yang,yongjian.wang,tianshu.chu}@jsi.buaa.edu.cn,

{libo,zhongzhil,depeiq}@buaa.edu.cn

Abstract. In the drug discovery field, solving the problem of virtual screening
is a long term-goal. The scoring functionality which evaluates the fitness of the
docking result is one of the major challenges in virtual screening. In general,
scoring functionality in docking requires large amount of floating-point calcula-
tions and usually takes several weeks or even months to be finished. This
time-consuming disadvantage is unacceptable especially when highly fatal and
infectious virus arises such as SARS and H1N1. This paper presents how to
leverage the computational power of GPU to accelerate Dock6 [1]’s Amber [2]
scoring with NVIDIA CUDA [3] platform. We also discuss many factors that
will greatly influence the performance after porting the Amber scoring to GPU,
including thread management, data transfer and divergence hidden. Our GPU
implementation shows a 6.5x speedup with respect to the original version
running on AMD dual-core CPU for the same problem size.

1 Introduction

Identifying the interactions between molecules is critical both to understanding the
structure of the proteins and to discovering new drugs. Small molecules or segments
of proteins whose structures are already known and stored in database are called li-
gands. While macromolecules or proteins associated with a disease are called recep-
tors [4]. The final goal is to find out whether the given ligand and receptor can form a
favorable complex and how appropriate the complex is, which may inhibit a disease’s
function and thus act as a drug.

Scoring is the step after docking which is involved evaluating the fitness for
docked molecules and ranking them. A set of sphere-atom pairs will be on behalf of
an orientation in receptor and evaluated with a scoring function on three dimensional
grids. At each grid point, interaction values are to be summed to form a final score.
These processes need to be repeated for all possible translations and rotations. Tre-
mendous computational power is required, as scoring for each orientation needs large
amount of CPU cycles, especially dealing with floating-point. The advantage of am-
ber scoring is that both ligands and active sites of the receptor can be flexible during
the evaluation. While the disadvantage is also obvious, it brings tremendous intensive

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 405

floating-point computations. When performing amber scoring, it calculates the inter-
nal energy of the ligand, receptor and the complex, which can be broken down into
three steps:

 Minimization
 molecule dynamics (MD) simulation
 more minimization using solvents

The computational complexity of amber scoring is very huge, especially in the MD
simulation stage. Three grids which individually have three dimension coordinates are
used to represent the molecule during the orientation such as geometry, gradient and
velocity. In each grid, at least 128 elements are required to sustain the accuracy of the
final score. During the simulation, scores are calculated in three nested loops, each of
which walks through one of the three grids.

While many virtual screening tools such as GasDock [5], FTDock [6] and Dock6
can utilize multi-CPUs to parallel the computations, the incapacity of CPU in process-
ing floating-point computations still remains untouched. Compared with CPU, GPU
has the advantages of computational power and memory bandwidth. For example, a
GeForce 9800 GT can reach 345 GFLOPS at peak rate and has an 86.4 GB/sec mem-
ory bandwidth, whereas an Intel Core 2 Extreme quad core processor at 2.66 GHz has
a theoretical 21.3 peak GFLOPS and 10.7 GB/sec memory bandwidth. Another im-
portant factor why GPU is becoming widely used is that it is more cost-effective than
CPU.

Our contributions in this paper include porting the original Dock6 amber scoring to
GPU using CUDA, which can archive a 6.5x speedup. We analyze the different mem-
ory access patterns in GPU which can lead to a significant divergence in performance.
Discussions on how to hide the computation divergence on GPU are made. We also
conduct experiments to see the performance improvement.

The rest of the paper is organized as follows. In section II, an overview of Dock6’s
amber scoring and analysis of the bottleneck is given. In section III, we present the
main idea and implementation of the amber scoring on GPU with CUDA, and details
of considerations about performance are made. Then we give the results, including
performance comparisons among various GPU versions. Finally, we conclude with
discussion and future work.

2 Analysis of the Amber Scoring in Dock6

2.1 Overview

A primary design philosophy of amber scoring is allowing both the atoms in the
ligand and the spheres in the receptor to be flexible during the virtual screening proc-
ess, generating small structural rearrangements, which is much like the actual situa-
tion and gives more accuracy. As a result, a large number of docked orientations need
to be analyzed and ranked in order to determine the best fit set of the matched atom-
sphere pairs.

In the subsection, we will describe the amber scoring program flow and profile the
performance bottleneck of the original amber scoring, which can be perfectly acceler-
ated on GPU.

406 H. Yang et al.

2.2 Program Flow and Performance Analysis

Figure 1 shows the steps to score the fitness for possible ligand-receptor pairs in am-
ber. The program firstly performs conjugate gradient minimization, MD simulation,
and more minimization with solvation on the individual ligand, the individual recep-
tor, and the ligand-receptor complex, then calculates the score as follows:

Ebinding = Ecomplex – (Ereceptor - Eligand) . (1)

The docked molecules are described using three dimension intensive grids containing
the geometry, gradient or velocity coordinates information. The order of magnitude of
these grids is usually very large. Data in these grids is represented using floating-
point, which has little or no interactions during the computation. In order to archive
higher accuracy, the scoring operation will be performed repeatedly, perhaps hun-
dreds or thousands times.

Fig. 1. Program flow of amber scoring

Due to the characteristics of the amber scoring such as data independency and high
arithmetic intensity, which are exactly the sweet spots of computing on GPU, it can
be perfectly paralleled to leverage the computing power of GPU and gain preferable
speedup.

3 Porting Amber Scoring to GPU

3.1 Overview

To determine the critical path of amber scoring, we conduct an experiment to make
statistics about the cost of each step as Table 1 shows. We see that time spent on

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 407

processing ligand is negligible, because ligand in docking always refer to small mole-
cules or segments of protein whose information grids are small and can be calculated
quickly. We also observe, however, that MD simulation on receptor and complex are
the most time-consuming parts, which take up to 96.25 percentage of the total time.
Therefore, in our GPU accelerated version, we focus on how to port the MD simula-
tion to GPU, which could accelerate the bulk of the work.

Table 1. Run time statistics for each step of Amber scoring. 100 cycles are performed for
minimization steps and 3,000 cycles for MD simulation step.

Stage Run time
(seconds)

Ratio of total
(%)

gradient minimization 1.62 0.33

MD simulation 226.41 45.49

minimization solvation 0.83 0.17

Receptor
protocol

energy calculation 2.22 0.45
gradient minimization ≈0 0

MD simulation 0.31 0.06

minimization solvation ≈0 0

Ligand protocol

energy calculation ≈0 0

gradient minimization 8.69 1.75

MD simulation 252.65 50.76

minimization solvation 2.69 0.54

Complex
protocol

energy calculation 2.22 0.45
Total 497.64 100

For the simplicity and efficiency, we take advantage of the Compute Unified De-

vice Architecture (CUDA). We find the key issue to fully utilize GPU is high ratio of
arithmetic operations to memory operations, which can be achieved through refined
utilization of memory model, data transfer pattern, parallel thread management and
branch hidden.

3.2 CUDA Programming Model Highlights

At the core of CUDA programming model are three key abstractions – a hierarchy of
thread groups, shared memories and barrier synchronization, which provide fine-
gained data parallelism, thread parallelism and task parallelism. CUDA defines GPU
as coprocessors to CPU that can run a large number of light-weight threads concur-
rently. Threads are manipulated by kernels representing independent tasks mapped
over each sub-problem. The kernel is invoked from the host side, most cases the CPU,
as an asynchronized thread. The parallel threads collaborate through shared memory
and synchronize using barriers.

In order to process on the GPU, data should be prepared by copying it to the graph-
ic board memory first. Data transfer can be performed using deeply pipelined streams
that overlap the kernel processing.The problem domain is defined in the form of a 2D

408 H. Yang et al.

grid of 3D thread blocks. The significance of thread block primitive is that it is the
smallest granularity of work unit to be assigned to a single streaming multiproces-
sor(SM). Each SM is composed of 8 scalar processors (SP) that indeed run threads on
the hardware in a time-slice manner. Every 32 threads within a thread block are
grouped into warps. Within a warp the executions are in order, while beyond the warp
the executions are out of order. However, if threads within a warp follow divergent
paths, only threads on the same path can be executed simultaneously.

In addition to global memory, each thread block has its own private shared mem-
ory that is only accessible to threads within that thread block. Threads within a thread
block could cooperate by sharing data among shared memory with low latency, while
threads that belong to different thread blocks could only share data through global
memory, which is slower by three orders of magnitude than shared memory. Syn-
chronization within a thread block is implemented in hardware. Among thread blocks,
synchronization can be achieved by finishing a kernel and starting a new one.

3.3 Parallel Thread Management

To carry out the MD simulation on GPU, a kernel needs to be written which is
launched from the host (CPU) and executed on the device (GPU). A kernel is the
same instruction set that will be performed by multiple threads simultaneously. By
default, all the threads are distributed onto the same SM, which can’t fully explore the
computational power of the GPU. In order to utilize the SMs more efficiently, thread
management must be taken into account.

We divide the threads into multiple blocks and each block can hold the same num-
ber of threads. In the geometry, gradient and velocity grids, 3D coordinates of atoms
are stored sequentially and the size of the grid usually reach as large as 7,000. Calcu-
lation works are assigned to blocks on different SMs; each thread within the blocks
computes the energy of one atom respectively and is independent of the rest (see
Figure 2). We compose N threads into a block, which calculate N independent atoms
in the grids. Assuming the grid size is M and M is divisible by N, there will happen to
be M/N blocks.

While in most cases the grid size M is not divisible by N, we designed two
schemes dealing with this situation. In the first scheme, there will be M/N blocks.
Since there is M%N atoms left without threads to calculate, we will rearrange the
atoms evenly to the threads in the last block. One more atom will be added to the
threads in the last block until no atoms left, which is ordered by thread ID ascending.
The second scheme is to construct M/N + 1 blocks. Each thread in the blocks
still calculates one atom however the last block may contain threads with nothing
to do. Control logic should be added to the kernel to judge whether the thread has
some calculations or not through comparing the value of block ID * N + thread ID
and M.

Our experiment proves the former scheme obtained better performance. This is
caused by underutilized SM resources and branch cost in the second scheme. When
there is a branch divergence, all the threads must wait until they reach the same in-
structions again. Synchronization instructions are generated by the CUDA complier
automatically, which is time consuming.

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 409

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

Fig. 2. Threads and blocks management about processing molecule grids on GPU: (a) blocks
whose threads in the last block may calculate two atoms each (b) blocks whose threads in the
last block may have nothing to do.

3.4 Memory Model and Data Transfer Pattern

The first step to perform GPU computations is to transfer data from host (CPU) mem-
ory to device (GPU) memory since the receptor, ligand and complex grids need to be
accessible by all SMs during the calculations. There are two kinds of memory can be
used to hold these grids. One is the constant memory, which can be read and written by
the host but can only be read by the device. The other is the global memory, which can
be read and written by both the host and device. One important distinction between the
two memories is the access latency. SMs can get access to the constant memory mag-
nitude order faster than the global memory. While the disadvantage of the constant
memory is also obvious, it is much smaller, which is usually 64 KB compared to 512
MB global memory. Thus, a trade-off has to be made on how to store these grids.

During each MD simulation cycle, the gradient and velocity grids are read and up-
dated. Therefore, they should be stored in global memory. While once entered the
MD simulation process, the geometry grids are never changed by the kernel. Hence,
they can be stored in constant memory (see Figure 3). Considering the out-bound
danger which dues to the limited capacity of the constant memory, we observed the
size of the each geometry grid. The receptor and complex geometry grids usually
contain no more than 2,000 atoms each while the ligand geometry grid contains 700
atoms, which totally requires 2,000 * 3 * 4 * 2 + 700 * 3 * 4 bytes (56.4 KB) memory
to store them. Since it is smaller than 64 KB, the geometry grids shall never go out-
bound of the constant memory.

The time to transfer molecule grids from host to their corresponding GPU memory
is likewise critical issue, which may degrade the benefit achieved from the parallel
execution if without careful consideration [7]. For each MD simulation cycle, we

410 H. Yang et al.

Fig. 3. Memory model and data transfer pattern during the MD simulation cycles. Grids are
transferred only once before the simulation, which are stored in global memory and constant
memory correspondingly. Atom results are first accumulated in the shared memory within the
block. Then the accumulations per block are transferred into the host memory and summed up
to the final MD simulation result for the molecule.

could transfer one single atom 3D coordinates in the geometry, gradient and velocity
grids to device memory when they are required by the SMs. The other solution is to
transfer the entire grids into the GPU memory before the MD simulation stage. When
the simulation starts, these grids are already stored in device memory which can be
accessed by simulation cycles performed on SMs.

Based on our experiment, significant performance improvements are obtained from
the second scheme since the molecule grids are transferred only once for all before
the MD simulation. When the calculations on the SMs are carried out, the coordinates
of the atoms in the grids are already stored in the device memory. Therefore, the SMs
don’t have to halt and wait for the grids to be prepared, which obviously speeds up the
parallel execution of the MD simulations by fully utilizing the SMs.

The MD simulations are executed parallel on different SMs, and threads within the
different blocks are responsible for the calculations of their assigned atoms of the grids.
The final simulation result is formed by accumulating all results. Our solution is to
synchronize threads within the blocks, which generates atom results separately. Then a
transformation is performed to store the atom results from shared memory to host
memory in a result array, whose index is identical to the block ID. The molecule result
shall be achieved by adding up all the elements in the array without synchronization
since the results are transferred only when the calculations on device are accomplished.

3.5 Divergence Hidden

Another important factor that dramatically impact the benefits achieved by perform-
ing MD simulation on GPU is the branches. Original MD simulation procedure has

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 411

involved a bunch of nested control logics such as bound of Van der Waals force and
constrains of molecule energy. When the parallel threads computing on different
atoms in the grids come to a divergence, a barrier will be generated that all the threads
will wait until they reach the same instruction set again. The above situation can be
time-consuming and outweigh the benefits of parallel execution.

We extract the calculations out of the control logic. Each branch result of the atom
calculation is stored in a register variable. Inside of the nested control logic, only
value assignments are performed, which means the divergence among all the threads
will be much smaller, thus the same instruction sets can be reached with no extra
calculation latency. Although this scheme will waste some computational power of
the SMs since only a few branch results are useful in the end, it brings tremendous
improvements in performance. These improvements can be attributed to that, in most
cases, the computational power we required during the MD simulation is much less
than the maximum capacity of the SMs. Hence, the extra calculations only consume
vacant resources, which in turn speed up the executions. The feasibility and efficiency
of our scheme have been demonstrated in our experiment.

4 Results

The performance of our acceleration result is evaluated for two configurations:

 Two cores of a dual core CPU
 GPU accelerated

The base system is a 2.7 GHz dual core AMD Athlon processor. GPU results were
generated using an NVIDIA GeForce 9800 GT GPU card.

Table 2. CPU times, GPU times and speedups with respect to 3,000 MD simulation cycles per
molecule protocol. The CPU version was performed using dual core, while GPU version with
all superior scheme.

Stage CPU GPU Speedup

gradient minimization 1.62 0.89 1.82
MD simulation 226.41 31.32 7.23

minimization solvation 0.83 0.15 5.53

Receptor
protocol

energy calculation 2.22 1.21 1.83
gradient minimization ≈0 0.02 ——

MD simulation 0.31 0.60 ——
minimization solvation ≈0 0.03 ——

Ligand
protocol

energy calculation ≈0 ≈0 0
gradient minimization 8.69 2.88 3.02

MD simulation 252.65 34.79 7.26

minimization solvation 2.69 2.05 1.31

Complex
protocol

energy calculation 2.22 1.47 1.51

Total 497.64 75.41 6.5

412 H. Yang et al.

We referred to the Dockv6.2 as the original code, which was somewhat optimized
in amber scoring. We also used the CUDAv2.1, whose specifications support 512
threads per block, 64KB constant memory, 16KB shared memory and 512MB global
memory. Since double precision floating point was not supported in our GPU card,
transformation to single precision floating point was performed before the kernel
launched. With small precision losses, the amber scoring results were slightly differ-
ent between CPU version and GPU version, which can be acceptable.

Table 2 compares the original CPU version with the GPU accelerated version in
runtime for various stages. The MD simulation performed are 3,000 cycles each mo-
lecular stage. The overall speedup achieved for the entire amber scoring is over 6.5x.

2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
m

be
rS

co
re

T
im

e
(s

)

M D S im u la tion C ycles

 O rig ina l Am ber Score
 G PU O ne B lock
 G PU M u lti-B locks(1)
 G PU (1) P lus D ata T ransfer O nce

Fig. 4. Shown is a comparison of amber scoring time between original amber and different
GPU versions whose speedup varies significantly as the MD simulation cycles increasing from
3,000 to 8,000

Figure 4 depicts the total speedups of different GPU schemes with respect to the
range of increasing MD simulation cycles. As mentioned in section 3.3, the GPU
version with only one block did not speedup, which was attributed to the poor man-
agement of threads since each block had a boundary of maximum active threads. In
our experiment, GeForce 9800 GT specification limits each block can only hold 512
threads maximally. This limitation will force large amount of threads waiting on
the only one block until other threads are served and release the SM resource. Since
the MD simulation requires more than one block threads to calculate the atom results,
the latency becomes more obviously as the MD simulation cycles scale. Fortunately,
with multiple blocks, this kind of thread starvation latency can be greatly eased.
Threads within multiple blocks can be scheduled onto different SMs so that calcula-
tions of independent atoms are executed parallel. The most significant performance
improvements are achieved from transferring the molecule grids only once during the
MD simulation in addition to the usage of multi-blocks.

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 413

2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

A
m

be
rS

co
re

T
im

e
(s

)

MD Simulation Cycles

 Original Amber Score
 GPU Multi-B locks and Data Transfer Once(1)
 GPU(1) Plus Divergence Hidden(2)
 GPU(2) Plus Shanred Memory

Fig. 5. Comparison of speedups among different GPU versions based on Figure 4 in addition to
divergence hidden and shared memory

Figure 5 depicts the second speedup in performance comes from the utilizations of
divergence hidden and synchronization on shared memory. Since the branch calcula-
tions are extracted out of the control logic and stored in temporary variables, only one
single instruction will be performed which assigns corresponding values into the final
result when divergences occur. This scheme greatly shortens the time consumed for
all the threads to return to the same instruction sets. While threads within a block will
accumulate atom simulation values into a partial result of molecule on shared mem-
ory, the result array transferred back to the host is very small. Performance improve-
ments are obtained when summing up the elements in the array to form the molecule
simulation result. We also notice that as the MD simulation cycles scales, the speedup
becomes more considerable in our best GPU version.

5 Related Work

Exploiting GPUs for general purpose computing has recently gained popularity par-
ticularly as a mean to increase the performance of scientific applications. However
most of the accelerations of science-oriented applications on GPU are in the fields of
graphic processing and arithmetic algorithms. Kruger et al. [8] implemented linear
algebra operators for GPUs and demonstrated the feasibility of offloading a number
of matrix and vector operations to GPUs. Nathan Bell [9] demonstrated several effi-
cient implementations of sparse matrix-vector multiplication (SpMV) in CUDA by
tailoring the data access patterns of the kernels.

Studies on utilizing GPU to accelerate molecule docking and scoring problems are
rare, the only work we find more related to our concern is in the paper of Bharat
Sukhwani [10]. The author described a GPU-accelerated production docking code,
PIPER [11], which achieves an end-to-end speedup of at least 17.7x with respect to a

414 H. Yang et al.

single core. Our contribution is different from the former study in two aspects. First,
we focus our energy on flexible docking such as amber scoring while the previous
study mainly work on rigid docking using FFT. Thus our work is more complex and
competitive in the real world. Second, we noticed the logic branches in the parallel
threads on GPU degraded the entire performance sharply. We also described the di-
vergence hidden scheme and represented the comparison on speedup with and without
our scheme.

Another attractive work needs to be mentioned is that Michael Showerman and Jer-
emy Enos[12] developed and deployed a heterogeneous multi-accelerator cluster at
NCSA. They also migrated some existing legacy codes to this system and measured
the performance speedup, such as the famous molecular dynamics code called
NAMD[13, 14]. However, the overall speedup they achieved was limited to 5.5x since
they could not utilize the computation power of GPU and FPGA simultaneously.

6 Conclusion and Future Works

In this paper we present a GPU accelerated amber score in Dock6.2, which achieves
an end-to-end speedup of at least 6.5x with respect to 3,000 cycles during MD simula-
tion compared to a dual core CPU. We find that thread management utilizing multiple
blocks and single transferring of the molecule grids dominate the performance im-
provements on GPU. Furthermore, dealing with the latency attributed to thread syn-
chronization, divergence hidden and shared memory can be elegant solutions which
will additionally double the speedup of the MD simulation. Unfortunately the speedup
of Amber scoring can’t go much higher due to Amdahl’s law. The limits are in mul-
tiple ways:

 With the kernel running faster because of GPU accelerating, the rest of the
Amber scoring takes a higher percentage of the run-time

 Partitioning the work among SMs will eventually decrease the individual job
size to a point where the overhead of initializing an SP dominates the applica-
tion execution time

The work we presented in this paper only shows a kick-off stage of our exploration in
GPGPU computation. We will proceed to use CUDA accelerating various applica-
tions with different data structures and memory access patterns and hope to be able
to work out general strategies about how to use the manycore feature of GPU more
efficiently.

Acknowledgment

Many thanks to Ting Chen for thoughtful discussions and comments about our im-
plementation and paper work. This work was supported by the National Natural Sci-
ence Foundation of China under the grant No. 90812001, Chinese National Programs
for High Technology Research and Development under the grant No. 2006AA01A
124 and 2006AA01A118.

 Accelerating Dock6’s Amber Scoring with Graphic Processing Unit 415

References

1. Dock6, http://dock.compbio.ucsf.edu/DOCK_6/
2. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and test-

ing of a general Amber force field. Journal of Computational Chemistry, 1157–1174
(2004)

3. NVIDIA Corporation Technical Staff.: Compute Unified Device Architecture - Program-
ming Guide, NVIDIA Corporation (2008)

4. Kuntz, I., Blaney, J., Oatley, S., Langridge, R., Ferrin, T.: A geometric approach to mac-
romolecule-ligand interactions. Journal of Molecular Biology 161, 269–288 (1982)

5. Lia, H., Lia, C., Guib, C., Luob, X., Jiangb, H.: GAsDock: a new approach for rapid flexi-
ble docking based on an improved multi-population genetic algorithm. Bioorganic & Me-
dicinal Chemistry Letters 14(18), 4671–4676 (2004)

6. Servat, H., Gonzalez, C., Aguilar, X., Cabrera, D., Jimenez, D.: Drug Design on the Cell
BroadBand Engine. In: Parallel Architecture and Compilation Techniques, September
2007, p. 425 (2007)

7. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: High-performance
graphics coprocessor sorting for large database management. In: Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data (2006)

8. Kruger, J., Westermann, R.: Linear Algebra Operators for GPU Implementation of Nu-
merical Algorithms. In: ACM SIGGRAPH International Conference on Computer Graph-
ics and Interactive Techniques (2003)

9. Nathan, B., Michael, G.: Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004 (Dec. 2008)

10. Bharat, S., Martin, C.H.: GPU acceleration of a production molecular docking code. In:
Proceedings of 2nd Workshop on General Purpose Processing on GPUs, pp. 19–27 (2009)

11. PIPER, http://structure.bu.edu/index.html
12. Michael, S., Hwu, W.-M., Jeremy, E., Avneesh, P., Volodymyr, K., Craig, S., Robert, P.:

QP: A Heterogeneous Multi-Accelerator Cluster. In: 10th LCI International Conference on
High-Performance Clustered Computing (March 2009)

13. NAMD, http://www.ks.uiuc.edu/Research/namd/
14. Phillips, J.C., Zheng, G., Sameer, K., Kalé, L.V.: NAMD: Biomolecular Simulation on

Thousands of Processors. In: Conference on High Performance Networking and Comput-
ing, pp. 1–18 (2002)

Optimizing Sweep3D for Graphic Processor Unit

Chunye Gong, Jie Liu, Zhenghu Gong, Jin Qin, and Jing Xie

Department of Computer Sciences, National University of Defense Technology,
410073 Changsha, China

leaf.gong@gmail.com, liujie@nudt.edu.cn

Abstract. As a powerful and flexible processor, the Graphic Process-
ing Unit (GPU) can offer great faculty in solving many high-performance
computing applications. Sweep3D, which simulates a single group time-
independent discrete ordinates (Sn) neutron transport deterministically
on 3D Cartesian geometry space, represents the key part of a real ASCI
application. The wavefront process for parallel computation in Sweep3D
limits the concurrent threads on the GPU. In this paper, we present
multi-dimensional optimization methods for Sweep3D, which can be effi-
ciently implemented on the fine grained parallel architecture of the GPU.
Our results show that the performance of overall Sweep3D on CPU-GPU
hybrid platform can be improved up to 2.25 times as compared to the
CPU-based implementation.

Keywords: Sweep3D, neutron transport, graphics processor unit (GPU),
Compute Unified Device Architecture (CUDA).

1 Introduction

When the first GPU was introduced in 1999, the GPU mainly has been used
to transform, light and rasterize triangles in 3D graphics applications [1]. The
performance of GPU doubles about every six to nine months, which outper-
forms CPU a lot [2]. The modern GPUs are throughput-oriented parallel proces-
sors that can offer peak performance up to 2.72 Tflops single-precision floating-
point and 544 Gflops double-precision floating-point [3]. At the same time, the
GPU programming models, such as NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) [4], AMD/ATI’s Streaming Computing [5] and OpenCL [6],
become more mature than before and simplify the processing of developing non-
graphics applications. The enhancement of computing performance, development
of programming model and software make GPU more and more suitable for
general-purpose computing. At present, GPU has successfully applied to medi-
cal imaging, universe exploration, physics simulation, linear system solution and
other computation intensive domains [7].

There is a growing need to accurately simulate physical systems whose evolu-
tions depend on the transport of subatomic particles coupled with other complex
physics [8]. In many simulations, particle transport calculations consume the ma-
jority of the computational resources. For example, the time devoted to particle

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 416–426, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimizing Sweep3D for Graphic Processor Unit 417

transport problem in multi-physics simulations costs 50-80% of total execution
time of many realistic simulations on DOE systems [9, 10]. So parallelizing de-
terministic particle transport calculations is recognized as an important problem
in many applications targeted by the DOE’s Accelerated Strategic Computing
Initiative (ASCI). The benchmark code Sweep3D [11] represents the heart of a
real ASCI application that run on the most powerful supercomputers such as
Blue Gene [12] and Roadrunner [13]. So it is worthwhile to accelerate Sweep3D
on high performance, low power consuming GPU.

In this paper we describe our experiences of developing Sweep3D implementa-
tion on the CUDA platform, analyze the bottleneck of our GPU execution. Our
GPU version is based on the SIMD and uses the massive thread level parallelism
of GPU. Efficiently using registers and thread level parallelism can improve per-
formance. We use the repeated computing and shared memory to schedule 64
times more threads, which improves performance with 64n−cubed problem size.
Our GPU version gets 2.25 times speedup as compared to the original single
CPU core version.

2 An Overview of Sweep3D

Sweep3D [11] solves a three-dimensional neutron transport problem from a scat-
tering source. The basis of neutron transport simulation is the time-independent,
multigroup, inhomogeneous Boltzmann transport equation. The numerical solu-
tion to the transport equation involves the discrete ordinates (Sn) method and
the procedure of source iteration. In the Sn method, where N represents the
number of angular ordinates used, the angular-direction is discretized into a set
of quadrature points. In the Cartesian geometries (XYZ), each octant of angles
has a different sweep direction through the mesh, and all angles in a given octant
sweep the same way. The sweep of Sn method generically is named wavefront
[14]. The solution involves two steps: the streaming operator is solved by sweeps
and the scattering operator is solved iteratively.

A Sn sweep for a given angle proceeds as follows. Every grid cell has 4 equa-
tions with 7 unknowns (6 faces plus 1 central) and boundary conditions complete
the system of equations. The solution is by a direct ordered solve known as a
sweep. Three known inflows allow the cell center and 3 outflows to be solved.
Each cell’s solution then provides inflows to 3 adjoining cells (I, J, and K direc-
tions). This represents a wavefront evaluation with recursion dependence in all
3 grid directions. Sweep3D exploits parallelism via a wavefront process. First,
a 2D spatial domain decomposition onto a 2D array of processors in the I- and
J-directions is used. Second, the sweeps of the next octant pair start before the
previous wavefront is completed; the octant order required for reflective bound-
ary conditions limits this overlap to two octant pairs at a time. The overall
combination is sufficient to give good theoretical parallel utilization. The result-
ing diagonal wavefront is depicted in Fig. 1 just as the wavefront gets started in
the 4th octant and heads toward the 6th octant [14, 15].

418 C. Gong et al.

Fig. 1. The wavefront parallelism in Sweep3D

On single core, there is no communication in Sweep3D. The Sweep() subrou-
tine, computational core of Sweep3D, takes about 97.70% of the whole runtime.
The structure of the Sweep() subroutine is listed in Fig. 2. The jkm loop (line 7
- line 22) in the Sweep() subroutine takes 99.05 % of the subroutine runtime.

1 DO iq=1,8 ! octants
2 DO mo=1,mmo ! angle pipelining loop
3 DO kk=1,kb ! k-plane pipelining loop
4 RECV E/W ! recv block I-inflows
5 RECV N/S ! recv block J-inflows
6 DO idiag=1,jt+nk-1+mmi-1 !JK-diagonals
7 DO jkm=1,ndiag ! I-lines on this diagonal
8 DO i=1,it ! source (from Pn moments)
9 ENDDO
10 IF .NOT.do_fixups
11 DO i=i0,i1,i2 ! Sn eqn
12 ENDDO
13 ELSE
14 DO i=i0,i1,i2 ! Sn eqn fixups
15 ENDDO
16 ENDIF
17 DO i=1,it ! flux (Pn moments)
18 ENDDO
19 DO i=1,it ! DSA face currents
20 ENDDO
21 ENDDO
22 SEND E/W ! send block I-outflows
23 SEND N/S ! send block J-outflows
24 ENDDO
25 ENDDO
26 ENDDO

Fig. 2. The structure of Sweep() subroutine

A complete wavefront from a corner to its opposite corner is an iteration.
The I-lines that is the jkm loop in the iteration can be solved in parallel on
each diagonal. As showed in Fig. 1, the number of concurrent threads is 1, 3, 6
and 10. The relationship between maximum concurrent threads (MCT (n)) and
problem size n− cubed (n ∈ N) shows in (1):

lim
n→∞MCT (n) = 6n (1)

Similarly, the relationship between average concurrent threads (ACT (n)) and
problem size n− cubed shows in (2):

lim
n→∞ACT (n) = 3n (2)

Optimizing Sweep3D for Graphic Processor Unit 419

Many research works on particle transportation is focus on performance model,
scalability and running on large scale parallel architecture [10, 16, 17]. The most
similar and impressive work is that Petrini etc. implemented Sweep3D on CBE
(Cell Broadband Engine) [18]. They exploited 5 dimensions of parallelism to get
good performance. All the technologies make full use of CBE’s processing ele-
ment, data traveling and the hierarchical memory and get 4.5-20 times speedup
compared with different kind of processors.

3 Architecture of Nvidia GT200 and CUDA

3.1 Architecture of Nvidia GT200

The architecture of GPU is optimized for rendering real-time graphics, a com-
putation and memory access intensive problem domain with enormous inherent
parallelism. Not like CPU, a much larger portion of a GPU’s resources is devoted
to data processing than to caching or control flow.

Fig. 3. GT200 structure

NVIDIA GT200 chip (Fig. 3) contains 240 Streaming-Processor (SP) cores
running at 1.44 GHz. Physically, eight SPs form one Streaming Multiproces-
sors (SMs or Multiprocessors) and each SP run in Single Instruction Multiple
Data (SIMD) manner. There are ten independent processing units called Thread
Processing Clusters (TPC) and each TPC contains a geometry controller, a SM
controller, three SMs and a texture unit. The Multiprocessors creates, manages,
and executes concurrent threads in hardware with near zero scheduling over-
head and can implement barrier synchronization. The Single Instruction Multi-
ple Thread (SIMT) unit, which is akin to SIMD vector organizations, creates,
manages, schedules, and executes threads in groups of 32 parallel threads called
warps [4, 19]. The particular and useful specifications for the GT200 of Tesla
S1070 are listed in Table 1. The ideal peak performance depends on how many

420 C. Gong et al.

Table 1. Technical specifications of a Tesla S1070 GPU

CUDA compute capability 1.3

Total amount of global memory 4G

Number of multiprocessors(SM) 30

Number of cores(SP) 240

Total amount of constant memory 64 KB

Total amount of shared memory per block 16 KB

Total number of registers available per block 16 KB

Warp size 32

operations can be performed per cycle. One stream processor technically support
one MAD (multiply-add) and one MUL (multiply) per cycle, which would corre-
spond to 1.04 Tflops per GPU. There is only one double-precision unit in a SM
and the peak double-precision floating-point performance is about 78 Gflops per
GPU. There are 4 GPUs in Tesla S1070. So the peak single- and double-precision
floating-point performances are 3.73 to 4.14 Tflops and 311 to 345 Gflops [19].

The application performance on GPU is directly associated with Maximum
Thread Blocks (MTB) per Multiprocessor. Compute capability 1.3 most run
eight thread blocks (MTBwarp) because of the restriction of warp. As listed in
Table 1, the shared memory and registers also limits maximum thread blocks.
For example, the maximum thread blocks limited by registers (MTBreg) show
in (3):

MTBreg =
Totalnumberofregistersavailableperblock

(Threadperblock) ∗ (Registersperthread)
(3)

3.2 Programming Model and Software

The programming model is a bridge between hardware and application. As a
scalable parallel programming model, CUDA [4] does not abstract the whole
computing system in an ideal level.The hybrid system is separated into host and
device. CUDA uses kernel function, which is a SPMD (Single Program Multiple
Data) computation with a potentially large number of parallel threads, to run
efficiently on hardware. The concept of thread block in thread hierarchy makes
CUDA programming model is independent of the number of a GPU’s SMs.

CUDA exposes the Multiprocessors on the GPU for general purpose computa-
tion through a minimal set of extensions to C programming language. Compute
intensive components of a program can run as kernel function. Kernel functions
are executed many times with different input data. The software managed on-chip
cache or shared memory in each SIMD core and barrier synchronization mecha-
nism let local data sharing and synchronization in a thread block become a reality.

Optimizing Sweep3D for Graphic Processor Unit 421

4 Multi-dimensional Optimization Methods

Although there is no data send and receive on single GPU through MPI, we still
keep the process level parallelism as Fig. 2 shows. This will guarantee portability
of existing software. As mentioned in Section 2, the jkm loop takes the most
runtime. So the strategy of implementation on this hybrid system is GPU-centric.
That is to say, we have the compute intensive part run on GPU and CPU do
little computation. The optimizational architecture of hybrid computing of this
application shows in Fig. 4.

Fig. 4. Architecture of hybrid CPU-GPU computing

4.1 Stage 1: Thread Level Parallelization

Fig. 2 indicates that there are two levels of parallelism of the subroutine Sweep().
One is the I-lines on JK-diagonals with MMI pipelining (the jkm loop, line 7 - line
20) that can be processed in parallel, without any data dependency. The other
one is the inner loop in the jkm loop, including reading source from Pn moments
(line 8, 9), updating flux of Pn moments (line 17, 18) and DSA face currents (line
19, 20). There are two reasons for why we don’t exploite the parallelism of the
inner loop. First, the inner loop is limited by the X dimension size of the space
geometry (the value of ’it’). Another shortcoming of parallelizing the inner loop
is that CPU calls kernel functions much more times and keeps too many temp
local data. So exploiting the parallelism of the jkm loop becomes the suitable
choice.

In the jkm loop, there are two main branches: not do fixups and do fixups
(line 10) and the variable of data-dependent loops increases or decreases (line
11, 14). The branches don’t affect the performance of kernel’s execution, but
make the whole kernel too big to debug. So we divide the jkm loop into four dif-
ferent kernels (jkmKernelNotFixUp, jkmKernelNotFixDown, jkmKernelFixUp,

422 C. Gong et al.

Table 2. Runtime on CPU and GPU (seconds)

Size (-cubed) 64 128 192 256

CPU 2.43 28.72 107.85 254.33

Stage1 4.44 41.51 79.79 426.20

jkmKernelFixDown) and let CPU deal with branches. Each time CPU invokes
”ndiag” threads which are divided into 1 to � ndiag∗1.0

threadBlockSize� thread blocks.
The runtime of 64n− cubed problem size on both CPU and GPU are listed

in Table 2. When the problem size is 128− cubed, the runtime of the Sweep3D
on GPU is 41.51 seconds which is slower than that of CPU. The following parts
in Section 4 illustrate how to accelerate Sweep3D on Tesla S1070.

4.2 Stage 2: More Threads and Repeated Computing

Although we get 1.35 times speedup on problem size 192 − cubed, the perfor-
mance of 128− cubed and 256− cubed is relatively poor. Taking 192− cubed as
an example, the average number of concurrent threads is about 576. The jkmK-
ernelNotFixUp and jkmKernelNotFixDown use 41 registers per thread while
jkmKernelFixUp and jkmKernelFixDown use 52 registers per thread. According
to (3), we have � 16KB

64∗41 � = 6 and � 16KB
64∗52 � = 4. Six or four blocks can concurrently

run on every multiprocessor. But there are only 576 threads and � 57664 � = 9 to-
tal blocks which can not make full use of 30 multiprocessors with 256 − cubed
problem size, let alone smaller problem size.

There is no data-dependence in the loops of reading source from Pn moments,
updating flux and DSA face currents. We use 64 times more threads to do the

0

50

100

150

200

250

300

350

400

450

64 128 192 256

R
u
n
t
i
me
 (
s
e
co
n
d)

Problem Size (cubed)

Stage 1

Stage 2

Fig. 5. Architecture of hybrid CPU-GPU computing

Optimizing Sweep3D for Graphic Processor Unit 423

same work that one thread do in stage 1. As mentioned in Section 2, the average
number of concurrent threads in n−cubed is about 3n in stage 1. Here, invocating
a kernel has 3n thread blocks with 64 threads in each block.

It’s efficient to use the global memory bandwidth when the simultaneous
memory accesses by threads in a half-warp can be coalesced into a single memory
transaction of 128 bytes. But the data-dependent Sn loop must be executed by
one thread, so there are two barrier synchronizations before and after the Sn

loop. The performance improvement is depicted in Fig. 5.

4.3 Stage 3: Using Shared Memory

The shared memory is on-chip and software managed cache that can reduce the
memory access time of the reusing data. However, most computations in the
program lack data reuse. It is important to exploit data reuse. We found that
the results of computing source from Pn moments are reused in the Sn loop and
medial results in Sn loop are reused in updating flux of Pn moments and DSA
face currents. We utilize the shared memory to store the corresponding reusable
vectors instead of accessing the global memory. A multiprocessor takes 4 clock
cycles to issue one memory instruction for a warp. When accessing local or global
memory, there are 400 to 600 clock cycles of memory latency in addition [4].

A multiprocessor takes 6 cycles per warp instead of the usual 4 to access the
shared memory [20]. There are three reasons why using the shared memory can
not run up 100 times faster than using global memory. First, because of the
double data type, there exists two ways of bank conflicts in shared memory [4].
Second, the global memory access is coalesced and thread blocks scheduling can
hide latency. Third, the real memory access operations are more complicated
than theory analysis. The performance improvement is depicted in Fig. 6.

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

CPU stage1 stage2 stage3 stage4

R
un

tim
e

(s
ec

on
d)

Optimization Stages

Fig. 6. Performance improvement using Shared memory with 192−cubed problem size

424 C. Gong et al.

4.4 Stage 4: Other Methods

Other Methods include more work on GPU, communication overlapping com-
putation, autotunner in the running time and using of texture memory. More
work on GPU can avoid data movement between CPU and GPU. Communica-
tion overlapping computation can hide some time spending on communication.
Autotunner is valuable when ndiag is very small. The texture memory has a
high-speed cache that can reduce the memory access time of the neighboring
data. All the methods above make the runtime of 256 − cubed reduce by 5.69
seconds.

5 Performance Results and Analysis

In this section, we compare the runtime of our GPU and CPU implementations
from a wide range of problem sizes and present speedup and precision error.

The platform consists of Intel(R) Core(TM)2 Quad CPU Q6600 2.40 GHz
processors, 5 GB of main memory, Red Hat Enterprise Linux Server release
5.2 operating system. The Tesla S1070 high performance computing platform
consists of 4 GT200 GPU, clock rate 1.44 GHz, with 4 GB frame buffer memory
each, making a total GPU memory of 16GB.

For the purpose of comparison, we measure the speedup provided by one
GT200 GPU comparing to a serial code running on the CPU (consequently only
one core). Both codes run on double-precision floating-point arithmetic, and are
compiled using the GNU gfortran compiler version 4.1.2, and the nvcc compiler

0

0.5

1

1.5

2

2.5

64 128 192 256

S
p
e
e
d
u
p

Problem Size (cubed)

Stage 1

Stage 2

Stage 3

Stage 4

Fig. 7. Speedup of whole Sweep3D application on GPU. Stage 1 ports kernel part
of Sweep3D to GPU and uses thread level parallelism. Stage 2 does some repeated
computing and uses 64 times more threads to access global memory. Stage 3 uses
shared memory to store local array. Stage 4 mainly puts additional work on GPU.

Optimizing Sweep3D for Graphic Processor Unit 425

provided by CUDA version 2.1. In both cases, level two optimizations have been
performed. Sweep3D runs 4 iterations, half with flux fixups and half without.

The performance improvement of each optimization stage is illustrated in Fig. 7.
Some double precision mathematical operations on GT200 are IEEE-754

round-to-nearest- even, or even worse. This kind of system error can not be
avoided. The maximum error of 4 iterations at problem size 128 − cubed is
smaller than 10-13, which is acceptable.

Petrini got that the CELL BE is approximately 4.5 and 5.5 times faster than
the 1.9 GHz Power5 and 2.6 GHz AMD Opteron on 50 − cubed problem size.
The optimizing runtime is 1.33 seconds on CELL BE without knowing how many
iterations. Consequently the runtime of Power5 and Opteron are 5.985 seconds
and 7.315 seconds. The runtime of Intel Q6600 2.40 GHz is 3.10 seconds with
12 iterations which is the default on 50 − cubed input size. So the CELL BE
is about 2.33 times faster than Intel Q6600 processors. If the proportion can
scale to 192 − cubed input size then the Sweep3D on GPU is almost as fast as
on CELL BE. Of course the performance is only one advantage of GPU, the
programming productivity and wildly available hardware are other two reasons
for adoring GPU than CELL.

6 Conclusion and Future Work

We have presented an optimized GPU based implementation of Sweep3D and
up to 2.25 times speedup is achieved compared to CPU implementation. Our
implementation efficiently uses the features of hybrid system and explores its
multi dimension optimizations. To the best of our knowledge, our work has
revealed a new implementation of neutron transport simulation problem and
wavefront process of parallelism on GPU. Other similar and complex wavefront
algorithms or applications are also likely to benefit from our experience on CPU-
GPU hybrid system.

As a part of the future work, first, Other advanced optimizations will be tried
on Sweep3D(). Second, More experiments will be performed on other cooperating
processing units such as SSE, FPGA and Clearspeed. Third, the scalability issues
on heterogeneous GPU clusters will be carefully studied.

Acknowledgments. This research work is supported by the National Natural
Science Foundation of China under grant No.60673150 and No.60970033, also
by the National High Technology Research and Development Program of China
under grant No.2008AA01Z137. We would like to thank the anonymous reviewers
for their helpful comments.

References

1. Nguyen, H.: GPU Gems 3. Addison Wesley, Reading (2007)
2. Kirk, D.: Innovation in graphics technology. In: Talk in Canadian Undergraduate

Technology Conference (2004)

426 C. Gong et al.

3. AMD Corporation: ATI Radeon HD 5870 Feature Summary, http://www.amd.com/
4. NVIDIA Corporation: CUDA Programming Guide Version 2.1 (2008)
5. AMD Corporation: ATI Stream Computing User Guide Version 1.4.0a (2009)
6. Munshi, A.: The OpenCL Specification Version: 1.0. Khronos OpenCL Working

Group (2009)
7. NVIDIA Corporation: Vertical solutions on CUDA,

http://www.nvidia.com/object/vertical_solutions.html

8. Mathis, M.M., Amato, N., Adams, M., Zhao, W.: A General Performance Model
for Parallel Sweeps on Orthogonal Grids for Particle Transport Calculations. In:
Proc. ACM Int. Conf. Supercomputing, pp. 255–263. ACM, New York (2000)

9. Hoisie, A., Lubeck, O., Wasserman, H.: Scalability analysis of multidimensional
wavefront algorithms on large-scale SMP clusters. In: The 7th Symposium on the
Frontiers of Massively Parallel Computation, pp. 4–15. IEEE Computer Society,
Los Alamitos (1999)

10. Hoisie, A., Lubeck, O., Wasserman, H.: Performance and scalability analysis of
teraflop- scale parallel architectures using multidimensional wavefront applications.
International Journal of High Performance Computing Applications 14(4), 330–346
(2000)

11. Los Alamos National Laboratory: Sweep3D,
http://wwwc3.lanl.gov/pal/software/sweep3d/

12. Davis, K., Hoisie, A., Johnson, G., Kerbyson, D.J., Lang, M., Pakin, M., Petrini,
F.: A Performance and Scalability Analysis of the BlueGene/L Architecture. In:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing, pp. 41–50
(2004)

13. Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho,
J.C.: Entering the petaflop era: the architecture and performance of Roadrunner.
In: Proceedings of the 2008 ACM/IEEE conference on Supercomputing (2008)

14. Lewis, E.E., Miller, W.F.: Computational Methods of Neutron Transport. Ameri-
can Nuclear Society, LaGrange Park (1993)

15. Koch, K., Baker, R., Alcouffe, R.: Solution of the First-Order Form of Three-
Dimensional Discrete Ordinates Equations on a Massively Parallel Machine. Trans-
actions of American Nuclear Society 65, 198–199 (1992)

16. Mathis, M.M., Kerbyson, D.J.: A General Performance Model of structured and
Unstructured Mesh Particle Transport Computations. Journal of Supercomput-
ing 34, 181–199 (2005)

17. Kerbyson, D.J., Hoisie, A.: Analysis of Wavefront Algorithms on Large-scale Two-
level Heterogeneous Processing Systems. In: Workshop on Unique Chips and Sys-
tems, pp. 259–279 (2006)

18. Petrini, F., Fossum, G., Fernandez, J., Varbanescu, A.L., Kistler, N., Perrone,
M.: Multicore Surprises: Lessons Learned from Optimizing Sweep3D on the Cell
Broadband Engine. In: The 21th International Parallel and Distributed Processing
Symposium (2007)

19. NVIDIA Corporation: NVIDIA Tesla S1070 1U Computing System,
http://www.nvidia.com/object/product_tesla_s1070_us.html

20. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing (2008)

http://www.amd.com/
http://www.nvidia.com/object/vertical_solutions.html
http://wwwc3.lanl.gov/pal/software/sweep3d/
http://www.nvidia.com/object/product_tesla_s1070_us.html

Modular Resultant Algorithm for Graphics
Processors

Pavel Emeliyanenko

Max-Planck-Institut für Informatik, Saarbrücken, Germany
asm@mpi-inf.mpg.de

Abstract. In this paper we report on the recent progress in comput-
ing bivariate polynomial resultants on Graphics Processing Units (GPU).
Given two polynomials in Z[x, y], our algorithm first maps the polynomi-
als to a prime field. Then, each modular image is processed individually.
The GPU evaluates the polynomials at a number of points and computes
univariate modular resultants in parallel. The remaining “combine” stage
of the algorithm is executed sequentially on the host machine. Porting
this stage to the graphics hardware is an object of ongoing research.
Our algorithm is based on an efficient modular arithmetic from [1]. With
the theory of displacement structure we have been able to parallelize the
resultant algorithm up to a very fine scale suitable for realization on the
GPU. Our benchmarks show a substantial speed-up over a host-based
resultant algorithm [2] from CGAL (www.cgal.org).

Keywords: polynomial resultants, modular algorithm, parallel compu-
tations, graphics hardware, GPU, CUDA.

1 Overview

Polynomial resultants play an important role in the quantifier elimination the-
ory. They have a comprehend applied foreground including but not limited to
topological study of algebraic curves, curve implitization, geometric modelling,
etc. The original modular resultant algorithm was introduced by Collins [3]. It
exploits the “divide-conquer-combine” strategy: two polynomials are reduced
modulo sufficiently many primes and mapped to homeomorphic images be eval-
uating them at certain points. Then, a set of univariate resultants is computed
independently for each prime, and the result is reconstructed by means of poly-
nomial interpolation and the Chinese Remainder Algorithm (CRA). A number
of parallel algorithms have been developed following this idea: those special-
ized for workstation networks [4] and shared memory machines [5, 6]. In the
essence, they differ in how the “combine” stage of the algorithm (polynomial
interpolation) is realized. Unfortunately, these algorithms employ polynomial
remainder sequences [7] (PRS) to compute univariate resultants. The PRS algo-
rithm, though asymptotically quite fast, is sequential in nature. As a result, the
Collins’ algorithm in its original form admits only a coarse-grained paralleliza-
tion which is suitable for traditional parallel platforms but not for systems with
the massively-threaded architecture like GPUs (Graphics Processing Units).

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 427–440, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.cgal.org

428 P. Emeliyanenko

That is why, we have decided to use an alternative approach based on the the-
ory of displacement structure [8] to compute univariate resultants. This method
reduces the problem to matrix computations which commonly map very well
to the GPU’s threading model. The displacement structure approach is tradi-
tionally applied in a floating-point arithmetic, however, using square-root and
division-free modifications [9], we have been able to adapt it to work in a prime
field. As of now, the research is carried out to port the remaining algorithm
stages (polynomial interpolation and the CRA) to the GPU. Modular computa-
tions still constitute a big challenge on the GPU, see [10,11]. Our algorithm uses
the fast modular arithmetic developed in [1] which is based on mixing floating-
point and integer computations, and is supported by the modified CUDA [12]
compiler1. This allowed us to benefit from the multiply-add capabilities of the
graphics hardware and minimize the number of instructions per modular oper-
ation, see Section 4.3.

The rest of the paper is structured as follows. In Section 2 we state the problem
in mathematically rigorous way and give an overview of the displacement struc-
ture which constitutes the theoretical background for our algorithm. Section 3
surveys the GPU architecture and CUDA programming model. In Section 4 we
present the overall algorithm and discuss how it maps to the graphics hardware.
Finally, Section 5 provides an experimental comparison of our approach with a
host-based algorithm and discusses feature research directions.

2 Problem Statement and Mathematical Background

In this section we define the resultant of two polynomials and give an introduc-
tion to the theory of displacement structure which we use to compute univariate
resultants.

2.1 Bivariate Polynomial Resultants

Let f and g be two polynomials in Z[x, y] of y-degrees p and q respectively:
f(x, y) =

∑p
i=0 fi(x)yi and g(x, y) =

∑q
i=0 gi(x)yi. Let r = resy(f, g) denote

the resultant of f and g with respect to y. The resultant r is defined as the
determinant of (p + q)× (p + q) Sylvester matrix S:

r = det(S) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

fp fp−1 . . . f0 0 . . . 0

0
.

...
0 . . . 0 fp fp−1 . . . f0

gq gq−1 . . . g0 0 . . . 0

0
.

...
0 . . . 0 gq gq−1 . . . g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

1 http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler

http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler

Modular Resultant Algorithm for Graphics Processors 429

Accordingly, the resultant of two monic polynomials f/fp and g/gq relates to
resy(f, g) as follows:

resy(f, g) = f q
pgp

q · resy(f/fp, g/gq).

Note that, the resultant is a polynomial in Z[x]. Using modular and evaluation
homomorphisms one can effectively avoid the arithmetic in polynomial domain
as discussed in Section 4.

2.2 Displacement Structure and the Generalized Schur Algorithm
in Application to Polynomial Resultants

We consider a strongly regular matrix M ∈ Z
n×n2. The matrix M is said to

have a displacement structure if it satisfies the displacement equation:

ΩMΔT − FMAT = GJBT ,

where Ω, Δ, F, A ∈ Z
n×n are lower-triangular matrices, J ∈ Z

r×r is a signature
matrix, G and B ∈ Z

n×r are generator matrices, such that GJBT has a constant
rank r < n. Then, r is called a displacement rank of M . We refer to [8, 13] on
the algorithms for general displacement structure and focus our attention on
resultants.

Let f, g ∈ Z[x] be two polynomials of degrees p and q respectively, and
S ∈ Z

n×n be the associated Sylvester matrix (n = p + q). The matrix S is
structured and has a displacement rank 2. It satisfies the displacement equation:
S − ZSZT = GJBT , where Z is a down-shift matrix zeroed everywhere except
for 1’s on its subdiagonal, J = I ⊕ −I ∈ Z

2×2. Accordingly, G, B ∈ Z
n×2 are

generators defined as follows:

BT =
[
fp . . . fp−q+1 fp−q fp−q−1 . . . f0 0 . . . 0
gq . . . g1 g0 − fp −fp−1 . . . −f1

]
G ≡ 0 except for

G0,0 = 1, Gq,1 = −1

Our goal is to obtain an LDUT -factorization of the matrix S, where the ma-
trices L and U are lower triangular with unit diagonals, and D is a diagonal
matrix. Having this factorization, the resultant is: det(S) = det(D) =

∏n
i dii

(the product of diagonal entries of D).
The generalized Schur algorithm computes the matrix factorization by iter-

atively computing the Schur complements of leading submatrices. The Schur
complement R of a submatrix A in M arises in the course of a block Gaussian
elimination performed on the rows of matrix M , and is defined as:

R = M − CA−1B, where M =
[

A B
C D

]
.

The main idea of the algorithm is to operate on low-rank matrix generators
instead of the matrix itself giving an asymptotically fast solution. After n itera-
tions the algorithm returns the Schur complement of an n×n leading submatrix
2 In other words, a matrix whose leading principal minors are non-singular.

430 P. Emeliyanenko

expressed in terms of matrix generators. In each step it brings the generators
to a proper form. Let (Gi, Bi) denote the generators in step i. A proper form
generator Gi has only one non-zero entry in its first row. The transformation
is done by applying non-Hermitian rotation matrices Θi and Γi

3 to Gi and Bi

respectively:

(GiΘi)T = G
T

i =
[

δi ai
1 ai

2 . . .
0 bi

1 bi
2 . . .

]
and (BiΓi)T = B

T

i =
[
ζi ci

1 ci
2 . . .

0 di
1 di

2 . . .

]
.

Once the generators are in proper form, it follows from the displacement equation
that: dii = δiζi. The next generator Gi+1 is obtained from Gi by shifting down
the column with first non-zero entry while keeping the other column intact (for
explanations please refer to [8]):
[

0
Gi+1

]
= ZGi

[
1 0
0 0

]
+ Gi

[
0 0
0 1

]
, where Z is a down-shift matrix.

The generator B is processed by analogy. Remark that, the size of generators is
decreased by one in each step of the algorithm.

2.3 Non-Hermitian Division-Free Rotations

Here the term non-Hermitian means that we apply rotation to a non-symmetric
generator pair (G, B). Our task is to find matrices Θ and Γ satisfying:

[
a b

]
Θ=[

α 0
]
,
[
c d

]
Γ =

[
β 0

]
with ΘJΓ T = J. It is easy to check that these

equations hold for the following matrices:

Θ =
[

c −b/D
−d a/D

]
, Γ =

[
a/D −d
−b/D c

]
, where D = ac− bd.

Note that, these formulae contain divisions which is undesirable as we are go-
ing to apply the algorithm in a finite field. Similar to Givens rotations [9], we
use the idea to defer the division until the end of the algorithm by keeping a
common denominator for each generator column. In other words, we express the
generators in the following way:

GT =
[

1/la 0
0 1/lb

] [
a0 a1 . . .
b0 b1 . . .

]
and BT =

[
1/lc 0
0 1/ld

] [
c0 c1 . . .
d0 d1 . . .

]
,

Then, the generator update (G, B) = (GΘ, BΓ) proceeds as follows:

ai = la(aic0 − bid0) bi = lb(bia0 − aib0) , where G = (ai, bi),
ci = lc(cia0 − dib0) di = ld(dic0 − cid0) , where B = (ci, di).

It can be shown that the denominators are pairwise equal, thus, we can keep
only two of them. They are updated as follows: la = ld = a0, lc = lb = lal2c .
3 Such matrices must satisfy: ΘJΓ T = J to ensure that the displacement equation

holds after transformation. In other words, we get: GΘJ(BΓ)T = GJBT .

Modular Resultant Algorithm for Graphics Processors 431

Apparently, the denominators must be non-zero to prevent the algorithm from
the failure. This is guaranteed by the strong-regularity assumption introduced
in the beginning. However, this is not always the case for Sylvester matrix. In
Section 4.4 we discuss how to deal with this problem.

3 GPU Architecture and CUDA Framework

In this section we consider GPUs with NVIDIA Tesla architecture. The GPU
comprises a set of Streaming Multiprocessor (SMs) which can execute vertex and
fragment shaders as well as general purpose parallel programs. As an example,
the GTX 280 contains 30 SMs. The GPU execution model is known as single-
instruction multiple-thread or SIMT. It means that the SM applies an instruction
to a group of 32 threads called warps which are always executed synchronously.
If thread code paths within a warp diverge, the SM executes all taken paths
serially. Different warps can execute disjoint paths without penalties.

On the top level, threads are grouped in a programmer defined grid of thread
blocks. Such a model creates potentially unlimited parallel resources exploited
dynamically by the target hardware. A thread block can contain up to 512
threads which can communicate using fast on-chip shared memory and synchro-
nization barriers. The code running on the GPU is referred to as a kernel which
is launched on a grid of thread blocks. Different blocks run completely indepen-
dent from each other: data movement between thread blocks can be realized by
splitting a program in two or more kernel launches4.

CUDA memory model is built on five memory spaces. Each thread has a stat-
ically allocated fast local storage called register file. Registers is a scarce resource
and should be used carefully to prevent spilling. The SM has a fixed amount of
per-block on-chip shared memory (16 Kb). Shared memory is divided in 16 banks
to facilitate concurrent access. The GPU has two cached memory spaces – read-
only constant and texture memory – that are visible to all thread blocks and have a
lifetime of an application. The remaining read-write global memory is also visible
to the entire grid but is not cached on the device. It is crucial to stick to memory
coalescing patterns in order to use the global memory bandwidth effectively.

4 Mapping Resultants Algorithm to Graphics Hardware

In this section we consider the algorithm step-by-step. We start with a high-level
overview, then consider computation of univariate resultants and 24-bit modular
arithmetic. Finally, we discuss the main implementation details and outline some
ideas about the polynomial interpolation on the GPU.

4.1 Algorithm Overview

Our approach follows the “divide-conquer-combine” strategy of Collins’ modular
algorithm. At the beginning, the input polynomials are mapped to a prime field
4 Block independence guarantees that a binary program will run unchanged on the

hardware with any number of SMs.

432 P. Emeliyanenko

for sufficiently many primes. The number of primes depends on the height of
the resultant coefficients which is given by Hadamard’s bound, see [14]. For each
prime mi we compute resultants at x = α0, x = α1, . . . ∈ Zmi . The degree bound
(the number of evaluation points αk) can be devised from the entries of Sylvester
matrix [14]. The resultant r ∈ Z[x] is reconstructed from modular images using
polynomial interpolation and the CRA. The first part of the algorithm is run
on the GPU: we launch a kernel on a 2D grid N × S,5, where one thread block
evaluates polynomials and computes one univariate resultant. The univariate
resultant algorithm will be discussed in Section 4.2.

In order for the algorithm to work properly, we need to handle “bad” primes
and evaluation points adequately. For two polynomials f, g ∈ Z[x, y] as defined
in Section 2.1, a prime m is said to be bad if fp ≡ 0 mod m or gq ≡ 0 mod m.
Similarly, an evaluation point α ∈ Zm is bad if fp(α) ≡ 0 mod m or gq(α) ≡
0 mod m. “Bad” primes can be discarded quite easily: we do this during the
initial modular reduction of polynomial coefficients prior to the grid launch. To
deal with “bad” evaluation points we enlarge the grid by a small amount of
excessive points (1–2%) such that, if for some points the algorithm fails, we
still have enough information to reconstruct the result. The same technique is
used to deal with non-strongly regular Sylvester matrices, see Section 2.3. In
fact, non-strong regularity corresponds to the case where polynomial coefficients
are related via some non-trivial equation which occurs rarely in practise and is
confirmed by our tests (see Section 5). Indeed, if for some αk Sylvester matrix is
ill-conditioned, instead of using intricate methods, we simply ignore the result
and take another evaluation point. In a very “unlucky” case when we cannot
reconstruct the resultant due to the lack of points, we launch another grid to
compute extra information.

It is worth mentioning, that the another interesting approach to compute
polynomial resultants is given in [15]. It is based on modular arithmetic and
linear recurring sequences. Although, this algorithm seemingly has a connection
to the PRS, it is yet unclear whether it can be a good candidate for realization
on the GPU.

4.2 Univariate Resultant Algorithm

The resultant res(f, g) mod mi at x = αj is computed using the method ex-
plained in Section 2.2. In each iteration the algorithm multiplies the generators
by rotation matrices collecting one factor of the resultant per iteration. Then,
the generator columns are shifted down to obtain the generators for the next it-
eration. After n = p + q iterations (notations are as in Section 2.2), the product
of the factors yields the resultant.

The original algorithm can largely be improved. First, we write the generators
as pairs of column vectors: G = (a, b), B = (c, d). Now, remark that, at the be-
ginning G ≡ 0 except for two entries: a0 = 1, bq = −1. If we run the algorithm
on monic polynomials6, we can observe that the vectors a, b and c stay constant
5 Here N denotes the number of moduli, and S – the number of evaluation points.
6 In other words, on polynomials with unit leading coefficients.

Modular Resultant Algorithm for Graphics Processors 433

during the first q iterations of the algorithm (except for a single entry aq). In-
deed, because polynomials are monic, c0 and d0 are initially ones, and so is the
denominator of the rotation matrices (see Section 2.3): D = a0c0−b0d0 = c0 ≡ 1.
Thus, we can get rid of the denominators completely which greatly simplifies the
rotation formulae. Moreover, the first q factors of the resultant returned by the
algorithm are unit, therefore we can skip them. However, we need to multiply
the resultant by f q

pgp
q as to compensate for running the algorithm on monic poly-

nomials. The pseudocode is given below:

1: procedure resultant univariate(f : Polynomial, g : Polynomial)
2: p = degree(f), q = degree(g), n = p + q
3: f ← f/fp, g← g/gq � convert polynomials to monic form
4: G = (a,b), B = (c,d) � set up generators: see Section 2.2 for details
5: for j = 0 to q− 1 do � first q iterations are simplified
6: di ← di − cidj for ∀i = j + 1 . . . n− 1 � multiply by the rotation matrix
7: aq = dj � update a single entry of a
8: ai+1 ← ai, ci+1 ← ci for ∀i = j + 1 . . . n− 2 � shift down the generators
9: end for

10: la = 1, lc = 1, res = 1, lres = 1 � denominators and resultant are set to 1
11: for j = q to n− 1 do
12: for i = j to n− 1 do � multiply the generators by rotation matrices
13: s = la(aicj − bidj), bi = lc(biaj − aibj), ai = s
14: t = lc(ciaj − dibj), di = la(dicj − cidj), ci = t
15: end for
16: lc = lal

2
c , la = aj, res = res · cj, lres = lres · lc � update the denominators

17: ai+1 ← ai, ci+1 ← ci for ∀i = j . . . n− 2 � shift down the generators
18: end for
19: return res · fqp · gp

q/lres � return the resultant
20: end procedure

We will refer to iterations j = 0 . . . q − 1 and j = q . . . n − 1 as type S and
T iterations respectively. For division in lines 3 and 19 we use the modified
Montgomery modular inverse [16] with improvements from [17]. The number
of iterations of this algorithm is bounded by moduli bitlength (24 bits), see
Appendix A.

4.3 24-Bit Modular Arithmetic on the GPU

Modular multiplication is a challenging problem due to the limited hardware
support for integer arithmetic. The GPU natively supports only 24-bit integer
multiplication realized by mul24.lo and mul24.hi instructions7. However, the lat-
ter instruction is not exposed by CUDA API. To overcome this limitation, the
authors of [10] propose to use slow 32-bit multiplication, while the tests from [11]
show that 12-bit arithmetic is faster because modular reduction can be done in
floating-point without overflow concerns.

7 They return 32 least and most significant bits of the product of 24-bit operands
respectively.

434 P. Emeliyanenko

We use the arithmetic based on mixing floating-point and integer computa-
tions [1] which is supported by the patched CUDA compiler8. In what follows,
we will refer to umul24 and umul24hi as intrinsics for mul24.lo and mul24.hi re-
spectively. The procedure mul mod in Algorithm 1 computes a · b mod m for
two 24-bit residues. The idea is to split the product as follows: a · b = 216hi + lo
(32 and 16 bits), and then use a congruence (0 ≤ λ < m):

216hi + lo = (m · l + λ) + lo ≡m λ + lo = 216hi + lo−m · l = a · b− l ·m = r

It can be checked that r ∈ [−2m + ε; m + ε] for 0 ≤ ε < m. Thus, r fits in a
32-bit word and it suffices to compute only 32 least significant bits of products
(a · b and m · l) as shown in line 5 of the algorithm. Finally, the reduction in lines
6–7 maps r to the valid range [0;m− 1].

The next procedure sub mul mod is an extended version of mul mod which
is used to implement matrix rotations: it evaluates (x1y1 − x2y2) mod m (see
Section 2.3). The algorithm computes the products x1y1 and x2y2, and sub-
tracts partially reduced residues. Adding m · 100 in line 14 is necessary to keep
the intermediate result positive since umul24 operation in line 16 cannot handle
negative operands. In total, line 14 is compiled in 4 multiply-add (MAD) instruc-
tions9. The remaining part is an inlined reduce mod operation (see [1]) with a
minor change. Namely, in line 15 we use the mantissa trick [18] to multiply by
1/m and round the result down using a single MAD instruction.

4.4 Putting It All Together

Having all the ingredients at hand, we can now discuss how the algorithm maps
to the GPU. The GPU part of the algorithm is realized by two kernels, see
Figure 1 (a). The first kernel calculates modular resultants, while the second one
eliminates zero denominators from the input sequence and multiplies resultants
by respective modular inverses l−1

res . Grid configuration for each kernel launch is
shown to the left.

The number of threads per block for the first kernel depends on the maximal
y-degree of polynomials being processed. We will use the notation: p = degy(f),
q = degy(g), where f, g ∈ Z[x, y] and p ≥ q. We provide three kernel instanti-
ations for different polynomial degrees: kernel A with 64 threads per block for
p ∈ [32, 63]; B – 96 threads for p ∈ [64, 95]; and C – 128 threads for p ∈ [96, 127].
One reason behind this configuration is that we use p + 1 threads to evaluate
coefficients of f at x = αi in parallel using Horner form (the same for g). The
resultant algorithm consists of one outer loop split up in iterations of type S and
T , see Section 4.1. The inner loop of the algorithm is completely vectorized: this
is another reason why we need the number of threads to match the polynomial
degree. Remark that, in each iteration the size of the generators decreases by
8 http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler
9 The graphics hardware supports 24-bit integer as well as floating-point MADs.

The compiler aggressively optimizes subsequent multiply and adds to use MAD
instructions.

http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler

Modular Resultant Algorithm for Graphics Processors 435

Algorithm 1. 24-bit modular arithmetic on the GPU

1: procedure mul mod(a, b, m, invm) � invm = 216/m (in floating-point)
2: hi = umul24hi(a, b) � high 32 bits of the product
3: prodf = fmul rn(hi, invm) � multiply in floating-point
4: l = float2uint rz(prodf) � integer truncation: l = �hi · 216/m�
5: r = umul24(a, b)− umul24(l, m) � now r ∈ [−2m + ε;m + ε] with 0 ≤ ε < m
6: if r < 0 then r = r + umul24(m, 0x1000002) fi � multiply-add: r = r + m · 2
7: return umin(r, r−m) � return r = a · b mod m
8: end procedure
9: procedure sub mul mod(x1, y1, x2, y2, m, invm1, invm2)

10: h1 = umul24hi(x1, y1), h2 = umul24hi(x2, y2) � two inlined mul mod’s
11: pf1 = fmul rn(h1, invm1), pf2 = fmul rn(h2, invm1) � invm1 = 216/m
12: l1 = float2uint rz(pf1), l2 = float2uint rz(pf2)
13: � compute an intermediate product r, mc = m · 100:
14: r = mc + umul24(x1, y1)− umul24(l1, m)− umul24(x2, y2) + umul24(l2, m)
15: rf = uint2float rn(r) ∗ invm2 + e23 � invm2 = 1/m, e23 = 223, rf = �r/m�
16: r = r − umul24(float as int(rf), m) � r = r − �r/m� ·m
17: return (r < 0 ? r + m : r)
18: end procedure

1, and so is the number of working threads, see Figure 1 (b). To achieve higher
thread occupancy, we unroll the type S iterations by the factor of 2. In this way,
we double the maximal degree of polynomials that can be handled, and ensure
that all threads are occupied. Moreover, at the beginning of type T iterations
we can guarantee that not less than half of threads are in use in the corner case.
We keep the column vectors a and c of the generators G = (a, b) and B = (c, d)
in shared memory because they need to be shifted down in each iteration. The
vectors b and d are located in register space. Accordingly, each iteration (of type
S or T) consists of fetching current first rows of G and B (these are shared by
all threads), transforming the generators using sub mul mod operation, saving
computed factors in shared memory (only for type T iterations), and shifting
down the columns a and c, see Figure 1 (b). Also, during type T iterations we
keep track of the size of generators and switch to iterations without sync on cross-
ing the warp boundary10. The final result is given by the product f q

pgp
q ·
∏

i dii

(see Section 2.2). We compute this product efficiently using “warp-sized” reduc-
tions [19]. The idea is to run prefix sums for different warps separately omitting
synchronization barriers, and then combine the results in a final reduction step,
see Figure 1 (c). The second kernel, launched with 128 threads, runs stream
compaction for each modulus in parallel, and then computes modular inverses
for the remaining entries. Stream compaction algorithm is also based on “warp-
sized” reductions11.

10 Warp, as a minimal scheduling entity, is always executed synchronously, hence,
shared memory access not need to be synchronized.

11 Stream compaction can be regarded to as an exclusive prefix sum of 0’s and 1’s
where 0’s correspond to elements being eliminated.

436 P. Emeliyanenko

compute and

eval. prefix sum:
return and

evaluate (mod. inverse)

evaluate and at

construct generator matrices
run type S and T iterations

gr
id

:
64, 96 or 128 threads

128 threads

ke
rn

el
 1

ke
rn

el
 2

return and

run stream compaction algorithm

f/fp g/gq

fqp gp
q

∏
i dii

res lres

res/lres

f g x = αj ∈ Zmi

N
×

S

res/lres αj ∈ ZmiN
(S

/
1
2
8
)

2
1

3
4
5

0

2
1

3
4

0

5
tid

3
4

2
1
0

5

2
1

3
4
5

2
1

3
4
5

1
2
3
4

1
2
3
4

columns and

2
1

3
4
5

2
1

3
4
5

1
2
3
4

1
2
3
4

2
1

3
4
5

2
1

3
4
5

2
1

3
4
5

2
1

3
4
5

tid

3
2
1
0

4

share the first rows
between all thids of the resultant

2
1

3
4
5

0

2
1

3
4

0

5

collect factors

shift down share the first rows
between all thids

ith iteration (i+1)th iteration
c

α β

dba

a c

c

α β

dba

β

db cba dc a

su
b

m
u
l

m
o
d

su
b

m
u
l

m
o
d

...

α

(a) (b)

final warp reduction

warp−sized prefix sum warp−sized prefix sum

warp (32 threads)

(c)

...

Fig. 1. (a) GPU part of the algorithm consisting of two kernel launches (N – number of
moduli, S – number of eval. points); (b) vector updates during the type T iterations (tid
denotes the thread ID); (c) warp-sized reduction (prefix sum)

4.5 Polynomial Interpolation

Now we sketch some ideas on how to realize polynomial interpolation efficiently
on the GPU. The task of interpolation is to find a polynomial f(x), deg(f) ≤
n, satisfying the following set of equations: f(αi) = yi, for 0 ≤ i ≤ n. The
polynomial coefficients ai are given by the solution of an (n + 1) × (n + 1)
Vandermonde system:

V a = y, where V is a Vandermonde matrix: Vij = αj
i (i, j = 0, . . . , n).

Vandermonde matrix is structured and has a displacement rank 1. Thus, we can
adapt the generalized Schur algorithm to solve the linear system in a small par-
allel time. Namely, if we apply the algorithm to the following matrix embedding:

M =
[

V −y
I 0

]
,

then after n+1 steps we obtain the Schur complement R of a submatrix V which
is equal to: R = 0 − IV −1(−y) = V −1y, i.e., the solution of a Vandermonde
system.

5 Experiments and Conclusion

We have tested our algorithm on the GeForce GTX 280 graphics processor. As a
reference implementation we have use the resultant algorithm [2] from CGAL12

12 www.cgal.org

www.cgal.org

Modular Resultant Algorithm for Graphics Processors 437

Table 1. Timings. First column. p and q: polynomial y-degrees; points: # of evalua-
tion points; moduli: # of 24-bit moduli; Second column. eval: polynomial evaluation;
res: univariate resultants; interp: polynomial interpolation; CRA: Chinese remaindering;
ERR: # of wrong entries computed

parameters CPU timing CPU eval + GPU eval + ratio ERR
setup breakdown resultant resultant

p : 32, q : 32 eval: 29.5 s, res: 25.4 s 54.9 s 131.6 ms 417x 1
points: 970 interp: 27.6 s, CRA: 0.63 s
moduli: 96 total: 83.8 s

p : 50, q : 43 eval: 26.1 s, res: 47.0 s 73.1 s 175.7 ms 415x 0
points: 940 interp: 26.9 s, CRA: 0.69 s
moduli: 101 total: 101.0 s
p : 63, q : 63 eval: 55.1 s, res: 148.4 s 203.5 s 393.5 ms 517x 3
points: 1273 interp: 65.7 s, CRA: 1.32 s
moduli: 136 total: 271.1 s
p : 70, q : 64 eval: 48.7 s, res: 129.2 s 177.9 s 492.6 ms 361x 4
points: 1354 interp: 57.2 s, CRA: 1.0 s
moduli: 102 total: 236.1 s

p : 95, q : 95 eval: 45.0 s, res: 292.5 s 337.5 s 752.5 ms 448x 2
points: 1152 interp: 57.8 s, CRA: 1.3 s
moduli: 145 total: 397.1 s

p : 120, q : 99 eval: 71.3 s, res: 461.2 s 532.5 s 1363.6 ms 390x 3
points: 1549 interp: 93.3 s, CRA: 1.53 s
moduli: 130 total: 627.9 s

(Computational Geometry Algorithms Library) run on the 2.5Ghz Quad-Core
Intel Xeon E5420 with 12MB L2 cache and 8Gb RAM under 32-bit Linux plat-
form. The code has been compiled with ‘–DNDEBUG –O3 –march=core2’ op-
tions. We have benchmarked the first two stages of the host-based algorithm
(evaluate + resultant) and compared them with our realization. Table 1 sum-
marizes the running time for different configurations. The GPU timing includes
the time for GPU–host data transfer for objective comparison. The number of
evaluation points has been increased by 2% to accommodate “unlucky” primes.
The total number of evaluation points for which the algorithm fails is given by
the column ERR in the table. The tests confirm that, indeed, this occurs rarely
on the average. Observe that, the maximal speed-up is attained for p = {63, 95}
(see Table 1): this is no surprise as these parameters correspond to the full thread
occupancy. In total, one can see that our algorithm outperforms the CPU im-
plementation by a large factor. Moreover, due to the vast amount of blocks
executed13, the algorithm achieves a full utilization of the GTX280 graphics
card and we expect the performance to scale well on forthcoming GPUs.

The left graph in Figure 2 examines the performance depending on the poly-
nomials y-degree (which are chosen to be equal) with the number of moduli
and evaluation points fixed to 128 and 1000 respectively. One can see that the

13 Recall that, the grid size equals to ‘number of moduli’ × ‘number of points’.

438 P. Emeliyanenko

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 30 40 50 60 70 80 90 100 110 120 130

to
ta

l t
im

e
[s

]

bivariate polynomial y-degree

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

to
ta

l t
im

e
[s

]

bivariate polynomial x-degree

Fig. 2. The running time as a function of the polynomials’ y-degree (left) and x-degree
(right)

performance scales linearly with the degree. This is an expected behavior because
the algorithm consists of one outer loop (while the inner loop is vectorized). Per-
formance degradation at the warp boundary (64 and 96) is due to switching to
a larger kernel once all thread resources are exhausted. It might be possible
to smooth “stairs” by dynamically balancing the thread workload. The second
graph in Figure 2 evaluates how the running time grows with the x-degree (and
y-degree fixed). Linear dependency is because of the fact that the x-degree only
causes the number of evaluation points (one grid dimension) to increase while
the number of moduli remains the same.

To conclude, we have identified that with the approach of displacement struc-
ture we can harness the power of GPUs to compute polynomial resultants. Our
algorithm has achieved a considerable speed-up which was previously beyond
the reach of traditional serial algorithms. Certainly, this is only the first step in
realization of a complete and robust resultant algorithm on graphics hardware.
From Table 1 one can see that polynomial interpolation could be quite expen-
sive. Nevertheless, our benchmarks clearly show that graphics processors have a
great performance potential in such a not yet well-explored application domain.
Moreover, with the ideas from Section 4.4, we are currently underway to realize
polynomial interpolation on the GPU.

References

1. Emeliyanenko, P.: Efficient multiplication of polynomials on graphics hardware. In:
Dou, Y., Gruber, R., Joller, J.M. (eds.) APPT 2009. LNCS, vol. 5737, pp. 134–149.
Springer, Heidelberg (2009)

2. Hemmer, M.: Polynomials, CGAL - Computational Geometry Algorithms Library,
release 3.4. CGAL, Campus E1 4, 66123 Saarbrücken, Germany (January 2009)

3. Collins, G.E.: The calculation of multivariate polynomial resultants. In: SYMSAC
1971, pp. 212–222. ACM, New York (1971)

4. Bubeck, T., Hiller, M., Küchlin, W., Rosenstiel, W.: Distributed Symbolic Com-
putation with DTS. In: IRREGULAR 1995, pp. 231–248. Springer, London (1995)

5. Schreiner, W.: Developing a distributed system for algebraic geometry. In: EURO-
CM-PAR 1999, pp. 137–146. Civil-Comp Press (1999)

Modular Resultant Algorithm for Graphics Processors 439

6. Hong, H., Loidl, H.W.: Parallel computation of modular multivariate polynomial
resultants on a shared memory machine. In: Buchberger, B., Volkert, J. (eds.)
CONPAR 1994 and VAPP 1994. LNCS, vol. 854, pp. 325–336. Springer, Heidelberg
(1994)

7. Geddes, K., Czapor, S., Labahn, G.: Algorithms for computer algebra. Kluwer
Academic Publishers, Dordrecht (1992)

8. Kailath, T., Ali, S.: Displacement structure: theory and applications. SIAM Re-
view 37, 297–386 (1995)

9. Frantzeskakis, E., Liu, K.: A class of square root and division free algorithms and
architectures for QRD-based adaptive signal processing. IEEE Transactions on
Signal Processing 42, 2455–2469 (1994)

10. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

11. Harrison, O., Waldron, J.: Efficient acceleration of asymmetric cryptography on
graphics hardware. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580,
pp. 350–367. Springer, Heidelberg (2009)

12. NVIDIA: CUDA Compute Unified Device Architecture. NVIDIA Corp. (2007)
13. Chandrasekaran, S., Sayed, A.H.: A Fast Stable Solver for Nonsymmetric Toeplitz

and Quasi-Toeplitz Systems of Linear Equations. SIAM J. Matrix Anal. Appl. 19,
107–139 (1998)

14. Monagan, M.: Probabilistic algorithms for computing resultants. In: ISSAC 2005,
pp. 245–252. ACM, New York (2005)

15. Llovet, J., Mart́ınez, R., Jaén, J.A.: Linear recurring sequences for computing the
resultant of multivariate polynomials. J. Comput. Appl. Math. 49(1-3), 145–152
(1993)

16. de Dormale, G., Bulens, P., Quisquater, J.J.: An improved Montgomery modular
inversion targeted for efficient implementation on FPGA. In: IEEE International
Conference on FPT 2004, pp. 441–444 (2004)

17. Savas, E., Koc, C.: The montgomery modular inverse-revisited. IEEE Transactions
on Computers 49(7), 763–766 (2000)

18. Hecker, C.: Let’s get to the (floating) point. Game Developer Magazine, 19–24
(1996)

19. Hillis, W.D., Steele Jr., G.L.: Data parallel algorithms. Commun. ACM 29, 1170–
1183 (1986)

440 P. Emeliyanenko

A Montgomery Modular Inverse Algorithm

To realize efficient Montgomery modular inverse on the GPU, we have com-
bined the algorithm from [16] with ideas from [17], and took advantage of the
fast 24-bit integer multiplication supported by the GPU. The algorithm com-
prises two stages. In the first stage we iteratively compute x−12k mod m14, where
s ≤ k ≤ 2s and s = �log2 m�. Then, we run two Montgomery multiplications by
the powers of two to get rid of 2k factor. The pseudocode is given below:

1: procedure montgomery inverse(x, m, mu) � computes x−1 mod m
2: v = x, u = m, s = 1, r = 0, k = 0 � x is a 24-bit residue modulo m
3: repeat � first stage: compute r = x−12k mod m iteratively
4: tmprs = r
5: if v mod 2 = 1 then
6: safeuv = v
7: if (v xor u) < 0 then v = v + u else v = v − u fi
8: if (v xor safeuv) < 0 then u = safeuv, tmprs = s fi
9: s = s + r

10: fi
11: v = v/2, r = tmprs · 2, k = k + 1
12: until v 	= 0
13: r = m− r � second stage: get rid of 2k factor
14: if r < 0 then r = r + m fi � r = x−12k mod m, 24 ≤ k ≤ 48
15: if k > 24 then � first multiply: r = (x−12k)(2−m) = x−12k−m (mod m)
16: c = umul24(r, mu) � mu = −m−1 mod 224

17: lo = umul24(c, m), hi = umul24hi(c, m) � (hi, lo) = c ·m (48 bits)
18: lo = umul24(lo, 0x1000001) + r � lo = (lo mod 224) + r
19: r = hi/28 + lo/224 , k = k− 24 � r = (lo, hi)/224

20: fi
21: � second Montgomery multiply: r = (x−12k)(2m−k)(2−m) = x−1 (mod m)
22: c = r · 224−k, d = umul24(c, mu) � mu = −m−1 mod 224

23: lo = umul24(d, m), hi = umul24hi(d, m) � (hi, lo) = d ·m (48 bits)
24: d = r/2k, lo = lo mod 224

25: lo = umul24(c, 0x1000001) + lo � lo = (c mod 224) + r
26: r = hi/28 + d + lo/224

27: return r
28: end procedure

14 The number of iterations is bounded by moduli bit-length (24 bits).

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 441–453, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Novel Scheme for High Performance
Finite-Difference Time-Domain (FDTD) Computations

Based on GPU

Tianshu Chu1, Jian Dai2, Depei Qian1, Weiwei Fang3, and Yi Liu1

1 School of Computer Science and Engineering, Beihang University,
100191, Beijing, P.R. China

{tianshu.chu,depei.qian,yi.liu}@jsi.buaa.edu.cn
2 School of Electronics and Information Engineering, Beihang University,

100191, Beijing, P.R. China
daijian2003cs@163.com

3 School of Computer and Information Technology, Beijing Jiaotong University,
100044, Beijing, P.R. China
fangvv@gmail.com

Abstract. Finite-Difference Time-Domain (FDTD) has been proved to be a very
useful computational electromagnetic algorithm. However, the scheme based on
traditional general purpose processors can be computationally prohibitive and
require thousands of CPU hours, which hinders the large-scale application of
FDTD. With rapid progress on GPU hardware capability and its programmabil-
ity, we propose in this paper a novel scheme in which GPU is applied to accel-
erate three-dimensional FDTD with UPML absorbing boundary conditions. This
GPU-based scheme can reduce the computation time significantly, while ob-
taining high accuracy as compared with the CPU-based scheme. With only one
AMD ATI HD4850 GPU, when computational domain is up to (180×180×180),
our implementation of the GPU-based FDTD performs approximately 93 times
faster than the one running with Intel E2180 dual cores CPU.

Keywords: computational electromagnetic, FDTD, GPGPU, parallel comput-
ing, ATI Stream.

1 Introduction

First introduced by Yee in 1966 [1], the algorithm of Finite-Difference Time-Domain
(FDTD) has received significant research attention in the electromagnetic community.
It has been proved to be a powerful method for solving time domain electromagnetic
problems.

In recent years, the algorithm has been further developed by many researchers. Some
sub-technologies for FDTD have been put forward to improve the algorithm greatly,
such as conformal FDTD, local sub-cell FDTD, ADI-FDTD, parallel FDTD, PSTD and
hybrid FDTD-FE technology. With the help of these sub-technologies, FDTD has been
applied to more domains, including electromagnetic scattering, antennas design, etc [2].

442 T. Chu et al.

Unfortunately, for large-scale application of FDTD, there are still some restrictions.
Among them, requirement to large system memory and long computing time is espe-
cially prohibitive. To overcome those drawbacks, researchers have proposed some
parallel FDTD algorithms. Those algorithms make use of system memory and com-
puting resource of the cluster to meet the need of large memory and to reduce the
simulation time [3]. However, as the number of compute nodes in the cluster increases,
the efficiency of communication among nodes will go down. Thus, reducing computing
time for FDTD becomes a tough issue for engineering application.

The high computational power of graphics processor unit (GPU) has been noticed
by many researches in recent years. The GPU-based FDTD algorithm was first pro-
posed by Sean Krakiwsky in 2004 [4], and then improved by some other researchers
[5-10]. In comparison with CPU, GPU is of the capability of parallel computing with
multi-pipelines and greater data throughput [11]. It can achieve very significant per-
formance improvement over CPU-based FDTD computing [12].

Nevertheless, GPU computing has not been very popular among researchers, due
to the demand of profound knowledge about GPU hardware design and graphics API
(i.e. OpenGL). Introduction of CUDA (Compute Unified Device Architecture) and
Stream, by the leading GPU manufacturer Nvidia and ATI, brought GPU computing
into a new era. They provide researchers a more accessible way to bring the power of
GPU into full play. To the best of our knowledge, very few GPU-based FDTD
schemes are implemented on ATI architecture. In this paper, we propose a novel
scheme for high performance FDTD computing based on ATI Stream.

Although great achievement on FDTD algorithm for GPU application has been
made, there are still rooms for performance improvement and problems needed to be
resolved. This paper presents a step forward and proposes a new array of optimization
techniques and algorithms to further improve the performance of GPU-based FDTD.
In addition, the UPML [2] absorbing boundary condition applied in the scheme makes
it possible to solve practical problem with high performance.

The rest of this paper is organized as follows. Section 2 provides an overview of
both the basic theory of FDTD algorithm and the GPU computing. A novel practical
tuning technique for three-dimensional FDTD with UPML is presented in Section 3.
Section 4 evaluates our optimized FDTD algorithm based on GPU against the
CPU-based scheme in both accuracy and speed-up ratio. In addition, a case study is
presented to prove the validity of our scheme. Finally Section 5 concludes this paper
and looks into other issues for further improvement of the performance of FDTD.

2 Background

2.1 The System Model

In order to elucidate resources available to a programmer, we shortly describe the ATI
HD4850 GPU, on which our schemes were implemented. HD4850 is a product of
AMD Corp. which is a single-GPU card published in 2008. The central core of
HD4850 is RV770, which has ten SIMD engines, each with 16 thread processors, and
each thread processor contains five stream cores. It means that RV770 has 800 stream
cores which are used for parallel computation [13]. The detailed parameters are shown
in table 1.

 A Novel Scheme for High Performance FDTD Computations Based on GPU 443

Table 1. The RV770 parameters of HD4850 video card

Stream Processor – RV770

Core freq 625MHz Thread processors 16
Core crafts 55nm Memory freq 1986MHz

Transistor amount 0.956bil Memory size 512M
Memory type GDDR3 Memory bit-width 256 bit
Texture unit 40 Stream Core 800

The HD4850 GPU is supported by ATI Stream programming platform. The im-

plementation in this paper is developed with a high-level language, ATI Brook+ [13].
For performance comparison between CPU and GPU, a serial code is implemented

and executed on Intel Dual E2180 processor.

2.2 The Basic Scheme of FDTD Algorithm

Maxwell’s equations are the basic and significant equations defining macroscopically
electromagnetic phenomenon. However, it would be difficult or impossible to solve
Maxwell’s equations for arbitrary model spaces. FDTD is a direct time domain
solution to Maxwell’s curl equations, which are given as follows:

() () (),
, ,

E r t
H r t E r t

t
ε σ

∂
∇× = +

∂

v v
v vv v (1)

() () (),
, ,m

H r t
E r t H r t

t
μ σ

∂
∇× = − −

∂

v v
v vv v (2)

Formula (1) and (2) can be respectively cast into three scalar partial differential
equations in the Cartesian coordinates as follows [2].

1 yx z
m x

EH E
H

t z y
σ

μ
∂⎛ ⎞∂ ∂

= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3)

1y xz
m y

H EE
H

t x z
σ

μ
∂ ∂∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (4)

1 yxz
m z

EEH
H

t y x
σ

μ
∂⎛ ⎞∂∂

= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (5)

1 yx z
x

HE H
E

t y z
σ

ε
∂⎛ ⎞∂ ∂

= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (6)

1y x z
y

E H H
E

t z x
σ

ε
∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (7)

444 T. Chu et al.

1 y xz
z

H HE
E

t x y
σ

ε
∂⎛ ⎞∂∂

= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (8)

Formulas (3)-(8) can be modified according to discrete time domain and spatial do-
main. Below is the resulting x-directed E field equation; the other 5 field components
are similar [2].

() ()
0.51

1/2, , 1/2, ,0.5

tn nx xEx Ex
i j k i j ktx x

ε σ
ε σ

− Δ+ = ++ ++ Δ

() ()
1/2 1/2
1/2, 1/2, 1/2, 1/2,

0.5

n n
i j k i j k

x x

Hz Hzt

t yε σ

+ +
+ + + −⎛ −Δ ⎜ −

⎜+ Δ Δ⎝

() ()
1/2 1/2
1/ 2, , 1/2 1/2, , 1/2

n n
i j k i j kHy Hy

z

+ +
+ + + − ⎞−

⎟
⎟Δ ⎠ (9)

Another important FDTD concept is known as the Yee Space Grid, shown in Figure 1.

zE

xE

yE

zH

xH yH

zH

xH

yH

yE

xEzE

xE

zE
yH

zH

yH

xH

 (a) Electric grid cell (b) Electric grid and magnetic grid

Fig. 1. Relationship between electric and magnetic field for the format of Yee

The characteristic of the Yee Space Grid is the interleaved placement of the E and
H fields. The E fields are interleaved with H fields by half of the time step and so are
the H fields. E and H are centered in the surface of each other. Thus, each E field
component is surrounded by four H field components and vice versa.

Many schemes which use GPU to accelerate FDTD computation do not take PML
region. It means that they cannot be used to solve the problems of electromagnetic
wave propagation in free space. Therefore, in this paper, we adopt UPML to improve
those schemes. With UPML, the formula of Ex can be given as follows [2]:

() () ()
1
1 2, , 1 2, ,1n n

i j k i j kEx C m Ex+
+ += + () () () ()

1
1 2, , 1 2, ,2 3n n

i j k i j kC m Dx C m Dx+
+ +−

 (10)

() () ()
1
1 2, , 1 2, ,

n n
i j k i j kDx CA m Dx+
+ += +

() () ()
1 2 1 2
1 2, 1 2, 1 2, 1 2,

n n
i j k i j kHz Hz

CB m
y

+ +
+ + + −⎛ −

⎜ −
⎜ Δ⎝

() ()
1 2 1 2
1 2, , 1 2 1 2, , 1 2

n n
i j k i j kHy Hy

z

+ +
+ + + − ⎞−

⎟
⎟Δ ⎠

 (11)

where the variables CA(m), CB(m), C1(m), C2(m), and C3(m) are set as:

() () ()
() ()

0

0

2

2
y y

y y

m t m
CA m

m t m

κ σ ε
κ σ ε

Δ −
=

Δ + (12)

 A Novel Scheme for High Performance FDTD Computations Based on GPU 445

() () () 0

1

2y y

CB m
m t mκ σ ε

=
Δ + (13)

() () ()
() ()

0

0

2
1

2
z z

z z

m t m
C m

m t m

κ σ ε
κ σ ε

Δ −
=

Δ + (14)

() () ()
() ()

0

1 1 0

2
2

2
x x

z z

m t m
C m

m t m

κ σ ε
ε κ ε σ ε

Δ +
=

Δ + (15)

() () ()
() ()

0

1 1 0

2
3

2
x x

z z

m t m
C m

m t m

κ σ ε
ε κ ε σ ε

Δ −
=

Δ + (16)

In those equations, m = (i + 1/2, j, k), , ,ε σ κ are the parameters of UPML. Other
fields can be obtained in the similar way [2].

The FDTD algorithm is a process of alternate E field updating and H field updating
to solve the Maxwell’s equations. At time step n, it performs E field update equations
for each cell. Then it performs E field update equations for each cell at time step
n + 1/2.

The computational domain is a three-dimensional grid. Each cell in the grid has its
own material type, which determines the dielectric properties. After initialization, the
basic serial FDTD algorithm used is shown in Figure 2.

Fig. 2. High-level overview of basic serial FDTD algorithm

From the discussion above, we can learn that the memory requirement is deter-
mined by the size of the problem space, and the computing time is determined by the
size of computational domain and total time steps.

1. for(n = 0; n < time_steps; n++){
2. for(k = 0; k < z_dim; k++)
3. for(j = 0; j < y_dim; j++)
4. for(i = 0; i < x_dim; i++){
5. /* E field updates */
6. update ex[i][j][k];
7. update ey[i][j][k];
8. update ez[i][j][k];
9. /* H field updates */
10. update hx[i][j][k] ;
11. update hy[i][j][k];
12. update hz[i][j][k];
13. }
14. }

446 T. Chu et al.

3. FDTD Computation Based on GPU

In this section, we will discuss the details of implementing the FDTD algorithm on
GPU.

3.1 Parallel Updating by Means of Thread

The bottleneck of FDTD is that the update operations are performed in tight loops.
Since the value of Ez (or Hz) of a cell in FDTD is only related to the magnetic field (or
electric field) of the closest neighboring cells as well as its previous value, we need
only the values of Hx and Hy (Ex and Ey) surrounding the cell and the value of Ez (Hz) at
the previous time step in calculation. Thus, if we divide the task into E update and H
update, each of them can be executed in parallel on GPUs.

Take update of E for example. In our scheme, we define a three-dimensional com-
puting domain: nx×nx×nz. Let variables nx, ny, nz denote the number of Yee cells in
direction x, y, z, respectively. The data storage is continuous along z direction. Unlike
the case in CPU execution where E0,0,0 is calculated before E0,0,1, the execution of GPU
kernel [14] creates independent threads that compute and write at every location in E.
The hardware takes the place of the nested for-loop.

3.2 Vectorization

One feature of the ATI stream processors is that each thread processor is capable of
performing parallel operations. In addition, the Brook+ can support vector data types
of up to four elements, such as float4, to match the hardware architecture [14]. Using
vector data types is of two advantages. First, because every memory fetch instruction
takes at least one cycle, the vector fetches can make more efficient use of the fetch
resource. Second, as the inputs and outputs are vector data types, the domain size of
the execution could decrease and fewer threads are executed by the stream processor.
Thus, to maximize performance of our scheme, we can vectorize fetches and threads,
making efficient use of those architecture features.

As in our scheme, the inputs and outputs are set as float4 instead of float. There-
fore, the GPU kernel can issue a fetch for float4 type in one cycle versus four separate
float fetches. In addition, the kernel combines four threads into a single thread and
writes out four results with the vector data type float4. And then the domain size of
the execution decreases to nx×ny×(nz/4).

Furthermore, since the maximum output of the threads can be a vector of
eight float4, we can put more work into a thread and combine the output of indi-
vidual computation by vectorization [14]. In our scheme, the E field variables,
such as Ex, Ey and Ez are all computed in the same kernel (and therefore thread)
simultaneously, which can reduce the number of memory fetches and stream core
operations.

Figure 3 shows how update of E is assigned to GPU threads. The update of H is
assigned in the same way.

 A Novel Scheme for High Performance FDTD Computations Based on GPU 447

Fig. 3. GPU threads performing parallel FDTD

In our scheme of FDTD computation, along the direction z, to calculate the value
of Ei,j,k, we need the difference between two adjacent elements, H i,j,k and H i,j,k-1. How-
ever, using float4 type, if H1 minus H2, it means that the elements in the H1 subtract
the corresponding elements in H2. To address the issue, we establish another float4
data structure to store float4 Htemp shown in figure 4. Each time when it is needed to
compute the value of E, we use float4 H minus float4 Htemp to accomplish adjacent
element subtraction.

Fig. 4. Adjacent element subtraction along direction z

448 T. Chu et al.

Through the transmission function, the problem space can be read into GPU and
then iterative computation of FDTD algorithm with UPML will be performed in time
step. The high-level overview of the GPU code is shown in Figure 5. B represents the
magnetic flux, and F and G are the parameters of UPML.

Fig. 5. High-level overview of GPU codes

4 Performances Evaluating

To prove that our scheme has practical value with UPML, and can achieve better per-
formance and perfect accuracy compared with CPU based scheme, we present some
numerical experiments below.

I. Main Processing
1. Use StreamRead() to transfer data from CPU to GPU;
2. for(timestep=0; timestep<nstep; timestep++){
3. ecomp_gpu_kernel();
4. hcomp_gpu_kernel();
5. }
6. Use StreamWrite() to transfer data from GPU to CPU;

II ecomp_gpu_kernel()
1. float2 index = indexof();//Get (x, y) in array of

threads
2. if(need the difference of E along with z

direction){
3. Implement Etemp scheme;
4. Compute float4 F[index], float4 G[index], float4

H[index];
5. }
6. else{
7. Compute float4 F[index], float4 G[index], float4

H[index];
8. }
9. Add excitation;

III.hcomp_gpu_kernel()
1. float2 index = indexof();//Get (x, y) in array of

threads
2. if(need the difference of H along with z

direction){
3. Implement Htemp scheme;
4. Compute float4 B[index], float4 H[index];
5. }
6. else{
7. Compute float4 B[index], float4 H[index];
8. }

 A Novel Scheme for High Performance FDTD Computations Based on GPU 449

4.1 Analysis of Performance on GPU-Based FDTD

Unlike the CPU computation, the GPU-based FDTD scheme must spend time for
data-transfer through the bus. It will influence the total execution time. Reference 15
shows that steady state performance is achieved when the initialization cost is amor-
tized over many iterations (>1,000) and approaches zero per iteration. In our paper,
this assertion proves to be valid for the ATI HD4850 GPU. Thus, we fixed the time
iteration steps as 2000.

We use the term Mcell/s 16 to measure the computing performance of GPU. It
describes simulation speed as follow.

[] 6
Speed Mcells s

10
it

s

I J K n

T

× × ×
=

×

(17)

In this equation, I×J×K denotes the problem size, nit describes the iteration steps
which has been set to 2000, and Ts represents the simulation time.

In order to analyze the new scheme, we choose a simple and typical example of
FDTD: electromagnetic wave radiation of line excitation source. The computing do-
main is (100×100×100). The spatial step is 0.05m. The time step is determined by the
following formula.

() () ()2 2 2

1
0.9

1 1 1
t

c x y z
Δ = ×

Δ + Δ + Δ

(18)

The waveform of excitation is set as below:

 () []
2

0 0

3
exp sin

t T
e t A t

T
ω

⎡ ⎤−⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

(19)

where 0 2000A = , 92T e s−= , 9
0 2eω = .

As shown in Figure 6, the GPU-based FDTD has a good UPLM, which absorbs
electromagnetic wave well as that no electromagnetic wave reflects backwards.

20 40 60 80 100

20

40

60

80

100

Fig. 6. Simulation results of GPU-based FDTD (nz=50, x-y plane)

To analyze the precision of the new scheme on GPU, we assume that the result of
CPU is accurate, and calculate the absolute error and relative error on the surface in
Figure 6. The absolute error is around 10-4 and the relative error is lower than 0

004 . The
difference is caused by the compiler and internal function of the GPU architecture.

450 T. Chu et al.

Thus, for FDTD computing, the result of GPU is acceptable. However, if the time
step and problem size grow up, the error will accumulate. Therefore, when applying
the scheme in a practical project, researchers need to consider the error range for the
validity of the result.

Figure 7 shows the performance comparison between GPU-based and CPU-based
FDTD. We can see that, when the problem size is small, the GPU-based scheme does
not show the benefit of parallel computing and the performance is even worse than
that of the CPU-based one because the models are not big enough to saturate the
GPUs fragment processors [15]. However, when the problem size increases and all
the data fit into the GPU memory, the performance of GPU-based scheme raises
sharply while the performance of the CPU-based scheme remains the same. Summary
of achieved speed-up compared to CPU-based approach is presented in table 2. The
highest speed-up reaches to 93.

0 2 4 6
0

20

40

60

80

100

120

140

160

180

P
er

fo
rm

an
ce

 (
M

ce
lls

/s
)

Problem Size(MCells)

 GPU
 CPU

Fig. 7. Performance comparison between massively parallel GPU FDTD and serial CPU FDTD
for different problem size

Table 2. Computing speed-up comparing to the CPU

Problem Size Speed-Up
20 20 20× × 0.4
40 40 40× × 3
60 60 60× × 12
80 80 80× × 25

100 100 100× × 41
120 120 120× × 56
140 140 140× × 76
160 160 160× × 82
180 180 180× × 93

 A Novel Scheme for High Performance FDTD Computations Based on GPU 451

In addition, as the performance curve for our GPU-based scheme seems to follow a
certain law, we try to utilize the curve-fitting technique to obtain the formula to de-
scribe the relationship between scheme performance y and problem size x. The initial
fitting function is set as:

()10logy a x b c= − +
 (20)

The Levenberg-Marguardt algorithm [17] is then applied to obtain the value of a, b
and c, which are listed as follows:

a = 144, b = -4.39e5, c = -815 (21)

Figure 8 shows the final fitted curve as well as data samples from experiments with
different problem size. Thus, we can easily estimate the performance value y by any
given input problem size x.

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

x

y

 experiment data
 final fitted curve

Fig. 8. Final fitted curve of scheme performance

4.2 Numerical Example Computing with GPU

In this section, we will present a case study of electromagnetic radiation of a com-
puter box, which applies GPU to accelerate FDTD computing, to prove the validity of
our scheme. This sample shows the electromagnetic radiation of a personal computer
and the distribution of electromagnetic field in the computer.

The size of computer is shown in Figure 9. The spatial step is 0.004m. The
waveform of excitation is set as:

() []
2

0 0

3
exp sin

t T
e t A t

T
ω

⎡ ⎤−⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

(22)

where 0 3773.6A = , 102T e s−= , 8
0 3eω = .

In this case study, the computing domain is 100×100×100. The running speed of
GPU-based scheme is about 45 times faster than that of the CPU-based. Figure 10 shows
the computing results. The results show the distribution of electromagnetic field at the
600th time step. From these figures, we can see the distribution of electromagnetic

452 T. Chu et al.

 (a) (b) (c) (d)

Fig. 9. The three-dimensional plot of computer box and its size. (a) the side face of box. (b) the
back face of box. (c) the inner structure of computer. (d) the front face of box covering with
plastic.

 (a) E

z-xy
 (b) E

y-xz
 (c) E

x-yz

Fig. 10. The distribution of electromagnetic field at 600th time step with GPU computing. (a) the
surface of nz=80. (b) the surface of ny=30. (c) the surface of nx=50.

field and the interaction with computer structure clearly. Then we can analyze the
electromagnetic compatibility of a computer box and develop electromagnetic protec-
tion schemes for the computer box.

5 Conclusions

This paper presents a practical implementation of FDTD with UPML using GPUs.
We present a highly optimized scheme for GPU that achieves approximately 93 times
speed-up in comparison with the Intel E2180 dual cores CPU. In addition, the scheme
proves to be valid and works perfectly in a real project of simulating electromagnetic
radiation of the computer box.

Starting from the scheme that we have described above, there are obviously a
number of possible directions for future research. One is to utilize CPU and the sys-
tem memory to assist GPU computing in order to obtain a higher performance. An-
other approach is to use extra GPUs to set up a GPU-cluster, which may have a much
better price/performance ratio.

Acknowledgement

This work was supported by the competition committee of AMD China University
Accelerated Computing Application Contest, the National Hi-tech R&D Program of

 A Novel Scheme for High Performance FDTD Computations Based on GPU 453

China (863 program) under grant No.2009AA01Z107, the National Science Founda-
tion of China (NSFC) under grant No.60873053, and the International S&T Coopera-
tion Program of China under grant No.010S2010GR0607.

References

1. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media. IEEE Transaction on Antennas and Propagation AP-14(3),
302–307 (1966)

2. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference
Time-Domain Method, 3rd edn. Artech House, Norwood (2005)

3. Yu, W., Mittra, R., Su, T., Liu, Y., yang, X.: Parallel finite-difference time-domain method.
Artech House, Norwood (2006)

4. Krakiwsky, S.E.: Acceleration of Finite-Difference Time-Domain Electromagnetic Simu-
lations Using Graphics Processor Units, Ph.D. dissertation, Dept. Elect. Comp. Eng. Uni-
versity of Calgary, Alberta, CA (2004)

5. Inman, M.J., Elsherbeni, A.Z., Maloney, J.G., Baker, B.N.: GPU based FDTD solver with
CPML boundaries. In: 2007 IEEE Antennas and Propagation Int. Symp., June 9-15, pp.
5255–5258 (2007)

6. Price, D.K., Humphrey, J.R., Kelmelis, E.J.: GPU-based accelerated 2D and 3D FDTD
solvers. In: Osinski, M., Henneberger, F., Arakawa, Y. (eds.) Proceedings of the SPIE,
Presented at Society of Photo-Optical Instrumentation Engineers (SPIE) Conference,
Physics and Simulation of Optoelectronic Devices XV, February 2007, vol. 6468, p. 646806
(2007)

7. Poman, S.: Time-Domain Computational Electromagnetics Algorithms for GPU Based
Computers. In: EUROCON, Warsaw, Poland, September 2007, pp. 1–4 (2007)

8. Baron, G.S., Fiume, E., Sarris, C.D.: Graphics hardware accelerated multiresolution
time-domain technique: development, evaluation and applications. IET Microwaves, An-
tennas & Propagation 2(3), 288–301 (2008)

9. Valcarce, A., De La Roche, G., Zhang, J.: A GPU approach to FDTD for Radio Coverage
Prediction. In: IEEE 11th International Conference on Communication Systems, Guang-
zhou, China (November 2008)

10. Balevic, A., Rockstroh, L., Tausendfreund, A., Patzelt, S., Goch, G., Simon, S.: Accelera-
tion Simulations of Light Scattering based on Finite-Difference Time-Domain Method with
General Purposed GPUs. In: CSE 2008, 11th IEEE International Conference on Computa-
tional Science and Engineering, Sao Paulo, July 2008, pp. 327–334 (2008)

11. Pharr, M. (ed.): GPU Gems 2. Addison Wesley, Upper Saddle River (2005)
12. Sypek, P., Dziekonski, A., Mrozowski, M.: How to Render FDTD Computations More

Effective Using a Graphics Accelerator. IEEE Transactions on Magnetics 45(3) (March
2009)

13. AMD Corp, http://www.amd.com
14. AMD Corp. ATI Stream Computing User Guide
15. Adams, S., Payne, J., Boppana, R.: Finite Difference Time Domain (FDTD) Simulations

Using Graphics Processors. In: HPCMP Users Group Conference 2007 (2007)
16. Acceleware, http://www.acceleware.com
17. Levenberg, K.: A method for the solution of certain non-linear problems in least-squares.

Quart. Appl. Math. 2, 164–168 (1944)

A Proposed Asynchronous Object Load
Balancing Method for Parallel 3D Image

Reconstruction Applications

Jose Antonio Alvarez-Bermejo and Javier Roca-Piera�

Dept of Computer Architecture and Electronics
Universidad de Almeŕıa

Ctra. Sacramento S/N. 04120
Spain

Abstract. Scientific applications usually exhibit irregular patterns of
execution and high resource usage. Parallel architectures are a feasible
solution to face these drawbacks, but porting software to parallel plat-
forms means the addition of an extra layer of complexity to scientific
software. Abstractions such as Object Orientation and models like the
concurrent object model may be of great help to develop scientific parallel
applications. The shared nature of parallel architectures and the stochas-
tic condition of parallel schedulers underline the adaptivity as a desired
feature for parallel applications. Load Balancers are key for achieving
adaptivity, and benefit from object oriented models in issues like load
migration. In this paper we present our experiences when porting scien-
tific software using the concurrent object abstraction and a method to
asynchronously invoke load balancers.

1 Introduction

A high percentage of the scientific code is CPU-stressing, iterative and irregu-
lar and parallelism is almost the unique path for an acceptable solution. Much
effort and programming abilities are needed to parallelize efficiently [1]. The ap-
plication’s irregular execution patterns make it difficult to assure optimal runs on
parallel machines, therefore adaptivity is a desired issue [2]. It is a fact that prior
to writing parallel code there is so much time spent in optimizing the algorithm
and very little attention is paid to data structures. Our main aim was trying
to program efficiently, shifting the programming paradigm and minimizing the
gap from algorithm to implementation using more expressive paradigms [3]. We
shifted to a particular object oriented paradigm [4] and used the charm frame-
work [5]. This paper gathers the idea of exploiting concurrence and parallelism
efficiently using the object orientation pattern. On a second stage, this paper
shows load balancing techniques used to achieve adaptivity and finally presents
a method to avoid interferences from the load balancer at fixed intervals, which
� This work has been funded by grant TIN 2008-01117 from the Spanish Ministry of

Science and Innovation.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 454–462, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Proposed Asynchronous Object Load Balancing Method 455

may diminish the performance. This paper is organized as follows, section 2
introduces the iterative reconstruction method. Section 3 shows improvements
achieved when porting our code to the new paradigm. Section 4 exposes how we
reached adaptivity and the technique to avoid fixed-interval interferences from
the load balancer, and in Section 5 we summarize the conclusions.

2 The Iterative Reconstruction Problem

Series expansion reconstruction methods assume that a 3D object, or function
f , can be approximated by a linear combination of a finite set of known and
fixed basis functions, with density xj . The aim is to estimate the unknowns,
xj . These methods are based on an image formation model where the measure-
ments depend linearly on the object in such a way that yi =

∑J
j=1 li,j ·xj , where

yi denotes the ith measurement of f and li,j the value of the ith projection of
the jth basis function. Under those assumptions, the image reconstruction prob-
lem can be modeled as the inverse problem of estimating the xj ’s from the yi’s
by solving the system of linear equations aforementioned. Assuming that the
whole set of equations in the linear system may be subdivided into B blocks,
a generalized version of component averaging methods, BICAV [1] can be de-
scribed. The processing of all the equations in one of the blocks produces a
new estimate, see Figure 1(a). All blocks are processed in one iteration of the
algorithm. These techniques produce iterations which converge to a weighted
least squares solution of the system. A volume can be considered made up of 2D
slices. The use of the spherically symmetric volume elements (blobs) [1], makes
slices interdependent because of blob’s overlapping nature. The amount of com-
munications is proportional to the number of blocks and iterations (as sketched
in Figure 1(a)). Reconstruction yields better results as the number of blocks is
increased. The main drawback of iterative methods is their high computational
requirements. These demands can be faced by means of parallel computing and

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

When a thread blocks in a communication phase, an Scheduler
picks another thread from the tasks list and starts it. Latency
hiding is easy to achieve.

THREAD

THREAD

OBJECT

THREAD (Virt. Processor)

PROCESSOR

Volume Initialization

Forward Projection

Compute error with
experimental projections

Error BackProjection

New Block

New Iteration

Volume Refinement

Volume Initialization

Forward Projection

Compute error with
experimental projections

Error BackProjection

New Block

New Iteration

Volume Refinement

Volume Initialization

Forward Projection

Compute error with
experimental projections

Error BackProjection

New Block

New Iteration

Volume Refinement

(a) Virtual MPI processes

����������������
����������������
����������������
����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Volume to reconstruct (slab)

MPI data distribution
strongly depends on
of processors.

AMPI (threaded) data
distribution is further

the # of virtual processors

or threads.

flexible. It depends on

Virtual Processors (or threads). We can create any number.
Give them data. And then map them to physical processors.

Available physical processors (or cores)

vp1
vp2

vp3

vp4 vp5

vp6

(b) Volume decomposition

Fig. 1. Coarse grain approach

456 J.A. Alvarez-Bermejo and J. Roca-Piera

efficient reconstruction methods with fast convergence. The parallel iterative re-
construction method has been implemented following the Single Program Mul-
tiple Data (SPMD) approach.

3 Shifting the Programming Paradigm

Clusters are processing platforms where highly demanding resources problems
like BICAV can be efficiently solved. But multicores are appearing on the scene,
they may use the same memory address space for their cores, inviting to think in
a threaded programming model but the problem of how to exploit data caches
and how to adapt parallel HPC applications is still an issue. Doubtlessly new
abstractions are needed in order to maintain performance gains in HPC. The
Object Oriented programming paradigm offers a flexible method to describe
parallel computations. Rewriting legacy scientific applications is not advisable,
but a rapid way to exploit this kind of new parallelism is by virtualizing pro-
cesses [5] (see Figure 1(a)).

The Coarse Grain Approach

BICAV was reimplemented [6] using AMPI [5], which is a framework that allows
the virtualization of MPI processes. Concurrence is then a consequence of having
more virtual processors than physical processors. In our application the data is
distributed as depicted in Figure 1(b). Communications between neighbor nodes
to compute the forward-projection or the error back-projection for a given slab
and to keep redundant slices updated are mandatory. The communication rate
increases with the number of blocks and iterations. There will be almost no
penalty for those virtual processors containing non boundaries slices because
the communication will be carried out within the node. Table 1 underlines the
gains in the coarse−grain implementation versus MPI. The test reconstructed
two volumes, a 256x256x256 volume and a 512x512x512 volume, the number
of blocks (K) was set to the maximum (K=256 and K=512, respectively). The
efficiency was defined, for these tests, in terms of the relative idle time computed
per processor. Table 1 presents the relative difference (columns Idle%) among

Table 1. % Relative differences between CPU and WALL times

K 256 (volume 256) K 512 (volume 512)
MPI AMPI MPI AMPI

Procs Idle% Idle% Idle% Idle%

2 2.9 0.1 2.8 0.0
4 3.5 0 3.2 0.0
8 5.6 0 4.7 0.3
16 17.1 0.8 9.7 0.7
32 62.4 1.5 32.3 0.2

A Proposed Asynchronous Object Load Balancing Method 457

cputime and walltime for both problem sizes. For the new version, the computed
walltime and cputime are almost the same, so cpu was not idling. MPI version
behaved worst as the number of processors grew up. Our version (used 128 virtual
processors) seized concurrence at maximum. Experiences were performed on a
cluster with (32 computing nodes with two Pentium IV xeon 3.06 Ghz with
512KB L2 Cache and a 2GB sdram).

A Finer Grain Approach

Objects are good for new architectures: they protect their internal data and
protect their internal state and do not share it. Objects properties define a
scenario based in local and separated environments so objects can be executed
in parallel. Objects are structural units and concurrent units. Parallel Objects
(PO)[7] is an object model where parallelism as well as non determinism can be
expressed easily. With this finer-grain implementation, intra-object and inter-
object parallelism were exploited. The former with concurrent methods provided
by the language, the latter was achieved implementing a High Level Parallel
Composition (where internal schedulers are provided together with concurrence
control mechanisms) following the Farm Pattern [8], where a group of concurrent
objects work in parallel (see Figure 2) under the guidance of a master object (see
figure 2). To control the concurrence we used MAXPAR [4]. The implementation
used a concurrent object framework [5], built atop a runtime that abstracts the
beneath architecture. This runtime offers scheduling capabilities avoiding local
non−determinism as the scheduler is part of the runtime itself.

The Figure 2 shows a main object that controls how the program advances.
The node objects are placed one per processor, they serve as middleman between
slaves and master. Slaves simply do their task concurrently, independently from

Fig. 2. Object oriented version : auto object and visualization

458 J.A. Alvarez-Bermejo and J. Roca-Piera

Table 2. Walltime computed in a cluster and in a multicore processor

Cluster Multicore
Obj−Prc MPI Objects MPI Objects

WallTime WallTime WallTime WallTime

2 366 42 111,449 4,1
4 86 26 75,651 2,891
8 46 16 45,496 2,697
16 26 14 34,136 2,4
32 n/p n/p 33,25 2,121

the processor they are located in. A mechanism for providing automatic adap-
tivity was designed (see Section 4.1) using a special automated object (see auto
object in Figure 2) that drive the load balancing (see Section 4). The table 2
shows the behaviour of the reconstruction in MPI and in Charm++ on a clus-
ter and multicore system. In multicore, the column titled Obj−Prc refers to
the number of MPI processes (MPI version) and objects created in the Object
Oriented version. When running on the cluster, this column means physical pro-
cessors, in this platform four worker objects per processor were always used. The
reconstruction in the O.O. version is message-driven, where a message activates
an object’s service. As Table 2 shows, the object-oriented version behaves better
than its MPI counterpart. Using a cluster, the main harm that this scenario suf-
fers from is the network latencies. Communicating two MPI processes is costly.
Our new version has better granularity and concurrence, this helps for hiding
latencies. Nevertheless when running the application in the multicore (Intel Core
2 Quad Q6600), the MPI version reaches a point (8 processes) where the cache
contention affects dramatically the performance. Also one may note that MPI is
based on passing messages and although the network remains untouched, when
sharing memory this message passing is translated into a copy from private to
shared memory where conflicts also exist.

4 Load Balancing a Mean for Adaptive Applications

Developing a parallelizable application means adding an extra layer of com-
plexity to the software development process. This complexity refers not only
to determine when a certain operation will be processed but where. Making an
application adaptive is a two steps procedure, the first one is the heuristic, the
second step has to do with how to migrate the computation. Load migration is a
scheme reached by consensus for facing imbalance. Conventional strategies indi-
cate the amount of computation units to be moved but say nothing about which
of them should be moved to preserve locality and performance. An strategy
to preserve locality (RakeLB [9]) was implemented as a centralized load bal-
ancer [6], its behaviour was compared with standard centralized strategies like
Refine and Greedy [10] where Greedy strategy does not consider any previous

A Proposed Asynchronous Object Load Balancing Method 459

(a) Disorder after RefineLB (b) Locality preservation after
RakeLB

Fig. 3. Background load and resulting data redistribution after load balancing

thread-processor assignment, simply builds two queues, processors and threads,
and reassigns load to reach average. Refine, in contrast, only migrates objects
from overloaded processors until the processor load is pushed under average.
Preserving data locality and minimizing latencies (see Section 3) are two issues
exploited by RakeLB. We tested BICAV to evaluate the dynamic load balanc-
ing algorithms. After migration, RakeLB and RefineLB reacted alike, with a fine
load distribution as shown by the σ value. The initial imbalance value (workload
placed statically in each node) reflected by σ (standard deviation of the whole
system load, normalized to the average load) was over 0.5. After applying the
load balancer a similar σ value was achieved (0.051 for GreedyLB and 0.045 for
both RakeLB and RefineLB). GreedyLB reached a good load balancing but the
distribution of the objects was remarkably messy (see Figure 3) and negative for
performance. Figure 3, shows an ordered distribution for RakeLB, aspect that
turns out to be an issue for BICAV ’s performance, as can be seen in Table 3
first row.

4.1 Asynchronous Load Balancer Calls

Objects give the chance of using load balancing policies to better adapt the appli-
cation to the current computing scenario. Iterative applications must statically
specify points in its timeline where the balancer must interfere, otherwise there
is no way to collect performance data, evaluate it and propose migrations. So
what about creating an object that acts like a coach? An object that is able to
detect performance decrements and then invoke the load balancer? This method
works as a swimming team, the proposed object controls the expected time lapse,
as a coach does. If a slow swimmer enters your lane you will experience worst
time lapses. In our case the solution is already implemented in the load balanc-
ing strategy, so the coach just need to invoke it. Probably the slow swimmer
will not be removed away because it does not belong to our team (computing
set) but my objects can be moved to more appropriated lanes for fast objects. In
Figure 4 several cases are shown. Each lane can be considered as a node (cluster)

460 J.A. Alvarez-Bermejo and J. Roca-Piera

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��

��

��

��

��

�� ��

��

��

�����
�����
�����
�����

T_start

T_end

T_start

T_end

T_start

T_end

Fast swimmer

 Slow swimmer

Coach

T_start to T_end is the period to collect signaling
from objects.

Start of each iteration

End of each iteration

Point to save as a heart−beat.

(a) (b) (c)

Fig. 4. Swimmers based model

or a core (multicore), and even the three pools may be the case of a cluster of
multicore nodes. In Figure 4, (a) represents a computation performing normally,
no need for load balancing. Each time that an object passes through the stripped
line, a beat is sent to the coach. (b) shows a case where an object is running on
a slower node or core, or may be processing a dense data-set so it progresses
slower, the coach should invoke the balancer. (c) identifies a case where our the
computation is harmed by a third party, it might be useful to invoke the LB. If
we were not using this method, in (a) the load balancer would have been invoked
once per a number of iterations, unnecessarily. In (b) and (c) the situation might
appear at some point in time, so there is no need to implement periodic checks.
This method is more flexible than stopping at load balancing barriers. Results
in section 4 were obtained with just one load balancer call, we will compare
against that. Table 3 shows the application walltimes as percentages taking as
a reference the walltime of the application using the Greedy strategy when the
load balancer is invoked just once in the traditional way (Greedy 1 LB call). In a
Load Balancer call, the whole computation is stopped into a barrier, the control
is passed to the runtime that loads the heuristic, retrieves the object’s traces and
decide if the mapping should stay as it is or it should migrate. It is a good idea

Table 3. Walltime ratio for BICAV , pool method

Greedy Refine Rake

Master’s Walltime 1 LB call 100 66.59 50.29
Master’s Walltime 1 LB call per 50 it. 101.5 67.4 50.36
Master’s Walltime 1 LB call per 20 it. 101.62 67.59 50.41
Master’s Walltime Asynchronous LB call 100.8 66.63 50.3

A Proposed Asynchronous Object Load Balancing Method 461

Data: trigger←− NumberOfBeatsToCollect
Result: Invoke load balancer if the beat slows down
if (−−trigger==0) then

lapse ← gettime();
if (CollectFirstTime) then

auto.getFasterTime(lapse);

if lapse−idealLapse > ε then
objects[].signalObjectsLBCallRecommended();

trigger← NumberOfBeatsToCollect ;

Algorithm 1. Algorithm for the method beat(), auto object

not to abuse from LB calls, our method places an object (auto object) per core /
node. Computing objects send a simple lowpriority message each time that the
object passes through the check points in the code. The auto object collects a
predefined number of beats, computes the time to collect them and it the time
intervals are worst each time, then the LB is invoked. Algorithm 1 describes the
basic workings of the auto-object.

5 Conclusions

Object oriented abstractions can efficiently exploit parallelism. As a consequence
latency hiding and adaptivity issues are easier to achieve. The adaptivity is usu-
ally affected by the application’s irregular and iterative nature as well as by the
heterogeneity of the parallel platform. Load balancing strategies must be care-
fully devised to be locality aware, we have shown that this benefits the walltime
of the application. Load balancers must at some point in time, interfere the
application to collect data and re-balance the problem, this means loosing flexi-
bility by having to specify statically the points in time when the load balancer
should enter in action. A flexible method to invoke load balancers was presented
and shown to be effective.

References

1. Fernandez, J.J., Lawrence, A.F., Roca, J., Garcia, I., Ellisman, M.H., Carazo, J.M.:
High-performance electron tomography of complex biological specimens. Journal
of Structural Biology 138(1-2), 6–20 (2002)

2. Qin, X., Jiang, H., Manzanares, A., Ruan, X., Yin, S.: Communication-aware load
balancing for parallel applications on clusters. IEEE Transactions on Comput-
ers 59(1), 42–52 (2010)

3. Álvarez, J.A., Roca-Piera, J., Fernández, J.J.: From structured to object oriented
programming in parallel algorithms for 3d image reconstruction. In: POOSC 2009:
Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented
Scientific Computing, pp. 1–8. ACM, New York (2009)

4. Corradi, A., Leonardi, L.: Concurrency within objects: layered approach. Inf. Softw.
Technol. 33(6), 403–412 (1991)

462 J.A. Alvarez-Bermejo and J. Roca-Piera

5. Kalé, L.V., Krishnan, S.: Charm++: A portable concurrent object oriented system
based on c++. In: OOPSLA, pp. 91–108 (1993)

6. Alvarez, J.A., Roca, J., Fernández, J.J.: A load balancing framework in multi-
threaded tomographic reconstruction. In: Proceedings of the International Confer-
ence ParCo 2007, Aachen-Julich (September 2007) (in press)

7. Corradi, A., Leonardi, L.: Po: an object model to express parallelism. SIGPLAN
Notices 24(4), 152–155 (1989)

8. López, M.R., Tunón, M.I.C.: An approach to structured parallel programming
based on a composition. In: CONIELECOMP, vol. 42. IEEE Computer Society,
Los Alamitos (2006)

9. Fonlupt, C., Marquet, P., Dekeyser, J.l.: Data-parallel load balancing strategies.
Parallel Computing 24, 1665–1684 (1996)

10. Aggarwal, G., Motwani, R., Zhu, A.: The load rebalancing problem. J. Algo-
rithms 60(1), 42–59 (2006)

A Step-by-Step Extending Parallelism Approach
for Enumeration of Combinatorial Objects

Hien Phan1, Ben Soh1, and Man Nguyen2

1 Department of Computer Science and Computer Engineering, LaTrobe University,
Australia

2 Faculty of Computer Science and Engineering, University of Technology, Ho Chi
Minh City, Vietnam

Abstract. We present a general step-by-step extending approach to par-
allel execution of enumeration of combinatorial objects (ECO).Themethod-
ology extends a famous enumeration algorithm,OrderlyGeneration, which
allows concurrently generating all objects of size n + 1 from all objects of
size n. To the best of our knowledge, this is the first time there is an at-
tempt to plug parallel computing into OrderlyGeneration algorithm for
ECO problem. The potential impact of this general approach could be ap-
plied for many different servants of ECO problem on scientific computing
areas in the future. Our work has applied this strategy to enumerate Or-
thogonal Array (OA) of strength t, a typical kind of combinatorial objects
by using a implementation with MPI paradigm. Several initial results in
relation to speedup time of the implementation have been analyzed and
given significant efficiency of the proposed approach.

1 Introduction

Enumeration of combinatorial objects (ECO) remains an important role in com-
binatorial algorithms. Many scientific applications have been using results from
typical servants of enumeration of combinatorial objects, such as maximal clique
enumeration (MCE), hexagonal system enumeration and enumeration of orthog-
onal arrays. For example, the solutions of MCE related problems are used to
align 3-dimensional protein structures [CC05] and to find clusters of orthologous
genes [PSK+07]. Hexagonal systems play an important topic in computational
and theoretical chemistry [BCH03] whilst orthogonal arrays could be applied in
Design of Experiment [LYPP03] and software testing [LM08].

Usually, we are interested in enumerating or producing precisely one represen-
tative from each isomorphism class. In many cases, the only available methods for
enumeration base on the exhaustive generation for counting the objects. Several
general serial algorithms have been proposed for enumeration of combinatorial
objects ([McK98], [Far78], [Rea79], [AF93]) and we call them isomorph-free
exhaustive generation algorithms.

One of the major characteristics of ECO is the huge effort needed to complete
the computation concerned. Therefore, a parallelism method for solving ECO

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 463–475, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

464 H. Phan, B. Soh, and M. Nguyen

could allow us to reduce the execution time significantly and generate new results
using the power of high performance computing system.

Strengthened by the above objective, the general parallelism approach pre-
sented in this paper efficiently decomposes the computation-intensive nature of
ECO problem. All objects of a new size will be concurrently enumerated from all
generated objects of the previous size, not from scratch. This saves a lot of cost
for regenerating old objects of previous size, especially when the target size S is
huge. Moreover, the trivial data parallelism strategy applied for each extending
step could gives an efficient speedup and the scalability.

The rest of this paper is organized as follows: Section 2 presents an overview
about general algorithms for isomorph-free exhaustive generation. In Section 3, a
step-by-step extending parallelismapproach for ECO will be proposed. Since there
are many different servants of ECO problem, we choose a specific servant of ECO
and apply our general proposed approach to do some experiments. This case study
is discussed in Section 4 in which we applied the proposed general approach for enu-
meration of orthogonal array of strength t, a specific kind of combinatorial objects.
Detail of this implementation and some initial results will be given on Section 5.
And finally, some conclusion will be discussed in Section 6.

2 Overview and Related Work

2.1 Serial Algorithms for Isomorph-Free Exhaustive Generation

The objective of isomorph-free exhaustive generation of combinatorial objects is
to generate a representative for each of the isomorphism classes of those objects.
For construction of objects, the most natural and widely used method is back-
tracking [Wal60]. On the other hand, most methods proposed for isomorphism
rejection could be classified in two types. These are OrderlyGeneration method
which has been proposed by Read [Rea79] and Faradev [Far78] and the canonical
augmentation method which has been proposed by McKay [McK98]. The thor-
ough discussion of these methods could be seen in [KO06] and [MS08]. Note that
there are the so called ”method of homomorphisms” (Laue & others [GLMB96])
but it uses a more algebraic approach, not the search-tree model.

The most common method is OrderlyGeneration which was independently
introduced at the same time in 1978 by Read [Rea79] and Faradev [Far78]. Ba-
sically, it uses the idea that there is a canonical representative of every isomor-
phism class that is the object that needs to be generated. Usually, the canonical
object is the isomorphic object that is extremal in its isomorphism class (largest
lexicographically or smallest lexicographically). The algorithm will backtrack if
a subobject is not canonical. The canonical labeling and the extensions of an
object must be defined in order to ensure that each canonically labeled object
is the extension of exactly one canonical object.

The second method is the canonical augmentation which has been proposed
by McKay [McK98], where generation is done via a canonical construction path,
instead of a canonical representation. In this method, objects of size k are gener-
ated from objects of size k−1, where only canonical augmentations are accepted.

A Step-by-Step Extending Parallelism Approach for ECO 465

Hence the canonicity testing is substituted by testing the augmentation from the
smaller object is a canonical one. McKay’s method is related to the reverse search
method of Avis and Fukuda [AF93]. Both are based on the idea of defining a
tree structure on a set of objects with a function for deciding parenthood for
objects. However, they differ in that Avis and Fukuda’s method is not concerned
with eliminating isomorphs, but simply repeated objects.

It is noteworthy to note that those algorithms are isomorph exhaustive gener-
ation and based on a famous association rule mining algorithm, a priori [AS94],
which generate all objects of size k from all objects of size k − 1.

2.2 Two Issues of Concern

Before we propose our small-step parallelism approach, we will discuss further
about the properties of the OrderlyGeneration algorithms.

Note that the OrderlyGeneration algorithm allows for generation from scratch
when called with the root parameters [] and n = 0 and it will finish when reach-
ing the target size S. Such characteristic results in two issues that need to be
taken into account. First, suppose that we want to generate for the next level
S + 1 after finishing generation at level S, in this case we must restart the pro-
cedure again from scratch and regenerate temporary levels. Obviously, this is a
waste of time and cost since we do not reuse any result in the previous step.
Second, in practice, sometimes when size S is huge, the computation cost at
such one extending step (generating objects of size k from objects of size k − 1
with k ≤ S) is also very large (see Section 5). So in this case it could be worth
applying parallel computing for solving the high calculation cost issue.

3 A Proposed Approach

The above two issues motivate us to find out a parallel method for decomposing
the generation process into small separated computation steps and try to reuse
old calculated results before generating for the new size. Fortunately, this can
be done by using a special characteristic of OrderlyGeneration algorithm.

An important characteristic of the OrderlyGeneration algorithm is that a
canonical object size k is guaranteed to be an extension of exactly one previ-
ously canonical object of size k − 1. The outcome of this characteristic is all
canonical objects of size k can be generated by extending all canonical objects
of size k−1. In the point of data parallelism view, this is a very important char-
acteristic that could be used to exploit the parallel computing on the generation.
In particular, the OrderlyGeneration algorithm will generate canonical objects
in an increasing way, in which it begins with object of size 0, generates step by
step all canonical objects of size k from all canonical objects of size k − 1. The
generation is repeated until all target canonical objects of a target size, S, are
reached. The search tree space of the OrderlyGeneration algorithm is given in
Fig. 1

We propose a novel small-step parallelism approach for ECO based on the
above important characteristic of OrderlyGeneration algorithm. The main idea

466 H. Phan, B. Soh, and M. Nguyen

Fig. 1. Search tree space of the OrderlyGeneration algorithm

is that we divide the generation in separated small steps. At each step, we just
extend concurrently all canonical objects of size k from all canonical objects
of size k − 1. All canonical objects of size k will be stored and reused for the
next step. In particular, we propose basically a general step-by-step parallelism
approach for enumeration of combinatorial objects as follows:

1. At the initial stage, using the original serial algorithm OrderlyGeneration
to generate all canonical objects of an initial size k0, which will be chosen
depending on the specific kind of combinatorial object.

2. The data parallelism strategy is applied to generate all canonical objects of
size k from all canonical objects of size k − 1. All results will be stored and
reused in the next step.

3. The step-by-step extending phases continue until the all the canonical objects
of the target size S are reached.

The most important phases is the generation of objects of size k from all object
of size k − 1, in which canonical objects of size k will be generated and stored
concurrently. On section 5, we will discuss about some methods could be used
for domain decomposition on this phase.

With the proposed approach, we have some advantages. Most importantly,
with the reusing of canonical objects, all objects of each level will be generated
precisely one time. All objects of a new size will be enumerated from all gener-
ated objects of the previous size, not from scratch. This save a lot of cost for
regenerating old objects of previous size, especially when size S is huge. More-
over, the data parallelism strategy gives a efficient speedup in each extending
step (see Section 5).

A Step-by-Step Extending Parallelism Approach for ECO 467

4 A Case Study: Enumeration of Orthogonal Array of
Strength t

Since there are many different kinds of ECO problems, we choose a specific ser-
vant of ECO and apply our general proposed approach to do some experiments.
On this paper, our work has applied the proposed approach for enumeration of
Orthogonal Array (OA) of strength t, a special kind of combinatorial objects. It is
noteworthy that OA has many applications in Design of Experiment [LYPP03]
and software testing [LM08]. On this section we first present the notation of
OA of strength t and then, the MSC algorithm, an OrdelyGeneration algo-
rithm for enumerating orthogonal array, which is proposed by Eric, Pieter and
Man [SEN10] will be presented. Finally, we will discuss about how our approach
is applied for enumeration of orthogonal array of strength t.

4.1 Notation of Orthogonal Array

We present a clear definition of OA of strength t which could be found in [Ngu08].
We denote d finite sets Q1, Q2, ..., Qd as factors where d is a finite number.

The elements of a factor are called levels. The (full) factorial design with
respect to these factors is the Cartesian product D = Q1×·· ·×Qd . A fractional
design or fraction F of D is a subset consisting of elements of D (possibly with
multiplicities). We denote ri := |Qi| as the number of levels of the ith factor.
Let s1 > s2 > · · · > sm be the distinct factor sizes of F , and suppose that F has
exactly ai factors with si levels. We call the partition

r1 · r2 · · · rd = sa1
1 · sa2

2 · · · · ·am
m

the design type of F .
A subfraction of F is obtained by choosing a subset of the factors (columns),

and removing the other factors. If a fraction is a multiple of a full design, i.e. it
contains every possible row with the same multiplicity, we call it trivial. With
a natural number t, a fraction F is called t-balanced if, for each choice of t
factors, the corresponding subfraction is trivial. In other words, every possible
combination of coordinate values from a set of t factors occurs equally often. A
t-balanced fraction F is also called an OA of strength t. If F has N rows, we
write F = OA(N ; sa1

1 · sa2
2 · · · sam

m ; t).
For instance, the following array is an OA of strength 3 but not strength 4,

OA(16; 3 · 23; 3):

F =

⎡
⎢⎢⎣

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1
0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1
0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1

⎤
⎥⎥⎦

T

We say that a triple of column vectors X, Y, Z are orthogonal if each possible
tuple (x, y, z) in [X |Y |Z] appears with the same frequency. So an array has
strength 3 if, and only if, every triple of columns in the array is orthogonal.

468 H. Phan, B. Soh, and M. Nguyen

4.2 An OrdelyGeneration Algorithm for Enumerating Orthogonal
Array

Recently, Eric, Pieter and Man ([SEN10]) have proposed an algorithm named
Minimum Complete Set (MSC) for finding lexicographically-least orthogonal
arrays. With that algorithm, several orthogonal arrays with distinct specific
types have been generated and enumerated.

LMC matrix. Lexicographically less comparison, a comparison metric of two
arbitrary orthogonal arrays with the same specific design type, has been firstly
proposed in [Ngu05].

For two vectors u and v of length L, we say u is lexicographically less than v,
written u < v, if there exists an index j = 1, 2, ..., L− 1 such that u[i] = v[i] for
all 1 ≤ i ≤ j and u[j + 1] < v[j + 1].

Let F = [c1, ..., cd], F = [c1, ..., cd] be any pair of fractions where ci, ci are
columns. We say F is column-lexicographically less than F , written F < F ,
if and only if there exists an index j ∈ {1, ..., d − 1} such that ci = ci for all
1 ≤ i ≤ j and cj+1 < cj+1 lexicographically.

The smallest matrix of an isomorphic class which corespondent to a specific
design type will be called lexicographically minimum in column (LMC)matrix
and it is the only representative of this isomorphic class. Certainly, the con-
cept of LMC matrix is equivalent with the concept of canonical object in the
general OrderlyGeneraion algorithm. In other words, LMC matrix is a specific
canonical object in the context of orthogonal array.

Finding lexicographically-least orthogonal array algorithm. The MCS
backtracking algorithm has been used to construct new orthogonal arrays and
check whether every new generated orthogonal array is LMC. In particular, it
will generate and extend column by column until it reach the target column size
S. The detail of this algorithm is so complicated on [SEN10]. Hence, we sum-
marize the outline of the MCS algorithm as below:

Input: An orthogonal array X = [x1, x2, ..., xn], n
if IsComplete(X) then

process X
end if
if IsExtendible(X) then

for all extension X ′ = [x1, x2, ..., xn, x′] of X do
if IsNewOA(X ′) then

if IsLexLeast(X ′) then
MCS(X ′, n + 1)

end if
end if

end for
end if

Algorithm 1. MCS algorithm

A Step-by-Step Extending Parallelism Approach for ECO 469

On the outline above, X = [x1, x2, ..., xn] is an orthogonal array with n
columns. The MCS algorithm uses the backtracking approach to put new values
for cells on the appended column. After appending completely a new column
to create a new orthogonal array, it will check whether the new one is LMC
matrix. If not, it will backtrack to search for another new orthogonal array. If
yes, it will call MCS algorithm recursively to continue appending new columns
until it reach the target column size S.

4.3 Applying Our Proposed Approach for Enumeration of
Orthogonal Arrays

Since enumeration of orthogonal array is a typical kind of the general ECO
and MCS algorithm is an specific OrderlyGeneration algorithm, our proposed
parallel computing approach will be applied for solving this issue and we use MCS
algorithm as an original sequence algorithm for our approach. In particular, our
proposed method was applied specifically for enumeration of orthogonal array
of strength t as follows:

1. At the initial stage, using the original serial algorithm MCS to generate
all LMC matrices OA(N ; sa10

1 · sa20
2 · · · sam0

m ; t) of an initial column size
k0 = a10 + a20 + ... + am0

2. The data parallelism strategy is applied to generate all LMC matrices of
OA(N ; sa1

1 · sa2
2 · · · sam+1

m ; t) with column size k = a1 + a2 + ... + am + 1 from
all LMC matrices of OA(N ; sa1

1 · sa2
2 · · · sam

m ; t) with column size k − 1 =
a1 + a2 + ... + am. All results will be stored and reused in the next step.

3. The step-by-step extending phases continue until the all the LMC matrices of
the target column size S are reached or there are no LMC matrix generated
at an arbitrary size S0 (S0 < S).

5 Algorithm Design Details

The most important phase on our proposed approach is the extending phase,
in which all LMC matrices of OA(N ; sa1

1 · sa2
2 · · · sam+1

m ; t) will be generated
concurrently from all LMC matrices of OA(N ; sa1

1 · sa2
2 · · · sam

m ; t). The initial
implementation of this phase will be presented on this section.

5.1 Domain Decomposition

At the beginning, all LMC matrices of OA(N ; sa1
1 · sa2

2 · · · sam
m ; t) are stored in

an input file. We need useful methods to deliver input matrices to all processes.

Naive method. The basic method for domain decomposition is dividing equally
all input for matrices. In particular, a single process, such as the process with
rank 0, will read all input matrices from the input file and and deliver evenly
LMC matrices of OA(N ; sa1

1 ·sa2
2 · · ·sam

m ; t) to all other processes. For each input,
each process utilizes MCS algorithm to generate LMC matrices of OA(N ; sa1

1 ·
sa2
2 · · · sam+1

m ; t). Note that there are no any dynamic load balancing scheme
deployed on this method. The inputs are just distributed equally for all processes
at the start time.

470 H. Phan, B. Soh, and M. Nguyen

Master-slave method. There is another method using a single process for
dynamic load balancing for all other processes. In particular, the process rank 0,
called master, after reading all input matrices from the input file will distribute
one input matrix for each other process, called worker, at a time to generate new
results. After finish utilizing the single input, each worker will request a new
input from master. Master accepts the request and sends another new input.
This work continues until there are no more input at master.

In fact, the load balancing is better when we use the Master-slave method,
this could be seen in Figure 2 when we do the experiment:

Process ID

E
xe

cu
ti

o
n

 t
im

e
(s

)

0 1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

Fig. 2. Execution time of each process

Random pooling method. Besides using one process as a master for dynamic
load balancing, some other methods also could be used. One of them is random
pooling method, which is referred as one of the most efficient methods of re-
questing work when the underlying architecture of the computing system is now
known [KGR94]. The idea of random pooling method is after finish exploring
all of input matrices which had been assigned, the idle process will request for
more inputs to explore from another randomly chosen process. It seems to us
that random pooling could be a useful method for dynamic load balancing.

Work-stealing method. Besides master-slave and random pooling method,
there is a popular method for dynamic load balancing named Work-stealing
algorithm. The nature of work-stealing method is so simple. At each time step,
each empty process will send a request to one other processor, which is chosen
usually at random. Each non-empty processor having received at least one such
request will select one of the requests. Now each empty process with its request
being accepted will ”steals” tasks (matrices) from the other process. Since work-
stealing method is a stable [BF01] and scalable [DLS+09] algorithm for domain
decomposition, it could be also a good choice for us for dynamic load balancing
our general proposed approach.

At this time, the decision for choosing the proper domain decomposition
and dynamic load balancing will depend on the specific ECO problem. On

A Step-by-Step Extending Parallelism Approach for ECO 471

this initial experiment, we choose Master-slave as a method for dynamic load
balancing.

5.2 Processing Outputs

Remind that our approach will generate all canonical objects of size k from all
canonical objects of size k − 1 and all results will be stored and reused in the
next step. Hence, the storage of all generated outputs is an important factor that
need to be concerned. The best choice is that all outputs which are generated by
distinct processes will be stored concurrently on a single file. On this experiment,
we choose a basic method that each time a new LMC matrix is generated, the
process will write the result to the shared log file of the cluster system by basically
using the print function of C language. However, with the support of parallel
file system, MPI-IO [Mes97] could be a helpful tool for us to improve further
the performance of concurrent I/O tasks.

5.3 Some Initial Experiment Results

Our work has been executed on the Hercules cluster of La Trobe university,
Australia. A small experiment has been executed to simplify the evaluation. At
the initial stage, the MCS algorithm is used to generate all 89 LMC -matrices of
OA(72; 3 ·24; 3). After that, those 89 LMC matrices of OA(72; 3 ·24; 3) have been
chosen as inputs for enumerating all non-isomorphism class of OA(72; 3 · 25; 3).
Note that the result is we have 27730 LMC matrices of OA(72; 3 · 25; 3). The
number of processes have been doubled up to 16. On each experiment, we collect
the maximal execution time, total execution time and the results are recorded
in Table 1:

Table 1. Execution time

Number of processes Maximal execution time (minutes)
2 (1 + 1) 465.9’
4 (1 + 3) 156.23’
8 (1 + 7) 79.6.

16 (1 + 15) 57.45’

Note that, with the experiment using two processes, actually there is only one
worker do the generation whilst the master just send every input for the worker
at a time. With the experiment using four processes, there are three worker
processes and one master and so on.

Since we use the master-slave method for our experiments, we always need at
least two processes (one master and at least one worker) for every parallelism
experiment. That’s why we are more concerned with the relative speedup of
the algorithm with the initial number of processes is two. The formula for the
relative speedup is given as follows: Speedup(p) = T (p)

T (2p) The result is given in
Table 2:

472 H. Phan, B. Soh, and M. Nguyen

Table 2. Relative speedup

Number of processes Relative Speedup (ideal is 2)
4 (1 + 3) 2.98
8 (1 + 7) 1.97

16 (1 + 15) 1.38

With using 89 matrices inputs of OA(72; 3 · 24; 3) for all experiments, the
results show that the speedup is really scalable with 8 processes. However, the
speedup is reduced significantly when we doubled the process up to 16. This
is because there is a really big difference of the exploring times for inputs. For
example, the exploring times when we execute the MCS function on each input
are recorded in the Figure 3.

MATRIX ID

 T
im

e
 f

o
r

p
ro

g
re

ss
in

g
 e

a
ch

 m
a

tr
ix

(s
)

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 16 17 18 1910 11 12 13 14 15

Fig. 3. Time for processing each input

As you can see in Figure 3, with a simple input, the exploring time could be
about 1 second, however, with a more complex input matrix, the exploring time
could be about 430 seconds. Note that the execution time of a process includes
the summary of all the exploring times for all input matrices which had been
assigned. When we just have 89 input matrices delivering for 16 processes, it is
possible to have a situation in which the total exploring time for all inputs of
a process is less than the exploring time just for one input of another process.
This affects a lot to the load balancing of the algorithm. In fact, the execution
time when we use 16 processes are significantly distinct as the results recorded
in Figure 4.

Finally, it is noteworthy to analyze more about the cost for each extending
phase. Using 89 input matrices of OA(72; 3·24; 3) to generate 27730LMC matrices
of OA(72; 3 · 25; 3) took us 80 minutes using 8 processes(see Table 1). Quantita-
tively, using 27730 LMC matrices of OA(72; 3·25; 3) to generate all LMC matrices
of OA(72; 3 · 26; 3) with using 8 processes could take us about (27730/89)* 80 =
25.000 minutes. This number shows that it is worth for applying the parallel com-
puting for reducing the time taken for each extending phase.

A Step-by-Step Extending Parallelism Approach for ECO 473

Process ID
E

xe
cu

ti
o

n
 t

im
e

(s
)

0
0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 4. Execution Time of 16 processes

6 Conclusion and Future Work

The parallelism approach presented in this paper is able to handle the computing-
intensive of ECO problem. The approach utilizes the OrderlyGeneration original
method of enumerating of combinatorial objects as a foundation to step-by-step
extending generation.

With the proposed approach, we have some advantages. Most importantly,
with the reusing of canonical objects, all objects of each level will be generated
precisely one time. All objects of a new size will be enumerated from all gener-
ated objects of the previous size, not from scratch. This saves a lot of cost for
regenerating old objects of previous size, especially when size S is huge. More-
over, on the point of data parallelism view, the reusing of previous objects for
generating all objects of the next size strategy certainly gives us a great chance
to apply useful data parallelism techniques in each extending step.

The experiments done on this current work are just on the initial stage, in
which we use the Master-slave method for domain decomposition. It is because,
on this paper we just aim to show the potential usefulness of our proposed
method on applying parallel computing for enumeration of combinatorial ob-
jects. Certainly, we could explore advanced domain decomposition techniques
such as random pooling or work-stealing method to improve the load balancing
of the experiments. Besides, with applying work-stealing algorithm or a random
pooling algorithm for domain decomposition, the speedup analysis of the ini-
tial experiment would provide a much better understanding of the performance
gains (and the communication overhead) if done in contrast with the sequential
algorithm, i.e. absolute speedup instead of relative speedup as we have done on
this initial experiment.

Moreover, with the results gained on the initial work, we believe that I/O time
spent writing and reading results, plus the communication load on the master
node might be a dominant factor on the speed of the algorithm, especially when
the search space is wide. Hence, some I/O optimization issues could be applied
on the future, such as using MPI-IO to improve the performance of I/O tasks.

Finally, the potential usefulness of our approach could be applied for many spe-
cial kinds of ECO. For example, besides the MCS algorithm for enumeration of

474 H. Phan, B. Soh, and M. Nguyen

orthogonal arrayof strength t, we have some specificOrderlyGeneration algorithms
for special ECO problems, such as an OrderlyGeneration algorithm for classifying
triple systems [KTR09]. Hence, we could apply our parallelism method for such
classifying triple systems problem.

Acknowledgment

The research was carried out whilst the first author was supported by a La
Trobe University Tuition Fee Remission, Postgraduate Research Scholarship and
eResearch grant by La Trobe University. We also would like to thank anonymous
reviewers have given us useful comments to improve further this final paper.

References

[AF93] Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied
Mathematics 65, 21–46 (1993)

[AS94] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In:
APriori, pp. 487–499 (1994)

[BCH03] Brinkmann, G., Caporossi, G., Hansen, P.: A survey and new results on
computer enumeration of polyhex and fusene hydrocarbons. Journal of
Chemical Information and Computer Sciences 43(3), 842–851 (2003)

[BF01] Berenbrink, P., Friedetzky, T.: The natural work-stealing algorithm is sta-
ble. In: FOCS 2001: Proceedings of the 42nd IEEE symposium on Founda-
tions of Computer Science, Washington, DC, USA, p. 178. IEEE Computer
Society, Los Alamitos (2001)

[CC05] Chen, Y., Crippen, G.M.: A novel approach to structural alignment using
realistic structural and environmental information. Protein Science 14(12),
2935–2946 (2005)

[DLS+09] Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha,
J.: Scalable work stealing. In: SC 2009: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, pp. 1–11.
ACM, New York (2009)

[Far78] Faradzev, I.A.: Constructive enumeration of combinatorial objects. prob-
lemes combinatoires et theorie des graphes collogue interat. CNRS 260,
131–135 (1978)

[GLMB96] Grner, T., Laue, R., Meringer, M., Bayreuth, U.: Algorithms for group
actions: Homomorphism principle and orderly generation applied to graphs.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 113–122. American Mathematical Society, Providence (1996)

[KGR94] Kumar, V., Grama, A.Y., Rao, V.N.: Scalable load balancing techniques for
parallel computers. Journal of Parallel and Distributed computing, 60–79
(1994)

[KO06] Kaski, P., Ostergard, P.R.J.: Classification algorithms for codes and de-
signs. Algorithms and Computation in Mathematics 15 (2006)

[KTR09] Khosrovshahi, G.B., Tayfeh-Rezaie, B.: Classification of simple 2-(11,3,3)
designs. Discrete Mathematics 309(3), 515–520 (2009); International Work-
shop on Design Theory, Graph Theory, and Computational Methods - IPM
Combinatorics II, International Workshop on Design Theory, Graph The-
ory, and Computational Methods

A Step-by-Step Extending Parallelism Approach for ECO 475

[LM08] Lazic, L., Mastorakis, N.: Orthogonal array application for optimal com-
bination of software defect detection techniques choices. W. Trans. on
Comp. 7(8), 1319–1336 (2008)

[LYPP03] Lee, K.-H., Yi, J.-W., Park, J.-S., Park, G.-J.: An optimization algorithm
using orthogonal arrays in discrete design space for structures. Finite Ele-
ments in Analysis and Design 40(1), 121–135 (2003)

[McK98] McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2),
306–324 (1998)

[Mes97] Message-Passing Interface Forum. MPI-2.0: Extensions to the Message-
Passing Interface, ch. 9. MPI Forum (June 1997)

[MS08] Moura, L., Stojmenovic, I.: Backtracking and isomorph-free generation of
polyhexes. In: Nayak, A., Stojmenovic, I. (eds.) Handbook of Applied Algo-
rithms: Solving Scientic, Engineering, and Practical Problems, pp. 39–83.
John Wiley & Sons, Chichester (2008)

[Ngu05] Nguyen, M.: Computer-algebraic methods for the construction of designs
of experiments. Ph.D. Thesis, Technische Universiteit Eindhoven (2005)

[Ngu08] Nguyen, M.V.M.: Some new constructions of strength 3 mixed orthogonal
arrays. Journal of Statistical Planning and Inference 138(1), 220–233 (2008)

[PSK+07] Park, B.-H., Samatova, N.F., Karpinets, T., Jallouk, A., Molony, S., Hor-
ton, S., Arcangeli, S.: Data-driven, data-intensive computing for modelling
and analysis of biological networks: application to bioethanol production.
Journal of Physics: Conference Series 78, 012061 (6p.) (2007)

[Rea79] Read, R.C.: Every one a winner. Ann Discrete Math., 107–120 (1979)
[SEN10] Schoen, E.D., Eendebak, P.T., Nguyen, M.V.M.: Complete enumeration

of pure-level and mixed-level orthogonal array. Journal of Combinatorial
Designs 18(2), 123–140 (2010)

[Wal60] Walker, R.J.: An enumerative technique for a class of combinatorial prob-
lems. In: Proc. Sympos. Appl. Math., vol. 10. American Mathematical So-
ciety, Providence (1960)

A Study of Performance Scalability by
Parallelizing Loop Iterations on Multi-core

SMPs

Prakash Raghavendra, Akshay Kumar Behki, K. Hariprasad, Madhav Mohan,
Praveen Jain, Srivatsa S. Bhat, V.M. Thejus, Vishnumurthy Prabhu

Department of Information Technology, National Institute of Technology Karnataka,
Surathkal

srp@nitk.ac.in, aksbeks@gmail.com, harinitk2007@gmail.com,

madhavmon@gmail.com, prgu jain@yahoo.com, bhat.srivatsa@gmail.com,

thejus.vm@gmail.com, prabhuvishnumurthy@gmail.com

Abstract. Today, the challenge is to exploit the parallelism available in
the way of multi-core architectures by the software. This could be done
by re-writing the application, by exploiting the hardware capabilities or
expect the compiler/software runtime tools to do the job for us. With
the advent of multi-core architectures ([1] [2]), this problem is becoming
more and more relevant. Even today, there are not many run-time tools
to analyze the behavioral pattern of such performance critical applica-
tions, and to re-compile them. So, techniques like OpenMP for shared
memory programs are still useful in exploiting parallelism in the ma-
chine. This work tries to study if the loop parallelization (both with and
without applying transformations) can be a good case for running scien-
tific programs efficiently on such multi-core architectures. We have found
the results to be encouraging and we strongly feel that this could lead
to some good results if implemented fully in a production compiler for
multi-core architectures.

1 Introduction

Parallel processing requires program logic to have zero dependency between the
successive iterations of a loop. To run a program in parallel we can divide the
task between multiple threads or processes executing in parallel. We can also
go up to the extent of running these parallel pieces of code simultaneously on
different nodes in a high speed network. However the amount of parallelization
possible depends on the program structure as well as the hardware configuration.

OpenMP [3] is an Application Program Interface (API) specification for
C/C++ or FORTRAN that may be used to explicitly direct multi-threaded,
shared memory parallelism. It is a portable, scalable model with a simple and
flexible interface for developing parallel applications on platforms from the desk-
top to the supercomputer. OpenMP is an explicit (not automatic) programming
model, offering the programmer full control over parallelization. It has been im-
plemented on most of the popular compilers like GNU (gcc), Intel, IBM, HP,
Sun Microsystems compilers.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 476–486, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Study of Performance Scalability by Parallelizing Loop Iterations 477

Most OpenMP parallelism is specified through the use of compiler directives
which are embedded in C/C++ or FORTRAN source code. The use of the
pre-processor directive (starting with #) along with the OpenMP directive in-
structs the compiler during pre-processing to implement parallel execution of
the code following the OpenMP directive.

There are various directives available, one of them being ‘#pragma omp
parallel for’ whose implementation was our prime interest in the project. The
‘#pragma’ directive is the method specified by the C standard for providing ad-
ditional information to the compiler, beyond what is conveyed in the language
itself. The ‘#pragma omp parallel for’ directive instructs the compiler that all
the iterations of the ‘for’ loop following the directive can be executed in parallel.
In that case, OpenMP compiler will generate code to spawn optimized number of
threads based on the number of cores available. Consider the following example
of a typical C/C++ program using OpenMP pragmas:

#include <omp.h>
main () {
int var1, var2, var3;
/*** Serial code ***/

.

.
/*** Beginning of parallel section. Fork a team of threads ***/
/*** Specify variable scoping ***/

#pragma omp parallel private(var1, var2) shared(var3)
{
/*** Parallel section executed by all threads ***/

.

.
/*** All threads join master thread and disband ***/
}

/*** Resume serial code ***/
.
}

The variables var1 and var2 are private to each of the threads spawned and the
variable var3 is shared among all the threads. The intent in this work is to study
some OpenMP programs and see if these scale well on multi-core architectures.
Further, we would also like to parallelize non-parallel loops by applying trans-
formations (using known techniques like unimodular and GCD transformations
[5] [6] [7]) and see if they too scale well on such architectures. We used some
known OpenMP pragmas as case studies and implemented them in our compiler
to study the performance. In Section 2, we describe the way we implemented
these OpenMP pragmas. In Section 3, we discuss unimodular transformations
which we used to parallelize non-parallel loops. In Section 4, we tabulate and ex-
plain all the results. Section 5 concludes the paper and suggests some directions
for future work.

478 P. Raghavendra et al.

2 Implementation of OpenMP Pragmas in gcc

The parallel portions of the program can be run on different threads. For this
we have to implement pthread library function calls in C. Our two approaches
were: by using a runtime library, and second, by using a ‘wrapper’ which calls
gcc. In the first approach, we planned to have our own library functions which
would have to be called in the same way as OpenMP. We felt that this might not
have much impact on performance and therefore, we resolved this to do at source
level. We would call gcc on the resultant program for further code generation
and optimization for the target platform.

Hence we opted for the second approach in which we intended to develop a
wrapper on gcc which would take the file having OpenMP directives as the input
file and automatically generate the code which implemented multithreading.
The wrapper on gcc should be able to search for the OpenMP directives in
the input file (program) and replace them with appropriate thread calls. This
could be easily achieved using a shell script, since we were working in a Linux
environment. The script searches for ‘#pragma’ omp and removes it from the
code, and the loop which follows this directive will be implemented in a function
to be called by the thread. The loop which needs to be parallelized is divided into
several segments each of which is executed by a thread. The kernel implicitly
assigns individual threads to available cores. Threads can be implemented in
two ways: Static and Dynamic assignment of threads. In static assignment, the
total number of iterations of the loop is divided equally among the different
threads. However, in dynamic assignment, we dynamically assign loop iterations
to different threads as and when the threads complete their previous tasks. The
static implementation of threads was observed to be faster than its dynamic
counterpart since there is no explicit necessity to handle the tasks given to each
of the threads. But in this case the number of iterations of the loop must be
divisible by the number of threads we create, at compile time itself. We used the
following standard for POSIX threads.

pthread_create(&thread_ID,NULL,function,&value);

This function creates a thread with the thread ID as ‘thread_ID’, with default
characteristics (specified by NULL as second parameter), executes the function
‘function ()’ in the thread and passes the value ‘value’ (usually a structure) to
the function.

pthread_join(thread_ID, &exit_status);

This function waits for the thread with thread ID ‘thread_ID’ to complete its
execution and collects its exit status (return value if any) in ‘exit_status’. This
also helps in synchronizing more than one thread.

When the OpenMP pragmas are non-nested, then the case is very simple
and all we have to do is to put the code following the directives in separate
functions and call the functions using threads. Whereas when there are nested

A Study of Performance Scalability by Parallelizing Loop Iterations 479

OpenMP directives, then we will have to create threads again inside the outer
thread functions, resulting in nested thread functions. As an added feature to the
script, the number of threads to be implemented can be specified as a command
line argument, default being two. We run the script as follows:

Syntax: ./script.sh <input_file> [no_of_threads]

3 Unimodular Transformations

Unimodular transformation is a loop transformation defined by a unimodular
matrix. To test the validity of a general unimodular transformation, we need to
know the distance vectors of the loop. After a valid transformation, if a loop in
the transformed program carries no dependency, then it can execute in parallel.

Many researchers have applied unimodular transformations for parallelization
of loops [11] [12]. Such transformations, though have limitations on applicability
due to the model on which they work, can be applied very elegantly onto loops,
which give various forms of loops executable in parallel. These types can be
generalized by a set of non-parallel loops sandwiched between set of outer parallel
loops and set of inner parallel loops. The beauty of this technique is that we
can control on how many of such inner and outer loops we want depending
upon the number of schedulable resources that we have. If the input loop does
not belong to the model or if the number of dependencies are more than what
is allowed by the model, then we will not be able to get completely parallel
loops. In that case, we have to make these run with explicit communication,
as explained in some works like [12]. In such methods, we allow the loops to
have dependencies, however we still run these in parallel and making explicit
synchronization wherever necessary so that the loops run correctly honoring all
data dependencies. The extension of this technique would be one in [13] where
they optimize the layout of arrays for such loops.

Program Model. Our model program [6] is the loop nest L= (L1, L2,...Lm):

L1: do I1 = p1, q1
L2: do I2 = p2, q2
. .
. . .

Lm: do Im = pm, qm
H (I1, I2,..., Im)
Enddo
.
Enddo
Enddo

An iteration H(i) is executed before another iteration H(j) in L iff i < j. Take
any m*m unimodular matrix U. Let LU denote the program consisting of the
iterations of L, such that an iteration H(i) is executed before another iteration

480 P. Raghavendra et al.

H(j) in LU iff iU < jU. LU can be written as a nest of m loops with an index vector
K=(K1,K2,...Km) defined by K=IU. The body of the new program is H(KU-1)
which will be written as HU (K). The program LU is the transformed program
defined by U, and the transformation L -> LU is the unimodular transformation
of L defined by U. The idea here is to transform the non-parallel loop into
another base so that the same loop would become parallel (and can be executed
in parallel on target machine).

4 Results

We studied the results as two problems, first to study the OpenMP ready pro-
grams with explicit parallel loops, and second, loops which are not parallel as
given, but may need some transformations (like unimodular transformations) to
make them run in parallel. We will show the results for the first case in Section
4.1 and show the results of next case in Section 4.2.

4.1 Study of OpenMP Parallel Programs

We took OpenMP programs like matrix multiplication with array sizes of 1800 *
1800 and LU factorization (array sizes of 1800*1800). We tested these programs
with different number of threads (2, 4, 6, 8, 16, etc) on IBM Power 5 server and
the performances were noted.

The IBM Power 5 server we used (IBM 9131 52A) has 4 physical processing
units (8 cores). The maximum available physical processing units were 3.8 since
the rest was used for VIOS (Virtual I/O Server). Each processing unit has 2
cores. The virtual machine on which the programs were tested was configured
for two settings:
Profile 1: Virtual Processing Units: 3 (6 cores)

Physical Processing Units: 3 (6 cores)
Profile 2: Virtual Processing Units: 8 (16 cores)

Physical Processing Units: 3.8 (approx. 8 cores)

Matrix multiplication. The program snippet which performs matrix multiplica-
tion implemented with threads is as follows :

#pragma omp parallel for private(i,j,k)
for(i = 0; i < 1800; i++){
for(j = 0; j < 1800;j++){

c[i][j] = 0;
for(k = 0; k < 1800; k++){
c[i][j] += a[i][k] * b[k][j];

}}}

Table-1 shows the statistics for the above program using Profile-1 and Profile-2.
Graph-1 shows the graph corresponding to Profile-1. Graph-2 shows the graph
corresponding to Profile-2.

A Study of Performance Scalability by Parallelizing Loop Iterations 481

Table 1. Scale-ups for the above program with Profile-1 and Profile-2

Profile-1 Profile-2
Threads Time in s Scale-up Threads Time in s Scale-up

1 239.21 1 1 236.01 1
2 119.67 2 2 118.19 2
3 80 2.99 3 79.12 2.98
4 77.8 3.07 4 59.71 3.95
6 60.91 3.93 6 61.23 3.85
8 64.94 3.68 8 60.8 3.88
10 63.13 3.79 10 58.58 4.03
12 60.72 3.94 12 56.4 4.18
18 60.38 3.96 18 51.41 4.59
100 61.33 3.9 100 51.39 4.59
300 66.74 3.58 300 51.85 4.55

Fig. 1. Graph-1

From the observations, it can be concluded that the scale up increases with the
number of threads as long as the number of threads is less than or equal to the
number of cores available. We see that we can never approach the ideal speed up
of N where N is the number of cores, since there is always some synchronization
to be done, which would slow down the program execution.

Comparing the maximum scale up produced in the two cases (profile-1: 3.96,
profile-2: 4.59), though the number of cores in the second case is twice that of
the first one, considerable amount of scale up is not obtained. This is because
in the second case 16 is the number of virtual cores and not the physical cores
(which is actually 8). And hence one core is taking care of two threads, which
leads to overhead due to switching of threads.

LU Factorization. The code snippet which performs LU factorization, imple-
mented with threads is as follows :

482 P. Raghavendra et al.

#pragma omp parallel for private(i,j,k)
for(k = 0; k < 1800; k++){

for(i=k+1 = 0; i < 1800;i++){
a[i][k] = a[i][k] / a[k][k];

}
for(i=k+1 = 0; i < 1800;i++){
for(j=k+1 = 0; j < 1800;j++){

a[i][j] = a[i][j] - a[i][k] * a[k][j];
}}}

Table-2 shows the statistics for the above program using Profile-1 and Profile-2.
Graph-3 shows the graph corresponding to Profile-1. Graph-4 shows the graph
corresponding to Profile-2.

It is clearly observed in all of the graphs that when the number of threads
is increased beyond a certain limit (number of cores available), the scale up
remains almost a constant. But if it is further increased to a much higher value,

Fig. 2. Graph-2

Table 2. Scale-ups for the above program with Profile-1 and Profile-2

Profile-1 Profile-2
Threads Time in s Scale-up Threads Time in s Scale-up

1 57.16 1 1 57.13 1
2 50 1.14 2 49.95 1.14
3 40.2 1.42 3 40.17 1.42
4 33.03 1.73 4 33 1.73
6 24.25 2.36 6 24.65 2.32
8 21.57 2.65 8 20.74 2.75
10 19.79 2.89 10 18.76 3.05
12 18.8 3.04 12 17.12 3.34
18 16.28 3.51 18 15.37 3.72
100 15.69 3.64 100 11.97 4.77
300 16.03 3.57 300 12.14 4.71

A Study of Performance Scalability by Parallelizing Loop Iterations 483

Fig. 3. Graph-3

Fig. 4. Graph-4

the scale up would decrease. This is because of the delay (overhead) produced
due to switching of the large number of threads.

As we know the loop following the OpenMP directives will be executed in
parallel. We studied the effects of parallelizing different sets of loops which are
nested. Consider the following code snippet :

for(i = 0; i < 1800; i++){
for(j = 0; j < 1800;j++){

c[i][j] = 0;
for(k = 0; k < 1800; k++){
c[i][j] += a[i][k] * b[k][j];

}}}

The time taken for a single thread to complete the above loops was 239.21
seconds. When the outer most ‘for’ loop (loop counter ‘i’) was parallelized with
4 threads, the time taken was found to be 79.72 seconds. When the second ‘for’
loop (loop counter ‘j’) was parallelized with 4 threads, the time taken was found
to be 101.56 seconds. When the inner most ‘for’ loop (loop counter ‘k’) was
parallelized with 4 threads, the time taken was found to be 526.6 seconds.

484 P. Raghavendra et al.

The parallelization achieved by multithreading the outer ‘for’ loop is called
‘Coarse Granular Parallelization’. It takes the least time because each thread
executes large chunk of calculations and hence overhead due to switching of
threads is minimized since each thread once created handles significant part
of the program. The parallelization achieved by multithreading the inner ‘for’
loop is called ‘Fine Granular Parallelization’. It takes more time because each
thread executes smaller chunk of calculations and hence overhead is more due
to repeated thread creation and destruction for very small tasks.

When the outer most and the second ‘for’ loop were parallelized with two
threads each, the time taken was found to be 63.47 seconds, which is slightly
better than that obtained by parallelizing the outer most loop alone with four
threads (79.72 s). When the outer most and the inner most ‘for’ loop were
parallelized with two threads each, the time taken was found to be 197.5 seconds.
When the second and the inner most ‘for’ loop were parallelized with two threads
each, the time taken was found to be 201.64 seconds.

The above data further proves higher performance gain of coarse granular
parallelization over fine granular parallelization. There are a number of limita-
tions in case of multithreading. There is an upper limit on the number of parallel
threads we can create, since all these threads belong to a single process and each
process has an upper limit on the memory it can use, depending on the hard-
ware architecture. Each thread has its own program stack. So having a large
number of threads in a single process may lead to memory insufficiency due to
the large number of stacks required. Moreover, the best performance is obtained
when the number of threads equals the number of actual cores available on the
system.

4.2 Study of Loop Transformations on Multi-core

Loops with independent iterations can be easily parallelized unlike ones with
dependencies. But some loops with dependencies can still be made independent
to some extent by applying mathematical transformations, which then can be
parallelized ([7]) . The transformations are usually specific to the function the
body of the loop performs. Some specific examples are discussed below.

Inner loop parallelization. [6] Consider the following double loop which has
dependencies :

for(i = 1; i < 1000; i++){
for(j = 1; j < 1000;j++){
for(l = 0; l < 10000; k++)// this loop is just to increase
the calculations
a[i][j] = a[i-1][j] + a[i][j-1];

}}

This code takes 87.51 seconds to complete. This can be transformed into an
independent loop given by:

A Study of Performance Scalability by Parallelizing Loop Iterations 485

for(k = 2; k < 1999; k++){
k_1=1>(k-999)?1:(k-999);
k_2=999>(k-1)?(k-1):999;
for(k_1 = k_1; k_1 <= k_2;k_1++){
for(l = 0; l < 10000; k++)// this loop is just to increase
the calculations
a[k-k_1][k_1] = a[k-k_1-1][k_1] + a[k-k_1][k_1-1];

}}

In the above code, only the inner most loop is independent and hence can be run
in parallel. When executed with two threads, the time taken is 52.17 seconds,
which is faster compared to the time taken by dependent loops though the
parallelization is fine granular. In this case, the number of iterations executed
by the second ‘for’ loop is least for the first and the last iteration of the outer
most ‘for’ loop and highest in between and the gradient is linear. Hence in order
to obtain higher efficiency, the first and last few iterations (depending upon
the amount of work being done) of the outer most ‘for’ loop can be executed
sequentially and the rest in parallel or we can make use of dynamic threads.
Dynamic threads results are in table-3.

Table 3. Scale-ups for Dynamic threads program

Threads Time in s
2 95.33
4 41.53
8 39.44

Outer loop parallelization. [6] Consider the following code which has dependen-
cies :

for(i = 6; i <= 500; i++){
for(j = i; j <= (2*i)+4; j++){
for(l = 0; l < 10000; k++)// this loop is just to increase
the calculations

a[i][j] = a[i-2][j-3] + a[i][j-6];
}}

This code takes 32.96 seconds to complete. This can be transformed into an
independent code given by :

for(y_1 = 0; y_1 <= 1; y_1++){// parallelizable loop
for(y_2 = 0; y_2 <= 1; y_2++){ // parallelizable loop
for(k_1 = ceil((6-y_1)/2.0); k_1 < floor((10-y_1)/2.0); k_1++){
for(k_2 = ceil(y_1+2*k_1-y_2);
k_2 < floor((2*y_1+4*k_1-4-y_2)/3.0); k_2++){
a[y_1+2*k_1][y_2+3*k_2] = a[y_1+2*k_1-2][y_2+3*k_2-3] +
a[y_1+2*k_1][y_2+3*k_2-6];
}}}}

486 P. Raghavendra et al.

When executed with two threads, the time taken is 20.28 seconds, which is
faster compared to the time taken by dependent loops. Since it is a case of
coarse granular parallelization, increasing the number of threads gives better
performance. The above program with maximum 6 threads gives a scale up of
3 (13.35 s) which is not up to the expectations since the number of inner loop
iterations is greater than that of the original program.

5 Conclusion

In this study, we did two things. First, study performance of a few OpenMP
ready parallel programs on multi-core machines (up to 8 physical cores). For
this, we implemented the OpenMP compiler over the gcc compiler. Second, we
extended our work to also include non-parallel loops and used some transforma-
tions to make these loops run in parallel. We were delighted to see that both
these cases proved that running these (with or without transformations) can give
us significant performance benefits on multi-core architectures. The trend today
is to have more and more cores and in that context, this work would be quite
relevant. In future, we would like to extend our work to more non-parallel loops,
which may run in parallel with some explicit synchronization on multi-core.

References

1. AMD Multi-core Products (2006), http://multicore.amd.com/en/products/
2. Multi-core from Intel Products and Platforms (2006),

http://www.intel.com/products/processor/

3. OpenMP, http://www.openmp.org
4. Wolfe, M.J.: Techniques for improving the inherent parallelism in programs. Tech-

nical Report 78-929, Department of Computer Science, University of Illinois at
Urbana-Champaign (July 1990)

5. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley,
Reading

6. Banerjee, U.K.: Loop Transformations for Restructuring Compilers: The Founda-
tions. Kluwer Academic Publishers, Norwell (1993)

7. Banerjee, U.K.: Loop Parallelization. Kluwer Academic Publishers, Norwell (1994)
8. Pthreads reference, https://computing.llnl.gov/tutorials/pthreads/
9. DHollander, E.H.: Partitioning and Labelling of loops by Unimodular Transforma-

tion. IEEE Transactions on Parallel and Distributed Systems 3(4) (1992)
10. Saas, R., Mutka, M.: Enabling unimodular transformation. In: Supercomputing

1994, November 1994, pp. 753–762 (1994)
11. Banerjee, U.: Unimodular Transformations of Double Loop. In: Advances in Lan-

guages and Compilers for Parallel Processing, pp. 192–219 (1991)
12. Prakash, S.R., Srikant, Y.N.: An Approach to Global Data Partitioning for Dis-

tributed Memory Machines. In: IPPS/SPDP (1999)
13. Prakash, S.R., Srikant, Y.N.: Communication Cost Estimation and Global Data

Partitioning for Distributed Memory Machines. In: Fourth International Confer-
ence on High Performance Computing, Bangalore (1997)

http://multicore.amd.com/en/products/
http://www.intel.com/products/processor/
http://www.openmp.org
https://computing.llnl.gov/tutorials/pthreads/

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 487–498, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Impact of Multimedia Extensions for Different
Processing Element Granularities on an Embedded

Imaging System

Jong-Myon Kim

School of Computer Engineering and Information Technology,
University of Ulsan,

San 29, Mugeo-2 Dong, Nam-Gu, Ulsan, South Korea, 680-749
Tel.: +82-52-259-2217; Fax: +82-52-259-1687

jongmyon.kim@gmail.com

Abstract. Multimedia applications are among the most dominant computing
workloads driving innovations in high performance and cost effective systems.
In this regard, modern general-purpose microprocessors have included multi-
media extensions (e.g., MMX, SSE, VIS, MAX, ALTIVEC) to their instruction
set architectures to improve the performance of multimedia with little added
cost to microprocessors. Whereas prior studies of multimedia extensions have
primarily focused on a single processor, this paper quantitatively evaluates the
impact of multimedia extensions on system performance and efficiency for dif-
ferent number of processing elements (PEs) within an integrated multiprocessor
array. This paper also identifies the optimal PE granularity for the array system
and implementation technology in terms of throughput, area efficiency, and en-
ergy efficiency using architectural and workload simulation. Experimental
results with cycle accurate simulation and technology modeling show that
MMX-type instructions (a representative Intel’s multimedia extensions) achieve
an average speedup ranging from 1.24× (at a 65,536 PE system) to 5.65× (at a 4
PE system) over the baseline performance. In addition, the MMX-enhanced
processor array increases both area and energy efficiency over the baseline for
all the configurations and programs. Moreover, the highest area and energy ef-
ficiency are achieved at the number of PEs between 256 and 1,024. These
evaluation techniques composed of performance simulation and technology
modeling can provide solutions to the design challenges in a new class of mul-
tiprocessor array systems for multimedia.

Index terms: image and video processing, multimedia extensions, multiproces-
sor arrays, grain size determination, technology modeling.

1 Introduction

The growing popularity of multimedia has created new demand for portable electronic
products [1]. These applications, however, demand tremendous computational and
I/O throughput. Moreover, increasing user demand for multimedia-over-wireless
capabilities on embedded systems places additional constraints on power, size, and
weight.

488 J.-M. Kim

Application-specific integrated circuits (ASICs) can meet the needed performance
and cost goals for such embedded imaging systems. However, they provide limited, if
any, programmability or flexibility needed for varied application requirements.

General-purpose microprocessors (GPPs) offers the necessary flexibility and inex-
pensive processing elements, and multimedia extensions to GPPs have improved the
performance for multimedia applications with litter added cost to the processors.
Examples include Intel MMX [2], SSE, and SSE-2 [3], Hewlett Packard MAX-2 for
the PA-RISC architecture [4], Sun VIS for SPARC [5], Alpha MVI [6], and Motorola
ALTIVEC for PowerPC architecture [7]. These extensions exploit subword parallel-
ism by packing several small data elements (e.g., 8-bit pixels) into a single wide regis-
ter (e.g., 32-, 64-, and 128-bit) while processing these separate elements in parallel.
The designers of digital signal processors (DSPs), such as the Texas Instruments
TMS320C64x families [8] and the Analog Devices TigerSharc processor [9], have
followed the trend.

However, despite some performance improvements through multimedia exten-
sions, neither GPPs nor DSPs will be able to meet the much higher levels of perform-
ance required by emerging multimedia applications on higher resolution images. This
is because they lack the ability to exploit the full data parallelism available in these
applications.

Among many computational models available for imaging applications, single in-
structions multiple data (SIMD) processor architectures [15] are promising candidates
for embedded multimedia systems since they replicate the datapath, data memory, and
I/O to provide high processing performance with low node cost. Whereas instruction-
level or thread-level processors use silicon area for large multiported register files,
large caches, and deeply pipelined functional units, SIMD processor arrays contain
many more simple processing elements (PEs) for the same silicon area. As a result,
SIMD processor arrays often employ thousands of PEs with the data I/O to minimize
storage and data communication requirements. While it is evident that the overall
performance improvement is achieved with increasing number of PEs (or parallel-
ism), no general consensus has been reached that what granularity of processors and
memories on an array system is best for multimedia capabilities and what kind of
impact does multimedia extensions have on performance and both area and energy
efficiency for different PE granularities (or the number of PEs).

This paper presents the impact of multimedia extensions for different number of
PEs in an integrated processor array and determines the most efficient PE granularity
which delivers the required processing performance with the lowest cost and longest
battery life for multimedia applications. Prior studies have primarily focused on a
single processor whereas this study quantitatively evaluates the impact of the multi-
media extensions on performance and efficiency metrics for different PE
granularities. Unlike many architectural parameters, analysis of multimedia exten-
sions for different PEs is difficult since each PE configuration has a different amount
of local memory and it significantly affects both hardware and software design. This
paper effectively evaluates the effects of multimedia extensions for different PE
granularities using application retargeting simulator combined with both area and
energy technology modeling. Experiment results indicate that MMX-type instructions
(a representative Intel’s multimedia extensions) achieve an average speedup ranging

 Impact of Multimedia Extensions for Different Processing Element Granularities 489

from 1.24× (at a 65,536 PE system) to 5.65× (at a 4 PE system) over the baseline due
to more subword parallelism. In addition, the MMX-enhanced processor array in-
creases both area and energy efficiency over the baseline for all the configurations
and programs because it achieves higher sustained throughput with a small increase in
the system area and power. Moreover, the most efficient operation is achieved at the
number of PEs between 256 and 1,024. Using these evaluation techniques, a new
class of multiprocessor array systems for imaging applications can be designed.

The rest of this paper is organized as follows. Section II presents the design meth-
odology and exploration strategy. Section III analyzes execution performance and
efficiency for each case, and Section IV concludes this paper.

2 Methodology

2.1 Simulation Infrastructure

Figure 1 shows an overview of our simulation infrastructure which is divided into
three levels: application, architecture, and technology. At the application level, an
instruction-level SIMD processor array simulator has been used to profile execution
statistics, such as cycle counts, dynamic instruction frequencies, and PE utilization,
for the two different versions of the programs: (1) baseline ISA without subword
parallelism (base-SIMD) and (2) baseline plus MMX-type ISA (MMX- SIMD). At
the architecture level, the heterogeneous architectural modeling (HAM) of functional
units for SIMD arrays [10] has been used to calculate the design parameters of the
modeled architectures. For the design parameters of the MMX functional unit (FU),
Verilog models for the baseline and MMX FUs were implemented and synthesized

Execution
Database

MMX

Applications

SIMD array
Simulator

Application Level

baseline

MMX

Architecture
Models

Technology
Models

Synopsys
(Module Builder)

HAMGENESYS

Design Space
Explorer

Technology Level Architecture Level

Output
Area Efficiency

Energy Efficiency

Execution Time

Execution
Database

MMX

Applications

SIMD array
Simulator

Application Level

baseline

MMX

Architecture
Models

Technology
Models

Synopsys
(Module Builder)

HAMGENESYS

Design Space
Explorer

Technology Level Architecture Level

Output
Area Efficiency

Energy Efficiency

Execution Time

Area Efficiency

Energy Efficiency

Execution Time

Fig. 1. A simulation infrastructure for the design space exploration of modeled architectures

490 J.-M. Kim

with the Synopsys design compiler (DC) using a 0.18-micron standard cell library.
The reported area specification of the MMX FU was then normalized to the baseline
FU, and the normalized number was applied to the HAM tool to determine the de-
sign parameter of the MMX-SIMD array. The design parameters are then passed to
the technology level. At the technology level, the Generic System Simulator
(GENESYS) [11] has been used to calculate technology parameters (e.g., latency,
area, power, and clock frequency) for each configuration. Finally, the databases
(e.g., cycle times, instruction latencies, instruction counts, area, and power of the
functional units), obtained from the application, architecture, and technology levels,
were combined to determine execution times, area efficiency, and energy efficiency
for each case. The next section evaluates the system area and power of the modeled
architectures.

2.2 Modeled Processor Array Architectures

A SIMD processor array architecture shown in Figure 2 is used as our baseline archi-
tecture for this study. This SIMD processor architecture is symmetric, having an
array control unit (ACU) and an array consisting of from a few ten to a few thousand
PEs. Depending on the number of PEs in a system, each PE in different configura-
tions supports a different size of pixels and a different local memory to store input
images and temporary data produced during processing. This study assumes that
each PE is associated with a specific portion of an image frame with sensor sub-
arrays, allowing streaming pixel data to be retrieved and processed locally. Each PE
has a reduced instruction set computer (RISC) datapath with the following minimum
characteristics:

 ALU – computes basic arithmetic and logic operations,
 MACC – multiplies 32-bit values and accumulates into a 64-bit accumulator,
 Sleep – activates or deactivates a PE based on local information,
 Pixel unit – samples pixel data from the local image sensor array,
 ADC unit – converts light intensities into digital values,
 Three-ported general-purpose registers (16 32-bit words),
 Small amount of local storage (64 32-bit words),
 Nearest neighbor communications through a NEWS (north-east-west-south)

network and serial I/O unit.

In this study, eight different PE granularities (in the number of PEs) are used for the
performance and efficiency evaluation of MMX-type instructions in which each PE in
different PE configurations supports a different number of pixels. For a total system
calculations, an image size of 256 × 256 is used. The resulting number of PEs for a
fixed 256 × 256 pixel system is defined as NPE = 22(8-i), i = 0,…,7 in which each PE
supports 22i, i = 0,…,7, respectively. To support the different PE granularities within
the array, we have modified hardware and software design of the architecture. In
addition, we have added a MMX-type functional unit to the system to evaluate

 Impact of Multimedia Extensions for Different Processing Element Granularities 491

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACC

MMX

Sleep
and

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

SIMD Processor Array

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACCMACC

Sleep
and

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

Single Processing Element

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACC

MMX

Sleep
and

Register File
16 by 32 bit

2 read, 1 write

SP. Registers & I/O

S&H

ADC

Comm. Unit

Neighboring PEs

CFA

SIMD Processor Array

Local Memory

Arithmetic,
Logical, and
Shift Unit

Decoder

MACCMACC

Sleep
and

Fig. 2. A block diagram of a SIMD processor array and a processing element used in this study

Table 1. Modeled system parameters

Parameter Value

Number of PEs 65,536 16,384 4,096 1,024 256 64 16 4

Pixels/PE 1 4 16 64 256 1,024 4,096 16,384

Memory/PE [word] 8 16 64 256 1,024 4,096 16,384 65,536

VLSI Technology 100 nm

Clock Frequency 500 MHz

Interconnection Network Mesh

intALU/intMUL/Barrel
Shifter/intMACC/Comm

1 / 1 / 1 / 1 / 1

the impact of the MMX-type instructions for each system configuration. Each
configuration has a different amount of local memory. Table 1 describes all the
system configurations and their local memory sizes.

2.3 Benchmark Applications

To evaluate the modeled architectures, an application suite was selected, retargeted,
and simulated using the instruction-level simulator. The suite includes two imaging
applications: vector quantization (VQ) and motion estimation (ME). These applica-
tions form significant components of many current real-world workloads such as
image and video compression. For a fair performance comparison, the applications
were retargeted and optimized for each PE configuration individually.

492 J.-M. Kim

2.3.1 Vector Quantization
Full search vector quantization (FSVQ), a promising candidate for low rate and low
power image and video compression, was selected for a case study. It has a computa-
tionally inexpensive decoding process and low hardware requirement for decompres-
sion, while still achieving an acceptable picture quality at high compression ratios
[12][13]. However, the encoding process is computationally very intensive. Computa-
tional cost can be reduced by using suboptimal approaches such as tree-searched
vector quantization (TSVQ) [12]. This study prefers to overcome the computational
burden by using a parallel implementation of FSVQ on a SIMD processor array sys-
tem. FSVQ is defined as the mapping of k-dimensional vectors in the vector space Rk
into a finite set of vectors V = {ci, i=1,…,N}, where N is size of the codebook. Each
vector ci=(c1,…,cN) is called as a code vector or codeword. Only index i of the result-
ing code vector is sent to the decoder. At the decoder, an identical copy of the code-
book is looked up by a simple table-lookup operation.

In this implementation, we use a codebook of 256 4×4 code vectors designed off-
line through a standard Linda-Buzo-Gray (LBG) training process to achieve a 0.5 bit
per pixel encoding for an image in 24-bit data, using 4×4 (k = 16). In the 2-D case,
non-overlapping vectors are extracted from the input image by grouping a number of
contiguous pixels to retain available spatial correlation of data. The input blocks are
then compared with the codebook in a parallel systolic fashion, with a large number
of them compared at any given time in parallel. A key enabling role is played by the
toroidal structure of the interconnection network, which enables communication
among the nodes on opposite edges of the mesh. The most time-critical operation for
this implementation is the distortion calculation between a 4×4 input block and a local
codeword. The distortion can be efficiently calculated with the SAD (sum of absolute
differences) instruction by comparing pairs of sub-elements in the two source regis-
ters while accumulating each result in the packed accumulator. Table 2 shows a com-
parison of instruction counts using the baseline and MMX-type ISAs for a full search
VQ operation of 4×4 pixels. The instruction count decreases 81% with MMX-type
instructions over the baseline performance.

Table 2. A comparison of instruction counts using the baseline and MMX-type ISAs for a VQ
operation of 4×4 pixels

 Baseline MMX-type
ALU 483 37
MEM 80 34
MASK 34 -
MMX - 17

Scalar Instructions 34 34
Total 631 122

2.3.2 Motion Estimation
Motion estimation (ME) is a core building block in several video compression stan-
dards (e.g., H.26x and MPEG). Compression is achieved through a block-matching
algorithm (BMA) that subdivides the current frame into small reference blocks and
then finds the best match for each block among the available blocks in the previous

 Impact of Multimedia Extensions for Different Processing Element Granularities 493

frame. In this implementation, the macroblock size of 16 × 16 pixels and the search
range of ±8 were used. Since the objective of this study is to achieve accurate motion
estimates, both luminance and chrominance components in the program were used
rather than only the luminance component in the standard BMA. In particular, the
proposed approach, called full search vector BMA (FSVBMA), uses both luminance
and chrominance components while arriving at one motion vector for all components,
improving the accuracy of the process and the overall video quality [14]. The match-
ing criterion of the FSVBMA for motion estimation is defined as

∑∑

∑∑

∑∑

−

=

−

=

−

=

−

=

−

=

−

=

−+++

−+++

−++=

1

0

1

0

1

0

1

0

1

0

1

0

|),(),(|

|),(),(|

|),(),(|),(

M

i

N

j
Cr

M

i

N

j
Cb

M

i

N

j
Y

jixnjmiy

jixnjmiy

jixnjmiynmMAD

,

(1)

pnmp ≤≤− , ’ (2)

),,(minarg
,

nmMAD
pnmp ≤≤−

=v (3)

where x(i,j) is the reference block of size M × N pixels at coordinates (i,j),
y(i+m,j+n) is the candidate block within a search area in the previous frame, p is the
search range, (m,n) represents the candidate displacement vector, and v is the motion
vector.

Clearly, the most time-critical operation is the mean absolute differences (MAD)
computation that involves a reference block of pixels and all the candidate blocks of
pixels in the search area. Similar to the VQ implementation, the MAD block is effi-
ciently processed with the SAD instruction by comparing pairs of the sub-elements in
the two source registers (one containing pixels within the candidate block; the other
containing pixels within the reference block) while accumulating each result in the
packed accumulator. This process is iterated until all the candidate blocks are com-
pared by the reference block. Table 3 shows a comparison of instruction counts using

Table 3. A comparison of the number of instructions using the baseline and MMX-type ISAs
for a MAD operation of 16×16 pixels

 Baseline MMX-type
ALU 392 42
MEM 33 33
MASK 48 -
COMM 6 6
MMX - 16

Scalar Instructions 33 33
Total 512 130

494 J.-M. Kim

the baseline and MMX-type ISAs for a MAD computation of 16×16 pixels. The
instruction count decreases 75% with MMX-type instructions over the baseline
version.

2.4 System Area and Power Evaluation Using Technology Modeling

Figures 3 and 4 present the distribution of each functional unit’s area and power,
respectively, for the SIMD processor array with and without MMX. Each bar di-
vides the system area and power into register file, arithmetic and logical unit
(ALU), multiply-accumulate unit (MACC), shifter, memory, communication, de-
coder, PE activity control unit (sleep), and serial unit. For the number of PEs at or
below 256, both baseline and MMX array’s area and power are dominated by local
memory. Above this point, however, MMX requires higher system area and power
than the baseline since the area overhead of the MMX execution unit is significant.
These system area and power results are combined with application simulations to
determine both area and energy efficiency for each case, which is presented next.

0

20

40

60

80

100

120

Base MMX Base MMX Base MMX Base MMX Base MMX Base MMX Base MMX Base MMX

4 PEs 16 PEs 64 PEs 256 PEs 1024 PEs 4096 PEs 16384 PEs 65536 PEs

N
o

rm
ai

iz
ed

 s
ys

te
m

 a
re

a
(%

) Serial

Sleep

Decoder

Comm

Memory

Shifter

MACC

ALU

Register File

Fig. 3. Impact of MMX on system area for different number of PEs

0

20

40

60

80

100

120

Base MMX Base MMX Base MMX Base MMX Base MMX Base MMX Base MMX Base MMX

4 PEs 16 PEs 64 PEs 256 PEs 1024 PEs 4096 PEs 16384 PEs 65536 PEs

N
o

rm
al

iz
ed

 s
ys

te
m

 p
o

w
er

 (%
)

Serial

Sleep

Decoder

Comm

Memory

Shifter

MACC

ALU

Register File

Fig. 4. Impact of MMX on system power for different number of PEs

 Impact of Multimedia Extensions for Different Processing Element Granularities 495

3 Experimental Results

Application simulation and technology modeling are used to determine performance
and efficiency for each PE configuration for the chosen workloads. The execution
time, sustained throughput, area efficiency, and energy efficiency of each case form
the basis of the study comparison, defined in Table 4.

Table 4. Summary of evaluation metrics

execution
time

sustained throughput area efficiency energy consumption

ck
exec f

C
t =]

Joule

Gops
[

Energy

NUO PEexec
E

⋅⋅=η]
mms

Gops
[2⋅

=
Area

Thsust
Aη][JtPowerEnergy exec⋅=

C is the cycle count, ckf is the clock frequency, execO is the number of executed

operations, and NPE is the number of processing elements. Note that since each MMX
instruction executes more operations (typically four times) than a baseline instruction,
we assume that each MMX and baseline instruction executes four and one operation,
respectively, for the sustained throughput calculation.

3.1 Execution Performance

This section evaluates the impact of MMX-type instructions on processing perform-
ance for each case.

3.1.1 Impact of MMX on Processing Performance
Figure 5 shows execution performance (speedup in executed cycles) for different
number of PEs with and without MMX. As expected, MMX outperforms the baseline
for all the PE configurations because of more subword parallelism. However, the
slope is not equal. For the number of PEs above 4,096, less speedup efficiency is
achieved. This is because high inter-PE communication operations are involved in the
task, which are not affected by MMX.

of Processing Elements

S
p

e
e

d
u

p

Base-SIMD (VQ)

MMX-SIMD (VQ)

of Processing Elements

S
p

e
e

d
u

p

Base-SIMD (ME)

MMX-SIMD (ME)

Fig. 5. Speedups for different PE configurations with and without MMX

496 J.-M. Kim

3.1.2 Impact of MMX on System Utilization
System utilization is calculated as the average number of active processing elements
MMX increases system utilization over the baseline, shown in Figure 6. This is be-
cause MMX compare instructions allow multiple conditional (MASK) instructions
with one equivalent MMX instruction, reducing PE idle cycles based on the local
information. As with the vector instruction count, MMX is less effective at reducing
PE idle cycles for the number of PEs above 1,024 because of high inter-PE communi-
cation operations that are not affected by MMX. The next sections discuss energy and
area efficiency results.

70%

75%

80%

85%

90%

95%

100%

4 16 64 256 1024 4096 16384 65536

of Processing Elements

S
ys

te
m

 U
ti

liz
at

io
n

Base-SIMD (VQ)
MMX-SIMD (VQ)
Base-SIMD (ME)
MMX-SIMD (ME)

Fig. 6. System utilization for different PE configurations with and without MMX

0

0.5

1

1.5

2

2.5

3

4 16 64 256 1024 4096 16384 65536

of Processing Elements

N
o

rm
al

iz
ed

 A
re

a
E

ff
ic

ie
n

cy
[E

xe
c

R
at

e/
m

m
2]

Base-SIMD (VQ)
MMX-SIMD (VQ)
Base-SIMD (ME)
MMX-SIMD (ME)

Fig. 7. Normalized area efficiency of MMX versus the number of PEs

 Impact of Multimedia Extensions for Different Processing Element Granularities 497

3.2 Area Efficiency

Area efficiency is the task throughput achieved per unit of area. Figure 7 presents area
efficiency for each case. Maximum area efficiency of both MMX and baseline for VQ
and ME is achieved at PEs = 4,096 and 256 due to the inherent definition of FSVQ
and ME encoding, respectively. MMX increases area efficiency over the baseline for
all the PE configurations and programs. This is because MMX achieves higher sus-
tained throughput with smaller area overhead. Increasing area efficiency improves
component utilization for given system capabilities.

3.3 Energy Efficiency

Energy efficiency is the task throughput achieved per unit of Joule. Figure 8 presents
energy efficiency for each case. As with area efficiency, maximum energy efficiency
of both MMX and baseline for VQ and ME is achieved at PEs = 4,096 and 256 due to
the inherent definition of FSVQ and ME encoding, respectively. MMX increases
energy efficiency over the baseline for all the PE configurations and programs. This is
because MMX achieves higher sustained throughput with a small increase in the sys-
tem power. Increasing energy efficiency improves sustainable battery life for given
system capabilities.

0

0.5

1

1.5

2

2.5

3

4 16 64 256 1024 4096 16384 65536

of Processing Elements

N
o

rm
al

iz
ed

 E
n

er
g

y
E

ff
ic

ie
n

cy
[E

xe
c

R
at

e/
Jo

u
le

]

Base-SIMD (VQ)
MMX-SIMD (VQ)
Base-SIMD (ME)
MMX-SIMD (ME)

Fig. 8. Normalized energy efficiency of MMX versus the number of PEs

4 Conclusions

Continued advances in multimedia computing will rely on reconfigurable silicon area
usage within an integrated pixel processing array. This paper explores the impact of
MMX on performance and both area and energy efficiency for different PE
granularities and identifies the most efficient PE configuration for a specified SIMD
processor array and implementation technology. Experimental results using architec-
tural and workload simulation indicate that the MMX-enhanced processor array
decreases execution time for all the configurations and programs over the baseline

498 J.-M. Kim

performance due to more subword parallelism. In addition, the MMX-enhanced proc-
essor array increases both area and energy efficiency over the baseline for all the
configurations and programs because it achieves higher sustained throughput with a
small increase in the system area and power. Moreover, the most efficient operation
for VQ and ME encoding is achieved at the number of PEs between 256 and 4,096,
respectively. These evaluation techniques can provide solutions to the design chal-
lenges in a new class of multiprocessor array systems for multimedia.

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MEST) (No. R01-2008-000-20493-0).

References

1. Agerwala, T., Chatterjee, S.: Computer architecture: challenges and opportunities for the
next decade. IEEE Micro, 58–69 (May-June 2005)

2. Peleg, A., Weiser, U.: MMX technology extension to the Intel architecture. IEEE Mi-
cro 16(4), 42–50 (1996)

3. Raman, S.K., Pentkovski, V., Keshava, J.: Implementing streaming SIMD extensions on
the Pentium III processor. IEEE Micro 20(4), 28–39 (2000)

4. Lee, R.B.: Subword parallelism with MAX-2. IEEE Micro 16(4), 51–59 (1996)
5. Tremblay, M., O’Connor, J.M., Narayanan, V., He, L.: VIS speeds new media processing.

IEEE Micro 16(4), 10–20 (1996)
6. Sites, R. (ed.): Alpha Reference Manual. Digital, Burlington (1992)
7. Nguyen, H., John, L.: Exploiting SIMD parallelism in DSP and multimedia algorithms us-

ing the AltiVec technology. In: Proc. Intl. Supercomputer Conference, June 1999, pp. 11–
20 (1999)

8. TMS320C64x DSP Technical Brief,
http://www.ti.com/sc/docs/products/dsp/c6000/c64xmptb.pdf

9. Fridman, J., Greenfield, Z.: The TigerSHARC DSP architecture. In: Proc. IEEE/ACM Intl.
Sym. on Computer Architecture, May 1999, pp. 124–135 (1999)

10. Chai, S.M., Taha, T.M., Wills, D.S., Meindl, J.D.: Heterogeneous architecture models for
interconnect-motivated system design. IEEE Trans. VLSI Systems, special issue on system
level interconnect prediction 8(6), 660–670 (2000)

11. Nugent, S., Wills, D.S., Meindl, J.D.: A hierarchical block-based modeling methodology
for SoC in GENESYS. In: Proc. of the 15th Ann. IEEE Intl. ASIC/SOC Conf., September
2002, pp. 239–243 (2002)

12. Nozawa, T., et al.: A parallel vector-quantization processor eliminating redundant calcula-
tions for real-time motion picture compression. IEEE J. Solid-State Circuits 35(11), 1744–
1751 (2000)

13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Engle-
wood Cliffs (2008)

14. Tremeau, A., Plataniotis, K., Tominaga, S.: Color in Image and Video Processing. Special
issue of EURASIP Journal on Image and Video Processing (2008)

15. Chiu, J.-C., Chou, Y.-L., Tzeng, H.-Y.: A Multi-streaming SIMD Architecture for Multi-
media Applications. In: Proceedings of the 6th ACM conference on Computing frontiers,
pp. 51–60 (2009)

Reducing False Aborts in STM Systems

Daniel Nicácio and Guido Araújo

Institute of Computing
UNICAMP

{dnicacio,guido}@ic.unicamp.br

Abstract. Transactional memory (TM) continues to be the most promis-
ing approach replacing locks in concurrent programming, but TM systems
based on software (STM) still lack the desired performance when com-
pared to fine-grained lock implementations. It is known that the criti-
cal operation in TM systems is to ensure the atomicity and isolation of
concurrently executing threads. This task is known as the read/write-
set validation. In attempt to make this process as fast as possible, STM
systems usually use ownership tables to perform conflict detection, but
this approach generates false positive occurrences, which result in false
aborts. This paper shows the real impact of false aborts and how its rel-
evance increases along with the number of concurrent threads, showing
it is an essential factor for TM systems. We propose two different tech-
niques to avoid false aborts, showing its benefits and limitations. The
first is a collision list attached to the existing hash table. The second is a
full associative memory mapping between the addresses and its version
information. We achieved significant performance improvements in some
STAMP benchmark programs, resulting in speedups up to 1.5x. We also
show that speedups become higher when the number of parallel threads
increases.

1 Introduction

Multi-core chips are a solid reality now, being present in desktops, servers and
even embedded systems. Although multi-cores chips have largely been adopted,
parallel programming has not. The use of locks has been the most widely used
tool for controlling access to shared data, but while coarse-grained locks are
easy to manage, it limits the parallelism and has a poor performance. On the
other hand, fine-grained locks perform quite well, but designing such a system
is already known as a very complex task better left to experts only. Computer
scientists are looking for a programming tool which combines the low complexity
of coarse grained locks and the minimal contention of fine grained locks. The
transactional memory programming paradigm proposed by Herlihy and Moss [1]
seems to be the most promising accepted answer.

Transactional Memory (TM) allows the programmer to mark code segments
as transactions without worrying about interactions between concurrent oper-
ations. Transactions are automatically executed as an atomic operation and in
parallel with other transactions as long they do not conflict. A conflict occurs if

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 499–510, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

500 D. Nicácio and G. Araújo

two or more ongoing transactions try to access the same data and at least one
of them modifies it. There are many design proposals for TM systems: (a) based
on hardware transactional memory (HTM) [1,2]; (b) pure software transactional
memory (STM) [3,4]; and (c) hybrid techniques (HyTM) that combine hard-
ware and software [5,6]. TM achieves its goal by lessening the burden of parallel
programming, but its performance is not yet adequate.

It is known that the read/write set validation task is critical in STM systems.
It consists of (1) keeping track of every read and write operation for each ongoing
transaction, usually done by storing it in read/write sets; (2) verifying each
element in a write-set if it is also present in the read-set or write-set of another
transaction; if this happens, a conflict is detected and one of the transactions
involved must be aborted. In an attempt to make the verification process as fast
as possible, STM systems typically uses techniques susceptible to false positive
answers (e.g. memory mapping using a hash table), thus generating unnecessary
false aborts.

This paper shows that false aborts are a real threat for STM systems, and
as the number of concurrent threads increases, this problem becomes even more
critical. Empirical tests show that the probability of a conflict to occur is at least
proportional to the number of parallel threads executing. In order to evaluate
this, we analyzed the effects of false aborts, measuring the false abort ratio and
the time spent on false aborted transactions. Then, we propose two solutions to
address this problem and show their benefits and limitations: (1) a collision list
for the commonly used hash table and (2) a full associative mapping between
the addresses and its version information.

In Section 2 we list related works to false aborts, false conflicts, and conflict
detection techniques. In Section 3 we explain the conflict detection process and
provide quantitative data to support the need of a conflict detection technique
free of false positives. Section 4 shows in detail the two techniques mentioned
earlier, explaining how they work and why they tend to become even more
powerful as the number of cores in a single chip increases. In Section 5 we
present the experimental results of the proposed techniques. And in Section 7
we conclude this work.

2 Related Work

Zilles and Rajwar [7] have a similar work regarding false conflict rate. They
demonstrated through an analytical model validated by statistical data that a
tagless ownership table results in an alias-induced conflict rate. This rate in-
creases approximately as the square of both concurrency and size of the transac-
tion data footprint. This demonstration was based on a simulated environment.
They suggest a tagged ownership organization for alias elimination. Our work
differs in many aspects: (1) while they used analytical and statistical models,
we made practical experiments on commonly used TM benchmarks using a well
known STM system; (2) they aimed at hybrid TM system, and we used a STM
model; (3) although they suggested the use of a tagged table, they did not show

Reducing False Aborts in STM Systems 501

the results (time benefits and overhead) of such technique; and finally, (4) we also
implemented a full associative memory mapping technique to avoid the aliasing
of a tagless table.

Xiaoqiang, Lin, and Lunguo [8] focus on high transaction abort ratio, which
degrades the overall performance of high contention workloads. Their experi-
mental results show that a STM system implementation does not scale well.
The number of transactions aborted every second increases for each CPU added.
According to the authors, the problem is that concurrent threads with high con-
tention hurt performance by increasing the number of conflicts, which in turn
wastes resources through aborted transactions. To overcome this issue, they tried
to reduce the number of conflicts between transactions, using a causal consis-
tency memory model with weaker semantics. We agree with them on how the
number of conflicts increases as the number of cores grows. In this paper we
approach the problem from a different angle, reducing the number of conflicts
generated by false positives.

There are some related works to conflict detection techniques. Agrawal, Fine-
man and Sukha [9] proposed a conflict detection technique called XConflict for
a TM system designed for nested parallel transactions. Their algorithm dynam-
ically divides the computation into traces, where each trace consists of memory
operations, then XConflict manages conflicts only between traces. Unfortunately,
the performance analysis of their model does not include checking for conflicts
with multiple readers and possible aborts, what could significantly increase the
runtime.

Shriraman and Dwarkadas [10] analyzed the interplay between conflict res-
olution time and contention management policy in the context of hardware-
supported TM systems. Although they did not change the way conflict detection
is performed, they claimed that Lazy policies provide higher performance than
Eager polices. They also evaluated a mixed conflict detection mode that detects
write-write conflicts eagerly, while detecting read-write conflicts lazily. Atoofian,
Baniasadi and Coady [11] also discussed the efficiency of Lazy and Eager polices,
and proposed a new read validation policy that adapts to the workload.

3 The False Abort Issue

This section shows how false aborts increases as the number of cores raises. Fur-
thermore, we measure the time wasted in false aborted transactions, highlighting
the importance of effective conflict detection techniques.

The work presented in this paper was implemented in TL2 [12] STM system,
considered a state-of-the-art STM implementation. TL2 stores a read/write set
for each ongoing transaction. These sets store every address read and/or written
by the respective transaction. In order to always keep the memory consistent,
avoiding zombie transactions, the system checks if every load and write operation
is valid; this checking is called conflict detection. Conflict detection is also done
immediately before the transaction commits (to assure nothing became incon-
sistent during the transaction execution). This task is performed as follows: (1)

502 D. Nicácio and G. Araújo

for every read operation, the system verifies the version-clock associated to the
address being read and compare it to the transaction version-clock; (2) before
the transaction commits, the version-clock of every address in the read set is
rechecked. If any of them has changed to an invalid state, a write operation was
executed in the meantime, changing the address version-clock and producing a
conflict. In such case, the transaction must be aborted.

Trying to make this process as fast as possible, TL2 uses a hash function
to map memory addresses to its respective version-clock. As a hash function
is used, alias problem can occur, as two different addresses might be mapped
to the same entry. Suppose the hash function maps addresses X and Y to the
same hash table entry. As a consequence, if transaction T1 reads address X, then
transaction T2 writes in Y; when T1 tries to commit, it will detect a conflict
in X and will abort. But the conflict is a false conflict, since X and Y were two
completely different memory positions. When a transaction is aborted due to a
false conflict, we have a false abort. Most of the STM systems [13,14,15] use such
techniques susceptible to false aborts.

We have made modifications to TL2 so as to measure the time spent in each
transaction. Next, we classified transactions in three groups: committed, which
successfully committed; true aborted, which aborted due to a true conflict; and
false aborted, which aborted due to a false conflict. The number of occurrences
and the time spent in each type of transaction were measured. The environment
used to run these tests is described in Section 5.

The graphic of Figure 1 shows, for seven STAMP [16] benchmarks, the per-
centage of started transactions that ended up in a false abort and the percentage
of time spent in transactions that ended up in a false abort. As shown, when
running up to eight parallel threads, around one quarter of aborted transactions
on Kmeans High (26%) and Kmeans Low (18%) are false aborted transactions.
This number is still high for Labyrinth (8%) and Vacation High (6%). Other
programs have 0.6% false aborted transactions on average. All programs have
presented an increasing pattern of false aborts as the number of threads increase.

The time shown in this graphic corresponds exclusively to the time spent in
transactional code (including the STM management overhead during its execu-
tion). Running with eight parallel threads, Labyrinth spends 22% of its time
on false aborted transactions, Kmeans High 11%, Genome, Bayes and Vacation
High between 5% and 10%, and the rest of the programs 1.7%. Again, the figure
clearly shows an increase in the number of false aborts as the number of threads
increase. The benchmark SSCA2 did not presented any aborts in our tests; hence
it is not displayed in the graphic.

The graphic reveals that false aborts exist in a substantial number for some
programs. As mentioned, the time spent in false aborted transactions for program
Labyrinth was high; avoiding false aborts would probably provide a speedup
around 22% in this program. Also, when a false abort is eliminated, it brings a
number of positive consequences: (1) the time spent on the transaction is not
wasted, eliminating the need of redoing computation, (2) the roll-back process

Reducing False Aborts in STM Systems 503

842

F
a

ls
e

 A
b

o
rt

s
 (

%
)

30

20

10

0

842 842 842 842 842 842

T
im

e
 in

 F
a

ls
e

 A
b

o
rts

 (%
)

30

20

10

0

Vacation-LowVacation-HighLabyrinthKmeans-LowKmeans-HighGenomeBayes

amount

time.

Fig. 1. The percentage of false aborted transactions and the time percentage spent in
false aborted transactions of seven STAMP programs

to restore the previous processor’s state is eliminated, and (3) as we decrease
the time on transactions, we also diminish the chances of real conflicts to occur.

It is worth noting that the number of false aborted transactions has no direct
relation to the time spent on false aborted transactions. The size of a trans-
action has direct influence on the time needed by the roll-back process, which
produces high cost aborts. For example, Labyrinth has long transactions, while
Kmeans High has very short transactions. This explains why Kmeans High, de-
spite its high number of false aborted transaction, does not spend much time of
its execution on aborts.

4 Conflict Detection Free of False Aborts

As described above, the performance of STM may be improved by avoiding false
aborts. To achieve that, false aborts must be avoided by using a low overhead
technique to be of any worth. In the next two sub-sections we present two differ-
ent ways to do it. The first one is based on hash table conflict disambiguation,
and the second uses a full associative memory mapping.

4.1 A Hash Table Collision List

Zilles and Rajwar [7] proposed a chaining hash table to eliminate false conflicts,
but they did not implement it to see its benefits, and they focused on hybrid
systems. Our implementation follows the same idea they proposed, but some
modifications were necessary due to some technical restrictions and the fact
that we tried to change the TL2 algorithm as minimally as possible.

TL2 uses a 4MB hash table capable of storing 1000 entries. Each entry is a
32 bit word. Depending on the value of the least significant bit, the 30 most
significant bits contain a version-clock or a pointer to a read/write set element.

504 D. Nicácio and G. Araújo

0x100

0x108

0x12C

0x10C
0x110
0x114
0x118
0x11C
0x120
0x124
0x128

0x104

pointer

pointer

pointer

Pointer
Address (0x118)
Version clock or pointer to
read/write set node

Pointer
Address (0x104)
Version clock or pointer to
read/write set node

Pointer
Address (0x12C)
Version clock or pointer to
read/write set node

Pointer
Address (0x124)
Version clock or pointer to
read/write set node

Pointer
Address (0x11C)
Version clock or pointer to
read/write set node

Address Space Hash Table Collision Lists

Fig. 2. The hash table collision list for STM systems

First, we thought about using the second least significant bit to hold informa-
tion in case the entry had a collision or not (a collision bit). This way, a level of
indirection would be needed only when a collision was present. Unfortunately,
in the TL2 context this approach seems to be impossible. Due to the irreversible
feature of hash functions, if there is a version clock in the entry, there is no
way to know the address associated to that clock; therefore, there is no available
information to set the collision bit properly.

The implementation used in this paper stores a pointer to a collision list at
each hash table entry. A collision list node is a structure containing: (1) a pointer
for a possible next node, (2) the memory address associated to the node, and
(3) the 32 bit word previously present in the hash table. The implementation
overhead come as the additional level of indirection added to the scheme and
the memory needed to build the collision list node (each node requires 12 bytes).
Figure 2 depicts on collision list approach.

4.2 A Full Associative Memory Mapping

Our second approach to avoid false aborts was to hold a unique information for
each address writen and/or read by a transaction. In order to do this, a full
associative memory mapping is used.

First, the address is divided in two parts: the highAddr (8 most significant
bits) and the lowAddr (bit 2 to bit 24). An array of 256 positions (highAddrList)
is used to represent the highAddr. Each position points to its associated lowAd-
drList, each lowAddrList has 222 entries and each entry holds the version clock
or the pointer to a read/write set node used in the TL2. The lowAddrList has
only 222 elements, and not 224, because TL2’s API defines the minimum data
granularity as a word.

Figure 3 shows an example where address 0x030011F0 is mapped. In our
example, the highAddr has value 3, it indicates that the fourth entry of the
highAddrList holds the pointer to the array that represents the lowAddr. The
lowAddr has value 1148, so the 1149th entry of lowAddrList holds the information
used by TL2.

Reducing False Aborts in STM Systems 505

0x030011F0 0000 0011 0000 0000 0001 0001 1111 0000

Bit 2 to 24 -> 1148

. . .0 3 255

0 1148. 222

HighAddr List

LowAddr List

Version clock or read/write set node pointer

8 MSB -> 3

Fig. 3. The full associative memory mapping scheme

Notice that we divided the address in 8/24 bits instead of half. This decision
was based on the locality principle, which states [17] that memory references
tend to access smaller regions of the total memory. It means that, if we divide it
in 8/24, only a few lowAddrLists will be needed to map all referenced address.
If we divide the address in half, a lot of smaller lowAddrLists would be needed,
and they would be spread in the memory space. Again, based on the locality
principle, to access big contigous regions of memory is more efficient than access
a lot of small spread regions of memory.

The lowAddrLists are allocated on demand, making the total memory needed
by this technique proportional to the application data footprint. Its performance
is also linked to the amount of memory allocated, since the allocation process is
expensive. Furthermore, all allocated lowAddrLists cannot be deallocated until
the end of the application. It might be prohibitive for some applications, but, if
memory is available, this technique proved to be very efficient.

The lowAddrLists could be deallocated if and only if we guarantee that all
of its addresses are not in use by any transaction at a given moment. Some
techniques of garbage collection were tested, but none was viable to use in the
memory transaction context.

5 Experimental Results

In this section we preset the speedup obtained by both techniques: hash table
collision list and full associative memory mapping. The results use the eager
conflict detection policy (the results using the lazy conflict detection policy were
very similar, and due to space limitation, are not shown here). Both, TL2 system
and STAMP, were compiled with ICC (Intel C Compiler) using -O3 flag. Our
experiments and results were measured on a Intel dual-Xeon (eight 2.0 GHz
cores) machine, 1MB L2 cache available for each core. Every result presented here
corresponds to the average of 30 runs, and had its standard deviation measured
and analyzed.

506 D. Nicácio and G. Araújo

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8

Sp
ee

du
p

Cores

BAYES
GENOME

KMEANS HIGH
KMEANS LOW

LABYRINTH
VACATION HIGH
VACATION LOW

SSCA2

Fig. 4. The hash table collision list speedup on the STAMP benchmark

This evaluation was done using programs from the STAMP benchmark. The
eight STAMP programs include a gene sequencing program (Genome), a bayesian
learning network (Bayes), a network intrusion detection algorithm (Intruder), a
k-means clustering algorithm (KMeans), a maze routing algorithm (Labyrinth),
a set of graph kernels (SSCA2), a client-server reservation system simulating
SpecJBB (Vacation), and a Delaunay mesh refinement algorithm (Yada). Of
those, Yada and Intruder failed to run on our hardware, using the out of the box
TL2 version available. Hence, we do not report results for these two benchmarks.
For the remaining benchmarks we report the achieved speedups.

The graphic on Figure 4 shows the hash table collision list speedup on the
STAMP benchmark. Most programs start with a slowdown when running only
one or two threads, but when the number of threads goes to 4 and 8, the slow-
down diminishes and in some cases (Bayes, KmeansLow, Labyrinth and SSCA2)
the speedup comes to evidence. The maximum speedup achieved on this set was
1.5x on Labyrinth. VacationHigh and VacationLow start with a major slowdown
when running the collision list technique. this happens due to the huge data foot-
print of those programs, but even they tend to be benefited by this technique as
more cores are added. The relevant information extracted from this result is the
clear speedup tendency in almost all programs, making the future 16 core tests
very promising.

Reducing False Aborts in STM Systems 507

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8

Sp
ee

du
p

Cores

BAYES
GENOME

KMEANS HIGH
KMEANS LOW

LABYRINTH
VACATION HIGH
VACATION LOW

SSCA2

Fig. 5. The full associative memory mapping speedup on the STAMP benchmark

The graphic on Figure 5 shows speedup when using the full associative mem-
ory mapping technique on the STAMP benchmark. Again, with only one and
two cores, some programs present a slowdown; as in the collision list technique,
it comes from the overhead introduced by both techniques. The speedup ten-
dency also appears here, as the number of working cores increases, the number of
false conflicts also increases. When running eight parallel threads, only Vacation-
High, VacationLow and Bayes showed slowdowns, and the maximum slowdown
was only 0.92x on Bayes. All the remaining programs had speedups, the maxi-
mum speedup obtained was 1.28x on Labyrinth, followed by 1.10x on Genome
and 1.08x on KmenasLow.

The overall result shows that the higher the system contention, the more it
benefits from a conflict detection technique free of false positive occurrences. If
the speedup tendency keeps its pace, which will likely happen, most programs
will present a major speedup when executing 16 threads.

6 Further Discussion

In Section 3 we show that programs waste execution time in false aborts. Results
obtained with the two techniques went accordingly to what we would expect, pro-
grams with higher wasted times showed the best performance improvement (i.e.
Labyrinth and Genome). However, programs Kmeans-High and Vacation-High

508 D. Nicácio and G. Araújo

also had a significant amount of time wasted in false aborted transactions, but
have not benefited as expected. In this section we analyze what these programs
have in common to present this behavior.

Minh et al. [16] provided a detailed characterization of applications included
in STAMP benchmark. Among other features, they provide the number of in-
structions per transaction (mean). Labyrinth and Genome have large transac-
tions, more than 1700 instructions per transaction in Genome and 680000 in
Labyrinth. With such large transactions, a transaction abort cost is high due to
the need roll back, making it a good target for a conflict detection technique free
of false conflicts. On the other hand, Kmeans-High has only 150 instructions per
transactions, resulting in low cost aborts.

Also according to Minh et al. [16], Kmeans-High and Kmeans-Low spend
just a small amount of their total execution time in transactional code. This
is the main reason why our techniques have not improved nor impacted their
performance.

Program Vacation-High had a major slowdown when executing with the hash
table collision list technique. Its performance was hurt due to its huge data
footprint. With a lot of different addresses to be mapped to the hash table, the
number of chained entries in the hash table raises. When the conflict detection
is finished, the whole chain of entries must be verified, considerably increasing
the technique overhead.

7 Conclusion

This paper put to evidence, through experimental analysis, the false abort issue,
highlighting its real threat for high contention systems. We measured the number
and the time spent in transactions that ended up in a false abort. Up to 26% of
the started transactions ended in a false abort. The time percentage wasted on
such transactions reached up to 22%.

To overcome this obstacle, we proposed two solutions: a collision detection
list for the commonly used hash table, and a full associative memory mapping
scheme. Both solutions avoid false conflicts and were implemented in the TL2
STM system and evaluated through the STAMP benchmark.

Results showed the utility of a collision detection list and the full associa-
tive mapping scheme and how they become important as the number of parallel
threads increases. The maximum speedup achieved was 1.5x when running eight
parallel threads. Most programs had significant performance improvements. Pro-
grams which were not improved tend to expose speedup on 16+ cores processors.

Acknowledgements

The authors would like to thank CNPq (process 142869/2009-0) for funding this
project.

Reducing False Aborts in STM Systems 509

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

2. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory
coherence and consistency. In: ISCA 2004: Proceedings of the 31st annual interna-
tional symposium on Computer architecture, Washington, DC, USA, p. 102. IEEE
Computer Society, Los Alamitos (2004)

3. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995: Pro-
ceedings of the fourteenth annual ACM symposium on Principles of distributed
computing, pp. 204–213. ACM, New York (1995)

4. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC 2003: Proceedings of the
twenty-second annual symposium on Principles of distributed computing, pp. 92–
101. ACM, New York (2003)

5. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hy-
brid transactional memory. In: ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and operating sys-
tems, pp. 336–346. ACM, New York (2006)

6. Minh, C.C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J.,
Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system
with strong isolation guarantees. In: ISCA 2007: Proceedings of the 34th annual
international symposium on Computer architecture, pp. 69–80. ACM, New York
(2007)

7. Zilles, C., Rajwar, R.: Implications of false conflict rate trends for robust software
transactional memory. In: IISWC 2007: Proceedings of the 2007 IEEE 10th Inter-
national Symposium on Workload Characterization, Washington, DC, USA, pp.
15–24. IEEE Computer Society, Los Alamitos (2007)

8. Xiaoqiang, Z., Lin, P., Lunguo, X.: Lowering conflicts of high contention software
transactional memory. In: CSSE 2008: Proceedings of the 2008 International Con-
ference on Computer Science and Software Engineering, Washington, DC, USA,
pp. 307–310. IEEE Computer Society, Los Alamitos (2008)

9. Agrawal, K., Fineman, J.T., Sukha, J.: Nested parallelism in transactional mem-
ory. In: PPoPP 2008: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pp. 163–174. ACM, New York
(2008)

10. Shriraman, A., Dwarkadas, S.: Refereeing conflicts in hardware transactional mem-
ory. In: ICS 2009: Proceedings of the 23rd international conference on Supercom-
puting, pp. 136–146. ACM, New York (2009)

11. Atoofian, E., Baniasadi, A., Coady, Y.: Adaptive read validation in time-based
software transactional memory, pp. 152–162 (2009)

12. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: Proc. of the 20th Intl.
Symp. on Distributed Computing (2006)

13. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman,
T.: Compiler and runtime support for efficient software transactional memory. In:
PLDI 2006: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pp. 26–37. ACM, New York (2006)

510 D. Nicácio and G. Araújo

14. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOP-
SLA 2003: Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, pp. 388–402. ACM,
New York (2003)

15. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-
stm: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006: Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pp. 187–197. ACM, New York
(2006)

16. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC 2008: Proceedings of The IEEE
International Symposium on Workload Characterization (September 2008)

17. Denning, P.J.: The locality principle. Commun. ACM 48(7), 19–24 (2005)

Fault-Tolerant Node-to-Set Disjoint-Path
Routing in Hypercubes

Antoine Bossard, Keiichi Kaneko, and Shietung Peng

Graduate School of Engineering
Tokyo University of Agriculture and Technology

Tokyo 184-8588, Japan
{50008834706@st,k1kaneko@cc}.tuat.ac.jp

Department of Computer Science
Hosei University

Tokyo 184-8584, Japan
speng@k.hosei.ac.jp

Abstract. Hypercube-based interconnection networks are one of the
most popular network topologies when dealing with parallel systems. In
a hypercube of dimension n, node addresses are made of n bits, and two
nodes are adjacent if and only if their Hamming distance is equal to 1.
In this paper we introduce a fault-tolerant hypercube routing algorithm
which constructs n minus the number of faulty nodes f disjoint paths
connecting one source node to k = n−f destination nodes in O(n2) time
complexity.

Keywords: Interconnection networks, hypercube, routing algorithm,
disjoint paths.

1 Introduction

Parallel processing has become an increasingly important part of computer sci-
ence nowadays. The majority of computers, even personal computers, contains
now several CPU cores. If desktop computers are bundled with a few (two, four),
today large scale computers (supercomputers) are built with hundreds of thou-
sands of processors.

For example, the IBM Roadrunner which as of November 2008 ranked no.1 in
the TOP500 list [1] embodies 130,464 cores. Also, early 2009, a new supercom-
puter “Sequoia” has been announced by IBM, with a computing power equiva-
lent to that of 2 million laptops, where the current Roadrunner has a computing
power similar to that of about 100,000 laptops [2]. In this era of massively par-
allel processing systems, it is easy to understand that networking a such huge
amount of CPUs is a major issue to retain high performance. Beyond choosing
an efficient interconnection network, network routing is also a key problem to
be able to use as efficiently as possible such large amount of processors.

Hypercube topology is one of the most used interconnection networks when
dealing with massively parallel architectures, for example the Intel iPSC [3] or

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 511–519, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

512 A. Bossard, K. Kaneko, and S. Peng

the SGI Origin 2000 [4]. Such large scale parallel systems are error prone, that’s
why algorithms designed for these systems should be tolerant against faults
[8], [9]. Hence we propose in this paper a fault-tolerant routing algorithm in
hypercube which will disjointly route from one common source node to at most
n destinations nodes, where n is the dimension of the hypercube.

The node-to-set disjoint-path routing problem is to find node-disjoint paths
between one common source node and several distinct destination nodes in poly-
nomial time [12], [13], [14].

This algorithm adopts a much simpler approach than the one given by Peng
et al. in [10] or Rabin in [7], and besides, while retaining the optimal O(n2)
time complexity, our algorithm allows an additional parameter specifying which
neighbour nodes of the source to use, it is the restriction set X .

The rest of the paper is structured as follow. Section 2 recalls some important
definitions and properties of hypercubes. Also, some general definitions and lem-
mas needed later in this paper will be introduced. In Section 3, the node-to-set
routing algorithm is described, with an additional variation. The correctness and
complexities of the algorithm are studied in Section 4. An example is given in
Section 5 and Section 6 finally concludes this paper.

2 Preliminaries

A hypercube of dimension n, also called an n-cube, consists of nodes whose ad-
dresses can be represented by n bits. Such a hypercube has thus a total of 2n

nodes. Also, two nodes in a hypercube are adjacent if and only if their addresses
have a Hamming distance of 1. Hence, we can deduce the following important
properties of an n-cube Hn: each node of Hn has a degree n, Hn has a diame-
ter equal to n, and finally it is n-connected. Another fundamental property of
hypercubes is that they are symmetric graphs [5].

Now a property of hypercubes extensively used in this paper: hypercubes have
a recursive structure: considering a certain dimension 0 ≤ i ≤ n−1, a hypercube
Hn of dimension n (n-cube) consists of two subcubes H0

n−1 and H1
n−1 (also more

generally denoted H0 and H1), both of dimension n− 1, respectively containing
the nodes of Hn whose i-th bit is set to 0 or 1.

Let us recall some general definitions. A path P is defined as an alternate se-
quence of nodes and edges as follow: P :=a1,(a1, a2),a2, . . . ,ak−1,(ak−1, ak), ak.
In this paper, a path will be often shortened to P := a1 → a2 → . . . → ak, or
even to its simplest expression P := a1 � ak. The length of a path is defined
as its number of edges, denoted L(P). A path is said fault-free if it contains no
faulty node. Two paths are disjoint if they have no node in common (excepted
the source node s in our problem).

Gu and Peng described in [6] a fault-tolerant node-to-node routing algorithm
in hypercube Hn, returning a path of length at most n+2 with a time complex-
ity of O(n). Gu and Peng described in [10] a fault-tolerant node-to-set routing
algorithm in hypercube Hn, returning paths of length at most n+2 with a time
complexity of O(|F |n). We put these two results respectively in Lemma 1 and
Lemma 2.

Fault-Tolerant Node-to-Set Disjoint-Path Routing in Hypercubes 513

H0
n−1 H1

n−1

di

u

v

w

Fig. 1. Fault-free path of length at most 2 linking di ∈ H1
n−1 to H0

n−1. (faulty nodes
are dashed, nodes of D are black).

Lemma 1. [6] In an n-dimensional hypercube Hn, given a source node s, a
destination node d and a set of faulty nodes F , |F | ≤ n− 1, we can find a fault-
free path connecting s and d of length at most n + 2 in O(n) time complexity.

Lemma 2. [10] In an n-dimensional hypercube Hn, given a source node s, a
set of destination nodes D and a set of k faulty nodes F , |D|+ |F | ≤ n, we can
find |D| fault-free paths connecting s to each node of D of length at most n + 2
in O(kn) time complexity.

Lemma 3. In an n-dimensional hypercube Hn, we can find k ≤ n− |F | fault-
free disjoint paths of length at most 2 connecting k nodes of H1

n−1 to H0
n−1 (and

vice-versa).

(Proof). We assume that Hn is divided into two subcubes H0
n−1 and H1

n−1 with
respect to the dimension h. Let us call D = {d1, . . . , dk} ⊂ H1

n−1 the nodes we
want to map into H0

n−1. Each di has a degree n and we can construct n paths
Qj (1 ≤ j ≤ n) which are disjoint except for di from di to n distinct nodes in
H1

n−1:

Qj :
{

di → di ⊕ 2j → di ⊕ 2j ⊕ 2h (1 ≤ j �= h ≤ n)
di → di ⊕ 2h (j = h)

Since the sum of the number of the nodes in D except for di and the number of
the faulty nodes is at most n−1, that is, |D\{di}|+|F | ≤ (k−1)+(n−k) = n−1,
there is at least one path in Qj’s that does not include any node in D \ {di} nor
F . See Figure 1. Practically, we use the path di → di ⊕ 2h of length 1 if it is
available. �

3 Fault-Tolerant Node-to-Set Disjoint-Path Hypercube
Routing

In this section, we propose an algorithm FTN2S which finds inside an n-cube Hn,
disjoint paths connecting one common source node s and k destination nodes
D = {d1, . . . , dk}, k ≤ n− |F |, where F is the set of faulty nodes, in O(kn) time
complexity. Because of the symmetric structure of hypercubes, we can assume
without loss of generality that the source node s is always 00 . . . 0.

514 A. Bossard, K. Kaneko, and S. Peng

The first subsection introduces an extended version of the regular fault-tolerant
node-to-node routing in hypercube of Lemma 1. The second subsection focuses on
the fault-tolerant node-to-set routing itself, describing the basic algorithm intro-
duced in this paper. A third subsection presents the capability of this algorithm
to handle a given optional argument X a set of fault-free neighbors of s the source
node, so that each of them is used by one of the paths constructed. Pseudocode of
this algorithm is given in Algorithm 1.

3.1 Extended Fault-Tolerant Node-to-Node Routing in Hypercubes

We introduce below an extended version of the regular fault-tolerant node-to-
node routing algorithm in hypercube.

Lemma 4. Given a source node s, a set of destination nodes D and a set of
faulty nodes F , such that |F | ≤ n− 1 and |D| ≤ 2n − |F | (ie. no restriction on
the size of D), we can construct one fault-free path between s and one undecided
node of D, of length at most n + |F |

2 + 2 in O(n) time complexity.
(Proof) Let us describe such an algorithm. The main idea is a classical divide-
and-conquer approach, reducing the original hypercube Hn into two subcubes of
smaller dimension n − 1, until either one the subcubes is fault-free or only one
target remains. During this process, the source node may need to be mapped to
the opposite subcube if the algorithm is to be recursively applied to the subcube
not containing s.

Case 0 - |F | = 0
Apply a shortest-path routing algorithm to connect s to the closest destina-
tion node.

Case 1 - |D| = 1
Apply the regular fault-tolerant node-to-node routing algorithm to connect
s to the unique destination node.

Case 2 - Otherwise
Pick one of the n dimensions such that after reducing Hn along this bit into
two (n− 1)-dimensional subcubes H0

n−1 and H1
n−1, the following condition

hold:
F ∩H1

n−1 �= ∅
Case 2-1 - H1

n−1 ⊃ D

Case 2-1-1 - H0
n−1 ∩ F = ∅

Map one d ∈ H1
n−1 onto a d′ ∈ H0

n−1 using one edge, and if d′ �= s,
link them by applying a shortest-path routing algorithm inside H0

n−1.
Case 2-1-2 - Otherwise

Map s ∈ H0
n−1 onto a node s′ ∈ H1

n−1 with a fault-free path of length
at most 2. If s′ ∈ D we are done, otherwise apply this algorithm
recursively on H1

n−1.

Fault-Tolerant Node-to-Set Disjoint-Path Routing in Hypercubes 515

Case 2-2 - Otherwise (ie. H0
n−1 ∩D �= ∅)

Apply this algorithm recursively on H0
n−1.

We can always map s ∈ H0
n−1 onto a node s′ ∈ H1

n−1 with a fault-free path
of length at most 2 since we have initially |F | < n, and each reduction puts at
least one faulty node into H1, so decreasing the hypercube dimension by one
during a reduction is always done in parallel with moving one faulty node into
H1. Hence there always remain at least 1 fault-free path of maximal length 2 to
map s onto s′ in H1.

Finding a dimension which satisfies the two above conditions can be done
in O(n) time during a preprocessing task to identify suitable dimensions. Hence
the time complexity of this extended fault-tolerant node-to-node algorithm stays
O(n), that is the complexity given by Lemma 1.

Regarding path length, we note that there will be at most � |F |2 � (= ρ) hy-
percube reductions performed, hence s will be mapped to s′ at most ρ times.
Since the regular fault-tolerant node-to-node routing in Hn outputs a path of
maximal length n + 2, we have for this extended version a length of at most
2ρ + (n− ρ) + 2 ≤ n + |F |

2 + 2.

3.2 Fault-Tolerant Node-to-Set Routing in Hypercubes with
Restriction

This algorithm follows a recursive approach to perform a fault-tolerant disjoint-
path routing inside a hypercube Hn. As explained in Section 2, hypercubes have
a recursive structure and we use this property to apply a divide-and-conquer
strategy to solve our routing problem. After performing such a reduction along
a dimension 0 ≤ i ≤ n− 1, we obtain two subcubes of lower dimension, we call
H0

n−1 (abbreviated H0) the subcube containing s the source node and H1
n−1

(abbreviated H1) the other subcube. The algorithm introduced in this section
allows us to specify a set X = {x1, . . . , x|D|} of fault-free neighbors of s, which
must be used by the constructed paths such that every path, excepted one,
always starts with a subsequence s→ xi.

Case 0 - If the hypercube is fault-free, we apply the fault-tolerant node-to-
set routing algorithm in hypercube of Lemma 2 to connect s and all the
destination nodes plus, as fake destination nodes, the neighbours of s not in
X . Finally we discard the paths not starting with a sequence s→ xi.

Case 1 - Otherwise, we choose a dimension such that after reducing Hn along
this bit, we have at least one faulty node into H1

n−1. Then we distinguish
two cases:

Case 1.1 - If the neighbour of s which is in H1 is not an element of X , then
we only perform a back-mapping operation to route all the destination
nodes of H1 back into H0, with fault-free paths of length at most 2.

516 A. Bossard, K. Kaneko, and S. Peng

Case 1.2 - Otherwise, that is the neighbour of s in H1 is an element of
X , we connect it to one destination node of H1 using the extended
fault-tolerant node-to-node routing algorithm of Lemma 4, specifying as
destinations all the destination nodes of H1 plus their fault-free neigh-
bours, and finally we map back into H0 all the destinations nodes of
H1 remaining (ie. not reached by the extended node-to-node algorithm
called previously). If there is no destination node in H1 we route one of
H0 into H1 in at most 2 edges.

Finally we apply recursively this routine to the subcube H0
n−1, with the set

of the destination nodes now containing destination nodes present in H0 plus
the images of the destination nodes mapped back from H1

n−1.

4 Correctness and Complexities

First, let us recall that a hypercube reduction uses exactly one bit of the n bits
initially available in node addresses (assume we are working in Hn).

For each reduction performed, the algorithm previously described in 3.2 al-
ways put at least one faulty node inside Ht before the recursive call, which as a
result decreases the number of faulty nodes for the next reductions by at least
one. That’s why the algorithm will perform at most F hypercube reductions. So
for one reduction, |F | decreases by at least one (|D| may also decrease). Now
considering the initial condition |D|+ |F | ≤ n, and a fortiori |F | ≤ n, we see that
the n bits of node addresses, or in other words n reductions, suffice to construct
the |D| disjoint paths.

Let us now analyze the maximal path length returned and the time complexity
of the algorithm described in 3.2.

First let us recall that the extended fault-tolerant node-to-node routing algo-
rithm of Lemma 4 returns a path of length at most n + |F |

2 + 2 in O(n) time
complexity. We also recall that we perform at most k = |F | reductions, that is a
destination node can be mapped back at most k times. And finally, in the worst
case, we will call the extended fault-tolerant node-to-node routing algorithm if
we cannot reach a fault-free hypercube.

Hence we can express the maximal path length with the following recursive
expression. L(n, k) represents the maximal path length when the algorithm is
applied onto a n-cube with k faulty nodes.

L(n, 0) = n + 2

L(n, k) = n +
k

2
+ 2

L(n, k) = 2 + L(n− 1, k − 1)

From this discussion, we understand that the worst case occurs when a destina-
tion node is mapped back during all the k−1 hypercube reductions and is finally

Fault-Tolerant Node-to-Set Disjoint-Path Routing in Hypercubes 517

Algorithm 1. FTN2S(Hn, s, D = {d1, . . . , dk}, F [, X = [x1, . . . , xk]])
/* X is an optional array of k fault-free neighbours of s. */

if X undefined then /* Initialization of X = [x1, . . . , xk] needed */
i := 0
while |X| < k do

xcdt := s ⊕ 2i

if xcdt /∈ F then
X := X ∪ {xcdt}

end if
i := i + 1

end while
end if

if F = ∅ then /* Case 0 */

Apply the fault-tolerant hypercube node-to-set routing algorithm of Lemma 2 to
connect s to D, marking the neighbours of s not in X as faulty.

else /* Case 1 */

Reduce Hn using the dimension i such that H1
n−1 ∩ F �= ∅;

if s′ /∈ X then

for all di ∈ D ∩H1
n−1 do /* back mapping */

Route di ∈ H1
n−1 to d′

i ∈ H0
n−1 in at most 2 edges such that d′

i /∈ F ∪D;
D′ := D′ ∪ {d′

i}
end for;

else /* s′ ∈ X */

if D ∩H1 = ∅ then
Route one d ∈ H0

n−1 onto a node d′ ∈ H1
n−1 in at most 2 edges.

end if

Connect s′ and d′ ∈ H1
n−1 with extended fault-tolerant node-to-node routing

inside H1
n−1.

for all di ∈ D ∩H1
n−1, di �= d′ do /* back mapping */

Route di ∈ H1
n−1 to d′

i ∈ H0
n−1 in at most 2 edges such that d′

i /∈ F ∪D;
D′ := D′ ∪ {d′

i}
end for;

end if

FTN2S(H0
n−1, s, (D ∩H0

n−1) ∪D′, F ∩H0
n−1, X)

end if

reached by the extended node-to-node routing algorithm after being routed in-
side H1 in at most 2 edges (assuming s′ ∈ X after this reduction). Hence we
obtain the following maximal path length.

2(k − 1) + (n− (k − 1) +
1
2

+ 2) + 2

≤ n + k + 4

518 A. Bossard, K. Kaneko, and S. Peng

Regarding time complexity, we understand that building each path requires a
linear time complexity O(n). Therefore the algorithm described in 3.2 has a total
time complexity of O(n2).

5 Example

Let n = 8, that is we perform routing inside H8. Let the source node be
s = 0000 0000. Let the destination, faulty and restriction nodes be as follow.

D = { d1 = 0101 1100, d2 = 1010 1010, d3 = 0101 0101, d4 = 0011 1100 }
F = { f1 = 1011 1111, f2 = 0001 0100, f3 = 1000 0000, f4 = 1111 0000 }
X = { x1 = 0100 0000, x2 = 0001 0000, x3 = 0000 0100, x4 = 0000 0001 }

The routing algorithm applied to this example is illustrated in Table 1.

Table 1. Routing example inside H8

Dimension ∈ H0
n−1 ∈ H1

n−1 Path Pi constructed

1st red. 0100 0000 (x1) d2, d4, f1, f2, f3 d1, d3, f4 s → x1 → . . .→ d1
∗∗

map back d3 ∈ H1
n−1 to d′

3 ∈ H0
n−1

2nd red. 0001 0000 (x2) d2, f3 d4, d
′
3, f1, f2 s → x2 → . . .→ d4

∗∗

map back d′
3 ∈ H1

n−1 to d′′
3 ∈ H0

n−1

3rd red. 1000 0000 (x3) d′′
3 d2, f3 s → x3 → . . .→ d2

∗

H0
n−1 is fault-free s → x4 → . . .→d′′

3→d′
3→d3

∗ Fault-tolerant node-to-node routing (Lemma 1).
∗∗ Extended fault-tolerant node-to-node routing (Lemma 4).

6 Conclusion

We first described in this paper an extended fault-tolerant node-to-node routing
algorithm in hypercubes, connecting one source node to an undecided destination
node member of a set of candidates destination nodes, creating a path of length
at most n+ |F |2 +2 in O(n) time complexity. We then introduced a fault-tolerant
routing algorithm solving the node-to-set disjoint-path problem in hypercubes,
with the ability to specify the neighbors of s to use. This algorithm finds paths
of length at most n + k + 4 in O(n2) time complexity.

Solving routing problems with a similar restriction on neighbors of s inside
other recursive interconnection networks should be considered for future work.

Acknowledgment

This study is partly supported by the Fund for Promoting Research on Symbiotic
Information Technology of Ministry of Education, Culture, Sports, Science and
Technology (MEXT) Japan. It is also partly supported by a Grant-in-Aid for
Scientific Research (C) of the Japan Society for the Promotion of Science (JSPS)
under Grant No. 19500022.

Fault-Tolerant Node-to-Set Disjoint-Path Routing in Hypercubes 519

References

1. White, A., Grice, D. (IBM): Roadrunner: Science, Cell and a Petaflop/s. In: Inter-
national Supercomputing Conference (2008)

2. EE Times: U.S. taps IBM for 20 petaflops computer (2009),
http://eetimes.com/news/design/showArticle.jhtml?articleID=213000489

3. Vanvoorst, B., Seidel, S., Barscz, E.: Workload of an ipsc/860. In: Proc. Scalable
High-Performance Computing Conf., pp. 221–228 (1994)

4. SGI: Origin2000 Rackmount Owner’s Guide, 007-3456-003 (1997),
http://techpubs.sgi.com/

5. Saad, Y., Schultz, M.H.: Topological Properties of Hypercubes. IEEE Transactions
on Computers 37(7), 867–872 (1988)

6. Gu, Q., Peng, S.: An Efficient Algorithm for Node-to-node Routing in Hypercubes
with Faulty Clusters. The Computer Journal 39(1), 14–19 (1996)

7. Rabin, M.A.: Efficient dispersal of information for security. Journal of ACM 36(2),
335–348 (1989)

8. Kaneko, K.: An algorithm for node-to-set disjoint paths problem in burnt pancake
graphs. IEICE Trans. Inf. and Systems E86-D(12), 2588–2594 (2003)

9. Gargano, L., Vaccaro, U., Vozella, A.: Fault tolerant routing in the star and pancake
interconnection networks. Inf. Processing Letters 45(6), 315–320 (1993)

10. Gu, Q., Peng, S.: Node-to-set and Set-to-set Cluster Fault Tolerant Routing in
Hypercubes. Parallel Computing 24(8), 1245–1261 (1998)

11. Latifi, S., Ko, H., Srimani, P.: Node-to-set Vertex Disjoint Paths in Hypercube
Networks. Technical Report CS-98-107

12. Bossard, A., Kaneko, K., Peng, S.: Node-to-set Disjoint-path Routing Metacube.
In: Proceedings of the 10th International Conference on Parallel and Distributed
Computing, Applications and Technologies (2009)

13. Bossard, A., Kaneko, K., Peng, S.: A Node-to-set Disjoint-path Routing Algorithm
in Metacube. In: Proceedings of the 10th International Symposium on Pervasive
Systems, Algorithms and Networks (2009)

14. Bossard, A., Kaneko, K., Peng, S.: Node-to-set Disjoint Paths Problem in Per-
fect Hierarchical Hypercubes. In: Proceedings of the 9th Parallel and Distributed
Computing and Networks (2010)

http://eetimes.com/news/design/showArticle.jhtml?articleID=213000489
http://techpubs.sgi.com/

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 520–527, 2010.
© Springer-Verlag Berlin Heidelberg 2010

AirScope: A Micro-scale Urban Air Quality
Management System

Jung-Hun Woo1, HyungSeok Kim2, Sang Boem Lim1,∗, Jae-Jin Kim3,
Jonghyun Lee1, Rina Ryoo1, and Hansoo Kim1

1 Department of Advanced Technology Fusion at Konkuk University
Seoul, Korea

{jwoo,sblim,lejohy}@konkuk.ac.kr, joinrina814@naver.com,
lunahife@gmail.com

2 Department of Internet & Multimedia Engineering, Konkuk University
Seoul, Korea

hyuskim@konkuk.ac.kr
3 Department of Environmental Atmospheric Sciences, Pukyong National University

Busan, Korea
jjkim@pknu.ac.kr

Abstract. Monitoring air quality for daily life gets more and more attention.
Especially in modern urban environment with high skylines and unexpected
pollution events, it is important to have micro-scale monitoring in addition to
traditional monitoring methods. We propose a micro-scale modeling system
as well as a micro-scale air quality monitoring system, which comprises as a
micro-scale air quality management system, named AirScope. AirScope con-
sists of CFD-based air quality modeling, USN-based sensor monitoring, and
multi-modal interaction platform. In this paper, we present a brief overview
of AirScope and several aspects of constructed initial indoor test environment
with a few validity tests. The proposed system will be extended to an outdoor
real-world testbed with most of modern urban elements.

1 Background

The urban environment is where an increasing share of the world’s population resides,
where most commercial energy is consumed, and where the impacts of pollution are
felt the most. Rapid economic growth in urban Asia has attracted millions of rural
residents to metropolitan environments [1]. Changing standards of living in the urban
centers have fueled increasing energy demand often associated with unchecked emis-
sions from automobiles, domestic heating, and small-scale industries. Asian urban
centers, prone to air pollution, incur hundreds of millions of dollars in health and
economic damages [2].

∗Corresponding author.

 AirScope: A Micro-scale Urban Air Quality Management System 521

Presently, the urban air pollution problems in Asia are continuing to increase and
air pollutants originating from urban regions are recognized as increasing sources of
regional- and global-scale pollution [3].

Seoul Metropolitan Area (SMA), which is located center of Korean Peninsula, has
been suffering from such air pollution problems. Regional air pollution transport from
China as well as local pollution sources, such as thermal power plants and mobile
sources, has also become a major contributor to increasing human health effects in the
urban environments of SMA. In addition to those problems, micro-scale air pollution,
which lasts for minutes to hours and covers several kilometers, exist in SMA. The
examples of micro-scale of air pollution are fugitive dust from construction fields or
accidental release of hazardous pollutants. Unlike regional to local scale air pollution,
which is traditionally well established research areas in SMA, micro-scale air pollu-
tion has not been researched very much. One of the major reasons is that monitoring
and modeling methods developed for bigger scales are not appropriate for micro-scale
phenomena. The needs for more detailed information for public services, however,
have been increasing as the needs for real time emission estimate is increasing and the
urban building geography is being more complex. In this reason, micro-scale air
monitoring and modeling system need to be developed to improve our level of under-
standing about the micro-scale air pollution, hence provide better and detailed public
information services.

2 Related Work

CitySense [4] is an open, urban-scale sensor network testbed, focused to establish in
Cambridge, Massachusetts. It has been developed by researchers at Harvard Univer-
sity and BNN Technologies. Their goal is to develop and adjust innovative wireless
monitoring system using powered Ethernet (or USB) with an XML data interface.
There will be at least 100 nodes embedded Linux having wireless function and vari-
ous sensor modules for temperature, traffic, parking conditions, etc. Sensors will be
installed on light poles, private or public buildings to monitor required data. They
intend to an open testbed, so that researchers from all over the world can access moni-
toring data and evaluate wireless networking. They also provide overall information
from sensors through website; http://www.citysense.net.

Anthony Steed, et al. [5] studies about urban pollution, focusing carbon monoxide
(CO) with multiple mobile sensors which are equipped with GPS receiver. Sensors
are carried by pedestrians or mounted on vehicles to see the distributed CO concentra-
tion along and cross the streets. In this way, they try to create maps of pollution varia-
tion at each street, so that it makes it possible to understand urban air pollution,
especially CO. They collect sensor data through network to desktop, but a wireless
networking is not developed yet. So transferring data is possible, only when the de-
vice is synchronized with a desktop. They also have visualization plan and grid ser-
vice. In the data-logging mode, it can provide synchronized database services and 2D,
3D grid services for visualization.

522 J.-H. Woo et al.

Fig. 1. AirScope Architecture

3 Micro-scale Air Quality Management System

Micro-scale air quality management system (named AirScope) is a need-based moni-
toring and modeling system to meet public needs for air quality information, and
complement the limitations of existing monitoring and modeling systems. The pro-
posed system is constructed upon a sensor network to monitor micro-scale air quality.
In addition to sensor network, the proposed system consists of middleware, CFD-
based air quality modeling, GIS-based 3D virtual environment model, and air quality
data management system. The system also provides visualization and interaction
platform based on virtual reality (VR) technology.

Architecture of AirScope system is shown in Figure 1. This system consists of
three layers. First layer is sensor network layer. In this layer, data acquisition (DAQ)
is collect data from sensors and load data to DataTurbine [6]. Second layer is middle-
ware layer that provides functionalities like management of data and resources. Last
layer is used to present data to the users in different ways. By using data stored in
repository or using real time streaming data, we provide sensor monitoring and con-
trol service, real time data service, history data services, high-capacity data process
and distributed query process. We also provide CFD-based Air Quality Modeling, 3D
GIS, and VR services.

Each middleware components and services will be described in following
sections.

 AirScope: A Micro-scale Urban Air Quality Management System 523

3.1 3D GIS for Air Quality Monitoring and Modeling

Our system can be connected with GIS to visualize detailed data in a given domain.
By establishing 3D building GIS, we can see the overall array of buildings in a micro-
scale domain. So we can understand dispersion of air pollutants and complex wind
path due to building blocking effects. To set up a sensor deployment plan, we gener-
ated grid map of 100m and 200m sizes on top of the 2D digital map in consideration
of the Zigbee sensor’s wireless network range. The resulting structure GIS with gird
maps help us planning a sensors deployment, considering landscape and structures.
And then, we establish 3D GIS map with height information based on 2D map to
attach sensors in and near Konkuk University. Established 3D GIS map is shown in
Figure 2.

3D GIS map can be used as an input data to Computational fluids dynamics (CFD)
air quality modeling and visualization of CFD output data. In CFD modeling, results
will be employed on 2D and 3D GIS maps with real dimensions of building struc-
tures. CFD modeling output, therefore, will be used to study the dispersion of pollut-
ants from a more realistic urban area [1].

3.2 3D GIS for Air Quality Monitoring and Modeling

Air quality in micro-scale usually varies dynamically with short time and small
space. Understanding air quality which depends solely on the monitoring is difficult
and would not be reliable enough. The air quality modeling technique, therefore,
should be very beneficial to incorporate. A Computational Fluids Dynamics (CFD)
air quality model is our model of choice. Many air quality models are developed for
the larger scales; hence they treat a complex building geography as simple parame-
ters, such as roughness length scale. We’re using a high-resolution CFD-based air
quality modeling, which can represents a complex building geography, to under-
stand and predict air quality in more realistic way, so that we can provide predicted
air quality through website, mobile devices and so on. Also, modeling results can
be compared with USN-based monitoring data. In this way, modeling devices will
be improved and we can provide more accurate and detailed air quality information
to the public.

The computational fluid dynamics (CFD) model used in this study considers a
three-dimensional, non-hydrostatic, non-rotating, incompressible airflow system. The
model includes the k-ε turbulence closure scheme based on the renormalization group
(RNG) theory and employs wall functions at the solid surfaces.

The tentative CFD model domain ranges is show in Figure 2. The horizontal grid
interval is 10 m in the x-direction and 10 m in the y-direction and the horizontal grid
dimension is 200 × 200. In the vertical, a non-uniform grid system with 62 layers will
be employed, in which the vertical grid interval is uniform with 5 m up to the 33rd
layer, increases with an expansion ratio of 1.1 from the 34th to the 41st layer, and is
then uniform with 10.72 m from the 42nd to the 62nd layer. The domain size is ~2000
m in the x-direction, ~2000 m in the y-direction, and ~440 m in the z-direction. The
time step used is 1 second.

524 J.-H. Woo et al.

Fig. 2. 3-Dimensional Buildings GIS Map near Konkuk University

3.3 Air Quality Data Management

Environment monitoring system and analysis system are need to various sensors
which will produce different types of data. This will cause the problem when we are
trying to share data among different systems and scientists. To resolve this problem
we need abstract to standard sensor model. Fortunately Open Geospatial Consortium
(OGC) developed sensor modeling language called SensorML [7] and Observation
and Measurement (O&M) [8] for observation and measurement data modeling. Our
system uses sensorML and O&M for standard sensor modeling and observation and
measurement data modeling.

Figure 5 describes USN sensor data model of AirScope System. This data model
consists of SENSOR_DATA, SENSORML, O&M, SENSOR_STAUS and SEN-
SORML_INDEX. SENSOR_DATA describes the data that produced by the sensors.
This data is used directly at real time monitoring system and is encoded into O&M
and SENSOR_STATUS which is used for Resource management. O&M contains
real-data value such as TIME_STAMP, RESULT and reference to SENSORML.
SENSORML includes meta-information of O&M. SENSORML and O&M are XML
documents and managed Berkeley XML DB. SENSORML_INDEX has information
about SENSORML_ID, O&M_ID and SENSOR_ID. This table provides relation of
data.

3.4 Air Quality Visualization

The visualization system transforms the sensor data into intuitive visual form in
multi-modal way. Users can get overview of multiple sensor values by navigating into
the virtual world. The direct manipulation allows users to remotely control the sensor
itself through VR interfaces.

The visualization system is composed of three modules devoted to network man-
agement, resource management, and visualization.

 AirScope: A Micro-scale Urban Air Quality Management System 525

Fig. 3. USN sensor data conceptual design

Network management module treats all of the on-line transactions between visuali-
zation system and GSN. It encodes sensor manipulation data which will be sent to
GSN or decodes retrieved data.

All of the sensor data that visualization system uses are managed by the resource
management module. The module loads sensor data from GSN. It processes user
actions along with sensor data updates to and from GSN. Data stored in resource
management module are transformed in to visualization forms by various methods
according to its usage.

Fig. 4. Sensor data representation using particle system: White box is locator of the sensor.
Density and transparency of particles will be changed related to data from the sensor.

Visualization module presents sensor data to users using VR-based multi-modal
framework. Users not only can explore the 3D virtual world to get sensor information,
but also can perform direct manipulation to the sensor itself. To present air quality
data effectively for casual users, we selected a few different methods. First of all, a

526 J.-H. Woo et al.

single element of sensed data is represented as a particle with density and transpar-
ency parameters, which are related to sensor data of air quality. By changing parame-
ters of particles, we can represent different air conditions like infusibility, density,
fluidity and so on. Also, we use graphs and tables are available for experts who want
to get detailed data. Isosurface rendering will be also employed. The multi-modal
framework supports visual, haptic and auditory rendering for those data.

User Interaction module is a part of the visualization module. It deals with inputs
from users and returns result through visualization system. As a default device set,
users can explore virtual space and can manipulate sensors with those devices. In
specialized environment, like large-scale multi-display, we are developing devices
with gesture-based interaction with haptic feedback or wand-type interfaces.

Fig. 5. Interaction example with table top and wand type interface

4 Conclusions and Future Work

In this paper, we present a framework for micro-scale air quality monitoring and
sensor management system. The air quality is being simulated by CFD-based air qual-
ity model and will be validated with USN-based sensor data and GIS model of the
environment.

The developed system is validated in a preliminary test environment. The test re-
sult shows that it is feasible to adopt sensor networks for micro-scale monitoring.

For extended real-world testbed in the future, 2km × 2km domain around Konkuk
University campus Complex (KUC) is selected. KUC is composed of residential &
commercial area, hospital, university campus, subway stations, and so on. KUC is a
densely-packed area, which has many facilities that intensive monitoring is needed.

Initial sensor placement plan was made in consideration of building complexity
and wireless communication requirements. Sensors will be installed major buildings
inside of campus. The effect of water (lake), students’ activities, and driver training
institute can be monitored. Enhancements on the core modules will also be investi-
gated such as enhanced interaction devices, mobile sensors, display devices, and etc.
Finally, we will also build web-based information portal to be used by citizens when-
ever the information is needed.

 AirScope: A Micro-scale Urban Air Quality Management System 527

Acknowledgement

This research was supported by the Seoul R&BD Program(GS070167).

References

1. Guttikunda, S.K., Carmichael, G.R., Calori, G., Eck, C., Woo, J.-H.: The contribution of
megacities to regional sulfur pollution in Asia. In: Atmospheric Environment 37 (2003)

2. OECD, Ancillary benefits and costs of greenhouse gas mitigation. In: Proceedings of an
IPCC Co-sponsored Workshop, Washington, DC, USA, March 27-29 (2000)

3. Streets, D.G., Carmichael, G.R., Amann, M., Arndt, R.L.: Energy consumption and acid
deposition in Northeast Asia. Ambio 28, 135 (1999)

4. CitySense Homepage, http://www.citysense.net
5. Steed, A., Spinello, S., Croxford, B., Greenhalgh, C.: e-Science in the Streets: Urban Pol-

lution Monitoring. In: Proceedings of the 2nd UK e-Science All Hands Meeting (2003)
6. DataTurbine homepage, http://www.dataturbine.org
7. Open GIS® Sensor Model Language (SensorML) Implementation Specification, OGC

Geospatial Consortium INC. (2007)
8. Open GIS® Observation and Measurements (O&M) Implementation Specification, OGC

Geospatial Consortium INC. (2007)

Design of a Slot Assignment Scheme for Link
Error Distribution on Wireless Grid Networks�

Junghoon Lee1, Seong Baeg Kim2,��, and Mikyung Kang3

1 Dept. of Computer Science and Statistics, 2 Dept. of Computer Education,
Jeju National University, 690-756, Jeju Do, Republic of Korea

3 University of Southern California - Information Sciences Institute, VA22203, USA
jhlee@jejunu.ac.kr, sbkim@jejunu.ac.kr, mkkang@east.isi.edu

Abstract. This paper designs and measures the performance of an effi-
cient routing scheme and corresponding slot assignment schedule capable
of efficiently handling the difference in the error rate of each link on the
wireless mesh network. Targeting at the grid topology common in most
modern cities, a split-merge operation masks the channel error by making
an intermediary node receive a message simultaneously in two directions
and then integrating a secondary route, required to have the same length
with the primary route, to the communication schedule. Adding virtual
links from level 1 to level 3 to the 3 × 3 grid and estimating their error
rates based on those of the surrounding links, the proposed scheme applies
the well-known shortest path algorithm to decide the best route and also
to finalize the complete a slot assignment for the WirelessHART protocol.
The performance measurement result obtained by simulation using a dis-
crete event scheduler demonstrates that the proposed scheme can find the
promising path, improving the delivery ratio by up to 5.21 %.

1 Introduction

The vehicular network can have a great variety due to a bunch of available wire-
less communication technologies and widely open possibilities to organize the
network. Some prospective communication technologies include IEEE 802.11,
DSRC (Dedicated Short Range Communication), Zigbee, and WirelessHART
[1,2]. Undoubtedly, a new method keeps appearing. There can be a lot of com-
munication styles according to the system goal of the vehicular network and

� This research was supported by the MKE(The Ministry of Knowledge Economy),
Korea, under the ITRC(Information Technology Research Center) support program
supervised by the NIPA(National IT Industry Promotion Agency). (NIPA-2010-
(C1090-1011-0009)).

Following are also results of a study on the ”Human Resource Development Cen-
ter for Economic Region Leading Industry” Project, supported by the Ministry of
Education, Science & Technology(MEST) and the National Research Foundation of
Korea(NRF).

�� Corresponding author.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 528–537, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Design of a Slot Assignment Scheme for Link Error Distribution 529

its application, ranging from the ad-hoc mode for instant accident informa-
tion propagation to the infrastructure-based mode for ubiquitous real-time ve-
hicle tracking. Here, vehicles do not solely constitute the vehicular network,
which includes many static elements such as gateways, traffic lights, and wire-
less nodes installed in the fixed locations. In addition to responding to the request
from the vehicles passing by, each static node needs to communicate with each
other [3].

The static gateway is placed somewhere in the street to meet a given goal
such as vehicle connectivity or driving safety. The traffic light can desirably
accommodate a communication interface as it has sufficient power provision
and is generally installed at a secure place. It is very rare to see a traffic light
fail in our everyday life. With the stable connection on the traffic light net-
work, it is also possible to implement a monitor-and-control operation when
the vehicular network includes sensors and actuators. Practically, a lot of de-
vices such as speed detectors, pollution meters, and a traffic signal controllers,
can be systematically integrated into the vehicular network. Vehicles can also
carry a sensor device and report the collected sensor data to a static node when
connected via ad-hoc communication. The monitor-and-control application runs
on top of a specific network topology using a deterministic and robust wire-
less communication protocol. Particularly, in a road network of urban areas,
where each crossing has a traffic light or signal, the traffic light network has grid
topology [4].

In the mean time, the WirelessHART standard provides a robust wireless pro-
tocol for various process control applications [5]. For the sake of overcoming the
transient instability of wireless channels, WirelessHART puts a special empha-
sis on reliability by mesh networking, channel hopping, and time-synchronized
messaging. This protocol has been implemented and is about to be released to
the market soon [6]. Moreover, the WirelessHART protocol can be extended
to enhance reliability for the grid network. The split-merge operation makes it
possible for a sender node to send a message in two directions in a single time
slot as well as a receiver node to receive from one of the possible intermediary
nodes [7]. Its advantage can be much improved with an efficient slot assignment
scheme considering the split-merge operation in grid networks. In this regard,
this paper is to address how to define and add a virtual link to the traffic light
network to apply the existing routing schemes.

This papers is organized as follows: After issuing the problem in Section 1,
Section 2 introduces the background of this paper focusing on the WirelessHART
protocol and reviews the split-merge operation. Section 3 proposes the virtual
link management scheme for the grid style traffic light network. Section 4 shows
the simulation result, and Section 5 summarizes and concludes this paper.

2 Related Work

Communication on the grid topology is extensively studied in the wireless mesh
network area, and its main concern is efficient routing inside the grid to achieve

530 J. Lee, S.B. Kim, and M. Kang

various optimization goals, like minimizing end-to-end delays, ensuring fairness
among nodes, and minimizing power consumption [8]. The channel assignment
problem is NP-hard [9], so even for the case of no interference in the network,
the optimal schedule cannot be computed in polynomial time. Many greedy
algorithms are applied for the static channel assignment, like the well-known
coloring algorithm [10]. That is, colors or time slots must be assigned such that
no two adjacent nodes in the network have the same color. For slot-based access,
most schemes focus on how to assign a color on the diverse topology and how
to cope with the topology change. Some of them addresses how to locally decide
the route when just partial topology information is available. Anyway, existing
schemes have not dealt with the dynamic channel selection within a single slot
and the subsidiary slot allocation.

N. Chang considered transmission scheduling based on optimal channel prob-
ing in a multichannel system, where each channel state is associated with a
probability of transmission success and the sender just has partial information
[11]. To compensate for the overhead and resource consumption of the channel
probing procedure, this work proposed a strategy that determines which channel
to probe based on a statistical channel model. Using this estimation, the sender
or scheduler can pick the channel to use for transmission. Even though the con-
cept of channel probing is very prospective, this scheme only focuses on the
dynamic operation of communication procedure, so it is not suitable for process
control. Moreover, the network access is not predictable, as it does not consider
the route length but just the probabilistic estimation on successful transmissions
in the selection of an available channel.

A slot management on WirelessHART was considered along with a mathemat-
ical framework in terms of modeling and analysis of multi-hop communication
networks [12]. This model allows us to analyze the effect of scheduling, routing,
control decision, and network topology. In this model, each node has at least
two neighbor choices to route a packet for any destination nodes. Hence, the
time slot schedule must explicitly have two paths for each source and destina-
tion pair. That is, regardless of whether the first path successfully transmits
a message, the secondary route redundantly delivers the same message. This
scheme can integrate any style of an alternative route such as a node-disjoint or
link-disjoint path, but bandwidth waste is unavoidable and slot allocation can
get too complex.

Lee et al. proposed a channel selection scheme based on the CCA result in
the preliminary version of this paper [7]. The idea of CCA-based channel switch
is sustained to this paper. However, this approach restrictively assumed that
the slot error rate of each link is the same and the split-merge operation, which
will be described later, is simply placed to the rectangle closer to the desti-
nation. As contrast, this paper generalizes to the case that each channel has
its own slot error rate and addresses how to apply the channel switch opera-
tion in each control message path, along with extensive performance analysis
results.

Design of a Slot Assignment Scheme for Link Error Distribution 531

3 WirelessHART and Traffic Light Network

The WirelessHART standard is defined over the IEEE 802.15.4 GHz radioband
physical link, allowing up to 16 frequency channels spaced by 5 MHz guard
band [2]. The link layer provides a deterministic slot-based access mechanism
on top of the time synchronization function carried out continuously during the
whole network operation time [6]. According to the specification, the size of a
single time slot is 10 ms, and to meet the robustness requirement of industrial
applications, a central controller node coordinates routing and communication
schedules. For more reliable communication, CCA (Clear Channel Assessment)
before each transmission and channel blacklisting can also be used to avoid
specific area of interference and also to minimize interference to others. Here,
channel probing can be accomplished by CCA, RTS/CTS handshaking, and so
on [13].

The traffic light network looks like a grid network in modern cities, as each
traffic light node is placed at each crossing of the Manhattan-like road network,
as shown in Figure 1(a) [4]. Each node can exchange messages directly with
its vertical and horizontal neighbors. Two nodes in the diagonal of a rectangle
do not have a direct connection, as there may be obstacles like a tall building
that blocks the wireless transmission. In this network, the central controller is
assumed to be located at the fringe of rectangular area, for this architecture
makes the determination of the communication schedule simple and systematic.
In Figure 1(a), N00 is the controller node. It can be generalized by the grid
partition illustrated in Figure 1(b), where each of 4 quadrants can be mapped
or transformed to the network shown in Figure 1(a) by making the controller be
placed at the left top corner.

In WirelessHART, if the channel status is not good, the sender simply discards
the transmission, wasting a slot time and possibly making the subsequent trans-
mission schedule quite complex. In case the sender can attempt on alternative

(b) grid partition

N00

N20

N01 N02

N10 N11 N12

N21 N22

H01 H02

H11 H12

H21 H22

V10 V11 V12

V20 V21

(a) 3 * 3 topology

V22

Fig. 1. Traffic light network

532 J. Lee, S.B. Kim, and M. Kang

route in the same slot, the slot waste can be saved. To integrate an alternative
path to the communication schedule, their lengths must be same. The main idea
of the split-merge operation can be described by an example network of Figure
1(a). In this figure, consider the transmission from N00 to N11 which has two
2-hop paths, namely, N00 → N10 → N11, and N00 → N01 → N11. If the
network manager selects the first as the primary route and allocates the slots,
the schedule will include (N00 → N10) and (N10 → N11) at times slots, say
i and i + 1, respectively. For this communication to be successful, V 10 at slot i
and H11 at slot i+1 should be both clear. Otherwise, the transmission will fail.

Our previous paper has proposed the split-merge operation for better reliable
communication [7]. The sender, N00, senses a channel status for V 10 at slot i. If
it is clear, it sends to N10 according to the original schedule. Otherwise, instead
of discarding the transmission, it sends to N01 after switching channels. Here,
N01 (the receiver on the alternative path) as well as N10 (the receiver on the
primary path) must listen to the channel simultaneously at slot i, and this is the
overhead cost for enhanced reliability. At slot i + 1, either N10 or N01 sends
the packet to N11. N01 on the secondary route must send after a small delay
TsRxOffset, which is specified in the original standard and can include one
channel switch time. N11 first tries to receive from N10 on the primary route. If
the packet arrives, it receives as scheduled. Otherwise, namely, the node switches
channel to H01 on the secondary route. After all, the path is split and merged
over each rectangle. However, this scheme didn’t consider where to put the split-
merge operation along the path, as it assume that every link has the same link
quality.

4 Routing Scheme

In the control loop scenario, traffic goes from and to N00. Namely, each node
sends and receives a message to and from the controller node once in the period
specified by the system requirement. Even if it is desirable to take the route
which has the minimum number of hops to the destination, another detour can
have advantage in terms of delivery ratio and transmission delay. If we consider
the case of N21, it has many paths to N00. A path is to be selected by the
scheduler mainly periodically according to the change in the error character-
istics of each link. Each link has its own error characteristics due to different
power level, obstacle distribution, and so on. The change of link error charac-
teristics can be estimated in many ways [11], but we assume that the probing
result is always correct, as the correctness of channel probing is not our concern.
The routing scheme is designed for 3 × 3 grid, as WirelessHART restricts the
maximum number of hops to 4 and there are so many virtual links for a larger
grid.

To begin with, we denote the error rate of link L by E(L). Intuitively, L may
be the horizontal or vertical link. For example, E(V 21) denotes the error rate of
the link from N21 to N11 and it has the same meaning with E(N21 → N11).
However, L can be extended to represent a virtual link which consists of both

Design of a Slot Assignment Scheme for Link Error Distribution 533

normal and virtual links. That is, even though there is no direct connection
between two nodes in diagonal lines, the two-hop link between them can be
considered to be a single link due to the split-merge operation. The split-merge
operation works either for the uplink from Nij to Ni− 1 · j− 1 or for the down-
link from Nij to Ni + 1 · j + 1. The transmission fails only of two paths are
simultaneously not good in the split-merge operation. As a result, the error rate
of this virtual link can be estimated as follows:

E(Nij → Ni− 1 · j − 1) = 1− (1− E(Hij))(1− E(V i · j − 1))
− (1− E(V ij))(1− E(Hi− 1 · j)),

where i ≥ 1 and j ≥ 1 for uplink.

E(Ni− 1 · j − 1→ Nij) = 1− (1− E(Hi− 1 · j))(1− E(V ij))
− (1− E(V i · j − 1))(1− E(Hij)),

where i ≥ 1 and j ≥ 1 for downlink. �

From now on, we will just mention the downlink case for simplicity, as uplink and
downlink are symmetric. Figure 2(a) shows virtual links, S00, S01, S10, and S11
created by the split-merge operation Here, the error rate can be replaced by the
success probability by subtracting the former from 1.0. Based on the given and
estimated error rate, namely, E(V ij), E(Hij), and E(Sij), a cost matrix and
success probability graph can be built. Then, Dijkstra’s shortest path algorithm
can find the best route having the lowest error rate (best success rate) for both
graphs, after substituting the product of probabilities for the sum of link costs
in each node expansion. Finally, the instance of virtual link, say Sij is to be
expanded by the split-merge schedule to finalize a complete slot assignment [7].
In this example, Sij is replaced by (Hi · j + 1, V i + 1 · j + 1) on the primary
schedule and (V i + 1 · j, Hi + 1 · j + 1) for the secondary schedule. However,
the primary and secondary schedules can ne interchanged, if we do not consider
power consumption. A horizontal link will be the primary route.

However, there are another virtual links to consider. We call S00, S01, S10,
and S1 level 1 virtual links. With them, 4 level 2 links can be formed as shown
in Figure 2(b). Their error rates can be estimated as in the level 1 virtual link
with the path specification as follows:

T1 : N00→ N12 = H01 · S01 + V 10 ·H11 ·H12
T2 : N00→ N12 = V 10 · S10 + H01 · V 11 · V 21
T3 : N00→ N12 = H11 · S11 + V 20 ·H21 ·H22
T4 : N00→ N12 = V 11 · S11 + V 02 · V 12 · V 22 �

We will describe the path reduction just for the T 1 case, and the others can be
reduced in the same way. In the following relation, A · B means B occurs just
after A, so they cannot be changed. A + B means A and B can occur simulta-
neously. The path schedule for T 1 depends on the status of link H01. If it is good,

534 J. Lee, S.B. Kim, and M. Kang

(b) level 2 and 3 virtual links

N00

N20

N01 N02

N10 N11 N12

N21 N22

H01 H02

H11 H12

H21 H22

V10 V11 V12

V20 V21 V22

N00

N20

N01 N02

N10 N11 N12

N21 N22

H01 H02

H11 H12

H21 H22

V10 V11

V20 V21

S00

S10

S01

S11

V12

V22

T1

T2

T3

T4

U

(a) level 1 virtual links

Fig. 2. Cost graph and substitutions

N00 sends a message to N01 via H01 first and the message takes S01 level 1
link. Otherwise, V 10 ·H11 ·H12 is the delivery path. Namely,

T1 = N00→ N12
= H01 · S01 + V 10 ·H11 ·H12
= H01 · (H02 · V 12 + V 11 ·H12) + V 10 ·H11 ·H12
= H01 ·H02 · V 12 + H01 · V 11 ·H12 + V 10 ·H11 ·H12

For the case the controller selects a level 2 virtual link as the route to the corre-
sponding node, the controller also allocates time slots. Level 2 links commonly
have 3 hops, that is, its transmission needs 3 time slots. According to the above
reduction on the path, the scheduler can know which transmission must take
place in each time slot from t1 to t2.

t1(T 1) = (H01, V 10) = (N00→ N01, N00→ N10)
t2(T 1) = (H02, V 11, H11) = (N01→ N02, N01→ N11, N10→ N11)
t3(T 1) = (V 12, H12) = (N02→ N12, N11→ N12)

Finally, the schedule is decided as shown in the following table, which shows a
partial time table from t to t + 2. t is the first slot t1(T 1) will be assigned. In
t, both N00 → N01 and N00 → N10 should take place. These two have the
same sender, so the common sender must perform the split operation. As we
chose the horizontal path first policy, N00→ N01 is assigned to t as a primary
path, while N00 → N10 is assigned to t . But this order is not critical. t + 1
have three transmissions. N01 appears twice as a sender, while N11 appears
twice as a receiver. As N01→ N02 and N10→ N11 have different senders and
receivers, they can be put to the same slot. So, t+1 has two entries, while t+1
has N10→ N11. At t+2, N11 receives from two senders, so it must be a merge
operation.

Design of a Slot Assignment Scheme for Link Error Distribution 535

sender receiver
t N00 → N01
t N00 → N10
t + 1 N01 → N02
t + 1 N10 → N11
t + 1 N01 → N11
t + 2 N02 → N12
t + 2 N11 → N12

In addition, a level 3 virtual link, U , can be defined with level 2 links, and its
reduction and slot allocation is the same as the case of level 2 links. Namely,

U = V 10 · T 3 + H01 · T 4

5 Performance Measurement

This section measures and assesses the performance of the proposed routing
scheme via simulation using SMPL which provides a discrete event scheduler
[14]. The simulation considers 3 × 3 grid which consists of 9 nodes and 12 links,
while the slot error rate of each link distributes randomly with an average value
ranging from 0 to 0.2. We add virtual links after estimating their error rates.
Only the downlink graph was considered for simplicity, as uplink and down-
link communications are symmetric and calculated completely in the same way.
Hence, in our model, the controller node transmits messages to each node one by
one according to the slot assignment as described in the previous section. The
experiment measures the delivery ratio of end-to-end messages for the proposed
routing scheme and compares with the case in which the split-merge operation is
placed as close to the source as possible. The reference scheme is named Firstfit.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

D
el

iv
er

y
ra

tio

Slot error rate

"FirstFit"
"Proposed"

Fig. 3. Performance measurement result

536 J. Lee, S.B. Kim, and M. Kang

Figure 3 exhibits the performance improvement according to the slot error
rate. This experiment makes each link have the error rate according to the expo-
nential distribution. Namely, the experiment generates 500 sets for each average
slot error rate ranging from 0.0 to 0.3, and measure the message delivery ratio
from the coordinator to all other nodes. As shown in this figure, the proposed
routing scheme can enhance the delivery ratio by up to 5.21 %. The performance
gap increases according to the increase of slot error rate. We are now intensively
evaluating the performance of the proposed scheme according to the various
parameters including error distribution, error model, message load, and so on.
Particularly, when the difference of slot error rates in each link gets larger, more
improvement can be expected.

6 Conclusion

This paper has designed and measured the performance of a routing scheme
capable of efficiently handling the difference in the error rate of each link in
the traffic light network which has a grid topology. The grid topology is easily
found in most modern cities which have a Manhattan-style road network, and
it is very easy to find the path having the same length. Using such primary and
secondary paths, a split-merge operation can mask the channel error by making
an intermediary node receive a message simultaneously in two directions. By
this operation, the two 2-hop links between for two nodes in the diagonal of a
rectangle can be considered to be a single virtual link. After estimating the error
rate of the virtual links based on those of the surrounding links, the proposed
scheme has employed the well-known shortest path algorithm to decide the best
route and also to finalize the complete a slot assignment for the WirelessHART
protocol. The performance measurement result obtained by simulation using a
discrete event scheduler demonstrates that the proposed scheme can find the
promising path, improving the delivery ratio for 3 × 3 grid by up to 5.21 %.

As future work, we are first planning to analyze the performance characteris-
tics on robust communication, that is, how efficiently the proposed scheme can
overcome link or node failures. Second, a slot assignment scheme is developed to
integrate the primary and secondary path schedule, minimizing the length of a
control loop.

References

1. US Depart of Transportation. Vehicle safety communication project-final report.
Technical Report HS 810 591 (2006),
http://www-nrd.nhtsa.dot.gov/departments/nrd-12/pubs_rev.html

2. IEC/PAS 62591: Industrial communication networks - Fieldbus specifications -
WirelessHART communication network and communication profile (2008)

3. Yu, B., Gong, J., Xu, C.: Data aggregation and roadside unit placement for a
VANET traffic information system. In: ACM VANET, pp. 49–57 (2008)

http://www-nrd.nhtsa.dot.gov/departments/nrd-12/pubs_rev.html

Design of a Slot Assignment Scheme for Link Error Distribution 537

4. Jaap, S., Bechler, M., Wolf, L.: Evaluation of routing protocols for vehicular ad
hoc networks in city traffic scenarios. In: Proceedings of the 5th International
Conference on Intelligent Transportation Systems Telecommunications (2005)

5. Hart Communication Foundation, Why WirelessHARTTM? The Right Standard
at the Right Time (2007), http://www.hartcomm2.org

6. Song, S., Han, S., Mok, A., Chen, D., Nixon, M., Lucas, M., Pratt, W.: Wire-
lessHART: Applying wireless technology in real-time industrial process control. In:
The 14th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, pp. 377–386 (2008)

7. Lee, J., Shin, I., Kim, C.: Design of a reliable traffic control system on city area
based on a wireless network. In: Gervasi, O., Taniar, D., Murgante, B., Laganà,
A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009. LNCS, vol. 5592, pp. 821–830.
Springer, Heidelberg (2009)

8. Kodialam, M., Nandagopal, T.: Characterizing the capacity region in multi-radio
multi-channel wireless mesh networks. In: ACM MobiCom, pp. 73–87 (2005)

9. Raniwala, A., Gopalan, K., Chieuh, T.: Centralized algorithms for multi-channel
wireless mesh networks. ACM Mobile Computing and Communication Review
(2004)

10. Cain, J., Billhartz, T., Foore, L., Althouse, E., Schlorff, J.: A link scheduling and ad
hoc networking approach using directional antennas. In: Military Communications
Conference, pp. 643–648 (2003)

11. Chang, N., Liu, M.: Optimal channel probing and transmission scheduling for op-
portunistic spectrum access. In: Proc. ACM international conference on Mobile
computing and networking, pp. 27–38 (2007)

12. Alur, R., D’Innocenzo, A., Pappas, G., Weiss, G.: Modeling and analysis of multi-
hop control networks. In: The 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, pp. 223–232 (2009)

13. Ramchandran, I., Roy, S.: Clear channel assessment in energy-constrained wide-
band wireless networks. IEEE Wireless Magazine, 70–78 (2007)

14. MacDougall, M.: Simulating Computer Systems: Techniques and Tools. MIT Press,
Cambridge (1987)

http://www.hartcomm2.org

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 538–548, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Wireless Bluetooth Communications Combine with
Secure Data Transmission Using ECDH and Conference

Key Agreements

Hua-Yi Lin1 and Tzu-Chiang Chiang2

1 Department of Information Management, China University of Technology, Taiwan, R.O.C.
calvan.lin@msa.hinet.net

2 Department of Information Management, Tunghai University, Taiwan, R.O.C.
steve312kimo@thu.edu.tw

Abstract. As the fast development of Bluetooth networks and wireless commu-
nications, the mobile devices share information with each other easier than ever
before. However, the handy communication technology accompanies privacy
and security issues. Nowadays, a Bluetooth adopts peer-to-peer and Frequency
Hopping Spread Spectrum (FHSS) mechanisms to avoid data reveal, but the
malicious attacks collect the transmission data of the relay station for a long pe-
riod of time and then can break into the system. In this study, we take a Piconet as
a cube, and transform a Scatternet into a cluster (N-cube) structure. Subse-
quently, this study exploits the Elliptic Curve Diffie-Hellman (ECDH) [1] and
the Conference Key (CK) schemes to perform session key agreements and secure
data transmissions. The proposed scheme only needs a small key length 160-bit
to achieve compatible security levels on 1024-bit Diffee-Hellman (DH) [2],
and each node uses few CPU, memory and bandwidth to complete security op-
erations. As a result, the proposed fault-tolerant routing algorithm with secure
data transmissions can perform rapidly and efficiently, and is quite suited for
Bluetooth networks with limited resources.

Keywords: Bluetooth, FHSS, Piconet, Scatternet, ECDH, CK, DH.

1 Introduction

The Bluetooth adopts the 2.4GHz frequency band using Frequency Hopping Spread
Spectrum (FHSS) for changing frequency 1600 times per second, and the 2.4GHz is
divided into 79 channels[3]. For avoiding interruptions and protecting data transmis-
sions, each hope chooses a specific channel, and then jumps into the other channel after
400ms as shown in Fig. 1. In a Bluetooth infrastructure, a Piconet consists of a master
device and 7 clients, and several Piconets construct a Scatternet. The communication of
Bluetooth devices allocated on distinct Piconets exploits a gateway node to assist in
data transmissions. Therefore, this study considers a Piconet as a special case of a
cluster. The master device servers as a cluster head, and the Scatternet consists of
several clusters. A well Scatternet has to consider the routing efficiency and secure data

 Wireless Bluetooth Communications Combine with Secure Data Transmission 539

transmissions. Nowadays, the security in Bluetooth networks only employs a simple
Peer-to-Peer password authentication and FHSS technologies to protect data trans-
missions. However, the identification and the security key are transmitted in plain texts.
Thus, malicious intruders can easily launch attacks such as Bluejacking, Bluesnarfing,
Backdoor attack, Cabir worm, and L2CAP connection re-setter. Additionally, since
802.11 and Bluetooth use the same frequency on 2.4GHz, the neighboring devices
possibly interfere with each other. Therefore, it is an important issue to provide a re-
liable and secure communication protocol.

The Bluetooth communication has limited CPU, Memory, Power and bandwidth.
Many asymmetric key mechanisms although provide rather secure functions, however,
they need a lot of computing power and are not suited for Bluetooth networks. This
study proposes a secure data transmission protocol associated with ECDH which can
save resources and achieve secure data transmissions in Bluetooth networks. Addi-
tionally, we propose a fault-tolerant path-finding protocol which only needs O(n) time
complexity to find a routing path in Bluetooth networks.

The rest of this study is structured as follows. Section 2 introduces the Piconet and
Scatternet fault-tolerant routing protocols. Section 3 describes the proposed secure data
transmission scheme. Section 4 presents the security analyses of the proposed scheme.
Section 5 depicts the computing evaluation.

2.4GHz 2.5GHz

400ms(Dwell time) hopping interval time

Frequency band

000 010

100

101 111

011

110

001
1

2
3

Fig. 1. Frequency Hopping Spread Spectrum (FHSS) Fig. 2. A Piconet routing protocol

2 Piconet and Scatternet Routing Protocols

Since the Piconet infrastructure is similar to a cluster or a cube, this study considers
the fault-tolerant capacity of a routing path, and proposes a multiple path routing
protocol. First, we divide the entire Bluetooth network into several cubes, and give
each node on the cube a coordinate (x, y, z), where x, y, and z belong to 0 or 1. For
example, if a node allocated on (0, 0, 0) wants to find a routing path to (1, 1, 1) as
shown in Fig. 2. Initially, according to the routing algorithm, it performs (111 XOR
000) operations to determine the next passing node. The XOR operation result shows
that the different bits indicate the possible routing paths. After 3 phases, this algorithm
can determine a routing path.

540 H.-Y. Lin and T.-C. Chiang

0010 0011

0000

0001

0110 0111

0100 0101

1010 1011

1000
1001

1110
1111

1100 1101

Piconet A Piconet B

Scatternet

1
2

3

4

P iconet A

000

100 101

001

111110

010 011

K a K b

K c K d

K e K f

K g K h

1

2

3

K fK e

K fK h

K hK d

 Fig. 3. A Scatternet routing protocol Fig. 4. Piconet secure data
 transmission protocols

Similarly, in a Scatternet structure as shown in Fig. 3. We extend the communication

nodes to 16 nodes, and give each node a coordinate (w, x, y, z) consisting of 4 bits. The
routing algorithm only needs 4 phases to determine the routing path to the target node.
Consequently, this study applies this routing algorithm on a N-cube structure (with
k=2n node, the maxima distance between two nodes is log2k = n), and realizes that the
Scatternet only takes n phases to find the destination node. The proposed algorithm
only needs simple XOR operations, and the time complexity of the path-finding is
O(n), where the n indicates the dimension of the cube. The routing algorithm pseudo
code is as follows:

Phase 1. The coordinate of the destination node XOR the coordinate of the current
node result.

Phase 2. Compare the result with the coordinate of the current node, the first different
bit is the first choice path, and the second (third, fourth) different bit is the second
(third, fourth) choice path.

Phase 3. Move forward to the next node, and record the coordinate on the routing path.

Phase 4. Repeat the above steps, until find the destination node.

If source node (0000) wants to find the destination node (1111), the brief routing al-
gorithm is presented as follows:

(1111 XOR 0000) 1111 (choose 1000).
(1111 XOR 1000) 0111 (choose 1100).
(1111 XOR 1100) 0011 (choose 1110).
(1111 XOR 1110) 0001 (choose 1111).
(1111XOR 1111) 0000 (find the target node).

3 Secure Data Transmission Protocols

In this study, we consider that the Bluetooth network has limited resource. Therefore,
the asymmetric key and public key infrastructures although provide excellent security

 Wireless Bluetooth Communications Combine with Secure Data Transmission 541

functions, but they need a huge amount of computing powers and resources, and
therefore are not suited for Bluetooth networks. This study adopts the CK and ECDH
schemes to solve the problem of constrained resources in Bluetooth networks. In the
CK scheme, the entire system exploits a master key to en/decrypt transmitted data, and
effectively improves the efficiency of security operations. However, in the initial
phase, the CK scheme needs more complicated key agreement operations than the
ECDH scheme. Oppositely, the ECDH scheme does not need to compute the master
key. But, ECDH has to calculate a session key between each pair of nodes which want
to perform secure data transmissions. However, only few addition and multiplication
operations have to be performed in ECDH. In other words, the CK and ECDH schemes
have different characters, but they are efficient for secure data transmissions. This
study presents the secure data transmission scheme for CK and ECDH in the following
sessions.

3.1 Conference Key Agreement

Since each Bluetooth device has a unique make address (MAC), thus we employ the
MAC address (6 bytes) as the identification IDi, and adopt that T. Hwang et al.[4,5]
proposed conference key algorithms to calculate the conference key K. First of all, in a
Piconet, the head node chooses a common parameter (N, q, r, s, t, and n=qr, st=1 mod
L, where L=lcm(q-1, r-1). And then we calculate B=(b1,b2,…,bn), 1≦bi≦L-1. Let
H=(h1,h2,…hn)=(hb1 mod N, hb2 mod N,... hbn mod N), where h is a root of GF(q) and
GF(r). Subsequently, each member Ui of the Piconet applies for private keys Zi
and Yi from the head node using IDi. Since each Bluetooth device IDi is the verification
basis, and IDi=(Xi1,Xi2,…Xij), Xij ∈ {0,1}, 1≦j≦48. After head node receiving
IDi, it performs a one way hash function f1(IDi)=(Yi1,Yi2,…,Yij), Yin ∈ {0,1},
1≦j≦n, and then head node calculates the private key Zi=(IDi)

d mod N for each node,
where 1≦i≦8.

When the head node calculates Hi for each member (U1~U8), then chooses a random
number r, C1=hsr mod N, and C2=ZMhf2(t,C1)r mod N, where f2 is a one way function with
two parameters and t denotes current time and M denotes the serial number of the
conference members (1~8). Subsequently, KMi=(Hi)

sr mod N, then head node chooses a
conference key from (1~N-1). According to KMi, the head node can construct a Larange
Interpolation as follows:

∑ ∏
= ≠= −

−
+=

7

1

7

,1
mod

)(

)(
)()(

i ijj ji

j
i N

KMKM

KMx
IDKXA Maxaxaxa 01

5
5

6
6 ... ++++= .

Subsequently, the head node broadcasts (C1,C2,a0,a1,…,a6,t) to the other members.

Anyone receives it, and verifies the correct of)(mod
)(

)(
),(

1

2
112

NID
C

C
MCtf

s

= to insure that

the head node is the dealer, and then calculates NgNCK ii

i

rsYY
M modmod)(1 == .

Consequently, the legitimate Ui can obtain the conference key K from A(X), where

542 H.-Y. Lin and T.-C. Chiang

A(KMi)=a6KMi+…+a1KMi+a0 mod N = K + IDi mod N, and K = K+ IDi - IDi(mod N). In
other words, each member has the same conference key K, and can perform the secure
data transmission using K.

3.2 Piconet and Scatternet Secure Data Transmission Protocols Using
Conference Key

In a Piconet, each node obtains the same conference key, if the sender Ke wants to
deliver data to the receiver Kd, as shown in Fig. 4. The detailed secure data transmis-
sions using the CK scheme is as follows:

Ke Kf
EKK[Ke|Me|HMAC(Me)]

Initially, Ke employs the conference key K to calculate the message authentication code
of Me as HMAC(Me). Subsequently, Ke uses the conference key K to encrypt the
passing node ID, transmitted data Me and HMAC(Me), and then delivers the encrypted
result to the following node Kf.

Kf Kh
EKK[KfKe|(Mf||Me)|HMAC(Mf||Me)]

As Kf receives the encrypted data, Kf exploits K to decrypt the received data, and veri-
fies the integrity of HMAC(Me). Subsequently, Kf adds its own ID into the routing path;
accumulates the transmitted data Mf with Me, and calculates the message authenticate
code HMAC(Mf||Me). Consequently, Kf encrypts the entire data using the conference
key K, and sends them to the next node Kh.

Kh Kd
EKK[KhKfKe|(Mh||Mf||Me)|HMAC(Mh||Mf||Me)]

Upon Kh receiving the encrypted data, Kh decrypts the encrypted data using the con-
ference key K; verifies the integrity of HMAC(Mf||Me); adds its own ID into the routing
path KhKfKe, and accumulates Mh with Mf||Me. Subsequently, Kh calculates the
HMAC(Mh||Mf||Me); encrypts the entire data using the conference key K, and sends
them to the following node Kd . Eventually, the destination node Kd receives the en-
crypted data; then decrypts them using the conference key K, and verifies
HMAC(Mh||Mf||Me). During the secure data transmissions, if any modifications occur,
the following node immediately detects the tampered data.

Initially, the proposed CK scheme takes much longer time to calculate the confer-
ence key K, since the members of a Piconet has to obtain the same conference key K.
After then, each node uses K to en/decrypt the transmitted data, and thus improves the
efficiency and avoids calculating the session key for each pair of nodes.

In a Scatternet, as shown in Fig. 5, the entire system has to calculate the same con-
ference key K for all members, and thus takes much longer time than a single Piconet.
Therefore, we propose an efficient scheme named ECDH key agreement which can
decrease a lot of time to synchronize the conference key K for the entire system. We
present the ECDH scheme in the following section.

 Wireless Bluetooth Communications Combine with Secure Data Transmission 543

0010 0011

0000

0001

0110

0111

0100 0101

1010 1011

1000
1001

1110

1111

1100 1101

Piconet A Piconet B

Scatternet

1
2

3

4

Ka Kb

Kc Kd

Kg Kh

Ke Kf

Ki
Kj

Kk Kl

Km Kn

Ko Kp

KeKa

KaKb

KbKj

KjKl

Node B

Private key
KA

Private key
 KB

Session key Session key

PKZ AA =

PKZ BB = PKK

ZKS

AB

AB

=
=

PKK

ZKS

BA

BA

=
=

Node A

Fig. 5. Scatternet secure data transmission Fig. 6. ECDH key agreement

3.3 ECDH Key Agreements

So far, since the ECDH mechanisms have better performance than Diffee-Hellman
(DH), This mechanism only uses a shorter key length 160-bit to achieve compatible
security levels on RSA or Diffee-Hellman(DH) 1024-bit [2,6], and therefore this study
adopts the ECDH method on wireless Bluetooth networks to improve the efficiency of
secure data transmissions.

Consider the case in ECDH, where sensor node A wants to establish a shared key
with node B, as shown in Fig. 6. The public parameters (a prime p, a base point P as a
generator in Diffe-Hellman, coefficients a and b, elliptic curve y2=x3+ax+b) must first
be set. Additionally, each party must have an appropriate key pair for elliptic curve
cryptography, comprising a ECC private key K (a randomly selected integer) and a
public key Z (where Z = KP). Let a node key pair of A denote (KA, ZA), and a node key
pair of B denote (KB, ZB). Each party must have the other party's public key. Node A
calculates ZA = KAP, while node B calculates ZB= KBP. Both parties calculate the shared
key R as R = KAZB = KAKBP = KBKA P = KBZA. The protocol is secure because it reveals
nothing (except public keys, which are not secret), and because no party can calculate
the private key of the other unless it can solve the elliptic curve Discrete Logarithm
Problem (DLP).

The ECDH scheme provides rapid and efficient operations with limited resources.
Therefore, a node requires only addition and multiplication operations without per-
forming exponent operations in DH. Consequently, this study employs the ECDH key
agreement to achieve secure data transmissions in Bluetooth networks.

3.3.1 ECDH Secure Data Transmission Protocols for Piconet
In a Piconet, as shown in Fig. 4, the sender Ke wants to deliver data to the destination
node Kd. According to the proposed routing protocol, this study can find one of the
routing paths (Ke Kf Kh Kd). Subsequently, this study exploits the ECDH scheme
to perform secure data transmissions along the routing path. The detailed processes are
as follows:

Ke Kf
EKKeKfP[Ke|Me|HMAC(Me)]

544 H.-Y. Lin and T.-C. Chiang

Initially, Ke and Kf calculate the session key KeKfP for both using the ECDH scheme.
Subsequently, Ke employs KeKfP to calculate message authentication code HMAC(Me);
then Ke encrypts the passing node ID, transmitted data Me and HMAC(Me) using KeKfP,
and then sends the entire encrypted data to the next node Kf.

Kf Kh
EKKfKhP[KfKe|(Mf||Me)|HMAC(Mf||Me)]

Upon Kf receiving the transmitted data, Kf uses the session key KeKfP to decrypt the
encrypted data, and adopts KeKfP to verify the integrity of HMAC(Me). Subsequently,
Kf adds its own ID to the routing path; accumulates message Mf with Me, and exploits
KfKhP to calculate the HMAC(Mf||Me). Eventually, Kf encrypts the entire data using the
session key KfKhP, and deliveries them to the following node Kh.

Kh Kd
EKKhKdP[KhKfKe|(Mh||Mf||Me)|HMAC(Mh||Mf||Me)]

After receiving the transmitted data, Kh uses the session key KfKhP to decrypts them,
and verifies the integrity of HMAC(Mf||Me). Subsequently, Kh adds its own ID into the
routing path KfKe; accumulates Mh with Mf||Me, and uses KhKdP to calculate
HMAC(Mh||Mf||Me). Consequently, Kh encrypts the entire data using the session key
KhKdP, and sends the encrypted data to the next node Kd . Upon receiving the encrypted
data, Kd decrypts the encrypts data using the session key KhKdP, and verifies the in-
tegrity of HMAC(Mh||Mf||Me).

This proposed mechanism is plain and straightforward with well performance and
fault-tolerant routing functions. This system exploits a small key length with 160-bit to
achieve compatible security levels on 1024-bit for DH or RSA, but only needs few
CPU, memory and bandwidth. The proposed scheme is highly suited for Bluetooth
networks with constrained resources.

3.3.2 ECDH Secure Data Transmission Protocols for Scatternet
As shown in Fig.5, Ke wants to send data to the destination node Kl, if one of routing
paths is Ke Ka Kb Kj Kl, the detailed secure data transmission processes are as
follows:

Ke Ka
EKKeKaP[Ke|Me|HMAC(Me)]

Initially, Ke and Ka use the ECDH scheme to calculate the session key KeKaP, and then
Ke calculates the message authentication code HMAC(Me) using KeKaP. Subsequently,
Ke exploits KeKaP to encrypt the passing node ID, transmitted data Me and HMAC(Me),
and then sends the entire encrypted data to the following node Ka.

Ka Kb
EKKaKbP[KaKe|(Ma||Me)|HMAC(Ma||Me)]

Upon receiving the encrypted data, Ka employs the session key KeKaP to decrypt the
encrypted data, and verifies the integrity of HMAC(Me) using KeKaP. Subsequently, Ka
adds its own ID into the routing path; accumulates Ma with Me, and uses KaKbP to
calculate HMAC(Ma||Me). Eventually, Ka encrypts the entire data using KaKbP, and
sends them to the next node Kb.

 Wireless Bluetooth Communications Combine with Secure Data Transmission 545

Kb Kj
EKKbKjP[KbKaKe|(Mb||Ma||Me)|HMAC(Mb||Ma||Me)]

After receiving data, Kb decrypts the received data using the session key KaKbP; veri-
fies the integrity of HMAC(Ma||Me). Subsequently, Kb adds its own ID into the routing
path KaKe; accumulates Mb with Ma||Me; calculates HMAC(Mb||Ma||Me); encrypts the
entire data using KbKjP, and then sends them to the following node Kj. Upon Kj re-
ceiving the encrypted data, Kj decrypts the encrypted data using KbKjP; verifies the
integrity of HMAC(Mb||Ma||Me), and then send them to the next node Kj.

Kj Kl

EKKjKlP[KjKbKaKe|(Mj||Mb||Ma||Me)|HMAC(Mj||Mb||Ma||Me)]

Repeating the similar operations, the destination node Kl receives the encrypts data;
then decrypts the encrypted data using KjKlP, and verifies the integrity of
HMAC(Mj||Mb||Ma||Me). If any changes take place during the transmissions, the re-
ceiving node detects the modifications immediately by verifying the HMAC.

4 Security Analyses

This section provides several security analyses for the proposed mechanisms, and
evaluates the performance of the methods.

(1) Multiple routing path protocols for Piconet and Scatternet networks

In a Piconet, each node has multiple routing paths. Once the dedicated routing path
collapses, nodes exploit the routing algorithm to search a spare routing path, and then
the system regains normality. Similarly, the Scatternet (n=16, k=4 or above) employs
the same algorithm to search a spare path. This mechanism is rapid and efficient for
fault-tolerant routing in peer-to-peer networks.

(2) Confidentiality and authentication

During the data transmission, this study exploits the session key to encrypt the trans-
mitted data. Only the node with the same session key can decrypt the encrypted data.
The other nodes are not aware of the session key, and therefore can not decrypt the
encrypted data. Thus, the scheme can insure that the data transmission is confidential
and authentic.

(3) Data Integrity and accuracy

This study employs message authentication code (HMAC) to verify the integrity of
transmitted data. During the transmission, each node calculates HMAC, and the re-
ceiver verifies the integrity of HMAC. Since HMAC is an irreversible operation, given
a random number y, no ways can compute x such that H(x)=y. Moreover, when a≠b,
then H(a)≠H(b). Therefore, if any nodes modify the transmitted data during transmis-
sions, the receiver detects the unmatched HMAC instantly and recognizes the tampered
data.

546 H.-Y. Lin and T.-C. Chiang

(4)The performance of secure data encryption and encryption

Since the limited resource of Bluetooth networks, the asymmetric key and Public Key
Infrastructure (PKI) need a lot of resources, and thus are not suited for Bluetooth de-
vices. In this study, we propose a CK scheme. Initially, each node takes much longer
time to calculate a common conference key. After that, each node employs the con-
ference key to efficiently perform the secure data transmission. Oppositely, in initial,
ECDH scheme doesn’t need to calculate the common key for each node, and therefore
ECDH saves the key synchronization time. However, ECDH has to calculate the ses-
sion key for each pair of nodes in every secure data transmission, and thus takes much
longer time during transmission. However, the two proposed schemes only conserve a
session key, and exploit a hash function such as HMAC-160 or RIPEMD-160 to verify
data integrity. Consequently, they can reduce the operational resources and are highly
suited for Bluetooth networks.

5 Computing Evaluation

Since the time complexity of the routing algorithm relies on the dimension of the Piconet
or Scatternet. In this study, the Piconet adopts a 3-dimension cube and the Scatternet
adopts a 4-dimension cube. Therefore, a Piconet only needs three phases to determine a
routing path, and a Scatternet needs four phases to decide a routing path. The proposed
scheme is rapid and efficient, and takes O(n) time complexity, where n denotes
the dimension of the cube. Additionally, the proposed method provides fault-tolerant
and multiple path-finding functions. Even the dedicated routing path collapses and the
system can rapidly find a replacement path performing the routing algorithm.

Consider the performance of secure data transmissions, the experiments are imple-
mented on a MICAII-like mote production JN-5121 with 32-bit 16 MHz CPU, 96KB
RAM and 64KB ROM. Several ECDH operations are performed on the JN-5121 plat-
form. The mote computes a point multiplication in 0.18s on SECP-160 curve [7] and
5.2s to establish a session key on ECDH in the prime field. Additionally, we evaluate the
routing algorithm and the secure data transmission on a Piconet and a Scatternet.

Figure 7 demonstrates the searching time of a routing path for the Piconet and
Scatternet. From the experimental results, we can conduct that the scheme needs few
XOR operations and takes O(n) time complexity to find a routing path form the source
node Ka (0000) to the destination node Kh (1111).

Figure 8 demonstrates the comparison of three kinds of schemes (DH, ECDH and
CK) on secure data transmission time in a Piconet using the session key scheme. As the
increasing nodes, the experimental results show that ECDH outperforms the other two
schemes on the compatible security level.

Figure 9 depicts the secure data transmission time in a Scatternet. This study adopts
DH, ECDH and CK schemes to calculate the secure data transmission time between
two Piconets. During the transmission, since the CK scheme has to calculate the con-
ference key in advance, therefore takes much longer time than the other two schemes.
After that, the entire system uses the same conference key to perform secure data
transmissions, and thus saves a lot of key agreement time. As the increasing nodes, the
experimental results demonstrate that ECDH and CK schemes outperform DH.

 Wireless Bluetooth Communications Combine with Secure Data Transmission 547

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7

N-dimension for Piconet and Scatternet

T
im

e
C

om
pl

ex
ity

 O
(n

)
se

c.

Routing time

 Number of vertexes

E
la

p
se

d
 t

im
e
(s

e
c
)

Fig. 7. The time complexity of finding a routing Fig. 8. The secure data transmission time of
path for the Piconet and Scatternet DH, ECDH and CK schemes in a Piconet

E
la

p
se

d
 t

im
e(

se
c)

N u m b er o f n o d es

E C D H - 1 6 0 E C D H - 2 2 4 D H - 1 0 2 4

D H - 2 0 4 8 C o n f . K e y

Fig. 9. The secure data transmission time of DH, ECDH and CK schemes in a Scatternet

6 Conclusions

In the future, Bluetooth technologies are the main stream of short distance communi-
cations, and are gradually integrated into wireless networks. However, the transmitted
data are exposed to a public network, and thus are easy to be sniffed. Therefore, secure
Bluetooth data transmissions are an important issue.

This paper proposes a rapid, efficient and fault-tolerant mechanism for secure data
transmissions on Bluetooth networks. The proposed routing algorithm only needs O(n)
time complexity to find a fault-tolerant routing path in a Piconet and a Scatternet. Ad-
ditionally, we employ CK and ECDH schemes to secure the data transmissions on
Bluetooth networks. The mechanism merely needs a small key length 160-bit to
achieve compatible security levels on 1024-bit DH or RSA, and the mechanism is
highly suited or Bluetooth networks with constrained resources.

548 H.-Y. Lin and T.-C. Chiang

Additionally, we adopt session key to perform secure data transmissions in Blue-
tooth networks, and we exploit a gateway node to assist in securing data transmissions
in a Scatternet. Eventually, the simulation results indicate that the proposed ECDH
scheme outperforms CK and DH schemes. Consequently, the proposed scheme con-
sumes few CPU, memory, bandwidth and resources, and therefore is highly suited for
Bluetooth networks.

Acknowledgements

This work was supported by the National Science Council of Republic of China under
grant NSC-99-2218-E-029-002.

References

1. Diffe, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Informa-
tion Theory (November 1976)

2. Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptography in
Wireless Sensor Networks. In: Proceedings of the 2008 International Conference on In-
formation Processing in Sensor Networks, pp. 245–256 (2008)

3. Lee, G., Park, S.C.: Bluetooth security implementation based on software oriented hard-
ware-software partition. In: IEEE International Conference on Communications, May 2005,
pp. 2070–2074 (2005)

4. Hwang, T., Chen, J.L.: Indentity-Based Conference Key Broadcast System. IEE
Proc.-Computer Digital Technical 141(1), 57–60 (1994)

5. Laih, C.S., Harn, L., Chang, C.C.: Contemporary Cryptography and It’s Applications, pp.
20-2–20-7. Flag Publisher (2003)

6. Eschenauer, L., Gligor, V.D.: A Key-management Scheme for Distributed Sensor Net-
works. In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, November 2002, pp. 41–47 (2002)

7. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC: Testing the
Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone, R. (ed.) EWSN
2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

8. Chang, C.T., Chang, C.Y., Sheu, J.P.: BlueCube: Constructing a hypercube parallel com-
puting and communication environment over Bluetooth radio systems. Journal of Parallel
and Distributed Computing 66(10), 1243–1258 (2006)

Robust Multicast Scheme for Wireless Process
Control on Traffic Light Networks�

Junghoon Lee1, Gyung-Leen Park1, Seong-Baeg Kim2,
Min-Jae Kang3, and Mikyung Kang4,��

1 Dept. of Computer Science and Statistics, 2 Dept. of Computer Education,
3 Dept. of Electronic Engineering

Jeju National University, 690-756, Jeju Do, Republic of Korea
4 University of Southern California - Information Sciences Institute, VA22203, USA

{jhlee,glpark,sbkim,minjk}@jejunu.ac.kr, mkkang@east.isi.edu

Abstract. This paper designs and analyzes the performance of an ef-
ficient and robust multicast scheme for the grid-style wireless network
built upon the WirelessHART protocol, aiming at improving the relia-
bility of wireless process control without extending the slot assignment
schedule. The proposed scheme first makes the controller node select the
transmission order to its downstream neighbors according to the current
channel condition returned from the clear channel assessment . Next, re-
ceiver nodes having two predecessors listen first from the primary sender
and then switches to the secondary sender when the message doesn’t
arrive within the predefined time bound. The simulation result obtained
from the discrete event scheduler shows that the proposed scheme can
improve the multicast delivery ratio by up to 35.6 %, compared with the
multicast tree-based scheme having the same slot schedule, maintaining
the consecutive message losses below 8.

1 Introduction

Based on matured wireless communication technologies, vehicular telematics net-
works extend the global network coverage to a driver while he or she is driving
on the road [1]. In this network, the fast moving vehicles are the communica-
tion entities. Thus, not only the connection between them is extremely instable
but also multihop connections cannot last for an interval enough to provide a
reasonable quality service. To overcome this problem, static elements, capable
� This research was supported by the MKE(The Ministry of Knowledge Economy),

Korea, under the ITRC(Information Technology Research Center) support program
supervised by the NIPA(National IT Industry Promotion Agency). (NIPA-2010-
(C1090-1011-0009)).

Following are also results of a study on the ”Human Resource Development
Center for Economic Region Leading Industry” Project, supported by the Ministry
of Education, Science & Technology(MEST) and the National Research Foundation
of Korea(NRF).

�� Corresponding author.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 549–558, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

550 J. Lee et al.

Fig. 1. control architecture

of providing the access point to moving vehicles, can be installed in appropriate
locations on the road network. Correspondingly, each component communicates
in two-level hierarchy in vehicular networks as shown in Figure 1[2]. Level 1 con-
nection is established between static nodes and level 2 between a static node and
moving vehicles. Level 1 communication creates a kind of wireless mesh networks
which can be built based on commonly available protocols such as IEEE 802.11,
Zigbee, and the like [3]. Based on this network, many vehicular applications can
be developed and serviced.

Traffic lights are found in every street, and we think that they can desirably
install a wireless communication interface as they have sufficient and reliable
power provision and their locations are highly secure. On such a traffic light
network, it is possible to implement a monitor-and-control application when the
network includes sensors and actuators [4]. Practically, a lot of traffic-related
or environmental devices such as speed detectors, pollution meters, and traffic
signal controllers, can be added to the vehicular network. Moreover, vehicles can
also carry a sensor device and report the collected sensor data to a static node.
The message of process control applications is necessarily time critical and how
to schedule messages is the main concern. To meet this requirement, the network
protocol must provide predictable network access, while a message schedule is
determined based on the routing policy, also considering the underlying network
topology. Particularly, when traffic lights are placed in each intersection of a
Manhattan-style road network, the traffic light network has grid topology.

Meanwhile, the WirelessHART standard provides a robust wireless protocol
for various process control applications [5]. First of all, the protocol standard
exploits the slot-based access scheme to guarantee a predictable message delivery,
and each slot is assigned to the appropriate (sender, receiver) pair. In addition,
for the sake of overcoming the transient instability of wireless channels, a special
emphasis is put on reliability by mesh networking, channel hopping, and time-
synchronized messaging. This protocol has been implemented and is about to

Robust Multicast Scheme for Wireless Process Control 551

be released to the market [6]. Moreover, it can design a split-merge operation to
mask channel errors as well as an efficient routing scheme to find the path that
is most likely to successfully deliver the message [7].

For the timely control action, the network must deliver the sensor and control
message not only reliably but also timely, or as fast as possible. Thus, every
message transmission schedule, or slot assignment, is decided in priori. Moreover,
one of the most useful communication primitives is the multicast or broadcast.
Conceptually, the multicast mechanism ranges from the message relay along
the BFS (Breadth First Search) tree to message flooding. Between these two
extremes, there are many optimization schemes to compromise reliability and the
number of messages. On the other hand, the split-merge operation, which will be
explained later, can also improve the reliability and timely delivery of multicast
messages. In this regard, this paper is to design and evaluate the performance
of an efficient multicast protocol, where some nodes receive a message from two
possible senders, for process control messages in the grid-style traffic network.

The paper is organized as follows: After defining the problem in Section 1,
Section 2 introduces the background of this paper focusing on the WirelessHART
protocol and multicast schemes. Section 3 designs a multicast scheme exploiting
the split-merge operation during the message propagation along the multicast
tree. The performance measurement result is discussed in Section 4, and finally
Section 5 summarizes and concludes this paper.

2 Background and Related Work

The WirelessHART standard is defined over the IEEE 802.15.4 GHz radioband
physical link, allowing up to 16 frequency channels spaced by 5 MHz guard
band [8]. The link layer provides deterministic slot-based access on top of the
time synchronization primitives carried out continuously during the whole net-
work operation time. According to the specification, the size of a single time
slot is 10 ms, and a central controller node coordinates routing and commu-
nication schedules to meet the robustness requirement of industrial applica-
tions. According to the routing schedule, each slot is assigned to a (sender,
receiver) pair. For more reliable communication, each sender performs CCA
(Clear Channel Assessment) [9] before the transmission. However, how to re-
act when a channel returns bad CCA condition is not yet defined in the current
standard.

The split-merge operation, defined on top of the WirelessHART protocol,
enables a sender to try another channel if the CCA result of the channel on
the primary schedule is not clear. For the destination node of each connection, a
controller may reserve two alternative paths having sufficient number of common
nodes. Two paths split at some nodes and meet again afterwards. When two
paths split, a node can select the path according to the CCA result in a single
slot by switching to the channel associated with the secondary route. When two
paths merge, the node can receive from either of two possible senders by a timed
switch operation. Besides, the WirelessHART protocol can be reinforced by many

552 J. Lee et al.

useful performance enhancement schemes such as the virtual-link routing scheme
that combines split-merge links and estimates the corresponding error rate to
apply the shortest path algorithm [7].

As for the multicast mechanism in wireless communication, the IEEE 802.11
standard specifies multicast frames by which a node sends a message to all
reachable nodes using the basic service set data rate [10]. However, the data
rate is limited by the poorest channel between the sender and each receiver, so
the data rate is generally much slower than the unicast data rate. Moreover,
considering the directional antenna [11], it looks more reasonable to transmit
a single multicast packet by multiple unicast packets. For this purpose, a node
relays the multicast message according to the prebuilt multicast tree or simply
floods to the every nearby downstream node [12]. The first scheme suffers from
the packet loss, especially when the loss happens at the high-level node in the
multicast tree, while the second scheme cannot avoid so-called multicast storms.
Additionally, gossiping is proposed to relieve problems of the flooding scheme.
Instead of sending to all of its neighbors, a node randomly chooses some of its
receivers. Other schemes consider geographic location, generally partial routing
information, and others [13]. Anyway, in the slot-based MAC, the multicast
message must be scheduled and assigned to the appropriate slots, and more
messages need more time slots [14,15].

3 Routing and Scheduling Scheme

3.1 System Model

The traffic lights form a grid network in modern cities, as a traffic light node
is placed at each crossing of the Manhattan-style road network, as shown in
Figure 2(a) [16]. Each node can exchange messages directly with its vertical and
horizontal neighbors. Two nodes in the diagonal of a rectangle do not have a
direct connection, as there may be obstacles like a tall building that blocks the
wireless signal propagation. In this network, the central controller is assumed to
be located at the fringe of a rectangular area, for this architecture makes the
determination of the communication schedule simple and systematic. In Figure
2(a), N00 is the controller node of a 3 × 3 grid. In addition, it must be noted
that any grid network can be transformed into this network by partition and
rotation. In the example of Figure 2(b), four 4 × 4 grids are generated and each
of them can be mapped to a grid shown in Figure 2(a), regardless of the grid
dimension.

In most control applications, the controller initiates a multicast process peri-
odically, so the route and corresponding slot allocation can be decided in priori.
How to route a message or how to build a multicast tree is not our concern and
any scheme can be integrated into our transmission model [10]. Each node-to-
node transmission is assigned to a slot, so the one-hop message relay can succeed
only if the channel between two nodes remains good during the slot time. In ad-
dition, an acknowledgment scheme can be employed between the receiver and

Robust Multicast Scheme for Wireless Process Control 553

(b) grid partition

N00

N20

N01 N02

N10 N11 N12

N21 N22

H01 H02

H11 H12

H21 H22

V10 V11 V12

V20 V21

(a) 3 * 3 topology

V22

Fig. 2. Traffic light network

sender in the single hop message exchange, while the the retransmission or du-
plicated transmission can be integrated into the slot schedule. The controller can
retransmit to the node which has missed the message after rebuilding a multicast
tree connecting such nodes. However, the retransmission mechanism, be it for
single-hop or system-wide, is out of scope of this paper.

3.2 Multicast Scheme

This section begins with the basic multicast scheme based on the BFS multicast
tree. We call this BFS multicast in short. Practically, every node is the receiver
for the multicast from the controller. Here, each node has its predecessor except
the controller. A node can receive the message only if its predecessor receives
successfully. The message failure can do more harm, when the node is in the
upper level of the multicast tree. Figure 3(a) is the example of a multicast tree
built based on the BFS traverse order on the 3 × 3 grid network shown in
Figure 2(a). Based on this tree, a slot schedule can be decided as shown in
Figure 4(a), where the receiver order corresponds to the BFS order. That is,
1-hop neighbors of N00 receive in the first 2 slots. Then, 2-hop nodes, namely,
N20, N11, and N02, receives from the 1-hop nodes, and so on. N22 is most
likely to fail in receiving the multicast message. In this schedule, if time slot 1 is
not good, N10, N20, N21, and N22 cannot receive the message. Most multicast
tree-based schemes suffer from this invulnerability. However, in case the channel
condition is good for the most time, just 8 times slots can complete an entire
multicast.

To improve the multicast performance on this transmission schedule, it is
necessary to enhance each node-to-node delivery ratio, especially for the nodes
close to the controller. Accordingly, the controller employs a split operation in
the first two slots. Not sending a message one by one to each of two receivers
as in the BFS multicast, the controller executes CCA, which needs just 8 bit
time according to the standard, and dynamically select the receiver having good
condition. Namely, in the first slot, after performing CCAs to N01 and N10,

554 J. Lee et al.

N00

N20

N01 N02

N10 N11 N12

N21 N22

(a) BFS Tree multicast

N00

N20

N01 N02

N10 N11 N12

N21 N22

(b) Split−merge broadcast route

Fig. 3. multicast trees

the controller sends its multicast message to the one which returns clear channel
condition. In the second slot, the controller sends to the other one. For this oper-
ation to work, N01 and N10 must wake up and listen during the first two slots.
The slot schedule shown in Figure 4(b) has two entries, namely, N00 → N10
and N00 → N01, in the first two rows. These rows can be switched according
to the CCA result.

In addition, some nodes can receive from two possible predecessors, which
correspond to two upstream neighbors. For example, assume that N10 and N01
have received for the multicast message successfully. Then, N11 can receive
either of them. Figure 3(b) illustrates this situation. N11 has two receive links,
one denoted by a solid line to N10 and the other by a dotted line to N01.
It means that N10 is the primary sender and N01 is the secondary sender.
As a result, in Figure 4(b), slot 3 has two transmissions of N10 → N11 and
N01→ N11. In this slot, any one of N10 and N01 having a valid message send
to N11. They must use different frequency channel, while the secondary sender
must begin after a predefined delay to give a margin for the receiver to change
the listening channel. On the other hand, N11 first tries to receive through
N10, as it is the primary route. If the packet arrives, it receives as scheduled.
Otherwise, namely, the message doesn’t arrive until the first TsRxOffset, the
node switches channel bound to the secondary sender.

The message cannot reach a node when its two predecessors cannot sends a
message, resulting in the improvement of delivery ratio of the message multicast.
In this way, (n− 1)× (n− 1) nodes out of n× n can benefit from the improved
message relay in the overall multicast. The proposed scheme, which will be called
SM multicast named after split-merge, does not extend the length of the slot
assignment schedule. Redundant transmission and channel selection can be done
just within a slot. If we are to allocate slots for flooding schemes, the schedule
length inevitably grows too much. Instead, SM multicast can carry out another
message multicast within the same time interval. More reduction is possible
by overlapping transmissions across the consecutive multicasts. For an extreme
example time slot 8 of the current multicast and the slot 1 of the next multicast
can run concurrently.

Robust Multicast Scheme for Wireless Process Control 555

1 N00 −> N10

slot action

N00 −> N10

2 N00 −> N01

3 N10 −> N20

4 N10 −> N11

5 N01 −> N02

8 N21 −> N22

7 N02 −> N12

6 N20 −> N21

N00 −> N01

N10 −> N11

N10 −> N20

N01 −> N02

N11 −> N21

N02 −> N12

N21 −> N22

N01 −> N11

N20 −> N21

N11 −> N12

N12 −> N22

split

(b) split−merge schedule

action merge

(b) BFS tree schedule

Fig. 4. multicast schedule

4 Performance Measurement

This section measures the performance of the proposed multicast scheme via
simulation using SMPL which provides abundant functions and libraries for dis-
crete event scheduling, while combined easily with the commonly used compilers
such as gcc and Visual C++ [17]. Only the downlink graph was considered for
simplicity, as uplink and downlink communications are symmetric and calculated
completely in the same way. In addition, the slot error rate is set to be the same
for all links to give focus on the performance of the multicast scheme. It must
be mentioned that the routing scheme can find a better route to cope with the
case the slot error rate is different link by link. The slot error rate depends on
the data size and the channel error rate distribution. Here, we employ Guilbert-
Elliot error model [18], which is quite simple, but can easily set the average error
rate we want for the experiment.

The first experiment measures how many nodes can receive a multicast mes-
sage from the controller, according to the grid dimension. We change the di-
mension from 3 to 15, 500 multicasts are generated for each dimension, and the
percentage of nodes receiving the message was averaged. The slot error rate is
set to 0.01. As shown in Figure 5, the delivery ratio for the BFS multicast drops
sharply according to the increase of the grid dimension, reaching 50 % when the
dimension is 15. As contrast, SM multicast is hardly affected. The message fail-
ure recovery at the high-level multicast tree can keep low the overall failure. The
SM curve stays above 0.95 for all dimension ranges, indicating that 1 out of 20
nodes receive the multicast message from the controller. It seems that additional
error recovery will not be necessary. Actually, SM has an effect of reducing the
slot error rate to almost its square.

The second experiment measures the delivery ratio according to the slot error
rate for the 4 × 4 grid. We change the slot error rate from 0 to 0.3. The wireless
channel experiences diverse slot error rates. Figure 6 plots the measurement
result. As shown in the graph, the performance gap gets larger according to the
increase of the slot error rate, reaching 35.6 % at the error rate of 0.18. After
that point, the influence of severe error rate exceeds the effect of error recovery.

556 J. Lee et al.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16

D
el

iv
er

y
ra

tio

Grid dimension

"BFS"
"SM"

Fig. 5. Effect of grid dimension

In addition, the proposed scheme is not so much affected by the slot error rate
until 0.1, then it begins to decrease a little bit sharply. As contrast, the delivery
ratio of the BFS scheme drops by the significant amount from the first.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

D
el

iv
er

y
ra

tio

Slot error rate

"BFS"
"SM"

Fig. 6. Effect of slot error rate

In the process control system, the same command can repeat for times to mask
the communication error in the previous message multicast or make the actuator
continue its operation. In this situation, consecutive message losses can lead to
undesirable malfunction. So, the third experiment measures the maximum of
consecutive multicast errors according to the slot error rate. In this experiment,
the slot error rate has a value of 0.0 through 0.3. and the grid dimension is set
to 5. Figure 7 plots the maximum of consecutive message losses for N44 which
is farthest away from the controller and has the lowest receive ratio. As can be
inferred from the figure, the node doesn’t miss more than 8 times in a row in

Robust Multicast Scheme for Wireless Process Control 557

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.05 0.1 0.15 0.2 0.25 0.3

M
ax

im
um

 c
on

se
cu

tiv
e

m
is

se
s

Slot eror rate

"BFS"
"SM"

Fig. 7. Maximum consecutive loss

the SM multicast even when the slot error rate is 0.3. As contrast, the node can
miss more than hundred times consecutively in BFS multicast. This experiment
demonstrates that our scheme can work very reliably for the process control
application.

5 Conclusions

This paper designs and analyzes the performance of an efficient and robust mul-
ticast scheme for the grid-style wireless network built upon the WirelessHART
protocol. The proposed scheme exploits the split-merge operation which provides
a channel switch, or receive frequency change, within a slot, aiming at improving
the reliability of wireless process control without extending the slot assignment
schedule. With the modification of split operation, the controller node selects
the transmission order to its downstream neighbors according to the current
channel condition returned from the CCA result specified in the WirelessHART
standard. In addition, using the merge operation, the nodes having two prede-
cessors listen first from the primary sender and then switches to the secondary
sender when the message doesn’t arrive within the predefined time bound. The
simulation result obtained from SMPL shows that the proposed scheme can im-
prove the multicast delivery ratio by up to 35.6 %, compared with the BFS
multicast, makes the delivery ratio stay above 95 % for all given grid dimension
range, and finally maintains the consecutive message losses below 8.

As future work, we are planning to find how to build the multicast tree and
corresponding slot assignment schedule which can meet the specific applica-
tion requirement such as maximizing the delivery ratio, minimizing the schedule
length, isolating the failed node, and the like.

558 J. Lee et al.

References

1. Lee, J., Park, G., Kim, H., Yang, Y., Kim, P., Kim, S.: A telematics service system
based on the Linux cluster. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 660–667. Springer, Heidelberg
(2007)

2. Bucciol, P., Li, F.Y., Fragoulis, N., Vandoni, L.: ADHOCSYS: Robust and service-
oriented wireless mesh networks to bridge the digital divide. In: IEEE Globecom
Workshops, pp. 1–5 (2007)

3. Gislason, D.: ZIGBEE Wireless Networking. Newnes (2008)
4. IEC/PAS 62591: Industrial communication networks - Fieldbus specifications -

WirelessHART communication network and communication profile (2008)
5. Hart Communication Foundation, Why WirelessHARTTM? The Right Standard

at the Right Time (2007), http://www.hartcomm2.org
6. Han, S., Song, J., Zhu, X., Mok, A.K., Chen, D., Nixon, M., Pratt, W., Gond-

halekar, V.: Wi-HTest: Compliance test suite for diagnosing devices in real-time
WirelessHART network. In: The 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, pp. 327–336 (2009)

7. Lee, J., Song, H., Mok, A.K.: Design of a reliable communication system for grid-
style traffic control networks. In: Accepted at the 16th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (2010)

8. Song, S., Han, S., Mok, A.K., Chen, D., Nixon, M., Lucas, M., Pratt, W.: Wire-
lessHART: Applying wireless technology in real-time industrial process control. In:
The 14th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, pp. 377–386 (2008)

9. Ramchandran, I., Roy, S.: Clear channel assessment in energy-constrained wide-
band wireless networks. IEEE Wireless Magazine, 70–78 (2007)

10. Chakeres, I., Koundinya, C., Aggarwal, P.: Fast, efficient, and robust multicast in
wireless mesh networks. In: 5th ACM symposium on Performance evaluation of
wireless ad hoc, sensor, and ubiquitous networks, pp. 19–26 (2008)

11. Dai, H., Ng, K., Wu, M.: An overview of MAC protocols with directional antennas
in wireless ad hoc networks. In: Proc. International Conference on Computing in
the Global Information Technology, pp. 84–91 (2006)

12. Penttinen, A.: Efficient multicast tree algorithm for ad hoc networks. In: IEEE
MASS, pp. 519–521 (2004)

13. Yen, W., Chen, C., Yang, C.: Single gossiping with directional flooding routing
protocol in wireless sensor networks. In: 3rd IEEE Conference on Industrial Elec-
tronics and Applications, pp. 1604–1609 (2008)

14. Huang, S., Wna, P., Jia, X., Du, H., Shang, W.: Minimum-latency multicast
scheduling in wireless ad hoc networks. In: IEEE INFOCOM, pp. 733–739 (2007)

15. Wan, P., Huang, S., Wang, L., Wan, Z., Jia, X.: Minimum latency aggregation
scheduling in multihop wireless networks. In: MobiHoc, pp. 185–193 (2009)

16. Jaap, S., Bechler, M., Wolf, L.: Evaluation of routing protocols for vehicular ad
hoc networks in city traffic scenarios. In: Proceedings of the 5th International
Conference on Intelligent Transportation Systems Telecommunications (2005)

17. MacDougall, M.: Simulating Computer Systems: Techniques and Tools. MIT Press,
Cambridge (1987)

18. Bai, H., Atiquzzaman, M.: Error modeling schemes for fading channels in wireless
communications: A survey. IEEE Communications Surveys, 2–9 (2003)

http://www.hartcomm2.org

A Note-Based Randomized and Distributed Protocol for
Detecting Node Replication Attacks in Wireless Sensor

Networks

Xiangshan Meng, Kai Lin, and Keqiu Li�

Department of Computer Science and Engineering
Dalian University of Technology

No2, Linggong Road, Dalian 116023, China
keqiu@dlut.edu.cn

Abstract. Wireless sensor networks are often deployed in hostile environments
and sensor nodes are lack hardware support for resistance; thus, leaving them vul-
nerable to several kinds of threats and attacks. While most of threats and attacks
can be prevented by using cryptographic approaches provided by key manage-
ment, such as eavesdropping, intrusion and node compromising. Unfortunately
node replication attacks can still go undetectable. In node replication attacks,
an attacker compromising a node, uses its secret cryptographic key materials to
populate the network with several clones of it. Several node replication detect
protocols were proposed. However, centralized protocols have a single point of
failure, local protocols fail to detect distributed replications, and distributed pro-
tocols need nodes know their exact geographic locations. This paper proposes a
note-based protocol for detecting node replication attacks, which introduces no
significant overhead on the resource-constrained sensors. The proposed proto-
col needn’t the geographic locations of nodes as well. Moreover, further analysis
shows that it achieves a much higher probability of detecting replications.

1 Introduction

A Wireless Sensor Network (WSN) is a large collection of sensors with limited re-
sources. Cost considerations make it impractical to use shielding that could fight against
pressure, voltage, and temperature changes [1,2,3]. Because of the lack of resources,
sensors are easy to get exhausted. Sensors are often deployed in harsh environments
where they are vulnerable to be captured and compromised by an adversary. An adver-
sary can compromise a single node, use some approaches to access the sensor’s internal
state, get the credentials of the node and other information. A serious consequence is
that the adversary can replicate it indefinitely, and then insert the replicas at strate-
gic locations within the network. The replicas make the network vulnerable to a large
of attacks, such as DoS attacks, injecting false data, subverting data aggregation and
so on.

Different protocols were proposed for detecting node replication attacks. Two ref-
erence protocols are centralized protocols and local protocols. Centralized protocols

� Corresponding author.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 559–570, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

560 X. Meng, K. Lin, and K. Li

typically rely on a centralized base station [6]. They require all of the nodes in the
network to send a list of their neighbors’ claimed location to the base station. These
protocols have a single point of failure like all centralized schemes. Local protocols
[7,8,9] depend primarily on a neighborhood voting mechanism, and they can’t detect
replications that are distributed in the network. Several distributed protocols [4,5,16]
were proposed to detect node replication attacks. They all require nodes in the network
know their exact geographic locations. These protocols require every node to transfer
its location information to a set of nodes called witness that can examine the conflict.
However, not every WSN application is location aware, which limits their application
in some scenarios.

In this paper, we analyze the related node replication detect protocols, then we
present a note-based protocol NRDP for detecting node replication attacks. Extensive
simulations show that NRDP is more energy efficient, and it detects node replication
attacks with much higher probability than existing protocols.

The remainder of the paper is organized as follows: In section 2, we overview some
related works on detection of node replication attacks. In section 3, we describe our
network model and adversary model. In section 4, we describe our proposed protocol
NRDP, and we give a detailed theoretical efficiency and security analysis in section 5.
In section 6, we show some experimental results on NRDP and compare it with other
distributed protocols. We conclude our work in section 7.

2 Related Work

A centralized protocol [6] relies on a centralized base station (BS). Each node sends a
list of its neighbors and their claimed locations to the BS. The BS can then examine
every neighbor list to look for replicated nodes. Finally the base station can revoke the
replicated nodes by flooding the network with an authenticated revocation message.
This solution has a single point of failure, and it requires a high communication cost.
Further, nodes close to the BS will exhaust their power earlier than others because
of funneling effect. Local protocol is also a kind of solution for detecting replication
attacks. A voting mechanism is used on a node’s neighbors in [6,7,8,9]. The neighbors
can reach a consensus on the legitimacy of a given node. But those protocols fail to
detect replicas two or more hops away from each other.

Several distributed detect protocols were proposed for detecting node replication
attacks. We adopt some notations in [17]. In these protocols, every node broadcasts its
ID and location to one-hop neighbors. We call this message a claim and the node that
broadcasts a claim a claimer node. Upon receiving a claim message, each neighbor
with probability pf forwards the claim message to a set of nodes called witnesses. A
neighbor node which forwards a claim, we call it a reporter node. If a witness node
receives two or more claim messages containing the same ID but different locations,
the witness node detects a replication attack.

The first distributed node replication detect protocol was proposed in [4]. Two dis-
tributed protocols were proposed: Randomized Multicast (RM) and Line Select Mul-
ticast (LSM). RM protocol propagates claim message to randomly selected witness
nodes. When a claimer node broadcasts its location claim, each of its neighbors with

A Note-Based Randomized and Distributed Protocol 561

probability pf propagates the claim to a set of randomly selected witness nodes. Ac-
cording to the Birthday Paradox, at least one node is likely to receive conflicting loca-
tion claims of a particular node. Each neighbor needs to send O(

√
n) messages. The

notation n is the number of sensors in the network.
LSM protocol behavior is similar to RM but introduces a modification that achieves

a noticeable improvement in terms of detection probability and communication cost.
When a node broadcasts its location claim, every neighbor forwards this claim with
probability pf . If a neighbor forwards the claim, it randomly selects a fixed number g
witness nodes, and sends the signed claim to all the g nodes. The number of witness
nodes g can be much smaller than in RM. Every node that is routing the claim message
must to check the signature of the claim, then store the signed claim, and check for
coherence with the other location claims stored within the same detect iteration. So, the
forwarding nodes are also witness nodes of the claimer node. Node replication is likely
detected by the nodes on the intersection of two route paths that originate from different
locations by the same ID.

Two distributed replication detect protocols SDC and P-MPC were proposed in [16].
The network is considered to be a geographic grid in the study. In the SDC protocol,
a geographic hash function is used to uniquely and randomly map a node’s identity to
one of the cells in the grid. The location claim message is forwarded to the mapping
cell. When the first copy of the location claim arrives at the destination cell, the location
claim is flooded within the cell. The nodes in the cell randomly become witness nodes.
In P-MPC, to increase the reliability to a large amount of replication nodes, a node’s
identity is mapped to several cells in the grid. So, the candidate witness nodes for one
node are nodes of several cells.

An efficient, distributed protocol RED was proposed in [5]. Different from RM and
LSM, all reporter nodes of a particular claimer node α would choose the same g witness
nodes for α, while in RM and LSM, each reporter node randomly determines a set of
witness nodes. In RED protocol, the witness nodes’ locations are determined by the
claimer node ID and the seed rand. A trusted entity broadcasts a seed to the whole
network in each detect iteration. Because the seed changes in every detect iteration,
so the attacker cannot anticipate the witness nodes. As described above, each neighbor
node of a claimer node with probability pf becomes reporter node and forwards the
claim message to g witness nodes. The larger pf is, the higher the success detect rate
is, and a claimer node tends to have more reporter nodes. But if there are more than
one reporter node for a claimer node, the corresponding witness nodes will receive the
same claim message several times. Actually, only one claim message is necessary per
claimer node for the witness nodes.

3 System Model

3.1 Network Model

We consider a sensor network with a large number of nodes distributed over a wide area.
The nodes in the network are relatively stationary. Except we don’t need the locations
of nodes in the network, all the assumptions are the same with other node replication
detect protocols in [4,5,16]. Different from other replicated node detect protocols, we

562 X. Meng, K. Lin, and K. Li

don’t require nodes know theirs geographic locations. In order to obtain the locations
of nodes, several beacon nodes equipped with GPS devices are needed, or a location
discovery protocol such as [10] needs to be executed in the network. It will lead to a
significant communication cost and a hardware cost. We also assume that the network
is loosely time synchronized. This can be achieved by schemes proposed in [4,11,18].
Each node is assigned a unique identity and a pair of identity-based public and private
keys by a trust authority (e.g., BS). In identity-based signature protocols like [12], the
public key is usually a hash on its unique identity, and the private key is generated by
signing its public key with a master secret held only by the BS. To generate a new
identity-based private and public key pair, cooperation of the BS is required. Because
they cannot generate the key pair corresponding to the identities, the adversaries can-
not create sensors with new identities. We also assume that message forwarding is not
affected by dropping or wormhole attacks. These threats can be addressed by protocols
proposed in [13,14,15].

3.2 Adversary Model

We assume that the adversary has the ability to surreptitiously compromise a limited
number of legitimate nodes. Once a node is compromised, all the secret keys, data, and
code stored in it are exposed to the adversary. The adversary could then clone the node
by loading the node’s cryptographic information onto multiple replicated sensor nodes,
and then insert the replicas in different locations within the network. The replicated
nodes can establish communications with their neighbors using the stolen cryptographic
keys. These replicated nodes can be the basis for various attacks.

4 The NRDP Protocol

4.1 Overview

In this section we propose a note-based, randomized and distributed protocol NRDP for
detecting node replication attacks. There are three key words in NRDP: claimer node,
reporter node and witness node. We call a node which broadcasts a claim message a
claimer node. Neighbor node which forwards a claim message is a reporter node. And
we call the destination node of a claim message a witness node.

In related protocols, each neighbor node of a claimer node with a fixed probability
pf becomes reporter node and forwards the location claim for the claimer node. To
get a related high replica detect rate, a large pf is required, pf and neighbor degree d
determine that there are always more than one reporter node for a claimer node. In this
case, several identical claims are forwarded to a witness node. However, only one claim
is necessary per claimer node for the witness node. For example, if d = 10, to detect a
singe replication of node α with probability greater than 95%, pf has to be greater than
0.308. In this case, there are about 3 reporter nodes for a claimer node in average. Two
reporter nodes are redundant.

In our protocol, a claimer node α randomly specifies a reporter node γ from its neigh-
bor nodes and requests a signature note from γ. After α gets the signature note from γ,
it tells its neighbors the ID of γ by broadcasting the note along with its claim in one-hop

A Note-Based Randomized and Distributed Protocol 563

neighborhood. The claim containing a sub neighbor list of α. The note makes sure that a
claimer node cannot specify a nonexistent ID of its neighbor nodes as its reporter node.
Upon receiving the corresponding claim, using a pseudo-random function γ chooses g
witness nodes for α. Then node γ certainly forwards the claim to α’s witness nodes,
no matter γ is a valid node or not. This is because we assume that message dropping
attacks can be addressed by the surrounding nodes. If a witness node receives two claim
messages containing a same ID but different neighbor lists in one detect iteration, it de-
tects a replication attack. The two signature claim messages become evidence to trigger
a revocation of the replicated node.

4.2 Details of Protocol

In the beginning of NRDP, it is a neighbor discovery period. Each node in the network
broadcasts a message within its one-hop neighbors. After neighbor-discovery period,
each node in the network gets a neighbor list.

Algorithm 1. NRDP Algorithm
rand← GlobalBroadcastDevice;1
Set time-out Δt;2
Neighbor node r← OneNeighborOf (a);3
a→ r: < IDa, IDr , RequestNote, (IDa , R, timea , Ka (H (IDa , R, timea))>;4
while Δt not elapsed and ReceiveMessage(M) do5

if IsRequestNote(M) then6
<-, -, -, (IDx , R, timex , SignedRqstx)>←M;7
a→ x : < IDa , IDx, Note, (IDa , N, timea , Ka (H (IDa , N, timea))>;8

if IsNote(M) then9
<-, -, -, (IDx , N, timex , SignedNotex)>←M;10
a→ NeighborsOf(a): <IDa, NeighborsOf(a), IsClaim, (IDa , lista , timea , IDx,11
SignedNotex , Ka (H (IDa , lista , timea))>;

if IsClaim(M) then12
<-, -, -, (IDx , listx , timex , IDr , Noter , SignedClaimx)>← M;13
if Equal(IDr , IDa) then14

CheckJobs();15
WitnessesIDSetx ← PseudoRand(IDx, rand, g);16
for each IDdstε WitnessesIDSetx do17

a→ IDdst: < IDa, IDdes, ForwardedClaim, (IDx, listx , timex),18
SignedClaimx>;

else19
with probability pc CheckJobs();20

if IsForwardedClaim(M) then21
<-, -, -, (IDx , listx , timex , SignedClaimx)>← M;22
CheckingJobs();23
if IsNotPresent(Memory, IDx) then24

Add(Memory, IDx, listx , SignedClaimx);25

else26
<IDx́, listx́ , SignedClaimx́ >← LookUpID(Memory, IDx);27
if IsNotCoherent(listx , listx́) then28

a→BS: < IDx, listx , listx́ , SignedClaimx , SignedClaimx́ >;29

Clear Memory;30

564 X. Meng, K. Lin, and K. Li

The pseudo code for every node is described in Algorithm 1. The replication de-
tect period starts when the neighbor discovery period ends. Replication detect period
consist of two steps. We call the first step request-note step, and the second step send-
claim step. In request-note step, node α randomly chooses a node γ from its neighbor
list as its reporter node, and then sends a request-note message to the reporter node
(Algorithm 1, line 3, 4). Upon receiving α’s request-note message, node γ replies with
a signature note message which containing a note (Algorithm 1, line 6, 7, 8). The pa-
rameter time is fresh time of the note. Nodes in the network use it to identify the validity
of a note received in different iterations. Note is an evidence to prove that the reporter
node of a claimer node is existing and valid. In the send-claim step, every node gener-
ates a claim message, which includes a signed sub neighbor list and a note got from
the corresponding reporter node. The parameter list in the claim message is an ID list,
which consists of q α’s neighbor node IDs. And the reporter node γ must be in the list.
Each node α then broadcasts the claim message in one-hop neighbors (Algorithm 1,
line 11). When the reporter node receives corresponding claim message, it first verifies
the signature and the time fresh of the note containing in the claim message. Further,
the reporter node verifies that the list in the claim message containing its ID. If all the
verifications succeed, using a pseudo-random function PseudoRand the reporter node
calculates g witness nodes for the claimer node (Algorithm 1, line 16). This function
takes in input the ID of the claimer node, that is the first argument of the claim message,
the current rand value, and the number g of witness nodes that have to be generated.
In order to make the witness nodes of a certain node change in different iterations,
we adopt the method in [5]: A trusted entity broadcasts a seed rand to the network
before each detect iteration start. By doing this, we can prevent the adversary from an-
ticipating the witness nodes in a given protocol iteration. The reporter node analyzes
the claim message, then generates a forwarded claim message, and forwards the for-
warded claim message to all the g witness nodes (Algorithm 1, line 17). The forwarded
claim message just contains the sub neighbor list signed by claimer node, without
note.

When a node receives a claim message, it first checks whether it is the corresponding
reporter node (Algorithm 1, line 12, 13, 14). If it is the reporter node of the claimer
node, it checks the signature, the fresh of the note and the list in the claim message. If
it is not the reporter node, with probability pc it does the checking jobs as the reporter
node does. It is necessary for non-reporter node neighbors to do the checking jobs with
probability pc. By doing this, we can prevent a claimer node from specifying a non-
existing neighbor node as its reporter node. Each node in the network has to specify an
actual neighbor node as its reporter node, or it will be detected as a replicated node by
its neighbor nodes.

Each witness node that receives a forwarded claim message, verifies the signature
and time fresh firstly. Then, it compares the claim to each previously stored claim. If it
is the first time received claim containing IDα, then it simply stores the claim (Algo-
rithm 1, line 24, 25). If a claim from IDα has been received, the witness checks whether
the claimed neighbor list is same with the stored claim. If a conflict is found, the witness
detects a node replication attack. Then the witness triggers a revocation procedure for
IDα. Actually, because there is always only one reporter node for a claimer node, if the

A Note-Based Randomized and Distributed Protocol 565

12

3

1

10

4
Request Note Message

Note

(a) Request Note Step

1

2

8

5

7

4

9
12

1110

6

3
3

 Node 3 list: 8, 6

Node 3 list: 1, 4

(b) Send Claim Step

Fig. 1. The Two Steps of NRDP Protocol

claimer node is a valid node, its corresponding witness nodes would never receive more
than one forwarded claim message from the claimer node. Therefore, once a witness
node receives two claims containing the same ID in one detect iteration, it detects a
replication attack. The two signature claims become evidence to trigger the revocation
of the replicated node. The witness node forwards both claims to the base station (Al-
gorithm 1, line 28, 29). The base station will broadcast a signature message within the
network to revoke the replicated node.

The NRDP protocol runs as illustrated in Figure 1. Assume that the adversary com-
promises node 3 and clones it one time. These two nodes are placed in two different
network locations, as illustrated in Figure 1b. Node 3 and the replica establish connec-
tions with surrounding nodes using the same key materials. Node 3 and its replica node
have the same ID but different neighbor nodes. During a NRDP detect iteration, node
3 and the replica would broadcast the same identity 3, but different sub neighbor lists.
In the request-note step, node 3 chooses node 1 from its neighbor nodes as its reporter
node, and then requests a signature note from node 1, as showed in Figure 1a. In the
same way, the replicated node of node 3 also gets a signature note from its reporter node
8. In the send-claim step, each node generates a claim message which contains a sub
neighbor list and a note, broadcasts it in one-hop neighbors. The reporter node of the
claimer node have to be in the list. As showed in Figure 1b, node 3’s sub neighbor list
is < list1 : 1, 4 >, and the sub neighbor list of the replica is < list2 : 8, 6 >. When a
reporter node receives corresponding claim message, it calculates g witness nodes for
the claimer node, generates a forwarded claim message and then sends to the witness
nodes. When g = 1, using the pseudo-random function both node 1 and 8 would se-
lect the same witness node 7 for identity 3. Therefore, witness node 7 will receive two
non-coherent claims from identity 3. So the witness node detects a replication attack.
Then the witness node 7 forwards the two conflicting signature claims to the BS. BS
will revoke the compromise node by broadcasting the identity of the replicated node in
the whole network.

In order to be undetected by NRDP protocol in the network, replicated nodes with the
same identity may try to claim a same sub neighbor list. For example, as showed in Fig-
ure 1b, the replica of node 3 may try to claim a false sub neighbor list < list2 : 1, 4 >
as same as node 3’ claim. Please note that, when a node broadcasts a claim message,

566 X. Meng, K. Lin, and K. Li

it has to show a valid note from the corresponding reporter node to its neighbors. Be-
cause the replica of node 3 can’t get the valid note corresponding to list2 from node
1. It would be detected as a replicated node by its neighbor nodes. In this situation, we
detect a replication attack while pay for no propagation message overhead.

5 Protocol Analysis

5.1 Efficiency Analysis

There are three metrics to evaluate the efficiency of replication detect protocol: commu-
nication cost, storage cost and computation cost. The main computation cost of NRDP
is the signature check. We measure the communication cost by the average number
of the packets sent and received while propagating the claim message per node. The
storage cost is measured by the average number of copies of the claim message stored
in a sensor node. And the computation cost is measured by the average times of sig-
nature check per node. According to [4], in a network randomly deployed on a unit
square, the average distance between any two randomly chosen nodes is approximately
0.521

√
n ≈

√
n

2 . So it is easy to compute out the communication cost of NRDP, RED,
SDC and P-MPC. We show the summary of protocol cost for per node in Table 1,
where d is the average neighbor degree, g is the number of witness nodes selected by
each reporter node, pf is the probability a neighbor node becomes a reporter node,
and pc is the probability non-reporter neighbor node does the checking jobs when re-
ceives a claim message. In SDC and P-MPC, the notation s is the number of nodes in
a cell, and w is the number of the witness nodes that store the claim from a claimer
node.

Table 1. Summary of Protocol Cost per Node

Protocol Communication Storage Signature

NRDP O(
√

n) O(g) O(pc · d) + O(g)
RED O(pf · d · √n) O(g) O(pf · g · d)
SDC O(pf · d · √n) + O(s) O(w) O(d)

P-MPC O(pf · d · √n) + O(s) O(w) O(d)

5.2 Security Analysis

Let the adversary capture a node α, clone it t - 1 times, and insert the replicas at t -
1 locations: l1, l2, l3, ..., lt−1. We denote the replicated node at location li as αi. Thus,
there are t sensor nodes in the network having the same ID but in different locations.
We would like to determine the probability of a successful detection using our NRDP
protocol.

After the adversary has deployed the replicas in the network, each replica node
αi would establish a connection with the surrounding nodes. So, each node αi gets
a new, actual neighbor list, denoted as nb listi. Node α’s neighbor list is denoted

A Note-Based Randomized and Distributed Protocol 567

as nb list. For all the t− 1 replicated nodes, there are two choices when the replication
detect period starts. That is:

1. Node αi claims a sub neighbor list from its actual neighbor list nb listi.
2. Node αi tries to claim the same neighbor list as node α. Node αi claims a sub

neighbor list from node α’s neighbor list nb list.

In the situation 1, the corresponding witness nodes would receive two or more con-
flicting claims from the same ID with different neighbor lists. The witness nodes cer-
tainly detect a replication attack. In the situation 2, when a claimer node αi specifies
a reporter node γ from α’s neighbor list nb list, then tells its actual neighbors the
reporter node γ’s ID, the claimer node αi has to show a fresh note signed by γ to
its neighbors. Please note that, node γ is a neighbor node of α, and γ is not an ac-
tual neighbor node of αi. Therefore, the replicated node αi cannot get a valid note
which is fresh and signed by γ. In this situation, no claim message is propagated to
any witness nodes. We pay for no propagating communication cost for detecting the
replicas.

A replicated node either is detected by its neighbors, or is detected by its witness
nodes. If a replica is not detected by its neighbors, NRDP has a 100% detect rate in
theory, when at least two conflicting claims arrive at a corresponding witness node.

5.3 Resilience against Node Compromise

In the discussion of our replication detect protocol, we have assumed that each node has
at least one legitimate witness node. Without this assumption, all the replication detect
protocols including ours would fail to detect node replication. If the adversary compro-
mises all of node α’s g witness nodes in one detect iteration, then he can create several
replicas of α without fear of detection. However, even the adversary can compromise
all the witness nodes of α in one detect iteration, he trends to be failed in next detect
iteration. This is because that the witness nodes of α in next detect iteration would be
different. Here we assume the adversary has the ability to compromise t nodes in one
detect iteration. We would like to determine the probability pr that the adversary can

0

5

10

15

20

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

g
t

P
r

Fig. 2. pr under different g and t when n = 100

568 X. Meng, K. Lin, and K. Li

compromise all the g witness nodes storing the location claim of a given identity. As-
suming that the adversary has compromised t nodes in a network of n nodes. pr can be
calculated as follows:

pr =
Ct−g

n−g

Ct
n

= t(t−1)(t−2)(t−3)···(t−g+1)
n(n−1)(n−2)(n−3)···(n−g+1)

(1)

When the network size is 100, we plot the probability that an adversary controls all the
witness nodes of a given node in Figure 2. In particular, when g = 15 and t = 60, pr

is only 2.1× 10−4. Even if g is chosen a relative small value, e.g 4, the adversary still
needs to compromise 57 nodes out of 100 nodes in the network to achieve a success
rate of 10%. Figure 2 shows that, when g is chosen appropriately, pr is negligible, even
if the adversary can compromise a large number of nodes in the network.

6 Simulations

In this section, we show that NRDP is low overhead, high replication attack detect
probability by simulation. We compare NRDP with RED, SDC, P-MPC in our simu-
lation. Simulation result shows that NRDP outperforms other detect protocols in both
communication cost and detect probability.

We randomly deploy 200 nodes at a uniform 400×400 square. We assume a unit-disc
bidirectional communication model. And we adjust the communication range, to make
sure the average neighbor degree d is 10. We fix the size of sub neighbor list q in claim
message to 2 in our simulation. We use the total number of packets sent and received in
the network as the metric of communication cost. In our simulation we set the number
of witness nodes for a claimer node g = 1 for all protocols. We set the average number of
reporter nodes per claimer node to 3, it makes RED, SDC and P-MPC all give a detect
probability lower than 95% in theory to detect a single replication. Please note that our
NRDP has a 100% detect probability in theory. Protocols for detecting node replication
attacks are actually independent of the routing protocols used in the network, so we
consider the same routing protocol for a fair comparison.

We first compare the communication cost and the detect probability. We deploy 10
single replicas in the network, and set the time of each detect iteration to 500s. We

(a) Communication Cost (b) Probability of Detection

Fig. 3. Communication Cost and Probability of Detection

A Note-Based Randomized and Distributed Protocol 569

(a) Signature Cost (b) Storage Cost

Fig. 4. Signature Cost and Storage Cost

assume that a replicated node would not trigger any revocation procedure. Figure 3a
indicates the total number of packets sent and received of the entire network along with
the simulation time. And Figure 3b indicates the corresponding detect probability. Each
detect iteration consists of two steps: request-note step and send-claim step. Therefore,
we can see from Figure 3a that the line in each detect iteration is composed by two
segment lines. And the two segment lines have different slopes. Figure 3a also indicates
that our protocol has much lower communication overhead that all other protocols. We
can see from Figure 3b that NRDP gives a detect rate lower than 100%. This is because
replicated nodes would not trigger a revocation procedure, and a claim message may
be lost in the route path to the corresponding witness node. NRDP achieves a relative
higher detect probability than other protocols.

We further compare the signature and storage overhead in our simulation. We show
the simulation results in Figure 4. We can see that NRDP and RED have a much lower
signature and storage overhead than SDC and P-MPC. Comparing to RED, NRDP has
a higher signature overhead. These extra signature overhead is generated by the note
checking jobs. The storage overhead of NRDP is nearly the same with RED.

7 Conclusion

In this paper, we propose a note based, randomized, distributed protocol NRDP for de-
tecting node replication attacks. The previous distributed detect protocols [4,5,16] all
require nodes know their geographic locations. The first contribution of our study is
that NRDP can detect replication attacks without location information. Further more,
we achieve a much higher detect probability while cost a lower communication over-
head. Both our theoretical analysis and simulation result show that our scheme is
more efficient than previous methods in terms of communication cost and detect
probability.

Acknowledgment

This work is supported by NSFC under grant nos of 90718030, 60973116, and 90818002.

570 X. Meng, K. Lin, and K. Li

References

1. Dyer, J., Lindemann, M., Perez, R., Sailer, R., van Doorn, L., Smith, S.W., Weingart, S.:
Building the IBM 4758 Secure Coprocessor. IEEE Computer (2001)

2. Smith, S.W., Weingart, S.: Building a high performance, programmable secure coprocessor.
Computer Networks, Special Issue on Computer Network Security (April 1999)

3. Weingart, S.: Physical security devices for computer subsystems: A survey of attacks and
defenses. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 88–95. Springer,
Heidelberg (2000)

4. Parno, B., Perrig, A., Gligor, V.: Distributed detection of node replication attacks in sensor
networks. In: Proceedings of The 2005 IEEE Symposim on Security and Privacy, pp. 49–63
(2005)

5. Conti, M., Di Pietro, R., Mancini, L.V., Mei, A.: A Randomized, Efficient, and Distributed
Protocol for the Detection of Node Replication Attacks in Wireless Sensor Networks. In:
MobiHoc 2007, September 9-14 (2007)

6. Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor networks. In:
Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS),
pp. 41–47 (2002)

7. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In:
Proceedings of 2003 IEEE Symposium on Security and Privacy, pp. 197–213 (2003)

8. Douceur, J.R.: The sybil attack. In: Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS 2001), pp. 251–260. Springer, Heidelberg (2002)

9. Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks: analysis &
de-fenses. In: Proceedings of ACM IPSN 2004, pp. 259–268 (2004)

10. Caruso, A., Urpi, A., Chessa, S., De, S.: Gps-free coordinate assignment and routing in wire-
less sensor networks. In: Proceedings of IEEE INFOCOM 2005, pp. 150–160 (2005)

11. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using reference
broadcasts. SIGOPS Operating Systems Review 36(SI), 147–163 (2002)

12. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys,
H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)

13. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile ad hoc
networks. In: ACM OBICOM, pp. 255–265 (2000)

14. Wang, G., Zhang, W., Cao, G., Porta, T.: On supporting distributed collaboration in sensor
networks. In: IEEE MILCOM (2003)

15. Deb, B., Bhatnagar, S., Nath, B.: Reinform: Reliable information forwarding using multiple
paths in sensor networks. In: 28th IEEE LCN, p. 406 (2003)

16. Zhu, B., Addada, V.G.K., Setia, S., Jajodia, S., Roy, S.: Efficient distributed detection of node
replication attacks in sensor networks. In: IEEE ACSAC, pp. 257–267 (2007)

17. Sei, Y., Honiden, S.: Reporter node determination of replicated node detection in wireless
sensor networks. In: Proceedings of the 3rd International Conference on Ubiquitous Infor-
mation Management and Communication (2009)

18. Elson, J., Estrin, D.: Time synchronization for wireless sensor networks. In: Proceedings
of the 15th International Parallel & Distributed Processing Symposium (IPDPS 2001), pp.
1965–1970 (2001)

Author Index

Abbes, Heithem I-287
Alvarez-Bermejo, Jose Antonio I-454
An, Hong II-32
Aracil, Joan II-454
Araújo, Guido I-499
Arul, Joseph M. I-205
Awwad, Ahmad II-1

Bahig, Hazem M. II-391
Bai, Yuebin I-363, I-391
Bai, Yuein I-324
Baran, Jonathan II-79
Bassiri, Maisam Mansub II-422
Behki, Akshay Kumar I-476
Belabbas, Yagoubi II-112
Bellatreche, Ladjel I-124
Benkrid, Soumia I-124
Bhat, Srivatsa S. I-476
Bossard, Antoine I-511
Brock, Michael II-254
Butelle, Franck I-287
Buyya, Rajkumar I-13, I-266, I-351

Calheiros, Rodrigo N. I-13
Cao, Qi II-235
Cao, Qian II-308
Cérin, Christophe I-287
Chai, Ian I-266
Château, Frédéric II-281
Cha, Youngjoon II-136
Chedid, Fouad B. I-44
Chen, Bo I-79
Chen, Bo-Han II-90
Chen, Ching-Wei II-22
Chen, Gang I-193
Cheng, Tangpei II-413
Chen, Pan I-149
Chen, Quan-Jie II-338
Chen, Shih-Chang I-278
Chen, Tai-Lung I-278
Chen, Tianzhou I-136, II-11
Chen, Tsung-Yun I-205
Chen, Yan II-318
Chiang, Tzu-Chiang I-538
Chikkannan, Eswaran I-266

Cho, Hyeonjoong II-42
Cho, Hyuk I-32
Chung, Hua-Yuan I-205
Chung, Yongwha II-42
Church, Philip II-188
Chu, Tianshu I-174, I-404, I-441
Chu, Wanming I-54
Cong, Ming II-32
Crespo, Alfons II-454
Cuzzocrea, Alfredo I-124

Dai, Jian I-441
Dai, Kui I-149
Domı́nguez, Carlos II-454
Duato, José II-444
Duncan, Ralph II-52

Emeliyanenko, Pavel I-427
Ercan, Tuncay II-198

Fang, Weiwei I-441
Fang, Yi-Chiun II-166
Fujita, Satoshi II-235

Gong, Chunye I-416
Gong, Zhenghu I-416
Goscinski, Andrzej II-188, II-225, II-254
Guo, Yupeng II-289

Haddad, Bassam II-1
Hai, Ying-Chi II-68
Han, Xiaoming I-113
Hassan, Houcine II-444, II-454
Hayes, Donald II-79
He, Haohu II-308
Hobbs, Michael II-225
Hsieh, Chih-Wei II-297
Hsu, Chih-Hsuan I-299
Hsu, Ching-Hsien I-278
Hsu, Yarsun II-166
Huang, Libo I-226
Huang, Po-Jung II-338
Huang, Tian-Liang II-338
Huang, Xiang II-308
Hu, Changjun II-308

572 Author Index

Hung, Chia-Lung II-381
Hu, Wen-Jen II-90, II-121
Hwang, Guan-Jie I-205
Hwang, Wen-Jyi II-381

Inoue, Hirotaka II-146
Iwasaki, Tatsuya II-264
Iwasawa, Nagateru II-264

Jain, Praveen I-476
Jemni, Mohamed II-328
Jiang, Guanjun I-136, II-11
Jiang, Haitao I-79
Jianzhong, Zhang II-244
Jingdong, Xu II-244
Ji-shun, Kuang II-434
Ji, Xiaohui II-413
Jou, Yue-Dar II-275
Ju, Lihan II-11
Jungck, Peder II-52

Kai, Pan II-244
Kaneko, Keiichi I-511, II-264
Kang, Mikyung I-528, I-549
Kang, Min-Jae I-549
Kayed, Ahmad II-1
Kestener, Pierre II-281
Hariprasad, K. I-476
Kim, Dongwan II-348
Kim, Hansoo I-520
Kim, HyungSeok I-520
Kim, Jae-Jin I-520
Kim, Jong-Myon I-487
Kim, Mihye II-348
Kim, Seong-Baeg I-549
Kim, Seong Baeg I-528
Kim, Seongjai II-136
Kojima, Kazumine II-100
Kouki, Samia II-328
Kuo, Chin-Fu II-68
Kuo, Sheng-Hsiu II-297
Kwon, Bongjune I-32

Ladhari, Talel II-328
Lai, Kuan-Chou II-338
Lee, Cheng-Ta II-131
Lee, Eunji II-42
Lee, Hyeongok II-348
Lee, Jonghyun I-520
Lee, Junghoon I-528, I-549

Lee, Liang-Teh II-22
Lee, Shin-Tsung II-22
Lee, Sungju II-42
Lee, You-Jen I-205
Lee, Young Choon I-381
Lefèvre, Christophe II-188
Li, Bo I-404
Li, Dandan II-413
Li, Hui-Ya II-381
Li, Keqiu I-559
Li, Kuan-Ching II-338
Lim, Sang Boem I-520
Lin, Chih-Hao II-121
Lin, Cho-Chin I-299
Lin, Chun Yuan II-178
Lin, Fu-Jiun I-205
Ling, Zhang II-434
Lin, Hua-Yi I-538
Lin, Kai I-559
Lin, Reui-Kuo II-297
Lin, Te-Wei I-91
Lin, Xiaola I-163
Lin, Yeong-Sung II-131
Li, Shigang II-308
Liu, Bing I-215
Liu, Dong II-318
Liu, Feng I-193
Liu, Jie I-416
Liu, Jingwei I-136
Liu, Xiaoguang I-102, I-215,

I-236, II-289
Liu, Yi I-441
Li, Wang II-218
Li, Wing-Ning II-79
Li, Yamin I-54
Luan, Zhongzhi I-174, I-404
Luo, Cheng I-324, I-363

Ma, Jianliang I-136, II-11
March, José Luis II-444
Matsumae, Susumu I-186
Mehnert-Spahn, John I-254
Meng, Xiangshan I-559
Meriem, Meddeber II-112
Mihailescu, Marian I-337
Misbahuddin, Syed I-313
Miyata, Takafumi II-401
Mohan, Madhav I-476
Mourelle, Luiza de Macedo II-156
Muthuvelu, Nithiapidary I-266

Author Index 573

Nedjah, Nadia II-156
Nguyen, Man I-463
Nicácio, Daniel I-499
Noor, Fazal I-313

Okamoto, Ken II-358
Ok, MinHwan I-246

Pan, Sung Bum II-42
Park, Gyung-Leen I-549
Pathan, Al-Sakib Khan II-208
Peng, Shietung I-54, I-511
Petit, Salvador II-444
Phan, Hien I-463
Porter, Cameron II-79
Prabhu, Vishnumurthy I-476

Qian, Depei I-174, I-404, I-441
Qin, Jin I-416
Qin, Tingting I-215, II-235
Qu, Haiping I-113

Raghavendra, Prakash I-476
Ranjan, Rajiv I-13
Rao, Jinli I-149
Raposo, Sérgio de Souza II-156
Ren, Yongqing II-32
Roca-Piera, Javier I-454
Ross, Kenneth II-52
Ryoo, Rina I-520

Sahuquillo, Julio II-444
Saika, Yohei II-358
Sakib, Md. Sabbir Rahman II-208
Salehi, Mohsen Amini I-351
Santana Farias, Marcos II-156
Saquib, Nazmus II-208
Schoettner, Michael I-254
Schweiger, Tom II-79
Shahhoseini, Hadi Shahriar II-422
Sheng, Yonghong I-65
Sheu, Wen-Hann II-297
Shieh, Jong-Jiann II-368
Shih, Kuei-Chung II-178
Shi, Qingsong II-11
Soh, Ben I-463
Song, Xiaoyu I-193
Song, Yongzhi I-215
Sugimoto, Kouki II-358
Sui, Julei I-236

Sun, Chao-Ming II-275
Sun, Tao II-32

Taheri, Javid I-381
Tang, Chuan Yi II-178
Tang, Minghua I-163
Tang, Xingsheng II-11
Tan, Qingping I-193
Teo, Yong Meng I-337
Teyssier, Romain II-281
Thapngam, Theerasak I-1
Thejus, V.M. I-476
Tong, Jiancong I-236
Tseng, Chien-Kai II-166

Wang, Chen I-381
Wang, Chung-Ho I-91
Wang, Dongsheng I-65
Wang, Gang I-102, I-215, I-236, II-289
Wang, Hui I-174
Wang, Qun II-413
Wang, Rui I-174
Wang, Xiuwen I-113
Wang, Yaobin II-32
Wang, Yongjian I-404
Wang, Zhiying I-226
Watanabe, Tatsuro II-264
Wei, Qiying II-235
Wei, Su I-1
Wei, Xin I-391
Wong, Adam II-188
Woo, Jung-Hun I-520
Wu, Dan I-149

Xie, Jing I-416
Xiong, Naixue II-318
Xu, Cong I-363
Xu, Dan I-65
Xu, Lu I-113
Xu, Yun I-79

Yamamoto, Yusaku II-401
Yang, Chao-Tung II-90, II-121
Yang, Hailong I-404
Yang, Jiaoyun I-79
Yang, Laurence T. II-318
Yan-xiang, He II-218
Yıldız, Mehmet II-198
Yoshida, Makoto II-100
Yuan, Hui I-136
Yu, Kun-Ming II-178

574 Author Index

Yuntao, Yu II-244
Yu, Shui I-1
Yu, You-Fu II-338

Zhang, Fan II-289
Zhang, Huiyong I-363
Zhang, Jiangang I-113
Zhang, Liang I-324, I-363, I-391
Zhang, Ning II-318
Zhang, Shao-Liang II-401
Zhang, Yuyuan II-318

Zhao, Xin II-289
Zhao, Zhenhai I-215
zhi-qiang, You II-434
Zhong, Ming-Yuan II-368
Zhou, Bing Bing I-381
Zhou, Jianfu I-102
Zhou, Jiayi II-178
Zhou, Wanlei I-1
Zhu, Danfeng I-174
Zomaya, Albert Y. I-381
Zou, Xuecheng I-149

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Papers
	Efficient Web Browsing with Perfect Anonymity Using Page Prefetching
	Introduction
	Related Work
	Problem Setting
	Background of the Problem
	Anonymity Measurement

	System Modelling and Analysis
	System Modelling
	System Analysis

	Performance Evaluation
	Summary and Future Work
	References

	InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services
	Introduction
	Application Scaling and Cloud Infrastructure: Challenges and Requirements
	Federated Cloud Infrastructures for Elastic Applications
	Research Issues
	Overall Vision

	State-of-the-Art in Cloud Provisioning
	System Architecture and Elements of InterCloud
	Cloud Coordinator (CC)
	Cloud Broker (CB)
	Cloud Exchange (CEx)

	Early Experiments and Preliminary Results
	Evaluating Performance of Federated Cloud Computing Environments
	Evaluating a Cloud Provisioning Strategy in a Federated Environment

	Conclusions and Future Directions
	References

	Parallel Algorithms
	Scalable Co-clustering Algorithms
	Introduction
	Sequential Bregman Co-clustering Algorithm
	Distributed Bregman Co-clustering Algorithm
	Experimental Results
	Conclusion

	Parallel Pattern Matching with Swaps on a Linear Array
	Introduction
	Problem Definition
	The Cross-Sampling Algorithm
	A Simpler Implementation of Cross-Sampling
	Parallel Prefix Sampling
	Conclusion

	Parallel Prefix Computation in the Recursive Dual-Net
	Introduction
	Recursive Dual-Net
	Parallel Prefix Computation in Recursive Dual-Net
	Concluding Remarks

	A Two-Phase Differential Synchronization Algorithm for Remote Files
	Introduction
	Two-Phase Differential Synchronization Algorithm
	CDC Based Duplicated Data Detection
	Sliding Block Based Duplicated Data Detection
	Detailed Description of tpsync
	tpsync Algorithm Details
	Signature Cached Synchronization Method

	Experimental Evaluation
	Experimental Environment
	Results of rsync Synchronization
	Results of tpsync Synchronization
	Results of Signature Cached Synchronization

	Conclusion

	A New Parallel Method of Smith-Waterman Algorithm on a Heterogeneous Platform
	Introduction
	Related Work
	Sequence Alignment
	Sequential Pairwise Sequence Alignment
	Parallel Pairwise Sequence Alignment

	Implement the Parallel Algorithm on a Heterogeneous System
	Load Partition
	Pseudocodes of the Algorithm
	Some Optimization Strategies

	Experiment Results
	Conclusion

	Improved Genetic Algorithm for Minimizing Periodic Preventive Maintenance Costs in Series-Parallel Systems
	Introduction
	Maintenance Strategy of a Series-Parallel System
	Developed Importance Measures
	Proposed IGA
	Construction of Periodic PM Model of the Series-Parallel System
	Construction of IGA

	Case Study
	Conclusions
	References

	A New Hybrid Parallel Algorithm for MrBayes
	Introduction
	The Hybrid Algorithm
	The Chain-Partitioned Parallel Algorithm
	The Chain-Parallel Algorithm
	The Proposed Hybrid Parallel Algorithm

	Experiments
	Comparison on the Same Number of Cores
	The Hybrid Algorithm on More CPU Cores
	Load Balance for the Hybrid Parallel Algorithm

	Related Works
	Conclusion and Future Work
	References

	Research and Design of Deployment Framework for Blade-Based Data Center
	Introduction
	Related Work
	Overview of Blade Server
	Technology of Service Deployment

	Architecture of the Bladmin System
	System Framework
	VEMS Architecture
	Bladmin’s Technical Characteristics

	Life Cycle of VE
	VE Preparation
	VE Construction
	VE Monitoring
	VE Adjustment
	VE Termination

	Experiments
	Environment Construction
	Test of VE Construction
	Test of Paradigm Job

	Conclusions and Future Work
	References

	Query Optimization over Parallel Relational Data Warehouses in Distributed Environments by Simultaneous Fragmentation and Allocation
	Introduction
	Related Work
	PRDW Design over Heterogeneous Database Clusters
	A Combined PRDW Design Methodology over Heterogeneous Database Clusters
	Data Partitioning
	Naive Solution
	Data Allocation
	PRDW Design Algorithm

	Conclusions and Future Work

	Parallel Architectures
	Function Units Sharing between Neighbor Cores in CMP
	Introduction
	Related Work
	Motivation
	Architecture
	Main Framework and Dataflow
	Why Neighbor Two Cores

	Implementation
	Core Detail
	Core Workflow

	Evaluation
	References

	A High Efficient On-Chip Interconnection Network in SIMD CMPs
	Introduction
	Related Works
	The Architecture of the BP-Mesh Network
	Experimental Results
	Experimental Platform and Environment
	Area Cost
	Performance Evaluation and Comparison

	Conclusion

	Network-on-Chip Routing Algorithms by Breaking Cycles
	Introduction
	Related Work
	Introduction of Application Specific Routing Algorithms (APSRA)
	Main RABC Algorithm
	Performance Evaluation
	Experimental Configurations
	Results

	Conclusions

	A Fair Thread-Aware Memory Scheduling Algorithm for Chip Multiprocessor
	Introduction
	Related Works
	DRAM Architecture
	DRAM Memory Controller
	Related Works on Memory Scheduling Algorithms

	Fair Thread-Aware Memory Scheduling Algorithm
	FTAM Scheduling Policy
	Factors for Priority Calculation
	Algorithm Description
	Example
	Implementation Analysis
	Pseudo Code of FTAM

	Simulation Setup
	Simulation Methodology
	Simulation Setup

	Simulation Result
	Conclusion
	References

	Efficient Partitioning of Static Buses for Processor Arrays of Small Size
	Introduction
	Models
	Problems
	Scaling-Simulation of the MSB by the MPB
	Concluding Remarks

	Formal Proof for a General Architecture of Hybrid Prefix/Carry-Select Adders
	Introduction
	Related Work
	Hybrid Prefix/Carry-Select Adder
	Preliminaries
	Formalization of General Architecture

	Formal Proof of Special Hybrid Adders
	Conclusion

	An Efficient Non-blocking Multithreaded Embedded System
	Introduction
	Multicore Multithreaded Embedded System

	Background and Related Research
	Non-blocking Multithreaded Embedded System
	Execution Paradigm of This Non-blocking Multithreaded Architecture
	Scheduling Unit

	ARM Architecture
	Performance Evaluation of Non-blocking Multithreaded Architecture
	Conclusion

	A Remote Mirroring Architecture with Adaptively Cooperative Pipelining
	Introduction
	Related Work
	Adaptively Cooperative Pipelining
	Cooperative Pipelining
	Adaptive Batching
	Accelerating Techniques

	Experimental Evaluation
	Prototype Implementation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work

	SV: Enhancing SIMD Architectures via Combined SIMD-Vector Approach
	Introduction
	Motivation
	SIMD-Vector Architecture
	Architecture Overview
	Programming Issues
	Comparison with Other DLP Architectures

	Evaluation
	Conclusion and Future Work

	A Correlation-Aware Prefetching Strategy for Object-Based File System
	Introduction
	NBJLOFS
	Correlation-Aware Prefetching
	Object Duplication
	Moving Windows

	Experiment
	Experimental Environment
	Performance Evaluation

	Related Work
	Conclusions and Future Work

	An Auxiliary Storage Subsystem to Distributed Computing Systems for External Storage Service
	Introduction
	Storage Subsystem for External Storage Service
	Storage Subsystem Architecture
	Subsystem Evaluation onto the External Storage
	Conclusion
	References

	Grid/Cluster Computing
	Checkpointing and Migration of Communication Channels in Heterogeneous Grid Environments
	Introduction
	Grid Channel Checkpointing Overview
	GCC Architecture
	Shared Sockets

	GCC Phases
	Pre-checkpoint Phase
	Post-checkpoint Phase
	Migration and Restart Phase

	Evaluation
	Test Case 1: Heterogeneous Checkpointers and GCC
	Test Case 2: Homogeneous Checkpointers and GCC

	Related Work
	Conclusions and Future Work

	On-Line Task Granularity Adaptation for Dynamic Grid Applications
	Introduction
	Related Work
	Factors Influencing the Task Granularity
	Scheduler Implementation
	Task Categorisation
	Task Category-Resource Benchmarking
	Average Analysis
	Scheduler Process Flow

	Performance Analysis
	Conclusion

	Message Clustering Technique towards Efficient Irregular Data Redistribution in Clusters and Grids
	Introduction
	Related Work
	Preliminary
	The Proposed Method
	Performance Evaluation
	Conclusions and Future Works
	References

	Multithreading of Kostka Numbers Computation for the BonjourGrid Meta-desktop Grid Middleware
	Introduction and Motivations
	A Multithreaded Computation for Kostka Numbers
	The Multithreading Approach
	Parallelization Using a Desktop Grid
	Experimental Results

	Porting the Parallel Code on a Desktop Grid Platform
	Experiments and Validation of BonjourGrid

	Related Work on Advanced Desktop Grid Architectures
	Conclusion and Future Works

	Adaptable Scheduling Algorithm for Grids with Resource Redeployment Capability
	Introduction
	Models
	Workload Model
	R2 Grid Model

	Related Works
	A Framework for Adaptable Scheduling Algorithms
	AS Algorithm: AROF
	Experimental Results and Analysis
	The Workload Parameters
	The R2 Grid Parameters
	Experimental Results

	Conclusions and Future Work

	Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices
	Introduction
	Mathematical Development
	Experimental Results
	Conclusion
	References

	Cloud Computing/Virtualization Techniques
	idsocket: API for Inter-domain Communications Base on Xen
	Introduction
	Motivation
	Background
	Architecture of Xen about Inter Domain Communication
	Data Sharing and Security Issues in a Virtual Machine Environment

	Design and Implementation
	General Architecture of idsocket
	Discovering and Dispatching - Module in Dom0
	Configuration and Transportation - Module in DomU
	Porting API Suite into User Space

	Performance Evaluation
	Test Environment
	Benchmarks and Tests
	Data Transportation Performance
	Processor Utilization Evaluation

	Related Works
	Future Works and Conclusion
	References

	Strategy-Proof Dynamic Resource Pricing of Multiple Resource Types on Federated Clouds
	Introduction
	Related Works
	Market-Based Pricing Mechanisms
	Achieving Strategy-Proof Resource Pricing
	Impact of Dynamic Pricing
	Economic Efficiency
	User Welfare
	Multiple Resource Types in Different Market Conditions
	Cost of Dynamic Pricing

	Conclusions and Future Work

	Adapting Market-Oriented Scheduling Policies for Cloud Computing
	Introduction
	Related Work
	Deploying Cloud Resources at Resource Provisioning Level
	Deploying Cloud Resources at Broker (User) Level

	Proposed Policy
	Time Optimization Policy
	Cost Optimization Policy

	System Implementation
	Performance Evaluation
	Experiment Setup
	Experiment Results

	Conclusion and Future Work

	A High Performance Inter-VM Network Communication Mechanism
	Introduction
	Xen Network Background
	Design and Implementation of IVCOM
	IVCOM Architecture
	Event Channel Table Design
	Shared Memory Design
	Establish Communication Channel and Data Transmission
	Hardware Virtual Machine Extension

	Experiments in Para-Virtualization
	The Impact of Message Size on Performance
	The Impact of VM Amount and Virtual CPU Amount Per VM on Performance

	Experiments in Full-Virtualization
	Experiments and Analysis

	Related Work
	Conclusion
	References

	On the Effect of Using Third-Party Clouds for Maximizing Profit
	Introduction
	Related Work
	Profit Model of a Cloud Service Provider
	Client Satisfaction Oriented Scheduling for Maximizing Profit
	Rationale Behind CSoS
	CSoS

	Performance Evaluation
	Experimental Settings
	Performance Metrics
	Results

	Conclusion
	References

	A Tracing Approach to Process Migration for Virtual Machine Based on Multicore Platform
	Introduction
	Approach to Trace Processes Migration for Virtual Machine
	Overview of the Tracing Approach
	Collecting Information in DomU
	Transporting Information from DomU to Dom0
	Querying the Relationship between VCPU and Processor Core from Xen Hypervisor

	Software Design and Implementation
	Function Module Level Design
	Dom0’s Kernel Module Overview
	DomU’s Kernel Module Overview

	Experiments and Performance Evaluation
	Experiment Environment
	Functional Verification
	Benchmark and Test Tools Summary
	Results and Analysis

	Related Works
	Conclusions
	References

	GPU Computing and Applications
	Accelerating Dock6’s Amber Scoring with Graphic Processing Unit
	Introduction
	Analysis of the Amber Scoring in Dock6
	Overview
	Program Flow and Performance Analysis

	Porting Amber Scoring to GPU
	Overview
	CUDA Programming Model Highlights
	Parallel Thread Management
	Memory Model and Data Transfer Pattern
	Divergence Hidden

	Results
	Related Work
	Conclusion and Future Works
	References

	Optimizing Sweep3D for Graphic Processor Unit
	Introduction
	An Overview of Sweep3D
	Architecture of Nvidia GT200 and CUDA
	Architecture of Nvidia GT200
	Programming Model and Software

	Multi-dimensional Optimization Methods
	Stage 1: Thread Level Parallelization
	Stage 2: More Threads and Repeated Computing
	Stage 3: Using Shared Memory
	Stage 4: Other Methods

	Performance Results and Analysis
	Conclusion and Future Work

	Modular Resultant Algorithm for Graphics Processors
	Overview
	Problem Statement and Mathematical Background
	Bivariate Polynomial Resultants
	Displacement Structure and the Generalized Schur Algorithm in Application to Polynomial Resultants
	Non-Hermitian Division-Free Rotations

	GPU Architecture and CUDA Framework
	Mapping Resultants Algorithm to Graphics Hardware
	Algorithm Overview
	Univariate Resultant Algorithm
	24-Bit Modular Arithmetic on the GPU
	Putting It All Together
	Polynomial Interpolation

	Experiments and Conclusion
	Montgomery Modular Inverse Algorithm

	A Novel Scheme for High Performance Finite-Difference Time-Domain (FDTD) Computations Based on GPU
	Introduction
	Background
	The System Model
	The Basic Scheme of FDTD Algorithm

	FDTD Computation Based on GPU
	Parallel Updating by Means of Thread
	Vectorization

	Performances Evaluating
	Analysis of Performance on GPU-Based FDTD
	Numerical Example Computing with GPU

	Conclusions
	References

	Parallel Programming, Performance Evaluation
	A Proposed Asynchronous Object Load Balancing Method for Parallel 3D Image Reconstruction Applications
	Introduction
	The Iterative Reconstruction Problem
	Shifting the Programming Paradigm
	Load Balancing a Mean for Adaptive Applications
	Asynchronous Load Balancer Calls

	Conclusions

	A Step-by-Step Extending Parallelism Approach for Enumeration of Combinatorial Objects
	Introduction
	Overview and Related Work
	Serial Algorithms for Isomorph-Free Exhaustive Generation
	Two Issues of Concern

	A Proposed Approach
	A Case Study: Enumeration of Orthogonal Array of Strength t
	Notation of Orthogonal Array
	An OrdelyGeneration Algorithm for Enumerating Orthogonal Array
	Applying Our Proposed Approach for Enumeration of Orthogonal Arrays

	Algorithm Design Details
	Domain Decomposition
	Processing Outputs
	Some Initial Experiment Results

	Conclusion and Future Work

	A Study of Performance Scalability by Parallelizing Loop Iterations on Multi-core SMPs
	Introduction
	Implementation of OpenMP Pragmas in gcc
	Unimodular Transformations
	Results
	Study of OpenMP Parallel Programs
	Study of Loop Transformations on Multi-core

	Conclusion

	Impact of Multimedia Extensions for Different Processing Element Granularities on an Embedded Imaging System
	Introduction
	Methodology
	Simulation Infrastructure
	Modeled Processor Array Architectures
	Benchmark Applications
	System Area and Power Evaluation Using Technology Modeling

	Experimental Results
	Execution Performance
	Area Efficiency
	Energy Efficiency

	Conclusions
	References

	Fault-Tolerant/Information Security and Management
	Reducing False Aborts in STM Systems
	Introduction
	Related Work
	The False Abort Issue
	Conflict Detection Free of False Aborts
	A Hash Table Collision List
	A Full Associative Memory Mapping

	Experimental Results
	Further Discussion
	Conclusion

	Fault-Tolerant Node-to-Set Disjoint-Path Routing in Hypercubes
	Introduction
	Preliminaries
	Fault-Tolerant Node-to-Set Disjoint-Path Hypercube Routing
	Extended Fault-Tolerant Node-to-Node Routing in Hypercubes
	Fault-Tolerant Node-to-Set Routing in Hypercubes with Restriction

	Correctness and Complexities
	Example
	Conclusion

	AirScope: A Micro-scale Urban Air Quality Management System
	Background
	Related Work
	Micro-scale Air Quality Management System
	3D GIS for Air Quality Monitoring and Modeling
	3D GIS for Air Quality Monitoring and Modeling
	Air Quality Data Management
	Air Quality Visualization

	Conclusions and Future Work
	References

	Wireless Communication Network
	Design of a Slot Assignment Scheme for Link Error Distribution on Wireless Grid Networks
	Introduction
	Related Work
	WirelessHART and Traffic Light Network
	Routing Scheme
	Performance Measurement
	Conclusion

	Wireless Bluetooth Communications Combine with Secure Data Transmission Using ECDH and Conference Key Agreements
	Introduction
	Piconet and Scatternet Routing Protocols
	Secure Data Transmission Protocols
	Conference Key Agreement
	Piconet and Scatternet Secure Data Transmission Protocols Using Conference Key
	ECDH Key Agreements

	Security Analyses
	Computing Evaluation
	Conclusions
	References

	Robust Multicast Scheme for Wireless Process Control on Traffic Light Networks
	Introduction
	Background and Related Work
	Routing and Scheduling Scheme
	System Model
	Multicast Scheme

	Performance Measurement
	Conclusions

	A Note-Based Randomized and Distributed Protocol for Detecting Node Replication Attacks in Wireless Sensor Networks
	Introduction
	Related Work
	System Model
	Network Model
	Adversary Model

	The NRDP Protocol
	Overview
	Details of Protocol

	Protocol Analysis
	Efficiency Analysis
	Security Analysis
	Resilience against Node Compromise

	Simulations
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

